[jffs2] kill wbuf_queued/wbuf_dwork_lock
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0
NP
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
b23fb0a6 62 * - d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
99d263d4 109 return dentry_hashtable + hash_32(hash, d_hash_shift);
ceb5bdc2
NP
110}
111
1da177e4
LT
112/* Statistics gathering. */
113struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
115};
116
3942c07c 117static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 118static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
119
120#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
121
122/*
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
126 *
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
130 *
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
133 */
3942c07c 134static long get_nr_dentry(void)
3e880fb5
NP
135{
136 int i;
3942c07c 137 long sum = 0;
3e880fb5
NP
138 for_each_possible_cpu(i)
139 sum += per_cpu(nr_dentry, i);
140 return sum < 0 ? 0 : sum;
141}
142
62d36c77
DC
143static long get_nr_dentry_unused(void)
144{
145 int i;
146 long sum = 0;
147 for_each_possible_cpu(i)
148 sum += per_cpu(nr_dentry_unused, i);
149 return sum < 0 ? 0 : sum;
150}
151
1f7e0616 152int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
153 size_t *lenp, loff_t *ppos)
154{
3e880fb5 155 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 156 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 157 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
158}
159#endif
160
5483f18e
LT
161/*
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
164 */
e419b4cc
LT
165#ifdef CONFIG_DCACHE_WORD_ACCESS
166
167#include <asm/word-at-a-time.h>
168/*
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
173 *
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
176 */
94753db5 177static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 178{
bfcfaa77 179 unsigned long a,b,mask;
bfcfaa77
LT
180
181 for (;;) {
12f8ad4b 182 a = *(unsigned long *)cs;
e419b4cc 183 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
184 if (tcount < sizeof(unsigned long))
185 break;
186 if (unlikely(a != b))
187 return 1;
188 cs += sizeof(unsigned long);
189 ct += sizeof(unsigned long);
190 tcount -= sizeof(unsigned long);
191 if (!tcount)
192 return 0;
193 }
a5c21dce 194 mask = bytemask_from_count(tcount);
bfcfaa77 195 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
196}
197
bfcfaa77 198#else
e419b4cc 199
94753db5 200static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 201{
5483f18e
LT
202 do {
203 if (*cs != *ct)
204 return 1;
205 cs++;
206 ct++;
207 tcount--;
208 } while (tcount);
209 return 0;
210}
211
e419b4cc
LT
212#endif
213
94753db5
LT
214static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
215{
6326c71f 216 const unsigned char *cs;
94753db5
LT
217 /*
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
220 *
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
228 *
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
232 */
6326c71f
LT
233 cs = ACCESS_ONCE(dentry->d_name.name);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
236}
237
8d85b484
AV
238struct external_name {
239 union {
240 atomic_t count;
241 struct rcu_head head;
242 } u;
243 unsigned char name[];
244};
245
246static inline struct external_name *external_name(struct dentry *dentry)
247{
248 return container_of(dentry->d_name.name, struct external_name, name[0]);
249}
250
9c82ab9c 251static void __d_free(struct rcu_head *head)
1da177e4 252{
9c82ab9c
CH
253 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
254
b3d9b7a3 255 WARN_ON(!hlist_unhashed(&dentry->d_alias));
8d85b484
AV
256 kmem_cache_free(dentry_cache, dentry);
257}
258
259static void __d_free_external(struct rcu_head *head)
260{
261 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
262 WARN_ON(!hlist_unhashed(&dentry->d_alias));
263 kfree(external_name(dentry));
1da177e4
LT
264 kmem_cache_free(dentry_cache, dentry);
265}
266
b4f0354e
AV
267static void dentry_free(struct dentry *dentry)
268{
8d85b484
AV
269 if (unlikely(dname_external(dentry))) {
270 struct external_name *p = external_name(dentry);
271 if (likely(atomic_dec_and_test(&p->u.count))) {
272 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
273 return;
274 }
275 }
b4f0354e
AV
276 /* if dentry was never visible to RCU, immediate free is OK */
277 if (!(dentry->d_flags & DCACHE_RCUACCESS))
278 __d_free(&dentry->d_u.d_rcu);
279 else
280 call_rcu(&dentry->d_u.d_rcu, __d_free);
281}
282
31e6b01f
NP
283/**
284 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 285 * @dentry: the target dentry
31e6b01f
NP
286 * After this call, in-progress rcu-walk path lookup will fail. This
287 * should be called after unhashing, and after changing d_inode (if
288 * the dentry has not already been unhashed).
289 */
290static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
291{
292 assert_spin_locked(&dentry->d_lock);
293 /* Go through a barrier */
294 write_seqcount_barrier(&dentry->d_seq);
295}
296
1da177e4
LT
297/*
298 * Release the dentry's inode, using the filesystem
31e6b01f
NP
299 * d_iput() operation if defined. Dentry has no refcount
300 * and is unhashed.
1da177e4 301 */
858119e1 302static void dentry_iput(struct dentry * dentry)
31f3e0b3 303 __releases(dentry->d_lock)
873feea0 304 __releases(dentry->d_inode->i_lock)
1da177e4
LT
305{
306 struct inode *inode = dentry->d_inode;
307 if (inode) {
308 dentry->d_inode = NULL;
b3d9b7a3 309 hlist_del_init(&dentry->d_alias);
1da177e4 310 spin_unlock(&dentry->d_lock);
873feea0 311 spin_unlock(&inode->i_lock);
f805fbda
LT
312 if (!inode->i_nlink)
313 fsnotify_inoderemove(inode);
1da177e4
LT
314 if (dentry->d_op && dentry->d_op->d_iput)
315 dentry->d_op->d_iput(dentry, inode);
316 else
317 iput(inode);
318 } else {
319 spin_unlock(&dentry->d_lock);
1da177e4
LT
320 }
321}
322
31e6b01f
NP
323/*
324 * Release the dentry's inode, using the filesystem
325 * d_iput() operation if defined. dentry remains in-use.
326 */
327static void dentry_unlink_inode(struct dentry * dentry)
328 __releases(dentry->d_lock)
873feea0 329 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
330{
331 struct inode *inode = dentry->d_inode;
b18825a7 332 __d_clear_type(dentry);
31e6b01f 333 dentry->d_inode = NULL;
b3d9b7a3 334 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
335 dentry_rcuwalk_barrier(dentry);
336 spin_unlock(&dentry->d_lock);
873feea0 337 spin_unlock(&inode->i_lock);
31e6b01f
NP
338 if (!inode->i_nlink)
339 fsnotify_inoderemove(inode);
340 if (dentry->d_op && dentry->d_op->d_iput)
341 dentry->d_op->d_iput(dentry, inode);
342 else
343 iput(inode);
344}
345
89dc77bc
LT
346/*
347 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
348 * is in use - which includes both the "real" per-superblock
349 * LRU list _and_ the DCACHE_SHRINK_LIST use.
350 *
351 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
352 * on the shrink list (ie not on the superblock LRU list).
353 *
354 * The per-cpu "nr_dentry_unused" counters are updated with
355 * the DCACHE_LRU_LIST bit.
356 *
357 * These helper functions make sure we always follow the
358 * rules. d_lock must be held by the caller.
359 */
360#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
361static void d_lru_add(struct dentry *dentry)
362{
363 D_FLAG_VERIFY(dentry, 0);
364 dentry->d_flags |= DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
367}
368
369static void d_lru_del(struct dentry *dentry)
370{
371 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
372 dentry->d_flags &= ~DCACHE_LRU_LIST;
373 this_cpu_dec(nr_dentry_unused);
374 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
375}
376
377static void d_shrink_del(struct dentry *dentry)
378{
379 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
380 list_del_init(&dentry->d_lru);
381 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
382 this_cpu_dec(nr_dentry_unused);
383}
384
385static void d_shrink_add(struct dentry *dentry, struct list_head *list)
386{
387 D_FLAG_VERIFY(dentry, 0);
388 list_add(&dentry->d_lru, list);
389 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
390 this_cpu_inc(nr_dentry_unused);
391}
392
393/*
394 * These can only be called under the global LRU lock, ie during the
395 * callback for freeing the LRU list. "isolate" removes it from the
396 * LRU lists entirely, while shrink_move moves it to the indicated
397 * private list.
398 */
399static void d_lru_isolate(struct dentry *dentry)
400{
401 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 dentry->d_flags &= ~DCACHE_LRU_LIST;
403 this_cpu_dec(nr_dentry_unused);
404 list_del_init(&dentry->d_lru);
405}
406
407static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
408{
409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 dentry->d_flags |= DCACHE_SHRINK_LIST;
411 list_move_tail(&dentry->d_lru, list);
412}
413
da3bbdd4 414/*
f6041567 415 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
416 */
417static void dentry_lru_add(struct dentry *dentry)
418{
89dc77bc
LT
419 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
420 d_lru_add(dentry);
da3bbdd4
KM
421}
422
789680d1
NP
423/**
424 * d_drop - drop a dentry
425 * @dentry: dentry to drop
426 *
427 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
428 * be found through a VFS lookup any more. Note that this is different from
429 * deleting the dentry - d_delete will try to mark the dentry negative if
430 * possible, giving a successful _negative_ lookup, while d_drop will
431 * just make the cache lookup fail.
432 *
433 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
434 * reason (NFS timeouts or autofs deletes).
435 *
436 * __d_drop requires dentry->d_lock.
437 */
438void __d_drop(struct dentry *dentry)
439{
dea3667b 440 if (!d_unhashed(dentry)) {
b61625d2 441 struct hlist_bl_head *b;
7632e465
BF
442 /*
443 * Hashed dentries are normally on the dentry hashtable,
444 * with the exception of those newly allocated by
445 * d_obtain_alias, which are always IS_ROOT:
446 */
447 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
448 b = &dentry->d_sb->s_anon;
449 else
450 b = d_hash(dentry->d_parent, dentry->d_name.hash);
451
452 hlist_bl_lock(b);
453 __hlist_bl_del(&dentry->d_hash);
454 dentry->d_hash.pprev = NULL;
455 hlist_bl_unlock(b);
dea3667b 456 dentry_rcuwalk_barrier(dentry);
789680d1
NP
457 }
458}
459EXPORT_SYMBOL(__d_drop);
460
461void d_drop(struct dentry *dentry)
462{
789680d1
NP
463 spin_lock(&dentry->d_lock);
464 __d_drop(dentry);
465 spin_unlock(&dentry->d_lock);
789680d1
NP
466}
467EXPORT_SYMBOL(d_drop);
468
e55fd011 469static void __dentry_kill(struct dentry *dentry)
77812a1e 470{
41edf278
AV
471 struct dentry *parent = NULL;
472 bool can_free = true;
41edf278 473 if (!IS_ROOT(dentry))
77812a1e 474 parent = dentry->d_parent;
31e6b01f 475
0d98439e
LT
476 /*
477 * The dentry is now unrecoverably dead to the world.
478 */
479 lockref_mark_dead(&dentry->d_lockref);
480
f0023bc6 481 /*
f0023bc6
SW
482 * inform the fs via d_prune that this dentry is about to be
483 * unhashed and destroyed.
484 */
29266201 485 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
486 dentry->d_op->d_prune(dentry);
487
01b60351
AV
488 if (dentry->d_flags & DCACHE_LRU_LIST) {
489 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
490 d_lru_del(dentry);
01b60351 491 }
77812a1e
NP
492 /* if it was on the hash then remove it */
493 __d_drop(dentry);
03b3b889
AV
494 list_del(&dentry->d_u.d_child);
495 /*
496 * Inform d_walk() that we are no longer attached to the
497 * dentry tree
498 */
499 dentry->d_flags |= DCACHE_DENTRY_KILLED;
500 if (parent)
501 spin_unlock(&parent->d_lock);
502 dentry_iput(dentry);
503 /*
504 * dentry_iput drops the locks, at which point nobody (except
505 * transient RCU lookups) can reach this dentry.
506 */
507 BUG_ON((int)dentry->d_lockref.count > 0);
508 this_cpu_dec(nr_dentry);
509 if (dentry->d_op && dentry->d_op->d_release)
510 dentry->d_op->d_release(dentry);
511
41edf278
AV
512 spin_lock(&dentry->d_lock);
513 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
514 dentry->d_flags |= DCACHE_MAY_FREE;
515 can_free = false;
516 }
517 spin_unlock(&dentry->d_lock);
41edf278
AV
518 if (likely(can_free))
519 dentry_free(dentry);
e55fd011
AV
520}
521
522/*
523 * Finish off a dentry we've decided to kill.
524 * dentry->d_lock must be held, returns with it unlocked.
525 * If ref is non-zero, then decrement the refcount too.
526 * Returns dentry requiring refcount drop, or NULL if we're done.
527 */
8cbf74da 528static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
529 __releases(dentry->d_lock)
530{
531 struct inode *inode = dentry->d_inode;
532 struct dentry *parent = NULL;
533
534 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
535 goto failed;
536
537 if (!IS_ROOT(dentry)) {
538 parent = dentry->d_parent;
539 if (unlikely(!spin_trylock(&parent->d_lock))) {
540 if (inode)
541 spin_unlock(&inode->i_lock);
542 goto failed;
543 }
544 }
545
546 __dentry_kill(dentry);
03b3b889 547 return parent;
e55fd011
AV
548
549failed:
8cbf74da
AV
550 spin_unlock(&dentry->d_lock);
551 cpu_relax();
e55fd011 552 return dentry; /* try again with same dentry */
77812a1e
NP
553}
554
046b961b
AV
555static inline struct dentry *lock_parent(struct dentry *dentry)
556{
557 struct dentry *parent = dentry->d_parent;
558 if (IS_ROOT(dentry))
559 return NULL;
c2338f2d
AV
560 if (unlikely((int)dentry->d_lockref.count < 0))
561 return NULL;
046b961b
AV
562 if (likely(spin_trylock(&parent->d_lock)))
563 return parent;
046b961b 564 rcu_read_lock();
c2338f2d 565 spin_unlock(&dentry->d_lock);
046b961b
AV
566again:
567 parent = ACCESS_ONCE(dentry->d_parent);
568 spin_lock(&parent->d_lock);
569 /*
570 * We can't blindly lock dentry until we are sure
571 * that we won't violate the locking order.
