fold try_prune_one_dentry()
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0
NP
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
b23fb0a6 62 * - d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
482db906
AV
109 hash = hash + (hash >> d_hash_shift);
110 return dentry_hashtable + (hash & d_hash_mask);
ceb5bdc2
NP
111}
112
1da177e4
LT
113/* Statistics gathering. */
114struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116};
117
3942c07c 118static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 119static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
120
121#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
122
123/*
124 * Here we resort to our own counters instead of using generic per-cpu counters
125 * for consistency with what the vfs inode code does. We are expected to harvest
126 * better code and performance by having our own specialized counters.
127 *
128 * Please note that the loop is done over all possible CPUs, not over all online
129 * CPUs. The reason for this is that we don't want to play games with CPUs going
130 * on and off. If one of them goes off, we will just keep their counters.
131 *
132 * glommer: See cffbc8a for details, and if you ever intend to change this,
133 * please update all vfs counters to match.
134 */
3942c07c 135static long get_nr_dentry(void)
3e880fb5
NP
136{
137 int i;
3942c07c 138 long sum = 0;
3e880fb5
NP
139 for_each_possible_cpu(i)
140 sum += per_cpu(nr_dentry, i);
141 return sum < 0 ? 0 : sum;
142}
143
62d36c77
DC
144static long get_nr_dentry_unused(void)
145{
146 int i;
147 long sum = 0;
148 for_each_possible_cpu(i)
149 sum += per_cpu(nr_dentry_unused, i);
150 return sum < 0 ? 0 : sum;
151}
152
312d3ca8
CH
153int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
154 size_t *lenp, loff_t *ppos)
155{
3e880fb5 156 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 157 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 158 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
159}
160#endif
161
5483f18e
LT
162/*
163 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164 * The strings are both count bytes long, and count is non-zero.
165 */
e419b4cc
LT
166#ifdef CONFIG_DCACHE_WORD_ACCESS
167
168#include <asm/word-at-a-time.h>
169/*
170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171 * aligned allocation for this particular component. We don't
172 * strictly need the load_unaligned_zeropad() safety, but it
173 * doesn't hurt either.
174 *
175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176 * need the careful unaligned handling.
177 */
94753db5 178static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 179{
bfcfaa77 180 unsigned long a,b,mask;
bfcfaa77
LT
181
182 for (;;) {
12f8ad4b 183 a = *(unsigned long *)cs;
e419b4cc 184 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
185 if (tcount < sizeof(unsigned long))
186 break;
187 if (unlikely(a != b))
188 return 1;
189 cs += sizeof(unsigned long);
190 ct += sizeof(unsigned long);
191 tcount -= sizeof(unsigned long);
192 if (!tcount)
193 return 0;
194 }
a5c21dce 195 mask = bytemask_from_count(tcount);
bfcfaa77 196 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
197}
198
bfcfaa77 199#else
e419b4cc 200
94753db5 201static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 202{
5483f18e
LT
203 do {
204 if (*cs != *ct)
205 return 1;
206 cs++;
207 ct++;
208 tcount--;
209 } while (tcount);
210 return 0;
211}
212
e419b4cc
LT
213#endif
214
94753db5
LT
215static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216{
6326c71f 217 const unsigned char *cs;
94753db5
LT
218 /*
219 * Be careful about RCU walk racing with rename:
220 * use ACCESS_ONCE to fetch the name pointer.
221 *
222 * NOTE! Even if a rename will mean that the length
223 * was not loaded atomically, we don't care. The
224 * RCU walk will check the sequence count eventually,
225 * and catch it. And we won't overrun the buffer,
226 * because we're reading the name pointer atomically,
227 * and a dentry name is guaranteed to be properly
228 * terminated with a NUL byte.
229 *
230 * End result: even if 'len' is wrong, we'll exit
231 * early because the data cannot match (there can
232 * be no NUL in the ct/tcount data)
233 */
6326c71f
LT
234 cs = ACCESS_ONCE(dentry->d_name.name);
235 smp_read_barrier_depends();
236 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
237}
238
9c82ab9c 239static void __d_free(struct rcu_head *head)
1da177e4 240{
9c82ab9c
CH
241 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
242
b3d9b7a3 243 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
244 if (dname_external(dentry))
245 kfree(dentry->d_name.name);
246 kmem_cache_free(dentry_cache, dentry);
247}
248
31e6b01f
NP
249/**
250 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 251 * @dentry: the target dentry
31e6b01f
NP
252 * After this call, in-progress rcu-walk path lookup will fail. This
253 * should be called after unhashing, and after changing d_inode (if
254 * the dentry has not already been unhashed).
255 */
256static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
257{
258 assert_spin_locked(&dentry->d_lock);
259 /* Go through a barrier */
260 write_seqcount_barrier(&dentry->d_seq);
261}
262
1da177e4
LT
263/*
264 * Release the dentry's inode, using the filesystem
31e6b01f
NP
265 * d_iput() operation if defined. Dentry has no refcount
266 * and is unhashed.
1da177e4 267 */
858119e1 268static void dentry_iput(struct dentry * dentry)
31f3e0b3 269 __releases(dentry->d_lock)
873feea0 270 __releases(dentry->d_inode->i_lock)
1da177e4
LT
271{
272 struct inode *inode = dentry->d_inode;
273 if (inode) {
274 dentry->d_inode = NULL;
b3d9b7a3 275 hlist_del_init(&dentry->d_alias);
1da177e4 276 spin_unlock(&dentry->d_lock);
873feea0 277 spin_unlock(&inode->i_lock);
f805fbda
LT
278 if (!inode->i_nlink)
279 fsnotify_inoderemove(inode);
1da177e4
LT
280 if (dentry->d_op && dentry->d_op->d_iput)
281 dentry->d_op->d_iput(dentry, inode);
282 else
283 iput(inode);
284 } else {
285 spin_unlock(&dentry->d_lock);
1da177e4
LT
286 }
287}
288
31e6b01f
NP
289/*
290 * Release the dentry's inode, using the filesystem
291 * d_iput() operation if defined. dentry remains in-use.
292 */
293static void dentry_unlink_inode(struct dentry * dentry)
294 __releases(dentry->d_lock)
873feea0 295 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
296{
297 struct inode *inode = dentry->d_inode;
b18825a7 298 __d_clear_type(dentry);
31e6b01f 299 dentry->d_inode = NULL;
b3d9b7a3 300 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
301 dentry_rcuwalk_barrier(dentry);
302 spin_unlock(&dentry->d_lock);
873feea0 303 spin_unlock(&inode->i_lock);
31e6b01f
NP
304 if (!inode->i_nlink)
305 fsnotify_inoderemove(inode);
306 if (dentry->d_op && dentry->d_op->d_iput)
307 dentry->d_op->d_iput(dentry, inode);
308 else
309 iput(inode);
310}
311
89dc77bc
LT
312/*
313 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
314 * is in use - which includes both the "real" per-superblock
315 * LRU list _and_ the DCACHE_SHRINK_LIST use.
316 *
317 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
318 * on the shrink list (ie not on the superblock LRU list).
319 *
320 * The per-cpu "nr_dentry_unused" counters are updated with
321 * the DCACHE_LRU_LIST bit.
322 *
323 * These helper functions make sure we always follow the
324 * rules. d_lock must be held by the caller.
325 */
326#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
327static void d_lru_add(struct dentry *dentry)
328{
329 D_FLAG_VERIFY(dentry, 0);
330 dentry->d_flags |= DCACHE_LRU_LIST;
331 this_cpu_inc(nr_dentry_unused);
332 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
333}
334
335static void d_lru_del(struct dentry *dentry)
336{
337 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
338 dentry->d_flags &= ~DCACHE_LRU_LIST;
339 this_cpu_dec(nr_dentry_unused);
340 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
341}
342
343static void d_shrink_del(struct dentry *dentry)
344{
345 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
346 list_del_init(&dentry->d_lru);
347 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
348 this_cpu_dec(nr_dentry_unused);
349}
350
351static void d_shrink_add(struct dentry *dentry, struct list_head *list)
352{
353 D_FLAG_VERIFY(dentry, 0);
354 list_add(&dentry->d_lru, list);
355 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
356 this_cpu_inc(nr_dentry_unused);
357}
358
359/*
360 * These can only be called under the global LRU lock, ie during the
361 * callback for freeing the LRU list. "isolate" removes it from the
362 * LRU lists entirely, while shrink_move moves it to the indicated
363 * private list.
364 */
365static void d_lru_isolate(struct dentry *dentry)
366{
367 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
368 dentry->d_flags &= ~DCACHE_LRU_LIST;
369 this_cpu_dec(nr_dentry_unused);
370 list_del_init(&dentry->d_lru);
371}
372
373static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
374{
375 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
376 dentry->d_flags |= DCACHE_SHRINK_LIST;
377 list_move_tail(&dentry->d_lru, list);
378}
379
da3bbdd4 380/*
f6041567 381 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
382 */
383static void dentry_lru_add(struct dentry *dentry)
384{
89dc77bc
LT
385 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
386 d_lru_add(dentry);
da3bbdd4
KM
387}
388
f0023bc6
SW
389/*
390 * Remove a dentry with references from the LRU.
dd1f6b2e
DC
391 *
392 * If we are on the shrink list, then we can get to try_prune_one_dentry() and
393 * lose our last reference through the parent walk. In this case, we need to
394 * remove ourselves from the shrink list, not the LRU.
f0023bc6 395 */
da3bbdd4
KM
396static void dentry_lru_del(struct dentry *dentry)
397{
89dc77bc
LT
398 if (dentry->d_flags & DCACHE_LRU_LIST) {
399 if (dentry->d_flags & DCACHE_SHRINK_LIST)
400 return d_shrink_del(dentry);
401 d_lru_del(dentry);
da3bbdd4 402 }
da3bbdd4
KM
403}
404
789680d1
NP
405/**
406 * d_drop - drop a dentry
407 * @dentry: dentry to drop
408 *
409 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
410 * be found through a VFS lookup any more. Note that this is different from
411 * deleting the dentry - d_delete will try to mark the dentry negative if
412 * possible, giving a successful _negative_ lookup, while d_drop will
413 * just make the cache lookup fail.
414 *
415 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
416 * reason (NFS timeouts or autofs deletes).
417 *
418 * __d_drop requires dentry->d_lock.
419 */
420void __d_drop(struct dentry *dentry)
421{
dea3667b 422 if (!d_unhashed(dentry)) {
b61625d2 423 struct hlist_bl_head *b;
7632e465
BF
424 /*
425 * Hashed dentries are normally on the dentry hashtable,
426 * with the exception of those newly allocated by
427 * d_obtain_alias, which are always IS_ROOT:
428 */
429 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
430 b = &dentry->d_sb->s_anon;
431 else
432 b = d_hash(dentry->d_parent, dentry->d_name.hash);
433
434 hlist_bl_lock(b);
435 __hlist_bl_del(&dentry->d_hash);
436 dentry->d_hash.pprev = NULL;
437 hlist_bl_unlock(b);
dea3667b 438 dentry_rcuwalk_barrier(dentry);
789680d1
NP
439 }
440}
441EXPORT_SYMBOL(__d_drop);
442
443void d_drop(struct dentry *dentry)
444{
789680d1
NP
445 spin_lock(&dentry->d_lock);
446 __d_drop(dentry);
447 spin_unlock(&dentry->d_lock);
789680d1
NP
448}
449EXPORT_SYMBOL(d_drop);
450
77812a1e
NP
451/*
452 * Finish off a dentry we've decided to kill.
453 * dentry->d_lock must be held, returns with it unlocked.
454 * If ref is non-zero, then decrement the refcount too.
455 * Returns dentry requiring refcount drop, or NULL if we're done.
456 */
358eec18 457static struct dentry *
dd1f6b2e 458dentry_kill(struct dentry *dentry, int unlock_on_failure)
77812a1e
NP
459 __releases(dentry->d_lock)
460{
873feea0 461 struct inode *inode;
77812a1e
NP
462 struct dentry *parent;
463
873feea0
NP
464 inode = dentry->d_inode;
465 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e 466relock:
dd1f6b2e
DC
467 if (unlock_on_failure) {
468 spin_unlock(&dentry->d_lock);
469 cpu_relax();
470 }
77812a1e
NP
471 return dentry; /* try again with same dentry */
472 }
473 if (IS_ROOT(dentry))
474 parent = NULL;
475 else
476 parent = dentry->d_parent;
477 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
478 if (inode)
479 spin_unlock(&inode->i_lock);
77812a1e
NP
480 goto relock;
481 }
31e6b01f 482
0d98439e
LT
483 /*
484 * The dentry is now unrecoverably dead to the world.
485 */
486 lockref_mark_dead(&dentry->d_lockref);
487
f0023bc6 488 /*
f0023bc6
SW
489 * inform the fs via d_prune that this dentry is about to be
490 * unhashed and destroyed.
491 */
590fb51f 492 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
493 dentry->d_op->d_prune(dentry);
494
495 dentry_lru_del(dentry);
77812a1e
NP
496 /* if it was on the hash then remove it */
497 __d_drop(dentry);
03b3b889
AV
498 list_del(&dentry->d_u.d_child);
499 /*
500 * Inform d_walk() that we are no longer attached to the
501 * dentry tree
502 */
503 dentry->d_flags |= DCACHE_DENTRY_KILLED;
504 if (parent)
505 spin_unlock(&parent->d_lock);
506 dentry_iput(dentry);
507 /*
508 * dentry_iput drops the locks, at which point nobody (except
509 * transient RCU lookups) can reach this dentry.
510 */
511 BUG_ON((int)dentry->d_lockref.count > 0);
512 this_cpu_dec(nr_dentry);
513 if (dentry->d_op && dentry->d_op->d_release)
514 dentry->d_op->d_release(dentry);
515
516 /* if dentry was never visible to RCU, immediate free is OK */
517 if (!(dentry->d_flags & DCACHE_RCUACCESS))
518 __d_free(&dentry->d_u.d_rcu);
519 else
520 call_rcu(&dentry->d_u.d_rcu, __d_free);
521 return parent;
77812a1e
NP
522}
523
1da177e4
LT
524/*
525 * This is dput
526 *
527 * This is complicated by the fact that we do not want to put
528 * dentries that are no longer on any hash chain on the unused
529 * list: we'd much rather just get rid of them immediately.
