get rid of trylock loop around dentry_kill()
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
7c0f6ba6 29#include <linux/uaccess.h>
1da177e4
LT
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
ceb5bdc2
NP
35#include <linux/bit_spinlock.h>
36#include <linux/rculist_bl.h>
268bb0ce 37#include <linux/prefetch.h>
dd179946 38#include <linux/ratelimit.h>
f6041567 39#include <linux/list_lru.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0 45 * dcache->d_inode->i_lock protects:
946e51f2 46 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
f1ee6162
N
49 * s_roots bl list spinlock protects:
50 * - the s_roots list (see __d_drop)
19156840 51 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
946e51f2 61 * - d_u.d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6 65 * dentry->d_lock
19156840 66 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 67 * dcache_hash_bucket lock
f1ee6162 68 * s_roots lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
74c3cbe3 84__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 85
949854d0 86EXPORT_SYMBOL(rename_lock);
1da177e4 87
e18b890b 88static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 89
cdf01226
DH
90const struct qstr empty_name = QSTR_INIT("", 0);
91EXPORT_SYMBOL(empty_name);
92const struct qstr slash_name = QSTR_INIT("/", 1);
93EXPORT_SYMBOL(slash_name);
94
1da177e4
LT
95/*
96 * This is the single most critical data structure when it comes
97 * to the dcache: the hashtable for lookups. Somebody should try
98 * to make this good - I've just made it work.
99 *
100 * This hash-function tries to avoid losing too many bits of hash
101 * information, yet avoid using a prime hash-size or similar.
102 */
1da177e4 103
fa3536cc 104static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 105
b07ad996 106static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 107
8387ff25 108static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 109{
854d3e63 110 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
111}
112
94bdd655
AV
113#define IN_LOOKUP_SHIFT 10
114static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
115
116static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
117 unsigned int hash)
118{
119 hash += (unsigned long) parent / L1_CACHE_BYTES;
120 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
121}
122
123
1da177e4
LT
124/* Statistics gathering. */
125struct dentry_stat_t dentry_stat = {
126 .age_limit = 45,
127};
128
3942c07c 129static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 130static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
131
132#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
133
134/*
135 * Here we resort to our own counters instead of using generic per-cpu counters
136 * for consistency with what the vfs inode code does. We are expected to harvest
137 * better code and performance by having our own specialized counters.
138 *
139 * Please note that the loop is done over all possible CPUs, not over all online
140 * CPUs. The reason for this is that we don't want to play games with CPUs going
141 * on and off. If one of them goes off, we will just keep their counters.
142 *
143 * glommer: See cffbc8a for details, and if you ever intend to change this,
144 * please update all vfs counters to match.
145 */
3942c07c 146static long get_nr_dentry(void)
3e880fb5
NP
147{
148 int i;
3942c07c 149 long sum = 0;
3e880fb5
NP
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry, i);
152 return sum < 0 ? 0 : sum;
153}
154
62d36c77
DC
155static long get_nr_dentry_unused(void)
156{
157 int i;
158 long sum = 0;
159 for_each_possible_cpu(i)
160 sum += per_cpu(nr_dentry_unused, i);
161 return sum < 0 ? 0 : sum;
162}
163
1f7e0616 164int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
165 size_t *lenp, loff_t *ppos)
166{
3e880fb5 167 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 168 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 169 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
170}
171#endif
172
5483f18e
LT
173/*
174 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
175 * The strings are both count bytes long, and count is non-zero.
176 */
e419b4cc
LT
177#ifdef CONFIG_DCACHE_WORD_ACCESS
178
179#include <asm/word-at-a-time.h>
180/*
181 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
182 * aligned allocation for this particular component. We don't
183 * strictly need the load_unaligned_zeropad() safety, but it
184 * doesn't hurt either.
185 *
186 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
187 * need the careful unaligned handling.
188 */
94753db5 189static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 190{
bfcfaa77 191 unsigned long a,b,mask;
bfcfaa77
LT
192
193 for (;;) {
bfe7aa6c 194 a = read_word_at_a_time(cs);
e419b4cc 195 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
196 if (tcount < sizeof(unsigned long))
197 break;
198 if (unlikely(a != b))
199 return 1;
200 cs += sizeof(unsigned long);
201 ct += sizeof(unsigned long);
202 tcount -= sizeof(unsigned long);
203 if (!tcount)
204 return 0;
205 }
a5c21dce 206 mask = bytemask_from_count(tcount);
bfcfaa77 207 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
208}
209
bfcfaa77 210#else
e419b4cc 211
94753db5 212static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 213{
5483f18e
LT
214 do {
215 if (*cs != *ct)
216 return 1;
217 cs++;
218 ct++;
219 tcount--;
220 } while (tcount);
221 return 0;
222}
223
e419b4cc
LT
224#endif
225
94753db5
LT
226static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
227{
94753db5
LT
228 /*
229 * Be careful about RCU walk racing with rename:
506458ef 230 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
231 *
232 * NOTE! Even if a rename will mean that the length
233 * was not loaded atomically, we don't care. The
234 * RCU walk will check the sequence count eventually,
235 * and catch it. And we won't overrun the buffer,
236 * because we're reading the name pointer atomically,
237 * and a dentry name is guaranteed to be properly
238 * terminated with a NUL byte.
239 *
240 * End result: even if 'len' is wrong, we'll exit
241 * early because the data cannot match (there can
242 * be no NUL in the ct/tcount data)
243 */
506458ef 244 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 245
6326c71f 246 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
247}
248
8d85b484
AV
249struct external_name {
250 union {
251 atomic_t count;
252 struct rcu_head head;
253 } u;
254 unsigned char name[];
255};
256
257static inline struct external_name *external_name(struct dentry *dentry)
258{
259 return container_of(dentry->d_name.name, struct external_name, name[0]);
260}
261
9c82ab9c 262static void __d_free(struct rcu_head *head)
1da177e4 263{
9c82ab9c
CH
264 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
265
8d85b484
AV
266 kmem_cache_free(dentry_cache, dentry);
267}
268
269static void __d_free_external(struct rcu_head *head)
270{
271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 272 kfree(external_name(dentry));
1da177e4
LT
273 kmem_cache_free(dentry_cache, dentry);
274}
275
810bb172
AV
276static inline int dname_external(const struct dentry *dentry)
277{
278 return dentry->d_name.name != dentry->d_iname;
279}
280
49d31c2f
AV
281void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
282{
283 spin_lock(&dentry->d_lock);
284 if (unlikely(dname_external(dentry))) {
285 struct external_name *p = external_name(dentry);
286 atomic_inc(&p->u.count);
287 spin_unlock(&dentry->d_lock);
288 name->name = p->name;
289 } else {
290 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
291 spin_unlock(&dentry->d_lock);
292 name->name = name->inline_name;
293 }
294}
295EXPORT_SYMBOL(take_dentry_name_snapshot);
296
297void release_dentry_name_snapshot(struct name_snapshot *name)
298{
299 if (unlikely(name->name != name->inline_name)) {
300 struct external_name *p;
301 p = container_of(name->name, struct external_name, name[0]);
302 if (unlikely(atomic_dec_and_test(&p->u.count)))
303 kfree_rcu(p, u.head);
304 }
305}
306EXPORT_SYMBOL(release_dentry_name_snapshot);
307
4bf46a27
DH
308static inline void __d_set_inode_and_type(struct dentry *dentry,
309 struct inode *inode,
310 unsigned type_flags)
311{
312 unsigned flags;
313
314 dentry->d_inode = inode;
4bf46a27
DH
315 flags = READ_ONCE(dentry->d_flags);
316 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
317 flags |= type_flags;
318 WRITE_ONCE(dentry->d_flags, flags);
319}
320
4bf46a27
DH
321static inline void __d_clear_type_and_inode(struct dentry *dentry)
322{
323 unsigned flags = READ_ONCE(dentry->d_flags);
324
325 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
326 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
327 dentry->d_inode = NULL;
328}
329
b4f0354e
AV
330static void dentry_free(struct dentry *dentry)
331{
946e51f2 332 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
333 if (unlikely(dname_external(dentry))) {
334 struct external_name *p = external_name(dentry);
335 if (likely(atomic_dec_and_test(&p->u.count))) {
336 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
337 return;
338 }
339 }
b4f0354e
AV
340 /* if dentry was never visible to RCU, immediate free is OK */
341 if (!(dentry->d_flags & DCACHE_RCUACCESS))
342 __d_free(&dentry->d_u.d_rcu);
343 else
344 call_rcu(&dentry->d_u.d_rcu, __d_free);
345}
346
1da177e4
LT
347/*
348 * Release the dentry's inode, using the filesystem
550dce01 349 * d_iput() operation if defined.
31e6b01f
NP
350 */
351static void dentry_unlink_inode(struct dentry * dentry)
352 __releases(dentry->d_lock)
873feea0 353 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
354{
355 struct inode *inode = dentry->d_inode;
550dce01 356 bool hashed = !d_unhashed(dentry);
a528aca7 357
550dce01
AV
358 if (hashed)
359 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 360 __d_clear_type_and_inode(dentry);
946e51f2 361 hlist_del_init(&dentry->d_u.d_alias);
550dce01
AV
362 if (hashed)
363 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 364 spin_unlock(&dentry->d_lock);
873feea0 365 spin_unlock(&inode->i_lock);
31e6b01f
NP
366 if (!inode->i_nlink)
367 fsnotify_inoderemove(inode);
368 if (dentry->d_op && dentry->d_op->d_iput)
369 dentry->d_op->d_iput(dentry, inode);
370 else
371 iput(inode);
372}
373
89dc77bc
LT
374/*
375 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
376 * is in use - which includes both the "real" per-superblock
377 * LRU list _and_ the DCACHE_SHRINK_LIST use.
378 *
379 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
380 * on the shrink list (ie not on the superblock LRU list).
381 *
382 * The per-cpu "nr_dentry_unused" counters are updated with
383 * the DCACHE_LRU_LIST bit.
384 *
385 * These helper functions make sure we always follow the
386 * rules. d_lock must be held by the caller.
387 */
388#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
389static void d_lru_add(struct dentry *dentry)
390{
391 D_FLAG_VERIFY(dentry, 0);
392 dentry->d_flags |= DCACHE_LRU_LIST;
393 this_cpu_inc(nr_dentry_unused);
394 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
395}
396
397static void d_lru_del(struct dentry *dentry)
398{
399 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
400 dentry->d_flags &= ~DCACHE_LRU_LIST;
401 this_cpu_dec(nr_dentry_unused);
402 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
403}
404
405static void d_shrink_del(struct dentry *dentry)
406{
407 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
408 list_del_init(&dentry->d_lru);
409 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410 this_cpu_dec(nr_dentry_unused);
411}
412
413static void d_shrink_add(struct dentry *dentry, struct list_head *list)
414{
415 D_FLAG_VERIFY(dentry, 0);
416 list_add(&dentry->d_lru, list);
417 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
418 this_cpu_inc(nr_dentry_unused);
419}
420
421/*
422 * These can only be called under the global LRU lock, ie during the
423 * callback for freeing the LRU list. "isolate" removes it from the
424 * LRU lists entirely, while shrink_move moves it to the indicated
425 * private list.
426 */
3f97b163 427static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
428{
429 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
430 dentry->d_flags &= ~DCACHE_LRU_LIST;
431 this_cpu_dec(nr_dentry_unused);
3f97b163 432 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
433}
434
3f97b163
VD
435static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
436 struct list_head *list)
89dc77bc
LT
437{
438 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
439 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 440 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
441}
442
789680d1
NP
443/**
444 * d_drop - drop a dentry
445 * @dentry: dentry to drop
446 *
447 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
448 * be found through a VFS lookup any more. Note that this is different from
449 * deleting the dentry - d_delete will try to mark the dentry negative if
450 * possible, giving a successful _negative_ lookup, while d_drop will
451 * just make the cache lookup fail.
452 *
453 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
454 * reason (NFS timeouts or autofs deletes).
455 *
61647823
N
456 * __d_drop requires dentry->d_lock
457 * ___d_drop doesn't mark dentry as "unhashed"
458 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
789680d1 459 */
61647823 460static void ___d_drop(struct dentry *dentry)
789680d1 461{
0632a9ac
AV
462 struct hlist_bl_head *b;
463 /*
464 * Hashed dentries are normally on the dentry hashtable,
465 * with the exception of those newly allocated by
466 * d_obtain_root, which are always IS_ROOT:
467 */
468 if (unlikely(IS_ROOT(dentry)))
469 b = &dentry->d_sb->s_roots;
470 else
471 b = d_hash(dentry->d_name.hash);
b61625d2 472
0632a9ac
AV
473 hlist_bl_lock(b);
474 __hlist_bl_del(&dentry->d_hash);
475 hlist_bl_unlock(b);
789680d1 476}
61647823
N
477
478void __d_drop(struct dentry *dentry)
479{
0632a9ac
AV
480 if (!d_unhashed(dentry)) {
481 ___d_drop(dentry);
482 dentry->d_hash.pprev = NULL;
483 write_seqcount_invalidate(&dentry->d_seq);
484 }
61647823 485}
789680d1
NP
486EXPORT_SYMBOL(__d_drop);
487
488void d_drop(struct dentry *dentry)
489{
789680d1
NP
490 spin_lock(&dentry->d_lock);
491 __d_drop(dentry);
492 spin_unlock(&dentry->d_lock);
789680d1
NP
493}
494EXPORT_SYMBOL(d_drop);
495
ba65dc5e
AV
496static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
497{
498 struct dentry *next;
499 /*
500 * Inform d_walk() and shrink_dentry_list() that we are no longer
501 * attached to the dentry tree
502 */
503 dentry->d_flags |= DCACHE_DENTRY_KILLED;
504 if (unlikely(list_empty(&dentry->d_child)))
505 return;
506 __list_del_entry(&dentry->d_child);
507 /*
508 * Cursors can move around the list of children. While we'd been
509 * a normal list member, it didn't matter - ->d_child.next would've
510 * been updated. However, from now on it won't be and for the
511 * things like d_walk() it might end up with a nasty surprise.
512 * Normally d_walk() doesn't care about cursors moving around -
513 * ->d_lock on parent prevents that and since a cursor has no children
514 * of its own, we get through it without ever unlocking the parent.
515 * There is one exception, though - if we ascend from a child that
516 * gets killed as soon as we unlock it, the next sibling is found
517 * using the value left in its ->d_child.next. And if _that_
518 * pointed to a cursor, and cursor got moved (e.g. by lseek())
519 * before d_walk() regains parent->d_lock, we'll end up skipping
520 * everything the cursor had been moved past.
521 *
522 * Solution: make sure that the pointer left behind in ->d_child.next
523 * points to something that won't be moving around. I.e. skip the
524 * cursors.
525 */
526 while (dentry->d_child.next != &parent->d_subdirs) {
527 next = list_entry(dentry->d_child.next, struct dentry, d_child);
528 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
529 break;
530 dentry->d_child.next = next->d_child.next;
531 }
532}
533
e55fd011 534static void __dentry_kill(struct dentry *dentry)
77812a1e 535{
41edf278
AV
536 struct dentry *parent = NULL;
537 bool can_free = true;
41edf278 538 if (!IS_ROOT(dentry))
77812a1e 539 parent = dentry->d_parent;
31e6b01f 540
0d98439e
LT
541 /*
542 * The dentry is now unrecoverably dead to the world.
543 */
544 lockref_mark_dead(&dentry->d_lockref);
545
f0023bc6 546 /*
f0023bc6
SW
547 * inform the fs via d_prune that this dentry is about to be
548 * unhashed and destroyed.
