direct-io: always call ->end_io if non-NULL
[linux-2.6-block.git] / fs / direct-io.c
CommitLineData
1da177e4
LT
1/*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
e1f8e874 8 * 04Jul2002 Andrew Morton
1da177e4
LT
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
e1f8e874 12 * 29Oct2002 Andrew Morton
1da177e4
LT
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/fs.h>
26#include <linux/mm.h>
27#include <linux/slab.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
98c4d57d 30#include <linux/task_io_accounting_ops.h>
1da177e4
LT
31#include <linux/bio.h>
32#include <linux/wait.h>
33#include <linux/err.h>
34#include <linux/blkdev.h>
35#include <linux/buffer_head.h>
36#include <linux/rwsem.h>
37#include <linux/uio.h>
60063497 38#include <linux/atomic.h>
65dd2aa9 39#include <linux/prefetch.h>
1da177e4
LT
40
41/*
42 * How many user pages to map in one call to get_user_pages(). This determines
cde1ecb3 43 * the size of a structure in the slab cache
1da177e4
LT
44 */
45#define DIO_PAGES 64
46
47/*
48 * This code generally works in units of "dio_blocks". A dio_block is
49 * somewhere between the hard sector size and the filesystem block size. it
50 * is determined on a per-invocation basis. When talking to the filesystem
51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
53 * to bio_block quantities by shifting left by blkfactor.
54 *
55 * If blkfactor is zero then the user's request was aligned to the filesystem's
56 * blocksize.
1da177e4
LT
57 */
58
eb28be2b
AK
59/* dio_state only used in the submission path */
60
61struct dio_submit {
1da177e4 62 struct bio *bio; /* bio under assembly */
1da177e4
LT
63 unsigned blkbits; /* doesn't change */
64 unsigned blkfactor; /* When we're using an alignment which
65 is finer than the filesystem's soft
66 blocksize, this specifies how much
67 finer. blkfactor=2 means 1/4-block
68 alignment. Does not change */
69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
70 been performed at the start of a
71 write */
72 int pages_in_io; /* approximate total IO pages */
1da177e4
LT
73 sector_t block_in_file; /* Current offset into the underlying
74 file in dio_block units. */
75 unsigned blocks_available; /* At block_in_file. changes */
0dc2bc49 76 int reap_counter; /* rate limit reaping */
1da177e4 77 sector_t final_block_in_request;/* doesn't change */
1da177e4 78 int boundary; /* prev block is at a boundary */
1d8fa7a2 79 get_block_t *get_block; /* block mapping function */
facd07b0 80 dio_submit_t *submit_io; /* IO submition function */
eb28be2b 81
facd07b0 82 loff_t logical_offset_in_bio; /* current first logical block in bio */
1da177e4
LT
83 sector_t final_block_in_bio; /* current final block in bio + 1 */
84 sector_t next_block_for_io; /* next block to be put under IO,
85 in dio_blocks units */
1da177e4
LT
86
87 /*
88 * Deferred addition of a page to the dio. These variables are
89 * private to dio_send_cur_page(), submit_page_section() and
90 * dio_bio_add_page().
91 */
92 struct page *cur_page; /* The page */
93 unsigned cur_page_offset; /* Offset into it, in bytes */
94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
95 sector_t cur_page_block; /* Where it starts */
facd07b0 96 loff_t cur_page_fs_offset; /* Offset in file */
1da177e4 97
7b2c99d1 98 struct iov_iter *iter;
1da177e4
LT
99 /*
100 * Page queue. These variables belong to dio_refill_pages() and
101 * dio_get_page().
102 */
1da177e4
LT
103 unsigned head; /* next page to process */
104 unsigned tail; /* last valid page + 1 */
7b2c99d1 105 size_t from, to;
eb28be2b
AK
106};
107
108/* dio_state communicated between submission path and end_io */
109struct dio {
110 int flags; /* doesn't change */
eb28be2b 111 int rw;
15c4f638
JA
112 blk_qc_t bio_cookie;
113 struct block_device *bio_bdev;
0dc2bc49 114 struct inode *inode;
eb28be2b
AK
115 loff_t i_size; /* i_size when submitted */
116 dio_iodone_t *end_io; /* IO completion function */
eb28be2b 117
18772641 118 void *private; /* copy from map_bh.b_private */
eb28be2b
AK
119
120 /* BIO completion state */
121 spinlock_t bio_lock; /* protects BIO fields below */
0dc2bc49
AK
122 int page_errors; /* errno from get_user_pages() */
123 int is_async; /* is IO async ? */
7b7a8665 124 bool defer_completion; /* defer AIO completion to workqueue? */
53cbf3b1 125 bool should_dirty; /* if pages should be dirtied */
0dc2bc49 126 int io_error; /* IO error in completion path */
eb28be2b
AK
127 unsigned long refcount; /* direct_io_worker() and bios */
128 struct bio *bio_list; /* singly linked via bi_private */
129 struct task_struct *waiter; /* waiting task (NULL if none) */
130
131 /* AIO related stuff */
132 struct kiocb *iocb; /* kiocb */
eb28be2b
AK
133 ssize_t result; /* IO result */
134
23aee091
JM
135 /*
136 * pages[] (and any fields placed after it) are not zeroed out at
137 * allocation time. Don't add new fields after pages[] unless you
138 * wish that they not be zeroed.
139 */
7b7a8665
CH
140 union {
141 struct page *pages[DIO_PAGES]; /* page buffer */
142 struct work_struct complete_work;/* deferred AIO completion */
143 };
6e8267f5
AK
144} ____cacheline_aligned_in_smp;
145
146static struct kmem_cache *dio_cache __read_mostly;
1da177e4
LT
147
148/*
149 * How many pages are in the queue?
150 */
eb28be2b 151static inline unsigned dio_pages_present(struct dio_submit *sdio)
1da177e4 152{
eb28be2b 153 return sdio->tail - sdio->head;
1da177e4
LT
154}
155
156/*
157 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
158 */
ba253fbf 159static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
1da177e4 160{
7b2c99d1 161 ssize_t ret;
1da177e4 162
2c80929c 163 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
7b2c99d1 164 &sdio->from);
1da177e4 165
eb28be2b 166 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
557ed1fa 167 struct page *page = ZERO_PAGE(0);
1da177e4
LT
168 /*
169 * A memory fault, but the filesystem has some outstanding
170 * mapped blocks. We need to use those blocks up to avoid
171 * leaking stale data in the file.
