split the slow part of lock_parent() off
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
7c0f6ba6 29#include <linux/uaccess.h>
1da177e4
LT
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
ceb5bdc2
NP
35#include <linux/bit_spinlock.h>
36#include <linux/rculist_bl.h>
268bb0ce 37#include <linux/prefetch.h>
dd179946 38#include <linux/ratelimit.h>
f6041567 39#include <linux/list_lru.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0 45 * dcache->d_inode->i_lock protects:
946e51f2 46 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
f1ee6162
N
49 * s_roots bl list spinlock protects:
50 * - the s_roots list (see __d_drop)
19156840 51 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
946e51f2 61 * - d_u.d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6 65 * dentry->d_lock
19156840 66 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 67 * dcache_hash_bucket lock
f1ee6162 68 * s_roots lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
74c3cbe3 84__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 85
949854d0 86EXPORT_SYMBOL(rename_lock);
1da177e4 87
e18b890b 88static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 89
cdf01226
DH
90const struct qstr empty_name = QSTR_INIT("", 0);
91EXPORT_SYMBOL(empty_name);
92const struct qstr slash_name = QSTR_INIT("/", 1);
93EXPORT_SYMBOL(slash_name);
94
1da177e4
LT
95/*
96 * This is the single most critical data structure when it comes
97 * to the dcache: the hashtable for lookups. Somebody should try
98 * to make this good - I've just made it work.
99 *
100 * This hash-function tries to avoid losing too many bits of hash
101 * information, yet avoid using a prime hash-size or similar.
102 */
1da177e4 103
fa3536cc 104static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 105
b07ad996 106static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 107
8387ff25 108static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 109{
854d3e63 110 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
111}
112
94bdd655
AV
113#define IN_LOOKUP_SHIFT 10
114static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
115
116static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
117 unsigned int hash)
118{
119 hash += (unsigned long) parent / L1_CACHE_BYTES;
120 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
121}
122
123
1da177e4
LT
124/* Statistics gathering. */
125struct dentry_stat_t dentry_stat = {
126 .age_limit = 45,
127};
128
3942c07c 129static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 130static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
131
132#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
133
134/*
135 * Here we resort to our own counters instead of using generic per-cpu counters
136 * for consistency with what the vfs inode code does. We are expected to harvest
137 * better code and performance by having our own specialized counters.
138 *
139 * Please note that the loop is done over all possible CPUs, not over all online
140 * CPUs. The reason for this is that we don't want to play games with CPUs going
141 * on and off. If one of them goes off, we will just keep their counters.
142 *
143 * glommer: See cffbc8a for details, and if you ever intend to change this,
144 * please update all vfs counters to match.
145 */
3942c07c 146static long get_nr_dentry(void)
3e880fb5
NP
147{
148 int i;
3942c07c 149 long sum = 0;
3e880fb5
NP
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry, i);
152 return sum < 0 ? 0 : sum;
153}
154
62d36c77
DC
155static long get_nr_dentry_unused(void)
156{
157 int i;
158 long sum = 0;
159 for_each_possible_cpu(i)
160 sum += per_cpu(nr_dentry_unused, i);
161 return sum < 0 ? 0 : sum;
162}
163
1f7e0616 164int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
165 size_t *lenp, loff_t *ppos)
166{
3e880fb5 167 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 168 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 169 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
170}
171#endif
172
5483f18e
LT
173/*
174 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
175 * The strings are both count bytes long, and count is non-zero.
176 */
e419b4cc
LT
177#ifdef CONFIG_DCACHE_WORD_ACCESS
178
179#include <asm/word-at-a-time.h>
180/*
181 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
182 * aligned allocation for this particular component. We don't
183 * strictly need the load_unaligned_zeropad() safety, but it
184 * doesn't hurt either.
185 *
186 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
187 * need the careful unaligned handling.
188 */
94753db5 189static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 190{
bfcfaa77 191 unsigned long a,b,mask;
bfcfaa77
LT
192
193 for (;;) {
bfe7aa6c 194 a = read_word_at_a_time(cs);
e419b4cc 195 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
196 if (tcount < sizeof(unsigned long))
197 break;
198 if (unlikely(a != b))
199 return 1;
200 cs += sizeof(unsigned long);
201 ct += sizeof(unsigned long);
202 tcount -= sizeof(unsigned long);
203 if (!tcount)
204 return 0;
205 }
a5c21dce 206 mask = bytemask_from_count(tcount);
bfcfaa77 207 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
208}
209
bfcfaa77 210#else
e419b4cc 211
94753db5 212static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 213{
5483f18e
LT
214 do {
215 if (*cs != *ct)
216 return 1;
217 cs++;
218 ct++;
219 tcount--;
220 } while (tcount);
221 return 0;
222}
223
e419b4cc
LT
224#endif
225
94753db5
LT
226static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
227{
94753db5
LT
228 /*
229 * Be careful about RCU walk racing with rename:
506458ef 230 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
231 *
232 * NOTE! Even if a rename will mean that the length
233 * was not loaded atomically, we don't care. The
234 * RCU walk will check the sequence count eventually,
235 * and catch it. And we won't overrun the buffer,
236 * because we're reading the name pointer atomically,
237 * and a dentry name is guaranteed to be properly
238 * terminated with a NUL byte.
239 *
240 * End result: even if 'len' is wrong, we'll exit
241 * early because the data cannot match (there can
242 * be no NUL in the ct/tcount data)
243 */
506458ef 244 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 245
6326c71f 246 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
247}
248
8d85b484
AV
249struct external_name {
250 union {
251 atomic_t count;
252 struct rcu_head head;
253 } u;
254 unsigned char name[];
255};
256
257static inline struct external_name *external_name(struct dentry *dentry)
258{
259 return container_of(dentry->d_name.name, struct external_name, name[0]);
260}
261
9c82ab9c 262static void __d_free(struct rcu_head *head)
1da177e4 263{
9c82ab9c
CH
264 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
265
8d85b484
AV
266 kmem_cache_free(dentry_cache, dentry);
267}
268
269static void __d_free_external(struct rcu_head *head)
270{
271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 272 kfree(external_name(dentry));
1da177e4
LT
273 kmem_cache_free(dentry_cache, dentry);
274}
275
810bb172
AV
276static inline int dname_external(const struct dentry *dentry)
277{
278 return dentry->d_name.name != dentry->d_iname;
279}
280
49d31c2f
AV
281void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
282{
283 spin_lock(&dentry->d_lock);
284 if (unlikely(dname_external(dentry))) {
285 struct external_name *p = external_name(dentry);
286 atomic_inc(&p->u.count);
287 spin_unlock(&dentry->d_lock);
288 name->name = p->name;
289 } else {
290 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
291 spin_unlock(&dentry->d_lock);
292 name->name = name->inline_name;
293 }
294}
295EXPORT_SYMBOL(take_dentry_name_snapshot);
296
297void release_dentry_name_snapshot(struct name_snapshot *name)
298{
299 if (unlikely(name->name != name->inline_name)) {
300 struct external_name *p;
301 p = container_of(name->name, struct external_name, name[0]);
302 if (unlikely(atomic_dec_and_test(&p->u.count)))
303 kfree_rcu(p, u.head);
304 }
305}
306EXPORT_SYMBOL(release_dentry_name_snapshot);
307
4bf46a27
DH
308static inline void __d_set_inode_and_type(struct dentry *dentry,
309 struct inode *inode,
310 unsigned type_flags)
311{
312 unsigned flags;
313
314 dentry->d_inode = inode;
4bf46a27
DH
315 flags = READ_ONCE(dentry->d_flags);
316 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
317 flags |= type_flags;
318 WRITE_ONCE(dentry->d_flags, flags);
319}
320
4bf46a27
DH
321static inline void __d_clear_type_and_inode(struct dentry *dentry)
322{
323 unsigned flags = READ_ONCE(dentry->d_flags);
324
325 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
326 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
327 dentry->d_inode = NULL;
328}
329
b4f0354e
AV
330static void dentry_free(struct dentry *dentry)
331{
946e51f2 332 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
333 if (unlikely(dname_external(dentry))) {
334 struct external_name *p = external_name(dentry);
335 if (likely(atomic_dec_and_test(&p->u.count))) {
336 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
337 return;
338 }
339 }
b4f0354e
AV
340 /* if dentry was never visible to RCU, immediate free is OK */
341 if (!(dentry->d_flags & DCACHE_RCUACCESS))
342 __d_free(&dentry->d_u.d_rcu);
343 else
344 call_rcu(&dentry->d_u.d_rcu, __d_free);
345}
346
1da177e4
LT
347/*
348 * Release the dentry's inode, using the filesystem
550dce01 349 * d_iput() operation if defined.
31e6b01f
NP
350 */
351static void dentry_unlink_inode(struct dentry * dentry)
352 __releases(dentry->d_lock)
873feea0 353 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
354{
355 struct inode *inode = dentry->d_inode;
550dce01 356 bool hashed = !d_unhashed(dentry);
a528aca7 357
550dce01
AV
358 if (hashed)
359 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 360 __d_clear_type_and_inode(dentry);
946e51f2 361 hlist_del_init(&dentry->d_u.d_alias);
550dce01
AV
362 if (hashed)
363 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 364 spin_unlock(&dentry->d_lock);
873feea0 365 spin_unlock(&inode->i_lock);
31e6b01f
NP
366 if (!inode->i_nlink)
367 fsnotify_inoderemove(inode);
368 if (dentry->d_op && dentry->d_op->d_iput)
369 dentry->d_op->d_iput(dentry, inode);
370 else
371 iput(inode);
372}
373
89dc77bc
LT
374/*
375 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
376 * is in use - which includes both the "real" per-superblock
377 * LRU list _and_ the DCACHE_SHRINK_LIST use.
378 *
379 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
380 * on the shrink list (ie not on the superblock LRU list).
381 *
382 * The per-cpu "nr_dentry_unused" counters are updated with
383 * the DCACHE_LRU_LIST bit.
384 *
385 * These helper functions make sure we always follow the
386 * rules. d_lock must be held by the caller.
387 */
388#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
389static void d_lru_add(struct dentry *dentry)
390{
391 D_FLAG_VERIFY(dentry, 0);
392 dentry->d_flags |= DCACHE_LRU_LIST;
393 this_cpu_inc(nr_dentry_unused);
394 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
395}
396
397static void d_lru_del(struct dentry *dentry)
398{
399 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
400 dentry->d_flags &= ~DCACHE_LRU_LIST;
401 this_cpu_dec(nr_dentry_unused);
402 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
403}
404
405static void d_shrink_del(struct dentry *dentry)
406{
407 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
408 list_del_init(&dentry->d_lru);
409 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410 this_cpu_dec(nr_dentry_unused);
411}
412
413static void d_shrink_add(struct dentry *dentry, struct list_head *list)
414{
415 D_FLAG_VERIFY(dentry, 0);
416 list_add(&dentry->d_lru, list);
417 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
418 this_cpu_inc(nr_dentry_unused);
419}
420
421/*
422 * These can only be called under the global LRU lock, ie during the
423 * callback for freeing the LRU list. "isolate" removes it from the
424 * LRU lists entirely, while shrink_move moves it to the indicated
425 * private list.
426 */
3f97b163 427static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
428{
429 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
430 dentry->d_flags &= ~DCACHE_LRU_LIST;
431 this_cpu_dec(nr_dentry_unused);
3f97b163 432 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
433}
434
3f97b163
VD
435static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
436 struct list_head *list)
89dc77bc
LT
437{
438 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
439 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 440 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
441}
442
da3bbdd4 443/*
f6041567 444 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
445 */
446static void dentry_lru_add(struct dentry *dentry)
447{
89dc77bc
LT
448 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
449 d_lru_add(dentry);
563f4001
JB
450 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
451 dentry->d_flags |= DCACHE_REFERENCED;
da3bbdd4
KM
452}
453
789680d1
NP
454/**
455 * d_drop - drop a dentry
456 * @dentry: dentry to drop
457 *
458 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
459 * be found through a VFS lookup any more. Note that this is different from
460 * deleting the dentry - d_delete will try to mark the dentry negative if
461 * possible, giving a successful _negative_ lookup, while d_drop will
462 * just make the cache lookup fail.
463 *
464 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
465 * reason (NFS timeouts or autofs deletes).
466 *
61647823
N
467 * __d_drop requires dentry->d_lock
468 * ___d_drop doesn't mark dentry as "unhashed"
469 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
789680d1 470 */
61647823 471static void ___d_drop(struct dentry *dentry)
789680d1 472{
0632a9ac
AV
473 struct hlist_bl_head *b;
474 /*
475 * Hashed dentries are normally on the dentry hashtable,
476 * with the exception of those newly allocated by
477 * d_obtain_root, which are always IS_ROOT:
478 */
479 if (unlikely(IS_ROOT(dentry)))
480 b = &dentry->d_sb->s_roots;
481 else
482 b = d_hash(dentry->d_name.hash);
b61625d2 483
0632a9ac
AV
484 hlist_bl_lock(b);
485 __hlist_bl_del(&dentry->d_hash);
486 hlist_bl_unlock(b);
789680d1 487}
61647823
N
488
489void __d_drop(struct dentry *dentry)
490{
0632a9ac
AV
491 if (!d_unhashed(dentry)) {
492 ___d_drop(dentry);
493 dentry->d_hash.pprev = NULL;
494 write_seqcount_invalidate(&dentry->d_seq);
495 }
61647823 496}
789680d1
NP
497EXPORT_SYMBOL(__d_drop);
498
499void d_drop(struct dentry *dentry)
500{
789680d1
NP
501 spin_lock(&dentry->d_lock);
502 __d_drop(dentry);
503 spin_unlock(&dentry->d_lock);
789680d1
NP
504}
505EXPORT_SYMBOL(d_drop);
506
ba65dc5e
AV
507static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
508{
509 struct dentry *next;
510 /*
511 * Inform d_walk() and shrink_dentry_list() that we are no longer
512 * attached to the dentry tree
513 */
514 dentry->d_flags |= DCACHE_DENTRY_KILLED;
515 if (unlikely(list_empty(&dentry->d_child)))
516 return;
517 __list_del_entry(&dentry->d_child);
518 /*
519 * Cursors can move around the list of children. While we'd been
520 * a normal list member, it didn't matter - ->d_child.next would've
521 * been updated. However, from now on it won't be and for the
522 * things like d_walk() it might end up with a nasty surprise.
523 * Normally d_walk() doesn't care about cursors moving around -
524 * ->d_lock on parent prevents that and since a cursor has no children
525 * of its own, we get through it without ever unlocking the parent.
526 * There is one exception, though - if we ascend from a child that
527 * gets killed as soon as we unlock it, the next sibling is found
528 * using the value left in its ->d_child.next. And if _that_
529 * pointed to a cursor, and cursor got moved (e.g. by lseek())
530 * before d_walk() regains parent->d_lock, we'll end up skipping
531 * everything the cursor had been moved past.
532 *
533 * Solution: make sure that the pointer left behind in ->d_child.next
534 * points to something that won't be moving around. I.e. skip the
535 * cursors.
536 */
537 while (dentry->d_child.next != &parent->d_subdirs) {
538 next = list_entry(dentry->d_child.next, struct dentry, d_child);
539 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
540 break;
541 dentry->d_child.next = next->d_child.next;
542 }
543}
544
e55fd011 545static void __dentry_kill(struct dentry *dentry)
77812a1e 546{
41edf278
AV
547 struct dentry *parent = NULL;
548 bool can_free = true;
41edf278 549 if (!IS_ROOT(dentry))
77812a1e 550 parent = dentry->d_parent;
31e6b01f 551
0d98439e
LT
552 /*
553 * The dentry is now unrecoverably dead to the world.
