fs/buffer.c: fold init_buffer() into init_page_buffers()
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
7c0f6ba6 29#include <linux/uaccess.h>
1da177e4
LT
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
ceb5bdc2
NP
35#include <linux/bit_spinlock.h>
36#include <linux/rculist_bl.h>
268bb0ce 37#include <linux/prefetch.h>
dd179946 38#include <linux/ratelimit.h>
f6041567 39#include <linux/list_lru.h>
df4c0e36
AR
40#include <linux/kasan.h>
41
07f3f05c 42#include "internal.h"
b2dba1af 43#include "mount.h"
1da177e4 44
789680d1
NP
45/*
46 * Usage:
873feea0 47 * dcache->d_inode->i_lock protects:
946e51f2 48 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
49 * dcache_hash_bucket lock protects:
50 * - the dcache hash table
f1ee6162
N
51 * s_roots bl list spinlock protects:
52 * - the s_roots list (see __d_drop)
19156840 53 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
54 * - the dcache lru lists and counters
55 * d_lock protects:
56 * - d_flags
57 * - d_name
58 * - d_lru
b7ab39f6 59 * - d_count
da502956 60 * - d_unhashed()
2fd6b7f5
NP
61 * - d_parent and d_subdirs
62 * - childrens' d_child and d_parent
946e51f2 63 * - d_u.d_alias, d_inode
789680d1
NP
64 *
65 * Ordering:
873feea0 66 * dentry->d_inode->i_lock
b5c84bf6 67 * dentry->d_lock
19156840 68 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 69 * dcache_hash_bucket lock
f1ee6162 70 * s_roots lock
789680d1 71 *
da502956
NP
72 * If there is an ancestor relationship:
73 * dentry->d_parent->...->d_parent->d_lock
74 * ...
75 * dentry->d_parent->d_lock
76 * dentry->d_lock
77 *
78 * If no ancestor relationship:
789680d1
NP
79 * if (dentry1 < dentry2)
80 * dentry1->d_lock
81 * dentry2->d_lock
82 */
fa3536cc 83int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
84EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
85
74c3cbe3 86__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 87
949854d0 88EXPORT_SYMBOL(rename_lock);
1da177e4 89
e18b890b 90static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 91
cdf01226
DH
92const struct qstr empty_name = QSTR_INIT("", 0);
93EXPORT_SYMBOL(empty_name);
94const struct qstr slash_name = QSTR_INIT("/", 1);
95EXPORT_SYMBOL(slash_name);
96
1da177e4
LT
97/*
98 * This is the single most critical data structure when it comes
99 * to the dcache: the hashtable for lookups. Somebody should try
100 * to make this good - I've just made it work.
101 *
102 * This hash-function tries to avoid losing too many bits of hash
103 * information, yet avoid using a prime hash-size or similar.
104 */
1da177e4 105
fa3536cc
ED
106static unsigned int d_hash_mask __read_mostly;
107static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 108
b07ad996 109static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 110
8387ff25 111static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 112{
703b5faf 113 return dentry_hashtable + (hash >> (32 - d_hash_shift));
ceb5bdc2
NP
114}
115
94bdd655
AV
116#define IN_LOOKUP_SHIFT 10
117static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
118
119static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
120 unsigned int hash)
121{
122 hash += (unsigned long) parent / L1_CACHE_BYTES;
123 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
124}
125
126
1da177e4
LT
127/* Statistics gathering. */
128struct dentry_stat_t dentry_stat = {
129 .age_limit = 45,
130};
131
3942c07c 132static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 133static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
134
135#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
136
137/*
138 * Here we resort to our own counters instead of using generic per-cpu counters
139 * for consistency with what the vfs inode code does. We are expected to harvest
140 * better code and performance by having our own specialized counters.
141 *
142 * Please note that the loop is done over all possible CPUs, not over all online
143 * CPUs. The reason for this is that we don't want to play games with CPUs going
144 * on and off. If one of them goes off, we will just keep their counters.
145 *
146 * glommer: See cffbc8a for details, and if you ever intend to change this,
147 * please update all vfs counters to match.
148 */
3942c07c 149static long get_nr_dentry(void)
3e880fb5
NP
150{
151 int i;
3942c07c 152 long sum = 0;
3e880fb5
NP
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry, i);
155 return sum < 0 ? 0 : sum;
156}
157
62d36c77
DC
158static long get_nr_dentry_unused(void)
159{
160 int i;
161 long sum = 0;
162 for_each_possible_cpu(i)
163 sum += per_cpu(nr_dentry_unused, i);
164 return sum < 0 ? 0 : sum;
165}
166
1f7e0616 167int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
168 size_t *lenp, loff_t *ppos)
169{
3e880fb5 170 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 171 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 172 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
173}
174#endif
175
5483f18e
LT
176/*
177 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
178 * The strings are both count bytes long, and count is non-zero.
179 */
e419b4cc
LT
180#ifdef CONFIG_DCACHE_WORD_ACCESS
181
182#include <asm/word-at-a-time.h>
183/*
184 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
185 * aligned allocation for this particular component. We don't
186 * strictly need the load_unaligned_zeropad() safety, but it
187 * doesn't hurt either.
188 *
189 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
190 * need the careful unaligned handling.
191 */
94753db5 192static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 193{
bfcfaa77 194 unsigned long a,b,mask;
bfcfaa77
LT
195
196 for (;;) {
12f8ad4b 197 a = *(unsigned long *)cs;
e419b4cc 198 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
199 if (tcount < sizeof(unsigned long))
200 break;
201 if (unlikely(a != b))
202 return 1;
203 cs += sizeof(unsigned long);
204 ct += sizeof(unsigned long);
205 tcount -= sizeof(unsigned long);
206 if (!tcount)
207 return 0;
208 }
a5c21dce 209 mask = bytemask_from_count(tcount);
bfcfaa77 210 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
211}
212
bfcfaa77 213#else
e419b4cc 214
94753db5 215static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 216{
5483f18e
LT
217 do {
218 if (*cs != *ct)
219 return 1;
220 cs++;
221 ct++;
222 tcount--;
223 } while (tcount);
224 return 0;
225}
226
e419b4cc
LT
227#endif
228
94753db5
LT
229static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
230{
94753db5
LT
231 /*
232 * Be careful about RCU walk racing with rename:
506458ef 233 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
234 *
235 * NOTE! Even if a rename will mean that the length
236 * was not loaded atomically, we don't care. The
237 * RCU walk will check the sequence count eventually,
238 * and catch it. And we won't overrun the buffer,
239 * because we're reading the name pointer atomically,
240 * and a dentry name is guaranteed to be properly
241 * terminated with a NUL byte.
242 *
243 * End result: even if 'len' is wrong, we'll exit
244 * early because the data cannot match (there can
245 * be no NUL in the ct/tcount data)
246 */
506458ef 247 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 248
6326c71f 249 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
250}
251
8d85b484
AV
252struct external_name {
253 union {
254 atomic_t count;
255 struct rcu_head head;
256 } u;
257 unsigned char name[];
258};
259
260static inline struct external_name *external_name(struct dentry *dentry)
261{
262 return container_of(dentry->d_name.name, struct external_name, name[0]);
263}
264
9c82ab9c 265static void __d_free(struct rcu_head *head)
1da177e4 266{
9c82ab9c
CH
267 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
268
8d85b484
AV
269 kmem_cache_free(dentry_cache, dentry);
270}
271
272static void __d_free_external(struct rcu_head *head)
273{
274 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 275 kfree(external_name(dentry));
1da177e4
LT
276 kmem_cache_free(dentry_cache, dentry);
277}
278
810bb172
AV
279static inline int dname_external(const struct dentry *dentry)
280{
281 return dentry->d_name.name != dentry->d_iname;
282}
283
49d31c2f
AV
284void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
285{
286 spin_lock(&dentry->d_lock);
287 if (unlikely(dname_external(dentry))) {
288 struct external_name *p = external_name(dentry);
289 atomic_inc(&p->u.count);
290 spin_unlock(&dentry->d_lock);
291 name->name = p->name;
292 } else {
293 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
294 spin_unlock(&dentry->d_lock);
295 name->name = name->inline_name;
296 }
297}
298EXPORT_SYMBOL(take_dentry_name_snapshot);
299
300void release_dentry_name_snapshot(struct name_snapshot *name)
301{
302 if (unlikely(name->name != name->inline_name)) {
303 struct external_name *p;
304 p = container_of(name->name, struct external_name, name[0]);
305 if (unlikely(atomic_dec_and_test(&p->u.count)))
306 kfree_rcu(p, u.head);
307 }
308}
309EXPORT_SYMBOL(release_dentry_name_snapshot);
310
4bf46a27
DH
311static inline void __d_set_inode_and_type(struct dentry *dentry,
312 struct inode *inode,
313 unsigned type_flags)
314{
315 unsigned flags;
316
317 dentry->d_inode = inode;
4bf46a27
DH
318 flags = READ_ONCE(dentry->d_flags);
319 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
320 flags |= type_flags;
321 WRITE_ONCE(dentry->d_flags, flags);
322}
323
4bf46a27
DH
324static inline void __d_clear_type_and_inode(struct dentry *dentry)
325{
326 unsigned flags = READ_ONCE(dentry->d_flags);
327
328 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
329 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
330 dentry->d_inode = NULL;
331}
332
b4f0354e
AV
333static void dentry_free(struct dentry *dentry)
334{
946e51f2 335 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
336 if (unlikely(dname_external(dentry))) {
337 struct external_name *p = external_name(dentry);
338 if (likely(atomic_dec_and_test(&p->u.count))) {
339 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
340 return;
341 }
342 }
b4f0354e
AV
343 /* if dentry was never visible to RCU, immediate free is OK */
344 if (!(dentry->d_flags & DCACHE_RCUACCESS))
345 __d_free(&dentry->d_u.d_rcu);
346 else
347 call_rcu(&dentry->d_u.d_rcu, __d_free);
348}
349
1da177e4
LT
350/*
351 * Release the dentry's inode, using the filesystem
550dce01 352 * d_iput() operation if defined.
31e6b01f
NP
353 */
354static void dentry_unlink_inode(struct dentry * dentry)
355 __releases(dentry->d_lock)
873feea0 356 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
357{
358 struct inode *inode = dentry->d_inode;
550dce01 359 bool hashed = !d_unhashed(dentry);
a528aca7 360
550dce01
AV
361 if (hashed)
362 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 363 __d_clear_type_and_inode(dentry);
946e51f2 364 hlist_del_init(&dentry->d_u.d_alias);
550dce01
AV
365 if (hashed)
366 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 367 spin_unlock(&dentry->d_lock);
873feea0 368 spin_unlock(&inode->i_lock);
31e6b01f
NP
369 if (!inode->i_nlink)
370 fsnotify_inoderemove(inode);
371 if (dentry->d_op && dentry->d_op->d_iput)
372 dentry->d_op->d_iput(dentry, inode);
373 else
374 iput(inode);
375}
376
89dc77bc
LT
377/*
378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379 * is in use - which includes both the "real" per-superblock
380 * LRU list _and_ the DCACHE_SHRINK_LIST use.
381 *
382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383 * on the shrink list (ie not on the superblock LRU list).
384 *
385 * The per-cpu "nr_dentry_unused" counters are updated with
386 * the DCACHE_LRU_LIST bit.
387 *
388 * These helper functions make sure we always follow the
389 * rules. d_lock must be held by the caller.