172 */
173 if (dio->page_errors == 0)
174 dio->page_errors = ret;
b5810039
NP
175 page_cache_get(page);
176 dio->pages[0] = page;
eb28be2b
AK
177 sdio->head = 0;
178 sdio->tail = 1;
7b2c99d1
AV
179 sdio->from = 0;
180 sdio->to = PAGE_SIZE;
181 return 0;
1da177e4
LT
182 }
183
184 if (ret >= 0) {
7b2c99d1
AV
185 iov_iter_advance(sdio->iter, ret);
186 ret += sdio->from;
eb28be2b 187 sdio->head = 0;
7b2c99d1
AV
188 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
189 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
190 return 0;
1da177e4 191 }
1da177e4
LT
192 return ret;
193}
194
195/*
196 * Get another userspace page. Returns an ERR_PTR on error. Pages are
197 * buffered inside the dio so that we can call get_user_pages() against a
198 * decent number of pages, less frequently. To provide nicer use of the
199 * L1 cache.
200 */
ba253fbf 201static inline struct page *dio_get_page(struct dio *dio,
6fcc5420 202 struct dio_submit *sdio)
1da177e4 203{
eb28be2b 204 if (dio_pages_present(sdio) == 0) {
1da177e4
LT
205 int ret;
206
eb28be2b 207 ret = dio_refill_pages(dio, sdio);
1da177e4
LT
208 if (ret)
209 return ERR_PTR(ret);
eb28be2b 210 BUG_ON(dio_pages_present(sdio) == 0);
1da177e4 211 }
6fcc5420 212 return dio->pages[sdio->head];
1da177e4
LT
213}
214
6d544bb4
ZB
215/**
216 * dio_complete() - called when all DIO BIO I/O has been completed
217 * @offset: the byte offset in the file of the completed operation
218 *
7b7a8665
CH
219 * This drops i_dio_count, lets interested parties know that a DIO operation
220 * has completed, and calculates the resulting return code for the operation.
6d544bb4
ZB
221 *
222 * It lets the filesystem know if it registered an interest earlier via
223 * get_block. Pass the private field of the map buffer_head so that
224 * filesystems can use it to hold additional state between get_block calls and
225 * dio_complete.
1da177e4 226 */
7b7a8665
CH
227static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
228 bool is_async)
1da177e4 229{
6d544bb4
ZB
230 ssize_t transferred = 0;
231
8459d86a
ZB
232 /*
233 * AIO submission can race with bio completion to get here while
234 * expecting to have the last io completed by bio completion.
235 * In that case -EIOCBQUEUED is in fact not an error we want
236 * to preserve through this call.
237 */
238 if (ret == -EIOCBQUEUED)
239 ret = 0;
240
6d544bb4
ZB
241 if (dio->result) {
242 transferred = dio->result;
243
244 /* Check for short read case */
245 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
246 transferred = dio->i_size - offset;
247 }
248
6d544bb4
ZB
249 if (ret == 0)
250 ret = dio->page_errors;
251 if (ret == 0)
252 ret = dio->io_error;
253 if (ret == 0)
254 ret = transferred;
255
187372a3
CH
256 if (dio->end_io) {
257 int err;
258
259 err = dio->end_io(dio->iocb, offset, ret, dio->private);
260 if (err)
261 ret = err;
262 }
7b7a8665 263
fe0f07d0
JA
264 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
265 inode_dio_end(dio->inode);
266
02afc27f
CH
267 if (is_async) {
268 if (dio->rw & WRITE) {
269 int err;
270
271 err = generic_write_sync(dio->iocb->ki_filp, offset,
272 transferred);
273 if (err < 0 && ret > 0)
274 ret = err;
275 }
276
04b2fa9f 277 dio->iocb->ki_complete(dio->iocb, ret, 0);
02afc27f 278 }
40e2e973 279
7b7a8665 280 kmem_cache_free(dio_cache, dio);
6d544bb4 281 return ret;
1da177e4
LT
282}
283
7b7a8665
CH
284static void dio_aio_complete_work(struct work_struct *work)
285{
286 struct dio *dio = container_of(work, struct dio, complete_work);
287
288 dio_complete(dio, dio->iocb->ki_pos, 0, true);
289}
290
1da177e4 291static int dio_bio_complete(struct dio *dio, struct bio *bio);
7b7a8665 292
1da177e4
LT
293/*
294 * Asynchronous IO callback.
295 */
4246a0b6 296static void dio_bio_end_aio(struct bio *bio)
1da177e4
LT
297{
298 struct dio *dio = bio->bi_private;
5eb6c7a2
ZB
299 unsigned long remaining;
300 unsigned long flags;
1da177e4 301
1da177e4
LT
302 /* cleanup the bio */
303 dio_bio_complete(dio, bio);
0273201e 304
5eb6c7a2
ZB
305 spin_lock_irqsave(&dio->bio_lock, flags);
306 remaining = --dio->refcount;
307 if (remaining == 1 && dio->waiter)
20258b2b 308 wake_up_process(dio->waiter);
5eb6c7a2 309 spin_unlock_irqrestore(&dio->bio_lock, flags);
20258b2b 310
8459d86a 311 if (remaining == 0) {
7b7a8665
CH
312 if (dio->result && dio->defer_completion) {
313 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
314 queue_work(dio->inode->i_sb->s_dio_done_wq,
315 &dio->complete_work);
316 } else {
317 dio_complete(dio, dio->iocb->ki_pos, 0, true);
318 }
8459d86a 319 }
1da177e4
LT
320}
321
322/*
323 * The BIO completion handler simply queues the BIO up for the process-context
324 * handler.
325 *
326 * During I/O bi_private points at the dio. After I/O, bi_private is used to
327 * implement a singly-linked list of completed BIOs, at dio->bio_list.
328 */
4246a0b6 329static void dio_bio_end_io(struct bio *bio)
1da177e4
LT
330{
331 struct dio *dio = bio->bi_private;
332 unsigned long flags;
333
1da177e4
LT
334 spin_lock_irqsave(&dio->bio_lock, flags);
335 bio->bi_private = dio->bio_list;
336 dio->bio_list = bio;
5eb6c7a2 337 if (--dio->refcount == 1 && dio->waiter)
1da177e4
LT
338 wake_up_process(dio->waiter);
339 spin_unlock_irqrestore(&dio->bio_lock, flags);
1da177e4
LT
340}
341
facd07b0
JB
342/**
343 * dio_end_io - handle the end io action for the given bio
344 * @bio: The direct io bio thats being completed
345 * @error: Error if there was one
346 *
347 * This is meant to be called by any filesystem that uses their own dio_submit_t
348 * so that the DIO specific endio actions are dealt with after the filesystem
349 * has done it's completion work.