549 */
29266201 550 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
551 dentry->d_op->d_prune(dentry);
552
01b60351
AV
553 if (dentry->d_flags & DCACHE_LRU_LIST) {
554 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
555 d_lru_del(dentry);
01b60351 556 }
77812a1e
NP
557 /* if it was on the hash then remove it */
558 __d_drop(dentry);
ba65dc5e 559 dentry_unlist(dentry, parent);
03b3b889
AV
560 if (parent)
561 spin_unlock(&parent->d_lock);
550dce01
AV
562 if (dentry->d_inode)
563 dentry_unlink_inode(dentry);
564 else
565 spin_unlock(&dentry->d_lock);
03b3b889
AV
566 this_cpu_dec(nr_dentry);
567 if (dentry->d_op && dentry->d_op->d_release)
568 dentry->d_op->d_release(dentry);
569
41edf278
AV
570 spin_lock(&dentry->d_lock);
571 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
572 dentry->d_flags |= DCACHE_MAY_FREE;
573 can_free = false;
574 }
575 spin_unlock(&dentry->d_lock);
41edf278
AV
576 if (likely(can_free))
577 dentry_free(dentry);
e55fd011
AV
578}
579
8b987a46 580static struct dentry *__lock_parent(struct dentry *dentry)
046b961b 581{
8b987a46 582 struct dentry *parent;
046b961b 583 rcu_read_lock();
c2338f2d 584 spin_unlock(&dentry->d_lock);
046b961b 585again:
66702eb5 586 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
587 spin_lock(&parent->d_lock);
588 /*
589 * We can't blindly lock dentry until we are sure
590 * that we won't violate the locking order.
591 * Any changes of dentry->d_parent must have
592 * been done with parent->d_lock held, so
593 * spin_lock() above is enough of a barrier
594 * for checking if it's still our child.
595 */
596 if (unlikely(parent != dentry->d_parent)) {
597 spin_unlock(&parent->d_lock);
598 goto again;
599 }
65d8eb5a
AV
600 rcu_read_unlock();
601 if (parent != dentry)
9f12600f 602 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 603 else
046b961b
AV
604 parent = NULL;
605 return parent;
606}
607
8b987a46
AV
608static inline struct dentry *lock_parent(struct dentry *dentry)
609{
610 struct dentry *parent = dentry->d_parent;
611 if (IS_ROOT(dentry))
612 return NULL;
613 if (likely(spin_trylock(&parent->d_lock)))
614 return parent;
615 return __lock_parent(dentry);
616}
617
a338579f
AV
618static inline bool retain_dentry(struct dentry *dentry)
619{
620 WARN_ON(d_in_lookup(dentry));
621
622 /* Unreachable? Get rid of it */
623 if (unlikely(d_unhashed(dentry)))
624 return false;
625
626 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
627 return false;
628
629 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
630 if (dentry->d_op->d_delete(dentry))
631 return false;
632 }
62d9956c
AV
633 /* retain; LRU fodder */
634 dentry->d_lockref.count--;
635 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
636 d_lru_add(dentry);
637 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
638 dentry->d_flags |= DCACHE_REFERENCED;
a338579f
AV
639 return true;
640}
641
c1d0c1a2
JO
642/*
643 * Finish off a dentry we've decided to kill.
644 * dentry->d_lock must be held, returns with it unlocked.
645 * Returns dentry requiring refcount drop, or NULL if we're done.
646 */
647static struct dentry *dentry_kill(struct dentry *dentry)
648 __releases(dentry->d_lock)
649{
650 struct inode *inode = dentry->d_inode;
651 struct dentry *parent = NULL;
652
653 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
f657a666 654 goto slow_positive;
c1d0c1a2
JO
655
656 if (!IS_ROOT(dentry)) {
657 parent = dentry->d_parent;
658 if (unlikely(!spin_trylock(&parent->d_lock))) {
f657a666
AV
659 parent = __lock_parent(dentry);
660 if (likely(inode || !dentry->d_inode))
661 goto got_locks;
662 /* negative that became positive */
663 if (parent)
664 spin_unlock(&parent->d_lock);
665 inode = dentry->d_inode;
666 goto slow_positive;
c1d0c1a2
JO
667 }
668 }
c1d0c1a2
JO
669 __dentry_kill(dentry);
670 return parent;
671
f657a666
AV
672slow_positive:
673 spin_unlock(&dentry->d_lock);
674 spin_lock(&inode->i_lock);
675 spin_lock(&dentry->d_lock);
676 parent = lock_parent(dentry);
677got_locks:
678 if (unlikely(dentry->d_lockref.count != 1)) {
679 dentry->d_lockref.count--;
680 } else if (likely(!retain_dentry(dentry))) {
681 __dentry_kill(dentry);
682 return parent;
683 }
684 /* we are keeping it, after all */
685 if (inode)
686 spin_unlock(&inode->i_lock);
687 if (parent)
688 spin_unlock(&parent->d_lock);
c1d0c1a2 689 spin_unlock(&dentry->d_lock);
f657a666 690 return NULL;
c1d0c1a2
JO
691}
692
360f5479
LT
693/*
694 * Try to do a lockless dput(), and return whether that was successful.
695 *
696 * If unsuccessful, we return false, having already taken the dentry lock.
697 *
698 * The caller needs to hold the RCU read lock, so that the dentry is
699 * guaranteed to stay around even if the refcount goes down to zero!
700 */
701static inline bool fast_dput(struct dentry *dentry)
702{
703 int ret;
704 unsigned int d_flags;
705
706 /*
707 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 708 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
709 */
710 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
711 return lockref_put_or_lock(&dentry->d_lockref);
712
713 /*
714 * .. otherwise, we can try to just decrement the
715 * lockref optimistically.
716 */
717 ret = lockref_put_return(&dentry->d_lockref);
718
719 /*
720 * If the lockref_put_return() failed due to the lock being held
721 * by somebody else, the fast path has failed. We will need to
722 * get the lock, and then check the count again.
723 */
724 if (unlikely(ret < 0)) {
725 spin_lock(&dentry->d_lock);
726 if (dentry->d_lockref.count > 1) {
727 dentry->d_lockref.count--;
728 spin_unlock(&dentry->d_lock);
729 return 1;
730 }
731 return 0;
732 }
733
734 /*
735 * If we weren't the last ref, we're done.
736 */
737 if (ret)
738 return 1;
739
740 /*
741 * Careful, careful. The reference count went down
742 * to zero, but we don't hold the dentry lock, so
743 * somebody else could get it again, and do another
744 * dput(), and we need to not race with that.
745 *
746 * However, there is a very special and common case
747 * where we don't care, because there is nothing to
748 * do: the dentry is still hashed, it does not have
749 * a 'delete' op, and it's referenced and already on
750 * the LRU list.
751 *
752 * NOTE! Since we aren't locked, these values are
753 * not "stable". However, it is sufficient that at
754 * some point after we dropped the reference the
755 * dentry was hashed and the flags had the proper
756 * value. Other dentry users may have re-gotten
757 * a reference to the dentry and change that, but
758 * our work is done - we can leave the dentry
759 * around with a zero refcount.
760 */
761 smp_rmb();
66702eb5 762 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 763 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
764
765 /* Nothing to do? Dropping the reference was all we needed? */
766 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
767 return 1;
768
769 /*
770 * Not the fast normal case? Get the lock. We've already decremented
771 * the refcount, but we'll need to re-check the situation after
772 * getting the lock.
773 */
774 spin_lock(&dentry->d_lock);
775
776 /*
777 * Did somebody else grab a reference to it in the meantime, and
778 * we're no longer the last user after all? Alternatively, somebody
779 * else could have killed it and marked it dead. Either way, we
780 * don't need to do anything else.
781 */
782 if (dentry->d_lockref.count) {
783 spin_unlock(&dentry->d_lock);
784 return 1;
785 }
786
787 /*
788 * Re-get the reference we optimistically dropped. We hold the
789 * lock, and we just tested that it was zero, so we can just
790 * set it to 1.
791 */
792 dentry->d_lockref.count = 1;
793 return 0;
794}
795
796
1da177e4
LT
797/*
798 * This is dput
799 *
800 * This is complicated by the fact that we do not want to put
801 * dentries that are no longer on any hash chain on the unused
802 * list: we'd much rather just get rid of them immediately.
803 *
804 * However, that implies that we have to traverse the dentry
805 * tree upwards to the parents which might _also_ now be
806 * scheduled for deletion (it may have been only waiting for
807 * its last child to go away).
808 *
809 * This tail recursion is done by hand as we don't want to depend
810 * on the compiler to always get this right (gcc generally doesn't).
811 * Real recursion would eat up our stack space.
812 */
813
814/*
815 * dput - release a dentry
816 * @dentry: dentry to release
817 *
818 * Release a dentry. This will drop the usage count and if appropriate
819 * call the dentry unlink method as well as removing it from the queues and
820 * releasing its resources. If the parent dentries were scheduled for release
821 * they too may now get deleted.
1da177e4 822 */
1da177e4
LT
823void dput(struct dentry *dentry)
824{
8aab6a27 825 if (unlikely(!dentry))
1da177e4
LT
826 return;
827
828repeat:
47be6184
WF
829 might_sleep();
830
360f5479
LT
831 rcu_read_lock();
832 if (likely(fast_dput(dentry))) {
833 rcu_read_unlock();
1da177e4 834 return;
360f5479
LT
835 }
836
837 /* Slow case: now with the dentry lock held */
838 rcu_read_unlock();
1da177e4 839
a338579f 840 if (likely(retain_dentry(dentry))) {
a338579f
AV
841 spin_unlock(&dentry->d_lock);
842 return;
1da177e4 843 }
265ac902 844
8cbf74da 845 dentry = dentry_kill(dentry);
47be6184
WF
846 if (dentry) {
847 cond_resched();
d52b9086 848 goto repeat;
47be6184 849 }
1da177e4 850}
ec4f8605 851EXPORT_SYMBOL(dput);
1da177e4 852
1da177e4 853
b5c84bf6 854/* This must be called with d_lock held */
dc0474be 855static inline void __dget_dlock(struct dentry *dentry)
23044507 856{
98474236 857 dentry->d_lockref.count++;
23044507
NP
858}
859
dc0474be 860static inline void __dget(struct dentry *dentry)
1da177e4 861{
98474236 862 lockref_get(&dentry->d_lockref);
1da177e4
LT
863}
864
b7ab39f6
NP
865struct dentry *dget_parent(struct dentry *dentry)
866{
df3d0bbc 867 int gotref;
b7ab39f6
NP
868 struct dentry *ret;
869
df3d0bbc
WL
870 /*
871 * Do optimistic parent lookup without any
872 * locking.
873 */
874 rcu_read_lock();
66702eb5 875 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
876 gotref = lockref_get_not_zero(&ret->d_lockref);
877 rcu_read_unlock();
878 if (likely(gotref)) {
66702eb5 879 if (likely(ret == READ_ONCE(dentry->d_parent)))
df3d0bbc
WL
880 return ret;
881 dput(ret);
882 }
883
b7ab39f6 884repeat:
a734eb45
NP
885 /*
886 * Don't need rcu_dereference because we re-check it was correct under
887 * the lock.
888 */
889 rcu_read_lock();
b7ab39f6 890 ret = dentry->d_parent;
a734eb45
NP
891 spin_lock(&ret->d_lock);
892 if (unlikely(ret != dentry->d_parent)) {
893 spin_unlock(&ret->d_lock);
894 rcu_read_unlock();
b7ab39f6
NP
895 goto repeat;
896 }
a734eb45 897 rcu_read_unlock();
98474236
WL
898 BUG_ON(!ret->d_lockref.count);
899 ret->d_lockref.count++;
b7ab39f6 900 spin_unlock(&ret->d_lock);
b7ab39f6
NP
901 return ret;
902}
903EXPORT_SYMBOL(dget_parent);
904
1da177e4
LT
905/**
906 * d_find_alias - grab a hashed alias of inode
907 * @inode: inode in question
1da177e4
LT
908 *
909 * If inode has a hashed alias, or is a directory and has any alias,
910 * acquire the reference to alias and return it. Otherwise return NULL.
911 * Notice that if inode is a directory there can be only one alias and
912 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
913 * of a filesystem, or if the directory was renamed and d_revalidate
914 * was the first vfs operation to notice.
1da177e4 915 *
21c0d8fd 916 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 917 * any other hashed alias over that one.
1da177e4 918 */
52ed46f0 919static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 920{
da502956 921 struct dentry *alias, *discon_alias;
1da177e4 922
da502956
NP
923again:
924 discon_alias = NULL;
946e51f2 925 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 926 spin_lock(&alias->d_lock);
1da177e4 927 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 928 if (IS_ROOT(alias) &&
da502956 929 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 930 discon_alias = alias;
52ed46f0 931 } else {
dc0474be 932 __dget_dlock(alias);
da502956
NP
933 spin_unlock(&alias->d_lock);
934 return alias;
935 }
936 }
937 spin_unlock(&alias->d_lock);
938 }
939 if (discon_alias) {
940 alias = discon_alias;
941 spin_lock(&alias->d_lock);
942 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
943 __dget_dlock(alias);
944 spin_unlock(&alias->d_lock);
945 return alias;
1da177e4 946 }
da502956
NP
947 spin_unlock(&alias->d_lock);
948 goto again;
1da177e4 949 }
da502956 950 return NULL;
1da177e4
LT
951}
952
da502956 953struct dentry *d_find_alias(struct inode *inode)
1da177e4 954{
214fda1f
DH
955 struct dentry *de = NULL;
956
b3d9b7a3 957 if (!hlist_empty(&inode->i_dentry)) {
873feea0 958 spin_lock(&inode->i_lock);
52ed46f0 959 de = __d_find_alias(inode);
873feea0 960 spin_unlock(&inode->i_lock);
214fda1f 961 }
1da177e4
LT
962 return de;
963}
ec4f8605 964EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
965
966/*
967 * Try to kill dentries associated with this inode.
968 * WARNING: you must own a reference to inode.
969 */
970void d_prune_aliases(struct inode *inode)
971{
0cdca3f9 972 struct dentry *dentry;
1da177e4 973restart:
873feea0 974 spin_lock(&inode->i_lock);
946e51f2 975 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 976 spin_lock(&dentry->d_lock);
98474236 977 if (!dentry->d_lockref.count) {
29355c39
AV
978 struct dentry *parent = lock_parent(dentry);
979 if (likely(!dentry->d_lockref.count)) {
980 __dentry_kill(dentry);
4a7795d3 981 dput(parent);
29355c39
AV
982 goto restart;
983 }
984 if (parent)
985 spin_unlock(&parent->d_lock);
1da177e4
LT
986 }
987 spin_unlock(&dentry->d_lock);
988 }
873feea0 989 spin_unlock(&inode->i_lock);
1da177e4 990}
ec4f8605 991EXPORT_SYMBOL(d_prune_aliases);
1da177e4 992
3b3f09f4
AV
993/*
994 * Lock a dentry from shrink list.
995 * Note that dentry is *not* protected from concurrent dentry_kill(),
996 * d_delete(), etc. It is protected from freeing (by the fact of
997 * being on a shrink list), but everything else is fair game.
998 * Return false if dentry has been disrupted or grabbed, leaving
999 * the caller to kick it off-list. Otherwise, return true and have
1000 * that dentry's inode and parent both locked.
