Merge commit '9f12600fe425bc28f0ccba034a77783c09c15af4' into for-linus
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0
NP
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
b23fb0a6 62 * - d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
482db906
AV
109 hash = hash + (hash >> d_hash_shift);
110 return dentry_hashtable + (hash & d_hash_mask);
ceb5bdc2
NP
111}
112
1da177e4
LT
113/* Statistics gathering. */
114struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116};
117
3942c07c 118static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 119static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
120
121#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
122
123/*
124 * Here we resort to our own counters instead of using generic per-cpu counters
125 * for consistency with what the vfs inode code does. We are expected to harvest
126 * better code and performance by having our own specialized counters.
127 *
128 * Please note that the loop is done over all possible CPUs, not over all online
129 * CPUs. The reason for this is that we don't want to play games with CPUs going
130 * on and off. If one of them goes off, we will just keep their counters.
131 *
132 * glommer: See cffbc8a for details, and if you ever intend to change this,
133 * please update all vfs counters to match.
134 */
3942c07c 135static long get_nr_dentry(void)
3e880fb5
NP
136{
137 int i;
3942c07c 138 long sum = 0;
3e880fb5
NP
139 for_each_possible_cpu(i)
140 sum += per_cpu(nr_dentry, i);
141 return sum < 0 ? 0 : sum;
142}
143
62d36c77
DC
144static long get_nr_dentry_unused(void)
145{
146 int i;
147 long sum = 0;
148 for_each_possible_cpu(i)
149 sum += per_cpu(nr_dentry_unused, i);
150 return sum < 0 ? 0 : sum;
151}
152
312d3ca8
CH
153int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
154 size_t *lenp, loff_t *ppos)
155{
3e880fb5 156 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 157 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 158 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
159}
160#endif
161
5483f18e
LT
162/*
163 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164 * The strings are both count bytes long, and count is non-zero.
165 */
e419b4cc
LT
166#ifdef CONFIG_DCACHE_WORD_ACCESS
167
168#include <asm/word-at-a-time.h>
169/*
170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171 * aligned allocation for this particular component. We don't
172 * strictly need the load_unaligned_zeropad() safety, but it
173 * doesn't hurt either.
174 *
175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176 * need the careful unaligned handling.
177 */
94753db5 178static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 179{
bfcfaa77 180 unsigned long a,b,mask;
bfcfaa77
LT
181
182 for (;;) {
12f8ad4b 183 a = *(unsigned long *)cs;
e419b4cc 184 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
185 if (tcount < sizeof(unsigned long))
186 break;
187 if (unlikely(a != b))
188 return 1;
189 cs += sizeof(unsigned long);
190 ct += sizeof(unsigned long);
191 tcount -= sizeof(unsigned long);
192 if (!tcount)
193 return 0;
194 }
a5c21dce 195 mask = bytemask_from_count(tcount);
bfcfaa77 196 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
197}
198
bfcfaa77 199#else
e419b4cc 200
94753db5 201static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 202{
5483f18e
LT
203 do {
204 if (*cs != *ct)
205 return 1;
206 cs++;
207 ct++;
208 tcount--;
209 } while (tcount);
210 return 0;
211}
212
e419b4cc
LT
213#endif
214
94753db5
LT
215static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216{
6326c71f 217 const unsigned char *cs;
94753db5
LT
218 /*
219 * Be careful about RCU walk racing with rename:
220 * use ACCESS_ONCE to fetch the name pointer.
221 *
222 * NOTE! Even if a rename will mean that the length
223 * was not loaded atomically, we don't care. The
224 * RCU walk will check the sequence count eventually,
225 * and catch it. And we won't overrun the buffer,
226 * because we're reading the name pointer atomically,
227 * and a dentry name is guaranteed to be properly
228 * terminated with a NUL byte.
229 *
230 * End result: even if 'len' is wrong, we'll exit
231 * early because the data cannot match (there can
232 * be no NUL in the ct/tcount data)
233 */
6326c71f
LT
234 cs = ACCESS_ONCE(dentry->d_name.name);
235 smp_read_barrier_depends();
236 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
237}
238
9c82ab9c 239static void __d_free(struct rcu_head *head)
1da177e4 240{
9c82ab9c
CH
241 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
242
b3d9b7a3 243 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
244 if (dname_external(dentry))
245 kfree(dentry->d_name.name);
246 kmem_cache_free(dentry_cache, dentry);
247}
248
b4f0354e
AV
249static void dentry_free(struct dentry *dentry)
250{
251 /* if dentry was never visible to RCU, immediate free is OK */
252 if (!(dentry->d_flags & DCACHE_RCUACCESS))
253 __d_free(&dentry->d_u.d_rcu);
254 else
255 call_rcu(&dentry->d_u.d_rcu, __d_free);
256}
257
31e6b01f
NP
258/**
259 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 260 * @dentry: the target dentry
31e6b01f
NP
261 * After this call, in-progress rcu-walk path lookup will fail. This
262 * should be called after unhashing, and after changing d_inode (if
263 * the dentry has not already been unhashed).
264 */
265static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
266{
267 assert_spin_locked(&dentry->d_lock);
268 /* Go through a barrier */
269 write_seqcount_barrier(&dentry->d_seq);
270}
271
1da177e4
LT
272/*
273 * Release the dentry's inode, using the filesystem
31e6b01f
NP
274 * d_iput() operation if defined. Dentry has no refcount
275 * and is unhashed.
1da177e4 276 */
858119e1 277static void dentry_iput(struct dentry * dentry)
31f3e0b3 278 __releases(dentry->d_lock)
873feea0 279 __releases(dentry->d_inode->i_lock)
1da177e4
LT
280{
281 struct inode *inode = dentry->d_inode;
282 if (inode) {
283 dentry->d_inode = NULL;
b3d9b7a3 284 hlist_del_init(&dentry->d_alias);
1da177e4 285 spin_unlock(&dentry->d_lock);
873feea0 286 spin_unlock(&inode->i_lock);
f805fbda
LT
287 if (!inode->i_nlink)
288 fsnotify_inoderemove(inode);
1da177e4
LT
289 if (dentry->d_op && dentry->d_op->d_iput)
290 dentry->d_op->d_iput(dentry, inode);
291 else
292 iput(inode);
293 } else {
294 spin_unlock(&dentry->d_lock);
1da177e4
LT
295 }
296}
297
31e6b01f
NP
298/*
299 * Release the dentry's inode, using the filesystem
300 * d_iput() operation if defined. dentry remains in-use.
301 */
302static void dentry_unlink_inode(struct dentry * dentry)
303 __releases(dentry->d_lock)
873feea0 304 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
305{
306 struct inode *inode = dentry->d_inode;
b18825a7 307 __d_clear_type(dentry);
31e6b01f 308 dentry->d_inode = NULL;
b3d9b7a3 309 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
310 dentry_rcuwalk_barrier(dentry);
311 spin_unlock(&dentry->d_lock);
873feea0 312 spin_unlock(&inode->i_lock);
31e6b01f
NP
313 if (!inode->i_nlink)
314 fsnotify_inoderemove(inode);
315 if (dentry->d_op && dentry->d_op->d_iput)
316 dentry->d_op->d_iput(dentry, inode);
317 else
318 iput(inode);
319}
320
89dc77bc
LT
321/*
322 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
323 * is in use - which includes both the "real" per-superblock
324 * LRU list _and_ the DCACHE_SHRINK_LIST use.
325 *
326 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
327 * on the shrink list (ie not on the superblock LRU list).
328 *
329 * The per-cpu "nr_dentry_unused" counters are updated with
330 * the DCACHE_LRU_LIST bit.
331 *
332 * These helper functions make sure we always follow the
333 * rules. d_lock must be held by the caller.
334 */
335#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
336static void d_lru_add(struct dentry *dentry)
337{
338 D_FLAG_VERIFY(dentry, 0);
339 dentry->d_flags |= DCACHE_LRU_LIST;
340 this_cpu_inc(nr_dentry_unused);
341 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
342}
343
344static void d_lru_del(struct dentry *dentry)
345{
346 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
347 dentry->d_flags &= ~DCACHE_LRU_LIST;
348 this_cpu_dec(nr_dentry_unused);
349 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
350}
351
352static void d_shrink_del(struct dentry *dentry)
353{
354 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
355 list_del_init(&dentry->d_lru);
356 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
357 this_cpu_dec(nr_dentry_unused);
358}
359
360static void d_shrink_add(struct dentry *dentry, struct list_head *list)
361{
362 D_FLAG_VERIFY(dentry, 0);
363 list_add(&dentry->d_lru, list);
364 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366}
367
368/*
369 * These can only be called under the global LRU lock, ie during the
370 * callback for freeing the LRU list. "isolate" removes it from the
371 * LRU lists entirely, while shrink_move moves it to the indicated
372 * private list.
373 */
374static void d_lru_isolate(struct dentry *dentry)
375{
376 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 dentry->d_flags &= ~DCACHE_LRU_LIST;
378 this_cpu_dec(nr_dentry_unused);
379 list_del_init(&dentry->d_lru);
380}
381
382static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
383{
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags |= DCACHE_SHRINK_LIST;
386 list_move_tail(&dentry->d_lru, list);
387}
388
da3bbdd4 389/*
f6041567 390 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
391 */
392static void dentry_lru_add(struct dentry *dentry)
393{
89dc77bc
LT
394 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
395 d_lru_add(dentry);
da3bbdd4
KM
396}
397
789680d1
NP
398/**
399 * d_drop - drop a dentry
400 * @dentry: dentry to drop
401 *
402 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
403 * be found through a VFS lookup any more. Note that this is different from
404 * deleting the dentry - d_delete will try to mark the dentry negative if
405 * possible, giving a successful _negative_ lookup, while d_drop will
406 * just make the cache lookup fail.
407 *
408 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
409 * reason (NFS timeouts or autofs deletes).
410 *
411 * __d_drop requires dentry->d_lock.
412 */
413void __d_drop(struct dentry *dentry)
414{
dea3667b 415 if (!d_unhashed(dentry)) {
b61625d2 416 struct hlist_bl_head *b;
7632e465
BF
417 /*
418 * Hashed dentries are normally on the dentry hashtable,
419 * with the exception of those newly allocated by
420 * d_obtain_alias, which are always IS_ROOT:
421 */
422 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
423 b = &dentry->d_sb->s_anon;
424 else
425 b = d_hash(dentry->d_parent, dentry->d_name.hash);
426
427 hlist_bl_lock(b);
428 __hlist_bl_del(&dentry->d_hash);
429 dentry->d_hash.pprev = NULL;
430 hlist_bl_unlock(b);
dea3667b 431 dentry_rcuwalk_barrier(dentry);
789680d1
NP
432 }
433}
434EXPORT_SYMBOL(__d_drop);
435
436void d_drop(struct dentry *dentry)
437{
789680d1
NP
438 spin_lock(&dentry->d_lock);
439 __d_drop(dentry);
440 spin_unlock(&dentry->d_lock);
789680d1
NP
441}
442EXPORT_SYMBOL(d_drop);
443
e55fd011 444static void __dentry_kill(struct dentry *dentry)
77812a1e 445{
41edf278
AV
446 struct dentry *parent = NULL;
447 bool can_free = true;
41edf278 448 if (!IS_ROOT(dentry))
77812a1e 449 parent = dentry->d_parent;
31e6b01f 450
0d98439e
LT
451 /*
452 * The dentry is now unrecoverably dead to the world.
453 */
454 lockref_mark_dead(&dentry->d_lockref);
455
f0023bc6 456 /*
f0023bc6
SW
457 * inform the fs via d_prune that this dentry is about to be
458 * unhashed and destroyed.
459 */
590fb51f 460 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
461 dentry->d_op->d_prune(dentry);
462
01b60351
AV
463 if (dentry->d_flags & DCACHE_LRU_LIST) {
464 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
465 d_lru_del(dentry);
01b60351 466 }
77812a1e
NP
467 /* if it was on the hash then remove it */
468 __d_drop(dentry);
03b3b889
AV
469 list_del(&dentry->d_u.d_child);
470 /*
471 * Inform d_walk() that we are no longer attached to the
472 * dentry tree
473 */
474 dentry->d_flags |= DCACHE_DENTRY_KILLED;
475 if (parent)
476 spin_unlock(&parent->d_lock);
477 dentry_iput(dentry);
478 /*
479 * dentry_iput drops the locks, at which point nobody (except
480 * transient RCU lookups) can reach this dentry.
481 */
482 BUG_ON((int)dentry->d_lockref.count > 0);
483 this_cpu_dec(nr_dentry);
484 if (dentry->d_op && dentry->d_op->d_release)
485 dentry->d_op->d_release(dentry);
486
41edf278
AV
487 spin_lock(&dentry->d_lock);
488 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
489 dentry->d_flags |= DCACHE_MAY_FREE;
490 can_free = false;
491 }
492 spin_unlock(&dentry->d_lock);
41edf278
AV
493 if (likely(can_free))
494 dentry_free(dentry);
e55fd011
AV
495}
496
497/*
498 * Finish off a dentry we've decided to kill.
499 * dentry->d_lock must be held, returns with it unlocked.
500 * If ref is non-zero, then decrement the refcount too.
501 * Returns dentry requiring refcount drop, or NULL if we're done.
502 */
8cbf74da 503static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
504 __releases(dentry->d_lock)
505{
506 struct inode *inode = dentry->d_inode;
507 struct dentry *parent = NULL;
508
509 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
510 goto failed;
511
512 if (!IS_ROOT(dentry)) {
513 parent = dentry->d_parent;
514 if (unlikely(!spin_trylock(&parent->d_lock))) {
515 if (inode)
516 spin_unlock(&inode->i_lock);
517 goto failed;
518 }
519 }
520
521 __dentry_kill(dentry);
03b3b889 522 return parent;
e55fd011
AV
523
524failed:
8cbf74da
AV
525 spin_unlock(&dentry->d_lock);
526 cpu_relax();
e55fd011 527 return dentry; /* try again with same dentry */
77812a1e
NP
528}
529
046b961b
AV
530static inline struct dentry *lock_parent(struct dentry *dentry)
531{
532 struct dentry *parent = dentry->d_parent;
533 if (IS_ROOT(dentry))
534 return NULL;
535 if (likely(spin_trylock(&parent->d_lock)))
536 return parent;
537 spin_unlock(&dentry->d_lock);
538 rcu_read_lock();
539again:
540 parent = ACCESS_ONCE(dentry->d_parent);
541 spin_lock(&parent->d_lock);
542 /*
543 * We can't blindly lock dentry until we are sure
544 * that we won't violate the locking order.
