fold dentry_lock_for_move() into its sole caller and clean it up
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
7a5cf791 17#include <linux/ratelimit.h>
1da177e4
LT
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/seqlock.h>
1da177e4 29#include <linux/bootmem.h>
ceb5bdc2
NP
30#include <linux/bit_spinlock.h>
31#include <linux/rculist_bl.h>
f6041567 32#include <linux/list_lru.h>
07f3f05c 33#include "internal.h"
b2dba1af 34#include "mount.h"
1da177e4 35
789680d1
NP
36/*
37 * Usage:
873feea0 38 * dcache->d_inode->i_lock protects:
946e51f2 39 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
40 * dcache_hash_bucket lock protects:
41 * - the dcache hash table
f1ee6162
N
42 * s_roots bl list spinlock protects:
43 * - the s_roots list (see __d_drop)
19156840 44 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
45 * - the dcache lru lists and counters
46 * d_lock protects:
47 * - d_flags
48 * - d_name
49 * - d_lru
b7ab39f6 50 * - d_count
da502956 51 * - d_unhashed()
2fd6b7f5
NP
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
946e51f2 54 * - d_u.d_alias, d_inode
789680d1
NP
55 *
56 * Ordering:
873feea0 57 * dentry->d_inode->i_lock
b5c84bf6 58 * dentry->d_lock
19156840 59 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 60 * dcache_hash_bucket lock
f1ee6162 61 * s_roots lock
789680d1 62 *
da502956
NP
63 * If there is an ancestor relationship:
64 * dentry->d_parent->...->d_parent->d_lock
65 * ...
66 * dentry->d_parent->d_lock
67 * dentry->d_lock
68 *
69 * If no ancestor relationship:
076515fc 70 * arbitrary, since it's serialized on rename_lock
789680d1 71 */
fa3536cc 72int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
73EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74
74c3cbe3 75__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 76
949854d0 77EXPORT_SYMBOL(rename_lock);
1da177e4 78
e18b890b 79static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 80
cdf01226
DH
81const struct qstr empty_name = QSTR_INIT("", 0);
82EXPORT_SYMBOL(empty_name);
83const struct qstr slash_name = QSTR_INIT("/", 1);
84EXPORT_SYMBOL(slash_name);
85
1da177e4
LT
86/*
87 * This is the single most critical data structure when it comes
88 * to the dcache: the hashtable for lookups. Somebody should try
89 * to make this good - I've just made it work.
90 *
91 * This hash-function tries to avoid losing too many bits of hash
92 * information, yet avoid using a prime hash-size or similar.
93 */
1da177e4 94
fa3536cc 95static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 96
b07ad996 97static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 98
8387ff25 99static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 100{
854d3e63 101 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
102}
103
94bdd655
AV
104#define IN_LOOKUP_SHIFT 10
105static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106
107static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108 unsigned int hash)
109{
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112}
113
114
1da177e4
LT
115/* Statistics gathering. */
116struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118};
119
3942c07c 120static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 121static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
122
123#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
124
125/*
126 * Here we resort to our own counters instead of using generic per-cpu counters
127 * for consistency with what the vfs inode code does. We are expected to harvest
128 * better code and performance by having our own specialized counters.
129 *
130 * Please note that the loop is done over all possible CPUs, not over all online
131 * CPUs. The reason for this is that we don't want to play games with CPUs going
132 * on and off. If one of them goes off, we will just keep their counters.
133 *
134 * glommer: See cffbc8a for details, and if you ever intend to change this,
135 * please update all vfs counters to match.
136 */
3942c07c 137static long get_nr_dentry(void)
3e880fb5
NP
138{
139 int i;
3942c07c 140 long sum = 0;
3e880fb5
NP
141 for_each_possible_cpu(i)
142 sum += per_cpu(nr_dentry, i);
143 return sum < 0 ? 0 : sum;
144}
145
62d36c77
DC
146static long get_nr_dentry_unused(void)
147{
148 int i;
149 long sum = 0;
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry_unused, i);
152 return sum < 0 ? 0 : sum;
153}
154
1f7e0616 155int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
156 size_t *lenp, loff_t *ppos)
157{
3e880fb5 158 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 159 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 160 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
161}
162#endif
163
5483f18e
LT
164/*
165 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166 * The strings are both count bytes long, and count is non-zero.
167 */
e419b4cc
LT
168#ifdef CONFIG_DCACHE_WORD_ACCESS
169
170#include <asm/word-at-a-time.h>
171/*
172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173 * aligned allocation for this particular component. We don't
174 * strictly need the load_unaligned_zeropad() safety, but it
175 * doesn't hurt either.
176 *
177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178 * need the careful unaligned handling.
179 */
94753db5 180static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 181{
bfcfaa77 182 unsigned long a,b,mask;
bfcfaa77
LT
183
184 for (;;) {
bfe7aa6c 185 a = read_word_at_a_time(cs);
e419b4cc 186 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
187 if (tcount < sizeof(unsigned long))
188 break;
189 if (unlikely(a != b))
190 return 1;
191 cs += sizeof(unsigned long);
192 ct += sizeof(unsigned long);
193 tcount -= sizeof(unsigned long);
194 if (!tcount)
195 return 0;
196 }
a5c21dce 197 mask = bytemask_from_count(tcount);
bfcfaa77 198 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
199}
200
bfcfaa77 201#else
e419b4cc 202
94753db5 203static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 204{
5483f18e
LT
205 do {
206 if (*cs != *ct)
207 return 1;
208 cs++;
209 ct++;
210 tcount--;
211 } while (tcount);
212 return 0;
213}
214
e419b4cc
LT
215#endif
216
94753db5
LT
217static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218{
94753db5
LT
219 /*
220 * Be careful about RCU walk racing with rename:
506458ef 221 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
222 *
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
230 *
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
234 */
506458ef 235 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 236
6326c71f 237 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
238}
239
8d85b484
AV
240struct external_name {
241 union {
242 atomic_t count;
243 struct rcu_head head;
244 } u;
245 unsigned char name[];
246};
247
248static inline struct external_name *external_name(struct dentry *dentry)
249{
250 return container_of(dentry->d_name.name, struct external_name, name[0]);
251}
252
9c82ab9c 253static void __d_free(struct rcu_head *head)
1da177e4 254{
9c82ab9c
CH
255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
8d85b484
AV
257 kmem_cache_free(dentry_cache, dentry);
258}
259
260static void __d_free_external(struct rcu_head *head)
261{
262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 263 kfree(external_name(dentry));
1da177e4
LT
264 kmem_cache_free(dentry_cache, dentry);
265}
266
810bb172
AV
267static inline int dname_external(const struct dentry *dentry)
268{
269 return dentry->d_name.name != dentry->d_iname;
270}
271
49d31c2f
AV
272void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
273{
274 spin_lock(&dentry->d_lock);
275 if (unlikely(dname_external(dentry))) {
276 struct external_name *p = external_name(dentry);
277 atomic_inc(&p->u.count);
278 spin_unlock(&dentry->d_lock);
279 name->name = p->name;
280 } else {
281 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
282 spin_unlock(&dentry->d_lock);
283 name->name = name->inline_name;
284 }
285}
286EXPORT_SYMBOL(take_dentry_name_snapshot);
287
288void release_dentry_name_snapshot(struct name_snapshot *name)
289{
290 if (unlikely(name->name != name->inline_name)) {
291 struct external_name *p;
292 p = container_of(name->name, struct external_name, name[0]);
293 if (unlikely(atomic_dec_and_test(&p->u.count)))
294 kfree_rcu(p, u.head);
295 }
296}
297EXPORT_SYMBOL(release_dentry_name_snapshot);
298
4bf46a27
DH
299static inline void __d_set_inode_and_type(struct dentry *dentry,
300 struct inode *inode,
301 unsigned type_flags)
302{
303 unsigned flags;
304
305 dentry->d_inode = inode;
4bf46a27
DH
306 flags = READ_ONCE(dentry->d_flags);
307 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
308 flags |= type_flags;
309 WRITE_ONCE(dentry->d_flags, flags);
310}
311
4bf46a27
DH
312static inline void __d_clear_type_and_inode(struct dentry *dentry)
313{
314 unsigned flags = READ_ONCE(dentry->d_flags);
315
316 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
317 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
318 dentry->d_inode = NULL;
319}
320
b4f0354e
AV
321static void dentry_free(struct dentry *dentry)
322{
946e51f2 323 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
324 if (unlikely(dname_external(dentry))) {
325 struct external_name *p = external_name(dentry);
326 if (likely(atomic_dec_and_test(&p->u.count))) {
327 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
328 return;
329 }
330 }
b4f0354e
AV
331 /* if dentry was never visible to RCU, immediate free is OK */
332 if (!(dentry->d_flags & DCACHE_RCUACCESS))
333 __d_free(&dentry->d_u.d_rcu);
334 else
335 call_rcu(&dentry->d_u.d_rcu, __d_free);
336}
337
1da177e4
LT
338/*
339 * Release the dentry's inode, using the filesystem
550dce01 340 * d_iput() operation if defined.
31e6b01f
NP
341 */
342static void dentry_unlink_inode(struct dentry * dentry)
343 __releases(dentry->d_lock)
873feea0 344 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
345{
346 struct inode *inode = dentry->d_inode;
550dce01 347 bool hashed = !d_unhashed(dentry);
a528aca7 348
550dce01
AV
349 if (hashed)
350 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 351 __d_clear_type_and_inode(dentry);
946e51f2 352 hlist_del_init(&dentry->d_u.d_alias);
550dce01
AV
353 if (hashed)
354 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 355 spin_unlock(&dentry->d_lock);
873feea0 356 spin_unlock(&inode->i_lock);
31e6b01f
NP
357 if (!inode->i_nlink)
358 fsnotify_inoderemove(inode);
359 if (dentry->d_op && dentry->d_op->d_iput)
360 dentry->d_op->d_iput(dentry, inode);
361 else
362 iput(inode);
363}
364
89dc77bc
LT
365/*
366 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
367 * is in use - which includes both the "real" per-superblock
368 * LRU list _and_ the DCACHE_SHRINK_LIST use.
369 *
370 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
371 * on the shrink list (ie not on the superblock LRU list).
372 *
373 * The per-cpu "nr_dentry_unused" counters are updated with
374 * the DCACHE_LRU_LIST bit.
375 *
376 * These helper functions make sure we always follow the
377 * rules. d_lock must be held by the caller.
378 */
379#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
380static void d_lru_add(struct dentry *dentry)
381{
382 D_FLAG_VERIFY(dentry, 0);
383 dentry->d_flags |= DCACHE_LRU_LIST;
384 this_cpu_inc(nr_dentry_unused);
385 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
386}
387
388static void d_lru_del(struct dentry *dentry)
389{
390 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
391 dentry->d_flags &= ~DCACHE_LRU_LIST;
392 this_cpu_dec(nr_dentry_unused);
393 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
394}
395
396static void d_shrink_del(struct dentry *dentry)
397{
398 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
399 list_del_init(&dentry->d_lru);
400 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
401 this_cpu_dec(nr_dentry_unused);
402}
403
404static void d_shrink_add(struct dentry *dentry, struct list_head *list)
405{
406 D_FLAG_VERIFY(dentry, 0);
407 list_add(&dentry->d_lru, list);
408 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
409 this_cpu_inc(nr_dentry_unused);
410}
411
412/*
413 * These can only be called under the global LRU lock, ie during the
414 * callback for freeing the LRU list. "isolate" removes it from the
415 * LRU lists entirely, while shrink_move moves it to the indicated
416 * private list.
417 */
3f97b163 418static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
419{
420 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
421 dentry->d_flags &= ~DCACHE_LRU_LIST;
422 this_cpu_dec(nr_dentry_unused);
3f97b163 423 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
424}
425
3f97b163
VD
426static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
427 struct list_head *list)
89dc77bc
LT
428{
429 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
430 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 431 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
432}
433
789680d1
NP
434/**
435 * d_drop - drop a dentry
436 * @dentry: dentry to drop
437 *
438 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
439 * be found through a VFS lookup any more. Note that this is different from
440 * deleting the dentry - d_delete will try to mark the dentry negative if
441 * possible, giving a successful _negative_ lookup, while d_drop will
442 * just make the cache lookup fail.
443 *
444 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
445 * reason (NFS timeouts or autofs deletes).
446 *
61647823
N
447 * __d_drop requires dentry->d_lock
448 * ___d_drop doesn't mark dentry as "unhashed"
449 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
789680d1 450 */
61647823 451static void ___d_drop(struct dentry *dentry)
789680d1 452{
0632a9ac
AV
453 struct hlist_bl_head *b;
454 /*
455 * Hashed dentries are normally on the dentry hashtable,
456 * with the exception of those newly allocated by
457 * d_obtain_root, which are always IS_ROOT:
458 */
459 if (unlikely(IS_ROOT(dentry)))
460 b = &dentry->d_sb->s_roots;
461 else
462 b = d_hash(dentry->d_name.hash);
b61625d2 463
0632a9ac
AV
464 hlist_bl_lock(b);
465 __hlist_bl_del(&dentry->d_hash);
466 hlist_bl_unlock(b);
789680d1 467}
61647823
N
468
469void __d_drop(struct dentry *dentry)
470{
0632a9ac
AV
471 if (!d_unhashed(dentry)) {
472 ___d_drop(dentry);
473 dentry->d_hash.pprev = NULL;
474 write_seqcount_invalidate(&dentry->d_seq);
475 }
61647823 476}
789680d1
NP
477EXPORT_SYMBOL(__d_drop);
478
479void d_drop(struct dentry *dentry)
480{
789680d1
NP
481 spin_lock(&dentry->d_lock);
482 __d_drop(dentry);
483 spin_unlock(&dentry->d_lock);
789680d1
NP
484}
485EXPORT_SYMBOL(d_drop);
486
ba65dc5e
AV
487static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
488{
489 struct dentry *next;
490 /*
491 * Inform d_walk() and shrink_dentry_list() that we are no longer
492 * attached to the dentry tree
493 */
494 dentry->d_flags |= DCACHE_DENTRY_KILLED;
495 if (unlikely(list_empty(&dentry->d_child)))
496 return;
497 __list_del_entry(&dentry->d_child);
498 /*
499 * Cursors can move around the list of children. While we'd been
500 * a normal list member, it didn't matter - ->d_child.next would've
501 * been updated. However, from now on it won't be and for the
502 * things like d_walk() it might end up with a nasty surprise.
