fs/dcache: Remove stale comment from dentry_kill()
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
7c0f6ba6 29#include <linux/uaccess.h>
1da177e4
LT
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
ceb5bdc2
NP
35#include <linux/bit_spinlock.h>
36#include <linux/rculist_bl.h>
268bb0ce 37#include <linux/prefetch.h>
dd179946 38#include <linux/ratelimit.h>
f6041567 39#include <linux/list_lru.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0 45 * dcache->d_inode->i_lock protects:
946e51f2 46 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
f1ee6162
N
49 * s_roots bl list spinlock protects:
50 * - the s_roots list (see __d_drop)
19156840 51 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
946e51f2 61 * - d_u.d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6 65 * dentry->d_lock
19156840 66 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 67 * dcache_hash_bucket lock
f1ee6162 68 * s_roots lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
74c3cbe3 84__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 85
949854d0 86EXPORT_SYMBOL(rename_lock);
1da177e4 87
e18b890b 88static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 89
cdf01226
DH
90const struct qstr empty_name = QSTR_INIT("", 0);
91EXPORT_SYMBOL(empty_name);
92const struct qstr slash_name = QSTR_INIT("/", 1);
93EXPORT_SYMBOL(slash_name);
94
1da177e4
LT
95/*
96 * This is the single most critical data structure when it comes
97 * to the dcache: the hashtable for lookups. Somebody should try
98 * to make this good - I've just made it work.
99 *
100 * This hash-function tries to avoid losing too many bits of hash
101 * information, yet avoid using a prime hash-size or similar.
102 */
1da177e4 103
fa3536cc 104static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 105
b07ad996 106static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 107
8387ff25 108static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 109{
854d3e63 110 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
111}
112
94bdd655
AV
113#define IN_LOOKUP_SHIFT 10
114static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
115
116static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
117 unsigned int hash)
118{
119 hash += (unsigned long) parent / L1_CACHE_BYTES;
120 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
121}
122
123
1da177e4
LT
124/* Statistics gathering. */
125struct dentry_stat_t dentry_stat = {
126 .age_limit = 45,
127};
128
3942c07c 129static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 130static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
131
132#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
133
134/*
135 * Here we resort to our own counters instead of using generic per-cpu counters
136 * for consistency with what the vfs inode code does. We are expected to harvest
137 * better code and performance by having our own specialized counters.
138 *
139 * Please note that the loop is done over all possible CPUs, not over all online
140 * CPUs. The reason for this is that we don't want to play games with CPUs going
141 * on and off. If one of them goes off, we will just keep their counters.
142 *
143 * glommer: See cffbc8a for details, and if you ever intend to change this,
144 * please update all vfs counters to match.
145 */
3942c07c 146static long get_nr_dentry(void)
3e880fb5
NP
147{
148 int i;
3942c07c 149 long sum = 0;
3e880fb5
NP
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry, i);
152 return sum < 0 ? 0 : sum;
153}
154
62d36c77
DC
155static long get_nr_dentry_unused(void)
156{
157 int i;
158 long sum = 0;
159 for_each_possible_cpu(i)
160 sum += per_cpu(nr_dentry_unused, i);
161 return sum < 0 ? 0 : sum;
162}
163
1f7e0616 164int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
165 size_t *lenp, loff_t *ppos)
166{
3e880fb5 167 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 168 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 169 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
170}
171#endif
172
5483f18e
LT
173/*
174 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
175 * The strings are both count bytes long, and count is non-zero.
176 */
e419b4cc
LT
177#ifdef CONFIG_DCACHE_WORD_ACCESS
178
179#include <asm/word-at-a-time.h>
180/*
181 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
182 * aligned allocation for this particular component. We don't
183 * strictly need the load_unaligned_zeropad() safety, but it
184 * doesn't hurt either.
185 *
186 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
187 * need the careful unaligned handling.
188 */
94753db5 189static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 190{
bfcfaa77 191 unsigned long a,b,mask;
bfcfaa77
LT
192
193 for (;;) {
bfe7aa6c 194 a = read_word_at_a_time(cs);
e419b4cc 195 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
196 if (tcount < sizeof(unsigned long))
197 break;
198 if (unlikely(a != b))
199 return 1;
200 cs += sizeof(unsigned long);
201 ct += sizeof(unsigned long);
202 tcount -= sizeof(unsigned long);
203 if (!tcount)
204 return 0;
205 }
a5c21dce 206 mask = bytemask_from_count(tcount);
bfcfaa77 207 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
208}
209
bfcfaa77 210#else
e419b4cc 211
94753db5 212static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 213{
5483f18e
LT
214 do {
215 if (*cs != *ct)
216 return 1;
217 cs++;
218 ct++;
219 tcount--;
220 } while (tcount);
221 return 0;
222}
223
e419b4cc
LT
224#endif
225
94753db5
LT
226static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
227{
94753db5
LT
228 /*
229 * Be careful about RCU walk racing with rename:
506458ef 230 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
231 *
232 * NOTE! Even if a rename will mean that the length
233 * was not loaded atomically, we don't care. The
234 * RCU walk will check the sequence count eventually,
235 * and catch it. And we won't overrun the buffer,
236 * because we're reading the name pointer atomically,
237 * and a dentry name is guaranteed to be properly
238 * terminated with a NUL byte.
239 *
240 * End result: even if 'len' is wrong, we'll exit
241 * early because the data cannot match (there can
242 * be no NUL in the ct/tcount data)
243 */
506458ef 244 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 245
6326c71f 246 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
247}
248
8d85b484
AV
249struct external_name {
250 union {
251 atomic_t count;
252 struct rcu_head head;
253 } u;
254 unsigned char name[];
255};
256
257static inline struct external_name *external_name(struct dentry *dentry)
258{
259 return container_of(dentry->d_name.name, struct external_name, name[0]);
260}
261
9c82ab9c 262static void __d_free(struct rcu_head *head)
1da177e4 263{
9c82ab9c
CH
264 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
265
8d85b484
AV
266 kmem_cache_free(dentry_cache, dentry);
267}
268
269static void __d_free_external(struct rcu_head *head)
270{
271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 272 kfree(external_name(dentry));
1da177e4
LT
273 kmem_cache_free(dentry_cache, dentry);
274}
275
810bb172
AV
276static inline int dname_external(const struct dentry *dentry)
277{
278 return dentry->d_name.name != dentry->d_iname;
279}
280
49d31c2f
AV
281void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
282{
283 spin_lock(&dentry->d_lock);
284 if (unlikely(dname_external(dentry))) {
285 struct external_name *p = external_name(dentry);
286 atomic_inc(&p->u.count);
287 spin_unlock(&dentry->d_lock);
288 name->name = p->name;
289 } else {
290 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
291 spin_unlock(&dentry->d_lock);
292 name->name = name->inline_name;
293 }
294}
295EXPORT_SYMBOL(take_dentry_name_snapshot);
296
297void release_dentry_name_snapshot(struct name_snapshot *name)
298{
299 if (unlikely(name->name != name->inline_name)) {
300 struct external_name *p;
301 p = container_of(name->name, struct external_name, name[0]);
302 if (unlikely(atomic_dec_and_test(&p->u.count)))
303 kfree_rcu(p, u.head);
304 }
305}
306EXPORT_SYMBOL(release_dentry_name_snapshot);
307
4bf46a27
DH
308static inline void __d_set_inode_and_type(struct dentry *dentry,
309 struct inode *inode,
310 unsigned type_flags)
311{
312 unsigned flags;
313
314 dentry->d_inode = inode;
4bf46a27
DH
315 flags = READ_ONCE(dentry->d_flags);
316 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
317 flags |= type_flags;
318 WRITE_ONCE(dentry->d_flags, flags);
319}
320
4bf46a27
DH
321static inline void __d_clear_type_and_inode(struct dentry *dentry)
322{
323 unsigned flags = READ_ONCE(dentry->d_flags);
324
325 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
326 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
327 dentry->d_inode = NULL;
328}
329
b4f0354e
AV
330static void dentry_free(struct dentry *dentry)
331{
946e51f2 332 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
333 if (unlikely(dname_external(dentry))) {
334 struct external_name *p = external_name(dentry);
335 if (likely(atomic_dec_and_test(&p->u.count))) {
336 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
337 return;
338 }
339 }
b4f0354e
AV
340 /* if dentry was never visible to RCU, immediate free is OK */
341 if (!(dentry->d_flags & DCACHE_RCUACCESS))
342 __d_free(&dentry->d_u.d_rcu);
343 else
344 call_rcu(&dentry->d_u.d_rcu, __d_free);
345}
346
1da177e4
LT
347/*
348 * Release the dentry's inode, using the filesystem
550dce01 349 * d_iput() operation if defined.
31e6b01f
NP
350 */
351static void dentry_unlink_inode(struct dentry * dentry)
352 __releases(dentry->d_lock)
873feea0 353 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
354{
355 struct inode *inode = dentry->d_inode;
550dce01 356 bool hashed = !d_unhashed(dentry);
a528aca7 357
550dce01
AV
358 if (hashed)
359 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 360 __d_clear_type_and_inode(dentry);
946e51f2 361 hlist_del_init(&dentry->d_u.d_alias);
550dce01
AV
362 if (hashed)
363 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 364 spin_unlock(&dentry->d_lock);
873feea0 365 spin_unlock(&inode->i_lock);
31e6b01f
NP
366 if (!inode->i_nlink)
367 fsnotify_inoderemove(inode);
368 if (dentry->d_op && dentry->d_op->d_iput)
369 dentry->d_op->d_iput(dentry, inode);
370 else
371 iput(inode);
372}
373
89dc77bc
LT
374/*
375 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
376 * is in use - which includes both the "real" per-superblock
377 * LRU list _and_ the DCACHE_SHRINK_LIST use.
378 *
379 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
380 * on the shrink list (ie not on the superblock LRU list).
381 *
382 * The per-cpu "nr_dentry_unused" counters are updated with
383 * the DCACHE_LRU_LIST bit.
384 *
385 * These helper functions make sure we always follow the
386 * rules. d_lock must be held by the caller.
387 */
388#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
389static void d_lru_add(struct dentry *dentry)
390{
391 D_FLAG_VERIFY(dentry, 0);
392 dentry->d_flags |= DCACHE_LRU_LIST;
393 this_cpu_inc(nr_dentry_unused);
394 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
395}
396
397static void d_lru_del(struct dentry *dentry)
398{
399 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
400 dentry->d_flags &= ~DCACHE_LRU_LIST;
401 this_cpu_dec(nr_dentry_unused);
402 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
403}
404
405static void d_shrink_del(struct dentry *dentry)
406{
407 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
408 list_del_init(&dentry->d_lru);
409 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410 this_cpu_dec(nr_dentry_unused);
411}
412
413static void d_shrink_add(struct dentry *dentry, struct list_head *list)
414{
415 D_FLAG_VERIFY(dentry, 0);
416 list_add(&dentry->d_lru, list);
417 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
418 this_cpu_inc(nr_dentry_unused);
419}
420
421/*
422 * These can only be called under the global LRU lock, ie during the
423 * callback for freeing the LRU list. "isolate" removes it from the
424 * LRU lists entirely, while shrink_move moves it to the indicated
425 * private list.
426 */
3f97b163 427static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
428{
429 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
430 dentry->d_flags &= ~DCACHE_LRU_LIST;
431 this_cpu_dec(nr_dentry_unused);
3f97b163 432 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
433}
434
3f97b163
VD
435static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
436 struct list_head *list)
89dc77bc
LT
437{
438 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
439 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 440 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
441}
442
da3bbdd4 443/*
f6041567 444 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
445 */
446static void dentry_lru_add(struct dentry *dentry)
447{
89dc77bc
LT
448 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
449 d_lru_add(dentry);
563f4001
JB
450 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
451 dentry->d_flags |= DCACHE_REFERENCED;
da3bbdd4
KM
452}
453
789680d1
NP
454/**
455 * d_drop - drop a dentry
456 * @dentry: dentry to drop
457 *
458 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
459 * be found through a VFS lookup any more. Note that this is different from
460 * deleting the dentry - d_delete will try to mark the dentry negative if
461 * possible, giving a successful _negative_ lookup, while d_drop will
462 * just make the cache lookup fail.
463 *
464 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
465 * reason (NFS timeouts or autofs deletes).
466 *
61647823
N
467 * __d_drop requires dentry->d_lock
468 * ___d_drop doesn't mark dentry as "unhashed"
469 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
789680d1 470 */
61647823 471static void ___d_drop(struct dentry *dentry)
789680d1 472{
0632a9ac
AV
473 struct hlist_bl_head *b;
474 /*
475 * Hashed dentries are normally on the dentry hashtable,
476 * with the exception of those newly allocated by
477 * d_obtain_root, which are always IS_ROOT:
478 */
479 if (unlikely(IS_ROOT(dentry)))
480 b = &dentry->d_sb->s_roots;
481 else
482 b = d_hash(dentry->d_name.hash);
b61625d2 483
0632a9ac
AV
484 hlist_bl_lock(b);
485 __hlist_bl_del(&dentry->d_hash);
486 hlist_bl_unlock(b);
789680d1 487}
61647823
N
488
489void __d_drop(struct dentry *dentry)
490{
0632a9ac
AV
491 if (!d_unhashed(dentry)) {
492 ___d_drop(dentry);
493 dentry->d_hash.pprev = NULL;
494 write_seqcount_invalidate(&dentry->d_seq);
495 }
61647823 496}
789680d1
NP
497EXPORT_SYMBOL(__d_drop);
498
499void d_drop(struct dentry *dentry)
500{
789680d1
NP
501 spin_lock(&dentry->d_lock);
502 __d_drop(dentry);
503 spin_unlock(&dentry->d_lock);
789680d1
NP
504}
505EXPORT_SYMBOL(d_drop);
506
ba65dc5e
AV
507static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
508{
509 struct dentry *next;
510 /*
511 * Inform d_walk() and shrink_dentry_list() that we are no longer
512 * attached to the dentry tree
513 */
514 dentry->d_flags |= DCACHE_DENTRY_KILLED;
515 if (unlikely(list_empty(&dentry->d_child)))
516 return;
517 __list_del_entry(&dentry->d_child);
518 /*
519 * Cursors can move around the list of children. While we'd been
520 * a normal list member, it didn't matter - ->d_child.next would've
521 * been updated. However, from now on it won't be and for the
522 * things like d_walk() it might end up with a nasty surprise.
523 * Normally d_walk() doesn't care about cursors moving around -
524 * ->d_lock on parent prevents that and since a cursor has no children
525 * of its own, we get through it without ever unlocking the parent.
526 * There is one exception, though - if we ascend from a child that
527 * gets killed as soon as we unlock it, the next sibling is found
528 * using the value left in its ->d_child.next. And if _that_
529 * pointed to a cursor, and cursor got moved (e.g. by lseek())
530 * before d_walk() regains parent->d_lock, we'll end up skipping
531 * everything the cursor had been moved past.
532 *
533 * Solution: make sure that the pointer left behind in ->d_child.next
534 * points to something that won't be moving around. I.e. skip the
535 * cursors.
536 */
537 while (dentry->d_child.next != &parent->d_subdirs) {
538 next = list_entry(dentry->d_child.next, struct dentry, d_child);
539 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
540 break;
541 dentry->d_child.next = next->d_child.next;
542 }
543}
544
e55fd011 545static void __dentry_kill(struct dentry *dentry)
77812a1e 546{
41edf278
AV
547 struct dentry *parent = NULL;
548 bool can_free = true;
41edf278 549 if (!IS_ROOT(dentry))
77812a1e 550 parent = dentry->d_parent;
31e6b01f 551
0d98439e
LT
552 /*
553 * The dentry is now unrecoverably dead to the world.
