now lock_parent() can't run into killed dentry
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
7c0f6ba6 29#include <linux/uaccess.h>
1da177e4
LT
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
ceb5bdc2
NP
35#include <linux/bit_spinlock.h>
36#include <linux/rculist_bl.h>
268bb0ce 37#include <linux/prefetch.h>
dd179946 38#include <linux/ratelimit.h>
f6041567 39#include <linux/list_lru.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0 45 * dcache->d_inode->i_lock protects:
946e51f2 46 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
f1ee6162
N
49 * s_roots bl list spinlock protects:
50 * - the s_roots list (see __d_drop)
19156840 51 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
946e51f2 61 * - d_u.d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6 65 * dentry->d_lock
19156840 66 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 67 * dcache_hash_bucket lock
f1ee6162 68 * s_roots lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
74c3cbe3 84__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 85
949854d0 86EXPORT_SYMBOL(rename_lock);
1da177e4 87
e18b890b 88static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 89
cdf01226
DH
90const struct qstr empty_name = QSTR_INIT("", 0);
91EXPORT_SYMBOL(empty_name);
92const struct qstr slash_name = QSTR_INIT("/", 1);
93EXPORT_SYMBOL(slash_name);
94
1da177e4
LT
95/*
96 * This is the single most critical data structure when it comes
97 * to the dcache: the hashtable for lookups. Somebody should try
98 * to make this good - I've just made it work.
99 *
100 * This hash-function tries to avoid losing too many bits of hash
101 * information, yet avoid using a prime hash-size or similar.
102 */
1da177e4 103
fa3536cc 104static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 105
b07ad996 106static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 107
8387ff25 108static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 109{
854d3e63 110 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
111}
112
94bdd655
AV
113#define IN_LOOKUP_SHIFT 10
114static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
115
116static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
117 unsigned int hash)
118{
119 hash += (unsigned long) parent / L1_CACHE_BYTES;
120 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
121}
122
123
1da177e4
LT
124/* Statistics gathering. */
125struct dentry_stat_t dentry_stat = {
126 .age_limit = 45,
127};
128
3942c07c 129static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 130static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
131
132#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
133
134/*
135 * Here we resort to our own counters instead of using generic per-cpu counters
136 * for consistency with what the vfs inode code does. We are expected to harvest
137 * better code and performance by having our own specialized counters.
138 *
139 * Please note that the loop is done over all possible CPUs, not over all online
140 * CPUs. The reason for this is that we don't want to play games with CPUs going
141 * on and off. If one of them goes off, we will just keep their counters.
142 *
143 * glommer: See cffbc8a for details, and if you ever intend to change this,
144 * please update all vfs counters to match.
145 */
3942c07c 146static long get_nr_dentry(void)
3e880fb5
NP
147{
148 int i;
3942c07c 149 long sum = 0;
3e880fb5
NP
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry, i);
152 return sum < 0 ? 0 : sum;
153}
154
62d36c77
DC
155static long get_nr_dentry_unused(void)
156{
157 int i;
158 long sum = 0;
159 for_each_possible_cpu(i)
160 sum += per_cpu(nr_dentry_unused, i);
161 return sum < 0 ? 0 : sum;
162}
163
1f7e0616 164int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
165 size_t *lenp, loff_t *ppos)
166{
3e880fb5 167 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 168 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 169 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
170}
171#endif
172
5483f18e
LT
173/*
174 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
175 * The strings are both count bytes long, and count is non-zero.
176 */
e419b4cc
LT
177#ifdef CONFIG_DCACHE_WORD_ACCESS
178
179#include <asm/word-at-a-time.h>
180/*
181 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
182 * aligned allocation for this particular component. We don't
183 * strictly need the load_unaligned_zeropad() safety, but it
184 * doesn't hurt either.
185 *
186 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
187 * need the careful unaligned handling.
188 */
94753db5 189static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 190{
bfcfaa77 191 unsigned long a,b,mask;
bfcfaa77
LT
192
193 for (;;) {
bfe7aa6c 194 a = read_word_at_a_time(cs);
e419b4cc 195 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
196 if (tcount < sizeof(unsigned long))
197 break;
198 if (unlikely(a != b))
199 return 1;
200 cs += sizeof(unsigned long);
201 ct += sizeof(unsigned long);
202 tcount -= sizeof(unsigned long);
203 if (!tcount)
204 return 0;
205 }
a5c21dce 206 mask = bytemask_from_count(tcount);
bfcfaa77 207 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
208}
209
bfcfaa77 210#else
e419b4cc 211
94753db5 212static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 213{
5483f18e
LT
214 do {
215 if (*cs != *ct)
216 return 1;
217 cs++;
218 ct++;
219 tcount--;
220 } while (tcount);
221 return 0;
222}
223
e419b4cc
LT
224#endif
225
94753db5
LT
226static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
227{
94753db5
LT
228 /*
229 * Be careful about RCU walk racing with rename:
506458ef 230 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
231 *
232 * NOTE! Even if a rename will mean that the length
233 * was not loaded atomically, we don't care. The
234 * RCU walk will check the sequence count eventually,
235 * and catch it. And we won't overrun the buffer,
236 * because we're reading the name pointer atomically,
237 * and a dentry name is guaranteed to be properly
238 * terminated with a NUL byte.
239 *
240 * End result: even if 'len' is wrong, we'll exit
241 * early because the data cannot match (there can
242 * be no NUL in the ct/tcount data)
243 */
506458ef 244 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 245
6326c71f 246 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
247}
248
8d85b484
AV
249struct external_name {
250 union {
251 atomic_t count;
252 struct rcu_head head;
253 } u;
254 unsigned char name[];
255};
256
257static inline struct external_name *external_name(struct dentry *dentry)
258{
259 return container_of(dentry->d_name.name, struct external_name, name[0]);
260}
261
9c82ab9c 262static void __d_free(struct rcu_head *head)
1da177e4 263{
9c82ab9c
CH
264 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
265
8d85b484
AV
266 kmem_cache_free(dentry_cache, dentry);
267}
268
269static void __d_free_external(struct rcu_head *head)
270{
271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 272 kfree(external_name(dentry));
1da177e4
LT
273 kmem_cache_free(dentry_cache, dentry);
274}
275
810bb172
AV
276static inline int dname_external(const struct dentry *dentry)
277{
278 return dentry->d_name.name != dentry->d_iname;
279}
280
49d31c2f
AV
281void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
282{
283 spin_lock(&dentry->d_lock);
284 if (unlikely(dname_external(dentry))) {
285 struct external_name *p = external_name(dentry);
286 atomic_inc(&p->u.count);
287 spin_unlock(&dentry->d_lock);
288 name->name = p->name;
289 } else {
290 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
291 spin_unlock(&dentry->d_lock);
292 name->name = name->inline_name;
293 }
294}
295EXPORT_SYMBOL(take_dentry_name_snapshot);
296
297void release_dentry_name_snapshot(struct name_snapshot *name)
298{
299 if (unlikely(name->name != name->inline_name)) {
300 struct external_name *p;
301 p = container_of(name->name, struct external_name, name[0]);
302 if (unlikely(atomic_dec_and_test(&p->u.count)))
303 kfree_rcu(p, u.head);
304 }
305}
306EXPORT_SYMBOL(release_dentry_name_snapshot);
307
4bf46a27
DH
308static inline void __d_set_inode_and_type(struct dentry *dentry,
309 struct inode *inode,
310 unsigned type_flags)
311{
312 unsigned flags;
313
314 dentry->d_inode = inode;
4bf46a27
DH
315 flags = READ_ONCE(dentry->d_flags);
316 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
317 flags |= type_flags;
318 WRITE_ONCE(dentry->d_flags, flags);
319}
320
4bf46a27
DH
321static inline void __d_clear_type_and_inode(struct dentry *dentry)
322{
323 unsigned flags = READ_ONCE(dentry->d_flags);
324
325 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
326 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
327 dentry->d_inode = NULL;
328}
329
b4f0354e
AV
330static void dentry_free(struct dentry *dentry)
331{
946e51f2 332 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
333 if (unlikely(dname_external(dentry))) {
334 struct external_name *p = external_name(dentry);
335 if (likely(atomic_dec_and_test(&p->u.count))) {
336 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
337 return;
338 }
339 }
b4f0354e
AV
340 /* if dentry was never visible to RCU, immediate free is OK */
341 if (!(dentry->d_flags & DCACHE_RCUACCESS))
342 __d_free(&dentry->d_u.d_rcu);
343 else
344 call_rcu(&dentry->d_u.d_rcu, __d_free);
345}
346
1da177e4
LT
347/*
348 * Release the dentry's inode, using the filesystem
550dce01 349 * d_iput() operation if defined.
31e6b01f
NP
350 */
351static void dentry_unlink_inode(struct dentry * dentry)
352 __releases(dentry->d_lock)
873feea0 353 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
354{
355 struct inode *inode = dentry->d_inode;
550dce01 356 bool hashed = !d_unhashed(dentry);
a528aca7 357
550dce01
AV
358 if (hashed)
359 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 360 __d_clear_type_and_inode(dentry);
946e51f2 361 hlist_del_init(&dentry->d_u.d_alias);
550dce01
AV
362 if (hashed)
363 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 364 spin_unlock(&dentry->d_lock);
873feea0 365 spin_unlock(&inode->i_lock);
31e6b01f
NP
366 if (!inode->i_nlink)
367 fsnotify_inoderemove(inode);
368 if (dentry->d_op && dentry->d_op->d_iput)
369 dentry->d_op->d_iput(dentry, inode);
370 else
371 iput(inode);
372}
373
89dc77bc
LT
374/*
375 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
376 * is in use - which includes both the "real" per-superblock
377 * LRU list _and_ the DCACHE_SHRINK_LIST use.
378 *
379 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
380 * on the shrink list (ie not on the superblock LRU list).
381 *
382 * The per-cpu "nr_dentry_unused" counters are updated with
383 * the DCACHE_LRU_LIST bit.
384 *
385 * These helper functions make sure we always follow the
386 * rules. d_lock must be held by the caller.
387 */
388#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
389static void d_lru_add(struct dentry *dentry)
390{
391 D_FLAG_VERIFY(dentry, 0);
392 dentry->d_flags |= DCACHE_LRU_LIST;
393 this_cpu_inc(nr_dentry_unused);
394 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
395}
396
397static void d_lru_del(struct dentry *dentry)
398{
399 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
400 dentry->d_flags &= ~DCACHE_LRU_LIST;
401 this_cpu_dec(nr_dentry_unused);
402 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
403}
404
405static void d_shrink_del(struct dentry *dentry)
406{
407 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
408 list_del_init(&dentry->d_lru);
409 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410 this_cpu_dec(nr_dentry_unused);
411}
412
413static void d_shrink_add(struct dentry *dentry, struct list_head *list)
414{
415 D_FLAG_VERIFY(dentry, 0);
416 list_add(&dentry->d_lru, list);
417 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
418 this_cpu_inc(nr_dentry_unused);
419}
420
421/*
422 * These can only be called under the global LRU lock, ie during the
423 * callback for freeing the LRU list. "isolate" removes it from the
424 * LRU lists entirely, while shrink_move moves it to the indicated
425 * private list.
426 */
3f97b163 427static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
428{
429 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
430 dentry->d_flags &= ~DCACHE_LRU_LIST;
431 this_cpu_dec(nr_dentry_unused);
3f97b163 432 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
433}
434
3f97b163
VD
435static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
436 struct list_head *list)
89dc77bc
LT
437{
438 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
439 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 440 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
441}
442
da3bbdd4 443/*
f6041567 444 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
445 */
446static void dentry_lru_add(struct dentry *dentry)
447{
89dc77bc
LT
448 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
449 d_lru_add(dentry);
563f4001
JB
450 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
451 dentry->d_flags |= DCACHE_REFERENCED;
da3bbdd4
KM
452}
453
789680d1
NP
454/**
455 * d_drop - drop a dentry
456 * @dentry: dentry to drop
457 *
458 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
459 * be found through a VFS lookup any more. Note that this is different from
460 * deleting the dentry - d_delete will try to mark the dentry negative if
461 * possible, giving a successful _negative_ lookup, while d_drop will
462 * just make the cache lookup fail.
463 *
464 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
465 * reason (NFS timeouts or autofs deletes).
466 *
61647823
N
467 * __d_drop requires dentry->d_lock
468 * ___d_drop doesn't mark dentry as "unhashed"
469 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
789680d1 470 */
61647823 471static void ___d_drop(struct dentry *dentry)
789680d1 472{
0632a9ac
AV
473 struct hlist_bl_head *b;
474 /*
475 * Hashed dentries are normally on the dentry hashtable,
476 * with the exception of those newly allocated by
477 * d_obtain_root, which are always IS_ROOT:
478 */
479 if (unlikely(IS_ROOT(dentry)))
480 b = &dentry->d_sb->s_roots;
481 else
482 b = d_hash(dentry->d_name.hash);
b61625d2 483
0632a9ac
AV
484 hlist_bl_lock(b);
485 __hlist_bl_del(&dentry->d_hash);
486 hlist_bl_unlock(b);
789680d1 487}
61647823
N
488
489void __d_drop(struct dentry *dentry)
490{
0632a9ac
AV
491 if (!d_unhashed(dentry)) {
492 ___d_drop(dentry);
493 dentry->d_hash.pprev = NULL;
494 write_seqcount_invalidate(&dentry->d_seq);
495 }
61647823 496}
789680d1
NP
497EXPORT_SYMBOL(__d_drop);
498
499void d_drop(struct dentry *dentry)
500{
789680d1
NP
501 spin_lock(&dentry->d_lock);
502 __d_drop(dentry);
503 spin_unlock(&dentry->d_lock);
789680d1
NP
504}
505EXPORT_SYMBOL(d_drop);
506
ba65dc5e
AV
507static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
508{
509 struct dentry *next;
510 /*
511 * Inform d_walk() and shrink_dentry_list() that we are no longer
512 * attached to the dentry tree
513 */
514 dentry->d_flags |= DCACHE_DENTRY_KILLED;
515 if (unlikely(list_empty(&dentry->d_child)))
516 return;
517 __list_del_entry(&dentry->d_child);
518 /*
519 * Cursors can move around the list of children. While we'd been
520 * a normal list member, it didn't matter - ->d_child.next would've
521 * been updated. However, from now on it won't be and for the
522 * things like d_walk() it might end up with a nasty surprise.
523 * Normally d_walk() doesn't care about cursors moving around -
524 * ->d_lock on parent prevents that and since a cursor has no children
525 * of its own, we get through it without ever unlocking the parent.
526 * There is one exception, though - if we ascend from a child that
527 * gets killed as soon as we unlock it, the next sibling is found
528 * using the value left in its ->d_child.next. And if _that_
529 * pointed to a cursor, and cursor got moved (e.g. by lseek())
530 * before d_walk() regains parent->d_lock, we'll end up skipping
531 * everything the cursor had been moved past.
532 *
533 * Solution: make sure that the pointer left behind in ->d_child.next
534 * points to something that won't be moving around. I.e. skip the
535 * cursors.
536 */
537 while (dentry->d_child.next != &parent->d_subdirs) {
538 next = list_entry(dentry->d_child.next, struct dentry, d_child);
539 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
540 break;
541 dentry->d_child.next = next->d_child.next;
542 }
543}
544
e55fd011 545static void __dentry_kill(struct dentry *dentry)
77812a1e 546{
41edf278
AV
547 struct dentry *parent = NULL;
548 bool can_free = true;
41edf278 549 if (!IS_ROOT(dentry))
77812a1e 550 parent = dentry->d_parent;
31e6b01f 551
0d98439e
LT
552 /*
553 * The dentry is now unrecoverably dead to the world.
