minixfs: kill manual hweight(), simplify
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
07f3f05c 39#include "internal.h"
1da177e4 40
789680d1
NP
41/*
42 * Usage:
873feea0
NP
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
23044507
NP
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
51 * d_lock protects:
52 * - d_flags
53 * - d_name
54 * - d_lru
b7ab39f6 55 * - d_count
da502956 56 * - d_unhashed()
2fd6b7f5
NP
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
b23fb0a6 59 * - d_alias, d_inode
789680d1
NP
60 *
61 * Ordering:
873feea0 62 * dentry->d_inode->i_lock
b5c84bf6
NP
63 * dentry->d_lock
64 * dcache_lru_lock
ceb5bdc2
NP
65 * dcache_hash_bucket lock
66 * s_anon lock
789680d1 67 *
da502956
NP
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
70 * ...
71 * dentry->d_parent->d_lock
72 * dentry->d_lock
73 *
74 * If no ancestor relationship:
789680d1
NP
75 * if (dentry1 < dentry2)
76 * dentry1->d_lock
77 * dentry2->d_lock
78 */
fa3536cc 79int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
80EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
81
23044507 82static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 83__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 84
949854d0 85EXPORT_SYMBOL(rename_lock);
1da177e4 86
e18b890b 87static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 88
1da177e4
LT
89/*
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
93 *
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
96 */
97#define D_HASHBITS d_hash_shift
98#define D_HASHMASK d_hash_mask
99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
b07ad996 105static inline struct hlist_bl_head *d_hash(struct dentry *parent,
ceb5bdc2
NP
106 unsigned long hash)
107{
108 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
109 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
110 return dentry_hashtable + (hash & D_HASHMASK);
111}
112
1da177e4
LT
113/* Statistics gathering. */
114struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116};
117
3e880fb5 118static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
119
120#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
121static int get_nr_dentry(void)
122{
123 int i;
124 int sum = 0;
125 for_each_possible_cpu(i)
126 sum += per_cpu(nr_dentry, i);
127 return sum < 0 ? 0 : sum;
128}
129
312d3ca8
CH
130int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
131 size_t *lenp, loff_t *ppos)
132{
3e880fb5 133 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
134 return proc_dointvec(table, write, buffer, lenp, ppos);
135}
136#endif
137
9c82ab9c 138static void __d_free(struct rcu_head *head)
1da177e4 139{
9c82ab9c
CH
140 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
141
fd217f4d 142 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
143 if (dname_external(dentry))
144 kfree(dentry->d_name.name);
145 kmem_cache_free(dentry_cache, dentry);
146}
147
148/*
b5c84bf6 149 * no locks, please.
1da177e4
LT
150 */
151static void d_free(struct dentry *dentry)
152{
b7ab39f6 153 BUG_ON(dentry->d_count);
3e880fb5 154 this_cpu_dec(nr_dentry);
1da177e4
LT
155 if (dentry->d_op && dentry->d_op->d_release)
156 dentry->d_op->d_release(dentry);
312d3ca8 157
dea3667b
LT
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 160 __d_free(&dentry->d_u.d_rcu);
b3423415 161 else
9c82ab9c 162 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
163}
164
31e6b01f
NP
165/**
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 167 * @dentry: the target dentry
31e6b01f
NP
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
171 */
172static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
173{
174 assert_spin_locked(&dentry->d_lock);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry->d_seq);
177}
178
1da177e4
LT
179/*
180 * Release the dentry's inode, using the filesystem
31e6b01f
NP
181 * d_iput() operation if defined. Dentry has no refcount
182 * and is unhashed.
1da177e4 183 */
858119e1 184static void dentry_iput(struct dentry * dentry)
31f3e0b3 185 __releases(dentry->d_lock)
873feea0 186 __releases(dentry->d_inode->i_lock)
1da177e4
LT
187{
188 struct inode *inode = dentry->d_inode;
189 if (inode) {
190 dentry->d_inode = NULL;
191 list_del_init(&dentry->d_alias);
192 spin_unlock(&dentry->d_lock);
873feea0 193 spin_unlock(&inode->i_lock);
f805fbda
LT
194 if (!inode->i_nlink)
195 fsnotify_inoderemove(inode);
1da177e4
LT
196 if (dentry->d_op && dentry->d_op->d_iput)
197 dentry->d_op->d_iput(dentry, inode);
198 else
199 iput(inode);
200 } else {
201 spin_unlock(&dentry->d_lock);
1da177e4
LT
202 }
203}
204
31e6b01f
NP
205/*
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
208 */
209static void dentry_unlink_inode(struct dentry * dentry)
210 __releases(dentry->d_lock)
873feea0 211 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
212{
213 struct inode *inode = dentry->d_inode;
214 dentry->d_inode = NULL;
215 list_del_init(&dentry->d_alias);
216 dentry_rcuwalk_barrier(dentry);
217 spin_unlock(&dentry->d_lock);
873feea0 218 spin_unlock(&inode->i_lock);
31e6b01f
NP
219 if (!inode->i_nlink)
220 fsnotify_inoderemove(inode);
221 if (dentry->d_op && dentry->d_op->d_iput)
222 dentry->d_op->d_iput(dentry, inode);
223 else
224 iput(inode);
225}
226
da3bbdd4 227/*
f0023bc6 228 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
da3bbdd4
KM
229 */
230static void dentry_lru_add(struct dentry *dentry)
231{
a4633357 232 if (list_empty(&dentry->d_lru)) {
23044507 233 spin_lock(&dcache_lru_lock);
a4633357
CH
234 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
235 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 236 dentry_stat.nr_unused++;
23044507 237 spin_unlock(&dcache_lru_lock);
a4633357 238 }
da3bbdd4
KM
239}
240
23044507
NP
241static void __dentry_lru_del(struct dentry *dentry)
242{
243 list_del_init(&dentry->d_lru);
244 dentry->d_sb->s_nr_dentry_unused--;
245 dentry_stat.nr_unused--;
246}
247
f0023bc6
SW
248/*
249 * Remove a dentry with references from the LRU.
250 */
da3bbdd4
KM
251static void dentry_lru_del(struct dentry *dentry)
252{
253 if (!list_empty(&dentry->d_lru)) {
23044507
NP
254 spin_lock(&dcache_lru_lock);
255 __dentry_lru_del(dentry);
256 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
257 }
258}
259
f0023bc6
SW
260/*
261 * Remove a dentry that is unreferenced and about to be pruned
262 * (unhashed and destroyed) from the LRU, and inform the file system.
263 * This wrapper should be called _prior_ to unhashing a victim dentry.
264 */
265static void dentry_lru_prune(struct dentry *dentry)
266{
267 if (!list_empty(&dentry->d_lru)) {
268 if (dentry->d_flags & DCACHE_OP_PRUNE)
269 dentry->d_op->d_prune(dentry);
270
271 spin_lock(&dcache_lru_lock);
272 __dentry_lru_del(dentry);
273 spin_unlock(&dcache_lru_lock);
274 }
275}
276
a4633357 277static void dentry_lru_move_tail(struct dentry *dentry)
da3bbdd4 278{
23044507 279 spin_lock(&dcache_lru_lock);
a4633357
CH
280 if (list_empty(&dentry->d_lru)) {
281 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
282 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 283 dentry_stat.nr_unused++;
a4633357
CH
284 } else {
285 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
da3bbdd4 286 }
23044507 287 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
288}
289
d52b9086
MS
290/**
291 * d_kill - kill dentry and return parent
292 * @dentry: dentry to kill
ff5fdb61 293 * @parent: parent dentry
d52b9086 294 *
31f3e0b3 295 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
296 *
297 * If this is the root of the dentry tree, return NULL.
23044507 298 *
b5c84bf6
NP
299 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
300 * d_kill.
d52b9086 301 */
2fd6b7f5 302static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 303 __releases(dentry->d_lock)
2fd6b7f5 304 __releases(parent->d_lock)
873feea0 305 __releases(dentry->d_inode->i_lock)
d52b9086 306{
d52b9086 307 list_del(&dentry->d_u.d_child);
c83ce989
TM
308 /*
309 * Inform try_to_ascend() that we are no longer attached to the
310 * dentry tree
311 */
312 dentry->d_flags |= DCACHE_DISCONNECTED;
2fd6b7f5
NP
313 if (parent)
314 spin_unlock(&parent->d_lock);
d52b9086 315 dentry_iput(dentry);
b7ab39f6
NP
316 /*
317 * dentry_iput drops the locks, at which point nobody (except
318 * transient RCU lookups) can reach this dentry.
319 */
d52b9086 320 d_free(dentry);
871c0067 321 return parent;
d52b9086
MS
322}
323
c6627c60
DH
324/*
325 * Unhash a dentry without inserting an RCU walk barrier or checking that
326 * dentry->d_lock is locked. The caller must take care of that, if
327 * appropriate.
328 */
329static void __d_shrink(struct dentry *dentry)
330{
331 if (!d_unhashed(dentry)) {
332 struct hlist_bl_head *b;
333 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
334 b = &dentry->d_sb->s_anon;
335 else
336 b = d_hash(dentry->d_parent, dentry->d_name.hash);
337
338 hlist_bl_lock(b);
339 __hlist_bl_del(&dentry->d_hash);
340 dentry->d_hash.pprev = NULL;
341 hlist_bl_unlock(b);
342 }
343}
344
789680d1
NP
345/**
346 * d_drop - drop a dentry
347 * @dentry: dentry to drop
348 *
349 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
350 * be found through a VFS lookup any more. Note that this is different from
351 * deleting the dentry - d_delete will try to mark the dentry negative if
352 * possible, giving a successful _negative_ lookup, while d_drop will
353 * just make the cache lookup fail.
354 *
355 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
356 * reason (NFS timeouts or autofs deletes).
357 *
358 * __d_drop requires dentry->d_lock.
359 */
360void __d_drop(struct dentry *dentry)
361{
dea3667b 362 if (!d_unhashed(dentry)) {
c6627c60 363 __d_shrink(dentry);
dea3667b 364 dentry_rcuwalk_barrier(dentry);
789680d1
NP
365 }
366}
367EXPORT_SYMBOL(__d_drop);
368
369void d_drop(struct dentry *dentry)
370{
789680d1
NP
371 spin_lock(&dentry->d_lock);
372 __d_drop(dentry);
373 spin_unlock(&dentry->d_lock);
789680d1
NP
374}
375EXPORT_SYMBOL(d_drop);
376
44396f4b
JB
377/*
378 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
379 * @dentry: dentry to drop
380 *
381 * This is called when we do a lookup on a placeholder dentry that needed to be
382 * looked up. The dentry should have been hashed in order for it to be found by
383 * the lookup code, but now needs to be unhashed while we do the actual lookup
384 * and clear the DCACHE_NEED_LOOKUP flag.
385 */
386void d_clear_need_lookup(struct dentry *dentry)
387{
388 spin_lock(&dentry->d_lock);
389 __d_drop(dentry);
390 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
391 spin_unlock(&dentry->d_lock);
392}
393EXPORT_SYMBOL(d_clear_need_lookup);
394
77812a1e
NP
395/*
396 * Finish off a dentry we've decided to kill.
397 * dentry->d_lock must be held, returns with it unlocked.
398 * If ref is non-zero, then decrement the refcount too.
399 * Returns dentry requiring refcount drop, or NULL if we're done.
400 */
401static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
402 __releases(dentry->d_lock)
403{
873feea0 404 struct inode *inode;
77812a1e
NP
405 struct dentry *parent;
406
873feea0
NP
407 inode = dentry->d_inode;
408 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
409relock:
410 spin_unlock(&dentry->d_lock);
411 cpu_relax();
412 return dentry; /* try again with same dentry */
413 }
414 if (IS_ROOT(dentry))
415 parent = NULL;
416 else
417 parent = dentry->d_parent;
418 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
419 if (inode)
420 spin_unlock(&inode->i_lock);
77812a1e
NP
421 goto relock;
422 }
31e6b01f 423
77812a1e
NP
424 if (ref)
425 dentry->d_count--;
f0023bc6
SW
426 /*
427 * if dentry was on the d_lru list delete it from there.
428 * inform the fs via d_prune that this dentry is about to be
429 * unhashed and destroyed.
430 */
431 dentry_lru_prune(dentry);
77812a1e
NP
432 /* if it was on the hash then remove it */
433 __d_drop(dentry);
434 return d_kill(dentry, parent);
435}
436
1da177e4
LT
437/*
438 * This is dput
439 *
440 * This is complicated by the fact that we do not want to put
441 * dentries that are no longer on any hash chain on the unused
442 * list: we'd much rather just get rid of them immediately.
443 *
444 * However, that implies that we have to traverse the dentry
445 * tree upwards to the parents which might _also_ now be
446 * scheduled for deletion (it may have been only waiting for
447 * its last child to go away).