572 * Any changes of dentry->d_parent must have
573 * been done with parent->d_lock held, so
574 * spin_lock() above is enough of a barrier
575 * for checking if it's still our child.
576 */
577 if (unlikely(parent != dentry->d_parent)) {
578 spin_unlock(&parent->d_lock);
579 goto again;
580 }
581 rcu_read_unlock();
582 if (parent != dentry)
9f12600f 583 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
584 else
585 parent = NULL;
586 return parent;
587}
588
1da177e4
LT
589/*
590 * This is dput
591 *
592 * This is complicated by the fact that we do not want to put
593 * dentries that are no longer on any hash chain on the unused
594 * list: we'd much rather just get rid of them immediately.
595 *
596 * However, that implies that we have to traverse the dentry
597 * tree upwards to the parents which might _also_ now be
598 * scheduled for deletion (it may have been only waiting for
599 * its last child to go away).
600 *
601 * This tail recursion is done by hand as we don't want to depend
602 * on the compiler to always get this right (gcc generally doesn't).
603 * Real recursion would eat up our stack space.
604 */
605
606/*
607 * dput - release a dentry
608 * @dentry: dentry to release
609 *
610 * Release a dentry. This will drop the usage count and if appropriate
611 * call the dentry unlink method as well as removing it from the queues and
612 * releasing its resources. If the parent dentries were scheduled for release
613 * they too may now get deleted.
1da177e4 614 */
1da177e4
LT
615void dput(struct dentry *dentry)
616{
8aab6a27 617 if (unlikely(!dentry))
1da177e4
LT
618 return;
619
620repeat:
98474236 621 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 622 return;
1da177e4 623
8aab6a27
LT
624 /* Unreachable? Get rid of it */
625 if (unlikely(d_unhashed(dentry)))
626 goto kill_it;
627
628 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 629 if (dentry->d_op->d_delete(dentry))
61f3dee4 630 goto kill_it;
1da177e4 631 }
265ac902 632
358eec18
LT
633 if (!(dentry->d_flags & DCACHE_REFERENCED))
634 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 635 dentry_lru_add(dentry);
265ac902 636
98474236 637 dentry->d_lockref.count--;
61f3dee4 638 spin_unlock(&dentry->d_lock);
1da177e4
LT
639 return;
640
d52b9086 641kill_it:
8cbf74da 642 dentry = dentry_kill(dentry);
d52b9086
MS
643 if (dentry)
644 goto repeat;
1da177e4 645}
ec4f8605 646EXPORT_SYMBOL(dput);
1da177e4 647
1da177e4 648
b5c84bf6 649/* This must be called with d_lock held */
dc0474be 650static inline void __dget_dlock(struct dentry *dentry)
23044507 651{
98474236 652 dentry->d_lockref.count++;
23044507
NP
653}
654
dc0474be 655static inline void __dget(struct dentry *dentry)
1da177e4 656{
98474236 657 lockref_get(&dentry->d_lockref);
1da177e4
LT
658}
659
b7ab39f6
NP
660struct dentry *dget_parent(struct dentry *dentry)
661{
df3d0bbc 662 int gotref;
b7ab39f6
NP
663 struct dentry *ret;
664
df3d0bbc
WL
665 /*
666 * Do optimistic parent lookup without any
667 * locking.
668 */
669 rcu_read_lock();
670 ret = ACCESS_ONCE(dentry->d_parent);
671 gotref = lockref_get_not_zero(&ret->d_lockref);
672 rcu_read_unlock();
673 if (likely(gotref)) {
674 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
675 return ret;
676 dput(ret);
677 }
678
b7ab39f6 679repeat:
a734eb45
NP
680 /*
681 * Don't need rcu_dereference because we re-check it was correct under
682 * the lock.
683 */
684 rcu_read_lock();
b7ab39f6 685 ret = dentry->d_parent;
a734eb45
NP
686 spin_lock(&ret->d_lock);
687 if (unlikely(ret != dentry->d_parent)) {
688 spin_unlock(&ret->d_lock);
689 rcu_read_unlock();
b7ab39f6
NP
690 goto repeat;
691 }
a734eb45 692 rcu_read_unlock();
98474236
WL
693 BUG_ON(!ret->d_lockref.count);
694 ret->d_lockref.count++;
b7ab39f6 695 spin_unlock(&ret->d_lock);
b7ab39f6
NP
696 return ret;
697}
698EXPORT_SYMBOL(dget_parent);
699
1da177e4
LT
700/**
701 * d_find_alias - grab a hashed alias of inode
702 * @inode: inode in question
1da177e4
LT
703 *
704 * If inode has a hashed alias, or is a directory and has any alias,
705 * acquire the reference to alias and return it. Otherwise return NULL.
706 * Notice that if inode is a directory there can be only one alias and
707 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
708 * of a filesystem, or if the directory was renamed and d_revalidate
709 * was the first vfs operation to notice.
1da177e4 710 *
21c0d8fd 711 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 712 * any other hashed alias over that one.
1da177e4 713 */
52ed46f0 714static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 715{
da502956 716 struct dentry *alias, *discon_alias;
1da177e4 717
da502956
NP
718again:
719 discon_alias = NULL;
b67bfe0d 720 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 721 spin_lock(&alias->d_lock);
1da177e4 722 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 723 if (IS_ROOT(alias) &&
da502956 724 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 725 discon_alias = alias;
52ed46f0 726 } else {
dc0474be 727 __dget_dlock(alias);
da502956
NP
728 spin_unlock(&alias->d_lock);
729 return alias;
730 }
731 }
732 spin_unlock(&alias->d_lock);
733 }
734 if (discon_alias) {
735 alias = discon_alias;
736 spin_lock(&alias->d_lock);
737 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
738 __dget_dlock(alias);
739 spin_unlock(&alias->d_lock);
740 return alias;
1da177e4 741 }
da502956
NP
742 spin_unlock(&alias->d_lock);
743 goto again;
1da177e4 744 }
da502956 745 return NULL;
1da177e4
LT
746}
747
da502956 748struct dentry *d_find_alias(struct inode *inode)
1da177e4 749{
214fda1f
DH
750 struct dentry *de = NULL;
751
b3d9b7a3 752 if (!hlist_empty(&inode->i_dentry)) {
873feea0 753 spin_lock(&inode->i_lock);
52ed46f0 754 de = __d_find_alias(inode);
873feea0 755 spin_unlock(&inode->i_lock);
214fda1f 756 }
1da177e4
LT
757 return de;
758}
ec4f8605 759EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
760
761/*
762 * Try to kill dentries associated with this inode.
763 * WARNING: you must own a reference to inode.
764 */
765void d_prune_aliases(struct inode *inode)
766{
0cdca3f9 767 struct dentry *dentry;
1da177e4 768restart:
873feea0 769 spin_lock(&inode->i_lock);
b67bfe0d 770 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 771 spin_lock(&dentry->d_lock);
98474236 772 if (!dentry->d_lockref.count) {
29355c39
AV
773 struct dentry *parent = lock_parent(dentry);
774 if (likely(!dentry->d_lockref.count)) {
775 __dentry_kill(dentry);
776 goto restart;
777 }
778 if (parent)
779 spin_unlock(&parent->d_lock);
1da177e4
LT
780 }
781 spin_unlock(&dentry->d_lock);
782 }
873feea0 783 spin_unlock(&inode->i_lock);
1da177e4 784}
ec4f8605 785EXPORT_SYMBOL(d_prune_aliases);
1da177e4 786
3049cfe2 787static void shrink_dentry_list(struct list_head *list)
1da177e4 788{
5c47e6d0 789 struct dentry *dentry, *parent;
da3bbdd4 790
60942f2f 791 while (!list_empty(list)) {
ff2fde99 792 struct inode *inode;
60942f2f 793 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 794 spin_lock(&dentry->d_lock);
046b961b
AV
795 parent = lock_parent(dentry);
796
dd1f6b2e
DC
797 /*
798 * The dispose list is isolated and dentries are not accounted
799 * to the LRU here, so we can simply remove it from the list
800 * here regardless of whether it is referenced or not.
801 */
89dc77bc 802 d_shrink_del(dentry);
dd1f6b2e 803
1da177e4
LT
804 /*
805 * We found an inuse dentry which was not removed from
dd1f6b2e 806 * the LRU because of laziness during lookup. Do not free it.
1da177e4 807 */
41edf278 808 if ((int)dentry->d_lockref.count > 0) {
da3bbdd4 809 spin_unlock(&dentry->d_lock);
046b961b
AV
810 if (parent)
811 spin_unlock(&parent->d_lock);
1da177e4
LT
812 continue;
813 }
77812a1e 814
64fd72e0
AV
815
816 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
817 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
818 spin_unlock(&dentry->d_lock);
046b961b
AV
819 if (parent)
820 spin_unlock(&parent->d_lock);
64fd72e0
AV
821 if (can_free)
822 dentry_free(dentry);
823 continue;
824 }
825
ff2fde99
AV
826 inode = dentry->d_inode;
827 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 828 d_shrink_add(dentry, list);
dd1f6b2e 829 spin_unlock(&dentry->d_lock);
046b961b
AV
830 if (parent)
831 spin_unlock(&parent->d_lock);
5c47e6d0 832 continue;
dd1f6b2e 833 }
ff2fde99 834
ff2fde99 835 __dentry_kill(dentry);
046b961b 836
5c47e6d0
AV
837 /*
838 * We need to prune ancestors too. This is necessary to prevent
839 * quadratic behavior of shrink_dcache_parent(), but is also
840 * expected to be beneficial in reducing dentry cache
841 * fragmentation.
842 */
843 dentry = parent;
b2b80195
AV
844 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
845 parent = lock_parent(dentry);
846 if (dentry->d_lockref.count != 1) {
847 dentry->d_lockref.count--;
848 spin_unlock(&dentry->d_lock);
849 if (parent)
850 spin_unlock(&parent->d_lock);
851 break;
852 }
853 inode = dentry->d_inode; /* can't be NULL */
854 if (unlikely(!spin_trylock(&inode->i_lock))) {
855 spin_unlock(&dentry->d_lock);
856 if (parent)
857 spin_unlock(&parent->d_lock);
858 cpu_relax();
859 continue;
860 }
861 __dentry_kill(dentry);
862 dentry = parent;
863 }
da3bbdd4 864 }
3049cfe2
CH
865}
866
f6041567
DC
867static enum lru_status
868dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
869{
870 struct list_head *freeable = arg;
871 struct dentry *dentry = container_of(item, struct dentry, d_lru);
872
873
874 /*
875 * we are inverting the lru lock/dentry->d_lock here,
876 * so use a trylock. If we fail to get the lock, just skip
877 * it
878 */
879 if (!spin_trylock(&dentry->d_lock))
880 return LRU_SKIP;
881
882 /*
883 * Referenced dentries are still in use. If they have active
884 * counts, just remove them from the LRU. Otherwise give them
885 * another pass through the LRU.
886 */
887 if (dentry->d_lockref.count) {
89dc77bc 888 d_lru_isolate(dentry);
f6041567
DC
889 spin_unlock(&dentry->d_lock);
890 return LRU_REMOVED;
891 }
892
893 if (dentry->d_flags & DCACHE_REFERENCED) {
894 dentry->d_flags &= ~DCACHE_REFERENCED;
895 spin_unlock(&dentry->d_lock);
896
897 /*
898 * The list move itself will be made by the common LRU code. At
899 * this point, we've dropped the dentry->d_lock but keep the
900 * lru lock. This is safe to do, since every list movement is
901 * protected by the lru lock even if both locks are held.
902 *
903 * This is guaranteed by the fact that all LRU management
904 * functions are intermediated by the LRU API calls like
905 * list_lru_add and list_lru_del. List movement in this file
906 * only ever occur through this functions or through callbacks
907 * like this one, that are called from the LRU API.
908 *
909 * The only exceptions to this are functions like
910 * shrink_dentry_list, and code that first checks for the
911 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
912 * operating only with stack provided lists after they are
913 * properly isolated from the main list. It is thus, always a
914 * local access.
915 */
916 return LRU_ROTATE;
917 }
918
89dc77bc 919 d_lru_shrink_move(dentry, freeable);
f6041567
DC
920 spin_unlock(&dentry->d_lock);
921
922 return LRU_REMOVED;
923}
924
3049cfe2 925/**
b48f03b3
DC
926 * prune_dcache_sb - shrink the dcache
927 * @sb: superblock
f6041567 928 * @nr_to_scan : number of entries to try to free
9b17c623 929 * @nid: which node to scan for freeable entities
b48f03b3 930 *
f6041567 931 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
b48f03b3
DC
932 * done when we need more memory an called from the superblock shrinker
933 * function.
3049cfe2 934 *
b48f03b3
DC
935 * This function may fail to free any resources if all the dentries are in
936 * use.
3049cfe2 937 */
9b17c623
DC
938long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
939 int nid)
3049cfe2 940{
f6041567
DC
941 LIST_HEAD(dispose);
942 long freed;
3049cfe2 943
9b17c623
DC
944 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
945 &dispose, &nr_to_scan);
f6041567 946 shrink_dentry_list(&dispose);
0a234c6d 947 return freed;
da3bbdd4 948}
23044507 949
4e717f5c
GC
950static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
951 spinlock_t *lru_lock, void *arg)
dd1f6b2e 952{
4e717f5c
GC
953 struct list_head *freeable = arg;
954 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 955
4e717f5c
GC
956 /*
957 * we are inverting the lru lock/dentry->d_lock here,
958 * so use a trylock. If we fail to get the lock, just skip
959 * it
960 */
961 if (!spin_trylock(&dentry->d_lock))
962 return LRU_SKIP;
963
89dc77bc 964 d_lru_shrink_move(dentry, freeable);
4e717f5c 965 spin_unlock(&dentry->d_lock);
ec33679d 966
4e717f5c 967 return LRU_REMOVED;
da3bbdd4
KM
968}
969
4e717f5c 970
1da177e4
LT
971/**
972 * shrink_dcache_sb - shrink dcache for a superblock
973 * @sb: superblock
974 *
3049cfe2
CH
975 * Shrink the dcache for the specified super block. This is used to free
976 * the dcache before unmounting a file system.