390 */
391#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
392static void d_lru_add(struct dentry *dentry)
393{
394 D_FLAG_VERIFY(dentry, 0);
395 dentry->d_flags |= DCACHE_LRU_LIST;
396 this_cpu_inc(nr_dentry_unused);
397 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
398}
399
400static void d_lru_del(struct dentry *dentry)
401{
402 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
403 dentry->d_flags &= ~DCACHE_LRU_LIST;
404 this_cpu_dec(nr_dentry_unused);
405 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
406}
407
408static void d_shrink_del(struct dentry *dentry)
409{
410 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
411 list_del_init(&dentry->d_lru);
412 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
413 this_cpu_dec(nr_dentry_unused);
414}
415
416static void d_shrink_add(struct dentry *dentry, struct list_head *list)
417{
418 D_FLAG_VERIFY(dentry, 0);
419 list_add(&dentry->d_lru, list);
420 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
421 this_cpu_inc(nr_dentry_unused);
422}
423
424/*
425 * These can only be called under the global LRU lock, ie during the
426 * callback for freeing the LRU list. "isolate" removes it from the
427 * LRU lists entirely, while shrink_move moves it to the indicated
428 * private list.
429 */
3f97b163 430static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
431{
432 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
433 dentry->d_flags &= ~DCACHE_LRU_LIST;
434 this_cpu_dec(nr_dentry_unused);
3f97b163 435 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
436}
437
3f97b163
VD
438static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
439 struct list_head *list)
89dc77bc
LT
440{
441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 443 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
444}
445
da3bbdd4 446/*
f6041567 447 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
448 */
449static void dentry_lru_add(struct dentry *dentry)
450{
89dc77bc
LT
451 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
452 d_lru_add(dentry);
563f4001
JB
453 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
454 dentry->d_flags |= DCACHE_REFERENCED;
da3bbdd4
KM
455}
456
789680d1
NP
457/**
458 * d_drop - drop a dentry
459 * @dentry: dentry to drop
460 *
461 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
462 * be found through a VFS lookup any more. Note that this is different from
463 * deleting the dentry - d_delete will try to mark the dentry negative if
464 * possible, giving a successful _negative_ lookup, while d_drop will
465 * just make the cache lookup fail.
466 *
467 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
468 * reason (NFS timeouts or autofs deletes).
469 *
470 * __d_drop requires dentry->d_lock.
471 */
472void __d_drop(struct dentry *dentry)
473{
dea3667b 474 if (!d_unhashed(dentry)) {
b61625d2 475 struct hlist_bl_head *b;
7632e465
BF
476 /*
477 * Hashed dentries are normally on the dentry hashtable,
478 * with the exception of those newly allocated by
f1ee6162 479 * d_obtain_root, which are always IS_ROOT:
7632e465
BF
480 */
481 if (unlikely(IS_ROOT(dentry)))
f1ee6162 482 b = &dentry->d_sb->s_roots;
b61625d2 483 else
8387ff25 484 b = d_hash(dentry->d_name.hash);
b61625d2
AV
485
486 hlist_bl_lock(b);
487 __hlist_bl_del(&dentry->d_hash);
488 dentry->d_hash.pprev = NULL;
489 hlist_bl_unlock(b);
d614146d
AV
490 /* After this call, in-progress rcu-walk path lookup will fail. */
491 write_seqcount_invalidate(&dentry->d_seq);
789680d1
NP
492 }
493}
494EXPORT_SYMBOL(__d_drop);
495
496void d_drop(struct dentry *dentry)
497{
789680d1
NP
498 spin_lock(&dentry->d_lock);
499 __d_drop(dentry);
500 spin_unlock(&dentry->d_lock);
789680d1
NP
501}
502EXPORT_SYMBOL(d_drop);
503
ba65dc5e
AV
504static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
505{
506 struct dentry *next;
507 /*
508 * Inform d_walk() and shrink_dentry_list() that we are no longer
509 * attached to the dentry tree
510 */
511 dentry->d_flags |= DCACHE_DENTRY_KILLED;
512 if (unlikely(list_empty(&dentry->d_child)))
513 return;
514 __list_del_entry(&dentry->d_child);
515 /*
516 * Cursors can move around the list of children. While we'd been
517 * a normal list member, it didn't matter - ->d_child.next would've
518 * been updated. However, from now on it won't be and for the
519 * things like d_walk() it might end up with a nasty surprise.
520 * Normally d_walk() doesn't care about cursors moving around -
521 * ->d_lock on parent prevents that and since a cursor has no children
522 * of its own, we get through it without ever unlocking the parent.
523 * There is one exception, though - if we ascend from a child that
524 * gets killed as soon as we unlock it, the next sibling is found
525 * using the value left in its ->d_child.next. And if _that_
526 * pointed to a cursor, and cursor got moved (e.g. by lseek())
527 * before d_walk() regains parent->d_lock, we'll end up skipping
528 * everything the cursor had been moved past.
529 *
530 * Solution: make sure that the pointer left behind in ->d_child.next
531 * points to something that won't be moving around. I.e. skip the
532 * cursors.
533 */
534 while (dentry->d_child.next != &parent->d_subdirs) {
535 next = list_entry(dentry->d_child.next, struct dentry, d_child);
536 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
537 break;
538 dentry->d_child.next = next->d_child.next;
539 }
540}
541
e55fd011 542static void __dentry_kill(struct dentry *dentry)
77812a1e 543{
41edf278
AV
544 struct dentry *parent = NULL;
545 bool can_free = true;
41edf278 546 if (!IS_ROOT(dentry))
77812a1e 547 parent = dentry->d_parent;
31e6b01f 548
0d98439e
LT
549 /*
550 * The dentry is now unrecoverably dead to the world.
551 */
552 lockref_mark_dead(&dentry->d_lockref);
553
f0023bc6 554 /*
f0023bc6
SW
555 * inform the fs via d_prune that this dentry is about to be
556 * unhashed and destroyed.
557 */
29266201 558 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
559 dentry->d_op->d_prune(dentry);
560
01b60351
AV
561 if (dentry->d_flags & DCACHE_LRU_LIST) {
562 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
563 d_lru_del(dentry);
01b60351 564 }
77812a1e
NP
565 /* if it was on the hash then remove it */
566 __d_drop(dentry);
ba65dc5e 567 dentry_unlist(dentry, parent);
03b3b889
AV
568 if (parent)
569 spin_unlock(&parent->d_lock);
550dce01
AV
570 if (dentry->d_inode)
571 dentry_unlink_inode(dentry);
572 else
573 spin_unlock(&dentry->d_lock);
03b3b889
AV
574 this_cpu_dec(nr_dentry);
575 if (dentry->d_op && dentry->d_op->d_release)
576 dentry->d_op->d_release(dentry);
577
41edf278
AV
578 spin_lock(&dentry->d_lock);
579 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
580 dentry->d_flags |= DCACHE_MAY_FREE;
581 can_free = false;
582 }
583 spin_unlock(&dentry->d_lock);
41edf278
AV
584 if (likely(can_free))
585 dentry_free(dentry);
e55fd011
AV
586}
587
588/*
589 * Finish off a dentry we've decided to kill.
590 * dentry->d_lock must be held, returns with it unlocked.
591 * If ref is non-zero, then decrement the refcount too.
592 * Returns dentry requiring refcount drop, or NULL if we're done.
593 */
8cbf74da 594static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
595 __releases(dentry->d_lock)
596{
597 struct inode *inode = dentry->d_inode;
598 struct dentry *parent = NULL;
599
600 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
601 goto failed;
602
603 if (!IS_ROOT(dentry)) {
604 parent = dentry->d_parent;
605 if (unlikely(!spin_trylock(&parent->d_lock))) {
606 if (inode)
607 spin_unlock(&inode->i_lock);
608 goto failed;
609 }
610 }
611
612 __dentry_kill(dentry);
03b3b889 613 return parent;
e55fd011
AV
614
615failed:
8cbf74da 616 spin_unlock(&dentry->d_lock);
e55fd011 617 return dentry; /* try again with same dentry */
77812a1e
NP
618}
619
046b961b
AV
620static inline struct dentry *lock_parent(struct dentry *dentry)
621{
622 struct dentry *parent = dentry->d_parent;
623 if (IS_ROOT(dentry))
624 return NULL;
360f5479 625 if (unlikely(dentry->d_lockref.count < 0))
c2338f2d 626 return NULL;
046b961b
AV
627 if (likely(spin_trylock(&parent->d_lock)))
628 return parent;
046b961b 629 rcu_read_lock();
c2338f2d 630 spin_unlock(&dentry->d_lock);
046b961b 631again:
66702eb5 632 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
633 spin_lock(&parent->d_lock);
634 /*
635 * We can't blindly lock dentry until we are sure
636 * that we won't violate the locking order.
637 * Any changes of dentry->d_parent must have
638 * been done with parent->d_lock held, so
639 * spin_lock() above is enough of a barrier
640 * for checking if it's still our child.
641 */
642 if (unlikely(parent != dentry->d_parent)) {
643 spin_unlock(&parent->d_lock);
644 goto again;
645 }
646 rcu_read_unlock();
647 if (parent != dentry)
9f12600f 648 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
649 else
650 parent = NULL;
651 return parent;
652}
653
360f5479
LT
654/*
655 * Try to do a lockless dput(), and return whether that was successful.
656 *
657 * If unsuccessful, we return false, having already taken the dentry lock.
658 *
659 * The caller needs to hold the RCU read lock, so that the dentry is
660 * guaranteed to stay around even if the refcount goes down to zero!
661 */
662static inline bool fast_dput(struct dentry *dentry)
663{
664 int ret;
665 unsigned int d_flags;
666
667 /*
668 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 669 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
670 */
671 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
672 return lockref_put_or_lock(&dentry->d_lockref);
673
674 /*
675 * .. otherwise, we can try to just decrement the
676 * lockref optimistically.
677 */
678 ret = lockref_put_return(&dentry->d_lockref);
679
680 /*
681 * If the lockref_put_return() failed due to the lock being held
682 * by somebody else, the fast path has failed. We will need to
683 * get the lock, and then check the count again.
684 */
685 if (unlikely(ret < 0)) {
686 spin_lock(&dentry->d_lock);
687 if (dentry->d_lockref.count > 1) {
688 dentry->d_lockref.count--;
689 spin_unlock(&dentry->d_lock);
690 return 1;
691 }
692 return 0;
693 }
694
695 /*
696 * If we weren't the last ref, we're done.
697 */
698 if (ret)
699 return 1;
700
701 /*
702 * Careful, careful. The reference count went down
703 * to zero, but we don't hold the dentry lock, so
704 * somebody else could get it again, and do another
705 * dput(), and we need to not race with that.
706 *
707 * However, there is a very special and common case
708 * where we don't care, because there is nothing to
709 * do: the dentry is still hashed, it does not have
710 * a 'delete' op, and it's referenced and already on
711 * the LRU list.
712 *
713 * NOTE! Since we aren't locked, these values are
714 * not "stable". However, it is sufficient that at
715 * some point after we dropped the reference the
716 * dentry was hashed and the flags had the proper
717 * value. Other dentry users may have re-gotten
718 * a reference to the dentry and change that, but
719 * our work is done - we can leave the dentry
720 * around with a zero refcount.