448 *
449 * This tail recursion is done by hand as we don't want to depend
450 * on the compiler to always get this right (gcc generally doesn't).
451 * Real recursion would eat up our stack space.
452 */
453
454/*
455 * dput - release a dentry
456 * @dentry: dentry to release
457 *
458 * Release a dentry. This will drop the usage count and if appropriate
459 * call the dentry unlink method as well as removing it from the queues and
460 * releasing its resources. If the parent dentries were scheduled for release
461 * they too may now get deleted.
1da177e4 462 */
1da177e4
LT
463void dput(struct dentry *dentry)
464{
465 if (!dentry)
466 return;
467
468repeat:
b7ab39f6 469 if (dentry->d_count == 1)
1da177e4 470 might_sleep();
1da177e4 471 spin_lock(&dentry->d_lock);
61f3dee4
NP
472 BUG_ON(!dentry->d_count);
473 if (dentry->d_count > 1) {
474 dentry->d_count--;
1da177e4 475 spin_unlock(&dentry->d_lock);
1da177e4
LT
476 return;
477 }
478
fb045adb 479 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 480 if (dentry->d_op->d_delete(dentry))
61f3dee4 481 goto kill_it;
1da177e4 482 }
265ac902 483
1da177e4
LT
484 /* Unreachable? Get rid of it */
485 if (d_unhashed(dentry))
486 goto kill_it;
265ac902 487
44396f4b
JB
488 /*
489 * If this dentry needs lookup, don't set the referenced flag so that it
490 * is more likely to be cleaned up by the dcache shrinker in case of
491 * memory pressure.
492 */
493 if (!d_need_lookup(dentry))
494 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 495 dentry_lru_add(dentry);
265ac902 496
61f3dee4
NP
497 dentry->d_count--;
498 spin_unlock(&dentry->d_lock);
1da177e4
LT
499 return;
500
d52b9086 501kill_it:
77812a1e 502 dentry = dentry_kill(dentry, 1);
d52b9086
MS
503 if (dentry)
504 goto repeat;
1da177e4 505}
ec4f8605 506EXPORT_SYMBOL(dput);
1da177e4
LT
507
508/**
509 * d_invalidate - invalidate a dentry
510 * @dentry: dentry to invalidate
511 *
512 * Try to invalidate the dentry if it turns out to be
513 * possible. If there are other dentries that can be
514 * reached through this one we can't delete it and we
515 * return -EBUSY. On success we return 0.
516 *
517 * no dcache lock.
518 */
519
520int d_invalidate(struct dentry * dentry)
521{
522 /*
523 * If it's already been dropped, return OK.
524 */
da502956 525 spin_lock(&dentry->d_lock);
1da177e4 526 if (d_unhashed(dentry)) {
da502956 527 spin_unlock(&dentry->d_lock);
1da177e4
LT
528 return 0;
529 }
530 /*
531 * Check whether to do a partial shrink_dcache
532 * to get rid of unused child entries.
533 */
534 if (!list_empty(&dentry->d_subdirs)) {
da502956 535 spin_unlock(&dentry->d_lock);
1da177e4 536 shrink_dcache_parent(dentry);
da502956 537 spin_lock(&dentry->d_lock);
1da177e4
LT
538 }
539
540 /*
541 * Somebody else still using it?
542 *
543 * If it's a directory, we can't drop it
544 * for fear of somebody re-populating it
545 * with children (even though dropping it
546 * would make it unreachable from the root,
547 * we might still populate it if it was a
548 * working directory or similar).
50e69630
AV
549 * We also need to leave mountpoints alone,
550 * directory or not.
1da177e4 551 */
50e69630
AV
552 if (dentry->d_count > 1 && dentry->d_inode) {
553 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 554 spin_unlock(&dentry->d_lock);
1da177e4
LT
555 return -EBUSY;
556 }
557 }
558
559 __d_drop(dentry);
560 spin_unlock(&dentry->d_lock);
1da177e4
LT
561 return 0;
562}
ec4f8605 563EXPORT_SYMBOL(d_invalidate);
1da177e4 564
b5c84bf6 565/* This must be called with d_lock held */
dc0474be 566static inline void __dget_dlock(struct dentry *dentry)
23044507 567{
b7ab39f6 568 dentry->d_count++;
23044507
NP
569}
570
dc0474be 571static inline void __dget(struct dentry *dentry)
1da177e4 572{
23044507 573 spin_lock(&dentry->d_lock);
dc0474be 574 __dget_dlock(dentry);
23044507 575 spin_unlock(&dentry->d_lock);
1da177e4
LT
576}
577
b7ab39f6
NP
578struct dentry *dget_parent(struct dentry *dentry)
579{
580 struct dentry *ret;
581
582repeat:
a734eb45
NP
583 /*
584 * Don't need rcu_dereference because we re-check it was correct under
585 * the lock.
586 */
587 rcu_read_lock();
b7ab39f6 588 ret = dentry->d_parent;
a734eb45
NP
589 spin_lock(&ret->d_lock);
590 if (unlikely(ret != dentry->d_parent)) {
591 spin_unlock(&ret->d_lock);
592 rcu_read_unlock();
b7ab39f6
NP
593 goto repeat;
594 }
a734eb45 595 rcu_read_unlock();
b7ab39f6
NP
596 BUG_ON(!ret->d_count);
597 ret->d_count++;
598 spin_unlock(&ret->d_lock);
b7ab39f6
NP
599 return ret;
600}
601EXPORT_SYMBOL(dget_parent);
602
1da177e4
LT
603/**
604 * d_find_alias - grab a hashed alias of inode
605 * @inode: inode in question
606 * @want_discon: flag, used by d_splice_alias, to request
607 * that only a DISCONNECTED alias be returned.
608 *
609 * If inode has a hashed alias, or is a directory and has any alias,
610 * acquire the reference to alias and return it. Otherwise return NULL.
611 * Notice that if inode is a directory there can be only one alias and
612 * it can be unhashed only if it has no children, or if it is the root
613 * of a filesystem.
614 *
21c0d8fd 615 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 616 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 617 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 618 */
da502956 619static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 620{
da502956 621 struct dentry *alias, *discon_alias;
1da177e4 622
da502956
NP
623again:
624 discon_alias = NULL;
625 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
626 spin_lock(&alias->d_lock);
1da177e4 627 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 628 if (IS_ROOT(alias) &&
da502956 629 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 630 discon_alias = alias;
da502956 631 } else if (!want_discon) {
dc0474be 632 __dget_dlock(alias);
da502956
NP
633 spin_unlock(&alias->d_lock);
634 return alias;
635 }
636 }
637 spin_unlock(&alias->d_lock);
638 }
639 if (discon_alias) {
640 alias = discon_alias;
641 spin_lock(&alias->d_lock);
642 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
643 if (IS_ROOT(alias) &&
644 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 645 __dget_dlock(alias);
da502956 646 spin_unlock(&alias->d_lock);
1da177e4
LT
647 return alias;
648 }
649 }
da502956
NP
650 spin_unlock(&alias->d_lock);
651 goto again;
1da177e4 652 }
da502956 653 return NULL;
1da177e4
LT
654}
655
da502956 656struct dentry *d_find_alias(struct inode *inode)
1da177e4 657{
214fda1f
DH
658 struct dentry *de = NULL;
659
660 if (!list_empty(&inode->i_dentry)) {
873feea0 661 spin_lock(&inode->i_lock);
214fda1f 662 de = __d_find_alias(inode, 0);
873feea0 663 spin_unlock(&inode->i_lock);
214fda1f 664 }
1da177e4
LT
665 return de;
666}
ec4f8605 667EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
668
669/*
670 * Try to kill dentries associated with this inode.
671 * WARNING: you must own a reference to inode.
672 */
673void d_prune_aliases(struct inode *inode)
674{
0cdca3f9 675 struct dentry *dentry;
1da177e4 676restart:
873feea0 677 spin_lock(&inode->i_lock);
0cdca3f9 678 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 679 spin_lock(&dentry->d_lock);
b7ab39f6 680 if (!dentry->d_count) {
dc0474be 681 __dget_dlock(dentry);
1da177e4
LT
682 __d_drop(dentry);
683 spin_unlock(&dentry->d_lock);
873feea0 684 spin_unlock(&inode->i_lock);
1da177e4
LT
685 dput(dentry);
686 goto restart;
687 }
688 spin_unlock(&dentry->d_lock);
689 }
873feea0 690 spin_unlock(&inode->i_lock);
1da177e4 691}
ec4f8605 692EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
693
694/*
77812a1e
NP
695 * Try to throw away a dentry - free the inode, dput the parent.
696 * Requires dentry->d_lock is held, and dentry->d_count == 0.
697 * Releases dentry->d_lock.
d702ccb3 698 *
77812a1e 699 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 700 */
77812a1e 701static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 702 __releases(dentry->d_lock)
1da177e4 703{
77812a1e 704 struct dentry *parent;
d52b9086 705
77812a1e 706 parent = dentry_kill(dentry, 0);
d52b9086 707 /*
77812a1e
NP
708 * If dentry_kill returns NULL, we have nothing more to do.
709 * if it returns the same dentry, trylocks failed. In either
710 * case, just loop again.
711 *
712 * Otherwise, we need to prune ancestors too. This is necessary
713 * to prevent quadratic behavior of shrink_dcache_parent(), but
714 * is also expected to be beneficial in reducing dentry cache
715 * fragmentation.
d52b9086 716 */
77812a1e
NP
717 if (!parent)
718 return;
719 if (parent == dentry)
720 return;
721
722 /* Prune ancestors. */
723 dentry = parent;
d52b9086 724 while (dentry) {
b7ab39f6 725 spin_lock(&dentry->d_lock);
89e60548
NP
726 if (dentry->d_count > 1) {
727 dentry->d_count--;
728 spin_unlock(&dentry->d_lock);
729 return;
730 }
77812a1e 731 dentry = dentry_kill(dentry, 1);
d52b9086 732 }
1da177e4
LT
733}
734
3049cfe2 735static void shrink_dentry_list(struct list_head *list)
1da177e4 736{
da3bbdd4 737 struct dentry *dentry;
da3bbdd4 738
ec33679d
NP
739 rcu_read_lock();
740 for (;;) {
ec33679d
NP
741 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
742 if (&dentry->d_lru == list)
743 break; /* empty */
744 spin_lock(&dentry->d_lock);
745 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
746 spin_unlock(&dentry->d_lock);
23044507
NP
747 continue;
748 }
749
1da177e4
LT
750 /*
751 * We found an inuse dentry which was not removed from
da3bbdd4
KM
752 * the LRU because of laziness during lookup. Do not free
753 * it - just keep it off the LRU list.
1da177e4 754 */
b7ab39f6 755 if (dentry->d_count) {
ec33679d 756 dentry_lru_del(dentry);
da3bbdd4 757 spin_unlock(&dentry->d_lock);
1da177e4
LT
758 continue;
759 }
ec33679d 760
ec33679d 761 rcu_read_unlock();
77812a1e
NP
762
763 try_prune_one_dentry(dentry);
764
ec33679d 765 rcu_read_lock();
da3bbdd4 766 }
ec33679d 767 rcu_read_unlock();
3049cfe2
CH
768}
769
770/**
771 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
772 * @sb: superblock to shrink dentry LRU.
773 * @count: number of entries to prune
774 * @flags: flags to control the dentry processing
775 *
776 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
777 */
b0d40c92 778static void __shrink_dcache_sb(struct super_block *sb, int count, int flags)
3049cfe2 779{
3049cfe2
CH
780 struct dentry *dentry;
781 LIST_HEAD(referenced);
782 LIST_HEAD(tmp);
3049cfe2 783
23044507
NP
784relock:
785 spin_lock(&dcache_lru_lock);
3049cfe2
CH
786 while (!list_empty(&sb->s_dentry_lru)) {
787 dentry = list_entry(sb->s_dentry_lru.prev,
788 struct dentry, d_lru);
789 BUG_ON(dentry->d_sb != sb);
790
23044507
NP
791 if (!spin_trylock(&dentry->d_lock)) {
792 spin_unlock(&dcache_lru_lock);
793 cpu_relax();
794 goto relock;
795 }
796
3049cfe2
CH
797 /*
798 * If we are honouring the DCACHE_REFERENCED flag and the
799 * dentry has this flag set, don't free it. Clear the flag
800 * and put it back on the LRU.