1001 */
1002static bool shrink_lock_dentry(struct dentry *dentry)
1da177e4 1003{
3b3f09f4
AV
1004 struct inode *inode;
1005 struct dentry *parent;
da3bbdd4 1006
3b3f09f4
AV
1007 if (dentry->d_lockref.count)
1008 return false;
1009
1010 inode = dentry->d_inode;
1011 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1012 rcu_read_lock(); /* to protect inode */
1013 spin_unlock(&dentry->d_lock);
1014 spin_lock(&inode->i_lock);
ec33679d 1015 spin_lock(&dentry->d_lock);
3b3f09f4
AV
1016 if (unlikely(dentry->d_lockref.count))
1017 goto out;
1018 /* changed inode means that somebody had grabbed it */
1019 if (unlikely(inode != dentry->d_inode))
1020 goto out;
1021 rcu_read_unlock();
1022 }
046b961b 1023
3b3f09f4
AV
1024 parent = dentry->d_parent;
1025 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1026 return true;
dd1f6b2e 1027
3b3f09f4
AV
1028 rcu_read_lock(); /* to protect parent */
1029 spin_unlock(&dentry->d_lock);
1030 parent = READ_ONCE(dentry->d_parent);
1031 spin_lock(&parent->d_lock);
1032 if (unlikely(parent != dentry->d_parent)) {
1033 spin_unlock(&parent->d_lock);
1034 spin_lock(&dentry->d_lock);
1035 goto out;
1036 }
1037 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1038 if (likely(!dentry->d_lockref.count)) {
1039 rcu_read_unlock();
1040 return true;
1041 }
1042 spin_unlock(&parent->d_lock);
1043out:
1044 if (inode)
1045 spin_unlock(&inode->i_lock);
1046 rcu_read_unlock();
1047 return false;
1048}
77812a1e 1049
3b3f09f4
AV
1050static void shrink_dentry_list(struct list_head *list)
1051{
1052 while (!list_empty(list)) {
1053 struct dentry *dentry, *parent;
1054 struct inode *inode;
64fd72e0 1055
3b3f09f4
AV
1056 dentry = list_entry(list->prev, struct dentry, d_lru);
1057 spin_lock(&dentry->d_lock);
1058 if (!shrink_lock_dentry(dentry)) {
1059 bool can_free = false;
1060 d_shrink_del(dentry);
1061 if (dentry->d_lockref.count < 0)
1062 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1063 spin_unlock(&dentry->d_lock);
1064 if (can_free)
1065 dentry_free(dentry);
1066 continue;
1067 }
3b3f09f4
AV
1068 d_shrink_del(dentry);
1069 parent = dentry->d_parent;
ff2fde99 1070 __dentry_kill(dentry);
3b3f09f4
AV
1071 if (parent == dentry)
1072 continue;
5c47e6d0
AV
1073 /*
1074 * We need to prune ancestors too. This is necessary to prevent
1075 * quadratic behavior of shrink_dcache_parent(), but is also
1076 * expected to be beneficial in reducing dentry cache
1077 * fragmentation.
1078 */
1079 dentry = parent;
b2b80195
AV
1080 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1081 parent = lock_parent(dentry);
1082 if (dentry->d_lockref.count != 1) {
1083 dentry->d_lockref.count--;
1084 spin_unlock(&dentry->d_lock);
1085 if (parent)
1086 spin_unlock(&parent->d_lock);
1087 break;
1088 }
1089 inode = dentry->d_inode; /* can't be NULL */
1090 if (unlikely(!spin_trylock(&inode->i_lock))) {
1091 spin_unlock(&dentry->d_lock);
1092 if (parent)
1093 spin_unlock(&parent->d_lock);
1094 cpu_relax();
1095 continue;
1096 }
1097 __dentry_kill(dentry);
1098 dentry = parent;
1099 }
da3bbdd4 1100 }
3049cfe2
CH
1101}
1102
3f97b163
VD
1103static enum lru_status dentry_lru_isolate(struct list_head *item,
1104 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1105{
1106 struct list_head *freeable = arg;
1107 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1108
1109
1110 /*
1111 * we are inverting the lru lock/dentry->d_lock here,
1112 * so use a trylock. If we fail to get the lock, just skip
1113 * it
1114 */
1115 if (!spin_trylock(&dentry->d_lock))
1116 return LRU_SKIP;
1117
1118 /*
1119 * Referenced dentries are still in use. If they have active
1120 * counts, just remove them from the LRU. Otherwise give them
1121 * another pass through the LRU.
1122 */
1123 if (dentry->d_lockref.count) {
3f97b163 1124 d_lru_isolate(lru, dentry);
f6041567
DC
1125 spin_unlock(&dentry->d_lock);
1126 return LRU_REMOVED;
1127 }
1128
1129 if (dentry->d_flags & DCACHE_REFERENCED) {
1130 dentry->d_flags &= ~DCACHE_REFERENCED;
1131 spin_unlock(&dentry->d_lock);
1132
1133 /*
1134 * The list move itself will be made by the common LRU code. At
1135 * this point, we've dropped the dentry->d_lock but keep the
1136 * lru lock. This is safe to do, since every list movement is
1137 * protected by the lru lock even if both locks are held.
1138 *
1139 * This is guaranteed by the fact that all LRU management
1140 * functions are intermediated by the LRU API calls like
1141 * list_lru_add and list_lru_del. List movement in this file
1142 * only ever occur through this functions or through callbacks
1143 * like this one, that are called from the LRU API.
1144 *
1145 * The only exceptions to this are functions like
1146 * shrink_dentry_list, and code that first checks for the
1147 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1148 * operating only with stack provided lists after they are
1149 * properly isolated from the main list. It is thus, always a
1150 * local access.
1151 */
1152 return LRU_ROTATE;
1153 }
1154
3f97b163 1155 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1156 spin_unlock(&dentry->d_lock);
1157
1158 return LRU_REMOVED;
1159}
1160
3049cfe2 1161/**
b48f03b3
DC
1162 * prune_dcache_sb - shrink the dcache
1163 * @sb: superblock
503c358c 1164 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1165 *
503c358c
VD
1166 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1167 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1168 * function.
3049cfe2 1169 *
b48f03b3
DC
1170 * This function may fail to free any resources if all the dentries are in
1171 * use.
3049cfe2 1172 */
503c358c 1173long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1174{
f6041567
DC
1175 LIST_HEAD(dispose);
1176 long freed;
3049cfe2 1177
503c358c
VD
1178 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1179 dentry_lru_isolate, &dispose);
f6041567 1180 shrink_dentry_list(&dispose);
0a234c6d 1181 return freed;
da3bbdd4 1182}
23044507 1183
4e717f5c 1184static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1185 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1186{
4e717f5c
GC
1187 struct list_head *freeable = arg;
1188 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1189
4e717f5c
GC
1190 /*
1191 * we are inverting the lru lock/dentry->d_lock here,
1192 * so use a trylock. If we fail to get the lock, just skip
1193 * it
1194 */
1195 if (!spin_trylock(&dentry->d_lock))
1196 return LRU_SKIP;
1197
3f97b163 1198 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1199 spin_unlock(&dentry->d_lock);
ec33679d 1200
4e717f5c 1201 return LRU_REMOVED;
da3bbdd4
KM
1202}
1203
4e717f5c 1204
1da177e4
LT
1205/**
1206 * shrink_dcache_sb - shrink dcache for a superblock
1207 * @sb: superblock
1208 *
3049cfe2
CH
1209 * Shrink the dcache for the specified super block. This is used to free
1210 * the dcache before unmounting a file system.
1da177e4 1211 */
3049cfe2 1212void shrink_dcache_sb(struct super_block *sb)
1da177e4 1213{
4e717f5c
GC
1214 long freed;
1215
1216 do {
1217 LIST_HEAD(dispose);
1218
1219 freed = list_lru_walk(&sb->s_dentry_lru,
b17c070f 1220 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1221
4e717f5c
GC
1222 this_cpu_sub(nr_dentry_unused, freed);
1223 shrink_dentry_list(&dispose);
b17c070f
ST
1224 cond_resched();
1225 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1226}
ec4f8605 1227EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1228
db14fc3a
MS
1229/**
1230 * enum d_walk_ret - action to talke during tree walk
1231 * @D_WALK_CONTINUE: contrinue walk
1232 * @D_WALK_QUIT: quit walk
1233 * @D_WALK_NORETRY: quit when retry is needed
1234 * @D_WALK_SKIP: skip this dentry and its children
1235 */
1236enum d_walk_ret {
1237 D_WALK_CONTINUE,
1238 D_WALK_QUIT,
1239 D_WALK_NORETRY,
1240 D_WALK_SKIP,
1241};
c826cb7d 1242
1da177e4 1243/**
db14fc3a
MS
1244 * d_walk - walk the dentry tree
1245 * @parent: start of walk
1246 * @data: data passed to @enter() and @finish()
1247 * @enter: callback when first entering the dentry
1248 * @finish: callback when successfully finished the walk
1da177e4 1249 *
db14fc3a 1250 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1251 */
db14fc3a
MS
1252static void d_walk(struct dentry *parent, void *data,
1253 enum d_walk_ret (*enter)(void *, struct dentry *),
1254 void (*finish)(void *))
1da177e4 1255{
949854d0 1256 struct dentry *this_parent;
1da177e4 1257 struct list_head *next;
48f5ec21 1258 unsigned seq = 0;
db14fc3a
MS
1259 enum d_walk_ret ret;
1260 bool retry = true;
949854d0 1261
58db63d0 1262again:
48f5ec21 1263 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1264 this_parent = parent;
2fd6b7f5 1265 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1266
1267 ret = enter(data, this_parent);
1268 switch (ret) {
1269 case D_WALK_CONTINUE:
1270 break;
1271 case D_WALK_QUIT:
1272 case D_WALK_SKIP:
1273 goto out_unlock;
1274 case D_WALK_NORETRY:
1275 retry = false;
1276 break;
1277 }
1da177e4
LT
1278repeat:
1279 next = this_parent->d_subdirs.next;
1280resume:
1281 while (next != &this_parent->d_subdirs) {
1282 struct list_head *tmp = next;
946e51f2 1283 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1284 next = tmp->next;
2fd6b7f5 1285
ba65dc5e
AV
1286 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1287 continue;
1288
2fd6b7f5 1289 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1290
1291 ret = enter(data, dentry);
1292 switch (ret) {
1293 case D_WALK_CONTINUE:
1294 break;
1295 case D_WALK_QUIT:
2fd6b7f5 1296 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1297 goto out_unlock;
1298 case D_WALK_NORETRY:
1299 retry = false;
1300 break;
1301 case D_WALK_SKIP:
1302 spin_unlock(&dentry->d_lock);
1303 continue;
2fd6b7f5 1304 }
db14fc3a 1305
1da177e4 1306 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1307 spin_unlock(&this_parent->d_lock);
1308 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1309 this_parent = dentry;
2fd6b7f5 1310 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1311 goto repeat;
1312 }
2fd6b7f5 1313 spin_unlock(&dentry->d_lock);
1da177e4
LT
1314 }
1315 /*
1316 * All done at this level ... ascend and resume the search.
1317 */
ca5358ef
AV
1318 rcu_read_lock();
1319ascend:
1da177e4 1320 if (this_parent != parent) {
c826cb7d 1321 struct dentry *child = this_parent;
31dec132
AV
1322 this_parent = child->d_parent;
1323
31dec132
AV
1324 spin_unlock(&child->d_lock);
1325 spin_lock(&this_parent->d_lock);
1326
ca5358ef
AV
1327 /* might go back up the wrong parent if we have had a rename. */
1328 if (need_seqretry(&rename_lock, seq))
949854d0 1329 goto rename_retry;
2159184e
AV
1330 /* go into the first sibling still alive */
1331 do {
1332 next = child->d_child.next;
ca5358ef
AV
1333 if (next == &this_parent->d_subdirs)
1334 goto ascend;
1335 child = list_entry(next, struct dentry, d_child);
2159184e 1336 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1337 rcu_read_unlock();
1da177e4
LT
1338 goto resume;
1339 }
ca5358ef 1340 if (need_seqretry(&rename_lock, seq))
949854d0 1341 goto rename_retry;
ca5358ef 1342 rcu_read_unlock();
db14fc3a
MS
1343 if (finish)
1344 finish(data);
1345
1346out_unlock:
1347 spin_unlock(&this_parent->d_lock);
48f5ec21 1348 done_seqretry(&rename_lock, seq);
db14fc3a 1349 return;
58db63d0
NP
1350
1351rename_retry:
ca5358ef
AV
1352 spin_unlock(&this_parent->d_lock);
1353 rcu_read_unlock();
1354 BUG_ON(seq & 1);
db14fc3a
MS
1355 if (!retry)
1356 return;
48f5ec21 1357 seq = 1;
58db63d0 1358 goto again;
1da177e4 1359}
db14fc3a 1360
01619491
IK
1361struct check_mount {
1362 struct vfsmount *mnt;
1363 unsigned int mounted;
1364};
1365
1366static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1367{
1368 struct check_mount *info = data;
1369 struct path path = { .mnt = info->mnt, .dentry = dentry };
1370
1371 if (likely(!d_mountpoint(dentry)))
1372 return D_WALK_CONTINUE;
1373 if (__path_is_mountpoint(&path)) {
1374 info->mounted = 1;
1375 return D_WALK_QUIT;
1376 }
1377 return D_WALK_CONTINUE;
1378}
1379
1380/**
1381 * path_has_submounts - check for mounts over a dentry in the
1382 * current namespace.
1383 * @parent: path to check.
1384 *
1385 * Return true if the parent or its subdirectories contain
1386 * a mount point in the current namespace.
1387 */
1388int path_has_submounts(const struct path *parent)
1389{
1390 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1391
1392 read_seqlock_excl(&mount_lock);
1393 d_walk(parent->dentry, &data, path_check_mount, NULL);
1394 read_sequnlock_excl(&mount_lock);
1395
1396 return data.mounted;
1397}
1398EXPORT_SYMBOL(path_has_submounts);
1399
eed81007
MS
1400/*
1401 * Called by mount code to set a mountpoint and check if the mountpoint is
1402 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1403 * subtree can become unreachable).
1404 *
1ffe46d1 1405 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1406 * this reason take rename_lock and d_lock on dentry and ancestors.
1407 */
1408int d_set_mounted(struct dentry *dentry)
1409{
1410 struct dentry *p;
1411 int ret = -ENOENT;
1412 write_seqlock(&rename_lock);
1413 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1414 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1415 spin_lock(&p->d_lock);
1416 if (unlikely(d_unhashed(p))) {
1417 spin_unlock(&p->d_lock);
1418 goto out;
1419 }
1420 spin_unlock(&p->d_lock);
1421 }
1422 spin_lock(&dentry->d_lock);
1423 if (!d_unlinked(dentry)) {
3895dbf8
EB
1424 ret = -EBUSY;
1425 if (!d_mountpoint(dentry)) {
1426 dentry->d_flags |= DCACHE_MOUNTED;
1427 ret = 0;
1428 }
eed81007
MS
1429 }
1430 spin_unlock(&dentry->d_lock);
1431out:
1432 write_sequnlock(&rename_lock);
1433 return ret;
1434}
1435
1da177e4 1436/*
fd517909 1437 * Search the dentry child list of the specified parent,
1da177e4
LT
1438 * and move any unused dentries to the end of the unused
1439 * list for prune_dcache(). We descend to the next level
1440 * whenever the d_subdirs list is non-empty and continue
1441 * searching.
1442 *
1443 * It returns zero iff there are no unused children,
1444 * otherwise it returns the number of children moved to
1445 * the end of the unused list. This may not be the total
1446 * number of unused children, because select_parent can
1447 * drop the lock and return early due to latency
1448 * constraints.
1449 */
1da177e4 1450
db14fc3a
MS
1451struct select_data {
1452 struct dentry *start;
1453 struct list_head dispose;
1454 int found;
1455};
23044507 1456
db14fc3a
MS
1457static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1458{
1459 struct select_data *data = _data;
1460 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1461
db14fc3a
MS
1462 if (data->start == dentry)
1463 goto out;
2fd6b7f5 1464
fe91522a 1465 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1466 data->found++;
fe91522a
AV
1467 } else {
1468 if (dentry->d_flags & DCACHE_LRU_LIST)
1469 d_lru_del(dentry);
1470 if (!dentry->d_lockref.count) {
1471 d_shrink_add(dentry, &data->dispose);
1472 data->found++;
1473 }
1da177e4 1474 }
db14fc3a
MS
1475 /*
1476 * We can return to the caller if we have found some (this
1477 * ensures forward progress). We'll be coming back to find
1478 * the rest.