545 * Any changes of dentry->d_parent must have
546 * been done with parent->d_lock held, so
547 * spin_lock() above is enough of a barrier
548 * for checking if it's still our child.
549 */
550 if (unlikely(parent != dentry->d_parent)) {
551 spin_unlock(&parent->d_lock);
552 goto again;
553 }
554 rcu_read_unlock();
555 if (parent != dentry)
9f12600f 556 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
557 else
558 parent = NULL;
559 return parent;
560}
561
1da177e4
LT
562/*
563 * This is dput
564 *
565 * This is complicated by the fact that we do not want to put
566 * dentries that are no longer on any hash chain on the unused
567 * list: we'd much rather just get rid of them immediately.
568 *
569 * However, that implies that we have to traverse the dentry
570 * tree upwards to the parents which might _also_ now be
571 * scheduled for deletion (it may have been only waiting for
572 * its last child to go away).
573 *
574 * This tail recursion is done by hand as we don't want to depend
575 * on the compiler to always get this right (gcc generally doesn't).
576 * Real recursion would eat up our stack space.
577 */
578
579/*
580 * dput - release a dentry
581 * @dentry: dentry to release
582 *
583 * Release a dentry. This will drop the usage count and if appropriate
584 * call the dentry unlink method as well as removing it from the queues and
585 * releasing its resources. If the parent dentries were scheduled for release
586 * they too may now get deleted.
1da177e4 587 */
1da177e4
LT
588void dput(struct dentry *dentry)
589{
8aab6a27 590 if (unlikely(!dentry))
1da177e4
LT
591 return;
592
593repeat:
98474236 594 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 595 return;
1da177e4 596
8aab6a27
LT
597 /* Unreachable? Get rid of it */
598 if (unlikely(d_unhashed(dentry)))
599 goto kill_it;
600
601 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 602 if (dentry->d_op->d_delete(dentry))
61f3dee4 603 goto kill_it;
1da177e4 604 }
265ac902 605
358eec18
LT
606 if (!(dentry->d_flags & DCACHE_REFERENCED))
607 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 608 dentry_lru_add(dentry);
265ac902 609
98474236 610 dentry->d_lockref.count--;
61f3dee4 611 spin_unlock(&dentry->d_lock);
1da177e4
LT
612 return;
613
d52b9086 614kill_it:
8cbf74da 615 dentry = dentry_kill(dentry);
d52b9086
MS
616 if (dentry)
617 goto repeat;
1da177e4 618}
ec4f8605 619EXPORT_SYMBOL(dput);
1da177e4
LT
620
621/**
622 * d_invalidate - invalidate a dentry
623 * @dentry: dentry to invalidate
624 *
625 * Try to invalidate the dentry if it turns out to be
626 * possible. If there are other dentries that can be
627 * reached through this one we can't delete it and we
628 * return -EBUSY. On success we return 0.
629 *
630 * no dcache lock.
631 */
632
633int d_invalidate(struct dentry * dentry)
634{
635 /*
636 * If it's already been dropped, return OK.
637 */
da502956 638 spin_lock(&dentry->d_lock);
1da177e4 639 if (d_unhashed(dentry)) {
da502956 640 spin_unlock(&dentry->d_lock);
1da177e4
LT
641 return 0;
642 }
643 /*
644 * Check whether to do a partial shrink_dcache
645 * to get rid of unused child entries.
646 */
647 if (!list_empty(&dentry->d_subdirs)) {
da502956 648 spin_unlock(&dentry->d_lock);
1da177e4 649 shrink_dcache_parent(dentry);
da502956 650 spin_lock(&dentry->d_lock);
1da177e4
LT
651 }
652
653 /*
654 * Somebody else still using it?
655 *
656 * If it's a directory, we can't drop it
657 * for fear of somebody re-populating it
658 * with children (even though dropping it
659 * would make it unreachable from the root,
660 * we might still populate it if it was a
661 * working directory or similar).
50e69630
AV
662 * We also need to leave mountpoints alone,
663 * directory or not.
1da177e4 664 */
98474236 665 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
50e69630 666 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 667 spin_unlock(&dentry->d_lock);
1da177e4
LT
668 return -EBUSY;
669 }
670 }
671
672 __d_drop(dentry);
673 spin_unlock(&dentry->d_lock);
1da177e4
LT
674 return 0;
675}
ec4f8605 676EXPORT_SYMBOL(d_invalidate);
1da177e4 677
b5c84bf6 678/* This must be called with d_lock held */
dc0474be 679static inline void __dget_dlock(struct dentry *dentry)
23044507 680{
98474236 681 dentry->d_lockref.count++;
23044507
NP
682}
683
dc0474be 684static inline void __dget(struct dentry *dentry)
1da177e4 685{
98474236 686 lockref_get(&dentry->d_lockref);
1da177e4
LT
687}
688
b7ab39f6
NP
689struct dentry *dget_parent(struct dentry *dentry)
690{
df3d0bbc 691 int gotref;
b7ab39f6
NP
692 struct dentry *ret;
693
df3d0bbc
WL
694 /*
695 * Do optimistic parent lookup without any
696 * locking.
697 */
698 rcu_read_lock();
699 ret = ACCESS_ONCE(dentry->d_parent);
700 gotref = lockref_get_not_zero(&ret->d_lockref);
701 rcu_read_unlock();
702 if (likely(gotref)) {
703 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
704 return ret;
705 dput(ret);
706 }
707
b7ab39f6 708repeat:
a734eb45
NP
709 /*
710 * Don't need rcu_dereference because we re-check it was correct under
711 * the lock.
712 */
713 rcu_read_lock();
b7ab39f6 714 ret = dentry->d_parent;
a734eb45
NP
715 spin_lock(&ret->d_lock);
716 if (unlikely(ret != dentry->d_parent)) {
717 spin_unlock(&ret->d_lock);
718 rcu_read_unlock();
b7ab39f6
NP
719 goto repeat;
720 }
a734eb45 721 rcu_read_unlock();
98474236
WL
722 BUG_ON(!ret->d_lockref.count);
723 ret->d_lockref.count++;
b7ab39f6 724 spin_unlock(&ret->d_lock);
b7ab39f6
NP
725 return ret;
726}
727EXPORT_SYMBOL(dget_parent);
728
1da177e4
LT
729/**
730 * d_find_alias - grab a hashed alias of inode
731 * @inode: inode in question
32ba9c3f
LT
732 * @want_discon: flag, used by d_splice_alias, to request
733 * that only a DISCONNECTED alias be returned.
1da177e4
LT
734 *
735 * If inode has a hashed alias, or is a directory and has any alias,
736 * acquire the reference to alias and return it. Otherwise return NULL.
737 * Notice that if inode is a directory there can be only one alias and
738 * it can be unhashed only if it has no children, or if it is the root
739 * of a filesystem.
740 *
21c0d8fd 741 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
742 * any other hashed alias over that one unless @want_discon is set,
743 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 744 */
32ba9c3f 745static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 746{
da502956 747 struct dentry *alias, *discon_alias;
1da177e4 748
da502956
NP
749again:
750 discon_alias = NULL;
b67bfe0d 751 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 752 spin_lock(&alias->d_lock);
1da177e4 753 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 754 if (IS_ROOT(alias) &&
da502956 755 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 756 discon_alias = alias;
32ba9c3f 757 } else if (!want_discon) {
dc0474be 758 __dget_dlock(alias);
da502956
NP
759 spin_unlock(&alias->d_lock);
760 return alias;
761 }
762 }
763 spin_unlock(&alias->d_lock);
764 }
765 if (discon_alias) {
766 alias = discon_alias;
767 spin_lock(&alias->d_lock);
768 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
769 if (IS_ROOT(alias) &&
770 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 771 __dget_dlock(alias);
da502956 772 spin_unlock(&alias->d_lock);
1da177e4
LT
773 return alias;
774 }
775 }
da502956
NP
776 spin_unlock(&alias->d_lock);
777 goto again;
1da177e4 778 }
da502956 779 return NULL;
1da177e4
LT
780}
781
da502956 782struct dentry *d_find_alias(struct inode *inode)
1da177e4 783{
214fda1f
DH
784 struct dentry *de = NULL;
785
b3d9b7a3 786 if (!hlist_empty(&inode->i_dentry)) {
873feea0 787 spin_lock(&inode->i_lock);
32ba9c3f 788 de = __d_find_alias(inode, 0);
873feea0 789 spin_unlock(&inode->i_lock);
214fda1f 790 }
1da177e4
LT
791 return de;
792}
ec4f8605 793EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
794
795/*
796 * Try to kill dentries associated with this inode.
797 * WARNING: you must own a reference to inode.
798 */
799void d_prune_aliases(struct inode *inode)
800{
0cdca3f9 801 struct dentry *dentry;
1da177e4 802restart:
873feea0 803 spin_lock(&inode->i_lock);
b67bfe0d 804 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 805 spin_lock(&dentry->d_lock);
98474236 806 if (!dentry->d_lockref.count) {
590fb51f
YZ
807 /*
808 * inform the fs via d_prune that this dentry
809 * is about to be unhashed and destroyed.
810 */
811 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
812 !d_unhashed(dentry))
813 dentry->d_op->d_prune(dentry);
814
dc0474be 815 __dget_dlock(dentry);
1da177e4
LT
816 __d_drop(dentry);
817 spin_unlock(&dentry->d_lock);
873feea0 818 spin_unlock(&inode->i_lock);
1da177e4
LT
819 dput(dentry);
820 goto restart;
821 }
822 spin_unlock(&dentry->d_lock);
823 }
873feea0 824 spin_unlock(&inode->i_lock);
1da177e4 825}
ec4f8605 826EXPORT_SYMBOL(d_prune_aliases);
1da177e4 827
3049cfe2 828static void shrink_dentry_list(struct list_head *list)
1da177e4 829{
5c47e6d0 830 struct dentry *dentry, *parent;
da3bbdd4 831
60942f2f 832 while (!list_empty(list)) {
ff2fde99 833 struct inode *inode;
60942f2f 834 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 835 spin_lock(&dentry->d_lock);
046b961b
AV
836 parent = lock_parent(dentry);
837
dd1f6b2e
DC
838 /*
839 * The dispose list is isolated and dentries are not accounted
840 * to the LRU here, so we can simply remove it from the list
841 * here regardless of whether it is referenced or not.
842 */
89dc77bc 843 d_shrink_del(dentry);
dd1f6b2e 844
1da177e4
LT
845 /*
846 * We found an inuse dentry which was not removed from
dd1f6b2e 847 * the LRU because of laziness during lookup. Do not free it.
1da177e4 848 */
41edf278 849 if ((int)dentry->d_lockref.count > 0) {
da3bbdd4 850 spin_unlock(&dentry->d_lock);
046b961b
AV
851 if (parent)
852 spin_unlock(&parent->d_lock);
1da177e4
LT
853 continue;
854 }
77812a1e 855
64fd72e0
AV
856
857 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
858 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
859 spin_unlock(&dentry->d_lock);
046b961b
AV
860 if (parent)
861 spin_unlock(&parent->d_lock);
64fd72e0
AV
862 if (can_free)
863 dentry_free(dentry);
864 continue;
865 }
866
ff2fde99
AV
867 inode = dentry->d_inode;
868 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 869 d_shrink_add(dentry, list);
dd1f6b2e 870 spin_unlock(&dentry->d_lock);
046b961b
AV
871 if (parent)
872 spin_unlock(&parent->d_lock);
5c47e6d0 873 continue;
dd1f6b2e 874 }
ff2fde99 875
ff2fde99 876 __dentry_kill(dentry);
046b961b 877
5c47e6d0
AV
878 /*
879 * We need to prune ancestors too. This is necessary to prevent
880 * quadratic behavior of shrink_dcache_parent(), but is also
881 * expected to be beneficial in reducing dentry cache
882 * fragmentation.
883 */
884 dentry = parent;
b2b80195
AV
885 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
886 parent = lock_parent(dentry);
887 if (dentry->d_lockref.count != 1) {
888 dentry->d_lockref.count--;
889 spin_unlock(&dentry->d_lock);
890 if (parent)
891 spin_unlock(&parent->d_lock);
892 break;
893 }
894 inode = dentry->d_inode; /* can't be NULL */
895 if (unlikely(!spin_trylock(&inode->i_lock))) {
896 spin_unlock(&dentry->d_lock);
897 if (parent)
898 spin_unlock(&parent->d_lock);
899 cpu_relax();
900 continue;
901 }
902 __dentry_kill(dentry);
903 dentry = parent;
904 }
da3bbdd4 905 }
3049cfe2
CH
906}
907
f6041567
DC
908static enum lru_status
909dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
910{
911 struct list_head *freeable = arg;
912 struct dentry *dentry = container_of(item, struct dentry, d_lru);
913
914
915 /*
916 * we are inverting the lru lock/dentry->d_lock here,
917 * so use a trylock. If we fail to get the lock, just skip
918 * it
919 */
920 if (!spin_trylock(&dentry->d_lock))
921 return LRU_SKIP;
922
923 /*
924 * Referenced dentries are still in use. If they have active
925 * counts, just remove them from the LRU. Otherwise give them
926 * another pass through the LRU.