503 * Normally d_walk() doesn't care about cursors moving around -
504 * ->d_lock on parent prevents that and since a cursor has no children
505 * of its own, we get through it without ever unlocking the parent.
506 * There is one exception, though - if we ascend from a child that
507 * gets killed as soon as we unlock it, the next sibling is found
508 * using the value left in its ->d_child.next. And if _that_
509 * pointed to a cursor, and cursor got moved (e.g. by lseek())
510 * before d_walk() regains parent->d_lock, we'll end up skipping
511 * everything the cursor had been moved past.
512 *
513 * Solution: make sure that the pointer left behind in ->d_child.next
514 * points to something that won't be moving around. I.e. skip the
515 * cursors.
516 */
517 while (dentry->d_child.next != &parent->d_subdirs) {
518 next = list_entry(dentry->d_child.next, struct dentry, d_child);
519 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
520 break;
521 dentry->d_child.next = next->d_child.next;
522 }
523}
524
e55fd011 525static void __dentry_kill(struct dentry *dentry)
77812a1e 526{
41edf278
AV
527 struct dentry *parent = NULL;
528 bool can_free = true;
41edf278 529 if (!IS_ROOT(dentry))
77812a1e 530 parent = dentry->d_parent;
31e6b01f 531
0d98439e
LT
532 /*
533 * The dentry is now unrecoverably dead to the world.
534 */
535 lockref_mark_dead(&dentry->d_lockref);
536
f0023bc6 537 /*
f0023bc6
SW
538 * inform the fs via d_prune that this dentry is about to be
539 * unhashed and destroyed.
540 */
29266201 541 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
542 dentry->d_op->d_prune(dentry);
543
01b60351
AV
544 if (dentry->d_flags & DCACHE_LRU_LIST) {
545 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
546 d_lru_del(dentry);
01b60351 547 }
77812a1e
NP
548 /* if it was on the hash then remove it */
549 __d_drop(dentry);
ba65dc5e 550 dentry_unlist(dentry, parent);
03b3b889
AV
551 if (parent)
552 spin_unlock(&parent->d_lock);
550dce01
AV
553 if (dentry->d_inode)
554 dentry_unlink_inode(dentry);
555 else
556 spin_unlock(&dentry->d_lock);
03b3b889
AV
557 this_cpu_dec(nr_dentry);
558 if (dentry->d_op && dentry->d_op->d_release)
559 dentry->d_op->d_release(dentry);
560
41edf278
AV
561 spin_lock(&dentry->d_lock);
562 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
563 dentry->d_flags |= DCACHE_MAY_FREE;
564 can_free = false;
565 }
566 spin_unlock(&dentry->d_lock);
41edf278
AV
567 if (likely(can_free))
568 dentry_free(dentry);
e55fd011
AV
569}
570
8b987a46 571static struct dentry *__lock_parent(struct dentry *dentry)
046b961b 572{
8b987a46 573 struct dentry *parent;
046b961b 574 rcu_read_lock();
c2338f2d 575 spin_unlock(&dentry->d_lock);
046b961b 576again:
66702eb5 577 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
578 spin_lock(&parent->d_lock);
579 /*
580 * We can't blindly lock dentry until we are sure
581 * that we won't violate the locking order.
582 * Any changes of dentry->d_parent must have
583 * been done with parent->d_lock held, so
584 * spin_lock() above is enough of a barrier
585 * for checking if it's still our child.
586 */
587 if (unlikely(parent != dentry->d_parent)) {
588 spin_unlock(&parent->d_lock);
589 goto again;
590 }
65d8eb5a
AV
591 rcu_read_unlock();
592 if (parent != dentry)
9f12600f 593 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 594 else
046b961b
AV
595 parent = NULL;
596 return parent;
597}
598
8b987a46
AV
599static inline struct dentry *lock_parent(struct dentry *dentry)
600{
601 struct dentry *parent = dentry->d_parent;
602 if (IS_ROOT(dentry))
603 return NULL;
604 if (likely(spin_trylock(&parent->d_lock)))
605 return parent;
606 return __lock_parent(dentry);
607}
608
a338579f
AV
609static inline bool retain_dentry(struct dentry *dentry)
610{
611 WARN_ON(d_in_lookup(dentry));
612
613 /* Unreachable? Get rid of it */
614 if (unlikely(d_unhashed(dentry)))
615 return false;
616
617 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
618 return false;
619
620 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
621 if (dentry->d_op->d_delete(dentry))
622 return false;
623 }
62d9956c
AV
624 /* retain; LRU fodder */
625 dentry->d_lockref.count--;
626 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
627 d_lru_add(dentry);
628 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
629 dentry->d_flags |= DCACHE_REFERENCED;
a338579f
AV
630 return true;
631}
632
c1d0c1a2
JO
633/*
634 * Finish off a dentry we've decided to kill.
635 * dentry->d_lock must be held, returns with it unlocked.
636 * Returns dentry requiring refcount drop, or NULL if we're done.
637 */
638static struct dentry *dentry_kill(struct dentry *dentry)
639 __releases(dentry->d_lock)
640{
641 struct inode *inode = dentry->d_inode;
642 struct dentry *parent = NULL;
643
644 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
f657a666 645 goto slow_positive;
c1d0c1a2
JO
646
647 if (!IS_ROOT(dentry)) {
648 parent = dentry->d_parent;
649 if (unlikely(!spin_trylock(&parent->d_lock))) {
f657a666
AV
650 parent = __lock_parent(dentry);
651 if (likely(inode || !dentry->d_inode))
652 goto got_locks;
653 /* negative that became positive */
654 if (parent)
655 spin_unlock(&parent->d_lock);
656 inode = dentry->d_inode;
657 goto slow_positive;
c1d0c1a2
JO
658 }
659 }
c1d0c1a2
JO
660 __dentry_kill(dentry);
661 return parent;
662
f657a666
AV
663slow_positive:
664 spin_unlock(&dentry->d_lock);
665 spin_lock(&inode->i_lock);
666 spin_lock(&dentry->d_lock);
667 parent = lock_parent(dentry);
668got_locks:
669 if (unlikely(dentry->d_lockref.count != 1)) {
670 dentry->d_lockref.count--;
671 } else if (likely(!retain_dentry(dentry))) {
672 __dentry_kill(dentry);
673 return parent;
674 }
675 /* we are keeping it, after all */
676 if (inode)
677 spin_unlock(&inode->i_lock);
678 if (parent)
679 spin_unlock(&parent->d_lock);
c1d0c1a2 680 spin_unlock(&dentry->d_lock);
f657a666 681 return NULL;
c1d0c1a2
JO
682}
683
360f5479
LT
684/*
685 * Try to do a lockless dput(), and return whether that was successful.
686 *
687 * If unsuccessful, we return false, having already taken the dentry lock.
688 *
689 * The caller needs to hold the RCU read lock, so that the dentry is
690 * guaranteed to stay around even if the refcount goes down to zero!
691 */
692static inline bool fast_dput(struct dentry *dentry)
693{
694 int ret;
695 unsigned int d_flags;
696
697 /*
698 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 699 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
700 */
701 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
702 return lockref_put_or_lock(&dentry->d_lockref);
703
704 /*
705 * .. otherwise, we can try to just decrement the
706 * lockref optimistically.
707 */
708 ret = lockref_put_return(&dentry->d_lockref);
709
710 /*
711 * If the lockref_put_return() failed due to the lock being held
712 * by somebody else, the fast path has failed. We will need to
713 * get the lock, and then check the count again.
714 */
715 if (unlikely(ret < 0)) {
716 spin_lock(&dentry->d_lock);
717 if (dentry->d_lockref.count > 1) {
718 dentry->d_lockref.count--;
719 spin_unlock(&dentry->d_lock);
720 return 1;
721 }
722 return 0;
723 }
724
725 /*
726 * If we weren't the last ref, we're done.
727 */
728 if (ret)
729 return 1;
730
731 /*
732 * Careful, careful. The reference count went down
733 * to zero, but we don't hold the dentry lock, so
734 * somebody else could get it again, and do another
735 * dput(), and we need to not race with that.
736 *
737 * However, there is a very special and common case
738 * where we don't care, because there is nothing to
739 * do: the dentry is still hashed, it does not have
740 * a 'delete' op, and it's referenced and already on
741 * the LRU list.
742 *
743 * NOTE! Since we aren't locked, these values are
744 * not "stable". However, it is sufficient that at
745 * some point after we dropped the reference the
746 * dentry was hashed and the flags had the proper
747 * value. Other dentry users may have re-gotten
748 * a reference to the dentry and change that, but
749 * our work is done - we can leave the dentry
750 * around with a zero refcount.
751 */
752 smp_rmb();
66702eb5 753 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 754 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
755
756 /* Nothing to do? Dropping the reference was all we needed? */
757 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
758 return 1;
759
760 /*
761 * Not the fast normal case? Get the lock. We've already decremented
762 * the refcount, but we'll need to re-check the situation after
763 * getting the lock.
764 */
765 spin_lock(&dentry->d_lock);
766
767 /*
768 * Did somebody else grab a reference to it in the meantime, and
769 * we're no longer the last user after all? Alternatively, somebody
770 * else could have killed it and marked it dead. Either way, we
771 * don't need to do anything else.
772 */
773 if (dentry->d_lockref.count) {
774 spin_unlock(&dentry->d_lock);
775 return 1;
776 }
777
778 /*
779 * Re-get the reference we optimistically dropped. We hold the
780 * lock, and we just tested that it was zero, so we can just
781 * set it to 1.
782 */
783 dentry->d_lockref.count = 1;
784 return 0;
785}
786
787
1da177e4
LT
788/*
789 * This is dput
790 *
791 * This is complicated by the fact that we do not want to put
792 * dentries that are no longer on any hash chain on the unused
793 * list: we'd much rather just get rid of them immediately.
794 *
795 * However, that implies that we have to traverse the dentry
796 * tree upwards to the parents which might _also_ now be
797 * scheduled for deletion (it may have been only waiting for
798 * its last child to go away).
799 *
800 * This tail recursion is done by hand as we don't want to depend
801 * on the compiler to always get this right (gcc generally doesn't).
802 * Real recursion would eat up our stack space.
803 */
804
805/*
806 * dput - release a dentry
807 * @dentry: dentry to release
808 *
809 * Release a dentry. This will drop the usage count and if appropriate
810 * call the dentry unlink method as well as removing it from the queues and
811 * releasing its resources. If the parent dentries were scheduled for release
812 * they too may now get deleted.
1da177e4 813 */
1da177e4
LT
814void dput(struct dentry *dentry)
815{
8aab6a27 816 if (unlikely(!dentry))
1da177e4
LT
817 return;
818
819repeat:
47be6184
WF
820 might_sleep();
821
360f5479
LT
822 rcu_read_lock();
823 if (likely(fast_dput(dentry))) {
824 rcu_read_unlock();
1da177e4 825 return;
360f5479
LT
826 }
827
828 /* Slow case: now with the dentry lock held */
829 rcu_read_unlock();
1da177e4 830
a338579f 831 if (likely(retain_dentry(dentry))) {
a338579f
AV
832 spin_unlock(&dentry->d_lock);
833 return;
1da177e4 834 }
265ac902 835
8cbf74da 836 dentry = dentry_kill(dentry);
47be6184
WF
837 if (dentry) {
838 cond_resched();
d52b9086 839 goto repeat;
47be6184 840 }
1da177e4 841}
ec4f8605 842EXPORT_SYMBOL(dput);
1da177e4 843
1da177e4 844
b5c84bf6 845/* This must be called with d_lock held */
dc0474be 846static inline void __dget_dlock(struct dentry *dentry)
23044507 847{
98474236 848 dentry->d_lockref.count++;
23044507
NP
849}
850
dc0474be 851static inline void __dget(struct dentry *dentry)
1da177e4 852{
98474236 853 lockref_get(&dentry->d_lockref);
1da177e4
LT
854}
855
b7ab39f6
NP
856struct dentry *dget_parent(struct dentry *dentry)
857{
df3d0bbc 858 int gotref;
b7ab39f6
NP
859 struct dentry *ret;
860
df3d0bbc
WL
861 /*
862 * Do optimistic parent lookup without any
863 * locking.
864 */
865 rcu_read_lock();
66702eb5 866 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
867 gotref = lockref_get_not_zero(&ret->d_lockref);
868 rcu_read_unlock();
869 if (likely(gotref)) {
66702eb5 870 if (likely(ret == READ_ONCE(dentry->d_parent)))
df3d0bbc
WL
871 return ret;
872 dput(ret);
873 }
874
b7ab39f6 875repeat:
a734eb45
NP
876 /*
877 * Don't need rcu_dereference because we re-check it was correct under
878 * the lock.