530 *
531 * However, that implies that we have to traverse the dentry
532 * tree upwards to the parents which might _also_ now be
533 * scheduled for deletion (it may have been only waiting for
534 * its last child to go away).
535 *
536 * This tail recursion is done by hand as we don't want to depend
537 * on the compiler to always get this right (gcc generally doesn't).
538 * Real recursion would eat up our stack space.
539 */
540
541/*
542 * dput - release a dentry
543 * @dentry: dentry to release
544 *
545 * Release a dentry. This will drop the usage count and if appropriate
546 * call the dentry unlink method as well as removing it from the queues and
547 * releasing its resources. If the parent dentries were scheduled for release
548 * they too may now get deleted.
1da177e4 549 */
1da177e4
LT
550void dput(struct dentry *dentry)
551{
8aab6a27 552 if (unlikely(!dentry))
1da177e4
LT
553 return;
554
555repeat:
98474236 556 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 557 return;
1da177e4 558
8aab6a27
LT
559 /* Unreachable? Get rid of it */
560 if (unlikely(d_unhashed(dentry)))
561 goto kill_it;
562
563 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 564 if (dentry->d_op->d_delete(dentry))
61f3dee4 565 goto kill_it;
1da177e4 566 }
265ac902 567
358eec18
LT
568 if (!(dentry->d_flags & DCACHE_REFERENCED))
569 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 570 dentry_lru_add(dentry);
265ac902 571
98474236 572 dentry->d_lockref.count--;
61f3dee4 573 spin_unlock(&dentry->d_lock);
1da177e4
LT
574 return;
575
d52b9086 576kill_it:
dd1f6b2e 577 dentry = dentry_kill(dentry, 1);
d52b9086
MS
578 if (dentry)
579 goto repeat;
1da177e4 580}
ec4f8605 581EXPORT_SYMBOL(dput);
1da177e4
LT
582
583/**
584 * d_invalidate - invalidate a dentry
585 * @dentry: dentry to invalidate
586 *
587 * Try to invalidate the dentry if it turns out to be
588 * possible. If there are other dentries that can be
589 * reached through this one we can't delete it and we
590 * return -EBUSY. On success we return 0.
591 *
592 * no dcache lock.
593 */
594
595int d_invalidate(struct dentry * dentry)
596{
597 /*
598 * If it's already been dropped, return OK.
599 */
da502956 600 spin_lock(&dentry->d_lock);
1da177e4 601 if (d_unhashed(dentry)) {
da502956 602 spin_unlock(&dentry->d_lock);
1da177e4
LT
603 return 0;
604 }
605 /*
606 * Check whether to do a partial shrink_dcache
607 * to get rid of unused child entries.
608 */
609 if (!list_empty(&dentry->d_subdirs)) {
da502956 610 spin_unlock(&dentry->d_lock);
1da177e4 611 shrink_dcache_parent(dentry);
da502956 612 spin_lock(&dentry->d_lock);
1da177e4
LT
613 }
614
615 /*
616 * Somebody else still using it?
617 *
618 * If it's a directory, we can't drop it
619 * for fear of somebody re-populating it
620 * with children (even though dropping it
621 * would make it unreachable from the root,
622 * we might still populate it if it was a
623 * working directory or similar).
50e69630
AV
624 * We also need to leave mountpoints alone,
625 * directory or not.
1da177e4 626 */
98474236 627 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
50e69630 628 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 629 spin_unlock(&dentry->d_lock);
1da177e4
LT
630 return -EBUSY;
631 }
632 }
633
634 __d_drop(dentry);
635 spin_unlock(&dentry->d_lock);
1da177e4
LT
636 return 0;
637}
ec4f8605 638EXPORT_SYMBOL(d_invalidate);
1da177e4 639
b5c84bf6 640/* This must be called with d_lock held */
dc0474be 641static inline void __dget_dlock(struct dentry *dentry)
23044507 642{
98474236 643 dentry->d_lockref.count++;
23044507
NP
644}
645
dc0474be 646static inline void __dget(struct dentry *dentry)
1da177e4 647{
98474236 648 lockref_get(&dentry->d_lockref);
1da177e4
LT
649}
650
b7ab39f6
NP
651struct dentry *dget_parent(struct dentry *dentry)
652{
df3d0bbc 653 int gotref;
b7ab39f6
NP
654 struct dentry *ret;
655
df3d0bbc
WL
656 /*
657 * Do optimistic parent lookup without any
658 * locking.
659 */
660 rcu_read_lock();
661 ret = ACCESS_ONCE(dentry->d_parent);
662 gotref = lockref_get_not_zero(&ret->d_lockref);
663 rcu_read_unlock();
664 if (likely(gotref)) {
665 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
666 return ret;
667 dput(ret);
668 }
669
b7ab39f6 670repeat:
a734eb45
NP
671 /*
672 * Don't need rcu_dereference because we re-check it was correct under
673 * the lock.
674 */
675 rcu_read_lock();
b7ab39f6 676 ret = dentry->d_parent;
a734eb45
NP
677 spin_lock(&ret->d_lock);
678 if (unlikely(ret != dentry->d_parent)) {
679 spin_unlock(&ret->d_lock);
680 rcu_read_unlock();
b7ab39f6
NP
681 goto repeat;
682 }
a734eb45 683 rcu_read_unlock();
98474236
WL
684 BUG_ON(!ret->d_lockref.count);
685 ret->d_lockref.count++;
b7ab39f6 686 spin_unlock(&ret->d_lock);
b7ab39f6
NP
687 return ret;
688}
689EXPORT_SYMBOL(dget_parent);
690
1da177e4
LT
691/**
692 * d_find_alias - grab a hashed alias of inode
693 * @inode: inode in question
32ba9c3f
LT
694 * @want_discon: flag, used by d_splice_alias, to request
695 * that only a DISCONNECTED alias be returned.
1da177e4
LT
696 *
697 * If inode has a hashed alias, or is a directory and has any alias,
698 * acquire the reference to alias and return it. Otherwise return NULL.
699 * Notice that if inode is a directory there can be only one alias and
700 * it can be unhashed only if it has no children, or if it is the root
701 * of a filesystem.
702 *
21c0d8fd 703 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
704 * any other hashed alias over that one unless @want_discon is set,
705 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 706 */
32ba9c3f 707static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 708{
da502956 709 struct dentry *alias, *discon_alias;
1da177e4 710
da502956
NP
711again:
712 discon_alias = NULL;
b67bfe0d 713 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 714 spin_lock(&alias->d_lock);
1da177e4 715 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 716 if (IS_ROOT(alias) &&
da502956 717 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 718 discon_alias = alias;
32ba9c3f 719 } else if (!want_discon) {
dc0474be 720 __dget_dlock(alias);
da502956
NP
721 spin_unlock(&alias->d_lock);
722 return alias;
723 }
724 }
725 spin_unlock(&alias->d_lock);
726 }
727 if (discon_alias) {
728 alias = discon_alias;
729 spin_lock(&alias->d_lock);
730 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
731 if (IS_ROOT(alias) &&
732 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 733 __dget_dlock(alias);
da502956 734 spin_unlock(&alias->d_lock);
1da177e4
LT
735 return alias;
736 }
737 }
da502956
NP
738 spin_unlock(&alias->d_lock);
739 goto again;
1da177e4 740 }
da502956 741 return NULL;
1da177e4
LT
742}
743
da502956 744struct dentry *d_find_alias(struct inode *inode)
1da177e4 745{
214fda1f
DH
746 struct dentry *de = NULL;
747
b3d9b7a3 748 if (!hlist_empty(&inode->i_dentry)) {
873feea0 749 spin_lock(&inode->i_lock);
32ba9c3f 750 de = __d_find_alias(inode, 0);
873feea0 751 spin_unlock(&inode->i_lock);
214fda1f 752 }
1da177e4
LT
753 return de;
754}
ec4f8605 755EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
756
757/*
758 * Try to kill dentries associated with this inode.
759 * WARNING: you must own a reference to inode.
760 */
761void d_prune_aliases(struct inode *inode)
762{
0cdca3f9 763 struct dentry *dentry;
1da177e4 764restart:
873feea0 765 spin_lock(&inode->i_lock);
b67bfe0d 766 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 767 spin_lock(&dentry->d_lock);
98474236 768 if (!dentry->d_lockref.count) {
590fb51f
YZ
769 /*
770 * inform the fs via d_prune that this dentry
771 * is about to be unhashed and destroyed.
772 */
773 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
774 !d_unhashed(dentry))
775 dentry->d_op->d_prune(dentry);
776
dc0474be 777 __dget_dlock(dentry);
1da177e4
LT
778 __d_drop(dentry);
779 spin_unlock(&dentry->d_lock);
873feea0 780 spin_unlock(&inode->i_lock);
1da177e4
LT
781 dput(dentry);
782 goto restart;
783 }
784 spin_unlock(&dentry->d_lock);
785 }
873feea0 786 spin_unlock(&inode->i_lock);
1da177e4 787}
ec4f8605 788EXPORT_SYMBOL(d_prune_aliases);
1da177e4 789
3049cfe2 790static void shrink_dentry_list(struct list_head *list)
1da177e4 791{
5c47e6d0 792 struct dentry *dentry, *parent;
da3bbdd4 793
ec33679d
NP
794 rcu_read_lock();
795 for (;;) {
ec33679d
NP
796 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
797 if (&dentry->d_lru == list)
798 break; /* empty */
89dc77bc
LT
799
800 /*
801 * Get the dentry lock, and re-verify that the dentry is
802 * this on the shrinking list. If it is, we know that
803 * DCACHE_SHRINK_LIST and DCACHE_LRU_LIST are set.
804 */
ec33679d
NP
805 spin_lock(&dentry->d_lock);
806 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
807 spin_unlock(&dentry->d_lock);
23044507
NP
808 continue;
809 }
810
dd1f6b2e
DC
811 /*
812 * The dispose list is isolated and dentries are not accounted
813 * to the LRU here, so we can simply remove it from the list
814 * here regardless of whether it is referenced or not.
815 */
89dc77bc 816 d_shrink_del(dentry);
dd1f6b2e 817
1da177e4
LT
818 /*
819 * We found an inuse dentry which was not removed from
dd1f6b2e 820 * the LRU because of laziness during lookup. Do not free it.
1da177e4 821 */
98474236 822 if (dentry->d_lockref.count) {
da3bbdd4 823 spin_unlock(&dentry->d_lock);
1da177e4
LT
824 continue;
825 }
ec33679d 826 rcu_read_unlock();
77812a1e 827
5c47e6d0 828 parent = dentry_kill(dentry, 0);
89dc77bc 829 /*
5c47e6d0 830 * If dentry_kill returns NULL, we have nothing more to do.
89dc77bc 831 */
5c47e6d0
AV
832 if (!parent) {
833 rcu_read_lock();
834 continue;
835 }
836 if (unlikely(parent == dentry)) {
837 /*
838 * trylocks have failed and d_lock has been held the
839 * whole time, so it could not have been added to any
840 * other lists. Just add it back to the shrink list.
841 */
842 rcu_read_lock();
89dc77bc 843 d_shrink_add(dentry, list);
dd1f6b2e 844 spin_unlock(&dentry->d_lock);
5c47e6d0 845 continue;
dd1f6b2e 846 }
5c47e6d0
AV
847 /*
848 * We need to prune ancestors too. This is necessary to prevent
849 * quadratic behavior of shrink_dcache_parent(), but is also
850 * expected to be beneficial in reducing dentry cache
851 * fragmentation.
852 */
853 dentry = parent;
854 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
855 dentry = dentry_kill(dentry, 1);
856 rcu_read_lock();
da3bbdd4 857 }
ec33679d 858 rcu_read_unlock();
3049cfe2
CH
859}
860
f6041567
DC
861static enum lru_status
862dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
863{
864 struct list_head *freeable = arg;
865 struct dentry *dentry = container_of(item, struct dentry, d_lru);
866
867
868 /*
869 * we are inverting the lru lock/dentry->d_lock here,
870 * so use a trylock. If we fail to get the lock, just skip
871 * it
872 */
873 if (!spin_trylock(&dentry->d_lock))
874 return LRU_SKIP;
875
876 /*
877 * Referenced dentries are still in use. If they have active
878 * counts, just remove them from the LRU. Otherwise give them
879 * another pass through the LRU.
880 */
881 if (dentry->d_lockref.count) {
89dc77bc 882 d_lru_isolate(dentry);
f6041567
DC
883 spin_unlock(&dentry->d_lock);
884 return LRU_REMOVED;
885 }
886
887 if (dentry->d_flags & DCACHE_REFERENCED) {
888 dentry->d_flags &= ~DCACHE_REFERENCED;
889 spin_unlock(&dentry->d_lock);
890
891 /*
892 * The list move itself will be made by the common LRU code. At
893 * this point, we've dropped the dentry->d_lock but keep the
894 * lru lock. This is safe to do, since every list movement is
895 * protected by the lru lock even if both locks are held.
896 *
897 * This is guaranteed by the fact that all LRU management
898 * functions are intermediated by the LRU API calls like
899 * list_lru_add and list_lru_del. List movement in this file
900 * only ever occur through this functions or through callbacks
901 * like this one, that are called from the LRU API.
902 *
903 * The only exceptions to this are functions like
904 * shrink_dentry_list, and code that first checks for the
905 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
906 * operating only with stack provided lists after they are
907 * properly isolated from the main list. It is thus, always a
908 * local access.
909 */
910 return LRU_ROTATE;
911 }
912
89dc77bc 913 d_lru_shrink_move(dentry, freeable);
f6041567
DC
914 spin_unlock(&dentry->d_lock);
915
916 return LRU_REMOVED;
917}
918
3049cfe2 919/**
b48f03b3
DC
920 * prune_dcache_sb - shrink the dcache
921 * @sb: superblock
f6041567 922 * @nr_to_scan : number of entries to try to free
9b17c623 923 * @nid: which node to scan for freeable entities
b48f03b3 924 *
f6041567 925 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
b48f03b3
DC
926 * done when we need more memory an called from the superblock shrinker
927 * function.