1da177e4 977 */
3049cfe2 978void shrink_dcache_sb(struct super_block *sb)
1da177e4 979{
4e717f5c
GC
980 long freed;
981
982 do {
983 LIST_HEAD(dispose);
984
985 freed = list_lru_walk(&sb->s_dentry_lru,
986 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 987
4e717f5c
GC
988 this_cpu_sub(nr_dentry_unused, freed);
989 shrink_dentry_list(&dispose);
990 } while (freed > 0);
1da177e4 991}
ec4f8605 992EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 993
db14fc3a
MS
994/**
995 * enum d_walk_ret - action to talke during tree walk
996 * @D_WALK_CONTINUE: contrinue walk
997 * @D_WALK_QUIT: quit walk
998 * @D_WALK_NORETRY: quit when retry is needed
999 * @D_WALK_SKIP: skip this dentry and its children
1000 */
1001enum d_walk_ret {
1002 D_WALK_CONTINUE,
1003 D_WALK_QUIT,
1004 D_WALK_NORETRY,
1005 D_WALK_SKIP,
1006};
c826cb7d 1007
1da177e4 1008/**
db14fc3a
MS
1009 * d_walk - walk the dentry tree
1010 * @parent: start of walk
1011 * @data: data passed to @enter() and @finish()
1012 * @enter: callback when first entering the dentry
1013 * @finish: callback when successfully finished the walk
1da177e4 1014 *
db14fc3a 1015 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1016 */
db14fc3a
MS
1017static void d_walk(struct dentry *parent, void *data,
1018 enum d_walk_ret (*enter)(void *, struct dentry *),
1019 void (*finish)(void *))
1da177e4 1020{
949854d0 1021 struct dentry *this_parent;
1da177e4 1022 struct list_head *next;
48f5ec21 1023 unsigned seq = 0;
db14fc3a
MS
1024 enum d_walk_ret ret;
1025 bool retry = true;
949854d0 1026
58db63d0 1027again:
48f5ec21 1028 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1029 this_parent = parent;
2fd6b7f5 1030 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1031
1032 ret = enter(data, this_parent);
1033 switch (ret) {
1034 case D_WALK_CONTINUE:
1035 break;
1036 case D_WALK_QUIT:
1037 case D_WALK_SKIP:
1038 goto out_unlock;
1039 case D_WALK_NORETRY:
1040 retry = false;
1041 break;
1042 }
1da177e4
LT
1043repeat:
1044 next = this_parent->d_subdirs.next;
1045resume:
1046 while (next != &this_parent->d_subdirs) {
1047 struct list_head *tmp = next;
5160ee6f 1048 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1049 next = tmp->next;
2fd6b7f5
NP
1050
1051 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1052
1053 ret = enter(data, dentry);
1054 switch (ret) {
1055 case D_WALK_CONTINUE:
1056 break;
1057 case D_WALK_QUIT:
2fd6b7f5 1058 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1059 goto out_unlock;
1060 case D_WALK_NORETRY:
1061 retry = false;
1062 break;
1063 case D_WALK_SKIP:
1064 spin_unlock(&dentry->d_lock);
1065 continue;
2fd6b7f5 1066 }
db14fc3a 1067
1da177e4 1068 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1069 spin_unlock(&this_parent->d_lock);
1070 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1071 this_parent = dentry;
2fd6b7f5 1072 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1073 goto repeat;
1074 }
2fd6b7f5 1075 spin_unlock(&dentry->d_lock);
1da177e4
LT
1076 }
1077 /*
1078 * All done at this level ... ascend and resume the search.
1079 */
1080 if (this_parent != parent) {
c826cb7d 1081 struct dentry *child = this_parent;
31dec132
AV
1082 this_parent = child->d_parent;
1083
1084 rcu_read_lock();
1085 spin_unlock(&child->d_lock);
1086 spin_lock(&this_parent->d_lock);
1087
1088 /*
1089 * might go back up the wrong parent if we have had a rename
1090 * or deletion
1091 */
1092 if (this_parent != child->d_parent ||
1093 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1094 need_seqretry(&rename_lock, seq)) {
1095 spin_unlock(&this_parent->d_lock);
1096 rcu_read_unlock();
949854d0 1097 goto rename_retry;
31dec132
AV
1098 }
1099 rcu_read_unlock();
949854d0 1100 next = child->d_u.d_child.next;
1da177e4
LT
1101 goto resume;
1102 }
48f5ec21 1103 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1104 spin_unlock(&this_parent->d_lock);
949854d0 1105 goto rename_retry;
db14fc3a
MS
1106 }
1107 if (finish)
1108 finish(data);
1109
1110out_unlock:
1111 spin_unlock(&this_parent->d_lock);
48f5ec21 1112 done_seqretry(&rename_lock, seq);
db14fc3a 1113 return;
58db63d0
NP
1114
1115rename_retry:
db14fc3a
MS
1116 if (!retry)
1117 return;
48f5ec21 1118 seq = 1;
58db63d0 1119 goto again;
1da177e4 1120}
db14fc3a
MS
1121
1122/*
1123 * Search for at least 1 mount point in the dentry's subdirs.
1124 * We descend to the next level whenever the d_subdirs
1125 * list is non-empty and continue searching.
1126 */
1127
db14fc3a
MS
1128static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1129{
1130 int *ret = data;
1131 if (d_mountpoint(dentry)) {
1132 *ret = 1;
1133 return D_WALK_QUIT;
1134 }
1135 return D_WALK_CONTINUE;
1136}
1137
69c88dc7
RD
1138/**
1139 * have_submounts - check for mounts over a dentry
1140 * @parent: dentry to check.
1141 *
1142 * Return true if the parent or its subdirectories contain
1143 * a mount point
1144 */
db14fc3a
MS
1145int have_submounts(struct dentry *parent)
1146{
1147 int ret = 0;
1148
1149 d_walk(parent, &ret, check_mount, NULL);
1150
1151 return ret;
1152}
ec4f8605 1153EXPORT_SYMBOL(have_submounts);
1da177e4 1154
eed81007
MS
1155/*
1156 * Called by mount code to set a mountpoint and check if the mountpoint is
1157 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1158 * subtree can become unreachable).
1159 *
1ffe46d1 1160 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1161 * this reason take rename_lock and d_lock on dentry and ancestors.
1162 */
1163int d_set_mounted(struct dentry *dentry)
1164{
1165 struct dentry *p;
1166 int ret = -ENOENT;
1167 write_seqlock(&rename_lock);
1168 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1169 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1170 spin_lock(&p->d_lock);
1171 if (unlikely(d_unhashed(p))) {
1172 spin_unlock(&p->d_lock);
1173 goto out;
1174 }
1175 spin_unlock(&p->d_lock);
1176 }
1177 spin_lock(&dentry->d_lock);
1178 if (!d_unlinked(dentry)) {
1179 dentry->d_flags |= DCACHE_MOUNTED;
1180 ret = 0;
1181 }
1182 spin_unlock(&dentry->d_lock);
1183out:
1184 write_sequnlock(&rename_lock);
1185 return ret;
1186}
1187
1da177e4 1188/*
fd517909 1189 * Search the dentry child list of the specified parent,
1da177e4
LT
1190 * and move any unused dentries to the end of the unused
1191 * list for prune_dcache(). We descend to the next level
1192 * whenever the d_subdirs list is non-empty and continue
1193 * searching.
1194 *
1195 * It returns zero iff there are no unused children,
1196 * otherwise it returns the number of children moved to
1197 * the end of the unused list. This may not be the total
1198 * number of unused children, because select_parent can
1199 * drop the lock and return early due to latency
1200 * constraints.
1201 */
1da177e4 1202
db14fc3a
MS
1203struct select_data {
1204 struct dentry *start;
1205 struct list_head dispose;
1206 int found;
1207};
23044507 1208
db14fc3a
MS
1209static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1210{
1211 struct select_data *data = _data;
1212 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1213
db14fc3a
MS
1214 if (data->start == dentry)
1215 goto out;
2fd6b7f5 1216
fe91522a 1217 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1218 data->found++;
fe91522a
AV
1219 } else {
1220 if (dentry->d_flags & DCACHE_LRU_LIST)
1221 d_lru_del(dentry);
1222 if (!dentry->d_lockref.count) {
1223 d_shrink_add(dentry, &data->dispose);
1224 data->found++;
1225 }
1da177e4 1226 }
db14fc3a
MS
1227 /*
1228 * We can return to the caller if we have found some (this
1229 * ensures forward progress). We'll be coming back to find
1230 * the rest.
1231 */
fe91522a
AV
1232 if (!list_empty(&data->dispose))
1233 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1234out:
db14fc3a 1235 return ret;
1da177e4
LT
1236}
1237
1238/**
1239 * shrink_dcache_parent - prune dcache
1240 * @parent: parent of entries to prune
1241 *
1242 * Prune the dcache to remove unused children of the parent dentry.
1243 */
db14fc3a 1244void shrink_dcache_parent(struct dentry *parent)
1da177e4 1245{
db14fc3a
MS
1246 for (;;) {
1247 struct select_data data;
1da177e4 1248
db14fc3a
MS
1249 INIT_LIST_HEAD(&data.dispose);
1250 data.start = parent;
1251 data.found = 0;
1252
1253 d_walk(parent, &data, select_collect, NULL);
1254 if (!data.found)
1255 break;
1256
1257 shrink_dentry_list(&data.dispose);
421348f1
GT
1258 cond_resched();
1259 }
1da177e4 1260}
ec4f8605 1261EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1262
9c8c10e2 1263static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1264{
9c8c10e2
AV
1265 /* it has busy descendents; complain about those instead */
1266 if (!list_empty(&dentry->d_subdirs))
1267 return D_WALK_CONTINUE;
42c32608 1268
9c8c10e2
AV
1269 /* root with refcount 1 is fine */
1270 if (dentry == _data && dentry->d_lockref.count == 1)
1271 return D_WALK_CONTINUE;
1272
1273 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1274 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1275 dentry,
1276 dentry->d_inode ?
1277 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1278 dentry,
42c32608
AV
1279 dentry->d_lockref.count,
1280 dentry->d_sb->s_type->name,
1281 dentry->d_sb->s_id);
9c8c10e2
AV
1282 WARN_ON(1);
1283 return D_WALK_CONTINUE;
1284}
1285
1286static void do_one_tree(struct dentry *dentry)
1287{
1288 shrink_dcache_parent(dentry);
1289 d_walk(dentry, dentry, umount_check, NULL);
1290 d_drop(dentry);
1291 dput(dentry);
42c32608
AV
1292}
1293
1294/*
1295 * destroy the dentries attached to a superblock on unmounting
1296 */
1297void shrink_dcache_for_umount(struct super_block *sb)
1298{
1299 struct dentry *dentry;
1300
9c8c10e2 1301 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1302
1303 dentry = sb->s_root;
1304 sb->s_root = NULL;
9c8c10e2 1305 do_one_tree(dentry);
42c32608
AV
1306
1307 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1308 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1309 do_one_tree(dentry);
42c32608
AV
1310 }
1311}
1312
8ed936b5
EB
1313struct detach_data {
1314 struct select_data select;
1315 struct dentry *mountpoint;
1316};
1317static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1318{
8ed936b5 1319 struct detach_data *data = _data;
848ac114
MS
1320
1321 if (d_mountpoint(dentry)) {
8ed936b5
EB
1322 __dget_dlock(dentry);
1323 data->mountpoint = dentry;
848ac114
MS
1324 return D_WALK_QUIT;
1325 }
1326
8ed936b5 1327 return select_collect(&data->select, dentry);
848ac114
MS
1328}
1329
1330static void check_and_drop(void *_data)
1331{
8ed936b5 1332 struct detach_data *data = _data;
848ac114 1333
8ed936b5
EB
1334 if (!data->mountpoint && !data->select.found)
1335 __d_drop(data->select.start);
848ac114
MS
1336}
1337
1338/**
1ffe46d1
EB
1339 * d_invalidate - detach submounts, prune dcache, and drop
1340 * @dentry: dentry to invalidate (aka detach, prune and drop)
1341 *
1ffe46d1 1342 * no dcache lock.
848ac114 1343 *
8ed936b5
EB
1344 * The final d_drop is done as an atomic operation relative to
1345 * rename_lock ensuring there are no races with d_set_mounted. This
1346 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1347 */
5542aa2f 1348void d_invalidate(struct dentry *dentry)
848ac114 1349{
1ffe46d1
EB
1350 /*
1351 * If it's already been dropped, return OK.
1352 */
1353 spin_lock(&dentry->d_lock);
1354 if (d_unhashed(dentry)) {
1355 spin_unlock(&dentry->d_lock);
5542aa2f 1356 return;
1ffe46d1
EB
1357 }
1358 spin_unlock(&dentry->d_lock);
1359
848ac114
MS
1360 /* Negative dentries can be dropped without further checks */
1361 if (!dentry->d_inode) {
1362 d_drop(dentry);
5542aa2f 1363 return;
848ac114
MS
1364 }
1365
1366 for (;;) {
8ed936b5 1367 struct detach_data data;
848ac114 1368
8ed936b5
EB
1369 data.mountpoint = NULL;
1370 INIT_LIST_HEAD(&data.select.dispose);
1371 data.select.start = dentry;
1372 data.select.found = 0;
1373
1374 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1375
8ed936b5
EB
1376 if (data.select.found)
1377 shrink_dentry_list(&data.select.dispose);
848ac114 1378
8ed936b5
EB
1379 if (data.mountpoint) {
1380 detach_mounts(data.mountpoint);
1381 dput(data.mountpoint);
1382 }
848ac114 1383
8ed936b5 1384 if (!data.mountpoint && !data.select.found)
848ac114
MS
1385 break;
1386
1387 cond_resched();
1388 }
848ac114 1389}
1ffe46d1 1390EXPORT_SYMBOL(d_invalidate);
848ac114 1391
1da177e4 1392/**
a4464dbc
AV
1393 * __d_alloc - allocate a dcache entry
1394 * @sb: filesystem it will belong to
1da177e4
LT
1395 * @name: qstr of the name
1396 *
1397 * Allocates a dentry. It returns %NULL if there is insufficient memory
1398 * available. On a success the dentry is returned. The name passed in is
1399 * copied and the copy passed in may be reused after this call.