879 */
880 rcu_read_lock();
b7ab39f6 881 ret = dentry->d_parent;
a734eb45
NP
882 spin_lock(&ret->d_lock);
883 if (unlikely(ret != dentry->d_parent)) {
884 spin_unlock(&ret->d_lock);
885 rcu_read_unlock();
b7ab39f6
NP
886 goto repeat;
887 }
a734eb45 888 rcu_read_unlock();
98474236
WL
889 BUG_ON(!ret->d_lockref.count);
890 ret->d_lockref.count++;
b7ab39f6 891 spin_unlock(&ret->d_lock);
b7ab39f6
NP
892 return ret;
893}
894EXPORT_SYMBOL(dget_parent);
895
1da177e4
LT
896/**
897 * d_find_alias - grab a hashed alias of inode
898 * @inode: inode in question
1da177e4
LT
899 *
900 * If inode has a hashed alias, or is a directory and has any alias,
901 * acquire the reference to alias and return it. Otherwise return NULL.
902 * Notice that if inode is a directory there can be only one alias and
903 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
904 * of a filesystem, or if the directory was renamed and d_revalidate
905 * was the first vfs operation to notice.
1da177e4 906 *
21c0d8fd 907 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 908 * any other hashed alias over that one.
1da177e4 909 */
52ed46f0 910static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 911{
da502956 912 struct dentry *alias, *discon_alias;
1da177e4 913
da502956
NP
914again:
915 discon_alias = NULL;
946e51f2 916 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 917 spin_lock(&alias->d_lock);
1da177e4 918 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 919 if (IS_ROOT(alias) &&
da502956 920 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 921 discon_alias = alias;
52ed46f0 922 } else {
dc0474be 923 __dget_dlock(alias);
da502956
NP
924 spin_unlock(&alias->d_lock);
925 return alias;
926 }
927 }
928 spin_unlock(&alias->d_lock);
929 }
930 if (discon_alias) {
931 alias = discon_alias;
932 spin_lock(&alias->d_lock);
933 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
934 __dget_dlock(alias);
935 spin_unlock(&alias->d_lock);
936 return alias;
1da177e4 937 }
da502956
NP
938 spin_unlock(&alias->d_lock);
939 goto again;
1da177e4 940 }
da502956 941 return NULL;
1da177e4
LT
942}
943
da502956 944struct dentry *d_find_alias(struct inode *inode)
1da177e4 945{
214fda1f
DH
946 struct dentry *de = NULL;
947
b3d9b7a3 948 if (!hlist_empty(&inode->i_dentry)) {
873feea0 949 spin_lock(&inode->i_lock);
52ed46f0 950 de = __d_find_alias(inode);
873feea0 951 spin_unlock(&inode->i_lock);
214fda1f 952 }
1da177e4
LT
953 return de;
954}
ec4f8605 955EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
956
957/*
958 * Try to kill dentries associated with this inode.
959 * WARNING: you must own a reference to inode.
960 */
961void d_prune_aliases(struct inode *inode)
962{
0cdca3f9 963 struct dentry *dentry;
1da177e4 964restart:
873feea0 965 spin_lock(&inode->i_lock);
946e51f2 966 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 967 spin_lock(&dentry->d_lock);
98474236 968 if (!dentry->d_lockref.count) {
29355c39
AV
969 struct dentry *parent = lock_parent(dentry);
970 if (likely(!dentry->d_lockref.count)) {
971 __dentry_kill(dentry);
4a7795d3 972 dput(parent);
29355c39
AV
973 goto restart;
974 }
975 if (parent)
976 spin_unlock(&parent->d_lock);
1da177e4
LT
977 }
978 spin_unlock(&dentry->d_lock);
979 }
873feea0 980 spin_unlock(&inode->i_lock);
1da177e4 981}
ec4f8605 982EXPORT_SYMBOL(d_prune_aliases);
1da177e4 983
3b3f09f4
AV
984/*
985 * Lock a dentry from shrink list.
8f04da2a
JO
986 * Called under rcu_read_lock() and dentry->d_lock; the former
987 * guarantees that nothing we access will be freed under us.
3b3f09f4 988 * Note that dentry is *not* protected from concurrent dentry_kill(),
8f04da2a
JO
989 * d_delete(), etc.
990 *
3b3f09f4
AV
991 * Return false if dentry has been disrupted or grabbed, leaving
992 * the caller to kick it off-list. Otherwise, return true and have
993 * that dentry's inode and parent both locked.
994 */
995static bool shrink_lock_dentry(struct dentry *dentry)
1da177e4 996{
3b3f09f4
AV
997 struct inode *inode;
998 struct dentry *parent;
da3bbdd4 999
3b3f09f4
AV
1000 if (dentry->d_lockref.count)
1001 return false;
1002
1003 inode = dentry->d_inode;
1004 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
3b3f09f4
AV
1005 spin_unlock(&dentry->d_lock);
1006 spin_lock(&inode->i_lock);
ec33679d 1007 spin_lock(&dentry->d_lock);
3b3f09f4
AV
1008 if (unlikely(dentry->d_lockref.count))
1009 goto out;
1010 /* changed inode means that somebody had grabbed it */
1011 if (unlikely(inode != dentry->d_inode))
1012 goto out;
3b3f09f4 1013 }
046b961b 1014
3b3f09f4
AV
1015 parent = dentry->d_parent;
1016 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1017 return true;
dd1f6b2e 1018
3b3f09f4 1019 spin_unlock(&dentry->d_lock);
3b3f09f4
AV
1020 spin_lock(&parent->d_lock);
1021 if (unlikely(parent != dentry->d_parent)) {
1022 spin_unlock(&parent->d_lock);
1023 spin_lock(&dentry->d_lock);
1024 goto out;
1025 }
1026 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
8f04da2a 1027 if (likely(!dentry->d_lockref.count))
3b3f09f4 1028 return true;
3b3f09f4
AV
1029 spin_unlock(&parent->d_lock);
1030out:
1031 if (inode)
1032 spin_unlock(&inode->i_lock);
3b3f09f4
AV
1033 return false;
1034}
77812a1e 1035
3b3f09f4
AV
1036static void shrink_dentry_list(struct list_head *list)
1037{
1038 while (!list_empty(list)) {
1039 struct dentry *dentry, *parent;
64fd72e0 1040
3b3f09f4
AV
1041 dentry = list_entry(list->prev, struct dentry, d_lru);
1042 spin_lock(&dentry->d_lock);
8f04da2a 1043 rcu_read_lock();
3b3f09f4
AV
1044 if (!shrink_lock_dentry(dentry)) {
1045 bool can_free = false;
8f04da2a 1046 rcu_read_unlock();
3b3f09f4
AV
1047 d_shrink_del(dentry);
1048 if (dentry->d_lockref.count < 0)
1049 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1050 spin_unlock(&dentry->d_lock);
1051 if (can_free)
1052 dentry_free(dentry);
1053 continue;
1054 }
8f04da2a 1055 rcu_read_unlock();
3b3f09f4
AV
1056 d_shrink_del(dentry);
1057 parent = dentry->d_parent;
ff2fde99 1058 __dentry_kill(dentry);
3b3f09f4
AV
1059 if (parent == dentry)
1060 continue;
5c47e6d0
AV
1061 /*
1062 * We need to prune ancestors too. This is necessary to prevent
1063 * quadratic behavior of shrink_dcache_parent(), but is also
1064 * expected to be beneficial in reducing dentry cache
1065 * fragmentation.
1066 */
1067 dentry = parent;
8f04da2a
JO
1068 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1069 dentry = dentry_kill(dentry);
da3bbdd4 1070 }
3049cfe2
CH
1071}
1072
3f97b163
VD
1073static enum lru_status dentry_lru_isolate(struct list_head *item,
1074 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1075{
1076 struct list_head *freeable = arg;
1077 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1078
1079
1080 /*
1081 * we are inverting the lru lock/dentry->d_lock here,
1082 * so use a trylock. If we fail to get the lock, just skip
1083 * it
1084 */
1085 if (!spin_trylock(&dentry->d_lock))
1086 return LRU_SKIP;
1087
1088 /*
1089 * Referenced dentries are still in use. If they have active
1090 * counts, just remove them from the LRU. Otherwise give them
1091 * another pass through the LRU.
1092 */
1093 if (dentry->d_lockref.count) {
3f97b163 1094 d_lru_isolate(lru, dentry);
f6041567
DC
1095 spin_unlock(&dentry->d_lock);
1096 return LRU_REMOVED;
1097 }
1098
1099 if (dentry->d_flags & DCACHE_REFERENCED) {
1100 dentry->d_flags &= ~DCACHE_REFERENCED;
1101 spin_unlock(&dentry->d_lock);
1102
1103 /*
1104 * The list move itself will be made by the common LRU code. At
1105 * this point, we've dropped the dentry->d_lock but keep the
1106 * lru lock. This is safe to do, since every list movement is
1107 * protected by the lru lock even if both locks are held.
1108 *
1109 * This is guaranteed by the fact that all LRU management
1110 * functions are intermediated by the LRU API calls like
1111 * list_lru_add and list_lru_del. List movement in this file
1112 * only ever occur through this functions or through callbacks
1113 * like this one, that are called from the LRU API.
1114 *
1115 * The only exceptions to this are functions like
1116 * shrink_dentry_list, and code that first checks for the
1117 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1118 * operating only with stack provided lists after they are
1119 * properly isolated from the main list. It is thus, always a
1120 * local access.
1121 */
1122 return LRU_ROTATE;
1123 }
1124
3f97b163 1125 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1126 spin_unlock(&dentry->d_lock);
1127
1128 return LRU_REMOVED;
1129}
1130
3049cfe2 1131/**
b48f03b3
DC
1132 * prune_dcache_sb - shrink the dcache
1133 * @sb: superblock
503c358c 1134 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1135 *
503c358c
VD
1136 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1137 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1138 * function.
3049cfe2 1139 *
b48f03b3
DC
1140 * This function may fail to free any resources if all the dentries are in
1141 * use.
3049cfe2 1142 */
503c358c 1143long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1144{
f6041567
DC
1145 LIST_HEAD(dispose);
1146 long freed;
3049cfe2 1147
503c358c
VD
1148 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1149 dentry_lru_isolate, &dispose);
f6041567 1150 shrink_dentry_list(&dispose);
0a234c6d 1151 return freed;
da3bbdd4 1152}
23044507 1153
4e717f5c 1154static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1155 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1156{
4e717f5c
GC
1157 struct list_head *freeable = arg;
1158 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1159
4e717f5c
GC
1160 /*
1161 * we are inverting the lru lock/dentry->d_lock here,
1162 * so use a trylock. If we fail to get the lock, just skip
1163 * it
1164 */
1165 if (!spin_trylock(&dentry->d_lock))
1166 return LRU_SKIP;
1167
3f97b163 1168 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1169 spin_unlock(&dentry->d_lock);
ec33679d 1170
4e717f5c 1171 return LRU_REMOVED;
da3bbdd4
KM
1172}
1173
4e717f5c 1174
1da177e4
LT
1175/**
1176 * shrink_dcache_sb - shrink dcache for a superblock
1177 * @sb: superblock
1178 *
3049cfe2
CH
1179 * Shrink the dcache for the specified super block. This is used to free
1180 * the dcache before unmounting a file system.
1da177e4 1181 */
3049cfe2 1182void shrink_dcache_sb(struct super_block *sb)
1da177e4 1183{
4e717f5c
GC
1184 long freed;
1185
1186 do {
1187 LIST_HEAD(dispose);
1188
1189 freed = list_lru_walk(&sb->s_dentry_lru,
b17c070f 1190 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1191
4e717f5c
GC
1192 this_cpu_sub(nr_dentry_unused, freed);
1193 shrink_dentry_list(&dispose);
b17c070f
ST
1194 cond_resched();
1195 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1196}
ec4f8605 1197EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1198
db14fc3a
MS
1199/**
1200 * enum d_walk_ret - action to talke during tree walk
1201 * @D_WALK_CONTINUE: contrinue walk
1202 * @D_WALK_QUIT: quit walk
1203 * @D_WALK_NORETRY: quit when retry is needed
1204 * @D_WALK_SKIP: skip this dentry and its children
1205 */
1206enum d_walk_ret {
1207 D_WALK_CONTINUE,
1208 D_WALK_QUIT,
1209 D_WALK_NORETRY,
1210 D_WALK_SKIP,
1211};
c826cb7d 1212
1da177e4 1213/**
db14fc3a
MS
1214 * d_walk - walk the dentry tree
1215 * @parent: start of walk
1216 * @data: data passed to @enter() and @finish()
1217 * @enter: callback when first entering the dentry
1218 * @finish: callback when successfully finished the walk
1da177e4 1219 *
db14fc3a 1220 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1221 */
db14fc3a
MS
1222static void d_walk(struct dentry *parent, void *data,
1223 enum d_walk_ret (*enter)(void *, struct dentry *),
1224 void (*finish)(void *))
1da177e4 1225{
949854d0 1226 struct dentry *this_parent;
1da177e4 1227 struct list_head *next;
48f5ec21 1228 unsigned seq = 0;
db14fc3a
MS
1229 enum d_walk_ret ret;
1230 bool retry = true;
949854d0 1231
58db63d0 1232again:
48f5ec21 1233 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1234 this_parent = parent;
2fd6b7f5 1235 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1236
1237 ret = enter(data, this_parent);
1238 switch (ret) {
1239 case D_WALK_CONTINUE:
1240 break;
1241 case D_WALK_QUIT:
1242 case D_WALK_SKIP:
1243 goto out_unlock;
1244 case D_WALK_NORETRY:
1245 retry = false;
1246 break;
1247 }
1da177e4
LT
1248repeat:
1249 next = this_parent->d_subdirs.next;
1250resume:
1251 while (next != &this_parent->d_subdirs) {
1252 struct list_head *tmp = next;
946e51f2 1253 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1254 next = tmp->next;
2fd6b7f5 1255
ba65dc5e
AV
1256 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1257 continue;
1258
2fd6b7f5 1259 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1260
1261 ret = enter(data, dentry);
1262 switch (ret) {
1263 case D_WALK_CONTINUE:
1264 break;
1265 case D_WALK_QUIT:
2fd6b7f5 1266 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1267 goto out_unlock;
1268 case D_WALK_NORETRY:
1269 retry = false;
1270 break;
1271 case D_WALK_SKIP:
1272 spin_unlock(&dentry->d_lock);
1273 continue;
2fd6b7f5 1274 }
db14fc3a 1275
1da177e4 1276 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1277 spin_unlock(&this_parent->d_lock);
1278 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1279 this_parent = dentry;
2fd6b7f5 1280 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1281 goto repeat;
1282 }
2fd6b7f5 1283 spin_unlock(&dentry->d_lock);
1da177e4
LT
1284 }
1285 /*
1286 * All done at this level ... ascend and resume the search.