1479 */
fe91522a
AV
1480 if (!list_empty(&data->dispose))
1481 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1482out:
db14fc3a 1483 return ret;
1da177e4
LT
1484}
1485
1486/**
1487 * shrink_dcache_parent - prune dcache
1488 * @parent: parent of entries to prune
1489 *
1490 * Prune the dcache to remove unused children of the parent dentry.
1491 */
db14fc3a 1492void shrink_dcache_parent(struct dentry *parent)
1da177e4 1493{
db14fc3a
MS
1494 for (;;) {
1495 struct select_data data;
1da177e4 1496
db14fc3a
MS
1497 INIT_LIST_HEAD(&data.dispose);
1498 data.start = parent;
1499 data.found = 0;
1500
1501 d_walk(parent, &data, select_collect, NULL);
1502 if (!data.found)
1503 break;
1504
1505 shrink_dentry_list(&data.dispose);
421348f1
GT
1506 cond_resched();
1507 }
1da177e4 1508}
ec4f8605 1509EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1510
9c8c10e2 1511static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1512{
9c8c10e2
AV
1513 /* it has busy descendents; complain about those instead */
1514 if (!list_empty(&dentry->d_subdirs))
1515 return D_WALK_CONTINUE;
42c32608 1516
9c8c10e2
AV
1517 /* root with refcount 1 is fine */
1518 if (dentry == _data && dentry->d_lockref.count == 1)
1519 return D_WALK_CONTINUE;
1520
1521 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1522 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1523 dentry,
1524 dentry->d_inode ?
1525 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1526 dentry,
42c32608
AV
1527 dentry->d_lockref.count,
1528 dentry->d_sb->s_type->name,
1529 dentry->d_sb->s_id);
9c8c10e2
AV
1530 WARN_ON(1);
1531 return D_WALK_CONTINUE;
1532}
1533
1534static void do_one_tree(struct dentry *dentry)
1535{
1536 shrink_dcache_parent(dentry);
1537 d_walk(dentry, dentry, umount_check, NULL);
1538 d_drop(dentry);
1539 dput(dentry);
42c32608
AV
1540}
1541
1542/*
1543 * destroy the dentries attached to a superblock on unmounting
1544 */
1545void shrink_dcache_for_umount(struct super_block *sb)
1546{
1547 struct dentry *dentry;
1548
9c8c10e2 1549 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1550
1551 dentry = sb->s_root;
1552 sb->s_root = NULL;
9c8c10e2 1553 do_one_tree(dentry);
42c32608 1554
f1ee6162
N
1555 while (!hlist_bl_empty(&sb->s_roots)) {
1556 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1557 do_one_tree(dentry);
42c32608
AV
1558 }
1559}
1560
8ed936b5
EB
1561struct detach_data {
1562 struct select_data select;
1563 struct dentry *mountpoint;
1564};
1565static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1566{
8ed936b5 1567 struct detach_data *data = _data;
848ac114
MS
1568
1569 if (d_mountpoint(dentry)) {
8ed936b5
EB
1570 __dget_dlock(dentry);
1571 data->mountpoint = dentry;
848ac114
MS
1572 return D_WALK_QUIT;
1573 }
1574
8ed936b5 1575 return select_collect(&data->select, dentry);
848ac114
MS
1576}
1577
1578static void check_and_drop(void *_data)
1579{
8ed936b5 1580 struct detach_data *data = _data;
848ac114 1581
81be24d2 1582 if (!data->mountpoint && list_empty(&data->select.dispose))
8ed936b5 1583 __d_drop(data->select.start);
848ac114
MS
1584}
1585
1586/**
1ffe46d1
EB
1587 * d_invalidate - detach submounts, prune dcache, and drop
1588 * @dentry: dentry to invalidate (aka detach, prune and drop)
1589 *
1ffe46d1 1590 * no dcache lock.
848ac114 1591 *
8ed936b5
EB
1592 * The final d_drop is done as an atomic operation relative to
1593 * rename_lock ensuring there are no races with d_set_mounted. This
1594 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1595 */
5542aa2f 1596void d_invalidate(struct dentry *dentry)
848ac114 1597{
1ffe46d1
EB
1598 /*
1599 * If it's already been dropped, return OK.
1600 */
1601 spin_lock(&dentry->d_lock);
1602 if (d_unhashed(dentry)) {
1603 spin_unlock(&dentry->d_lock);
5542aa2f 1604 return;
1ffe46d1
EB
1605 }
1606 spin_unlock(&dentry->d_lock);
1607
848ac114
MS
1608 /* Negative dentries can be dropped without further checks */
1609 if (!dentry->d_inode) {
1610 d_drop(dentry);
5542aa2f 1611 return;
848ac114
MS
1612 }
1613
1614 for (;;) {
8ed936b5 1615 struct detach_data data;
848ac114 1616
8ed936b5
EB
1617 data.mountpoint = NULL;
1618 INIT_LIST_HEAD(&data.select.dispose);
1619 data.select.start = dentry;
1620 data.select.found = 0;
1621
1622 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1623
81be24d2 1624 if (!list_empty(&data.select.dispose))
8ed936b5 1625 shrink_dentry_list(&data.select.dispose);
81be24d2
AV
1626 else if (!data.mountpoint)
1627 return;
848ac114 1628
8ed936b5
EB
1629 if (data.mountpoint) {
1630 detach_mounts(data.mountpoint);
1631 dput(data.mountpoint);
1632 }
848ac114
MS
1633 cond_resched();
1634 }
848ac114 1635}
1ffe46d1 1636EXPORT_SYMBOL(d_invalidate);
848ac114 1637
1da177e4 1638/**
a4464dbc
AV
1639 * __d_alloc - allocate a dcache entry
1640 * @sb: filesystem it will belong to
1da177e4
LT
1641 * @name: qstr of the name
1642 *
1643 * Allocates a dentry. It returns %NULL if there is insufficient memory
1644 * available. On a success the dentry is returned. The name passed in is
1645 * copied and the copy passed in may be reused after this call.
1646 */
1647
a4464dbc 1648struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1649{
1650 struct dentry *dentry;
1651 char *dname;
285b102d 1652 int err;
1da177e4 1653
e12ba74d 1654 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1655 if (!dentry)
1656 return NULL;
1657
6326c71f
LT
1658 /*
1659 * We guarantee that the inline name is always NUL-terminated.
1660 * This way the memcpy() done by the name switching in rename
1661 * will still always have a NUL at the end, even if we might
1662 * be overwriting an internal NUL character
1663 */
1664 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1665 if (unlikely(!name)) {
cdf01226 1666 name = &slash_name;
798434bd
AV
1667 dname = dentry->d_iname;
1668 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1669 size_t size = offsetof(struct external_name, name[1]);
5d097056
VD
1670 struct external_name *p = kmalloc(size + name->len,
1671 GFP_KERNEL_ACCOUNT);
8d85b484 1672 if (!p) {
1da177e4
LT
1673 kmem_cache_free(dentry_cache, dentry);
1674 return NULL;
1675 }
8d85b484
AV
1676 atomic_set(&p->u.count, 1);
1677 dname = p->name;
1da177e4
LT
1678 } else {
1679 dname = dentry->d_iname;
1680 }
1da177e4
LT
1681
1682 dentry->d_name.len = name->len;
1683 dentry->d_name.hash = name->hash;
1684 memcpy(dname, name->name, name->len);
1685 dname[name->len] = 0;
1686
6326c71f 1687 /* Make sure we always see the terminating NUL character */
7088efa9 1688 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1689
98474236 1690 dentry->d_lockref.count = 1;
dea3667b 1691 dentry->d_flags = 0;
1da177e4 1692 spin_lock_init(&dentry->d_lock);
31e6b01f 1693 seqcount_init(&dentry->d_seq);
1da177e4 1694 dentry->d_inode = NULL;
a4464dbc
AV
1695 dentry->d_parent = dentry;
1696 dentry->d_sb = sb;
1da177e4
LT
1697 dentry->d_op = NULL;
1698 dentry->d_fsdata = NULL;
ceb5bdc2 1699 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1700 INIT_LIST_HEAD(&dentry->d_lru);
1701 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1702 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1703 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1704 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1705
285b102d
MS
1706 if (dentry->d_op && dentry->d_op->d_init) {
1707 err = dentry->d_op->d_init(dentry);
1708 if (err) {
1709 if (dname_external(dentry))
1710 kfree(external_name(dentry));
1711 kmem_cache_free(dentry_cache, dentry);
1712 return NULL;
1713 }
1714 }
1715
3e880fb5 1716 this_cpu_inc(nr_dentry);
312d3ca8 1717
1da177e4
LT
1718 return dentry;
1719}
a4464dbc
AV
1720
1721/**
1722 * d_alloc - allocate a dcache entry
1723 * @parent: parent of entry to allocate
1724 * @name: qstr of the name
1725 *
1726 * Allocates a dentry. It returns %NULL if there is insufficient memory
1727 * available. On a success the dentry is returned. The name passed in is
1728 * copied and the copy passed in may be reused after this call.
1729 */
1730struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1731{
1732 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1733 if (!dentry)
1734 return NULL;
3d56c25e 1735 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1736 spin_lock(&parent->d_lock);
1737 /*
1738 * don't need child lock because it is not subject
1739 * to concurrency here
1740 */
1741 __dget_dlock(parent);
1742 dentry->d_parent = parent;
946e51f2 1743 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1744 spin_unlock(&parent->d_lock);
1745
1746 return dentry;
1747}
ec4f8605 1748EXPORT_SYMBOL(d_alloc);
1da177e4 1749
f9c34674
MS
1750struct dentry *d_alloc_anon(struct super_block *sb)
1751{
1752 return __d_alloc(sb, NULL);
1753}
1754EXPORT_SYMBOL(d_alloc_anon);
1755
ba65dc5e
AV
1756struct dentry *d_alloc_cursor(struct dentry * parent)
1757{
f9c34674 1758 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e
AV
1759 if (dentry) {
1760 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1761 dentry->d_parent = dget(parent);
1762 }
1763 return dentry;
1764}
1765
e1a24bb0
BF
1766/**
1767 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1768 * @sb: the superblock
1769 * @name: qstr of the name
1770 *
1771 * For a filesystem that just pins its dentries in memory and never
1772 * performs lookups at all, return an unhashed IS_ROOT dentry.
1773 */
4b936885
NP
1774struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1775{
e1a24bb0 1776 return __d_alloc(sb, name);
4b936885
NP
1777}
1778EXPORT_SYMBOL(d_alloc_pseudo);
1779
1da177e4
LT
1780struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1781{
1782 struct qstr q;
1783
1784 q.name = name;
8387ff25 1785 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1786 return d_alloc(parent, &q);
1787}
ef26ca97 1788EXPORT_SYMBOL(d_alloc_name);
1da177e4 1789
fb045adb
NP
1790void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1791{
6f7f7caa
LT
1792 WARN_ON_ONCE(dentry->d_op);
1793 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1794 DCACHE_OP_COMPARE |
1795 DCACHE_OP_REVALIDATE |
ecf3d1f1 1796 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1797 DCACHE_OP_DELETE |
d101a125 1798 DCACHE_OP_REAL));
fb045adb
NP
1799 dentry->d_op = op;
1800 if (!op)
1801 return;
1802 if (op->d_hash)
1803 dentry->d_flags |= DCACHE_OP_HASH;
1804 if (op->d_compare)
1805 dentry->d_flags |= DCACHE_OP_COMPARE;
1806 if (op->d_revalidate)
1807 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1808 if (op->d_weak_revalidate)
1809 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1810 if (op->d_delete)
1811 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1812 if (op->d_prune)
1813 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1814 if (op->d_real)
1815 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1816
1817}
1818EXPORT_SYMBOL(d_set_d_op);
1819
df1a085a
DH
1820
1821/*
1822 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1823 * @dentry - The dentry to mark
1824 *
1825 * Mark a dentry as falling through to the lower layer (as set with
1826 * d_pin_lower()). This flag may be recorded on the medium.
1827 */
1828void d_set_fallthru(struct dentry *dentry)
1829{
1830 spin_lock(&dentry->d_lock);
1831 dentry->d_flags |= DCACHE_FALLTHRU;
1832 spin_unlock(&dentry->d_lock);
1833}
1834EXPORT_SYMBOL(d_set_fallthru);
1835
b18825a7
DH
1836static unsigned d_flags_for_inode(struct inode *inode)
1837{
44bdb5e5 1838 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1839
1840 if (!inode)
1841 return DCACHE_MISS_TYPE;
1842
1843 if (S_ISDIR(inode->i_mode)) {
1844 add_flags = DCACHE_DIRECTORY_TYPE;
1845 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1846 if (unlikely(!inode->i_op->lookup))
1847 add_flags = DCACHE_AUTODIR_TYPE;
1848 else
1849 inode->i_opflags |= IOP_LOOKUP;
1850 }
44bdb5e5
DH
1851 goto type_determined;
1852 }
1853
1854 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1855 if (unlikely(inode->i_op->get_link)) {
b18825a7 1856 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1857 goto type_determined;
1858 }
1859 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1860 }
1861
44bdb5e5
DH
1862 if (unlikely(!S_ISREG(inode->i_mode)))
1863 add_flags = DCACHE_SPECIAL_TYPE;
1864
1865type_determined:
b18825a7
DH
1866 if (unlikely(IS_AUTOMOUNT(inode)))
1867 add_flags |= DCACHE_NEED_AUTOMOUNT;
1868 return add_flags;
1869}
1870
360da900
OH
1871static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1872{
b18825a7 1873 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1874 WARN_ON(d_in_lookup(dentry));
b18825a7 1875
b23fb0a6 1876 spin_lock(&dentry->d_lock);
de689f5e 1877 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1878 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1879 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1880 raw_write_seqcount_end(&dentry->d_seq);
affda484 1881 fsnotify_update_flags(dentry);
b23fb0a6 1882 spin_unlock(&dentry->d_lock);
360da900
OH
1883}
1884
1da177e4
LT
1885/**
1886 * d_instantiate - fill in inode information for a dentry
1887 * @entry: dentry to complete
1888 * @inode: inode to attach to this dentry
1889 *
1890 * Fill in inode information in the entry.
1891 *
1892 * This turns negative dentries into productive full members
1893 * of society.
1894 *
1895 * NOTE! This assumes that the inode count has been incremented
1896 * (or otherwise set) by the caller to indicate that it is now
1897 * in use by the dcache.
1898 */
1899
1900void d_instantiate(struct dentry *entry, struct inode * inode)
1901{
946e51f2 1902 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1903 if (inode) {
b9680917 1904 security_d_instantiate(entry, inode);
873feea0 1905 spin_lock(&inode->i_lock);
de689f5e 1906 __d_instantiate(entry, inode);
873feea0 1907 spin_unlock(&inode->i_lock);
de689f5e 1908 }
1da177e4 1909}
ec4f8605 1910EXPORT_SYMBOL(d_instantiate);
1da177e4 1911
b70a80e7
MS
1912/**
1913 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1914 * @entry: dentry to complete
1915 * @inode: inode to attach to this dentry
1916 *
1917 * Fill in inode information in the entry. If a directory alias is found, then
1918 * return an error (and drop inode). Together with d_materialise_unique() this
1919 * guarantees that a directory inode may never have more than one alias.
