vfs: cache request_queue in struct block_device
[linux-2.6-block.git] / fs / direct-io.c
CommitLineData
1da177e4
LT
1/*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
e1f8e874 8 * 04Jul2002 Andrew Morton
1da177e4
LT
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
e1f8e874 12 * 29Oct2002 Andrew Morton
1da177e4
LT
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/fs.h>
26#include <linux/mm.h>
27#include <linux/slab.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
98c4d57d 30#include <linux/task_io_accounting_ops.h>
1da177e4
LT
31#include <linux/bio.h>
32#include <linux/wait.h>
33#include <linux/err.h>
34#include <linux/blkdev.h>
35#include <linux/buffer_head.h>
36#include <linux/rwsem.h>
37#include <linux/uio.h>
60063497 38#include <linux/atomic.h>
1da177e4
LT
39
40/*
41 * How many user pages to map in one call to get_user_pages(). This determines
cde1ecb3 42 * the size of a structure in the slab cache
1da177e4
LT
43 */
44#define DIO_PAGES 64
45
46/*
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
53 *
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
55 * blocksize.
1da177e4
LT
56 */
57
eb28be2b
AK
58/* dio_state only used in the submission path */
59
60struct dio_submit {
1da177e4 61 struct bio *bio; /* bio under assembly */
1da177e4
LT
62 unsigned blkbits; /* doesn't change */
63 unsigned blkfactor; /* When we're using an alignment which
64 is finer than the filesystem's soft
65 blocksize, this specifies how much
66 finer. blkfactor=2 means 1/4-block
67 alignment. Does not change */
68 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
69 been performed at the start of a
70 write */
71 int pages_in_io; /* approximate total IO pages */
72 size_t size; /* total request size (doesn't change)*/
73 sector_t block_in_file; /* Current offset into the underlying
74 file in dio_block units. */
75 unsigned blocks_available; /* At block_in_file. changes */
0dc2bc49 76 int reap_counter; /* rate limit reaping */
1da177e4
LT
77 sector_t final_block_in_request;/* doesn't change */
78 unsigned first_block_in_page; /* doesn't change, Used only once */
79 int boundary; /* prev block is at a boundary */
1d8fa7a2 80 get_block_t *get_block; /* block mapping function */
facd07b0 81 dio_submit_t *submit_io; /* IO submition function */
eb28be2b 82
facd07b0 83 loff_t logical_offset_in_bio; /* current first logical block in bio */
1da177e4
LT
84 sector_t final_block_in_bio; /* current final block in bio + 1 */
85 sector_t next_block_for_io; /* next block to be put under IO,
86 in dio_blocks units */
1da177e4
LT
87
88 /*
89 * Deferred addition of a page to the dio. These variables are
90 * private to dio_send_cur_page(), submit_page_section() and
91 * dio_bio_add_page().
92 */
93 struct page *cur_page; /* The page */
94 unsigned cur_page_offset; /* Offset into it, in bytes */
95 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
96 sector_t cur_page_block; /* Where it starts */
facd07b0 97 loff_t cur_page_fs_offset; /* Offset in file */
1da177e4
LT
98
99 /*
100 * Page fetching state. These variables belong to dio_refill_pages().
101 */
102 int curr_page; /* changes */
103 int total_pages; /* doesn't change */
104 unsigned long curr_user_address;/* changes */
105
106 /*
107 * Page queue. These variables belong to dio_refill_pages() and
108 * dio_get_page().
109 */
1da177e4
LT
110 unsigned head; /* next page to process */
111 unsigned tail; /* last valid page + 1 */
eb28be2b
AK
112};
113
114/* dio_state communicated between submission path and end_io */
115struct dio {
116 int flags; /* doesn't change */
eb28be2b 117 int rw;
0dc2bc49 118 struct inode *inode;
eb28be2b
AK
119 loff_t i_size; /* i_size when submitted */
120 dio_iodone_t *end_io; /* IO completion function */
eb28be2b 121
18772641 122 void *private; /* copy from map_bh.b_private */
eb28be2b
AK
123
124 /* BIO completion state */
125 spinlock_t bio_lock; /* protects BIO fields below */
0dc2bc49
AK
126 int page_errors; /* errno from get_user_pages() */
127 int is_async; /* is IO async ? */
128 int io_error; /* IO error in completion path */
eb28be2b
AK
129 unsigned long refcount; /* direct_io_worker() and bios */
130 struct bio *bio_list; /* singly linked via bi_private */
131 struct task_struct *waiter; /* waiting task (NULL if none) */
132
133 /* AIO related stuff */
134 struct kiocb *iocb; /* kiocb */
eb28be2b
AK
135 ssize_t result; /* IO result */
136
23aee091
JM
137 /*
138 * pages[] (and any fields placed after it) are not zeroed out at
139 * allocation time. Don't add new fields after pages[] unless you
140 * wish that they not be zeroed.
141 */
142 struct page *pages[DIO_PAGES]; /* page buffer */
6e8267f5
AK
143} ____cacheline_aligned_in_smp;
144
145static struct kmem_cache *dio_cache __read_mostly;
1da177e4 146
bd5fe6c5
CH
147static void __inode_dio_wait(struct inode *inode)
148{
149 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
150 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
151
152 do {
153 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
154 if (atomic_read(&inode->i_dio_count))
155 schedule();
156 } while (atomic_read(&inode->i_dio_count));
157 finish_wait(wq, &q.wait);
158}
159
160/**
161 * inode_dio_wait - wait for outstanding DIO requests to finish
162 * @inode: inode to wait for
163 *
164 * Waits for all pending direct I/O requests to finish so that we can
165 * proceed with a truncate or equivalent operation.
166 *
167 * Must be called under a lock that serializes taking new references
168 * to i_dio_count, usually by inode->i_mutex.
169 */
170void inode_dio_wait(struct inode *inode)
171{
172 if (atomic_read(&inode->i_dio_count))
173 __inode_dio_wait(inode);
174}
175EXPORT_SYMBOL_GPL(inode_dio_wait);
176
177/*
178 * inode_dio_done - signal finish of a direct I/O requests
179 * @inode: inode the direct I/O happens on
180 *
181 * This is called once we've finished processing a direct I/O request,
182 * and is used to wake up callers waiting for direct I/O to be quiesced.