801 */
23044507
NP
802 if (flags & DCACHE_REFERENCED &&
803 dentry->d_flags & DCACHE_REFERENCED) {
804 dentry->d_flags &= ~DCACHE_REFERENCED;
805 list_move(&dentry->d_lru, &referenced);
3049cfe2 806 spin_unlock(&dentry->d_lock);
23044507
NP
807 } else {
808 list_move_tail(&dentry->d_lru, &tmp);
809 spin_unlock(&dentry->d_lock);
b0d40c92 810 if (!--count)
23044507 811 break;
3049cfe2 812 }
ec33679d 813 cond_resched_lock(&dcache_lru_lock);
3049cfe2 814 }
da3bbdd4
KM
815 if (!list_empty(&referenced))
816 list_splice(&referenced, &sb->s_dentry_lru);
23044507 817 spin_unlock(&dcache_lru_lock);
ec33679d
NP
818
819 shrink_dentry_list(&tmp);
da3bbdd4
KM
820}
821
822/**
b0d40c92 823 * prune_dcache_sb - shrink the dcache
2af14162 824 * @sb: superblock
b0d40c92 825 * @nr_to_scan: number of entries to try to free
da3bbdd4 826 *
b0d40c92
DC
827 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
828 * done when we need more memory an called from the superblock shrinker
829 * function.
da3bbdd4 830 *
b0d40c92
DC
831 * This function may fail to free any resources if all the dentries are in
832 * use.
da3bbdd4 833 */
b0d40c92 834void prune_dcache_sb(struct super_block *sb, int nr_to_scan)
da3bbdd4 835{
b0d40c92 836 __shrink_dcache_sb(sb, nr_to_scan, DCACHE_REFERENCED);
1da177e4
LT
837}
838
1da177e4
LT
839/**
840 * shrink_dcache_sb - shrink dcache for a superblock
841 * @sb: superblock
842 *
3049cfe2
CH
843 * Shrink the dcache for the specified super block. This is used to free
844 * the dcache before unmounting a file system.
1da177e4 845 */
3049cfe2 846void shrink_dcache_sb(struct super_block *sb)
1da177e4 847{
3049cfe2
CH
848 LIST_HEAD(tmp);
849
23044507 850 spin_lock(&dcache_lru_lock);
3049cfe2
CH
851 while (!list_empty(&sb->s_dentry_lru)) {
852 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 853 spin_unlock(&dcache_lru_lock);
3049cfe2 854 shrink_dentry_list(&tmp);
ec33679d 855 spin_lock(&dcache_lru_lock);
3049cfe2 856 }
23044507 857 spin_unlock(&dcache_lru_lock);
1da177e4 858}
ec4f8605 859EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 860
c636ebdb
DH
861/*
862 * destroy a single subtree of dentries for unmount
863 * - see the comments on shrink_dcache_for_umount() for a description of the
864 * locking
865 */
866static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
867{
868 struct dentry *parent;
869
870 BUG_ON(!IS_ROOT(dentry));
871
c636ebdb
DH
872 for (;;) {
873 /* descend to the first leaf in the current subtree */
43c1c9cd 874 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
875 dentry = list_entry(dentry->d_subdirs.next,
876 struct dentry, d_u.d_child);
c636ebdb
DH
877
878 /* consume the dentries from this leaf up through its parents
879 * until we find one with children or run out altogether */
880 do {
881 struct inode *inode;
882
f0023bc6
SW
883 /*
884 * remove the dentry from the lru, and inform
885 * the fs that this dentry is about to be
886 * unhashed and destroyed.
887 */
888 dentry_lru_prune(dentry);
43c1c9cd
DH
889 __d_shrink(dentry);
890
b7ab39f6 891 if (dentry->d_count != 0) {
c636ebdb
DH
892 printk(KERN_ERR
893 "BUG: Dentry %p{i=%lx,n=%s}"
894 " still in use (%d)"
895 " [unmount of %s %s]\n",
896 dentry,
897 dentry->d_inode ?
898 dentry->d_inode->i_ino : 0UL,
899 dentry->d_name.name,
b7ab39f6 900 dentry->d_count,
c636ebdb
DH
901 dentry->d_sb->s_type->name,
902 dentry->d_sb->s_id);
903 BUG();
904 }
905
2fd6b7f5 906 if (IS_ROOT(dentry)) {
c636ebdb 907 parent = NULL;
2fd6b7f5
NP
908 list_del(&dentry->d_u.d_child);
909 } else {
871c0067 910 parent = dentry->d_parent;
b7ab39f6 911 parent->d_count--;
2fd6b7f5 912 list_del(&dentry->d_u.d_child);
871c0067 913 }
c636ebdb 914
c636ebdb
DH
915 inode = dentry->d_inode;
916 if (inode) {
917 dentry->d_inode = NULL;
918 list_del_init(&dentry->d_alias);
919 if (dentry->d_op && dentry->d_op->d_iput)
920 dentry->d_op->d_iput(dentry, inode);
921 else
922 iput(inode);
923 }
924
925 d_free(dentry);
926
927 /* finished when we fall off the top of the tree,
928 * otherwise we ascend to the parent and move to the
929 * next sibling if there is one */
930 if (!parent)
312d3ca8 931 return;
c636ebdb 932 dentry = parent;
c636ebdb
DH
933 } while (list_empty(&dentry->d_subdirs));
934
935 dentry = list_entry(dentry->d_subdirs.next,
936 struct dentry, d_u.d_child);
937 }
938}
939
940/*
941 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 942 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
943 * - the superblock is detached from all mountings and open files, so the
944 * dentry trees will not be rearranged by the VFS
945 * - s_umount is write-locked, so the memory pressure shrinker will ignore
946 * any dentries belonging to this superblock that it comes across
947 * - the filesystem itself is no longer permitted to rearrange the dentries
948 * in this superblock
949 */
950void shrink_dcache_for_umount(struct super_block *sb)
951{
952 struct dentry *dentry;
953
954 if (down_read_trylock(&sb->s_umount))
955 BUG();
956
957 dentry = sb->s_root;
958 sb->s_root = NULL;
b7ab39f6 959 dentry->d_count--;
c636ebdb
DH
960 shrink_dcache_for_umount_subtree(dentry);
961
ceb5bdc2
NP
962 while (!hlist_bl_empty(&sb->s_anon)) {
963 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
964 shrink_dcache_for_umount_subtree(dentry);
965 }
966}
967
c826cb7d
LT
968/*
969 * This tries to ascend one level of parenthood, but
970 * we can race with renaming, so we need to re-check
971 * the parenthood after dropping the lock and check
972 * that the sequence number still matches.
973 */
974static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
975{
976 struct dentry *new = old->d_parent;
977
978 rcu_read_lock();
979 spin_unlock(&old->d_lock);
980 spin_lock(&new->d_lock);
981
982 /*
983 * might go back up the wrong parent if we have had a rename
984 * or deletion
985 */
986 if (new != old->d_parent ||
c83ce989 987 (old->d_flags & DCACHE_DISCONNECTED) ||
c826cb7d
LT
988 (!locked && read_seqretry(&rename_lock, seq))) {
989 spin_unlock(&new->d_lock);
990 new = NULL;
991 }
992 rcu_read_unlock();
993 return new;
994}
995
996
1da177e4
LT
997/*
998 * Search for at least 1 mount point in the dentry's subdirs.
999 * We descend to the next level whenever the d_subdirs
1000 * list is non-empty and continue searching.
1001 */
1002
1003/**
1004 * have_submounts - check for mounts over a dentry
1005 * @parent: dentry to check.
1006 *
1007 * Return true if the parent or its subdirectories contain
1008 * a mount point
1009 */
1da177e4
LT
1010int have_submounts(struct dentry *parent)
1011{
949854d0 1012 struct dentry *this_parent;
1da177e4 1013 struct list_head *next;
949854d0 1014 unsigned seq;
58db63d0 1015 int locked = 0;
949854d0 1016
949854d0 1017 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1018again:
1019 this_parent = parent;
1da177e4 1020
1da177e4
LT
1021 if (d_mountpoint(parent))
1022 goto positive;
2fd6b7f5 1023 spin_lock(&this_parent->d_lock);
1da177e4
LT
1024repeat:
1025 next = this_parent->d_subdirs.next;
1026resume:
1027 while (next != &this_parent->d_subdirs) {
1028 struct list_head *tmp = next;
5160ee6f 1029 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1030 next = tmp->next;
2fd6b7f5
NP
1031
1032 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1033 /* Have we found a mount point ? */
2fd6b7f5
NP
1034 if (d_mountpoint(dentry)) {
1035 spin_unlock(&dentry->d_lock);
1036 spin_unlock(&this_parent->d_lock);
1da177e4 1037 goto positive;
2fd6b7f5 1038 }
1da177e4 1039 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1040 spin_unlock(&this_parent->d_lock);
1041 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1042 this_parent = dentry;
2fd6b7f5 1043 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1044 goto repeat;
1045 }
2fd6b7f5 1046 spin_unlock(&dentry->d_lock);
1da177e4
LT
1047 }
1048 /*
1049 * All done at this level ... ascend and resume the search.
1050 */
1051 if (this_parent != parent) {
c826cb7d
LT
1052 struct dentry *child = this_parent;
1053 this_parent = try_to_ascend(this_parent, locked, seq);
1054 if (!this_parent)
949854d0 1055 goto rename_retry;
949854d0 1056 next = child->d_u.d_child.next;
1da177e4
LT
1057 goto resume;
1058 }
2fd6b7f5 1059 spin_unlock(&this_parent->d_lock);
58db63d0 1060 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1061 goto rename_retry;
58db63d0
NP
1062 if (locked)
1063 write_sequnlock(&rename_lock);
1da177e4
LT
1064 return 0; /* No mount points found in tree */
1065positive:
58db63d0 1066 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1067 goto rename_retry;
58db63d0
NP
1068 if (locked)
1069 write_sequnlock(&rename_lock);
1da177e4 1070 return 1;
58db63d0
NP
1071
1072rename_retry:
1073 locked = 1;
1074 write_seqlock(&rename_lock);
1075 goto again;
1da177e4 1076}
ec4f8605 1077EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1078
1079/*
1080 * Search the dentry child list for the specified parent,
1081 * and move any unused dentries to the end of the unused
1082 * list for prune_dcache(). We descend to the next level
1083 * whenever the d_subdirs list is non-empty and continue
1084 * searching.
1085 *
1086 * It returns zero iff there are no unused children,
1087 * otherwise it returns the number of children moved to
1088 * the end of the unused list. This may not be the total
1089 * number of unused children, because select_parent can
1090 * drop the lock and return early due to latency
1091 * constraints.
1092 */
1093static int select_parent(struct dentry * parent)
1094{
949854d0 1095 struct dentry *this_parent;
1da177e4 1096 struct list_head *next;
949854d0 1097 unsigned seq;
1da177e4 1098 int found = 0;
58db63d0 1099 int locked = 0;
1da177e4 1100
949854d0 1101 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1102again:
1103 this_parent = parent;
2fd6b7f5 1104 spin_lock(&this_parent->d_lock);
1da177e4
LT
1105repeat:
1106 next = this_parent->d_subdirs.next;
1107resume:
1108 while (next != &this_parent->d_subdirs) {
1109 struct list_head *tmp = next;
5160ee6f 1110 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1111 next = tmp->next;
1112
2fd6b7f5 1113 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1114
1da177e4
LT
1115 /*
1116 * move only zero ref count dentries to the end
1117 * of the unused list for prune_dcache
1118 */
b7ab39f6 1119 if (!dentry->d_count) {
a4633357 1120 dentry_lru_move_tail(dentry);
1da177e4 1121 found++;
a4633357
CH
1122 } else {
1123 dentry_lru_del(dentry);
1da177e4
LT
1124 }
1125
1126 /*
1127 * We can return to the caller if we have found some (this
1128 * ensures forward progress). We'll be coming back to find
1129 * the rest.
1130 */
2fd6b7f5
NP
1131 if (found && need_resched()) {
1132 spin_unlock(&dentry->d_lock);
1da177e4 1133 goto out;
2fd6b7f5 1134 }
1da177e4
LT
1135
1136 /*
1137 * Descend a level if the d_subdirs list is non-empty.
1138 */
1139 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1140 spin_unlock(&this_parent->d_lock);
1141 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1142 this_parent = dentry;
2fd6b7f5 1143 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1144 goto repeat;
1145 }
2fd6b7f5
NP
1146
1147 spin_unlock(&dentry->d_lock);
1da177e4
LT
1148 }
1149 /*
1150 * All done at this level ... ascend and resume the search.
1151 */
1152 if (this_parent != parent) {
c826cb7d
LT
1153 struct dentry *child = this_parent;
1154 this_parent = try_to_ascend(this_parent, locked, seq);
1155 if (!this_parent)
949854d0 1156 goto rename_retry;
949854d0 1157 next = child->d_u.d_child.next;
1da177e4
LT
1158 goto resume;
1159 }
1160out:
2fd6b7f5 1161 spin_unlock(&this_parent->d_lock);
58db63d0 1162 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1163 goto rename_retry;
58db63d0
NP
1164 if (locked)
1165 write_sequnlock(&rename_lock);
1da177e4 1166 return found;
58db63d0
NP
1167
1168rename_retry:
1169 if (found)
1170 return found;
1171 locked = 1;
1172 write_seqlock(&rename_lock);
1173 goto again;
1da177e4
LT
1174}
1175
1176/**
1177 * shrink_dcache_parent - prune dcache
1178 * @parent: parent of entries to prune
1179 *
1180 * Prune the dcache to remove unused children of the parent dentry.