3049cfe2 928 *
b48f03b3
DC
929 * This function may fail to free any resources if all the dentries are in
930 * use.
3049cfe2 931 */
9b17c623
DC
932long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
933 int nid)
3049cfe2 934{
f6041567
DC
935 LIST_HEAD(dispose);
936 long freed;
3049cfe2 937
9b17c623
DC
938 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
939 &dispose, &nr_to_scan);
f6041567 940 shrink_dentry_list(&dispose);
0a234c6d 941 return freed;
da3bbdd4 942}
23044507 943
4e717f5c
GC
944static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
945 spinlock_t *lru_lock, void *arg)
dd1f6b2e 946{
4e717f5c
GC
947 struct list_head *freeable = arg;
948 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 949
4e717f5c
GC
950 /*
951 * we are inverting the lru lock/dentry->d_lock here,
952 * so use a trylock. If we fail to get the lock, just skip
953 * it
954 */
955 if (!spin_trylock(&dentry->d_lock))
956 return LRU_SKIP;
957
89dc77bc 958 d_lru_shrink_move(dentry, freeable);
4e717f5c 959 spin_unlock(&dentry->d_lock);
ec33679d 960
4e717f5c 961 return LRU_REMOVED;
da3bbdd4
KM
962}
963
4e717f5c 964
1da177e4
LT
965/**
966 * shrink_dcache_sb - shrink dcache for a superblock
967 * @sb: superblock
968 *
3049cfe2
CH
969 * Shrink the dcache for the specified super block. This is used to free
970 * the dcache before unmounting a file system.
1da177e4 971 */
3049cfe2 972void shrink_dcache_sb(struct super_block *sb)
1da177e4 973{
4e717f5c
GC
974 long freed;
975
976 do {
977 LIST_HEAD(dispose);
978
979 freed = list_lru_walk(&sb->s_dentry_lru,
980 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 981
4e717f5c
GC
982 this_cpu_sub(nr_dentry_unused, freed);
983 shrink_dentry_list(&dispose);
984 } while (freed > 0);
1da177e4 985}
ec4f8605 986EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 987
db14fc3a
MS
988/**
989 * enum d_walk_ret - action to talke during tree walk
990 * @D_WALK_CONTINUE: contrinue walk
991 * @D_WALK_QUIT: quit walk
992 * @D_WALK_NORETRY: quit when retry is needed
993 * @D_WALK_SKIP: skip this dentry and its children
994 */
995enum d_walk_ret {
996 D_WALK_CONTINUE,
997 D_WALK_QUIT,
998 D_WALK_NORETRY,
999 D_WALK_SKIP,
1000};
c826cb7d 1001
1da177e4 1002/**
db14fc3a
MS
1003 * d_walk - walk the dentry tree
1004 * @parent: start of walk
1005 * @data: data passed to @enter() and @finish()
1006 * @enter: callback when first entering the dentry
1007 * @finish: callback when successfully finished the walk
1da177e4 1008 *
db14fc3a 1009 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1010 */
db14fc3a
MS
1011static void d_walk(struct dentry *parent, void *data,
1012 enum d_walk_ret (*enter)(void *, struct dentry *),
1013 void (*finish)(void *))
1da177e4 1014{
949854d0 1015 struct dentry *this_parent;
1da177e4 1016 struct list_head *next;
48f5ec21 1017 unsigned seq = 0;
db14fc3a
MS
1018 enum d_walk_ret ret;
1019 bool retry = true;
949854d0 1020
58db63d0 1021again:
48f5ec21 1022 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1023 this_parent = parent;
2fd6b7f5 1024 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1025
1026 ret = enter(data, this_parent);
1027 switch (ret) {
1028 case D_WALK_CONTINUE:
1029 break;
1030 case D_WALK_QUIT:
1031 case D_WALK_SKIP:
1032 goto out_unlock;
1033 case D_WALK_NORETRY:
1034 retry = false;
1035 break;
1036 }
1da177e4
LT
1037repeat:
1038 next = this_parent->d_subdirs.next;
1039resume:
1040 while (next != &this_parent->d_subdirs) {
1041 struct list_head *tmp = next;
5160ee6f 1042 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1043 next = tmp->next;
2fd6b7f5
NP
1044
1045 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1046
1047 ret = enter(data, dentry);
1048 switch (ret) {
1049 case D_WALK_CONTINUE:
1050 break;
1051 case D_WALK_QUIT:
2fd6b7f5 1052 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1053 goto out_unlock;
1054 case D_WALK_NORETRY:
1055 retry = false;
1056 break;
1057 case D_WALK_SKIP:
1058 spin_unlock(&dentry->d_lock);
1059 continue;
2fd6b7f5 1060 }
db14fc3a 1061
1da177e4 1062 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1063 spin_unlock(&this_parent->d_lock);
1064 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1065 this_parent = dentry;
2fd6b7f5 1066 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1067 goto repeat;
1068 }
2fd6b7f5 1069 spin_unlock(&dentry->d_lock);
1da177e4
LT
1070 }
1071 /*
1072 * All done at this level ... ascend and resume the search.
1073 */
1074 if (this_parent != parent) {
c826cb7d 1075 struct dentry *child = this_parent;
31dec132
AV
1076 this_parent = child->d_parent;
1077
1078 rcu_read_lock();
1079 spin_unlock(&child->d_lock);
1080 spin_lock(&this_parent->d_lock);
1081
1082 /*
1083 * might go back up the wrong parent if we have had a rename
1084 * or deletion
1085 */
1086 if (this_parent != child->d_parent ||
1087 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1088 need_seqretry(&rename_lock, seq)) {
1089 spin_unlock(&this_parent->d_lock);
1090 rcu_read_unlock();
949854d0 1091 goto rename_retry;
31dec132
AV
1092 }
1093 rcu_read_unlock();
949854d0 1094 next = child->d_u.d_child.next;
1da177e4
LT
1095 goto resume;
1096 }
48f5ec21 1097 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1098 spin_unlock(&this_parent->d_lock);
949854d0 1099 goto rename_retry;
db14fc3a
MS
1100 }
1101 if (finish)
1102 finish(data);
1103
1104out_unlock:
1105 spin_unlock(&this_parent->d_lock);
48f5ec21 1106 done_seqretry(&rename_lock, seq);
db14fc3a 1107 return;
58db63d0
NP
1108
1109rename_retry:
db14fc3a
MS
1110 if (!retry)
1111 return;
48f5ec21 1112 seq = 1;
58db63d0 1113 goto again;
1da177e4 1114}
db14fc3a
MS
1115
1116/*
1117 * Search for at least 1 mount point in the dentry's subdirs.
1118 * We descend to the next level whenever the d_subdirs
1119 * list is non-empty and continue searching.
1120 */
1121
db14fc3a
MS
1122static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1123{
1124 int *ret = data;
1125 if (d_mountpoint(dentry)) {
1126 *ret = 1;
1127 return D_WALK_QUIT;
1128 }
1129 return D_WALK_CONTINUE;
1130}
1131
69c88dc7
RD
1132/**
1133 * have_submounts - check for mounts over a dentry
1134 * @parent: dentry to check.
1135 *
1136 * Return true if the parent or its subdirectories contain
1137 * a mount point
1138 */
db14fc3a
MS
1139int have_submounts(struct dentry *parent)
1140{
1141 int ret = 0;
1142
1143 d_walk(parent, &ret, check_mount, NULL);
1144
1145 return ret;
1146}
ec4f8605 1147EXPORT_SYMBOL(have_submounts);
1da177e4 1148
eed81007
MS
1149/*
1150 * Called by mount code to set a mountpoint and check if the mountpoint is
1151 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1152 * subtree can become unreachable).
1153 *
1154 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1155 * this reason take rename_lock and d_lock on dentry and ancestors.
1156 */
1157int d_set_mounted(struct dentry *dentry)
1158{
1159 struct dentry *p;
1160 int ret = -ENOENT;
1161 write_seqlock(&rename_lock);
1162 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1163 /* Need exclusion wrt. check_submounts_and_drop() */
1164 spin_lock(&p->d_lock);
1165 if (unlikely(d_unhashed(p))) {
1166 spin_unlock(&p->d_lock);
1167 goto out;
1168 }
1169 spin_unlock(&p->d_lock);
1170 }
1171 spin_lock(&dentry->d_lock);
1172 if (!d_unlinked(dentry)) {
1173 dentry->d_flags |= DCACHE_MOUNTED;
1174 ret = 0;
1175 }
1176 spin_unlock(&dentry->d_lock);
1177out:
1178 write_sequnlock(&rename_lock);
1179 return ret;
1180}
1181
1da177e4 1182/*
fd517909 1183 * Search the dentry child list of the specified parent,
1da177e4
LT
1184 * and move any unused dentries to the end of the unused
1185 * list for prune_dcache(). We descend to the next level
1186 * whenever the d_subdirs list is non-empty and continue
1187 * searching.
1188 *
1189 * It returns zero iff there are no unused children,
1190 * otherwise it returns the number of children moved to
1191 * the end of the unused list. This may not be the total
1192 * number of unused children, because select_parent can
1193 * drop the lock and return early due to latency
1194 * constraints.
1195 */
1da177e4 1196
db14fc3a
MS
1197struct select_data {
1198 struct dentry *start;
1199 struct list_head dispose;
1200 int found;
1201};
23044507 1202
db14fc3a
MS
1203static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1204{
1205 struct select_data *data = _data;
1206 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1207
db14fc3a
MS
1208 if (data->start == dentry)
1209 goto out;
2fd6b7f5 1210
1da177e4 1211 /*
db14fc3a
MS
1212 * move only zero ref count dentries to the dispose list.
1213 *
1214 * Those which are presently on the shrink list, being processed
1215 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1216 * loop in shrink_dcache_parent() might not make any progress
1217 * and loop forever.
1da177e4 1218 */
db14fc3a
MS
1219 if (dentry->d_lockref.count) {
1220 dentry_lru_del(dentry);
1221 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
89dc77bc
LT
1222 /*
1223 * We can't use d_lru_shrink_move() because we
1224 * need to get the global LRU lock and do the
05a8252b 1225 * LRU accounting.
89dc77bc
LT
1226 */
1227 d_lru_del(dentry);
1228 d_shrink_add(dentry, &data->dispose);
db14fc3a
MS
1229 data->found++;
1230 ret = D_WALK_NORETRY;
1da177e4 1231 }
db14fc3a
MS
1232 /*
1233 * We can return to the caller if we have found some (this
1234 * ensures forward progress). We'll be coming back to find
1235 * the rest.
1236 */
1237 if (data->found && need_resched())
1238 ret = D_WALK_QUIT;
1da177e4 1239out:
db14fc3a 1240 return ret;
1da177e4
LT
1241}
1242
1243/**
1244 * shrink_dcache_parent - prune dcache
1245 * @parent: parent of entries to prune
1246 *
1247 * Prune the dcache to remove unused children of the parent dentry.
1248 */
db14fc3a 1249void shrink_dcache_parent(struct dentry *parent)
1da177e4 1250{
db14fc3a
MS
1251 for (;;) {
1252 struct select_data data;
1da177e4 1253
db14fc3a
MS
1254 INIT_LIST_HEAD(&data.dispose);
1255 data.start = parent;
1256 data.found = 0;
1257
1258 d_walk(parent, &data, select_collect, NULL);
1259 if (!data.found)
1260 break;
1261
1262 shrink_dentry_list(&data.dispose);
421348f1
GT
1263 cond_resched();
1264 }
1da177e4 1265}
ec4f8605 1266EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1267
42c32608
AV
1268static enum d_walk_ret umount_collect(void *_data, struct dentry *dentry)
1269{
1270 struct select_data *data = _data;
1271 enum d_walk_ret ret = D_WALK_CONTINUE;
1272
1273 if (dentry->d_lockref.count) {
1274 dentry_lru_del(dentry);
1275 if (likely(!list_empty(&dentry->d_subdirs)))
1276 goto out;
1277 if (dentry == data->start && dentry->d_lockref.count == 1)
1278 goto out;
1279 printk(KERN_ERR
1280 "BUG: Dentry %p{i=%lx,n=%s}"
1281 " still in use (%d)"
1282 " [unmount of %s %s]\n",
1283 dentry,
1284 dentry->d_inode ?
1285 dentry->d_inode->i_ino : 0UL,
1286 dentry->d_name.name,
1287 dentry->d_lockref.count,
1288 dentry->d_sb->s_type->name,
1289 dentry->d_sb->s_id);
1290 BUG();
1291 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1292 /*
1293 * We can't use d_lru_shrink_move() because we
1294 * need to get the global LRU lock and do the
1295 * LRU accounting.
1296 */
1297 if (dentry->d_flags & DCACHE_LRU_LIST)
1298 d_lru_del(dentry);
1299 d_shrink_add(dentry, &data->dispose);
1300 data->found++;
1301 ret = D_WALK_NORETRY;
1302 }
1303out:
1304 if (data->found && need_resched())
1305 ret = D_WALK_QUIT;
1306 return ret;
1307}
1308
1309/*
1310 * destroy the dentries attached to a superblock on unmounting
1311 */
1312void shrink_dcache_for_umount(struct super_block *sb)
1313{
1314 struct dentry *dentry;
1315
1316 if (down_read_trylock(&sb->s_umount))
1317 BUG();
1318
1319 dentry = sb->s_root;
1320 sb->s_root = NULL;
1321 for (;;) {
1322 struct select_data data;
1323
1324 INIT_LIST_HEAD(&data.dispose);
1325 data.start = dentry;
1326 data.found = 0;
1327
1328 d_walk(dentry, &data, umount_collect, NULL);
1329 if (!data.found)
1330 break;
1331
1332 shrink_dentry_list(&data.dispose);
1333 cond_resched();
1334 }
1335 d_drop(dentry);
1336 dput(dentry);
1337
1338 while (!hlist_bl_empty(&sb->s_anon)) {
1339 struct select_data data;
1340 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1341
1342 INIT_LIST_HEAD(&data.dispose);
1343 data.start = NULL;
1344 data.found = 0;
1345
1346 d_walk(dentry, &data, umount_collect, NULL);
1347 if (data.found)
1348 shrink_dentry_list(&data.dispose);
1349 cond_resched();
1350 }
1351}
1352
848ac114
MS
1353static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1354{
1355 struct select_data *data = _data;
1356
1357 if (d_mountpoint(dentry)) {
1358 data->found = -EBUSY;
1359 return D_WALK_QUIT;
1360 }
1361
1362 return select_collect(_data, dentry);
1363}
1364
1365static void check_and_drop(void *_data)
1366{
1367 struct select_data *data = _data;
1368
1369 if (d_mountpoint(data->start))
1370 data->found = -EBUSY;
1371 if (!data->found)
1372 __d_drop(data->start);
1373}
1374
1375/**
1376 * check_submounts_and_drop - prune dcache, check for submounts and drop
1377 *
1378 * All done as a single atomic operation relative to has_unlinked_ancestor().