554 */
555 lockref_mark_dead(&dentry->d_lockref);
556
f0023bc6 557 /*
f0023bc6
SW
558 * inform the fs via d_prune that this dentry is about to be
559 * unhashed and destroyed.
560 */
29266201 561 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
562 dentry->d_op->d_prune(dentry);
563
01b60351
AV
564 if (dentry->d_flags & DCACHE_LRU_LIST) {
565 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
566 d_lru_del(dentry);
01b60351 567 }
77812a1e
NP
568 /* if it was on the hash then remove it */
569 __d_drop(dentry);
ba65dc5e 570 dentry_unlist(dentry, parent);
03b3b889
AV
571 if (parent)
572 spin_unlock(&parent->d_lock);
550dce01
AV
573 if (dentry->d_inode)
574 dentry_unlink_inode(dentry);
575 else
576 spin_unlock(&dentry->d_lock);
03b3b889
AV
577 this_cpu_dec(nr_dentry);
578 if (dentry->d_op && dentry->d_op->d_release)
579 dentry->d_op->d_release(dentry);
580
41edf278
AV
581 spin_lock(&dentry->d_lock);
582 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
583 dentry->d_flags |= DCACHE_MAY_FREE;
584 can_free = false;
585 }
586 spin_unlock(&dentry->d_lock);
41edf278
AV
587 if (likely(can_free))
588 dentry_free(dentry);
e55fd011
AV
589}
590
046b961b
AV
591static inline struct dentry *lock_parent(struct dentry *dentry)
592{
593 struct dentry *parent = dentry->d_parent;
594 if (IS_ROOT(dentry))
595 return NULL;
596 if (likely(spin_trylock(&parent->d_lock)))
597 return parent;
046b961b 598 rcu_read_lock();
c2338f2d 599 spin_unlock(&dentry->d_lock);
046b961b 600again:
66702eb5 601 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
602 spin_lock(&parent->d_lock);
603 /*
604 * We can't blindly lock dentry until we are sure
605 * that we won't violate the locking order.
606 * Any changes of dentry->d_parent must have
607 * been done with parent->d_lock held, so
608 * spin_lock() above is enough of a barrier
609 * for checking if it's still our child.
610 */
611 if (unlikely(parent != dentry->d_parent)) {
612 spin_unlock(&parent->d_lock);
613 goto again;
614 }
65d8eb5a
AV
615 rcu_read_unlock();
616 if (parent != dentry)
9f12600f 617 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 618 else
046b961b
AV
619 parent = NULL;
620 return parent;
621}
622
c1d0c1a2
JO
623/*
624 * Finish off a dentry we've decided to kill.
625 * dentry->d_lock must be held, returns with it unlocked.
626 * Returns dentry requiring refcount drop, or NULL if we're done.
627 */
628static struct dentry *dentry_kill(struct dentry *dentry)
629 __releases(dentry->d_lock)
630{
631 struct inode *inode = dentry->d_inode;
632 struct dentry *parent = NULL;
633
634 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
635 goto failed;
636
637 if (!IS_ROOT(dentry)) {
638 parent = dentry->d_parent;
639 if (unlikely(!spin_trylock(&parent->d_lock))) {
640 if (inode)
641 spin_unlock(&inode->i_lock);
642 goto failed;
643 }
644 }
645
646 __dentry_kill(dentry);
647 return parent;
648
649failed:
650 spin_unlock(&dentry->d_lock);
651 return dentry; /* try again with same dentry */
652}
653
360f5479
LT
654/*
655 * Try to do a lockless dput(), and return whether that was successful.
656 *
657 * If unsuccessful, we return false, having already taken the dentry lock.
658 *
659 * The caller needs to hold the RCU read lock, so that the dentry is
660 * guaranteed to stay around even if the refcount goes down to zero!
661 */
662static inline bool fast_dput(struct dentry *dentry)
663{
664 int ret;
665 unsigned int d_flags;
666
667 /*
668 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 669 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
670 */
671 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
672 return lockref_put_or_lock(&dentry->d_lockref);
673
674 /*
675 * .. otherwise, we can try to just decrement the
676 * lockref optimistically.
677 */
678 ret = lockref_put_return(&dentry->d_lockref);
679
680 /*
681 * If the lockref_put_return() failed due to the lock being held
682 * by somebody else, the fast path has failed. We will need to
683 * get the lock, and then check the count again.
684 */
685 if (unlikely(ret < 0)) {
686 spin_lock(&dentry->d_lock);
687 if (dentry->d_lockref.count > 1) {
688 dentry->d_lockref.count--;
689 spin_unlock(&dentry->d_lock);
690 return 1;
691 }
692 return 0;
693 }
694
695 /*
696 * If we weren't the last ref, we're done.
697 */
698 if (ret)
699 return 1;
700
701 /*
702 * Careful, careful. The reference count went down
703 * to zero, but we don't hold the dentry lock, so
704 * somebody else could get it again, and do another
705 * dput(), and we need to not race with that.
706 *
707 * However, there is a very special and common case
708 * where we don't care, because there is nothing to
709 * do: the dentry is still hashed, it does not have
710 * a 'delete' op, and it's referenced and already on
711 * the LRU list.
712 *
713 * NOTE! Since we aren't locked, these values are
714 * not "stable". However, it is sufficient that at
715 * some point after we dropped the reference the
716 * dentry was hashed and the flags had the proper
717 * value. Other dentry users may have re-gotten
718 * a reference to the dentry and change that, but
719 * our work is done - we can leave the dentry
720 * around with a zero refcount.
721 */
722 smp_rmb();
66702eb5 723 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 724 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
725
726 /* Nothing to do? Dropping the reference was all we needed? */
727 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
728 return 1;
729
730 /*
731 * Not the fast normal case? Get the lock. We've already decremented
732 * the refcount, but we'll need to re-check the situation after
733 * getting the lock.
734 */
735 spin_lock(&dentry->d_lock);
736
737 /*
738 * Did somebody else grab a reference to it in the meantime, and
739 * we're no longer the last user after all? Alternatively, somebody
740 * else could have killed it and marked it dead. Either way, we
741 * don't need to do anything else.
742 */
743 if (dentry->d_lockref.count) {
744 spin_unlock(&dentry->d_lock);
745 return 1;
746 }
747
748 /*
749 * Re-get the reference we optimistically dropped. We hold the
750 * lock, and we just tested that it was zero, so we can just
751 * set it to 1.
752 */
753 dentry->d_lockref.count = 1;
754 return 0;
755}
756
757
1da177e4
LT
758/*
759 * This is dput
760 *
761 * This is complicated by the fact that we do not want to put
762 * dentries that are no longer on any hash chain on the unused
763 * list: we'd much rather just get rid of them immediately.
764 *
765 * However, that implies that we have to traverse the dentry
766 * tree upwards to the parents which might _also_ now be
767 * scheduled for deletion (it may have been only waiting for
768 * its last child to go away).
769 *
770 * This tail recursion is done by hand as we don't want to depend
771 * on the compiler to always get this right (gcc generally doesn't).
772 * Real recursion would eat up our stack space.
773 */
774
775/*
776 * dput - release a dentry
777 * @dentry: dentry to release
778 *
779 * Release a dentry. This will drop the usage count and if appropriate
780 * call the dentry unlink method as well as removing it from the queues and
781 * releasing its resources. If the parent dentries were scheduled for release
782 * they too may now get deleted.
1da177e4 783 */
1da177e4
LT
784void dput(struct dentry *dentry)
785{
8aab6a27 786 if (unlikely(!dentry))
1da177e4
LT
787 return;
788
789repeat:
47be6184
WF
790 might_sleep();
791
360f5479
LT
792 rcu_read_lock();
793 if (likely(fast_dput(dentry))) {
794 rcu_read_unlock();
1da177e4 795 return;
360f5479
LT
796 }
797
798 /* Slow case: now with the dentry lock held */
799 rcu_read_unlock();
1da177e4 800
85c7f810
AV
801 WARN_ON(d_in_lookup(dentry));
802
8aab6a27
LT
803 /* Unreachable? Get rid of it */
804 if (unlikely(d_unhashed(dentry)))
805 goto kill_it;
806
75a6f82a
AV
807 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
808 goto kill_it;
809
8aab6a27 810 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 811 if (dentry->d_op->d_delete(dentry))
61f3dee4 812 goto kill_it;
1da177e4 813 }
265ac902 814
a4633357 815 dentry_lru_add(dentry);
265ac902 816
98474236 817 dentry->d_lockref.count--;
61f3dee4 818 spin_unlock(&dentry->d_lock);
1da177e4
LT
819 return;
820
d52b9086 821kill_it:
8cbf74da 822 dentry = dentry_kill(dentry);
47be6184
WF
823 if (dentry) {
824 cond_resched();
d52b9086 825 goto repeat;
47be6184 826 }
1da177e4 827}
ec4f8605 828EXPORT_SYMBOL(dput);
1da177e4 829
1da177e4 830
b5c84bf6 831/* This must be called with d_lock held */
dc0474be 832static inline void __dget_dlock(struct dentry *dentry)
23044507 833{
98474236 834 dentry->d_lockref.count++;
23044507
NP
835}
836
dc0474be 837static inline void __dget(struct dentry *dentry)
1da177e4 838{
98474236 839 lockref_get(&dentry->d_lockref);
1da177e4
LT
840}
841
b7ab39f6
NP
842struct dentry *dget_parent(struct dentry *dentry)
843{
df3d0bbc 844 int gotref;
b7ab39f6
NP
845 struct dentry *ret;
846
df3d0bbc
WL
847 /*
848 * Do optimistic parent lookup without any
849 * locking.
850 */
851 rcu_read_lock();
66702eb5 852 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
853 gotref = lockref_get_not_zero(&ret->d_lockref);
854 rcu_read_unlock();
855 if (likely(gotref)) {
66702eb5 856 if (likely(ret == READ_ONCE(dentry->d_parent)))
df3d0bbc
WL
857 return ret;
858 dput(ret);
859 }
860
b7ab39f6 861repeat:
a734eb45
NP
862 /*
863 * Don't need rcu_dereference because we re-check it was correct under
864 * the lock.
865 */
866 rcu_read_lock();
b7ab39f6 867 ret = dentry->d_parent;
a734eb45
NP
868 spin_lock(&ret->d_lock);
869 if (unlikely(ret != dentry->d_parent)) {
870 spin_unlock(&ret->d_lock);
871 rcu_read_unlock();
b7ab39f6
NP
872 goto repeat;
873 }
a734eb45 874 rcu_read_unlock();
98474236
WL
875 BUG_ON(!ret->d_lockref.count);
876 ret->d_lockref.count++;
b7ab39f6 877 spin_unlock(&ret->d_lock);
b7ab39f6
NP
878 return ret;
879}
880EXPORT_SYMBOL(dget_parent);
881
1da177e4
LT
882/**
883 * d_find_alias - grab a hashed alias of inode
884 * @inode: inode in question
1da177e4
LT
885 *
886 * If inode has a hashed alias, or is a directory and has any alias,
887 * acquire the reference to alias and return it. Otherwise return NULL.
888 * Notice that if inode is a directory there can be only one alias and
889 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
890 * of a filesystem, or if the directory was renamed and d_revalidate
891 * was the first vfs operation to notice.
1da177e4 892 *
21c0d8fd 893 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 894 * any other hashed alias over that one.
1da177e4 895 */
52ed46f0 896static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 897{
da502956 898 struct dentry *alias, *discon_alias;
1da177e4 899
da502956
NP
900again:
901 discon_alias = NULL;
946e51f2 902 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 903 spin_lock(&alias->d_lock);
1da177e4 904 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 905 if (IS_ROOT(alias) &&
da502956 906 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 907 discon_alias = alias;
52ed46f0 908 } else {
dc0474be 909 __dget_dlock(alias);
da502956
NP
910 spin_unlock(&alias->d_lock);
911 return alias;
912 }
913 }
914 spin_unlock(&alias->d_lock);
915 }
916 if (discon_alias) {
917 alias = discon_alias;
918 spin_lock(&alias->d_lock);
919 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
920 __dget_dlock(alias);
921 spin_unlock(&alias->d_lock);
922 return alias;
1da177e4 923 }
da502956
NP
924 spin_unlock(&alias->d_lock);
925 goto again;
1da177e4 926 }
da502956 927 return NULL;
1da177e4
LT
928}
929
da502956 930struct dentry *d_find_alias(struct inode *inode)
1da177e4 931{
214fda1f
DH
932 struct dentry *de = NULL;
933
b3d9b7a3 934 if (!hlist_empty(&inode->i_dentry)) {
873feea0 935 spin_lock(&inode->i_lock);
52ed46f0 936 de = __d_find_alias(inode);
873feea0 937 spin_unlock(&inode->i_lock);
214fda1f 938 }
1da177e4
LT
939 return de;
940}
ec4f8605 941EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
942
943/*
944 * Try to kill dentries associated with this inode.
945 * WARNING: you must own a reference to inode.
946 */
947void d_prune_aliases(struct inode *inode)
948{
0cdca3f9 949 struct dentry *dentry;
1da177e4 950restart:
873feea0 951 spin_lock(&inode->i_lock);
946e51f2 952 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 953 spin_lock(&dentry->d_lock);
98474236 954 if (!dentry->d_lockref.count) {
29355c39
AV
955 struct dentry *parent = lock_parent(dentry);
956 if (likely(!dentry->d_lockref.count)) {
957 __dentry_kill(dentry);
4a7795d3 958 dput(parent);
29355c39
AV
959 goto restart;
960 }
961 if (parent)
962 spin_unlock(&parent->d_lock);
1da177e4
LT
963 }
964 spin_unlock(&dentry->d_lock);
965 }
873feea0 966 spin_unlock(&inode->i_lock);
1da177e4 967}
ec4f8605 968EXPORT_SYMBOL(d_prune_aliases);
1da177e4 969
3b3f09f4
AV
970/*
971 * Lock a dentry from shrink list.
972 * Note that dentry is *not* protected from concurrent dentry_kill(),
973 * d_delete(), etc. It is protected from freeing (by the fact of
974 * being on a shrink list), but everything else is fair game.
975 * Return false if dentry has been disrupted or grabbed, leaving
976 * the caller to kick it off-list. Otherwise, return true and have
977 * that dentry's inode and parent both locked.