554 */
555 lockref_mark_dead(&dentry->d_lockref);
556
f0023bc6 557 /*
f0023bc6
SW
558 * inform the fs via d_prune that this dentry is about to be
559 * unhashed and destroyed.
560 */
29266201 561 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
562 dentry->d_op->d_prune(dentry);
563
01b60351
AV
564 if (dentry->d_flags & DCACHE_LRU_LIST) {
565 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
566 d_lru_del(dentry);
01b60351 567 }
77812a1e
NP
568 /* if it was on the hash then remove it */
569 __d_drop(dentry);
ba65dc5e 570 dentry_unlist(dentry, parent);
03b3b889
AV
571 if (parent)
572 spin_unlock(&parent->d_lock);
550dce01
AV
573 if (dentry->d_inode)
574 dentry_unlink_inode(dentry);
575 else
576 spin_unlock(&dentry->d_lock);
03b3b889
AV
577 this_cpu_dec(nr_dentry);
578 if (dentry->d_op && dentry->d_op->d_release)
579 dentry->d_op->d_release(dentry);
580
41edf278
AV
581 spin_lock(&dentry->d_lock);
582 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
583 dentry->d_flags |= DCACHE_MAY_FREE;
584 can_free = false;
585 }
586 spin_unlock(&dentry->d_lock);
41edf278
AV
587 if (likely(can_free))
588 dentry_free(dentry);
e55fd011
AV
589}
590
591/*
592 * Finish off a dentry we've decided to kill.
593 * dentry->d_lock must be held, returns with it unlocked.
e55fd011
AV
594 * Returns dentry requiring refcount drop, or NULL if we're done.
595 */
8cbf74da 596static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
597 __releases(dentry->d_lock)
598{
599 struct inode *inode = dentry->d_inode;
600 struct dentry *parent = NULL;
601
602 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
603 goto failed;
604
605 if (!IS_ROOT(dentry)) {
606 parent = dentry->d_parent;
607 if (unlikely(!spin_trylock(&parent->d_lock))) {
608 if (inode)
609 spin_unlock(&inode->i_lock);
610 goto failed;
611 }
612 }
613
614 __dentry_kill(dentry);
03b3b889 615 return parent;
e55fd011
AV
616
617failed:
8cbf74da 618 spin_unlock(&dentry->d_lock);
e55fd011 619 return dentry; /* try again with same dentry */
77812a1e
NP
620}
621
046b961b
AV
622static inline struct dentry *lock_parent(struct dentry *dentry)
623{
624 struct dentry *parent = dentry->d_parent;
625 if (IS_ROOT(dentry))
626 return NULL;
360f5479 627 if (unlikely(dentry->d_lockref.count < 0))
c2338f2d 628 return NULL;
046b961b
AV
629 if (likely(spin_trylock(&parent->d_lock)))
630 return parent;
046b961b 631 rcu_read_lock();
c2338f2d 632 spin_unlock(&dentry->d_lock);
046b961b 633again:
66702eb5 634 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
635 spin_lock(&parent->d_lock);
636 /*
637 * We can't blindly lock dentry until we are sure
638 * that we won't violate the locking order.
639 * Any changes of dentry->d_parent must have
640 * been done with parent->d_lock held, so
641 * spin_lock() above is enough of a barrier
642 * for checking if it's still our child.
643 */
644 if (unlikely(parent != dentry->d_parent)) {
645 spin_unlock(&parent->d_lock);
646 goto again;
647 }
3b821409 648 if (parent != dentry) {
9f12600f 649 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3b821409
AV
650 if (unlikely(dentry->d_lockref.count < 0)) {
651 spin_unlock(&parent->d_lock);
652 parent = NULL;
653 }
654 } else {
046b961b 655 parent = NULL;
3b821409
AV
656 }
657 rcu_read_unlock();
046b961b
AV
658 return parent;
659}
660
360f5479
LT
661/*
662 * Try to do a lockless dput(), and return whether that was successful.
663 *
664 * If unsuccessful, we return false, having already taken the dentry lock.
665 *
666 * The caller needs to hold the RCU read lock, so that the dentry is
667 * guaranteed to stay around even if the refcount goes down to zero!
668 */
669static inline bool fast_dput(struct dentry *dentry)
670{
671 int ret;
672 unsigned int d_flags;
673
674 /*
675 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 676 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
677 */
678 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
679 return lockref_put_or_lock(&dentry->d_lockref);
680
681 /*
682 * .. otherwise, we can try to just decrement the
683 * lockref optimistically.
684 */
685 ret = lockref_put_return(&dentry->d_lockref);
686
687 /*
688 * If the lockref_put_return() failed due to the lock being held
689 * by somebody else, the fast path has failed. We will need to
690 * get the lock, and then check the count again.
691 */
692 if (unlikely(ret < 0)) {
693 spin_lock(&dentry->d_lock);
694 if (dentry->d_lockref.count > 1) {
695 dentry->d_lockref.count--;
696 spin_unlock(&dentry->d_lock);
697 return 1;
698 }
699 return 0;
700 }
701
702 /*
703 * If we weren't the last ref, we're done.
704 */
705 if (ret)
706 return 1;
707
708 /*
709 * Careful, careful. The reference count went down
710 * to zero, but we don't hold the dentry lock, so
711 * somebody else could get it again, and do another
712 * dput(), and we need to not race with that.
713 *
714 * However, there is a very special and common case
715 * where we don't care, because there is nothing to
716 * do: the dentry is still hashed, it does not have
717 * a 'delete' op, and it's referenced and already on
718 * the LRU list.
719 *
720 * NOTE! Since we aren't locked, these values are
721 * not "stable". However, it is sufficient that at
722 * some point after we dropped the reference the
723 * dentry was hashed and the flags had the proper
724 * value. Other dentry users may have re-gotten
725 * a reference to the dentry and change that, but
726 * our work is done - we can leave the dentry
727 * around with a zero refcount.
728 */
729 smp_rmb();
66702eb5 730 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 731 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
732
733 /* Nothing to do? Dropping the reference was all we needed? */
734 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
735 return 1;
736
737 /*
738 * Not the fast normal case? Get the lock. We've already decremented
739 * the refcount, but we'll need to re-check the situation after
740 * getting the lock.
741 */
742 spin_lock(&dentry->d_lock);
743
744 /*
745 * Did somebody else grab a reference to it in the meantime, and
746 * we're no longer the last user after all? Alternatively, somebody
747 * else could have killed it and marked it dead. Either way, we
748 * don't need to do anything else.
749 */
750 if (dentry->d_lockref.count) {
751 spin_unlock(&dentry->d_lock);
752 return 1;
753 }
754
755 /*
756 * Re-get the reference we optimistically dropped. We hold the
757 * lock, and we just tested that it was zero, so we can just
758 * set it to 1.
759 */
760 dentry->d_lockref.count = 1;
761 return 0;
762}
763
764
1da177e4
LT
765/*
766 * This is dput
767 *
768 * This is complicated by the fact that we do not want to put
769 * dentries that are no longer on any hash chain on the unused
770 * list: we'd much rather just get rid of them immediately.
771 *
772 * However, that implies that we have to traverse the dentry
773 * tree upwards to the parents which might _also_ now be
774 * scheduled for deletion (it may have been only waiting for
775 * its last child to go away).
776 *
777 * This tail recursion is done by hand as we don't want to depend
778 * on the compiler to always get this right (gcc generally doesn't).
779 * Real recursion would eat up our stack space.
780 */
781
782/*
783 * dput - release a dentry
784 * @dentry: dentry to release
785 *
786 * Release a dentry. This will drop the usage count and if appropriate
787 * call the dentry unlink method as well as removing it from the queues and
788 * releasing its resources. If the parent dentries were scheduled for release
789 * they too may now get deleted.
1da177e4 790 */
1da177e4
LT
791void dput(struct dentry *dentry)
792{
8aab6a27 793 if (unlikely(!dentry))
1da177e4
LT
794 return;
795
796repeat:
47be6184
WF
797 might_sleep();
798
360f5479
LT
799 rcu_read_lock();
800 if (likely(fast_dput(dentry))) {
801 rcu_read_unlock();
1da177e4 802 return;
360f5479
LT
803 }
804
805 /* Slow case: now with the dentry lock held */
806 rcu_read_unlock();
1da177e4 807
85c7f810
AV
808 WARN_ON(d_in_lookup(dentry));
809
8aab6a27
LT
810 /* Unreachable? Get rid of it */
811 if (unlikely(d_unhashed(dentry)))
812 goto kill_it;
813
75a6f82a
AV
814 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
815 goto kill_it;
816
8aab6a27 817 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 818 if (dentry->d_op->d_delete(dentry))
61f3dee4 819 goto kill_it;
1da177e4 820 }
265ac902 821
a4633357 822 dentry_lru_add(dentry);
265ac902 823
98474236 824 dentry->d_lockref.count--;
61f3dee4 825 spin_unlock(&dentry->d_lock);
1da177e4
LT
826 return;
827
d52b9086 828kill_it:
8cbf74da 829 dentry = dentry_kill(dentry);
47be6184
WF
830 if (dentry) {
831 cond_resched();
d52b9086 832 goto repeat;
47be6184 833 }
1da177e4 834}
ec4f8605 835EXPORT_SYMBOL(dput);
1da177e4 836
1da177e4 837
b5c84bf6 838/* This must be called with d_lock held */
dc0474be 839static inline void __dget_dlock(struct dentry *dentry)
23044507 840{
98474236 841 dentry->d_lockref.count++;
23044507
NP
842}
843
dc0474be 844static inline void __dget(struct dentry *dentry)
1da177e4 845{
98474236 846 lockref_get(&dentry->d_lockref);
1da177e4
LT
847}
848
b7ab39f6
NP
849struct dentry *dget_parent(struct dentry *dentry)
850{
df3d0bbc 851 int gotref;
b7ab39f6
NP
852 struct dentry *ret;
853
df3d0bbc
WL
854 /*
855 * Do optimistic parent lookup without any
856 * locking.
857 */
858 rcu_read_lock();
66702eb5 859 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
860 gotref = lockref_get_not_zero(&ret->d_lockref);
861 rcu_read_unlock();
862 if (likely(gotref)) {
66702eb5 863 if (likely(ret == READ_ONCE(dentry->d_parent)))
df3d0bbc
WL
864 return ret;
865 dput(ret);
866 }
867
b7ab39f6 868repeat:
a734eb45
NP
869 /*
870 * Don't need rcu_dereference because we re-check it was correct under
871 * the lock.
872 */
873 rcu_read_lock();
b7ab39f6 874 ret = dentry->d_parent;
a734eb45
NP
875 spin_lock(&ret->d_lock);
876 if (unlikely(ret != dentry->d_parent)) {
877 spin_unlock(&ret->d_lock);
878 rcu_read_unlock();
b7ab39f6
NP
879 goto repeat;
880 }
a734eb45 881 rcu_read_unlock();
98474236
WL
882 BUG_ON(!ret->d_lockref.count);
883 ret->d_lockref.count++;
b7ab39f6 884 spin_unlock(&ret->d_lock);
b7ab39f6
NP
885 return ret;
886}
887EXPORT_SYMBOL(dget_parent);
888
1da177e4
LT
889/**
890 * d_find_alias - grab a hashed alias of inode
891 * @inode: inode in question
1da177e4
LT
892 *
893 * If inode has a hashed alias, or is a directory and has any alias,
894 * acquire the reference to alias and return it. Otherwise return NULL.
895 * Notice that if inode is a directory there can be only one alias and
896 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
897 * of a filesystem, or if the directory was renamed and d_revalidate
898 * was the first vfs operation to notice.
1da177e4 899 *
21c0d8fd 900 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 901 * any other hashed alias over that one.
1da177e4 902 */
52ed46f0 903static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 904{
da502956 905 struct dentry *alias, *discon_alias;
1da177e4 906
da502956
NP
907again:
908 discon_alias = NULL;
946e51f2 909 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 910 spin_lock(&alias->d_lock);
1da177e4 911 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 912 if (IS_ROOT(alias) &&
da502956 913 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 914 discon_alias = alias;
52ed46f0 915 } else {
dc0474be 916 __dget_dlock(alias);
da502956
NP
917 spin_unlock(&alias->d_lock);
918 return alias;
919 }
920 }
921 spin_unlock(&alias->d_lock);
922 }
923 if (discon_alias) {
924 alias = discon_alias;
925 spin_lock(&alias->d_lock);
926 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
927 __dget_dlock(alias);
928 spin_unlock(&alias->d_lock);
929 return alias;
1da177e4 930 }
da502956
NP
931 spin_unlock(&alias->d_lock);
932 goto again;
1da177e4 933 }
da502956 934 return NULL;
1da177e4
LT
935}
936
da502956 937struct dentry *d_find_alias(struct inode *inode)
1da177e4 938{
214fda1f
DH
939 struct dentry *de = NULL;
940
b3d9b7a3 941 if (!hlist_empty(&inode->i_dentry)) {
873feea0 942 spin_lock(&inode->i_lock);
52ed46f0 943 de = __d_find_alias(inode);
873feea0 944 spin_unlock(&inode->i_lock);
214fda1f 945 }
1da177e4
LT
946 return de;
947}
ec4f8605 948EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
949
950/*
951 * Try to kill dentries associated with this inode.
952 * WARNING: you must own a reference to inode.
953 */
954void d_prune_aliases(struct inode *inode)
955{
0cdca3f9 956 struct dentry *dentry;
1da177e4 957restart:
873feea0 958 spin_lock(&inode->i_lock);
946e51f2 959 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 960 spin_lock(&dentry->d_lock);
98474236 961 if (!dentry->d_lockref.count) {
29355c39
AV
962 struct dentry *parent = lock_parent(dentry);
963 if (likely(!dentry->d_lockref.count)) {
964 __dentry_kill(dentry);
4a7795d3 965 dput(parent);
29355c39
AV
966 goto restart;
967 }
968 if (parent)
969 spin_unlock(&parent->d_lock);
1da177e4
LT
970 }
971 spin_unlock(&dentry->d_lock);
972 }
873feea0 973 spin_unlock(&inode->i_lock);
1da177e4 974}
ec4f8605 975EXPORT_SYMBOL(d_prune_aliases);
1da177e4 976
3049cfe2 977static void shrink_dentry_list(struct list_head *list)
1da177e4 978{
5c47e6d0 979 struct dentry *dentry, *parent;
da3bbdd4 980
60942f2f 981 while (!list_empty(list)) {
ff2fde99 982 struct inode *inode;
60942f2f 983 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 984 spin_lock(&dentry->d_lock);
046b961b
AV
985 parent = lock_parent(dentry);
986
dd1f6b2e
DC
987 /*
988 * The dispose list is isolated and dentries are not accounted
989 * to the LRU here, so we can simply remove it from the list
990 * here regardless of whether it is referenced or not.
991 */
89dc77bc 992 d_shrink_del(dentry);
dd1f6b2e 993
1da177e4
LT
994 /*
995 * We found an inuse dentry which was not removed from
dd1f6b2e 996 * the LRU because of laziness during lookup. Do not free it.