1379 * Returns 0 if successfully unhashed @parent. If there were submounts then
1380 * return -EBUSY.
1381 *
1382 * @dentry: dentry to prune and drop
1383 */
1384int check_submounts_and_drop(struct dentry *dentry)
1385{
1386 int ret = 0;
1387
1388 /* Negative dentries can be dropped without further checks */
1389 if (!dentry->d_inode) {
1390 d_drop(dentry);
1391 goto out;
1392 }
1393
1394 for (;;) {
1395 struct select_data data;
1396
1397 INIT_LIST_HEAD(&data.dispose);
1398 data.start = dentry;
1399 data.found = 0;
1400
1401 d_walk(dentry, &data, check_and_collect, check_and_drop);
1402 ret = data.found;
1403
1404 if (!list_empty(&data.dispose))
1405 shrink_dentry_list(&data.dispose);
1406
1407 if (ret <= 0)
1408 break;
1409
1410 cond_resched();
1411 }
1412
1413out:
1414 return ret;
1415}
1416EXPORT_SYMBOL(check_submounts_and_drop);
1417
1da177e4 1418/**
a4464dbc
AV
1419 * __d_alloc - allocate a dcache entry
1420 * @sb: filesystem it will belong to
1da177e4
LT
1421 * @name: qstr of the name
1422 *
1423 * Allocates a dentry. It returns %NULL if there is insufficient memory
1424 * available. On a success the dentry is returned. The name passed in is
1425 * copied and the copy passed in may be reused after this call.
1426 */
1427
a4464dbc 1428struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1429{
1430 struct dentry *dentry;
1431 char *dname;
1432
e12ba74d 1433 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1434 if (!dentry)
1435 return NULL;
1436
6326c71f
LT
1437 /*
1438 * We guarantee that the inline name is always NUL-terminated.
1439 * This way the memcpy() done by the name switching in rename
1440 * will still always have a NUL at the end, even if we might
1441 * be overwriting an internal NUL character
1442 */
1443 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1444 if (name->len > DNAME_INLINE_LEN-1) {
1445 dname = kmalloc(name->len + 1, GFP_KERNEL);
1446 if (!dname) {
1447 kmem_cache_free(dentry_cache, dentry);
1448 return NULL;
1449 }
1450 } else {
1451 dname = dentry->d_iname;
1452 }
1da177e4
LT
1453
1454 dentry->d_name.len = name->len;
1455 dentry->d_name.hash = name->hash;
1456 memcpy(dname, name->name, name->len);
1457 dname[name->len] = 0;
1458
6326c71f
LT
1459 /* Make sure we always see the terminating NUL character */
1460 smp_wmb();
1461 dentry->d_name.name = dname;
1462
98474236 1463 dentry->d_lockref.count = 1;
dea3667b 1464 dentry->d_flags = 0;
1da177e4 1465 spin_lock_init(&dentry->d_lock);
31e6b01f 1466 seqcount_init(&dentry->d_seq);
1da177e4 1467 dentry->d_inode = NULL;
a4464dbc
AV
1468 dentry->d_parent = dentry;
1469 dentry->d_sb = sb;
1da177e4
LT
1470 dentry->d_op = NULL;
1471 dentry->d_fsdata = NULL;
ceb5bdc2 1472 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1473 INIT_LIST_HEAD(&dentry->d_lru);
1474 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1475 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1476 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1477 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1478
3e880fb5 1479 this_cpu_inc(nr_dentry);
312d3ca8 1480
1da177e4
LT
1481 return dentry;
1482}
a4464dbc
AV
1483
1484/**
1485 * d_alloc - allocate a dcache entry
1486 * @parent: parent of entry to allocate
1487 * @name: qstr of the name
1488 *
1489 * Allocates a dentry. It returns %NULL if there is insufficient memory
1490 * available. On a success the dentry is returned. The name passed in is
1491 * copied and the copy passed in may be reused after this call.
1492 */
1493struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1494{
1495 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1496 if (!dentry)
1497 return NULL;
1498
1499 spin_lock(&parent->d_lock);
1500 /*
1501 * don't need child lock because it is not subject
1502 * to concurrency here
1503 */
1504 __dget_dlock(parent);
1505 dentry->d_parent = parent;
1506 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1507 spin_unlock(&parent->d_lock);
1508
1509 return dentry;
1510}
ec4f8605 1511EXPORT_SYMBOL(d_alloc);
1da177e4 1512
e1a24bb0
BF
1513/**
1514 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1515 * @sb: the superblock
1516 * @name: qstr of the name
1517 *
1518 * For a filesystem that just pins its dentries in memory and never
1519 * performs lookups at all, return an unhashed IS_ROOT dentry.
1520 */
4b936885
NP
1521struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1522{
e1a24bb0 1523 return __d_alloc(sb, name);
4b936885
NP
1524}
1525EXPORT_SYMBOL(d_alloc_pseudo);
1526
1da177e4
LT
1527struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1528{
1529 struct qstr q;
1530
1531 q.name = name;
1532 q.len = strlen(name);
1533 q.hash = full_name_hash(q.name, q.len);
1534 return d_alloc(parent, &q);
1535}
ef26ca97 1536EXPORT_SYMBOL(d_alloc_name);
1da177e4 1537
fb045adb
NP
1538void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1539{
6f7f7caa
LT
1540 WARN_ON_ONCE(dentry->d_op);
1541 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1542 DCACHE_OP_COMPARE |
1543 DCACHE_OP_REVALIDATE |
ecf3d1f1 1544 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1545 DCACHE_OP_DELETE ));
1546 dentry->d_op = op;
1547 if (!op)
1548 return;
1549 if (op->d_hash)
1550 dentry->d_flags |= DCACHE_OP_HASH;
1551 if (op->d_compare)
1552 dentry->d_flags |= DCACHE_OP_COMPARE;
1553 if (op->d_revalidate)
1554 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1555 if (op->d_weak_revalidate)
1556 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1557 if (op->d_delete)
1558 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1559 if (op->d_prune)
1560 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1561
1562}
1563EXPORT_SYMBOL(d_set_d_op);
1564
b18825a7
DH
1565static unsigned d_flags_for_inode(struct inode *inode)
1566{
1567 unsigned add_flags = DCACHE_FILE_TYPE;
1568
1569 if (!inode)
1570 return DCACHE_MISS_TYPE;
1571
1572 if (S_ISDIR(inode->i_mode)) {
1573 add_flags = DCACHE_DIRECTORY_TYPE;
1574 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1575 if (unlikely(!inode->i_op->lookup))
1576 add_flags = DCACHE_AUTODIR_TYPE;
1577 else
1578 inode->i_opflags |= IOP_LOOKUP;
1579 }
1580 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1581 if (unlikely(inode->i_op->follow_link))
1582 add_flags = DCACHE_SYMLINK_TYPE;
1583 else
1584 inode->i_opflags |= IOP_NOFOLLOW;
1585 }
1586
1587 if (unlikely(IS_AUTOMOUNT(inode)))
1588 add_flags |= DCACHE_NEED_AUTOMOUNT;
1589 return add_flags;
1590}
1591
360da900
OH
1592static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1593{
b18825a7
DH
1594 unsigned add_flags = d_flags_for_inode(inode);
1595
b23fb0a6 1596 spin_lock(&dentry->d_lock);
22213318 1597 __d_set_type(dentry, add_flags);
b18825a7 1598 if (inode)
b3d9b7a3 1599 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
360da900 1600 dentry->d_inode = inode;
31e6b01f 1601 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1602 spin_unlock(&dentry->d_lock);
360da900
OH
1603 fsnotify_d_instantiate(dentry, inode);
1604}
1605
1da177e4
LT
1606/**
1607 * d_instantiate - fill in inode information for a dentry
1608 * @entry: dentry to complete
1609 * @inode: inode to attach to this dentry
1610 *
1611 * Fill in inode information in the entry.
1612 *
1613 * This turns negative dentries into productive full members
1614 * of society.
1615 *
1616 * NOTE! This assumes that the inode count has been incremented
1617 * (or otherwise set) by the caller to indicate that it is now
1618 * in use by the dcache.
1619 */
1620
1621void d_instantiate(struct dentry *entry, struct inode * inode)
1622{
b3d9b7a3 1623 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1624 if (inode)
1625 spin_lock(&inode->i_lock);
360da900 1626 __d_instantiate(entry, inode);
873feea0
NP
1627 if (inode)
1628 spin_unlock(&inode->i_lock);
1da177e4
LT
1629 security_d_instantiate(entry, inode);
1630}
ec4f8605 1631EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1632
1633/**
1634 * d_instantiate_unique - instantiate a non-aliased dentry
1635 * @entry: dentry to instantiate
1636 * @inode: inode to attach to this dentry
1637 *
1638 * Fill in inode information in the entry. On success, it returns NULL.
1639 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1640 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1641 *
1642 * Note that in order to avoid conflicts with rename() etc, the caller
1643 * had better be holding the parent directory semaphore.
e866cfa9
OD
1644 *
1645 * This also assumes that the inode count has been incremented
1646 * (or otherwise set) by the caller to indicate that it is now
1647 * in use by the dcache.
1da177e4 1648 */
770bfad8
DH
1649static struct dentry *__d_instantiate_unique(struct dentry *entry,
1650 struct inode *inode)
1da177e4
LT
1651{
1652 struct dentry *alias;
1653 int len = entry->d_name.len;
1654 const char *name = entry->d_name.name;
1655 unsigned int hash = entry->d_name.hash;
1656
770bfad8 1657 if (!inode) {
360da900 1658 __d_instantiate(entry, NULL);
770bfad8
DH
1659 return NULL;
1660 }
1661
b67bfe0d 1662 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1663 /*
1664 * Don't need alias->d_lock here, because aliases with
1665 * d_parent == entry->d_parent are not subject to name or
1666 * parent changes, because the parent inode i_mutex is held.
1667 */
12f8ad4b 1668 if (alias->d_name.hash != hash)
1da177e4
LT
1669 continue;
1670 if (alias->d_parent != entry->d_parent)
1671 continue;
ee983e89
LT
1672 if (alias->d_name.len != len)
1673 continue;
12f8ad4b 1674 if (dentry_cmp(alias, name, len))
1da177e4 1675 continue;
dc0474be 1676 __dget(alias);
1da177e4
LT
1677 return alias;
1678 }
770bfad8 1679
360da900 1680 __d_instantiate(entry, inode);
1da177e4
LT
1681 return NULL;
1682}
770bfad8
DH
1683
1684struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1685{
1686 struct dentry *result;
1687
b3d9b7a3 1688 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1689
873feea0
NP
1690 if (inode)
1691 spin_lock(&inode->i_lock);
770bfad8 1692 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1693 if (inode)
1694 spin_unlock(&inode->i_lock);
770bfad8
DH
1695
1696 if (!result) {
1697 security_d_instantiate(entry, inode);
1698 return NULL;
1699 }
1700
1701 BUG_ON(!d_unhashed(result));
1702 iput(inode);
1703 return result;
1704}
1705
1da177e4
LT
1706EXPORT_SYMBOL(d_instantiate_unique);
1707
b70a80e7
MS
1708/**
1709 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1710 * @entry: dentry to complete
1711 * @inode: inode to attach to this dentry
1712 *
1713 * Fill in inode information in the entry. If a directory alias is found, then
1714 * return an error (and drop inode). Together with d_materialise_unique() this
1715 * guarantees that a directory inode may never have more than one alias.
1716 */
1717int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1718{
1719 BUG_ON(!hlist_unhashed(&entry->d_alias));
1720
1721 spin_lock(&inode->i_lock);
1722 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1723 spin_unlock(&inode->i_lock);
1724 iput(inode);
1725 return -EBUSY;
1726 }
1727 __d_instantiate(entry, inode);
1728 spin_unlock(&inode->i_lock);
1729 security_d_instantiate(entry, inode);
1730
1731 return 0;
1732}
1733EXPORT_SYMBOL(d_instantiate_no_diralias);
1734
adc0e91a
AV
1735struct dentry *d_make_root(struct inode *root_inode)
1736{
1737 struct dentry *res = NULL;
1738
1739 if (root_inode) {
26fe5750 1740 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1741
1742 res = __d_alloc(root_inode->i_sb, &name);
1743 if (res)
1744 d_instantiate(res, root_inode);
1745 else
1746 iput(root_inode);
1747 }
1748 return res;
1749}
1750EXPORT_SYMBOL(d_make_root);
1751
d891eedb
BF
1752static struct dentry * __d_find_any_alias(struct inode *inode)
1753{
1754 struct dentry *alias;
1755
b3d9b7a3 1756 if (hlist_empty(&inode->i_dentry))
d891eedb 1757 return NULL;
b3d9b7a3 1758 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1759 __dget(alias);
1760 return alias;
1761}
1762
46f72b34
SW
1763/**
1764 * d_find_any_alias - find any alias for a given inode
1765 * @inode: inode to find an alias for
1766 *
1767 * If any aliases exist for the given inode, take and return a
1768 * reference for one of them. If no aliases exist, return %NULL.