350 */
351void dio_end_io(struct bio *bio, int error)
352{
353 struct dio *dio = bio->bi_private;
354
355 if (dio->is_async)
4246a0b6 356 dio_bio_end_aio(bio);
facd07b0 357 else
4246a0b6 358 dio_bio_end_io(bio);
facd07b0
JB
359}
360EXPORT_SYMBOL_GPL(dio_end_io);
361
ba253fbf 362static inline void
eb28be2b
AK
363dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
364 struct block_device *bdev,
365 sector_t first_sector, int nr_vecs)
1da177e4
LT
366{
367 struct bio *bio;
368
20d9600c
DD
369 /*
370 * bio_alloc() is guaranteed to return a bio when called with
71baba4b 371 * __GFP_RECLAIM and we request a valid number of vectors.
20d9600c 372 */
1da177e4 373 bio = bio_alloc(GFP_KERNEL, nr_vecs);
1da177e4
LT
374
375 bio->bi_bdev = bdev;
4f024f37 376 bio->bi_iter.bi_sector = first_sector;
1da177e4
LT
377 if (dio->is_async)
378 bio->bi_end_io = dio_bio_end_aio;
379 else
380 bio->bi_end_io = dio_bio_end_io;
381
eb28be2b
AK
382 sdio->bio = bio;
383 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
1da177e4
LT
384}
385
386/*
387 * In the AIO read case we speculatively dirty the pages before starting IO.
388 * During IO completion, any of these pages which happen to have been written
389 * back will be redirtied by bio_check_pages_dirty().
0273201e
ZB
390 *
391 * bios hold a dio reference between submit_bio and ->end_io.
1da177e4 392 */
ba253fbf 393static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
1da177e4 394{
eb28be2b 395 struct bio *bio = sdio->bio;
5eb6c7a2 396 unsigned long flags;
1da177e4
LT
397
398 bio->bi_private = dio;
5eb6c7a2
ZB
399
400 spin_lock_irqsave(&dio->bio_lock, flags);
401 dio->refcount++;
402 spin_unlock_irqrestore(&dio->bio_lock, flags);
403
53cbf3b1 404 if (dio->is_async && dio->rw == READ && dio->should_dirty)
1da177e4 405 bio_set_pages_dirty(bio);
5eb6c7a2 406
c1c53460
JA
407 dio->bio_bdev = bio->bi_bdev;
408
15c4f638 409 if (sdio->submit_io) {
eb28be2b
AK
410 sdio->submit_io(dio->rw, bio, dio->inode,
411 sdio->logical_offset_in_bio);
15c4f638 412 dio->bio_cookie = BLK_QC_T_NONE;
c1c53460 413 } else
15c4f638 414 dio->bio_cookie = submit_bio(dio->rw, bio);
1da177e4 415
eb28be2b
AK
416 sdio->bio = NULL;
417 sdio->boundary = 0;
418 sdio->logical_offset_in_bio = 0;
1da177e4
LT
419}
420
421/*
422 * Release any resources in case of a failure
423 */
ba253fbf 424static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
1da177e4 425{
7b2c99d1
AV
426 while (sdio->head < sdio->tail)
427 page_cache_release(dio->pages[sdio->head++]);
1da177e4
LT
428}
429
430/*
0273201e
ZB
431 * Wait for the next BIO to complete. Remove it and return it. NULL is
432 * returned once all BIOs have been completed. This must only be called once
433 * all bios have been issued so that dio->refcount can only decrease. This
434 * requires that that the caller hold a reference on the dio.
1da177e4
LT
435 */
436static struct bio *dio_await_one(struct dio *dio)
437{
438 unsigned long flags;
0273201e 439 struct bio *bio = NULL;
1da177e4
LT
440
441 spin_lock_irqsave(&dio->bio_lock, flags);
5eb6c7a2
ZB
442
443 /*
444 * Wait as long as the list is empty and there are bios in flight. bio
445 * completion drops the count, maybe adds to the list, and wakes while
446 * holding the bio_lock so we don't need set_current_state()'s barrier
447 * and can call it after testing our condition.
448 */
449 while (dio->refcount > 1 && dio->bio_list == NULL) {
450 __set_current_state(TASK_UNINTERRUPTIBLE);
451 dio->waiter = current;
452 spin_unlock_irqrestore(&dio->bio_lock, flags);
15c4f638
JA
453 if (!blk_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie))
454 io_schedule();
5eb6c7a2
ZB
455 /* wake up sets us TASK_RUNNING */
456 spin_lock_irqsave(&dio->bio_lock, flags);
457 dio->waiter = NULL;
1da177e4 458 }
0273201e
ZB
459 if (dio->bio_list) {
460 bio = dio->bio_list;
461 dio->bio_list = bio->bi_private;
462 }
1da177e4
LT
463 spin_unlock_irqrestore(&dio->bio_lock, flags);
464 return bio;
465}
466
467/*
468 * Process one completed BIO. No locks are held.
469 */
470static int dio_bio_complete(struct dio *dio, struct bio *bio)
471{
cb34e057
KO
472 struct bio_vec *bvec;
473 unsigned i;
9b81c842 474 int err;
1da177e4 475
4246a0b6 476 if (bio->bi_error)
174e27c6 477 dio->io_error = -EIO;
1da177e4 478
53cbf3b1 479 if (dio->is_async && dio->rw == READ && dio->should_dirty) {
1da177e4 480 bio_check_pages_dirty(bio); /* transfers ownership */
9b81c842 481 err = bio->bi_error;
1da177e4 482 } else {
cb34e057
KO
483 bio_for_each_segment_all(bvec, bio, i) {
484 struct page *page = bvec->bv_page;
1da177e4 485
53cbf3b1
ML
486 if (dio->rw == READ && !PageCompound(page) &&
487 dio->should_dirty)
1da177e4
LT
488 set_page_dirty_lock(page);
489 page_cache_release(page);
490 }
9b81c842 491 err = bio->bi_error;
1da177e4
LT
492 bio_put(bio);
493 }
9b81c842 494 return err;
1da177e4
LT
495}
496
497/*
0273201e
ZB
498 * Wait on and process all in-flight BIOs. This must only be called once
499 * all bios have been issued so that the refcount can only decrease.
500 * This just waits for all bios to make it through dio_bio_complete. IO
beb7dd86 501 * errors are propagated through dio->io_error and should be propagated via
0273201e 502 * dio_complete().