978 */
979static bool shrink_lock_dentry(struct dentry *dentry)
1da177e4 980{
3b3f09f4
AV
981 struct inode *inode;
982 struct dentry *parent;
da3bbdd4 983
3b3f09f4
AV
984 if (dentry->d_lockref.count)
985 return false;
986
987 inode = dentry->d_inode;
988 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
989 rcu_read_lock(); /* to protect inode */
990 spin_unlock(&dentry->d_lock);
991 spin_lock(&inode->i_lock);
ec33679d 992 spin_lock(&dentry->d_lock);
3b3f09f4
AV
993 if (unlikely(dentry->d_lockref.count))
994 goto out;
995 /* changed inode means that somebody had grabbed it */
996 if (unlikely(inode != dentry->d_inode))
997 goto out;
998 rcu_read_unlock();
999 }
046b961b 1000
3b3f09f4
AV
1001 parent = dentry->d_parent;
1002 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1003 return true;
dd1f6b2e 1004
3b3f09f4
AV
1005 rcu_read_lock(); /* to protect parent */
1006 spin_unlock(&dentry->d_lock);
1007 parent = READ_ONCE(dentry->d_parent);
1008 spin_lock(&parent->d_lock);
1009 if (unlikely(parent != dentry->d_parent)) {
1010 spin_unlock(&parent->d_lock);
1011 spin_lock(&dentry->d_lock);
1012 goto out;
1013 }
1014 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1015 if (likely(!dentry->d_lockref.count)) {
1016 rcu_read_unlock();
1017 return true;
1018 }
1019 spin_unlock(&parent->d_lock);
1020out:
1021 if (inode)
1022 spin_unlock(&inode->i_lock);
1023 rcu_read_unlock();
1024 return false;
1025}
77812a1e 1026
3b3f09f4
AV
1027static void shrink_dentry_list(struct list_head *list)
1028{
1029 while (!list_empty(list)) {
1030 struct dentry *dentry, *parent;
1031 struct inode *inode;
64fd72e0 1032
3b3f09f4
AV
1033 dentry = list_entry(list->prev, struct dentry, d_lru);
1034 spin_lock(&dentry->d_lock);
1035 if (!shrink_lock_dentry(dentry)) {
1036 bool can_free = false;
1037 d_shrink_del(dentry);
1038 if (dentry->d_lockref.count < 0)
1039 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1040 spin_unlock(&dentry->d_lock);
1041 if (can_free)
1042 dentry_free(dentry);
1043 continue;
1044 }
3b3f09f4
AV
1045 d_shrink_del(dentry);
1046 parent = dentry->d_parent;
ff2fde99 1047 __dentry_kill(dentry);
3b3f09f4
AV
1048 if (parent == dentry)
1049 continue;
5c47e6d0
AV
1050 /*
1051 * We need to prune ancestors too. This is necessary to prevent
1052 * quadratic behavior of shrink_dcache_parent(), but is also
1053 * expected to be beneficial in reducing dentry cache
1054 * fragmentation.
1055 */
1056 dentry = parent;
b2b80195
AV
1057 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1058 parent = lock_parent(dentry);
1059 if (dentry->d_lockref.count != 1) {
1060 dentry->d_lockref.count--;
1061 spin_unlock(&dentry->d_lock);
1062 if (parent)
1063 spin_unlock(&parent->d_lock);
1064 break;
1065 }
1066 inode = dentry->d_inode; /* can't be NULL */
1067 if (unlikely(!spin_trylock(&inode->i_lock))) {
1068 spin_unlock(&dentry->d_lock);
1069 if (parent)
1070 spin_unlock(&parent->d_lock);
1071 cpu_relax();
1072 continue;
1073 }
1074 __dentry_kill(dentry);
1075 dentry = parent;
1076 }
da3bbdd4 1077 }
3049cfe2
CH
1078}
1079
3f97b163
VD
1080static enum lru_status dentry_lru_isolate(struct list_head *item,
1081 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1082{
1083 struct list_head *freeable = arg;
1084 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1085
1086
1087 /*
1088 * we are inverting the lru lock/dentry->d_lock here,
1089 * so use a trylock. If we fail to get the lock, just skip
1090 * it
1091 */
1092 if (!spin_trylock(&dentry->d_lock))
1093 return LRU_SKIP;
1094
1095 /*
1096 * Referenced dentries are still in use. If they have active
1097 * counts, just remove them from the LRU. Otherwise give them
1098 * another pass through the LRU.
1099 */
1100 if (dentry->d_lockref.count) {
3f97b163 1101 d_lru_isolate(lru, dentry);
f6041567
DC
1102 spin_unlock(&dentry->d_lock);
1103 return LRU_REMOVED;
1104 }
1105
1106 if (dentry->d_flags & DCACHE_REFERENCED) {
1107 dentry->d_flags &= ~DCACHE_REFERENCED;
1108 spin_unlock(&dentry->d_lock);
1109
1110 /*
1111 * The list move itself will be made by the common LRU code. At
1112 * this point, we've dropped the dentry->d_lock but keep the
1113 * lru lock. This is safe to do, since every list movement is
1114 * protected by the lru lock even if both locks are held.
1115 *
1116 * This is guaranteed by the fact that all LRU management
1117 * functions are intermediated by the LRU API calls like
1118 * list_lru_add and list_lru_del. List movement in this file
1119 * only ever occur through this functions or through callbacks
1120 * like this one, that are called from the LRU API.
1121 *
1122 * The only exceptions to this are functions like
1123 * shrink_dentry_list, and code that first checks for the
1124 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1125 * operating only with stack provided lists after they are
1126 * properly isolated from the main list. It is thus, always a
1127 * local access.
1128 */
1129 return LRU_ROTATE;
1130 }
1131
3f97b163 1132 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1133 spin_unlock(&dentry->d_lock);
1134
1135 return LRU_REMOVED;
1136}
1137
3049cfe2 1138/**
b48f03b3
DC
1139 * prune_dcache_sb - shrink the dcache
1140 * @sb: superblock
503c358c 1141 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1142 *
503c358c
VD
1143 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1144 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1145 * function.
3049cfe2 1146 *
b48f03b3
DC
1147 * This function may fail to free any resources if all the dentries are in
1148 * use.
3049cfe2 1149 */
503c358c 1150long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1151{
f6041567
DC
1152 LIST_HEAD(dispose);
1153 long freed;
3049cfe2 1154
503c358c
VD
1155 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1156 dentry_lru_isolate, &dispose);
f6041567 1157 shrink_dentry_list(&dispose);
0a234c6d 1158 return freed;
da3bbdd4 1159}
23044507 1160
4e717f5c 1161static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1162 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1163{
4e717f5c
GC
1164 struct list_head *freeable = arg;
1165 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1166
4e717f5c
GC
1167 /*
1168 * we are inverting the lru lock/dentry->d_lock here,
1169 * so use a trylock. If we fail to get the lock, just skip
1170 * it
1171 */
1172 if (!spin_trylock(&dentry->d_lock))
1173 return LRU_SKIP;
1174
3f97b163 1175 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1176 spin_unlock(&dentry->d_lock);
ec33679d 1177
4e717f5c 1178 return LRU_REMOVED;
da3bbdd4
KM
1179}
1180
4e717f5c 1181
1da177e4
LT
1182/**
1183 * shrink_dcache_sb - shrink dcache for a superblock
1184 * @sb: superblock
1185 *
3049cfe2
CH
1186 * Shrink the dcache for the specified super block. This is used to free
1187 * the dcache before unmounting a file system.
1da177e4 1188 */
3049cfe2 1189void shrink_dcache_sb(struct super_block *sb)
1da177e4 1190{
4e717f5c
GC
1191 long freed;
1192
1193 do {
1194 LIST_HEAD(dispose);
1195
1196 freed = list_lru_walk(&sb->s_dentry_lru,
b17c070f 1197 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1198
4e717f5c
GC
1199 this_cpu_sub(nr_dentry_unused, freed);
1200 shrink_dentry_list(&dispose);
b17c070f
ST
1201 cond_resched();
1202 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1203}
ec4f8605 1204EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1205
db14fc3a
MS
1206/**
1207 * enum d_walk_ret - action to talke during tree walk
1208 * @D_WALK_CONTINUE: contrinue walk
1209 * @D_WALK_QUIT: quit walk
1210 * @D_WALK_NORETRY: quit when retry is needed
1211 * @D_WALK_SKIP: skip this dentry and its children
1212 */
1213enum d_walk_ret {
1214 D_WALK_CONTINUE,
1215 D_WALK_QUIT,
1216 D_WALK_NORETRY,
1217 D_WALK_SKIP,
1218};
c826cb7d 1219
1da177e4 1220/**
db14fc3a
MS
1221 * d_walk - walk the dentry tree
1222 * @parent: start of walk
1223 * @data: data passed to @enter() and @finish()
1224 * @enter: callback when first entering the dentry
1225 * @finish: callback when successfully finished the walk
1da177e4 1226 *
db14fc3a 1227 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1228 */
db14fc3a
MS
1229static void d_walk(struct dentry *parent, void *data,
1230 enum d_walk_ret (*enter)(void *, struct dentry *),
1231 void (*finish)(void *))
1da177e4 1232{
949854d0 1233 struct dentry *this_parent;
1da177e4 1234 struct list_head *next;
48f5ec21 1235 unsigned seq = 0;
db14fc3a
MS
1236 enum d_walk_ret ret;
1237 bool retry = true;
949854d0 1238
58db63d0 1239again:
48f5ec21 1240 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1241 this_parent = parent;
2fd6b7f5 1242 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1243
1244 ret = enter(data, this_parent);
1245 switch (ret) {
1246 case D_WALK_CONTINUE:
1247 break;
1248 case D_WALK_QUIT:
1249 case D_WALK_SKIP:
1250 goto out_unlock;
1251 case D_WALK_NORETRY:
1252 retry = false;
1253 break;
1254 }
1da177e4
LT
1255repeat:
1256 next = this_parent->d_subdirs.next;
1257resume:
1258 while (next != &this_parent->d_subdirs) {
1259 struct list_head *tmp = next;
946e51f2 1260 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1261 next = tmp->next;
2fd6b7f5 1262
ba65dc5e
AV
1263 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1264 continue;
1265
2fd6b7f5 1266 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1267
1268 ret = enter(data, dentry);
1269 switch (ret) {
1270 case D_WALK_CONTINUE:
1271 break;
1272 case D_WALK_QUIT:
2fd6b7f5 1273 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1274 goto out_unlock;
1275 case D_WALK_NORETRY:
1276 retry = false;
1277 break;
1278 case D_WALK_SKIP:
1279 spin_unlock(&dentry->d_lock);
1280 continue;
2fd6b7f5 1281 }
db14fc3a 1282
1da177e4 1283 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1284 spin_unlock(&this_parent->d_lock);
1285 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1286 this_parent = dentry;
2fd6b7f5 1287 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1288 goto repeat;
1289 }
2fd6b7f5 1290 spin_unlock(&dentry->d_lock);
1da177e4
LT
1291 }
1292 /*
1293 * All done at this level ... ascend and resume the search.
1294 */
ca5358ef
AV
1295 rcu_read_lock();
1296ascend:
1da177e4 1297 if (this_parent != parent) {
c826cb7d 1298 struct dentry *child = this_parent;
31dec132
AV
1299 this_parent = child->d_parent;
1300
31dec132
AV
1301 spin_unlock(&child->d_lock);
1302 spin_lock(&this_parent->d_lock);
1303
ca5358ef
AV
1304 /* might go back up the wrong parent if we have had a rename. */
1305 if (need_seqretry(&rename_lock, seq))
949854d0 1306 goto rename_retry;
2159184e
AV
1307 /* go into the first sibling still alive */
1308 do {
1309 next = child->d_child.next;
ca5358ef
AV
1310 if (next == &this_parent->d_subdirs)
1311 goto ascend;
1312 child = list_entry(next, struct dentry, d_child);
2159184e 1313 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1314 rcu_read_unlock();
1da177e4
LT
1315 goto resume;
1316 }
ca5358ef 1317 if (need_seqretry(&rename_lock, seq))
949854d0 1318 goto rename_retry;
ca5358ef 1319 rcu_read_unlock();
db14fc3a
MS
1320 if (finish)
1321 finish(data);
1322
1323out_unlock:
1324 spin_unlock(&this_parent->d_lock);
48f5ec21 1325 done_seqretry(&rename_lock, seq);
db14fc3a 1326 return;
58db63d0
NP
1327
1328rename_retry:
ca5358ef
AV
1329 spin_unlock(&this_parent->d_lock);
1330 rcu_read_unlock();
1331 BUG_ON(seq & 1);
db14fc3a
MS
1332 if (!retry)
1333 return;
48f5ec21 1334 seq = 1;
58db63d0 1335 goto again;
1da177e4 1336}
db14fc3a 1337
01619491
IK
1338struct check_mount {
1339 struct vfsmount *mnt;
1340 unsigned int mounted;
1341};
1342
1343static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1344{
1345 struct check_mount *info = data;
1346 struct path path = { .mnt = info->mnt, .dentry = dentry };
1347
1348 if (likely(!d_mountpoint(dentry)))
1349 return D_WALK_CONTINUE;
1350 if (__path_is_mountpoint(&path)) {
1351 info->mounted = 1;
1352 return D_WALK_QUIT;
1353 }
1354 return D_WALK_CONTINUE;
1355}
1356
1357/**
1358 * path_has_submounts - check for mounts over a dentry in the
1359 * current namespace.
1360 * @parent: path to check.
1361 *
1362 * Return true if the parent or its subdirectories contain
1363 * a mount point in the current namespace.
1364 */
1365int path_has_submounts(const struct path *parent)
1366{
1367 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1368
1369 read_seqlock_excl(&mount_lock);
1370 d_walk(parent->dentry, &data, path_check_mount, NULL);
1371 read_sequnlock_excl(&mount_lock);
1372
1373 return data.mounted;
1374}
1375EXPORT_SYMBOL(path_has_submounts);
1376
eed81007
MS
1377/*
1378 * Called by mount code to set a mountpoint and check if the mountpoint is
1379 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1380 * subtree can become unreachable).
1381 *
1ffe46d1 1382 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1383 * this reason take rename_lock and d_lock on dentry and ancestors.
1384 */
1385int d_set_mounted(struct dentry *dentry)
1386{
1387 struct dentry *p;
1388 int ret = -ENOENT;
1389 write_seqlock(&rename_lock);
1390 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1391 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1392 spin_lock(&p->d_lock);
1393 if (unlikely(d_unhashed(p))) {
1394 spin_unlock(&p->d_lock);
1395 goto out;
1396 }
1397 spin_unlock(&p->d_lock);
1398 }
1399 spin_lock(&dentry->d_lock);
1400 if (!d_unlinked(dentry)) {
3895dbf8
EB
1401 ret = -EBUSY;
1402 if (!d_mountpoint(dentry)) {
1403 dentry->d_flags |= DCACHE_MOUNTED;
1404 ret = 0;
1405 }
eed81007
MS
1406 }
1407 spin_unlock(&dentry->d_lock);
1408out:
1409 write_sequnlock(&rename_lock);
1410 return ret;
1411}
1412
1da177e4 1413/*
fd517909 1414 * Search the dentry child list of the specified parent,
1da177e4
LT
1415 * and move any unused dentries to the end of the unused
1416 * list for prune_dcache(). We descend to the next level
1417 * whenever the d_subdirs list is non-empty and continue
1418 * searching.
1419 *
1420 * It returns zero iff there are no unused children,
1421 * otherwise it returns the number of children moved to
1422 * the end of the unused list. This may not be the total
1423 * number of unused children, because select_parent can
1424 * drop the lock and return early due to latency
1425 * constraints.
1426 */
1da177e4 1427
db14fc3a
MS
1428struct select_data {
1429 struct dentry *start;
1430 struct list_head dispose;
1431 int found;
1432};
23044507 1433
db14fc3a
MS
1434static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1435{
1436 struct select_data *data = _data;
1437 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1438
db14fc3a
MS
1439 if (data->start == dentry)
1440 goto out;
2fd6b7f5 1441
fe91522a 1442 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1443 data->found++;
fe91522a
AV
1444 } else {
1445 if (dentry->d_flags & DCACHE_LRU_LIST)
1446 d_lru_del(dentry);
1447 if (!dentry->d_lockref.count) {
1448 d_shrink_add(dentry, &data->dispose);
1449 data->found++;
1450 }
1da177e4 1451 }
db14fc3a
MS
1452 /*
1453 * We can return to the caller if we have found some (this
1454 * ensures forward progress). We'll be coming back to find
1455 * the rest.
1456 */
fe91522a
AV
1457 if (!list_empty(&data->dispose))
1458 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1459out:
db14fc3a 1460 return ret;
1da177e4
LT
1461}
1462
1463/**
1464 * shrink_dcache_parent - prune dcache
1465 * @parent: parent of entries to prune
1466 *
1467 * Prune the dcache to remove unused children of the parent dentry.