1769 */
1770struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1771{
1772 struct dentry *de;
1773
1774 spin_lock(&inode->i_lock);
1775 de = __d_find_any_alias(inode);
1776 spin_unlock(&inode->i_lock);
1777 return de;
1778}
46f72b34 1779EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1780
4ea3ada2
CH
1781/**
1782 * d_obtain_alias - find or allocate a dentry for a given inode
1783 * @inode: inode to allocate the dentry for
1784 *
1785 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1786 * similar open by handle operations. The returned dentry may be anonymous,
1787 * or may have a full name (if the inode was already in the cache).
1788 *
1789 * When called on a directory inode, we must ensure that the inode only ever
1790 * has one dentry. If a dentry is found, that is returned instead of
1791 * allocating a new one.
1792 *
1793 * On successful return, the reference to the inode has been transferred
44003728
CH
1794 * to the dentry. In case of an error the reference on the inode is released.
1795 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1796 * be passed in and will be the error will be propagate to the return value,
1797 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1798 */
1799struct dentry *d_obtain_alias(struct inode *inode)
1800{
b911a6bd 1801 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1802 struct dentry *tmp;
1803 struct dentry *res;
b18825a7 1804 unsigned add_flags;
4ea3ada2
CH
1805
1806 if (!inode)
44003728 1807 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1808 if (IS_ERR(inode))
1809 return ERR_CAST(inode);
1810
d891eedb 1811 res = d_find_any_alias(inode);
9308a612
CH
1812 if (res)
1813 goto out_iput;
1814
a4464dbc 1815 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1816 if (!tmp) {
1817 res = ERR_PTR(-ENOMEM);
1818 goto out_iput;
4ea3ada2 1819 }
b5c84bf6 1820
873feea0 1821 spin_lock(&inode->i_lock);
d891eedb 1822 res = __d_find_any_alias(inode);
9308a612 1823 if (res) {
873feea0 1824 spin_unlock(&inode->i_lock);
9308a612
CH
1825 dput(tmp);
1826 goto out_iput;
1827 }
1828
1829 /* attach a disconnected dentry */
b18825a7
DH
1830 add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1831
9308a612 1832 spin_lock(&tmp->d_lock);
9308a612 1833 tmp->d_inode = inode;
b18825a7 1834 tmp->d_flags |= add_flags;
b3d9b7a3 1835 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1836 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1837 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1838 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1839 spin_unlock(&tmp->d_lock);
873feea0 1840 spin_unlock(&inode->i_lock);
24ff6663 1841 security_d_instantiate(tmp, inode);
9308a612 1842
9308a612
CH
1843 return tmp;
1844
1845 out_iput:
24ff6663
JB
1846 if (res && !IS_ERR(res))
1847 security_d_instantiate(res, inode);
9308a612
CH
1848 iput(inode);
1849 return res;
4ea3ada2 1850}
adc48720 1851EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1852
1853/**
1854 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1855 * @inode: the inode which may have a disconnected dentry
1856 * @dentry: a negative dentry which we want to point to the inode.
1857 *
1858 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1859 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1860 * and return it, else simply d_add the inode to the dentry and return NULL.
1861 *
1862 * This is needed in the lookup routine of any filesystem that is exportable
1863 * (via knfsd) so that we can build dcache paths to directories effectively.
1864 *
1865 * If a dentry was found and moved, then it is returned. Otherwise NULL
1866 * is returned. This matches the expected return value of ->lookup.
1867 *
6d4ade98
SW
1868 * Cluster filesystems may call this function with a negative, hashed dentry.
1869 * In that case, we know that the inode will be a regular file, and also this
1870 * will only occur during atomic_open. So we need to check for the dentry
1871 * being already hashed only in the final case.
1da177e4
LT
1872 */
1873struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1874{
1875 struct dentry *new = NULL;
1876
a9049376
AV
1877 if (IS_ERR(inode))
1878 return ERR_CAST(inode);
1879
21c0d8fd 1880 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1881 spin_lock(&inode->i_lock);
32ba9c3f 1882 new = __d_find_alias(inode, 1);
1da177e4 1883 if (new) {
32ba9c3f 1884 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1885 spin_unlock(&inode->i_lock);
1da177e4 1886 security_d_instantiate(new, inode);
1da177e4
LT
1887 d_move(new, dentry);
1888 iput(inode);
1889 } else {
873feea0 1890 /* already taking inode->i_lock, so d_add() by hand */
360da900 1891 __d_instantiate(dentry, inode);
873feea0 1892 spin_unlock(&inode->i_lock);
1da177e4
LT
1893 security_d_instantiate(dentry, inode);
1894 d_rehash(dentry);
1895 }
6d4ade98
SW
1896 } else {
1897 d_instantiate(dentry, inode);
1898 if (d_unhashed(dentry))
1899 d_rehash(dentry);
1900 }
1da177e4
LT
1901 return new;
1902}
ec4f8605 1903EXPORT_SYMBOL(d_splice_alias);
1da177e4 1904
9403540c
BN
1905/**
1906 * d_add_ci - lookup or allocate new dentry with case-exact name
1907 * @inode: the inode case-insensitive lookup has found
1908 * @dentry: the negative dentry that was passed to the parent's lookup func
1909 * @name: the case-exact name to be associated with the returned dentry
1910 *
1911 * This is to avoid filling the dcache with case-insensitive names to the
1912 * same inode, only the actual correct case is stored in the dcache for
1913 * case-insensitive filesystems.
1914 *
1915 * For a case-insensitive lookup match and if the the case-exact dentry
1916 * already exists in in the dcache, use it and return it.
1917 *
1918 * If no entry exists with the exact case name, allocate new dentry with
1919 * the exact case, and return the spliced entry.
1920 */
e45b590b 1921struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1922 struct qstr *name)
1923{
9403540c
BN
1924 struct dentry *found;
1925 struct dentry *new;
1926
b6520c81
CH
1927 /*
1928 * First check if a dentry matching the name already exists,
1929 * if not go ahead and create it now.
1930 */
9403540c 1931 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1932 if (unlikely(IS_ERR(found)))
1933 goto err_out;
9403540c
BN
1934 if (!found) {
1935 new = d_alloc(dentry->d_parent, name);
1936 if (!new) {
4f522a24 1937 found = ERR_PTR(-ENOMEM);
9403540c
BN
1938 goto err_out;
1939 }
b6520c81 1940
9403540c
BN
1941 found = d_splice_alias(inode, new);
1942 if (found) {
1943 dput(new);
1944 return found;
1945 }
1946 return new;
1947 }
b6520c81
CH
1948
1949 /*
1950 * If a matching dentry exists, and it's not negative use it.
1951 *
1952 * Decrement the reference count to balance the iget() done
1953 * earlier on.
1954 */
9403540c
BN
1955 if (found->d_inode) {
1956 if (unlikely(found->d_inode != inode)) {
1957 /* This can't happen because bad inodes are unhashed. */
1958 BUG_ON(!is_bad_inode(inode));
1959 BUG_ON(!is_bad_inode(found->d_inode));
1960 }
9403540c
BN
1961 iput(inode);
1962 return found;
1963 }
b6520c81 1964
9403540c 1965 /*
9403540c 1966 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1967 * already has a dentry.
9403540c 1968 */
4513d899
AV
1969 new = d_splice_alias(inode, found);
1970 if (new) {
1971 dput(found);
1972 found = new;
9403540c 1973 }
4513d899 1974 return found;
9403540c
BN
1975
1976err_out:
1977 iput(inode);
4f522a24 1978 return found;
9403540c 1979}
ec4f8605 1980EXPORT_SYMBOL(d_add_ci);
1da177e4 1981
12f8ad4b
LT
1982/*
1983 * Do the slow-case of the dentry name compare.
1984 *
1985 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1986 * load the name and length information, so that the
12f8ad4b
LT
1987 * filesystem can rely on them, and can use the 'name' and
1988 * 'len' information without worrying about walking off the
1989 * end of memory etc.
1990 *
1991 * Thus the read_seqcount_retry() and the "duplicate" info
1992 * in arguments (the low-level filesystem should not look
1993 * at the dentry inode or name contents directly, since
1994 * rename can change them while we're in RCU mode).
1995 */
1996enum slow_d_compare {
1997 D_COMP_OK,
1998 D_COMP_NOMATCH,
1999 D_COMP_SEQRETRY,
2000};
2001
2002static noinline enum slow_d_compare slow_dentry_cmp(
2003 const struct dentry *parent,
12f8ad4b
LT
2004 struct dentry *dentry,
2005 unsigned int seq,
2006 const struct qstr *name)
2007{
2008 int tlen = dentry->d_name.len;
2009 const char *tname = dentry->d_name.name;
12f8ad4b
LT
2010
2011 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2012 cpu_relax();
2013 return D_COMP_SEQRETRY;
2014 }
da53be12 2015 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
2016 return D_COMP_NOMATCH;
2017 return D_COMP_OK;
2018}
2019
31e6b01f
NP
2020/**
2021 * __d_lookup_rcu - search for a dentry (racy, store-free)
2022 * @parent: parent dentry
2023 * @name: qstr of name we wish to find
1f1e6e52 2024 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2025 * Returns: dentry, or NULL
2026 *
2027 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2028 * resolution (store-free path walking) design described in
2029 * Documentation/filesystems/path-lookup.txt.
2030 *
2031 * This is not to be used outside core vfs.
2032 *
2033 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2034 * held, and rcu_read_lock held. The returned dentry must not be stored into
2035 * without taking d_lock and checking d_seq sequence count against @seq
2036 * returned here.
2037 *
15570086 2038 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2039 * function.
2040 *
2041 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2042 * the returned dentry, so long as its parent's seqlock is checked after the
2043 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2044 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2045 *
2046 * NOTE! The caller *has* to check the resulting dentry against the sequence
2047 * number we've returned before using any of the resulting dentry state!
31e6b01f 2048 */
8966be90
LT
2049struct dentry *__d_lookup_rcu(const struct dentry *parent,
2050 const struct qstr *name,
da53be12 2051 unsigned *seqp)
31e6b01f 2052{
26fe5750 2053 u64 hashlen = name->hash_len;
31e6b01f 2054 const unsigned char *str = name->name;
26fe5750 2055 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2056 struct hlist_bl_node *node;
31e6b01f
NP
2057 struct dentry *dentry;
2058
2059 /*
2060 * Note: There is significant duplication with __d_lookup_rcu which is
2061 * required to prevent single threaded performance regressions
2062 * especially on architectures where smp_rmb (in seqcounts) are costly.
2063 * Keep the two functions in sync.
2064 */
2065
2066 /*
2067 * The hash list is protected using RCU.
2068 *
2069 * Carefully use d_seq when comparing a candidate dentry, to avoid
2070 * races with d_move().
2071 *
2072 * It is possible that concurrent renames can mess up our list
2073 * walk here and result in missing our dentry, resulting in the
2074 * false-negative result. d_lookup() protects against concurrent
2075 * renames using rename_lock seqlock.
2076 *
b0a4bb83 2077 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2078 */
b07ad996 2079 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2080 unsigned seq;
31e6b01f 2081
31e6b01f 2082seqretry:
12f8ad4b
LT
2083 /*
2084 * The dentry sequence count protects us from concurrent
da53be12 2085 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2086 *
2087 * The caller must perform a seqcount check in order
da53be12 2088 * to do anything useful with the returned dentry.
12f8ad4b
LT
2089 *
2090 * NOTE! We do a "raw" seqcount_begin here. That means that
2091 * we don't wait for the sequence count to stabilize if it
2092 * is in the middle of a sequence change. If we do the slow
2093 * dentry compare, we will do seqretries until it is stable,
2094 * and if we end up with a successful lookup, we actually
2095 * want to exit RCU lookup anyway.
2096 */
2097 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2098 if (dentry->d_parent != parent)
2099 continue;
2e321806
LT
2100 if (d_unhashed(dentry))
2101 continue;
12f8ad4b 2102
830c0f0e 2103 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2104 if (dentry->d_name.hash != hashlen_hash(hashlen))
2105 continue;
da53be12
LT
2106 *seqp = seq;
2107 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2108 case D_COMP_OK:
2109 return dentry;
2110 case D_COMP_NOMATCH:
31e6b01f 2111 continue;
12f8ad4b
LT
2112 default:
2113 goto seqretry;
2114 }
31e6b01f 2115 }
12f8ad4b 2116
26fe5750 2117 if (dentry->d_name.hash_len != hashlen)
ee983e89 2118 continue;
da53be12 2119 *seqp = seq;
26fe5750 2120 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2121 return dentry;
31e6b01f
NP
2122 }
2123 return NULL;
2124}
2125
1da177e4
LT
2126/**
2127 * d_lookup - search for a dentry
2128 * @parent: parent dentry
2129 * @name: qstr of name we wish to find
b04f784e 2130 * Returns: dentry, or NULL
1da177e4 2131 *
b04f784e
NP
2132 * d_lookup searches the children of the parent dentry for the name in
2133 * question. If the dentry is found its reference count is incremented and the
2134 * dentry is returned. The caller must use dput to free the entry when it has
2135 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2136 */
da2d8455 2137struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2138{
31e6b01f 2139 struct dentry *dentry;
949854d0 2140 unsigned seq;
1da177e4
LT
2141
2142 do {
2143 seq = read_seqbegin(&rename_lock);
2144 dentry = __d_lookup(parent, name);
2145 if (dentry)
2146 break;
2147 } while (read_seqretry(&rename_lock, seq));
2148 return dentry;
2149}
ec4f8605 2150EXPORT_SYMBOL(d_lookup);
1da177e4 2151
31e6b01f 2152/**
b04f784e
NP
2153 * __d_lookup - search for a dentry (racy)
2154 * @parent: parent dentry
2155 * @name: qstr of name we wish to find
2156 * Returns: dentry, or NULL
2157 *
2158 * __d_lookup is like d_lookup, however it may (rarely) return a
2159 * false-negative result due to unrelated rename activity.
2160 *
2161 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2162 * however it must be used carefully, eg. with a following d_lookup in
2163 * the case of failure.