1da177e4 997 */
360f5479 998 if (dentry->d_lockref.count > 0) {
da3bbdd4 999 spin_unlock(&dentry->d_lock);
046b961b
AV
1000 if (parent)
1001 spin_unlock(&parent->d_lock);
1da177e4
LT
1002 continue;
1003 }
77812a1e 1004
64fd72e0
AV
1005
1006 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1007 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1008 spin_unlock(&dentry->d_lock);
046b961b
AV
1009 if (parent)
1010 spin_unlock(&parent->d_lock);
64fd72e0
AV
1011 if (can_free)
1012 dentry_free(dentry);
1013 continue;
1014 }
1015
ff2fde99
AV
1016 inode = dentry->d_inode;
1017 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 1018 d_shrink_add(dentry, list);
dd1f6b2e 1019 spin_unlock(&dentry->d_lock);
046b961b
AV
1020 if (parent)
1021 spin_unlock(&parent->d_lock);
5c47e6d0 1022 continue;
dd1f6b2e 1023 }
ff2fde99 1024
ff2fde99 1025 __dentry_kill(dentry);
046b961b 1026
5c47e6d0
AV
1027 /*
1028 * We need to prune ancestors too. This is necessary to prevent
1029 * quadratic behavior of shrink_dcache_parent(), but is also
1030 * expected to be beneficial in reducing dentry cache
1031 * fragmentation.
1032 */
1033 dentry = parent;
b2b80195
AV
1034 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1035 parent = lock_parent(dentry);
1036 if (dentry->d_lockref.count != 1) {
1037 dentry->d_lockref.count--;
1038 spin_unlock(&dentry->d_lock);
1039 if (parent)
1040 spin_unlock(&parent->d_lock);
1041 break;
1042 }
1043 inode = dentry->d_inode; /* can't be NULL */
1044 if (unlikely(!spin_trylock(&inode->i_lock))) {
1045 spin_unlock(&dentry->d_lock);
1046 if (parent)
1047 spin_unlock(&parent->d_lock);
1048 cpu_relax();
1049 continue;
1050 }
1051 __dentry_kill(dentry);
1052 dentry = parent;
1053 }
da3bbdd4 1054 }
3049cfe2
CH
1055}
1056
3f97b163
VD
1057static enum lru_status dentry_lru_isolate(struct list_head *item,
1058 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1059{
1060 struct list_head *freeable = arg;
1061 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1062
1063
1064 /*
1065 * we are inverting the lru lock/dentry->d_lock here,
1066 * so use a trylock. If we fail to get the lock, just skip
1067 * it
1068 */
1069 if (!spin_trylock(&dentry->d_lock))
1070 return LRU_SKIP;
1071
1072 /*
1073 * Referenced dentries are still in use. If they have active
1074 * counts, just remove them from the LRU. Otherwise give them
1075 * another pass through the LRU.
1076 */
1077 if (dentry->d_lockref.count) {
3f97b163 1078 d_lru_isolate(lru, dentry);
f6041567
DC
1079 spin_unlock(&dentry->d_lock);
1080 return LRU_REMOVED;
1081 }
1082
1083 if (dentry->d_flags & DCACHE_REFERENCED) {
1084 dentry->d_flags &= ~DCACHE_REFERENCED;
1085 spin_unlock(&dentry->d_lock);
1086
1087 /*
1088 * The list move itself will be made by the common LRU code. At
1089 * this point, we've dropped the dentry->d_lock but keep the
1090 * lru lock. This is safe to do, since every list movement is
1091 * protected by the lru lock even if both locks are held.
1092 *
1093 * This is guaranteed by the fact that all LRU management
1094 * functions are intermediated by the LRU API calls like
1095 * list_lru_add and list_lru_del. List movement in this file
1096 * only ever occur through this functions or through callbacks
1097 * like this one, that are called from the LRU API.
1098 *
1099 * The only exceptions to this are functions like
1100 * shrink_dentry_list, and code that first checks for the
1101 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1102 * operating only with stack provided lists after they are
1103 * properly isolated from the main list. It is thus, always a
1104 * local access.
1105 */
1106 return LRU_ROTATE;
1107 }
1108
3f97b163 1109 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1110 spin_unlock(&dentry->d_lock);
1111
1112 return LRU_REMOVED;
1113}
1114
3049cfe2 1115/**
b48f03b3
DC
1116 * prune_dcache_sb - shrink the dcache
1117 * @sb: superblock
503c358c 1118 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1119 *
503c358c
VD
1120 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1121 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1122 * function.
3049cfe2 1123 *
b48f03b3
DC
1124 * This function may fail to free any resources if all the dentries are in
1125 * use.
3049cfe2 1126 */
503c358c 1127long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1128{
f6041567
DC
1129 LIST_HEAD(dispose);
1130 long freed;
3049cfe2 1131
503c358c
VD
1132 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1133 dentry_lru_isolate, &dispose);
f6041567 1134 shrink_dentry_list(&dispose);
0a234c6d 1135 return freed;
da3bbdd4 1136}
23044507 1137
4e717f5c 1138static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1139 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1140{
4e717f5c
GC
1141 struct list_head *freeable = arg;
1142 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1143
4e717f5c
GC
1144 /*
1145 * we are inverting the lru lock/dentry->d_lock here,
1146 * so use a trylock. If we fail to get the lock, just skip
1147 * it
1148 */
1149 if (!spin_trylock(&dentry->d_lock))
1150 return LRU_SKIP;
1151
3f97b163 1152 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1153 spin_unlock(&dentry->d_lock);
ec33679d 1154
4e717f5c 1155 return LRU_REMOVED;
da3bbdd4
KM
1156}
1157
4e717f5c 1158
1da177e4
LT
1159/**
1160 * shrink_dcache_sb - shrink dcache for a superblock
1161 * @sb: superblock
1162 *
3049cfe2
CH
1163 * Shrink the dcache for the specified super block. This is used to free
1164 * the dcache before unmounting a file system.
1da177e4 1165 */
3049cfe2 1166void shrink_dcache_sb(struct super_block *sb)
1da177e4 1167{
4e717f5c
GC
1168 long freed;
1169
1170 do {
1171 LIST_HEAD(dispose);
1172
1173 freed = list_lru_walk(&sb->s_dentry_lru,
b17c070f 1174 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1175
4e717f5c
GC
1176 this_cpu_sub(nr_dentry_unused, freed);
1177 shrink_dentry_list(&dispose);
b17c070f
ST
1178 cond_resched();
1179 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1180}
ec4f8605 1181EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1182
db14fc3a
MS
1183/**
1184 * enum d_walk_ret - action to talke during tree walk
1185 * @D_WALK_CONTINUE: contrinue walk
1186 * @D_WALK_QUIT: quit walk
1187 * @D_WALK_NORETRY: quit when retry is needed
1188 * @D_WALK_SKIP: skip this dentry and its children
1189 */
1190enum d_walk_ret {
1191 D_WALK_CONTINUE,
1192 D_WALK_QUIT,
1193 D_WALK_NORETRY,
1194 D_WALK_SKIP,
1195};
c826cb7d 1196
1da177e4 1197/**
db14fc3a
MS
1198 * d_walk - walk the dentry tree
1199 * @parent: start of walk
1200 * @data: data passed to @enter() and @finish()
1201 * @enter: callback when first entering the dentry
1202 * @finish: callback when successfully finished the walk
1da177e4 1203 *
db14fc3a 1204 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1205 */
db14fc3a
MS
1206static void d_walk(struct dentry *parent, void *data,
1207 enum d_walk_ret (*enter)(void *, struct dentry *),
1208 void (*finish)(void *))
1da177e4 1209{
949854d0 1210 struct dentry *this_parent;
1da177e4 1211 struct list_head *next;
48f5ec21 1212 unsigned seq = 0;
db14fc3a
MS
1213 enum d_walk_ret ret;
1214 bool retry = true;
949854d0 1215
58db63d0 1216again:
48f5ec21 1217 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1218 this_parent = parent;
2fd6b7f5 1219 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1220
1221 ret = enter(data, this_parent);
1222 switch (ret) {
1223 case D_WALK_CONTINUE:
1224 break;
1225 case D_WALK_QUIT:
1226 case D_WALK_SKIP:
1227 goto out_unlock;
1228 case D_WALK_NORETRY:
1229 retry = false;
1230 break;
1231 }
1da177e4
LT
1232repeat:
1233 next = this_parent->d_subdirs.next;
1234resume:
1235 while (next != &this_parent->d_subdirs) {
1236 struct list_head *tmp = next;
946e51f2 1237 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1238 next = tmp->next;
2fd6b7f5 1239
ba65dc5e
AV
1240 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1241 continue;
1242
2fd6b7f5 1243 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1244
1245 ret = enter(data, dentry);
1246 switch (ret) {
1247 case D_WALK_CONTINUE:
1248 break;
1249 case D_WALK_QUIT:
2fd6b7f5 1250 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1251 goto out_unlock;
1252 case D_WALK_NORETRY:
1253 retry = false;
1254 break;
1255 case D_WALK_SKIP:
1256 spin_unlock(&dentry->d_lock);
1257 continue;
2fd6b7f5 1258 }
db14fc3a 1259
1da177e4 1260 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1261 spin_unlock(&this_parent->d_lock);
1262 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1263 this_parent = dentry;
2fd6b7f5 1264 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1265 goto repeat;
1266 }
2fd6b7f5 1267 spin_unlock(&dentry->d_lock);
1da177e4
LT
1268 }
1269 /*
1270 * All done at this level ... ascend and resume the search.
1271 */
ca5358ef
AV
1272 rcu_read_lock();
1273ascend:
1da177e4 1274 if (this_parent != parent) {
c826cb7d 1275 struct dentry *child = this_parent;
31dec132
AV
1276 this_parent = child->d_parent;
1277
31dec132
AV
1278 spin_unlock(&child->d_lock);
1279 spin_lock(&this_parent->d_lock);
1280
ca5358ef
AV
1281 /* might go back up the wrong parent if we have had a rename. */
1282 if (need_seqretry(&rename_lock, seq))
949854d0 1283 goto rename_retry;
2159184e
AV
1284 /* go into the first sibling still alive */
1285 do {
1286 next = child->d_child.next;
ca5358ef
AV
1287 if (next == &this_parent->d_subdirs)
1288 goto ascend;
1289 child = list_entry(next, struct dentry, d_child);
2159184e 1290 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1291 rcu_read_unlock();
1da177e4
LT
1292 goto resume;
1293 }
ca5358ef 1294 if (need_seqretry(&rename_lock, seq))
949854d0 1295 goto rename_retry;
ca5358ef 1296 rcu_read_unlock();
db14fc3a
MS
1297 if (finish)
1298 finish(data);
1299
1300out_unlock:
1301 spin_unlock(&this_parent->d_lock);
48f5ec21 1302 done_seqretry(&rename_lock, seq);
db14fc3a 1303 return;
58db63d0
NP
1304
1305rename_retry:
ca5358ef
AV
1306 spin_unlock(&this_parent->d_lock);
1307 rcu_read_unlock();
1308 BUG_ON(seq & 1);
db14fc3a
MS
1309 if (!retry)
1310 return;
48f5ec21 1311 seq = 1;
58db63d0 1312 goto again;
1da177e4 1313}
db14fc3a 1314
01619491
IK
1315struct check_mount {
1316 struct vfsmount *mnt;
1317 unsigned int mounted;
1318};
1319
1320static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1321{
1322 struct check_mount *info = data;
1323 struct path path = { .mnt = info->mnt, .dentry = dentry };
1324
1325 if (likely(!d_mountpoint(dentry)))
1326 return D_WALK_CONTINUE;
1327 if (__path_is_mountpoint(&path)) {
1328 info->mounted = 1;
1329 return D_WALK_QUIT;
1330 }
1331 return D_WALK_CONTINUE;
1332}
1333
1334/**
1335 * path_has_submounts - check for mounts over a dentry in the
1336 * current namespace.
1337 * @parent: path to check.
1338 *
1339 * Return true if the parent or its subdirectories contain
1340 * a mount point in the current namespace.
1341 */
1342int path_has_submounts(const struct path *parent)
1343{
1344 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1345
1346 read_seqlock_excl(&mount_lock);
1347 d_walk(parent->dentry, &data, path_check_mount, NULL);
1348 read_sequnlock_excl(&mount_lock);
1349
1350 return data.mounted;
1351}
1352EXPORT_SYMBOL(path_has_submounts);
1353
eed81007
MS
1354/*
1355 * Called by mount code to set a mountpoint and check if the mountpoint is
1356 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1357 * subtree can become unreachable).
1358 *
1ffe46d1 1359 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1360 * this reason take rename_lock and d_lock on dentry and ancestors.
1361 */
1362int d_set_mounted(struct dentry *dentry)
1363{
1364 struct dentry *p;
1365 int ret = -ENOENT;
1366 write_seqlock(&rename_lock);
1367 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1368 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1369 spin_lock(&p->d_lock);
1370 if (unlikely(d_unhashed(p))) {
1371 spin_unlock(&p->d_lock);
1372 goto out;
1373 }
1374 spin_unlock(&p->d_lock);
1375 }
1376 spin_lock(&dentry->d_lock);
1377 if (!d_unlinked(dentry)) {
3895dbf8
EB
1378 ret = -EBUSY;
1379 if (!d_mountpoint(dentry)) {
1380 dentry->d_flags |= DCACHE_MOUNTED;
1381 ret = 0;
1382 }
eed81007
MS
1383 }
1384 spin_unlock(&dentry->d_lock);
1385out:
1386 write_sequnlock(&rename_lock);
1387 return ret;
1388}
1389
1da177e4 1390/*
fd517909 1391 * Search the dentry child list of the specified parent,
1da177e4
LT
1392 * and move any unused dentries to the end of the unused
1393 * list for prune_dcache(). We descend to the next level
1394 * whenever the d_subdirs list is non-empty and continue
1395 * searching.
1396 *
1397 * It returns zero iff there are no unused children,
1398 * otherwise it returns the number of children moved to
1399 * the end of the unused list. This may not be the total
1400 * number of unused children, because select_parent can
1401 * drop the lock and return early due to latency
1402 * constraints.
1403 */
1da177e4 1404
db14fc3a
MS
1405struct select_data {
1406 struct dentry *start;
1407 struct list_head dispose;
1408 int found;
1409};
23044507 1410
db14fc3a
MS
1411static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1412{
1413 struct select_data *data = _data;
1414 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1415
db14fc3a
MS
1416 if (data->start == dentry)
1417 goto out;
2fd6b7f5 1418
fe91522a 1419 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1420 data->found++;
fe91522a
AV
1421 } else {
1422 if (dentry->d_flags & DCACHE_LRU_LIST)
1423 d_lru_del(dentry);
1424 if (!dentry->d_lockref.count) {
1425 d_shrink_add(dentry, &data->dispose);
1426 data->found++;
1427 }
1da177e4 1428 }
db14fc3a
MS
1429 /*
1430 * We can return to the caller if we have found some (this
1431 * ensures forward progress). We'll be coming back to find
1432 * the rest.
1433 */
fe91522a
AV
1434 if (!list_empty(&data->dispose))
1435 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1436out:
db14fc3a 1437 return ret;
1da177e4
LT
1438}
1439
1440/**
1441 * shrink_dcache_parent - prune dcache
1442 * @parent: parent of entries to prune
1443 *
1444 * Prune the dcache to remove unused children of the parent dentry.