1468 */
db14fc3a 1469void shrink_dcache_parent(struct dentry *parent)
1da177e4 1470{
db14fc3a
MS
1471 for (;;) {
1472 struct select_data data;
1da177e4 1473
db14fc3a
MS
1474 INIT_LIST_HEAD(&data.dispose);
1475 data.start = parent;
1476 data.found = 0;
1477
1478 d_walk(parent, &data, select_collect, NULL);
1479 if (!data.found)
1480 break;
1481
1482 shrink_dentry_list(&data.dispose);
421348f1
GT
1483 cond_resched();
1484 }
1da177e4 1485}
ec4f8605 1486EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1487
9c8c10e2 1488static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1489{
9c8c10e2
AV
1490 /* it has busy descendents; complain about those instead */
1491 if (!list_empty(&dentry->d_subdirs))
1492 return D_WALK_CONTINUE;
42c32608 1493
9c8c10e2
AV
1494 /* root with refcount 1 is fine */
1495 if (dentry == _data && dentry->d_lockref.count == 1)
1496 return D_WALK_CONTINUE;
1497
1498 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1499 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1500 dentry,
1501 dentry->d_inode ?
1502 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1503 dentry,
42c32608
AV
1504 dentry->d_lockref.count,
1505 dentry->d_sb->s_type->name,
1506 dentry->d_sb->s_id);
9c8c10e2
AV
1507 WARN_ON(1);
1508 return D_WALK_CONTINUE;
1509}
1510
1511static void do_one_tree(struct dentry *dentry)
1512{
1513 shrink_dcache_parent(dentry);
1514 d_walk(dentry, dentry, umount_check, NULL);
1515 d_drop(dentry);
1516 dput(dentry);
42c32608
AV
1517}
1518
1519/*
1520 * destroy the dentries attached to a superblock on unmounting
1521 */
1522void shrink_dcache_for_umount(struct super_block *sb)
1523{
1524 struct dentry *dentry;
1525
9c8c10e2 1526 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1527
1528 dentry = sb->s_root;
1529 sb->s_root = NULL;
9c8c10e2 1530 do_one_tree(dentry);
42c32608 1531
f1ee6162
N
1532 while (!hlist_bl_empty(&sb->s_roots)) {
1533 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1534 do_one_tree(dentry);
42c32608
AV
1535 }
1536}
1537
8ed936b5
EB
1538struct detach_data {
1539 struct select_data select;
1540 struct dentry *mountpoint;
1541};
1542static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1543{
8ed936b5 1544 struct detach_data *data = _data;
848ac114
MS
1545
1546 if (d_mountpoint(dentry)) {
8ed936b5
EB
1547 __dget_dlock(dentry);
1548 data->mountpoint = dentry;
848ac114
MS
1549 return D_WALK_QUIT;
1550 }
1551
8ed936b5 1552 return select_collect(&data->select, dentry);
848ac114
MS
1553}
1554
1555static void check_and_drop(void *_data)
1556{
8ed936b5 1557 struct detach_data *data = _data;
848ac114 1558
81be24d2 1559 if (!data->mountpoint && list_empty(&data->select.dispose))
8ed936b5 1560 __d_drop(data->select.start);
848ac114
MS
1561}
1562
1563/**
1ffe46d1
EB
1564 * d_invalidate - detach submounts, prune dcache, and drop
1565 * @dentry: dentry to invalidate (aka detach, prune and drop)
1566 *
1ffe46d1 1567 * no dcache lock.
848ac114 1568 *
8ed936b5
EB
1569 * The final d_drop is done as an atomic operation relative to
1570 * rename_lock ensuring there are no races with d_set_mounted. This
1571 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1572 */
5542aa2f 1573void d_invalidate(struct dentry *dentry)
848ac114 1574{
1ffe46d1
EB
1575 /*
1576 * If it's already been dropped, return OK.
1577 */
1578 spin_lock(&dentry->d_lock);
1579 if (d_unhashed(dentry)) {
1580 spin_unlock(&dentry->d_lock);
5542aa2f 1581 return;
1ffe46d1
EB
1582 }
1583 spin_unlock(&dentry->d_lock);
1584
848ac114
MS
1585 /* Negative dentries can be dropped without further checks */
1586 if (!dentry->d_inode) {
1587 d_drop(dentry);
5542aa2f 1588 return;
848ac114
MS
1589 }
1590
1591 for (;;) {
8ed936b5 1592 struct detach_data data;
848ac114 1593
8ed936b5
EB
1594 data.mountpoint = NULL;
1595 INIT_LIST_HEAD(&data.select.dispose);
1596 data.select.start = dentry;
1597 data.select.found = 0;
1598
1599 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1600
81be24d2 1601 if (!list_empty(&data.select.dispose))
8ed936b5 1602 shrink_dentry_list(&data.select.dispose);
81be24d2
AV
1603 else if (!data.mountpoint)
1604 return;
848ac114 1605
8ed936b5
EB
1606 if (data.mountpoint) {
1607 detach_mounts(data.mountpoint);
1608 dput(data.mountpoint);
1609 }
848ac114
MS
1610 cond_resched();
1611 }
848ac114 1612}
1ffe46d1 1613EXPORT_SYMBOL(d_invalidate);
848ac114 1614
1da177e4 1615/**
a4464dbc
AV
1616 * __d_alloc - allocate a dcache entry
1617 * @sb: filesystem it will belong to
1da177e4
LT
1618 * @name: qstr of the name
1619 *
1620 * Allocates a dentry. It returns %NULL if there is insufficient memory
1621 * available. On a success the dentry is returned. The name passed in is
1622 * copied and the copy passed in may be reused after this call.
1623 */
1624
a4464dbc 1625struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1626{
1627 struct dentry *dentry;
1628 char *dname;
285b102d 1629 int err;
1da177e4 1630
e12ba74d 1631 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1632 if (!dentry)
1633 return NULL;
1634
6326c71f
LT
1635 /*
1636 * We guarantee that the inline name is always NUL-terminated.
1637 * This way the memcpy() done by the name switching in rename
1638 * will still always have a NUL at the end, even if we might
1639 * be overwriting an internal NUL character
1640 */
1641 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1642 if (unlikely(!name)) {
cdf01226 1643 name = &slash_name;
798434bd
AV
1644 dname = dentry->d_iname;
1645 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1646 size_t size = offsetof(struct external_name, name[1]);
5d097056
VD
1647 struct external_name *p = kmalloc(size + name->len,
1648 GFP_KERNEL_ACCOUNT);
8d85b484 1649 if (!p) {
1da177e4
LT
1650 kmem_cache_free(dentry_cache, dentry);
1651 return NULL;
1652 }
8d85b484
AV
1653 atomic_set(&p->u.count, 1);
1654 dname = p->name;
1da177e4
LT
1655 } else {
1656 dname = dentry->d_iname;
1657 }
1da177e4
LT
1658
1659 dentry->d_name.len = name->len;
1660 dentry->d_name.hash = name->hash;
1661 memcpy(dname, name->name, name->len);
1662 dname[name->len] = 0;
1663
6326c71f 1664 /* Make sure we always see the terminating NUL character */
7088efa9 1665 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1666
98474236 1667 dentry->d_lockref.count = 1;
dea3667b 1668 dentry->d_flags = 0;
1da177e4 1669 spin_lock_init(&dentry->d_lock);
31e6b01f 1670 seqcount_init(&dentry->d_seq);
1da177e4 1671 dentry->d_inode = NULL;
a4464dbc
AV
1672 dentry->d_parent = dentry;
1673 dentry->d_sb = sb;
1da177e4
LT
1674 dentry->d_op = NULL;
1675 dentry->d_fsdata = NULL;
ceb5bdc2 1676 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1677 INIT_LIST_HEAD(&dentry->d_lru);
1678 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1679 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1680 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1681 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1682
285b102d
MS
1683 if (dentry->d_op && dentry->d_op->d_init) {
1684 err = dentry->d_op->d_init(dentry);
1685 if (err) {
1686 if (dname_external(dentry))
1687 kfree(external_name(dentry));
1688 kmem_cache_free(dentry_cache, dentry);
1689 return NULL;
1690 }
1691 }
1692
3e880fb5 1693 this_cpu_inc(nr_dentry);
312d3ca8 1694
1da177e4
LT
1695 return dentry;
1696}
a4464dbc
AV
1697
1698/**
1699 * d_alloc - allocate a dcache entry
1700 * @parent: parent of entry to allocate
1701 * @name: qstr of the name
1702 *
1703 * Allocates a dentry. It returns %NULL if there is insufficient memory
1704 * available. On a success the dentry is returned. The name passed in is
1705 * copied and the copy passed in may be reused after this call.
1706 */
1707struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1708{
1709 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1710 if (!dentry)
1711 return NULL;
3d56c25e 1712 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1713 spin_lock(&parent->d_lock);
1714 /*
1715 * don't need child lock because it is not subject
1716 * to concurrency here
1717 */
1718 __dget_dlock(parent);
1719 dentry->d_parent = parent;
946e51f2 1720 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1721 spin_unlock(&parent->d_lock);
1722
1723 return dentry;
1724}
ec4f8605 1725EXPORT_SYMBOL(d_alloc);
1da177e4 1726
f9c34674
MS
1727struct dentry *d_alloc_anon(struct super_block *sb)
1728{
1729 return __d_alloc(sb, NULL);
1730}
1731EXPORT_SYMBOL(d_alloc_anon);
1732
ba65dc5e
AV
1733struct dentry *d_alloc_cursor(struct dentry * parent)
1734{
f9c34674 1735 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e
AV
1736 if (dentry) {
1737 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1738 dentry->d_parent = dget(parent);
1739 }
1740 return dentry;
1741}
1742
e1a24bb0
BF
1743/**
1744 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1745 * @sb: the superblock
1746 * @name: qstr of the name
1747 *
1748 * For a filesystem that just pins its dentries in memory and never
1749 * performs lookups at all, return an unhashed IS_ROOT dentry.
1750 */
4b936885
NP
1751struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1752{
e1a24bb0 1753 return __d_alloc(sb, name);
4b936885
NP
1754}
1755EXPORT_SYMBOL(d_alloc_pseudo);
1756
1da177e4
LT
1757struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1758{
1759 struct qstr q;
1760
1761 q.name = name;
8387ff25 1762 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1763 return d_alloc(parent, &q);
1764}
ef26ca97 1765EXPORT_SYMBOL(d_alloc_name);
1da177e4 1766
fb045adb
NP
1767void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1768{
6f7f7caa
LT
1769 WARN_ON_ONCE(dentry->d_op);
1770 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1771 DCACHE_OP_COMPARE |
1772 DCACHE_OP_REVALIDATE |
ecf3d1f1 1773 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1774 DCACHE_OP_DELETE |
d101a125 1775 DCACHE_OP_REAL));
fb045adb
NP
1776 dentry->d_op = op;
1777 if (!op)
1778 return;
1779 if (op->d_hash)
1780 dentry->d_flags |= DCACHE_OP_HASH;
1781 if (op->d_compare)
1782 dentry->d_flags |= DCACHE_OP_COMPARE;
1783 if (op->d_revalidate)
1784 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1785 if (op->d_weak_revalidate)
1786 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1787 if (op->d_delete)
1788 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1789 if (op->d_prune)
1790 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1791 if (op->d_real)
1792 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1793
1794}
1795EXPORT_SYMBOL(d_set_d_op);
1796
df1a085a
DH
1797
1798/*
1799 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1800 * @dentry - The dentry to mark
1801 *
1802 * Mark a dentry as falling through to the lower layer (as set with
1803 * d_pin_lower()). This flag may be recorded on the medium.
1804 */
1805void d_set_fallthru(struct dentry *dentry)
1806{
1807 spin_lock(&dentry->d_lock);
1808 dentry->d_flags |= DCACHE_FALLTHRU;
1809 spin_unlock(&dentry->d_lock);
1810}
1811EXPORT_SYMBOL(d_set_fallthru);
1812
b18825a7
DH
1813static unsigned d_flags_for_inode(struct inode *inode)
1814{
44bdb5e5 1815 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1816
1817 if (!inode)
1818 return DCACHE_MISS_TYPE;
1819
1820 if (S_ISDIR(inode->i_mode)) {
1821 add_flags = DCACHE_DIRECTORY_TYPE;
1822 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1823 if (unlikely(!inode->i_op->lookup))
1824 add_flags = DCACHE_AUTODIR_TYPE;
1825 else
1826 inode->i_opflags |= IOP_LOOKUP;
1827 }
44bdb5e5
DH
1828 goto type_determined;
1829 }
1830
1831 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1832 if (unlikely(inode->i_op->get_link)) {
b18825a7 1833 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1834 goto type_determined;
1835 }
1836 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1837 }
1838
44bdb5e5
DH
1839 if (unlikely(!S_ISREG(inode->i_mode)))
1840 add_flags = DCACHE_SPECIAL_TYPE;
1841
1842type_determined:
b18825a7
DH
1843 if (unlikely(IS_AUTOMOUNT(inode)))
1844 add_flags |= DCACHE_NEED_AUTOMOUNT;
1845 return add_flags;
1846}
1847
360da900
OH
1848static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1849{
b18825a7 1850 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1851 WARN_ON(d_in_lookup(dentry));
b18825a7 1852
b23fb0a6 1853 spin_lock(&dentry->d_lock);
de689f5e 1854 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1855 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1856 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1857 raw_write_seqcount_end(&dentry->d_seq);
affda484 1858 fsnotify_update_flags(dentry);
b23fb0a6 1859 spin_unlock(&dentry->d_lock);
360da900
OH
1860}
1861
1da177e4
LT
1862/**
1863 * d_instantiate - fill in inode information for a dentry
1864 * @entry: dentry to complete
1865 * @inode: inode to attach to this dentry
1866 *
1867 * Fill in inode information in the entry.
1868 *
1869 * This turns negative dentries into productive full members
1870 * of society.
1871 *
1872 * NOTE! This assumes that the inode count has been incremented
1873 * (or otherwise set) by the caller to indicate that it is now
1874 * in use by the dcache.
1875 */
1876
1877void d_instantiate(struct dentry *entry, struct inode * inode)
1878{
946e51f2 1879 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1880 if (inode) {
b9680917 1881 security_d_instantiate(entry, inode);
873feea0 1882 spin_lock(&inode->i_lock);
de689f5e 1883 __d_instantiate(entry, inode);
873feea0 1884 spin_unlock(&inode->i_lock);
de689f5e 1885 }
1da177e4 1886}
ec4f8605 1887EXPORT_SYMBOL(d_instantiate);
1da177e4 1888
b70a80e7
MS
1889/**
1890 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1891 * @entry: dentry to complete
1892 * @inode: inode to attach to this dentry
1893 *
1894 * Fill in inode information in the entry. If a directory alias is found, then
1895 * return an error (and drop inode). Together with d_materialise_unique() this
1896 * guarantees that a directory inode may never have more than one alias.