1287 */
ca5358ef
AV
1288 rcu_read_lock();
1289ascend:
1da177e4 1290 if (this_parent != parent) {
c826cb7d 1291 struct dentry *child = this_parent;
31dec132
AV
1292 this_parent = child->d_parent;
1293
31dec132
AV
1294 spin_unlock(&child->d_lock);
1295 spin_lock(&this_parent->d_lock);
1296
ca5358ef
AV
1297 /* might go back up the wrong parent if we have had a rename. */
1298 if (need_seqretry(&rename_lock, seq))
949854d0 1299 goto rename_retry;
2159184e
AV
1300 /* go into the first sibling still alive */
1301 do {
1302 next = child->d_child.next;
ca5358ef
AV
1303 if (next == &this_parent->d_subdirs)
1304 goto ascend;
1305 child = list_entry(next, struct dentry, d_child);
2159184e 1306 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1307 rcu_read_unlock();
1da177e4
LT
1308 goto resume;
1309 }
ca5358ef 1310 if (need_seqretry(&rename_lock, seq))
949854d0 1311 goto rename_retry;
ca5358ef 1312 rcu_read_unlock();
db14fc3a
MS
1313 if (finish)
1314 finish(data);
1315
1316out_unlock:
1317 spin_unlock(&this_parent->d_lock);
48f5ec21 1318 done_seqretry(&rename_lock, seq);
db14fc3a 1319 return;
58db63d0
NP
1320
1321rename_retry:
ca5358ef
AV
1322 spin_unlock(&this_parent->d_lock);
1323 rcu_read_unlock();
1324 BUG_ON(seq & 1);
db14fc3a
MS
1325 if (!retry)
1326 return;
48f5ec21 1327 seq = 1;
58db63d0 1328 goto again;
1da177e4 1329}
db14fc3a 1330
01619491
IK
1331struct check_mount {
1332 struct vfsmount *mnt;
1333 unsigned int mounted;
1334};
1335
1336static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1337{
1338 struct check_mount *info = data;
1339 struct path path = { .mnt = info->mnt, .dentry = dentry };
1340
1341 if (likely(!d_mountpoint(dentry)))
1342 return D_WALK_CONTINUE;
1343 if (__path_is_mountpoint(&path)) {
1344 info->mounted = 1;
1345 return D_WALK_QUIT;
1346 }
1347 return D_WALK_CONTINUE;
1348}
1349
1350/**
1351 * path_has_submounts - check for mounts over a dentry in the
1352 * current namespace.
1353 * @parent: path to check.
1354 *
1355 * Return true if the parent or its subdirectories contain
1356 * a mount point in the current namespace.
1357 */
1358int path_has_submounts(const struct path *parent)
1359{
1360 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1361
1362 read_seqlock_excl(&mount_lock);
1363 d_walk(parent->dentry, &data, path_check_mount, NULL);
1364 read_sequnlock_excl(&mount_lock);
1365
1366 return data.mounted;
1367}
1368EXPORT_SYMBOL(path_has_submounts);
1369
eed81007
MS
1370/*
1371 * Called by mount code to set a mountpoint and check if the mountpoint is
1372 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1373 * subtree can become unreachable).
1374 *
1ffe46d1 1375 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1376 * this reason take rename_lock and d_lock on dentry and ancestors.
1377 */
1378int d_set_mounted(struct dentry *dentry)
1379{
1380 struct dentry *p;
1381 int ret = -ENOENT;
1382 write_seqlock(&rename_lock);
1383 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1384 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1385 spin_lock(&p->d_lock);
1386 if (unlikely(d_unhashed(p))) {
1387 spin_unlock(&p->d_lock);
1388 goto out;
1389 }
1390 spin_unlock(&p->d_lock);
1391 }
1392 spin_lock(&dentry->d_lock);
1393 if (!d_unlinked(dentry)) {
3895dbf8
EB
1394 ret = -EBUSY;
1395 if (!d_mountpoint(dentry)) {
1396 dentry->d_flags |= DCACHE_MOUNTED;
1397 ret = 0;
1398 }
eed81007
MS
1399 }
1400 spin_unlock(&dentry->d_lock);
1401out:
1402 write_sequnlock(&rename_lock);
1403 return ret;
1404}
1405
1da177e4 1406/*
fd517909 1407 * Search the dentry child list of the specified parent,
1da177e4
LT
1408 * and move any unused dentries to the end of the unused
1409 * list for prune_dcache(). We descend to the next level
1410 * whenever the d_subdirs list is non-empty and continue
1411 * searching.
1412 *
1413 * It returns zero iff there are no unused children,
1414 * otherwise it returns the number of children moved to
1415 * the end of the unused list. This may not be the total
1416 * number of unused children, because select_parent can
1417 * drop the lock and return early due to latency
1418 * constraints.
1419 */
1da177e4 1420
db14fc3a
MS
1421struct select_data {
1422 struct dentry *start;
1423 struct list_head dispose;
1424 int found;
1425};
23044507 1426
db14fc3a
MS
1427static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1428{
1429 struct select_data *data = _data;
1430 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1431
db14fc3a
MS
1432 if (data->start == dentry)
1433 goto out;
2fd6b7f5 1434
fe91522a 1435 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1436 data->found++;
fe91522a
AV
1437 } else {
1438 if (dentry->d_flags & DCACHE_LRU_LIST)
1439 d_lru_del(dentry);
1440 if (!dentry->d_lockref.count) {
1441 d_shrink_add(dentry, &data->dispose);
1442 data->found++;
1443 }
1da177e4 1444 }
db14fc3a
MS
1445 /*
1446 * We can return to the caller if we have found some (this
1447 * ensures forward progress). We'll be coming back to find
1448 * the rest.
1449 */
fe91522a
AV
1450 if (!list_empty(&data->dispose))
1451 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1452out:
db14fc3a 1453 return ret;
1da177e4
LT
1454}
1455
1456/**
1457 * shrink_dcache_parent - prune dcache
1458 * @parent: parent of entries to prune
1459 *
1460 * Prune the dcache to remove unused children of the parent dentry.
1461 */
db14fc3a 1462void shrink_dcache_parent(struct dentry *parent)
1da177e4 1463{
db14fc3a
MS
1464 for (;;) {
1465 struct select_data data;
1da177e4 1466
db14fc3a
MS
1467 INIT_LIST_HEAD(&data.dispose);
1468 data.start = parent;
1469 data.found = 0;
1470
1471 d_walk(parent, &data, select_collect, NULL);
1472 if (!data.found)
1473 break;
1474
1475 shrink_dentry_list(&data.dispose);
421348f1
GT
1476 cond_resched();
1477 }
1da177e4 1478}
ec4f8605 1479EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1480
9c8c10e2 1481static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1482{
9c8c10e2
AV
1483 /* it has busy descendents; complain about those instead */
1484 if (!list_empty(&dentry->d_subdirs))
1485 return D_WALK_CONTINUE;
42c32608 1486
9c8c10e2
AV
1487 /* root with refcount 1 is fine */
1488 if (dentry == _data && dentry->d_lockref.count == 1)
1489 return D_WALK_CONTINUE;
1490
1491 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1492 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1493 dentry,
1494 dentry->d_inode ?
1495 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1496 dentry,
42c32608
AV
1497 dentry->d_lockref.count,
1498 dentry->d_sb->s_type->name,
1499 dentry->d_sb->s_id);
9c8c10e2
AV
1500 WARN_ON(1);
1501 return D_WALK_CONTINUE;
1502}
1503
1504static void do_one_tree(struct dentry *dentry)
1505{
1506 shrink_dcache_parent(dentry);
1507 d_walk(dentry, dentry, umount_check, NULL);
1508 d_drop(dentry);
1509 dput(dentry);
42c32608
AV
1510}
1511
1512/*
1513 * destroy the dentries attached to a superblock on unmounting
1514 */
1515void shrink_dcache_for_umount(struct super_block *sb)
1516{
1517 struct dentry *dentry;
1518
9c8c10e2 1519 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1520
1521 dentry = sb->s_root;
1522 sb->s_root = NULL;
9c8c10e2 1523 do_one_tree(dentry);
42c32608 1524
f1ee6162
N
1525 while (!hlist_bl_empty(&sb->s_roots)) {
1526 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1527 do_one_tree(dentry);
42c32608
AV
1528 }
1529}
1530
8ed936b5
EB
1531struct detach_data {
1532 struct select_data select;
1533 struct dentry *mountpoint;
1534};
1535static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1536{
8ed936b5 1537 struct detach_data *data = _data;
848ac114
MS
1538
1539 if (d_mountpoint(dentry)) {
8ed936b5
EB
1540 __dget_dlock(dentry);
1541 data->mountpoint = dentry;
848ac114
MS
1542 return D_WALK_QUIT;
1543 }
1544
8ed936b5 1545 return select_collect(&data->select, dentry);
848ac114
MS
1546}
1547
1548static void check_and_drop(void *_data)
1549{
8ed936b5 1550 struct detach_data *data = _data;
848ac114 1551
81be24d2 1552 if (!data->mountpoint && list_empty(&data->select.dispose))
8ed936b5 1553 __d_drop(data->select.start);
848ac114
MS
1554}
1555
1556/**
1ffe46d1
EB
1557 * d_invalidate - detach submounts, prune dcache, and drop
1558 * @dentry: dentry to invalidate (aka detach, prune and drop)
1559 *
1ffe46d1 1560 * no dcache lock.
848ac114 1561 *
8ed936b5
EB
1562 * The final d_drop is done as an atomic operation relative to
1563 * rename_lock ensuring there are no races with d_set_mounted. This
1564 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1565 */
5542aa2f 1566void d_invalidate(struct dentry *dentry)
848ac114 1567{
1ffe46d1
EB
1568 /*
1569 * If it's already been dropped, return OK.
1570 */
1571 spin_lock(&dentry->d_lock);
1572 if (d_unhashed(dentry)) {
1573 spin_unlock(&dentry->d_lock);
5542aa2f 1574 return;
1ffe46d1
EB
1575 }
1576 spin_unlock(&dentry->d_lock);
1577
848ac114
MS
1578 /* Negative dentries can be dropped without further checks */
1579 if (!dentry->d_inode) {
1580 d_drop(dentry);
5542aa2f 1581 return;
848ac114
MS
1582 }
1583
1584 for (;;) {
8ed936b5 1585 struct detach_data data;
848ac114 1586
8ed936b5
EB
1587 data.mountpoint = NULL;
1588 INIT_LIST_HEAD(&data.select.dispose);
1589 data.select.start = dentry;
1590 data.select.found = 0;
1591
1592 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1593
81be24d2 1594 if (!list_empty(&data.select.dispose))
8ed936b5 1595 shrink_dentry_list(&data.select.dispose);
81be24d2
AV
1596 else if (!data.mountpoint)
1597 return;
848ac114 1598
8ed936b5
EB
1599 if (data.mountpoint) {
1600 detach_mounts(data.mountpoint);
1601 dput(data.mountpoint);
1602 }
848ac114
MS
1603 cond_resched();
1604 }
848ac114 1605}
1ffe46d1 1606EXPORT_SYMBOL(d_invalidate);
848ac114 1607
1da177e4 1608/**
a4464dbc
AV
1609 * __d_alloc - allocate a dcache entry
1610 * @sb: filesystem it will belong to
1da177e4
LT
1611 * @name: qstr of the name
1612 *
1613 * Allocates a dentry. It returns %NULL if there is insufficient memory
1614 * available. On a success the dentry is returned. The name passed in is
1615 * copied and the copy passed in may be reused after this call.
1616 */
1617
a4464dbc 1618struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1619{
1620 struct dentry *dentry;
1621 char *dname;
285b102d 1622 int err;
1da177e4 1623
e12ba74d 1624 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1625 if (!dentry)
1626 return NULL;
1627
6326c71f
LT
1628 /*
1629 * We guarantee that the inline name is always NUL-terminated.