1445 */
db14fc3a 1446void shrink_dcache_parent(struct dentry *parent)
1da177e4 1447{
db14fc3a
MS
1448 for (;;) {
1449 struct select_data data;
1da177e4 1450
db14fc3a
MS
1451 INIT_LIST_HEAD(&data.dispose);
1452 data.start = parent;
1453 data.found = 0;
1454
1455 d_walk(parent, &data, select_collect, NULL);
1456 if (!data.found)
1457 break;
1458
1459 shrink_dentry_list(&data.dispose);
421348f1
GT
1460 cond_resched();
1461 }
1da177e4 1462}
ec4f8605 1463EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1464
9c8c10e2 1465static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1466{
9c8c10e2
AV
1467 /* it has busy descendents; complain about those instead */
1468 if (!list_empty(&dentry->d_subdirs))
1469 return D_WALK_CONTINUE;
42c32608 1470
9c8c10e2
AV
1471 /* root with refcount 1 is fine */
1472 if (dentry == _data && dentry->d_lockref.count == 1)
1473 return D_WALK_CONTINUE;
1474
1475 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1476 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1477 dentry,
1478 dentry->d_inode ?
1479 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1480 dentry,
42c32608
AV
1481 dentry->d_lockref.count,
1482 dentry->d_sb->s_type->name,
1483 dentry->d_sb->s_id);
9c8c10e2
AV
1484 WARN_ON(1);
1485 return D_WALK_CONTINUE;
1486}
1487
1488static void do_one_tree(struct dentry *dentry)
1489{
1490 shrink_dcache_parent(dentry);
1491 d_walk(dentry, dentry, umount_check, NULL);
1492 d_drop(dentry);
1493 dput(dentry);
42c32608
AV
1494}
1495
1496/*
1497 * destroy the dentries attached to a superblock on unmounting
1498 */
1499void shrink_dcache_for_umount(struct super_block *sb)
1500{
1501 struct dentry *dentry;
1502
9c8c10e2 1503 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1504
1505 dentry = sb->s_root;
1506 sb->s_root = NULL;
9c8c10e2 1507 do_one_tree(dentry);
42c32608 1508
f1ee6162
N
1509 while (!hlist_bl_empty(&sb->s_roots)) {
1510 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1511 do_one_tree(dentry);
42c32608
AV
1512 }
1513}
1514
8ed936b5
EB
1515struct detach_data {
1516 struct select_data select;
1517 struct dentry *mountpoint;
1518};
1519static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1520{
8ed936b5 1521 struct detach_data *data = _data;
848ac114
MS
1522
1523 if (d_mountpoint(dentry)) {
8ed936b5
EB
1524 __dget_dlock(dentry);
1525 data->mountpoint = dentry;
848ac114
MS
1526 return D_WALK_QUIT;
1527 }
1528
8ed936b5 1529 return select_collect(&data->select, dentry);
848ac114
MS
1530}
1531
1532static void check_and_drop(void *_data)
1533{
8ed936b5 1534 struct detach_data *data = _data;
848ac114 1535
81be24d2 1536 if (!data->mountpoint && list_empty(&data->select.dispose))
8ed936b5 1537 __d_drop(data->select.start);
848ac114
MS
1538}
1539
1540/**
1ffe46d1
EB
1541 * d_invalidate - detach submounts, prune dcache, and drop
1542 * @dentry: dentry to invalidate (aka detach, prune and drop)
1543 *
1ffe46d1 1544 * no dcache lock.
848ac114 1545 *
8ed936b5
EB
1546 * The final d_drop is done as an atomic operation relative to
1547 * rename_lock ensuring there are no races with d_set_mounted. This
1548 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1549 */
5542aa2f 1550void d_invalidate(struct dentry *dentry)
848ac114 1551{
1ffe46d1
EB
1552 /*
1553 * If it's already been dropped, return OK.
1554 */
1555 spin_lock(&dentry->d_lock);
1556 if (d_unhashed(dentry)) {
1557 spin_unlock(&dentry->d_lock);
5542aa2f 1558 return;
1ffe46d1
EB
1559 }
1560 spin_unlock(&dentry->d_lock);
1561
848ac114
MS
1562 /* Negative dentries can be dropped without further checks */
1563 if (!dentry->d_inode) {
1564 d_drop(dentry);
5542aa2f 1565 return;
848ac114
MS
1566 }
1567
1568 for (;;) {
8ed936b5 1569 struct detach_data data;
848ac114 1570
8ed936b5
EB
1571 data.mountpoint = NULL;
1572 INIT_LIST_HEAD(&data.select.dispose);
1573 data.select.start = dentry;
1574 data.select.found = 0;
1575
1576 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1577
81be24d2 1578 if (!list_empty(&data.select.dispose))
8ed936b5 1579 shrink_dentry_list(&data.select.dispose);
81be24d2
AV
1580 else if (!data.mountpoint)
1581 return;
848ac114 1582
8ed936b5
EB
1583 if (data.mountpoint) {
1584 detach_mounts(data.mountpoint);
1585 dput(data.mountpoint);
1586 }
848ac114
MS
1587 cond_resched();
1588 }
848ac114 1589}
1ffe46d1 1590EXPORT_SYMBOL(d_invalidate);
848ac114 1591
1da177e4 1592/**
a4464dbc
AV
1593 * __d_alloc - allocate a dcache entry
1594 * @sb: filesystem it will belong to
1da177e4
LT
1595 * @name: qstr of the name
1596 *
1597 * Allocates a dentry. It returns %NULL if there is insufficient memory
1598 * available. On a success the dentry is returned. The name passed in is
1599 * copied and the copy passed in may be reused after this call.
1600 */
1601
a4464dbc 1602struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1603{
1604 struct dentry *dentry;
1605 char *dname;
285b102d 1606 int err;
1da177e4 1607
e12ba74d 1608 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1609 if (!dentry)
1610 return NULL;
1611
6326c71f
LT
1612 /*
1613 * We guarantee that the inline name is always NUL-terminated.
1614 * This way the memcpy() done by the name switching in rename
1615 * will still always have a NUL at the end, even if we might
1616 * be overwriting an internal NUL character
1617 */
1618 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1619 if (unlikely(!name)) {
cdf01226 1620 name = &slash_name;
798434bd
AV
1621 dname = dentry->d_iname;
1622 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1623 size_t size = offsetof(struct external_name, name[1]);
5d097056
VD
1624 struct external_name *p = kmalloc(size + name->len,
1625 GFP_KERNEL_ACCOUNT);
8d85b484 1626 if (!p) {
1da177e4
LT
1627 kmem_cache_free(dentry_cache, dentry);
1628 return NULL;
1629 }
8d85b484
AV
1630 atomic_set(&p->u.count, 1);
1631 dname = p->name;
1da177e4
LT
1632 } else {
1633 dname = dentry->d_iname;
1634 }
1da177e4
LT
1635
1636 dentry->d_name.len = name->len;
1637 dentry->d_name.hash = name->hash;
1638 memcpy(dname, name->name, name->len);
1639 dname[name->len] = 0;
1640
6326c71f 1641 /* Make sure we always see the terminating NUL character */
7088efa9 1642 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1643
98474236 1644 dentry->d_lockref.count = 1;
dea3667b 1645 dentry->d_flags = 0;
1da177e4 1646 spin_lock_init(&dentry->d_lock);
31e6b01f 1647 seqcount_init(&dentry->d_seq);
1da177e4 1648 dentry->d_inode = NULL;
a4464dbc
AV
1649 dentry->d_parent = dentry;
1650 dentry->d_sb = sb;
1da177e4
LT
1651 dentry->d_op = NULL;
1652 dentry->d_fsdata = NULL;
ceb5bdc2 1653 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1654 INIT_LIST_HEAD(&dentry->d_lru);
1655 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1656 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1657 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1658 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1659
285b102d
MS
1660 if (dentry->d_op && dentry->d_op->d_init) {
1661 err = dentry->d_op->d_init(dentry);
1662 if (err) {
1663 if (dname_external(dentry))
1664 kfree(external_name(dentry));
1665 kmem_cache_free(dentry_cache, dentry);
1666 return NULL;
1667 }
1668 }
1669
3e880fb5 1670 this_cpu_inc(nr_dentry);
312d3ca8 1671
1da177e4
LT
1672 return dentry;
1673}
a4464dbc
AV
1674
1675/**
1676 * d_alloc - allocate a dcache entry
1677 * @parent: parent of entry to allocate
1678 * @name: qstr of the name
1679 *
1680 * Allocates a dentry. It returns %NULL if there is insufficient memory
1681 * available. On a success the dentry is returned. The name passed in is
1682 * copied and the copy passed in may be reused after this call.
1683 */
1684struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1685{
1686 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1687 if (!dentry)
1688 return NULL;
3d56c25e 1689 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1690 spin_lock(&parent->d_lock);
1691 /*
1692 * don't need child lock because it is not subject
1693 * to concurrency here
1694 */
1695 __dget_dlock(parent);
1696 dentry->d_parent = parent;
946e51f2 1697 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1698 spin_unlock(&parent->d_lock);
1699
1700 return dentry;
1701}
ec4f8605 1702EXPORT_SYMBOL(d_alloc);
1da177e4 1703
f9c34674
MS
1704struct dentry *d_alloc_anon(struct super_block *sb)
1705{
1706 return __d_alloc(sb, NULL);
1707}
1708EXPORT_SYMBOL(d_alloc_anon);
1709
ba65dc5e
AV
1710struct dentry *d_alloc_cursor(struct dentry * parent)
1711{
f9c34674 1712 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e
AV
1713 if (dentry) {
1714 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1715 dentry->d_parent = dget(parent);
1716 }
1717 return dentry;
1718}
1719
e1a24bb0
BF
1720/**
1721 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1722 * @sb: the superblock
1723 * @name: qstr of the name
1724 *
1725 * For a filesystem that just pins its dentries in memory and never
1726 * performs lookups at all, return an unhashed IS_ROOT dentry.
1727 */
4b936885
NP
1728struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1729{
e1a24bb0 1730 return __d_alloc(sb, name);
4b936885
NP
1731}
1732EXPORT_SYMBOL(d_alloc_pseudo);
1733
1da177e4
LT
1734struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1735{
1736 struct qstr q;
1737
1738 q.name = name;
8387ff25 1739 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1740 return d_alloc(parent, &q);
1741}
ef26ca97 1742EXPORT_SYMBOL(d_alloc_name);
1da177e4 1743
fb045adb
NP
1744void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1745{
6f7f7caa
LT
1746 WARN_ON_ONCE(dentry->d_op);
1747 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1748 DCACHE_OP_COMPARE |
1749 DCACHE_OP_REVALIDATE |
ecf3d1f1 1750 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1751 DCACHE_OP_DELETE |
d101a125 1752 DCACHE_OP_REAL));
fb045adb
NP
1753 dentry->d_op = op;
1754 if (!op)
1755 return;
1756 if (op->d_hash)
1757 dentry->d_flags |= DCACHE_OP_HASH;
1758 if (op->d_compare)
1759 dentry->d_flags |= DCACHE_OP_COMPARE;
1760 if (op->d_revalidate)
1761 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1762 if (op->d_weak_revalidate)
1763 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1764 if (op->d_delete)
1765 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1766 if (op->d_prune)
1767 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1768 if (op->d_real)
1769 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1770
1771}
1772EXPORT_SYMBOL(d_set_d_op);
1773
df1a085a
DH
1774
1775/*
1776 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1777 * @dentry - The dentry to mark
1778 *
1779 * Mark a dentry as falling through to the lower layer (as set with
1780 * d_pin_lower()). This flag may be recorded on the medium.
1781 */
1782void d_set_fallthru(struct dentry *dentry)
1783{
1784 spin_lock(&dentry->d_lock);
1785 dentry->d_flags |= DCACHE_FALLTHRU;
1786 spin_unlock(&dentry->d_lock);
1787}
1788EXPORT_SYMBOL(d_set_fallthru);
1789
b18825a7
DH
1790static unsigned d_flags_for_inode(struct inode *inode)
1791{
44bdb5e5 1792 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1793
1794 if (!inode)
1795 return DCACHE_MISS_TYPE;
1796
1797 if (S_ISDIR(inode->i_mode)) {
1798 add_flags = DCACHE_DIRECTORY_TYPE;
1799 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1800 if (unlikely(!inode->i_op->lookup))
1801 add_flags = DCACHE_AUTODIR_TYPE;
1802 else
1803 inode->i_opflags |= IOP_LOOKUP;
1804 }
44bdb5e5
DH
1805 goto type_determined;
1806 }
1807
1808 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1809 if (unlikely(inode->i_op->get_link)) {
b18825a7 1810 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1811 goto type_determined;
1812 }
1813 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1814 }
1815
44bdb5e5
DH
1816 if (unlikely(!S_ISREG(inode->i_mode)))
1817 add_flags = DCACHE_SPECIAL_TYPE;
1818
1819type_determined:
b18825a7
DH
1820 if (unlikely(IS_AUTOMOUNT(inode)))
1821 add_flags |= DCACHE_NEED_AUTOMOUNT;
1822 return add_flags;
1823}
1824
360da900
OH
1825static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1826{
b18825a7 1827 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1828 WARN_ON(d_in_lookup(dentry));
b18825a7 1829
b23fb0a6 1830 spin_lock(&dentry->d_lock);
de689f5e 1831 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1832 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1833 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1834 raw_write_seqcount_end(&dentry->d_seq);
affda484 1835 fsnotify_update_flags(dentry);
b23fb0a6 1836 spin_unlock(&dentry->d_lock);
360da900
OH
1837}
1838
1da177e4
LT
1839/**
1840 * d_instantiate - fill in inode information for a dentry
1841 * @entry: dentry to complete
1842 * @inode: inode to attach to this dentry
1843 *
1844 * Fill in inode information in the entry.
1845 *
1846 * This turns negative dentries into productive full members
1847 * of society.
1848 *
1849 * NOTE! This assumes that the inode count has been incremented
1850 * (or otherwise set) by the caller to indicate that it is now
1851 * in use by the dcache.
1852 */
1853
1854void d_instantiate(struct dentry *entry, struct inode * inode)
1855{
946e51f2 1856 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1857 if (inode) {
b9680917 1858 security_d_instantiate(entry, inode);
873feea0 1859 spin_lock(&inode->i_lock);
de689f5e 1860 __d_instantiate(entry, inode);
873feea0 1861 spin_unlock(&inode->i_lock);
de689f5e 1862 }
1da177e4 1863}
ec4f8605 1864EXPORT_SYMBOL(d_instantiate);
1da177e4 1865
b70a80e7
MS
1866/**
1867 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1868 * @entry: dentry to complete
1869 * @inode: inode to attach to this dentry
1870 *
1871 * Fill in inode information in the entry. If a directory alias is found, then
1872 * return an error (and drop inode). Together with d_materialise_unique() this
1873 * guarantees that a directory inode may never have more than one alias.
1874 */
1875int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1876{
946e51f2 1877 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1878
b9680917 1879 security_d_instantiate(entry, inode);
b70a80e7
MS
1880 spin_lock(&inode->i_lock);
1881 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1882 spin_unlock(&inode->i_lock);
1883 iput(inode);
1884 return -EBUSY;
1885 }
1886 __d_instantiate(entry, inode);
1887 spin_unlock(&inode->i_lock);
b70a80e7
MS
1888
1889 return 0;
1890}
1891EXPORT_SYMBOL(d_instantiate_no_diralias);
1892
adc0e91a
AV
1893struct dentry *d_make_root(struct inode *root_inode)
1894{
1895 struct dentry *res = NULL;
1896
1897 if (root_inode) {
f9c34674 1898 res = d_alloc_anon(root_inode->i_sb);
adc0e91a
AV
1899 if (res)
1900 d_instantiate(res, root_inode);
1901 else
1902 iput(root_inode);
1903 }
1904 return res;
1905}
1906EXPORT_SYMBOL(d_make_root);
1907
d891eedb
BF
1908static struct dentry * __d_find_any_alias(struct inode *inode)
1909{
1910 struct dentry *alias;
1911
b3d9b7a3 1912 if (hlist_empty(&inode->i_dentry))
d891eedb 1913 return NULL;
946e51f2 1914 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1915 __dget(alias);
1916 return alias;
1917}
1918
46f72b34
SW
1919/**
1920 * d_find_any_alias - find any alias for a given inode
1921 * @inode: inode to find an alias for
1922 *
1923 * If any aliases exist for the given inode, take and return a
1924 * reference for one of them. If no aliases exist, return %NULL.