1897 */
1898int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1899{
946e51f2 1900 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1901
b9680917 1902 security_d_instantiate(entry, inode);
b70a80e7
MS
1903 spin_lock(&inode->i_lock);
1904 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1905 spin_unlock(&inode->i_lock);
1906 iput(inode);
1907 return -EBUSY;
1908 }
1909 __d_instantiate(entry, inode);
1910 spin_unlock(&inode->i_lock);
b70a80e7
MS
1911
1912 return 0;
1913}
1914EXPORT_SYMBOL(d_instantiate_no_diralias);
1915
adc0e91a
AV
1916struct dentry *d_make_root(struct inode *root_inode)
1917{
1918 struct dentry *res = NULL;
1919
1920 if (root_inode) {
f9c34674 1921 res = d_alloc_anon(root_inode->i_sb);
adc0e91a
AV
1922 if (res)
1923 d_instantiate(res, root_inode);
1924 else
1925 iput(root_inode);
1926 }
1927 return res;
1928}
1929EXPORT_SYMBOL(d_make_root);
1930
d891eedb
BF
1931static struct dentry * __d_find_any_alias(struct inode *inode)
1932{
1933 struct dentry *alias;
1934
b3d9b7a3 1935 if (hlist_empty(&inode->i_dentry))
d891eedb 1936 return NULL;
946e51f2 1937 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1938 __dget(alias);
1939 return alias;
1940}
1941
46f72b34
SW
1942/**
1943 * d_find_any_alias - find any alias for a given inode
1944 * @inode: inode to find an alias for
1945 *
1946 * If any aliases exist for the given inode, take and return a
1947 * reference for one of them. If no aliases exist, return %NULL.
1948 */
1949struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1950{
1951 struct dentry *de;
1952
1953 spin_lock(&inode->i_lock);
1954 de = __d_find_any_alias(inode);
1955 spin_unlock(&inode->i_lock);
1956 return de;
1957}
46f72b34 1958EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1959
f9c34674
MS
1960static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1961 struct inode *inode,
1962 bool disconnected)
4ea3ada2 1963{
9308a612 1964 struct dentry *res;
b18825a7 1965 unsigned add_flags;
4ea3ada2 1966
f9c34674 1967 security_d_instantiate(dentry, inode);
873feea0 1968 spin_lock(&inode->i_lock);
d891eedb 1969 res = __d_find_any_alias(inode);
9308a612 1970 if (res) {
873feea0 1971 spin_unlock(&inode->i_lock);
f9c34674 1972 dput(dentry);
9308a612
CH
1973 goto out_iput;
1974 }
1975
1976 /* attach a disconnected dentry */
1a0a397e
BF
1977 add_flags = d_flags_for_inode(inode);
1978
1979 if (disconnected)
1980 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1981
f9c34674
MS
1982 spin_lock(&dentry->d_lock);
1983 __d_set_inode_and_type(dentry, inode, add_flags);
1984 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 1985 if (!disconnected) {
139351f1
LT
1986 hlist_bl_lock(&dentry->d_sb->s_roots);
1987 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1988 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 1989 }
f9c34674 1990 spin_unlock(&dentry->d_lock);
873feea0 1991 spin_unlock(&inode->i_lock);
9308a612 1992
f9c34674 1993 return dentry;
9308a612
CH
1994
1995 out_iput:
1996 iput(inode);
1997 return res;
4ea3ada2 1998}
1a0a397e 1999
f9c34674
MS
2000struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2001{
2002 return __d_instantiate_anon(dentry, inode, true);
2003}
2004EXPORT_SYMBOL(d_instantiate_anon);
2005
2006static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2007{
2008 struct dentry *tmp;
2009 struct dentry *res;
2010
2011 if (!inode)
2012 return ERR_PTR(-ESTALE);
2013 if (IS_ERR(inode))
2014 return ERR_CAST(inode);
2015
2016 res = d_find_any_alias(inode);
2017 if (res)
2018 goto out_iput;
2019
2020 tmp = d_alloc_anon(inode->i_sb);
2021 if (!tmp) {
2022 res = ERR_PTR(-ENOMEM);
2023 goto out_iput;
2024 }
2025
2026 return __d_instantiate_anon(tmp, inode, disconnected);
2027
2028out_iput:
2029 iput(inode);
2030 return res;
2031}
2032
1a0a397e
BF
2033/**
2034 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2035 * @inode: inode to allocate the dentry for
2036 *
2037 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2038 * similar open by handle operations. The returned dentry may be anonymous,
2039 * or may have a full name (if the inode was already in the cache).
2040 *
2041 * When called on a directory inode, we must ensure that the inode only ever
2042 * has one dentry. If a dentry is found, that is returned instead of
2043 * allocating a new one.
2044 *
2045 * On successful return, the reference to the inode has been transferred
2046 * to the dentry. In case of an error the reference on the inode is released.
2047 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2048 * be passed in and the error will be propagated to the return value,
2049 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2050 */
2051struct dentry *d_obtain_alias(struct inode *inode)
2052{
f9c34674 2053 return __d_obtain_alias(inode, true);
1a0a397e 2054}
adc48720 2055EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2056
1a0a397e
BF
2057/**
2058 * d_obtain_root - find or allocate a dentry for a given inode
2059 * @inode: inode to allocate the dentry for
2060 *
2061 * Obtain an IS_ROOT dentry for the root of a filesystem.
2062 *
2063 * We must ensure that directory inodes only ever have one dentry. If a
2064 * dentry is found, that is returned instead of allocating a new one.
2065 *
2066 * On successful return, the reference to the inode has been transferred
2067 * to the dentry. In case of an error the reference on the inode is
2068 * released. A %NULL or IS_ERR inode may be passed in and will be the
2069 * error will be propagate to the return value, with a %NULL @inode
2070 * replaced by ERR_PTR(-ESTALE).
2071 */
2072struct dentry *d_obtain_root(struct inode *inode)
2073{
f9c34674 2074 return __d_obtain_alias(inode, false);
1a0a397e
BF
2075}
2076EXPORT_SYMBOL(d_obtain_root);
2077
9403540c
BN
2078/**
2079 * d_add_ci - lookup or allocate new dentry with case-exact name
2080 * @inode: the inode case-insensitive lookup has found
2081 * @dentry: the negative dentry that was passed to the parent's lookup func
2082 * @name: the case-exact name to be associated with the returned dentry
2083 *
2084 * This is to avoid filling the dcache with case-insensitive names to the
2085 * same inode, only the actual correct case is stored in the dcache for
2086 * case-insensitive filesystems.
2087 *
2088 * For a case-insensitive lookup match and if the the case-exact dentry
2089 * already exists in in the dcache, use it and return it.
2090 *
2091 * If no entry exists with the exact case name, allocate new dentry with
2092 * the exact case, and return the spliced entry.
2093 */
e45b590b 2094struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2095 struct qstr *name)
2096{
d9171b93 2097 struct dentry *found, *res;
9403540c 2098
b6520c81
CH
2099 /*
2100 * First check if a dentry matching the name already exists,
2101 * if not go ahead and create it now.
2102 */
9403540c 2103 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2104 if (found) {
2105 iput(inode);
2106 return found;
2107 }
2108 if (d_in_lookup(dentry)) {
2109 found = d_alloc_parallel(dentry->d_parent, name,
2110 dentry->d_wait);
2111 if (IS_ERR(found) || !d_in_lookup(found)) {
2112 iput(inode);
2113 return found;
9403540c 2114 }
d9171b93
AV
2115 } else {
2116 found = d_alloc(dentry->d_parent, name);
2117 if (!found) {
2118 iput(inode);
2119 return ERR_PTR(-ENOMEM);
2120 }
2121 }
2122 res = d_splice_alias(inode, found);
2123 if (res) {
2124 dput(found);
2125 return res;
9403540c 2126 }
4f522a24 2127 return found;
9403540c 2128}
ec4f8605 2129EXPORT_SYMBOL(d_add_ci);
1da177e4 2130
12f8ad4b 2131
d4c91a8f
AV
2132static inline bool d_same_name(const struct dentry *dentry,
2133 const struct dentry *parent,
2134 const struct qstr *name)
12f8ad4b 2135{
d4c91a8f
AV
2136 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2137 if (dentry->d_name.len != name->len)
2138 return false;
2139 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2140 }
6fa67e70 2141 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2142 dentry->d_name.len, dentry->d_name.name,
2143 name) == 0;
12f8ad4b
LT
2144}
2145
31e6b01f
NP
2146/**
2147 * __d_lookup_rcu - search for a dentry (racy, store-free)
2148 * @parent: parent dentry
2149 * @name: qstr of name we wish to find
1f1e6e52 2150 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2151 * Returns: dentry, or NULL
2152 *
2153 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2154 * resolution (store-free path walking) design described in
2155 * Documentation/filesystems/path-lookup.txt.
2156 *
2157 * This is not to be used outside core vfs.
2158 *
2159 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2160 * held, and rcu_read_lock held. The returned dentry must not be stored into
2161 * without taking d_lock and checking d_seq sequence count against @seq
2162 * returned here.
2163 *
15570086 2164 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2165 * function.
2166 *
2167 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2168 * the returned dentry, so long as its parent's seqlock is checked after the
2169 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2170 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2171 *
2172 * NOTE! The caller *has* to check the resulting dentry against the sequence
2173 * number we've returned before using any of the resulting dentry state!
31e6b01f 2174 */
8966be90
LT
2175struct dentry *__d_lookup_rcu(const struct dentry *parent,
2176 const struct qstr *name,
da53be12 2177 unsigned *seqp)
31e6b01f 2178{
26fe5750 2179 u64 hashlen = name->hash_len;
31e6b01f 2180 const unsigned char *str = name->name;
8387ff25 2181 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2182 struct hlist_bl_node *node;
31e6b01f
NP
2183 struct dentry *dentry;
2184
2185 /*
2186 * Note: There is significant duplication with __d_lookup_rcu which is
2187 * required to prevent single threaded performance regressions
2188 * especially on architectures where smp_rmb (in seqcounts) are costly.
2189 * Keep the two functions in sync.
2190 */
2191
2192 /*
2193 * The hash list is protected using RCU.
2194 *
2195 * Carefully use d_seq when comparing a candidate dentry, to avoid
2196 * races with d_move().
2197 *
2198 * It is possible that concurrent renames can mess up our list
2199 * walk here and result in missing our dentry, resulting in the
2200 * false-negative result. d_lookup() protects against concurrent
2201 * renames using rename_lock seqlock.
2202 *
b0a4bb83 2203 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2204 */
b07ad996 2205 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2206 unsigned seq;
31e6b01f 2207
31e6b01f 2208seqretry:
12f8ad4b
LT
2209 /*
2210 * The dentry sequence count protects us from concurrent
da53be12 2211 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2212 *
2213 * The caller must perform a seqcount check in order
da53be12 2214 * to do anything useful with the returned dentry.
12f8ad4b
LT
2215 *
2216 * NOTE! We do a "raw" seqcount_begin here. That means that
2217 * we don't wait for the sequence count to stabilize if it
2218 * is in the middle of a sequence change. If we do the slow
2219 * dentry compare, we will do seqretries until it is stable,
2220 * and if we end up with a successful lookup, we actually
2221 * want to exit RCU lookup anyway.
d4c91a8f
AV
2222 *
2223 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2224 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2225 */
2226 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2227 if (dentry->d_parent != parent)
2228 continue;
2e321806
LT
2229 if (d_unhashed(dentry))
2230 continue;
12f8ad4b 2231
830c0f0e 2232 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2233 int tlen;
2234 const char *tname;
26fe5750
LT
2235 if (dentry->d_name.hash != hashlen_hash(hashlen))
2236 continue;
d4c91a8f
AV
2237 tlen = dentry->d_name.len;
2238 tname = dentry->d_name.name;
2239 /* we want a consistent (name,len) pair */
2240 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2241 cpu_relax();
12f8ad4b
LT
2242 goto seqretry;
2243 }
6fa67e70 2244 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2245 tlen, tname, name) != 0)
2246 continue;
2247 } else {
2248 if (dentry->d_name.hash_len != hashlen)
2249 continue;
2250 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2251 continue;
31e6b01f 2252 }
da53be12 2253 *seqp = seq;
d4c91a8f 2254 return dentry;
31e6b01f
NP
2255 }
2256 return NULL;
2257}
2258
1da177e4
LT
2259/**
2260 * d_lookup - search for a dentry
2261 * @parent: parent dentry
2262 * @name: qstr of name we wish to find
b04f784e 2263 * Returns: dentry, or NULL
1da177e4 2264 *
b04f784e
NP
2265 * d_lookup searches the children of the parent dentry for the name in
2266 * question. If the dentry is found its reference count is incremented and the
2267 * dentry is returned. The caller must use dput to free the entry when it has
2268 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2269 */
da2d8455 2270struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2271{
31e6b01f 2272 struct dentry *dentry;
949854d0 2273 unsigned seq;
1da177e4 2274
b8314f93
DY
2275 do {
2276 seq = read_seqbegin(&rename_lock);
2277 dentry = __d_lookup(parent, name);
2278 if (dentry)
1da177e4
LT
2279 break;
2280 } while (read_seqretry(&rename_lock, seq));
2281 return dentry;
2282}
ec4f8605 2283EXPORT_SYMBOL(d_lookup);
1da177e4 2284
31e6b01f 2285/**
b04f784e
NP
2286 * __d_lookup - search for a dentry (racy)
2287 * @parent: parent dentry
2288 * @name: qstr of name we wish to find
2289 * Returns: dentry, or NULL
2290 *
2291 * __d_lookup is like d_lookup, however it may (rarely) return a
2292 * false-negative result due to unrelated rename activity.
2293 *
2294 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2295 * however it must be used carefully, eg. with a following d_lookup in
2296 * the case of failure.
2297 *
2298 * __d_lookup callers must be commented.
2299 */
a713ca2a 2300struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2301{
1da177e4 2302 unsigned int hash = name->hash;
8387ff25 2303 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2304 struct hlist_bl_node *node;
31e6b01f 2305 struct dentry *found = NULL;
665a7583 2306 struct dentry *dentry;
1da177e4 2307
31e6b01f
NP
2308 /*
2309 * Note: There is significant duplication with __d_lookup_rcu which is
2310 * required to prevent single threaded performance regressions
2311 * especially on architectures where smp_rmb (in seqcounts) are costly.
2312 * Keep the two functions in sync.
2313 */
2314
b04f784e
NP
2315 /*
2316 * The hash list is protected using RCU.
2317 *
2318 * Take d_lock when comparing a candidate dentry, to avoid races
2319 * with d_move().
2320 *
2321 * It is possible that concurrent renames can mess up our list
2322 * walk here and result in missing our dentry, resulting in the
2323 * false-negative result. d_lookup() protects against concurrent
2324 * renames using rename_lock seqlock.
2325 *
b0a4bb83 2326 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2327 */
1da177e4
LT
2328 rcu_read_lock();
2329
b07ad996 2330 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2331
1da177e4
LT
2332 if (dentry->d_name.hash != hash)
2333 continue;
1da177e4
LT
2334
2335 spin_lock(&dentry->d_lock);
1da177e4
LT
2336 if (dentry->d_parent != parent)
2337 goto next;
d0185c08
LT
2338 if (d_unhashed(dentry))
2339 goto next;
2340
d4c91a8f
AV
2341 if (!d_same_name(dentry, parent, name))
2342 goto next;
1da177e4 2343
98474236 2344 dentry->d_lockref.count++;
d0185c08 2345 found = dentry;
1da177e4
LT
2346 spin_unlock(&dentry->d_lock);
2347 break;
2348next:
2349 spin_unlock(&dentry->d_lock);
2350 }
2351 rcu_read_unlock();
2352
2353 return found;
2354}
2355
3e7e241f
EB
2356/**
2357 * d_hash_and_lookup - hash the qstr then search for a dentry
2358 * @dir: Directory to search in
2359 * @name: qstr of name we wish to find
2360 *
4f522a24 2361 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2362 */
2363struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2364{
3e7e241f
EB
2365 /*
2366 * Check for a fs-specific hash function. Note that we must
2367 * calculate the standard hash first, as the d_op->d_hash()
2368 * routine may choose to leave the hash value unchanged.