2164 *
2165 * __d_lookup callers must be commented.
2166 */
a713ca2a 2167struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2168{
2169 unsigned int len = name->len;
2170 unsigned int hash = name->hash;
2171 const unsigned char *str = name->name;
b07ad996 2172 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2173 struct hlist_bl_node *node;
31e6b01f 2174 struct dentry *found = NULL;
665a7583 2175 struct dentry *dentry;
1da177e4 2176
31e6b01f
NP
2177 /*
2178 * Note: There is significant duplication with __d_lookup_rcu which is
2179 * required to prevent single threaded performance regressions
2180 * especially on architectures where smp_rmb (in seqcounts) are costly.
2181 * Keep the two functions in sync.
2182 */
2183
b04f784e
NP
2184 /*
2185 * The hash list is protected using RCU.
2186 *
2187 * Take d_lock when comparing a candidate dentry, to avoid races
2188 * with d_move().
2189 *
2190 * It is possible that concurrent renames can mess up our list
2191 * walk here and result in missing our dentry, resulting in the
2192 * false-negative result. d_lookup() protects against concurrent
2193 * renames using rename_lock seqlock.
2194 *
b0a4bb83 2195 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2196 */
1da177e4
LT
2197 rcu_read_lock();
2198
b07ad996 2199 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2200
1da177e4
LT
2201 if (dentry->d_name.hash != hash)
2202 continue;
1da177e4
LT
2203
2204 spin_lock(&dentry->d_lock);
1da177e4
LT
2205 if (dentry->d_parent != parent)
2206 goto next;
d0185c08
LT
2207 if (d_unhashed(dentry))
2208 goto next;
2209
1da177e4
LT
2210 /*
2211 * It is safe to compare names since d_move() cannot
2212 * change the qstr (protected by d_lock).
2213 */
fb045adb 2214 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2215 int tlen = dentry->d_name.len;
2216 const char *tname = dentry->d_name.name;
da53be12 2217 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2218 goto next;
2219 } else {
ee983e89
LT
2220 if (dentry->d_name.len != len)
2221 goto next;
12f8ad4b 2222 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2223 goto next;
2224 }
2225
98474236 2226 dentry->d_lockref.count++;
d0185c08 2227 found = dentry;
1da177e4
LT
2228 spin_unlock(&dentry->d_lock);
2229 break;
2230next:
2231 spin_unlock(&dentry->d_lock);
2232 }
2233 rcu_read_unlock();
2234
2235 return found;
2236}
2237
3e7e241f
EB
2238/**
2239 * d_hash_and_lookup - hash the qstr then search for a dentry
2240 * @dir: Directory to search in
2241 * @name: qstr of name we wish to find
2242 *
4f522a24 2243 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2244 */
2245struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2246{
3e7e241f
EB
2247 /*
2248 * Check for a fs-specific hash function. Note that we must
2249 * calculate the standard hash first, as the d_op->d_hash()
2250 * routine may choose to leave the hash value unchanged.
2251 */
2252 name->hash = full_name_hash(name->name, name->len);
fb045adb 2253 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2254 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2255 if (unlikely(err < 0))
2256 return ERR_PTR(err);
3e7e241f 2257 }
4f522a24 2258 return d_lookup(dir, name);
3e7e241f 2259}
4f522a24 2260EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2261
1da177e4 2262/**
786a5e15 2263 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2264 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2265 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2266 *
2267 * An insecure source has sent us a dentry, here we verify it and dget() it.
2268 * This is used by ncpfs in its readdir implementation.
2269 * Zero is returned in the dentry is invalid.
786a5e15
NP
2270 *
2271 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2272 */
d3a23e16 2273int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2274{
786a5e15 2275 struct dentry *child;
d3a23e16 2276
2fd6b7f5 2277 spin_lock(&dparent->d_lock);
786a5e15
NP
2278 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2279 if (dentry == child) {
2fd6b7f5 2280 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2281 __dget_dlock(dentry);
2fd6b7f5
NP
2282 spin_unlock(&dentry->d_lock);
2283 spin_unlock(&dparent->d_lock);
1da177e4
LT
2284 return 1;
2285 }
2286 }
2fd6b7f5 2287 spin_unlock(&dparent->d_lock);
786a5e15 2288
1da177e4
LT
2289 return 0;
2290}
ec4f8605 2291EXPORT_SYMBOL(d_validate);
1da177e4
LT
2292
2293/*
2294 * When a file is deleted, we have two options:
2295 * - turn this dentry into a negative dentry
2296 * - unhash this dentry and free it.
2297 *
2298 * Usually, we want to just turn this into
2299 * a negative dentry, but if anybody else is
2300 * currently using the dentry or the inode
2301 * we can't do that and we fall back on removing
2302 * it from the hash queues and waiting for
2303 * it to be deleted later when it has no users
2304 */
2305
2306/**
2307 * d_delete - delete a dentry
2308 * @dentry: The dentry to delete
2309 *
2310 * Turn the dentry into a negative dentry if possible, otherwise
2311 * remove it from the hash queues so it can be deleted later
2312 */
2313
2314void d_delete(struct dentry * dentry)
2315{
873feea0 2316 struct inode *inode;
7a91bf7f 2317 int isdir = 0;
1da177e4
LT
2318 /*
2319 * Are we the only user?
2320 */
357f8e65 2321again:
1da177e4 2322 spin_lock(&dentry->d_lock);
873feea0
NP
2323 inode = dentry->d_inode;
2324 isdir = S_ISDIR(inode->i_mode);
98474236 2325 if (dentry->d_lockref.count == 1) {
1fe0c023 2326 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2327 spin_unlock(&dentry->d_lock);
2328 cpu_relax();
2329 goto again;
2330 }
13e3c5e5 2331 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2332 dentry_unlink_inode(dentry);
7a91bf7f 2333 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2334 return;
2335 }
2336
2337 if (!d_unhashed(dentry))
2338 __d_drop(dentry);
2339
2340 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2341
2342 fsnotify_nameremove(dentry, isdir);
1da177e4 2343}
ec4f8605 2344EXPORT_SYMBOL(d_delete);
1da177e4 2345
b07ad996 2346static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2347{
ceb5bdc2 2348 BUG_ON(!d_unhashed(entry));
1879fd6a 2349 hlist_bl_lock(b);
dea3667b 2350 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2351 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2352 hlist_bl_unlock(b);
1da177e4
LT
2353}
2354
770bfad8
DH
2355static void _d_rehash(struct dentry * entry)
2356{
2357 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2358}
2359
1da177e4
LT
2360/**
2361 * d_rehash - add an entry back to the hash
2362 * @entry: dentry to add to the hash
2363 *
2364 * Adds a dentry to the hash according to its name.
2365 */
2366
2367void d_rehash(struct dentry * entry)
2368{
1da177e4 2369 spin_lock(&entry->d_lock);
770bfad8 2370 _d_rehash(entry);
1da177e4 2371 spin_unlock(&entry->d_lock);
1da177e4 2372}
ec4f8605 2373EXPORT_SYMBOL(d_rehash);
1da177e4 2374
fb2d5b86
NP
2375/**
2376 * dentry_update_name_case - update case insensitive dentry with a new name
2377 * @dentry: dentry to be updated
2378 * @name: new name
2379 *
2380 * Update a case insensitive dentry with new case of name.
2381 *
2382 * dentry must have been returned by d_lookup with name @name. Old and new
2383 * name lengths must match (ie. no d_compare which allows mismatched name
2384 * lengths).
2385 *
2386 * Parent inode i_mutex must be held over d_lookup and into this call (to
2387 * keep renames and concurrent inserts, and readdir(2) away).
2388 */
2389void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2390{
7ebfa57f 2391 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2392 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2393
fb2d5b86 2394 spin_lock(&dentry->d_lock);
31e6b01f 2395 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2396 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2397 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2398 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2399}
2400EXPORT_SYMBOL(dentry_update_name_case);
2401
1da177e4
LT
2402static void switch_names(struct dentry *dentry, struct dentry *target)
2403{
2404 if (dname_external(target)) {
2405 if (dname_external(dentry)) {
2406 /*
2407 * Both external: swap the pointers
2408 */
9a8d5bb4 2409 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2410 } else {
2411 /*
2412 * dentry:internal, target:external. Steal target's
2413 * storage and make target internal.
2414 */
321bcf92
BF
2415 memcpy(target->d_iname, dentry->d_name.name,
2416 dentry->d_name.len + 1);
1da177e4
LT
2417 dentry->d_name.name = target->d_name.name;
2418 target->d_name.name = target->d_iname;
2419 }
2420 } else {
2421 if (dname_external(dentry)) {
2422 /*
2423 * dentry:external, target:internal. Give dentry's
2424 * storage to target and make dentry internal
2425 */
2426 memcpy(dentry->d_iname, target->d_name.name,
2427 target->d_name.len + 1);
2428 target->d_name.name = dentry->d_name.name;
2429 dentry->d_name.name = dentry->d_iname;
2430 } else {
2431 /*
da1ce067 2432 * Both are internal.
1da177e4 2433 */
da1ce067
MS
2434 unsigned int i;
2435 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2436 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2437 swap(((long *) &dentry->d_iname)[i],
2438 ((long *) &target->d_iname)[i]);
2439 }
1da177e4
LT
2440 }
2441 }
9a8d5bb4 2442 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2443}
2444
2fd6b7f5
NP
2445static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2446{
2447 /*
2448 * XXXX: do we really need to take target->d_lock?
2449 */
2450 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2451 spin_lock(&target->d_parent->d_lock);
2452 else {
2453 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2454 spin_lock(&dentry->d_parent->d_lock);
2455 spin_lock_nested(&target->d_parent->d_lock,
2456 DENTRY_D_LOCK_NESTED);
2457 } else {
2458 spin_lock(&target->d_parent->d_lock);
2459 spin_lock_nested(&dentry->d_parent->d_lock,
2460 DENTRY_D_LOCK_NESTED);
2461 }
2462 }
2463 if (target < dentry) {
2464 spin_lock_nested(&target->d_lock, 2);
2465 spin_lock_nested(&dentry->d_lock, 3);
2466 } else {
2467 spin_lock_nested(&dentry->d_lock, 2);
2468 spin_lock_nested(&target->d_lock, 3);
2469 }
2470}
2471
2472static void dentry_unlock_parents_for_move(struct dentry *dentry,
2473 struct dentry *target)
2474{
2475 if (target->d_parent != dentry->d_parent)
2476 spin_unlock(&dentry->d_parent->d_lock);
2477 if (target->d_parent != target)
2478 spin_unlock(&target->d_parent->d_lock);
2479}
2480
1da177e4 2481/*
2fd6b7f5
NP
2482 * When switching names, the actual string doesn't strictly have to
2483 * be preserved in the target - because we're dropping the target
2484 * anyway. As such, we can just do a simple memcpy() to copy over
2485 * the new name before we switch.
2486 *
2487 * Note that we have to be a lot more careful about getting the hash
2488 * switched - we have to switch the hash value properly even if it
2489 * then no longer matches the actual (corrupted) string of the target.
2490 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2491 */
9eaef27b 2492/*
18367501 2493 * __d_move - move a dentry
1da177e4
LT
2494 * @dentry: entry to move
2495 * @target: new dentry
da1ce067 2496 * @exchange: exchange the two dentries
1da177e4
LT
2497 *
2498 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2499 * dcache entries should not be moved in this way. Caller must hold
2500 * rename_lock, the i_mutex of the source and target directories,
2501 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2502 */
da1ce067
MS
2503static void __d_move(struct dentry *dentry, struct dentry *target,
2504 bool exchange)
1da177e4 2505{
1da177e4
LT
2506 if (!dentry->d_inode)
2507 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2508
2fd6b7f5
NP
2509 BUG_ON(d_ancestor(dentry, target));
2510 BUG_ON(d_ancestor(target, dentry));
2511
2fd6b7f5 2512 dentry_lock_for_move(dentry, target);
1da177e4 2513
31e6b01f 2514 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2515 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2516
ceb5bdc2
NP
2517 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2518
2519 /*
2520 * Move the dentry to the target hash queue. Don't bother checking
2521 * for the same hash queue because of how unlikely it is.
2522 */
2523 __d_drop(dentry);
789680d1 2524 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2525
da1ce067
MS
2526 /*
2527 * Unhash the target (d_delete() is not usable here). If exchanging
2528 * the two dentries, then rehash onto the other's hash queue.
2529 */
1da177e4 2530 __d_drop(target);
da1ce067
MS
2531 if (exchange) {
2532 __d_rehash(target,
2533 d_hash(dentry->d_parent, dentry->d_name.hash));
2534 }
1da177e4 2535
5160ee6f
ED
2536 list_del(&dentry->d_u.d_child);
2537 list_del(&target->d_u.d_child);
1da177e4
LT
2538
2539 /* Switch the names.. */
2540 switch_names(dentry, target);
9a8d5bb4 2541 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2542
2543 /* ... and switch the parents */
2544 if (IS_ROOT(dentry)) {
2545 dentry->d_parent = target->d_parent;
2546 target->d_parent = target;
5160ee6f 2547 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2548 } else {
9a8d5bb4 2549 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2550
2551 /* And add them back to the (new) parent lists */
5160ee6f 2552 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2553 }
2554
5160ee6f 2555 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2556
31e6b01f
NP
2557 write_seqcount_end(&target->d_seq);
2558 write_seqcount_end(&dentry->d_seq);
2559
2fd6b7f5 2560 dentry_unlock_parents_for_move(dentry, target);
da1ce067
MS
2561 if (exchange)
2562 fsnotify_d_move(target);
1da177e4 2563 spin_unlock(&target->d_lock);
c32ccd87 2564 fsnotify_d_move(dentry);
1da177e4 2565 spin_unlock(&dentry->d_lock);
18367501
AV
2566}
2567
2568/*
2569 * d_move - move a dentry
2570 * @dentry: entry to move
2571 * @target: new dentry
2572 *
2573 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2574 * dcache entries should not be moved in this way. See the locking
2575 * requirements for __d_move.