1630 * This way the memcpy() done by the name switching in rename
1631 * will still always have a NUL at the end, even if we might
1632 * be overwriting an internal NUL character
1633 */
1634 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1635 if (unlikely(!name)) {
cdf01226 1636 name = &slash_name;
798434bd
AV
1637 dname = dentry->d_iname;
1638 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1639 size_t size = offsetof(struct external_name, name[1]);
5d097056
VD
1640 struct external_name *p = kmalloc(size + name->len,
1641 GFP_KERNEL_ACCOUNT);
8d85b484 1642 if (!p) {
1da177e4
LT
1643 kmem_cache_free(dentry_cache, dentry);
1644 return NULL;
1645 }
8d85b484
AV
1646 atomic_set(&p->u.count, 1);
1647 dname = p->name;
1da177e4
LT
1648 } else {
1649 dname = dentry->d_iname;
1650 }
1da177e4
LT
1651
1652 dentry->d_name.len = name->len;
1653 dentry->d_name.hash = name->hash;
1654 memcpy(dname, name->name, name->len);
1655 dname[name->len] = 0;
1656
6326c71f 1657 /* Make sure we always see the terminating NUL character */
7088efa9 1658 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1659
98474236 1660 dentry->d_lockref.count = 1;
dea3667b 1661 dentry->d_flags = 0;
1da177e4 1662 spin_lock_init(&dentry->d_lock);
31e6b01f 1663 seqcount_init(&dentry->d_seq);
1da177e4 1664 dentry->d_inode = NULL;
a4464dbc
AV
1665 dentry->d_parent = dentry;
1666 dentry->d_sb = sb;
1da177e4
LT
1667 dentry->d_op = NULL;
1668 dentry->d_fsdata = NULL;
ceb5bdc2 1669 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1670 INIT_LIST_HEAD(&dentry->d_lru);
1671 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1672 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1673 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1674 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1675
285b102d
MS
1676 if (dentry->d_op && dentry->d_op->d_init) {
1677 err = dentry->d_op->d_init(dentry);
1678 if (err) {
1679 if (dname_external(dentry))
1680 kfree(external_name(dentry));
1681 kmem_cache_free(dentry_cache, dentry);
1682 return NULL;
1683 }
1684 }
1685
3e880fb5 1686 this_cpu_inc(nr_dentry);
312d3ca8 1687
1da177e4
LT
1688 return dentry;
1689}
a4464dbc
AV
1690
1691/**
1692 * d_alloc - allocate a dcache entry
1693 * @parent: parent of entry to allocate
1694 * @name: qstr of the name
1695 *
1696 * Allocates a dentry. It returns %NULL if there is insufficient memory
1697 * available. On a success the dentry is returned. The name passed in is
1698 * copied and the copy passed in may be reused after this call.
1699 */
1700struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1701{
1702 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1703 if (!dentry)
1704 return NULL;
3d56c25e 1705 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1706 spin_lock(&parent->d_lock);
1707 /*
1708 * don't need child lock because it is not subject
1709 * to concurrency here
1710 */
1711 __dget_dlock(parent);
1712 dentry->d_parent = parent;
946e51f2 1713 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1714 spin_unlock(&parent->d_lock);
1715
1716 return dentry;
1717}
ec4f8605 1718EXPORT_SYMBOL(d_alloc);
1da177e4 1719
f9c34674
MS
1720struct dentry *d_alloc_anon(struct super_block *sb)
1721{
1722 return __d_alloc(sb, NULL);
1723}
1724EXPORT_SYMBOL(d_alloc_anon);
1725
ba65dc5e
AV
1726struct dentry *d_alloc_cursor(struct dentry * parent)
1727{
f9c34674 1728 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e
AV
1729 if (dentry) {
1730 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1731 dentry->d_parent = dget(parent);
1732 }
1733 return dentry;
1734}
1735
e1a24bb0
BF
1736/**
1737 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1738 * @sb: the superblock
1739 * @name: qstr of the name
1740 *
1741 * For a filesystem that just pins its dentries in memory and never
1742 * performs lookups at all, return an unhashed IS_ROOT dentry.
1743 */
4b936885
NP
1744struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1745{
e1a24bb0 1746 return __d_alloc(sb, name);
4b936885
NP
1747}
1748EXPORT_SYMBOL(d_alloc_pseudo);
1749
1da177e4
LT
1750struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1751{
1752 struct qstr q;
1753
1754 q.name = name;
8387ff25 1755 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1756 return d_alloc(parent, &q);
1757}
ef26ca97 1758EXPORT_SYMBOL(d_alloc_name);
1da177e4 1759
fb045adb
NP
1760void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1761{
6f7f7caa
LT
1762 WARN_ON_ONCE(dentry->d_op);
1763 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1764 DCACHE_OP_COMPARE |
1765 DCACHE_OP_REVALIDATE |
ecf3d1f1 1766 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1767 DCACHE_OP_DELETE |
d101a125 1768 DCACHE_OP_REAL));
fb045adb
NP
1769 dentry->d_op = op;
1770 if (!op)
1771 return;
1772 if (op->d_hash)
1773 dentry->d_flags |= DCACHE_OP_HASH;
1774 if (op->d_compare)
1775 dentry->d_flags |= DCACHE_OP_COMPARE;
1776 if (op->d_revalidate)
1777 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1778 if (op->d_weak_revalidate)
1779 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1780 if (op->d_delete)
1781 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1782 if (op->d_prune)
1783 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1784 if (op->d_real)
1785 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1786
1787}
1788EXPORT_SYMBOL(d_set_d_op);
1789
df1a085a
DH
1790
1791/*
1792 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1793 * @dentry - The dentry to mark
1794 *
1795 * Mark a dentry as falling through to the lower layer (as set with
1796 * d_pin_lower()). This flag may be recorded on the medium.
1797 */
1798void d_set_fallthru(struct dentry *dentry)
1799{
1800 spin_lock(&dentry->d_lock);
1801 dentry->d_flags |= DCACHE_FALLTHRU;
1802 spin_unlock(&dentry->d_lock);
1803}
1804EXPORT_SYMBOL(d_set_fallthru);
1805
b18825a7
DH
1806static unsigned d_flags_for_inode(struct inode *inode)
1807{
44bdb5e5 1808 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1809
1810 if (!inode)
1811 return DCACHE_MISS_TYPE;
1812
1813 if (S_ISDIR(inode->i_mode)) {
1814 add_flags = DCACHE_DIRECTORY_TYPE;
1815 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1816 if (unlikely(!inode->i_op->lookup))
1817 add_flags = DCACHE_AUTODIR_TYPE;
1818 else
1819 inode->i_opflags |= IOP_LOOKUP;
1820 }
44bdb5e5
DH
1821 goto type_determined;
1822 }
1823
1824 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1825 if (unlikely(inode->i_op->get_link)) {
b18825a7 1826 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1827 goto type_determined;
1828 }
1829 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1830 }
1831
44bdb5e5
DH
1832 if (unlikely(!S_ISREG(inode->i_mode)))
1833 add_flags = DCACHE_SPECIAL_TYPE;
1834
1835type_determined:
b18825a7
DH
1836 if (unlikely(IS_AUTOMOUNT(inode)))
1837 add_flags |= DCACHE_NEED_AUTOMOUNT;
1838 return add_flags;
1839}
1840
360da900
OH
1841static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1842{
b18825a7 1843 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1844 WARN_ON(d_in_lookup(dentry));
b18825a7 1845
b23fb0a6 1846 spin_lock(&dentry->d_lock);
de689f5e 1847 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1848 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1849 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1850 raw_write_seqcount_end(&dentry->d_seq);
affda484 1851 fsnotify_update_flags(dentry);
b23fb0a6 1852 spin_unlock(&dentry->d_lock);
360da900
OH
1853}
1854
1da177e4
LT
1855/**
1856 * d_instantiate - fill in inode information for a dentry
1857 * @entry: dentry to complete
1858 * @inode: inode to attach to this dentry
1859 *
1860 * Fill in inode information in the entry.
1861 *
1862 * This turns negative dentries into productive full members
1863 * of society.
1864 *
1865 * NOTE! This assumes that the inode count has been incremented
1866 * (or otherwise set) by the caller to indicate that it is now
1867 * in use by the dcache.
1868 */
1869
1870void d_instantiate(struct dentry *entry, struct inode * inode)
1871{
946e51f2 1872 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1873 if (inode) {
b9680917 1874 security_d_instantiate(entry, inode);
873feea0 1875 spin_lock(&inode->i_lock);
de689f5e 1876 __d_instantiate(entry, inode);
873feea0 1877 spin_unlock(&inode->i_lock);
de689f5e 1878 }
1da177e4 1879}
ec4f8605 1880EXPORT_SYMBOL(d_instantiate);
1da177e4 1881
b70a80e7
MS
1882/**
1883 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1884 * @entry: dentry to complete
1885 * @inode: inode to attach to this dentry
1886 *
1887 * Fill in inode information in the entry. If a directory alias is found, then
1888 * return an error (and drop inode). Together with d_materialise_unique() this
1889 * guarantees that a directory inode may never have more than one alias.
1890 */
1891int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1892{
946e51f2 1893 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1894
b9680917 1895 security_d_instantiate(entry, inode);
b70a80e7
MS
1896 spin_lock(&inode->i_lock);
1897 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1898 spin_unlock(&inode->i_lock);
1899 iput(inode);
1900 return -EBUSY;
1901 }
1902 __d_instantiate(entry, inode);
1903 spin_unlock(&inode->i_lock);
b70a80e7
MS
1904
1905 return 0;
1906}
1907EXPORT_SYMBOL(d_instantiate_no_diralias);
1908
adc0e91a
AV
1909struct dentry *d_make_root(struct inode *root_inode)
1910{
1911 struct dentry *res = NULL;
1912
1913 if (root_inode) {
f9c34674 1914 res = d_alloc_anon(root_inode->i_sb);
adc0e91a
AV
1915 if (res)
1916 d_instantiate(res, root_inode);
1917 else
1918 iput(root_inode);
1919 }
1920 return res;
1921}
1922EXPORT_SYMBOL(d_make_root);
1923
d891eedb
BF
1924static struct dentry * __d_find_any_alias(struct inode *inode)
1925{
1926 struct dentry *alias;
1927
b3d9b7a3 1928 if (hlist_empty(&inode->i_dentry))
d891eedb 1929 return NULL;
946e51f2 1930 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1931 __dget(alias);
1932 return alias;
1933}
1934
46f72b34
SW
1935/**
1936 * d_find_any_alias - find any alias for a given inode
1937 * @inode: inode to find an alias for
1938 *
1939 * If any aliases exist for the given inode, take and return a
1940 * reference for one of them. If no aliases exist, return %NULL.
1941 */
1942struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1943{
1944 struct dentry *de;
1945
1946 spin_lock(&inode->i_lock);
1947 de = __d_find_any_alias(inode);
1948 spin_unlock(&inode->i_lock);
1949 return de;
1950}
46f72b34 1951EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1952
f9c34674
MS
1953static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1954 struct inode *inode,
1955 bool disconnected)
4ea3ada2 1956{
9308a612 1957 struct dentry *res;
b18825a7 1958 unsigned add_flags;
4ea3ada2 1959
f9c34674 1960 security_d_instantiate(dentry, inode);
873feea0 1961 spin_lock(&inode->i_lock);
d891eedb 1962 res = __d_find_any_alias(inode);
9308a612 1963 if (res) {
873feea0 1964 spin_unlock(&inode->i_lock);
f9c34674 1965 dput(dentry);
9308a612
CH
1966 goto out_iput;
1967 }
1968
1969 /* attach a disconnected dentry */
1a0a397e
BF
1970 add_flags = d_flags_for_inode(inode);
1971
1972 if (disconnected)
1973 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1974
f9c34674
MS
1975 spin_lock(&dentry->d_lock);
1976 __d_set_inode_and_type(dentry, inode, add_flags);
1977 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 1978 if (!disconnected) {
139351f1
LT
1979 hlist_bl_lock(&dentry->d_sb->s_roots);
1980 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1981 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 1982 }
f9c34674 1983 spin_unlock(&dentry->d_lock);
873feea0 1984 spin_unlock(&inode->i_lock);
9308a612 1985
f9c34674 1986 return dentry;
9308a612
CH
1987
1988 out_iput:
1989 iput(inode);
1990 return res;
4ea3ada2 1991}
1a0a397e 1992
f9c34674
MS
1993struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1994{
1995 return __d_instantiate_anon(dentry, inode, true);
1996}
1997EXPORT_SYMBOL(d_instantiate_anon);
1998
1999static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2000{
2001 struct dentry *tmp;
2002 struct dentry *res;
2003
2004 if (!inode)
2005 return ERR_PTR(-ESTALE);
2006 if (IS_ERR(inode))
2007 return ERR_CAST(inode);
2008
2009 res = d_find_any_alias(inode);
2010 if (res)
2011 goto out_iput;
2012
2013 tmp = d_alloc_anon(inode->i_sb);
2014 if (!tmp) {
2015 res = ERR_PTR(-ENOMEM);
2016 goto out_iput;
2017 }
2018
2019 return __d_instantiate_anon(tmp, inode, disconnected);
2020
2021out_iput:
2022 iput(inode);
2023 return res;
2024}
2025
1a0a397e
BF
2026/**
2027 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2028 * @inode: inode to allocate the dentry for
2029 *
2030 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2031 * similar open by handle operations. The returned dentry may be anonymous,
2032 * or may have a full name (if the inode was already in the cache).
2033 *
2034 * When called on a directory inode, we must ensure that the inode only ever
2035 * has one dentry. If a dentry is found, that is returned instead of
2036 * allocating a new one.
2037 *
2038 * On successful return, the reference to the inode has been transferred
2039 * to the dentry. In case of an error the reference on the inode is released.
2040 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2041 * be passed in and the error will be propagated to the return value,
2042 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2043 */
2044struct dentry *d_obtain_alias(struct inode *inode)
2045{
f9c34674 2046 return __d_obtain_alias(inode, true);
1a0a397e 2047}
adc48720 2048EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2049
1a0a397e
BF
2050/**
2051 * d_obtain_root - find or allocate a dentry for a given inode
2052 * @inode: inode to allocate the dentry for
2053 *
2054 * Obtain an IS_ROOT dentry for the root of a filesystem.