721 */
722 smp_rmb();
66702eb5 723 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 724 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
725
726 /* Nothing to do? Dropping the reference was all we needed? */
727 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
728 return 1;
729
730 /*
731 * Not the fast normal case? Get the lock. We've already decremented
732 * the refcount, but we'll need to re-check the situation after
733 * getting the lock.
734 */
735 spin_lock(&dentry->d_lock);
736
737 /*
738 * Did somebody else grab a reference to it in the meantime, and
739 * we're no longer the last user after all? Alternatively, somebody
740 * else could have killed it and marked it dead. Either way, we
741 * don't need to do anything else.
742 */
743 if (dentry->d_lockref.count) {
744 spin_unlock(&dentry->d_lock);
745 return 1;
746 }
747
748 /*
749 * Re-get the reference we optimistically dropped. We hold the
750 * lock, and we just tested that it was zero, so we can just
751 * set it to 1.
752 */
753 dentry->d_lockref.count = 1;
754 return 0;
755}
756
757
1da177e4
LT
758/*
759 * This is dput
760 *
761 * This is complicated by the fact that we do not want to put
762 * dentries that are no longer on any hash chain on the unused
763 * list: we'd much rather just get rid of them immediately.
764 *
765 * However, that implies that we have to traverse the dentry
766 * tree upwards to the parents which might _also_ now be
767 * scheduled for deletion (it may have been only waiting for
768 * its last child to go away).
769 *
770 * This tail recursion is done by hand as we don't want to depend
771 * on the compiler to always get this right (gcc generally doesn't).
772 * Real recursion would eat up our stack space.
773 */
774
775/*
776 * dput - release a dentry
777 * @dentry: dentry to release
778 *
779 * Release a dentry. This will drop the usage count and if appropriate
780 * call the dentry unlink method as well as removing it from the queues and
781 * releasing its resources. If the parent dentries were scheduled for release
782 * they too may now get deleted.
1da177e4 783 */
1da177e4
LT
784void dput(struct dentry *dentry)
785{
8aab6a27 786 if (unlikely(!dentry))
1da177e4
LT
787 return;
788
789repeat:
47be6184
WF
790 might_sleep();
791
360f5479
LT
792 rcu_read_lock();
793 if (likely(fast_dput(dentry))) {
794 rcu_read_unlock();
1da177e4 795 return;
360f5479
LT
796 }
797
798 /* Slow case: now with the dentry lock held */
799 rcu_read_unlock();
1da177e4 800
85c7f810
AV
801 WARN_ON(d_in_lookup(dentry));
802
8aab6a27
LT
803 /* Unreachable? Get rid of it */
804 if (unlikely(d_unhashed(dentry)))
805 goto kill_it;
806
75a6f82a
AV
807 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
808 goto kill_it;
809
8aab6a27 810 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 811 if (dentry->d_op->d_delete(dentry))
61f3dee4 812 goto kill_it;
1da177e4 813 }
265ac902 814
a4633357 815 dentry_lru_add(dentry);
265ac902 816
98474236 817 dentry->d_lockref.count--;
61f3dee4 818 spin_unlock(&dentry->d_lock);
1da177e4
LT
819 return;
820
d52b9086 821kill_it:
8cbf74da 822 dentry = dentry_kill(dentry);
47be6184
WF
823 if (dentry) {
824 cond_resched();
d52b9086 825 goto repeat;
47be6184 826 }
1da177e4 827}
ec4f8605 828EXPORT_SYMBOL(dput);
1da177e4 829
1da177e4 830
b5c84bf6 831/* This must be called with d_lock held */
dc0474be 832static inline void __dget_dlock(struct dentry *dentry)
23044507 833{
98474236 834 dentry->d_lockref.count++;
23044507
NP
835}
836
dc0474be 837static inline void __dget(struct dentry *dentry)
1da177e4 838{
98474236 839 lockref_get(&dentry->d_lockref);
1da177e4
LT
840}
841
b7ab39f6
NP
842struct dentry *dget_parent(struct dentry *dentry)
843{
df3d0bbc 844 int gotref;
b7ab39f6
NP
845 struct dentry *ret;
846
df3d0bbc
WL
847 /*
848 * Do optimistic parent lookup without any
849 * locking.
850 */
851 rcu_read_lock();
66702eb5 852 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
853 gotref = lockref_get_not_zero(&ret->d_lockref);
854 rcu_read_unlock();
855 if (likely(gotref)) {
66702eb5 856 if (likely(ret == READ_ONCE(dentry->d_parent)))
df3d0bbc
WL
857 return ret;
858 dput(ret);
859 }
860
b7ab39f6 861repeat:
a734eb45
NP
862 /*
863 * Don't need rcu_dereference because we re-check it was correct under
864 * the lock.
865 */
866 rcu_read_lock();
b7ab39f6 867 ret = dentry->d_parent;
a734eb45
NP
868 spin_lock(&ret->d_lock);
869 if (unlikely(ret != dentry->d_parent)) {
870 spin_unlock(&ret->d_lock);
871 rcu_read_unlock();
b7ab39f6
NP
872 goto repeat;
873 }
a734eb45 874 rcu_read_unlock();
98474236
WL
875 BUG_ON(!ret->d_lockref.count);
876 ret->d_lockref.count++;
b7ab39f6 877 spin_unlock(&ret->d_lock);
b7ab39f6
NP
878 return ret;
879}
880EXPORT_SYMBOL(dget_parent);
881
1da177e4
LT
882/**
883 * d_find_alias - grab a hashed alias of inode
884 * @inode: inode in question
1da177e4
LT
885 *
886 * If inode has a hashed alias, or is a directory and has any alias,
887 * acquire the reference to alias and return it. Otherwise return NULL.
888 * Notice that if inode is a directory there can be only one alias and
889 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
890 * of a filesystem, or if the directory was renamed and d_revalidate
891 * was the first vfs operation to notice.
1da177e4 892 *
21c0d8fd 893 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 894 * any other hashed alias over that one.
1da177e4 895 */
52ed46f0 896static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 897{
da502956 898 struct dentry *alias, *discon_alias;
1da177e4 899
da502956
NP
900again:
901 discon_alias = NULL;
946e51f2 902 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 903 spin_lock(&alias->d_lock);
1da177e4 904 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 905 if (IS_ROOT(alias) &&
da502956 906 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 907 discon_alias = alias;
52ed46f0 908 } else {
dc0474be 909 __dget_dlock(alias);
da502956
NP
910 spin_unlock(&alias->d_lock);
911 return alias;
912 }
913 }
914 spin_unlock(&alias->d_lock);
915 }
916 if (discon_alias) {
917 alias = discon_alias;
918 spin_lock(&alias->d_lock);
919 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
920 __dget_dlock(alias);
921 spin_unlock(&alias->d_lock);
922 return alias;
1da177e4 923 }
da502956
NP
924 spin_unlock(&alias->d_lock);
925 goto again;
1da177e4 926 }
da502956 927 return NULL;
1da177e4
LT
928}
929
da502956 930struct dentry *d_find_alias(struct inode *inode)
1da177e4 931{
214fda1f
DH
932 struct dentry *de = NULL;
933
b3d9b7a3 934 if (!hlist_empty(&inode->i_dentry)) {
873feea0 935 spin_lock(&inode->i_lock);
52ed46f0 936 de = __d_find_alias(inode);
873feea0 937 spin_unlock(&inode->i_lock);
214fda1f 938 }
1da177e4
LT
939 return de;
940}
ec4f8605 941EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
942
943/*
944 * Try to kill dentries associated with this inode.
945 * WARNING: you must own a reference to inode.
946 */
947void d_prune_aliases(struct inode *inode)
948{
0cdca3f9 949 struct dentry *dentry;
1da177e4 950restart:
873feea0 951 spin_lock(&inode->i_lock);
946e51f2 952 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 953 spin_lock(&dentry->d_lock);
98474236 954 if (!dentry->d_lockref.count) {
29355c39
AV
955 struct dentry *parent = lock_parent(dentry);
956 if (likely(!dentry->d_lockref.count)) {
957 __dentry_kill(dentry);
4a7795d3 958 dput(parent);
29355c39
AV
959 goto restart;
960 }
961 if (parent)
962 spin_unlock(&parent->d_lock);
1da177e4
LT
963 }
964 spin_unlock(&dentry->d_lock);
965 }
873feea0 966 spin_unlock(&inode->i_lock);
1da177e4 967}
ec4f8605 968EXPORT_SYMBOL(d_prune_aliases);
1da177e4 969
3049cfe2 970static void shrink_dentry_list(struct list_head *list)
1da177e4 971{
5c47e6d0 972 struct dentry *dentry, *parent;
da3bbdd4 973
60942f2f 974 while (!list_empty(list)) {
ff2fde99 975 struct inode *inode;
60942f2f 976 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 977 spin_lock(&dentry->d_lock);
046b961b
AV
978 parent = lock_parent(dentry);
979
dd1f6b2e
DC
980 /*
981 * The dispose list is isolated and dentries are not accounted
982 * to the LRU here, so we can simply remove it from the list
983 * here regardless of whether it is referenced or not.
984 */
89dc77bc 985 d_shrink_del(dentry);
dd1f6b2e 986
1da177e4
LT
987 /*
988 * We found an inuse dentry which was not removed from
dd1f6b2e 989 * the LRU because of laziness during lookup. Do not free it.
1da177e4 990 */
360f5479 991 if (dentry->d_lockref.count > 0) {
da3bbdd4 992 spin_unlock(&dentry->d_lock);
046b961b
AV
993 if (parent)
994 spin_unlock(&parent->d_lock);
1da177e4
LT
995 continue;
996 }
77812a1e 997
64fd72e0
AV
998
999 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1000 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1001 spin_unlock(&dentry->d_lock);
046b961b
AV
1002 if (parent)
1003 spin_unlock(&parent->d_lock);
64fd72e0
AV
1004 if (can_free)
1005 dentry_free(dentry);
1006 continue;
1007 }
1008
ff2fde99
AV
1009 inode = dentry->d_inode;
1010 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 1011 d_shrink_add(dentry, list);
dd1f6b2e 1012 spin_unlock(&dentry->d_lock);
046b961b
AV
1013 if (parent)
1014 spin_unlock(&parent->d_lock);
5c47e6d0 1015 continue;
dd1f6b2e 1016 }
ff2fde99 1017
ff2fde99 1018 __dentry_kill(dentry);
046b961b 1019
5c47e6d0
AV
1020 /*
1021 * We need to prune ancestors too. This is necessary to prevent
1022 * quadratic behavior of shrink_dcache_parent(), but is also
1023 * expected to be beneficial in reducing dentry cache
1024 * fragmentation.
1025 */
1026 dentry = parent;
b2b80195
AV
1027 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1028 parent = lock_parent(dentry);
1029 if (dentry->d_lockref.count != 1) {
1030 dentry->d_lockref.count--;
1031 spin_unlock(&dentry->d_lock);
1032 if (parent)
1033 spin_unlock(&parent->d_lock);
1034 break;
1035 }
1036 inode = dentry->d_inode; /* can't be NULL */
1037 if (unlikely(!spin_trylock(&inode->i_lock))) {
1038 spin_unlock(&dentry->d_lock);
1039 if (parent)
1040 spin_unlock(&parent->d_lock);
1041 cpu_relax();
1042 continue;
1043 }
1044 __dentry_kill(dentry);
1045 dentry = parent;
1046 }
da3bbdd4 1047 }
3049cfe2
CH
1048}
1049
3f97b163
VD
1050static enum lru_status dentry_lru_isolate(struct list_head *item,
1051 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1052{
1053 struct list_head *freeable = arg;
1054 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1055
1056
1057 /*
1058 * we are inverting the lru lock/dentry->d_lock here,
1059 * so use a trylock. If we fail to get the lock, just skip
1060 * it
1061 */
1062 if (!spin_trylock(&dentry->d_lock))
1063 return LRU_SKIP;
1064
1065 /*
1066 * Referenced dentries are still in use. If they have active
1067 * counts, just remove them from the LRU. Otherwise give them
1068 * another pass through the LRU.