18367501
AV
2576 */
2577void d_move(struct dentry *dentry, struct dentry *target)
2578{
2579 write_seqlock(&rename_lock);
da1ce067 2580 __d_move(dentry, target, false);
1da177e4 2581 write_sequnlock(&rename_lock);
9eaef27b 2582}
ec4f8605 2583EXPORT_SYMBOL(d_move);
1da177e4 2584
da1ce067
MS
2585/*
2586 * d_exchange - exchange two dentries
2587 * @dentry1: first dentry
2588 * @dentry2: second dentry
2589 */
2590void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2591{
2592 write_seqlock(&rename_lock);
2593
2594 WARN_ON(!dentry1->d_inode);
2595 WARN_ON(!dentry2->d_inode);
2596 WARN_ON(IS_ROOT(dentry1));
2597 WARN_ON(IS_ROOT(dentry2));
2598
2599 __d_move(dentry1, dentry2, true);
2600
2601 write_sequnlock(&rename_lock);
2602}
2603
e2761a11
OH
2604/**
2605 * d_ancestor - search for an ancestor
2606 * @p1: ancestor dentry
2607 * @p2: child dentry
2608 *
2609 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2610 * an ancestor of p2, else NULL.
9eaef27b 2611 */
e2761a11 2612struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2613{
2614 struct dentry *p;
2615
871c0067 2616 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2617 if (p->d_parent == p1)
e2761a11 2618 return p;
9eaef27b 2619 }
e2761a11 2620 return NULL;
9eaef27b
TM
2621}
2622
2623/*
2624 * This helper attempts to cope with remotely renamed directories
2625 *
2626 * It assumes that the caller is already holding
18367501 2627 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2628 *
2629 * Note: If ever the locking in lock_rename() changes, then please
2630 * remember to update this too...
9eaef27b 2631 */
873feea0
NP
2632static struct dentry *__d_unalias(struct inode *inode,
2633 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2634{
2635 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2636 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2637
2638 /* If alias and dentry share a parent, then no extra locks required */
2639 if (alias->d_parent == dentry->d_parent)
2640 goto out_unalias;
2641
9eaef27b 2642 /* See lock_rename() */
9eaef27b
TM
2643 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2644 goto out_err;
2645 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2646 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2647 goto out_err;
2648 m2 = &alias->d_parent->d_inode->i_mutex;
2649out_unalias:
ee3efa91 2650 if (likely(!d_mountpoint(alias))) {
da1ce067 2651 __d_move(alias, dentry, false);
ee3efa91
AV
2652 ret = alias;
2653 }
9eaef27b 2654out_err:
873feea0 2655 spin_unlock(&inode->i_lock);
9eaef27b
TM
2656 if (m2)
2657 mutex_unlock(m2);
2658 if (m1)
2659 mutex_unlock(m1);
2660 return ret;
2661}
2662
770bfad8
DH
2663/*
2664 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2665 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2666 * returns with anon->d_lock held!
770bfad8
DH
2667 */
2668static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2669{
740da42e 2670 struct dentry *dparent;
770bfad8 2671
2fd6b7f5 2672 dentry_lock_for_move(anon, dentry);
770bfad8 2673
31e6b01f 2674 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2675 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2676
770bfad8 2677 dparent = dentry->d_parent;
770bfad8 2678
2fd6b7f5
NP
2679 switch_names(dentry, anon);
2680 swap(dentry->d_name.hash, anon->d_name.hash);
2681
740da42e
AV
2682 dentry->d_parent = dentry;
2683 list_del_init(&dentry->d_u.d_child);
2684 anon->d_parent = dparent;
9ed53b12 2685 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2686
31e6b01f
NP
2687 write_seqcount_end(&dentry->d_seq);
2688 write_seqcount_end(&anon->d_seq);
2689
2fd6b7f5
NP
2690 dentry_unlock_parents_for_move(anon, dentry);
2691 spin_unlock(&dentry->d_lock);
2692
2693 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2694}
2695
2696/**
2697 * d_materialise_unique - introduce an inode into the tree
2698 * @dentry: candidate dentry
2699 * @inode: inode to bind to the dentry, to which aliases may be attached
2700 *
2701 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2702 * root directory alias in its place if there is one. Caller must hold the
2703 * i_mutex of the parent directory.
770bfad8
DH
2704 */
2705struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2706{
9eaef27b 2707 struct dentry *actual;
770bfad8
DH
2708
2709 BUG_ON(!d_unhashed(dentry));
2710
770bfad8
DH
2711 if (!inode) {
2712 actual = dentry;
360da900 2713 __d_instantiate(dentry, NULL);
357f8e65
NP
2714 d_rehash(actual);
2715 goto out_nolock;
770bfad8
DH
2716 }
2717
873feea0 2718 spin_lock(&inode->i_lock);
357f8e65 2719
9eaef27b
TM
2720 if (S_ISDIR(inode->i_mode)) {
2721 struct dentry *alias;
2722
2723 /* Does an aliased dentry already exist? */
32ba9c3f 2724 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2725 if (alias) {
2726 actual = alias;
18367501
AV
2727 write_seqlock(&rename_lock);
2728
2729 if (d_ancestor(alias, dentry)) {
2730 /* Check for loops */
2731 actual = ERR_PTR(-ELOOP);
b18dafc8 2732 spin_unlock(&inode->i_lock);
18367501
AV
2733 } else if (IS_ROOT(alias)) {
2734 /* Is this an anonymous mountpoint that we
2735 * could splice into our tree? */
9eaef27b 2736 __d_materialise_dentry(dentry, alias);
18367501 2737 write_sequnlock(&rename_lock);
9eaef27b
TM
2738 __d_drop(alias);
2739 goto found;
18367501
AV
2740 } else {
2741 /* Nope, but we must(!) avoid directory
b18dafc8 2742 * aliasing. This drops inode->i_lock */
18367501 2743 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2744 }
18367501 2745 write_sequnlock(&rename_lock);
dd179946
DH
2746 if (IS_ERR(actual)) {
2747 if (PTR_ERR(actual) == -ELOOP)
2748 pr_warn_ratelimited(
2749 "VFS: Lookup of '%s' in %s %s"
2750 " would have caused loop\n",
2751 dentry->d_name.name,
2752 inode->i_sb->s_type->name,
2753 inode->i_sb->s_id);
9eaef27b 2754 dput(alias);
dd179946 2755 }
9eaef27b
TM
2756 goto out_nolock;
2757 }
770bfad8
DH
2758 }
2759
2760 /* Add a unique reference */
2761 actual = __d_instantiate_unique(dentry, inode);
2762 if (!actual)
2763 actual = dentry;
357f8e65
NP
2764 else
2765 BUG_ON(!d_unhashed(actual));
770bfad8 2766
770bfad8
DH
2767 spin_lock(&actual->d_lock);
2768found:
2769 _d_rehash(actual);
2770 spin_unlock(&actual->d_lock);
873feea0 2771 spin_unlock(&inode->i_lock);
9eaef27b 2772out_nolock:
770bfad8
DH
2773 if (actual == dentry) {
2774 security_d_instantiate(dentry, inode);
2775 return NULL;
2776 }
2777
2778 iput(inode);
2779 return actual;
770bfad8 2780}
ec4f8605 2781EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2782
cdd16d02 2783static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2784{
2785 *buflen -= namelen;
2786 if (*buflen < 0)
2787 return -ENAMETOOLONG;
2788 *buffer -= namelen;
2789 memcpy(*buffer, str, namelen);
2790 return 0;
2791}
2792
232d2d60
WL
2793/**
2794 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2795 * @buffer: buffer pointer
2796 * @buflen: allocated length of the buffer
2797 * @name: name string and length qstr structure
232d2d60
WL
2798 *
2799 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2800 * make sure that either the old or the new name pointer and length are
2801 * fetched. However, there may be mismatch between length and pointer.
2802 * The length cannot be trusted, we need to copy it byte-by-byte until
2803 * the length is reached or a null byte is found. It also prepends "/" at
2804 * the beginning of the name. The sequence number check at the caller will
2805 * retry it again when a d_move() does happen. So any garbage in the buffer
2806 * due to mismatched pointer and length will be discarded.
2807 */
cdd16d02
MS
2808static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2809{
232d2d60
WL
2810 const char *dname = ACCESS_ONCE(name->name);
2811 u32 dlen = ACCESS_ONCE(name->len);
2812 char *p;
2813
232d2d60 2814 *buflen -= dlen + 1;
e825196d
AV
2815 if (*buflen < 0)
2816 return -ENAMETOOLONG;
232d2d60
WL
2817 p = *buffer -= dlen + 1;
2818 *p++ = '/';
2819 while (dlen--) {
2820 char c = *dname++;
2821 if (!c)
2822 break;
2823 *p++ = c;
2824 }
2825 return 0;
cdd16d02
MS
2826}
2827
1da177e4 2828/**
208898c1 2829 * prepend_path - Prepend path string to a buffer
9d1bc601 2830 * @path: the dentry/vfsmount to report
02125a82 2831 * @root: root vfsmnt/dentry
f2eb6575
MS
2832 * @buffer: pointer to the end of the buffer
2833 * @buflen: pointer to buffer length
552ce544 2834 *
18129977
WL
2835 * The function will first try to write out the pathname without taking any
2836 * lock other than the RCU read lock to make sure that dentries won't go away.
2837 * It only checks the sequence number of the global rename_lock as any change
2838 * in the dentry's d_seq will be preceded by changes in the rename_lock
2839 * sequence number. If the sequence number had been changed, it will restart
2840 * the whole pathname back-tracing sequence again by taking the rename_lock.
2841 * In this case, there is no need to take the RCU read lock as the recursive
2842 * parent pointer references will keep the dentry chain alive as long as no
2843 * rename operation is performed.
1da177e4 2844 */
02125a82
AV
2845static int prepend_path(const struct path *path,
2846 const struct path *root,
f2eb6575 2847 char **buffer, int *buflen)
1da177e4 2848{
ede4cebc
AV
2849 struct dentry *dentry;
2850 struct vfsmount *vfsmnt;
2851 struct mount *mnt;
f2eb6575 2852 int error = 0;
48a066e7 2853 unsigned seq, m_seq = 0;
232d2d60
WL
2854 char *bptr;
2855 int blen;
6092d048 2856
48f5ec21 2857 rcu_read_lock();
48a066e7
AV
2858restart_mnt:
2859 read_seqbegin_or_lock(&mount_lock, &m_seq);
2860 seq = 0;
4ec6c2ae 2861 rcu_read_lock();
232d2d60
WL
2862restart:
2863 bptr = *buffer;
2864 blen = *buflen;
48a066e7 2865 error = 0;
ede4cebc
AV
2866 dentry = path->dentry;
2867 vfsmnt = path->mnt;
2868 mnt = real_mount(vfsmnt);
232d2d60 2869 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2870 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2871 struct dentry * parent;
2872
1da177e4 2873 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2874 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
552ce544 2875 /* Global root? */
48a066e7
AV
2876 if (mnt != parent) {
2877 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2878 mnt = parent;
232d2d60
WL
2879 vfsmnt = &mnt->mnt;
2880 continue;
2881 }
2882 /*
2883 * Filesystems needing to implement special "root names"
2884 * should do so with ->d_dname()
2885 */
2886 if (IS_ROOT(dentry) &&
2887 (dentry->d_name.len != 1 ||
2888 dentry->d_name.name[0] != '/')) {
2889 WARN(1, "Root dentry has weird name <%.*s>\n",
2890 (int) dentry->d_name.len,
2891 dentry->d_name.name);
2892 }
2893 if (!error)
2894 error = is_mounted(vfsmnt) ? 1 : 2;
2895 break;
1da177e4
LT
2896 }
2897 parent = dentry->d_parent;
2898 prefetch(parent);
232d2d60 2899 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2900 if (error)
2901 break;
2902
1da177e4
LT
2903 dentry = parent;
2904 }
48f5ec21
AV
2905 if (!(seq & 1))
2906 rcu_read_unlock();
2907 if (need_seqretry(&rename_lock, seq)) {
2908 seq = 1;
232d2d60 2909 goto restart;
48f5ec21
AV
2910 }
2911 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
2912
2913 if (!(m_seq & 1))
2914 rcu_read_unlock();
48a066e7
AV
2915 if (need_seqretry(&mount_lock, m_seq)) {
2916 m_seq = 1;
2917 goto restart_mnt;
2918 }
2919 done_seqretry(&mount_lock, m_seq);
1da177e4 2920
232d2d60
WL
2921 if (error >= 0 && bptr == *buffer) {
2922 if (--blen < 0)
2923 error = -ENAMETOOLONG;
2924 else
2925 *--bptr = '/';
2926 }
2927 *buffer = bptr;
2928 *buflen = blen;
7ea600b5 2929 return error;
f2eb6575 2930}
be285c71 2931
f2eb6575
MS
2932/**
2933 * __d_path - return the path of a dentry
2934 * @path: the dentry/vfsmount to report
02125a82 2935 * @root: root vfsmnt/dentry
cd956a1c 2936 * @buf: buffer to return value in
f2eb6575
MS
2937 * @buflen: buffer length
2938 *
ffd1f4ed 2939 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2940 *
2941 * Returns a pointer into the buffer or an error code if the
2942 * path was too long.
2943 *
be148247 2944 * "buflen" should be positive.
f2eb6575 2945 *
02125a82 2946 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2947 */
02125a82
AV
2948char *__d_path(const struct path *path,
2949 const struct path *root,
f2eb6575
MS
2950 char *buf, int buflen)
2951{
2952 char *res = buf + buflen;
2953 int error;
2954
2955 prepend(&res, &buflen, "\0", 1);
f2eb6575 2956 error = prepend_path(path, root, &res, &buflen);
be148247 2957
02125a82
AV
2958 if (error < 0)
2959 return ERR_PTR(error);
2960 if (error > 0)
2961 return NULL;
2962 return res;
2963}
2964
2965char *d_absolute_path(const struct path *path,
2966 char *buf, int buflen)
2967{
2968 struct path root = {};
2969 char *res = buf + buflen;
2970 int error;
2971
2972 prepend(&res, &buflen, "\0", 1);
02125a82 2973 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
2974
2975 if (error > 1)
2976 error = -EINVAL;
2977 if (error < 0)
f2eb6575 2978 return ERR_PTR(error);
f2eb6575 2979 return res;
1da177e4
LT
2980}
2981
ffd1f4ed
MS
2982/*
2983 * same as __d_path but appends "(deleted)" for unlinked files.