554 */
555 lockref_mark_dead(&dentry->d_lockref);
556
f0023bc6 557 /*
f0023bc6
SW
558 * inform the fs via d_prune that this dentry is about to be
559 * unhashed and destroyed.
560 */
29266201 561 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
562 dentry->d_op->d_prune(dentry);
563
01b60351
AV
564 if (dentry->d_flags & DCACHE_LRU_LIST) {
565 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
566 d_lru_del(dentry);
01b60351 567 }
77812a1e
NP
568 /* if it was on the hash then remove it */
569 __d_drop(dentry);
ba65dc5e 570 dentry_unlist(dentry, parent);
03b3b889
AV
571 if (parent)
572 spin_unlock(&parent->d_lock);
550dce01
AV
573 if (dentry->d_inode)
574 dentry_unlink_inode(dentry);
575 else
576 spin_unlock(&dentry->d_lock);
03b3b889
AV
577 this_cpu_dec(nr_dentry);
578 if (dentry->d_op && dentry->d_op->d_release)
579 dentry->d_op->d_release(dentry);
580
41edf278
AV
581 spin_lock(&dentry->d_lock);
582 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
583 dentry->d_flags |= DCACHE_MAY_FREE;
584 can_free = false;
585 }
586 spin_unlock(&dentry->d_lock);
41edf278
AV
587 if (likely(can_free))
588 dentry_free(dentry);
e55fd011
AV
589}
590
8b987a46 591static struct dentry *__lock_parent(struct dentry *dentry)
046b961b 592{
8b987a46 593 struct dentry *parent;
046b961b 594 rcu_read_lock();
c2338f2d 595 spin_unlock(&dentry->d_lock);
046b961b 596again:
66702eb5 597 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
598 spin_lock(&parent->d_lock);
599 /*
600 * We can't blindly lock dentry until we are sure
601 * that we won't violate the locking order.
602 * Any changes of dentry->d_parent must have
603 * been done with parent->d_lock held, so
604 * spin_lock() above is enough of a barrier
605 * for checking if it's still our child.
606 */
607 if (unlikely(parent != dentry->d_parent)) {
608 spin_unlock(&parent->d_lock);
609 goto again;
610 }
65d8eb5a
AV
611 rcu_read_unlock();
612 if (parent != dentry)
9f12600f 613 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 614 else
046b961b
AV
615 parent = NULL;
616 return parent;
617}
618
8b987a46
AV
619static inline struct dentry *lock_parent(struct dentry *dentry)
620{
621 struct dentry *parent = dentry->d_parent;
622 if (IS_ROOT(dentry))
623 return NULL;
624 if (likely(spin_trylock(&parent->d_lock)))
625 return parent;
626 return __lock_parent(dentry);
627}
628
c1d0c1a2
JO
629/*
630 * Finish off a dentry we've decided to kill.
631 * dentry->d_lock must be held, returns with it unlocked.
632 * Returns dentry requiring refcount drop, or NULL if we're done.
633 */
634static struct dentry *dentry_kill(struct dentry *dentry)
635 __releases(dentry->d_lock)
636{
637 struct inode *inode = dentry->d_inode;
638 struct dentry *parent = NULL;
639
640 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
641 goto failed;
642
643 if (!IS_ROOT(dentry)) {
644 parent = dentry->d_parent;
645 if (unlikely(!spin_trylock(&parent->d_lock))) {
646 if (inode)
647 spin_unlock(&inode->i_lock);
648 goto failed;
649 }
650 }
651
652 __dentry_kill(dentry);
653 return parent;
654
655failed:
656 spin_unlock(&dentry->d_lock);
657 return dentry; /* try again with same dentry */
658}
659
360f5479
LT
660/*
661 * Try to do a lockless dput(), and return whether that was successful.
662 *
663 * If unsuccessful, we return false, having already taken the dentry lock.
664 *
665 * The caller needs to hold the RCU read lock, so that the dentry is
666 * guaranteed to stay around even if the refcount goes down to zero!
667 */
668static inline bool fast_dput(struct dentry *dentry)
669{
670 int ret;
671 unsigned int d_flags;
672
673 /*
674 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 675 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
676 */
677 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
678 return lockref_put_or_lock(&dentry->d_lockref);
679
680 /*
681 * .. otherwise, we can try to just decrement the
682 * lockref optimistically.
683 */
684 ret = lockref_put_return(&dentry->d_lockref);
685
686 /*
687 * If the lockref_put_return() failed due to the lock being held
688 * by somebody else, the fast path has failed. We will need to
689 * get the lock, and then check the count again.
690 */
691 if (unlikely(ret < 0)) {
692 spin_lock(&dentry->d_lock);
693 if (dentry->d_lockref.count > 1) {
694 dentry->d_lockref.count--;
695 spin_unlock(&dentry->d_lock);
696 return 1;
697 }
698 return 0;
699 }
700
701 /*
702 * If we weren't the last ref, we're done.
703 */
704 if (ret)
705 return 1;
706
707 /*
708 * Careful, careful. The reference count went down
709 * to zero, but we don't hold the dentry lock, so
710 * somebody else could get it again, and do another
711 * dput(), and we need to not race with that.
712 *
713 * However, there is a very special and common case
714 * where we don't care, because there is nothing to
715 * do: the dentry is still hashed, it does not have
716 * a 'delete' op, and it's referenced and already on
717 * the LRU list.
718 *
719 * NOTE! Since we aren't locked, these values are
720 * not "stable". However, it is sufficient that at
721 * some point after we dropped the reference the
722 * dentry was hashed and the flags had the proper
723 * value. Other dentry users may have re-gotten
724 * a reference to the dentry and change that, but
725 * our work is done - we can leave the dentry
726 * around with a zero refcount.
727 */
728 smp_rmb();
66702eb5 729 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 730 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
731
732 /* Nothing to do? Dropping the reference was all we needed? */
733 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
734 return 1;
735
736 /*
737 * Not the fast normal case? Get the lock. We've already decremented
738 * the refcount, but we'll need to re-check the situation after
739 * getting the lock.
740 */
741 spin_lock(&dentry->d_lock);
742
743 /*
744 * Did somebody else grab a reference to it in the meantime, and
745 * we're no longer the last user after all? Alternatively, somebody
746 * else could have killed it and marked it dead. Either way, we
747 * don't need to do anything else.
748 */
749 if (dentry->d_lockref.count) {
750 spin_unlock(&dentry->d_lock);
751 return 1;
752 }
753
754 /*
755 * Re-get the reference we optimistically dropped. We hold the
756 * lock, and we just tested that it was zero, so we can just
757 * set it to 1.
758 */
759 dentry->d_lockref.count = 1;
760 return 0;
761}
762
763
1da177e4
LT
764/*
765 * This is dput
766 *
767 * This is complicated by the fact that we do not want to put
768 * dentries that are no longer on any hash chain on the unused
769 * list: we'd much rather just get rid of them immediately.
770 *
771 * However, that implies that we have to traverse the dentry
772 * tree upwards to the parents which might _also_ now be
773 * scheduled for deletion (it may have been only waiting for
774 * its last child to go away).
775 *
776 * This tail recursion is done by hand as we don't want to depend
777 * on the compiler to always get this right (gcc generally doesn't).
778 * Real recursion would eat up our stack space.
779 */
780
781/*
782 * dput - release a dentry
783 * @dentry: dentry to release
784 *
785 * Release a dentry. This will drop the usage count and if appropriate
786 * call the dentry unlink method as well as removing it from the queues and
787 * releasing its resources. If the parent dentries were scheduled for release
788 * they too may now get deleted.
1da177e4 789 */
1da177e4
LT
790void dput(struct dentry *dentry)
791{
8aab6a27 792 if (unlikely(!dentry))
1da177e4
LT
793 return;
794
795repeat:
47be6184
WF
796 might_sleep();
797
360f5479
LT
798 rcu_read_lock();
799 if (likely(fast_dput(dentry))) {
800 rcu_read_unlock();
1da177e4 801 return;
360f5479
LT
802 }
803
804 /* Slow case: now with the dentry lock held */
805 rcu_read_unlock();
1da177e4 806
85c7f810
AV
807 WARN_ON(d_in_lookup(dentry));
808
8aab6a27
LT
809 /* Unreachable? Get rid of it */
810 if (unlikely(d_unhashed(dentry)))
811 goto kill_it;
812
75a6f82a
AV
813 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
814 goto kill_it;
815
8aab6a27 816 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 817 if (dentry->d_op->d_delete(dentry))
61f3dee4 818 goto kill_it;
1da177e4 819 }
265ac902 820
a4633357 821 dentry_lru_add(dentry);
265ac902 822
98474236 823 dentry->d_lockref.count--;
61f3dee4 824 spin_unlock(&dentry->d_lock);
1da177e4
LT
825 return;
826
d52b9086 827kill_it:
8cbf74da 828 dentry = dentry_kill(dentry);
47be6184
WF
829 if (dentry) {
830 cond_resched();
d52b9086 831 goto repeat;
47be6184 832 }
1da177e4 833}
ec4f8605 834EXPORT_SYMBOL(dput);
1da177e4 835
1da177e4 836
b5c84bf6 837/* This must be called with d_lock held */
dc0474be 838static inline void __dget_dlock(struct dentry *dentry)
23044507 839{
98474236 840 dentry->d_lockref.count++;
23044507
NP
841}
842
dc0474be 843static inline void __dget(struct dentry *dentry)
1da177e4 844{
98474236 845 lockref_get(&dentry->d_lockref);
1da177e4
LT
846}
847
b7ab39f6
NP
848struct dentry *dget_parent(struct dentry *dentry)
849{
df3d0bbc 850 int gotref;
b7ab39f6
NP
851 struct dentry *ret;
852
df3d0bbc
WL
853 /*
854 * Do optimistic parent lookup without any
855 * locking.
856 */
857 rcu_read_lock();
66702eb5 858 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
859 gotref = lockref_get_not_zero(&ret->d_lockref);
860 rcu_read_unlock();
861 if (likely(gotref)) {
66702eb5 862 if (likely(ret == READ_ONCE(dentry->d_parent)))
df3d0bbc
WL
863 return ret;
864 dput(ret);
865 }
866
b7ab39f6 867repeat:
a734eb45
NP
868 /*
869 * Don't need rcu_dereference because we re-check it was correct under
870 * the lock.
871 */
872 rcu_read_lock();
b7ab39f6 873 ret = dentry->d_parent;
a734eb45
NP
874 spin_lock(&ret->d_lock);
875 if (unlikely(ret != dentry->d_parent)) {
876 spin_unlock(&ret->d_lock);
877 rcu_read_unlock();
b7ab39f6
NP
878 goto repeat;
879 }
a734eb45 880 rcu_read_unlock();
98474236
WL
881 BUG_ON(!ret->d_lockref.count);
882 ret->d_lockref.count++;
b7ab39f6 883 spin_unlock(&ret->d_lock);
b7ab39f6
NP
884 return ret;
885}
886EXPORT_SYMBOL(dget_parent);
887
1da177e4
LT
888/**
889 * d_find_alias - grab a hashed alias of inode
890 * @inode: inode in question
1da177e4
LT
891 *
892 * If inode has a hashed alias, or is a directory and has any alias,
893 * acquire the reference to alias and return it. Otherwise return NULL.
894 * Notice that if inode is a directory there can be only one alias and
895 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
896 * of a filesystem, or if the directory was renamed and d_revalidate
897 * was the first vfs operation to notice.
1da177e4 898 *
21c0d8fd 899 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 900 * any other hashed alias over that one.
1da177e4 901 */
52ed46f0 902static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 903{
da502956 904 struct dentry *alias, *discon_alias;
1da177e4 905
da502956
NP
906again:
907 discon_alias = NULL;
946e51f2 908 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 909 spin_lock(&alias->d_lock);
1da177e4 910 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 911 if (IS_ROOT(alias) &&
da502956 912 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 913 discon_alias = alias;
52ed46f0 914 } else {
dc0474be 915 __dget_dlock(alias);
da502956
NP
916 spin_unlock(&alias->d_lock);
917 return alias;
918 }
919 }
920 spin_unlock(&alias->d_lock);
921 }
922 if (discon_alias) {
923 alias = discon_alias;
924 spin_lock(&alias->d_lock);
925 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
926 __dget_dlock(alias);
927 spin_unlock(&alias->d_lock);
928 return alias;
1da177e4 929 }
da502956
NP
930 spin_unlock(&alias->d_lock);
931 goto again;
1da177e4 932 }
da502956 933 return NULL;
1da177e4
LT
934}
935
da502956 936struct dentry *d_find_alias(struct inode *inode)
1da177e4 937{
214fda1f
DH
938 struct dentry *de = NULL;
939
b3d9b7a3 940 if (!hlist_empty(&inode->i_dentry)) {
873feea0 941 spin_lock(&inode->i_lock);
52ed46f0 942 de = __d_find_alias(inode);
873feea0 943 spin_unlock(&inode->i_lock);
214fda1f 944 }
1da177e4
LT
945 return de;
946}
ec4f8605 947EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
948
949/*
950 * Try to kill dentries associated with this inode.
951 * WARNING: you must own a reference to inode.
952 */
953void d_prune_aliases(struct inode *inode)
954{
0cdca3f9 955 struct dentry *dentry;
1da177e4 956restart:
873feea0 957 spin_lock(&inode->i_lock);
946e51f2 958 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 959 spin_lock(&dentry->d_lock);
98474236 960 if (!dentry->d_lockref.count) {
29355c39
AV
961 struct dentry *parent = lock_parent(dentry);
962 if (likely(!dentry->d_lockref.count)) {
963 __dentry_kill(dentry);
4a7795d3 964 dput(parent);
29355c39
AV
965 goto restart;
966 }
967 if (parent)
968 spin_unlock(&parent->d_lock);
1da177e4
LT
969 }
970 spin_unlock(&dentry->d_lock);
971 }
873feea0 972 spin_unlock(&inode->i_lock);
1da177e4 973}
ec4f8605 974EXPORT_SYMBOL(d_prune_aliases);
1da177e4 975
3b3f09f4
AV
976/*
977 * Lock a dentry from shrink list.
978 * Note that dentry is *not* protected from concurrent dentry_kill(),
979 * d_delete(), etc. It is protected from freeing (by the fact of
980 * being on a shrink list), but everything else is fair game.
981 * Return false if dentry has been disrupted or grabbed, leaving
982 * the caller to kick it off-list. Otherwise, return true and have
983 * that dentry's inode and parent both locked.