1069 */
1070 if (dentry->d_lockref.count) {
3f97b163 1071 d_lru_isolate(lru, dentry);
f6041567
DC
1072 spin_unlock(&dentry->d_lock);
1073 return LRU_REMOVED;
1074 }
1075
1076 if (dentry->d_flags & DCACHE_REFERENCED) {
1077 dentry->d_flags &= ~DCACHE_REFERENCED;
1078 spin_unlock(&dentry->d_lock);
1079
1080 /*
1081 * The list move itself will be made by the common LRU code. At
1082 * this point, we've dropped the dentry->d_lock but keep the
1083 * lru lock. This is safe to do, since every list movement is
1084 * protected by the lru lock even if both locks are held.
1085 *
1086 * This is guaranteed by the fact that all LRU management
1087 * functions are intermediated by the LRU API calls like
1088 * list_lru_add and list_lru_del. List movement in this file
1089 * only ever occur through this functions or through callbacks
1090 * like this one, that are called from the LRU API.
1091 *
1092 * The only exceptions to this are functions like
1093 * shrink_dentry_list, and code that first checks for the
1094 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1095 * operating only with stack provided lists after they are
1096 * properly isolated from the main list. It is thus, always a
1097 * local access.
1098 */
1099 return LRU_ROTATE;
1100 }
1101
3f97b163 1102 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1103 spin_unlock(&dentry->d_lock);
1104
1105 return LRU_REMOVED;
1106}
1107
3049cfe2 1108/**
b48f03b3
DC
1109 * prune_dcache_sb - shrink the dcache
1110 * @sb: superblock
503c358c 1111 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1112 *
503c358c
VD
1113 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1114 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1115 * function.
3049cfe2 1116 *
b48f03b3
DC
1117 * This function may fail to free any resources if all the dentries are in
1118 * use.
3049cfe2 1119 */
503c358c 1120long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1121{
f6041567
DC
1122 LIST_HEAD(dispose);
1123 long freed;
3049cfe2 1124
503c358c
VD
1125 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1126 dentry_lru_isolate, &dispose);
f6041567 1127 shrink_dentry_list(&dispose);
0a234c6d 1128 return freed;
da3bbdd4 1129}
23044507 1130
4e717f5c 1131static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1132 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1133{
4e717f5c
GC
1134 struct list_head *freeable = arg;
1135 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1136
4e717f5c
GC
1137 /*
1138 * we are inverting the lru lock/dentry->d_lock here,
1139 * so use a trylock. If we fail to get the lock, just skip
1140 * it
1141 */
1142 if (!spin_trylock(&dentry->d_lock))
1143 return LRU_SKIP;
1144
3f97b163 1145 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1146 spin_unlock(&dentry->d_lock);
ec33679d 1147
4e717f5c 1148 return LRU_REMOVED;
da3bbdd4
KM
1149}
1150
4e717f5c 1151
1da177e4
LT
1152/**
1153 * shrink_dcache_sb - shrink dcache for a superblock
1154 * @sb: superblock
1155 *
3049cfe2
CH
1156 * Shrink the dcache for the specified super block. This is used to free
1157 * the dcache before unmounting a file system.
1da177e4 1158 */
3049cfe2 1159void shrink_dcache_sb(struct super_block *sb)
1da177e4 1160{
4e717f5c
GC
1161 long freed;
1162
1163 do {
1164 LIST_HEAD(dispose);
1165
1166 freed = list_lru_walk(&sb->s_dentry_lru,
b17c070f 1167 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1168
4e717f5c
GC
1169 this_cpu_sub(nr_dentry_unused, freed);
1170 shrink_dentry_list(&dispose);
b17c070f
ST
1171 cond_resched();
1172 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1173}
ec4f8605 1174EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1175
db14fc3a
MS
1176/**
1177 * enum d_walk_ret - action to talke during tree walk
1178 * @D_WALK_CONTINUE: contrinue walk
1179 * @D_WALK_QUIT: quit walk
1180 * @D_WALK_NORETRY: quit when retry is needed
1181 * @D_WALK_SKIP: skip this dentry and its children
1182 */
1183enum d_walk_ret {
1184 D_WALK_CONTINUE,
1185 D_WALK_QUIT,
1186 D_WALK_NORETRY,
1187 D_WALK_SKIP,
1188};
c826cb7d 1189
1da177e4 1190/**
db14fc3a
MS
1191 * d_walk - walk the dentry tree
1192 * @parent: start of walk
1193 * @data: data passed to @enter() and @finish()
1194 * @enter: callback when first entering the dentry
1195 * @finish: callback when successfully finished the walk
1da177e4 1196 *
db14fc3a 1197 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1198 */
db14fc3a
MS
1199static void d_walk(struct dentry *parent, void *data,
1200 enum d_walk_ret (*enter)(void *, struct dentry *),
1201 void (*finish)(void *))
1da177e4 1202{
949854d0 1203 struct dentry *this_parent;
1da177e4 1204 struct list_head *next;
48f5ec21 1205 unsigned seq = 0;
db14fc3a
MS
1206 enum d_walk_ret ret;
1207 bool retry = true;
949854d0 1208
58db63d0 1209again:
48f5ec21 1210 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1211 this_parent = parent;
2fd6b7f5 1212 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1213
1214 ret = enter(data, this_parent);
1215 switch (ret) {
1216 case D_WALK_CONTINUE:
1217 break;
1218 case D_WALK_QUIT:
1219 case D_WALK_SKIP:
1220 goto out_unlock;
1221 case D_WALK_NORETRY:
1222 retry = false;
1223 break;
1224 }
1da177e4
LT
1225repeat:
1226 next = this_parent->d_subdirs.next;
1227resume:
1228 while (next != &this_parent->d_subdirs) {
1229 struct list_head *tmp = next;
946e51f2 1230 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1231 next = tmp->next;
2fd6b7f5 1232
ba65dc5e
AV
1233 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1234 continue;
1235
2fd6b7f5 1236 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1237
1238 ret = enter(data, dentry);
1239 switch (ret) {
1240 case D_WALK_CONTINUE:
1241 break;
1242 case D_WALK_QUIT:
2fd6b7f5 1243 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1244 goto out_unlock;
1245 case D_WALK_NORETRY:
1246 retry = false;
1247 break;
1248 case D_WALK_SKIP:
1249 spin_unlock(&dentry->d_lock);
1250 continue;
2fd6b7f5 1251 }
db14fc3a 1252
1da177e4 1253 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1254 spin_unlock(&this_parent->d_lock);
1255 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1256 this_parent = dentry;
2fd6b7f5 1257 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1258 goto repeat;
1259 }
2fd6b7f5 1260 spin_unlock(&dentry->d_lock);
1da177e4
LT
1261 }
1262 /*
1263 * All done at this level ... ascend and resume the search.
1264 */
ca5358ef
AV
1265 rcu_read_lock();
1266ascend:
1da177e4 1267 if (this_parent != parent) {
c826cb7d 1268 struct dentry *child = this_parent;
31dec132
AV
1269 this_parent = child->d_parent;
1270
31dec132
AV
1271 spin_unlock(&child->d_lock);
1272 spin_lock(&this_parent->d_lock);
1273
ca5358ef
AV
1274 /* might go back up the wrong parent if we have had a rename. */
1275 if (need_seqretry(&rename_lock, seq))
949854d0 1276 goto rename_retry;
2159184e
AV
1277 /* go into the first sibling still alive */
1278 do {
1279 next = child->d_child.next;
ca5358ef
AV
1280 if (next == &this_parent->d_subdirs)
1281 goto ascend;
1282 child = list_entry(next, struct dentry, d_child);
2159184e 1283 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1284 rcu_read_unlock();
1da177e4
LT
1285 goto resume;
1286 }
ca5358ef 1287 if (need_seqretry(&rename_lock, seq))
949854d0 1288 goto rename_retry;
ca5358ef 1289 rcu_read_unlock();
db14fc3a
MS
1290 if (finish)
1291 finish(data);
1292
1293out_unlock:
1294 spin_unlock(&this_parent->d_lock);
48f5ec21 1295 done_seqretry(&rename_lock, seq);
db14fc3a 1296 return;
58db63d0
NP
1297
1298rename_retry:
ca5358ef
AV
1299 spin_unlock(&this_parent->d_lock);
1300 rcu_read_unlock();
1301 BUG_ON(seq & 1);
db14fc3a
MS
1302 if (!retry)
1303 return;
48f5ec21 1304 seq = 1;
58db63d0 1305 goto again;
1da177e4 1306}
db14fc3a 1307
01619491
IK
1308struct check_mount {
1309 struct vfsmount *mnt;
1310 unsigned int mounted;
1311};
1312
1313static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1314{
1315 struct check_mount *info = data;
1316 struct path path = { .mnt = info->mnt, .dentry = dentry };
1317
1318 if (likely(!d_mountpoint(dentry)))
1319 return D_WALK_CONTINUE;
1320 if (__path_is_mountpoint(&path)) {
1321 info->mounted = 1;
1322 return D_WALK_QUIT;
1323 }
1324 return D_WALK_CONTINUE;
1325}
1326
1327/**
1328 * path_has_submounts - check for mounts over a dentry in the
1329 * current namespace.
1330 * @parent: path to check.
1331 *
1332 * Return true if the parent or its subdirectories contain
1333 * a mount point in the current namespace.
1334 */
1335int path_has_submounts(const struct path *parent)
1336{
1337 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1338
1339 read_seqlock_excl(&mount_lock);
1340 d_walk(parent->dentry, &data, path_check_mount, NULL);
1341 read_sequnlock_excl(&mount_lock);
1342
1343 return data.mounted;
1344}
1345EXPORT_SYMBOL(path_has_submounts);
1346
eed81007
MS
1347/*
1348 * Called by mount code to set a mountpoint and check if the mountpoint is
1349 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1350 * subtree can become unreachable).
1351 *
1ffe46d1 1352 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1353 * this reason take rename_lock and d_lock on dentry and ancestors.
1354 */
1355int d_set_mounted(struct dentry *dentry)
1356{
1357 struct dentry *p;
1358 int ret = -ENOENT;
1359 write_seqlock(&rename_lock);
1360 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1361 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1362 spin_lock(&p->d_lock);
1363 if (unlikely(d_unhashed(p))) {
1364 spin_unlock(&p->d_lock);
1365 goto out;
1366 }
1367 spin_unlock(&p->d_lock);
1368 }
1369 spin_lock(&dentry->d_lock);
1370 if (!d_unlinked(dentry)) {
3895dbf8
EB
1371 ret = -EBUSY;
1372 if (!d_mountpoint(dentry)) {
1373 dentry->d_flags |= DCACHE_MOUNTED;
1374 ret = 0;
1375 }
eed81007
MS
1376 }
1377 spin_unlock(&dentry->d_lock);
1378out:
1379 write_sequnlock(&rename_lock);
1380 return ret;
1381}
1382
1da177e4 1383/*
fd517909 1384 * Search the dentry child list of the specified parent,
1da177e4
LT
1385 * and move any unused dentries to the end of the unused
1386 * list for prune_dcache(). We descend to the next level
1387 * whenever the d_subdirs list is non-empty and continue
1388 * searching.