1181 */
1182
1183void shrink_dcache_parent(struct dentry * parent)
1184{
da3bbdd4 1185 struct super_block *sb = parent->d_sb;
1da177e4
LT
1186 int found;
1187
1188 while ((found = select_parent(parent)) != 0)
b0d40c92 1189 __shrink_dcache_sb(sb, found, 0);
1da177e4 1190}
ec4f8605 1191EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1192
1da177e4 1193/**
a4464dbc
AV
1194 * __d_alloc - allocate a dcache entry
1195 * @sb: filesystem it will belong to
1da177e4
LT
1196 * @name: qstr of the name
1197 *
1198 * Allocates a dentry. It returns %NULL if there is insufficient memory
1199 * available. On a success the dentry is returned. The name passed in is
1200 * copied and the copy passed in may be reused after this call.
1201 */
1202
a4464dbc 1203struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1204{
1205 struct dentry *dentry;
1206 char *dname;
1207
e12ba74d 1208 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1209 if (!dentry)
1210 return NULL;
1211
1212 if (name->len > DNAME_INLINE_LEN-1) {
1213 dname = kmalloc(name->len + 1, GFP_KERNEL);
1214 if (!dname) {
1215 kmem_cache_free(dentry_cache, dentry);
1216 return NULL;
1217 }
1218 } else {
1219 dname = dentry->d_iname;
1220 }
1221 dentry->d_name.name = dname;
1222
1223 dentry->d_name.len = name->len;
1224 dentry->d_name.hash = name->hash;
1225 memcpy(dname, name->name, name->len);
1226 dname[name->len] = 0;
1227
b7ab39f6 1228 dentry->d_count = 1;
dea3667b 1229 dentry->d_flags = 0;
1da177e4 1230 spin_lock_init(&dentry->d_lock);
31e6b01f 1231 seqcount_init(&dentry->d_seq);
1da177e4 1232 dentry->d_inode = NULL;
a4464dbc
AV
1233 dentry->d_parent = dentry;
1234 dentry->d_sb = sb;
1da177e4
LT
1235 dentry->d_op = NULL;
1236 dentry->d_fsdata = NULL;
ceb5bdc2 1237 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1238 INIT_LIST_HEAD(&dentry->d_lru);
1239 INIT_LIST_HEAD(&dentry->d_subdirs);
1240 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1241 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1242 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1243
3e880fb5 1244 this_cpu_inc(nr_dentry);
312d3ca8 1245
1da177e4
LT
1246 return dentry;
1247}
a4464dbc
AV
1248
1249/**
1250 * d_alloc - allocate a dcache entry
1251 * @parent: parent of entry to allocate
1252 * @name: qstr of the name
1253 *
1254 * Allocates a dentry. It returns %NULL if there is insufficient memory
1255 * available. On a success the dentry is returned. The name passed in is
1256 * copied and the copy passed in may be reused after this call.
1257 */
1258struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1259{
1260 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1261 if (!dentry)
1262 return NULL;
1263
1264 spin_lock(&parent->d_lock);
1265 /*
1266 * don't need child lock because it is not subject
1267 * to concurrency here
1268 */
1269 __dget_dlock(parent);
1270 dentry->d_parent = parent;
1271 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1272 spin_unlock(&parent->d_lock);
1273
1274 return dentry;
1275}
ec4f8605 1276EXPORT_SYMBOL(d_alloc);
1da177e4 1277
4b936885
NP
1278struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1279{
a4464dbc
AV
1280 struct dentry *dentry = __d_alloc(sb, name);
1281 if (dentry)
4b936885 1282 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1283 return dentry;
1284}
1285EXPORT_SYMBOL(d_alloc_pseudo);
1286
1da177e4
LT
1287struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1288{
1289 struct qstr q;
1290
1291 q.name = name;
1292 q.len = strlen(name);
1293 q.hash = full_name_hash(q.name, q.len);
1294 return d_alloc(parent, &q);
1295}
ef26ca97 1296EXPORT_SYMBOL(d_alloc_name);
1da177e4 1297
fb045adb
NP
1298void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1299{
6f7f7caa
LT
1300 WARN_ON_ONCE(dentry->d_op);
1301 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1302 DCACHE_OP_COMPARE |
1303 DCACHE_OP_REVALIDATE |
1304 DCACHE_OP_DELETE ));
1305 dentry->d_op = op;
1306 if (!op)
1307 return;
1308 if (op->d_hash)
1309 dentry->d_flags |= DCACHE_OP_HASH;
1310 if (op->d_compare)
1311 dentry->d_flags |= DCACHE_OP_COMPARE;
1312 if (op->d_revalidate)
1313 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1314 if (op->d_delete)
1315 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1316 if (op->d_prune)
1317 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1318
1319}
1320EXPORT_SYMBOL(d_set_d_op);
1321
360da900
OH
1322static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1323{
b23fb0a6 1324 spin_lock(&dentry->d_lock);
9875cf80
DH
1325 if (inode) {
1326 if (unlikely(IS_AUTOMOUNT(inode)))
1327 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
360da900 1328 list_add(&dentry->d_alias, &inode->i_dentry);
9875cf80 1329 }
360da900 1330 dentry->d_inode = inode;
31e6b01f 1331 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1332 spin_unlock(&dentry->d_lock);
360da900
OH
1333 fsnotify_d_instantiate(dentry, inode);
1334}
1335
1da177e4
LT
1336/**
1337 * d_instantiate - fill in inode information for a dentry
1338 * @entry: dentry to complete
1339 * @inode: inode to attach to this dentry
1340 *
1341 * Fill in inode information in the entry.
1342 *
1343 * This turns negative dentries into productive full members
1344 * of society.
1345 *
1346 * NOTE! This assumes that the inode count has been incremented
1347 * (or otherwise set) by the caller to indicate that it is now
1348 * in use by the dcache.
1349 */
1350
1351void d_instantiate(struct dentry *entry, struct inode * inode)
1352{
28133c7b 1353 BUG_ON(!list_empty(&entry->d_alias));
873feea0
NP
1354 if (inode)
1355 spin_lock(&inode->i_lock);
360da900 1356 __d_instantiate(entry, inode);
873feea0
NP
1357 if (inode)
1358 spin_unlock(&inode->i_lock);
1da177e4
LT
1359 security_d_instantiate(entry, inode);
1360}
ec4f8605 1361EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1362
1363/**
1364 * d_instantiate_unique - instantiate a non-aliased dentry
1365 * @entry: dentry to instantiate
1366 * @inode: inode to attach to this dentry
1367 *
1368 * Fill in inode information in the entry. On success, it returns NULL.
1369 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1370 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1371 *
1372 * Note that in order to avoid conflicts with rename() etc, the caller
1373 * had better be holding the parent directory semaphore.
e866cfa9
OD
1374 *
1375 * This also assumes that the inode count has been incremented
1376 * (or otherwise set) by the caller to indicate that it is now
1377 * in use by the dcache.
1da177e4 1378 */
770bfad8
DH
1379static struct dentry *__d_instantiate_unique(struct dentry *entry,
1380 struct inode *inode)
1da177e4
LT
1381{
1382 struct dentry *alias;
1383 int len = entry->d_name.len;
1384 const char *name = entry->d_name.name;
1385 unsigned int hash = entry->d_name.hash;
1386
770bfad8 1387 if (!inode) {
360da900 1388 __d_instantiate(entry, NULL);
770bfad8
DH
1389 return NULL;
1390 }
1391
1da177e4
LT
1392 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1393 struct qstr *qstr = &alias->d_name;
1394
9abca360
NP
1395 /*
1396 * Don't need alias->d_lock here, because aliases with
1397 * d_parent == entry->d_parent are not subject to name or
1398 * parent changes, because the parent inode i_mutex is held.
1399 */
1da177e4
LT
1400 if (qstr->hash != hash)
1401 continue;
1402 if (alias->d_parent != entry->d_parent)
1403 continue;
9d55c369 1404 if (dentry_cmp(qstr->name, qstr->len, name, len))
1da177e4 1405 continue;
dc0474be 1406 __dget(alias);
1da177e4
LT
1407 return alias;
1408 }
770bfad8 1409
360da900 1410 __d_instantiate(entry, inode);
1da177e4
LT
1411 return NULL;
1412}
770bfad8
DH
1413
1414struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1415{
1416 struct dentry *result;
1417
1418 BUG_ON(!list_empty(&entry->d_alias));
1419
873feea0
NP
1420 if (inode)
1421 spin_lock(&inode->i_lock);
770bfad8 1422 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1423 if (inode)
1424 spin_unlock(&inode->i_lock);
770bfad8
DH
1425
1426 if (!result) {
1427 security_d_instantiate(entry, inode);
1428 return NULL;
1429 }
1430
1431 BUG_ON(!d_unhashed(result));
1432 iput(inode);
1433 return result;
1434}
1435
1da177e4
LT
1436EXPORT_SYMBOL(d_instantiate_unique);
1437
1438/**
1439 * d_alloc_root - allocate root dentry
1440 * @root_inode: inode to allocate the root for
1441 *
1442 * Allocate a root ("/") dentry for the inode given. The inode is
1443 * instantiated and returned. %NULL is returned if there is insufficient
1444 * memory or the inode passed is %NULL.
1445 */
1446
1447struct dentry * d_alloc_root(struct inode * root_inode)
1448{
1449 struct dentry *res = NULL;
1450
1451 if (root_inode) {
1452 static const struct qstr name = { .name = "/", .len = 1 };
1453
a4464dbc
AV
1454 res = __d_alloc(root_inode->i_sb, &name);
1455 if (res)
1da177e4 1456 d_instantiate(res, root_inode);
1da177e4
LT
1457 }
1458 return res;
1459}
ec4f8605 1460EXPORT_SYMBOL(d_alloc_root);
1da177e4 1461
d891eedb
BF
1462static struct dentry * __d_find_any_alias(struct inode *inode)
1463{
1464 struct dentry *alias;
1465
1466 if (list_empty(&inode->i_dentry))
1467 return NULL;
1468 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1469 __dget(alias);
1470 return alias;
1471}
1472
1473static struct dentry * d_find_any_alias(struct inode *inode)
1474{
1475 struct dentry *de;
1476
1477 spin_lock(&inode->i_lock);
1478 de = __d_find_any_alias(inode);
1479 spin_unlock(&inode->i_lock);
1480 return de;
1481}
1482
1483
4ea3ada2
CH
1484/**
1485 * d_obtain_alias - find or allocate a dentry for a given inode
1486 * @inode: inode to allocate the dentry for
1487 *
1488 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1489 * similar open by handle operations. The returned dentry may be anonymous,
1490 * or may have a full name (if the inode was already in the cache).
1491 *
1492 * When called on a directory inode, we must ensure that the inode only ever
1493 * has one dentry. If a dentry is found, that is returned instead of
1494 * allocating a new one.
1495 *
1496 * On successful return, the reference to the inode has been transferred
44003728
CH
1497 * to the dentry. In case of an error the reference on the inode is released.
1498 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1499 * be passed in and will be the error will be propagate to the return value,
1500 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1501 */
1502struct dentry *d_obtain_alias(struct inode *inode)
1503{
9308a612
CH
1504 static const struct qstr anonstring = { .name = "" };
1505 struct dentry *tmp;
1506 struct dentry *res;
4ea3ada2
CH
1507
1508 if (!inode)
44003728 1509 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1510 if (IS_ERR(inode))
1511 return ERR_CAST(inode);
1512
d891eedb 1513 res = d_find_any_alias(inode);
9308a612
CH
1514 if (res)
1515 goto out_iput;
1516
a4464dbc 1517 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1518 if (!tmp) {
1519 res = ERR_PTR(-ENOMEM);
1520 goto out_iput;
4ea3ada2 1521 }
b5c84bf6 1522
873feea0 1523 spin_lock(&inode->i_lock);
d891eedb 1524 res = __d_find_any_alias(inode);
9308a612 1525 if (res) {
873feea0 1526 spin_unlock(&inode->i_lock);
9308a612
CH
1527 dput(tmp);
1528 goto out_iput;
1529 }
1530
1531 /* attach a disconnected dentry */
1532 spin_lock(&tmp->d_lock);
9308a612
CH
1533 tmp->d_inode = inode;
1534 tmp->d_flags |= DCACHE_DISCONNECTED;
9308a612 1535 list_add(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1536 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1537 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1538 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1539 spin_unlock(&tmp->d_lock);
873feea0 1540 spin_unlock(&inode->i_lock);
24ff6663 1541 security_d_instantiate(tmp, inode);
9308a612 1542
9308a612
CH
1543 return tmp;
1544
1545 out_iput:
24ff6663
JB
1546 if (res && !IS_ERR(res))
1547 security_d_instantiate(res, inode);
9308a612
CH
1548 iput(inode);
1549 return res;
4ea3ada2 1550}
adc48720 1551EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1552
1553/**
1554 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1555 * @inode: the inode which may have a disconnected dentry
1556 * @dentry: a negative dentry which we want to point to the inode.