927 */
928 if (dentry->d_lockref.count) {
89dc77bc 929 d_lru_isolate(dentry);
f6041567
DC
930 spin_unlock(&dentry->d_lock);
931 return LRU_REMOVED;
932 }
933
934 if (dentry->d_flags & DCACHE_REFERENCED) {
935 dentry->d_flags &= ~DCACHE_REFERENCED;
936 spin_unlock(&dentry->d_lock);
937
938 /*
939 * The list move itself will be made by the common LRU code. At
940 * this point, we've dropped the dentry->d_lock but keep the
941 * lru lock. This is safe to do, since every list movement is
942 * protected by the lru lock even if both locks are held.
943 *
944 * This is guaranteed by the fact that all LRU management
945 * functions are intermediated by the LRU API calls like
946 * list_lru_add and list_lru_del. List movement in this file
947 * only ever occur through this functions or through callbacks
948 * like this one, that are called from the LRU API.
949 *
950 * The only exceptions to this are functions like
951 * shrink_dentry_list, and code that first checks for the
952 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
953 * operating only with stack provided lists after they are
954 * properly isolated from the main list. It is thus, always a
955 * local access.
956 */
957 return LRU_ROTATE;
958 }
959
89dc77bc 960 d_lru_shrink_move(dentry, freeable);
f6041567
DC
961 spin_unlock(&dentry->d_lock);
962
963 return LRU_REMOVED;
964}
965
3049cfe2 966/**
b48f03b3
DC
967 * prune_dcache_sb - shrink the dcache
968 * @sb: superblock
f6041567 969 * @nr_to_scan : number of entries to try to free
9b17c623 970 * @nid: which node to scan for freeable entities
b48f03b3 971 *
f6041567 972 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
b48f03b3
DC
973 * done when we need more memory an called from the superblock shrinker
974 * function.
3049cfe2 975 *
b48f03b3
DC
976 * This function may fail to free any resources if all the dentries are in
977 * use.
3049cfe2 978 */
9b17c623
DC
979long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
980 int nid)
3049cfe2 981{
f6041567
DC
982 LIST_HEAD(dispose);
983 long freed;
3049cfe2 984
9b17c623
DC
985 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
986 &dispose, &nr_to_scan);
f6041567 987 shrink_dentry_list(&dispose);
0a234c6d 988 return freed;
da3bbdd4 989}
23044507 990
4e717f5c
GC
991static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
992 spinlock_t *lru_lock, void *arg)
dd1f6b2e 993{
4e717f5c
GC
994 struct list_head *freeable = arg;
995 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 996
4e717f5c
GC
997 /*
998 * we are inverting the lru lock/dentry->d_lock here,
999 * so use a trylock. If we fail to get the lock, just skip
1000 * it
1001 */
1002 if (!spin_trylock(&dentry->d_lock))
1003 return LRU_SKIP;
1004
89dc77bc 1005 d_lru_shrink_move(dentry, freeable);
4e717f5c 1006 spin_unlock(&dentry->d_lock);
ec33679d 1007
4e717f5c 1008 return LRU_REMOVED;
da3bbdd4
KM
1009}
1010
4e717f5c 1011
1da177e4
LT
1012/**
1013 * shrink_dcache_sb - shrink dcache for a superblock
1014 * @sb: superblock
1015 *
3049cfe2
CH
1016 * Shrink the dcache for the specified super block. This is used to free
1017 * the dcache before unmounting a file system.
1da177e4 1018 */
3049cfe2 1019void shrink_dcache_sb(struct super_block *sb)
1da177e4 1020{
4e717f5c
GC
1021 long freed;
1022
1023 do {
1024 LIST_HEAD(dispose);
1025
1026 freed = list_lru_walk(&sb->s_dentry_lru,
1027 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 1028
4e717f5c
GC
1029 this_cpu_sub(nr_dentry_unused, freed);
1030 shrink_dentry_list(&dispose);
1031 } while (freed > 0);
1da177e4 1032}
ec4f8605 1033EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1034
db14fc3a
MS
1035/**
1036 * enum d_walk_ret - action to talke during tree walk
1037 * @D_WALK_CONTINUE: contrinue walk
1038 * @D_WALK_QUIT: quit walk
1039 * @D_WALK_NORETRY: quit when retry is needed
1040 * @D_WALK_SKIP: skip this dentry and its children
1041 */
1042enum d_walk_ret {
1043 D_WALK_CONTINUE,
1044 D_WALK_QUIT,
1045 D_WALK_NORETRY,
1046 D_WALK_SKIP,
1047};
c826cb7d 1048
1da177e4 1049/**
db14fc3a
MS
1050 * d_walk - walk the dentry tree
1051 * @parent: start of walk
1052 * @data: data passed to @enter() and @finish()
1053 * @enter: callback when first entering the dentry
1054 * @finish: callback when successfully finished the walk
1da177e4 1055 *
db14fc3a 1056 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1057 */
db14fc3a
MS
1058static void d_walk(struct dentry *parent, void *data,
1059 enum d_walk_ret (*enter)(void *, struct dentry *),
1060 void (*finish)(void *))
1da177e4 1061{
949854d0 1062 struct dentry *this_parent;
1da177e4 1063 struct list_head *next;
48f5ec21 1064 unsigned seq = 0;
db14fc3a
MS
1065 enum d_walk_ret ret;
1066 bool retry = true;
949854d0 1067
58db63d0 1068again:
48f5ec21 1069 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1070 this_parent = parent;
2fd6b7f5 1071 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1072
1073 ret = enter(data, this_parent);
1074 switch (ret) {
1075 case D_WALK_CONTINUE:
1076 break;
1077 case D_WALK_QUIT:
1078 case D_WALK_SKIP:
1079 goto out_unlock;
1080 case D_WALK_NORETRY:
1081 retry = false;
1082 break;
1083 }
1da177e4
LT
1084repeat:
1085 next = this_parent->d_subdirs.next;
1086resume:
1087 while (next != &this_parent->d_subdirs) {
1088 struct list_head *tmp = next;
5160ee6f 1089 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1090 next = tmp->next;
2fd6b7f5
NP
1091
1092 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1093
1094 ret = enter(data, dentry);
1095 switch (ret) {
1096 case D_WALK_CONTINUE:
1097 break;
1098 case D_WALK_QUIT:
2fd6b7f5 1099 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1100 goto out_unlock;
1101 case D_WALK_NORETRY:
1102 retry = false;
1103 break;
1104 case D_WALK_SKIP:
1105 spin_unlock(&dentry->d_lock);
1106 continue;
2fd6b7f5 1107 }
db14fc3a 1108
1da177e4 1109 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1110 spin_unlock(&this_parent->d_lock);
1111 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1112 this_parent = dentry;
2fd6b7f5 1113 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1114 goto repeat;
1115 }
2fd6b7f5 1116 spin_unlock(&dentry->d_lock);
1da177e4
LT
1117 }
1118 /*
1119 * All done at this level ... ascend and resume the search.
1120 */
1121 if (this_parent != parent) {
c826cb7d 1122 struct dentry *child = this_parent;
31dec132
AV
1123 this_parent = child->d_parent;
1124
1125 rcu_read_lock();
1126 spin_unlock(&child->d_lock);
1127 spin_lock(&this_parent->d_lock);
1128
1129 /*
1130 * might go back up the wrong parent if we have had a rename
1131 * or deletion
1132 */
1133 if (this_parent != child->d_parent ||
1134 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1135 need_seqretry(&rename_lock, seq)) {
1136 spin_unlock(&this_parent->d_lock);
1137 rcu_read_unlock();
949854d0 1138 goto rename_retry;
31dec132
AV
1139 }
1140 rcu_read_unlock();
949854d0 1141 next = child->d_u.d_child.next;
1da177e4
LT
1142 goto resume;
1143 }
48f5ec21 1144 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1145 spin_unlock(&this_parent->d_lock);
949854d0 1146 goto rename_retry;
db14fc3a
MS
1147 }
1148 if (finish)
1149 finish(data);
1150
1151out_unlock:
1152 spin_unlock(&this_parent->d_lock);
48f5ec21 1153 done_seqretry(&rename_lock, seq);
db14fc3a 1154 return;
58db63d0
NP
1155
1156rename_retry:
db14fc3a
MS
1157 if (!retry)
1158 return;
48f5ec21 1159 seq = 1;
58db63d0 1160 goto again;
1da177e4 1161}
db14fc3a
MS
1162
1163/*
1164 * Search for at least 1 mount point in the dentry's subdirs.
1165 * We descend to the next level whenever the d_subdirs
1166 * list is non-empty and continue searching.
1167 */
1168
db14fc3a
MS
1169static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1170{
1171 int *ret = data;
1172 if (d_mountpoint(dentry)) {
1173 *ret = 1;
1174 return D_WALK_QUIT;
1175 }
1176 return D_WALK_CONTINUE;
1177}
1178
69c88dc7
RD
1179/**
1180 * have_submounts - check for mounts over a dentry
1181 * @parent: dentry to check.
1182 *
1183 * Return true if the parent or its subdirectories contain
1184 * a mount point
1185 */
db14fc3a
MS
1186int have_submounts(struct dentry *parent)
1187{
1188 int ret = 0;
1189
1190 d_walk(parent, &ret, check_mount, NULL);
1191
1192 return ret;
1193}
ec4f8605 1194EXPORT_SYMBOL(have_submounts);
1da177e4 1195
eed81007
MS
1196/*
1197 * Called by mount code to set a mountpoint and check if the mountpoint is
1198 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1199 * subtree can become unreachable).
1200 *
1201 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1202 * this reason take rename_lock and d_lock on dentry and ancestors.
1203 */
1204int d_set_mounted(struct dentry *dentry)
1205{
1206 struct dentry *p;
1207 int ret = -ENOENT;
1208 write_seqlock(&rename_lock);
1209 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1210 /* Need exclusion wrt. check_submounts_and_drop() */
1211 spin_lock(&p->d_lock);
1212 if (unlikely(d_unhashed(p))) {
1213 spin_unlock(&p->d_lock);
1214 goto out;
1215 }
1216 spin_unlock(&p->d_lock);
1217 }
1218 spin_lock(&dentry->d_lock);
1219 if (!d_unlinked(dentry)) {
1220 dentry->d_flags |= DCACHE_MOUNTED;
1221 ret = 0;
1222 }
1223 spin_unlock(&dentry->d_lock);
1224out:
1225 write_sequnlock(&rename_lock);
1226 return ret;
1227}
1228
1da177e4 1229/*
fd517909 1230 * Search the dentry child list of the specified parent,
1da177e4
LT
1231 * and move any unused dentries to the end of the unused
1232 * list for prune_dcache(). We descend to the next level
1233 * whenever the d_subdirs list is non-empty and continue
1234 * searching.
1235 *
1236 * It returns zero iff there are no unused children,
1237 * otherwise it returns the number of children moved to
1238 * the end of the unused list. This may not be the total
1239 * number of unused children, because select_parent can
1240 * drop the lock and return early due to latency
1241 * constraints.
1242 */
1da177e4 1243
db14fc3a
MS
1244struct select_data {
1245 struct dentry *start;
1246 struct list_head dispose;
1247 int found;
1248};
23044507 1249
db14fc3a
MS
1250static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1251{
1252 struct select_data *data = _data;
1253 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1254
db14fc3a
MS
1255 if (data->start == dentry)
1256 goto out;
2fd6b7f5 1257
fe91522a 1258 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1259 data->found++;
fe91522a
AV
1260 } else {
1261 if (dentry->d_flags & DCACHE_LRU_LIST)
1262 d_lru_del(dentry);
1263 if (!dentry->d_lockref.count) {
1264 d_shrink_add(dentry, &data->dispose);
1265 data->found++;
1266 }
1da177e4 1267 }
db14fc3a
MS
1268 /*
1269 * We can return to the caller if we have found some (this
1270 * ensures forward progress). We'll be coming back to find
1271 * the rest.
1272 */
fe91522a
AV
1273 if (!list_empty(&data->dispose))
1274 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1275out:
db14fc3a 1276 return ret;
1da177e4
LT
1277}
1278
1279/**
1280 * shrink_dcache_parent - prune dcache
1281 * @parent: parent of entries to prune
1282 *
1283 * Prune the dcache to remove unused children of the parent dentry.
1284 */
db14fc3a 1285void shrink_dcache_parent(struct dentry *parent)
1da177e4 1286{
db14fc3a
MS
1287 for (;;) {
1288 struct select_data data;
1da177e4 1289
db14fc3a
MS
1290 INIT_LIST_HEAD(&data.dispose);
1291 data.start = parent;
1292 data.found = 0;
1293
1294 d_walk(parent, &data, select_collect, NULL);
1295 if (!data.found)
1296 break;
1297
1298 shrink_dentry_list(&data.dispose);
421348f1
GT
1299 cond_resched();
1300 }
1da177e4 1301}
ec4f8605 1302EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1303
9c8c10e2 1304static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1305{
9c8c10e2
AV
1306 /* it has busy descendents; complain about those instead */
1307 if (!list_empty(&dentry->d_subdirs))
1308 return D_WALK_CONTINUE;
42c32608 1309
9c8c10e2
AV
1310 /* root with refcount 1 is fine */
1311 if (dentry == _data && dentry->d_lockref.count == 1)
1312 return D_WALK_CONTINUE;
1313
1314 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1315 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1316 dentry,
1317 dentry->d_inode ?
1318 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1319 dentry,
42c32608
AV
1320 dentry->d_lockref.count,
1321 dentry->d_sb->s_type->name,
1322 dentry->d_sb->s_id);
9c8c10e2
AV
1323 WARN_ON(1);
1324 return D_WALK_CONTINUE;
1325}
1326
1327static void do_one_tree(struct dentry *dentry)
1328{
1329 shrink_dcache_parent(dentry);
1330 d_walk(dentry, dentry, umount_check, NULL);
1331 d_drop(dentry);
1332 dput(dentry);
42c32608
AV
1333}
1334
1335/*
1336 * destroy the dentries attached to a superblock on unmounting
1337 */
1338void shrink_dcache_for_umount(struct super_block *sb)
1339{
1340 struct dentry *dentry;
1341
9c8c10e2 1342 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1343
1344 dentry = sb->s_root;
1345 sb->s_root = NULL;
9c8c10e2 1346 do_one_tree(dentry);
42c32608
AV
1347
1348 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1349 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1350 do_one_tree(dentry);
42c32608
AV
1351 }
1352}
1353
848ac114
MS
1354static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1355{
1356 struct select_data *data = _data;
1357
1358 if (d_mountpoint(dentry)) {
1359 data->found = -EBUSY;
1360 return D_WALK_QUIT;
1361 }
1362
1363 return select_collect(_data, dentry);
1364}
1365
1366static void check_and_drop(void *_data)
1367{
1368 struct select_data *data = _data;
1369
1370 if (d_mountpoint(data->start))
1371 data->found = -EBUSY;
1372 if (!data->found)
1373 __d_drop(data->start);
1374}
1375
1376/**
1377 * check_submounts_and_drop - prune dcache, check for submounts and drop
1378 *
1379 * All done as a single atomic operation relative to has_unlinked_ancestor().