1da177e4 503 */
6d544bb4 504static void dio_await_completion(struct dio *dio)
1da177e4 505{
0273201e
ZB
506 struct bio *bio;
507 do {
508 bio = dio_await_one(dio);
509 if (bio)
510 dio_bio_complete(dio, bio);
511 } while (bio);
1da177e4
LT
512}
513
514/*
515 * A really large O_DIRECT read or write can generate a lot of BIOs. So
516 * to keep the memory consumption sane we periodically reap any completed BIOs
517 * during the BIO generation phase.
518 *
519 * This also helps to limit the peak amount of pinned userspace memory.
520 */
ba253fbf 521static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
1da177e4
LT
522{
523 int ret = 0;
524
eb28be2b 525 if (sdio->reap_counter++ >= 64) {
1da177e4
LT
526 while (dio->bio_list) {
527 unsigned long flags;
528 struct bio *bio;
529 int ret2;
530
531 spin_lock_irqsave(&dio->bio_lock, flags);
532 bio = dio->bio_list;
533 dio->bio_list = bio->bi_private;
534 spin_unlock_irqrestore(&dio->bio_lock, flags);
535 ret2 = dio_bio_complete(dio, bio);
536 if (ret == 0)
537 ret = ret2;
538 }
eb28be2b 539 sdio->reap_counter = 0;
1da177e4
LT
540 }
541 return ret;
542}
543
7b7a8665
CH
544/*
545 * Create workqueue for deferred direct IO completions. We allocate the
546 * workqueue when it's first needed. This avoids creating workqueue for
547 * filesystems that don't need it and also allows us to create the workqueue
548 * late enough so the we can include s_id in the name of the workqueue.
549 */
550static int sb_init_dio_done_wq(struct super_block *sb)
551{
45150c43 552 struct workqueue_struct *old;
7b7a8665
CH
553 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
554 WQ_MEM_RECLAIM, 0,
555 sb->s_id);
556 if (!wq)
557 return -ENOMEM;
558 /*
559 * This has to be atomic as more DIOs can race to create the workqueue
560 */
45150c43 561 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
7b7a8665 562 /* Someone created workqueue before us? Free ours... */
45150c43 563 if (old)
7b7a8665
CH
564 destroy_workqueue(wq);
565 return 0;
566}
567
568static int dio_set_defer_completion(struct dio *dio)
569{
570 struct super_block *sb = dio->inode->i_sb;
571
572 if (dio->defer_completion)
573 return 0;
574 dio->defer_completion = true;
575 if (!sb->s_dio_done_wq)
576 return sb_init_dio_done_wq(sb);
577 return 0;
578}
579
1da177e4
LT
580/*
581 * Call into the fs to map some more disk blocks. We record the current number
eb28be2b 582 * of available blocks at sdio->blocks_available. These are in units of the
1da177e4
LT
583 * fs blocksize, (1 << inode->i_blkbits).
584 *
585 * The fs is allowed to map lots of blocks at once. If it wants to do that,
586 * it uses the passed inode-relative block number as the file offset, as usual.
587 *
1d8fa7a2 588 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
1da177e4
LT
589 * has remaining to do. The fs should not map more than this number of blocks.
590 *
591 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
592 * indicate how much contiguous disk space has been made available at
593 * bh->b_blocknr.
594 *
595 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
596 * This isn't very efficient...
597 *
598 * In the case of filesystem holes: the fs may return an arbitrarily-large
599 * hole by returning an appropriate value in b_size and by clearing
600 * buffer_mapped(). However the direct-io code will only process holes one
1d8fa7a2 601 * block at a time - it will repeatedly call get_block() as it walks the hole.
1da177e4 602 */
18772641
AK
603static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
604 struct buffer_head *map_bh)
1da177e4
LT
605{
606 int ret;
1da177e4 607 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
ae55e1aa 608 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
1da177e4 609 unsigned long fs_count; /* Number of filesystem-sized blocks */
1da177e4 610 int create;
ab73857e 611 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
1da177e4
LT
612
613 /*
614 * If there was a memory error and we've overwritten all the
615 * mapped blocks then we can now return that memory error
616 */
617 ret = dio->page_errors;
618 if (ret == 0) {
eb28be2b
AK
619 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
620 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
ae55e1aa
TM
621 fs_endblk = (sdio->final_block_in_request - 1) >>
622 sdio->blkfactor;
623 fs_count = fs_endblk - fs_startblk + 1;
1da177e4 624
3c674e74 625 map_bh->b_state = 0;
ab73857e 626 map_bh->b_size = fs_count << i_blkbits;
3c674e74 627
5fe878ae
CH
628 /*
629 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
630 * forbid block creations: only overwrites are permitted.
631 * We will return early to the caller once we see an
632 * unmapped buffer head returned, and the caller will fall
633 * back to buffered I/O.
634 *
635 * Otherwise the decision is left to the get_blocks method,
636 * which may decide to handle it or also return an unmapped
637 * buffer head.
638 */
b31dc66a 639 create = dio->rw & WRITE;
5fe878ae 640 if (dio->flags & DIO_SKIP_HOLES) {
eb28be2b
AK
641 if (sdio->block_in_file < (i_size_read(dio->inode) >>
642 sdio->blkbits))
1da177e4 643 create = 0;
1da177e4 644 }
3c674e74 645
eb28be2b 646 ret = (*sdio->get_block)(dio->inode, fs_startblk,
1da177e4 647 map_bh, create);
18772641
AK
648
649 /* Store for completion */
650 dio->private = map_bh->b_private;
7b7a8665
CH
651
652 if (ret == 0 && buffer_defer_completion(map_bh))
653 ret = dio_set_defer_completion(dio);
1da177e4
LT
654 }
655 return ret;
656}
657
658/*
659 * There is no bio. Make one now.
660 */
ba253fbf
AK
661static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
662 sector_t start_sector, struct buffer_head *map_bh)
1da177e4
LT
663{
664 sector_t sector;
665 int ret, nr_pages;
666
eb28be2b 667 ret = dio_bio_reap(dio, sdio);
1da177e4
LT
668 if (ret)
669 goto out;
eb28be2b 670 sector = start_sector << (sdio->blkbits - 9);
b54ffb73 671 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
1da177e4 672 BUG_ON(nr_pages <= 0);
18772641 673 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
eb28be2b 674 sdio->boundary = 0;
1da177e4
LT
675out:
676 return ret;
677}
678
679/*
680 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
681 * that was successful then update final_block_in_bio and take a ref against
682 * the just-added page.
683 *
684 * Return zero on success. Non-zero means the caller needs to start a new BIO.