1920 */
1921int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1922{
946e51f2 1923 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1924
b9680917 1925 security_d_instantiate(entry, inode);
b70a80e7
MS
1926 spin_lock(&inode->i_lock);
1927 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1928 spin_unlock(&inode->i_lock);
1929 iput(inode);
1930 return -EBUSY;
1931 }
1932 __d_instantiate(entry, inode);
1933 spin_unlock(&inode->i_lock);
b70a80e7
MS
1934
1935 return 0;
1936}
1937EXPORT_SYMBOL(d_instantiate_no_diralias);
1938
adc0e91a
AV
1939struct dentry *d_make_root(struct inode *root_inode)
1940{
1941 struct dentry *res = NULL;
1942
1943 if (root_inode) {
f9c34674 1944 res = d_alloc_anon(root_inode->i_sb);
adc0e91a
AV
1945 if (res)
1946 d_instantiate(res, root_inode);
1947 else
1948 iput(root_inode);
1949 }
1950 return res;
1951}
1952EXPORT_SYMBOL(d_make_root);
1953
d891eedb
BF
1954static struct dentry * __d_find_any_alias(struct inode *inode)
1955{
1956 struct dentry *alias;
1957
b3d9b7a3 1958 if (hlist_empty(&inode->i_dentry))
d891eedb 1959 return NULL;
946e51f2 1960 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1961 __dget(alias);
1962 return alias;
1963}
1964
46f72b34
SW
1965/**
1966 * d_find_any_alias - find any alias for a given inode
1967 * @inode: inode to find an alias for
1968 *
1969 * If any aliases exist for the given inode, take and return a
1970 * reference for one of them. If no aliases exist, return %NULL.
1971 */
1972struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1973{
1974 struct dentry *de;
1975
1976 spin_lock(&inode->i_lock);
1977 de = __d_find_any_alias(inode);
1978 spin_unlock(&inode->i_lock);
1979 return de;
1980}
46f72b34 1981EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1982
f9c34674
MS
1983static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1984 struct inode *inode,
1985 bool disconnected)
4ea3ada2 1986{
9308a612 1987 struct dentry *res;
b18825a7 1988 unsigned add_flags;
4ea3ada2 1989
f9c34674 1990 security_d_instantiate(dentry, inode);
873feea0 1991 spin_lock(&inode->i_lock);
d891eedb 1992 res = __d_find_any_alias(inode);
9308a612 1993 if (res) {
873feea0 1994 spin_unlock(&inode->i_lock);
f9c34674 1995 dput(dentry);
9308a612
CH
1996 goto out_iput;
1997 }
1998
1999 /* attach a disconnected dentry */
1a0a397e
BF
2000 add_flags = d_flags_for_inode(inode);
2001
2002 if (disconnected)
2003 add_flags |= DCACHE_DISCONNECTED;
b18825a7 2004
f9c34674
MS
2005 spin_lock(&dentry->d_lock);
2006 __d_set_inode_and_type(dentry, inode, add_flags);
2007 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 2008 if (!disconnected) {
139351f1
LT
2009 hlist_bl_lock(&dentry->d_sb->s_roots);
2010 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2011 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 2012 }
f9c34674 2013 spin_unlock(&dentry->d_lock);
873feea0 2014 spin_unlock(&inode->i_lock);
9308a612 2015
f9c34674 2016 return dentry;
9308a612
CH
2017
2018 out_iput:
2019 iput(inode);
2020 return res;
4ea3ada2 2021}
1a0a397e 2022
f9c34674
MS
2023struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2024{
2025 return __d_instantiate_anon(dentry, inode, true);
2026}
2027EXPORT_SYMBOL(d_instantiate_anon);
2028
2029static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2030{
2031 struct dentry *tmp;
2032 struct dentry *res;
2033
2034 if (!inode)
2035 return ERR_PTR(-ESTALE);
2036 if (IS_ERR(inode))
2037 return ERR_CAST(inode);
2038
2039 res = d_find_any_alias(inode);
2040 if (res)
2041 goto out_iput;
2042
2043 tmp = d_alloc_anon(inode->i_sb);
2044 if (!tmp) {
2045 res = ERR_PTR(-ENOMEM);
2046 goto out_iput;
2047 }
2048
2049 return __d_instantiate_anon(tmp, inode, disconnected);
2050
2051out_iput:
2052 iput(inode);
2053 return res;
2054}
2055
1a0a397e
BF
2056/**
2057 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2058 * @inode: inode to allocate the dentry for
2059 *
2060 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2061 * similar open by handle operations. The returned dentry may be anonymous,
2062 * or may have a full name (if the inode was already in the cache).
2063 *
2064 * When called on a directory inode, we must ensure that the inode only ever
2065 * has one dentry. If a dentry is found, that is returned instead of
2066 * allocating a new one.
2067 *
2068 * On successful return, the reference to the inode has been transferred
2069 * to the dentry. In case of an error the reference on the inode is released.
2070 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2071 * be passed in and the error will be propagated to the return value,
2072 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2073 */
2074struct dentry *d_obtain_alias(struct inode *inode)
2075{
f9c34674 2076 return __d_obtain_alias(inode, true);
1a0a397e 2077}
adc48720 2078EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2079
1a0a397e
BF
2080/**
2081 * d_obtain_root - find or allocate a dentry for a given inode
2082 * @inode: inode to allocate the dentry for
2083 *
2084 * Obtain an IS_ROOT dentry for the root of a filesystem.
2085 *
2086 * We must ensure that directory inodes only ever have one dentry. If a
2087 * dentry is found, that is returned instead of allocating a new one.
2088 *
2089 * On successful return, the reference to the inode has been transferred
2090 * to the dentry. In case of an error the reference on the inode is
2091 * released. A %NULL or IS_ERR inode may be passed in and will be the
2092 * error will be propagate to the return value, with a %NULL @inode
2093 * replaced by ERR_PTR(-ESTALE).
2094 */
2095struct dentry *d_obtain_root(struct inode *inode)
2096{
f9c34674 2097 return __d_obtain_alias(inode, false);
1a0a397e
BF
2098}
2099EXPORT_SYMBOL(d_obtain_root);
2100
9403540c
BN
2101/**
2102 * d_add_ci - lookup or allocate new dentry with case-exact name
2103 * @inode: the inode case-insensitive lookup has found
2104 * @dentry: the negative dentry that was passed to the parent's lookup func
2105 * @name: the case-exact name to be associated with the returned dentry
2106 *
2107 * This is to avoid filling the dcache with case-insensitive names to the
2108 * same inode, only the actual correct case is stored in the dcache for
2109 * case-insensitive filesystems.
2110 *
2111 * For a case-insensitive lookup match and if the the case-exact dentry
2112 * already exists in in the dcache, use it and return it.
2113 *
2114 * If no entry exists with the exact case name, allocate new dentry with
2115 * the exact case, and return the spliced entry.
2116 */
e45b590b 2117struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2118 struct qstr *name)
2119{
d9171b93 2120 struct dentry *found, *res;
9403540c 2121
b6520c81
CH
2122 /*
2123 * First check if a dentry matching the name already exists,
2124 * if not go ahead and create it now.
2125 */
9403540c 2126 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2127 if (found) {
2128 iput(inode);
2129 return found;
2130 }
2131 if (d_in_lookup(dentry)) {
2132 found = d_alloc_parallel(dentry->d_parent, name,
2133 dentry->d_wait);
2134 if (IS_ERR(found) || !d_in_lookup(found)) {
2135 iput(inode);
2136 return found;
9403540c 2137 }
d9171b93
AV
2138 } else {
2139 found = d_alloc(dentry->d_parent, name);
2140 if (!found) {
2141 iput(inode);
2142 return ERR_PTR(-ENOMEM);
2143 }
2144 }
2145 res = d_splice_alias(inode, found);
2146 if (res) {
2147 dput(found);
2148 return res;
9403540c 2149 }
4f522a24 2150 return found;
9403540c 2151}
ec4f8605 2152EXPORT_SYMBOL(d_add_ci);
1da177e4 2153
12f8ad4b 2154
d4c91a8f
AV
2155static inline bool d_same_name(const struct dentry *dentry,
2156 const struct dentry *parent,
2157 const struct qstr *name)
12f8ad4b 2158{
d4c91a8f
AV
2159 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2160 if (dentry->d_name.len != name->len)
2161 return false;
2162 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2163 }
6fa67e70 2164 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2165 dentry->d_name.len, dentry->d_name.name,
2166 name) == 0;
12f8ad4b
LT
2167}
2168
31e6b01f
NP
2169/**
2170 * __d_lookup_rcu - search for a dentry (racy, store-free)
2171 * @parent: parent dentry
2172 * @name: qstr of name we wish to find
1f1e6e52 2173 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2174 * Returns: dentry, or NULL
2175 *
2176 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2177 * resolution (store-free path walking) design described in
2178 * Documentation/filesystems/path-lookup.txt.
2179 *
2180 * This is not to be used outside core vfs.
2181 *
2182 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2183 * held, and rcu_read_lock held. The returned dentry must not be stored into
2184 * without taking d_lock and checking d_seq sequence count against @seq
2185 * returned here.
2186 *
15570086 2187 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2188 * function.
2189 *
2190 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2191 * the returned dentry, so long as its parent's seqlock is checked after the
2192 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2193 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2194 *
2195 * NOTE! The caller *has* to check the resulting dentry against the sequence
2196 * number we've returned before using any of the resulting dentry state!
31e6b01f 2197 */
8966be90
LT
2198struct dentry *__d_lookup_rcu(const struct dentry *parent,
2199 const struct qstr *name,
da53be12 2200 unsigned *seqp)
31e6b01f 2201{
26fe5750 2202 u64 hashlen = name->hash_len;
31e6b01f 2203 const unsigned char *str = name->name;
8387ff25 2204 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2205 struct hlist_bl_node *node;
31e6b01f
NP
2206 struct dentry *dentry;
2207
2208 /*
2209 * Note: There is significant duplication with __d_lookup_rcu which is
2210 * required to prevent single threaded performance regressions
2211 * especially on architectures where smp_rmb (in seqcounts) are costly.
2212 * Keep the two functions in sync.
2213 */
2214
2215 /*
2216 * The hash list is protected using RCU.
2217 *
2218 * Carefully use d_seq when comparing a candidate dentry, to avoid
2219 * races with d_move().
2220 *
2221 * It is possible that concurrent renames can mess up our list
2222 * walk here and result in missing our dentry, resulting in the
2223 * false-negative result. d_lookup() protects against concurrent
2224 * renames using rename_lock seqlock.
2225 *
b0a4bb83 2226 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2227 */
b07ad996 2228 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2229 unsigned seq;
31e6b01f 2230
31e6b01f 2231seqretry:
12f8ad4b
LT
2232 /*
2233 * The dentry sequence count protects us from concurrent
da53be12 2234 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2235 *
2236 * The caller must perform a seqcount check in order
da53be12 2237 * to do anything useful with the returned dentry.
12f8ad4b
LT
2238 *
2239 * NOTE! We do a "raw" seqcount_begin here. That means that
2240 * we don't wait for the sequence count to stabilize if it
2241 * is in the middle of a sequence change. If we do the slow
2242 * dentry compare, we will do seqretries until it is stable,
2243 * and if we end up with a successful lookup, we actually
2244 * want to exit RCU lookup anyway.
d4c91a8f
AV
2245 *
2246 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2247 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2248 */
2249 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2250 if (dentry->d_parent != parent)
2251 continue;
2e321806
LT
2252 if (d_unhashed(dentry))
2253 continue;
12f8ad4b 2254
830c0f0e 2255 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2256 int tlen;
2257 const char *tname;
26fe5750
LT
2258 if (dentry->d_name.hash != hashlen_hash(hashlen))
2259 continue;
d4c91a8f
AV
2260 tlen = dentry->d_name.len;
2261 tname = dentry->d_name.name;
2262 /* we want a consistent (name,len) pair */
2263 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2264 cpu_relax();
12f8ad4b
LT
2265 goto seqretry;
2266 }
6fa67e70 2267 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2268 tlen, tname, name) != 0)
2269 continue;
2270 } else {
2271 if (dentry->d_name.hash_len != hashlen)
2272 continue;
2273 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2274 continue;
31e6b01f 2275 }
da53be12 2276 *seqp = seq;
d4c91a8f 2277 return dentry;
31e6b01f
NP
2278 }
2279 return NULL;
2280}
2281
1da177e4
LT
2282/**
2283 * d_lookup - search for a dentry
2284 * @parent: parent dentry
2285 * @name: qstr of name we wish to find
b04f784e 2286 * Returns: dentry, or NULL
1da177e4 2287 *
b04f784e
NP
2288 * d_lookup searches the children of the parent dentry for the name in
2289 * question. If the dentry is found its reference count is incremented and the
2290 * dentry is returned. The caller must use dput to free the entry when it has
2291 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2292 */
da2d8455 2293struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2294{
31e6b01f 2295 struct dentry *dentry;
949854d0 2296 unsigned seq;
1da177e4 2297
b8314f93
DY
2298 do {
2299 seq = read_seqbegin(&rename_lock);
2300 dentry = __d_lookup(parent, name);
2301 if (dentry)
1da177e4
LT
2302 break;
2303 } while (read_seqretry(&rename_lock, seq));
2304 return dentry;
2305}
ec4f8605 2306EXPORT_SYMBOL(d_lookup);
1da177e4 2307
31e6b01f 2308/**
b04f784e
NP
2309 * __d_lookup - search for a dentry (racy)
2310 * @parent: parent dentry
2311 * @name: qstr of name we wish to find
2312 * Returns: dentry, or NULL
2313 *
2314 * __d_lookup is like d_lookup, however it may (rarely) return a
2315 * false-negative result due to unrelated rename activity.
2316 *
2317 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2318 * however it must be used carefully, eg. with a following d_lookup in
2319 * the case of failure.
2320 *
2321 * __d_lookup callers must be commented.
2322 */
a713ca2a 2323struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2324{
1da177e4 2325 unsigned int hash = name->hash;
8387ff25 2326 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2327 struct hlist_bl_node *node;
31e6b01f 2328 struct dentry *found = NULL;
665a7583 2329 struct dentry *dentry;
1da177e4 2330
31e6b01f
NP
2331 /*
2332 * Note: There is significant duplication with __d_lookup_rcu which is
2333 * required to prevent single threaded performance regressions
2334 * especially on architectures where smp_rmb (in seqcounts) are costly.
2335 * Keep the two functions in sync.
2336 */
2337
b04f784e
NP
2338 /*
2339 * The hash list is protected using RCU.
2340 *
2341 * Take d_lock when comparing a candidate dentry, to avoid races
2342 * with d_move().
2343 *
2344 * It is possible that concurrent renames can mess up our list
2345 * walk here and result in missing our dentry, resulting in the
2346 * false-negative result. d_lookup() protects against concurrent
2347 * renames using rename_lock seqlock.
2348 *
b0a4bb83 2349 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2350 */
1da177e4
LT
2351 rcu_read_lock();
2352
b07ad996 2353 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2354
1da177e4
LT
2355 if (dentry->d_name.hash != hash)
2356 continue;
1da177e4
LT
2357
2358 spin_lock(&dentry->d_lock);
1da177e4
LT
2359 if (dentry->d_parent != parent)
2360 goto next;
d0185c08
LT
2361 if (d_unhashed(dentry))
2362 goto next;
2363
d4c91a8f
AV
2364 if (!d_same_name(dentry, parent, name))
2365 goto next;
1da177e4 2366
98474236 2367 dentry->d_lockref.count++;
d0185c08 2368 found = dentry;
1da177e4
LT
2369 spin_unlock(&dentry->d_lock);
2370 break;
2371next:
2372 spin_unlock(&dentry->d_lock);
2373 }
2374 rcu_read_unlock();
2375
2376 return found;
2377}
2378
3e7e241f
EB
2379/**
2380 * d_hash_and_lookup - hash the qstr then search for a dentry
2381 * @dir: Directory to search in
2382 * @name: qstr of name we wish to find
2383 *
4f522a24 2384 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2385 */
2386struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2387{
3e7e241f
EB
2388 /*
2389 * Check for a fs-specific hash function. Note that we must
2390 * calculate the standard hash first, as the d_op->d_hash()
2391 * routine may choose to leave the hash value unchanged.