183 */
184void inode_dio_done(struct inode *inode)
185{
186 if (atomic_dec_and_test(&inode->i_dio_count))
187 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
188}
189EXPORT_SYMBOL_GPL(inode_dio_done);
190
1da177e4
LT
191/*
192 * How many pages are in the queue?
193 */
eb28be2b 194static inline unsigned dio_pages_present(struct dio_submit *sdio)
1da177e4 195{
eb28be2b 196 return sdio->tail - sdio->head;
1da177e4
LT
197}
198
199/*
200 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
201 */
ba253fbf 202static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
1da177e4
LT
203{
204 int ret;
205 int nr_pages;
206
eb28be2b 207 nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES);
f5dd33c4 208 ret = get_user_pages_fast(
eb28be2b 209 sdio->curr_user_address, /* Where from? */
1da177e4
LT
210 nr_pages, /* How many pages? */
211 dio->rw == READ, /* Write to memory? */
f5dd33c4 212 &dio->pages[0]); /* Put results here */
1da177e4 213
eb28be2b 214 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
557ed1fa 215 struct page *page = ZERO_PAGE(0);
1da177e4
LT
216 /*
217 * A memory fault, but the filesystem has some outstanding
218 * mapped blocks. We need to use those blocks up to avoid
219 * leaking stale data in the file.
220 */
221 if (dio->page_errors == 0)
222 dio->page_errors = ret;
b5810039
NP
223 page_cache_get(page);
224 dio->pages[0] = page;
eb28be2b
AK
225 sdio->head = 0;
226 sdio->tail = 1;
1da177e4
LT
227 ret = 0;
228 goto out;
229 }
230
231 if (ret >= 0) {
eb28be2b
AK
232 sdio->curr_user_address += ret * PAGE_SIZE;
233 sdio->curr_page += ret;
234 sdio->head = 0;
235 sdio->tail = ret;
1da177e4
LT
236 ret = 0;
237 }
238out:
239 return ret;
240}
241
242/*
243 * Get another userspace page. Returns an ERR_PTR on error. Pages are
244 * buffered inside the dio so that we can call get_user_pages() against a
245 * decent number of pages, less frequently. To provide nicer use of the
246 * L1 cache.
247 */
ba253fbf
AK
248static inline struct page *dio_get_page(struct dio *dio,
249 struct dio_submit *sdio)
1da177e4 250{
eb28be2b 251 if (dio_pages_present(sdio) == 0) {
1da177e4
LT
252 int ret;
253
eb28be2b 254 ret = dio_refill_pages(dio, sdio);
1da177e4
LT
255 if (ret)
256 return ERR_PTR(ret);
eb28be2b 257 BUG_ON(dio_pages_present(sdio) == 0);
1da177e4 258 }
eb28be2b 259 return dio->pages[sdio->head++];
1da177e4
LT
260}
261
6d544bb4
ZB
262/**
263 * dio_complete() - called when all DIO BIO I/O has been completed
264 * @offset: the byte offset in the file of the completed operation
265 *
266 * This releases locks as dictated by the locking type, lets interested parties
267 * know that a DIO operation has completed, and calculates the resulting return
268 * code for the operation.
269 *
270 * It lets the filesystem know if it registered an interest earlier via
271 * get_block. Pass the private field of the map buffer_head so that
272 * filesystems can use it to hold additional state between get_block calls and
273 * dio_complete.
1da177e4 274 */
cd1c584f 275static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async)
1da177e4 276{
6d544bb4
ZB
277 ssize_t transferred = 0;
278
8459d86a
ZB
279 /*
280 * AIO submission can race with bio completion to get here while
281 * expecting to have the last io completed by bio completion.
282 * In that case -EIOCBQUEUED is in fact not an error we want
283 * to preserve through this call.
284 */
285 if (ret == -EIOCBQUEUED)
286 ret = 0;
287
6d544bb4
ZB
288 if (dio->result) {
289 transferred = dio->result;
290
291 /* Check for short read case */
292 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
293 transferred = dio->i_size - offset;
294 }
295
6d544bb4
ZB
296 if (ret == 0)
297 ret = dio->page_errors;
298 if (ret == 0)
299 ret = dio->io_error;
300 if (ret == 0)
301 ret = transferred;
302
40e2e973
CH
303 if (dio->end_io && dio->result) {
304 dio->end_io(dio->iocb, offset, transferred,
18772641 305 dio->private, ret, is_async);
72c5052d
CH
306 } else {
307 if (is_async)
308 aio_complete(dio->iocb, ret, 0);
309 inode_dio_done(dio->inode);
40e2e973
CH
310 }
311
6d544bb4 312 return ret;
1da177e4
LT
313}
314
1da177e4
LT
315static int dio_bio_complete(struct dio *dio, struct bio *bio);
316/*
317 * Asynchronous IO callback.
318 */
6712ecf8 319static void dio_bio_end_aio(struct bio *bio, int error)
1da177e4
LT
320{
321 struct dio *dio = bio->bi_private;
5eb6c7a2
ZB
322 unsigned long remaining;
323 unsigned long flags;
1da177e4 324
1da177e4
LT
325 /* cleanup the bio */
326 dio_bio_complete(dio, bio);
0273201e 327
5eb6c7a2
ZB
328 spin_lock_irqsave(&dio->bio_lock, flags);
329 remaining = --dio->refcount;
330 if (remaining == 1 && dio->waiter)
20258b2b 331 wake_up_process(dio->waiter);
5eb6c7a2 332 spin_unlock_irqrestore(&dio->bio_lock, flags);
20258b2b 333
8459d86a 334 if (remaining == 0) {
40e2e973 335 dio_complete(dio, dio->iocb->ki_pos, 0, true);
6e8267f5 336 kmem_cache_free(dio_cache, dio);
8459d86a 337 }
1da177e4
LT
338}
339
340/*
341 * The BIO completion handler simply queues the BIO up for the process-context
342 * handler.
343 *
344 * During I/O bi_private points at the dio. After I/O, bi_private is used to
345 * implement a singly-linked list of completed BIOs, at dio->bio_list.