1389 *
1390 * It returns zero iff there are no unused children,
1391 * otherwise it returns the number of children moved to
1392 * the end of the unused list. This may not be the total
1393 * number of unused children, because select_parent can
1394 * drop the lock and return early due to latency
1395 * constraints.
1396 */
1da177e4 1397
db14fc3a
MS
1398struct select_data {
1399 struct dentry *start;
1400 struct list_head dispose;
1401 int found;
1402};
23044507 1403
db14fc3a
MS
1404static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1405{
1406 struct select_data *data = _data;
1407 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1408
db14fc3a
MS
1409 if (data->start == dentry)
1410 goto out;
2fd6b7f5 1411
fe91522a 1412 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1413 data->found++;
fe91522a
AV
1414 } else {
1415 if (dentry->d_flags & DCACHE_LRU_LIST)
1416 d_lru_del(dentry);
1417 if (!dentry->d_lockref.count) {
1418 d_shrink_add(dentry, &data->dispose);
1419 data->found++;
1420 }
1da177e4 1421 }
db14fc3a
MS
1422 /*
1423 * We can return to the caller if we have found some (this
1424 * ensures forward progress). We'll be coming back to find
1425 * the rest.
1426 */
fe91522a
AV
1427 if (!list_empty(&data->dispose))
1428 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1429out:
db14fc3a 1430 return ret;
1da177e4
LT
1431}
1432
1433/**
1434 * shrink_dcache_parent - prune dcache
1435 * @parent: parent of entries to prune
1436 *
1437 * Prune the dcache to remove unused children of the parent dentry.
1438 */
db14fc3a 1439void shrink_dcache_parent(struct dentry *parent)
1da177e4 1440{
db14fc3a
MS
1441 for (;;) {
1442 struct select_data data;
1da177e4 1443
db14fc3a
MS
1444 INIT_LIST_HEAD(&data.dispose);
1445 data.start = parent;
1446 data.found = 0;
1447
1448 d_walk(parent, &data, select_collect, NULL);
1449 if (!data.found)
1450 break;
1451
1452 shrink_dentry_list(&data.dispose);
421348f1
GT
1453 cond_resched();
1454 }
1da177e4 1455}
ec4f8605 1456EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1457
9c8c10e2 1458static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1459{
9c8c10e2
AV
1460 /* it has busy descendents; complain about those instead */
1461 if (!list_empty(&dentry->d_subdirs))
1462 return D_WALK_CONTINUE;
42c32608 1463
9c8c10e2
AV
1464 /* root with refcount 1 is fine */
1465 if (dentry == _data && dentry->d_lockref.count == 1)
1466 return D_WALK_CONTINUE;
1467
1468 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1469 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1470 dentry,
1471 dentry->d_inode ?
1472 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1473 dentry,
42c32608
AV
1474 dentry->d_lockref.count,
1475 dentry->d_sb->s_type->name,
1476 dentry->d_sb->s_id);
9c8c10e2
AV
1477 WARN_ON(1);
1478 return D_WALK_CONTINUE;
1479}
1480
1481static void do_one_tree(struct dentry *dentry)
1482{
1483 shrink_dcache_parent(dentry);
1484 d_walk(dentry, dentry, umount_check, NULL);
1485 d_drop(dentry);
1486 dput(dentry);
42c32608
AV
1487}
1488
1489/*
1490 * destroy the dentries attached to a superblock on unmounting
1491 */
1492void shrink_dcache_for_umount(struct super_block *sb)
1493{
1494 struct dentry *dentry;
1495
9c8c10e2 1496 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1497
1498 dentry = sb->s_root;
1499 sb->s_root = NULL;
9c8c10e2 1500 do_one_tree(dentry);
42c32608 1501
f1ee6162
N
1502 while (!hlist_bl_empty(&sb->s_roots)) {
1503 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1504 do_one_tree(dentry);
42c32608
AV
1505 }
1506}
1507
8ed936b5
EB
1508struct detach_data {
1509 struct select_data select;
1510 struct dentry *mountpoint;
1511};
1512static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1513{
8ed936b5 1514 struct detach_data *data = _data;
848ac114
MS
1515
1516 if (d_mountpoint(dentry)) {
8ed936b5
EB
1517 __dget_dlock(dentry);
1518 data->mountpoint = dentry;
848ac114
MS
1519 return D_WALK_QUIT;
1520 }
1521
8ed936b5 1522 return select_collect(&data->select, dentry);
848ac114
MS
1523}
1524
1525static void check_and_drop(void *_data)
1526{
8ed936b5 1527 struct detach_data *data = _data;
848ac114 1528
81be24d2 1529 if (!data->mountpoint && list_empty(&data->select.dispose))
8ed936b5 1530 __d_drop(data->select.start);
848ac114
MS
1531}
1532
1533/**
1ffe46d1
EB
1534 * d_invalidate - detach submounts, prune dcache, and drop
1535 * @dentry: dentry to invalidate (aka detach, prune and drop)
1536 *
1ffe46d1 1537 * no dcache lock.
848ac114 1538 *
8ed936b5
EB
1539 * The final d_drop is done as an atomic operation relative to
1540 * rename_lock ensuring there are no races with d_set_mounted. This
1541 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1542 */
5542aa2f 1543void d_invalidate(struct dentry *dentry)
848ac114 1544{
1ffe46d1
EB
1545 /*
1546 * If it's already been dropped, return OK.
1547 */
1548 spin_lock(&dentry->d_lock);
1549 if (d_unhashed(dentry)) {
1550 spin_unlock(&dentry->d_lock);
5542aa2f 1551 return;
1ffe46d1
EB
1552 }
1553 spin_unlock(&dentry->d_lock);
1554
848ac114
MS
1555 /* Negative dentries can be dropped without further checks */
1556 if (!dentry->d_inode) {
1557 d_drop(dentry);
5542aa2f 1558 return;
848ac114
MS
1559 }
1560
1561 for (;;) {
8ed936b5 1562 struct detach_data data;
848ac114 1563
8ed936b5
EB
1564 data.mountpoint = NULL;
1565 INIT_LIST_HEAD(&data.select.dispose);
1566 data.select.start = dentry;
1567 data.select.found = 0;
1568
1569 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1570
81be24d2 1571 if (!list_empty(&data.select.dispose))
8ed936b5 1572 shrink_dentry_list(&data.select.dispose);
81be24d2
AV
1573 else if (!data.mountpoint)
1574 return;
848ac114 1575
8ed936b5
EB
1576 if (data.mountpoint) {
1577 detach_mounts(data.mountpoint);
1578 dput(data.mountpoint);
1579 }
848ac114
MS
1580 cond_resched();
1581 }
848ac114 1582}
1ffe46d1 1583EXPORT_SYMBOL(d_invalidate);
848ac114 1584
1da177e4 1585/**
a4464dbc
AV
1586 * __d_alloc - allocate a dcache entry
1587 * @sb: filesystem it will belong to
1da177e4
LT
1588 * @name: qstr of the name
1589 *
1590 * Allocates a dentry. It returns %NULL if there is insufficient memory
1591 * available. On a success the dentry is returned. The name passed in is
1592 * copied and the copy passed in may be reused after this call.
1593 */
1594
a4464dbc 1595struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1596{
1597 struct dentry *dentry;
1598 char *dname;
285b102d 1599 int err;
1da177e4 1600
e12ba74d 1601 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1602 if (!dentry)
1603 return NULL;
1604
6326c71f
LT
1605 /*
1606 * We guarantee that the inline name is always NUL-terminated.
1607 * This way the memcpy() done by the name switching in rename
1608 * will still always have a NUL at the end, even if we might
1609 * be overwriting an internal NUL character
1610 */
1611 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1612 if (unlikely(!name)) {
cdf01226 1613 name = &slash_name;
798434bd
AV
1614 dname = dentry->d_iname;
1615 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1616 size_t size = offsetof(struct external_name, name[1]);
5d097056
VD
1617 struct external_name *p = kmalloc(size + name->len,
1618 GFP_KERNEL_ACCOUNT);
8d85b484 1619 if (!p) {
1da177e4
LT
1620 kmem_cache_free(dentry_cache, dentry);
1621 return NULL;
1622 }
8d85b484
AV
1623 atomic_set(&p->u.count, 1);
1624 dname = p->name;
df4c0e36
AR
1625 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1626 kasan_unpoison_shadow(dname,
1627 round_up(name->len + 1, sizeof(unsigned long)));
1da177e4
LT
1628 } else {
1629 dname = dentry->d_iname;
1630 }
1da177e4
LT
1631
1632 dentry->d_name.len = name->len;
1633 dentry->d_name.hash = name->hash;
1634 memcpy(dname, name->name, name->len);
1635 dname[name->len] = 0;
1636
6326c71f
LT
1637 /* Make sure we always see the terminating NUL character */
1638 smp_wmb();
1639 dentry->d_name.name = dname;
1640
98474236 1641 dentry->d_lockref.count = 1;
dea3667b 1642 dentry->d_flags = 0;
1da177e4 1643 spin_lock_init(&dentry->d_lock);
31e6b01f 1644 seqcount_init(&dentry->d_seq);
1da177e4 1645 dentry->d_inode = NULL;
a4464dbc
AV
1646 dentry->d_parent = dentry;
1647 dentry->d_sb = sb;
1da177e4
LT
1648 dentry->d_op = NULL;
1649 dentry->d_fsdata = NULL;
ceb5bdc2 1650 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1651 INIT_LIST_HEAD(&dentry->d_lru);
1652 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1653 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1654 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1655 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1656
285b102d
MS
1657 if (dentry->d_op && dentry->d_op->d_init) {
1658 err = dentry->d_op->d_init(dentry);
1659 if (err) {
1660 if (dname_external(dentry))
1661 kfree(external_name(dentry));
1662 kmem_cache_free(dentry_cache, dentry);
1663 return NULL;
1664 }
1665 }
1666
3e880fb5 1667 this_cpu_inc(nr_dentry);
312d3ca8 1668
1da177e4
LT
1669 return dentry;
1670}
a4464dbc
AV
1671
1672/**
1673 * d_alloc - allocate a dcache entry
1674 * @parent: parent of entry to allocate
1675 * @name: qstr of the name
1676 *
1677 * Allocates a dentry. It returns %NULL if there is insufficient memory
1678 * available. On a success the dentry is returned. The name passed in is
1679 * copied and the copy passed in may be reused after this call.
1680 */
1681struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1682{
1683 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1684 if (!dentry)
1685 return NULL;
3d56c25e 1686 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1687 spin_lock(&parent->d_lock);
1688 /*
1689 * don't need child lock because it is not subject
1690 * to concurrency here
1691 */
1692 __dget_dlock(parent);
1693 dentry->d_parent = parent;
946e51f2 1694 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1695 spin_unlock(&parent->d_lock);
1696
1697 return dentry;
1698}
ec4f8605 1699EXPORT_SYMBOL(d_alloc);
1da177e4 1700
ba65dc5e
AV
1701struct dentry *d_alloc_cursor(struct dentry * parent)
1702{
1703 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1704 if (dentry) {
1705 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1706 dentry->d_parent = dget(parent);
1707 }
1708 return dentry;
1709}
1710
e1a24bb0
BF
1711/**
1712 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1713 * @sb: the superblock
1714 * @name: qstr of the name
1715 *
1716 * For a filesystem that just pins its dentries in memory and never
1717 * performs lookups at all, return an unhashed IS_ROOT dentry.