1925 */
1926struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1927{
1928 struct dentry *de;
1929
1930 spin_lock(&inode->i_lock);
1931 de = __d_find_any_alias(inode);
1932 spin_unlock(&inode->i_lock);
1933 return de;
1934}
46f72b34 1935EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1936
f9c34674
MS
1937static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1938 struct inode *inode,
1939 bool disconnected)
4ea3ada2 1940{
9308a612 1941 struct dentry *res;
b18825a7 1942 unsigned add_flags;
4ea3ada2 1943
f9c34674 1944 security_d_instantiate(dentry, inode);
873feea0 1945 spin_lock(&inode->i_lock);
d891eedb 1946 res = __d_find_any_alias(inode);
9308a612 1947 if (res) {
873feea0 1948 spin_unlock(&inode->i_lock);
f9c34674 1949 dput(dentry);
9308a612
CH
1950 goto out_iput;
1951 }
1952
1953 /* attach a disconnected dentry */
1a0a397e
BF
1954 add_flags = d_flags_for_inode(inode);
1955
1956 if (disconnected)
1957 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1958
f9c34674
MS
1959 spin_lock(&dentry->d_lock);
1960 __d_set_inode_and_type(dentry, inode, add_flags);
1961 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 1962 if (!disconnected) {
139351f1
LT
1963 hlist_bl_lock(&dentry->d_sb->s_roots);
1964 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1965 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 1966 }
f9c34674 1967 spin_unlock(&dentry->d_lock);
873feea0 1968 spin_unlock(&inode->i_lock);
9308a612 1969
f9c34674 1970 return dentry;
9308a612
CH
1971
1972 out_iput:
1973 iput(inode);
1974 return res;
4ea3ada2 1975}
1a0a397e 1976
f9c34674
MS
1977struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1978{
1979 return __d_instantiate_anon(dentry, inode, true);
1980}
1981EXPORT_SYMBOL(d_instantiate_anon);
1982
1983static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1984{
1985 struct dentry *tmp;
1986 struct dentry *res;
1987
1988 if (!inode)
1989 return ERR_PTR(-ESTALE);
1990 if (IS_ERR(inode))
1991 return ERR_CAST(inode);
1992
1993 res = d_find_any_alias(inode);
1994 if (res)
1995 goto out_iput;
1996
1997 tmp = d_alloc_anon(inode->i_sb);
1998 if (!tmp) {
1999 res = ERR_PTR(-ENOMEM);
2000 goto out_iput;
2001 }
2002
2003 return __d_instantiate_anon(tmp, inode, disconnected);
2004
2005out_iput:
2006 iput(inode);
2007 return res;
2008}
2009
1a0a397e
BF
2010/**
2011 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2012 * @inode: inode to allocate the dentry for
2013 *
2014 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2015 * similar open by handle operations. The returned dentry may be anonymous,
2016 * or may have a full name (if the inode was already in the cache).
2017 *
2018 * When called on a directory inode, we must ensure that the inode only ever
2019 * has one dentry. If a dentry is found, that is returned instead of
2020 * allocating a new one.
2021 *
2022 * On successful return, the reference to the inode has been transferred
2023 * to the dentry. In case of an error the reference on the inode is released.
2024 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2025 * be passed in and the error will be propagated to the return value,
2026 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2027 */
2028struct dentry *d_obtain_alias(struct inode *inode)
2029{
f9c34674 2030 return __d_obtain_alias(inode, true);
1a0a397e 2031}
adc48720 2032EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2033
1a0a397e
BF
2034/**
2035 * d_obtain_root - find or allocate a dentry for a given inode
2036 * @inode: inode to allocate the dentry for
2037 *
2038 * Obtain an IS_ROOT dentry for the root of a filesystem.
2039 *
2040 * We must ensure that directory inodes only ever have one dentry. If a
2041 * dentry is found, that is returned instead of allocating a new one.
2042 *
2043 * On successful return, the reference to the inode has been transferred
2044 * to the dentry. In case of an error the reference on the inode is
2045 * released. A %NULL or IS_ERR inode may be passed in and will be the
2046 * error will be propagate to the return value, with a %NULL @inode
2047 * replaced by ERR_PTR(-ESTALE).
2048 */
2049struct dentry *d_obtain_root(struct inode *inode)
2050{
f9c34674 2051 return __d_obtain_alias(inode, false);
1a0a397e
BF
2052}
2053EXPORT_SYMBOL(d_obtain_root);
2054
9403540c
BN
2055/**
2056 * d_add_ci - lookup or allocate new dentry with case-exact name
2057 * @inode: the inode case-insensitive lookup has found
2058 * @dentry: the negative dentry that was passed to the parent's lookup func
2059 * @name: the case-exact name to be associated with the returned dentry
2060 *
2061 * This is to avoid filling the dcache with case-insensitive names to the
2062 * same inode, only the actual correct case is stored in the dcache for
2063 * case-insensitive filesystems.
2064 *
2065 * For a case-insensitive lookup match and if the the case-exact dentry
2066 * already exists in in the dcache, use it and return it.
2067 *
2068 * If no entry exists with the exact case name, allocate new dentry with
2069 * the exact case, and return the spliced entry.
2070 */
e45b590b 2071struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2072 struct qstr *name)
2073{
d9171b93 2074 struct dentry *found, *res;
9403540c 2075
b6520c81
CH
2076 /*
2077 * First check if a dentry matching the name already exists,
2078 * if not go ahead and create it now.
2079 */
9403540c 2080 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2081 if (found) {
2082 iput(inode);
2083 return found;
2084 }
2085 if (d_in_lookup(dentry)) {
2086 found = d_alloc_parallel(dentry->d_parent, name,
2087 dentry->d_wait);
2088 if (IS_ERR(found) || !d_in_lookup(found)) {
2089 iput(inode);
2090 return found;
9403540c 2091 }
d9171b93
AV
2092 } else {
2093 found = d_alloc(dentry->d_parent, name);
2094 if (!found) {
2095 iput(inode);
2096 return ERR_PTR(-ENOMEM);
2097 }
2098 }
2099 res = d_splice_alias(inode, found);
2100 if (res) {
2101 dput(found);
2102 return res;
9403540c 2103 }
4f522a24 2104 return found;
9403540c 2105}
ec4f8605 2106EXPORT_SYMBOL(d_add_ci);
1da177e4 2107
12f8ad4b 2108
d4c91a8f
AV
2109static inline bool d_same_name(const struct dentry *dentry,
2110 const struct dentry *parent,
2111 const struct qstr *name)
12f8ad4b 2112{
d4c91a8f
AV
2113 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2114 if (dentry->d_name.len != name->len)
2115 return false;
2116 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2117 }
6fa67e70 2118 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2119 dentry->d_name.len, dentry->d_name.name,
2120 name) == 0;
12f8ad4b
LT
2121}
2122
31e6b01f
NP
2123/**
2124 * __d_lookup_rcu - search for a dentry (racy, store-free)
2125 * @parent: parent dentry
2126 * @name: qstr of name we wish to find
1f1e6e52 2127 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2128 * Returns: dentry, or NULL
2129 *
2130 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2131 * resolution (store-free path walking) design described in
2132 * Documentation/filesystems/path-lookup.txt.
2133 *
2134 * This is not to be used outside core vfs.
2135 *
2136 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2137 * held, and rcu_read_lock held. The returned dentry must not be stored into
2138 * without taking d_lock and checking d_seq sequence count against @seq
2139 * returned here.
2140 *
15570086 2141 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2142 * function.
2143 *
2144 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2145 * the returned dentry, so long as its parent's seqlock is checked after the
2146 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2147 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2148 *
2149 * NOTE! The caller *has* to check the resulting dentry against the sequence
2150 * number we've returned before using any of the resulting dentry state!
31e6b01f 2151 */
8966be90
LT
2152struct dentry *__d_lookup_rcu(const struct dentry *parent,
2153 const struct qstr *name,
da53be12 2154 unsigned *seqp)
31e6b01f 2155{
26fe5750 2156 u64 hashlen = name->hash_len;
31e6b01f 2157 const unsigned char *str = name->name;
8387ff25 2158 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2159 struct hlist_bl_node *node;
31e6b01f
NP
2160 struct dentry *dentry;
2161
2162 /*
2163 * Note: There is significant duplication with __d_lookup_rcu which is
2164 * required to prevent single threaded performance regressions
2165 * especially on architectures where smp_rmb (in seqcounts) are costly.
2166 * Keep the two functions in sync.
2167 */
2168
2169 /*
2170 * The hash list is protected using RCU.
2171 *
2172 * Carefully use d_seq when comparing a candidate dentry, to avoid
2173 * races with d_move().
2174 *
2175 * It is possible that concurrent renames can mess up our list
2176 * walk here and result in missing our dentry, resulting in the
2177 * false-negative result. d_lookup() protects against concurrent
2178 * renames using rename_lock seqlock.
2179 *
b0a4bb83 2180 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2181 */
b07ad996 2182 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2183 unsigned seq;
31e6b01f 2184
31e6b01f 2185seqretry:
12f8ad4b
LT
2186 /*
2187 * The dentry sequence count protects us from concurrent
da53be12 2188 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2189 *
2190 * The caller must perform a seqcount check in order
da53be12 2191 * to do anything useful with the returned dentry.
12f8ad4b
LT
2192 *
2193 * NOTE! We do a "raw" seqcount_begin here. That means that
2194 * we don't wait for the sequence count to stabilize if it
2195 * is in the middle of a sequence change. If we do the slow
2196 * dentry compare, we will do seqretries until it is stable,
2197 * and if we end up with a successful lookup, we actually
2198 * want to exit RCU lookup anyway.
d4c91a8f
AV
2199 *
2200 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2201 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2202 */
2203 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2204 if (dentry->d_parent != parent)
2205 continue;
2e321806
LT
2206 if (d_unhashed(dentry))
2207 continue;
12f8ad4b 2208
830c0f0e 2209 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2210 int tlen;
2211 const char *tname;
26fe5750
LT
2212 if (dentry->d_name.hash != hashlen_hash(hashlen))
2213 continue;
d4c91a8f
AV
2214 tlen = dentry->d_name.len;
2215 tname = dentry->d_name.name;
2216 /* we want a consistent (name,len) pair */
2217 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2218 cpu_relax();
12f8ad4b
LT
2219 goto seqretry;
2220 }
6fa67e70 2221 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2222 tlen, tname, name) != 0)
2223 continue;
2224 } else {
2225 if (dentry->d_name.hash_len != hashlen)
2226 continue;
2227 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2228 continue;
31e6b01f 2229 }
da53be12 2230 *seqp = seq;
d4c91a8f 2231 return dentry;
31e6b01f
NP
2232 }
2233 return NULL;
2234}
2235
1da177e4
LT
2236/**
2237 * d_lookup - search for a dentry
2238 * @parent: parent dentry
2239 * @name: qstr of name we wish to find
b04f784e 2240 * Returns: dentry, or NULL
1da177e4 2241 *
b04f784e
NP
2242 * d_lookup searches the children of the parent dentry for the name in
2243 * question. If the dentry is found its reference count is incremented and the
2244 * dentry is returned. The caller must use dput to free the entry when it has
2245 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2246 */
da2d8455 2247struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2248{
31e6b01f 2249 struct dentry *dentry;
949854d0 2250 unsigned seq;
1da177e4 2251
b8314f93
DY
2252 do {
2253 seq = read_seqbegin(&rename_lock);
2254 dentry = __d_lookup(parent, name);
2255 if (dentry)
1da177e4
LT
2256 break;
2257 } while (read_seqretry(&rename_lock, seq));
2258 return dentry;
2259}
ec4f8605 2260EXPORT_SYMBOL(d_lookup);
1da177e4 2261
31e6b01f 2262/**
b04f784e
NP
2263 * __d_lookup - search for a dentry (racy)
2264 * @parent: parent dentry
2265 * @name: qstr of name we wish to find
2266 * Returns: dentry, or NULL
2267 *
2268 * __d_lookup is like d_lookup, however it may (rarely) return a
2269 * false-negative result due to unrelated rename activity.
2270 *
2271 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2272 * however it must be used carefully, eg. with a following d_lookup in
2273 * the case of failure.
2274 *
2275 * __d_lookup callers must be commented.
2276 */
a713ca2a 2277struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2278{
1da177e4 2279 unsigned int hash = name->hash;
8387ff25 2280 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2281 struct hlist_bl_node *node;
31e6b01f 2282 struct dentry *found = NULL;
665a7583 2283 struct dentry *dentry;
1da177e4 2284
31e6b01f
NP
2285 /*
2286 * Note: There is significant duplication with __d_lookup_rcu which is
2287 * required to prevent single threaded performance regressions
2288 * especially on architectures where smp_rmb (in seqcounts) are costly.
2289 * Keep the two functions in sync.
2290 */
2291
b04f784e
NP
2292 /*
2293 * The hash list is protected using RCU.
2294 *
2295 * Take d_lock when comparing a candidate dentry, to avoid races
2296 * with d_move().
2297 *
2298 * It is possible that concurrent renames can mess up our list
2299 * walk here and result in missing our dentry, resulting in the
2300 * false-negative result. d_lookup() protects against concurrent
2301 * renames using rename_lock seqlock.
2302 *
b0a4bb83 2303 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2304 */
1da177e4
LT
2305 rcu_read_lock();
2306
b07ad996 2307 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2308
1da177e4
LT
2309 if (dentry->d_name.hash != hash)
2310 continue;
1da177e4
LT
2311
2312 spin_lock(&dentry->d_lock);
1da177e4
LT
2313 if (dentry->d_parent != parent)
2314 goto next;
d0185c08
LT
2315 if (d_unhashed(dentry))
2316 goto next;
2317
d4c91a8f
AV
2318 if (!d_same_name(dentry, parent, name))
2319 goto next;
1da177e4 2320
98474236 2321 dentry->d_lockref.count++;
d0185c08 2322 found = dentry;
1da177e4
LT
2323 spin_unlock(&dentry->d_lock);
2324 break;
2325next:
2326 spin_unlock(&dentry->d_lock);
2327 }
2328 rcu_read_unlock();
2329
2330 return found;
2331}
2332
3e7e241f
EB
2333/**
2334 * d_hash_and_lookup - hash the qstr then search for a dentry
2335 * @dir: Directory to search in
2336 * @name: qstr of name we wish to find
2337 *
4f522a24 2338 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2339 */
2340struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2341{
3e7e241f
EB
2342 /*
2343 * Check for a fs-specific hash function. Note that we must
2344 * calculate the standard hash first, as the d_op->d_hash()
2345 * routine may choose to leave the hash value unchanged.
2346 */
8387ff25 2347 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2348 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2349 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2350 if (unlikely(err < 0))
2351 return ERR_PTR(err);
3e7e241f 2352 }
4f522a24 2353 return d_lookup(dir, name);
3e7e241f 2354}
4f522a24 2355EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2356
1da177e4
LT
2357/*
2358 * When a file is deleted, we have two options:
2359 * - turn this dentry into a negative dentry
2360 * - unhash this dentry and free it.