1380 * Returns 0 if successfully unhashed @parent. If there were submounts then
1381 * return -EBUSY.
1382 *
1383 * @dentry: dentry to prune and drop
1384 */
1385int check_submounts_and_drop(struct dentry *dentry)
1386{
1387 int ret = 0;
1388
1389 /* Negative dentries can be dropped without further checks */
1390 if (!dentry->d_inode) {
1391 d_drop(dentry);
1392 goto out;
1393 }
1394
1395 for (;;) {
1396 struct select_data data;
1397
1398 INIT_LIST_HEAD(&data.dispose);
1399 data.start = dentry;
1400 data.found = 0;
1401
1402 d_walk(dentry, &data, check_and_collect, check_and_drop);
1403 ret = data.found;
1404
1405 if (!list_empty(&data.dispose))
1406 shrink_dentry_list(&data.dispose);
1407
1408 if (ret <= 0)
1409 break;
1410
1411 cond_resched();
1412 }
1413
1414out:
1415 return ret;
1416}
1417EXPORT_SYMBOL(check_submounts_and_drop);
1418
1da177e4 1419/**
a4464dbc
AV
1420 * __d_alloc - allocate a dcache entry
1421 * @sb: filesystem it will belong to
1da177e4
LT
1422 * @name: qstr of the name
1423 *
1424 * Allocates a dentry. It returns %NULL if there is insufficient memory
1425 * available. On a success the dentry is returned. The name passed in is
1426 * copied and the copy passed in may be reused after this call.
1427 */
1428
a4464dbc 1429struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1430{
1431 struct dentry *dentry;
1432 char *dname;
1433
e12ba74d 1434 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1435 if (!dentry)
1436 return NULL;
1437
6326c71f
LT
1438 /*
1439 * We guarantee that the inline name is always NUL-terminated.
1440 * This way the memcpy() done by the name switching in rename
1441 * will still always have a NUL at the end, even if we might
1442 * be overwriting an internal NUL character
1443 */
1444 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1445 if (name->len > DNAME_INLINE_LEN-1) {
1446 dname = kmalloc(name->len + 1, GFP_KERNEL);
1447 if (!dname) {
1448 kmem_cache_free(dentry_cache, dentry);
1449 return NULL;
1450 }
1451 } else {
1452 dname = dentry->d_iname;
1453 }
1da177e4
LT
1454
1455 dentry->d_name.len = name->len;
1456 dentry->d_name.hash = name->hash;
1457 memcpy(dname, name->name, name->len);
1458 dname[name->len] = 0;
1459
6326c71f
LT
1460 /* Make sure we always see the terminating NUL character */
1461 smp_wmb();
1462 dentry->d_name.name = dname;
1463
98474236 1464 dentry->d_lockref.count = 1;
dea3667b 1465 dentry->d_flags = 0;
1da177e4 1466 spin_lock_init(&dentry->d_lock);
31e6b01f 1467 seqcount_init(&dentry->d_seq);
1da177e4 1468 dentry->d_inode = NULL;
a4464dbc
AV
1469 dentry->d_parent = dentry;
1470 dentry->d_sb = sb;
1da177e4
LT
1471 dentry->d_op = NULL;
1472 dentry->d_fsdata = NULL;
ceb5bdc2 1473 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1474 INIT_LIST_HEAD(&dentry->d_lru);
1475 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1476 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1477 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1478 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1479
3e880fb5 1480 this_cpu_inc(nr_dentry);
312d3ca8 1481
1da177e4
LT
1482 return dentry;
1483}
a4464dbc
AV
1484
1485/**
1486 * d_alloc - allocate a dcache entry
1487 * @parent: parent of entry to allocate
1488 * @name: qstr of the name
1489 *
1490 * Allocates a dentry. It returns %NULL if there is insufficient memory
1491 * available. On a success the dentry is returned. The name passed in is
1492 * copied and the copy passed in may be reused after this call.
1493 */
1494struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1495{
1496 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1497 if (!dentry)
1498 return NULL;
1499
1500 spin_lock(&parent->d_lock);
1501 /*
1502 * don't need child lock because it is not subject
1503 * to concurrency here
1504 */
1505 __dget_dlock(parent);
1506 dentry->d_parent = parent;
1507 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1508 spin_unlock(&parent->d_lock);
1509
1510 return dentry;
1511}
ec4f8605 1512EXPORT_SYMBOL(d_alloc);
1da177e4 1513
e1a24bb0
BF
1514/**
1515 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1516 * @sb: the superblock
1517 * @name: qstr of the name
1518 *
1519 * For a filesystem that just pins its dentries in memory and never
1520 * performs lookups at all, return an unhashed IS_ROOT dentry.
1521 */
4b936885
NP
1522struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1523{
e1a24bb0 1524 return __d_alloc(sb, name);
4b936885
NP
1525}
1526EXPORT_SYMBOL(d_alloc_pseudo);
1527
1da177e4
LT
1528struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1529{
1530 struct qstr q;
1531
1532 q.name = name;
1533 q.len = strlen(name);
1534 q.hash = full_name_hash(q.name, q.len);
1535 return d_alloc(parent, &q);
1536}
ef26ca97 1537EXPORT_SYMBOL(d_alloc_name);
1da177e4 1538
fb045adb
NP
1539void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1540{
6f7f7caa
LT
1541 WARN_ON_ONCE(dentry->d_op);
1542 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1543 DCACHE_OP_COMPARE |
1544 DCACHE_OP_REVALIDATE |
ecf3d1f1 1545 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1546 DCACHE_OP_DELETE ));
1547 dentry->d_op = op;
1548 if (!op)
1549 return;
1550 if (op->d_hash)
1551 dentry->d_flags |= DCACHE_OP_HASH;
1552 if (op->d_compare)
1553 dentry->d_flags |= DCACHE_OP_COMPARE;
1554 if (op->d_revalidate)
1555 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1556 if (op->d_weak_revalidate)
1557 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1558 if (op->d_delete)
1559 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1560 if (op->d_prune)
1561 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1562
1563}
1564EXPORT_SYMBOL(d_set_d_op);
1565
b18825a7
DH
1566static unsigned d_flags_for_inode(struct inode *inode)
1567{
1568 unsigned add_flags = DCACHE_FILE_TYPE;
1569
1570 if (!inode)
1571 return DCACHE_MISS_TYPE;
1572
1573 if (S_ISDIR(inode->i_mode)) {
1574 add_flags = DCACHE_DIRECTORY_TYPE;
1575 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1576 if (unlikely(!inode->i_op->lookup))
1577 add_flags = DCACHE_AUTODIR_TYPE;
1578 else
1579 inode->i_opflags |= IOP_LOOKUP;
1580 }
1581 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1582 if (unlikely(inode->i_op->follow_link))
1583 add_flags = DCACHE_SYMLINK_TYPE;
1584 else
1585 inode->i_opflags |= IOP_NOFOLLOW;
1586 }
1587
1588 if (unlikely(IS_AUTOMOUNT(inode)))
1589 add_flags |= DCACHE_NEED_AUTOMOUNT;
1590 return add_flags;
1591}
1592
360da900
OH
1593static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1594{
b18825a7
DH
1595 unsigned add_flags = d_flags_for_inode(inode);
1596
b23fb0a6 1597 spin_lock(&dentry->d_lock);
22213318 1598 __d_set_type(dentry, add_flags);
b18825a7 1599 if (inode)
b3d9b7a3 1600 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
360da900 1601 dentry->d_inode = inode;
31e6b01f 1602 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1603 spin_unlock(&dentry->d_lock);
360da900
OH
1604 fsnotify_d_instantiate(dentry, inode);
1605}
1606
1da177e4
LT
1607/**
1608 * d_instantiate - fill in inode information for a dentry
1609 * @entry: dentry to complete
1610 * @inode: inode to attach to this dentry
1611 *
1612 * Fill in inode information in the entry.
1613 *
1614 * This turns negative dentries into productive full members
1615 * of society.
1616 *
1617 * NOTE! This assumes that the inode count has been incremented
1618 * (or otherwise set) by the caller to indicate that it is now
1619 * in use by the dcache.
1620 */
1621
1622void d_instantiate(struct dentry *entry, struct inode * inode)
1623{
b3d9b7a3 1624 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1625 if (inode)
1626 spin_lock(&inode->i_lock);
360da900 1627 __d_instantiate(entry, inode);
873feea0
NP
1628 if (inode)
1629 spin_unlock(&inode->i_lock);
1da177e4
LT
1630 security_d_instantiate(entry, inode);
1631}
ec4f8605 1632EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1633
1634/**
1635 * d_instantiate_unique - instantiate a non-aliased dentry
1636 * @entry: dentry to instantiate
1637 * @inode: inode to attach to this dentry
1638 *
1639 * Fill in inode information in the entry. On success, it returns NULL.
1640 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1641 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1642 *
1643 * Note that in order to avoid conflicts with rename() etc, the caller
1644 * had better be holding the parent directory semaphore.
e866cfa9
OD
1645 *
1646 * This also assumes that the inode count has been incremented
1647 * (or otherwise set) by the caller to indicate that it is now
1648 * in use by the dcache.
1da177e4 1649 */
770bfad8
DH
1650static struct dentry *__d_instantiate_unique(struct dentry *entry,
1651 struct inode *inode)
1da177e4
LT
1652{
1653 struct dentry *alias;
1654 int len = entry->d_name.len;
1655 const char *name = entry->d_name.name;
1656 unsigned int hash = entry->d_name.hash;
1657
770bfad8 1658 if (!inode) {
360da900 1659 __d_instantiate(entry, NULL);
770bfad8
DH
1660 return NULL;
1661 }
1662
b67bfe0d 1663 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1664 /*
1665 * Don't need alias->d_lock here, because aliases with
1666 * d_parent == entry->d_parent are not subject to name or
1667 * parent changes, because the parent inode i_mutex is held.
1668 */
12f8ad4b 1669 if (alias->d_name.hash != hash)
1da177e4
LT
1670 continue;
1671 if (alias->d_parent != entry->d_parent)
1672 continue;
ee983e89
LT
1673 if (alias->d_name.len != len)
1674 continue;
12f8ad4b 1675 if (dentry_cmp(alias, name, len))
1da177e4 1676 continue;
dc0474be 1677 __dget(alias);
1da177e4
LT
1678 return alias;
1679 }
770bfad8 1680
360da900 1681 __d_instantiate(entry, inode);
1da177e4
LT
1682 return NULL;
1683}
770bfad8
DH
1684
1685struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1686{
1687 struct dentry *result;
1688
b3d9b7a3 1689 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1690
873feea0
NP
1691 if (inode)
1692 spin_lock(&inode->i_lock);
770bfad8 1693 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1694 if (inode)
1695 spin_unlock(&inode->i_lock);
770bfad8
DH
1696
1697 if (!result) {
1698 security_d_instantiate(entry, inode);
1699 return NULL;
1700 }
1701
1702 BUG_ON(!d_unhashed(result));
1703 iput(inode);
1704 return result;
1705}
1706
1da177e4
LT
1707EXPORT_SYMBOL(d_instantiate_unique);
1708
b70a80e7
MS
1709/**
1710 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1711 * @entry: dentry to complete
1712 * @inode: inode to attach to this dentry
1713 *
1714 * Fill in inode information in the entry. If a directory alias is found, then
1715 * return an error (and drop inode). Together with d_materialise_unique() this
1716 * guarantees that a directory inode may never have more than one alias.
1717 */
1718int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1719{
1720 BUG_ON(!hlist_unhashed(&entry->d_alias));
1721
1722 spin_lock(&inode->i_lock);
1723 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1724 spin_unlock(&inode->i_lock);
1725 iput(inode);
1726 return -EBUSY;
1727 }
1728 __d_instantiate(entry, inode);
1729 spin_unlock(&inode->i_lock);
1730 security_d_instantiate(entry, inode);
1731
1732 return 0;
1733}
1734EXPORT_SYMBOL(d_instantiate_no_diralias);
1735
adc0e91a
AV
1736struct dentry *d_make_root(struct inode *root_inode)
1737{
1738 struct dentry *res = NULL;
1739
1740 if (root_inode) {
26fe5750 1741 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1742
1743 res = __d_alloc(root_inode->i_sb, &name);
1744 if (res)
1745 d_instantiate(res, root_inode);
1746 else
1747 iput(root_inode);
1748 }
1749 return res;
1750}
1751EXPORT_SYMBOL(d_make_root);
1752
d891eedb
BF
1753static struct dentry * __d_find_any_alias(struct inode *inode)
1754{
1755 struct dentry *alias;
1756
b3d9b7a3 1757 if (hlist_empty(&inode->i_dentry))
d891eedb 1758 return NULL;
b3d9b7a3 1759 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1760 __dget(alias);
1761 return alias;
1762}
1763
46f72b34
SW
1764/**
1765 * d_find_any_alias - find any alias for a given inode
1766 * @inode: inode to find an alias for
1767 *
1768 * If any aliases exist for the given inode, take and return a
1769 * reference for one of them. If no aliases exist, return %NULL.