1718 */
4b936885
NP
1719struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1720{
e1a24bb0 1721 return __d_alloc(sb, name);
4b936885
NP
1722}
1723EXPORT_SYMBOL(d_alloc_pseudo);
1724
1da177e4
LT
1725struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1726{
1727 struct qstr q;
1728
1729 q.name = name;
8387ff25 1730 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1731 return d_alloc(parent, &q);
1732}
ef26ca97 1733EXPORT_SYMBOL(d_alloc_name);
1da177e4 1734
fb045adb
NP
1735void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1736{
6f7f7caa
LT
1737 WARN_ON_ONCE(dentry->d_op);
1738 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1739 DCACHE_OP_COMPARE |
1740 DCACHE_OP_REVALIDATE |
ecf3d1f1 1741 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1742 DCACHE_OP_DELETE |
d101a125 1743 DCACHE_OP_REAL));
fb045adb
NP
1744 dentry->d_op = op;
1745 if (!op)
1746 return;
1747 if (op->d_hash)
1748 dentry->d_flags |= DCACHE_OP_HASH;
1749 if (op->d_compare)
1750 dentry->d_flags |= DCACHE_OP_COMPARE;
1751 if (op->d_revalidate)
1752 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1753 if (op->d_weak_revalidate)
1754 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1755 if (op->d_delete)
1756 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1757 if (op->d_prune)
1758 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1759 if (op->d_real)
1760 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1761
1762}
1763EXPORT_SYMBOL(d_set_d_op);
1764
df1a085a
DH
1765
1766/*
1767 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1768 * @dentry - The dentry to mark
1769 *
1770 * Mark a dentry as falling through to the lower layer (as set with
1771 * d_pin_lower()). This flag may be recorded on the medium.
1772 */
1773void d_set_fallthru(struct dentry *dentry)
1774{
1775 spin_lock(&dentry->d_lock);
1776 dentry->d_flags |= DCACHE_FALLTHRU;
1777 spin_unlock(&dentry->d_lock);
1778}
1779EXPORT_SYMBOL(d_set_fallthru);
1780
b18825a7
DH
1781static unsigned d_flags_for_inode(struct inode *inode)
1782{
44bdb5e5 1783 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1784
1785 if (!inode)
1786 return DCACHE_MISS_TYPE;
1787
1788 if (S_ISDIR(inode->i_mode)) {
1789 add_flags = DCACHE_DIRECTORY_TYPE;
1790 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1791 if (unlikely(!inode->i_op->lookup))
1792 add_flags = DCACHE_AUTODIR_TYPE;
1793 else
1794 inode->i_opflags |= IOP_LOOKUP;
1795 }
44bdb5e5
DH
1796 goto type_determined;
1797 }
1798
1799 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1800 if (unlikely(inode->i_op->get_link)) {
b18825a7 1801 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1802 goto type_determined;
1803 }
1804 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1805 }
1806
44bdb5e5
DH
1807 if (unlikely(!S_ISREG(inode->i_mode)))
1808 add_flags = DCACHE_SPECIAL_TYPE;
1809
1810type_determined:
b18825a7
DH
1811 if (unlikely(IS_AUTOMOUNT(inode)))
1812 add_flags |= DCACHE_NEED_AUTOMOUNT;
1813 return add_flags;
1814}
1815
360da900
OH
1816static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1817{
b18825a7 1818 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1819 WARN_ON(d_in_lookup(dentry));
b18825a7 1820
b23fb0a6 1821 spin_lock(&dentry->d_lock);
de689f5e 1822 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1823 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1824 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1825 raw_write_seqcount_end(&dentry->d_seq);
affda484 1826 fsnotify_update_flags(dentry);
b23fb0a6 1827 spin_unlock(&dentry->d_lock);
360da900
OH
1828}
1829
1da177e4
LT
1830/**
1831 * d_instantiate - fill in inode information for a dentry
1832 * @entry: dentry to complete
1833 * @inode: inode to attach to this dentry
1834 *
1835 * Fill in inode information in the entry.
1836 *
1837 * This turns negative dentries into productive full members
1838 * of society.
1839 *
1840 * NOTE! This assumes that the inode count has been incremented
1841 * (or otherwise set) by the caller to indicate that it is now
1842 * in use by the dcache.
1843 */
1844
1845void d_instantiate(struct dentry *entry, struct inode * inode)
1846{
946e51f2 1847 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1848 if (inode) {
b9680917 1849 security_d_instantiate(entry, inode);
873feea0 1850 spin_lock(&inode->i_lock);
de689f5e 1851 __d_instantiate(entry, inode);
873feea0 1852 spin_unlock(&inode->i_lock);
de689f5e 1853 }
1da177e4 1854}
ec4f8605 1855EXPORT_SYMBOL(d_instantiate);
1da177e4 1856
b70a80e7
MS
1857/**
1858 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1859 * @entry: dentry to complete
1860 * @inode: inode to attach to this dentry
1861 *
1862 * Fill in inode information in the entry. If a directory alias is found, then
1863 * return an error (and drop inode). Together with d_materialise_unique() this
1864 * guarantees that a directory inode may never have more than one alias.
1865 */
1866int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1867{
946e51f2 1868 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1869
b9680917 1870 security_d_instantiate(entry, inode);
b70a80e7
MS
1871 spin_lock(&inode->i_lock);
1872 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1873 spin_unlock(&inode->i_lock);
1874 iput(inode);
1875 return -EBUSY;
1876 }
1877 __d_instantiate(entry, inode);
1878 spin_unlock(&inode->i_lock);
b70a80e7
MS
1879
1880 return 0;
1881}
1882EXPORT_SYMBOL(d_instantiate_no_diralias);
1883
adc0e91a
AV
1884struct dentry *d_make_root(struct inode *root_inode)
1885{
1886 struct dentry *res = NULL;
1887
1888 if (root_inode) {
798434bd 1889 res = __d_alloc(root_inode->i_sb, NULL);
adc0e91a
AV
1890 if (res)
1891 d_instantiate(res, root_inode);
1892 else
1893 iput(root_inode);
1894 }
1895 return res;
1896}
1897EXPORT_SYMBOL(d_make_root);
1898
d891eedb
BF
1899static struct dentry * __d_find_any_alias(struct inode *inode)
1900{
1901 struct dentry *alias;
1902
b3d9b7a3 1903 if (hlist_empty(&inode->i_dentry))
d891eedb 1904 return NULL;
946e51f2 1905 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1906 __dget(alias);
1907 return alias;
1908}
1909
46f72b34
SW
1910/**
1911 * d_find_any_alias - find any alias for a given inode
1912 * @inode: inode to find an alias for
1913 *
1914 * If any aliases exist for the given inode, take and return a
1915 * reference for one of them. If no aliases exist, return %NULL.
1916 */
1917struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1918{
1919 struct dentry *de;
1920
1921 spin_lock(&inode->i_lock);
1922 de = __d_find_any_alias(inode);
1923 spin_unlock(&inode->i_lock);
1924 return de;
1925}
46f72b34 1926EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1927
49c7dd28 1928static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
4ea3ada2 1929{
9308a612
CH
1930 struct dentry *tmp;
1931 struct dentry *res;
b18825a7 1932 unsigned add_flags;
4ea3ada2
CH
1933
1934 if (!inode)
44003728 1935 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1936 if (IS_ERR(inode))
1937 return ERR_CAST(inode);
1938
d891eedb 1939 res = d_find_any_alias(inode);
9308a612
CH
1940 if (res)
1941 goto out_iput;
1942
798434bd 1943 tmp = __d_alloc(inode->i_sb, NULL);
9308a612
CH
1944 if (!tmp) {
1945 res = ERR_PTR(-ENOMEM);
1946 goto out_iput;
4ea3ada2 1947 }
b5c84bf6 1948
b9680917 1949 security_d_instantiate(tmp, inode);
873feea0 1950 spin_lock(&inode->i_lock);
d891eedb 1951 res = __d_find_any_alias(inode);
9308a612 1952 if (res) {
873feea0 1953 spin_unlock(&inode->i_lock);
9308a612
CH
1954 dput(tmp);
1955 goto out_iput;
1956 }
1957
1958 /* attach a disconnected dentry */
1a0a397e
BF
1959 add_flags = d_flags_for_inode(inode);
1960
1961 if (disconnected)
1962 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1963
9308a612 1964 spin_lock(&tmp->d_lock);
4bf46a27 1965 __d_set_inode_and_type(tmp, inode, add_flags);
946e51f2 1966 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
f1ee6162
N
1967 if (!disconnected) {
1968 hlist_bl_lock(&tmp->d_sb->s_roots);
1969 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_roots);
1970 hlist_bl_unlock(&tmp->d_sb->s_roots);
1971 }
9308a612 1972 spin_unlock(&tmp->d_lock);
873feea0 1973 spin_unlock(&inode->i_lock);
9308a612 1974
9308a612
CH
1975 return tmp;
1976
1977 out_iput:
1978 iput(inode);
1979 return res;
4ea3ada2 1980}
1a0a397e
BF
1981
1982/**
1983 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1984 * @inode: inode to allocate the dentry for
1985 *
1986 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1987 * similar open by handle operations. The returned dentry may be anonymous,
1988 * or may have a full name (if the inode was already in the cache).
1989 *
1990 * When called on a directory inode, we must ensure that the inode only ever
1991 * has one dentry. If a dentry is found, that is returned instead of
1992 * allocating a new one.
1993 *
1994 * On successful return, the reference to the inode has been transferred
1995 * to the dentry. In case of an error the reference on the inode is released.
1996 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1997 * be passed in and the error will be propagated to the return value,
1998 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1999 */
2000struct dentry *d_obtain_alias(struct inode *inode)
2001{
2002 return __d_obtain_alias(inode, 1);
2003}
adc48720 2004EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2005
1a0a397e
BF
2006/**
2007 * d_obtain_root - find or allocate a dentry for a given inode
2008 * @inode: inode to allocate the dentry for
2009 *
2010 * Obtain an IS_ROOT dentry for the root of a filesystem.
2011 *
2012 * We must ensure that directory inodes only ever have one dentry. If a
2013 * dentry is found, that is returned instead of allocating a new one.
2014 *
2015 * On successful return, the reference to the inode has been transferred
2016 * to the dentry. In case of an error the reference on the inode is
2017 * released. A %NULL or IS_ERR inode may be passed in and will be the
2018 * error will be propagate to the return value, with a %NULL @inode
2019 * replaced by ERR_PTR(-ESTALE).
2020 */
2021struct dentry *d_obtain_root(struct inode *inode)
2022{
2023 return __d_obtain_alias(inode, 0);
2024}
2025EXPORT_SYMBOL(d_obtain_root);
2026
9403540c
BN
2027/**
2028 * d_add_ci - lookup or allocate new dentry with case-exact name
2029 * @inode: the inode case-insensitive lookup has found
2030 * @dentry: the negative dentry that was passed to the parent's lookup func
2031 * @name: the case-exact name to be associated with the returned dentry
2032 *
2033 * This is to avoid filling the dcache with case-insensitive names to the
2034 * same inode, only the actual correct case is stored in the dcache for
2035 * case-insensitive filesystems.