2361 *
2362 * Usually, we want to just turn this into
2363 * a negative dentry, but if anybody else is
2364 * currently using the dentry or the inode
2365 * we can't do that and we fall back on removing
2366 * it from the hash queues and waiting for
2367 * it to be deleted later when it has no users
2368 */
2369
2370/**
2371 * d_delete - delete a dentry
2372 * @dentry: The dentry to delete
2373 *
2374 * Turn the dentry into a negative dentry if possible, otherwise
2375 * remove it from the hash queues so it can be deleted later
2376 */
2377
2378void d_delete(struct dentry * dentry)
2379{
873feea0 2380 struct inode *inode;
7a91bf7f 2381 int isdir = 0;
1da177e4
LT
2382 /*
2383 * Are we the only user?
2384 */
357f8e65 2385again:
1da177e4 2386 spin_lock(&dentry->d_lock);
873feea0
NP
2387 inode = dentry->d_inode;
2388 isdir = S_ISDIR(inode->i_mode);
98474236 2389 if (dentry->d_lockref.count == 1) {
1fe0c023 2390 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2391 spin_unlock(&dentry->d_lock);
2392 cpu_relax();
2393 goto again;
2394 }
13e3c5e5 2395 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2396 dentry_unlink_inode(dentry);
7a91bf7f 2397 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2398 return;
2399 }
2400
2401 if (!d_unhashed(dentry))
2402 __d_drop(dentry);
2403
2404 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2405
2406 fsnotify_nameremove(dentry, isdir);
1da177e4 2407}
ec4f8605 2408EXPORT_SYMBOL(d_delete);
1da177e4 2409
15d3c589 2410static void __d_rehash(struct dentry *entry)
1da177e4 2411{
15d3c589 2412 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2413
1879fd6a 2414 hlist_bl_lock(b);
b07ad996 2415 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2416 hlist_bl_unlock(b);
1da177e4
LT
2417}
2418
2419/**
2420 * d_rehash - add an entry back to the hash
2421 * @entry: dentry to add to the hash
2422 *
2423 * Adds a dentry to the hash according to its name.
2424 */
2425
2426void d_rehash(struct dentry * entry)
2427{
1da177e4 2428 spin_lock(&entry->d_lock);
15d3c589 2429 __d_rehash(entry);
1da177e4 2430 spin_unlock(&entry->d_lock);
1da177e4 2431}
ec4f8605 2432EXPORT_SYMBOL(d_rehash);
1da177e4 2433
84e710da
AV
2434static inline unsigned start_dir_add(struct inode *dir)
2435{
2436
2437 for (;;) {
2438 unsigned n = dir->i_dir_seq;
2439 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2440 return n;
2441 cpu_relax();
2442 }
2443}
2444
2445static inline void end_dir_add(struct inode *dir, unsigned n)
2446{
2447 smp_store_release(&dir->i_dir_seq, n + 2);
2448}
2449
d9171b93
AV
2450static void d_wait_lookup(struct dentry *dentry)
2451{
2452 if (d_in_lookup(dentry)) {
2453 DECLARE_WAITQUEUE(wait, current);
2454 add_wait_queue(dentry->d_wait, &wait);
2455 do {
2456 set_current_state(TASK_UNINTERRUPTIBLE);
2457 spin_unlock(&dentry->d_lock);
2458 schedule();
2459 spin_lock(&dentry->d_lock);
2460 } while (d_in_lookup(dentry));
2461 }
2462}
2463
94bdd655 2464struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2465 const struct qstr *name,
2466 wait_queue_head_t *wq)
94bdd655 2467{
94bdd655 2468 unsigned int hash = name->hash;
94bdd655
AV
2469 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2470 struct hlist_bl_node *node;
2471 struct dentry *new = d_alloc(parent, name);
2472 struct dentry *dentry;
2473 unsigned seq, r_seq, d_seq;
2474
2475 if (unlikely(!new))
2476 return ERR_PTR(-ENOMEM);
2477
2478retry:
2479 rcu_read_lock();
015555fd 2480 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2481 r_seq = read_seqbegin(&rename_lock);
2482 dentry = __d_lookup_rcu(parent, name, &d_seq);
2483 if (unlikely(dentry)) {
2484 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2485 rcu_read_unlock();
2486 goto retry;
2487 }
2488 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2489 rcu_read_unlock();
2490 dput(dentry);
2491 goto retry;
2492 }
2493 rcu_read_unlock();
2494 dput(new);
2495 return dentry;
2496 }
2497 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2498 rcu_read_unlock();
2499 goto retry;
2500 }
015555fd
WD
2501
2502 if (unlikely(seq & 1)) {
2503 rcu_read_unlock();
2504 goto retry;
2505 }
2506
94bdd655 2507 hlist_bl_lock(b);
8cc07c80 2508 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2509 hlist_bl_unlock(b);
2510 rcu_read_unlock();
2511 goto retry;
2512 }
94bdd655
AV
2513 /*
2514 * No changes for the parent since the beginning of d_lookup().
2515 * Since all removals from the chain happen with hlist_bl_lock(),
2516 * any potential in-lookup matches are going to stay here until
2517 * we unlock the chain. All fields are stable in everything
2518 * we encounter.
2519 */
2520 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2521 if (dentry->d_name.hash != hash)
2522 continue;
2523 if (dentry->d_parent != parent)
2524 continue;
d4c91a8f
AV
2525 if (!d_same_name(dentry, parent, name))
2526 continue;
94bdd655 2527 hlist_bl_unlock(b);
e7d6ef97
AV
2528 /* now we can try to grab a reference */
2529 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2530 rcu_read_unlock();
2531 goto retry;
2532 }
2533
2534 rcu_read_unlock();
2535 /*
2536 * somebody is likely to be still doing lookup for it;
2537 * wait for them to finish
2538 */
d9171b93
AV
2539 spin_lock(&dentry->d_lock);
2540 d_wait_lookup(dentry);
2541 /*
2542 * it's not in-lookup anymore; in principle we should repeat
2543 * everything from dcache lookup, but it's likely to be what
2544 * d_lookup() would've found anyway. If it is, just return it;
2545 * otherwise we really have to repeat the whole thing.
2546 */
2547 if (unlikely(dentry->d_name.hash != hash))
2548 goto mismatch;
2549 if (unlikely(dentry->d_parent != parent))
2550 goto mismatch;
2551 if (unlikely(d_unhashed(dentry)))
2552 goto mismatch;
d4c91a8f
AV
2553 if (unlikely(!d_same_name(dentry, parent, name)))
2554 goto mismatch;
d9171b93
AV
2555 /* OK, it *is* a hashed match; return it */
2556 spin_unlock(&dentry->d_lock);
94bdd655
AV
2557 dput(new);
2558 return dentry;
2559 }
e7d6ef97 2560 rcu_read_unlock();
94bdd655
AV
2561 /* we can't take ->d_lock here; it's OK, though. */
2562 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2563 new->d_wait = wq;
94bdd655
AV
2564 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2565 hlist_bl_unlock(b);
2566 return new;
d9171b93
AV
2567mismatch:
2568 spin_unlock(&dentry->d_lock);
2569 dput(dentry);
2570 goto retry;
94bdd655
AV
2571}
2572EXPORT_SYMBOL(d_alloc_parallel);
2573
85c7f810
AV
2574void __d_lookup_done(struct dentry *dentry)
2575{
94bdd655
AV
2576 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2577 dentry->d_name.hash);
2578 hlist_bl_lock(b);
85c7f810 2579 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2580 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2581 wake_up_all(dentry->d_wait);
2582 dentry->d_wait = NULL;
94bdd655
AV
2583 hlist_bl_unlock(b);
2584 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2585 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2586}
2587EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2588
2589/* inode->i_lock held if inode is non-NULL */
2590
2591static inline void __d_add(struct dentry *dentry, struct inode *inode)
2592{
84e710da
AV
2593 struct inode *dir = NULL;
2594 unsigned n;
0568d705 2595 spin_lock(&dentry->d_lock);
84e710da
AV
2596 if (unlikely(d_in_lookup(dentry))) {
2597 dir = dentry->d_parent->d_inode;
2598 n = start_dir_add(dir);
85c7f810 2599 __d_lookup_done(dentry);
84e710da 2600 }
ed782b5a 2601 if (inode) {
0568d705
AV
2602 unsigned add_flags = d_flags_for_inode(inode);
2603 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2604 raw_write_seqcount_begin(&dentry->d_seq);
2605 __d_set_inode_and_type(dentry, inode, add_flags);
2606 raw_write_seqcount_end(&dentry->d_seq);
affda484 2607 fsnotify_update_flags(dentry);
ed782b5a 2608 }
15d3c589 2609 __d_rehash(dentry);
84e710da
AV
2610 if (dir)
2611 end_dir_add(dir, n);
0568d705
AV
2612 spin_unlock(&dentry->d_lock);
2613 if (inode)
2614 spin_unlock(&inode->i_lock);
ed782b5a
AV
2615}
2616
34d0d19d
AV
2617/**
2618 * d_add - add dentry to hash queues
2619 * @entry: dentry to add
2620 * @inode: The inode to attach to this dentry
2621 *
2622 * This adds the entry to the hash queues and initializes @inode.
2623 * The entry was actually filled in earlier during d_alloc().
2624 */
2625
2626void d_add(struct dentry *entry, struct inode *inode)
2627{
b9680917
AV
2628 if (inode) {
2629 security_d_instantiate(entry, inode);
ed782b5a 2630 spin_lock(&inode->i_lock);
b9680917 2631 }
ed782b5a 2632 __d_add(entry, inode);
34d0d19d
AV
2633}
2634EXPORT_SYMBOL(d_add);
2635
668d0cd5
AV
2636/**
2637 * d_exact_alias - find and hash an exact unhashed alias
2638 * @entry: dentry to add
2639 * @inode: The inode to go with this dentry
2640 *
2641 * If an unhashed dentry with the same name/parent and desired
2642 * inode already exists, hash and return it. Otherwise, return
2643 * NULL.
2644 *
2645 * Parent directory should be locked.
2646 */
2647struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2648{
2649 struct dentry *alias;
668d0cd5
AV
2650 unsigned int hash = entry->d_name.hash;
2651
2652 spin_lock(&inode->i_lock);
2653 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2654 /*
2655 * Don't need alias->d_lock here, because aliases with
2656 * d_parent == entry->d_parent are not subject to name or
2657 * parent changes, because the parent inode i_mutex is held.
2658 */
2659 if (alias->d_name.hash != hash)
2660 continue;
2661 if (alias->d_parent != entry->d_parent)
2662 continue;
d4c91a8f 2663 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2664 continue;
2665 spin_lock(&alias->d_lock);
2666 if (!d_unhashed(alias)) {
2667 spin_unlock(&alias->d_lock);
2668 alias = NULL;
2669 } else {
2670 __dget_dlock(alias);
15d3c589 2671 __d_rehash(alias);
668d0cd5
AV
2672 spin_unlock(&alias->d_lock);
2673 }
2674 spin_unlock(&inode->i_lock);
2675 return alias;
2676 }
2677 spin_unlock(&inode->i_lock);
2678 return NULL;
2679}
2680EXPORT_SYMBOL(d_exact_alias);
2681
fb2d5b86
NP
2682/**
2683 * dentry_update_name_case - update case insensitive dentry with a new name
2684 * @dentry: dentry to be updated
2685 * @name: new name
2686 *
2687 * Update a case insensitive dentry with new case of name.
2688 *
2689 * dentry must have been returned by d_lookup with name @name. Old and new
2690 * name lengths must match (ie. no d_compare which allows mismatched name
2691 * lengths).
2692 *
2693 * Parent inode i_mutex must be held over d_lookup and into this call (to
2694 * keep renames and concurrent inserts, and readdir(2) away).
2695 */
9aba36de 2696void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
fb2d5b86 2697{
5955102c 2698 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2699 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2700
fb2d5b86 2701 spin_lock(&dentry->d_lock);
31e6b01f 2702 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2703 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2704 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2705 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2706}
2707EXPORT_SYMBOL(dentry_update_name_case);
2708
8d85b484 2709static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2710{
8d85b484
AV
2711 if (unlikely(dname_external(target))) {
2712 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2713 /*
2714 * Both external: swap the pointers
2715 */
9a8d5bb4 2716 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2717 } else {
2718 /*
2719 * dentry:internal, target:external. Steal target's
2720 * storage and make target internal.
2721 */
321bcf92
BF
2722 memcpy(target->d_iname, dentry->d_name.name,
2723 dentry->d_name.len + 1);
1da177e4
LT
2724 dentry->d_name.name = target->d_name.name;
2725 target->d_name.name = target->d_iname;
2726 }
2727 } else {
8d85b484 2728 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2729 /*
2730 * dentry:external, target:internal. Give dentry's
2731 * storage to target and make dentry internal
2732 */
2733 memcpy(dentry->d_iname, target->d_name.name,
2734 target->d_name.len + 1);
2735 target->d_name.name = dentry->d_name.name;
2736 dentry->d_name.name = dentry->d_iname;
2737 } else {
2738 /*
da1ce067 2739 * Both are internal.
1da177e4 2740 */
da1ce067
MS
2741 unsigned int i;
2742 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2743 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2744 swap(((long *) &dentry->d_iname)[i],
2745 ((long *) &target->d_iname)[i]);
2746 }
1da177e4
LT
2747 }
2748 }
a28ddb87 2749 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2750}
2751
8d85b484
AV
2752static void copy_name(struct dentry *dentry, struct dentry *target)
2753{
2754 struct external_name *old_name = NULL;
2755 if (unlikely(dname_external(dentry)))
2756 old_name = external_name(dentry);
2757 if (unlikely(dname_external(target))) {
2758 atomic_inc(&external_name(target)->u.count);
2759 dentry->d_name = target->d_name;
2760 } else {
2761 memcpy(dentry->d_iname, target->d_name.name,
2762 target->d_name.len + 1);
2763 dentry->d_name.name = dentry->d_iname;
2764 dentry->d_name.hash_len = target->d_name.hash_len;
2765 }
2766 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2767 kfree_rcu(old_name, u.head);
2768}
2769
2fd6b7f5
NP
2770static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2771{
2772 /*
2773 * XXXX: do we really need to take target->d_lock?
2774 */
2775 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2776 spin_lock(&target->d_parent->d_lock);
2777 else {
2778 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2779 spin_lock(&dentry->d_parent->d_lock);
2780 spin_lock_nested(&target->d_parent->d_lock,
2781 DENTRY_D_LOCK_NESTED);
2782 } else {
2783 spin_lock(&target->d_parent->d_lock);
2784 spin_lock_nested(&dentry->d_parent->d_lock,
2785 DENTRY_D_LOCK_NESTED);
2786 }
2787 }
2788 if (target < dentry) {
2789 spin_lock_nested(&target->d_lock, 2);
2790 spin_lock_nested(&dentry->d_lock, 3);
2791 } else {
2792 spin_lock_nested(&dentry->d_lock, 2);
2793 spin_lock_nested(&target->d_lock, 3);
2794 }
2795}
2796
986c0194 2797static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2798{
2799 if (target->d_parent != dentry->d_parent)
2800 spin_unlock(&dentry->d_parent->d_lock);
2801 if (target->d_parent != target)
2802 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2803 spin_unlock(&target->d_lock);
2804 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2805}
2806
1da177e4 2807/*
2fd6b7f5
NP
2808 * When switching names, the actual string doesn't strictly have to
2809 * be preserved in the target - because we're dropping the target
2810 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2811 * the new name before we switch, unless we are going to rehash
2812 * it. Note that if we *do* unhash the target, we are not allowed
2813 * to rehash it without giving it a new name/hash key - whether
2814 * we swap or overwrite the names here, resulting name won't match
2815 * the reality in filesystem; it's only there for d_path() purposes.