1557 *
1558 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1559 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1560 * and return it, else simply d_add the inode to the dentry and return NULL.
1561 *
1562 * This is needed in the lookup routine of any filesystem that is exportable
1563 * (via knfsd) so that we can build dcache paths to directories effectively.
1564 *
1565 * If a dentry was found and moved, then it is returned. Otherwise NULL
1566 * is returned. This matches the expected return value of ->lookup.
1567 *
1568 */
1569struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1570{
1571 struct dentry *new = NULL;
1572
a9049376
AV
1573 if (IS_ERR(inode))
1574 return ERR_CAST(inode);
1575
21c0d8fd 1576 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1577 spin_lock(&inode->i_lock);
1da177e4
LT
1578 new = __d_find_alias(inode, 1);
1579 if (new) {
1580 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1581 spin_unlock(&inode->i_lock);
1da177e4 1582 security_d_instantiate(new, inode);
1da177e4
LT
1583 d_move(new, dentry);
1584 iput(inode);
1585 } else {
873feea0 1586 /* already taking inode->i_lock, so d_add() by hand */
360da900 1587 __d_instantiate(dentry, inode);
873feea0 1588 spin_unlock(&inode->i_lock);
1da177e4
LT
1589 security_d_instantiate(dentry, inode);
1590 d_rehash(dentry);
1591 }
1592 } else
1593 d_add(dentry, inode);
1594 return new;
1595}
ec4f8605 1596EXPORT_SYMBOL(d_splice_alias);
1da177e4 1597
9403540c
BN
1598/**
1599 * d_add_ci - lookup or allocate new dentry with case-exact name
1600 * @inode: the inode case-insensitive lookup has found
1601 * @dentry: the negative dentry that was passed to the parent's lookup func
1602 * @name: the case-exact name to be associated with the returned dentry
1603 *
1604 * This is to avoid filling the dcache with case-insensitive names to the
1605 * same inode, only the actual correct case is stored in the dcache for
1606 * case-insensitive filesystems.
1607 *
1608 * For a case-insensitive lookup match and if the the case-exact dentry
1609 * already exists in in the dcache, use it and return it.
1610 *
1611 * If no entry exists with the exact case name, allocate new dentry with
1612 * the exact case, and return the spliced entry.
1613 */
e45b590b 1614struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1615 struct qstr *name)
1616{
1617 int error;
1618 struct dentry *found;
1619 struct dentry *new;
1620
b6520c81
CH
1621 /*
1622 * First check if a dentry matching the name already exists,
1623 * if not go ahead and create it now.
1624 */
9403540c 1625 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1626 if (!found) {
1627 new = d_alloc(dentry->d_parent, name);
1628 if (!new) {
1629 error = -ENOMEM;
1630 goto err_out;
1631 }
b6520c81 1632
9403540c
BN
1633 found = d_splice_alias(inode, new);
1634 if (found) {
1635 dput(new);
1636 return found;
1637 }
1638 return new;
1639 }
b6520c81
CH
1640
1641 /*
1642 * If a matching dentry exists, and it's not negative use it.
1643 *
1644 * Decrement the reference count to balance the iget() done
1645 * earlier on.
1646 */
9403540c
BN
1647 if (found->d_inode) {
1648 if (unlikely(found->d_inode != inode)) {
1649 /* This can't happen because bad inodes are unhashed. */
1650 BUG_ON(!is_bad_inode(inode));
1651 BUG_ON(!is_bad_inode(found->d_inode));
1652 }
9403540c
BN
1653 iput(inode);
1654 return found;
1655 }
b6520c81 1656
9403540c 1657 /*
44396f4b
JB
1658 * We are going to instantiate this dentry, unhash it and clear the
1659 * lookup flag so we can do that.
9403540c 1660 */
44396f4b
JB
1661 if (unlikely(d_need_lookup(found)))
1662 d_clear_need_lookup(found);
b6520c81 1663
9403540c 1664 /*
9403540c 1665 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1666 * already has a dentry.
9403540c 1667 */
4513d899
AV
1668 new = d_splice_alias(inode, found);
1669 if (new) {
1670 dput(found);
1671 found = new;
9403540c 1672 }
4513d899 1673 return found;
9403540c
BN
1674
1675err_out:
1676 iput(inode);
1677 return ERR_PTR(error);
1678}
ec4f8605 1679EXPORT_SYMBOL(d_add_ci);
1da177e4 1680
31e6b01f
NP
1681/**
1682 * __d_lookup_rcu - search for a dentry (racy, store-free)
1683 * @parent: parent dentry
1684 * @name: qstr of name we wish to find
1685 * @seq: returns d_seq value at the point where the dentry was found
1686 * @inode: returns dentry->d_inode when the inode was found valid.
1687 * Returns: dentry, or NULL
1688 *
1689 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1690 * resolution (store-free path walking) design described in
1691 * Documentation/filesystems/path-lookup.txt.
1692 *
1693 * This is not to be used outside core vfs.
1694 *
1695 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1696 * held, and rcu_read_lock held. The returned dentry must not be stored into
1697 * without taking d_lock and checking d_seq sequence count against @seq
1698 * returned here.
1699 *
1700 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1701 * function.
1702 *
1703 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1704 * the returned dentry, so long as its parent's seqlock is checked after the
1705 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1706 * is formed, giving integrity down the path walk.
1707 */
1708struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1709 unsigned *seq, struct inode **inode)
1710{
1711 unsigned int len = name->len;
1712 unsigned int hash = name->hash;
1713 const unsigned char *str = name->name;
b07ad996 1714 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1715 struct hlist_bl_node *node;
31e6b01f
NP
1716 struct dentry *dentry;
1717
1718 /*
1719 * Note: There is significant duplication with __d_lookup_rcu which is
1720 * required to prevent single threaded performance regressions
1721 * especially on architectures where smp_rmb (in seqcounts) are costly.
1722 * Keep the two functions in sync.
1723 */
1724
1725 /*
1726 * The hash list is protected using RCU.
1727 *
1728 * Carefully use d_seq when comparing a candidate dentry, to avoid
1729 * races with d_move().
1730 *
1731 * It is possible that concurrent renames can mess up our list
1732 * walk here and result in missing our dentry, resulting in the
1733 * false-negative result. d_lookup() protects against concurrent
1734 * renames using rename_lock seqlock.
1735 *
b0a4bb83 1736 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1737 */
b07ad996 1738 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1739 struct inode *i;
1740 const char *tname;
1741 int tlen;
1742
1743 if (dentry->d_name.hash != hash)
1744 continue;
1745
1746seqretry:
1747 *seq = read_seqcount_begin(&dentry->d_seq);
1748 if (dentry->d_parent != parent)
1749 continue;
1750 if (d_unhashed(dentry))
1751 continue;
1752 tlen = dentry->d_name.len;
1753 tname = dentry->d_name.name;
1754 i = dentry->d_inode;
e1bb5782 1755 prefetch(tname);
31e6b01f
NP
1756 /*
1757 * This seqcount check is required to ensure name and
1758 * len are loaded atomically, so as not to walk off the
1759 * edge of memory when walking. If we could load this
1760 * atomically some other way, we could drop this check.
1761 */
1762 if (read_seqcount_retry(&dentry->d_seq, *seq))
1763 goto seqretry;
830c0f0e 1764 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
31e6b01f
NP
1765 if (parent->d_op->d_compare(parent, *inode,
1766 dentry, i,
1767 tlen, tname, name))
1768 continue;
1769 } else {
9d55c369 1770 if (dentry_cmp(tname, tlen, str, len))
31e6b01f
NP
1771 continue;
1772 }
1773 /*
1774 * No extra seqcount check is required after the name
1775 * compare. The caller must perform a seqcount check in
1776 * order to do anything useful with the returned dentry
1777 * anyway.
1778 */
1779 *inode = i;
1780 return dentry;
1781 }
1782 return NULL;
1783}
1784
1da177e4
LT
1785/**
1786 * d_lookup - search for a dentry
1787 * @parent: parent dentry
1788 * @name: qstr of name we wish to find
b04f784e 1789 * Returns: dentry, or NULL
1da177e4 1790 *
b04f784e
NP
1791 * d_lookup searches the children of the parent dentry for the name in
1792 * question. If the dentry is found its reference count is incremented and the
1793 * dentry is returned. The caller must use dput to free the entry when it has
1794 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1795 */
31e6b01f 1796struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1da177e4 1797{
31e6b01f 1798 struct dentry *dentry;
949854d0 1799 unsigned seq;
1da177e4
LT
1800
1801 do {
1802 seq = read_seqbegin(&rename_lock);
1803 dentry = __d_lookup(parent, name);
1804 if (dentry)
1805 break;
1806 } while (read_seqretry(&rename_lock, seq));
1807 return dentry;
1808}
ec4f8605 1809EXPORT_SYMBOL(d_lookup);
1da177e4 1810
31e6b01f 1811/**
b04f784e
NP
1812 * __d_lookup - search for a dentry (racy)
1813 * @parent: parent dentry
1814 * @name: qstr of name we wish to find
1815 * Returns: dentry, or NULL
1816 *
1817 * __d_lookup is like d_lookup, however it may (rarely) return a
1818 * false-negative result due to unrelated rename activity.
1819 *
1820 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1821 * however it must be used carefully, eg. with a following d_lookup in
1822 * the case of failure.
1823 *
1824 * __d_lookup callers must be commented.
1825 */
31e6b01f 1826struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1da177e4
LT
1827{
1828 unsigned int len = name->len;
1829 unsigned int hash = name->hash;
1830 const unsigned char *str = name->name;
b07ad996 1831 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1832 struct hlist_bl_node *node;
31e6b01f 1833 struct dentry *found = NULL;
665a7583 1834 struct dentry *dentry;
1da177e4 1835
31e6b01f
NP
1836 /*
1837 * Note: There is significant duplication with __d_lookup_rcu which is
1838 * required to prevent single threaded performance regressions
1839 * especially on architectures where smp_rmb (in seqcounts) are costly.
1840 * Keep the two functions in sync.
1841 */
1842
b04f784e
NP
1843 /*
1844 * The hash list is protected using RCU.
1845 *
1846 * Take d_lock when comparing a candidate dentry, to avoid races
1847 * with d_move().
1848 *
1849 * It is possible that concurrent renames can mess up our list
1850 * walk here and result in missing our dentry, resulting in the
1851 * false-negative result. d_lookup() protects against concurrent
1852 * renames using rename_lock seqlock.
1853 *
b0a4bb83 1854 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1855 */
1da177e4
LT
1856 rcu_read_lock();
1857
b07ad996 1858 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1859 const char *tname;
1860 int tlen;
1da177e4 1861
1da177e4
LT
1862 if (dentry->d_name.hash != hash)
1863 continue;
1da177e4
LT
1864
1865 spin_lock(&dentry->d_lock);
1da177e4
LT
1866 if (dentry->d_parent != parent)
1867 goto next;
d0185c08
LT
1868 if (d_unhashed(dentry))
1869 goto next;
1870
1da177e4
LT
1871 /*
1872 * It is safe to compare names since d_move() cannot
1873 * change the qstr (protected by d_lock).
1874 */
31e6b01f
NP
1875 tlen = dentry->d_name.len;
1876 tname = dentry->d_name.name;
fb045adb 1877 if (parent->d_flags & DCACHE_OP_COMPARE) {
621e155a
NP
1878 if (parent->d_op->d_compare(parent, parent->d_inode,
1879 dentry, dentry->d_inode,
31e6b01f 1880 tlen, tname, name))
1da177e4
LT
1881 goto next;
1882 } else {
9d55c369 1883 if (dentry_cmp(tname, tlen, str, len))
1da177e4
LT
1884 goto next;
1885 }
1886
b7ab39f6 1887 dentry->d_count++;
d0185c08 1888 found = dentry;
1da177e4
LT
1889 spin_unlock(&dentry->d_lock);
1890 break;
1891next:
1892 spin_unlock(&dentry->d_lock);
1893 }
1894 rcu_read_unlock();
1895
1896 return found;
1897}
1898
3e7e241f
EB
1899/**
1900 * d_hash_and_lookup - hash the qstr then search for a dentry
1901 * @dir: Directory to search in
1902 * @name: qstr of name we wish to find
1903 *
1904 * On hash failure or on lookup failure NULL is returned.