346 */
6712ecf8 347static void dio_bio_end_io(struct bio *bio, int error)
1da177e4
LT
348{
349 struct dio *dio = bio->bi_private;
350 unsigned long flags;
351
1da177e4
LT
352 spin_lock_irqsave(&dio->bio_lock, flags);
353 bio->bi_private = dio->bio_list;
354 dio->bio_list = bio;
5eb6c7a2 355 if (--dio->refcount == 1 && dio->waiter)
1da177e4
LT
356 wake_up_process(dio->waiter);
357 spin_unlock_irqrestore(&dio->bio_lock, flags);
1da177e4
LT
358}
359
facd07b0
JB
360/**
361 * dio_end_io - handle the end io action for the given bio
362 * @bio: The direct io bio thats being completed
363 * @error: Error if there was one
364 *
365 * This is meant to be called by any filesystem that uses their own dio_submit_t
366 * so that the DIO specific endio actions are dealt with after the filesystem
367 * has done it's completion work.
368 */
369void dio_end_io(struct bio *bio, int error)
370{
371 struct dio *dio = bio->bi_private;
372
373 if (dio->is_async)
374 dio_bio_end_aio(bio, error);
375 else
376 dio_bio_end_io(bio, error);
377}
378EXPORT_SYMBOL_GPL(dio_end_io);
379
ba253fbf 380static inline void
eb28be2b
AK
381dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
382 struct block_device *bdev,
383 sector_t first_sector, int nr_vecs)
1da177e4
LT
384{
385 struct bio *bio;
386
20d9600c
DD
387 /*
388 * bio_alloc() is guaranteed to return a bio when called with
389 * __GFP_WAIT and we request a valid number of vectors.
390 */
1da177e4 391 bio = bio_alloc(GFP_KERNEL, nr_vecs);
1da177e4
LT
392
393 bio->bi_bdev = bdev;
394 bio->bi_sector = first_sector;
395 if (dio->is_async)
396 bio->bi_end_io = dio_bio_end_aio;
397 else
398 bio->bi_end_io = dio_bio_end_io;
399
eb28be2b
AK
400 sdio->bio = bio;
401 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
1da177e4
LT
402}
403
404/*
405 * In the AIO read case we speculatively dirty the pages before starting IO.
406 * During IO completion, any of these pages which happen to have been written
407 * back will be redirtied by bio_check_pages_dirty().
0273201e
ZB
408 *
409 * bios hold a dio reference between submit_bio and ->end_io.
1da177e4 410 */
ba253fbf 411static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
1da177e4 412{
eb28be2b 413 struct bio *bio = sdio->bio;
5eb6c7a2 414 unsigned long flags;
1da177e4
LT
415
416 bio->bi_private = dio;
5eb6c7a2
ZB
417
418 spin_lock_irqsave(&dio->bio_lock, flags);
419 dio->refcount++;
420 spin_unlock_irqrestore(&dio->bio_lock, flags);
421
1da177e4
LT
422 if (dio->is_async && dio->rw == READ)
423 bio_set_pages_dirty(bio);
5eb6c7a2 424
eb28be2b
AK
425 if (sdio->submit_io)
426 sdio->submit_io(dio->rw, bio, dio->inode,
427 sdio->logical_offset_in_bio);
facd07b0
JB
428 else
429 submit_bio(dio->rw, bio);
1da177e4 430
eb28be2b
AK
431 sdio->bio = NULL;
432 sdio->boundary = 0;
433 sdio->logical_offset_in_bio = 0;
1da177e4
LT
434}
435
436/*
437 * Release any resources in case of a failure
438 */
ba253fbf 439static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
1da177e4 440{
eb28be2b
AK
441 while (dio_pages_present(sdio))
442 page_cache_release(dio_get_page(dio, sdio));
1da177e4
LT
443}
444
445/*
0273201e
ZB
446 * Wait for the next BIO to complete. Remove it and return it. NULL is
447 * returned once all BIOs have been completed. This must only be called once
448 * all bios have been issued so that dio->refcount can only decrease. This
449 * requires that that the caller hold a reference on the dio.
1da177e4
LT
450 */
451static struct bio *dio_await_one(struct dio *dio)
452{
453 unsigned long flags;
0273201e 454 struct bio *bio = NULL;
1da177e4
LT
455
456 spin_lock_irqsave(&dio->bio_lock, flags);
5eb6c7a2
ZB
457
458 /*
459 * Wait as long as the list is empty and there are bios in flight. bio
460 * completion drops the count, maybe adds to the list, and wakes while
461 * holding the bio_lock so we don't need set_current_state()'s barrier
462 * and can call it after testing our condition.
463 */
464 while (dio->refcount > 1 && dio->bio_list == NULL) {
465 __set_current_state(TASK_UNINTERRUPTIBLE);
466 dio->waiter = current;
467 spin_unlock_irqrestore(&dio->bio_lock, flags);
468 io_schedule();
469 /* wake up sets us TASK_RUNNING */
470 spin_lock_irqsave(&dio->bio_lock, flags);
471 dio->waiter = NULL;
1da177e4 472 }
0273201e
ZB
473 if (dio->bio_list) {
474 bio = dio->bio_list;
475 dio->bio_list = bio->bi_private;
476 }
1da177e4
LT
477 spin_unlock_irqrestore(&dio->bio_lock, flags);
478 return bio;
479}
480
481/*
482 * Process one completed BIO. No locks are held.
483 */
484static int dio_bio_complete(struct dio *dio, struct bio *bio)
485{
486 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
487 struct bio_vec *bvec = bio->bi_io_vec;
488 int page_no;
489
490 if (!uptodate)
174e27c6 491 dio->io_error = -EIO;
1da177e4
LT
492
493 if (dio->is_async && dio->rw == READ) {
494 bio_check_pages_dirty(bio); /* transfers ownership */
495 } else {
496 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
497 struct page *page = bvec[page_no].bv_page;
498
499 if (dio->rw == READ && !PageCompound(page))
500 set_page_dirty_lock(page);
501 page_cache_release(page);
502 }
503 bio_put(bio);
504 }
1da177e4
LT
505 return uptodate ? 0 : -EIO;
506}
507
508/*
0273201e
ZB
509 * Wait on and process all in-flight BIOs. This must only be called once
510 * all bios have been issued so that the refcount can only decrease.