2392 */
8387ff25 2393 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2394 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2395 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2396 if (unlikely(err < 0))
2397 return ERR_PTR(err);
3e7e241f 2398 }
4f522a24 2399 return d_lookup(dir, name);
3e7e241f 2400}
4f522a24 2401EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2402
1da177e4
LT
2403/*
2404 * When a file is deleted, we have two options:
2405 * - turn this dentry into a negative dentry
2406 * - unhash this dentry and free it.
2407 *
2408 * Usually, we want to just turn this into
2409 * a negative dentry, but if anybody else is
2410 * currently using the dentry or the inode
2411 * we can't do that and we fall back on removing
2412 * it from the hash queues and waiting for
2413 * it to be deleted later when it has no users
2414 */
2415
2416/**
2417 * d_delete - delete a dentry
2418 * @dentry: The dentry to delete
2419 *
2420 * Turn the dentry into a negative dentry if possible, otherwise
2421 * remove it from the hash queues so it can be deleted later
2422 */
2423
2424void d_delete(struct dentry * dentry)
2425{
c19457f0
AV
2426 struct inode *inode = dentry->d_inode;
2427 int isdir = d_is_dir(dentry);
2428
2429 spin_lock(&inode->i_lock);
2430 spin_lock(&dentry->d_lock);
1da177e4
LT
2431 /*
2432 * Are we the only user?
2433 */
98474236 2434 if (dentry->d_lockref.count == 1) {
13e3c5e5 2435 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2436 dentry_unlink_inode(dentry);
c19457f0 2437 } else {
1da177e4 2438 __d_drop(dentry);
c19457f0
AV
2439 spin_unlock(&dentry->d_lock);
2440 spin_unlock(&inode->i_lock);
2441 }
7a91bf7f 2442 fsnotify_nameremove(dentry, isdir);
1da177e4 2443}
ec4f8605 2444EXPORT_SYMBOL(d_delete);
1da177e4 2445
15d3c589 2446static void __d_rehash(struct dentry *entry)
1da177e4 2447{
15d3c589 2448 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2449
1879fd6a 2450 hlist_bl_lock(b);
b07ad996 2451 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2452 hlist_bl_unlock(b);
1da177e4
LT
2453}
2454
2455/**
2456 * d_rehash - add an entry back to the hash
2457 * @entry: dentry to add to the hash
2458 *
2459 * Adds a dentry to the hash according to its name.
2460 */
2461
2462void d_rehash(struct dentry * entry)
2463{
1da177e4 2464 spin_lock(&entry->d_lock);
15d3c589 2465 __d_rehash(entry);
1da177e4 2466 spin_unlock(&entry->d_lock);
1da177e4 2467}
ec4f8605 2468EXPORT_SYMBOL(d_rehash);
1da177e4 2469
84e710da
AV
2470static inline unsigned start_dir_add(struct inode *dir)
2471{
2472
2473 for (;;) {
2474 unsigned n = dir->i_dir_seq;
2475 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2476 return n;
2477 cpu_relax();
2478 }
2479}
2480
2481static inline void end_dir_add(struct inode *dir, unsigned n)
2482{
2483 smp_store_release(&dir->i_dir_seq, n + 2);
2484}
2485
d9171b93
AV
2486static void d_wait_lookup(struct dentry *dentry)
2487{
2488 if (d_in_lookup(dentry)) {
2489 DECLARE_WAITQUEUE(wait, current);
2490 add_wait_queue(dentry->d_wait, &wait);
2491 do {
2492 set_current_state(TASK_UNINTERRUPTIBLE);
2493 spin_unlock(&dentry->d_lock);
2494 schedule();
2495 spin_lock(&dentry->d_lock);
2496 } while (d_in_lookup(dentry));
2497 }
2498}
2499
94bdd655 2500struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2501 const struct qstr *name,
2502 wait_queue_head_t *wq)
94bdd655 2503{
94bdd655 2504 unsigned int hash = name->hash;
94bdd655
AV
2505 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2506 struct hlist_bl_node *node;
2507 struct dentry *new = d_alloc(parent, name);
2508 struct dentry *dentry;
2509 unsigned seq, r_seq, d_seq;
2510
2511 if (unlikely(!new))
2512 return ERR_PTR(-ENOMEM);
2513
2514retry:
2515 rcu_read_lock();
015555fd 2516 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2517 r_seq = read_seqbegin(&rename_lock);
2518 dentry = __d_lookup_rcu(parent, name, &d_seq);
2519 if (unlikely(dentry)) {
2520 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2521 rcu_read_unlock();
2522 goto retry;
2523 }
2524 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2525 rcu_read_unlock();
2526 dput(dentry);
2527 goto retry;
2528 }
2529 rcu_read_unlock();
2530 dput(new);
2531 return dentry;
2532 }
2533 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2534 rcu_read_unlock();
2535 goto retry;
2536 }
015555fd
WD
2537
2538 if (unlikely(seq & 1)) {
2539 rcu_read_unlock();
2540 goto retry;
2541 }
2542
94bdd655 2543 hlist_bl_lock(b);
8cc07c80 2544 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2545 hlist_bl_unlock(b);
2546 rcu_read_unlock();
2547 goto retry;
2548 }
94bdd655
AV
2549 /*
2550 * No changes for the parent since the beginning of d_lookup().
2551 * Since all removals from the chain happen with hlist_bl_lock(),
2552 * any potential in-lookup matches are going to stay here until
2553 * we unlock the chain. All fields are stable in everything
2554 * we encounter.
2555 */
2556 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2557 if (dentry->d_name.hash != hash)
2558 continue;
2559 if (dentry->d_parent != parent)
2560 continue;
d4c91a8f
AV
2561 if (!d_same_name(dentry, parent, name))
2562 continue;
94bdd655 2563 hlist_bl_unlock(b);
e7d6ef97
AV
2564 /* now we can try to grab a reference */
2565 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2566 rcu_read_unlock();
2567 goto retry;
2568 }
2569
2570 rcu_read_unlock();
2571 /*
2572 * somebody is likely to be still doing lookup for it;
2573 * wait for them to finish
2574 */
d9171b93
AV
2575 spin_lock(&dentry->d_lock);
2576 d_wait_lookup(dentry);
2577 /*
2578 * it's not in-lookup anymore; in principle we should repeat
2579 * everything from dcache lookup, but it's likely to be what
2580 * d_lookup() would've found anyway. If it is, just return it;
2581 * otherwise we really have to repeat the whole thing.
2582 */
2583 if (unlikely(dentry->d_name.hash != hash))
2584 goto mismatch;
2585 if (unlikely(dentry->d_parent != parent))
2586 goto mismatch;
2587 if (unlikely(d_unhashed(dentry)))
2588 goto mismatch;
d4c91a8f
AV
2589 if (unlikely(!d_same_name(dentry, parent, name)))
2590 goto mismatch;
d9171b93
AV
2591 /* OK, it *is* a hashed match; return it */
2592 spin_unlock(&dentry->d_lock);
94bdd655
AV
2593 dput(new);
2594 return dentry;
2595 }
e7d6ef97 2596 rcu_read_unlock();
94bdd655
AV
2597 /* we can't take ->d_lock here; it's OK, though. */
2598 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2599 new->d_wait = wq;
94bdd655
AV
2600 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2601 hlist_bl_unlock(b);
2602 return new;
d9171b93
AV
2603mismatch:
2604 spin_unlock(&dentry->d_lock);
2605 dput(dentry);
2606 goto retry;
94bdd655
AV
2607}
2608EXPORT_SYMBOL(d_alloc_parallel);
2609
85c7f810
AV
2610void __d_lookup_done(struct dentry *dentry)
2611{
94bdd655
AV
2612 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2613 dentry->d_name.hash);
2614 hlist_bl_lock(b);
85c7f810 2615 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2616 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2617 wake_up_all(dentry->d_wait);
2618 dentry->d_wait = NULL;
94bdd655
AV
2619 hlist_bl_unlock(b);
2620 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2621 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2622}
2623EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2624
2625/* inode->i_lock held if inode is non-NULL */
2626
2627static inline void __d_add(struct dentry *dentry, struct inode *inode)
2628{
84e710da
AV
2629 struct inode *dir = NULL;
2630 unsigned n;
0568d705 2631 spin_lock(&dentry->d_lock);
84e710da
AV
2632 if (unlikely(d_in_lookup(dentry))) {
2633 dir = dentry->d_parent->d_inode;
2634 n = start_dir_add(dir);
85c7f810 2635 __d_lookup_done(dentry);
84e710da 2636 }
ed782b5a 2637 if (inode) {
0568d705
AV
2638 unsigned add_flags = d_flags_for_inode(inode);
2639 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2640 raw_write_seqcount_begin(&dentry->d_seq);
2641 __d_set_inode_and_type(dentry, inode, add_flags);
2642 raw_write_seqcount_end(&dentry->d_seq);
affda484 2643 fsnotify_update_flags(dentry);
ed782b5a 2644 }
15d3c589 2645 __d_rehash(dentry);
84e710da
AV
2646 if (dir)
2647 end_dir_add(dir, n);
0568d705
AV
2648 spin_unlock(&dentry->d_lock);
2649 if (inode)
2650 spin_unlock(&inode->i_lock);
ed782b5a
AV
2651}
2652
34d0d19d
AV
2653/**
2654 * d_add - add dentry to hash queues
2655 * @entry: dentry to add
2656 * @inode: The inode to attach to this dentry
2657 *
2658 * This adds the entry to the hash queues and initializes @inode.
2659 * The entry was actually filled in earlier during d_alloc().
2660 */
2661
2662void d_add(struct dentry *entry, struct inode *inode)
2663{
b9680917
AV
2664 if (inode) {
2665 security_d_instantiate(entry, inode);
ed782b5a 2666 spin_lock(&inode->i_lock);
b9680917 2667 }
ed782b5a 2668 __d_add(entry, inode);
34d0d19d
AV
2669}
2670EXPORT_SYMBOL(d_add);
2671
668d0cd5
AV
2672/**
2673 * d_exact_alias - find and hash an exact unhashed alias
2674 * @entry: dentry to add
2675 * @inode: The inode to go with this dentry
2676 *
2677 * If an unhashed dentry with the same name/parent and desired
2678 * inode already exists, hash and return it. Otherwise, return
2679 * NULL.
2680 *
2681 * Parent directory should be locked.
2682 */
2683struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2684{
2685 struct dentry *alias;
668d0cd5
AV
2686 unsigned int hash = entry->d_name.hash;
2687
2688 spin_lock(&inode->i_lock);
2689 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2690 /*
2691 * Don't need alias->d_lock here, because aliases with
2692 * d_parent == entry->d_parent are not subject to name or
2693 * parent changes, because the parent inode i_mutex is held.
2694 */
2695 if (alias->d_name.hash != hash)
2696 continue;
2697 if (alias->d_parent != entry->d_parent)
2698 continue;
d4c91a8f 2699 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2700 continue;
2701 spin_lock(&alias->d_lock);
2702 if (!d_unhashed(alias)) {
2703 spin_unlock(&alias->d_lock);
2704 alias = NULL;
2705 } else {
2706 __dget_dlock(alias);
15d3c589 2707 __d_rehash(alias);
668d0cd5
AV
2708 spin_unlock(&alias->d_lock);
2709 }
2710 spin_unlock(&inode->i_lock);
2711 return alias;
2712 }
2713 spin_unlock(&inode->i_lock);
2714 return NULL;
2715}
2716EXPORT_SYMBOL(d_exact_alias);
2717
fb2d5b86
NP
2718/**
2719 * dentry_update_name_case - update case insensitive dentry with a new name
2720 * @dentry: dentry to be updated
2721 * @name: new name
2722 *
2723 * Update a case insensitive dentry with new case of name.
2724 *
2725 * dentry must have been returned by d_lookup with name @name. Old and new
2726 * name lengths must match (ie. no d_compare which allows mismatched name
2727 * lengths).
2728 *
2729 * Parent inode i_mutex must be held over d_lookup and into this call (to
2730 * keep renames and concurrent inserts, and readdir(2) away).
2731 */
9aba36de 2732void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
fb2d5b86 2733{
5955102c 2734 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2735 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2736
fb2d5b86 2737 spin_lock(&dentry->d_lock);
31e6b01f 2738 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2739 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2740 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2741 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2742}
2743EXPORT_SYMBOL(dentry_update_name_case);
2744
8d85b484 2745static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2746{
8d85b484
AV
2747 if (unlikely(dname_external(target))) {
2748 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2749 /*
2750 * Both external: swap the pointers
2751 */
9a8d5bb4 2752 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2753 } else {
2754 /*
2755 * dentry:internal, target:external. Steal target's
2756 * storage and make target internal.
2757 */
321bcf92
BF
2758 memcpy(target->d_iname, dentry->d_name.name,
2759 dentry->d_name.len + 1);
1da177e4
LT
2760 dentry->d_name.name = target->d_name.name;
2761 target->d_name.name = target->d_iname;
2762 }
2763 } else {
8d85b484 2764 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2765 /*
2766 * dentry:external, target:internal. Give dentry's
2767 * storage to target and make dentry internal
2768 */
2769 memcpy(dentry->d_iname, target->d_name.name,
2770 target->d_name.len + 1);
2771 target->d_name.name = dentry->d_name.name;
2772 dentry->d_name.name = dentry->d_iname;
2773 } else {
2774 /*
da1ce067 2775 * Both are internal.
1da177e4 2776 */
da1ce067
MS
2777 unsigned int i;
2778 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2779 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2780 swap(((long *) &dentry->d_iname)[i],
2781 ((long *) &target->d_iname)[i]);
2782 }
1da177e4
LT
2783 }
2784 }
a28ddb87 2785 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2786}
2787
8d85b484
AV
2788static void copy_name(struct dentry *dentry, struct dentry *target)
2789{
2790 struct external_name *old_name = NULL;
2791 if (unlikely(dname_external(dentry)))
2792 old_name = external_name(dentry);
2793 if (unlikely(dname_external(target))) {
2794 atomic_inc(&external_name(target)->u.count);
2795 dentry->d_name = target->d_name;
2796 } else {
2797 memcpy(dentry->d_iname, target->d_name.name,
2798 target->d_name.len + 1);
2799 dentry->d_name.name = dentry->d_iname;
2800 dentry->d_name.hash_len = target->d_name.hash_len;
2801 }
2802 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2803 kfree_rcu(old_name, u.head);
2804}
2805
2fd6b7f5
NP
2806static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2807{
2808 /*
2809 * XXXX: do we really need to take target->d_lock?