984 */
985static bool shrink_lock_dentry(struct dentry *dentry)
1da177e4 986{
3b3f09f4
AV
987 struct inode *inode;
988 struct dentry *parent;
da3bbdd4 989
3b3f09f4
AV
990 if (dentry->d_lockref.count)
991 return false;
992
993 inode = dentry->d_inode;
994 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
995 rcu_read_lock(); /* to protect inode */
996 spin_unlock(&dentry->d_lock);
997 spin_lock(&inode->i_lock);
ec33679d 998 spin_lock(&dentry->d_lock);
3b3f09f4
AV
999 if (unlikely(dentry->d_lockref.count))
1000 goto out;
1001 /* changed inode means that somebody had grabbed it */
1002 if (unlikely(inode != dentry->d_inode))
1003 goto out;
1004 rcu_read_unlock();
1005 }
046b961b 1006
3b3f09f4
AV
1007 parent = dentry->d_parent;
1008 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1009 return true;
dd1f6b2e 1010
3b3f09f4
AV
1011 rcu_read_lock(); /* to protect parent */
1012 spin_unlock(&dentry->d_lock);
1013 parent = READ_ONCE(dentry->d_parent);
1014 spin_lock(&parent->d_lock);
1015 if (unlikely(parent != dentry->d_parent)) {
1016 spin_unlock(&parent->d_lock);
1017 spin_lock(&dentry->d_lock);
1018 goto out;
1019 }
1020 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1021 if (likely(!dentry->d_lockref.count)) {
1022 rcu_read_unlock();
1023 return true;
1024 }
1025 spin_unlock(&parent->d_lock);
1026out:
1027 if (inode)
1028 spin_unlock(&inode->i_lock);
1029 rcu_read_unlock();
1030 return false;
1031}
77812a1e 1032
3b3f09f4
AV
1033static void shrink_dentry_list(struct list_head *list)
1034{
1035 while (!list_empty(list)) {
1036 struct dentry *dentry, *parent;
1037 struct inode *inode;
64fd72e0 1038
3b3f09f4
AV
1039 dentry = list_entry(list->prev, struct dentry, d_lru);
1040 spin_lock(&dentry->d_lock);
1041 if (!shrink_lock_dentry(dentry)) {
1042 bool can_free = false;
1043 d_shrink_del(dentry);
1044 if (dentry->d_lockref.count < 0)
1045 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1046 spin_unlock(&dentry->d_lock);
1047 if (can_free)
1048 dentry_free(dentry);
1049 continue;
1050 }
3b3f09f4
AV
1051 d_shrink_del(dentry);
1052 parent = dentry->d_parent;
ff2fde99 1053 __dentry_kill(dentry);
3b3f09f4
AV
1054 if (parent == dentry)
1055 continue;
5c47e6d0
AV
1056 /*
1057 * We need to prune ancestors too. This is necessary to prevent
1058 * quadratic behavior of shrink_dcache_parent(), but is also
1059 * expected to be beneficial in reducing dentry cache
1060 * fragmentation.
1061 */
1062 dentry = parent;
b2b80195
AV
1063 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1064 parent = lock_parent(dentry);
1065 if (dentry->d_lockref.count != 1) {
1066 dentry->d_lockref.count--;
1067 spin_unlock(&dentry->d_lock);
1068 if (parent)
1069 spin_unlock(&parent->d_lock);
1070 break;
1071 }
1072 inode = dentry->d_inode; /* can't be NULL */
1073 if (unlikely(!spin_trylock(&inode->i_lock))) {
1074 spin_unlock(&dentry->d_lock);
1075 if (parent)
1076 spin_unlock(&parent->d_lock);
1077 cpu_relax();
1078 continue;
1079 }
1080 __dentry_kill(dentry);
1081 dentry = parent;
1082 }
da3bbdd4 1083 }
3049cfe2
CH
1084}
1085
3f97b163
VD
1086static enum lru_status dentry_lru_isolate(struct list_head *item,
1087 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1088{
1089 struct list_head *freeable = arg;
1090 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1091
1092
1093 /*
1094 * we are inverting the lru lock/dentry->d_lock here,
1095 * so use a trylock. If we fail to get the lock, just skip
1096 * it
1097 */
1098 if (!spin_trylock(&dentry->d_lock))
1099 return LRU_SKIP;
1100
1101 /*
1102 * Referenced dentries are still in use. If they have active
1103 * counts, just remove them from the LRU. Otherwise give them
1104 * another pass through the LRU.
1105 */
1106 if (dentry->d_lockref.count) {
3f97b163 1107 d_lru_isolate(lru, dentry);
f6041567
DC
1108 spin_unlock(&dentry->d_lock);
1109 return LRU_REMOVED;
1110 }
1111
1112 if (dentry->d_flags & DCACHE_REFERENCED) {
1113 dentry->d_flags &= ~DCACHE_REFERENCED;
1114 spin_unlock(&dentry->d_lock);
1115
1116 /*
1117 * The list move itself will be made by the common LRU code. At
1118 * this point, we've dropped the dentry->d_lock but keep the
1119 * lru lock. This is safe to do, since every list movement is
1120 * protected by the lru lock even if both locks are held.
1121 *
1122 * This is guaranteed by the fact that all LRU management
1123 * functions are intermediated by the LRU API calls like
1124 * list_lru_add and list_lru_del. List movement in this file
1125 * only ever occur through this functions or through callbacks
1126 * like this one, that are called from the LRU API.
1127 *
1128 * The only exceptions to this are functions like
1129 * shrink_dentry_list, and code that first checks for the
1130 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1131 * operating only with stack provided lists after they are
1132 * properly isolated from the main list. It is thus, always a
1133 * local access.
1134 */
1135 return LRU_ROTATE;
1136 }
1137
3f97b163 1138 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1139 spin_unlock(&dentry->d_lock);
1140
1141 return LRU_REMOVED;
1142}
1143
3049cfe2 1144/**
b48f03b3
DC
1145 * prune_dcache_sb - shrink the dcache
1146 * @sb: superblock
503c358c 1147 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1148 *
503c358c
VD
1149 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1150 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1151 * function.
3049cfe2 1152 *
b48f03b3
DC
1153 * This function may fail to free any resources if all the dentries are in
1154 * use.
3049cfe2 1155 */
503c358c 1156long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1157{
f6041567
DC
1158 LIST_HEAD(dispose);
1159 long freed;
3049cfe2 1160
503c358c
VD
1161 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1162 dentry_lru_isolate, &dispose);
f6041567 1163 shrink_dentry_list(&dispose);
0a234c6d 1164 return freed;
da3bbdd4 1165}
23044507 1166
4e717f5c 1167static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1168 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1169{
4e717f5c
GC
1170 struct list_head *freeable = arg;
1171 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1172
4e717f5c
GC
1173 /*
1174 * we are inverting the lru lock/dentry->d_lock here,
1175 * so use a trylock. If we fail to get the lock, just skip
1176 * it
1177 */
1178 if (!spin_trylock(&dentry->d_lock))
1179 return LRU_SKIP;
1180
3f97b163 1181 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1182 spin_unlock(&dentry->d_lock);
ec33679d 1183
4e717f5c 1184 return LRU_REMOVED;
da3bbdd4
KM
1185}
1186
4e717f5c 1187
1da177e4
LT
1188/**
1189 * shrink_dcache_sb - shrink dcache for a superblock
1190 * @sb: superblock
1191 *
3049cfe2
CH
1192 * Shrink the dcache for the specified super block. This is used to free
1193 * the dcache before unmounting a file system.
1da177e4 1194 */
3049cfe2 1195void shrink_dcache_sb(struct super_block *sb)
1da177e4 1196{
4e717f5c
GC
1197 long freed;
1198
1199 do {
1200 LIST_HEAD(dispose);
1201
1202 freed = list_lru_walk(&sb->s_dentry_lru,
b17c070f 1203 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1204
4e717f5c
GC
1205 this_cpu_sub(nr_dentry_unused, freed);
1206 shrink_dentry_list(&dispose);
b17c070f
ST
1207 cond_resched();
1208 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1209}
ec4f8605 1210EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1211
db14fc3a
MS
1212/**
1213 * enum d_walk_ret - action to talke during tree walk
1214 * @D_WALK_CONTINUE: contrinue walk
1215 * @D_WALK_QUIT: quit walk
1216 * @D_WALK_NORETRY: quit when retry is needed
1217 * @D_WALK_SKIP: skip this dentry and its children
1218 */
1219enum d_walk_ret {
1220 D_WALK_CONTINUE,
1221 D_WALK_QUIT,
1222 D_WALK_NORETRY,
1223 D_WALK_SKIP,
1224};
c826cb7d 1225
1da177e4 1226/**
db14fc3a
MS
1227 * d_walk - walk the dentry tree
1228 * @parent: start of walk
1229 * @data: data passed to @enter() and @finish()
1230 * @enter: callback when first entering the dentry
1231 * @finish: callback when successfully finished the walk
1da177e4 1232 *
db14fc3a 1233 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1234 */
db14fc3a
MS
1235static void d_walk(struct dentry *parent, void *data,
1236 enum d_walk_ret (*enter)(void *, struct dentry *),
1237 void (*finish)(void *))
1da177e4 1238{
949854d0 1239 struct dentry *this_parent;
1da177e4 1240 struct list_head *next;
48f5ec21 1241 unsigned seq = 0;
db14fc3a
MS
1242 enum d_walk_ret ret;
1243 bool retry = true;
949854d0 1244
58db63d0 1245again:
48f5ec21 1246 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1247 this_parent = parent;
2fd6b7f5 1248 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1249
1250 ret = enter(data, this_parent);
1251 switch (ret) {
1252 case D_WALK_CONTINUE:
1253 break;
1254 case D_WALK_QUIT:
1255 case D_WALK_SKIP:
1256 goto out_unlock;
1257 case D_WALK_NORETRY:
1258 retry = false;
1259 break;
1260 }
1da177e4
LT
1261repeat:
1262 next = this_parent->d_subdirs.next;
1263resume:
1264 while (next != &this_parent->d_subdirs) {
1265 struct list_head *tmp = next;
946e51f2 1266 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1267 next = tmp->next;
2fd6b7f5 1268
ba65dc5e
AV
1269 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1270 continue;
1271
2fd6b7f5 1272 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1273
1274 ret = enter(data, dentry);
1275 switch (ret) {
1276 case D_WALK_CONTINUE:
1277 break;
1278 case D_WALK_QUIT:
2fd6b7f5 1279 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1280 goto out_unlock;
1281 case D_WALK_NORETRY:
1282 retry = false;
1283 break;
1284 case D_WALK_SKIP:
1285 spin_unlock(&dentry->d_lock);
1286 continue;
2fd6b7f5 1287 }
db14fc3a 1288
1da177e4 1289 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1290 spin_unlock(&this_parent->d_lock);
1291 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1292 this_parent = dentry;
2fd6b7f5 1293 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1294 goto repeat;
1295 }
2fd6b7f5 1296 spin_unlock(&dentry->d_lock);
1da177e4
LT
1297 }
1298 /*
1299 * All done at this level ... ascend and resume the search.
1300 */
ca5358ef
AV
1301 rcu_read_lock();
1302ascend:
1da177e4 1303 if (this_parent != parent) {
c826cb7d 1304 struct dentry *child = this_parent;
31dec132
AV
1305 this_parent = child->d_parent;
1306
31dec132
AV
1307 spin_unlock(&child->d_lock);
1308 spin_lock(&this_parent->d_lock);
1309
ca5358ef
AV
1310 /* might go back up the wrong parent if we have had a rename. */
1311 if (need_seqretry(&rename_lock, seq))
949854d0 1312 goto rename_retry;
2159184e
AV
1313 /* go into the first sibling still alive */
1314 do {
1315 next = child->d_child.next;
ca5358ef
AV
1316 if (next == &this_parent->d_subdirs)
1317 goto ascend;
1318 child = list_entry(next, struct dentry, d_child);
2159184e 1319 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1320 rcu_read_unlock();
1da177e4
LT
1321 goto resume;
1322 }
ca5358ef 1323 if (need_seqretry(&rename_lock, seq))
949854d0 1324 goto rename_retry;
ca5358ef 1325 rcu_read_unlock();
db14fc3a
MS
1326 if (finish)
1327 finish(data);
1328
1329out_unlock:
1330 spin_unlock(&this_parent->d_lock);
48f5ec21 1331 done_seqretry(&rename_lock, seq);
db14fc3a 1332 return;
58db63d0
NP
1333
1334rename_retry:
ca5358ef
AV
1335 spin_unlock(&this_parent->d_lock);
1336 rcu_read_unlock();
1337 BUG_ON(seq & 1);
db14fc3a
MS
1338 if (!retry)
1339 return;
48f5ec21 1340 seq = 1;
58db63d0 1341 goto again;
1da177e4 1342}
db14fc3a 1343
01619491
IK
1344struct check_mount {
1345 struct vfsmount *mnt;
1346 unsigned int mounted;
1347};
1348
1349static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1350{
1351 struct check_mount *info = data;
1352 struct path path = { .mnt = info->mnt, .dentry = dentry };
1353
1354 if (likely(!d_mountpoint(dentry)))
1355 return D_WALK_CONTINUE;
1356 if (__path_is_mountpoint(&path)) {
1357 info->mounted = 1;
1358 return D_WALK_QUIT;
1359 }
1360 return D_WALK_CONTINUE;
1361}
1362
1363/**
1364 * path_has_submounts - check for mounts over a dentry in the
1365 * current namespace.
1366 * @parent: path to check.
1367 *
1368 * Return true if the parent or its subdirectories contain
1369 * a mount point in the current namespace.
1370 */
1371int path_has_submounts(const struct path *parent)
1372{
1373 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1374
1375 read_seqlock_excl(&mount_lock);
1376 d_walk(parent->dentry, &data, path_check_mount, NULL);
1377 read_sequnlock_excl(&mount_lock);
1378
1379 return data.mounted;
1380}
1381EXPORT_SYMBOL(path_has_submounts);
1382
eed81007
MS
1383/*
1384 * Called by mount code to set a mountpoint and check if the mountpoint is
1385 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1386 * subtree can become unreachable).
1387 *
1ffe46d1 1388 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1389 * this reason take rename_lock and d_lock on dentry and ancestors.
1390 */
1391int d_set_mounted(struct dentry *dentry)
1392{
1393 struct dentry *p;
1394 int ret = -ENOENT;
1395 write_seqlock(&rename_lock);
1396 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1397 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1398 spin_lock(&p->d_lock);
1399 if (unlikely(d_unhashed(p))) {
1400 spin_unlock(&p->d_lock);
1401 goto out;
1402 }
1403 spin_unlock(&p->d_lock);
1404 }
1405 spin_lock(&dentry->d_lock);
1406 if (!d_unlinked(dentry)) {
3895dbf8
EB
1407 ret = -EBUSY;
1408 if (!d_mountpoint(dentry)) {
1409 dentry->d_flags |= DCACHE_MOUNTED;
1410 ret = 0;
1411 }
eed81007
MS
1412 }
1413 spin_unlock(&dentry->d_lock);
1414out:
1415 write_sequnlock(&rename_lock);
1416 return ret;
1417}
1418
1da177e4 1419/*
fd517909 1420 * Search the dentry child list of the specified parent,
1da177e4
LT
1421 * and move any unused dentries to the end of the unused
1422 * list for prune_dcache(). We descend to the next level
1423 * whenever the d_subdirs list is non-empty and continue
1424 * searching.
1425 *
1426 * It returns zero iff there are no unused children,
1427 * otherwise it returns the number of children moved to
1428 * the end of the unused list. This may not be the total
1429 * number of unused children, because select_parent can
1430 * drop the lock and return early due to latency
1431 * constraints.
1432 */
1da177e4 1433
db14fc3a
MS
1434struct select_data {
1435 struct dentry *start;
1436 struct list_head dispose;
1437 int found;
1438};
23044507 1439
db14fc3a
MS
1440static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1441{
1442 struct select_data *data = _data;
1443 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1444
db14fc3a
MS
1445 if (data->start == dentry)
1446 goto out;
2fd6b7f5 1447
fe91522a 1448 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1449 data->found++;
fe91522a
AV
1450 } else {
1451 if (dentry->d_flags & DCACHE_LRU_LIST)
1452 d_lru_del(dentry);
1453 if (!dentry->d_lockref.count) {
1454 d_shrink_add(dentry, &data->dispose);
1455 data->found++;
1456 }
1da177e4 1457 }
db14fc3a
MS
1458 /*
1459 * We can return to the caller if we have found some (this
1460 * ensures forward progress). We'll be coming back to find
1461 * the rest.