1400 */
1401
a4464dbc 1402struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1403{
1404 struct dentry *dentry;
1405 char *dname;
1406
e12ba74d 1407 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1408 if (!dentry)
1409 return NULL;
1410
6326c71f
LT
1411 /*
1412 * We guarantee that the inline name is always NUL-terminated.
1413 * This way the memcpy() done by the name switching in rename
1414 * will still always have a NUL at the end, even if we might
1415 * be overwriting an internal NUL character
1416 */
1417 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4 1418 if (name->len > DNAME_INLINE_LEN-1) {
8d85b484
AV
1419 size_t size = offsetof(struct external_name, name[1]);
1420 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1421 if (!p) {
1da177e4
LT
1422 kmem_cache_free(dentry_cache, dentry);
1423 return NULL;
1424 }
8d85b484
AV
1425 atomic_set(&p->u.count, 1);
1426 dname = p->name;
1da177e4
LT
1427 } else {
1428 dname = dentry->d_iname;
1429 }
1da177e4
LT
1430
1431 dentry->d_name.len = name->len;
1432 dentry->d_name.hash = name->hash;
1433 memcpy(dname, name->name, name->len);
1434 dname[name->len] = 0;
1435
6326c71f
LT
1436 /* Make sure we always see the terminating NUL character */
1437 smp_wmb();
1438 dentry->d_name.name = dname;
1439
98474236 1440 dentry->d_lockref.count = 1;
dea3667b 1441 dentry->d_flags = 0;
1da177e4 1442 spin_lock_init(&dentry->d_lock);
31e6b01f 1443 seqcount_init(&dentry->d_seq);
1da177e4 1444 dentry->d_inode = NULL;
a4464dbc
AV
1445 dentry->d_parent = dentry;
1446 dentry->d_sb = sb;
1da177e4
LT
1447 dentry->d_op = NULL;
1448 dentry->d_fsdata = NULL;
ceb5bdc2 1449 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1450 INIT_LIST_HEAD(&dentry->d_lru);
1451 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1452 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1453 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1454 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1455
3e880fb5 1456 this_cpu_inc(nr_dentry);
312d3ca8 1457
1da177e4
LT
1458 return dentry;
1459}
a4464dbc
AV
1460
1461/**
1462 * d_alloc - allocate a dcache entry
1463 * @parent: parent of entry to allocate
1464 * @name: qstr of the name
1465 *
1466 * Allocates a dentry. It returns %NULL if there is insufficient memory
1467 * available. On a success the dentry is returned. The name passed in is
1468 * copied and the copy passed in may be reused after this call.
1469 */
1470struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1471{
1472 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1473 if (!dentry)
1474 return NULL;
1475
1476 spin_lock(&parent->d_lock);
1477 /*
1478 * don't need child lock because it is not subject
1479 * to concurrency here
1480 */
1481 __dget_dlock(parent);
1482 dentry->d_parent = parent;
1483 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1484 spin_unlock(&parent->d_lock);
1485
1486 return dentry;
1487}
ec4f8605 1488EXPORT_SYMBOL(d_alloc);
1da177e4 1489
e1a24bb0
BF
1490/**
1491 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1492 * @sb: the superblock
1493 * @name: qstr of the name
1494 *
1495 * For a filesystem that just pins its dentries in memory and never
1496 * performs lookups at all, return an unhashed IS_ROOT dentry.
1497 */
4b936885
NP
1498struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1499{
e1a24bb0 1500 return __d_alloc(sb, name);
4b936885
NP
1501}
1502EXPORT_SYMBOL(d_alloc_pseudo);
1503
1da177e4
LT
1504struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1505{
1506 struct qstr q;
1507
1508 q.name = name;
1509 q.len = strlen(name);
1510 q.hash = full_name_hash(q.name, q.len);
1511 return d_alloc(parent, &q);
1512}
ef26ca97 1513EXPORT_SYMBOL(d_alloc_name);
1da177e4 1514
fb045adb
NP
1515void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1516{
6f7f7caa
LT
1517 WARN_ON_ONCE(dentry->d_op);
1518 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1519 DCACHE_OP_COMPARE |
1520 DCACHE_OP_REVALIDATE |
ecf3d1f1 1521 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1522 DCACHE_OP_DELETE ));
1523 dentry->d_op = op;
1524 if (!op)
1525 return;
1526 if (op->d_hash)
1527 dentry->d_flags |= DCACHE_OP_HASH;
1528 if (op->d_compare)
1529 dentry->d_flags |= DCACHE_OP_COMPARE;
1530 if (op->d_revalidate)
1531 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1532 if (op->d_weak_revalidate)
1533 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1534 if (op->d_delete)
1535 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1536 if (op->d_prune)
1537 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1538
1539}
1540EXPORT_SYMBOL(d_set_d_op);
1541
b18825a7
DH
1542static unsigned d_flags_for_inode(struct inode *inode)
1543{
1544 unsigned add_flags = DCACHE_FILE_TYPE;
1545
1546 if (!inode)
1547 return DCACHE_MISS_TYPE;
1548
1549 if (S_ISDIR(inode->i_mode)) {
1550 add_flags = DCACHE_DIRECTORY_TYPE;
1551 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1552 if (unlikely(!inode->i_op->lookup))
1553 add_flags = DCACHE_AUTODIR_TYPE;
1554 else
1555 inode->i_opflags |= IOP_LOOKUP;
1556 }
1557 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1558 if (unlikely(inode->i_op->follow_link))
1559 add_flags = DCACHE_SYMLINK_TYPE;
1560 else
1561 inode->i_opflags |= IOP_NOFOLLOW;
1562 }
1563
1564 if (unlikely(IS_AUTOMOUNT(inode)))
1565 add_flags |= DCACHE_NEED_AUTOMOUNT;
1566 return add_flags;
1567}
1568
360da900
OH
1569static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1570{
b18825a7
DH
1571 unsigned add_flags = d_flags_for_inode(inode);
1572
b23fb0a6 1573 spin_lock(&dentry->d_lock);
22213318 1574 __d_set_type(dentry, add_flags);
b18825a7 1575 if (inode)
b3d9b7a3 1576 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
360da900 1577 dentry->d_inode = inode;
31e6b01f 1578 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1579 spin_unlock(&dentry->d_lock);
360da900
OH
1580 fsnotify_d_instantiate(dentry, inode);
1581}
1582
1da177e4
LT
1583/**
1584 * d_instantiate - fill in inode information for a dentry
1585 * @entry: dentry to complete
1586 * @inode: inode to attach to this dentry
1587 *
1588 * Fill in inode information in the entry.
1589 *
1590 * This turns negative dentries into productive full members
1591 * of society.
1592 *
1593 * NOTE! This assumes that the inode count has been incremented
1594 * (or otherwise set) by the caller to indicate that it is now
1595 * in use by the dcache.
1596 */
1597
1598void d_instantiate(struct dentry *entry, struct inode * inode)
1599{
b3d9b7a3 1600 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1601 if (inode)
1602 spin_lock(&inode->i_lock);
360da900 1603 __d_instantiate(entry, inode);
873feea0
NP
1604 if (inode)
1605 spin_unlock(&inode->i_lock);
1da177e4
LT
1606 security_d_instantiate(entry, inode);
1607}
ec4f8605 1608EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1609
1610/**
1611 * d_instantiate_unique - instantiate a non-aliased dentry
1612 * @entry: dentry to instantiate
1613 * @inode: inode to attach to this dentry
1614 *
1615 * Fill in inode information in the entry. On success, it returns NULL.
1616 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1617 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1618 *
1619 * Note that in order to avoid conflicts with rename() etc, the caller
1620 * had better be holding the parent directory semaphore.
e866cfa9
OD
1621 *
1622 * This also assumes that the inode count has been incremented
1623 * (or otherwise set) by the caller to indicate that it is now
1624 * in use by the dcache.
1da177e4 1625 */
770bfad8
DH
1626static struct dentry *__d_instantiate_unique(struct dentry *entry,
1627 struct inode *inode)
1da177e4
LT
1628{
1629 struct dentry *alias;
1630 int len = entry->d_name.len;
1631 const char *name = entry->d_name.name;
1632 unsigned int hash = entry->d_name.hash;
1633
770bfad8 1634 if (!inode) {
360da900 1635 __d_instantiate(entry, NULL);
770bfad8
DH
1636 return NULL;
1637 }
1638
b67bfe0d 1639 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1640 /*
1641 * Don't need alias->d_lock here, because aliases with
1642 * d_parent == entry->d_parent are not subject to name or
1643 * parent changes, because the parent inode i_mutex is held.
1644 */
12f8ad4b 1645 if (alias->d_name.hash != hash)
1da177e4
LT
1646 continue;
1647 if (alias->d_parent != entry->d_parent)
1648 continue;
ee983e89
LT
1649 if (alias->d_name.len != len)
1650 continue;
12f8ad4b 1651 if (dentry_cmp(alias, name, len))
1da177e4 1652 continue;
dc0474be 1653 __dget(alias);
1da177e4
LT
1654 return alias;
1655 }
770bfad8 1656
360da900 1657 __d_instantiate(entry, inode);
1da177e4
LT
1658 return NULL;
1659}
770bfad8
DH
1660
1661struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1662{
1663 struct dentry *result;
1664
b3d9b7a3 1665 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1666
873feea0
NP
1667 if (inode)
1668 spin_lock(&inode->i_lock);
770bfad8 1669 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1670 if (inode)
1671 spin_unlock(&inode->i_lock);
770bfad8
DH
1672
1673 if (!result) {
1674 security_d_instantiate(entry, inode);
1675 return NULL;
1676 }
1677
1678 BUG_ON(!d_unhashed(result));
1679 iput(inode);
1680 return result;
1681}
1682
1da177e4
LT
1683EXPORT_SYMBOL(d_instantiate_unique);
1684
b70a80e7
MS
1685/**
1686 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1687 * @entry: dentry to complete
1688 * @inode: inode to attach to this dentry
1689 *
1690 * Fill in inode information in the entry. If a directory alias is found, then
1691 * return an error (and drop inode). Together with d_materialise_unique() this
1692 * guarantees that a directory inode may never have more than one alias.
1693 */
1694int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1695{
1696 BUG_ON(!hlist_unhashed(&entry->d_alias));
1697
1698 spin_lock(&inode->i_lock);
1699 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1700 spin_unlock(&inode->i_lock);
1701 iput(inode);
1702 return -EBUSY;
1703 }
1704 __d_instantiate(entry, inode);
1705 spin_unlock(&inode->i_lock);
1706 security_d_instantiate(entry, inode);
1707
1708 return 0;
1709}
1710EXPORT_SYMBOL(d_instantiate_no_diralias);
1711
adc0e91a
AV
1712struct dentry *d_make_root(struct inode *root_inode)
1713{
1714 struct dentry *res = NULL;
1715
1716 if (root_inode) {
26fe5750 1717 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1718
1719 res = __d_alloc(root_inode->i_sb, &name);
1720 if (res)
1721 d_instantiate(res, root_inode);
1722 else
1723 iput(root_inode);
1724 }
1725 return res;
1726}
1727EXPORT_SYMBOL(d_make_root);
1728
d891eedb
BF
1729static struct dentry * __d_find_any_alias(struct inode *inode)
1730{
1731 struct dentry *alias;
1732
b3d9b7a3 1733 if (hlist_empty(&inode->i_dentry))
d891eedb 1734 return NULL;
b3d9b7a3 1735 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1736 __dget(alias);
1737 return alias;
1738}
1739
46f72b34
SW
1740/**
1741 * d_find_any_alias - find any alias for a given inode
1742 * @inode: inode to find an alias for
1743 *
1744 * If any aliases exist for the given inode, take and return a
1745 * reference for one of them. If no aliases exist, return %NULL.
1746 */
1747struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1748{
1749 struct dentry *de;
1750
1751 spin_lock(&inode->i_lock);
1752 de = __d_find_any_alias(inode);
1753 spin_unlock(&inode->i_lock);
1754 return de;
1755}
46f72b34 1756EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1757
49c7dd28 1758static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
4ea3ada2 1759{
b911a6bd 1760 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1761 struct dentry *tmp;
1762 struct dentry *res;
b18825a7 1763 unsigned add_flags;
4ea3ada2
CH
1764
1765 if (!inode)
44003728 1766 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1767 if (IS_ERR(inode))
1768 return ERR_CAST(inode);
1769
d891eedb 1770 res = d_find_any_alias(inode);
9308a612
CH
1771 if (res)
1772 goto out_iput;
1773
a4464dbc 1774 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1775 if (!tmp) {
1776 res = ERR_PTR(-ENOMEM);
1777 goto out_iput;
4ea3ada2 1778 }
b5c84bf6 1779
873feea0 1780 spin_lock(&inode->i_lock);
d891eedb 1781 res = __d_find_any_alias(inode);
9308a612 1782 if (res) {
873feea0 1783 spin_unlock(&inode->i_lock);
9308a612
CH
1784 dput(tmp);
1785 goto out_iput;
1786 }
1787
1788 /* attach a disconnected dentry */
1a0a397e
BF
1789 add_flags = d_flags_for_inode(inode);
1790
1791 if (disconnected)
1792 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1793
9308a612 1794 spin_lock(&tmp->d_lock);
9308a612 1795 tmp->d_inode = inode;
b18825a7 1796 tmp->d_flags |= add_flags;
b3d9b7a3 1797 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1798 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1799 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1800 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1801 spin_unlock(&tmp->d_lock);
873feea0 1802 spin_unlock(&inode->i_lock);
24ff6663 1803 security_d_instantiate(tmp, inode);
9308a612 1804
9308a612
CH
1805 return tmp;
1806
1807 out_iput:
24ff6663
JB
1808 if (res && !IS_ERR(res))
1809 security_d_instantiate(res, inode);
9308a612
CH
1810 iput(inode);
1811 return res;
4ea3ada2 1812}
1a0a397e
BF
1813
1814/**
1815 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1816 * @inode: inode to allocate the dentry for
1817 *
1818 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1819 * similar open by handle operations. The returned dentry may be anonymous,
1820 * or may have a full name (if the inode was already in the cache).