1770 */
1771struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1772{
1773 struct dentry *de;
1774
1775 spin_lock(&inode->i_lock);
1776 de = __d_find_any_alias(inode);
1777 spin_unlock(&inode->i_lock);
1778 return de;
1779}
46f72b34 1780EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1781
4ea3ada2
CH
1782/**
1783 * d_obtain_alias - find or allocate a dentry for a given inode
1784 * @inode: inode to allocate the dentry for
1785 *
1786 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1787 * similar open by handle operations. The returned dentry may be anonymous,
1788 * or may have a full name (if the inode was already in the cache).
1789 *
1790 * When called on a directory inode, we must ensure that the inode only ever
1791 * has one dentry. If a dentry is found, that is returned instead of
1792 * allocating a new one.
1793 *
1794 * On successful return, the reference to the inode has been transferred
44003728
CH
1795 * to the dentry. In case of an error the reference on the inode is released.
1796 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1797 * be passed in and will be the error will be propagate to the return value,
1798 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1799 */
1800struct dentry *d_obtain_alias(struct inode *inode)
1801{
b911a6bd 1802 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1803 struct dentry *tmp;
1804 struct dentry *res;
b18825a7 1805 unsigned add_flags;
4ea3ada2
CH
1806
1807 if (!inode)
44003728 1808 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1809 if (IS_ERR(inode))
1810 return ERR_CAST(inode);
1811
d891eedb 1812 res = d_find_any_alias(inode);
9308a612
CH
1813 if (res)
1814 goto out_iput;
1815
a4464dbc 1816 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1817 if (!tmp) {
1818 res = ERR_PTR(-ENOMEM);
1819 goto out_iput;
4ea3ada2 1820 }
b5c84bf6 1821
873feea0 1822 spin_lock(&inode->i_lock);
d891eedb 1823 res = __d_find_any_alias(inode);
9308a612 1824 if (res) {
873feea0 1825 spin_unlock(&inode->i_lock);
9308a612
CH
1826 dput(tmp);
1827 goto out_iput;
1828 }
1829
1830 /* attach a disconnected dentry */
b18825a7
DH
1831 add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1832
9308a612 1833 spin_lock(&tmp->d_lock);
9308a612 1834 tmp->d_inode = inode;
b18825a7 1835 tmp->d_flags |= add_flags;
b3d9b7a3 1836 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1837 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1838 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1839 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1840 spin_unlock(&tmp->d_lock);
873feea0 1841 spin_unlock(&inode->i_lock);
24ff6663 1842 security_d_instantiate(tmp, inode);
9308a612 1843
9308a612
CH
1844 return tmp;
1845
1846 out_iput:
24ff6663
JB
1847 if (res && !IS_ERR(res))
1848 security_d_instantiate(res, inode);
9308a612
CH
1849 iput(inode);
1850 return res;
4ea3ada2 1851}
adc48720 1852EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1853
1854/**
1855 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1856 * @inode: the inode which may have a disconnected dentry
1857 * @dentry: a negative dentry which we want to point to the inode.
1858 *
1859 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1860 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1861 * and return it, else simply d_add the inode to the dentry and return NULL.
1862 *
1863 * This is needed in the lookup routine of any filesystem that is exportable
1864 * (via knfsd) so that we can build dcache paths to directories effectively.
1865 *
1866 * If a dentry was found and moved, then it is returned. Otherwise NULL
1867 * is returned. This matches the expected return value of ->lookup.
1868 *
6d4ade98
SW
1869 * Cluster filesystems may call this function with a negative, hashed dentry.
1870 * In that case, we know that the inode will be a regular file, and also this
1871 * will only occur during atomic_open. So we need to check for the dentry
1872 * being already hashed only in the final case.
1da177e4
LT
1873 */
1874struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1875{
1876 struct dentry *new = NULL;
1877
a9049376
AV
1878 if (IS_ERR(inode))
1879 return ERR_CAST(inode);
1880
21c0d8fd 1881 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1882 spin_lock(&inode->i_lock);
32ba9c3f 1883 new = __d_find_alias(inode, 1);
1da177e4 1884 if (new) {
32ba9c3f 1885 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1886 spin_unlock(&inode->i_lock);
1da177e4 1887 security_d_instantiate(new, inode);
1da177e4
LT
1888 d_move(new, dentry);
1889 iput(inode);
1890 } else {
873feea0 1891 /* already taking inode->i_lock, so d_add() by hand */
360da900 1892 __d_instantiate(dentry, inode);
873feea0 1893 spin_unlock(&inode->i_lock);
1da177e4
LT
1894 security_d_instantiate(dentry, inode);
1895 d_rehash(dentry);
1896 }
6d4ade98
SW
1897 } else {
1898 d_instantiate(dentry, inode);
1899 if (d_unhashed(dentry))
1900 d_rehash(dentry);
1901 }
1da177e4
LT
1902 return new;
1903}
ec4f8605 1904EXPORT_SYMBOL(d_splice_alias);
1da177e4 1905
9403540c
BN
1906/**
1907 * d_add_ci - lookup or allocate new dentry with case-exact name
1908 * @inode: the inode case-insensitive lookup has found
1909 * @dentry: the negative dentry that was passed to the parent's lookup func
1910 * @name: the case-exact name to be associated with the returned dentry
1911 *
1912 * This is to avoid filling the dcache with case-insensitive names to the
1913 * same inode, only the actual correct case is stored in the dcache for
1914 * case-insensitive filesystems.
1915 *
1916 * For a case-insensitive lookup match and if the the case-exact dentry
1917 * already exists in in the dcache, use it and return it.
1918 *
1919 * If no entry exists with the exact case name, allocate new dentry with
1920 * the exact case, and return the spliced entry.
1921 */
e45b590b 1922struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1923 struct qstr *name)
1924{
9403540c
BN
1925 struct dentry *found;
1926 struct dentry *new;
1927
b6520c81
CH
1928 /*
1929 * First check if a dentry matching the name already exists,
1930 * if not go ahead and create it now.
1931 */
9403540c 1932 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1933 if (unlikely(IS_ERR(found)))
1934 goto err_out;
9403540c
BN
1935 if (!found) {
1936 new = d_alloc(dentry->d_parent, name);
1937 if (!new) {
4f522a24 1938 found = ERR_PTR(-ENOMEM);
9403540c
BN
1939 goto err_out;
1940 }
b6520c81 1941
9403540c
BN
1942 found = d_splice_alias(inode, new);
1943 if (found) {
1944 dput(new);
1945 return found;
1946 }
1947 return new;
1948 }
b6520c81
CH
1949
1950 /*
1951 * If a matching dentry exists, and it's not negative use it.
1952 *
1953 * Decrement the reference count to balance the iget() done
1954 * earlier on.
1955 */
9403540c
BN
1956 if (found->d_inode) {
1957 if (unlikely(found->d_inode != inode)) {
1958 /* This can't happen because bad inodes are unhashed. */
1959 BUG_ON(!is_bad_inode(inode));
1960 BUG_ON(!is_bad_inode(found->d_inode));
1961 }
9403540c
BN
1962 iput(inode);
1963 return found;
1964 }
b6520c81 1965
9403540c 1966 /*
9403540c 1967 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1968 * already has a dentry.
9403540c 1969 */
4513d899
AV
1970 new = d_splice_alias(inode, found);
1971 if (new) {
1972 dput(found);
1973 found = new;
9403540c 1974 }
4513d899 1975 return found;
9403540c
BN
1976
1977err_out:
1978 iput(inode);
4f522a24 1979 return found;
9403540c 1980}
ec4f8605 1981EXPORT_SYMBOL(d_add_ci);
1da177e4 1982
12f8ad4b
LT
1983/*
1984 * Do the slow-case of the dentry name compare.
1985 *
1986 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1987 * load the name and length information, so that the
12f8ad4b
LT
1988 * filesystem can rely on them, and can use the 'name' and
1989 * 'len' information without worrying about walking off the
1990 * end of memory etc.
1991 *
1992 * Thus the read_seqcount_retry() and the "duplicate" info
1993 * in arguments (the low-level filesystem should not look
1994 * at the dentry inode or name contents directly, since
1995 * rename can change them while we're in RCU mode).
1996 */
1997enum slow_d_compare {
1998 D_COMP_OK,
1999 D_COMP_NOMATCH,
2000 D_COMP_SEQRETRY,
2001};
2002
2003static noinline enum slow_d_compare slow_dentry_cmp(
2004 const struct dentry *parent,
12f8ad4b
LT
2005 struct dentry *dentry,
2006 unsigned int seq,
2007 const struct qstr *name)
2008{
2009 int tlen = dentry->d_name.len;
2010 const char *tname = dentry->d_name.name;
12f8ad4b
LT
2011
2012 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2013 cpu_relax();
2014 return D_COMP_SEQRETRY;
2015 }
da53be12 2016 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
2017 return D_COMP_NOMATCH;
2018 return D_COMP_OK;
2019}
2020
31e6b01f
NP
2021/**
2022 * __d_lookup_rcu - search for a dentry (racy, store-free)
2023 * @parent: parent dentry
2024 * @name: qstr of name we wish to find
1f1e6e52 2025 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2026 * Returns: dentry, or NULL
2027 *
2028 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2029 * resolution (store-free path walking) design described in
2030 * Documentation/filesystems/path-lookup.txt.
2031 *
2032 * This is not to be used outside core vfs.
2033 *
2034 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2035 * held, and rcu_read_lock held. The returned dentry must not be stored into
2036 * without taking d_lock and checking d_seq sequence count against @seq
2037 * returned here.
2038 *
15570086 2039 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2040 * function.
2041 *
2042 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2043 * the returned dentry, so long as its parent's seqlock is checked after the
2044 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2045 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2046 *
2047 * NOTE! The caller *has* to check the resulting dentry against the sequence
2048 * number we've returned before using any of the resulting dentry state!
31e6b01f 2049 */
8966be90
LT
2050struct dentry *__d_lookup_rcu(const struct dentry *parent,
2051 const struct qstr *name,
da53be12 2052 unsigned *seqp)
31e6b01f 2053{
26fe5750 2054 u64 hashlen = name->hash_len;
31e6b01f 2055 const unsigned char *str = name->name;
26fe5750 2056 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2057 struct hlist_bl_node *node;
31e6b01f
NP
2058 struct dentry *dentry;
2059
2060 /*
2061 * Note: There is significant duplication with __d_lookup_rcu which is
2062 * required to prevent single threaded performance regressions
2063 * especially on architectures where smp_rmb (in seqcounts) are costly.
2064 * Keep the two functions in sync.
2065 */
2066
2067 /*
2068 * The hash list is protected using RCU.
2069 *
2070 * Carefully use d_seq when comparing a candidate dentry, to avoid
2071 * races with d_move().
2072 *
2073 * It is possible that concurrent renames can mess up our list
2074 * walk here and result in missing our dentry, resulting in the
2075 * false-negative result. d_lookup() protects against concurrent
2076 * renames using rename_lock seqlock.
2077 *
b0a4bb83 2078 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2079 */
b07ad996 2080 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2081 unsigned seq;
31e6b01f 2082
31e6b01f 2083seqretry:
12f8ad4b
LT
2084 /*
2085 * The dentry sequence count protects us from concurrent
da53be12 2086 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2087 *
2088 * The caller must perform a seqcount check in order
da53be12 2089 * to do anything useful with the returned dentry.
12f8ad4b
LT
2090 *
2091 * NOTE! We do a "raw" seqcount_begin here. That means that
2092 * we don't wait for the sequence count to stabilize if it
2093 * is in the middle of a sequence change. If we do the slow
2094 * dentry compare, we will do seqretries until it is stable,
2095 * and if we end up with a successful lookup, we actually
2096 * want to exit RCU lookup anyway.
2097 */
2098 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2099 if (dentry->d_parent != parent)
2100 continue;
2e321806
LT
2101 if (d_unhashed(dentry))
2102 continue;
12f8ad4b 2103
830c0f0e 2104 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2105 if (dentry->d_name.hash != hashlen_hash(hashlen))
2106 continue;
da53be12
LT
2107 *seqp = seq;
2108 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2109 case D_COMP_OK:
2110 return dentry;
2111 case D_COMP_NOMATCH:
31e6b01f 2112 continue;
12f8ad4b
LT
2113 default:
2114 goto seqretry;
2115 }
31e6b01f 2116 }
12f8ad4b 2117
26fe5750 2118 if (dentry->d_name.hash_len != hashlen)
ee983e89 2119 continue;
da53be12 2120 *seqp = seq;
26fe5750 2121 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2122 return dentry;
31e6b01f
NP
2123 }
2124 return NULL;
2125}
2126
1da177e4
LT
2127/**
2128 * d_lookup - search for a dentry
2129 * @parent: parent dentry
2130 * @name: qstr of name we wish to find
b04f784e 2131 * Returns: dentry, or NULL
1da177e4 2132 *
b04f784e
NP
2133 * d_lookup searches the children of the parent dentry for the name in
2134 * question. If the dentry is found its reference count is incremented and the
2135 * dentry is returned. The caller must use dput to free the entry when it has
2136 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2137 */
da2d8455 2138struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2139{
31e6b01f 2140 struct dentry *dentry;
949854d0 2141 unsigned seq;
1da177e4
LT
2142
2143 do {
2144 seq = read_seqbegin(&rename_lock);
2145 dentry = __d_lookup(parent, name);
2146 if (dentry)
2147 break;
2148 } while (read_seqretry(&rename_lock, seq));
2149 return dentry;
2150}
ec4f8605 2151EXPORT_SYMBOL(d_lookup);
1da177e4 2152
31e6b01f 2153/**
b04f784e
NP
2154 * __d_lookup - search for a dentry (racy)
2155 * @parent: parent dentry
2156 * @name: qstr of name we wish to find
2157 * Returns: dentry, or NULL
2158 *
2159 * __d_lookup is like d_lookup, however it may (rarely) return a
2160 * false-negative result due to unrelated rename activity.
2161 *
2162 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2163 * however it must be used carefully, eg. with a following d_lookup in
2164 * the case of failure.
2165 *
2166 * __d_lookup callers must be commented.