1462 */
fe91522a
AV
1463 if (!list_empty(&data->dispose))
1464 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1465out:
db14fc3a 1466 return ret;
1da177e4
LT
1467}
1468
1469/**
1470 * shrink_dcache_parent - prune dcache
1471 * @parent: parent of entries to prune
1472 *
1473 * Prune the dcache to remove unused children of the parent dentry.
1474 */
db14fc3a 1475void shrink_dcache_parent(struct dentry *parent)
1da177e4 1476{
db14fc3a
MS
1477 for (;;) {
1478 struct select_data data;
1da177e4 1479
db14fc3a
MS
1480 INIT_LIST_HEAD(&data.dispose);
1481 data.start = parent;
1482 data.found = 0;
1483
1484 d_walk(parent, &data, select_collect, NULL);
1485 if (!data.found)
1486 break;
1487
1488 shrink_dentry_list(&data.dispose);
421348f1
GT
1489 cond_resched();
1490 }
1da177e4 1491}
ec4f8605 1492EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1493
9c8c10e2 1494static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1495{
9c8c10e2
AV
1496 /* it has busy descendents; complain about those instead */
1497 if (!list_empty(&dentry->d_subdirs))
1498 return D_WALK_CONTINUE;
42c32608 1499
9c8c10e2
AV
1500 /* root with refcount 1 is fine */
1501 if (dentry == _data && dentry->d_lockref.count == 1)
1502 return D_WALK_CONTINUE;
1503
1504 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1505 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1506 dentry,
1507 dentry->d_inode ?
1508 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1509 dentry,
42c32608
AV
1510 dentry->d_lockref.count,
1511 dentry->d_sb->s_type->name,
1512 dentry->d_sb->s_id);
9c8c10e2
AV
1513 WARN_ON(1);
1514 return D_WALK_CONTINUE;
1515}
1516
1517static void do_one_tree(struct dentry *dentry)
1518{
1519 shrink_dcache_parent(dentry);
1520 d_walk(dentry, dentry, umount_check, NULL);
1521 d_drop(dentry);
1522 dput(dentry);
42c32608
AV
1523}
1524
1525/*
1526 * destroy the dentries attached to a superblock on unmounting
1527 */
1528void shrink_dcache_for_umount(struct super_block *sb)
1529{
1530 struct dentry *dentry;
1531
9c8c10e2 1532 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1533
1534 dentry = sb->s_root;
1535 sb->s_root = NULL;
9c8c10e2 1536 do_one_tree(dentry);
42c32608 1537
f1ee6162
N
1538 while (!hlist_bl_empty(&sb->s_roots)) {
1539 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1540 do_one_tree(dentry);
42c32608
AV
1541 }
1542}
1543
8ed936b5
EB
1544struct detach_data {
1545 struct select_data select;
1546 struct dentry *mountpoint;
1547};
1548static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1549{
8ed936b5 1550 struct detach_data *data = _data;
848ac114
MS
1551
1552 if (d_mountpoint(dentry)) {
8ed936b5
EB
1553 __dget_dlock(dentry);
1554 data->mountpoint = dentry;
848ac114
MS
1555 return D_WALK_QUIT;
1556 }
1557
8ed936b5 1558 return select_collect(&data->select, dentry);
848ac114
MS
1559}
1560
1561static void check_and_drop(void *_data)
1562{
8ed936b5 1563 struct detach_data *data = _data;
848ac114 1564
81be24d2 1565 if (!data->mountpoint && list_empty(&data->select.dispose))
8ed936b5 1566 __d_drop(data->select.start);
848ac114
MS
1567}
1568
1569/**
1ffe46d1
EB
1570 * d_invalidate - detach submounts, prune dcache, and drop
1571 * @dentry: dentry to invalidate (aka detach, prune and drop)
1572 *
1ffe46d1 1573 * no dcache lock.
848ac114 1574 *
8ed936b5
EB
1575 * The final d_drop is done as an atomic operation relative to
1576 * rename_lock ensuring there are no races with d_set_mounted. This
1577 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1578 */
5542aa2f 1579void d_invalidate(struct dentry *dentry)
848ac114 1580{
1ffe46d1
EB
1581 /*
1582 * If it's already been dropped, return OK.
1583 */
1584 spin_lock(&dentry->d_lock);
1585 if (d_unhashed(dentry)) {
1586 spin_unlock(&dentry->d_lock);
5542aa2f 1587 return;
1ffe46d1
EB
1588 }
1589 spin_unlock(&dentry->d_lock);
1590
848ac114
MS
1591 /* Negative dentries can be dropped without further checks */
1592 if (!dentry->d_inode) {
1593 d_drop(dentry);
5542aa2f 1594 return;
848ac114
MS
1595 }
1596
1597 for (;;) {
8ed936b5 1598 struct detach_data data;
848ac114 1599
8ed936b5
EB
1600 data.mountpoint = NULL;
1601 INIT_LIST_HEAD(&data.select.dispose);
1602 data.select.start = dentry;
1603 data.select.found = 0;
1604
1605 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1606
81be24d2 1607 if (!list_empty(&data.select.dispose))
8ed936b5 1608 shrink_dentry_list(&data.select.dispose);
81be24d2
AV
1609 else if (!data.mountpoint)
1610 return;
848ac114 1611
8ed936b5
EB
1612 if (data.mountpoint) {
1613 detach_mounts(data.mountpoint);
1614 dput(data.mountpoint);
1615 }
848ac114
MS
1616 cond_resched();
1617 }
848ac114 1618}
1ffe46d1 1619EXPORT_SYMBOL(d_invalidate);
848ac114 1620
1da177e4 1621/**
a4464dbc
AV
1622 * __d_alloc - allocate a dcache entry
1623 * @sb: filesystem it will belong to
1da177e4
LT
1624 * @name: qstr of the name
1625 *
1626 * Allocates a dentry. It returns %NULL if there is insufficient memory
1627 * available. On a success the dentry is returned. The name passed in is
1628 * copied and the copy passed in may be reused after this call.
1629 */
1630
a4464dbc 1631struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1632{
1633 struct dentry *dentry;
1634 char *dname;
285b102d 1635 int err;
1da177e4 1636
e12ba74d 1637 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1638 if (!dentry)
1639 return NULL;
1640
6326c71f
LT
1641 /*
1642 * We guarantee that the inline name is always NUL-terminated.
1643 * This way the memcpy() done by the name switching in rename
1644 * will still always have a NUL at the end, even if we might
1645 * be overwriting an internal NUL character
1646 */
1647 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1648 if (unlikely(!name)) {
cdf01226 1649 name = &slash_name;
798434bd
AV
1650 dname = dentry->d_iname;
1651 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1652 size_t size = offsetof(struct external_name, name[1]);
5d097056
VD
1653 struct external_name *p = kmalloc(size + name->len,
1654 GFP_KERNEL_ACCOUNT);
8d85b484 1655 if (!p) {
1da177e4
LT
1656 kmem_cache_free(dentry_cache, dentry);
1657 return NULL;
1658 }
8d85b484
AV
1659 atomic_set(&p->u.count, 1);
1660 dname = p->name;
1da177e4
LT
1661 } else {
1662 dname = dentry->d_iname;
1663 }
1da177e4
LT
1664
1665 dentry->d_name.len = name->len;
1666 dentry->d_name.hash = name->hash;
1667 memcpy(dname, name->name, name->len);
1668 dname[name->len] = 0;
1669
6326c71f 1670 /* Make sure we always see the terminating NUL character */
7088efa9 1671 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1672
98474236 1673 dentry->d_lockref.count = 1;
dea3667b 1674 dentry->d_flags = 0;
1da177e4 1675 spin_lock_init(&dentry->d_lock);
31e6b01f 1676 seqcount_init(&dentry->d_seq);
1da177e4 1677 dentry->d_inode = NULL;
a4464dbc
AV
1678 dentry->d_parent = dentry;
1679 dentry->d_sb = sb;
1da177e4
LT
1680 dentry->d_op = NULL;
1681 dentry->d_fsdata = NULL;
ceb5bdc2 1682 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1683 INIT_LIST_HEAD(&dentry->d_lru);
1684 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1685 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1686 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1687 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1688
285b102d
MS
1689 if (dentry->d_op && dentry->d_op->d_init) {
1690 err = dentry->d_op->d_init(dentry);
1691 if (err) {
1692 if (dname_external(dentry))
1693 kfree(external_name(dentry));
1694 kmem_cache_free(dentry_cache, dentry);
1695 return NULL;
1696 }
1697 }
1698
3e880fb5 1699 this_cpu_inc(nr_dentry);
312d3ca8 1700
1da177e4
LT
1701 return dentry;
1702}
a4464dbc
AV
1703
1704/**
1705 * d_alloc - allocate a dcache entry
1706 * @parent: parent of entry to allocate
1707 * @name: qstr of the name
1708 *
1709 * Allocates a dentry. It returns %NULL if there is insufficient memory
1710 * available. On a success the dentry is returned. The name passed in is
1711 * copied and the copy passed in may be reused after this call.
1712 */
1713struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1714{
1715 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1716 if (!dentry)
1717 return NULL;
3d56c25e 1718 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1719 spin_lock(&parent->d_lock);
1720 /*
1721 * don't need child lock because it is not subject
1722 * to concurrency here
1723 */
1724 __dget_dlock(parent);
1725 dentry->d_parent = parent;
946e51f2 1726 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1727 spin_unlock(&parent->d_lock);
1728
1729 return dentry;
1730}
ec4f8605 1731EXPORT_SYMBOL(d_alloc);
1da177e4 1732
f9c34674
MS
1733struct dentry *d_alloc_anon(struct super_block *sb)
1734{
1735 return __d_alloc(sb, NULL);
1736}
1737EXPORT_SYMBOL(d_alloc_anon);
1738
ba65dc5e
AV
1739struct dentry *d_alloc_cursor(struct dentry * parent)
1740{
f9c34674 1741 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e
AV
1742 if (dentry) {
1743 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1744 dentry->d_parent = dget(parent);
1745 }
1746 return dentry;
1747}
1748
e1a24bb0
BF
1749/**
1750 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1751 * @sb: the superblock
1752 * @name: qstr of the name
1753 *
1754 * For a filesystem that just pins its dentries in memory and never
1755 * performs lookups at all, return an unhashed IS_ROOT dentry.
1756 */
4b936885
NP
1757struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1758{
e1a24bb0 1759 return __d_alloc(sb, name);
4b936885
NP
1760}
1761EXPORT_SYMBOL(d_alloc_pseudo);
1762
1da177e4
LT
1763struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1764{
1765 struct qstr q;
1766
1767 q.name = name;
8387ff25 1768 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1769 return d_alloc(parent, &q);
1770}
ef26ca97 1771EXPORT_SYMBOL(d_alloc_name);
1da177e4 1772
fb045adb
NP
1773void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1774{
6f7f7caa
LT
1775 WARN_ON_ONCE(dentry->d_op);
1776 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1777 DCACHE_OP_COMPARE |
1778 DCACHE_OP_REVALIDATE |
ecf3d1f1 1779 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1780 DCACHE_OP_DELETE |
d101a125 1781 DCACHE_OP_REAL));
fb045adb
NP
1782 dentry->d_op = op;
1783 if (!op)
1784 return;
1785 if (op->d_hash)
1786 dentry->d_flags |= DCACHE_OP_HASH;
1787 if (op->d_compare)
1788 dentry->d_flags |= DCACHE_OP_COMPARE;
1789 if (op->d_revalidate)
1790 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1791 if (op->d_weak_revalidate)
1792 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1793 if (op->d_delete)
1794 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1795 if (op->d_prune)
1796 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1797 if (op->d_real)
1798 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1799
1800}
1801EXPORT_SYMBOL(d_set_d_op);
1802
df1a085a
DH
1803
1804/*
1805 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1806 * @dentry - The dentry to mark
1807 *
1808 * Mark a dentry as falling through to the lower layer (as set with
1809 * d_pin_lower()). This flag may be recorded on the medium.
1810 */
1811void d_set_fallthru(struct dentry *dentry)
1812{
1813 spin_lock(&dentry->d_lock);
1814 dentry->d_flags |= DCACHE_FALLTHRU;
1815 spin_unlock(&dentry->d_lock);
1816}
1817EXPORT_SYMBOL(d_set_fallthru);
1818
b18825a7
DH
1819static unsigned d_flags_for_inode(struct inode *inode)
1820{
44bdb5e5 1821 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1822
1823 if (!inode)
1824 return DCACHE_MISS_TYPE;
1825
1826 if (S_ISDIR(inode->i_mode)) {
1827 add_flags = DCACHE_DIRECTORY_TYPE;
1828 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1829 if (unlikely(!inode->i_op->lookup))
1830 add_flags = DCACHE_AUTODIR_TYPE;
1831 else
1832 inode->i_opflags |= IOP_LOOKUP;
1833 }
44bdb5e5
DH
1834 goto type_determined;
1835 }
1836
1837 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1838 if (unlikely(inode->i_op->get_link)) {
b18825a7 1839 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1840 goto type_determined;
1841 }
1842 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1843 }
1844
44bdb5e5
DH
1845 if (unlikely(!S_ISREG(inode->i_mode)))
1846 add_flags = DCACHE_SPECIAL_TYPE;
1847
1848type_determined:
b18825a7
DH
1849 if (unlikely(IS_AUTOMOUNT(inode)))
1850 add_flags |= DCACHE_NEED_AUTOMOUNT;
1851 return add_flags;
1852}
1853
360da900
OH
1854static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1855{
b18825a7 1856 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1857 WARN_ON(d_in_lookup(dentry));
b18825a7 1858
b23fb0a6 1859 spin_lock(&dentry->d_lock);
de689f5e 1860 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1861 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1862 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1863 raw_write_seqcount_end(&dentry->d_seq);
affda484 1864 fsnotify_update_flags(dentry);
b23fb0a6 1865 spin_unlock(&dentry->d_lock);
360da900
OH
1866}
1867
1da177e4
LT
1868/**
1869 * d_instantiate - fill in inode information for a dentry
1870 * @entry: dentry to complete
1871 * @inode: inode to attach to this dentry
1872 *
1873 * Fill in inode information in the entry.
1874 *
1875 * This turns negative dentries into productive full members
1876 * of society.
1877 *
1878 * NOTE! This assumes that the inode count has been incremented
1879 * (or otherwise set) by the caller to indicate that it is now
1880 * in use by the dcache.
1881 */
1882
1883void d_instantiate(struct dentry *entry, struct inode * inode)
1884{
946e51f2 1885 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1886 if (inode) {
b9680917 1887 security_d_instantiate(entry, inode);
873feea0 1888 spin_lock(&inode->i_lock);
de689f5e 1889 __d_instantiate(entry, inode);
873feea0 1890 spin_unlock(&inode->i_lock);
de689f5e 1891 }
1da177e4 1892}
ec4f8605 1893EXPORT_SYMBOL(d_instantiate);
1da177e4 1894
b70a80e7
MS
1895/**
1896 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1897 * @entry: dentry to complete
1898 * @inode: inode to attach to this dentry
1899 *
1900 * Fill in inode information in the entry. If a directory alias is found, then
1901 * return an error (and drop inode). Together with d_materialise_unique() this
1902 * guarantees that a directory inode may never have more than one alias.