2036 *
2037 * For a case-insensitive lookup match and if the the case-exact dentry
2038 * already exists in in the dcache, use it and return it.
2039 *
2040 * If no entry exists with the exact case name, allocate new dentry with
2041 * the exact case, and return the spliced entry.
2042 */
e45b590b 2043struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2044 struct qstr *name)
2045{
d9171b93 2046 struct dentry *found, *res;
9403540c 2047
b6520c81
CH
2048 /*
2049 * First check if a dentry matching the name already exists,
2050 * if not go ahead and create it now.
2051 */
9403540c 2052 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2053 if (found) {
2054 iput(inode);
2055 return found;
2056 }
2057 if (d_in_lookup(dentry)) {
2058 found = d_alloc_parallel(dentry->d_parent, name,
2059 dentry->d_wait);
2060 if (IS_ERR(found) || !d_in_lookup(found)) {
2061 iput(inode);
2062 return found;
9403540c 2063 }
d9171b93
AV
2064 } else {
2065 found = d_alloc(dentry->d_parent, name);
2066 if (!found) {
2067 iput(inode);
2068 return ERR_PTR(-ENOMEM);
2069 }
2070 }
2071 res = d_splice_alias(inode, found);
2072 if (res) {
2073 dput(found);
2074 return res;
9403540c 2075 }
4f522a24 2076 return found;
9403540c 2077}
ec4f8605 2078EXPORT_SYMBOL(d_add_ci);
1da177e4 2079
12f8ad4b 2080
d4c91a8f
AV
2081static inline bool d_same_name(const struct dentry *dentry,
2082 const struct dentry *parent,
2083 const struct qstr *name)
12f8ad4b 2084{
d4c91a8f
AV
2085 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2086 if (dentry->d_name.len != name->len)
2087 return false;
2088 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2089 }
6fa67e70 2090 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2091 dentry->d_name.len, dentry->d_name.name,
2092 name) == 0;
12f8ad4b
LT
2093}
2094
31e6b01f
NP
2095/**
2096 * __d_lookup_rcu - search for a dentry (racy, store-free)
2097 * @parent: parent dentry
2098 * @name: qstr of name we wish to find
1f1e6e52 2099 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2100 * Returns: dentry, or NULL
2101 *
2102 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2103 * resolution (store-free path walking) design described in
2104 * Documentation/filesystems/path-lookup.txt.
2105 *
2106 * This is not to be used outside core vfs.
2107 *
2108 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2109 * held, and rcu_read_lock held. The returned dentry must not be stored into
2110 * without taking d_lock and checking d_seq sequence count against @seq
2111 * returned here.
2112 *
15570086 2113 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2114 * function.
2115 *
2116 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2117 * the returned dentry, so long as its parent's seqlock is checked after the
2118 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2119 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2120 *
2121 * NOTE! The caller *has* to check the resulting dentry against the sequence
2122 * number we've returned before using any of the resulting dentry state!
31e6b01f 2123 */
8966be90
LT
2124struct dentry *__d_lookup_rcu(const struct dentry *parent,
2125 const struct qstr *name,
da53be12 2126 unsigned *seqp)
31e6b01f 2127{
26fe5750 2128 u64 hashlen = name->hash_len;
31e6b01f 2129 const unsigned char *str = name->name;
8387ff25 2130 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2131 struct hlist_bl_node *node;
31e6b01f
NP
2132 struct dentry *dentry;
2133
2134 /*
2135 * Note: There is significant duplication with __d_lookup_rcu which is
2136 * required to prevent single threaded performance regressions
2137 * especially on architectures where smp_rmb (in seqcounts) are costly.
2138 * Keep the two functions in sync.
2139 */
2140
2141 /*
2142 * The hash list is protected using RCU.
2143 *
2144 * Carefully use d_seq when comparing a candidate dentry, to avoid
2145 * races with d_move().
2146 *
2147 * It is possible that concurrent renames can mess up our list
2148 * walk here and result in missing our dentry, resulting in the
2149 * false-negative result. d_lookup() protects against concurrent
2150 * renames using rename_lock seqlock.
2151 *
b0a4bb83 2152 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2153 */
b07ad996 2154 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2155 unsigned seq;
31e6b01f 2156
31e6b01f 2157seqretry:
12f8ad4b
LT
2158 /*
2159 * The dentry sequence count protects us from concurrent
da53be12 2160 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2161 *
2162 * The caller must perform a seqcount check in order
da53be12 2163 * to do anything useful with the returned dentry.
12f8ad4b
LT
2164 *
2165 * NOTE! We do a "raw" seqcount_begin here. That means that
2166 * we don't wait for the sequence count to stabilize if it
2167 * is in the middle of a sequence change. If we do the slow
2168 * dentry compare, we will do seqretries until it is stable,
2169 * and if we end up with a successful lookup, we actually
2170 * want to exit RCU lookup anyway.
d4c91a8f
AV
2171 *
2172 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2173 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2174 */
2175 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2176 if (dentry->d_parent != parent)
2177 continue;
2e321806
LT
2178 if (d_unhashed(dentry))
2179 continue;
12f8ad4b 2180
830c0f0e 2181 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2182 int tlen;
2183 const char *tname;
26fe5750
LT
2184 if (dentry->d_name.hash != hashlen_hash(hashlen))
2185 continue;
d4c91a8f
AV
2186 tlen = dentry->d_name.len;
2187 tname = dentry->d_name.name;
2188 /* we want a consistent (name,len) pair */
2189 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2190 cpu_relax();
12f8ad4b
LT
2191 goto seqretry;
2192 }
6fa67e70 2193 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2194 tlen, tname, name) != 0)
2195 continue;
2196 } else {
2197 if (dentry->d_name.hash_len != hashlen)
2198 continue;
2199 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2200 continue;
31e6b01f 2201 }
da53be12 2202 *seqp = seq;
d4c91a8f 2203 return dentry;
31e6b01f
NP
2204 }
2205 return NULL;
2206}
2207
1da177e4
LT
2208/**
2209 * d_lookup - search for a dentry
2210 * @parent: parent dentry
2211 * @name: qstr of name we wish to find
b04f784e 2212 * Returns: dentry, or NULL
1da177e4 2213 *
b04f784e
NP
2214 * d_lookup searches the children of the parent dentry for the name in
2215 * question. If the dentry is found its reference count is incremented and the
2216 * dentry is returned. The caller must use dput to free the entry when it has
2217 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2218 */
da2d8455 2219struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2220{
31e6b01f 2221 struct dentry *dentry;
949854d0 2222 unsigned seq;
1da177e4 2223
b8314f93
DY
2224 do {
2225 seq = read_seqbegin(&rename_lock);
2226 dentry = __d_lookup(parent, name);
2227 if (dentry)
1da177e4
LT
2228 break;
2229 } while (read_seqretry(&rename_lock, seq));
2230 return dentry;
2231}
ec4f8605 2232EXPORT_SYMBOL(d_lookup);
1da177e4 2233
31e6b01f 2234/**
b04f784e
NP
2235 * __d_lookup - search for a dentry (racy)
2236 * @parent: parent dentry
2237 * @name: qstr of name we wish to find
2238 * Returns: dentry, or NULL
2239 *
2240 * __d_lookup is like d_lookup, however it may (rarely) return a
2241 * false-negative result due to unrelated rename activity.
2242 *
2243 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2244 * however it must be used carefully, eg. with a following d_lookup in
2245 * the case of failure.
2246 *
2247 * __d_lookup callers must be commented.
2248 */
a713ca2a 2249struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2250{
1da177e4 2251 unsigned int hash = name->hash;
8387ff25 2252 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2253 struct hlist_bl_node *node;
31e6b01f 2254 struct dentry *found = NULL;
665a7583 2255 struct dentry *dentry;
1da177e4 2256
31e6b01f
NP
2257 /*
2258 * Note: There is significant duplication with __d_lookup_rcu which is
2259 * required to prevent single threaded performance regressions
2260 * especially on architectures where smp_rmb (in seqcounts) are costly.
2261 * Keep the two functions in sync.
2262 */
2263
b04f784e
NP
2264 /*
2265 * The hash list is protected using RCU.
2266 *
2267 * Take d_lock when comparing a candidate dentry, to avoid races
2268 * with d_move().
2269 *
2270 * It is possible that concurrent renames can mess up our list
2271 * walk here and result in missing our dentry, resulting in the
2272 * false-negative result. d_lookup() protects against concurrent
2273 * renames using rename_lock seqlock.
2274 *
b0a4bb83 2275 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2276 */
1da177e4
LT
2277 rcu_read_lock();
2278
b07ad996 2279 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2280
1da177e4
LT
2281 if (dentry->d_name.hash != hash)
2282 continue;
1da177e4
LT
2283
2284 spin_lock(&dentry->d_lock);
1da177e4
LT
2285 if (dentry->d_parent != parent)
2286 goto next;
d0185c08
LT
2287 if (d_unhashed(dentry))
2288 goto next;
2289
d4c91a8f
AV
2290 if (!d_same_name(dentry, parent, name))
2291 goto next;
1da177e4 2292
98474236 2293 dentry->d_lockref.count++;
d0185c08 2294 found = dentry;
1da177e4
LT
2295 spin_unlock(&dentry->d_lock);
2296 break;
2297next:
2298 spin_unlock(&dentry->d_lock);
2299 }
2300 rcu_read_unlock();
2301
2302 return found;
2303}
2304
3e7e241f
EB
2305/**
2306 * d_hash_and_lookup - hash the qstr then search for a dentry
2307 * @dir: Directory to search in
2308 * @name: qstr of name we wish to find
2309 *
4f522a24 2310 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2311 */
2312struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2313{
3e7e241f
EB
2314 /*
2315 * Check for a fs-specific hash function. Note that we must
2316 * calculate the standard hash first, as the d_op->d_hash()
2317 * routine may choose to leave the hash value unchanged.
2318 */
8387ff25 2319 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2320 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2321 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2322 if (unlikely(err < 0))
2323 return ERR_PTR(err);
3e7e241f 2324 }
4f522a24 2325 return d_lookup(dir, name);
3e7e241f 2326}
4f522a24 2327EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2328
1da177e4
LT
2329/*
2330 * When a file is deleted, we have two options:
2331 * - turn this dentry into a negative dentry
2332 * - unhash this dentry and free it.
2333 *
2334 * Usually, we want to just turn this into
2335 * a negative dentry, but if anybody else is
2336 * currently using the dentry or the inode
2337 * we can't do that and we fall back on removing
2338 * it from the hash queues and waiting for
2339 * it to be deleted later when it has no users
2340 */
2341
2342/**
2343 * d_delete - delete a dentry
2344 * @dentry: The dentry to delete
2345 *
2346 * Turn the dentry into a negative dentry if possible, otherwise
2347 * remove it from the hash queues so it can be deleted later
2348 */
2349
2350void d_delete(struct dentry * dentry)
2351{
873feea0 2352 struct inode *inode;
7a91bf7f 2353 int isdir = 0;
1da177e4
LT
2354 /*
2355 * Are we the only user?