2369 */
8387ff25 2370 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2371 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2372 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2373 if (unlikely(err < 0))
2374 return ERR_PTR(err);
3e7e241f 2375 }
4f522a24 2376 return d_lookup(dir, name);
3e7e241f 2377}
4f522a24 2378EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2379
1da177e4
LT
2380/*
2381 * When a file is deleted, we have two options:
2382 * - turn this dentry into a negative dentry
2383 * - unhash this dentry and free it.
2384 *
2385 * Usually, we want to just turn this into
2386 * a negative dentry, but if anybody else is
2387 * currently using the dentry or the inode
2388 * we can't do that and we fall back on removing
2389 * it from the hash queues and waiting for
2390 * it to be deleted later when it has no users
2391 */
2392
2393/**
2394 * d_delete - delete a dentry
2395 * @dentry: The dentry to delete
2396 *
2397 * Turn the dentry into a negative dentry if possible, otherwise
2398 * remove it from the hash queues so it can be deleted later
2399 */
2400
2401void d_delete(struct dentry * dentry)
2402{
c19457f0
AV
2403 struct inode *inode = dentry->d_inode;
2404 int isdir = d_is_dir(dentry);
2405
2406 spin_lock(&inode->i_lock);
2407 spin_lock(&dentry->d_lock);
1da177e4
LT
2408 /*
2409 * Are we the only user?
2410 */
98474236 2411 if (dentry->d_lockref.count == 1) {
13e3c5e5 2412 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2413 dentry_unlink_inode(dentry);
c19457f0 2414 } else {
1da177e4 2415 __d_drop(dentry);
c19457f0
AV
2416 spin_unlock(&dentry->d_lock);
2417 spin_unlock(&inode->i_lock);
2418 }
7a91bf7f 2419 fsnotify_nameremove(dentry, isdir);
1da177e4 2420}
ec4f8605 2421EXPORT_SYMBOL(d_delete);
1da177e4 2422
15d3c589 2423static void __d_rehash(struct dentry *entry)
1da177e4 2424{
15d3c589 2425 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2426
1879fd6a 2427 hlist_bl_lock(b);
b07ad996 2428 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2429 hlist_bl_unlock(b);
1da177e4
LT
2430}
2431
2432/**
2433 * d_rehash - add an entry back to the hash
2434 * @entry: dentry to add to the hash
2435 *
2436 * Adds a dentry to the hash according to its name.
2437 */
2438
2439void d_rehash(struct dentry * entry)
2440{
1da177e4 2441 spin_lock(&entry->d_lock);
15d3c589 2442 __d_rehash(entry);
1da177e4 2443 spin_unlock(&entry->d_lock);
1da177e4 2444}
ec4f8605 2445EXPORT_SYMBOL(d_rehash);
1da177e4 2446
84e710da
AV
2447static inline unsigned start_dir_add(struct inode *dir)
2448{
2449
2450 for (;;) {
2451 unsigned n = dir->i_dir_seq;
2452 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2453 return n;
2454 cpu_relax();
2455 }
2456}
2457
2458static inline void end_dir_add(struct inode *dir, unsigned n)
2459{
2460 smp_store_release(&dir->i_dir_seq, n + 2);
2461}
2462
d9171b93
AV
2463static void d_wait_lookup(struct dentry *dentry)
2464{
2465 if (d_in_lookup(dentry)) {
2466 DECLARE_WAITQUEUE(wait, current);
2467 add_wait_queue(dentry->d_wait, &wait);
2468 do {
2469 set_current_state(TASK_UNINTERRUPTIBLE);
2470 spin_unlock(&dentry->d_lock);
2471 schedule();
2472 spin_lock(&dentry->d_lock);
2473 } while (d_in_lookup(dentry));
2474 }
2475}
2476
94bdd655 2477struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2478 const struct qstr *name,
2479 wait_queue_head_t *wq)
94bdd655 2480{
94bdd655 2481 unsigned int hash = name->hash;
94bdd655
AV
2482 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2483 struct hlist_bl_node *node;
2484 struct dentry *new = d_alloc(parent, name);
2485 struct dentry *dentry;
2486 unsigned seq, r_seq, d_seq;
2487
2488 if (unlikely(!new))
2489 return ERR_PTR(-ENOMEM);
2490
2491retry:
2492 rcu_read_lock();
015555fd 2493 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2494 r_seq = read_seqbegin(&rename_lock);
2495 dentry = __d_lookup_rcu(parent, name, &d_seq);
2496 if (unlikely(dentry)) {
2497 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2498 rcu_read_unlock();
2499 goto retry;
2500 }
2501 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2502 rcu_read_unlock();
2503 dput(dentry);
2504 goto retry;
2505 }
2506 rcu_read_unlock();
2507 dput(new);
2508 return dentry;
2509 }
2510 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2511 rcu_read_unlock();
2512 goto retry;
2513 }
015555fd
WD
2514
2515 if (unlikely(seq & 1)) {
2516 rcu_read_unlock();
2517 goto retry;
2518 }
2519
94bdd655 2520 hlist_bl_lock(b);
8cc07c80 2521 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2522 hlist_bl_unlock(b);
2523 rcu_read_unlock();
2524 goto retry;
2525 }
94bdd655
AV
2526 /*
2527 * No changes for the parent since the beginning of d_lookup().
2528 * Since all removals from the chain happen with hlist_bl_lock(),
2529 * any potential in-lookup matches are going to stay here until
2530 * we unlock the chain. All fields are stable in everything
2531 * we encounter.
2532 */
2533 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2534 if (dentry->d_name.hash != hash)
2535 continue;
2536 if (dentry->d_parent != parent)
2537 continue;
d4c91a8f
AV
2538 if (!d_same_name(dentry, parent, name))
2539 continue;
94bdd655 2540 hlist_bl_unlock(b);
e7d6ef97
AV
2541 /* now we can try to grab a reference */
2542 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2543 rcu_read_unlock();
2544 goto retry;
2545 }
2546
2547 rcu_read_unlock();
2548 /*
2549 * somebody is likely to be still doing lookup for it;
2550 * wait for them to finish
2551 */
d9171b93
AV
2552 spin_lock(&dentry->d_lock);
2553 d_wait_lookup(dentry);
2554 /*
2555 * it's not in-lookup anymore; in principle we should repeat
2556 * everything from dcache lookup, but it's likely to be what
2557 * d_lookup() would've found anyway. If it is, just return it;
2558 * otherwise we really have to repeat the whole thing.
2559 */
2560 if (unlikely(dentry->d_name.hash != hash))
2561 goto mismatch;
2562 if (unlikely(dentry->d_parent != parent))
2563 goto mismatch;
2564 if (unlikely(d_unhashed(dentry)))
2565 goto mismatch;
d4c91a8f
AV
2566 if (unlikely(!d_same_name(dentry, parent, name)))
2567 goto mismatch;
d9171b93
AV
2568 /* OK, it *is* a hashed match; return it */
2569 spin_unlock(&dentry->d_lock);
94bdd655
AV
2570 dput(new);
2571 return dentry;
2572 }
e7d6ef97 2573 rcu_read_unlock();
94bdd655
AV
2574 /* we can't take ->d_lock here; it's OK, though. */
2575 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2576 new->d_wait = wq;
94bdd655
AV
2577 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2578 hlist_bl_unlock(b);
2579 return new;
d9171b93
AV
2580mismatch:
2581 spin_unlock(&dentry->d_lock);
2582 dput(dentry);
2583 goto retry;
94bdd655
AV
2584}
2585EXPORT_SYMBOL(d_alloc_parallel);
2586
85c7f810
AV
2587void __d_lookup_done(struct dentry *dentry)
2588{
94bdd655
AV
2589 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2590 dentry->d_name.hash);
2591 hlist_bl_lock(b);
85c7f810 2592 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2593 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2594 wake_up_all(dentry->d_wait);
2595 dentry->d_wait = NULL;
94bdd655
AV
2596 hlist_bl_unlock(b);
2597 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2598 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2599}
2600EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2601
2602/* inode->i_lock held if inode is non-NULL */
2603
2604static inline void __d_add(struct dentry *dentry, struct inode *inode)
2605{
84e710da
AV
2606 struct inode *dir = NULL;
2607 unsigned n;
0568d705 2608 spin_lock(&dentry->d_lock);
84e710da
AV
2609 if (unlikely(d_in_lookup(dentry))) {
2610 dir = dentry->d_parent->d_inode;
2611 n = start_dir_add(dir);
85c7f810 2612 __d_lookup_done(dentry);
84e710da 2613 }
ed782b5a 2614 if (inode) {
0568d705
AV
2615 unsigned add_flags = d_flags_for_inode(inode);
2616 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2617 raw_write_seqcount_begin(&dentry->d_seq);
2618 __d_set_inode_and_type(dentry, inode, add_flags);
2619 raw_write_seqcount_end(&dentry->d_seq);
affda484 2620 fsnotify_update_flags(dentry);
ed782b5a 2621 }
15d3c589 2622 __d_rehash(dentry);
84e710da
AV
2623 if (dir)
2624 end_dir_add(dir, n);
0568d705
AV
2625 spin_unlock(&dentry->d_lock);
2626 if (inode)
2627 spin_unlock(&inode->i_lock);
ed782b5a
AV
2628}
2629
34d0d19d
AV
2630/**
2631 * d_add - add dentry to hash queues
2632 * @entry: dentry to add
2633 * @inode: The inode to attach to this dentry
2634 *
2635 * This adds the entry to the hash queues and initializes @inode.
2636 * The entry was actually filled in earlier during d_alloc().
2637 */
2638
2639void d_add(struct dentry *entry, struct inode *inode)
2640{
b9680917
AV
2641 if (inode) {
2642 security_d_instantiate(entry, inode);
ed782b5a 2643 spin_lock(&inode->i_lock);
b9680917 2644 }
ed782b5a 2645 __d_add(entry, inode);
34d0d19d
AV
2646}
2647EXPORT_SYMBOL(d_add);
2648
668d0cd5
AV
2649/**
2650 * d_exact_alias - find and hash an exact unhashed alias
2651 * @entry: dentry to add
2652 * @inode: The inode to go with this dentry
2653 *
2654 * If an unhashed dentry with the same name/parent and desired
2655 * inode already exists, hash and return it. Otherwise, return
2656 * NULL.
2657 *
2658 * Parent directory should be locked.
2659 */
2660struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2661{
2662 struct dentry *alias;
668d0cd5
AV
2663 unsigned int hash = entry->d_name.hash;
2664
2665 spin_lock(&inode->i_lock);
2666 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2667 /*
2668 * Don't need alias->d_lock here, because aliases with
2669 * d_parent == entry->d_parent are not subject to name or
2670 * parent changes, because the parent inode i_mutex is held.
2671 */
2672 if (alias->d_name.hash != hash)
2673 continue;
2674 if (alias->d_parent != entry->d_parent)
2675 continue;
d4c91a8f 2676 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2677 continue;
2678 spin_lock(&alias->d_lock);
2679 if (!d_unhashed(alias)) {
2680 spin_unlock(&alias->d_lock);
2681 alias = NULL;
2682 } else {
2683 __dget_dlock(alias);
15d3c589 2684 __d_rehash(alias);
668d0cd5
AV
2685 spin_unlock(&alias->d_lock);
2686 }
2687 spin_unlock(&inode->i_lock);
2688 return alias;
2689 }
2690 spin_unlock(&inode->i_lock);
2691 return NULL;
2692}
2693EXPORT_SYMBOL(d_exact_alias);
2694
fb2d5b86
NP
2695/**
2696 * dentry_update_name_case - update case insensitive dentry with a new name
2697 * @dentry: dentry to be updated
2698 * @name: new name
2699 *
2700 * Update a case insensitive dentry with new case of name.
2701 *
2702 * dentry must have been returned by d_lookup with name @name. Old and new
2703 * name lengths must match (ie. no d_compare which allows mismatched name
2704 * lengths).
2705 *
2706 * Parent inode i_mutex must be held over d_lookup and into this call (to
2707 * keep renames and concurrent inserts, and readdir(2) away).
2708 */
9aba36de 2709void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
fb2d5b86 2710{
5955102c 2711 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2712 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2713
fb2d5b86 2714 spin_lock(&dentry->d_lock);
31e6b01f 2715 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2716 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2717 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2718 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2719}
2720EXPORT_SYMBOL(dentry_update_name_case);
2721
8d85b484 2722static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2723{
8d85b484
AV
2724 if (unlikely(dname_external(target))) {
2725 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2726 /*
2727 * Both external: swap the pointers
2728 */
9a8d5bb4 2729 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2730 } else {
2731 /*
2732 * dentry:internal, target:external. Steal target's
2733 * storage and make target internal.
2734 */
321bcf92
BF
2735 memcpy(target->d_iname, dentry->d_name.name,
2736 dentry->d_name.len + 1);
1da177e4
LT
2737 dentry->d_name.name = target->d_name.name;
2738 target->d_name.name = target->d_iname;
2739 }
2740 } else {
8d85b484 2741 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2742 /*
2743 * dentry:external, target:internal. Give dentry's
2744 * storage to target and make dentry internal
2745 */
2746 memcpy(dentry->d_iname, target->d_name.name,
2747 target->d_name.len + 1);
2748 target->d_name.name = dentry->d_name.name;
2749 dentry->d_name.name = dentry->d_iname;
2750 } else {
2751 /*
da1ce067 2752 * Both are internal.
1da177e4 2753 */
da1ce067
MS
2754 unsigned int i;
2755 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2756 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2757 swap(((long *) &dentry->d_iname)[i],
2758 ((long *) &target->d_iname)[i]);
2759 }
1da177e4
LT
2760 }
2761 }
a28ddb87 2762 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2763}
2764
8d85b484
AV
2765static void copy_name(struct dentry *dentry, struct dentry *target)
2766{
2767 struct external_name *old_name = NULL;
2768 if (unlikely(dname_external(dentry)))
2769 old_name = external_name(dentry);
2770 if (unlikely(dname_external(target))) {
2771 atomic_inc(&external_name(target)->u.count);
2772 dentry->d_name = target->d_name;
2773 } else {
2774 memcpy(dentry->d_iname, target->d_name.name,
2775 target->d_name.len + 1);
2776 dentry->d_name.name = dentry->d_iname;
2777 dentry->d_name.hash_len = target->d_name.hash_len;
2778 }
2779 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2780 kfree_rcu(old_name, u.head);
2781}
2782
2fd6b7f5
NP
2783static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2784{
2785 /*
2786 * XXXX: do we really need to take target->d_lock?
2787 */
2788 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2789 spin_lock(&target->d_parent->d_lock);
2790 else {
2791 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2792 spin_lock(&dentry->d_parent->d_lock);
2793 spin_lock_nested(&target->d_parent->d_lock,
2794 DENTRY_D_LOCK_NESTED);
2795 } else {
2796 spin_lock(&target->d_parent->d_lock);
2797 spin_lock_nested(&dentry->d_parent->d_lock,
2798 DENTRY_D_LOCK_NESTED);
2799 }
2800 }
2801 if (target < dentry) {
2802 spin_lock_nested(&target->d_lock, 2);
2803 spin_lock_nested(&dentry->d_lock, 3);
2804 } else {
2805 spin_lock_nested(&dentry->d_lock, 2);
2806 spin_lock_nested(&target->d_lock, 3);
2807 }
2808}
2809
986c0194 2810static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2811{
2812 if (target->d_parent != dentry->d_parent)
2813 spin_unlock(&dentry->d_parent->d_lock);
2814 if (target->d_parent != target)
2815 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2816 spin_unlock(&target->d_lock);
2817 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2818}
2819
1da177e4 2820/*
2fd6b7f5
NP
2821 * When switching names, the actual string doesn't strictly have to
2822 * be preserved in the target - because we're dropping the target
2823 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2824 * the new name before we switch, unless we are going to rehash
2825 * it. Note that if we *do* unhash the target, we are not allowed
2826 * to rehash it without giving it a new name/hash key - whether
2827 * we swap or overwrite the names here, resulting name won't match
2828 * the reality in filesystem; it's only there for d_path() purposes.