2055 *
2056 * We must ensure that directory inodes only ever have one dentry. If a
2057 * dentry is found, that is returned instead of allocating a new one.
2058 *
2059 * On successful return, the reference to the inode has been transferred
2060 * to the dentry. In case of an error the reference on the inode is
2061 * released. A %NULL or IS_ERR inode may be passed in and will be the
2062 * error will be propagate to the return value, with a %NULL @inode
2063 * replaced by ERR_PTR(-ESTALE).
2064 */
2065struct dentry *d_obtain_root(struct inode *inode)
2066{
f9c34674 2067 return __d_obtain_alias(inode, false);
1a0a397e
BF
2068}
2069EXPORT_SYMBOL(d_obtain_root);
2070
9403540c
BN
2071/**
2072 * d_add_ci - lookup or allocate new dentry with case-exact name
2073 * @inode: the inode case-insensitive lookup has found
2074 * @dentry: the negative dentry that was passed to the parent's lookup func
2075 * @name: the case-exact name to be associated with the returned dentry
2076 *
2077 * This is to avoid filling the dcache with case-insensitive names to the
2078 * same inode, only the actual correct case is stored in the dcache for
2079 * case-insensitive filesystems.
2080 *
2081 * For a case-insensitive lookup match and if the the case-exact dentry
2082 * already exists in in the dcache, use it and return it.
2083 *
2084 * If no entry exists with the exact case name, allocate new dentry with
2085 * the exact case, and return the spliced entry.
2086 */
e45b590b 2087struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2088 struct qstr *name)
2089{
d9171b93 2090 struct dentry *found, *res;
9403540c 2091
b6520c81
CH
2092 /*
2093 * First check if a dentry matching the name already exists,
2094 * if not go ahead and create it now.
2095 */
9403540c 2096 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2097 if (found) {
2098 iput(inode);
2099 return found;
2100 }
2101 if (d_in_lookup(dentry)) {
2102 found = d_alloc_parallel(dentry->d_parent, name,
2103 dentry->d_wait);
2104 if (IS_ERR(found) || !d_in_lookup(found)) {
2105 iput(inode);
2106 return found;
9403540c 2107 }
d9171b93
AV
2108 } else {
2109 found = d_alloc(dentry->d_parent, name);
2110 if (!found) {
2111 iput(inode);
2112 return ERR_PTR(-ENOMEM);
2113 }
2114 }
2115 res = d_splice_alias(inode, found);
2116 if (res) {
2117 dput(found);
2118 return res;
9403540c 2119 }
4f522a24 2120 return found;
9403540c 2121}
ec4f8605 2122EXPORT_SYMBOL(d_add_ci);
1da177e4 2123
12f8ad4b 2124
d4c91a8f
AV
2125static inline bool d_same_name(const struct dentry *dentry,
2126 const struct dentry *parent,
2127 const struct qstr *name)
12f8ad4b 2128{
d4c91a8f
AV
2129 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2130 if (dentry->d_name.len != name->len)
2131 return false;
2132 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2133 }
6fa67e70 2134 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2135 dentry->d_name.len, dentry->d_name.name,
2136 name) == 0;
12f8ad4b
LT
2137}
2138
31e6b01f
NP
2139/**
2140 * __d_lookup_rcu - search for a dentry (racy, store-free)
2141 * @parent: parent dentry
2142 * @name: qstr of name we wish to find
1f1e6e52 2143 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2144 * Returns: dentry, or NULL
2145 *
2146 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2147 * resolution (store-free path walking) design described in
2148 * Documentation/filesystems/path-lookup.txt.
2149 *
2150 * This is not to be used outside core vfs.
2151 *
2152 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2153 * held, and rcu_read_lock held. The returned dentry must not be stored into
2154 * without taking d_lock and checking d_seq sequence count against @seq
2155 * returned here.
2156 *
15570086 2157 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2158 * function.
2159 *
2160 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2161 * the returned dentry, so long as its parent's seqlock is checked after the
2162 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2163 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2164 *
2165 * NOTE! The caller *has* to check the resulting dentry against the sequence
2166 * number we've returned before using any of the resulting dentry state!
31e6b01f 2167 */
8966be90
LT
2168struct dentry *__d_lookup_rcu(const struct dentry *parent,
2169 const struct qstr *name,
da53be12 2170 unsigned *seqp)
31e6b01f 2171{
26fe5750 2172 u64 hashlen = name->hash_len;
31e6b01f 2173 const unsigned char *str = name->name;
8387ff25 2174 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2175 struct hlist_bl_node *node;
31e6b01f
NP
2176 struct dentry *dentry;
2177
2178 /*
2179 * Note: There is significant duplication with __d_lookup_rcu which is
2180 * required to prevent single threaded performance regressions
2181 * especially on architectures where smp_rmb (in seqcounts) are costly.
2182 * Keep the two functions in sync.
2183 */
2184
2185 /*
2186 * The hash list is protected using RCU.
2187 *
2188 * Carefully use d_seq when comparing a candidate dentry, to avoid
2189 * races with d_move().
2190 *
2191 * It is possible that concurrent renames can mess up our list
2192 * walk here and result in missing our dentry, resulting in the
2193 * false-negative result. d_lookup() protects against concurrent
2194 * renames using rename_lock seqlock.
2195 *
b0a4bb83 2196 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2197 */
b07ad996 2198 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2199 unsigned seq;
31e6b01f 2200
31e6b01f 2201seqretry:
12f8ad4b
LT
2202 /*
2203 * The dentry sequence count protects us from concurrent
da53be12 2204 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2205 *
2206 * The caller must perform a seqcount check in order
da53be12 2207 * to do anything useful with the returned dentry.
12f8ad4b
LT
2208 *
2209 * NOTE! We do a "raw" seqcount_begin here. That means that
2210 * we don't wait for the sequence count to stabilize if it
2211 * is in the middle of a sequence change. If we do the slow
2212 * dentry compare, we will do seqretries until it is stable,
2213 * and if we end up with a successful lookup, we actually
2214 * want to exit RCU lookup anyway.
d4c91a8f
AV
2215 *
2216 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2217 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2218 */
2219 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2220 if (dentry->d_parent != parent)
2221 continue;
2e321806
LT
2222 if (d_unhashed(dentry))
2223 continue;
12f8ad4b 2224
830c0f0e 2225 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2226 int tlen;
2227 const char *tname;
26fe5750
LT
2228 if (dentry->d_name.hash != hashlen_hash(hashlen))
2229 continue;
d4c91a8f
AV
2230 tlen = dentry->d_name.len;
2231 tname = dentry->d_name.name;
2232 /* we want a consistent (name,len) pair */
2233 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2234 cpu_relax();
12f8ad4b
LT
2235 goto seqretry;
2236 }
6fa67e70 2237 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2238 tlen, tname, name) != 0)
2239 continue;
2240 } else {
2241 if (dentry->d_name.hash_len != hashlen)
2242 continue;
2243 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2244 continue;
31e6b01f 2245 }
da53be12 2246 *seqp = seq;
d4c91a8f 2247 return dentry;
31e6b01f
NP
2248 }
2249 return NULL;
2250}
2251
1da177e4
LT
2252/**
2253 * d_lookup - search for a dentry
2254 * @parent: parent dentry
2255 * @name: qstr of name we wish to find
b04f784e 2256 * Returns: dentry, or NULL
1da177e4 2257 *
b04f784e
NP
2258 * d_lookup searches the children of the parent dentry for the name in
2259 * question. If the dentry is found its reference count is incremented and the
2260 * dentry is returned. The caller must use dput to free the entry when it has
2261 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2262 */
da2d8455 2263struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2264{
31e6b01f 2265 struct dentry *dentry;
949854d0 2266 unsigned seq;
1da177e4 2267
b8314f93
DY
2268 do {
2269 seq = read_seqbegin(&rename_lock);
2270 dentry = __d_lookup(parent, name);
2271 if (dentry)
1da177e4
LT
2272 break;
2273 } while (read_seqretry(&rename_lock, seq));
2274 return dentry;
2275}
ec4f8605 2276EXPORT_SYMBOL(d_lookup);
1da177e4 2277
31e6b01f 2278/**
b04f784e
NP
2279 * __d_lookup - search for a dentry (racy)
2280 * @parent: parent dentry
2281 * @name: qstr of name we wish to find
2282 * Returns: dentry, or NULL
2283 *
2284 * __d_lookup is like d_lookup, however it may (rarely) return a
2285 * false-negative result due to unrelated rename activity.
2286 *
2287 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2288 * however it must be used carefully, eg. with a following d_lookup in
2289 * the case of failure.
2290 *
2291 * __d_lookup callers must be commented.
2292 */
a713ca2a 2293struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2294{
1da177e4 2295 unsigned int hash = name->hash;
8387ff25 2296 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2297 struct hlist_bl_node *node;
31e6b01f 2298 struct dentry *found = NULL;
665a7583 2299 struct dentry *dentry;
1da177e4 2300
31e6b01f
NP
2301 /*
2302 * Note: There is significant duplication with __d_lookup_rcu which is
2303 * required to prevent single threaded performance regressions
2304 * especially on architectures where smp_rmb (in seqcounts) are costly.
2305 * Keep the two functions in sync.
2306 */
2307
b04f784e
NP
2308 /*
2309 * The hash list is protected using RCU.
2310 *
2311 * Take d_lock when comparing a candidate dentry, to avoid races
2312 * with d_move().
2313 *
2314 * It is possible that concurrent renames can mess up our list
2315 * walk here and result in missing our dentry, resulting in the
2316 * false-negative result. d_lookup() protects against concurrent
2317 * renames using rename_lock seqlock.
2318 *
b0a4bb83 2319 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2320 */
1da177e4
LT
2321 rcu_read_lock();
2322
b07ad996 2323 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2324
1da177e4
LT
2325 if (dentry->d_name.hash != hash)
2326 continue;
1da177e4
LT
2327
2328 spin_lock(&dentry->d_lock);
1da177e4
LT
2329 if (dentry->d_parent != parent)
2330 goto next;
d0185c08
LT
2331 if (d_unhashed(dentry))
2332 goto next;
2333
d4c91a8f
AV
2334 if (!d_same_name(dentry, parent, name))
2335 goto next;
1da177e4 2336
98474236 2337 dentry->d_lockref.count++;
d0185c08 2338 found = dentry;
1da177e4
LT
2339 spin_unlock(&dentry->d_lock);
2340 break;
2341next:
2342 spin_unlock(&dentry->d_lock);
2343 }
2344 rcu_read_unlock();
2345
2346 return found;
2347}
2348
3e7e241f
EB
2349/**
2350 * d_hash_and_lookup - hash the qstr then search for a dentry
2351 * @dir: Directory to search in
2352 * @name: qstr of name we wish to find
2353 *
4f522a24 2354 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2355 */
2356struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2357{
3e7e241f
EB
2358 /*
2359 * Check for a fs-specific hash function. Note that we must
2360 * calculate the standard hash first, as the d_op->d_hash()
2361 * routine may choose to leave the hash value unchanged.
2362 */
8387ff25 2363 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2364 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2365 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2366 if (unlikely(err < 0))
2367 return ERR_PTR(err);
3e7e241f 2368 }
4f522a24 2369 return d_lookup(dir, name);
3e7e241f 2370}
4f522a24 2371EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2372
1da177e4
LT
2373/*
2374 * When a file is deleted, we have two options:
2375 * - turn this dentry into a negative dentry
2376 * - unhash this dentry and free it.
2377 *
2378 * Usually, we want to just turn this into
2379 * a negative dentry, but if anybody else is
2380 * currently using the dentry or the inode
2381 * we can't do that and we fall back on removing
2382 * it from the hash queues and waiting for
2383 * it to be deleted later when it has no users
2384 */
2385
2386/**
2387 * d_delete - delete a dentry
2388 * @dentry: The dentry to delete
2389 *
2390 * Turn the dentry into a negative dentry if possible, otherwise
2391 * remove it from the hash queues so it can be deleted later
2392 */
2393
2394void d_delete(struct dentry * dentry)
2395{
c19457f0
AV
2396 struct inode *inode = dentry->d_inode;
2397 int isdir = d_is_dir(dentry);
2398
2399 spin_lock(&inode->i_lock);
2400 spin_lock(&dentry->d_lock);
1da177e4
LT
2401 /*
2402 * Are we the only user?
2403 */
98474236 2404 if (dentry->d_lockref.count == 1) {
13e3c5e5 2405 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2406 dentry_unlink_inode(dentry);
c19457f0 2407 } else {
1da177e4 2408 __d_drop(dentry);
c19457f0
AV
2409 spin_unlock(&dentry->d_lock);
2410 spin_unlock(&inode->i_lock);
2411 }
7a91bf7f 2412 fsnotify_nameremove(dentry, isdir);
1da177e4 2413}
ec4f8605 2414EXPORT_SYMBOL(d_delete);
1da177e4 2415
15d3c589 2416static void __d_rehash(struct dentry *entry)
1da177e4 2417{
15d3c589 2418 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2419
1879fd6a 2420 hlist_bl_lock(b);
b07ad996 2421 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2422 hlist_bl_unlock(b);
1da177e4
LT
2423}
2424
2425/**
2426 * d_rehash - add an entry back to the hash
2427 * @entry: dentry to add to the hash
2428 *
2429 * Adds a dentry to the hash according to its name.