685 */
ba253fbf 686static inline int dio_bio_add_page(struct dio_submit *sdio)
1da177e4
LT
687{
688 int ret;
689
eb28be2b
AK
690 ret = bio_add_page(sdio->bio, sdio->cur_page,
691 sdio->cur_page_len, sdio->cur_page_offset);
692 if (ret == sdio->cur_page_len) {
1da177e4
LT
693 /*
694 * Decrement count only, if we are done with this page
695 */
eb28be2b
AK
696 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
697 sdio->pages_in_io--;
698 page_cache_get(sdio->cur_page);
699 sdio->final_block_in_bio = sdio->cur_page_block +
700 (sdio->cur_page_len >> sdio->blkbits);
1da177e4
LT
701 ret = 0;
702 } else {
703 ret = 1;
704 }
705 return ret;
706}
707
708/*
709 * Put cur_page under IO. The section of cur_page which is described by
710 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
711 * starts on-disk at cur_page_block.
712 *
713 * We take a ref against the page here (on behalf of its presence in the bio).
714 *
715 * The caller of this function is responsible for removing cur_page from the
716 * dio, and for dropping the refcount which came from that presence.
717 */
ba253fbf
AK
718static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
719 struct buffer_head *map_bh)
1da177e4
LT
720{
721 int ret = 0;
722
eb28be2b
AK
723 if (sdio->bio) {
724 loff_t cur_offset = sdio->cur_page_fs_offset;
725 loff_t bio_next_offset = sdio->logical_offset_in_bio +
4f024f37 726 sdio->bio->bi_iter.bi_size;
c2c6ca41 727
1da177e4 728 /*
c2c6ca41
JB
729 * See whether this new request is contiguous with the old.
730 *
f0940cee
NK
731 * Btrfs cannot handle having logically non-contiguous requests
732 * submitted. For example if you have
c2c6ca41
JB
733 *
734 * Logical: [0-4095][HOLE][8192-12287]
f0940cee 735 * Physical: [0-4095] [4096-8191]
c2c6ca41
JB
736 *
737 * We cannot submit those pages together as one BIO. So if our
738 * current logical offset in the file does not equal what would
739 * be the next logical offset in the bio, submit the bio we
740 * have.
1da177e4 741 */
eb28be2b 742 if (sdio->final_block_in_bio != sdio->cur_page_block ||
c2c6ca41 743 cur_offset != bio_next_offset)
eb28be2b 744 dio_bio_submit(dio, sdio);
1da177e4
LT
745 }
746
eb28be2b 747 if (sdio->bio == NULL) {
18772641 748 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4
LT
749 if (ret)
750 goto out;
751 }
752
eb28be2b
AK
753 if (dio_bio_add_page(sdio) != 0) {
754 dio_bio_submit(dio, sdio);
18772641 755 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4 756 if (ret == 0) {
eb28be2b 757 ret = dio_bio_add_page(sdio);
1da177e4
LT
758 BUG_ON(ret != 0);
759 }
760 }
761out:
762 return ret;
763}
764
765/*
766 * An autonomous function to put a chunk of a page under deferred IO.
767 *
768 * The caller doesn't actually know (or care) whether this piece of page is in
769 * a BIO, or is under IO or whatever. We just take care of all possible
770 * situations here. The separation between the logic of do_direct_IO() and
771 * that of submit_page_section() is important for clarity. Please don't break.
772 *
773 * The chunk of page starts on-disk at blocknr.
774 *
775 * We perform deferred IO, by recording the last-submitted page inside our
776 * private part of the dio structure. If possible, we just expand the IO
777 * across that page here.
778 *
779 * If that doesn't work out then we put the old page into the bio and add this
780 * page to the dio instead.
781 */
ba253fbf 782static inline int
eb28be2b 783submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
18772641
AK
784 unsigned offset, unsigned len, sector_t blocknr,
785 struct buffer_head *map_bh)
1da177e4
LT
786{
787 int ret = 0;
788
98c4d57d
AM
789 if (dio->rw & WRITE) {
790 /*
791 * Read accounting is performed in submit_bio()
792 */
793 task_io_account_write(len);
794 }
795
1da177e4
LT
796 /*
797 * Can we just grow the current page's presence in the dio?
798 */
eb28be2b
AK
799 if (sdio->cur_page == page &&
800 sdio->cur_page_offset + sdio->cur_page_len == offset &&
801 sdio->cur_page_block +
802 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
803 sdio->cur_page_len += len;
1da177e4
LT
804 goto out;
805 }
806
807 /*
808 * If there's a deferred page already there then send it.
809 */
eb28be2b 810 if (sdio->cur_page) {
18772641 811 ret = dio_send_cur_page(dio, sdio, map_bh);
eb28be2b
AK
812 page_cache_release(sdio->cur_page);
813 sdio->cur_page = NULL;
1da177e4 814 if (ret)
b1058b98 815 return ret;
1da177e4
LT
816 }
817
818 page_cache_get(page); /* It is in dio */
eb28be2b
AK
819 sdio->cur_page = page;
820 sdio->cur_page_offset = offset;
821 sdio->cur_page_len = len;
822 sdio->cur_page_block = blocknr;
823 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
1da177e4 824out:
b1058b98
JK
825 /*
826 * If sdio->boundary then we want to schedule the IO now to
827 * avoid metadata seeks.
828 */
829 if (sdio->boundary) {
830 ret = dio_send_cur_page(dio, sdio, map_bh);
831 dio_bio_submit(dio, sdio);
832 page_cache_release(sdio->cur_page);
833 sdio->cur_page = NULL;
834 }
1da177e4
LT
835 return ret;
836}
837
838/*
839 * Clean any dirty buffers in the blockdev mapping which alias newly-created
840 * file blocks. Only called for S_ISREG files - blockdevs do not set
841 * buffer_new
842 */
18772641 843static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
1da177e4
LT
844{
845 unsigned i;
846 unsigned nblocks;
847
18772641 848 nblocks = map_bh->b_size >> dio->inode->i_blkbits;
1da177e4
LT
849
850 for (i = 0; i < nblocks; i++) {
18772641
AK
851 unmap_underlying_metadata(map_bh->b_bdev,
852 map_bh->b_blocknr + i);
1da177e4
LT
853 }
854}
855
856/*
857 * If we are not writing the entire block and get_block() allocated
858 * the block for us, we need to fill-in the unused portion of the
859 * block with zeros. This happens only if user-buffer, fileoffset or
860 * io length is not filesystem block-size multiple.
861 *
862 * `end' is zero if we're doing the start of the IO, 1 at the end of the
863 * IO.