511 * This just waits for all bios to make it through dio_bio_complete. IO
beb7dd86 512 * errors are propagated through dio->io_error and should be propagated via
0273201e 513 * dio_complete().
1da177e4 514 */
6d544bb4 515static void dio_await_completion(struct dio *dio)
1da177e4 516{
0273201e
ZB
517 struct bio *bio;
518 do {
519 bio = dio_await_one(dio);
520 if (bio)
521 dio_bio_complete(dio, bio);
522 } while (bio);
1da177e4
LT
523}
524
525/*
526 * A really large O_DIRECT read or write can generate a lot of BIOs. So
527 * to keep the memory consumption sane we periodically reap any completed BIOs
528 * during the BIO generation phase.
529 *
530 * This also helps to limit the peak amount of pinned userspace memory.
531 */
ba253fbf 532static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
1da177e4
LT
533{
534 int ret = 0;
535
eb28be2b 536 if (sdio->reap_counter++ >= 64) {
1da177e4
LT
537 while (dio->bio_list) {
538 unsigned long flags;
539 struct bio *bio;
540 int ret2;
541
542 spin_lock_irqsave(&dio->bio_lock, flags);
543 bio = dio->bio_list;
544 dio->bio_list = bio->bi_private;
545 spin_unlock_irqrestore(&dio->bio_lock, flags);
546 ret2 = dio_bio_complete(dio, bio);
547 if (ret == 0)
548 ret = ret2;
549 }
eb28be2b 550 sdio->reap_counter = 0;
1da177e4
LT
551 }
552 return ret;
553}
554
555/*
556 * Call into the fs to map some more disk blocks. We record the current number
eb28be2b 557 * of available blocks at sdio->blocks_available. These are in units of the
1da177e4
LT
558 * fs blocksize, (1 << inode->i_blkbits).
559 *
560 * The fs is allowed to map lots of blocks at once. If it wants to do that,
561 * it uses the passed inode-relative block number as the file offset, as usual.
562 *
1d8fa7a2 563 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
1da177e4
LT
564 * has remaining to do. The fs should not map more than this number of blocks.
565 *
566 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
567 * indicate how much contiguous disk space has been made available at
568 * bh->b_blocknr.
569 *
570 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
571 * This isn't very efficient...
572 *
573 * In the case of filesystem holes: the fs may return an arbitrarily-large
574 * hole by returning an appropriate value in b_size and by clearing
575 * buffer_mapped(). However the direct-io code will only process holes one
1d8fa7a2 576 * block at a time - it will repeatedly call get_block() as it walks the hole.
1da177e4 577 */
18772641
AK
578static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
579 struct buffer_head *map_bh)
1da177e4
LT
580{
581 int ret;
1da177e4 582 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
ae55e1aa 583 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
1da177e4 584 unsigned long fs_count; /* Number of filesystem-sized blocks */
1da177e4
LT
585 int create;
586
587 /*
588 * If there was a memory error and we've overwritten all the
589 * mapped blocks then we can now return that memory error
590 */
591 ret = dio->page_errors;
592 if (ret == 0) {
eb28be2b
AK
593 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
594 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
ae55e1aa
TM
595 fs_endblk = (sdio->final_block_in_request - 1) >>
596 sdio->blkfactor;
597 fs_count = fs_endblk - fs_startblk + 1;
1da177e4 598
3c674e74
NS
599 map_bh->b_state = 0;
600 map_bh->b_size = fs_count << dio->inode->i_blkbits;
601
5fe878ae
CH
602 /*
603 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
604 * forbid block creations: only overwrites are permitted.
605 * We will return early to the caller once we see an
606 * unmapped buffer head returned, and the caller will fall
607 * back to buffered I/O.
608 *
609 * Otherwise the decision is left to the get_blocks method,
610 * which may decide to handle it or also return an unmapped
611 * buffer head.
612 */
b31dc66a 613 create = dio->rw & WRITE;
5fe878ae 614 if (dio->flags & DIO_SKIP_HOLES) {
eb28be2b
AK
615 if (sdio->block_in_file < (i_size_read(dio->inode) >>
616 sdio->blkbits))
1da177e4 617 create = 0;
1da177e4 618 }
3c674e74 619
eb28be2b 620 ret = (*sdio->get_block)(dio->inode, fs_startblk,
1da177e4 621 map_bh, create);
18772641
AK
622
623 /* Store for completion */
624 dio->private = map_bh->b_private;
1da177e4
LT
625 }
626 return ret;
627}
628
629/*
630 * There is no bio. Make one now.
631 */
ba253fbf
AK
632static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
633 sector_t start_sector, struct buffer_head *map_bh)
1da177e4
LT
634{
635 sector_t sector;
636 int ret, nr_pages;
637
eb28be2b 638 ret = dio_bio_reap(dio, sdio);
1da177e4
LT
639 if (ret)
640 goto out;
eb28be2b 641 sector = start_sector << (sdio->blkbits - 9);
18772641 642 nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
20d9600c 643 nr_pages = min(nr_pages, BIO_MAX_PAGES);
1da177e4 644 BUG_ON(nr_pages <= 0);
18772641 645 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
eb28be2b 646 sdio->boundary = 0;
1da177e4
LT
647out:
648 return ret;
649}
650
651/*
652 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
653 * that was successful then update final_block_in_bio and take a ref against
654 * the just-added page.
655 *
656 * Return zero on success. Non-zero means the caller needs to start a new BIO.
657 */
ba253fbf 658static inline int dio_bio_add_page(struct dio_submit *sdio)
1da177e4
LT
659{
660 int ret;
661
eb28be2b
AK
662 ret = bio_add_page(sdio->bio, sdio->cur_page,
663 sdio->cur_page_len, sdio->cur_page_offset);
664 if (ret == sdio->cur_page_len) {
1da177e4
LT
665 /*
666 * Decrement count only, if we are done with this page
667 */
eb28be2b
AK
668 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
669 sdio->pages_in_io--;
670 page_cache_get(sdio->cur_page);
671 sdio->final_block_in_bio = sdio->cur_page_block +
672 (sdio->cur_page_len >> sdio->blkbits);
1da177e4
LT
673 ret = 0;
674 } else {
675 ret = 1;
676 }
677 return ret;
678}
679
680/*
681 * Put cur_page under IO. The section of cur_page which is described by
682 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
683 * starts on-disk at cur_page_block.