2167 */
a713ca2a 2168struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2169{
2170 unsigned int len = name->len;
2171 unsigned int hash = name->hash;
2172 const unsigned char *str = name->name;
b07ad996 2173 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2174 struct hlist_bl_node *node;
31e6b01f 2175 struct dentry *found = NULL;
665a7583 2176 struct dentry *dentry;
1da177e4 2177
31e6b01f
NP
2178 /*
2179 * Note: There is significant duplication with __d_lookup_rcu which is
2180 * required to prevent single threaded performance regressions
2181 * especially on architectures where smp_rmb (in seqcounts) are costly.
2182 * Keep the two functions in sync.
2183 */
2184
b04f784e
NP
2185 /*
2186 * The hash list is protected using RCU.
2187 *
2188 * Take d_lock when comparing a candidate dentry, to avoid races
2189 * with d_move().
2190 *
2191 * It is possible that concurrent renames can mess up our list
2192 * walk here and result in missing our dentry, resulting in the
2193 * false-negative result. d_lookup() protects against concurrent
2194 * renames using rename_lock seqlock.
2195 *
b0a4bb83 2196 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2197 */
1da177e4
LT
2198 rcu_read_lock();
2199
b07ad996 2200 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2201
1da177e4
LT
2202 if (dentry->d_name.hash != hash)
2203 continue;
1da177e4
LT
2204
2205 spin_lock(&dentry->d_lock);
1da177e4
LT
2206 if (dentry->d_parent != parent)
2207 goto next;
d0185c08
LT
2208 if (d_unhashed(dentry))
2209 goto next;
2210
1da177e4
LT
2211 /*
2212 * It is safe to compare names since d_move() cannot
2213 * change the qstr (protected by d_lock).
2214 */
fb045adb 2215 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2216 int tlen = dentry->d_name.len;
2217 const char *tname = dentry->d_name.name;
da53be12 2218 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2219 goto next;
2220 } else {
ee983e89
LT
2221 if (dentry->d_name.len != len)
2222 goto next;
12f8ad4b 2223 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2224 goto next;
2225 }
2226
98474236 2227 dentry->d_lockref.count++;
d0185c08 2228 found = dentry;
1da177e4
LT
2229 spin_unlock(&dentry->d_lock);
2230 break;
2231next:
2232 spin_unlock(&dentry->d_lock);
2233 }
2234 rcu_read_unlock();
2235
2236 return found;
2237}
2238
3e7e241f
EB
2239/**
2240 * d_hash_and_lookup - hash the qstr then search for a dentry
2241 * @dir: Directory to search in
2242 * @name: qstr of name we wish to find
2243 *
4f522a24 2244 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2245 */
2246struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2247{
3e7e241f
EB
2248 /*
2249 * Check for a fs-specific hash function. Note that we must
2250 * calculate the standard hash first, as the d_op->d_hash()
2251 * routine may choose to leave the hash value unchanged.
2252 */
2253 name->hash = full_name_hash(name->name, name->len);
fb045adb 2254 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2255 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2256 if (unlikely(err < 0))
2257 return ERR_PTR(err);
3e7e241f 2258 }
4f522a24 2259 return d_lookup(dir, name);
3e7e241f 2260}
4f522a24 2261EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2262
1da177e4 2263/**
786a5e15 2264 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2265 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2266 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2267 *
2268 * An insecure source has sent us a dentry, here we verify it and dget() it.
2269 * This is used by ncpfs in its readdir implementation.
2270 * Zero is returned in the dentry is invalid.
786a5e15
NP
2271 *
2272 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2273 */
d3a23e16 2274int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2275{
786a5e15 2276 struct dentry *child;
d3a23e16 2277
2fd6b7f5 2278 spin_lock(&dparent->d_lock);
786a5e15
NP
2279 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2280 if (dentry == child) {
2fd6b7f5 2281 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2282 __dget_dlock(dentry);
2fd6b7f5
NP
2283 spin_unlock(&dentry->d_lock);
2284 spin_unlock(&dparent->d_lock);
1da177e4
LT
2285 return 1;
2286 }
2287 }
2fd6b7f5 2288 spin_unlock(&dparent->d_lock);
786a5e15 2289
1da177e4
LT
2290 return 0;
2291}
ec4f8605 2292EXPORT_SYMBOL(d_validate);
1da177e4
LT
2293
2294/*
2295 * When a file is deleted, we have two options:
2296 * - turn this dentry into a negative dentry
2297 * - unhash this dentry and free it.
2298 *
2299 * Usually, we want to just turn this into
2300 * a negative dentry, but if anybody else is
2301 * currently using the dentry or the inode
2302 * we can't do that and we fall back on removing
2303 * it from the hash queues and waiting for
2304 * it to be deleted later when it has no users
2305 */
2306
2307/**
2308 * d_delete - delete a dentry
2309 * @dentry: The dentry to delete
2310 *
2311 * Turn the dentry into a negative dentry if possible, otherwise
2312 * remove it from the hash queues so it can be deleted later
2313 */
2314
2315void d_delete(struct dentry * dentry)
2316{
873feea0 2317 struct inode *inode;
7a91bf7f 2318 int isdir = 0;
1da177e4
LT
2319 /*
2320 * Are we the only user?
2321 */
357f8e65 2322again:
1da177e4 2323 spin_lock(&dentry->d_lock);
873feea0
NP
2324 inode = dentry->d_inode;
2325 isdir = S_ISDIR(inode->i_mode);
98474236 2326 if (dentry->d_lockref.count == 1) {
1fe0c023 2327 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2328 spin_unlock(&dentry->d_lock);
2329 cpu_relax();
2330 goto again;
2331 }
13e3c5e5 2332 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2333 dentry_unlink_inode(dentry);
7a91bf7f 2334 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2335 return;
2336 }
2337
2338 if (!d_unhashed(dentry))
2339 __d_drop(dentry);
2340
2341 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2342
2343 fsnotify_nameremove(dentry, isdir);
1da177e4 2344}
ec4f8605 2345EXPORT_SYMBOL(d_delete);
1da177e4 2346
b07ad996 2347static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2348{
ceb5bdc2 2349 BUG_ON(!d_unhashed(entry));
1879fd6a 2350 hlist_bl_lock(b);
dea3667b 2351 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2352 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2353 hlist_bl_unlock(b);
1da177e4
LT
2354}
2355
770bfad8
DH
2356static void _d_rehash(struct dentry * entry)
2357{
2358 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2359}
2360
1da177e4
LT
2361/**
2362 * d_rehash - add an entry back to the hash
2363 * @entry: dentry to add to the hash
2364 *
2365 * Adds a dentry to the hash according to its name.
2366 */
2367
2368void d_rehash(struct dentry * entry)
2369{
1da177e4 2370 spin_lock(&entry->d_lock);
770bfad8 2371 _d_rehash(entry);
1da177e4 2372 spin_unlock(&entry->d_lock);
1da177e4 2373}
ec4f8605 2374EXPORT_SYMBOL(d_rehash);
1da177e4 2375
fb2d5b86
NP
2376/**
2377 * dentry_update_name_case - update case insensitive dentry with a new name
2378 * @dentry: dentry to be updated
2379 * @name: new name
2380 *
2381 * Update a case insensitive dentry with new case of name.
2382 *
2383 * dentry must have been returned by d_lookup with name @name. Old and new
2384 * name lengths must match (ie. no d_compare which allows mismatched name
2385 * lengths).
2386 *
2387 * Parent inode i_mutex must be held over d_lookup and into this call (to
2388 * keep renames and concurrent inserts, and readdir(2) away).
2389 */
2390void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2391{
7ebfa57f 2392 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2393 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2394
fb2d5b86 2395 spin_lock(&dentry->d_lock);
31e6b01f 2396 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2397 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2398 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2399 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2400}
2401EXPORT_SYMBOL(dentry_update_name_case);
2402
1da177e4
LT
2403static void switch_names(struct dentry *dentry, struct dentry *target)
2404{
2405 if (dname_external(target)) {
2406 if (dname_external(dentry)) {
2407 /*
2408 * Both external: swap the pointers
2409 */
9a8d5bb4 2410 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2411 } else {
2412 /*
2413 * dentry:internal, target:external. Steal target's
2414 * storage and make target internal.
2415 */
321bcf92
BF
2416 memcpy(target->d_iname, dentry->d_name.name,
2417 dentry->d_name.len + 1);
1da177e4
LT
2418 dentry->d_name.name = target->d_name.name;
2419 target->d_name.name = target->d_iname;
2420 }
2421 } else {
2422 if (dname_external(dentry)) {
2423 /*
2424 * dentry:external, target:internal. Give dentry's
2425 * storage to target and make dentry internal
2426 */
2427 memcpy(dentry->d_iname, target->d_name.name,
2428 target->d_name.len + 1);
2429 target->d_name.name = dentry->d_name.name;
2430 dentry->d_name.name = dentry->d_iname;
2431 } else {
2432 /*
da1ce067 2433 * Both are internal.
1da177e4 2434 */
da1ce067
MS
2435 unsigned int i;
2436 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2437 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2438 swap(((long *) &dentry->d_iname)[i],
2439 ((long *) &target->d_iname)[i]);
2440 }
1da177e4
LT
2441 }
2442 }
9a8d5bb4 2443 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2444}
2445
2fd6b7f5
NP
2446static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2447{
2448 /*
2449 * XXXX: do we really need to take target->d_lock?
2450 */
2451 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2452 spin_lock(&target->d_parent->d_lock);
2453 else {
2454 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2455 spin_lock(&dentry->d_parent->d_lock);
2456 spin_lock_nested(&target->d_parent->d_lock,
2457 DENTRY_D_LOCK_NESTED);
2458 } else {
2459 spin_lock(&target->d_parent->d_lock);
2460 spin_lock_nested(&dentry->d_parent->d_lock,
2461 DENTRY_D_LOCK_NESTED);
2462 }
2463 }
2464 if (target < dentry) {
2465 spin_lock_nested(&target->d_lock, 2);
2466 spin_lock_nested(&dentry->d_lock, 3);
2467 } else {
2468 spin_lock_nested(&dentry->d_lock, 2);
2469 spin_lock_nested(&target->d_lock, 3);
2470 }
2471}
2472
2473static void dentry_unlock_parents_for_move(struct dentry *dentry,
2474 struct dentry *target)
2475{
2476 if (target->d_parent != dentry->d_parent)
2477 spin_unlock(&dentry->d_parent->d_lock);
2478 if (target->d_parent != target)
2479 spin_unlock(&target->d_parent->d_lock);
2480}
2481
1da177e4 2482/*
2fd6b7f5
NP
2483 * When switching names, the actual string doesn't strictly have to
2484 * be preserved in the target - because we're dropping the target
2485 * anyway. As such, we can just do a simple memcpy() to copy over
2486 * the new name before we switch.
2487 *
2488 * Note that we have to be a lot more careful about getting the hash
2489 * switched - we have to switch the hash value properly even if it
2490 * then no longer matches the actual (corrupted) string of the target.
2491 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2492 */
9eaef27b 2493/*
18367501 2494 * __d_move - move a dentry
1da177e4
LT
2495 * @dentry: entry to move
2496 * @target: new dentry
da1ce067 2497 * @exchange: exchange the two dentries
1da177e4
LT
2498 *
2499 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2500 * dcache entries should not be moved in this way. Caller must hold
2501 * rename_lock, the i_mutex of the source and target directories,
2502 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2503 */
da1ce067
MS
2504static void __d_move(struct dentry *dentry, struct dentry *target,
2505 bool exchange)
1da177e4 2506{
1da177e4
LT
2507 if (!dentry->d_inode)
2508 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2509
2fd6b7f5
NP
2510 BUG_ON(d_ancestor(dentry, target));
2511 BUG_ON(d_ancestor(target, dentry));
2512
2fd6b7f5 2513 dentry_lock_for_move(dentry, target);
1da177e4 2514
31e6b01f 2515 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2516 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2517
ceb5bdc2
NP
2518 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2519
2520 /*
2521 * Move the dentry to the target hash queue. Don't bother checking
2522 * for the same hash queue because of how unlikely it is.
2523 */
2524 __d_drop(dentry);
789680d1 2525 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2526
da1ce067
MS
2527 /*
2528 * Unhash the target (d_delete() is not usable here). If exchanging
2529 * the two dentries, then rehash onto the other's hash queue.
2530 */
1da177e4 2531 __d_drop(target);
da1ce067
MS
2532 if (exchange) {
2533 __d_rehash(target,
2534 d_hash(dentry->d_parent, dentry->d_name.hash));
2535 }
1da177e4 2536
5160ee6f
ED
2537 list_del(&dentry->d_u.d_child);
2538 list_del(&target->d_u.d_child);
1da177e4
LT
2539
2540 /* Switch the names.. */
2541 switch_names(dentry, target);
9a8d5bb4 2542 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2543
2544 /* ... and switch the parents */
2545 if (IS_ROOT(dentry)) {
2546 dentry->d_parent = target->d_parent;
2547 target->d_parent = target;
5160ee6f 2548 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2549 } else {
9a8d5bb4 2550 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2551
2552 /* And add them back to the (new) parent lists */
5160ee6f 2553 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2554 }
2555
5160ee6f 2556 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2557
31e6b01f
NP
2558 write_seqcount_end(&target->d_seq);
2559 write_seqcount_end(&dentry->d_seq);
2560
2fd6b7f5 2561 dentry_unlock_parents_for_move(dentry, target);
da1ce067
MS
2562 if (exchange)
2563 fsnotify_d_move(target);
1da177e4 2564 spin_unlock(&target->d_lock);
c32ccd87 2565 fsnotify_d_move(dentry);
1da177e4 2566 spin_unlock(&dentry->d_lock);
18367501
AV
2567}
2568
2569/*
2570 * d_move - move a dentry
2571 * @dentry: entry to move
2572 * @target: new dentry
2573 *
2574 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2575 * dcache entries should not be moved in this way. See the locking
2576 * requirements for __d_move.