1903 */
1904int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1905{
946e51f2 1906 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1907
b9680917 1908 security_d_instantiate(entry, inode);
b70a80e7
MS
1909 spin_lock(&inode->i_lock);
1910 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1911 spin_unlock(&inode->i_lock);
1912 iput(inode);
1913 return -EBUSY;
1914 }
1915 __d_instantiate(entry, inode);
1916 spin_unlock(&inode->i_lock);
b70a80e7
MS
1917
1918 return 0;
1919}
1920EXPORT_SYMBOL(d_instantiate_no_diralias);
1921
adc0e91a
AV
1922struct dentry *d_make_root(struct inode *root_inode)
1923{
1924 struct dentry *res = NULL;
1925
1926 if (root_inode) {
f9c34674 1927 res = d_alloc_anon(root_inode->i_sb);
adc0e91a
AV
1928 if (res)
1929 d_instantiate(res, root_inode);
1930 else
1931 iput(root_inode);
1932 }
1933 return res;
1934}
1935EXPORT_SYMBOL(d_make_root);
1936
d891eedb
BF
1937static struct dentry * __d_find_any_alias(struct inode *inode)
1938{
1939 struct dentry *alias;
1940
b3d9b7a3 1941 if (hlist_empty(&inode->i_dentry))
d891eedb 1942 return NULL;
946e51f2 1943 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1944 __dget(alias);
1945 return alias;
1946}
1947
46f72b34
SW
1948/**
1949 * d_find_any_alias - find any alias for a given inode
1950 * @inode: inode to find an alias for
1951 *
1952 * If any aliases exist for the given inode, take and return a
1953 * reference for one of them. If no aliases exist, return %NULL.
1954 */
1955struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1956{
1957 struct dentry *de;
1958
1959 spin_lock(&inode->i_lock);
1960 de = __d_find_any_alias(inode);
1961 spin_unlock(&inode->i_lock);
1962 return de;
1963}
46f72b34 1964EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1965
f9c34674
MS
1966static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1967 struct inode *inode,
1968 bool disconnected)
4ea3ada2 1969{
9308a612 1970 struct dentry *res;
b18825a7 1971 unsigned add_flags;
4ea3ada2 1972
f9c34674 1973 security_d_instantiate(dentry, inode);
873feea0 1974 spin_lock(&inode->i_lock);
d891eedb 1975 res = __d_find_any_alias(inode);
9308a612 1976 if (res) {
873feea0 1977 spin_unlock(&inode->i_lock);
f9c34674 1978 dput(dentry);
9308a612
CH
1979 goto out_iput;
1980 }
1981
1982 /* attach a disconnected dentry */
1a0a397e
BF
1983 add_flags = d_flags_for_inode(inode);
1984
1985 if (disconnected)
1986 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1987
f9c34674
MS
1988 spin_lock(&dentry->d_lock);
1989 __d_set_inode_and_type(dentry, inode, add_flags);
1990 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 1991 if (!disconnected) {
139351f1
LT
1992 hlist_bl_lock(&dentry->d_sb->s_roots);
1993 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1994 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 1995 }
f9c34674 1996 spin_unlock(&dentry->d_lock);
873feea0 1997 spin_unlock(&inode->i_lock);
9308a612 1998
f9c34674 1999 return dentry;
9308a612
CH
2000
2001 out_iput:
2002 iput(inode);
2003 return res;
4ea3ada2 2004}
1a0a397e 2005
f9c34674
MS
2006struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2007{
2008 return __d_instantiate_anon(dentry, inode, true);
2009}
2010EXPORT_SYMBOL(d_instantiate_anon);
2011
2012static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2013{
2014 struct dentry *tmp;
2015 struct dentry *res;
2016
2017 if (!inode)
2018 return ERR_PTR(-ESTALE);
2019 if (IS_ERR(inode))
2020 return ERR_CAST(inode);
2021
2022 res = d_find_any_alias(inode);
2023 if (res)
2024 goto out_iput;
2025
2026 tmp = d_alloc_anon(inode->i_sb);
2027 if (!tmp) {
2028 res = ERR_PTR(-ENOMEM);
2029 goto out_iput;
2030 }
2031
2032 return __d_instantiate_anon(tmp, inode, disconnected);
2033
2034out_iput:
2035 iput(inode);
2036 return res;
2037}
2038
1a0a397e
BF
2039/**
2040 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2041 * @inode: inode to allocate the dentry for
2042 *
2043 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2044 * similar open by handle operations. The returned dentry may be anonymous,
2045 * or may have a full name (if the inode was already in the cache).
2046 *
2047 * When called on a directory inode, we must ensure that the inode only ever
2048 * has one dentry. If a dentry is found, that is returned instead of
2049 * allocating a new one.
2050 *
2051 * On successful return, the reference to the inode has been transferred
2052 * to the dentry. In case of an error the reference on the inode is released.
2053 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2054 * be passed in and the error will be propagated to the return value,
2055 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2056 */
2057struct dentry *d_obtain_alias(struct inode *inode)
2058{
f9c34674 2059 return __d_obtain_alias(inode, true);
1a0a397e 2060}
adc48720 2061EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2062
1a0a397e
BF
2063/**
2064 * d_obtain_root - find or allocate a dentry for a given inode
2065 * @inode: inode to allocate the dentry for
2066 *
2067 * Obtain an IS_ROOT dentry for the root of a filesystem.
2068 *
2069 * We must ensure that directory inodes only ever have one dentry. If a
2070 * dentry is found, that is returned instead of allocating a new one.
2071 *
2072 * On successful return, the reference to the inode has been transferred
2073 * to the dentry. In case of an error the reference on the inode is
2074 * released. A %NULL or IS_ERR inode may be passed in and will be the
2075 * error will be propagate to the return value, with a %NULL @inode
2076 * replaced by ERR_PTR(-ESTALE).
2077 */
2078struct dentry *d_obtain_root(struct inode *inode)
2079{
f9c34674 2080 return __d_obtain_alias(inode, false);
1a0a397e
BF
2081}
2082EXPORT_SYMBOL(d_obtain_root);
2083
9403540c
BN
2084/**
2085 * d_add_ci - lookup or allocate new dentry with case-exact name
2086 * @inode: the inode case-insensitive lookup has found
2087 * @dentry: the negative dentry that was passed to the parent's lookup func
2088 * @name: the case-exact name to be associated with the returned dentry
2089 *
2090 * This is to avoid filling the dcache with case-insensitive names to the
2091 * same inode, only the actual correct case is stored in the dcache for
2092 * case-insensitive filesystems.
2093 *
2094 * For a case-insensitive lookup match and if the the case-exact dentry
2095 * already exists in in the dcache, use it and return it.
2096 *
2097 * If no entry exists with the exact case name, allocate new dentry with
2098 * the exact case, and return the spliced entry.
2099 */
e45b590b 2100struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2101 struct qstr *name)
2102{
d9171b93 2103 struct dentry *found, *res;
9403540c 2104
b6520c81
CH
2105 /*
2106 * First check if a dentry matching the name already exists,
2107 * if not go ahead and create it now.
2108 */
9403540c 2109 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2110 if (found) {
2111 iput(inode);
2112 return found;
2113 }
2114 if (d_in_lookup(dentry)) {
2115 found = d_alloc_parallel(dentry->d_parent, name,
2116 dentry->d_wait);
2117 if (IS_ERR(found) || !d_in_lookup(found)) {
2118 iput(inode);
2119 return found;
9403540c 2120 }
d9171b93
AV
2121 } else {
2122 found = d_alloc(dentry->d_parent, name);
2123 if (!found) {
2124 iput(inode);
2125 return ERR_PTR(-ENOMEM);
2126 }
2127 }
2128 res = d_splice_alias(inode, found);
2129 if (res) {
2130 dput(found);
2131 return res;
9403540c 2132 }
4f522a24 2133 return found;
9403540c 2134}
ec4f8605 2135EXPORT_SYMBOL(d_add_ci);
1da177e4 2136
12f8ad4b 2137
d4c91a8f
AV
2138static inline bool d_same_name(const struct dentry *dentry,
2139 const struct dentry *parent,
2140 const struct qstr *name)
12f8ad4b 2141{
d4c91a8f
AV
2142 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2143 if (dentry->d_name.len != name->len)
2144 return false;
2145 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2146 }
6fa67e70 2147 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2148 dentry->d_name.len, dentry->d_name.name,
2149 name) == 0;
12f8ad4b
LT
2150}
2151
31e6b01f
NP
2152/**
2153 * __d_lookup_rcu - search for a dentry (racy, store-free)
2154 * @parent: parent dentry
2155 * @name: qstr of name we wish to find
1f1e6e52 2156 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2157 * Returns: dentry, or NULL
2158 *
2159 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2160 * resolution (store-free path walking) design described in
2161 * Documentation/filesystems/path-lookup.txt.
2162 *
2163 * This is not to be used outside core vfs.
2164 *
2165 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2166 * held, and rcu_read_lock held. The returned dentry must not be stored into
2167 * without taking d_lock and checking d_seq sequence count against @seq
2168 * returned here.
2169 *
15570086 2170 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2171 * function.
2172 *
2173 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2174 * the returned dentry, so long as its parent's seqlock is checked after the
2175 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2176 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2177 *
2178 * NOTE! The caller *has* to check the resulting dentry against the sequence
2179 * number we've returned before using any of the resulting dentry state!
31e6b01f 2180 */
8966be90
LT
2181struct dentry *__d_lookup_rcu(const struct dentry *parent,
2182 const struct qstr *name,
da53be12 2183 unsigned *seqp)
31e6b01f 2184{
26fe5750 2185 u64 hashlen = name->hash_len;
31e6b01f 2186 const unsigned char *str = name->name;
8387ff25 2187 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2188 struct hlist_bl_node *node;
31e6b01f
NP
2189 struct dentry *dentry;
2190
2191 /*
2192 * Note: There is significant duplication with __d_lookup_rcu which is
2193 * required to prevent single threaded performance regressions
2194 * especially on architectures where smp_rmb (in seqcounts) are costly.
2195 * Keep the two functions in sync.
2196 */
2197
2198 /*
2199 * The hash list is protected using RCU.
2200 *
2201 * Carefully use d_seq when comparing a candidate dentry, to avoid
2202 * races with d_move().
2203 *
2204 * It is possible that concurrent renames can mess up our list
2205 * walk here and result in missing our dentry, resulting in the
2206 * false-negative result. d_lookup() protects against concurrent
2207 * renames using rename_lock seqlock.
2208 *
b0a4bb83 2209 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2210 */
b07ad996 2211 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2212 unsigned seq;
31e6b01f 2213
31e6b01f 2214seqretry:
12f8ad4b
LT
2215 /*
2216 * The dentry sequence count protects us from concurrent
da53be12 2217 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2218 *
2219 * The caller must perform a seqcount check in order
da53be12 2220 * to do anything useful with the returned dentry.
12f8ad4b
LT
2221 *
2222 * NOTE! We do a "raw" seqcount_begin here. That means that
2223 * we don't wait for the sequence count to stabilize if it
2224 * is in the middle of a sequence change. If we do the slow
2225 * dentry compare, we will do seqretries until it is stable,
2226 * and if we end up with a successful lookup, we actually
2227 * want to exit RCU lookup anyway.
d4c91a8f
AV
2228 *
2229 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2230 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2231 */
2232 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2233 if (dentry->d_parent != parent)
2234 continue;
2e321806
LT
2235 if (d_unhashed(dentry))
2236 continue;
12f8ad4b 2237
830c0f0e 2238 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2239 int tlen;
2240 const char *tname;
26fe5750
LT
2241 if (dentry->d_name.hash != hashlen_hash(hashlen))
2242 continue;
d4c91a8f
AV
2243 tlen = dentry->d_name.len;
2244 tname = dentry->d_name.name;
2245 /* we want a consistent (name,len) pair */
2246 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2247 cpu_relax();
12f8ad4b
LT
2248 goto seqretry;
2249 }
6fa67e70 2250 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2251 tlen, tname, name) != 0)
2252 continue;
2253 } else {
2254 if (dentry->d_name.hash_len != hashlen)
2255 continue;
2256 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2257 continue;
31e6b01f 2258 }
da53be12 2259 *seqp = seq;
d4c91a8f 2260 return dentry;
31e6b01f
NP
2261 }
2262 return NULL;
2263}
2264
1da177e4
LT
2265/**
2266 * d_lookup - search for a dentry
2267 * @parent: parent dentry
2268 * @name: qstr of name we wish to find
b04f784e 2269 * Returns: dentry, or NULL
1da177e4 2270 *
b04f784e
NP
2271 * d_lookup searches the children of the parent dentry for the name in
2272 * question. If the dentry is found its reference count is incremented and the
2273 * dentry is returned. The caller must use dput to free the entry when it has
2274 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2275 */
da2d8455 2276struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2277{
31e6b01f 2278 struct dentry *dentry;
949854d0 2279 unsigned seq;
1da177e4 2280
b8314f93
DY
2281 do {
2282 seq = read_seqbegin(&rename_lock);
2283 dentry = __d_lookup(parent, name);
2284 if (dentry)
1da177e4
LT
2285 break;
2286 } while (read_seqretry(&rename_lock, seq));
2287 return dentry;
2288}
ec4f8605 2289EXPORT_SYMBOL(d_lookup);
1da177e4 2290
31e6b01f 2291/**
b04f784e
NP
2292 * __d_lookup - search for a dentry (racy)
2293 * @parent: parent dentry
2294 * @name: qstr of name we wish to find
2295 * Returns: dentry, or NULL
2296 *
2297 * __d_lookup is like d_lookup, however it may (rarely) return a
2298 * false-negative result due to unrelated rename activity.
2299 *
2300 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2301 * however it must be used carefully, eg. with a following d_lookup in
2302 * the case of failure.
2303 *
2304 * __d_lookup callers must be commented.
2305 */
a713ca2a 2306struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2307{
1da177e4 2308 unsigned int hash = name->hash;
8387ff25 2309 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2310 struct hlist_bl_node *node;
31e6b01f 2311 struct dentry *found = NULL;
665a7583 2312 struct dentry *dentry;
1da177e4 2313
31e6b01f
NP
2314 /*
2315 * Note: There is significant duplication with __d_lookup_rcu which is
2316 * required to prevent single threaded performance regressions
2317 * especially on architectures where smp_rmb (in seqcounts) are costly.
2318 * Keep the two functions in sync.
2319 */
2320
b04f784e
NP
2321 /*
2322 * The hash list is protected using RCU.
2323 *
2324 * Take d_lock when comparing a candidate dentry, to avoid races
2325 * with d_move().
2326 *
2327 * It is possible that concurrent renames can mess up our list
2328 * walk here and result in missing our dentry, resulting in the
2329 * false-negative result. d_lookup() protects against concurrent
2330 * renames using rename_lock seqlock.
2331 *
b0a4bb83 2332 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2333 */
1da177e4
LT
2334 rcu_read_lock();
2335
b07ad996 2336 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2337
1da177e4
LT
2338 if (dentry->d_name.hash != hash)
2339 continue;
1da177e4
LT
2340
2341 spin_lock(&dentry->d_lock);
1da177e4
LT
2342 if (dentry->d_parent != parent)
2343 goto next;
d0185c08
LT
2344 if (d_unhashed(dentry))
2345 goto next;
2346
d4c91a8f
AV
2347 if (!d_same_name(dentry, parent, name))
2348 goto next;
1da177e4 2349
98474236 2350 dentry->d_lockref.count++;
d0185c08 2351 found = dentry;
1da177e4
LT
2352 spin_unlock(&dentry->d_lock);
2353 break;
2354next:
2355 spin_unlock(&dentry->d_lock);
2356 }
2357 rcu_read_unlock();
2358
2359 return found;
2360}
2361
3e7e241f
EB
2362/**
2363 * d_hash_and_lookup - hash the qstr then search for a dentry
2364 * @dir: Directory to search in
2365 * @name: qstr of name we wish to find
2366 *
4f522a24 2367 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2368 */
2369struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2370{
3e7e241f
EB
2371 /*
2372 * Check for a fs-specific hash function. Note that we must
2373 * calculate the standard hash first, as the d_op->d_hash()
2374 * routine may choose to leave the hash value unchanged.