1821 *
1822 * When called on a directory inode, we must ensure that the inode only ever
1823 * has one dentry. If a dentry is found, that is returned instead of
1824 * allocating a new one.
1825 *
1826 * On successful return, the reference to the inode has been transferred
1827 * to the dentry. In case of an error the reference on the inode is released.
1828 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1829 * be passed in and the error will be propagated to the return value,
1830 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1831 */
1832struct dentry *d_obtain_alias(struct inode *inode)
1833{
1834 return __d_obtain_alias(inode, 1);
1835}
adc48720 1836EXPORT_SYMBOL(d_obtain_alias);
1da177e4 1837
1a0a397e
BF
1838/**
1839 * d_obtain_root - find or allocate a dentry for a given inode
1840 * @inode: inode to allocate the dentry for
1841 *
1842 * Obtain an IS_ROOT dentry for the root of a filesystem.
1843 *
1844 * We must ensure that directory inodes only ever have one dentry. If a
1845 * dentry is found, that is returned instead of allocating a new one.
1846 *
1847 * On successful return, the reference to the inode has been transferred
1848 * to the dentry. In case of an error the reference on the inode is
1849 * released. A %NULL or IS_ERR inode may be passed in and will be the
1850 * error will be propagate to the return value, with a %NULL @inode
1851 * replaced by ERR_PTR(-ESTALE).
1852 */
1853struct dentry *d_obtain_root(struct inode *inode)
1854{
1855 return __d_obtain_alias(inode, 0);
1856}
1857EXPORT_SYMBOL(d_obtain_root);
1858
9403540c
BN
1859/**
1860 * d_add_ci - lookup or allocate new dentry with case-exact name
1861 * @inode: the inode case-insensitive lookup has found
1862 * @dentry: the negative dentry that was passed to the parent's lookup func
1863 * @name: the case-exact name to be associated with the returned dentry
1864 *
1865 * This is to avoid filling the dcache with case-insensitive names to the
1866 * same inode, only the actual correct case is stored in the dcache for
1867 * case-insensitive filesystems.
1868 *
1869 * For a case-insensitive lookup match and if the the case-exact dentry
1870 * already exists in in the dcache, use it and return it.
1871 *
1872 * If no entry exists with the exact case name, allocate new dentry with
1873 * the exact case, and return the spliced entry.
1874 */
e45b590b 1875struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1876 struct qstr *name)
1877{
9403540c
BN
1878 struct dentry *found;
1879 struct dentry *new;
1880
b6520c81
CH
1881 /*
1882 * First check if a dentry matching the name already exists,
1883 * if not go ahead and create it now.
1884 */
9403540c 1885 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1886 if (unlikely(IS_ERR(found)))
1887 goto err_out;
9403540c
BN
1888 if (!found) {
1889 new = d_alloc(dentry->d_parent, name);
1890 if (!new) {
4f522a24 1891 found = ERR_PTR(-ENOMEM);
9403540c
BN
1892 goto err_out;
1893 }
b6520c81 1894
9403540c
BN
1895 found = d_splice_alias(inode, new);
1896 if (found) {
1897 dput(new);
1898 return found;
1899 }
1900 return new;
1901 }
b6520c81
CH
1902
1903 /*
1904 * If a matching dentry exists, and it's not negative use it.
1905 *
1906 * Decrement the reference count to balance the iget() done
1907 * earlier on.
1908 */
9403540c
BN
1909 if (found->d_inode) {
1910 if (unlikely(found->d_inode != inode)) {
1911 /* This can't happen because bad inodes are unhashed. */
1912 BUG_ON(!is_bad_inode(inode));
1913 BUG_ON(!is_bad_inode(found->d_inode));
1914 }
9403540c
BN
1915 iput(inode);
1916 return found;
1917 }
b6520c81 1918
9403540c 1919 /*
9403540c 1920 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1921 * already has a dentry.
9403540c 1922 */
4513d899
AV
1923 new = d_splice_alias(inode, found);
1924 if (new) {
1925 dput(found);
1926 found = new;
9403540c 1927 }
4513d899 1928 return found;
9403540c
BN
1929
1930err_out:
1931 iput(inode);
4f522a24 1932 return found;
9403540c 1933}
ec4f8605 1934EXPORT_SYMBOL(d_add_ci);
1da177e4 1935
12f8ad4b
LT
1936/*
1937 * Do the slow-case of the dentry name compare.
1938 *
1939 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1940 * load the name and length information, so that the
12f8ad4b
LT
1941 * filesystem can rely on them, and can use the 'name' and
1942 * 'len' information without worrying about walking off the
1943 * end of memory etc.
1944 *
1945 * Thus the read_seqcount_retry() and the "duplicate" info
1946 * in arguments (the low-level filesystem should not look
1947 * at the dentry inode or name contents directly, since
1948 * rename can change them while we're in RCU mode).
1949 */
1950enum slow_d_compare {
1951 D_COMP_OK,
1952 D_COMP_NOMATCH,
1953 D_COMP_SEQRETRY,
1954};
1955
1956static noinline enum slow_d_compare slow_dentry_cmp(
1957 const struct dentry *parent,
12f8ad4b
LT
1958 struct dentry *dentry,
1959 unsigned int seq,
1960 const struct qstr *name)
1961{
1962 int tlen = dentry->d_name.len;
1963 const char *tname = dentry->d_name.name;
12f8ad4b
LT
1964
1965 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1966 cpu_relax();
1967 return D_COMP_SEQRETRY;
1968 }
da53be12 1969 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
1970 return D_COMP_NOMATCH;
1971 return D_COMP_OK;
1972}
1973
31e6b01f
NP
1974/**
1975 * __d_lookup_rcu - search for a dentry (racy, store-free)
1976 * @parent: parent dentry
1977 * @name: qstr of name we wish to find
1f1e6e52 1978 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1979 * Returns: dentry, or NULL
1980 *
1981 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1982 * resolution (store-free path walking) design described in
1983 * Documentation/filesystems/path-lookup.txt.
1984 *
1985 * This is not to be used outside core vfs.
1986 *
1987 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1988 * held, and rcu_read_lock held. The returned dentry must not be stored into
1989 * without taking d_lock and checking d_seq sequence count against @seq
1990 * returned here.
1991 *
15570086 1992 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
1993 * function.
1994 *
1995 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1996 * the returned dentry, so long as its parent's seqlock is checked after the
1997 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1998 * is formed, giving integrity down the path walk.
12f8ad4b
LT
1999 *
2000 * NOTE! The caller *has* to check the resulting dentry against the sequence
2001 * number we've returned before using any of the resulting dentry state!
31e6b01f 2002 */
8966be90
LT
2003struct dentry *__d_lookup_rcu(const struct dentry *parent,
2004 const struct qstr *name,
da53be12 2005 unsigned *seqp)
31e6b01f 2006{
26fe5750 2007 u64 hashlen = name->hash_len;
31e6b01f 2008 const unsigned char *str = name->name;
26fe5750 2009 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2010 struct hlist_bl_node *node;
31e6b01f
NP
2011 struct dentry *dentry;
2012
2013 /*
2014 * Note: There is significant duplication with __d_lookup_rcu which is
2015 * required to prevent single threaded performance regressions
2016 * especially on architectures where smp_rmb (in seqcounts) are costly.
2017 * Keep the two functions in sync.
2018 */
2019
2020 /*
2021 * The hash list is protected using RCU.
2022 *
2023 * Carefully use d_seq when comparing a candidate dentry, to avoid
2024 * races with d_move().
2025 *
2026 * It is possible that concurrent renames can mess up our list
2027 * walk here and result in missing our dentry, resulting in the
2028 * false-negative result. d_lookup() protects against concurrent
2029 * renames using rename_lock seqlock.
2030 *
b0a4bb83 2031 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2032 */
b07ad996 2033 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2034 unsigned seq;
31e6b01f 2035
31e6b01f 2036seqretry:
12f8ad4b
LT
2037 /*
2038 * The dentry sequence count protects us from concurrent
da53be12 2039 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2040 *
2041 * The caller must perform a seqcount check in order
da53be12 2042 * to do anything useful with the returned dentry.
12f8ad4b
LT
2043 *
2044 * NOTE! We do a "raw" seqcount_begin here. That means that
2045 * we don't wait for the sequence count to stabilize if it
2046 * is in the middle of a sequence change. If we do the slow
2047 * dentry compare, we will do seqretries until it is stable,
2048 * and if we end up with a successful lookup, we actually
2049 * want to exit RCU lookup anyway.
2050 */
2051 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2052 if (dentry->d_parent != parent)
2053 continue;
2e321806
LT
2054 if (d_unhashed(dentry))
2055 continue;
12f8ad4b 2056
830c0f0e 2057 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2058 if (dentry->d_name.hash != hashlen_hash(hashlen))
2059 continue;
da53be12
LT
2060 *seqp = seq;
2061 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2062 case D_COMP_OK:
2063 return dentry;
2064 case D_COMP_NOMATCH:
31e6b01f 2065 continue;
12f8ad4b
LT
2066 default:
2067 goto seqretry;
2068 }
31e6b01f 2069 }
12f8ad4b 2070
26fe5750 2071 if (dentry->d_name.hash_len != hashlen)
ee983e89 2072 continue;
da53be12 2073 *seqp = seq;
26fe5750 2074 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2075 return dentry;
31e6b01f
NP
2076 }
2077 return NULL;
2078}
2079
1da177e4
LT
2080/**
2081 * d_lookup - search for a dentry
2082 * @parent: parent dentry
2083 * @name: qstr of name we wish to find
b04f784e 2084 * Returns: dentry, or NULL
1da177e4 2085 *
b04f784e
NP
2086 * d_lookup searches the children of the parent dentry for the name in
2087 * question. If the dentry is found its reference count is incremented and the
2088 * dentry is returned. The caller must use dput to free the entry when it has
2089 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2090 */
da2d8455 2091struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2092{
31e6b01f 2093 struct dentry *dentry;
949854d0 2094 unsigned seq;
1da177e4
LT
2095
2096 do {
2097 seq = read_seqbegin(&rename_lock);
2098 dentry = __d_lookup(parent, name);
2099 if (dentry)
2100 break;
2101 } while (read_seqretry(&rename_lock, seq));
2102 return dentry;
2103}
ec4f8605 2104EXPORT_SYMBOL(d_lookup);
1da177e4 2105
31e6b01f 2106/**
b04f784e
NP
2107 * __d_lookup - search for a dentry (racy)
2108 * @parent: parent dentry
2109 * @name: qstr of name we wish to find
2110 * Returns: dentry, or NULL
2111 *
2112 * __d_lookup is like d_lookup, however it may (rarely) return a
2113 * false-negative result due to unrelated rename activity.
2114 *
2115 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2116 * however it must be used carefully, eg. with a following d_lookup in
2117 * the case of failure.
2118 *
2119 * __d_lookup callers must be commented.
2120 */
a713ca2a 2121struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2122{
2123 unsigned int len = name->len;
2124 unsigned int hash = name->hash;
2125 const unsigned char *str = name->name;
b07ad996 2126 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2127 struct hlist_bl_node *node;
31e6b01f 2128 struct dentry *found = NULL;
665a7583 2129 struct dentry *dentry;
1da177e4 2130
31e6b01f
NP
2131 /*
2132 * Note: There is significant duplication with __d_lookup_rcu which is
2133 * required to prevent single threaded performance regressions
2134 * especially on architectures where smp_rmb (in seqcounts) are costly.
2135 * Keep the two functions in sync.
2136 */
2137
b04f784e
NP
2138 /*
2139 * The hash list is protected using RCU.
2140 *
2141 * Take d_lock when comparing a candidate dentry, to avoid races
2142 * with d_move().
2143 *
2144 * It is possible that concurrent renames can mess up our list
2145 * walk here and result in missing our dentry, resulting in the
2146 * false-negative result. d_lookup() protects against concurrent
2147 * renames using rename_lock seqlock.
2148 *
b0a4bb83 2149 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2150 */
1da177e4
LT
2151 rcu_read_lock();
2152
b07ad996 2153 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2154
1da177e4
LT
2155 if (dentry->d_name.hash != hash)
2156 continue;
1da177e4
LT
2157
2158 spin_lock(&dentry->d_lock);
1da177e4
LT
2159 if (dentry->d_parent != parent)
2160 goto next;
d0185c08
LT
2161 if (d_unhashed(dentry))
2162 goto next;
2163
1da177e4
LT
2164 /*
2165 * It is safe to compare names since d_move() cannot
2166 * change the qstr (protected by d_lock).
2167 */
fb045adb 2168 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2169 int tlen = dentry->d_name.len;
2170 const char *tname = dentry->d_name.name;
da53be12 2171 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2172 goto next;
2173 } else {
ee983e89
LT
2174 if (dentry->d_name.len != len)
2175 goto next;
12f8ad4b 2176 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2177 goto next;
2178 }
2179
98474236 2180 dentry->d_lockref.count++;
d0185c08 2181 found = dentry;
1da177e4
LT
2182 spin_unlock(&dentry->d_lock);
2183 break;
2184next:
2185 spin_unlock(&dentry->d_lock);
2186 }
2187 rcu_read_unlock();
2188
2189 return found;
2190}
2191
3e7e241f
EB
2192/**
2193 * d_hash_and_lookup - hash the qstr then search for a dentry
2194 * @dir: Directory to search in
2195 * @name: qstr of name we wish to find
2196 *
4f522a24 2197 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2198 */
2199struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2200{
3e7e241f
EB
2201 /*
2202 * Check for a fs-specific hash function. Note that we must
2203 * calculate the standard hash first, as the d_op->d_hash()
2204 * routine may choose to leave the hash value unchanged.