1905 */
1906struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1907{
1908 struct dentry *dentry = NULL;
1909
1910 /*
1911 * Check for a fs-specific hash function. Note that we must
1912 * calculate the standard hash first, as the d_op->d_hash()
1913 * routine may choose to leave the hash value unchanged.
1914 */
1915 name->hash = full_name_hash(name->name, name->len);
fb045adb 1916 if (dir->d_flags & DCACHE_OP_HASH) {
b1e6a015 1917 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
1918 goto out;
1919 }
1920 dentry = d_lookup(dir, name);
1921out:
1922 return dentry;
1923}
1924
1da177e4 1925/**
786a5e15 1926 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 1927 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 1928 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
1929 *
1930 * An insecure source has sent us a dentry, here we verify it and dget() it.
1931 * This is used by ncpfs in its readdir implementation.
1932 * Zero is returned in the dentry is invalid.
786a5e15
NP
1933 *
1934 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 1935 */
d3a23e16 1936int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 1937{
786a5e15 1938 struct dentry *child;
d3a23e16 1939
2fd6b7f5 1940 spin_lock(&dparent->d_lock);
786a5e15
NP
1941 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1942 if (dentry == child) {
2fd6b7f5 1943 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 1944 __dget_dlock(dentry);
2fd6b7f5
NP
1945 spin_unlock(&dentry->d_lock);
1946 spin_unlock(&dparent->d_lock);
1da177e4
LT
1947 return 1;
1948 }
1949 }
2fd6b7f5 1950 spin_unlock(&dparent->d_lock);
786a5e15 1951
1da177e4
LT
1952 return 0;
1953}
ec4f8605 1954EXPORT_SYMBOL(d_validate);
1da177e4
LT
1955
1956/*
1957 * When a file is deleted, we have two options:
1958 * - turn this dentry into a negative dentry
1959 * - unhash this dentry and free it.
1960 *
1961 * Usually, we want to just turn this into
1962 * a negative dentry, but if anybody else is
1963 * currently using the dentry or the inode
1964 * we can't do that and we fall back on removing
1965 * it from the hash queues and waiting for
1966 * it to be deleted later when it has no users
1967 */
1968
1969/**
1970 * d_delete - delete a dentry
1971 * @dentry: The dentry to delete
1972 *
1973 * Turn the dentry into a negative dentry if possible, otherwise
1974 * remove it from the hash queues so it can be deleted later
1975 */
1976
1977void d_delete(struct dentry * dentry)
1978{
873feea0 1979 struct inode *inode;
7a91bf7f 1980 int isdir = 0;
1da177e4
LT
1981 /*
1982 * Are we the only user?
1983 */
357f8e65 1984again:
1da177e4 1985 spin_lock(&dentry->d_lock);
873feea0
NP
1986 inode = dentry->d_inode;
1987 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 1988 if (dentry->d_count == 1) {
873feea0 1989 if (inode && !spin_trylock(&inode->i_lock)) {
357f8e65
NP
1990 spin_unlock(&dentry->d_lock);
1991 cpu_relax();
1992 goto again;
1993 }
13e3c5e5 1994 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 1995 dentry_unlink_inode(dentry);
7a91bf7f 1996 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
1997 return;
1998 }
1999
2000 if (!d_unhashed(dentry))
2001 __d_drop(dentry);
2002
2003 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2004
2005 fsnotify_nameremove(dentry, isdir);
1da177e4 2006}
ec4f8605 2007EXPORT_SYMBOL(d_delete);
1da177e4 2008
b07ad996 2009static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2010{
ceb5bdc2 2011 BUG_ON(!d_unhashed(entry));
1879fd6a 2012 hlist_bl_lock(b);
dea3667b 2013 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2014 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2015 hlist_bl_unlock(b);
1da177e4
LT
2016}
2017
770bfad8
DH
2018static void _d_rehash(struct dentry * entry)
2019{
2020 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2021}
2022
1da177e4
LT
2023/**
2024 * d_rehash - add an entry back to the hash
2025 * @entry: dentry to add to the hash
2026 *
2027 * Adds a dentry to the hash according to its name.
2028 */
2029
2030void d_rehash(struct dentry * entry)
2031{
1da177e4 2032 spin_lock(&entry->d_lock);
770bfad8 2033 _d_rehash(entry);
1da177e4 2034 spin_unlock(&entry->d_lock);
1da177e4 2035}
ec4f8605 2036EXPORT_SYMBOL(d_rehash);
1da177e4 2037
fb2d5b86
NP
2038/**
2039 * dentry_update_name_case - update case insensitive dentry with a new name
2040 * @dentry: dentry to be updated
2041 * @name: new name
2042 *
2043 * Update a case insensitive dentry with new case of name.
2044 *
2045 * dentry must have been returned by d_lookup with name @name. Old and new
2046 * name lengths must match (ie. no d_compare which allows mismatched name
2047 * lengths).
2048 *
2049 * Parent inode i_mutex must be held over d_lookup and into this call (to
2050 * keep renames and concurrent inserts, and readdir(2) away).
2051 */
2052void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2053{
7ebfa57f 2054 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2055 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2056
fb2d5b86 2057 spin_lock(&dentry->d_lock);
31e6b01f 2058 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2059 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2060 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2061 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2062}
2063EXPORT_SYMBOL(dentry_update_name_case);
2064
1da177e4
LT
2065static void switch_names(struct dentry *dentry, struct dentry *target)
2066{
2067 if (dname_external(target)) {
2068 if (dname_external(dentry)) {
2069 /*
2070 * Both external: swap the pointers
2071 */
9a8d5bb4 2072 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2073 } else {
2074 /*
2075 * dentry:internal, target:external. Steal target's
2076 * storage and make target internal.
2077 */
321bcf92
BF
2078 memcpy(target->d_iname, dentry->d_name.name,
2079 dentry->d_name.len + 1);
1da177e4
LT
2080 dentry->d_name.name = target->d_name.name;
2081 target->d_name.name = target->d_iname;
2082 }
2083 } else {
2084 if (dname_external(dentry)) {
2085 /*
2086 * dentry:external, target:internal. Give dentry's
2087 * storage to target and make dentry internal
2088 */
2089 memcpy(dentry->d_iname, target->d_name.name,
2090 target->d_name.len + 1);
2091 target->d_name.name = dentry->d_name.name;
2092 dentry->d_name.name = dentry->d_iname;
2093 } else {
2094 /*
2095 * Both are internal. Just copy target to dentry
2096 */
2097 memcpy(dentry->d_iname, target->d_name.name,
2098 target->d_name.len + 1);
dc711ca3
AV
2099 dentry->d_name.len = target->d_name.len;
2100 return;
1da177e4
LT
2101 }
2102 }
9a8d5bb4 2103 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2104}
2105
2fd6b7f5
NP
2106static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2107{
2108 /*
2109 * XXXX: do we really need to take target->d_lock?
2110 */
2111 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2112 spin_lock(&target->d_parent->d_lock);
2113 else {
2114 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2115 spin_lock(&dentry->d_parent->d_lock);
2116 spin_lock_nested(&target->d_parent->d_lock,
2117 DENTRY_D_LOCK_NESTED);
2118 } else {
2119 spin_lock(&target->d_parent->d_lock);
2120 spin_lock_nested(&dentry->d_parent->d_lock,
2121 DENTRY_D_LOCK_NESTED);
2122 }
2123 }
2124 if (target < dentry) {
2125 spin_lock_nested(&target->d_lock, 2);
2126 spin_lock_nested(&dentry->d_lock, 3);
2127 } else {
2128 spin_lock_nested(&dentry->d_lock, 2);
2129 spin_lock_nested(&target->d_lock, 3);
2130 }
2131}
2132
2133static void dentry_unlock_parents_for_move(struct dentry *dentry,
2134 struct dentry *target)
2135{
2136 if (target->d_parent != dentry->d_parent)
2137 spin_unlock(&dentry->d_parent->d_lock);
2138 if (target->d_parent != target)
2139 spin_unlock(&target->d_parent->d_lock);
2140}
2141
1da177e4 2142/*
2fd6b7f5
NP
2143 * When switching names, the actual string doesn't strictly have to
2144 * be preserved in the target - because we're dropping the target
2145 * anyway. As such, we can just do a simple memcpy() to copy over
2146 * the new name before we switch.
2147 *
2148 * Note that we have to be a lot more careful about getting the hash
2149 * switched - we have to switch the hash value properly even if it
2150 * then no longer matches the actual (corrupted) string of the target.
2151 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2152 */
9eaef27b 2153/*
18367501 2154 * __d_move - move a dentry
1da177e4
LT
2155 * @dentry: entry to move
2156 * @target: new dentry
2157 *
2158 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2159 * dcache entries should not be moved in this way. Caller must hold
2160 * rename_lock, the i_mutex of the source and target directories,
2161 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2162 */
18367501 2163static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2164{
1da177e4
LT
2165 if (!dentry->d_inode)
2166 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2167
2fd6b7f5
NP
2168 BUG_ON(d_ancestor(dentry, target));
2169 BUG_ON(d_ancestor(target, dentry));
2170
2fd6b7f5 2171 dentry_lock_for_move(dentry, target);
1da177e4 2172
31e6b01f
NP
2173 write_seqcount_begin(&dentry->d_seq);
2174 write_seqcount_begin(&target->d_seq);
2175
ceb5bdc2
NP
2176 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2177
2178 /*
2179 * Move the dentry to the target hash queue. Don't bother checking
2180 * for the same hash queue because of how unlikely it is.
2181 */
2182 __d_drop(dentry);
789680d1 2183 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2184
2185 /* Unhash the target: dput() will then get rid of it */
2186 __d_drop(target);
2187
5160ee6f
ED
2188 list_del(&dentry->d_u.d_child);
2189 list_del(&target->d_u.d_child);
1da177e4
LT
2190
2191 /* Switch the names.. */
2192 switch_names(dentry, target);
9a8d5bb4 2193 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2194
2195 /* ... and switch the parents */
2196 if (IS_ROOT(dentry)) {
2197 dentry->d_parent = target->d_parent;
2198 target->d_parent = target;
5160ee6f 2199 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2200 } else {
9a8d5bb4 2201 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2202
2203 /* And add them back to the (new) parent lists */
5160ee6f 2204 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2205 }
2206
5160ee6f 2207 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2208
31e6b01f
NP
2209 write_seqcount_end(&target->d_seq);
2210 write_seqcount_end(&dentry->d_seq);
2211
2fd6b7f5 2212 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2213 spin_unlock(&target->d_lock);
c32ccd87 2214 fsnotify_d_move(dentry);
1da177e4 2215 spin_unlock(&dentry->d_lock);
18367501
AV
2216}
2217
2218/*
2219 * d_move - move a dentry
2220 * @dentry: entry to move
2221 * @target: new dentry
2222 *
2223 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2224 * dcache entries should not be moved in this way. See the locking
2225 * requirements for __d_move.
18367501
AV
2226 */
2227void d_move(struct dentry *dentry, struct dentry *target)
2228{
2229 write_seqlock(&rename_lock);
2230 __d_move(dentry, target);
1da177e4 2231 write_sequnlock(&rename_lock);
9eaef27b 2232}
ec4f8605 2233EXPORT_SYMBOL(d_move);
1da177e4 2234
e2761a11
OH
2235/**
2236 * d_ancestor - search for an ancestor
2237 * @p1: ancestor dentry
2238 * @p2: child dentry
2239 *
2240 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2241 * an ancestor of p2, else NULL.
9eaef27b 2242 */
e2761a11 2243struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2244{
2245 struct dentry *p;
2246
871c0067 2247 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2248 if (p->d_parent == p1)
e2761a11 2249 return p;
9eaef27b 2250 }
e2761a11 2251 return NULL;
9eaef27b
TM
2252}
2253
2254/*
2255 * This helper attempts to cope with remotely renamed directories
2256 *
2257 * It assumes that the caller is already holding
18367501 2258 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2259 *
2260 * Note: If ever the locking in lock_rename() changes, then please
2261 * remember to update this too...
9eaef27b 2262 */
873feea0
NP
2263static struct dentry *__d_unalias(struct inode *inode,
2264 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2265{
2266 struct mutex *m1 = NULL, *m2 = NULL;
2267 struct dentry *ret;
2268
2269 /* If alias and dentry share a parent, then no extra locks required */
2270 if (alias->d_parent == dentry->d_parent)
2271 goto out_unalias;
2272
9eaef27b
TM
2273 /* See lock_rename() */
2274 ret = ERR_PTR(-EBUSY);
2275 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2276 goto out_err;
2277 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2278 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2279 goto out_err;
2280 m2 = &alias->d_parent->d_inode->i_mutex;
2281out_unalias:
18367501 2282 __d_move(alias, dentry);
9eaef27b
TM
2283 ret = alias;
2284out_err:
873feea0 2285 spin_unlock(&inode->i_lock);
9eaef27b
TM
2286 if (m2)
2287 mutex_unlock(m2);
2288 if (m1)
2289 mutex_unlock(m1);
2290 return ret;
2291}
2292
770bfad8
DH
2293/*
2294 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2295 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2296 * returns with anon->d_lock held!