2375 */
8387ff25 2376 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2377 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2378 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2379 if (unlikely(err < 0))
2380 return ERR_PTR(err);
3e7e241f 2381 }
4f522a24 2382 return d_lookup(dir, name);
3e7e241f 2383}
4f522a24 2384EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2385
1da177e4
LT
2386/*
2387 * When a file is deleted, we have two options:
2388 * - turn this dentry into a negative dentry
2389 * - unhash this dentry and free it.
2390 *
2391 * Usually, we want to just turn this into
2392 * a negative dentry, but if anybody else is
2393 * currently using the dentry or the inode
2394 * we can't do that and we fall back on removing
2395 * it from the hash queues and waiting for
2396 * it to be deleted later when it has no users
2397 */
2398
2399/**
2400 * d_delete - delete a dentry
2401 * @dentry: The dentry to delete
2402 *
2403 * Turn the dentry into a negative dentry if possible, otherwise
2404 * remove it from the hash queues so it can be deleted later
2405 */
2406
2407void d_delete(struct dentry * dentry)
2408{
c19457f0
AV
2409 struct inode *inode = dentry->d_inode;
2410 int isdir = d_is_dir(dentry);
2411
2412 spin_lock(&inode->i_lock);
2413 spin_lock(&dentry->d_lock);
1da177e4
LT
2414 /*
2415 * Are we the only user?
2416 */
98474236 2417 if (dentry->d_lockref.count == 1) {
13e3c5e5 2418 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2419 dentry_unlink_inode(dentry);
c19457f0 2420 } else {
1da177e4 2421 __d_drop(dentry);
c19457f0
AV
2422 spin_unlock(&dentry->d_lock);
2423 spin_unlock(&inode->i_lock);
2424 }
7a91bf7f 2425 fsnotify_nameremove(dentry, isdir);
1da177e4 2426}
ec4f8605 2427EXPORT_SYMBOL(d_delete);
1da177e4 2428
15d3c589 2429static void __d_rehash(struct dentry *entry)
1da177e4 2430{
15d3c589 2431 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2432
1879fd6a 2433 hlist_bl_lock(b);
b07ad996 2434 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2435 hlist_bl_unlock(b);
1da177e4
LT
2436}
2437
2438/**
2439 * d_rehash - add an entry back to the hash
2440 * @entry: dentry to add to the hash
2441 *
2442 * Adds a dentry to the hash according to its name.
2443 */
2444
2445void d_rehash(struct dentry * entry)
2446{
1da177e4 2447 spin_lock(&entry->d_lock);
15d3c589 2448 __d_rehash(entry);
1da177e4 2449 spin_unlock(&entry->d_lock);
1da177e4 2450}
ec4f8605 2451EXPORT_SYMBOL(d_rehash);
1da177e4 2452
84e710da
AV
2453static inline unsigned start_dir_add(struct inode *dir)
2454{
2455
2456 for (;;) {
2457 unsigned n = dir->i_dir_seq;
2458 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2459 return n;
2460 cpu_relax();
2461 }
2462}
2463
2464static inline void end_dir_add(struct inode *dir, unsigned n)
2465{
2466 smp_store_release(&dir->i_dir_seq, n + 2);
2467}
2468
d9171b93
AV
2469static void d_wait_lookup(struct dentry *dentry)
2470{
2471 if (d_in_lookup(dentry)) {
2472 DECLARE_WAITQUEUE(wait, current);
2473 add_wait_queue(dentry->d_wait, &wait);
2474 do {
2475 set_current_state(TASK_UNINTERRUPTIBLE);
2476 spin_unlock(&dentry->d_lock);
2477 schedule();
2478 spin_lock(&dentry->d_lock);
2479 } while (d_in_lookup(dentry));
2480 }
2481}
2482
94bdd655 2483struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2484 const struct qstr *name,
2485 wait_queue_head_t *wq)
94bdd655 2486{
94bdd655 2487 unsigned int hash = name->hash;
94bdd655
AV
2488 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2489 struct hlist_bl_node *node;
2490 struct dentry *new = d_alloc(parent, name);
2491 struct dentry *dentry;
2492 unsigned seq, r_seq, d_seq;
2493
2494 if (unlikely(!new))
2495 return ERR_PTR(-ENOMEM);
2496
2497retry:
2498 rcu_read_lock();
015555fd 2499 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2500 r_seq = read_seqbegin(&rename_lock);
2501 dentry = __d_lookup_rcu(parent, name, &d_seq);
2502 if (unlikely(dentry)) {
2503 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2504 rcu_read_unlock();
2505 goto retry;
2506 }
2507 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2508 rcu_read_unlock();
2509 dput(dentry);
2510 goto retry;
2511 }
2512 rcu_read_unlock();
2513 dput(new);
2514 return dentry;
2515 }
2516 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2517 rcu_read_unlock();
2518 goto retry;
2519 }
015555fd
WD
2520
2521 if (unlikely(seq & 1)) {
2522 rcu_read_unlock();
2523 goto retry;
2524 }
2525
94bdd655 2526 hlist_bl_lock(b);
8cc07c80 2527 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2528 hlist_bl_unlock(b);
2529 rcu_read_unlock();
2530 goto retry;
2531 }
94bdd655
AV
2532 /*
2533 * No changes for the parent since the beginning of d_lookup().
2534 * Since all removals from the chain happen with hlist_bl_lock(),
2535 * any potential in-lookup matches are going to stay here until
2536 * we unlock the chain. All fields are stable in everything
2537 * we encounter.
2538 */
2539 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2540 if (dentry->d_name.hash != hash)
2541 continue;
2542 if (dentry->d_parent != parent)
2543 continue;
d4c91a8f
AV
2544 if (!d_same_name(dentry, parent, name))
2545 continue;
94bdd655 2546 hlist_bl_unlock(b);
e7d6ef97
AV
2547 /* now we can try to grab a reference */
2548 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2549 rcu_read_unlock();
2550 goto retry;
2551 }
2552
2553 rcu_read_unlock();
2554 /*
2555 * somebody is likely to be still doing lookup for it;
2556 * wait for them to finish
2557 */
d9171b93
AV
2558 spin_lock(&dentry->d_lock);
2559 d_wait_lookup(dentry);
2560 /*
2561 * it's not in-lookup anymore; in principle we should repeat
2562 * everything from dcache lookup, but it's likely to be what
2563 * d_lookup() would've found anyway. If it is, just return it;
2564 * otherwise we really have to repeat the whole thing.
2565 */
2566 if (unlikely(dentry->d_name.hash != hash))
2567 goto mismatch;
2568 if (unlikely(dentry->d_parent != parent))
2569 goto mismatch;
2570 if (unlikely(d_unhashed(dentry)))
2571 goto mismatch;
d4c91a8f
AV
2572 if (unlikely(!d_same_name(dentry, parent, name)))
2573 goto mismatch;
d9171b93
AV
2574 /* OK, it *is* a hashed match; return it */
2575 spin_unlock(&dentry->d_lock);
94bdd655
AV
2576 dput(new);
2577 return dentry;
2578 }
e7d6ef97 2579 rcu_read_unlock();
94bdd655
AV
2580 /* we can't take ->d_lock here; it's OK, though. */
2581 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2582 new->d_wait = wq;
94bdd655
AV
2583 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2584 hlist_bl_unlock(b);
2585 return new;
d9171b93
AV
2586mismatch:
2587 spin_unlock(&dentry->d_lock);
2588 dput(dentry);
2589 goto retry;
94bdd655
AV
2590}
2591EXPORT_SYMBOL(d_alloc_parallel);
2592
85c7f810
AV
2593void __d_lookup_done(struct dentry *dentry)
2594{
94bdd655
AV
2595 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2596 dentry->d_name.hash);
2597 hlist_bl_lock(b);
85c7f810 2598 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2599 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2600 wake_up_all(dentry->d_wait);
2601 dentry->d_wait = NULL;
94bdd655
AV
2602 hlist_bl_unlock(b);
2603 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2604 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2605}
2606EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2607
2608/* inode->i_lock held if inode is non-NULL */
2609
2610static inline void __d_add(struct dentry *dentry, struct inode *inode)
2611{
84e710da
AV
2612 struct inode *dir = NULL;
2613 unsigned n;
0568d705 2614 spin_lock(&dentry->d_lock);
84e710da
AV
2615 if (unlikely(d_in_lookup(dentry))) {
2616 dir = dentry->d_parent->d_inode;
2617 n = start_dir_add(dir);
85c7f810 2618 __d_lookup_done(dentry);
84e710da 2619 }
ed782b5a 2620 if (inode) {
0568d705
AV
2621 unsigned add_flags = d_flags_for_inode(inode);
2622 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2623 raw_write_seqcount_begin(&dentry->d_seq);
2624 __d_set_inode_and_type(dentry, inode, add_flags);
2625 raw_write_seqcount_end(&dentry->d_seq);
affda484 2626 fsnotify_update_flags(dentry);
ed782b5a 2627 }
15d3c589 2628 __d_rehash(dentry);
84e710da
AV
2629 if (dir)
2630 end_dir_add(dir, n);
0568d705
AV
2631 spin_unlock(&dentry->d_lock);
2632 if (inode)
2633 spin_unlock(&inode->i_lock);
ed782b5a
AV
2634}
2635
34d0d19d
AV
2636/**
2637 * d_add - add dentry to hash queues
2638 * @entry: dentry to add
2639 * @inode: The inode to attach to this dentry
2640 *
2641 * This adds the entry to the hash queues and initializes @inode.
2642 * The entry was actually filled in earlier during d_alloc().
2643 */
2644
2645void d_add(struct dentry *entry, struct inode *inode)
2646{
b9680917
AV
2647 if (inode) {
2648 security_d_instantiate(entry, inode);
ed782b5a 2649 spin_lock(&inode->i_lock);
b9680917 2650 }
ed782b5a 2651 __d_add(entry, inode);
34d0d19d
AV
2652}
2653EXPORT_SYMBOL(d_add);
2654
668d0cd5
AV
2655/**
2656 * d_exact_alias - find and hash an exact unhashed alias
2657 * @entry: dentry to add
2658 * @inode: The inode to go with this dentry
2659 *
2660 * If an unhashed dentry with the same name/parent and desired
2661 * inode already exists, hash and return it. Otherwise, return
2662 * NULL.
2663 *
2664 * Parent directory should be locked.
2665 */
2666struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2667{
2668 struct dentry *alias;
668d0cd5
AV
2669 unsigned int hash = entry->d_name.hash;
2670
2671 spin_lock(&inode->i_lock);
2672 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2673 /*
2674 * Don't need alias->d_lock here, because aliases with
2675 * d_parent == entry->d_parent are not subject to name or
2676 * parent changes, because the parent inode i_mutex is held.
2677 */
2678 if (alias->d_name.hash != hash)
2679 continue;
2680 if (alias->d_parent != entry->d_parent)
2681 continue;
d4c91a8f 2682 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2683 continue;
2684 spin_lock(&alias->d_lock);
2685 if (!d_unhashed(alias)) {
2686 spin_unlock(&alias->d_lock);
2687 alias = NULL;
2688 } else {
2689 __dget_dlock(alias);
15d3c589 2690 __d_rehash(alias);
668d0cd5
AV
2691 spin_unlock(&alias->d_lock);
2692 }
2693 spin_unlock(&inode->i_lock);
2694 return alias;
2695 }
2696 spin_unlock(&inode->i_lock);
2697 return NULL;
2698}
2699EXPORT_SYMBOL(d_exact_alias);
2700
fb2d5b86
NP
2701/**
2702 * dentry_update_name_case - update case insensitive dentry with a new name
2703 * @dentry: dentry to be updated
2704 * @name: new name
2705 *
2706 * Update a case insensitive dentry with new case of name.
2707 *
2708 * dentry must have been returned by d_lookup with name @name. Old and new
2709 * name lengths must match (ie. no d_compare which allows mismatched name
2710 * lengths).
2711 *
2712 * Parent inode i_mutex must be held over d_lookup and into this call (to
2713 * keep renames and concurrent inserts, and readdir(2) away).
2714 */
9aba36de 2715void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
fb2d5b86 2716{
5955102c 2717 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2718 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2719
fb2d5b86 2720 spin_lock(&dentry->d_lock);
31e6b01f 2721 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2722 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2723 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2724 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2725}
2726EXPORT_SYMBOL(dentry_update_name_case);
2727
8d85b484 2728static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2729{
8d85b484
AV
2730 if (unlikely(dname_external(target))) {
2731 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2732 /*
2733 * Both external: swap the pointers
2734 */
9a8d5bb4 2735 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2736 } else {
2737 /*
2738 * dentry:internal, target:external. Steal target's
2739 * storage and make target internal.
2740 */
321bcf92
BF
2741 memcpy(target->d_iname, dentry->d_name.name,
2742 dentry->d_name.len + 1);
1da177e4
LT
2743 dentry->d_name.name = target->d_name.name;
2744 target->d_name.name = target->d_iname;
2745 }
2746 } else {
8d85b484 2747 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2748 /*
2749 * dentry:external, target:internal. Give dentry's
2750 * storage to target and make dentry internal
2751 */
2752 memcpy(dentry->d_iname, target->d_name.name,
2753 target->d_name.len + 1);
2754 target->d_name.name = dentry->d_name.name;
2755 dentry->d_name.name = dentry->d_iname;
2756 } else {
2757 /*
da1ce067 2758 * Both are internal.
1da177e4 2759 */
da1ce067
MS
2760 unsigned int i;
2761 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2762 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2763 swap(((long *) &dentry->d_iname)[i],
2764 ((long *) &target->d_iname)[i]);
2765 }
1da177e4
LT
2766 }
2767 }
a28ddb87 2768 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2769}
2770
8d85b484
AV
2771static void copy_name(struct dentry *dentry, struct dentry *target)
2772{
2773 struct external_name *old_name = NULL;
2774 if (unlikely(dname_external(dentry)))
2775 old_name = external_name(dentry);
2776 if (unlikely(dname_external(target))) {
2777 atomic_inc(&external_name(target)->u.count);
2778 dentry->d_name = target->d_name;
2779 } else {
2780 memcpy(dentry->d_iname, target->d_name.name,
2781 target->d_name.len + 1);
2782 dentry->d_name.name = dentry->d_iname;
2783 dentry->d_name.hash_len = target->d_name.hash_len;
2784 }
2785 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2786 kfree_rcu(old_name, u.head);
2787}
2788
2fd6b7f5
NP
2789static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2790{
2791 /*
2792 * XXXX: do we really need to take target->d_lock?
2793 */
2794 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2795 spin_lock(&target->d_parent->d_lock);
2796 else {
2797 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2798 spin_lock(&dentry->d_parent->d_lock);
2799 spin_lock_nested(&target->d_parent->d_lock,
2800 DENTRY_D_LOCK_NESTED);
2801 } else {
2802 spin_lock(&target->d_parent->d_lock);
2803 spin_lock_nested(&dentry->d_parent->d_lock,
2804 DENTRY_D_LOCK_NESTED);
2805 }
2806 }
2807 if (target < dentry) {
2808 spin_lock_nested(&target->d_lock, 2);
2809 spin_lock_nested(&dentry->d_lock, 3);
2810 } else {
2811 spin_lock_nested(&dentry->d_lock, 2);
2812 spin_lock_nested(&target->d_lock, 3);
2813 }
2814}
2815
986c0194 2816static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2817{
2818 if (target->d_parent != dentry->d_parent)
2819 spin_unlock(&dentry->d_parent->d_lock);
2820 if (target->d_parent != target)
2821 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2822 spin_unlock(&target->d_lock);
2823 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2824}
2825
1da177e4 2826/*
2fd6b7f5
NP
2827 * When switching names, the actual string doesn't strictly have to
2828 * be preserved in the target - because we're dropping the target
2829 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2830 * the new name before we switch, unless we are going to rehash
2831 * it. Note that if we *do* unhash the target, we are not allowed
2832 * to rehash it without giving it a new name/hash key - whether
2833 * we swap or overwrite the names here, resulting name won't match
2834 * the reality in filesystem; it's only there for d_path() purposes.