2816 * Note that all of this is happening under rename_lock, so the
2817 * any hash lookup seeing it in the middle of manipulations will
2818 * be discarded anyway. So we do not care what happens to the hash
2819 * key in that case.
1da177e4 2820 */
9eaef27b 2821/*
18367501 2822 * __d_move - move a dentry
1da177e4
LT
2823 * @dentry: entry to move
2824 * @target: new dentry
da1ce067 2825 * @exchange: exchange the two dentries
1da177e4
LT
2826 *
2827 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2828 * dcache entries should not be moved in this way. Caller must hold
2829 * rename_lock, the i_mutex of the source and target directories,
2830 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2831 */
da1ce067
MS
2832static void __d_move(struct dentry *dentry, struct dentry *target,
2833 bool exchange)
1da177e4 2834{
84e710da
AV
2835 struct inode *dir = NULL;
2836 unsigned n;
1da177e4
LT
2837 if (!dentry->d_inode)
2838 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2839
2fd6b7f5
NP
2840 BUG_ON(d_ancestor(dentry, target));
2841 BUG_ON(d_ancestor(target, dentry));
2842
2fd6b7f5 2843 dentry_lock_for_move(dentry, target);
84e710da
AV
2844 if (unlikely(d_in_lookup(target))) {
2845 dir = target->d_parent->d_inode;
2846 n = start_dir_add(dir);
85c7f810 2847 __d_lookup_done(target);
84e710da 2848 }
1da177e4 2849
31e6b01f 2850 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2851 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2852
15d3c589 2853 /* unhash both */
0632a9ac
AV
2854 if (!d_unhashed(dentry))
2855 ___d_drop(dentry);
2856 if (!d_unhashed(target))
2857 ___d_drop(target);
1da177e4 2858
1da177e4 2859 /* Switch the names.. */
8d85b484
AV
2860 if (exchange)
2861 swap_names(dentry, target);
2862 else
2863 copy_name(dentry, target);
1da177e4 2864
15d3c589
AV
2865 /* rehash in new place(s) */
2866 __d_rehash(dentry);
2867 if (exchange)
2868 __d_rehash(target);
61647823
N
2869 else
2870 target->d_hash.pprev = NULL;
15d3c589 2871
63cf427a 2872 /* ... and switch them in the tree */
1da177e4 2873 if (IS_ROOT(dentry)) {
63cf427a 2874 /* splicing a tree */
3d56c25e 2875 dentry->d_flags |= DCACHE_RCUACCESS;
1da177e4
LT
2876 dentry->d_parent = target->d_parent;
2877 target->d_parent = target;
946e51f2
AV
2878 list_del_init(&target->d_child);
2879 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2880 } else {
63cf427a 2881 /* swapping two dentries */
9a8d5bb4 2882 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2883 list_move(&target->d_child, &target->d_parent->d_subdirs);
2884 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a 2885 if (exchange)
affda484
AV
2886 fsnotify_update_flags(target);
2887 fsnotify_update_flags(dentry);
1da177e4
LT
2888 }
2889
31e6b01f
NP
2890 write_seqcount_end(&target->d_seq);
2891 write_seqcount_end(&dentry->d_seq);
2892
84e710da
AV
2893 if (dir)
2894 end_dir_add(dir, n);
986c0194 2895 dentry_unlock_for_move(dentry, target);
18367501
AV
2896}
2897
2898/*
2899 * d_move - move a dentry
2900 * @dentry: entry to move
2901 * @target: new dentry
2902 *
2903 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2904 * dcache entries should not be moved in this way. See the locking
2905 * requirements for __d_move.
18367501
AV
2906 */
2907void d_move(struct dentry *dentry, struct dentry *target)
2908{
2909 write_seqlock(&rename_lock);
da1ce067 2910 __d_move(dentry, target, false);
1da177e4 2911 write_sequnlock(&rename_lock);
9eaef27b 2912}
ec4f8605 2913EXPORT_SYMBOL(d_move);
1da177e4 2914
da1ce067
MS
2915/*
2916 * d_exchange - exchange two dentries
2917 * @dentry1: first dentry
2918 * @dentry2: second dentry
2919 */
2920void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2921{
2922 write_seqlock(&rename_lock);
2923
2924 WARN_ON(!dentry1->d_inode);
2925 WARN_ON(!dentry2->d_inode);
2926 WARN_ON(IS_ROOT(dentry1));
2927 WARN_ON(IS_ROOT(dentry2));
2928
2929 __d_move(dentry1, dentry2, true);
2930
2931 write_sequnlock(&rename_lock);
2932}
2933
e2761a11
OH
2934/**
2935 * d_ancestor - search for an ancestor
2936 * @p1: ancestor dentry
2937 * @p2: child dentry
2938 *
2939 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2940 * an ancestor of p2, else NULL.
9eaef27b 2941 */
e2761a11 2942struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2943{
2944 struct dentry *p;
2945
871c0067 2946 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2947 if (p->d_parent == p1)
e2761a11 2948 return p;
9eaef27b 2949 }
e2761a11 2950 return NULL;
9eaef27b
TM
2951}
2952
2953/*
2954 * This helper attempts to cope with remotely renamed directories
2955 *
2956 * It assumes that the caller is already holding
a03e283b 2957 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2958 *
2959 * Note: If ever the locking in lock_rename() changes, then please
2960 * remember to update this too...
9eaef27b 2961 */
b5ae6b15 2962static int __d_unalias(struct inode *inode,
873feea0 2963 struct dentry *dentry, struct dentry *alias)
9eaef27b 2964{
9902af79
AV
2965 struct mutex *m1 = NULL;
2966 struct rw_semaphore *m2 = NULL;
3d330dc1 2967 int ret = -ESTALE;
9eaef27b
TM
2968
2969 /* If alias and dentry share a parent, then no extra locks required */
2970 if (alias->d_parent == dentry->d_parent)
2971 goto out_unalias;
2972
9eaef27b 2973 /* See lock_rename() */
9eaef27b
TM
2974 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2975 goto out_err;
2976 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2977 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2978 goto out_err;
9902af79 2979 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2980out_unalias:
8ed936b5 2981 __d_move(alias, dentry, false);
b5ae6b15 2982 ret = 0;
9eaef27b 2983out_err:
9eaef27b 2984 if (m2)
9902af79 2985 up_read(m2);
9eaef27b
TM
2986 if (m1)
2987 mutex_unlock(m1);
2988 return ret;
2989}
2990
3f70bd51
BF
2991/**
2992 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2993 * @inode: the inode which may have a disconnected dentry
2994 * @dentry: a negative dentry which we want to point to the inode.
2995 *
da093a9b
BF
2996 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2997 * place of the given dentry and return it, else simply d_add the inode
2998 * to the dentry and return NULL.
3f70bd51 2999 *
908790fa
BF
3000 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3001 * we should error out: directories can't have multiple aliases.
3002 *
3f70bd51
BF
3003 * This is needed in the lookup routine of any filesystem that is exportable
3004 * (via knfsd) so that we can build dcache paths to directories effectively.
3005 *
3006 * If a dentry was found and moved, then it is returned. Otherwise NULL
3007 * is returned. This matches the expected return value of ->lookup.
3008 *
3009 * Cluster filesystems may call this function with a negative, hashed dentry.
3010 * In that case, we know that the inode will be a regular file, and also this
3011 * will only occur during atomic_open. So we need to check for the dentry
3012 * being already hashed only in the final case.
3013 */
3014struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3015{
3f70bd51
BF
3016 if (IS_ERR(inode))
3017 return ERR_CAST(inode);
3018
770bfad8
DH
3019 BUG_ON(!d_unhashed(dentry));
3020
de689f5e 3021 if (!inode)
b5ae6b15 3022 goto out;
de689f5e 3023
b9680917 3024 security_d_instantiate(dentry, inode);
873feea0 3025 spin_lock(&inode->i_lock);
9eaef27b 3026 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
3027 struct dentry *new = __d_find_any_alias(inode);
3028 if (unlikely(new)) {
a03e283b
EB
3029 /* The reference to new ensures it remains an alias */
3030 spin_unlock(&inode->i_lock);
18367501 3031 write_seqlock(&rename_lock);
b5ae6b15
AV
3032 if (unlikely(d_ancestor(new, dentry))) {
3033 write_sequnlock(&rename_lock);
b5ae6b15
AV
3034 dput(new);
3035 new = ERR_PTR(-ELOOP);
3036 pr_warn_ratelimited(
3037 "VFS: Lookup of '%s' in %s %s"
3038 " would have caused loop\n",
3039 dentry->d_name.name,
3040 inode->i_sb->s_type->name,
3041 inode->i_sb->s_id);
3042 } else if (!IS_ROOT(new)) {
3043 int err = __d_unalias(inode, dentry, new);
18367501 3044 write_sequnlock(&rename_lock);
b5ae6b15
AV
3045 if (err) {
3046 dput(new);
3047 new = ERR_PTR(err);
3048 }
18367501 3049 } else {
b5ae6b15
AV
3050 __d_move(new, dentry, false);
3051 write_sequnlock(&rename_lock);
dd179946 3052 }
b5ae6b15
AV
3053 iput(inode);
3054 return new;
9eaef27b 3055 }
770bfad8 3056 }
b5ae6b15 3057out:
ed782b5a 3058 __d_add(dentry, inode);
b5ae6b15 3059 return NULL;
770bfad8 3060}
b5ae6b15 3061EXPORT_SYMBOL(d_splice_alias);
770bfad8 3062
cdd16d02 3063static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
3064{
3065 *buflen -= namelen;
3066 if (*buflen < 0)
3067 return -ENAMETOOLONG;
3068 *buffer -= namelen;
3069 memcpy(*buffer, str, namelen);
3070 return 0;
3071}
3072
232d2d60
WL
3073/**
3074 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
3075 * @buffer: buffer pointer
3076 * @buflen: allocated length of the buffer
3077 * @name: name string and length qstr structure
232d2d60 3078 *
66702eb5 3079 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
232d2d60
WL
3080 * make sure that either the old or the new name pointer and length are
3081 * fetched. However, there may be mismatch between length and pointer.
3082 * The length cannot be trusted, we need to copy it byte-by-byte until
3083 * the length is reached or a null byte is found. It also prepends "/" at
3084 * the beginning of the name. The sequence number check at the caller will
3085 * retry it again when a d_move() does happen. So any garbage in the buffer
3086 * due to mismatched pointer and length will be discarded.
6d13f694 3087 *
7088efa9 3088 * Load acquire is needed to make sure that we see that terminating NUL.
232d2d60 3089 */
9aba36de 3090static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
cdd16d02 3091{
7088efa9 3092 const char *dname = smp_load_acquire(&name->name); /* ^^^ */
66702eb5 3093 u32 dlen = READ_ONCE(name->len);
232d2d60
WL
3094 char *p;
3095
232d2d60 3096 *buflen -= dlen + 1;
e825196d
AV
3097 if (*buflen < 0)
3098 return -ENAMETOOLONG;
232d2d60
WL
3099 p = *buffer -= dlen + 1;
3100 *p++ = '/';
3101 while (dlen--) {
3102 char c = *dname++;
3103 if (!c)
3104 break;
3105 *p++ = c;
3106 }
3107 return 0;
cdd16d02
MS
3108}
3109
1da177e4 3110/**
208898c1 3111 * prepend_path - Prepend path string to a buffer
9d1bc601 3112 * @path: the dentry/vfsmount to report
02125a82 3113 * @root: root vfsmnt/dentry
f2eb6575
MS
3114 * @buffer: pointer to the end of the buffer
3115 * @buflen: pointer to buffer length
552ce544 3116 *
18129977
WL
3117 * The function will first try to write out the pathname without taking any
3118 * lock other than the RCU read lock to make sure that dentries won't go away.
3119 * It only checks the sequence number of the global rename_lock as any change
3120 * in the dentry's d_seq will be preceded by changes in the rename_lock
3121 * sequence number. If the sequence number had been changed, it will restart
3122 * the whole pathname back-tracing sequence again by taking the rename_lock.
3123 * In this case, there is no need to take the RCU read lock as the recursive
3124 * parent pointer references will keep the dentry chain alive as long as no
3125 * rename operation is performed.
1da177e4 3126 */
02125a82
AV
3127static int prepend_path(const struct path *path,
3128 const struct path *root,
f2eb6575 3129 char **buffer, int *buflen)
1da177e4 3130{
ede4cebc
AV
3131 struct dentry *dentry;
3132 struct vfsmount *vfsmnt;
3133 struct mount *mnt;
f2eb6575 3134 int error = 0;
48a066e7 3135 unsigned seq, m_seq = 0;
232d2d60
WL
3136 char *bptr;
3137 int blen;
6092d048 3138
48f5ec21 3139 rcu_read_lock();
48a066e7
AV
3140restart_mnt:
3141 read_seqbegin_or_lock(&mount_lock, &m_seq);
3142 seq = 0;
4ec6c2ae 3143 rcu_read_lock();
232d2d60
WL
3144restart:
3145 bptr = *buffer;
3146 blen = *buflen;
48a066e7 3147 error = 0;
ede4cebc
AV
3148 dentry = path->dentry;
3149 vfsmnt = path->mnt;
3150 mnt = real_mount(vfsmnt);
232d2d60 3151 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 3152 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
3153 struct dentry * parent;
3154
1da177e4 3155 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
66702eb5 3156 struct mount *parent = READ_ONCE(mnt->mnt_parent);
cde93be4
EB
3157 /* Escaped? */
3158 if (dentry != vfsmnt->mnt_root) {
3159 bptr = *buffer;
3160 blen = *buflen;
3161 error = 3;
3162 break;
3163 }
552ce544 3164 /* Global root? */
48a066e7 3165 if (mnt != parent) {
66702eb5 3166 dentry = READ_ONCE(mnt->mnt_mountpoint);
48a066e7 3167 mnt = parent;
232d2d60
WL
3168 vfsmnt = &mnt->mnt;
3169 continue;
3170 }
232d2d60
WL
3171 if (!error)
3172 error = is_mounted(vfsmnt) ? 1 : 2;
3173 break;
1da177e4
LT
3174 }
3175 parent = dentry->d_parent;
3176 prefetch(parent);
232d2d60 3177 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
3178 if (error)
3179 break;
3180
1da177e4
LT
3181 dentry = parent;
3182 }
48f5ec21
AV
3183 if (!(seq & 1))
3184 rcu_read_unlock();
3185 if (need_seqretry(&rename_lock, seq)) {
3186 seq = 1;
232d2d60 3187 goto restart;
48f5ec21
AV
3188 }
3189 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
3190
3191 if (!(m_seq & 1))
3192 rcu_read_unlock();
48a066e7
AV
3193 if (need_seqretry(&mount_lock, m_seq)) {
3194 m_seq = 1;
3195 goto restart_mnt;
3196 }
3197 done_seqretry(&mount_lock, m_seq);
1da177e4 3198
232d2d60
WL
3199 if (error >= 0 && bptr == *buffer) {
3200 if (--blen < 0)
3201 error = -ENAMETOOLONG;
3202 else
3203 *--bptr = '/';
3204 }
3205 *buffer = bptr;
3206 *buflen = blen;
7ea600b5 3207 return error;
f2eb6575 3208}
be285c71 3209
f2eb6575
MS
3210/**
3211 * __d_path - return the path of a dentry
3212 * @path: the dentry/vfsmount to report
02125a82 3213 * @root: root vfsmnt/dentry
cd956a1c 3214 * @buf: buffer to return value in
f2eb6575
MS
3215 * @buflen: buffer length
3216 *
ffd1f4ed 3217 * Convert a dentry into an ASCII path name.
f2eb6575
MS
3218 *
3219 * Returns a pointer into the buffer or an error code if the
3220 * path was too long.