770bfad8
DH
2297 */
2298static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2299{
2300 struct dentry *dparent, *aparent;
2301
2fd6b7f5 2302 dentry_lock_for_move(anon, dentry);
770bfad8 2303
31e6b01f
NP
2304 write_seqcount_begin(&dentry->d_seq);
2305 write_seqcount_begin(&anon->d_seq);
2306
770bfad8
DH
2307 dparent = dentry->d_parent;
2308 aparent = anon->d_parent;
2309
2fd6b7f5
NP
2310 switch_names(dentry, anon);
2311 swap(dentry->d_name.hash, anon->d_name.hash);
2312
770bfad8
DH
2313 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2314 list_del(&dentry->d_u.d_child);
2315 if (!IS_ROOT(dentry))
2316 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2317 else
2318 INIT_LIST_HEAD(&dentry->d_u.d_child);
2319
2320 anon->d_parent = (dparent == dentry) ? anon : dparent;
2321 list_del(&anon->d_u.d_child);
2322 if (!IS_ROOT(anon))
2323 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2324 else
2325 INIT_LIST_HEAD(&anon->d_u.d_child);
2326
31e6b01f
NP
2327 write_seqcount_end(&dentry->d_seq);
2328 write_seqcount_end(&anon->d_seq);
2329
2fd6b7f5
NP
2330 dentry_unlock_parents_for_move(anon, dentry);
2331 spin_unlock(&dentry->d_lock);
2332
2333 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2334 anon->d_flags &= ~DCACHE_DISCONNECTED;
2335}
2336
2337/**
2338 * d_materialise_unique - introduce an inode into the tree
2339 * @dentry: candidate dentry
2340 * @inode: inode to bind to the dentry, to which aliases may be attached
2341 *
2342 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2343 * root directory alias in its place if there is one. Caller must hold the
2344 * i_mutex of the parent directory.
770bfad8
DH
2345 */
2346struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2347{
9eaef27b 2348 struct dentry *actual;
770bfad8
DH
2349
2350 BUG_ON(!d_unhashed(dentry));
2351
770bfad8
DH
2352 if (!inode) {
2353 actual = dentry;
360da900 2354 __d_instantiate(dentry, NULL);
357f8e65
NP
2355 d_rehash(actual);
2356 goto out_nolock;
770bfad8
DH
2357 }
2358
873feea0 2359 spin_lock(&inode->i_lock);
357f8e65 2360
9eaef27b
TM
2361 if (S_ISDIR(inode->i_mode)) {
2362 struct dentry *alias;
2363
2364 /* Does an aliased dentry already exist? */
2365 alias = __d_find_alias(inode, 0);
2366 if (alias) {
2367 actual = alias;
18367501
AV
2368 write_seqlock(&rename_lock);
2369
2370 if (d_ancestor(alias, dentry)) {
2371 /* Check for loops */
2372 actual = ERR_PTR(-ELOOP);
2373 } else if (IS_ROOT(alias)) {
2374 /* Is this an anonymous mountpoint that we
2375 * could splice into our tree? */
9eaef27b 2376 __d_materialise_dentry(dentry, alias);
18367501 2377 write_sequnlock(&rename_lock);
9eaef27b
TM
2378 __d_drop(alias);
2379 goto found;
18367501
AV
2380 } else {
2381 /* Nope, but we must(!) avoid directory
2382 * aliasing */
2383 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2384 }
18367501 2385 write_sequnlock(&rename_lock);
9eaef27b
TM
2386 if (IS_ERR(actual))
2387 dput(alias);
2388 goto out_nolock;
2389 }
770bfad8
DH
2390 }
2391
2392 /* Add a unique reference */
2393 actual = __d_instantiate_unique(dentry, inode);
2394 if (!actual)
2395 actual = dentry;
357f8e65
NP
2396 else
2397 BUG_ON(!d_unhashed(actual));
770bfad8 2398
770bfad8
DH
2399 spin_lock(&actual->d_lock);
2400found:
2401 _d_rehash(actual);
2402 spin_unlock(&actual->d_lock);
873feea0 2403 spin_unlock(&inode->i_lock);
9eaef27b 2404out_nolock:
770bfad8
DH
2405 if (actual == dentry) {
2406 security_d_instantiate(dentry, inode);
2407 return NULL;
2408 }
2409
2410 iput(inode);
2411 return actual;
770bfad8 2412}
ec4f8605 2413EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2414
cdd16d02 2415static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2416{
2417 *buflen -= namelen;
2418 if (*buflen < 0)
2419 return -ENAMETOOLONG;
2420 *buffer -= namelen;
2421 memcpy(*buffer, str, namelen);
2422 return 0;
2423}
2424
cdd16d02
MS
2425static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2426{
2427 return prepend(buffer, buflen, name->name, name->len);
2428}
2429
1da177e4 2430/**
208898c1 2431 * prepend_path - Prepend path string to a buffer
9d1bc601
MS
2432 * @path: the dentry/vfsmount to report
2433 * @root: root vfsmnt/dentry (may be modified by this function)
f2eb6575
MS
2434 * @buffer: pointer to the end of the buffer
2435 * @buflen: pointer to buffer length
552ce544 2436 *
949854d0 2437 * Caller holds the rename_lock.
9d1bc601
MS
2438 *
2439 * If path is not reachable from the supplied root, then the value of
2440 * root is changed (without modifying refcounts).
1da177e4 2441 */
f2eb6575
MS
2442static int prepend_path(const struct path *path, struct path *root,
2443 char **buffer, int *buflen)
1da177e4 2444{
9d1bc601
MS
2445 struct dentry *dentry = path->dentry;
2446 struct vfsmount *vfsmnt = path->mnt;
f2eb6575
MS
2447 bool slash = false;
2448 int error = 0;
6092d048 2449
99b7db7b 2450 br_read_lock(vfsmount_lock);
f2eb6575 2451 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2452 struct dentry * parent;
2453
1da177e4 2454 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2455 /* Global root? */
1da177e4 2456 if (vfsmnt->mnt_parent == vfsmnt) {
1da177e4
LT
2457 goto global_root;
2458 }
2459 dentry = vfsmnt->mnt_mountpoint;
2460 vfsmnt = vfsmnt->mnt_parent;
1da177e4
LT
2461 continue;
2462 }
2463 parent = dentry->d_parent;
2464 prefetch(parent);
9abca360 2465 spin_lock(&dentry->d_lock);
f2eb6575 2466 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2467 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2468 if (!error)
2469 error = prepend(buffer, buflen, "/", 1);
2470 if (error)
2471 break;
2472
2473 slash = true;
1da177e4
LT
2474 dentry = parent;
2475 }
2476
be285c71 2477out:
f2eb6575
MS
2478 if (!error && !slash)
2479 error = prepend(buffer, buflen, "/", 1);
2480
99b7db7b 2481 br_read_unlock(vfsmount_lock);
f2eb6575 2482 return error;
1da177e4
LT
2483
2484global_root:
98dc568b
MS
2485 /*
2486 * Filesystems needing to implement special "root names"
2487 * should do so with ->d_dname()
2488 */
2489 if (IS_ROOT(dentry) &&
2490 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2491 WARN(1, "Root dentry has weird name <%.*s>\n",
2492 (int) dentry->d_name.len, dentry->d_name.name);
2493 }
9d1bc601
MS
2494 root->mnt = vfsmnt;
2495 root->dentry = dentry;
be285c71 2496 goto out;
f2eb6575 2497}
be285c71 2498
f2eb6575
MS
2499/**
2500 * __d_path - return the path of a dentry
2501 * @path: the dentry/vfsmount to report
2502 * @root: root vfsmnt/dentry (may be modified by this function)
cd956a1c 2503 * @buf: buffer to return value in
f2eb6575
MS
2504 * @buflen: buffer length
2505 *
ffd1f4ed 2506 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2507 *
2508 * Returns a pointer into the buffer or an error code if the
2509 * path was too long.
2510 *
be148247 2511 * "buflen" should be positive.
f2eb6575
MS
2512 *
2513 * If path is not reachable from the supplied root, then the value of
2514 * root is changed (without modifying refcounts).
2515 */
2516char *__d_path(const struct path *path, struct path *root,
2517 char *buf, int buflen)
2518{
2519 char *res = buf + buflen;
2520 int error;
2521
2522 prepend(&res, &buflen, "\0", 1);
949854d0 2523 write_seqlock(&rename_lock);
f2eb6575 2524 error = prepend_path(path, root, &res, &buflen);
949854d0 2525 write_sequnlock(&rename_lock);
be148247 2526
f2eb6575
MS
2527 if (error)
2528 return ERR_PTR(error);
f2eb6575 2529 return res;
1da177e4
LT
2530}
2531
ffd1f4ed
MS
2532/*
2533 * same as __d_path but appends "(deleted)" for unlinked files.
2534 */
2535static int path_with_deleted(const struct path *path, struct path *root,
2536 char **buf, int *buflen)
2537{
2538 prepend(buf, buflen, "\0", 1);
2539 if (d_unlinked(path->dentry)) {
2540 int error = prepend(buf, buflen, " (deleted)", 10);
2541 if (error)
2542 return error;
2543 }
2544
2545 return prepend_path(path, root, buf, buflen);
2546}
2547
8df9d1a4
MS
2548static int prepend_unreachable(char **buffer, int *buflen)
2549{
2550 return prepend(buffer, buflen, "(unreachable)", 13);
2551}
2552
a03a8a70
JB
2553/**
2554 * d_path - return the path of a dentry
cf28b486 2555 * @path: path to report
a03a8a70
JB
2556 * @buf: buffer to return value in
2557 * @buflen: buffer length
2558 *
2559 * Convert a dentry into an ASCII path name. If the entry has been deleted
2560 * the string " (deleted)" is appended. Note that this is ambiguous.
2561 *
52afeefb
AV
2562 * Returns a pointer into the buffer or an error code if the path was
2563 * too long. Note: Callers should use the returned pointer, not the passed
2564 * in buffer, to use the name! The implementation often starts at an offset
2565 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2566 *
31f3e0b3 2567 * "buflen" should be positive.
a03a8a70 2568 */
20d4fdc1 2569char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2570{
ffd1f4ed 2571 char *res = buf + buflen;
6ac08c39 2572 struct path root;
9d1bc601 2573 struct path tmp;
ffd1f4ed 2574 int error;
1da177e4 2575
c23fbb6b
ED
2576 /*
2577 * We have various synthetic filesystems that never get mounted. On
2578 * these filesystems dentries are never used for lookup purposes, and
2579 * thus don't need to be hashed. They also don't need a name until a
2580 * user wants to identify the object in /proc/pid/fd/. The little hack
2581 * below allows us to generate a name for these objects on demand:
2582 */
cf28b486
JB
2583 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2584 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2585
f7ad3c6b 2586 get_fs_root(current->fs, &root);
949854d0 2587 write_seqlock(&rename_lock);
9d1bc601 2588 tmp = root;
ffd1f4ed
MS
2589 error = path_with_deleted(path, &tmp, &res, &buflen);
2590 if (error)
2591 res = ERR_PTR(error);
949854d0 2592 write_sequnlock(&rename_lock);
6ac08c39 2593 path_put(&root);
1da177e4
LT
2594 return res;
2595}
ec4f8605 2596EXPORT_SYMBOL(d_path);
1da177e4 2597
8df9d1a4
MS
2598/**
2599 * d_path_with_unreachable - return the path of a dentry
2600 * @path: path to report
2601 * @buf: buffer to return value in
2602 * @buflen: buffer length
2603 *
2604 * The difference from d_path() is that this prepends "(unreachable)"
2605 * to paths which are unreachable from the current process' root.
2606 */
2607char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2608{
2609 char *res = buf + buflen;
2610 struct path root;
2611 struct path tmp;
2612 int error;
2613
2614 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2615 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2616
2617 get_fs_root(current->fs, &root);
949854d0 2618 write_seqlock(&rename_lock);
8df9d1a4
MS
2619 tmp = root;
2620 error = path_with_deleted(path, &tmp, &res, &buflen);
2621 if (!error && !path_equal(&tmp, &root))
2622 error = prepend_unreachable(&res, &buflen);
949854d0 2623 write_sequnlock(&rename_lock);
8df9d1a4
MS
2624 path_put(&root);
2625 if (error)
2626 res = ERR_PTR(error);
2627
2628 return res;
2629}
2630
c23fbb6b
ED
2631/*
2632 * Helper function for dentry_operations.d_dname() members
2633 */
2634char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2635 const char *fmt, ...)