684 *
685 * We take a ref against the page here (on behalf of its presence in the bio).
686 *
687 * The caller of this function is responsible for removing cur_page from the
688 * dio, and for dropping the refcount which came from that presence.
689 */
ba253fbf
AK
690static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
691 struct buffer_head *map_bh)
1da177e4
LT
692{
693 int ret = 0;
694
eb28be2b
AK
695 if (sdio->bio) {
696 loff_t cur_offset = sdio->cur_page_fs_offset;
697 loff_t bio_next_offset = sdio->logical_offset_in_bio +
698 sdio->bio->bi_size;
c2c6ca41 699
1da177e4 700 /*
c2c6ca41
JB
701 * See whether this new request is contiguous with the old.
702 *
f0940cee
NK
703 * Btrfs cannot handle having logically non-contiguous requests
704 * submitted. For example if you have
c2c6ca41
JB
705 *
706 * Logical: [0-4095][HOLE][8192-12287]
f0940cee 707 * Physical: [0-4095] [4096-8191]
c2c6ca41
JB
708 *
709 * We cannot submit those pages together as one BIO. So if our
710 * current logical offset in the file does not equal what would
711 * be the next logical offset in the bio, submit the bio we
712 * have.
1da177e4 713 */
eb28be2b 714 if (sdio->final_block_in_bio != sdio->cur_page_block ||
c2c6ca41 715 cur_offset != bio_next_offset)
eb28be2b 716 dio_bio_submit(dio, sdio);
1da177e4
LT
717 /*
718 * Submit now if the underlying fs is about to perform a
719 * metadata read
720 */
eb28be2b
AK
721 else if (sdio->boundary)
722 dio_bio_submit(dio, sdio);
1da177e4
LT
723 }
724
eb28be2b 725 if (sdio->bio == NULL) {
18772641 726 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4
LT
727 if (ret)
728 goto out;
729 }
730
eb28be2b
AK
731 if (dio_bio_add_page(sdio) != 0) {
732 dio_bio_submit(dio, sdio);
18772641 733 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4 734 if (ret == 0) {
eb28be2b 735 ret = dio_bio_add_page(sdio);
1da177e4
LT
736 BUG_ON(ret != 0);
737 }
738 }
739out:
740 return ret;
741}
742
743/*
744 * An autonomous function to put a chunk of a page under deferred IO.
745 *
746 * The caller doesn't actually know (or care) whether this piece of page is in
747 * a BIO, or is under IO or whatever. We just take care of all possible
748 * situations here. The separation between the logic of do_direct_IO() and
749 * that of submit_page_section() is important for clarity. Please don't break.
750 *
751 * The chunk of page starts on-disk at blocknr.
752 *
753 * We perform deferred IO, by recording the last-submitted page inside our
754 * private part of the dio structure. If possible, we just expand the IO
755 * across that page here.
756 *
757 * If that doesn't work out then we put the old page into the bio and add this
758 * page to the dio instead.
759 */
ba253fbf 760static inline int
eb28be2b 761submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
18772641
AK
762 unsigned offset, unsigned len, sector_t blocknr,
763 struct buffer_head *map_bh)
1da177e4
LT
764{
765 int ret = 0;
766
98c4d57d
AM
767 if (dio->rw & WRITE) {
768 /*
769 * Read accounting is performed in submit_bio()
770 */
771 task_io_account_write(len);
772 }
773
1da177e4
LT
774 /*
775 * Can we just grow the current page's presence in the dio?
776 */
eb28be2b
AK
777 if (sdio->cur_page == page &&
778 sdio->cur_page_offset + sdio->cur_page_len == offset &&
779 sdio->cur_page_block +
780 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
781 sdio->cur_page_len += len;
1da177e4
LT
782
783 /*
eb28be2b 784 * If sdio->boundary then we want to schedule the IO now to
1da177e4
LT
785 * avoid metadata seeks.
786 */
eb28be2b 787 if (sdio->boundary) {
18772641 788 ret = dio_send_cur_page(dio, sdio, map_bh);
eb28be2b
AK
789 page_cache_release(sdio->cur_page);
790 sdio->cur_page = NULL;
1da177e4
LT
791 }
792 goto out;
793 }
794
795 /*
796 * If there's a deferred page already there then send it.
797 */
eb28be2b 798 if (sdio->cur_page) {
18772641 799 ret = dio_send_cur_page(dio, sdio, map_bh);
eb28be2b
AK
800 page_cache_release(sdio->cur_page);
801 sdio->cur_page = NULL;
1da177e4
LT
802 if (ret)
803 goto out;
804 }
805
806 page_cache_get(page); /* It is in dio */
eb28be2b
AK
807 sdio->cur_page = page;
808 sdio->cur_page_offset = offset;
809 sdio->cur_page_len = len;
810 sdio->cur_page_block = blocknr;
811 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
1da177e4
LT
812out:
813 return ret;
814}
815
816/*
817 * Clean any dirty buffers in the blockdev mapping which alias newly-created
818 * file blocks. Only called for S_ISREG files - blockdevs do not set
819 * buffer_new
820 */
18772641 821static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
1da177e4
LT
822{
823 unsigned i;
824 unsigned nblocks;
825
18772641 826 nblocks = map_bh->b_size >> dio->inode->i_blkbits;
1da177e4
LT
827
828 for (i = 0; i < nblocks; i++) {
18772641
AK
829 unmap_underlying_metadata(map_bh->b_bdev,
830 map_bh->b_blocknr + i);
1da177e4
LT
831 }
832}
833
834/*
835 * If we are not writing the entire block and get_block() allocated
836 * the block for us, we need to fill-in the unused portion of the
837 * block with zeros. This happens only if user-buffer, fileoffset or
838 * io length is not filesystem block-size multiple.
839 *
840 * `end' is zero if we're doing the start of the IO, 1 at the end of the
841 * IO.