2810 */
2811 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2812 spin_lock(&target->d_parent->d_lock);
2813 else {
2814 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2815 spin_lock(&dentry->d_parent->d_lock);
2816 spin_lock_nested(&target->d_parent->d_lock,
2817 DENTRY_D_LOCK_NESTED);
2818 } else {
2819 spin_lock(&target->d_parent->d_lock);
2820 spin_lock_nested(&dentry->d_parent->d_lock,
2821 DENTRY_D_LOCK_NESTED);
2822 }
2823 }
2824 if (target < dentry) {
2825 spin_lock_nested(&target->d_lock, 2);
2826 spin_lock_nested(&dentry->d_lock, 3);
2827 } else {
2828 spin_lock_nested(&dentry->d_lock, 2);
2829 spin_lock_nested(&target->d_lock, 3);
2830 }
2831}
2832
986c0194 2833static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2834{
2835 if (target->d_parent != dentry->d_parent)
2836 spin_unlock(&dentry->d_parent->d_lock);
2837 if (target->d_parent != target)
2838 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2839 spin_unlock(&target->d_lock);
2840 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2841}
2842
1da177e4 2843/*
2fd6b7f5
NP
2844 * When switching names, the actual string doesn't strictly have to
2845 * be preserved in the target - because we're dropping the target
2846 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2847 * the new name before we switch, unless we are going to rehash
2848 * it. Note that if we *do* unhash the target, we are not allowed
2849 * to rehash it without giving it a new name/hash key - whether
2850 * we swap or overwrite the names here, resulting name won't match
2851 * the reality in filesystem; it's only there for d_path() purposes.
2852 * Note that all of this is happening under rename_lock, so the
2853 * any hash lookup seeing it in the middle of manipulations will
2854 * be discarded anyway. So we do not care what happens to the hash
2855 * key in that case.
1da177e4 2856 */
9eaef27b 2857/*
18367501 2858 * __d_move - move a dentry
1da177e4
LT
2859 * @dentry: entry to move
2860 * @target: new dentry
da1ce067 2861 * @exchange: exchange the two dentries
1da177e4
LT
2862 *
2863 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2864 * dcache entries should not be moved in this way. Caller must hold
2865 * rename_lock, the i_mutex of the source and target directories,
2866 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2867 */
da1ce067
MS
2868static void __d_move(struct dentry *dentry, struct dentry *target,
2869 bool exchange)
1da177e4 2870{
84e710da
AV
2871 struct inode *dir = NULL;
2872 unsigned n;
1da177e4
LT
2873 if (!dentry->d_inode)
2874 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2875
2fd6b7f5
NP
2876 BUG_ON(d_ancestor(dentry, target));
2877 BUG_ON(d_ancestor(target, dentry));
2878
2fd6b7f5 2879 dentry_lock_for_move(dentry, target);
84e710da
AV
2880 if (unlikely(d_in_lookup(target))) {
2881 dir = target->d_parent->d_inode;
2882 n = start_dir_add(dir);
85c7f810 2883 __d_lookup_done(target);
84e710da 2884 }
1da177e4 2885
31e6b01f 2886 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2887 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2888
15d3c589 2889 /* unhash both */
0632a9ac
AV
2890 if (!d_unhashed(dentry))
2891 ___d_drop(dentry);
2892 if (!d_unhashed(target))
2893 ___d_drop(target);
1da177e4 2894
1da177e4 2895 /* Switch the names.. */
8d85b484
AV
2896 if (exchange)
2897 swap_names(dentry, target);
2898 else
2899 copy_name(dentry, target);
1da177e4 2900
15d3c589
AV
2901 /* rehash in new place(s) */
2902 __d_rehash(dentry);
2903 if (exchange)
2904 __d_rehash(target);
61647823
N
2905 else
2906 target->d_hash.pprev = NULL;
15d3c589 2907
63cf427a 2908 /* ... and switch them in the tree */
1da177e4 2909 if (IS_ROOT(dentry)) {
63cf427a 2910 /* splicing a tree */
3d56c25e 2911 dentry->d_flags |= DCACHE_RCUACCESS;
1da177e4
LT
2912 dentry->d_parent = target->d_parent;
2913 target->d_parent = target;
946e51f2
AV
2914 list_del_init(&target->d_child);
2915 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2916 } else {
63cf427a 2917 /* swapping two dentries */
9a8d5bb4 2918 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2919 list_move(&target->d_child, &target->d_parent->d_subdirs);
2920 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a 2921 if (exchange)
affda484
AV
2922 fsnotify_update_flags(target);
2923 fsnotify_update_flags(dentry);
1da177e4
LT
2924 }
2925
31e6b01f
NP
2926 write_seqcount_end(&target->d_seq);
2927 write_seqcount_end(&dentry->d_seq);
2928
84e710da
AV
2929 if (dir)
2930 end_dir_add(dir, n);
986c0194 2931 dentry_unlock_for_move(dentry, target);
18367501
AV
2932}
2933
2934/*
2935 * d_move - move a dentry
2936 * @dentry: entry to move
2937 * @target: new dentry
2938 *
2939 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2940 * dcache entries should not be moved in this way. See the locking
2941 * requirements for __d_move.
18367501
AV
2942 */
2943void d_move(struct dentry *dentry, struct dentry *target)
2944{
2945 write_seqlock(&rename_lock);
da1ce067 2946 __d_move(dentry, target, false);
1da177e4 2947 write_sequnlock(&rename_lock);
9eaef27b 2948}
ec4f8605 2949EXPORT_SYMBOL(d_move);
1da177e4 2950
da1ce067
MS
2951/*
2952 * d_exchange - exchange two dentries
2953 * @dentry1: first dentry
2954 * @dentry2: second dentry
2955 */
2956void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2957{
2958 write_seqlock(&rename_lock);
2959
2960 WARN_ON(!dentry1->d_inode);
2961 WARN_ON(!dentry2->d_inode);
2962 WARN_ON(IS_ROOT(dentry1));
2963 WARN_ON(IS_ROOT(dentry2));
2964
2965 __d_move(dentry1, dentry2, true);
2966
2967 write_sequnlock(&rename_lock);
2968}
2969
e2761a11
OH
2970/**
2971 * d_ancestor - search for an ancestor
2972 * @p1: ancestor dentry
2973 * @p2: child dentry
2974 *
2975 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2976 * an ancestor of p2, else NULL.
9eaef27b 2977 */
e2761a11 2978struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2979{
2980 struct dentry *p;
2981
871c0067 2982 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2983 if (p->d_parent == p1)
e2761a11 2984 return p;
9eaef27b 2985 }
e2761a11 2986 return NULL;
9eaef27b
TM
2987}
2988
2989/*
2990 * This helper attempts to cope with remotely renamed directories
2991 *
2992 * It assumes that the caller is already holding
a03e283b 2993 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2994 *
2995 * Note: If ever the locking in lock_rename() changes, then please
2996 * remember to update this too...
9eaef27b 2997 */
b5ae6b15 2998static int __d_unalias(struct inode *inode,
873feea0 2999 struct dentry *dentry, struct dentry *alias)
9eaef27b 3000{
9902af79
AV
3001 struct mutex *m1 = NULL;
3002 struct rw_semaphore *m2 = NULL;
3d330dc1 3003 int ret = -ESTALE;
9eaef27b
TM
3004
3005 /* If alias and dentry share a parent, then no extra locks required */
3006 if (alias->d_parent == dentry->d_parent)
3007 goto out_unalias;
3008
9eaef27b 3009 /* See lock_rename() */
9eaef27b
TM
3010 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3011 goto out_err;
3012 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 3013 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 3014 goto out_err;
9902af79 3015 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 3016out_unalias:
8ed936b5 3017 __d_move(alias, dentry, false);
b5ae6b15 3018 ret = 0;
9eaef27b 3019out_err:
9eaef27b 3020 if (m2)
9902af79 3021 up_read(m2);
9eaef27b
TM
3022 if (m1)
3023 mutex_unlock(m1);
3024 return ret;
3025}
3026
3f70bd51
BF
3027/**
3028 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3029 * @inode: the inode which may have a disconnected dentry
3030 * @dentry: a negative dentry which we want to point to the inode.
3031 *
da093a9b
BF
3032 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3033 * place of the given dentry and return it, else simply d_add the inode
3034 * to the dentry and return NULL.
3f70bd51 3035 *
908790fa
BF
3036 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3037 * we should error out: directories can't have multiple aliases.
3038 *
3f70bd51
BF
3039 * This is needed in the lookup routine of any filesystem that is exportable
3040 * (via knfsd) so that we can build dcache paths to directories effectively.
3041 *
3042 * If a dentry was found and moved, then it is returned. Otherwise NULL
3043 * is returned. This matches the expected return value of ->lookup.
3044 *
3045 * Cluster filesystems may call this function with a negative, hashed dentry.
3046 * In that case, we know that the inode will be a regular file, and also this
3047 * will only occur during atomic_open. So we need to check for the dentry
3048 * being already hashed only in the final case.
3049 */
3050struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3051{
3f70bd51
BF
3052 if (IS_ERR(inode))
3053 return ERR_CAST(inode);
3054
770bfad8
DH
3055 BUG_ON(!d_unhashed(dentry));
3056
de689f5e 3057 if (!inode)
b5ae6b15 3058 goto out;
de689f5e 3059
b9680917 3060 security_d_instantiate(dentry, inode);
873feea0 3061 spin_lock(&inode->i_lock);
9eaef27b 3062 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
3063 struct dentry *new = __d_find_any_alias(inode);
3064 if (unlikely(new)) {
a03e283b
EB
3065 /* The reference to new ensures it remains an alias */
3066 spin_unlock(&inode->i_lock);
18367501 3067 write_seqlock(&rename_lock);
b5ae6b15
AV
3068 if (unlikely(d_ancestor(new, dentry))) {
3069 write_sequnlock(&rename_lock);
b5ae6b15
AV
3070 dput(new);
3071 new = ERR_PTR(-ELOOP);
3072 pr_warn_ratelimited(
3073 "VFS: Lookup of '%s' in %s %s"
3074 " would have caused loop\n",
3075 dentry->d_name.name,
3076 inode->i_sb->s_type->name,
3077 inode->i_sb->s_id);
3078 } else if (!IS_ROOT(new)) {
3079 int err = __d_unalias(inode, dentry, new);
18367501 3080 write_sequnlock(&rename_lock);
b5ae6b15
AV
3081 if (err) {
3082 dput(new);
3083 new = ERR_PTR(err);
3084 }
18367501 3085 } else {
b5ae6b15
AV
3086 __d_move(new, dentry, false);
3087 write_sequnlock(&rename_lock);
dd179946 3088 }
b5ae6b15
AV
3089 iput(inode);
3090 return new;
9eaef27b 3091 }
770bfad8 3092 }
b5ae6b15 3093out:
ed782b5a 3094 __d_add(dentry, inode);
b5ae6b15 3095 return NULL;
770bfad8 3096}
b5ae6b15 3097EXPORT_SYMBOL(d_splice_alias);
770bfad8 3098
cdd16d02 3099static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
3100{
3101 *buflen -= namelen;
3102 if (*buflen < 0)
3103 return -ENAMETOOLONG;
3104 *buffer -= namelen;
3105 memcpy(*buffer, str, namelen);
3106 return 0;
3107}
3108
232d2d60
WL
3109/**
3110 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
3111 * @buffer: buffer pointer
3112 * @buflen: allocated length of the buffer
3113 * @name: name string and length qstr structure
232d2d60 3114 *
66702eb5 3115 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
232d2d60
WL
3116 * make sure that either the old or the new name pointer and length are
3117 * fetched. However, there may be mismatch between length and pointer.
3118 * The length cannot be trusted, we need to copy it byte-by-byte until
3119 * the length is reached or a null byte is found. It also prepends "/" at
3120 * the beginning of the name. The sequence number check at the caller will
3121 * retry it again when a d_move() does happen. So any garbage in the buffer
3122 * due to mismatched pointer and length will be discarded.
6d13f694 3123 *
7088efa9 3124 * Load acquire is needed to make sure that we see that terminating NUL.
232d2d60 3125 */
9aba36de 3126static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
cdd16d02 3127{
7088efa9 3128 const char *dname = smp_load_acquire(&name->name); /* ^^^ */
66702eb5 3129 u32 dlen = READ_ONCE(name->len);
232d2d60
WL
3130 char *p;
3131
232d2d60 3132 *buflen -= dlen + 1;
e825196d
AV
3133 if (*buflen < 0)
3134 return -ENAMETOOLONG;
232d2d60
WL
3135 p = *buffer -= dlen + 1;
3136 *p++ = '/';
3137 while (dlen--) {
3138 char c = *dname++;
3139 if (!c)
3140 break;
3141 *p++ = c;
3142 }
3143 return 0;
cdd16d02
MS
3144}
3145
1da177e4 3146/**
208898c1 3147 * prepend_path - Prepend path string to a buffer
9d1bc601 3148 * @path: the dentry/vfsmount to report
02125a82 3149 * @root: root vfsmnt/dentry
f2eb6575
MS
3150 * @buffer: pointer to the end of the buffer
3151 * @buflen: pointer to buffer length
552ce544 3152 *
18129977
WL
3153 * The function will first try to write out the pathname without taking any
3154 * lock other than the RCU read lock to make sure that dentries won't go away.
3155 * It only checks the sequence number of the global rename_lock as any change
3156 * in the dentry's d_seq will be preceded by changes in the rename_lock
3157 * sequence number. If the sequence number had been changed, it will restart
3158 * the whole pathname back-tracing sequence again by taking the rename_lock.
3159 * In this case, there is no need to take the RCU read lock as the recursive
3160 * parent pointer references will keep the dentry chain alive as long as no
3161 * rename operation is performed.
1da177e4 3162 */
02125a82
AV
3163static int prepend_path(const struct path *path,
3164 const struct path *root,
f2eb6575 3165 char **buffer, int *buflen)
1da177e4 3166{
ede4cebc
AV
3167 struct dentry *dentry;
3168 struct vfsmount *vfsmnt;
3169 struct mount *mnt;
f2eb6575 3170 int error = 0;
48a066e7 3171 unsigned seq, m_seq = 0;
232d2d60
WL
3172 char *bptr;
3173 int blen;
6092d048 3174
48f5ec21 3175 rcu_read_lock();
48a066e7
AV
3176restart_mnt:
3177 read_seqbegin_or_lock(&mount_lock, &m_seq);
3178 seq = 0;
4ec6c2ae 3179 rcu_read_lock();
232d2d60
WL
3180restart:
3181 bptr = *buffer;
3182 blen = *buflen;
48a066e7 3183 error = 0;
ede4cebc
AV
3184 dentry = path->dentry;
3185 vfsmnt = path->mnt;
3186 mnt = real_mount(vfsmnt);
232d2d60 3187 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 3188 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
3189 struct dentry * parent;
3190
1da177e4 3191 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
66702eb5 3192 struct mount *parent = READ_ONCE(mnt->mnt_parent);
cde93be4
EB
3193 /* Escaped? */
3194 if (dentry != vfsmnt->mnt_root) {
3195 bptr = *buffer;
3196 blen = *buflen;
3197 error = 3;
3198 break;
3199 }
552ce544 3200 /* Global root? */
48a066e7 3201 if (mnt != parent) {
66702eb5 3202 dentry = READ_ONCE(mnt->mnt_mountpoint);
48a066e7 3203 mnt = parent;
232d2d60
WL
3204 vfsmnt = &mnt->mnt;
3205 continue;
3206 }
232d2d60
WL
3207 if (!error)
3208 error = is_mounted(vfsmnt) ? 1 : 2;
3209 break;
1da177e4
LT
3210 }
3211 parent = dentry->d_parent;
3212 prefetch(parent);
232d2d60 3213 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
3214 if (error)
3215 break;
3216
1da177e4
LT
3217 dentry = parent;
3218 }
48f5ec21
AV
3219 if (!(seq & 1))
3220 rcu_read_unlock();
3221 if (need_seqretry(&rename_lock, seq)) {
3222 seq = 1;
232d2d60 3223 goto restart;
48f5ec21
AV
3224 }
3225 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
3226
3227 if (!(m_seq & 1))
3228 rcu_read_unlock();
48a066e7
AV
3229 if (need_seqretry(&mount_lock, m_seq)) {
3230 m_seq = 1;
3231 goto restart_mnt;
3232 }
3233 done_seqretry(&mount_lock, m_seq);
1da177e4 3234
232d2d60
WL
3235 if (error >= 0 && bptr == *buffer) {
3236 if (--blen < 0)
3237 error = -ENAMETOOLONG;
3238 else
3239 *--bptr = '/';
3240 }
3241 *buffer = bptr;
3242 *buflen = blen;
7ea600b5 3243 return error;
f2eb6575 3244}
be285c71 3245
f2eb6575
MS
3246/**
3247 * __d_path - return the path of a dentry
3248 * @path: the dentry/vfsmount to report
02125a82 3249 * @root: root vfsmnt/dentry
cd956a1c 3250 * @buf: buffer to return value in
f2eb6575
MS
3251 * @buflen: buffer length
3252 *
ffd1f4ed 3253 * Convert a dentry into an ASCII path name.
f2eb6575
MS
3254 *
3255 * Returns a pointer into the buffer or an error code if the
3256 * path was too long.