2835 * Note that all of this is happening under rename_lock, so the
2836 * any hash lookup seeing it in the middle of manipulations will
2837 * be discarded anyway. So we do not care what happens to the hash
2838 * key in that case.
1da177e4 2839 */
9eaef27b 2840/*
18367501 2841 * __d_move - move a dentry
1da177e4
LT
2842 * @dentry: entry to move
2843 * @target: new dentry
da1ce067 2844 * @exchange: exchange the two dentries
1da177e4
LT
2845 *
2846 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2847 * dcache entries should not be moved in this way. Caller must hold
2848 * rename_lock, the i_mutex of the source and target directories,
2849 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2850 */
da1ce067
MS
2851static void __d_move(struct dentry *dentry, struct dentry *target,
2852 bool exchange)
1da177e4 2853{
84e710da
AV
2854 struct inode *dir = NULL;
2855 unsigned n;
1da177e4
LT
2856 if (!dentry->d_inode)
2857 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2858
2fd6b7f5
NP
2859 BUG_ON(d_ancestor(dentry, target));
2860 BUG_ON(d_ancestor(target, dentry));
2861
2fd6b7f5 2862 dentry_lock_for_move(dentry, target);
84e710da
AV
2863 if (unlikely(d_in_lookup(target))) {
2864 dir = target->d_parent->d_inode;
2865 n = start_dir_add(dir);
85c7f810 2866 __d_lookup_done(target);
84e710da 2867 }
1da177e4 2868
31e6b01f 2869 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2870 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2871
15d3c589 2872 /* unhash both */
0632a9ac
AV
2873 if (!d_unhashed(dentry))
2874 ___d_drop(dentry);
2875 if (!d_unhashed(target))
2876 ___d_drop(target);
1da177e4 2877
1da177e4 2878 /* Switch the names.. */
8d85b484
AV
2879 if (exchange)
2880 swap_names(dentry, target);
2881 else
2882 copy_name(dentry, target);
1da177e4 2883
15d3c589
AV
2884 /* rehash in new place(s) */
2885 __d_rehash(dentry);
2886 if (exchange)
2887 __d_rehash(target);
61647823
N
2888 else
2889 target->d_hash.pprev = NULL;
15d3c589 2890
63cf427a 2891 /* ... and switch them in the tree */
1da177e4 2892 if (IS_ROOT(dentry)) {
63cf427a 2893 /* splicing a tree */
3d56c25e 2894 dentry->d_flags |= DCACHE_RCUACCESS;
1da177e4
LT
2895 dentry->d_parent = target->d_parent;
2896 target->d_parent = target;
946e51f2
AV
2897 list_del_init(&target->d_child);
2898 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2899 } else {
63cf427a 2900 /* swapping two dentries */
9a8d5bb4 2901 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2902 list_move(&target->d_child, &target->d_parent->d_subdirs);
2903 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a 2904 if (exchange)
affda484
AV
2905 fsnotify_update_flags(target);
2906 fsnotify_update_flags(dentry);
1da177e4
LT
2907 }
2908
31e6b01f
NP
2909 write_seqcount_end(&target->d_seq);
2910 write_seqcount_end(&dentry->d_seq);
2911
84e710da
AV
2912 if (dir)
2913 end_dir_add(dir, n);
986c0194 2914 dentry_unlock_for_move(dentry, target);
18367501
AV
2915}
2916
2917/*
2918 * d_move - move a dentry
2919 * @dentry: entry to move
2920 * @target: new dentry
2921 *
2922 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2923 * dcache entries should not be moved in this way. See the locking
2924 * requirements for __d_move.
18367501
AV
2925 */
2926void d_move(struct dentry *dentry, struct dentry *target)
2927{
2928 write_seqlock(&rename_lock);
da1ce067 2929 __d_move(dentry, target, false);
1da177e4 2930 write_sequnlock(&rename_lock);
9eaef27b 2931}
ec4f8605 2932EXPORT_SYMBOL(d_move);
1da177e4 2933
da1ce067
MS
2934/*
2935 * d_exchange - exchange two dentries
2936 * @dentry1: first dentry
2937 * @dentry2: second dentry
2938 */
2939void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2940{
2941 write_seqlock(&rename_lock);
2942
2943 WARN_ON(!dentry1->d_inode);
2944 WARN_ON(!dentry2->d_inode);
2945 WARN_ON(IS_ROOT(dentry1));
2946 WARN_ON(IS_ROOT(dentry2));
2947
2948 __d_move(dentry1, dentry2, true);
2949
2950 write_sequnlock(&rename_lock);
2951}
2952
e2761a11
OH
2953/**
2954 * d_ancestor - search for an ancestor
2955 * @p1: ancestor dentry
2956 * @p2: child dentry
2957 *
2958 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2959 * an ancestor of p2, else NULL.
9eaef27b 2960 */
e2761a11 2961struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2962{
2963 struct dentry *p;
2964
871c0067 2965 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2966 if (p->d_parent == p1)
e2761a11 2967 return p;
9eaef27b 2968 }
e2761a11 2969 return NULL;
9eaef27b
TM
2970}
2971
2972/*
2973 * This helper attempts to cope with remotely renamed directories
2974 *
2975 * It assumes that the caller is already holding
a03e283b 2976 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2977 *
2978 * Note: If ever the locking in lock_rename() changes, then please
2979 * remember to update this too...
9eaef27b 2980 */
b5ae6b15 2981static int __d_unalias(struct inode *inode,
873feea0 2982 struct dentry *dentry, struct dentry *alias)
9eaef27b 2983{
9902af79
AV
2984 struct mutex *m1 = NULL;
2985 struct rw_semaphore *m2 = NULL;
3d330dc1 2986 int ret = -ESTALE;
9eaef27b
TM
2987
2988 /* If alias and dentry share a parent, then no extra locks required */
2989 if (alias->d_parent == dentry->d_parent)
2990 goto out_unalias;
2991
9eaef27b 2992 /* See lock_rename() */
9eaef27b
TM
2993 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2994 goto out_err;
2995 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2996 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2997 goto out_err;
9902af79 2998 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2999out_unalias:
8ed936b5 3000 __d_move(alias, dentry, false);
b5ae6b15 3001 ret = 0;
9eaef27b 3002out_err:
9eaef27b 3003 if (m2)
9902af79 3004 up_read(m2);
9eaef27b
TM
3005 if (m1)
3006 mutex_unlock(m1);
3007 return ret;
3008}
3009
3f70bd51
BF
3010/**
3011 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3012 * @inode: the inode which may have a disconnected dentry
3013 * @dentry: a negative dentry which we want to point to the inode.
3014 *
da093a9b
BF
3015 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3016 * place of the given dentry and return it, else simply d_add the inode
3017 * to the dentry and return NULL.
3f70bd51 3018 *
908790fa
BF
3019 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3020 * we should error out: directories can't have multiple aliases.
3021 *
3f70bd51
BF
3022 * This is needed in the lookup routine of any filesystem that is exportable
3023 * (via knfsd) so that we can build dcache paths to directories effectively.
3024 *
3025 * If a dentry was found and moved, then it is returned. Otherwise NULL
3026 * is returned. This matches the expected return value of ->lookup.
3027 *
3028 * Cluster filesystems may call this function with a negative, hashed dentry.
3029 * In that case, we know that the inode will be a regular file, and also this
3030 * will only occur during atomic_open. So we need to check for the dentry
3031 * being already hashed only in the final case.
3032 */
3033struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3034{
3f70bd51
BF
3035 if (IS_ERR(inode))
3036 return ERR_CAST(inode);
3037
770bfad8
DH
3038 BUG_ON(!d_unhashed(dentry));
3039
de689f5e 3040 if (!inode)
b5ae6b15 3041 goto out;
de689f5e 3042
b9680917 3043 security_d_instantiate(dentry, inode);
873feea0 3044 spin_lock(&inode->i_lock);
9eaef27b 3045 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
3046 struct dentry *new = __d_find_any_alias(inode);
3047 if (unlikely(new)) {
a03e283b
EB
3048 /* The reference to new ensures it remains an alias */
3049 spin_unlock(&inode->i_lock);
18367501 3050 write_seqlock(&rename_lock);
b5ae6b15
AV
3051 if (unlikely(d_ancestor(new, dentry))) {
3052 write_sequnlock(&rename_lock);
b5ae6b15
AV
3053 dput(new);
3054 new = ERR_PTR(-ELOOP);
3055 pr_warn_ratelimited(
3056 "VFS: Lookup of '%s' in %s %s"
3057 " would have caused loop\n",
3058 dentry->d_name.name,
3059 inode->i_sb->s_type->name,
3060 inode->i_sb->s_id);
3061 } else if (!IS_ROOT(new)) {
3062 int err = __d_unalias(inode, dentry, new);
18367501 3063 write_sequnlock(&rename_lock);
b5ae6b15
AV
3064 if (err) {
3065 dput(new);
3066 new = ERR_PTR(err);
3067 }
18367501 3068 } else {
b5ae6b15
AV
3069 __d_move(new, dentry, false);
3070 write_sequnlock(&rename_lock);
dd179946 3071 }
b5ae6b15
AV
3072 iput(inode);
3073 return new;
9eaef27b 3074 }
770bfad8 3075 }
b5ae6b15 3076out:
ed782b5a 3077 __d_add(dentry, inode);
b5ae6b15 3078 return NULL;
770bfad8 3079}
b5ae6b15 3080EXPORT_SYMBOL(d_splice_alias);
770bfad8 3081
cdd16d02 3082static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
3083{
3084 *buflen -= namelen;
3085 if (*buflen < 0)
3086 return -ENAMETOOLONG;
3087 *buffer -= namelen;
3088 memcpy(*buffer, str, namelen);
3089 return 0;
3090}
3091
232d2d60
WL
3092/**
3093 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
3094 * @buffer: buffer pointer
3095 * @buflen: allocated length of the buffer
3096 * @name: name string and length qstr structure
232d2d60 3097 *
66702eb5 3098 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
232d2d60
WL
3099 * make sure that either the old or the new name pointer and length are
3100 * fetched. However, there may be mismatch between length and pointer.
3101 * The length cannot be trusted, we need to copy it byte-by-byte until
3102 * the length is reached or a null byte is found. It also prepends "/" at
3103 * the beginning of the name. The sequence number check at the caller will
3104 * retry it again when a d_move() does happen. So any garbage in the buffer
3105 * due to mismatched pointer and length will be discarded.
6d13f694 3106 *
7088efa9 3107 * Load acquire is needed to make sure that we see that terminating NUL.
232d2d60 3108 */
9aba36de 3109static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
cdd16d02 3110{
7088efa9 3111 const char *dname = smp_load_acquire(&name->name); /* ^^^ */
66702eb5 3112 u32 dlen = READ_ONCE(name->len);
232d2d60
WL
3113 char *p;
3114
232d2d60 3115 *buflen -= dlen + 1;
e825196d
AV
3116 if (*buflen < 0)
3117 return -ENAMETOOLONG;
232d2d60
WL
3118 p = *buffer -= dlen + 1;
3119 *p++ = '/';
3120 while (dlen--) {
3121 char c = *dname++;
3122 if (!c)
3123 break;
3124 *p++ = c;
3125 }
3126 return 0;
cdd16d02
MS
3127}
3128
1da177e4 3129/**
208898c1 3130 * prepend_path - Prepend path string to a buffer
9d1bc601 3131 * @path: the dentry/vfsmount to report
02125a82 3132 * @root: root vfsmnt/dentry
f2eb6575
MS
3133 * @buffer: pointer to the end of the buffer
3134 * @buflen: pointer to buffer length
552ce544 3135 *
18129977
WL
3136 * The function will first try to write out the pathname without taking any
3137 * lock other than the RCU read lock to make sure that dentries won't go away.
3138 * It only checks the sequence number of the global rename_lock as any change
3139 * in the dentry's d_seq will be preceded by changes in the rename_lock
3140 * sequence number. If the sequence number had been changed, it will restart
3141 * the whole pathname back-tracing sequence again by taking the rename_lock.
3142 * In this case, there is no need to take the RCU read lock as the recursive
3143 * parent pointer references will keep the dentry chain alive as long as no
3144 * rename operation is performed.
1da177e4 3145 */
02125a82
AV
3146static int prepend_path(const struct path *path,
3147 const struct path *root,
f2eb6575 3148 char **buffer, int *buflen)
1da177e4 3149{
ede4cebc
AV
3150 struct dentry *dentry;
3151 struct vfsmount *vfsmnt;
3152 struct mount *mnt;
f2eb6575 3153 int error = 0;
48a066e7 3154 unsigned seq, m_seq = 0;
232d2d60
WL
3155 char *bptr;
3156 int blen;
6092d048 3157
48f5ec21 3158 rcu_read_lock();
48a066e7
AV
3159restart_mnt:
3160 read_seqbegin_or_lock(&mount_lock, &m_seq);
3161 seq = 0;
4ec6c2ae 3162 rcu_read_lock();
232d2d60
WL
3163restart:
3164 bptr = *buffer;
3165 blen = *buflen;
48a066e7 3166 error = 0;
ede4cebc
AV
3167 dentry = path->dentry;
3168 vfsmnt = path->mnt;
3169 mnt = real_mount(vfsmnt);
232d2d60 3170 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 3171 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
3172 struct dentry * parent;
3173
1da177e4 3174 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
66702eb5 3175 struct mount *parent = READ_ONCE(mnt->mnt_parent);
cde93be4
EB
3176 /* Escaped? */
3177 if (dentry != vfsmnt->mnt_root) {
3178 bptr = *buffer;
3179 blen = *buflen;
3180 error = 3;
3181 break;
3182 }
552ce544 3183 /* Global root? */
48a066e7 3184 if (mnt != parent) {
66702eb5 3185 dentry = READ_ONCE(mnt->mnt_mountpoint);
48a066e7 3186 mnt = parent;
232d2d60
WL
3187 vfsmnt = &mnt->mnt;
3188 continue;
3189 }
232d2d60
WL
3190 if (!error)
3191 error = is_mounted(vfsmnt) ? 1 : 2;
3192 break;
1da177e4
LT
3193 }
3194 parent = dentry->d_parent;
3195 prefetch(parent);
232d2d60 3196 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
3197 if (error)
3198 break;
3199
1da177e4
LT
3200 dentry = parent;
3201 }
48f5ec21
AV
3202 if (!(seq & 1))
3203 rcu_read_unlock();
3204 if (need_seqretry(&rename_lock, seq)) {
3205 seq = 1;
232d2d60 3206 goto restart;
48f5ec21
AV
3207 }
3208 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
3209
3210 if (!(m_seq & 1))
3211 rcu_read_unlock();
48a066e7
AV
3212 if (need_seqretry(&mount_lock, m_seq)) {
3213 m_seq = 1;
3214 goto restart_mnt;
3215 }
3216 done_seqretry(&mount_lock, m_seq);
1da177e4 3217
232d2d60
WL
3218 if (error >= 0 && bptr == *buffer) {
3219 if (--blen < 0)
3220 error = -ENAMETOOLONG;
3221 else
3222 *--bptr = '/';
3223 }
3224 *buffer = bptr;
3225 *buflen = blen;
7ea600b5 3226 return error;
f2eb6575 3227}
be285c71 3228
f2eb6575
MS
3229/**
3230 * __d_path - return the path of a dentry
3231 * @path: the dentry/vfsmount to report
02125a82 3232 * @root: root vfsmnt/dentry
cd956a1c 3233 * @buf: buffer to return value in
f2eb6575
MS
3234 * @buflen: buffer length
3235 *
ffd1f4ed 3236 * Convert a dentry into an ASCII path name.
f2eb6575
MS
3237 *
3238 * Returns a pointer into the buffer or an error code if the
3239 * path was too long.