842 */
ba253fbf
AK
843static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
844 int end, struct buffer_head *map_bh)
1da177e4
LT
845{
846 unsigned dio_blocks_per_fs_block;
847 unsigned this_chunk_blocks; /* In dio_blocks */
848 unsigned this_chunk_bytes;
849 struct page *page;
850
eb28be2b 851 sdio->start_zero_done = 1;
18772641 852 if (!sdio->blkfactor || !buffer_new(map_bh))
1da177e4
LT
853 return;
854
eb28be2b
AK
855 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
856 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
1da177e4
LT
857
858 if (!this_chunk_blocks)
859 return;
860
861 /*
862 * We need to zero out part of an fs block. It is either at the
863 * beginning or the end of the fs block.
864 */
865 if (end)
866 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
867
eb28be2b 868 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
1da177e4 869
557ed1fa 870 page = ZERO_PAGE(0);
eb28be2b 871 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
18772641 872 sdio->next_block_for_io, map_bh))
1da177e4
LT
873 return;
874
eb28be2b 875 sdio->next_block_for_io += this_chunk_blocks;
1da177e4
LT
876}
877
878/*
879 * Walk the user pages, and the file, mapping blocks to disk and generating
880 * a sequence of (page,offset,len,block) mappings. These mappings are injected
881 * into submit_page_section(), which takes care of the next stage of submission
882 *
883 * Direct IO against a blockdev is different from a file. Because we can
884 * happily perform page-sized but 512-byte aligned IOs. It is important that
885 * blockdev IO be able to have fine alignment and large sizes.
886 *
1d8fa7a2 887 * So what we do is to permit the ->get_block function to populate bh.b_size
1da177e4
LT
888 * with the size of IO which is permitted at this offset and this i_blkbits.
889 *
890 * For best results, the blockdev should be set up with 512-byte i_blkbits and
1d8fa7a2 891 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
1da177e4
LT
892 * fine alignment but still allows this function to work in PAGE_SIZE units.
893 */
18772641
AK
894static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
895 struct buffer_head *map_bh)
1da177e4 896{
eb28be2b 897 const unsigned blkbits = sdio->blkbits;
1da177e4
LT
898 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
899 struct page *page;
900 unsigned block_in_page;
1da177e4
LT
901 int ret = 0;
902
903 /* The I/O can start at any block offset within the first page */
eb28be2b 904 block_in_page = sdio->first_block_in_page;
1da177e4 905
eb28be2b
AK
906 while (sdio->block_in_file < sdio->final_block_in_request) {
907 page = dio_get_page(dio, sdio);
1da177e4
LT
908 if (IS_ERR(page)) {
909 ret = PTR_ERR(page);
910 goto out;
911 }
912
913 while (block_in_page < blocks_per_page) {
914 unsigned offset_in_page = block_in_page << blkbits;
915 unsigned this_chunk_bytes; /* # of bytes mapped */
916 unsigned this_chunk_blocks; /* # of blocks */
917 unsigned u;
918
eb28be2b 919 if (sdio->blocks_available == 0) {
1da177e4
LT
920 /*
921 * Need to go and map some more disk
922 */
923 unsigned long blkmask;
924 unsigned long dio_remainder;
925
18772641 926 ret = get_more_blocks(dio, sdio, map_bh);
1da177e4
LT
927 if (ret) {
928 page_cache_release(page);
929 goto out;
930 }
931 if (!buffer_mapped(map_bh))
932 goto do_holes;
933
eb28be2b
AK
934 sdio->blocks_available =
935 map_bh->b_size >> sdio->blkbits;
936 sdio->next_block_for_io =
937 map_bh->b_blocknr << sdio->blkfactor;
1da177e4 938 if (buffer_new(map_bh))
18772641 939 clean_blockdev_aliases(dio, map_bh);
1da177e4 940
eb28be2b 941 if (!sdio->blkfactor)
1da177e4
LT
942 goto do_holes;
943
eb28be2b
AK
944 blkmask = (1 << sdio->blkfactor) - 1;
945 dio_remainder = (sdio->block_in_file & blkmask);
1da177e4
LT
946
947 /*
948 * If we are at the start of IO and that IO
949 * starts partway into a fs-block,
950 * dio_remainder will be non-zero. If the IO
951 * is a read then we can simply advance the IO
952 * cursor to the first block which is to be
953 * read. But if the IO is a write and the
954 * block was newly allocated we cannot do that;
955 * the start of the fs block must be zeroed out
956 * on-disk
957 */
958 if (!buffer_new(map_bh))
eb28be2b
AK
959 sdio->next_block_for_io += dio_remainder;
960 sdio->blocks_available -= dio_remainder;
1da177e4
LT
961 }
962do_holes:
963 /* Handle holes */
964 if (!buffer_mapped(map_bh)) {
35dc8161 965 loff_t i_size_aligned;
1da177e4
LT
966
967 /* AKPM: eargh, -ENOTBLK is a hack */
b31dc66a 968 if (dio->rw & WRITE) {
1da177e4
LT
969 page_cache_release(page);
970 return -ENOTBLK;
971 }
972
35dc8161
JM
973 /*
974 * Be sure to account for a partial block as the
975 * last block in the file
976 */
977 i_size_aligned = ALIGN(i_size_read(dio->inode),
978 1 << blkbits);
eb28be2b 979 if (sdio->block_in_file >=
35dc8161 980 i_size_aligned >> blkbits) {
1da177e4
LT
981 /* We hit eof */
982 page_cache_release(page);
983 goto out;
984 }
eebd2aa3
CL
985 zero_user(page, block_in_page << blkbits,
986 1 << blkbits);
eb28be2b 987 sdio->block_in_file++;
1da177e4
LT
988 block_in_page++;
989 goto next_block;
990 }
991
992 /*
993 * If we're performing IO which has an alignment which
994 * is finer than the underlying fs, go check to see if
995 * we must zero out the start of this block.