864 */
ba253fbf
AK
865static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
866 int end, struct buffer_head *map_bh)
1da177e4
LT
867{
868 unsigned dio_blocks_per_fs_block;
869 unsigned this_chunk_blocks; /* In dio_blocks */
870 unsigned this_chunk_bytes;
871 struct page *page;
872
eb28be2b 873 sdio->start_zero_done = 1;
18772641 874 if (!sdio->blkfactor || !buffer_new(map_bh))
1da177e4
LT
875 return;
876
eb28be2b
AK
877 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
878 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
1da177e4
LT
879
880 if (!this_chunk_blocks)
881 return;
882
883 /*
884 * We need to zero out part of an fs block. It is either at the
885 * beginning or the end of the fs block.
886 */
887 if (end)
888 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
889
eb28be2b 890 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
1da177e4 891
557ed1fa 892 page = ZERO_PAGE(0);
eb28be2b 893 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
18772641 894 sdio->next_block_for_io, map_bh))
1da177e4
LT
895 return;
896
eb28be2b 897 sdio->next_block_for_io += this_chunk_blocks;
1da177e4
LT
898}
899
900/*
901 * Walk the user pages, and the file, mapping blocks to disk and generating
902 * a sequence of (page,offset,len,block) mappings. These mappings are injected
903 * into submit_page_section(), which takes care of the next stage of submission
904 *
905 * Direct IO against a blockdev is different from a file. Because we can
906 * happily perform page-sized but 512-byte aligned IOs. It is important that
907 * blockdev IO be able to have fine alignment and large sizes.
908 *
1d8fa7a2 909 * So what we do is to permit the ->get_block function to populate bh.b_size
1da177e4
LT
910 * with the size of IO which is permitted at this offset and this i_blkbits.
911 *
912 * For best results, the blockdev should be set up with 512-byte i_blkbits and
1d8fa7a2 913 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
1da177e4
LT
914 * fine alignment but still allows this function to work in PAGE_SIZE units.
915 */
18772641
AK
916static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
917 struct buffer_head *map_bh)
1da177e4 918{
eb28be2b 919 const unsigned blkbits = sdio->blkbits;
1da177e4
LT
920 int ret = 0;
921
eb28be2b 922 while (sdio->block_in_file < sdio->final_block_in_request) {
7b2c99d1
AV
923 struct page *page;
924 size_t from, to;
6fcc5420
BH
925
926 page = dio_get_page(dio, sdio);
1da177e4
LT
927 if (IS_ERR(page)) {
928 ret = PTR_ERR(page);
929 goto out;
930 }
6fcc5420
BH
931 from = sdio->head ? 0 : sdio->from;
932 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
933 sdio->head++;
1da177e4 934
7b2c99d1 935 while (from < to) {
1da177e4
LT
936 unsigned this_chunk_bytes; /* # of bytes mapped */
937 unsigned this_chunk_blocks; /* # of blocks */
938 unsigned u;
939
eb28be2b 940 if (sdio->blocks_available == 0) {
1da177e4
LT
941 /*
942 * Need to go and map some more disk
943 */
944 unsigned long blkmask;
945 unsigned long dio_remainder;
946
18772641 947 ret = get_more_blocks(dio, sdio, map_bh);
1da177e4
LT
948 if (ret) {
949 page_cache_release(page);
950 goto out;
951 }
952 if (!buffer_mapped(map_bh))
953 goto do_holes;
954
eb28be2b
AK
955 sdio->blocks_available =
956 map_bh->b_size >> sdio->blkbits;
957 sdio->next_block_for_io =
958 map_bh->b_blocknr << sdio->blkfactor;
1da177e4 959 if (buffer_new(map_bh))
18772641 960 clean_blockdev_aliases(dio, map_bh);
1da177e4 961
eb28be2b 962 if (!sdio->blkfactor)
1da177e4
LT
963 goto do_holes;
964
eb28be2b
AK
965 blkmask = (1 << sdio->blkfactor) - 1;
966 dio_remainder = (sdio->block_in_file & blkmask);
1da177e4
LT
967
968 /*
969 * If we are at the start of IO and that IO
970 * starts partway into a fs-block,
971 * dio_remainder will be non-zero. If the IO
972 * is a read then we can simply advance the IO
973 * cursor to the first block which is to be
974 * read. But if the IO is a write and the
975 * block was newly allocated we cannot do that;
976 * the start of the fs block must be zeroed out
977 * on-disk
978 */
979 if (!buffer_new(map_bh))
eb28be2b
AK
980 sdio->next_block_for_io += dio_remainder;
981 sdio->blocks_available -= dio_remainder;
1da177e4
LT
982 }
983do_holes:
984 /* Handle holes */
985 if (!buffer_mapped(map_bh)) {
35dc8161 986 loff_t i_size_aligned;
1da177e4
LT
987
988 /* AKPM: eargh, -ENOTBLK is a hack */
b31dc66a 989 if (dio->rw & WRITE) {
1da177e4
LT
990 page_cache_release(page);
991 return -ENOTBLK;
992 }
993
35dc8161
JM
994 /*
995 * Be sure to account for a partial block as the
996 * last block in the file
997 */
998 i_size_aligned = ALIGN(i_size_read(dio->inode),
999 1 << blkbits);
eb28be2b 1000 if (sdio->block_in_file >=
35dc8161 1001 i_size_aligned >> blkbits) {
1da177e4
LT
1002 /* We hit eof */
1003 page_cache_release(page);
1004 goto out;
1005 }
7b2c99d1 1006 zero_user(page, from, 1 << blkbits);
eb28be2b 1007 sdio->block_in_file++;
7b2c99d1 1008 from += 1 << blkbits;
3320c60b 1009 dio->result += 1 << blkbits;
1da177e4
LT
1010 goto next_block;
1011 }
1012
1013 /*
1014 * If we're performing IO which has an alignment which
1015 * is finer than the underlying fs, go check to see if
1016 * we must zero out the start of this block.