2636{
2637 va_list args;
2638 char temp[64];
2639 int sz;
2640
2641 va_start(args, fmt);
2642 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2643 va_end(args);
2644
2645 if (sz > sizeof(temp) || sz > buflen)
2646 return ERR_PTR(-ENAMETOOLONG);
2647
2648 buffer += buflen - sz;
2649 return memcpy(buffer, temp, sz);
2650}
2651
6092d048
RP
2652/*
2653 * Write full pathname from the root of the filesystem into the buffer.
2654 */
ec2447c2 2655static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2656{
2657 char *end = buf + buflen;
2658 char *retval;
2659
6092d048 2660 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2661 if (buflen < 1)
2662 goto Elong;
2663 /* Get '/' right */
2664 retval = end-1;
2665 *retval = '/';
2666
cdd16d02
MS
2667 while (!IS_ROOT(dentry)) {
2668 struct dentry *parent = dentry->d_parent;
9abca360 2669 int error;
6092d048 2670
6092d048 2671 prefetch(parent);
9abca360
NP
2672 spin_lock(&dentry->d_lock);
2673 error = prepend_name(&end, &buflen, &dentry->d_name);
2674 spin_unlock(&dentry->d_lock);
2675 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2676 goto Elong;
2677
2678 retval = end;
2679 dentry = parent;
2680 }
c103135c
AV
2681 return retval;
2682Elong:
2683 return ERR_PTR(-ENAMETOOLONG);
2684}
ec2447c2
NP
2685
2686char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2687{
2688 char *retval;
2689
949854d0 2690 write_seqlock(&rename_lock);
ec2447c2 2691 retval = __dentry_path(dentry, buf, buflen);
949854d0 2692 write_sequnlock(&rename_lock);
ec2447c2
NP
2693
2694 return retval;
2695}
2696EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2697
2698char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2699{
2700 char *p = NULL;
2701 char *retval;
2702
949854d0 2703 write_seqlock(&rename_lock);
c103135c
AV
2704 if (d_unlinked(dentry)) {
2705 p = buf + buflen;
2706 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2707 goto Elong;
2708 buflen++;
2709 }
2710 retval = __dentry_path(dentry, buf, buflen);
949854d0 2711 write_sequnlock(&rename_lock);
c103135c
AV
2712 if (!IS_ERR(retval) && p)
2713 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2714 return retval;
2715Elong:
6092d048
RP
2716 return ERR_PTR(-ENAMETOOLONG);
2717}
2718
1da177e4
LT
2719/*
2720 * NOTE! The user-level library version returns a
2721 * character pointer. The kernel system call just
2722 * returns the length of the buffer filled (which
2723 * includes the ending '\0' character), or a negative
2724 * error value. So libc would do something like
2725 *
2726 * char *getcwd(char * buf, size_t size)
2727 * {
2728 * int retval;
2729 *
2730 * retval = sys_getcwd(buf, size);
2731 * if (retval >= 0)
2732 * return buf;
2733 * errno = -retval;
2734 * return NULL;
2735 * }
2736 */
3cdad428 2737SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2738{
552ce544 2739 int error;
6ac08c39 2740 struct path pwd, root;
552ce544 2741 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2742
2743 if (!page)
2744 return -ENOMEM;
2745
f7ad3c6b 2746 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2747
552ce544 2748 error = -ENOENT;
949854d0 2749 write_seqlock(&rename_lock);
f3da392e 2750 if (!d_unlinked(pwd.dentry)) {
552ce544 2751 unsigned long len;
9d1bc601 2752 struct path tmp = root;
8df9d1a4
MS
2753 char *cwd = page + PAGE_SIZE;
2754 int buflen = PAGE_SIZE;
1da177e4 2755
8df9d1a4
MS
2756 prepend(&cwd, &buflen, "\0", 1);
2757 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
949854d0 2758 write_sequnlock(&rename_lock);
552ce544 2759
8df9d1a4 2760 if (error)
552ce544
LT
2761 goto out;
2762
8df9d1a4
MS
2763 /* Unreachable from current root */
2764 if (!path_equal(&tmp, &root)) {
2765 error = prepend_unreachable(&cwd, &buflen);
2766 if (error)
2767 goto out;
2768 }
2769
552ce544
LT
2770 error = -ERANGE;
2771 len = PAGE_SIZE + page - cwd;
2772 if (len <= size) {
2773 error = len;
2774 if (copy_to_user(buf, cwd, len))
2775 error = -EFAULT;
2776 }
949854d0
NP
2777 } else {
2778 write_sequnlock(&rename_lock);
949854d0 2779 }
1da177e4
LT
2780
2781out:
6ac08c39
JB
2782 path_put(&pwd);
2783 path_put(&root);
1da177e4
LT
2784 free_page((unsigned long) page);
2785 return error;
2786}
2787
2788/*
2789 * Test whether new_dentry is a subdirectory of old_dentry.
2790 *
2791 * Trivially implemented using the dcache structure
2792 */
2793
2794/**
2795 * is_subdir - is new dentry a subdirectory of old_dentry
2796 * @new_dentry: new dentry
2797 * @old_dentry: old dentry
2798 *
2799 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2800 * Returns 0 otherwise.
2801 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2802 */
2803
e2761a11 2804int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2805{
2806 int result;
949854d0 2807 unsigned seq;
1da177e4 2808
e2761a11
OH
2809 if (new_dentry == old_dentry)
2810 return 1;
2811
e2761a11 2812 do {
1da177e4 2813 /* for restarting inner loop in case of seq retry */
1da177e4 2814 seq = read_seqbegin(&rename_lock);
949854d0
NP
2815 /*
2816 * Need rcu_readlock to protect against the d_parent trashing
2817 * due to d_move
2818 */
2819 rcu_read_lock();
e2761a11 2820 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2821 result = 1;
e2761a11
OH
2822 else
2823 result = 0;
949854d0 2824 rcu_read_unlock();
1da177e4 2825 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2826
2827 return result;
2828}
2829
2096f759
AV
2830int path_is_under(struct path *path1, struct path *path2)
2831{
2832 struct vfsmount *mnt = path1->mnt;
2833 struct dentry *dentry = path1->dentry;
2834 int res;
99b7db7b
NP
2835
2836 br_read_lock(vfsmount_lock);
2096f759
AV
2837 if (mnt != path2->mnt) {
2838 for (;;) {
2839 if (mnt->mnt_parent == mnt) {
99b7db7b 2840 br_read_unlock(vfsmount_lock);
2096f759
AV
2841 return 0;
2842 }
2843 if (mnt->mnt_parent == path2->mnt)
2844 break;
2845 mnt = mnt->mnt_parent;
2846 }
2847 dentry = mnt->mnt_mountpoint;
2848 }
2849 res = is_subdir(dentry, path2->dentry);
99b7db7b 2850 br_read_unlock(vfsmount_lock);
2096f759
AV
2851 return res;
2852}
2853EXPORT_SYMBOL(path_is_under);
2854
1da177e4
LT
2855void d_genocide(struct dentry *root)
2856{
949854d0 2857 struct dentry *this_parent;
1da177e4 2858 struct list_head *next;
949854d0 2859 unsigned seq;
58db63d0 2860 int locked = 0;
1da177e4 2861
949854d0 2862 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2863again:
2864 this_parent = root;
2fd6b7f5 2865 spin_lock(&this_parent->d_lock);
1da177e4
LT
2866repeat:
2867 next = this_parent->d_subdirs.next;
2868resume:
2869 while (next != &this_parent->d_subdirs) {
2870 struct list_head *tmp = next;
5160ee6f 2871 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2872 next = tmp->next;
949854d0 2873
da502956
NP
2874 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2875 if (d_unhashed(dentry) || !dentry->d_inode) {
2876 spin_unlock(&dentry->d_lock);
1da177e4 2877 continue;
da502956 2878 }
1da177e4 2879 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2880 spin_unlock(&this_parent->d_lock);
2881 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2882 this_parent = dentry;
2fd6b7f5 2883 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2884 goto repeat;
2885 }
949854d0
NP
2886 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2887 dentry->d_flags |= DCACHE_GENOCIDE;
2888 dentry->d_count--;
2889 }
b7ab39f6 2890 spin_unlock(&dentry->d_lock);
1da177e4
LT
2891 }
2892 if (this_parent != root) {
c826cb7d 2893 struct dentry *child = this_parent;
949854d0
NP
2894 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2895 this_parent->d_flags |= DCACHE_GENOCIDE;
2896 this_parent->d_count--;
2897 }
c826cb7d
LT
2898 this_parent = try_to_ascend(this_parent, locked, seq);
2899 if (!this_parent)
949854d0 2900 goto rename_retry;
949854d0 2901 next = child->d_u.d_child.next;
1da177e4
LT
2902 goto resume;
2903 }
2fd6b7f5 2904 spin_unlock(&this_parent->d_lock);
58db63d0 2905 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2906 goto rename_retry;
58db63d0
NP
2907 if (locked)
2908 write_sequnlock(&rename_lock);
2909 return;
2910
2911rename_retry:
2912 locked = 1;
2913 write_seqlock(&rename_lock);
2914 goto again;
1da177e4
LT
2915}
2916
2917/**
2918 * find_inode_number - check for dentry with name
2919 * @dir: directory to check
2920 * @name: Name to find.
2921 *
2922 * Check whether a dentry already exists for the given name,
2923 * and return the inode number if it has an inode. Otherwise
2924 * 0 is returned.
2925 *
2926 * This routine is used to post-process directory listings for
2927 * filesystems using synthetic inode numbers, and is necessary
2928 * to keep getcwd() working.
2929 */
2930
2931ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2932{
2933 struct dentry * dentry;
2934 ino_t ino = 0;
2935
3e7e241f
EB
2936 dentry = d_hash_and_lookup(dir, name);
2937 if (dentry) {
1da177e4
LT
2938 if (dentry->d_inode)
2939 ino = dentry->d_inode->i_ino;
2940 dput(dentry);
2941 }
1da177e4
LT
2942 return ino;
2943}
ec4f8605 2944EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
2945
2946static __initdata unsigned long dhash_entries;
2947static int __init set_dhash_entries(char *str)
2948{
2949 if (!str)
2950 return 0;
2951 dhash_entries = simple_strtoul(str, &str, 0);
2952 return 1;
2953}
2954__setup("dhash_entries=", set_dhash_entries);
2955
2956static void __init dcache_init_early(void)
2957{
2958 int loop;
2959
2960 /* If hashes are distributed across NUMA nodes, defer
2961 * hash allocation until vmalloc space is available.
2962 */
2963 if (hashdist)
2964 return;
2965
2966 dentry_hashtable =
2967 alloc_large_system_hash("Dentry cache",
b07ad996 2968 sizeof(struct hlist_bl_head),
1da177e4
LT
2969 dhash_entries,
2970 13,
2971 HASH_EARLY,
2972 &d_hash_shift,
2973 &d_hash_mask,
2974 0);
2975
2976 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 2977 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
2978}
2979
74bf17cf 2980static void __init dcache_init(void)
1da177e4
LT
2981{
2982 int loop;
2983
2984 /*
2985 * A constructor could be added for stable state like the lists,
2986 * but it is probably not worth it because of the cache nature
2987 * of the dcache.
2988 */
0a31bd5f
CL
2989 dentry_cache = KMEM_CACHE(dentry,
2990 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
2991
2992 /* Hash may have been set up in dcache_init_early */
2993 if (!hashdist)
2994 return;
2995
2996 dentry_hashtable =
2997 alloc_large_system_hash("Dentry cache",
b07ad996 2998 sizeof(struct hlist_bl_head),
1da177e4
LT
2999 dhash_entries,
3000 13,
3001 0,
3002 &d_hash_shift,
3003 &d_hash_mask,
3004 0);
3005
3006 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 3007 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3008}
3009
3010/* SLAB cache for __getname() consumers */
e18b890b 3011struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3012EXPORT_SYMBOL(names_cachep);
1da177e4 3013
1da177e4
LT
3014EXPORT_SYMBOL(d_genocide);
3015
1da177e4
LT
3016void __init vfs_caches_init_early(void)
3017{
3018 dcache_init_early();
3019 inode_init_early();
3020}
3021
3022void __init vfs_caches_init(unsigned long mempages)
3023{
3024 unsigned long reserve;
3025
3026 /* Base hash sizes on available memory, with a reserve equal to
3027 150% of current kernel size */
3028
3029 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3030 mempages -= reserve;
3031
3032 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3033 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3034
74bf17cf
DC
3035 dcache_init();
3036 inode_init();
1da177e4 3037 files_init(mempages);
74bf17cf 3038 mnt_init();
1da177e4
LT
3039 bdev_cache_init();
3040 chrdev_init();
3041}