2430 */
2431
2432void d_rehash(struct dentry * entry)
2433{
1da177e4 2434 spin_lock(&entry->d_lock);
15d3c589 2435 __d_rehash(entry);
1da177e4 2436 spin_unlock(&entry->d_lock);
1da177e4 2437}
ec4f8605 2438EXPORT_SYMBOL(d_rehash);
1da177e4 2439
84e710da
AV
2440static inline unsigned start_dir_add(struct inode *dir)
2441{
2442
2443 for (;;) {
2444 unsigned n = dir->i_dir_seq;
2445 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2446 return n;
2447 cpu_relax();
2448 }
2449}
2450
2451static inline void end_dir_add(struct inode *dir, unsigned n)
2452{
2453 smp_store_release(&dir->i_dir_seq, n + 2);
2454}
2455
d9171b93
AV
2456static void d_wait_lookup(struct dentry *dentry)
2457{
2458 if (d_in_lookup(dentry)) {
2459 DECLARE_WAITQUEUE(wait, current);
2460 add_wait_queue(dentry->d_wait, &wait);
2461 do {
2462 set_current_state(TASK_UNINTERRUPTIBLE);
2463 spin_unlock(&dentry->d_lock);
2464 schedule();
2465 spin_lock(&dentry->d_lock);
2466 } while (d_in_lookup(dentry));
2467 }
2468}
2469
94bdd655 2470struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2471 const struct qstr *name,
2472 wait_queue_head_t *wq)
94bdd655 2473{
94bdd655 2474 unsigned int hash = name->hash;
94bdd655
AV
2475 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2476 struct hlist_bl_node *node;
2477 struct dentry *new = d_alloc(parent, name);
2478 struct dentry *dentry;
2479 unsigned seq, r_seq, d_seq;
2480
2481 if (unlikely(!new))
2482 return ERR_PTR(-ENOMEM);
2483
2484retry:
2485 rcu_read_lock();
015555fd 2486 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2487 r_seq = read_seqbegin(&rename_lock);
2488 dentry = __d_lookup_rcu(parent, name, &d_seq);
2489 if (unlikely(dentry)) {
2490 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2491 rcu_read_unlock();
2492 goto retry;
2493 }
2494 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2495 rcu_read_unlock();
2496 dput(dentry);
2497 goto retry;
2498 }
2499 rcu_read_unlock();
2500 dput(new);
2501 return dentry;
2502 }
2503 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2504 rcu_read_unlock();
2505 goto retry;
2506 }
015555fd
WD
2507
2508 if (unlikely(seq & 1)) {
2509 rcu_read_unlock();
2510 goto retry;
2511 }
2512
94bdd655 2513 hlist_bl_lock(b);
8cc07c80 2514 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2515 hlist_bl_unlock(b);
2516 rcu_read_unlock();
2517 goto retry;
2518 }
94bdd655
AV
2519 /*
2520 * No changes for the parent since the beginning of d_lookup().
2521 * Since all removals from the chain happen with hlist_bl_lock(),
2522 * any potential in-lookup matches are going to stay here until
2523 * we unlock the chain. All fields are stable in everything
2524 * we encounter.
2525 */
2526 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2527 if (dentry->d_name.hash != hash)
2528 continue;
2529 if (dentry->d_parent != parent)
2530 continue;
d4c91a8f
AV
2531 if (!d_same_name(dentry, parent, name))
2532 continue;
94bdd655 2533 hlist_bl_unlock(b);
e7d6ef97
AV
2534 /* now we can try to grab a reference */
2535 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2536 rcu_read_unlock();
2537 goto retry;
2538 }
2539
2540 rcu_read_unlock();
2541 /*
2542 * somebody is likely to be still doing lookup for it;
2543 * wait for them to finish
2544 */
d9171b93
AV
2545 spin_lock(&dentry->d_lock);
2546 d_wait_lookup(dentry);
2547 /*
2548 * it's not in-lookup anymore; in principle we should repeat
2549 * everything from dcache lookup, but it's likely to be what
2550 * d_lookup() would've found anyway. If it is, just return it;
2551 * otherwise we really have to repeat the whole thing.
2552 */
2553 if (unlikely(dentry->d_name.hash != hash))
2554 goto mismatch;
2555 if (unlikely(dentry->d_parent != parent))
2556 goto mismatch;
2557 if (unlikely(d_unhashed(dentry)))
2558 goto mismatch;
d4c91a8f
AV
2559 if (unlikely(!d_same_name(dentry, parent, name)))
2560 goto mismatch;
d9171b93
AV
2561 /* OK, it *is* a hashed match; return it */
2562 spin_unlock(&dentry->d_lock);
94bdd655
AV
2563 dput(new);
2564 return dentry;
2565 }
e7d6ef97 2566 rcu_read_unlock();
94bdd655
AV
2567 /* we can't take ->d_lock here; it's OK, though. */
2568 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2569 new->d_wait = wq;
94bdd655
AV
2570 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2571 hlist_bl_unlock(b);
2572 return new;
d9171b93
AV
2573mismatch:
2574 spin_unlock(&dentry->d_lock);
2575 dput(dentry);
2576 goto retry;
94bdd655
AV
2577}
2578EXPORT_SYMBOL(d_alloc_parallel);
2579
85c7f810
AV
2580void __d_lookup_done(struct dentry *dentry)
2581{
94bdd655
AV
2582 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2583 dentry->d_name.hash);
2584 hlist_bl_lock(b);
85c7f810 2585 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2586 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2587 wake_up_all(dentry->d_wait);
2588 dentry->d_wait = NULL;
94bdd655
AV
2589 hlist_bl_unlock(b);
2590 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2591 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2592}
2593EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2594
2595/* inode->i_lock held if inode is non-NULL */
2596
2597static inline void __d_add(struct dentry *dentry, struct inode *inode)
2598{
84e710da
AV
2599 struct inode *dir = NULL;
2600 unsigned n;
0568d705 2601 spin_lock(&dentry->d_lock);
84e710da
AV
2602 if (unlikely(d_in_lookup(dentry))) {
2603 dir = dentry->d_parent->d_inode;
2604 n = start_dir_add(dir);
85c7f810 2605 __d_lookup_done(dentry);
84e710da 2606 }
ed782b5a 2607 if (inode) {
0568d705
AV
2608 unsigned add_flags = d_flags_for_inode(inode);
2609 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2610 raw_write_seqcount_begin(&dentry->d_seq);
2611 __d_set_inode_and_type(dentry, inode, add_flags);
2612 raw_write_seqcount_end(&dentry->d_seq);
affda484 2613 fsnotify_update_flags(dentry);
ed782b5a 2614 }
15d3c589 2615 __d_rehash(dentry);
84e710da
AV
2616 if (dir)
2617 end_dir_add(dir, n);
0568d705
AV
2618 spin_unlock(&dentry->d_lock);
2619 if (inode)
2620 spin_unlock(&inode->i_lock);
ed782b5a
AV
2621}
2622
34d0d19d
AV
2623/**
2624 * d_add - add dentry to hash queues
2625 * @entry: dentry to add
2626 * @inode: The inode to attach to this dentry
2627 *
2628 * This adds the entry to the hash queues and initializes @inode.
2629 * The entry was actually filled in earlier during d_alloc().
2630 */
2631
2632void d_add(struct dentry *entry, struct inode *inode)
2633{
b9680917
AV
2634 if (inode) {
2635 security_d_instantiate(entry, inode);
ed782b5a 2636 spin_lock(&inode->i_lock);
b9680917 2637 }
ed782b5a 2638 __d_add(entry, inode);
34d0d19d
AV
2639}
2640EXPORT_SYMBOL(d_add);
2641
668d0cd5
AV
2642/**
2643 * d_exact_alias - find and hash an exact unhashed alias
2644 * @entry: dentry to add
2645 * @inode: The inode to go with this dentry
2646 *
2647 * If an unhashed dentry with the same name/parent and desired
2648 * inode already exists, hash and return it. Otherwise, return
2649 * NULL.
2650 *
2651 * Parent directory should be locked.
2652 */
2653struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2654{
2655 struct dentry *alias;
668d0cd5
AV
2656 unsigned int hash = entry->d_name.hash;
2657
2658 spin_lock(&inode->i_lock);
2659 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2660 /*
2661 * Don't need alias->d_lock here, because aliases with
2662 * d_parent == entry->d_parent are not subject to name or
2663 * parent changes, because the parent inode i_mutex is held.
2664 */
2665 if (alias->d_name.hash != hash)
2666 continue;
2667 if (alias->d_parent != entry->d_parent)
2668 continue;
d4c91a8f 2669 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2670 continue;
2671 spin_lock(&alias->d_lock);
2672 if (!d_unhashed(alias)) {
2673 spin_unlock(&alias->d_lock);
2674 alias = NULL;
2675 } else {
2676 __dget_dlock(alias);
15d3c589 2677 __d_rehash(alias);
668d0cd5
AV
2678 spin_unlock(&alias->d_lock);
2679 }
2680 spin_unlock(&inode->i_lock);
2681 return alias;
2682 }
2683 spin_unlock(&inode->i_lock);
2684 return NULL;
2685}
2686EXPORT_SYMBOL(d_exact_alias);
2687
fb2d5b86
NP
2688/**
2689 * dentry_update_name_case - update case insensitive dentry with a new name
2690 * @dentry: dentry to be updated
2691 * @name: new name
2692 *
2693 * Update a case insensitive dentry with new case of name.
2694 *
2695 * dentry must have been returned by d_lookup with name @name. Old and new
2696 * name lengths must match (ie. no d_compare which allows mismatched name
2697 * lengths).
2698 *
2699 * Parent inode i_mutex must be held over d_lookup and into this call (to
2700 * keep renames and concurrent inserts, and readdir(2) away).
2701 */
9aba36de 2702void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
fb2d5b86 2703{
5955102c 2704 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2705 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2706
fb2d5b86 2707 spin_lock(&dentry->d_lock);
31e6b01f 2708 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2709 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2710 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2711 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2712}
2713EXPORT_SYMBOL(dentry_update_name_case);
2714
8d85b484 2715static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2716{
8d85b484
AV
2717 if (unlikely(dname_external(target))) {
2718 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2719 /*
2720 * Both external: swap the pointers
2721 */
9a8d5bb4 2722 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2723 } else {
2724 /*
2725 * dentry:internal, target:external. Steal target's
2726 * storage and make target internal.
2727 */
321bcf92
BF
2728 memcpy(target->d_iname, dentry->d_name.name,
2729 dentry->d_name.len + 1);
1da177e4
LT
2730 dentry->d_name.name = target->d_name.name;
2731 target->d_name.name = target->d_iname;
2732 }
2733 } else {
8d85b484 2734 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2735 /*
2736 * dentry:external, target:internal. Give dentry's
2737 * storage to target and make dentry internal
2738 */
2739 memcpy(dentry->d_iname, target->d_name.name,
2740 target->d_name.len + 1);
2741 target->d_name.name = dentry->d_name.name;
2742 dentry->d_name.name = dentry->d_iname;
2743 } else {
2744 /*
da1ce067 2745 * Both are internal.
1da177e4 2746 */
da1ce067
MS
2747 unsigned int i;
2748 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2749 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2750 swap(((long *) &dentry->d_iname)[i],
2751 ((long *) &target->d_iname)[i]);
2752 }
1da177e4
LT
2753 }
2754 }
a28ddb87 2755 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2756}
2757
8d85b484
AV
2758static void copy_name(struct dentry *dentry, struct dentry *target)
2759{
2760 struct external_name *old_name = NULL;
2761 if (unlikely(dname_external(dentry)))
2762 old_name = external_name(dentry);
2763 if (unlikely(dname_external(target))) {
2764 atomic_inc(&external_name(target)->u.count);
2765 dentry->d_name = target->d_name;
2766 } else {
2767 memcpy(dentry->d_iname, target->d_name.name,
2768 target->d_name.len + 1);
2769 dentry->d_name.name = dentry->d_iname;
2770 dentry->d_name.hash_len = target->d_name.hash_len;
2771 }
2772 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2773 kfree_rcu(old_name, u.head);
2774}
2775
9eaef27b 2776/*
18367501 2777 * __d_move - move a dentry
1da177e4
LT
2778 * @dentry: entry to move
2779 * @target: new dentry
da1ce067 2780 * @exchange: exchange the two dentries
1da177e4
LT
2781 *
2782 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2783 * dcache entries should not be moved in this way. Caller must hold
2784 * rename_lock, the i_mutex of the source and target directories,
2785 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2786 */
da1ce067
MS
2787static void __d_move(struct dentry *dentry, struct dentry *target,
2788 bool exchange)
1da177e4 2789{
42177007 2790 struct dentry *old_parent, *p;
84e710da
AV
2791 struct inode *dir = NULL;
2792 unsigned n;
1da177e4 2793
42177007
AV
2794 WARN_ON(!dentry->d_inode);
2795 if (WARN_ON(dentry == target))
2796 return;
2797
2fd6b7f5 2798 BUG_ON(d_ancestor(target, dentry));
42177007
AV
2799 old_parent = dentry->d_parent;
2800 p = d_ancestor(old_parent, target);
2801 if (IS_ROOT(dentry)) {
2802 BUG_ON(p);
2803 spin_lock(&target->d_parent->d_lock);
2804 } else if (!p) {
2805 /* target is not a descendent of dentry->d_parent */
2806 spin_lock(&target->d_parent->d_lock);
2807 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2808 } else {
2809 BUG_ON(p == dentry);
2810 spin_lock(&old_parent->d_lock);
2811 if (p != target)
2812 spin_lock_nested(&target->d_parent->d_lock,
2813 DENTRY_D_LOCK_NESTED);
2814 }
2815 spin_lock_nested(&dentry->d_lock, 2);
2816 spin_lock_nested(&target->d_lock, 3);
2fd6b7f5 2817
84e710da
AV
2818 if (unlikely(d_in_lookup(target))) {
2819 dir = target->d_parent->d_inode;
2820 n = start_dir_add(dir);
85c7f810 2821 __d_lookup_done(target);
84e710da 2822 }
1da177e4 2823
31e6b01f 2824 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2825 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2826
15d3c589 2827 /* unhash both */
0632a9ac
AV
2828 if (!d_unhashed(dentry))
2829 ___d_drop(dentry);
2830 if (!d_unhashed(target))
2831 ___d_drop(target);
1da177e4 2832
076515fc
AV
2833 /* ... and switch them in the tree */
2834 dentry->d_parent = target->d_parent;
2835 if (!exchange) {
8d85b484 2836 copy_name(dentry, target);
61647823 2837 target->d_hash.pprev = NULL;
076515fc
AV
2838 dentry->d_parent->d_lockref.count++;
2839 if (dentry == old_parent)
2840 dentry->d_flags |= DCACHE_RCUACCESS;
2841 else
2842 WARN_ON(!--old_parent->d_lockref.count);
1da177e4 2843 } else {
076515fc
AV
2844 target->d_parent = old_parent;
2845 swap_names(dentry, target);
946e51f2 2846 list_move(&target->d_child, &target->d_parent->d_subdirs);
076515fc
AV
2847 __d_rehash(target);
2848 fsnotify_update_flags(target);
1da177e4 2849 }
076515fc
AV
2850 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2851 __d_rehash(dentry);
2852 fsnotify_update_flags(dentry);
1da177e4 2853
31e6b01f
NP
2854 write_seqcount_end(&target->d_seq);
2855 write_seqcount_end(&dentry->d_seq);
2856
84e710da
AV
2857 if (dir)
2858 end_dir_add(dir, n);
076515fc
AV
2859
2860 if (dentry->d_parent != old_parent)
2861 spin_unlock(&dentry->d_parent->d_lock);
2862 if (dentry != old_parent)
2863 spin_unlock(&old_parent->d_lock);
2864 spin_unlock(&target->d_lock);
2865 spin_unlock(&dentry->d_lock);
18367501
AV
2866}
2867
2868/*
2869 * d_move - move a dentry
2870 * @dentry: entry to move
2871 * @target: new dentry
2872 *
2873 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2874 * dcache entries should not be moved in this way. See the locking
2875 * requirements for __d_move.