1017 */
eb28be2b 1018 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
18772641 1019 dio_zero_block(dio, sdio, 0, map_bh);
1da177e4
LT
1020
1021 /*
1022 * Work out, in this_chunk_blocks, how much disk we
1023 * can add to this page
1024 */
eb28be2b 1025 this_chunk_blocks = sdio->blocks_available;
7b2c99d1 1026 u = (to - from) >> blkbits;
1da177e4
LT
1027 if (this_chunk_blocks > u)
1028 this_chunk_blocks = u;
eb28be2b 1029 u = sdio->final_block_in_request - sdio->block_in_file;
1da177e4
LT
1030 if (this_chunk_blocks > u)
1031 this_chunk_blocks = u;
1032 this_chunk_bytes = this_chunk_blocks << blkbits;
1033 BUG_ON(this_chunk_bytes == 0);
1034
092c8d46
JK
1035 if (this_chunk_blocks == sdio->blocks_available)
1036 sdio->boundary = buffer_boundary(map_bh);
eb28be2b 1037 ret = submit_page_section(dio, sdio, page,
7b2c99d1 1038 from,
eb28be2b 1039 this_chunk_bytes,
18772641
AK
1040 sdio->next_block_for_io,
1041 map_bh);
1da177e4
LT
1042 if (ret) {
1043 page_cache_release(page);
1044 goto out;
1045 }
eb28be2b 1046 sdio->next_block_for_io += this_chunk_blocks;
1da177e4 1047
eb28be2b 1048 sdio->block_in_file += this_chunk_blocks;
7b2c99d1
AV
1049 from += this_chunk_bytes;
1050 dio->result += this_chunk_bytes;
eb28be2b 1051 sdio->blocks_available -= this_chunk_blocks;
1da177e4 1052next_block:
eb28be2b
AK
1053 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1054 if (sdio->block_in_file == sdio->final_block_in_request)
1da177e4
LT
1055 break;
1056 }
1057
1058 /* Drop the ref which was taken in get_user_pages() */
1059 page_cache_release(page);
1da177e4
LT
1060 }
1061out:
1062 return ret;
1063}
1064
847cc637 1065static inline int drop_refcount(struct dio *dio)
1da177e4 1066{
847cc637 1067 int ret2;
5eb6c7a2 1068 unsigned long flags;
1da177e4 1069
8459d86a
ZB
1070 /*
1071 * Sync will always be dropping the final ref and completing the
5eb6c7a2
ZB
1072 * operation. AIO can if it was a broken operation described above or
1073 * in fact if all the bios race to complete before we get here. In
1074 * that case dio_complete() translates the EIOCBQUEUED into the proper
04b2fa9f 1075 * return code that the caller will hand to ->complete().
5eb6c7a2
ZB
1076 *
1077 * This is managed by the bio_lock instead of being an atomic_t so that
1078 * completion paths can drop their ref and use the remaining count to
1079 * decide to wake the submission path atomically.
8459d86a 1080 */
5eb6c7a2
ZB
1081 spin_lock_irqsave(&dio->bio_lock, flags);
1082 ret2 = --dio->refcount;
1083 spin_unlock_irqrestore(&dio->bio_lock, flags);
847cc637 1084 return ret2;
1da177e4
LT
1085}
1086
eafdc7d1
CH
1087/*
1088 * This is a library function for use by filesystem drivers.
1089 *
1090 * The locking rules are governed by the flags parameter:
1091 * - if the flags value contains DIO_LOCKING we use a fancy locking
1092 * scheme for dumb filesystems.
1093 * For writes this function is called under i_mutex and returns with
1094 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1095 * taken and dropped again before returning.
eafdc7d1
CH
1096 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1097 * internal locking but rather rely on the filesystem to synchronize
1098 * direct I/O reads/writes versus each other and truncate.
df2d6f26
CH
1099 *
1100 * To help with locking against truncate we incremented the i_dio_count
1101 * counter before starting direct I/O, and decrement it once we are done.
1102 * Truncate can wait for it to reach zero to provide exclusion. It is
1103 * expected that filesystem provide exclusion between new direct I/O
1104 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1105 * but other filesystems need to take care of this on their own.
ba253fbf
AK
1106 *
1107 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1108 * is always inlined. Otherwise gcc is unable to split the structure into
1109 * individual fields and will generate much worse code. This is important
1110 * for the whole file.
eafdc7d1 1111 */
65dd2aa9 1112static inline ssize_t
17f8c842
OS
1113do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1114 struct block_device *bdev, struct iov_iter *iter,
1115 loff_t offset, get_block_t get_block, dio_iodone_t end_io,
1116 dio_submit_t submit_io, int flags)
1da177e4 1117{
ab73857e
LT
1118 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1119 unsigned blkbits = i_blkbits;
1da177e4
LT
1120 unsigned blocksize_mask = (1 << blkbits) - 1;
1121 ssize_t retval = -EINVAL;
af436472
CH
1122 size_t count = iov_iter_count(iter);
1123 loff_t end = offset + count;
1da177e4 1124 struct dio *dio;
eb28be2b 1125 struct dio_submit sdio = { 0, };
847cc637 1126 struct buffer_head map_bh = { 0, };
647d1e4c 1127 struct blk_plug plug;
886a3911 1128 unsigned long align = offset | iov_iter_alignment(iter);
1da177e4 1129
65dd2aa9
AK
1130 /*
1131 * Avoid references to bdev if not absolutely needed to give
1132 * the early prefetch in the caller enough time.
1133 */
1da177e4 1134
886a3911 1135 if (align & blocksize_mask) {
1da177e4 1136 if (bdev)
65dd2aa9 1137 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1da177e4 1138 blocksize_mask = (1 << blkbits) - 1;
886a3911 1139 if (align & blocksize_mask)
1da177e4
LT
1140 goto out;
1141 }
1142
f9b5570d 1143 /* watch out for a 0 len io from a tricksy fs */
17f8c842 1144 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
f9b5570d
CH
1145 return 0;
1146
6e8267f5 1147 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1da177e4
LT
1148 retval = -ENOMEM;
1149 if (!dio)
1150 goto out;
23aee091
JM
1151 /*
1152 * Believe it or not, zeroing out the page array caused a .5%
1153 * performance regression in a database benchmark. So, we take
1154 * care to only zero out what's needed.
1155 */
1156 memset(dio, 0, offsetof(struct dio, pages));
1da177e4 1157
5fe878ae
CH
1158 dio->flags = flags;
1159 if (dio->flags & DIO_LOCKING) {
17f8c842 1160 if (iov_iter_rw(iter) == READ) {
5fe878ae
CH
1161 struct address_space *mapping =
1162 iocb->ki_filp->f_mapping;
1da177e4 1163
5fe878ae 1164 /* will be released by direct_io_worker */
5955102c 1165 inode_lock(inode);
1da177e4
LT
1166
1167 retval = filemap_write_and_wait_range(mapping, offset,
1168 end - 1);
1169 if (retval) {
5955102c 1170 inode_unlock(inode);
6e8267f5 1171 kmem_cache_free(dio_cache, dio);
1da177e4
LT
1172 goto out;
1173 }
1da177e4 1174 }
1da177e4
LT
1175 }
1176
74cedf9b
JK
1177 /* Once we sampled i_size check for reads beyond EOF */
1178 dio->i_size = i_size_read(inode);
1179 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1180 if (dio->flags & DIO_LOCKING)
5955102c 1181 inode_unlock(inode);
74cedf9b 1182 kmem_cache_free(dio_cache, dio);
2d4594ac 1183 retval = 0;
74cedf9b
JK
1184 goto out;
1185 }
1186
1da177e4 1187 /*
60392573
CH
1188 * For file extending writes updating i_size before data writeouts
1189 * complete can expose uninitialized blocks in dumb filesystems.