996 */
eb28be2b 997 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
18772641 998 dio_zero_block(dio, sdio, 0, map_bh);
1da177e4
LT
999
1000 /*
1001 * Work out, in this_chunk_blocks, how much disk we
1002 * can add to this page
1003 */
eb28be2b 1004 this_chunk_blocks = sdio->blocks_available;
1da177e4
LT
1005 u = (PAGE_SIZE - offset_in_page) >> blkbits;
1006 if (this_chunk_blocks > u)
1007 this_chunk_blocks = u;
eb28be2b 1008 u = sdio->final_block_in_request - sdio->block_in_file;
1da177e4
LT
1009 if (this_chunk_blocks > u)
1010 this_chunk_blocks = u;
1011 this_chunk_bytes = this_chunk_blocks << blkbits;
1012 BUG_ON(this_chunk_bytes == 0);
1013
eb28be2b
AK
1014 sdio->boundary = buffer_boundary(map_bh);
1015 ret = submit_page_section(dio, sdio, page,
1016 offset_in_page,
1017 this_chunk_bytes,
18772641
AK
1018 sdio->next_block_for_io,
1019 map_bh);
1da177e4
LT
1020 if (ret) {
1021 page_cache_release(page);
1022 goto out;
1023 }
eb28be2b 1024 sdio->next_block_for_io += this_chunk_blocks;
1da177e4 1025
eb28be2b 1026 sdio->block_in_file += this_chunk_blocks;
1da177e4 1027 block_in_page += this_chunk_blocks;
eb28be2b 1028 sdio->blocks_available -= this_chunk_blocks;
1da177e4 1029next_block:
eb28be2b
AK
1030 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1031 if (sdio->block_in_file == sdio->final_block_in_request)
1da177e4
LT
1032 break;
1033 }
1034
1035 /* Drop the ref which was taken in get_user_pages() */
1036 page_cache_release(page);
1037 block_in_page = 0;
1038 }
1039out:
1040 return ret;
1041}
1042
847cc637 1043static inline int drop_refcount(struct dio *dio)
1da177e4 1044{
847cc637 1045 int ret2;
5eb6c7a2 1046 unsigned long flags;
1da177e4 1047
8459d86a
ZB
1048 /*
1049 * Sync will always be dropping the final ref and completing the
5eb6c7a2
ZB
1050 * operation. AIO can if it was a broken operation described above or
1051 * in fact if all the bios race to complete before we get here. In
1052 * that case dio_complete() translates the EIOCBQUEUED into the proper
1053 * return code that the caller will hand to aio_complete().
1054 *
1055 * This is managed by the bio_lock instead of being an atomic_t so that
1056 * completion paths can drop their ref and use the remaining count to
1057 * decide to wake the submission path atomically.
8459d86a 1058 */
5eb6c7a2
ZB
1059 spin_lock_irqsave(&dio->bio_lock, flags);
1060 ret2 = --dio->refcount;
1061 spin_unlock_irqrestore(&dio->bio_lock, flags);
847cc637 1062 return ret2;
1da177e4
LT
1063}
1064
eafdc7d1
CH
1065/*
1066 * This is a library function for use by filesystem drivers.
1067 *
1068 * The locking rules are governed by the flags parameter:
1069 * - if the flags value contains DIO_LOCKING we use a fancy locking
1070 * scheme for dumb filesystems.
1071 * For writes this function is called under i_mutex and returns with
1072 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1073 * taken and dropped again before returning.
eafdc7d1
CH
1074 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1075 * internal locking but rather rely on the filesystem to synchronize
1076 * direct I/O reads/writes versus each other and truncate.
df2d6f26
CH
1077 *
1078 * To help with locking against truncate we incremented the i_dio_count
1079 * counter before starting direct I/O, and decrement it once we are done.
1080 * Truncate can wait for it to reach zero to provide exclusion. It is
1081 * expected that filesystem provide exclusion between new direct I/O
1082 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1083 * but other filesystems need to take care of this on their own.
ba253fbf
AK
1084 *
1085 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1086 * is always inlined. Otherwise gcc is unable to split the structure into
1087 * individual fields and will generate much worse code. This is important
1088 * for the whole file.
eafdc7d1 1089 */
1da177e4 1090ssize_t
eafdc7d1 1091__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1da177e4 1092 struct block_device *bdev, const struct iovec *iov, loff_t offset,
1d8fa7a2 1093 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
facd07b0 1094 dio_submit_t submit_io, int flags)
1da177e4
LT
1095{
1096 int seg;
1097 size_t size;
1098 unsigned long addr;
1099 unsigned blkbits = inode->i_blkbits;
1100 unsigned bdev_blkbits = 0;
1101 unsigned blocksize_mask = (1 << blkbits) - 1;
1102 ssize_t retval = -EINVAL;
1103 loff_t end = offset;
1104 struct dio *dio;
eb28be2b 1105 struct dio_submit sdio = { 0, };
847cc637
AK
1106 unsigned long user_addr;
1107 size_t bytes;
1108 struct buffer_head map_bh = { 0, };
1da177e4
LT
1109
1110 if (rw & WRITE)
721a9602 1111 rw = WRITE_ODIRECT;
1da177e4
LT
1112
1113 if (bdev)
e1defc4f 1114 bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev));
1da177e4
LT
1115
1116 if (offset & blocksize_mask) {
1117 if (bdev)
1118 blkbits = bdev_blkbits;
1119 blocksize_mask = (1 << blkbits) - 1;
1120 if (offset & blocksize_mask)
1121 goto out;
1122 }
1123
1124 /* Check the memory alignment. Blocks cannot straddle pages */
1125 for (seg = 0; seg < nr_segs; seg++) {
1126 addr = (unsigned long)iov[seg].iov_base;
1127 size = iov[seg].iov_len;
1128 end += size;
1129 if ((addr & blocksize_mask) || (size & blocksize_mask)) {
1130 if (bdev)
1131 blkbits = bdev_blkbits;
1132 blocksize_mask = (1 << blkbits) - 1;
1133 if ((addr & blocksize_mask) || (size & blocksize_mask))
1134 goto out;
1135 }
1136 }
1137
f9b5570d
CH
1138 /* watch out for a 0 len io from a tricksy fs */
1139 if (rw == READ && end == offset)
1140 return 0;
1141
6e8267f5 1142 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1da177e4
LT
1143 retval = -ENOMEM;
1144 if (!dio)
1145 goto out;
23aee091
JM
1146 /*
1147 * Believe it or not, zeroing out the page array caused a .5%
1148 * performance regression in a database benchmark. So, we take
1149 * care to only zero out what's needed.