2205 */
2206 name->hash = full_name_hash(name->name, name->len);
fb045adb 2207 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2208 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2209 if (unlikely(err < 0))
2210 return ERR_PTR(err);
3e7e241f 2211 }
4f522a24 2212 return d_lookup(dir, name);
3e7e241f 2213}
4f522a24 2214EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2215
1da177e4 2216/**
786a5e15 2217 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2218 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2219 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2220 *
2221 * An insecure source has sent us a dentry, here we verify it and dget() it.
2222 * This is used by ncpfs in its readdir implementation.
2223 * Zero is returned in the dentry is invalid.
786a5e15
NP
2224 *
2225 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2226 */
d3a23e16 2227int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2228{
786a5e15 2229 struct dentry *child;
d3a23e16 2230
2fd6b7f5 2231 spin_lock(&dparent->d_lock);
786a5e15
NP
2232 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2233 if (dentry == child) {
2fd6b7f5 2234 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2235 __dget_dlock(dentry);
2fd6b7f5
NP
2236 spin_unlock(&dentry->d_lock);
2237 spin_unlock(&dparent->d_lock);
1da177e4
LT
2238 return 1;
2239 }
2240 }
2fd6b7f5 2241 spin_unlock(&dparent->d_lock);
786a5e15 2242
1da177e4
LT
2243 return 0;
2244}
ec4f8605 2245EXPORT_SYMBOL(d_validate);
1da177e4
LT
2246
2247/*
2248 * When a file is deleted, we have two options:
2249 * - turn this dentry into a negative dentry
2250 * - unhash this dentry and free it.
2251 *
2252 * Usually, we want to just turn this into
2253 * a negative dentry, but if anybody else is
2254 * currently using the dentry or the inode
2255 * we can't do that and we fall back on removing
2256 * it from the hash queues and waiting for
2257 * it to be deleted later when it has no users
2258 */
2259
2260/**
2261 * d_delete - delete a dentry
2262 * @dentry: The dentry to delete
2263 *
2264 * Turn the dentry into a negative dentry if possible, otherwise
2265 * remove it from the hash queues so it can be deleted later
2266 */
2267
2268void d_delete(struct dentry * dentry)
2269{
873feea0 2270 struct inode *inode;
7a91bf7f 2271 int isdir = 0;
1da177e4
LT
2272 /*
2273 * Are we the only user?
2274 */
357f8e65 2275again:
1da177e4 2276 spin_lock(&dentry->d_lock);
873feea0
NP
2277 inode = dentry->d_inode;
2278 isdir = S_ISDIR(inode->i_mode);
98474236 2279 if (dentry->d_lockref.count == 1) {
1fe0c023 2280 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2281 spin_unlock(&dentry->d_lock);
2282 cpu_relax();
2283 goto again;
2284 }
13e3c5e5 2285 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2286 dentry_unlink_inode(dentry);
7a91bf7f 2287 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2288 return;
2289 }
2290
2291 if (!d_unhashed(dentry))
2292 __d_drop(dentry);
2293
2294 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2295
2296 fsnotify_nameremove(dentry, isdir);
1da177e4 2297}
ec4f8605 2298EXPORT_SYMBOL(d_delete);
1da177e4 2299
b07ad996 2300static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2301{
ceb5bdc2 2302 BUG_ON(!d_unhashed(entry));
1879fd6a 2303 hlist_bl_lock(b);
dea3667b 2304 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2305 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2306 hlist_bl_unlock(b);
1da177e4
LT
2307}
2308
770bfad8
DH
2309static void _d_rehash(struct dentry * entry)
2310{
2311 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2312}
2313
1da177e4
LT
2314/**
2315 * d_rehash - add an entry back to the hash
2316 * @entry: dentry to add to the hash
2317 *
2318 * Adds a dentry to the hash according to its name.
2319 */
2320
2321void d_rehash(struct dentry * entry)
2322{
1da177e4 2323 spin_lock(&entry->d_lock);
770bfad8 2324 _d_rehash(entry);
1da177e4 2325 spin_unlock(&entry->d_lock);
1da177e4 2326}
ec4f8605 2327EXPORT_SYMBOL(d_rehash);
1da177e4 2328
fb2d5b86
NP
2329/**
2330 * dentry_update_name_case - update case insensitive dentry with a new name
2331 * @dentry: dentry to be updated
2332 * @name: new name
2333 *
2334 * Update a case insensitive dentry with new case of name.
2335 *
2336 * dentry must have been returned by d_lookup with name @name. Old and new
2337 * name lengths must match (ie. no d_compare which allows mismatched name
2338 * lengths).
2339 *
2340 * Parent inode i_mutex must be held over d_lookup and into this call (to
2341 * keep renames and concurrent inserts, and readdir(2) away).
2342 */
2343void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2344{
7ebfa57f 2345 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2346 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2347
fb2d5b86 2348 spin_lock(&dentry->d_lock);
31e6b01f 2349 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2350 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2351 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2352 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2353}
2354EXPORT_SYMBOL(dentry_update_name_case);
2355
8d85b484 2356static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2357{
8d85b484
AV
2358 if (unlikely(dname_external(target))) {
2359 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2360 /*
2361 * Both external: swap the pointers
2362 */
9a8d5bb4 2363 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2364 } else {
2365 /*
2366 * dentry:internal, target:external. Steal target's
2367 * storage and make target internal.
2368 */
321bcf92
BF
2369 memcpy(target->d_iname, dentry->d_name.name,
2370 dentry->d_name.len + 1);
1da177e4
LT
2371 dentry->d_name.name = target->d_name.name;
2372 target->d_name.name = target->d_iname;
2373 }
2374 } else {
8d85b484 2375 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2376 /*
2377 * dentry:external, target:internal. Give dentry's
2378 * storage to target and make dentry internal
2379 */
2380 memcpy(dentry->d_iname, target->d_name.name,
2381 target->d_name.len + 1);
2382 target->d_name.name = dentry->d_name.name;
2383 dentry->d_name.name = dentry->d_iname;
2384 } else {
2385 /*
da1ce067 2386 * Both are internal.
1da177e4 2387 */
da1ce067
MS
2388 unsigned int i;
2389 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2390 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2391 swap(((long *) &dentry->d_iname)[i],
2392 ((long *) &target->d_iname)[i]);
2393 }
1da177e4
LT
2394 }
2395 }
a28ddb87 2396 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2397}
2398
8d85b484
AV
2399static void copy_name(struct dentry *dentry, struct dentry *target)
2400{
2401 struct external_name *old_name = NULL;
2402 if (unlikely(dname_external(dentry)))
2403 old_name = external_name(dentry);
2404 if (unlikely(dname_external(target))) {
2405 atomic_inc(&external_name(target)->u.count);
2406 dentry->d_name = target->d_name;
2407 } else {
2408 memcpy(dentry->d_iname, target->d_name.name,
2409 target->d_name.len + 1);
2410 dentry->d_name.name = dentry->d_iname;
2411 dentry->d_name.hash_len = target->d_name.hash_len;
2412 }
2413 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2414 kfree_rcu(old_name, u.head);
2415}
2416
2fd6b7f5
NP
2417static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2418{
2419 /*
2420 * XXXX: do we really need to take target->d_lock?
2421 */
2422 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2423 spin_lock(&target->d_parent->d_lock);
2424 else {
2425 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2426 spin_lock(&dentry->d_parent->d_lock);
2427 spin_lock_nested(&target->d_parent->d_lock,
2428 DENTRY_D_LOCK_NESTED);
2429 } else {
2430 spin_lock(&target->d_parent->d_lock);
2431 spin_lock_nested(&dentry->d_parent->d_lock,
2432 DENTRY_D_LOCK_NESTED);
2433 }
2434 }
2435 if (target < dentry) {
2436 spin_lock_nested(&target->d_lock, 2);
2437 spin_lock_nested(&dentry->d_lock, 3);
2438 } else {
2439 spin_lock_nested(&dentry->d_lock, 2);
2440 spin_lock_nested(&target->d_lock, 3);
2441 }
2442}
2443
986c0194 2444static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2445{
2446 if (target->d_parent != dentry->d_parent)
2447 spin_unlock(&dentry->d_parent->d_lock);
2448 if (target->d_parent != target)
2449 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2450 spin_unlock(&target->d_lock);
2451 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2452}
2453
1da177e4 2454/*
2fd6b7f5
NP
2455 * When switching names, the actual string doesn't strictly have to
2456 * be preserved in the target - because we're dropping the target
2457 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2458 * the new name before we switch, unless we are going to rehash
2459 * it. Note that if we *do* unhash the target, we are not allowed
2460 * to rehash it without giving it a new name/hash key - whether
2461 * we swap or overwrite the names here, resulting name won't match
2462 * the reality in filesystem; it's only there for d_path() purposes.
2463 * Note that all of this is happening under rename_lock, so the
2464 * any hash lookup seeing it in the middle of manipulations will
2465 * be discarded anyway. So we do not care what happens to the hash
2466 * key in that case.
1da177e4 2467 */
9eaef27b 2468/*
18367501 2469 * __d_move - move a dentry
1da177e4
LT
2470 * @dentry: entry to move
2471 * @target: new dentry
da1ce067 2472 * @exchange: exchange the two dentries
1da177e4
LT
2473 *
2474 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2475 * dcache entries should not be moved in this way. Caller must hold
2476 * rename_lock, the i_mutex of the source and target directories,
2477 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2478 */
da1ce067
MS
2479static void __d_move(struct dentry *dentry, struct dentry *target,
2480 bool exchange)
1da177e4 2481{
1da177e4
LT
2482 if (!dentry->d_inode)
2483 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2484
2fd6b7f5
NP
2485 BUG_ON(d_ancestor(dentry, target));
2486 BUG_ON(d_ancestor(target, dentry));
2487
2fd6b7f5 2488 dentry_lock_for_move(dentry, target);
1da177e4 2489
31e6b01f 2490 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2491 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2492
ceb5bdc2
NP
2493 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2494
2495 /*
2496 * Move the dentry to the target hash queue. Don't bother checking
2497 * for the same hash queue because of how unlikely it is.
2498 */
2499 __d_drop(dentry);
789680d1 2500 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2501
da1ce067
MS
2502 /*
2503 * Unhash the target (d_delete() is not usable here). If exchanging
2504 * the two dentries, then rehash onto the other's hash queue.
2505 */
1da177e4 2506 __d_drop(target);
da1ce067
MS
2507 if (exchange) {
2508 __d_rehash(target,
2509 d_hash(dentry->d_parent, dentry->d_name.hash));
2510 }
1da177e4 2511
1da177e4 2512 /* Switch the names.. */
8d85b484
AV
2513 if (exchange)
2514 swap_names(dentry, target);
2515 else
2516 copy_name(dentry, target);
1da177e4 2517
63cf427a 2518 /* ... and switch them in the tree */
1da177e4 2519 if (IS_ROOT(dentry)) {
63cf427a 2520 /* splicing a tree */
1da177e4
LT
2521 dentry->d_parent = target->d_parent;
2522 target->d_parent = target;
9d8cd306 2523 list_del_init(&target->d_u.d_child);
63cf427a 2524 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1da177e4 2525 } else {
63cf427a 2526 /* swapping two dentries */
9a8d5bb4 2527 swap(dentry->d_parent, target->d_parent);
9d8cd306 2528 list_move(&target->d_u.d_child, &target->d_parent->d_subdirs);
63cf427a
AV
2529 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2530 if (exchange)
2531 fsnotify_d_move(target);
2532 fsnotify_d_move(dentry);
1da177e4
LT
2533 }
2534
31e6b01f
NP
2535 write_seqcount_end(&target->d_seq);
2536 write_seqcount_end(&dentry->d_seq);
2537
986c0194 2538 dentry_unlock_for_move(dentry, target);
18367501
AV
2539}
2540
2541/*
2542 * d_move - move a dentry
2543 * @dentry: entry to move
2544 * @target: new dentry
2545 *
2546 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2547 * dcache entries should not be moved in this way. See the locking
2548 * requirements for __d_move.
18367501
AV
2549 */
2550void d_move(struct dentry *dentry, struct dentry *target)
2551{
2552 write_seqlock(&rename_lock);
da1ce067 2553 __d_move(dentry, target, false);
1da177e4 2554 write_sequnlock(&rename_lock);
9eaef27b 2555}
ec4f8605 2556EXPORT_SYMBOL(d_move);
1da177e4 2557
da1ce067
MS
2558/*
2559 * d_exchange - exchange two dentries
2560 * @dentry1: first dentry
2561 * @dentry2: second dentry
2562 */
2563void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2564{
2565 write_seqlock(&rename_lock);
2566
2567 WARN_ON(!dentry1->d_inode);
2568 WARN_ON(!dentry2->d_inode);
2569 WARN_ON(IS_ROOT(dentry1));
2570 WARN_ON(IS_ROOT(dentry2));
2571
2572 __d_move(dentry1, dentry2, true);
2573
2574 write_sequnlock(&rename_lock);
2575}
2576
e2761a11
OH
2577/**
2578 * d_ancestor - search for an ancestor
2579 * @p1: ancestor dentry
2580 * @p2: child dentry
2581 *
2582 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2583 * an ancestor of p2, else NULL.
9eaef27b 2584 */
e2761a11 2585struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2586{
2587 struct dentry *p;
2588
871c0067 2589 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2590 if (p->d_parent == p1)
e2761a11 2591 return p;
9eaef27b 2592 }
e2761a11 2593 return NULL;
9eaef27b
TM
2594}
2595
2596/*
2597 * This helper attempts to cope with remotely renamed directories
2598 *
2599 * It assumes that the caller is already holding
18367501 2600 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2601 *
2602 * Note: If ever the locking in lock_rename() changes, then please
2603 * remember to update this too...