2829 * Note that all of this is happening under rename_lock, so the
2830 * any hash lookup seeing it in the middle of manipulations will
2831 * be discarded anyway. So we do not care what happens to the hash
2832 * key in that case.
1da177e4 2833 */
9eaef27b 2834/*
18367501 2835 * __d_move - move a dentry
1da177e4
LT
2836 * @dentry: entry to move
2837 * @target: new dentry
da1ce067 2838 * @exchange: exchange the two dentries
1da177e4
LT
2839 *
2840 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2841 * dcache entries should not be moved in this way. Caller must hold
2842 * rename_lock, the i_mutex of the source and target directories,
2843 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2844 */
da1ce067
MS
2845static void __d_move(struct dentry *dentry, struct dentry *target,
2846 bool exchange)
1da177e4 2847{
84e710da
AV
2848 struct inode *dir = NULL;
2849 unsigned n;
1da177e4
LT
2850 if (!dentry->d_inode)
2851 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2852
2fd6b7f5
NP
2853 BUG_ON(d_ancestor(dentry, target));
2854 BUG_ON(d_ancestor(target, dentry));
2855
2fd6b7f5 2856 dentry_lock_for_move(dentry, target);
84e710da
AV
2857 if (unlikely(d_in_lookup(target))) {
2858 dir = target->d_parent->d_inode;
2859 n = start_dir_add(dir);
85c7f810 2860 __d_lookup_done(target);
84e710da 2861 }
1da177e4 2862
31e6b01f 2863 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2864 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2865
15d3c589 2866 /* unhash both */
0632a9ac
AV
2867 if (!d_unhashed(dentry))
2868 ___d_drop(dentry);
2869 if (!d_unhashed(target))
2870 ___d_drop(target);
1da177e4 2871
1da177e4 2872 /* Switch the names.. */
8d85b484
AV
2873 if (exchange)
2874 swap_names(dentry, target);
2875 else
2876 copy_name(dentry, target);
1da177e4 2877
15d3c589
AV
2878 /* rehash in new place(s) */
2879 __d_rehash(dentry);
2880 if (exchange)
2881 __d_rehash(target);
61647823
N
2882 else
2883 target->d_hash.pprev = NULL;
15d3c589 2884
63cf427a 2885 /* ... and switch them in the tree */
1da177e4 2886 if (IS_ROOT(dentry)) {
63cf427a 2887 /* splicing a tree */
3d56c25e 2888 dentry->d_flags |= DCACHE_RCUACCESS;
1da177e4
LT
2889 dentry->d_parent = target->d_parent;
2890 target->d_parent = target;
946e51f2
AV
2891 list_del_init(&target->d_child);
2892 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2893 } else {
63cf427a 2894 /* swapping two dentries */
9a8d5bb4 2895 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2896 list_move(&target->d_child, &target->d_parent->d_subdirs);
2897 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a 2898 if (exchange)
affda484
AV
2899 fsnotify_update_flags(target);
2900 fsnotify_update_flags(dentry);
1da177e4
LT
2901 }
2902
31e6b01f
NP
2903 write_seqcount_end(&target->d_seq);
2904 write_seqcount_end(&dentry->d_seq);
2905
84e710da
AV
2906 if (dir)
2907 end_dir_add(dir, n);
986c0194 2908 dentry_unlock_for_move(dentry, target);
18367501
AV
2909}
2910
2911/*
2912 * d_move - move a dentry
2913 * @dentry: entry to move
2914 * @target: new dentry
2915 *
2916 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2917 * dcache entries should not be moved in this way. See the locking
2918 * requirements for __d_move.
18367501
AV
2919 */
2920void d_move(struct dentry *dentry, struct dentry *target)
2921{
2922 write_seqlock(&rename_lock);
da1ce067 2923 __d_move(dentry, target, false);
1da177e4 2924 write_sequnlock(&rename_lock);
9eaef27b 2925}
ec4f8605 2926EXPORT_SYMBOL(d_move);
1da177e4 2927
da1ce067
MS
2928/*
2929 * d_exchange - exchange two dentries
2930 * @dentry1: first dentry
2931 * @dentry2: second dentry
2932 */
2933void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2934{
2935 write_seqlock(&rename_lock);
2936
2937 WARN_ON(!dentry1->d_inode);
2938 WARN_ON(!dentry2->d_inode);
2939 WARN_ON(IS_ROOT(dentry1));
2940 WARN_ON(IS_ROOT(dentry2));
2941
2942 __d_move(dentry1, dentry2, true);
2943
2944 write_sequnlock(&rename_lock);
2945}
2946
e2761a11
OH
2947/**
2948 * d_ancestor - search for an ancestor
2949 * @p1: ancestor dentry
2950 * @p2: child dentry
2951 *
2952 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2953 * an ancestor of p2, else NULL.
9eaef27b 2954 */
e2761a11 2955struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2956{
2957 struct dentry *p;
2958
871c0067 2959 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2960 if (p->d_parent == p1)
e2761a11 2961 return p;
9eaef27b 2962 }
e2761a11 2963 return NULL;
9eaef27b
TM
2964}
2965
2966/*
2967 * This helper attempts to cope with remotely renamed directories
2968 *
2969 * It assumes that the caller is already holding
a03e283b 2970 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2971 *
2972 * Note: If ever the locking in lock_rename() changes, then please
2973 * remember to update this too...
9eaef27b 2974 */
b5ae6b15 2975static int __d_unalias(struct inode *inode,
873feea0 2976 struct dentry *dentry, struct dentry *alias)
9eaef27b 2977{
9902af79
AV
2978 struct mutex *m1 = NULL;
2979 struct rw_semaphore *m2 = NULL;
3d330dc1 2980 int ret = -ESTALE;
9eaef27b
TM
2981
2982 /* If alias and dentry share a parent, then no extra locks required */
2983 if (alias->d_parent == dentry->d_parent)
2984 goto out_unalias;
2985
9eaef27b 2986 /* See lock_rename() */
9eaef27b
TM
2987 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2988 goto out_err;
2989 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2990 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2991 goto out_err;
9902af79 2992 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2993out_unalias:
8ed936b5 2994 __d_move(alias, dentry, false);
b5ae6b15 2995 ret = 0;
9eaef27b 2996out_err:
9eaef27b 2997 if (m2)
9902af79 2998 up_read(m2);
9eaef27b
TM
2999 if (m1)
3000 mutex_unlock(m1);
3001 return ret;
3002}
3003
3f70bd51
BF
3004/**
3005 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3006 * @inode: the inode which may have a disconnected dentry
3007 * @dentry: a negative dentry which we want to point to the inode.
3008 *
da093a9b
BF
3009 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3010 * place of the given dentry and return it, else simply d_add the inode
3011 * to the dentry and return NULL.
3f70bd51 3012 *
908790fa
BF
3013 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3014 * we should error out: directories can't have multiple aliases.
3015 *
3f70bd51
BF
3016 * This is needed in the lookup routine of any filesystem that is exportable
3017 * (via knfsd) so that we can build dcache paths to directories effectively.
3018 *
3019 * If a dentry was found and moved, then it is returned. Otherwise NULL
3020 * is returned. This matches the expected return value of ->lookup.
3021 *
3022 * Cluster filesystems may call this function with a negative, hashed dentry.
3023 * In that case, we know that the inode will be a regular file, and also this
3024 * will only occur during atomic_open. So we need to check for the dentry
3025 * being already hashed only in the final case.
3026 */
3027struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3028{
3f70bd51
BF
3029 if (IS_ERR(inode))
3030 return ERR_CAST(inode);
3031
770bfad8
DH
3032 BUG_ON(!d_unhashed(dentry));
3033
de689f5e 3034 if (!inode)
b5ae6b15 3035 goto out;
de689f5e 3036
b9680917 3037 security_d_instantiate(dentry, inode);
873feea0 3038 spin_lock(&inode->i_lock);
9eaef27b 3039 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
3040 struct dentry *new = __d_find_any_alias(inode);
3041 if (unlikely(new)) {
a03e283b
EB
3042 /* The reference to new ensures it remains an alias */
3043 spin_unlock(&inode->i_lock);
18367501 3044 write_seqlock(&rename_lock);
b5ae6b15
AV
3045 if (unlikely(d_ancestor(new, dentry))) {
3046 write_sequnlock(&rename_lock);
b5ae6b15
AV
3047 dput(new);
3048 new = ERR_PTR(-ELOOP);
3049 pr_warn_ratelimited(
3050 "VFS: Lookup of '%s' in %s %s"
3051 " would have caused loop\n",
3052 dentry->d_name.name,
3053 inode->i_sb->s_type->name,
3054 inode->i_sb->s_id);
3055 } else if (!IS_ROOT(new)) {
3056 int err = __d_unalias(inode, dentry, new);
18367501 3057 write_sequnlock(&rename_lock);
b5ae6b15
AV
3058 if (err) {
3059 dput(new);
3060 new = ERR_PTR(err);
3061 }
18367501 3062 } else {
b5ae6b15
AV
3063 __d_move(new, dentry, false);
3064 write_sequnlock(&rename_lock);
dd179946 3065 }
b5ae6b15
AV
3066 iput(inode);
3067 return new;
9eaef27b 3068 }
770bfad8 3069 }
b5ae6b15 3070out:
ed782b5a 3071 __d_add(dentry, inode);
b5ae6b15 3072 return NULL;
770bfad8 3073}
b5ae6b15 3074EXPORT_SYMBOL(d_splice_alias);
770bfad8 3075
cdd16d02 3076static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
3077{
3078 *buflen -= namelen;
3079 if (*buflen < 0)
3080 return -ENAMETOOLONG;
3081 *buffer -= namelen;
3082 memcpy(*buffer, str, namelen);
3083 return 0;
3084}
3085
232d2d60
WL
3086/**
3087 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
3088 * @buffer: buffer pointer
3089 * @buflen: allocated length of the buffer
3090 * @name: name string and length qstr structure
232d2d60 3091 *
66702eb5 3092 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
232d2d60
WL
3093 * make sure that either the old or the new name pointer and length are
3094 * fetched. However, there may be mismatch between length and pointer.
3095 * The length cannot be trusted, we need to copy it byte-by-byte until
3096 * the length is reached or a null byte is found. It also prepends "/" at
3097 * the beginning of the name. The sequence number check at the caller will
3098 * retry it again when a d_move() does happen. So any garbage in the buffer
3099 * due to mismatched pointer and length will be discarded.
6d13f694 3100 *
7088efa9 3101 * Load acquire is needed to make sure that we see that terminating NUL.
232d2d60 3102 */
9aba36de 3103static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
cdd16d02 3104{
7088efa9 3105 const char *dname = smp_load_acquire(&name->name); /* ^^^ */
66702eb5 3106 u32 dlen = READ_ONCE(name->len);
232d2d60
WL
3107 char *p;
3108
232d2d60 3109 *buflen -= dlen + 1;
e825196d
AV
3110 if (*buflen < 0)
3111 return -ENAMETOOLONG;
232d2d60
WL
3112 p = *buffer -= dlen + 1;
3113 *p++ = '/';
3114 while (dlen--) {
3115 char c = *dname++;
3116 if (!c)
3117 break;
3118 *p++ = c;
3119 }
3120 return 0;
cdd16d02
MS
3121}
3122
1da177e4 3123/**
208898c1 3124 * prepend_path - Prepend path string to a buffer
9d1bc601 3125 * @path: the dentry/vfsmount to report
02125a82 3126 * @root: root vfsmnt/dentry
f2eb6575
MS
3127 * @buffer: pointer to the end of the buffer
3128 * @buflen: pointer to buffer length
552ce544 3129 *
18129977
WL
3130 * The function will first try to write out the pathname without taking any
3131 * lock other than the RCU read lock to make sure that dentries won't go away.
3132 * It only checks the sequence number of the global rename_lock as any change
3133 * in the dentry's d_seq will be preceded by changes in the rename_lock
3134 * sequence number. If the sequence number had been changed, it will restart
3135 * the whole pathname back-tracing sequence again by taking the rename_lock.
3136 * In this case, there is no need to take the RCU read lock as the recursive
3137 * parent pointer references will keep the dentry chain alive as long as no
3138 * rename operation is performed.
1da177e4 3139 */
02125a82
AV
3140static int prepend_path(const struct path *path,
3141 const struct path *root,
f2eb6575 3142 char **buffer, int *buflen)
1da177e4 3143{
ede4cebc
AV
3144 struct dentry *dentry;
3145 struct vfsmount *vfsmnt;
3146 struct mount *mnt;
f2eb6575 3147 int error = 0;
48a066e7 3148 unsigned seq, m_seq = 0;
232d2d60
WL
3149 char *bptr;
3150 int blen;
6092d048 3151
48f5ec21 3152 rcu_read_lock();
48a066e7
AV
3153restart_mnt:
3154 read_seqbegin_or_lock(&mount_lock, &m_seq);
3155 seq = 0;
4ec6c2ae 3156 rcu_read_lock();
232d2d60
WL
3157restart:
3158 bptr = *buffer;
3159 blen = *buflen;
48a066e7 3160 error = 0;
ede4cebc
AV
3161 dentry = path->dentry;
3162 vfsmnt = path->mnt;
3163 mnt = real_mount(vfsmnt);
232d2d60 3164 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 3165 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
3166 struct dentry * parent;
3167
1da177e4 3168 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
66702eb5 3169 struct mount *parent = READ_ONCE(mnt->mnt_parent);
cde93be4
EB
3170 /* Escaped? */
3171 if (dentry != vfsmnt->mnt_root) {
3172 bptr = *buffer;
3173 blen = *buflen;
3174 error = 3;
3175 break;
3176 }
552ce544 3177 /* Global root? */
48a066e7 3178 if (mnt != parent) {
66702eb5 3179 dentry = READ_ONCE(mnt->mnt_mountpoint);
48a066e7 3180 mnt = parent;
232d2d60
WL
3181 vfsmnt = &mnt->mnt;
3182 continue;
3183 }
232d2d60
WL
3184 if (!error)
3185 error = is_mounted(vfsmnt) ? 1 : 2;
3186 break;
1da177e4
LT
3187 }
3188 parent = dentry->d_parent;
3189 prefetch(parent);
232d2d60 3190 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
3191 if (error)
3192 break;
3193
1da177e4
LT
3194 dentry = parent;
3195 }
48f5ec21
AV
3196 if (!(seq & 1))
3197 rcu_read_unlock();
3198 if (need_seqretry(&rename_lock, seq)) {
3199 seq = 1;
232d2d60 3200 goto restart;
48f5ec21
AV
3201 }
3202 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
3203
3204 if (!(m_seq & 1))
3205 rcu_read_unlock();
48a066e7
AV
3206 if (need_seqretry(&mount_lock, m_seq)) {
3207 m_seq = 1;
3208 goto restart_mnt;
3209 }
3210 done_seqretry(&mount_lock, m_seq);
1da177e4 3211
232d2d60
WL
3212 if (error >= 0 && bptr == *buffer) {
3213 if (--blen < 0)
3214 error = -ENAMETOOLONG;
3215 else
3216 *--bptr = '/';
3217 }
3218 *buffer = bptr;
3219 *buflen = blen;
7ea600b5 3220 return error;
f2eb6575 3221}
be285c71 3222
f2eb6575
MS
3223/**
3224 * __d_path - return the path of a dentry
3225 * @path: the dentry/vfsmount to report
02125a82 3226 * @root: root vfsmnt/dentry
cd956a1c 3227 * @buf: buffer to return value in
f2eb6575
MS
3228 * @buflen: buffer length
3229 *
ffd1f4ed 3230 * Convert a dentry into an ASCII path name.
f2eb6575
MS
3231 *
3232 * Returns a pointer into the buffer or an error code if the
3233 * path was too long.