18367501
AV
2577 */
2578void d_move(struct dentry *dentry, struct dentry *target)
2579{
2580 write_seqlock(&rename_lock);
da1ce067 2581 __d_move(dentry, target, false);
1da177e4 2582 write_sequnlock(&rename_lock);
9eaef27b 2583}
ec4f8605 2584EXPORT_SYMBOL(d_move);
1da177e4 2585
da1ce067
MS
2586/*
2587 * d_exchange - exchange two dentries
2588 * @dentry1: first dentry
2589 * @dentry2: second dentry
2590 */
2591void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2592{
2593 write_seqlock(&rename_lock);
2594
2595 WARN_ON(!dentry1->d_inode);
2596 WARN_ON(!dentry2->d_inode);
2597 WARN_ON(IS_ROOT(dentry1));
2598 WARN_ON(IS_ROOT(dentry2));
2599
2600 __d_move(dentry1, dentry2, true);
2601
2602 write_sequnlock(&rename_lock);
2603}
2604
e2761a11
OH
2605/**
2606 * d_ancestor - search for an ancestor
2607 * @p1: ancestor dentry
2608 * @p2: child dentry
2609 *
2610 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2611 * an ancestor of p2, else NULL.
9eaef27b 2612 */
e2761a11 2613struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2614{
2615 struct dentry *p;
2616
871c0067 2617 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2618 if (p->d_parent == p1)
e2761a11 2619 return p;
9eaef27b 2620 }
e2761a11 2621 return NULL;
9eaef27b
TM
2622}
2623
2624/*
2625 * This helper attempts to cope with remotely renamed directories
2626 *
2627 * It assumes that the caller is already holding
18367501 2628 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2629 *
2630 * Note: If ever the locking in lock_rename() changes, then please
2631 * remember to update this too...
9eaef27b 2632 */
873feea0
NP
2633static struct dentry *__d_unalias(struct inode *inode,
2634 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2635{
2636 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2637 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2638
2639 /* If alias and dentry share a parent, then no extra locks required */
2640 if (alias->d_parent == dentry->d_parent)
2641 goto out_unalias;
2642
9eaef27b 2643 /* See lock_rename() */
9eaef27b
TM
2644 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2645 goto out_err;
2646 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2647 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2648 goto out_err;
2649 m2 = &alias->d_parent->d_inode->i_mutex;
2650out_unalias:
ee3efa91 2651 if (likely(!d_mountpoint(alias))) {
da1ce067 2652 __d_move(alias, dentry, false);
ee3efa91
AV
2653 ret = alias;
2654 }
9eaef27b 2655out_err:
873feea0 2656 spin_unlock(&inode->i_lock);
9eaef27b
TM
2657 if (m2)
2658 mutex_unlock(m2);
2659 if (m1)
2660 mutex_unlock(m1);
2661 return ret;
2662}
2663
770bfad8
DH
2664/*
2665 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2666 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2667 * returns with anon->d_lock held!
770bfad8
DH
2668 */
2669static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2670{
740da42e 2671 struct dentry *dparent;
770bfad8 2672
2fd6b7f5 2673 dentry_lock_for_move(anon, dentry);
770bfad8 2674
31e6b01f 2675 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2676 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2677
770bfad8 2678 dparent = dentry->d_parent;
770bfad8 2679
2fd6b7f5
NP
2680 switch_names(dentry, anon);
2681 swap(dentry->d_name.hash, anon->d_name.hash);
2682
740da42e
AV
2683 dentry->d_parent = dentry;
2684 list_del_init(&dentry->d_u.d_child);
2685 anon->d_parent = dparent;
9ed53b12 2686 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2687
31e6b01f
NP
2688 write_seqcount_end(&dentry->d_seq);
2689 write_seqcount_end(&anon->d_seq);
2690
2fd6b7f5
NP
2691 dentry_unlock_parents_for_move(anon, dentry);
2692 spin_unlock(&dentry->d_lock);
2693
2694 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2695}
2696
2697/**
2698 * d_materialise_unique - introduce an inode into the tree
2699 * @dentry: candidate dentry
2700 * @inode: inode to bind to the dentry, to which aliases may be attached
2701 *
2702 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2703 * root directory alias in its place if there is one. Caller must hold the
2704 * i_mutex of the parent directory.
770bfad8
DH
2705 */
2706struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2707{
9eaef27b 2708 struct dentry *actual;
770bfad8
DH
2709
2710 BUG_ON(!d_unhashed(dentry));
2711
770bfad8
DH
2712 if (!inode) {
2713 actual = dentry;
360da900 2714 __d_instantiate(dentry, NULL);
357f8e65
NP
2715 d_rehash(actual);
2716 goto out_nolock;
770bfad8
DH
2717 }
2718
873feea0 2719 spin_lock(&inode->i_lock);
357f8e65 2720
9eaef27b
TM
2721 if (S_ISDIR(inode->i_mode)) {
2722 struct dentry *alias;
2723
2724 /* Does an aliased dentry already exist? */
32ba9c3f 2725 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2726 if (alias) {
2727 actual = alias;
18367501
AV
2728 write_seqlock(&rename_lock);
2729
2730 if (d_ancestor(alias, dentry)) {
2731 /* Check for loops */
2732 actual = ERR_PTR(-ELOOP);
b18dafc8 2733 spin_unlock(&inode->i_lock);
18367501
AV
2734 } else if (IS_ROOT(alias)) {
2735 /* Is this an anonymous mountpoint that we
2736 * could splice into our tree? */
9eaef27b 2737 __d_materialise_dentry(dentry, alias);
18367501 2738 write_sequnlock(&rename_lock);
9eaef27b
TM
2739 __d_drop(alias);
2740 goto found;
18367501
AV
2741 } else {
2742 /* Nope, but we must(!) avoid directory
b18dafc8 2743 * aliasing. This drops inode->i_lock */
18367501 2744 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2745 }
18367501 2746 write_sequnlock(&rename_lock);
dd179946
DH
2747 if (IS_ERR(actual)) {
2748 if (PTR_ERR(actual) == -ELOOP)
2749 pr_warn_ratelimited(
2750 "VFS: Lookup of '%s' in %s %s"
2751 " would have caused loop\n",
2752 dentry->d_name.name,
2753 inode->i_sb->s_type->name,
2754 inode->i_sb->s_id);
9eaef27b 2755 dput(alias);
dd179946 2756 }
9eaef27b
TM
2757 goto out_nolock;
2758 }
770bfad8
DH
2759 }
2760
2761 /* Add a unique reference */
2762 actual = __d_instantiate_unique(dentry, inode);
2763 if (!actual)
2764 actual = dentry;
357f8e65
NP
2765 else
2766 BUG_ON(!d_unhashed(actual));
770bfad8 2767
770bfad8
DH
2768 spin_lock(&actual->d_lock);
2769found:
2770 _d_rehash(actual);
2771 spin_unlock(&actual->d_lock);
873feea0 2772 spin_unlock(&inode->i_lock);
9eaef27b 2773out_nolock:
770bfad8
DH
2774 if (actual == dentry) {
2775 security_d_instantiate(dentry, inode);
2776 return NULL;
2777 }
2778
2779 iput(inode);
2780 return actual;
770bfad8 2781}
ec4f8605 2782EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2783
cdd16d02 2784static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2785{
2786 *buflen -= namelen;
2787 if (*buflen < 0)
2788 return -ENAMETOOLONG;
2789 *buffer -= namelen;
2790 memcpy(*buffer, str, namelen);
2791 return 0;
2792}
2793
232d2d60
WL
2794/**
2795 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2796 * @buffer: buffer pointer
2797 * @buflen: allocated length of the buffer
2798 * @name: name string and length qstr structure
232d2d60
WL
2799 *
2800 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2801 * make sure that either the old or the new name pointer and length are
2802 * fetched. However, there may be mismatch between length and pointer.
2803 * The length cannot be trusted, we need to copy it byte-by-byte until
2804 * the length is reached or a null byte is found. It also prepends "/" at
2805 * the beginning of the name. The sequence number check at the caller will
2806 * retry it again when a d_move() does happen. So any garbage in the buffer
2807 * due to mismatched pointer and length will be discarded.
2808 */
cdd16d02
MS
2809static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2810{
232d2d60
WL
2811 const char *dname = ACCESS_ONCE(name->name);
2812 u32 dlen = ACCESS_ONCE(name->len);
2813 char *p;
2814
232d2d60 2815 *buflen -= dlen + 1;
e825196d
AV
2816 if (*buflen < 0)
2817 return -ENAMETOOLONG;
232d2d60
WL
2818 p = *buffer -= dlen + 1;
2819 *p++ = '/';
2820 while (dlen--) {
2821 char c = *dname++;
2822 if (!c)
2823 break;
2824 *p++ = c;
2825 }
2826 return 0;
cdd16d02
MS
2827}
2828
1da177e4 2829/**
208898c1 2830 * prepend_path - Prepend path string to a buffer
9d1bc601 2831 * @path: the dentry/vfsmount to report
02125a82 2832 * @root: root vfsmnt/dentry
f2eb6575
MS
2833 * @buffer: pointer to the end of the buffer
2834 * @buflen: pointer to buffer length
552ce544 2835 *
18129977
WL
2836 * The function will first try to write out the pathname without taking any
2837 * lock other than the RCU read lock to make sure that dentries won't go away.
2838 * It only checks the sequence number of the global rename_lock as any change
2839 * in the dentry's d_seq will be preceded by changes in the rename_lock
2840 * sequence number. If the sequence number had been changed, it will restart
2841 * the whole pathname back-tracing sequence again by taking the rename_lock.
2842 * In this case, there is no need to take the RCU read lock as the recursive
2843 * parent pointer references will keep the dentry chain alive as long as no
2844 * rename operation is performed.
1da177e4 2845 */
02125a82
AV
2846static int prepend_path(const struct path *path,
2847 const struct path *root,
f2eb6575 2848 char **buffer, int *buflen)
1da177e4 2849{
ede4cebc
AV
2850 struct dentry *dentry;
2851 struct vfsmount *vfsmnt;
2852 struct mount *mnt;
f2eb6575 2853 int error = 0;
48a066e7 2854 unsigned seq, m_seq = 0;
232d2d60
WL
2855 char *bptr;
2856 int blen;
6092d048 2857
48f5ec21 2858 rcu_read_lock();
48a066e7
AV
2859restart_mnt:
2860 read_seqbegin_or_lock(&mount_lock, &m_seq);
2861 seq = 0;
4ec6c2ae 2862 rcu_read_lock();
232d2d60
WL
2863restart:
2864 bptr = *buffer;
2865 blen = *buflen;
48a066e7 2866 error = 0;
ede4cebc
AV
2867 dentry = path->dentry;
2868 vfsmnt = path->mnt;
2869 mnt = real_mount(vfsmnt);
232d2d60 2870 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2871 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2872 struct dentry * parent;
2873
1da177e4 2874 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2875 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
552ce544 2876 /* Global root? */
48a066e7
AV
2877 if (mnt != parent) {
2878 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2879 mnt = parent;
232d2d60
WL
2880 vfsmnt = &mnt->mnt;
2881 continue;
2882 }
2883 /*
2884 * Filesystems needing to implement special "root names"
2885 * should do so with ->d_dname()
2886 */
2887 if (IS_ROOT(dentry) &&
2888 (dentry->d_name.len != 1 ||
2889 dentry->d_name.name[0] != '/')) {
2890 WARN(1, "Root dentry has weird name <%.*s>\n",
2891 (int) dentry->d_name.len,
2892 dentry->d_name.name);
2893 }
2894 if (!error)
2895 error = is_mounted(vfsmnt) ? 1 : 2;
2896 break;
1da177e4
LT
2897 }
2898 parent = dentry->d_parent;
2899 prefetch(parent);
232d2d60 2900 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2901 if (error)
2902 break;
2903
1da177e4
LT
2904 dentry = parent;
2905 }
48f5ec21
AV
2906 if (!(seq & 1))
2907 rcu_read_unlock();
2908 if (need_seqretry(&rename_lock, seq)) {
2909 seq = 1;
232d2d60 2910 goto restart;
48f5ec21
AV
2911 }
2912 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
2913
2914 if (!(m_seq & 1))
2915 rcu_read_unlock();
48a066e7
AV
2916 if (need_seqretry(&mount_lock, m_seq)) {
2917 m_seq = 1;
2918 goto restart_mnt;
2919 }
2920 done_seqretry(&mount_lock, m_seq);
1da177e4 2921
232d2d60
WL
2922 if (error >= 0 && bptr == *buffer) {
2923 if (--blen < 0)
2924 error = -ENAMETOOLONG;
2925 else
2926 *--bptr = '/';
2927 }
2928 *buffer = bptr;
2929 *buflen = blen;
7ea600b5 2930 return error;
f2eb6575 2931}
be285c71 2932
f2eb6575
MS
2933/**
2934 * __d_path - return the path of a dentry
2935 * @path: the dentry/vfsmount to report
02125a82 2936 * @root: root vfsmnt/dentry
cd956a1c 2937 * @buf: buffer to return value in
f2eb6575
MS
2938 * @buflen: buffer length
2939 *
ffd1f4ed 2940 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2941 *
2942 * Returns a pointer into the buffer or an error code if the
2943 * path was too long.
2944 *
be148247 2945 * "buflen" should be positive.
f2eb6575 2946 *
02125a82 2947 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2948 */
02125a82
AV
2949char *__d_path(const struct path *path,
2950 const struct path *root,
f2eb6575
MS
2951 char *buf, int buflen)
2952{
2953 char *res = buf + buflen;
2954 int error;
2955
2956 prepend(&res, &buflen, "\0", 1);
f2eb6575 2957 error = prepend_path(path, root, &res, &buflen);
be148247 2958
02125a82
AV
2959 if (error < 0)
2960 return ERR_PTR(error);
2961 if (error > 0)
2962 return NULL;
2963 return res;
2964}
2965
2966char *d_absolute_path(const struct path *path,
2967 char *buf, int buflen)
2968{
2969 struct path root = {};
2970 char *res = buf + buflen;
2971 int error;
2972
2973 prepend(&res, &buflen, "\0", 1);
02125a82 2974 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
2975
2976 if (error > 1)
2977 error = -EINVAL;
2978 if (error < 0)
f2eb6575 2979 return ERR_PTR(error);
f2eb6575 2980 return res;
1da177e4
LT
2981}
2982
ffd1f4ed
MS
2983/*
2984 * same as __d_path but appends "(deleted)" for unlinked files.