3240 *
be148247 3241 * "buflen" should be positive.
f2eb6575 3242 *
02125a82 3243 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 3244 */
02125a82
AV
3245char *__d_path(const struct path *path,
3246 const struct path *root,
f2eb6575
MS
3247 char *buf, int buflen)
3248{
3249 char *res = buf + buflen;
3250 int error;
3251
3252 prepend(&res, &buflen, "\0", 1);
f2eb6575 3253 error = prepend_path(path, root, &res, &buflen);
be148247 3254
02125a82
AV
3255 if (error < 0)
3256 return ERR_PTR(error);
3257 if (error > 0)
3258 return NULL;
3259 return res;
3260}
3261
3262char *d_absolute_path(const struct path *path,
3263 char *buf, int buflen)
3264{
3265 struct path root = {};
3266 char *res = buf + buflen;
3267 int error;
3268
3269 prepend(&res, &buflen, "\0", 1);
02125a82 3270 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3271
3272 if (error > 1)
3273 error = -EINVAL;
3274 if (error < 0)
f2eb6575 3275 return ERR_PTR(error);
f2eb6575 3276 return res;
1da177e4
LT
3277}
3278
ffd1f4ed
MS
3279/*
3280 * same as __d_path but appends "(deleted)" for unlinked files.
3281 */
02125a82
AV
3282static int path_with_deleted(const struct path *path,
3283 const struct path *root,
3284 char **buf, int *buflen)
ffd1f4ed
MS
3285{
3286 prepend(buf, buflen, "\0", 1);
3287 if (d_unlinked(path->dentry)) {
3288 int error = prepend(buf, buflen, " (deleted)", 10);
3289 if (error)
3290 return error;
3291 }
3292
3293 return prepend_path(path, root, buf, buflen);
3294}
3295
8df9d1a4
MS
3296static int prepend_unreachable(char **buffer, int *buflen)
3297{
3298 return prepend(buffer, buflen, "(unreachable)", 13);
3299}
3300
68f0d9d9
LT
3301static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3302{
3303 unsigned seq;
3304
3305 do {
3306 seq = read_seqcount_begin(&fs->seq);
3307 *root = fs->root;
3308 } while (read_seqcount_retry(&fs->seq, seq));
3309}
3310
a03a8a70
JB
3311/**
3312 * d_path - return the path of a dentry
cf28b486 3313 * @path: path to report
a03a8a70
JB
3314 * @buf: buffer to return value in
3315 * @buflen: buffer length
3316 *
3317 * Convert a dentry into an ASCII path name. If the entry has been deleted
3318 * the string " (deleted)" is appended. Note that this is ambiguous.
3319 *
52afeefb
AV
3320 * Returns a pointer into the buffer or an error code if the path was
3321 * too long. Note: Callers should use the returned pointer, not the passed
3322 * in buffer, to use the name! The implementation often starts at an offset
3323 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3324 *
31f3e0b3 3325 * "buflen" should be positive.
a03a8a70 3326 */
20d4fdc1 3327char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3328{
ffd1f4ed 3329 char *res = buf + buflen;
6ac08c39 3330 struct path root;
ffd1f4ed 3331 int error;
1da177e4 3332
c23fbb6b
ED
3333 /*
3334 * We have various synthetic filesystems that never get mounted. On
3335 * these filesystems dentries are never used for lookup purposes, and
3336 * thus don't need to be hashed. They also don't need a name until a
3337 * user wants to identify the object in /proc/pid/fd/. The little hack
3338 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3339 *
3340 * Some pseudo inodes are mountable. When they are mounted
3341 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3342 * and instead have d_path return the mounted path.
c23fbb6b 3343 */
f48cfddc
EB
3344 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3345 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3346 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3347
68f0d9d9
LT
3348 rcu_read_lock();
3349 get_fs_root_rcu(current->fs, &root);
02125a82 3350 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3351 rcu_read_unlock();
3352
02125a82 3353 if (error < 0)
ffd1f4ed 3354 res = ERR_PTR(error);
1da177e4
LT
3355 return res;
3356}
ec4f8605 3357EXPORT_SYMBOL(d_path);
1da177e4 3358
c23fbb6b
ED
3359/*
3360 * Helper function for dentry_operations.d_dname() members
3361 */
3362char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3363 const char *fmt, ...)
3364{
3365 va_list args;
3366 char temp[64];
3367 int sz;
3368
3369 va_start(args, fmt);
3370 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3371 va_end(args);
3372
3373 if (sz > sizeof(temp) || sz > buflen)
3374 return ERR_PTR(-ENAMETOOLONG);
3375
3376 buffer += buflen - sz;
3377 return memcpy(buffer, temp, sz);
3378}
3379
118b2302
AV
3380char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3381{
3382 char *end = buffer + buflen;
3383 /* these dentries are never renamed, so d_lock is not needed */
3384 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3385 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3386 prepend(&end, &buflen, "/", 1))
3387 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3388 return end;
118b2302 3389}
31bbe16f 3390EXPORT_SYMBOL(simple_dname);
118b2302 3391
6092d048
RP
3392/*
3393 * Write full pathname from the root of the filesystem into the buffer.
3394 */
f6500801 3395static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3396{
f6500801 3397 struct dentry *dentry;
232d2d60
WL
3398 char *end, *retval;
3399 int len, seq = 0;
3400 int error = 0;
6092d048 3401
f6500801
AV
3402 if (buflen < 2)
3403 goto Elong;
3404
48f5ec21 3405 rcu_read_lock();
232d2d60 3406restart:
f6500801 3407 dentry = d;
232d2d60
WL
3408 end = buf + buflen;
3409 len = buflen;
3410 prepend(&end, &len, "\0", 1);
6092d048
RP
3411 /* Get '/' right */
3412 retval = end-1;
3413 *retval = '/';
232d2d60 3414 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3415 while (!IS_ROOT(dentry)) {
3416 struct dentry *parent = dentry->d_parent;
6092d048 3417
6092d048 3418 prefetch(parent);
232d2d60
WL
3419 error = prepend_name(&end, &len, &dentry->d_name);
3420 if (error)
3421 break;
6092d048
RP
3422
3423 retval = end;
3424 dentry = parent;
3425 }
48f5ec21
AV
3426 if (!(seq & 1))
3427 rcu_read_unlock();
3428 if (need_seqretry(&rename_lock, seq)) {
3429 seq = 1;
232d2d60 3430 goto restart;
48f5ec21
AV
3431 }
3432 done_seqretry(&rename_lock, seq);
232d2d60
WL
3433 if (error)
3434 goto Elong;
c103135c
AV
3435 return retval;
3436Elong:
3437 return ERR_PTR(-ENAMETOOLONG);
3438}
ec2447c2
NP
3439
3440char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3441{
232d2d60 3442 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3443}
3444EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3445
3446char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3447{
3448 char *p = NULL;
3449 char *retval;
3450
c103135c
AV
3451 if (d_unlinked(dentry)) {
3452 p = buf + buflen;
3453 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3454 goto Elong;
3455 buflen++;
3456 }
3457 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3458 if (!IS_ERR(retval) && p)
3459 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3460 return retval;
3461Elong:
6092d048
RP
3462 return ERR_PTR(-ENAMETOOLONG);
3463}
3464
8b19e341
LT
3465static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3466 struct path *pwd)
5762482f 3467{
8b19e341
LT
3468 unsigned seq;
3469
3470 do {
3471 seq = read_seqcount_begin(&fs->seq);
3472 *root = fs->root;
3473 *pwd = fs->pwd;
3474 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3475}
3476
1da177e4
LT
3477/*
3478 * NOTE! The user-level library version returns a
3479 * character pointer. The kernel system call just
3480 * returns the length of the buffer filled (which
3481 * includes the ending '\0' character), or a negative
3482 * error value. So libc would do something like
3483 *
3484 * char *getcwd(char * buf, size_t size)
3485 * {
3486 * int retval;
3487 *
3488 * retval = sys_getcwd(buf, size);
3489 * if (retval >= 0)
3490 * return buf;
3491 * errno = -retval;
3492 * return NULL;
3493 * }
3494 */
3cdad428 3495SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3496{
552ce544 3497 int error;
6ac08c39 3498 struct path pwd, root;
3272c544 3499 char *page = __getname();
1da177e4
LT
3500
3501 if (!page)
3502 return -ENOMEM;
3503
8b19e341
LT
3504 rcu_read_lock();
3505 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3506
552ce544 3507 error = -ENOENT;
f3da392e 3508 if (!d_unlinked(pwd.dentry)) {
552ce544 3509 unsigned long len;
3272c544
LT
3510 char *cwd = page + PATH_MAX;
3511 int buflen = PATH_MAX;
1da177e4 3512
8df9d1a4 3513 prepend(&cwd, &buflen, "\0", 1);
02125a82 3514 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3515 rcu_read_unlock();
552ce544 3516
02125a82 3517 if (error < 0)
552ce544
LT
3518 goto out;
3519
8df9d1a4 3520 /* Unreachable from current root */
02125a82 3521 if (error > 0) {
8df9d1a4
MS
3522 error = prepend_unreachable(&cwd, &buflen);
3523 if (error)
3524 goto out;
3525 }
3526
552ce544 3527 error = -ERANGE;
3272c544 3528 len = PATH_MAX + page - cwd;
552ce544
LT
3529 if (len <= size) {
3530 error = len;
3531 if (copy_to_user(buf, cwd, len))
3532 error = -EFAULT;
3533 }
949854d0 3534 } else {
ff812d72 3535 rcu_read_unlock();
949854d0 3536 }
1da177e4
LT
3537
3538out:
3272c544 3539 __putname(page);
1da177e4
LT
3540 return error;
3541}
3542
3543/*
3544 * Test whether new_dentry is a subdirectory of old_dentry.
3545 *
3546 * Trivially implemented using the dcache structure
3547 */
3548
3549/**
3550 * is_subdir - is new dentry a subdirectory of old_dentry
3551 * @new_dentry: new dentry
3552 * @old_dentry: old dentry
3553 *
a6e5787f
YB
3554 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3555 * Returns false otherwise.
1da177e4
LT
3556 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3557 */
3558
a6e5787f 3559bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3560{
a6e5787f 3561 bool result;
949854d0 3562 unsigned seq;
1da177e4 3563
e2761a11 3564 if (new_dentry == old_dentry)
a6e5787f 3565 return true;
e2761a11 3566
e2761a11 3567 do {
1da177e4 3568 /* for restarting inner loop in case of seq retry */
1da177e4 3569 seq = read_seqbegin(&rename_lock);
949854d0
NP
3570 /*
3571 * Need rcu_readlock to protect against the d_parent trashing
3572 * due to d_move
3573 */
3574 rcu_read_lock();
e2761a11 3575 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3576 result = true;
e2761a11 3577 else
a6e5787f 3578 result = false;
949854d0 3579 rcu_read_unlock();
1da177e4 3580 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3581
3582 return result;
3583}
e8f9e5b7 3584EXPORT_SYMBOL(is_subdir);
1da177e4 3585
db14fc3a 3586static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3587{
db14fc3a
MS
3588 struct dentry *root = data;
3589 if (dentry != root) {
3590 if (d_unhashed(dentry) || !dentry->d_inode)
3591 return D_WALK_SKIP;
1da177e4 3592
01ddc4ed
MS
3593 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3594 dentry->d_flags |= DCACHE_GENOCIDE;
3595 dentry->d_lockref.count--;
3596 }
1da177e4 3597 }
db14fc3a
MS
3598 return D_WALK_CONTINUE;
3599}
58db63d0 3600
db14fc3a
MS
3601void d_genocide(struct dentry *parent)
3602{
3603 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3604}
3605
60545d0d 3606void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3607{
60545d0d
AV
3608 inode_dec_link_count(inode);
3609 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3610 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3611 !d_unlinked(dentry));
3612 spin_lock(&dentry->d_parent->d_lock);
3613 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3614 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3615 (unsigned long long)inode->i_ino);
3616 spin_unlock(&dentry->d_lock);
3617 spin_unlock(&dentry->d_parent->d_lock);
3618 d_instantiate(dentry, inode);
1da177e4 3619}
60545d0d 3620EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3621
3622static __initdata unsigned long dhash_entries;
3623static int __init set_dhash_entries(char *str)
3624{
3625 if (!str)
3626 return 0;
3627 dhash_entries = simple_strtoul(str, &str, 0);
3628 return 1;
3629}
3630__setup("dhash_entries=", set_dhash_entries);
3631
3632static void __init dcache_init_early(void)
3633{
1da177e4
LT
3634 /* If hashes are distributed across NUMA nodes, defer
3635 * hash allocation until vmalloc space is available.
3636 */
3637 if (hashdist)
3638 return;
3639
3640 dentry_hashtable =
3641 alloc_large_system_hash("Dentry cache",
b07ad996 3642 sizeof(struct hlist_bl_head),
1da177e4
LT
3643 dhash_entries,
3644 13,
3d375d78 3645 HASH_EARLY | HASH_ZERO,
1da177e4 3646 &d_hash_shift,
b35d786b 3647 NULL,
31fe62b9 3648 0,
1da177e4 3649 0);
854d3e63 3650 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3651}
3652
74bf17cf 3653static void __init dcache_init(void)
1da177e4 3654{
3d375d78 3655 /*
1da177e4
LT
3656 * A constructor could be added for stable state like the lists,
3657 * but it is probably not worth it because of the cache nature
3d375d78 3658 * of the dcache.
1da177e4 3659 */
80344266
DW
3660 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3661 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3662 d_iname);
1da177e4
LT
3663
3664 /* Hash may have been set up in dcache_init_early */
3665 if (!hashdist)
3666 return;
3667
3668 dentry_hashtable =
3669 alloc_large_system_hash("Dentry cache",
b07ad996 3670 sizeof(struct hlist_bl_head),
1da177e4
LT
3671 dhash_entries,
3672 13,
3d375d78 3673 HASH_ZERO,
1da177e4 3674 &d_hash_shift,
b35d786b 3675 NULL,
31fe62b9 3676 0,
1da177e4 3677 0);
854d3e63 3678 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3679}
3680
3681/* SLAB cache for __getname() consumers */
e18b890b 3682struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3683EXPORT_SYMBOL(names_cachep);
1da177e4 3684
1da177e4
LT
3685EXPORT_SYMBOL(d_genocide);
3686
1da177e4
LT
3687void __init vfs_caches_init_early(void)
3688{
6916363f
SAS
3689 int i;
3690
3691 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3692 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3693
1da177e4
LT
3694 dcache_init_early();
3695 inode_init_early();
3696}
3697
4248b0da 3698void __init vfs_caches_init(void)
1da177e4 3699{
6a9b8820
DW
3700 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3701 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3702
74bf17cf
DC
3703 dcache_init();
3704 inode_init();
4248b0da
MG
3705 files_init();
3706 files_maxfiles_init();
74bf17cf 3707 mnt_init();
1da177e4
LT
3708 bdev_cache_init();
3709 chrdev_init();
3710}