18367501
AV
2876 */
2877void d_move(struct dentry *dentry, struct dentry *target)
2878{
2879 write_seqlock(&rename_lock);
da1ce067 2880 __d_move(dentry, target, false);
1da177e4 2881 write_sequnlock(&rename_lock);
9eaef27b 2882}
ec4f8605 2883EXPORT_SYMBOL(d_move);
1da177e4 2884
da1ce067
MS
2885/*
2886 * d_exchange - exchange two dentries
2887 * @dentry1: first dentry
2888 * @dentry2: second dentry
2889 */
2890void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2891{
2892 write_seqlock(&rename_lock);
2893
2894 WARN_ON(!dentry1->d_inode);
2895 WARN_ON(!dentry2->d_inode);
2896 WARN_ON(IS_ROOT(dentry1));
2897 WARN_ON(IS_ROOT(dentry2));
2898
2899 __d_move(dentry1, dentry2, true);
2900
2901 write_sequnlock(&rename_lock);
2902}
2903
e2761a11
OH
2904/**
2905 * d_ancestor - search for an ancestor
2906 * @p1: ancestor dentry
2907 * @p2: child dentry
2908 *
2909 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2910 * an ancestor of p2, else NULL.
9eaef27b 2911 */
e2761a11 2912struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2913{
2914 struct dentry *p;
2915
871c0067 2916 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2917 if (p->d_parent == p1)
e2761a11 2918 return p;
9eaef27b 2919 }
e2761a11 2920 return NULL;
9eaef27b
TM
2921}
2922
2923/*
2924 * This helper attempts to cope with remotely renamed directories
2925 *
2926 * It assumes that the caller is already holding
a03e283b 2927 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2928 *
2929 * Note: If ever the locking in lock_rename() changes, then please
2930 * remember to update this too...
9eaef27b 2931 */
b5ae6b15 2932static int __d_unalias(struct inode *inode,
873feea0 2933 struct dentry *dentry, struct dentry *alias)
9eaef27b 2934{
9902af79
AV
2935 struct mutex *m1 = NULL;
2936 struct rw_semaphore *m2 = NULL;
3d330dc1 2937 int ret = -ESTALE;
9eaef27b
TM
2938
2939 /* If alias and dentry share a parent, then no extra locks required */
2940 if (alias->d_parent == dentry->d_parent)
2941 goto out_unalias;
2942
9eaef27b 2943 /* See lock_rename() */
9eaef27b
TM
2944 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2945 goto out_err;
2946 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2947 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2948 goto out_err;
9902af79 2949 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2950out_unalias:
8ed936b5 2951 __d_move(alias, dentry, false);
b5ae6b15 2952 ret = 0;
9eaef27b 2953out_err:
9eaef27b 2954 if (m2)
9902af79 2955 up_read(m2);
9eaef27b
TM
2956 if (m1)
2957 mutex_unlock(m1);
2958 return ret;
2959}
2960
3f70bd51
BF
2961/**
2962 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2963 * @inode: the inode which may have a disconnected dentry
2964 * @dentry: a negative dentry which we want to point to the inode.
2965 *
da093a9b
BF
2966 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2967 * place of the given dentry and return it, else simply d_add the inode
2968 * to the dentry and return NULL.
3f70bd51 2969 *
908790fa
BF
2970 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2971 * we should error out: directories can't have multiple aliases.
2972 *
3f70bd51
BF
2973 * This is needed in the lookup routine of any filesystem that is exportable
2974 * (via knfsd) so that we can build dcache paths to directories effectively.
2975 *
2976 * If a dentry was found and moved, then it is returned. Otherwise NULL
2977 * is returned. This matches the expected return value of ->lookup.
2978 *
2979 * Cluster filesystems may call this function with a negative, hashed dentry.
2980 * In that case, we know that the inode will be a regular file, and also this
2981 * will only occur during atomic_open. So we need to check for the dentry
2982 * being already hashed only in the final case.
2983 */
2984struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2985{
3f70bd51
BF
2986 if (IS_ERR(inode))
2987 return ERR_CAST(inode);
2988
770bfad8
DH
2989 BUG_ON(!d_unhashed(dentry));
2990
de689f5e 2991 if (!inode)
b5ae6b15 2992 goto out;
de689f5e 2993
b9680917 2994 security_d_instantiate(dentry, inode);
873feea0 2995 spin_lock(&inode->i_lock);
9eaef27b 2996 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
2997 struct dentry *new = __d_find_any_alias(inode);
2998 if (unlikely(new)) {
a03e283b
EB
2999 /* The reference to new ensures it remains an alias */
3000 spin_unlock(&inode->i_lock);
18367501 3001 write_seqlock(&rename_lock);
b5ae6b15
AV
3002 if (unlikely(d_ancestor(new, dentry))) {
3003 write_sequnlock(&rename_lock);
b5ae6b15
AV
3004 dput(new);
3005 new = ERR_PTR(-ELOOP);
3006 pr_warn_ratelimited(
3007 "VFS: Lookup of '%s' in %s %s"
3008 " would have caused loop\n",
3009 dentry->d_name.name,
3010 inode->i_sb->s_type->name,
3011 inode->i_sb->s_id);
3012 } else if (!IS_ROOT(new)) {
076515fc 3013 struct dentry *old_parent = dget(new->d_parent);
b5ae6b15 3014 int err = __d_unalias(inode, dentry, new);
18367501 3015 write_sequnlock(&rename_lock);
b5ae6b15
AV
3016 if (err) {
3017 dput(new);
3018 new = ERR_PTR(err);
3019 }
076515fc 3020 dput(old_parent);
18367501 3021 } else {
b5ae6b15
AV
3022 __d_move(new, dentry, false);
3023 write_sequnlock(&rename_lock);
dd179946 3024 }
b5ae6b15
AV
3025 iput(inode);
3026 return new;
9eaef27b 3027 }
770bfad8 3028 }
b5ae6b15 3029out:
ed782b5a 3030 __d_add(dentry, inode);
b5ae6b15 3031 return NULL;
770bfad8 3032}
b5ae6b15 3033EXPORT_SYMBOL(d_splice_alias);
770bfad8 3034
1da177e4
LT
3035/*
3036 * Test whether new_dentry is a subdirectory of old_dentry.
3037 *
3038 * Trivially implemented using the dcache structure
3039 */
3040
3041/**
3042 * is_subdir - is new dentry a subdirectory of old_dentry
3043 * @new_dentry: new dentry
3044 * @old_dentry: old dentry
3045 *
a6e5787f
YB
3046 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3047 * Returns false otherwise.
1da177e4
LT
3048 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3049 */
3050
a6e5787f 3051bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3052{
a6e5787f 3053 bool result;
949854d0 3054 unsigned seq;
1da177e4 3055
e2761a11 3056 if (new_dentry == old_dentry)
a6e5787f 3057 return true;
e2761a11 3058
e2761a11 3059 do {
1da177e4 3060 /* for restarting inner loop in case of seq retry */
1da177e4 3061 seq = read_seqbegin(&rename_lock);
949854d0
NP
3062 /*
3063 * Need rcu_readlock to protect against the d_parent trashing
3064 * due to d_move
3065 */
3066 rcu_read_lock();
e2761a11 3067 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3068 result = true;
e2761a11 3069 else
a6e5787f 3070 result = false;
949854d0 3071 rcu_read_unlock();
1da177e4 3072 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3073
3074 return result;
3075}
e8f9e5b7 3076EXPORT_SYMBOL(is_subdir);
1da177e4 3077
db14fc3a 3078static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3079{
db14fc3a
MS
3080 struct dentry *root = data;
3081 if (dentry != root) {
3082 if (d_unhashed(dentry) || !dentry->d_inode)
3083 return D_WALK_SKIP;
1da177e4 3084
01ddc4ed
MS
3085 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3086 dentry->d_flags |= DCACHE_GENOCIDE;
3087 dentry->d_lockref.count--;
3088 }
1da177e4 3089 }
db14fc3a
MS
3090 return D_WALK_CONTINUE;
3091}
58db63d0 3092
db14fc3a
MS
3093void d_genocide(struct dentry *parent)
3094{
3095 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3096}
3097
60545d0d 3098void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3099{
60545d0d
AV
3100 inode_dec_link_count(inode);
3101 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3102 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3103 !d_unlinked(dentry));
3104 spin_lock(&dentry->d_parent->d_lock);
3105 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3106 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3107 (unsigned long long)inode->i_ino);
3108 spin_unlock(&dentry->d_lock);
3109 spin_unlock(&dentry->d_parent->d_lock);
3110 d_instantiate(dentry, inode);
1da177e4 3111}
60545d0d 3112EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3113
3114static __initdata unsigned long dhash_entries;
3115static int __init set_dhash_entries(char *str)
3116{
3117 if (!str)
3118 return 0;
3119 dhash_entries = simple_strtoul(str, &str, 0);
3120 return 1;
3121}
3122__setup("dhash_entries=", set_dhash_entries);
3123
3124static void __init dcache_init_early(void)
3125{
1da177e4
LT
3126 /* If hashes are distributed across NUMA nodes, defer
3127 * hash allocation until vmalloc space is available.
3128 */
3129 if (hashdist)
3130 return;
3131
3132 dentry_hashtable =
3133 alloc_large_system_hash("Dentry cache",
b07ad996 3134 sizeof(struct hlist_bl_head),
1da177e4
LT
3135 dhash_entries,
3136 13,
3d375d78 3137 HASH_EARLY | HASH_ZERO,
1da177e4 3138 &d_hash_shift,
b35d786b 3139 NULL,
31fe62b9 3140 0,
1da177e4 3141 0);
854d3e63 3142 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3143}
3144
74bf17cf 3145static void __init dcache_init(void)
1da177e4 3146{
3d375d78 3147 /*
1da177e4
LT
3148 * A constructor could be added for stable state like the lists,
3149 * but it is probably not worth it because of the cache nature
3d375d78 3150 * of the dcache.
1da177e4 3151 */
80344266
DW
3152 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3153 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3154 d_iname);
1da177e4
LT
3155
3156 /* Hash may have been set up in dcache_init_early */
3157 if (!hashdist)
3158 return;
3159
3160 dentry_hashtable =
3161 alloc_large_system_hash("Dentry cache",
b07ad996 3162 sizeof(struct hlist_bl_head),
1da177e4
LT
3163 dhash_entries,
3164 13,
3d375d78 3165 HASH_ZERO,
1da177e4 3166 &d_hash_shift,
b35d786b 3167 NULL,
31fe62b9 3168 0,
1da177e4 3169 0);
854d3e63 3170 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3171}
3172
3173/* SLAB cache for __getname() consumers */
e18b890b 3174struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3175EXPORT_SYMBOL(names_cachep);
1da177e4 3176
1da177e4
LT
3177EXPORT_SYMBOL(d_genocide);
3178
1da177e4
LT
3179void __init vfs_caches_init_early(void)
3180{
6916363f
SAS
3181 int i;
3182
3183 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3184 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3185
1da177e4
LT
3186 dcache_init_early();
3187 inode_init_early();
3188}
3189
4248b0da 3190void __init vfs_caches_init(void)
1da177e4 3191{
6a9b8820
DW
3192 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3193 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3194
74bf17cf
DC
3195 dcache_init();
3196 inode_init();
4248b0da
MG
3197 files_init();
3198 files_maxfiles_init();
74bf17cf 3199 mnt_init();
1da177e4
LT
3200 bdev_cache_init();
3201 chrdev_init();
3202}