9eaef27b 2604 */
873feea0
NP
2605static struct dentry *__d_unalias(struct inode *inode,
2606 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2607{
2608 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2609 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2610
2611 /* If alias and dentry share a parent, then no extra locks required */
2612 if (alias->d_parent == dentry->d_parent)
2613 goto out_unalias;
2614
9eaef27b 2615 /* See lock_rename() */
9eaef27b
TM
2616 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2617 goto out_err;
2618 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2619 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2620 goto out_err;
2621 m2 = &alias->d_parent->d_inode->i_mutex;
2622out_unalias:
8ed936b5
EB
2623 __d_move(alias, dentry, false);
2624 ret = alias;
9eaef27b 2625out_err:
873feea0 2626 spin_unlock(&inode->i_lock);
9eaef27b
TM
2627 if (m2)
2628 mutex_unlock(m2);
2629 if (m1)
2630 mutex_unlock(m1);
2631 return ret;
2632}
2633
3f70bd51
BF
2634/**
2635 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2636 * @inode: the inode which may have a disconnected dentry
2637 * @dentry: a negative dentry which we want to point to the inode.
2638 *
da093a9b
BF
2639 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2640 * place of the given dentry and return it, else simply d_add the inode
2641 * to the dentry and return NULL.
3f70bd51 2642 *
908790fa
BF
2643 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2644 * we should error out: directories can't have multiple aliases.
2645 *
3f70bd51
BF
2646 * This is needed in the lookup routine of any filesystem that is exportable
2647 * (via knfsd) so that we can build dcache paths to directories effectively.
2648 *
2649 * If a dentry was found and moved, then it is returned. Otherwise NULL
2650 * is returned. This matches the expected return value of ->lookup.
2651 *
2652 * Cluster filesystems may call this function with a negative, hashed dentry.
2653 * In that case, we know that the inode will be a regular file, and also this
2654 * will only occur during atomic_open. So we need to check for the dentry
2655 * being already hashed only in the final case.
2656 */
2657struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2658{
2659 struct dentry *new = NULL;
2660
2661 if (IS_ERR(inode))
2662 return ERR_CAST(inode);
2663
2664 if (inode && S_ISDIR(inode->i_mode)) {
2665 spin_lock(&inode->i_lock);
908790fa 2666 new = __d_find_any_alias(inode);
3f70bd51 2667 if (new) {
da093a9b 2668 if (!IS_ROOT(new)) {
908790fa
BF
2669 spin_unlock(&inode->i_lock);
2670 dput(new);
2671 return ERR_PTR(-EIO);
2672 }
95ad5c29
BF
2673 if (d_ancestor(new, dentry)) {
2674 spin_unlock(&inode->i_lock);
2675 dput(new);
2676 return ERR_PTR(-EIO);
2677 }
75a2352d 2678 write_seqlock(&rename_lock);
63cf427a 2679 __d_move(new, dentry, false);
75a2352d 2680 write_sequnlock(&rename_lock);
3f70bd51
BF
2681 spin_unlock(&inode->i_lock);
2682 security_d_instantiate(new, inode);
3f70bd51
BF
2683 iput(inode);
2684 } else {
2685 /* already taking inode->i_lock, so d_add() by hand */
2686 __d_instantiate(dentry, inode);
2687 spin_unlock(&inode->i_lock);
2688 security_d_instantiate(dentry, inode);
2689 d_rehash(dentry);
2690 }
2691 } else {
2692 d_instantiate(dentry, inode);
2693 if (d_unhashed(dentry))
2694 d_rehash(dentry);
2695 }
2696 return new;
2697}
2698EXPORT_SYMBOL(d_splice_alias);
2699
770bfad8
DH
2700/**
2701 * d_materialise_unique - introduce an inode into the tree
2702 * @dentry: candidate dentry
2703 * @inode: inode to bind to the dentry, to which aliases may be attached
2704 *
2705 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2706 * root directory alias in its place if there is one. Caller must hold the
2707 * i_mutex of the parent directory.
770bfad8
DH
2708 */
2709struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2710{
9eaef27b 2711 struct dentry *actual;
770bfad8
DH
2712
2713 BUG_ON(!d_unhashed(dentry));
2714
770bfad8
DH
2715 if (!inode) {
2716 actual = dentry;
360da900 2717 __d_instantiate(dentry, NULL);
357f8e65
NP
2718 d_rehash(actual);
2719 goto out_nolock;
770bfad8
DH
2720 }
2721
873feea0 2722 spin_lock(&inode->i_lock);
357f8e65 2723
9eaef27b
TM
2724 if (S_ISDIR(inode->i_mode)) {
2725 struct dentry *alias;
2726
2727 /* Does an aliased dentry already exist? */
52ed46f0 2728 alias = __d_find_alias(inode);
9eaef27b
TM
2729 if (alias) {
2730 actual = alias;
18367501
AV
2731 write_seqlock(&rename_lock);
2732
2733 if (d_ancestor(alias, dentry)) {
2734 /* Check for loops */
2735 actual = ERR_PTR(-ELOOP);
b18dafc8 2736 spin_unlock(&inode->i_lock);
18367501
AV
2737 } else if (IS_ROOT(alias)) {
2738 /* Is this an anonymous mountpoint that we
2739 * could splice into our tree? */
63cf427a 2740 __d_move(alias, dentry, false);
18367501 2741 write_sequnlock(&rename_lock);
9eaef27b 2742 goto found;
18367501
AV
2743 } else {
2744 /* Nope, but we must(!) avoid directory
b18dafc8 2745 * aliasing. This drops inode->i_lock */
18367501 2746 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2747 }
18367501 2748 write_sequnlock(&rename_lock);
dd179946
DH
2749 if (IS_ERR(actual)) {
2750 if (PTR_ERR(actual) == -ELOOP)
2751 pr_warn_ratelimited(
2752 "VFS: Lookup of '%s' in %s %s"
2753 " would have caused loop\n",
2754 dentry->d_name.name,
2755 inode->i_sb->s_type->name,
2756 inode->i_sb->s_id);
9eaef27b 2757 dput(alias);
dd179946 2758 }
9eaef27b
TM
2759 goto out_nolock;
2760 }
770bfad8
DH
2761 }
2762
2763 /* Add a unique reference */
2764 actual = __d_instantiate_unique(dentry, inode);
2765 if (!actual)
2766 actual = dentry;
770bfad8 2767
8527dd71 2768 d_rehash(actual);
5cc3821b 2769found:
873feea0 2770 spin_unlock(&inode->i_lock);
9eaef27b 2771out_nolock:
770bfad8
DH
2772 if (actual == dentry) {
2773 security_d_instantiate(dentry, inode);
2774 return NULL;
2775 }
2776
2777 iput(inode);
2778 return actual;
770bfad8 2779}
ec4f8605 2780EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2781
cdd16d02 2782static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2783{
2784 *buflen -= namelen;
2785 if (*buflen < 0)
2786 return -ENAMETOOLONG;
2787 *buffer -= namelen;
2788 memcpy(*buffer, str, namelen);
2789 return 0;
2790}
2791
232d2d60
WL
2792/**
2793 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2794 * @buffer: buffer pointer
2795 * @buflen: allocated length of the buffer
2796 * @name: name string and length qstr structure
232d2d60
WL
2797 *
2798 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2799 * make sure that either the old or the new name pointer and length are
2800 * fetched. However, there may be mismatch between length and pointer.
2801 * The length cannot be trusted, we need to copy it byte-by-byte until
2802 * the length is reached or a null byte is found. It also prepends "/" at
2803 * the beginning of the name. The sequence number check at the caller will
2804 * retry it again when a d_move() does happen. So any garbage in the buffer
2805 * due to mismatched pointer and length will be discarded.
6d13f694
AV
2806 *
2807 * Data dependency barrier is needed to make sure that we see that terminating
2808 * NUL. Alpha strikes again, film at 11...
232d2d60 2809 */
cdd16d02
MS
2810static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2811{
232d2d60
WL
2812 const char *dname = ACCESS_ONCE(name->name);
2813 u32 dlen = ACCESS_ONCE(name->len);
2814 char *p;
2815
6d13f694
AV
2816 smp_read_barrier_depends();
2817
232d2d60 2818 *buflen -= dlen + 1;
e825196d
AV
2819 if (*buflen < 0)
2820 return -ENAMETOOLONG;
232d2d60
WL
2821 p = *buffer -= dlen + 1;
2822 *p++ = '/';
2823 while (dlen--) {
2824 char c = *dname++;
2825 if (!c)
2826 break;
2827 *p++ = c;
2828 }
2829 return 0;
cdd16d02
MS
2830}
2831
1da177e4 2832/**
208898c1 2833 * prepend_path - Prepend path string to a buffer
9d1bc601 2834 * @path: the dentry/vfsmount to report
02125a82 2835 * @root: root vfsmnt/dentry
f2eb6575
MS
2836 * @buffer: pointer to the end of the buffer
2837 * @buflen: pointer to buffer length
552ce544 2838 *
18129977
WL
2839 * The function will first try to write out the pathname without taking any
2840 * lock other than the RCU read lock to make sure that dentries won't go away.
2841 * It only checks the sequence number of the global rename_lock as any change
2842 * in the dentry's d_seq will be preceded by changes in the rename_lock
2843 * sequence number. If the sequence number had been changed, it will restart
2844 * the whole pathname back-tracing sequence again by taking the rename_lock.
2845 * In this case, there is no need to take the RCU read lock as the recursive
2846 * parent pointer references will keep the dentry chain alive as long as no
2847 * rename operation is performed.
1da177e4 2848 */
02125a82
AV
2849static int prepend_path(const struct path *path,
2850 const struct path *root,
f2eb6575 2851 char **buffer, int *buflen)
1da177e4 2852{
ede4cebc
AV
2853 struct dentry *dentry;
2854 struct vfsmount *vfsmnt;
2855 struct mount *mnt;
f2eb6575 2856 int error = 0;
48a066e7 2857 unsigned seq, m_seq = 0;
232d2d60
WL
2858 char *bptr;
2859 int blen;
6092d048 2860
48f5ec21 2861 rcu_read_lock();
48a066e7
AV
2862restart_mnt:
2863 read_seqbegin_or_lock(&mount_lock, &m_seq);
2864 seq = 0;
4ec6c2ae 2865 rcu_read_lock();
232d2d60
WL
2866restart:
2867 bptr = *buffer;
2868 blen = *buflen;
48a066e7 2869 error = 0;
ede4cebc
AV
2870 dentry = path->dentry;
2871 vfsmnt = path->mnt;
2872 mnt = real_mount(vfsmnt);
232d2d60 2873 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2874 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2875 struct dentry * parent;
2876
1da177e4 2877 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2878 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
552ce544 2879 /* Global root? */
48a066e7
AV
2880 if (mnt != parent) {
2881 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2882 mnt = parent;
232d2d60
WL
2883 vfsmnt = &mnt->mnt;
2884 continue;
2885 }
2886 /*
2887 * Filesystems needing to implement special "root names"
2888 * should do so with ->d_dname()
2889 */
2890 if (IS_ROOT(dentry) &&
2891 (dentry->d_name.len != 1 ||
2892 dentry->d_name.name[0] != '/')) {
2893 WARN(1, "Root dentry has weird name <%.*s>\n",
2894 (int) dentry->d_name.len,
2895 dentry->d_name.name);
2896 }
2897 if (!error)
2898 error = is_mounted(vfsmnt) ? 1 : 2;
2899 break;
1da177e4
LT
2900 }
2901 parent = dentry->d_parent;
2902 prefetch(parent);
232d2d60 2903 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2904 if (error)
2905 break;
2906
1da177e4
LT
2907 dentry = parent;
2908 }
48f5ec21
AV
2909 if (!(seq & 1))
2910 rcu_read_unlock();
2911 if (need_seqretry(&rename_lock, seq)) {
2912 seq = 1;
232d2d60 2913 goto restart;
48f5ec21
AV
2914 }
2915 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
2916
2917 if (!(m_seq & 1))
2918 rcu_read_unlock();
48a066e7
AV
2919 if (need_seqretry(&mount_lock, m_seq)) {
2920 m_seq = 1;
2921 goto restart_mnt;
2922 }
2923 done_seqretry(&mount_lock, m_seq);
1da177e4 2924
232d2d60
WL
2925 if (error >= 0 && bptr == *buffer) {
2926 if (--blen < 0)
2927 error = -ENAMETOOLONG;
2928 else
2929 *--bptr = '/';
2930 }
2931 *buffer = bptr;
2932 *buflen = blen;
7ea600b5 2933 return error;
f2eb6575 2934}
be285c71 2935
f2eb6575
MS
2936/**
2937 * __d_path - return the path of a dentry
2938 * @path: the dentry/vfsmount to report
02125a82 2939 * @root: root vfsmnt/dentry
cd956a1c 2940 * @buf: buffer to return value in
f2eb6575
MS
2941 * @buflen: buffer length
2942 *
ffd1f4ed 2943 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2944 *
2945 * Returns a pointer into the buffer or an error code if the
2946 * path was too long.
2947 *
be148247 2948 * "buflen" should be positive.
f2eb6575 2949 *
02125a82 2950 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2951 */
02125a82
AV
2952char *__d_path(const struct path *path,
2953 const struct path *root,
f2eb6575
MS
2954 char *buf, int buflen)
2955{
2956 char *res = buf + buflen;
2957 int error;
2958
2959 prepend(&res, &buflen, "\0", 1);
f2eb6575 2960 error = prepend_path(path, root, &res, &buflen);
be148247 2961
02125a82
AV
2962 if (error < 0)
2963 return ERR_PTR(error);
2964 if (error > 0)
2965 return NULL;
2966 return res;
2967}
2968
2969char *d_absolute_path(const struct path *path,
2970 char *buf, int buflen)
2971{
2972 struct path root = {};
2973 char *res = buf + buflen;
2974 int error;
2975
2976 prepend(&res, &buflen, "\0", 1);
02125a82 2977 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
2978
2979 if (error > 1)
2980 error = -EINVAL;
2981 if (error < 0)
f2eb6575 2982 return ERR_PTR(error);
f2eb6575 2983 return res;
1da177e4
LT
2984}
2985
ffd1f4ed
MS
2986/*
2987 * same as __d_path but appends "(deleted)" for unlinked files.