1190 * In that case we need to wait for I/O completion even if asked
1191 * for an asynchronous write.
1da177e4 1192 */
60392573
CH
1193 if (is_sync_kiocb(iocb))
1194 dio->is_async = false;
1195 else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
17f8c842 1196 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
60392573
CH
1197 dio->is_async = false;
1198 else
1199 dio->is_async = true;
1200
847cc637 1201 dio->inode = inode;
17f8c842 1202 dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ;
02afc27f
CH
1203
1204 /*
1205 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1206 * so that we can call ->fsync.
1207 */
17f8c842 1208 if (dio->is_async && iov_iter_rw(iter) == WRITE &&
02afc27f
CH
1209 ((iocb->ki_filp->f_flags & O_DSYNC) ||
1210 IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1211 retval = dio_set_defer_completion(dio);
1212 if (retval) {
1213 /*
1214 * We grab i_mutex only for reads so we don't have
1215 * to release it here
1216 */
1217 kmem_cache_free(dio_cache, dio);
1218 goto out;
1219 }
1220 }
1221
1222 /*
1223 * Will be decremented at I/O completion time.
1224 */
fe0f07d0
JA
1225 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1226 inode_dio_begin(inode);
02afc27f
CH
1227
1228 retval = 0;
847cc637 1229 sdio.blkbits = blkbits;
ab73857e 1230 sdio.blkfactor = i_blkbits - blkbits;
847cc637
AK
1231 sdio.block_in_file = offset >> blkbits;
1232
1233 sdio.get_block = get_block;
1234 dio->end_io = end_io;
1235 sdio.submit_io = submit_io;
1236 sdio.final_block_in_bio = -1;
1237 sdio.next_block_for_io = -1;
1238
1239 dio->iocb = iocb;
847cc637
AK
1240
1241 spin_lock_init(&dio->bio_lock);
1242 dio->refcount = 1;
1243
53cbf3b1 1244 dio->should_dirty = (iter->type == ITER_IOVEC);
7b2c99d1
AV
1245 sdio.iter = iter;
1246 sdio.final_block_in_request =
1247 (offset + iov_iter_count(iter)) >> blkbits;
1248
847cc637
AK
1249 /*
1250 * In case of non-aligned buffers, we may need 2 more
1251 * pages since we need to zero out first and last block.
1252 */
1253 if (unlikely(sdio.blkfactor))
1254 sdio.pages_in_io = 2;
1255
f67da30c 1256 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
847cc637 1257
647d1e4c
FW
1258 blk_start_plug(&plug);
1259
7b2c99d1
AV
1260 retval = do_direct_IO(dio, &sdio, &map_bh);
1261 if (retval)
1262 dio_cleanup(dio, &sdio);
847cc637
AK
1263
1264 if (retval == -ENOTBLK) {
1265 /*
1266 * The remaining part of the request will be
1267 * be handled by buffered I/O when we return
1268 */
1269 retval = 0;
1270 }
1271 /*
1272 * There may be some unwritten disk at the end of a part-written
1273 * fs-block-sized block. Go zero that now.
1274 */
1275 dio_zero_block(dio, &sdio, 1, &map_bh);
1276
1277 if (sdio.cur_page) {
1278 ssize_t ret2;
1279
1280 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1281 if (retval == 0)
1282 retval = ret2;
1283 page_cache_release(sdio.cur_page);
1284 sdio.cur_page = NULL;
1285 }
1286 if (sdio.bio)
1287 dio_bio_submit(dio, &sdio);
1288
647d1e4c
FW
1289 blk_finish_plug(&plug);
1290
847cc637
AK
1291 /*
1292 * It is possible that, we return short IO due to end of file.
1293 * In that case, we need to release all the pages we got hold on.
1294 */
1295 dio_cleanup(dio, &sdio);
1296
1297 /*
1298 * All block lookups have been performed. For READ requests
1299 * we can let i_mutex go now that its achieved its purpose
1300 * of protecting us from looking up uninitialized blocks.
1301 */
17f8c842 1302 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
5955102c 1303 inode_unlock(dio->inode);
847cc637
AK
1304
1305 /*
1306 * The only time we want to leave bios in flight is when a successful
1307 * partial aio read or full aio write have been setup. In that case
1308 * bio completion will call aio_complete. The only time it's safe to
1309 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1310 * This had *better* be the only place that raises -EIOCBQUEUED.
1311 */
1312 BUG_ON(retval == -EIOCBQUEUED);
1313 if (dio->is_async && retval == 0 && dio->result &&
17f8c842 1314 (iov_iter_rw(iter) == READ || dio->result == count))
847cc637 1315 retval = -EIOCBQUEUED;
af436472 1316 else
847cc637
AK
1317 dio_await_completion(dio);
1318
1319 if (drop_refcount(dio) == 0) {
1320 retval = dio_complete(dio, offset, retval, false);
847cc637
AK
1321 } else
1322 BUG_ON(retval != -EIOCBQUEUED);
1da177e4 1323
7bb46a67 1324out:
1325 return retval;
1326}
65dd2aa9 1327
17f8c842
OS
1328ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1329 struct block_device *bdev, struct iov_iter *iter,
1330 loff_t offset, get_block_t get_block,
1331 dio_iodone_t end_io, dio_submit_t submit_io,
1332 int flags)
65dd2aa9
AK
1333{
1334 /*
1335 * The block device state is needed in the end to finally
1336 * submit everything. Since it's likely to be cache cold
1337 * prefetch it here as first thing to hide some of the
1338 * latency.
1339 *
1340 * Attempt to prefetch the pieces we likely need later.
1341 */
1342 prefetch(&bdev->bd_disk->part_tbl);
1343 prefetch(bdev->bd_queue);
1344 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1345
17f8c842
OS
1346 return do_blockdev_direct_IO(iocb, inode, bdev, iter, offset, get_block,
1347 end_io, submit_io, flags);
65dd2aa9
AK
1348}
1349
1da177e4 1350EXPORT_SYMBOL(__blockdev_direct_IO);
6e8267f5
AK
1351
1352static __init int dio_init(void)
1353{
1354 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1355 return 0;
1356}
1357module_init(dio_init)