3221 *
be148247 3222 * "buflen" should be positive.
f2eb6575 3223 *
02125a82 3224 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 3225 */
02125a82
AV
3226char *__d_path(const struct path *path,
3227 const struct path *root,
f2eb6575
MS
3228 char *buf, int buflen)
3229{
3230 char *res = buf + buflen;
3231 int error;
3232
3233 prepend(&res, &buflen, "\0", 1);
f2eb6575 3234 error = prepend_path(path, root, &res, &buflen);
be148247 3235
02125a82
AV
3236 if (error < 0)
3237 return ERR_PTR(error);
3238 if (error > 0)
3239 return NULL;
3240 return res;
3241}
3242
3243char *d_absolute_path(const struct path *path,
3244 char *buf, int buflen)
3245{
3246 struct path root = {};
3247 char *res = buf + buflen;
3248 int error;
3249
3250 prepend(&res, &buflen, "\0", 1);
02125a82 3251 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3252
3253 if (error > 1)
3254 error = -EINVAL;
3255 if (error < 0)
f2eb6575 3256 return ERR_PTR(error);
f2eb6575 3257 return res;
1da177e4
LT
3258}
3259
ffd1f4ed
MS
3260/*
3261 * same as __d_path but appends "(deleted)" for unlinked files.
3262 */
02125a82
AV
3263static int path_with_deleted(const struct path *path,
3264 const struct path *root,
3265 char **buf, int *buflen)
ffd1f4ed
MS
3266{
3267 prepend(buf, buflen, "\0", 1);
3268 if (d_unlinked(path->dentry)) {
3269 int error = prepend(buf, buflen, " (deleted)", 10);
3270 if (error)
3271 return error;
3272 }
3273
3274 return prepend_path(path, root, buf, buflen);
3275}
3276
8df9d1a4
MS
3277static int prepend_unreachable(char **buffer, int *buflen)
3278{
3279 return prepend(buffer, buflen, "(unreachable)", 13);
3280}
3281
68f0d9d9
LT
3282static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3283{
3284 unsigned seq;
3285
3286 do {
3287 seq = read_seqcount_begin(&fs->seq);
3288 *root = fs->root;
3289 } while (read_seqcount_retry(&fs->seq, seq));
3290}
3291
a03a8a70
JB
3292/**
3293 * d_path - return the path of a dentry
cf28b486 3294 * @path: path to report
a03a8a70
JB
3295 * @buf: buffer to return value in
3296 * @buflen: buffer length
3297 *
3298 * Convert a dentry into an ASCII path name. If the entry has been deleted
3299 * the string " (deleted)" is appended. Note that this is ambiguous.
3300 *
52afeefb
AV
3301 * Returns a pointer into the buffer or an error code if the path was
3302 * too long. Note: Callers should use the returned pointer, not the passed
3303 * in buffer, to use the name! The implementation often starts at an offset
3304 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3305 *
31f3e0b3 3306 * "buflen" should be positive.
a03a8a70 3307 */
20d4fdc1 3308char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3309{
ffd1f4ed 3310 char *res = buf + buflen;
6ac08c39 3311 struct path root;
ffd1f4ed 3312 int error;
1da177e4 3313
c23fbb6b
ED
3314 /*
3315 * We have various synthetic filesystems that never get mounted. On
3316 * these filesystems dentries are never used for lookup purposes, and
3317 * thus don't need to be hashed. They also don't need a name until a
3318 * user wants to identify the object in /proc/pid/fd/. The little hack
3319 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3320 *
3321 * Some pseudo inodes are mountable. When they are mounted
3322 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3323 * and instead have d_path return the mounted path.
c23fbb6b 3324 */
f48cfddc
EB
3325 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3326 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3327 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3328
68f0d9d9
LT
3329 rcu_read_lock();
3330 get_fs_root_rcu(current->fs, &root);
02125a82 3331 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3332 rcu_read_unlock();
3333
02125a82 3334 if (error < 0)
ffd1f4ed 3335 res = ERR_PTR(error);
1da177e4
LT
3336 return res;
3337}
ec4f8605 3338EXPORT_SYMBOL(d_path);
1da177e4 3339
c23fbb6b
ED
3340/*
3341 * Helper function for dentry_operations.d_dname() members
3342 */
3343char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3344 const char *fmt, ...)
3345{
3346 va_list args;
3347 char temp[64];
3348 int sz;
3349
3350 va_start(args, fmt);
3351 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3352 va_end(args);
3353
3354 if (sz > sizeof(temp) || sz > buflen)
3355 return ERR_PTR(-ENAMETOOLONG);
3356
3357 buffer += buflen - sz;
3358 return memcpy(buffer, temp, sz);
3359}
3360
118b2302
AV
3361char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3362{
3363 char *end = buffer + buflen;
3364 /* these dentries are never renamed, so d_lock is not needed */
3365 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3366 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3367 prepend(&end, &buflen, "/", 1))
3368 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3369 return end;
118b2302 3370}
31bbe16f 3371EXPORT_SYMBOL(simple_dname);
118b2302 3372
6092d048
RP
3373/*
3374 * Write full pathname from the root of the filesystem into the buffer.
3375 */
f6500801 3376static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3377{
f6500801 3378 struct dentry *dentry;
232d2d60
WL
3379 char *end, *retval;
3380 int len, seq = 0;
3381 int error = 0;
6092d048 3382
f6500801
AV
3383 if (buflen < 2)
3384 goto Elong;
3385
48f5ec21 3386 rcu_read_lock();
232d2d60 3387restart:
f6500801 3388 dentry = d;
232d2d60
WL
3389 end = buf + buflen;
3390 len = buflen;
3391 prepend(&end, &len, "\0", 1);
6092d048
RP
3392 /* Get '/' right */
3393 retval = end-1;
3394 *retval = '/';
232d2d60 3395 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3396 while (!IS_ROOT(dentry)) {
3397 struct dentry *parent = dentry->d_parent;
6092d048 3398
6092d048 3399 prefetch(parent);
232d2d60
WL
3400 error = prepend_name(&end, &len, &dentry->d_name);
3401 if (error)
3402 break;
6092d048
RP
3403
3404 retval = end;
3405 dentry = parent;
3406 }
48f5ec21
AV
3407 if (!(seq & 1))
3408 rcu_read_unlock();
3409 if (need_seqretry(&rename_lock, seq)) {
3410 seq = 1;
232d2d60 3411 goto restart;
48f5ec21
AV
3412 }
3413 done_seqretry(&rename_lock, seq);
232d2d60
WL
3414 if (error)
3415 goto Elong;
c103135c
AV
3416 return retval;
3417Elong:
3418 return ERR_PTR(-ENAMETOOLONG);
3419}
ec2447c2
NP
3420
3421char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3422{
232d2d60 3423 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3424}
3425EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3426
3427char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3428{
3429 char *p = NULL;
3430 char *retval;
3431
c103135c
AV
3432 if (d_unlinked(dentry)) {
3433 p = buf + buflen;
3434 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3435 goto Elong;
3436 buflen++;
3437 }
3438 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3439 if (!IS_ERR(retval) && p)
3440 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3441 return retval;
3442Elong:
6092d048
RP
3443 return ERR_PTR(-ENAMETOOLONG);
3444}
3445
8b19e341
LT
3446static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3447 struct path *pwd)
5762482f 3448{
8b19e341
LT
3449 unsigned seq;
3450
3451 do {
3452 seq = read_seqcount_begin(&fs->seq);
3453 *root = fs->root;
3454 *pwd = fs->pwd;
3455 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3456}
3457
1da177e4
LT
3458/*
3459 * NOTE! The user-level library version returns a
3460 * character pointer. The kernel system call just
3461 * returns the length of the buffer filled (which
3462 * includes the ending '\0' character), or a negative
3463 * error value. So libc would do something like
3464 *
3465 * char *getcwd(char * buf, size_t size)
3466 * {
3467 * int retval;
3468 *
3469 * retval = sys_getcwd(buf, size);
3470 * if (retval >= 0)
3471 * return buf;
3472 * errno = -retval;
3473 * return NULL;
3474 * }
3475 */
3cdad428 3476SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3477{
552ce544 3478 int error;
6ac08c39 3479 struct path pwd, root;
3272c544 3480 char *page = __getname();
1da177e4
LT
3481
3482 if (!page)
3483 return -ENOMEM;
3484
8b19e341
LT
3485 rcu_read_lock();
3486 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3487
552ce544 3488 error = -ENOENT;
f3da392e 3489 if (!d_unlinked(pwd.dentry)) {
552ce544 3490 unsigned long len;
3272c544
LT
3491 char *cwd = page + PATH_MAX;
3492 int buflen = PATH_MAX;
1da177e4 3493
8df9d1a4 3494 prepend(&cwd, &buflen, "\0", 1);
02125a82 3495 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3496 rcu_read_unlock();
552ce544 3497
02125a82 3498 if (error < 0)
552ce544
LT
3499 goto out;
3500
8df9d1a4 3501 /* Unreachable from current root */
02125a82 3502 if (error > 0) {
8df9d1a4
MS
3503 error = prepend_unreachable(&cwd, &buflen);
3504 if (error)
3505 goto out;
3506 }
3507
552ce544 3508 error = -ERANGE;
3272c544 3509 len = PATH_MAX + page - cwd;
552ce544
LT
3510 if (len <= size) {
3511 error = len;
3512 if (copy_to_user(buf, cwd, len))
3513 error = -EFAULT;
3514 }
949854d0 3515 } else {
ff812d72 3516 rcu_read_unlock();
949854d0 3517 }
1da177e4
LT
3518
3519out:
3272c544 3520 __putname(page);
1da177e4
LT
3521 return error;
3522}
3523
3524/*
3525 * Test whether new_dentry is a subdirectory of old_dentry.
3526 *
3527 * Trivially implemented using the dcache structure
3528 */
3529
3530/**
3531 * is_subdir - is new dentry a subdirectory of old_dentry
3532 * @new_dentry: new dentry
3533 * @old_dentry: old dentry
3534 *
a6e5787f
YB
3535 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3536 * Returns false otherwise.
1da177e4
LT
3537 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3538 */
3539
a6e5787f 3540bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3541{
a6e5787f 3542 bool result;
949854d0 3543 unsigned seq;
1da177e4 3544
e2761a11 3545 if (new_dentry == old_dentry)
a6e5787f 3546 return true;
e2761a11 3547
e2761a11 3548 do {
1da177e4 3549 /* for restarting inner loop in case of seq retry */
1da177e4 3550 seq = read_seqbegin(&rename_lock);
949854d0
NP
3551 /*
3552 * Need rcu_readlock to protect against the d_parent trashing
3553 * due to d_move
3554 */
3555 rcu_read_lock();
e2761a11 3556 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3557 result = true;
e2761a11 3558 else
a6e5787f 3559 result = false;
949854d0 3560 rcu_read_unlock();
1da177e4 3561 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3562
3563 return result;
3564}
e8f9e5b7 3565EXPORT_SYMBOL(is_subdir);
1da177e4 3566
db14fc3a 3567static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3568{
db14fc3a
MS
3569 struct dentry *root = data;
3570 if (dentry != root) {
3571 if (d_unhashed(dentry) || !dentry->d_inode)
3572 return D_WALK_SKIP;
1da177e4 3573
01ddc4ed
MS
3574 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3575 dentry->d_flags |= DCACHE_GENOCIDE;
3576 dentry->d_lockref.count--;
3577 }
1da177e4 3578 }
db14fc3a
MS
3579 return D_WALK_CONTINUE;
3580}
58db63d0 3581
db14fc3a
MS
3582void d_genocide(struct dentry *parent)
3583{
3584 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3585}
3586
60545d0d 3587void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3588{
60545d0d
AV
3589 inode_dec_link_count(inode);
3590 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3591 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3592 !d_unlinked(dentry));
3593 spin_lock(&dentry->d_parent->d_lock);
3594 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3595 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3596 (unsigned long long)inode->i_ino);
3597 spin_unlock(&dentry->d_lock);
3598 spin_unlock(&dentry->d_parent->d_lock);
3599 d_instantiate(dentry, inode);
1da177e4 3600}
60545d0d 3601EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3602
3603static __initdata unsigned long dhash_entries;
3604static int __init set_dhash_entries(char *str)
3605{
3606 if (!str)
3607 return 0;
3608 dhash_entries = simple_strtoul(str, &str, 0);
3609 return 1;
3610}
3611__setup("dhash_entries=", set_dhash_entries);
3612
3613static void __init dcache_init_early(void)
3614{
1da177e4
LT
3615 /* If hashes are distributed across NUMA nodes, defer
3616 * hash allocation until vmalloc space is available.
3617 */
3618 if (hashdist)
3619 return;
3620
3621 dentry_hashtable =
3622 alloc_large_system_hash("Dentry cache",
b07ad996 3623 sizeof(struct hlist_bl_head),
1da177e4
LT
3624 dhash_entries,
3625 13,
3d375d78 3626 HASH_EARLY | HASH_ZERO,
1da177e4 3627 &d_hash_shift,
b35d786b 3628 NULL,
31fe62b9 3629 0,
1da177e4 3630 0);
854d3e63 3631 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3632}
3633
74bf17cf 3634static void __init dcache_init(void)
1da177e4 3635{
3d375d78 3636 /*
1da177e4
LT
3637 * A constructor could be added for stable state like the lists,
3638 * but it is probably not worth it because of the cache nature
3d375d78 3639 * of the dcache.
1da177e4 3640 */
80344266
DW
3641 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3642 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3643 d_iname);
1da177e4
LT
3644
3645 /* Hash may have been set up in dcache_init_early */
3646 if (!hashdist)
3647 return;
3648
3649 dentry_hashtable =
3650 alloc_large_system_hash("Dentry cache",
b07ad996 3651 sizeof(struct hlist_bl_head),
1da177e4
LT
3652 dhash_entries,
3653 13,
3d375d78 3654 HASH_ZERO,
1da177e4 3655 &d_hash_shift,
b35d786b 3656 NULL,
31fe62b9 3657 0,
1da177e4 3658 0);
854d3e63 3659 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3660}
3661
3662/* SLAB cache for __getname() consumers */
e18b890b 3663struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3664EXPORT_SYMBOL(names_cachep);
1da177e4 3665
1da177e4
LT
3666EXPORT_SYMBOL(d_genocide);
3667
1da177e4
LT
3668void __init vfs_caches_init_early(void)
3669{
6916363f
SAS
3670 int i;
3671
3672 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3673 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3674
1da177e4
LT
3675 dcache_init_early();
3676 inode_init_early();
3677}
3678
4248b0da 3679void __init vfs_caches_init(void)
1da177e4 3680{
6a9b8820
DW
3681 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3682 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3683
74bf17cf
DC
3684 dcache_init();
3685 inode_init();
4248b0da
MG
3686 files_init();
3687 files_maxfiles_init();
74bf17cf 3688 mnt_init();
1da177e4
LT
3689 bdev_cache_init();
3690 chrdev_init();
3691}