2985 */
02125a82
AV
2986static int path_with_deleted(const struct path *path,
2987 const struct path *root,
2988 char **buf, int *buflen)
ffd1f4ed
MS
2989{
2990 prepend(buf, buflen, "\0", 1);
2991 if (d_unlinked(path->dentry)) {
2992 int error = prepend(buf, buflen, " (deleted)", 10);
2993 if (error)
2994 return error;
2995 }
2996
2997 return prepend_path(path, root, buf, buflen);
2998}
2999
8df9d1a4
MS
3000static int prepend_unreachable(char **buffer, int *buflen)
3001{
3002 return prepend(buffer, buflen, "(unreachable)", 13);
3003}
3004
68f0d9d9
LT
3005static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3006{
3007 unsigned seq;
3008
3009 do {
3010 seq = read_seqcount_begin(&fs->seq);
3011 *root = fs->root;
3012 } while (read_seqcount_retry(&fs->seq, seq));
3013}
3014
a03a8a70
JB
3015/**
3016 * d_path - return the path of a dentry
cf28b486 3017 * @path: path to report
a03a8a70
JB
3018 * @buf: buffer to return value in
3019 * @buflen: buffer length
3020 *
3021 * Convert a dentry into an ASCII path name. If the entry has been deleted
3022 * the string " (deleted)" is appended. Note that this is ambiguous.
3023 *
52afeefb
AV
3024 * Returns a pointer into the buffer or an error code if the path was
3025 * too long. Note: Callers should use the returned pointer, not the passed
3026 * in buffer, to use the name! The implementation often starts at an offset
3027 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3028 *
31f3e0b3 3029 * "buflen" should be positive.
a03a8a70 3030 */
20d4fdc1 3031char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3032{
ffd1f4ed 3033 char *res = buf + buflen;
6ac08c39 3034 struct path root;
ffd1f4ed 3035 int error;
1da177e4 3036
c23fbb6b
ED
3037 /*
3038 * We have various synthetic filesystems that never get mounted. On
3039 * these filesystems dentries are never used for lookup purposes, and
3040 * thus don't need to be hashed. They also don't need a name until a
3041 * user wants to identify the object in /proc/pid/fd/. The little hack
3042 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3043 *
3044 * Some pseudo inodes are mountable. When they are mounted
3045 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3046 * and instead have d_path return the mounted path.
c23fbb6b 3047 */
f48cfddc
EB
3048 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3049 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3050 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3051
68f0d9d9
LT
3052 rcu_read_lock();
3053 get_fs_root_rcu(current->fs, &root);
02125a82 3054 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3055 rcu_read_unlock();
3056
02125a82 3057 if (error < 0)
ffd1f4ed 3058 res = ERR_PTR(error);
1da177e4
LT
3059 return res;
3060}
ec4f8605 3061EXPORT_SYMBOL(d_path);
1da177e4 3062
c23fbb6b
ED
3063/*
3064 * Helper function for dentry_operations.d_dname() members
3065 */
3066char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3067 const char *fmt, ...)
3068{
3069 va_list args;
3070 char temp[64];
3071 int sz;
3072
3073 va_start(args, fmt);
3074 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3075 va_end(args);
3076
3077 if (sz > sizeof(temp) || sz > buflen)
3078 return ERR_PTR(-ENAMETOOLONG);
3079
3080 buffer += buflen - sz;
3081 return memcpy(buffer, temp, sz);
3082}
3083
118b2302
AV
3084char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3085{
3086 char *end = buffer + buflen;
3087 /* these dentries are never renamed, so d_lock is not needed */
3088 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3089 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3090 prepend(&end, &buflen, "/", 1))
3091 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3092 return end;
118b2302 3093}
31bbe16f 3094EXPORT_SYMBOL(simple_dname);
118b2302 3095
6092d048
RP
3096/*
3097 * Write full pathname from the root of the filesystem into the buffer.
3098 */
f6500801 3099static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3100{
f6500801 3101 struct dentry *dentry;
232d2d60
WL
3102 char *end, *retval;
3103 int len, seq = 0;
3104 int error = 0;
6092d048 3105
f6500801
AV
3106 if (buflen < 2)
3107 goto Elong;
3108
48f5ec21 3109 rcu_read_lock();
232d2d60 3110restart:
f6500801 3111 dentry = d;
232d2d60
WL
3112 end = buf + buflen;
3113 len = buflen;
3114 prepend(&end, &len, "\0", 1);
6092d048
RP
3115 /* Get '/' right */
3116 retval = end-1;
3117 *retval = '/';
232d2d60 3118 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3119 while (!IS_ROOT(dentry)) {
3120 struct dentry *parent = dentry->d_parent;
6092d048 3121
6092d048 3122 prefetch(parent);
232d2d60
WL
3123 error = prepend_name(&end, &len, &dentry->d_name);
3124 if (error)
3125 break;
6092d048
RP
3126
3127 retval = end;
3128 dentry = parent;
3129 }
48f5ec21
AV
3130 if (!(seq & 1))
3131 rcu_read_unlock();
3132 if (need_seqretry(&rename_lock, seq)) {
3133 seq = 1;
232d2d60 3134 goto restart;
48f5ec21
AV
3135 }
3136 done_seqretry(&rename_lock, seq);
232d2d60
WL
3137 if (error)
3138 goto Elong;
c103135c
AV
3139 return retval;
3140Elong:
3141 return ERR_PTR(-ENAMETOOLONG);
3142}
ec2447c2
NP
3143
3144char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3145{
232d2d60 3146 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3147}
3148EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3149
3150char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3151{
3152 char *p = NULL;
3153 char *retval;
3154
c103135c
AV
3155 if (d_unlinked(dentry)) {
3156 p = buf + buflen;
3157 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3158 goto Elong;
3159 buflen++;
3160 }
3161 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3162 if (!IS_ERR(retval) && p)
3163 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3164 return retval;
3165Elong:
6092d048
RP
3166 return ERR_PTR(-ENAMETOOLONG);
3167}
3168
8b19e341
LT
3169static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3170 struct path *pwd)
5762482f 3171{
8b19e341
LT
3172 unsigned seq;
3173
3174 do {
3175 seq = read_seqcount_begin(&fs->seq);
3176 *root = fs->root;
3177 *pwd = fs->pwd;
3178 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3179}
3180
1da177e4
LT
3181/*
3182 * NOTE! The user-level library version returns a
3183 * character pointer. The kernel system call just
3184 * returns the length of the buffer filled (which
3185 * includes the ending '\0' character), or a negative
3186 * error value. So libc would do something like
3187 *
3188 * char *getcwd(char * buf, size_t size)
3189 * {
3190 * int retval;
3191 *
3192 * retval = sys_getcwd(buf, size);
3193 * if (retval >= 0)
3194 * return buf;
3195 * errno = -retval;
3196 * return NULL;
3197 * }
3198 */
3cdad428 3199SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3200{
552ce544 3201 int error;
6ac08c39 3202 struct path pwd, root;
3272c544 3203 char *page = __getname();
1da177e4
LT
3204
3205 if (!page)
3206 return -ENOMEM;
3207
8b19e341
LT
3208 rcu_read_lock();
3209 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3210
552ce544 3211 error = -ENOENT;
f3da392e 3212 if (!d_unlinked(pwd.dentry)) {
552ce544 3213 unsigned long len;
3272c544
LT
3214 char *cwd = page + PATH_MAX;
3215 int buflen = PATH_MAX;
1da177e4 3216
8df9d1a4 3217 prepend(&cwd, &buflen, "\0", 1);
02125a82 3218 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3219 rcu_read_unlock();
552ce544 3220
02125a82 3221 if (error < 0)
552ce544
LT
3222 goto out;
3223
8df9d1a4 3224 /* Unreachable from current root */
02125a82 3225 if (error > 0) {
8df9d1a4
MS
3226 error = prepend_unreachable(&cwd, &buflen);
3227 if (error)
3228 goto out;
3229 }
3230
552ce544 3231 error = -ERANGE;
3272c544 3232 len = PATH_MAX + page - cwd;
552ce544
LT
3233 if (len <= size) {
3234 error = len;
3235 if (copy_to_user(buf, cwd, len))
3236 error = -EFAULT;
3237 }
949854d0 3238 } else {
ff812d72 3239 rcu_read_unlock();
949854d0 3240 }
1da177e4
LT
3241
3242out:
3272c544 3243 __putname(page);
1da177e4
LT
3244 return error;
3245}
3246
3247/*
3248 * Test whether new_dentry is a subdirectory of old_dentry.
3249 *
3250 * Trivially implemented using the dcache structure
3251 */
3252
3253/**
3254 * is_subdir - is new dentry a subdirectory of old_dentry
3255 * @new_dentry: new dentry
3256 * @old_dentry: old dentry
3257 *
3258 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3259 * Returns 0 otherwise.
3260 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3261 */
3262
e2761a11 3263int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3264{
3265 int result;
949854d0 3266 unsigned seq;
1da177e4 3267
e2761a11
OH
3268 if (new_dentry == old_dentry)
3269 return 1;
3270
e2761a11 3271 do {
1da177e4 3272 /* for restarting inner loop in case of seq retry */
1da177e4 3273 seq = read_seqbegin(&rename_lock);
949854d0
NP
3274 /*
3275 * Need rcu_readlock to protect against the d_parent trashing
3276 * due to d_move
3277 */
3278 rcu_read_lock();
e2761a11 3279 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3280 result = 1;
e2761a11
OH
3281 else
3282 result = 0;
949854d0 3283 rcu_read_unlock();
1da177e4 3284 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3285
3286 return result;
3287}
3288
db14fc3a 3289static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3290{
db14fc3a
MS
3291 struct dentry *root = data;
3292 if (dentry != root) {
3293 if (d_unhashed(dentry) || !dentry->d_inode)
3294 return D_WALK_SKIP;
1da177e4 3295
01ddc4ed
MS
3296 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3297 dentry->d_flags |= DCACHE_GENOCIDE;
3298 dentry->d_lockref.count--;
3299 }
1da177e4 3300 }
db14fc3a
MS
3301 return D_WALK_CONTINUE;
3302}
58db63d0 3303
db14fc3a
MS
3304void d_genocide(struct dentry *parent)
3305{
3306 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3307}
3308
60545d0d 3309void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3310{
60545d0d
AV
3311 inode_dec_link_count(inode);
3312 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3313 !hlist_unhashed(&dentry->d_alias) ||
3314 !d_unlinked(dentry));
3315 spin_lock(&dentry->d_parent->d_lock);
3316 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3317 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3318 (unsigned long long)inode->i_ino);
3319 spin_unlock(&dentry->d_lock);
3320 spin_unlock(&dentry->d_parent->d_lock);
3321 d_instantiate(dentry, inode);
1da177e4 3322}
60545d0d 3323EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3324
3325static __initdata unsigned long dhash_entries;
3326static int __init set_dhash_entries(char *str)
3327{
3328 if (!str)
3329 return 0;
3330 dhash_entries = simple_strtoul(str, &str, 0);
3331 return 1;
3332}
3333__setup("dhash_entries=", set_dhash_entries);
3334
3335static void __init dcache_init_early(void)
3336{
074b8517 3337 unsigned int loop;
1da177e4
LT
3338
3339 /* If hashes are distributed across NUMA nodes, defer
3340 * hash allocation until vmalloc space is available.
3341 */
3342 if (hashdist)
3343 return;
3344
3345 dentry_hashtable =
3346 alloc_large_system_hash("Dentry cache",
b07ad996 3347 sizeof(struct hlist_bl_head),
1da177e4
LT
3348 dhash_entries,
3349 13,
3350 HASH_EARLY,
3351 &d_hash_shift,
3352 &d_hash_mask,
31fe62b9 3353 0,
1da177e4
LT
3354 0);
3355
074b8517 3356 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3357 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3358}
3359
74bf17cf 3360static void __init dcache_init(void)
1da177e4 3361{
074b8517 3362 unsigned int loop;
1da177e4
LT
3363
3364 /*
3365 * A constructor could be added for stable state like the lists,
3366 * but it is probably not worth it because of the cache nature
3367 * of the dcache.
3368 */
0a31bd5f
CL
3369 dentry_cache = KMEM_CACHE(dentry,
3370 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3371
3372 /* Hash may have been set up in dcache_init_early */
3373 if (!hashdist)
3374 return;
3375
3376 dentry_hashtable =
3377 alloc_large_system_hash("Dentry cache",
b07ad996 3378 sizeof(struct hlist_bl_head),
1da177e4
LT
3379 dhash_entries,
3380 13,
3381 0,
3382 &d_hash_shift,
3383 &d_hash_mask,
31fe62b9 3384 0,
1da177e4
LT
3385 0);
3386
074b8517 3387 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3388 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3389}
3390
3391/* SLAB cache for __getname() consumers */
e18b890b 3392struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3393EXPORT_SYMBOL(names_cachep);
1da177e4 3394
1da177e4
LT
3395EXPORT_SYMBOL(d_genocide);
3396
1da177e4
LT
3397void __init vfs_caches_init_early(void)
3398{
3399 dcache_init_early();
3400 inode_init_early();
3401}
3402
3403void __init vfs_caches_init(unsigned long mempages)
3404{
3405 unsigned long reserve;
3406
3407 /* Base hash sizes on available memory, with a reserve equal to
3408 150% of current kernel size */
3409
3410 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3411 mempages -= reserve;
3412
3413 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3414 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3415
74bf17cf
DC
3416 dcache_init();
3417 inode_init();
1da177e4 3418 files_init(mempages);
74bf17cf 3419 mnt_init();
1da177e4
LT
3420 bdev_cache_init();
3421 chrdev_init();
3422}