2984 */
02125a82
AV
2985static int path_with_deleted(const struct path *path,
2986 const struct path *root,
2987 char **buf, int *buflen)
ffd1f4ed
MS
2988{
2989 prepend(buf, buflen, "\0", 1);
2990 if (d_unlinked(path->dentry)) {
2991 int error = prepend(buf, buflen, " (deleted)", 10);
2992 if (error)
2993 return error;
2994 }
2995
2996 return prepend_path(path, root, buf, buflen);
2997}
2998
8df9d1a4
MS
2999static int prepend_unreachable(char **buffer, int *buflen)
3000{
3001 return prepend(buffer, buflen, "(unreachable)", 13);
3002}
3003
68f0d9d9
LT
3004static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3005{
3006 unsigned seq;
3007
3008 do {
3009 seq = read_seqcount_begin(&fs->seq);
3010 *root = fs->root;
3011 } while (read_seqcount_retry(&fs->seq, seq));
3012}
3013
a03a8a70
JB
3014/**
3015 * d_path - return the path of a dentry
cf28b486 3016 * @path: path to report
a03a8a70
JB
3017 * @buf: buffer to return value in
3018 * @buflen: buffer length
3019 *
3020 * Convert a dentry into an ASCII path name. If the entry has been deleted
3021 * the string " (deleted)" is appended. Note that this is ambiguous.
3022 *
52afeefb
AV
3023 * Returns a pointer into the buffer or an error code if the path was
3024 * too long. Note: Callers should use the returned pointer, not the passed
3025 * in buffer, to use the name! The implementation often starts at an offset
3026 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3027 *
31f3e0b3 3028 * "buflen" should be positive.
a03a8a70 3029 */
20d4fdc1 3030char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3031{
ffd1f4ed 3032 char *res = buf + buflen;
6ac08c39 3033 struct path root;
ffd1f4ed 3034 int error;
1da177e4 3035
c23fbb6b
ED
3036 /*
3037 * We have various synthetic filesystems that never get mounted. On
3038 * these filesystems dentries are never used for lookup purposes, and
3039 * thus don't need to be hashed. They also don't need a name until a
3040 * user wants to identify the object in /proc/pid/fd/. The little hack
3041 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3042 *
3043 * Some pseudo inodes are mountable. When they are mounted
3044 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3045 * and instead have d_path return the mounted path.
c23fbb6b 3046 */
f48cfddc
EB
3047 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3048 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3049 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3050
68f0d9d9
LT
3051 rcu_read_lock();
3052 get_fs_root_rcu(current->fs, &root);
02125a82 3053 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3054 rcu_read_unlock();
3055
02125a82 3056 if (error < 0)
ffd1f4ed 3057 res = ERR_PTR(error);
1da177e4
LT
3058 return res;
3059}
ec4f8605 3060EXPORT_SYMBOL(d_path);
1da177e4 3061
c23fbb6b
ED
3062/*
3063 * Helper function for dentry_operations.d_dname() members
3064 */
3065char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3066 const char *fmt, ...)
3067{
3068 va_list args;
3069 char temp[64];
3070 int sz;
3071
3072 va_start(args, fmt);
3073 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3074 va_end(args);
3075
3076 if (sz > sizeof(temp) || sz > buflen)
3077 return ERR_PTR(-ENAMETOOLONG);
3078
3079 buffer += buflen - sz;
3080 return memcpy(buffer, temp, sz);
3081}
3082
118b2302
AV
3083char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3084{
3085 char *end = buffer + buflen;
3086 /* these dentries are never renamed, so d_lock is not needed */
3087 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3088 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3089 prepend(&end, &buflen, "/", 1))
3090 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3091 return end;
118b2302 3092}
31bbe16f 3093EXPORT_SYMBOL(simple_dname);
118b2302 3094
6092d048
RP
3095/*
3096 * Write full pathname from the root of the filesystem into the buffer.
3097 */
f6500801 3098static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3099{
f6500801 3100 struct dentry *dentry;
232d2d60
WL
3101 char *end, *retval;
3102 int len, seq = 0;
3103 int error = 0;
6092d048 3104
f6500801
AV
3105 if (buflen < 2)
3106 goto Elong;
3107
48f5ec21 3108 rcu_read_lock();
232d2d60 3109restart:
f6500801 3110 dentry = d;
232d2d60
WL
3111 end = buf + buflen;
3112 len = buflen;
3113 prepend(&end, &len, "\0", 1);
6092d048
RP
3114 /* Get '/' right */
3115 retval = end-1;
3116 *retval = '/';
232d2d60 3117 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3118 while (!IS_ROOT(dentry)) {
3119 struct dentry *parent = dentry->d_parent;
6092d048 3120
6092d048 3121 prefetch(parent);
232d2d60
WL
3122 error = prepend_name(&end, &len, &dentry->d_name);
3123 if (error)
3124 break;
6092d048
RP
3125
3126 retval = end;
3127 dentry = parent;
3128 }
48f5ec21
AV
3129 if (!(seq & 1))
3130 rcu_read_unlock();
3131 if (need_seqretry(&rename_lock, seq)) {
3132 seq = 1;
232d2d60 3133 goto restart;
48f5ec21
AV
3134 }
3135 done_seqretry(&rename_lock, seq);
232d2d60
WL
3136 if (error)
3137 goto Elong;
c103135c
AV
3138 return retval;
3139Elong:
3140 return ERR_PTR(-ENAMETOOLONG);
3141}
ec2447c2
NP
3142
3143char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3144{
232d2d60 3145 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3146}
3147EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3148
3149char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3150{
3151 char *p = NULL;
3152 char *retval;
3153
c103135c
AV
3154 if (d_unlinked(dentry)) {
3155 p = buf + buflen;
3156 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3157 goto Elong;
3158 buflen++;
3159 }
3160 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3161 if (!IS_ERR(retval) && p)
3162 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3163 return retval;
3164Elong:
6092d048
RP
3165 return ERR_PTR(-ENAMETOOLONG);
3166}
3167
8b19e341
LT
3168static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3169 struct path *pwd)
5762482f 3170{
8b19e341
LT
3171 unsigned seq;
3172
3173 do {
3174 seq = read_seqcount_begin(&fs->seq);
3175 *root = fs->root;
3176 *pwd = fs->pwd;
3177 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3178}
3179
1da177e4
LT
3180/*
3181 * NOTE! The user-level library version returns a
3182 * character pointer. The kernel system call just
3183 * returns the length of the buffer filled (which
3184 * includes the ending '\0' character), or a negative
3185 * error value. So libc would do something like
3186 *
3187 * char *getcwd(char * buf, size_t size)
3188 * {
3189 * int retval;
3190 *
3191 * retval = sys_getcwd(buf, size);
3192 * if (retval >= 0)
3193 * return buf;
3194 * errno = -retval;
3195 * return NULL;
3196 * }
3197 */
3cdad428 3198SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3199{
552ce544 3200 int error;
6ac08c39 3201 struct path pwd, root;
3272c544 3202 char *page = __getname();
1da177e4
LT
3203
3204 if (!page)
3205 return -ENOMEM;
3206
8b19e341
LT
3207 rcu_read_lock();
3208 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3209
552ce544 3210 error = -ENOENT;
f3da392e 3211 if (!d_unlinked(pwd.dentry)) {
552ce544 3212 unsigned long len;
3272c544
LT
3213 char *cwd = page + PATH_MAX;
3214 int buflen = PATH_MAX;
1da177e4 3215
8df9d1a4 3216 prepend(&cwd, &buflen, "\0", 1);
02125a82 3217 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3218 rcu_read_unlock();
552ce544 3219
02125a82 3220 if (error < 0)
552ce544
LT
3221 goto out;
3222
8df9d1a4 3223 /* Unreachable from current root */
02125a82 3224 if (error > 0) {
8df9d1a4
MS
3225 error = prepend_unreachable(&cwd, &buflen);
3226 if (error)
3227 goto out;
3228 }
3229
552ce544 3230 error = -ERANGE;
3272c544 3231 len = PATH_MAX + page - cwd;
552ce544
LT
3232 if (len <= size) {
3233 error = len;
3234 if (copy_to_user(buf, cwd, len))
3235 error = -EFAULT;
3236 }
949854d0 3237 } else {
ff812d72 3238 rcu_read_unlock();
949854d0 3239 }
1da177e4
LT
3240
3241out:
3272c544 3242 __putname(page);
1da177e4
LT
3243 return error;
3244}
3245
3246/*
3247 * Test whether new_dentry is a subdirectory of old_dentry.
3248 *
3249 * Trivially implemented using the dcache structure
3250 */
3251
3252/**
3253 * is_subdir - is new dentry a subdirectory of old_dentry
3254 * @new_dentry: new dentry
3255 * @old_dentry: old dentry
3256 *
3257 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3258 * Returns 0 otherwise.
3259 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3260 */
3261
e2761a11 3262int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3263{
3264 int result;
949854d0 3265 unsigned seq;
1da177e4 3266
e2761a11
OH
3267 if (new_dentry == old_dentry)
3268 return 1;
3269
e2761a11 3270 do {
1da177e4 3271 /* for restarting inner loop in case of seq retry */
1da177e4 3272 seq = read_seqbegin(&rename_lock);
949854d0
NP
3273 /*
3274 * Need rcu_readlock to protect against the d_parent trashing
3275 * due to d_move
3276 */
3277 rcu_read_lock();
e2761a11 3278 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3279 result = 1;
e2761a11
OH
3280 else
3281 result = 0;
949854d0 3282 rcu_read_unlock();
1da177e4 3283 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3284
3285 return result;
3286}
3287
db14fc3a 3288static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3289{
db14fc3a
MS
3290 struct dentry *root = data;
3291 if (dentry != root) {
3292 if (d_unhashed(dentry) || !dentry->d_inode)
3293 return D_WALK_SKIP;
1da177e4 3294
01ddc4ed
MS
3295 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3296 dentry->d_flags |= DCACHE_GENOCIDE;
3297 dentry->d_lockref.count--;
3298 }
1da177e4 3299 }
db14fc3a
MS
3300 return D_WALK_CONTINUE;
3301}
58db63d0 3302
db14fc3a
MS
3303void d_genocide(struct dentry *parent)
3304{
3305 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3306}
3307
60545d0d 3308void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3309{
60545d0d
AV
3310 inode_dec_link_count(inode);
3311 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3312 !hlist_unhashed(&dentry->d_alias) ||
3313 !d_unlinked(dentry));
3314 spin_lock(&dentry->d_parent->d_lock);
3315 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3316 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3317 (unsigned long long)inode->i_ino);
3318 spin_unlock(&dentry->d_lock);
3319 spin_unlock(&dentry->d_parent->d_lock);
3320 d_instantiate(dentry, inode);
1da177e4 3321}
60545d0d 3322EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3323
3324static __initdata unsigned long dhash_entries;
3325static int __init set_dhash_entries(char *str)
3326{
3327 if (!str)
3328 return 0;
3329 dhash_entries = simple_strtoul(str, &str, 0);
3330 return 1;
3331}
3332__setup("dhash_entries=", set_dhash_entries);
3333
3334static void __init dcache_init_early(void)
3335{
074b8517 3336 unsigned int loop;
1da177e4
LT
3337
3338 /* If hashes are distributed across NUMA nodes, defer
3339 * hash allocation until vmalloc space is available.
3340 */
3341 if (hashdist)
3342 return;
3343
3344 dentry_hashtable =
3345 alloc_large_system_hash("Dentry cache",
b07ad996 3346 sizeof(struct hlist_bl_head),
1da177e4
LT
3347 dhash_entries,
3348 13,
3349 HASH_EARLY,
3350 &d_hash_shift,
3351 &d_hash_mask,
31fe62b9 3352 0,
1da177e4
LT
3353 0);
3354
074b8517 3355 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3356 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3357}
3358
74bf17cf 3359static void __init dcache_init(void)
1da177e4 3360{
074b8517 3361 unsigned int loop;
1da177e4
LT
3362
3363 /*
3364 * A constructor could be added for stable state like the lists,
3365 * but it is probably not worth it because of the cache nature
3366 * of the dcache.
3367 */
0a31bd5f
CL
3368 dentry_cache = KMEM_CACHE(dentry,
3369 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3370
3371 /* Hash may have been set up in dcache_init_early */
3372 if (!hashdist)
3373 return;
3374
3375 dentry_hashtable =
3376 alloc_large_system_hash("Dentry cache",
b07ad996 3377 sizeof(struct hlist_bl_head),
1da177e4
LT
3378 dhash_entries,
3379 13,
3380 0,
3381 &d_hash_shift,
3382 &d_hash_mask,
31fe62b9 3383 0,
1da177e4
LT
3384 0);
3385
074b8517 3386 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3387 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3388}
3389
3390/* SLAB cache for __getname() consumers */
e18b890b 3391struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3392EXPORT_SYMBOL(names_cachep);
1da177e4 3393
1da177e4
LT
3394EXPORT_SYMBOL(d_genocide);
3395
1da177e4
LT
3396void __init vfs_caches_init_early(void)
3397{
3398 dcache_init_early();
3399 inode_init_early();
3400}
3401
3402void __init vfs_caches_init(unsigned long mempages)
3403{
3404 unsigned long reserve;
3405
3406 /* Base hash sizes on available memory, with a reserve equal to
3407 150% of current kernel size */
3408
3409 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3410 mempages -= reserve;
3411
3412 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3413 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3414
74bf17cf
DC
3415 dcache_init();
3416 inode_init();
1da177e4 3417 files_init(mempages);
74bf17cf 3418 mnt_init();
1da177e4
LT
3419 bdev_cache_init();
3420 chrdev_init();
3421}