3234 *
be148247 3235 * "buflen" should be positive.
f2eb6575 3236 *
02125a82 3237 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 3238 */
02125a82
AV
3239char *__d_path(const struct path *path,
3240 const struct path *root,
f2eb6575
MS
3241 char *buf, int buflen)
3242{
3243 char *res = buf + buflen;
3244 int error;
3245
3246 prepend(&res, &buflen, "\0", 1);
f2eb6575 3247 error = prepend_path(path, root, &res, &buflen);
be148247 3248
02125a82
AV
3249 if (error < 0)
3250 return ERR_PTR(error);
3251 if (error > 0)
3252 return NULL;
3253 return res;
3254}
3255
3256char *d_absolute_path(const struct path *path,
3257 char *buf, int buflen)
3258{
3259 struct path root = {};
3260 char *res = buf + buflen;
3261 int error;
3262
3263 prepend(&res, &buflen, "\0", 1);
02125a82 3264 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3265
3266 if (error > 1)
3267 error = -EINVAL;
3268 if (error < 0)
f2eb6575 3269 return ERR_PTR(error);
f2eb6575 3270 return res;
1da177e4
LT
3271}
3272
ffd1f4ed
MS
3273/*
3274 * same as __d_path but appends "(deleted)" for unlinked files.
3275 */
02125a82
AV
3276static int path_with_deleted(const struct path *path,
3277 const struct path *root,
3278 char **buf, int *buflen)
ffd1f4ed
MS
3279{
3280 prepend(buf, buflen, "\0", 1);
3281 if (d_unlinked(path->dentry)) {
3282 int error = prepend(buf, buflen, " (deleted)", 10);
3283 if (error)
3284 return error;
3285 }
3286
3287 return prepend_path(path, root, buf, buflen);
3288}
3289
8df9d1a4
MS
3290static int prepend_unreachable(char **buffer, int *buflen)
3291{
3292 return prepend(buffer, buflen, "(unreachable)", 13);
3293}
3294
68f0d9d9
LT
3295static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3296{
3297 unsigned seq;
3298
3299 do {
3300 seq = read_seqcount_begin(&fs->seq);
3301 *root = fs->root;
3302 } while (read_seqcount_retry(&fs->seq, seq));
3303}
3304
a03a8a70
JB
3305/**
3306 * d_path - return the path of a dentry
cf28b486 3307 * @path: path to report
a03a8a70
JB
3308 * @buf: buffer to return value in
3309 * @buflen: buffer length
3310 *
3311 * Convert a dentry into an ASCII path name. If the entry has been deleted
3312 * the string " (deleted)" is appended. Note that this is ambiguous.
3313 *
52afeefb
AV
3314 * Returns a pointer into the buffer or an error code if the path was
3315 * too long. Note: Callers should use the returned pointer, not the passed
3316 * in buffer, to use the name! The implementation often starts at an offset
3317 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3318 *
31f3e0b3 3319 * "buflen" should be positive.
a03a8a70 3320 */
20d4fdc1 3321char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3322{
ffd1f4ed 3323 char *res = buf + buflen;
6ac08c39 3324 struct path root;
ffd1f4ed 3325 int error;
1da177e4 3326
c23fbb6b
ED
3327 /*
3328 * We have various synthetic filesystems that never get mounted. On
3329 * these filesystems dentries are never used for lookup purposes, and
3330 * thus don't need to be hashed. They also don't need a name until a
3331 * user wants to identify the object in /proc/pid/fd/. The little hack
3332 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3333 *
3334 * Some pseudo inodes are mountable. When they are mounted
3335 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3336 * and instead have d_path return the mounted path.
c23fbb6b 3337 */
f48cfddc
EB
3338 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3339 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3340 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3341
68f0d9d9
LT
3342 rcu_read_lock();
3343 get_fs_root_rcu(current->fs, &root);
02125a82 3344 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3345 rcu_read_unlock();
3346
02125a82 3347 if (error < 0)
ffd1f4ed 3348 res = ERR_PTR(error);
1da177e4
LT
3349 return res;
3350}
ec4f8605 3351EXPORT_SYMBOL(d_path);
1da177e4 3352
c23fbb6b
ED
3353/*
3354 * Helper function for dentry_operations.d_dname() members
3355 */
3356char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3357 const char *fmt, ...)
3358{
3359 va_list args;
3360 char temp[64];
3361 int sz;
3362
3363 va_start(args, fmt);
3364 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3365 va_end(args);
3366
3367 if (sz > sizeof(temp) || sz > buflen)
3368 return ERR_PTR(-ENAMETOOLONG);
3369
3370 buffer += buflen - sz;
3371 return memcpy(buffer, temp, sz);
3372}
3373
118b2302
AV
3374char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3375{
3376 char *end = buffer + buflen;
3377 /* these dentries are never renamed, so d_lock is not needed */
3378 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3379 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3380 prepend(&end, &buflen, "/", 1))
3381 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3382 return end;
118b2302 3383}
31bbe16f 3384EXPORT_SYMBOL(simple_dname);
118b2302 3385
6092d048
RP
3386/*
3387 * Write full pathname from the root of the filesystem into the buffer.
3388 */
f6500801 3389static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3390{
f6500801 3391 struct dentry *dentry;
232d2d60
WL
3392 char *end, *retval;
3393 int len, seq = 0;
3394 int error = 0;
6092d048 3395
f6500801
AV
3396 if (buflen < 2)
3397 goto Elong;
3398
48f5ec21 3399 rcu_read_lock();
232d2d60 3400restart:
f6500801 3401 dentry = d;
232d2d60
WL
3402 end = buf + buflen;
3403 len = buflen;
3404 prepend(&end, &len, "\0", 1);
6092d048
RP
3405 /* Get '/' right */
3406 retval = end-1;
3407 *retval = '/';
232d2d60 3408 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3409 while (!IS_ROOT(dentry)) {
3410 struct dentry *parent = dentry->d_parent;
6092d048 3411
6092d048 3412 prefetch(parent);
232d2d60
WL
3413 error = prepend_name(&end, &len, &dentry->d_name);
3414 if (error)
3415 break;
6092d048
RP
3416
3417 retval = end;
3418 dentry = parent;
3419 }
48f5ec21
AV
3420 if (!(seq & 1))
3421 rcu_read_unlock();
3422 if (need_seqretry(&rename_lock, seq)) {
3423 seq = 1;
232d2d60 3424 goto restart;
48f5ec21
AV
3425 }
3426 done_seqretry(&rename_lock, seq);
232d2d60
WL
3427 if (error)
3428 goto Elong;
c103135c
AV
3429 return retval;
3430Elong:
3431 return ERR_PTR(-ENAMETOOLONG);
3432}
ec2447c2
NP
3433
3434char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3435{
232d2d60 3436 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3437}
3438EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3439
3440char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3441{
3442 char *p = NULL;
3443 char *retval;
3444
c103135c
AV
3445 if (d_unlinked(dentry)) {
3446 p = buf + buflen;
3447 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3448 goto Elong;
3449 buflen++;
3450 }
3451 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3452 if (!IS_ERR(retval) && p)
3453 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3454 return retval;
3455Elong:
6092d048
RP
3456 return ERR_PTR(-ENAMETOOLONG);
3457}
3458
8b19e341
LT
3459static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3460 struct path *pwd)
5762482f 3461{
8b19e341
LT
3462 unsigned seq;
3463
3464 do {
3465 seq = read_seqcount_begin(&fs->seq);
3466 *root = fs->root;
3467 *pwd = fs->pwd;
3468 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3469}
3470
1da177e4
LT
3471/*
3472 * NOTE! The user-level library version returns a
3473 * character pointer. The kernel system call just
3474 * returns the length of the buffer filled (which
3475 * includes the ending '\0' character), or a negative
3476 * error value. So libc would do something like
3477 *
3478 * char *getcwd(char * buf, size_t size)
3479 * {
3480 * int retval;
3481 *
3482 * retval = sys_getcwd(buf, size);
3483 * if (retval >= 0)
3484 * return buf;
3485 * errno = -retval;
3486 * return NULL;
3487 * }
3488 */
3cdad428 3489SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3490{
552ce544 3491 int error;
6ac08c39 3492 struct path pwd, root;
3272c544 3493 char *page = __getname();
1da177e4
LT
3494
3495 if (!page)
3496 return -ENOMEM;
3497
8b19e341
LT
3498 rcu_read_lock();
3499 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3500
552ce544 3501 error = -ENOENT;
f3da392e 3502 if (!d_unlinked(pwd.dentry)) {
552ce544 3503 unsigned long len;
3272c544
LT
3504 char *cwd = page + PATH_MAX;
3505 int buflen = PATH_MAX;
1da177e4 3506
8df9d1a4 3507 prepend(&cwd, &buflen, "\0", 1);
02125a82 3508 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3509 rcu_read_unlock();
552ce544 3510
02125a82 3511 if (error < 0)
552ce544
LT
3512 goto out;
3513
8df9d1a4 3514 /* Unreachable from current root */
02125a82 3515 if (error > 0) {
8df9d1a4
MS
3516 error = prepend_unreachable(&cwd, &buflen);
3517 if (error)
3518 goto out;
3519 }
3520
552ce544 3521 error = -ERANGE;
3272c544 3522 len = PATH_MAX + page - cwd;
552ce544
LT
3523 if (len <= size) {
3524 error = len;
3525 if (copy_to_user(buf, cwd, len))
3526 error = -EFAULT;
3527 }
949854d0 3528 } else {
ff812d72 3529 rcu_read_unlock();
949854d0 3530 }
1da177e4
LT
3531
3532out:
3272c544 3533 __putname(page);
1da177e4
LT
3534 return error;
3535}
3536
3537/*
3538 * Test whether new_dentry is a subdirectory of old_dentry.
3539 *
3540 * Trivially implemented using the dcache structure
3541 */
3542
3543/**
3544 * is_subdir - is new dentry a subdirectory of old_dentry
3545 * @new_dentry: new dentry
3546 * @old_dentry: old dentry
3547 *
a6e5787f
YB
3548 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3549 * Returns false otherwise.
1da177e4
LT
3550 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3551 */
3552
a6e5787f 3553bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3554{
a6e5787f 3555 bool result;
949854d0 3556 unsigned seq;
1da177e4 3557
e2761a11 3558 if (new_dentry == old_dentry)
a6e5787f 3559 return true;
e2761a11 3560
e2761a11 3561 do {
1da177e4 3562 /* for restarting inner loop in case of seq retry */
1da177e4 3563 seq = read_seqbegin(&rename_lock);
949854d0
NP
3564 /*
3565 * Need rcu_readlock to protect against the d_parent trashing
3566 * due to d_move
3567 */
3568 rcu_read_lock();
e2761a11 3569 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3570 result = true;
e2761a11 3571 else
a6e5787f 3572 result = false;
949854d0 3573 rcu_read_unlock();
1da177e4 3574 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3575
3576 return result;
3577}
e8f9e5b7 3578EXPORT_SYMBOL(is_subdir);
1da177e4 3579
db14fc3a 3580static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3581{
db14fc3a
MS
3582 struct dentry *root = data;
3583 if (dentry != root) {
3584 if (d_unhashed(dentry) || !dentry->d_inode)
3585 return D_WALK_SKIP;
1da177e4 3586
01ddc4ed
MS
3587 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3588 dentry->d_flags |= DCACHE_GENOCIDE;
3589 dentry->d_lockref.count--;
3590 }
1da177e4 3591 }
db14fc3a
MS
3592 return D_WALK_CONTINUE;
3593}
58db63d0 3594
db14fc3a
MS
3595void d_genocide(struct dentry *parent)
3596{
3597 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3598}
3599
60545d0d 3600void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3601{
60545d0d
AV
3602 inode_dec_link_count(inode);
3603 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3604 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3605 !d_unlinked(dentry));
3606 spin_lock(&dentry->d_parent->d_lock);
3607 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3608 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3609 (unsigned long long)inode->i_ino);
3610 spin_unlock(&dentry->d_lock);
3611 spin_unlock(&dentry->d_parent->d_lock);
3612 d_instantiate(dentry, inode);
1da177e4 3613}
60545d0d 3614EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3615
3616static __initdata unsigned long dhash_entries;
3617static int __init set_dhash_entries(char *str)
3618{
3619 if (!str)
3620 return 0;
3621 dhash_entries = simple_strtoul(str, &str, 0);
3622 return 1;
3623}
3624__setup("dhash_entries=", set_dhash_entries);
3625
3626static void __init dcache_init_early(void)
3627{
1da177e4
LT
3628 /* If hashes are distributed across NUMA nodes, defer
3629 * hash allocation until vmalloc space is available.
3630 */
3631 if (hashdist)
3632 return;
3633
3634 dentry_hashtable =
3635 alloc_large_system_hash("Dentry cache",
b07ad996 3636 sizeof(struct hlist_bl_head),
1da177e4
LT
3637 dhash_entries,
3638 13,
3d375d78 3639 HASH_EARLY | HASH_ZERO,
1da177e4 3640 &d_hash_shift,
b35d786b 3641 NULL,
31fe62b9 3642 0,
1da177e4 3643 0);
854d3e63 3644 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3645}
3646
74bf17cf 3647static void __init dcache_init(void)
1da177e4 3648{
3d375d78 3649 /*
1da177e4
LT
3650 * A constructor could be added for stable state like the lists,
3651 * but it is probably not worth it because of the cache nature
3d375d78 3652 * of the dcache.
1da177e4 3653 */
80344266
DW
3654 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3655 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3656 d_iname);
1da177e4
LT
3657
3658 /* Hash may have been set up in dcache_init_early */
3659 if (!hashdist)
3660 return;
3661
3662 dentry_hashtable =
3663 alloc_large_system_hash("Dentry cache",
b07ad996 3664 sizeof(struct hlist_bl_head),
1da177e4
LT
3665 dhash_entries,
3666 13,
3d375d78 3667 HASH_ZERO,
1da177e4 3668 &d_hash_shift,
b35d786b 3669 NULL,
31fe62b9 3670 0,
1da177e4 3671 0);
854d3e63 3672 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3673}
3674
3675/* SLAB cache for __getname() consumers */
e18b890b 3676struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3677EXPORT_SYMBOL(names_cachep);
1da177e4 3678
1da177e4
LT
3679EXPORT_SYMBOL(d_genocide);
3680
1da177e4
LT
3681void __init vfs_caches_init_early(void)
3682{
6916363f
SAS
3683 int i;
3684
3685 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3686 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3687
1da177e4
LT
3688 dcache_init_early();
3689 inode_init_early();
3690}
3691
4248b0da 3692void __init vfs_caches_init(void)
1da177e4 3693{
6a9b8820
DW
3694 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3695 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3696
74bf17cf
DC
3697 dcache_init();
3698 inode_init();
4248b0da
MG
3699 files_init();
3700 files_maxfiles_init();
74bf17cf 3701 mnt_init();
1da177e4
LT
3702 bdev_cache_init();
3703 chrdev_init();
3704}