1150 */
1151 memset(dio, 0, offsetof(struct dio, pages));
1da177e4 1152
5fe878ae
CH
1153 dio->flags = flags;
1154 if (dio->flags & DIO_LOCKING) {
f9b5570d 1155 if (rw == READ) {
5fe878ae
CH
1156 struct address_space *mapping =
1157 iocb->ki_filp->f_mapping;
1da177e4 1158
5fe878ae
CH
1159 /* will be released by direct_io_worker */
1160 mutex_lock(&inode->i_mutex);
1da177e4
LT
1161
1162 retval = filemap_write_and_wait_range(mapping, offset,
1163 end - 1);
1164 if (retval) {
5fe878ae 1165 mutex_unlock(&inode->i_mutex);
6e8267f5 1166 kmem_cache_free(dio_cache, dio);
1da177e4
LT
1167 goto out;
1168 }
1da177e4 1169 }
1da177e4
LT
1170 }
1171
df2d6f26
CH
1172 /*
1173 * Will be decremented at I/O completion time.
1174 */
1175 atomic_inc(&inode->i_dio_count);
1176
1da177e4
LT
1177 /*
1178 * For file extending writes updating i_size before data
1179 * writeouts complete can expose uninitialized blocks. So
1180 * even for AIO, we need to wait for i/o to complete before
1181 * returning in this case.
1182 */
b31dc66a 1183 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1da177e4
LT
1184 (end > i_size_read(inode)));
1185
847cc637
AK
1186 retval = 0;
1187
1188 dio->inode = inode;
1189 dio->rw = rw;
1190 sdio.blkbits = blkbits;
1191 sdio.blkfactor = inode->i_blkbits - blkbits;
1192 sdio.block_in_file = offset >> blkbits;
1193
1194 sdio.get_block = get_block;
1195 dio->end_io = end_io;
1196 sdio.submit_io = submit_io;
1197 sdio.final_block_in_bio = -1;
1198 sdio.next_block_for_io = -1;
1199
1200 dio->iocb = iocb;
1201 dio->i_size = i_size_read(inode);
1202
1203 spin_lock_init(&dio->bio_lock);
1204 dio->refcount = 1;
1205
1206 /*
1207 * In case of non-aligned buffers, we may need 2 more
1208 * pages since we need to zero out first and last block.
1209 */
1210 if (unlikely(sdio.blkfactor))
1211 sdio.pages_in_io = 2;
1212
1213 for (seg = 0; seg < nr_segs; seg++) {
1214 user_addr = (unsigned long)iov[seg].iov_base;
1215 sdio.pages_in_io +=
1216 ((user_addr + iov[seg].iov_len + PAGE_SIZE-1) /
1217 PAGE_SIZE - user_addr / PAGE_SIZE);
1218 }
1219
1220 for (seg = 0; seg < nr_segs; seg++) {
1221 user_addr = (unsigned long)iov[seg].iov_base;
1222 sdio.size += bytes = iov[seg].iov_len;
1223
1224 /* Index into the first page of the first block */
1225 sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1226 sdio.final_block_in_request = sdio.block_in_file +
1227 (bytes >> blkbits);
1228 /* Page fetching state */
1229 sdio.head = 0;
1230 sdio.tail = 0;
1231 sdio.curr_page = 0;
1232
1233 sdio.total_pages = 0;
1234 if (user_addr & (PAGE_SIZE-1)) {
1235 sdio.total_pages++;
1236 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1237 }
1238 sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1239 sdio.curr_user_address = user_addr;
1240
1241 retval = do_direct_IO(dio, &sdio, &map_bh);
1242
1243 dio->result += iov[seg].iov_len -
1244 ((sdio.final_block_in_request - sdio.block_in_file) <<
1245 blkbits);
1246
1247 if (retval) {
1248 dio_cleanup(dio, &sdio);
1249 break;
1250 }
1251 } /* end iovec loop */
1252
1253 if (retval == -ENOTBLK) {
1254 /*
1255 * The remaining part of the request will be
1256 * be handled by buffered I/O when we return
1257 */
1258 retval = 0;
1259 }
1260 /*
1261 * There may be some unwritten disk at the end of a part-written
1262 * fs-block-sized block. Go zero that now.
1263 */
1264 dio_zero_block(dio, &sdio, 1, &map_bh);
1265
1266 if (sdio.cur_page) {
1267 ssize_t ret2;
1268
1269 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1270 if (retval == 0)
1271 retval = ret2;
1272 page_cache_release(sdio.cur_page);
1273 sdio.cur_page = NULL;
1274 }
1275 if (sdio.bio)
1276 dio_bio_submit(dio, &sdio);
1277
1278 /*
1279 * It is possible that, we return short IO due to end of file.
1280 * In that case, we need to release all the pages we got hold on.
1281 */
1282 dio_cleanup(dio, &sdio);
1283
1284 /*
1285 * All block lookups have been performed. For READ requests
1286 * we can let i_mutex go now that its achieved its purpose
1287 * of protecting us from looking up uninitialized blocks.
1288 */
1289 if (rw == READ && (dio->flags & DIO_LOCKING))
1290 mutex_unlock(&dio->inode->i_mutex);
1291
1292 /*
1293 * The only time we want to leave bios in flight is when a successful
1294 * partial aio read or full aio write have been setup. In that case
1295 * bio completion will call aio_complete. The only time it's safe to
1296 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1297 * This had *better* be the only place that raises -EIOCBQUEUED.
1298 */
1299 BUG_ON(retval == -EIOCBQUEUED);
1300 if (dio->is_async && retval == 0 && dio->result &&
1301 ((rw & READ) || (dio->result == sdio.size)))
1302 retval = -EIOCBQUEUED;
1303
1304 if (retval != -EIOCBQUEUED)
1305 dio_await_completion(dio);
1306
1307 if (drop_refcount(dio) == 0) {
1308 retval = dio_complete(dio, offset, retval, false);
1309 kmem_cache_free(dio_cache, dio);
1310 } else
1311 BUG_ON(retval != -EIOCBQUEUED);
1da177e4 1312
7bb46a67 1313out:
1314 return retval;
1315}
1da177e4 1316EXPORT_SYMBOL(__blockdev_direct_IO);
6e8267f5
AK
1317
1318static __init int dio_init(void)
1319{
1320 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1321 return 0;
1322}
1323module_init(dio_init)