3257 *
be148247 3258 * "buflen" should be positive.
f2eb6575 3259 *
02125a82 3260 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 3261 */
02125a82
AV
3262char *__d_path(const struct path *path,
3263 const struct path *root,
f2eb6575
MS
3264 char *buf, int buflen)
3265{
3266 char *res = buf + buflen;
3267 int error;
3268
3269 prepend(&res, &buflen, "\0", 1);
f2eb6575 3270 error = prepend_path(path, root, &res, &buflen);
be148247 3271
02125a82
AV
3272 if (error < 0)
3273 return ERR_PTR(error);
3274 if (error > 0)
3275 return NULL;
3276 return res;
3277}
3278
3279char *d_absolute_path(const struct path *path,
3280 char *buf, int buflen)
3281{
3282 struct path root = {};
3283 char *res = buf + buflen;
3284 int error;
3285
3286 prepend(&res, &buflen, "\0", 1);
02125a82 3287 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3288
3289 if (error > 1)
3290 error = -EINVAL;
3291 if (error < 0)
f2eb6575 3292 return ERR_PTR(error);
f2eb6575 3293 return res;
1da177e4
LT
3294}
3295
ffd1f4ed
MS
3296/*
3297 * same as __d_path but appends "(deleted)" for unlinked files.
3298 */
02125a82
AV
3299static int path_with_deleted(const struct path *path,
3300 const struct path *root,
3301 char **buf, int *buflen)
ffd1f4ed
MS
3302{
3303 prepend(buf, buflen, "\0", 1);
3304 if (d_unlinked(path->dentry)) {
3305 int error = prepend(buf, buflen, " (deleted)", 10);
3306 if (error)
3307 return error;
3308 }
3309
3310 return prepend_path(path, root, buf, buflen);
3311}
3312
8df9d1a4
MS
3313static int prepend_unreachable(char **buffer, int *buflen)
3314{
3315 return prepend(buffer, buflen, "(unreachable)", 13);
3316}
3317
68f0d9d9
LT
3318static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3319{
3320 unsigned seq;
3321
3322 do {
3323 seq = read_seqcount_begin(&fs->seq);
3324 *root = fs->root;
3325 } while (read_seqcount_retry(&fs->seq, seq));
3326}
3327
a03a8a70
JB
3328/**
3329 * d_path - return the path of a dentry
cf28b486 3330 * @path: path to report
a03a8a70
JB
3331 * @buf: buffer to return value in
3332 * @buflen: buffer length
3333 *
3334 * Convert a dentry into an ASCII path name. If the entry has been deleted
3335 * the string " (deleted)" is appended. Note that this is ambiguous.
3336 *
52afeefb
AV
3337 * Returns a pointer into the buffer or an error code if the path was
3338 * too long. Note: Callers should use the returned pointer, not the passed
3339 * in buffer, to use the name! The implementation often starts at an offset
3340 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3341 *
31f3e0b3 3342 * "buflen" should be positive.
a03a8a70 3343 */
20d4fdc1 3344char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3345{
ffd1f4ed 3346 char *res = buf + buflen;
6ac08c39 3347 struct path root;
ffd1f4ed 3348 int error;
1da177e4 3349
c23fbb6b
ED
3350 /*
3351 * We have various synthetic filesystems that never get mounted. On
3352 * these filesystems dentries are never used for lookup purposes, and
3353 * thus don't need to be hashed. They also don't need a name until a
3354 * user wants to identify the object in /proc/pid/fd/. The little hack
3355 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3356 *
3357 * Some pseudo inodes are mountable. When they are mounted
3358 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3359 * and instead have d_path return the mounted path.
c23fbb6b 3360 */
f48cfddc
EB
3361 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3362 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3363 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3364
68f0d9d9
LT
3365 rcu_read_lock();
3366 get_fs_root_rcu(current->fs, &root);
02125a82 3367 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3368 rcu_read_unlock();
3369
02125a82 3370 if (error < 0)
ffd1f4ed 3371 res = ERR_PTR(error);
1da177e4
LT
3372 return res;
3373}
ec4f8605 3374EXPORT_SYMBOL(d_path);
1da177e4 3375
c23fbb6b
ED
3376/*
3377 * Helper function for dentry_operations.d_dname() members
3378 */
3379char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3380 const char *fmt, ...)
3381{
3382 va_list args;
3383 char temp[64];
3384 int sz;
3385
3386 va_start(args, fmt);
3387 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3388 va_end(args);
3389
3390 if (sz > sizeof(temp) || sz > buflen)
3391 return ERR_PTR(-ENAMETOOLONG);
3392
3393 buffer += buflen - sz;
3394 return memcpy(buffer, temp, sz);
3395}
3396
118b2302
AV
3397char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3398{
3399 char *end = buffer + buflen;
3400 /* these dentries are never renamed, so d_lock is not needed */
3401 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3402 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3403 prepend(&end, &buflen, "/", 1))
3404 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3405 return end;
118b2302 3406}
31bbe16f 3407EXPORT_SYMBOL(simple_dname);
118b2302 3408
6092d048
RP
3409/*
3410 * Write full pathname from the root of the filesystem into the buffer.
3411 */
f6500801 3412static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3413{
f6500801 3414 struct dentry *dentry;
232d2d60
WL
3415 char *end, *retval;
3416 int len, seq = 0;
3417 int error = 0;
6092d048 3418
f6500801
AV
3419 if (buflen < 2)
3420 goto Elong;
3421
48f5ec21 3422 rcu_read_lock();
232d2d60 3423restart:
f6500801 3424 dentry = d;
232d2d60
WL
3425 end = buf + buflen;
3426 len = buflen;
3427 prepend(&end, &len, "\0", 1);
6092d048
RP
3428 /* Get '/' right */
3429 retval = end-1;
3430 *retval = '/';
232d2d60 3431 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3432 while (!IS_ROOT(dentry)) {
3433 struct dentry *parent = dentry->d_parent;
6092d048 3434
6092d048 3435 prefetch(parent);
232d2d60
WL
3436 error = prepend_name(&end, &len, &dentry->d_name);
3437 if (error)
3438 break;
6092d048
RP
3439
3440 retval = end;
3441 dentry = parent;
3442 }
48f5ec21
AV
3443 if (!(seq & 1))
3444 rcu_read_unlock();
3445 if (need_seqretry(&rename_lock, seq)) {
3446 seq = 1;
232d2d60 3447 goto restart;
48f5ec21
AV
3448 }
3449 done_seqretry(&rename_lock, seq);
232d2d60
WL
3450 if (error)
3451 goto Elong;
c103135c
AV
3452 return retval;
3453Elong:
3454 return ERR_PTR(-ENAMETOOLONG);
3455}
ec2447c2
NP
3456
3457char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3458{
232d2d60 3459 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3460}
3461EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3462
3463char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3464{
3465 char *p = NULL;
3466 char *retval;
3467
c103135c
AV
3468 if (d_unlinked(dentry)) {
3469 p = buf + buflen;
3470 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3471 goto Elong;
3472 buflen++;
3473 }
3474 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3475 if (!IS_ERR(retval) && p)
3476 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3477 return retval;
3478Elong:
6092d048
RP
3479 return ERR_PTR(-ENAMETOOLONG);
3480}
3481
8b19e341
LT
3482static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3483 struct path *pwd)
5762482f 3484{
8b19e341
LT
3485 unsigned seq;
3486
3487 do {
3488 seq = read_seqcount_begin(&fs->seq);
3489 *root = fs->root;
3490 *pwd = fs->pwd;
3491 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3492}
3493
1da177e4
LT
3494/*
3495 * NOTE! The user-level library version returns a
3496 * character pointer. The kernel system call just
3497 * returns the length of the buffer filled (which
3498 * includes the ending '\0' character), or a negative
3499 * error value. So libc would do something like
3500 *
3501 * char *getcwd(char * buf, size_t size)
3502 * {
3503 * int retval;
3504 *
3505 * retval = sys_getcwd(buf, size);
3506 * if (retval >= 0)
3507 * return buf;
3508 * errno = -retval;
3509 * return NULL;
3510 * }
3511 */
3cdad428 3512SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3513{
552ce544 3514 int error;
6ac08c39 3515 struct path pwd, root;
3272c544 3516 char *page = __getname();
1da177e4
LT
3517
3518 if (!page)
3519 return -ENOMEM;
3520
8b19e341
LT
3521 rcu_read_lock();
3522 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3523
552ce544 3524 error = -ENOENT;
f3da392e 3525 if (!d_unlinked(pwd.dentry)) {
552ce544 3526 unsigned long len;
3272c544
LT
3527 char *cwd = page + PATH_MAX;
3528 int buflen = PATH_MAX;
1da177e4 3529
8df9d1a4 3530 prepend(&cwd, &buflen, "\0", 1);
02125a82 3531 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3532 rcu_read_unlock();
552ce544 3533
02125a82 3534 if (error < 0)
552ce544
LT
3535 goto out;
3536
8df9d1a4 3537 /* Unreachable from current root */
02125a82 3538 if (error > 0) {
8df9d1a4
MS
3539 error = prepend_unreachable(&cwd, &buflen);
3540 if (error)
3541 goto out;
3542 }
3543
552ce544 3544 error = -ERANGE;
3272c544 3545 len = PATH_MAX + page - cwd;
552ce544
LT
3546 if (len <= size) {
3547 error = len;
3548 if (copy_to_user(buf, cwd, len))
3549 error = -EFAULT;
3550 }
949854d0 3551 } else {
ff812d72 3552 rcu_read_unlock();
949854d0 3553 }
1da177e4
LT
3554
3555out:
3272c544 3556 __putname(page);
1da177e4
LT
3557 return error;
3558}
3559
3560/*
3561 * Test whether new_dentry is a subdirectory of old_dentry.
3562 *
3563 * Trivially implemented using the dcache structure
3564 */
3565
3566/**
3567 * is_subdir - is new dentry a subdirectory of old_dentry
3568 * @new_dentry: new dentry
3569 * @old_dentry: old dentry
3570 *
a6e5787f
YB
3571 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3572 * Returns false otherwise.
1da177e4
LT
3573 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3574 */
3575
a6e5787f 3576bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3577{
a6e5787f 3578 bool result;
949854d0 3579 unsigned seq;
1da177e4 3580
e2761a11 3581 if (new_dentry == old_dentry)
a6e5787f 3582 return true;
e2761a11 3583
e2761a11 3584 do {
1da177e4 3585 /* for restarting inner loop in case of seq retry */
1da177e4 3586 seq = read_seqbegin(&rename_lock);
949854d0
NP
3587 /*
3588 * Need rcu_readlock to protect against the d_parent trashing
3589 * due to d_move
3590 */
3591 rcu_read_lock();
e2761a11 3592 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3593 result = true;
e2761a11 3594 else
a6e5787f 3595 result = false;
949854d0 3596 rcu_read_unlock();
1da177e4 3597 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3598
3599 return result;
3600}
e8f9e5b7 3601EXPORT_SYMBOL(is_subdir);
1da177e4 3602
db14fc3a 3603static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3604{
db14fc3a
MS
3605 struct dentry *root = data;
3606 if (dentry != root) {
3607 if (d_unhashed(dentry) || !dentry->d_inode)
3608 return D_WALK_SKIP;
1da177e4 3609
01ddc4ed
MS
3610 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3611 dentry->d_flags |= DCACHE_GENOCIDE;
3612 dentry->d_lockref.count--;
3613 }
1da177e4 3614 }
db14fc3a
MS
3615 return D_WALK_CONTINUE;
3616}
58db63d0 3617
db14fc3a
MS
3618void d_genocide(struct dentry *parent)
3619{
3620 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3621}
3622
60545d0d 3623void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3624{
60545d0d
AV
3625 inode_dec_link_count(inode);
3626 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3627 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3628 !d_unlinked(dentry));
3629 spin_lock(&dentry->d_parent->d_lock);
3630 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3631 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3632 (unsigned long long)inode->i_ino);
3633 spin_unlock(&dentry->d_lock);
3634 spin_unlock(&dentry->d_parent->d_lock);
3635 d_instantiate(dentry, inode);
1da177e4 3636}
60545d0d 3637EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3638
3639static __initdata unsigned long dhash_entries;
3640static int __init set_dhash_entries(char *str)
3641{
3642 if (!str)
3643 return 0;
3644 dhash_entries = simple_strtoul(str, &str, 0);
3645 return 1;
3646}
3647__setup("dhash_entries=", set_dhash_entries);
3648
3649static void __init dcache_init_early(void)
3650{
1da177e4
LT
3651 /* If hashes are distributed across NUMA nodes, defer
3652 * hash allocation until vmalloc space is available.
3653 */
3654 if (hashdist)
3655 return;
3656
3657 dentry_hashtable =
3658 alloc_large_system_hash("Dentry cache",
b07ad996 3659 sizeof(struct hlist_bl_head),
1da177e4
LT
3660 dhash_entries,
3661 13,
3d375d78 3662 HASH_EARLY | HASH_ZERO,
1da177e4 3663 &d_hash_shift,
b35d786b 3664 NULL,
31fe62b9 3665 0,
1da177e4 3666 0);
854d3e63 3667 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3668}
3669
74bf17cf 3670static void __init dcache_init(void)
1da177e4 3671{
3d375d78 3672 /*
1da177e4
LT
3673 * A constructor could be added for stable state like the lists,
3674 * but it is probably not worth it because of the cache nature
3d375d78 3675 * of the dcache.
1da177e4 3676 */
80344266
DW
3677 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3678 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3679 d_iname);
1da177e4
LT
3680
3681 /* Hash may have been set up in dcache_init_early */
3682 if (!hashdist)
3683 return;
3684
3685 dentry_hashtable =
3686 alloc_large_system_hash("Dentry cache",
b07ad996 3687 sizeof(struct hlist_bl_head),
1da177e4
LT
3688 dhash_entries,
3689 13,
3d375d78 3690 HASH_ZERO,
1da177e4 3691 &d_hash_shift,
b35d786b 3692 NULL,
31fe62b9 3693 0,
1da177e4 3694 0);
854d3e63 3695 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3696}
3697
3698/* SLAB cache for __getname() consumers */
e18b890b 3699struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3700EXPORT_SYMBOL(names_cachep);
1da177e4 3701
1da177e4
LT
3702EXPORT_SYMBOL(d_genocide);
3703
1da177e4
LT
3704void __init vfs_caches_init_early(void)
3705{
6916363f
SAS
3706 int i;
3707
3708 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3709 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3710
1da177e4
LT
3711 dcache_init_early();
3712 inode_init_early();
3713}
3714
4248b0da 3715void __init vfs_caches_init(void)
1da177e4 3716{
6a9b8820
DW
3717 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3718 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3719
74bf17cf
DC
3720 dcache_init();
3721 inode_init();
4248b0da
MG
3722 files_init();
3723 files_maxfiles_init();
74bf17cf 3724 mnt_init();
1da177e4
LT
3725 bdev_cache_init();
3726 chrdev_init();
3727}