2988 */
02125a82
AV
2989static int path_with_deleted(const struct path *path,
2990 const struct path *root,
2991 char **buf, int *buflen)
ffd1f4ed
MS
2992{
2993 prepend(buf, buflen, "\0", 1);
2994 if (d_unlinked(path->dentry)) {
2995 int error = prepend(buf, buflen, " (deleted)", 10);
2996 if (error)
2997 return error;
2998 }
2999
3000 return prepend_path(path, root, buf, buflen);
3001}
3002
8df9d1a4
MS
3003static int prepend_unreachable(char **buffer, int *buflen)
3004{
3005 return prepend(buffer, buflen, "(unreachable)", 13);
3006}
3007
68f0d9d9
LT
3008static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3009{
3010 unsigned seq;
3011
3012 do {
3013 seq = read_seqcount_begin(&fs->seq);
3014 *root = fs->root;
3015 } while (read_seqcount_retry(&fs->seq, seq));
3016}
3017
a03a8a70
JB
3018/**
3019 * d_path - return the path of a dentry
cf28b486 3020 * @path: path to report
a03a8a70
JB
3021 * @buf: buffer to return value in
3022 * @buflen: buffer length
3023 *
3024 * Convert a dentry into an ASCII path name. If the entry has been deleted
3025 * the string " (deleted)" is appended. Note that this is ambiguous.
3026 *
52afeefb
AV
3027 * Returns a pointer into the buffer or an error code if the path was
3028 * too long. Note: Callers should use the returned pointer, not the passed
3029 * in buffer, to use the name! The implementation often starts at an offset
3030 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3031 *
31f3e0b3 3032 * "buflen" should be positive.
a03a8a70 3033 */
20d4fdc1 3034char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3035{
ffd1f4ed 3036 char *res = buf + buflen;
6ac08c39 3037 struct path root;
ffd1f4ed 3038 int error;
1da177e4 3039
c23fbb6b
ED
3040 /*
3041 * We have various synthetic filesystems that never get mounted. On
3042 * these filesystems dentries are never used for lookup purposes, and
3043 * thus don't need to be hashed. They also don't need a name until a
3044 * user wants to identify the object in /proc/pid/fd/. The little hack
3045 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3046 *
3047 * Some pseudo inodes are mountable. When they are mounted
3048 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3049 * and instead have d_path return the mounted path.
c23fbb6b 3050 */
f48cfddc
EB
3051 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3052 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3053 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3054
68f0d9d9
LT
3055 rcu_read_lock();
3056 get_fs_root_rcu(current->fs, &root);
02125a82 3057 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3058 rcu_read_unlock();
3059
02125a82 3060 if (error < 0)
ffd1f4ed 3061 res = ERR_PTR(error);
1da177e4
LT
3062 return res;
3063}
ec4f8605 3064EXPORT_SYMBOL(d_path);
1da177e4 3065
c23fbb6b
ED
3066/*
3067 * Helper function for dentry_operations.d_dname() members
3068 */
3069char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3070 const char *fmt, ...)
3071{
3072 va_list args;
3073 char temp[64];
3074 int sz;
3075
3076 va_start(args, fmt);
3077 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3078 va_end(args);
3079
3080 if (sz > sizeof(temp) || sz > buflen)
3081 return ERR_PTR(-ENAMETOOLONG);
3082
3083 buffer += buflen - sz;
3084 return memcpy(buffer, temp, sz);
3085}
3086
118b2302
AV
3087char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3088{
3089 char *end = buffer + buflen;
3090 /* these dentries are never renamed, so d_lock is not needed */
3091 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3092 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3093 prepend(&end, &buflen, "/", 1))
3094 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3095 return end;
118b2302 3096}
31bbe16f 3097EXPORT_SYMBOL(simple_dname);
118b2302 3098
6092d048
RP
3099/*
3100 * Write full pathname from the root of the filesystem into the buffer.
3101 */
f6500801 3102static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3103{
f6500801 3104 struct dentry *dentry;
232d2d60
WL
3105 char *end, *retval;
3106 int len, seq = 0;
3107 int error = 0;
6092d048 3108
f6500801
AV
3109 if (buflen < 2)
3110 goto Elong;
3111
48f5ec21 3112 rcu_read_lock();
232d2d60 3113restart:
f6500801 3114 dentry = d;
232d2d60
WL
3115 end = buf + buflen;
3116 len = buflen;
3117 prepend(&end, &len, "\0", 1);
6092d048
RP
3118 /* Get '/' right */
3119 retval = end-1;
3120 *retval = '/';
232d2d60 3121 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3122 while (!IS_ROOT(dentry)) {
3123 struct dentry *parent = dentry->d_parent;
6092d048 3124
6092d048 3125 prefetch(parent);
232d2d60
WL
3126 error = prepend_name(&end, &len, &dentry->d_name);
3127 if (error)
3128 break;
6092d048
RP
3129
3130 retval = end;
3131 dentry = parent;
3132 }
48f5ec21
AV
3133 if (!(seq & 1))
3134 rcu_read_unlock();
3135 if (need_seqretry(&rename_lock, seq)) {
3136 seq = 1;
232d2d60 3137 goto restart;
48f5ec21
AV
3138 }
3139 done_seqretry(&rename_lock, seq);
232d2d60
WL
3140 if (error)
3141 goto Elong;
c103135c
AV
3142 return retval;
3143Elong:
3144 return ERR_PTR(-ENAMETOOLONG);
3145}
ec2447c2
NP
3146
3147char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3148{
232d2d60 3149 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3150}
3151EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3152
3153char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3154{
3155 char *p = NULL;
3156 char *retval;
3157
c103135c
AV
3158 if (d_unlinked(dentry)) {
3159 p = buf + buflen;
3160 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3161 goto Elong;
3162 buflen++;
3163 }
3164 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3165 if (!IS_ERR(retval) && p)
3166 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3167 return retval;
3168Elong:
6092d048
RP
3169 return ERR_PTR(-ENAMETOOLONG);
3170}
3171
8b19e341
LT
3172static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3173 struct path *pwd)
5762482f 3174{
8b19e341
LT
3175 unsigned seq;
3176
3177 do {
3178 seq = read_seqcount_begin(&fs->seq);
3179 *root = fs->root;
3180 *pwd = fs->pwd;
3181 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3182}
3183
1da177e4
LT
3184/*
3185 * NOTE! The user-level library version returns a
3186 * character pointer. The kernel system call just
3187 * returns the length of the buffer filled (which
3188 * includes the ending '\0' character), or a negative
3189 * error value. So libc would do something like
3190 *
3191 * char *getcwd(char * buf, size_t size)
3192 * {
3193 * int retval;
3194 *
3195 * retval = sys_getcwd(buf, size);
3196 * if (retval >= 0)
3197 * return buf;
3198 * errno = -retval;
3199 * return NULL;
3200 * }
3201 */
3cdad428 3202SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3203{
552ce544 3204 int error;
6ac08c39 3205 struct path pwd, root;
3272c544 3206 char *page = __getname();
1da177e4
LT
3207
3208 if (!page)
3209 return -ENOMEM;
3210
8b19e341
LT
3211 rcu_read_lock();
3212 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3213
552ce544 3214 error = -ENOENT;
f3da392e 3215 if (!d_unlinked(pwd.dentry)) {
552ce544 3216 unsigned long len;
3272c544
LT
3217 char *cwd = page + PATH_MAX;
3218 int buflen = PATH_MAX;
1da177e4 3219
8df9d1a4 3220 prepend(&cwd, &buflen, "\0", 1);
02125a82 3221 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3222 rcu_read_unlock();
552ce544 3223
02125a82 3224 if (error < 0)
552ce544
LT
3225 goto out;
3226
8df9d1a4 3227 /* Unreachable from current root */
02125a82 3228 if (error > 0) {
8df9d1a4
MS
3229 error = prepend_unreachable(&cwd, &buflen);
3230 if (error)
3231 goto out;
3232 }
3233
552ce544 3234 error = -ERANGE;
3272c544 3235 len = PATH_MAX + page - cwd;
552ce544
LT
3236 if (len <= size) {
3237 error = len;
3238 if (copy_to_user(buf, cwd, len))
3239 error = -EFAULT;
3240 }
949854d0 3241 } else {
ff812d72 3242 rcu_read_unlock();
949854d0 3243 }
1da177e4
LT
3244
3245out:
3272c544 3246 __putname(page);
1da177e4
LT
3247 return error;
3248}
3249
3250/*
3251 * Test whether new_dentry is a subdirectory of old_dentry.
3252 *
3253 * Trivially implemented using the dcache structure
3254 */
3255
3256/**
3257 * is_subdir - is new dentry a subdirectory of old_dentry
3258 * @new_dentry: new dentry
3259 * @old_dentry: old dentry
3260 *
3261 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3262 * Returns 0 otherwise.
3263 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3264 */
3265
e2761a11 3266int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3267{
3268 int result;
949854d0 3269 unsigned seq;
1da177e4 3270
e2761a11
OH
3271 if (new_dentry == old_dentry)
3272 return 1;
3273
e2761a11 3274 do {
1da177e4 3275 /* for restarting inner loop in case of seq retry */
1da177e4 3276 seq = read_seqbegin(&rename_lock);
949854d0
NP
3277 /*
3278 * Need rcu_readlock to protect against the d_parent trashing
3279 * due to d_move
3280 */
3281 rcu_read_lock();
e2761a11 3282 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3283 result = 1;
e2761a11
OH
3284 else
3285 result = 0;
949854d0 3286 rcu_read_unlock();
1da177e4 3287 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3288
3289 return result;
3290}
3291
db14fc3a 3292static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3293{
db14fc3a
MS
3294 struct dentry *root = data;
3295 if (dentry != root) {
3296 if (d_unhashed(dentry) || !dentry->d_inode)
3297 return D_WALK_SKIP;
1da177e4 3298
01ddc4ed
MS
3299 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3300 dentry->d_flags |= DCACHE_GENOCIDE;
3301 dentry->d_lockref.count--;
3302 }
1da177e4 3303 }
db14fc3a
MS
3304 return D_WALK_CONTINUE;
3305}
58db63d0 3306
db14fc3a
MS
3307void d_genocide(struct dentry *parent)
3308{
3309 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3310}
3311
60545d0d 3312void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3313{
60545d0d
AV
3314 inode_dec_link_count(inode);
3315 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3316 !hlist_unhashed(&dentry->d_alias) ||
3317 !d_unlinked(dentry));
3318 spin_lock(&dentry->d_parent->d_lock);
3319 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3320 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3321 (unsigned long long)inode->i_ino);
3322 spin_unlock(&dentry->d_lock);
3323 spin_unlock(&dentry->d_parent->d_lock);
3324 d_instantiate(dentry, inode);
1da177e4 3325}
60545d0d 3326EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3327
3328static __initdata unsigned long dhash_entries;
3329static int __init set_dhash_entries(char *str)
3330{
3331 if (!str)
3332 return 0;
3333 dhash_entries = simple_strtoul(str, &str, 0);
3334 return 1;
3335}
3336__setup("dhash_entries=", set_dhash_entries);
3337
3338static void __init dcache_init_early(void)
3339{
074b8517 3340 unsigned int loop;
1da177e4
LT
3341
3342 /* If hashes are distributed across NUMA nodes, defer
3343 * hash allocation until vmalloc space is available.
3344 */
3345 if (hashdist)
3346 return;
3347
3348 dentry_hashtable =
3349 alloc_large_system_hash("Dentry cache",
b07ad996 3350 sizeof(struct hlist_bl_head),
1da177e4
LT
3351 dhash_entries,
3352 13,
3353 HASH_EARLY,
3354 &d_hash_shift,
3355 &d_hash_mask,
31fe62b9 3356 0,
1da177e4
LT
3357 0);
3358
074b8517 3359 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3360 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3361}
3362
74bf17cf 3363static void __init dcache_init(void)
1da177e4 3364{
074b8517 3365 unsigned int loop;
1da177e4
LT
3366
3367 /*
3368 * A constructor could be added for stable state like the lists,
3369 * but it is probably not worth it because of the cache nature
3370 * of the dcache.
3371 */
0a31bd5f
CL
3372 dentry_cache = KMEM_CACHE(dentry,
3373 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3374
3375 /* Hash may have been set up in dcache_init_early */
3376 if (!hashdist)
3377 return;
3378
3379 dentry_hashtable =
3380 alloc_large_system_hash("Dentry cache",
b07ad996 3381 sizeof(struct hlist_bl_head),
1da177e4
LT
3382 dhash_entries,
3383 13,
3384 0,
3385 &d_hash_shift,
3386 &d_hash_mask,
31fe62b9 3387 0,
1da177e4
LT
3388 0);
3389
074b8517 3390 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3391 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3392}
3393
3394/* SLAB cache for __getname() consumers */
e18b890b 3395struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3396EXPORT_SYMBOL(names_cachep);
1da177e4 3397
1da177e4
LT
3398EXPORT_SYMBOL(d_genocide);
3399
1da177e4
LT
3400void __init vfs_caches_init_early(void)
3401{
3402 dcache_init_early();
3403 inode_init_early();
3404}
3405
3406void __init vfs_caches_init(unsigned long mempages)
3407{
3408 unsigned long reserve;
3409
3410 /* Base hash sizes on available memory, with a reserve equal to
3411 150% of current kernel size */
3412
3413 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3414 mempages -= reserve;
3415
3416 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3417 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3418
74bf17cf
DC
3419 dcache_init();
3420 inode_init();
1da177e4 3421 files_init(mempages);
74bf17cf 3422 mnt_init();
1da177e4
LT
3423 bdev_cache_init();
3424 chrdev_init();
3425}