2356 */
357f8e65 2357again:
1da177e4 2358 spin_lock(&dentry->d_lock);
873feea0
NP
2359 inode = dentry->d_inode;
2360 isdir = S_ISDIR(inode->i_mode);
98474236 2361 if (dentry->d_lockref.count == 1) {
1fe0c023 2362 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2363 spin_unlock(&dentry->d_lock);
2364 cpu_relax();
2365 goto again;
2366 }
13e3c5e5 2367 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2368 dentry_unlink_inode(dentry);
7a91bf7f 2369 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2370 return;
2371 }
2372
2373 if (!d_unhashed(dentry))
2374 __d_drop(dentry);
2375
2376 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2377
2378 fsnotify_nameremove(dentry, isdir);
1da177e4 2379}
ec4f8605 2380EXPORT_SYMBOL(d_delete);
1da177e4 2381
15d3c589 2382static void __d_rehash(struct dentry *entry)
1da177e4 2383{
15d3c589 2384 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
ceb5bdc2 2385 BUG_ON(!d_unhashed(entry));
1879fd6a 2386 hlist_bl_lock(b);
b07ad996 2387 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2388 hlist_bl_unlock(b);
1da177e4
LT
2389}
2390
2391/**
2392 * d_rehash - add an entry back to the hash
2393 * @entry: dentry to add to the hash
2394 *
2395 * Adds a dentry to the hash according to its name.
2396 */
2397
2398void d_rehash(struct dentry * entry)
2399{
1da177e4 2400 spin_lock(&entry->d_lock);
15d3c589 2401 __d_rehash(entry);
1da177e4 2402 spin_unlock(&entry->d_lock);
1da177e4 2403}
ec4f8605 2404EXPORT_SYMBOL(d_rehash);
1da177e4 2405
84e710da
AV
2406static inline unsigned start_dir_add(struct inode *dir)
2407{
2408
2409 for (;;) {
2410 unsigned n = dir->i_dir_seq;
2411 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2412 return n;
2413 cpu_relax();
2414 }
2415}
2416
2417static inline void end_dir_add(struct inode *dir, unsigned n)
2418{
2419 smp_store_release(&dir->i_dir_seq, n + 2);
2420}
2421
d9171b93
AV
2422static void d_wait_lookup(struct dentry *dentry)
2423{
2424 if (d_in_lookup(dentry)) {
2425 DECLARE_WAITQUEUE(wait, current);
2426 add_wait_queue(dentry->d_wait, &wait);
2427 do {
2428 set_current_state(TASK_UNINTERRUPTIBLE);
2429 spin_unlock(&dentry->d_lock);
2430 schedule();
2431 spin_lock(&dentry->d_lock);
2432 } while (d_in_lookup(dentry));
2433 }
2434}
2435
94bdd655 2436struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2437 const struct qstr *name,
2438 wait_queue_head_t *wq)
94bdd655 2439{
94bdd655 2440 unsigned int hash = name->hash;
94bdd655
AV
2441 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2442 struct hlist_bl_node *node;
2443 struct dentry *new = d_alloc(parent, name);
2444 struct dentry *dentry;
2445 unsigned seq, r_seq, d_seq;
2446
2447 if (unlikely(!new))
2448 return ERR_PTR(-ENOMEM);
2449
2450retry:
2451 rcu_read_lock();
2452 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2453 r_seq = read_seqbegin(&rename_lock);
2454 dentry = __d_lookup_rcu(parent, name, &d_seq);
2455 if (unlikely(dentry)) {
2456 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2457 rcu_read_unlock();
2458 goto retry;
2459 }
2460 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2461 rcu_read_unlock();
2462 dput(dentry);
2463 goto retry;
2464 }
2465 rcu_read_unlock();
2466 dput(new);
2467 return dentry;
2468 }
2469 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2470 rcu_read_unlock();
2471 goto retry;
2472 }
2473 hlist_bl_lock(b);
2474 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2475 hlist_bl_unlock(b);
2476 rcu_read_unlock();
2477 goto retry;
2478 }
94bdd655
AV
2479 /*
2480 * No changes for the parent since the beginning of d_lookup().
2481 * Since all removals from the chain happen with hlist_bl_lock(),
2482 * any potential in-lookup matches are going to stay here until
2483 * we unlock the chain. All fields are stable in everything
2484 * we encounter.
2485 */
2486 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2487 if (dentry->d_name.hash != hash)
2488 continue;
2489 if (dentry->d_parent != parent)
2490 continue;
d4c91a8f
AV
2491 if (!d_same_name(dentry, parent, name))
2492 continue;
94bdd655 2493 hlist_bl_unlock(b);
e7d6ef97
AV
2494 /* now we can try to grab a reference */
2495 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2496 rcu_read_unlock();
2497 goto retry;
2498 }
2499
2500 rcu_read_unlock();
2501 /*
2502 * somebody is likely to be still doing lookup for it;
2503 * wait for them to finish
2504 */
d9171b93
AV
2505 spin_lock(&dentry->d_lock);
2506 d_wait_lookup(dentry);
2507 /*
2508 * it's not in-lookup anymore; in principle we should repeat
2509 * everything from dcache lookup, but it's likely to be what
2510 * d_lookup() would've found anyway. If it is, just return it;
2511 * otherwise we really have to repeat the whole thing.
2512 */
2513 if (unlikely(dentry->d_name.hash != hash))
2514 goto mismatch;
2515 if (unlikely(dentry->d_parent != parent))
2516 goto mismatch;
2517 if (unlikely(d_unhashed(dentry)))
2518 goto mismatch;
d4c91a8f
AV
2519 if (unlikely(!d_same_name(dentry, parent, name)))
2520 goto mismatch;
d9171b93
AV
2521 /* OK, it *is* a hashed match; return it */
2522 spin_unlock(&dentry->d_lock);
94bdd655
AV
2523 dput(new);
2524 return dentry;
2525 }
e7d6ef97 2526 rcu_read_unlock();
94bdd655
AV
2527 /* we can't take ->d_lock here; it's OK, though. */
2528 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2529 new->d_wait = wq;
94bdd655
AV
2530 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2531 hlist_bl_unlock(b);
2532 return new;
d9171b93
AV
2533mismatch:
2534 spin_unlock(&dentry->d_lock);
2535 dput(dentry);
2536 goto retry;
94bdd655
AV
2537}
2538EXPORT_SYMBOL(d_alloc_parallel);
2539
85c7f810
AV
2540void __d_lookup_done(struct dentry *dentry)
2541{
94bdd655
AV
2542 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2543 dentry->d_name.hash);
2544 hlist_bl_lock(b);
85c7f810 2545 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2546 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2547 wake_up_all(dentry->d_wait);
2548 dentry->d_wait = NULL;
94bdd655
AV
2549 hlist_bl_unlock(b);
2550 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2551 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2552}
2553EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2554
2555/* inode->i_lock held if inode is non-NULL */
2556
2557static inline void __d_add(struct dentry *dentry, struct inode *inode)
2558{
84e710da
AV
2559 struct inode *dir = NULL;
2560 unsigned n;
0568d705 2561 spin_lock(&dentry->d_lock);
84e710da
AV
2562 if (unlikely(d_in_lookup(dentry))) {
2563 dir = dentry->d_parent->d_inode;
2564 n = start_dir_add(dir);
85c7f810 2565 __d_lookup_done(dentry);
84e710da 2566 }
ed782b5a 2567 if (inode) {
0568d705
AV
2568 unsigned add_flags = d_flags_for_inode(inode);
2569 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2570 raw_write_seqcount_begin(&dentry->d_seq);
2571 __d_set_inode_and_type(dentry, inode, add_flags);
2572 raw_write_seqcount_end(&dentry->d_seq);
affda484 2573 fsnotify_update_flags(dentry);
ed782b5a 2574 }
15d3c589 2575 __d_rehash(dentry);
84e710da
AV
2576 if (dir)
2577 end_dir_add(dir, n);
0568d705
AV
2578 spin_unlock(&dentry->d_lock);
2579 if (inode)
2580 spin_unlock(&inode->i_lock);
ed782b5a
AV
2581}
2582
34d0d19d
AV
2583/**
2584 * d_add - add dentry to hash queues
2585 * @entry: dentry to add
2586 * @inode: The inode to attach to this dentry
2587 *
2588 * This adds the entry to the hash queues and initializes @inode.
2589 * The entry was actually filled in earlier during d_alloc().
2590 */
2591
2592void d_add(struct dentry *entry, struct inode *inode)
2593{
b9680917
AV
2594 if (inode) {
2595 security_d_instantiate(entry, inode);
ed782b5a 2596 spin_lock(&inode->i_lock);
b9680917 2597 }
ed782b5a 2598 __d_add(entry, inode);
34d0d19d
AV
2599}
2600EXPORT_SYMBOL(d_add);
2601
668d0cd5
AV
2602/**
2603 * d_exact_alias - find and hash an exact unhashed alias
2604 * @entry: dentry to add
2605 * @inode: The inode to go with this dentry
2606 *
2607 * If an unhashed dentry with the same name/parent and desired
2608 * inode already exists, hash and return it. Otherwise, return
2609 * NULL.
2610 *
2611 * Parent directory should be locked.
2612 */
2613struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2614{
2615 struct dentry *alias;
668d0cd5
AV
2616 unsigned int hash = entry->d_name.hash;
2617
2618 spin_lock(&inode->i_lock);
2619 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2620 /*
2621 * Don't need alias->d_lock here, because aliases with
2622 * d_parent == entry->d_parent are not subject to name or
2623 * parent changes, because the parent inode i_mutex is held.
2624 */
2625 if (alias->d_name.hash != hash)
2626 continue;
2627 if (alias->d_parent != entry->d_parent)
2628 continue;
d4c91a8f 2629 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2630 continue;
2631 spin_lock(&alias->d_lock);
2632 if (!d_unhashed(alias)) {
2633 spin_unlock(&alias->d_lock);
2634 alias = NULL;
2635 } else {
2636 __dget_dlock(alias);
15d3c589 2637 __d_rehash(alias);
668d0cd5
AV
2638 spin_unlock(&alias->d_lock);
2639 }
2640 spin_unlock(&inode->i_lock);
2641 return alias;
2642 }
2643 spin_unlock(&inode->i_lock);
2644 return NULL;
2645}
2646EXPORT_SYMBOL(d_exact_alias);
2647
fb2d5b86
NP
2648/**
2649 * dentry_update_name_case - update case insensitive dentry with a new name
2650 * @dentry: dentry to be updated
2651 * @name: new name
2652 *
2653 * Update a case insensitive dentry with new case of name.
2654 *
2655 * dentry must have been returned by d_lookup with name @name. Old and new
2656 * name lengths must match (ie. no d_compare which allows mismatched name
2657 * lengths).
2658 *
2659 * Parent inode i_mutex must be held over d_lookup and into this call (to
2660 * keep renames and concurrent inserts, and readdir(2) away).
2661 */
9aba36de 2662void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
fb2d5b86 2663{
5955102c 2664 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2665 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2666
fb2d5b86 2667 spin_lock(&dentry->d_lock);
31e6b01f 2668 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2669 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2670 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2671 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2672}
2673EXPORT_SYMBOL(dentry_update_name_case);
2674
8d85b484 2675static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2676{
8d85b484
AV
2677 if (unlikely(dname_external(target))) {
2678 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2679 /*
2680 * Both external: swap the pointers
2681 */
9a8d5bb4 2682 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2683 } else {
2684 /*
2685 * dentry:internal, target:external. Steal target's
2686 * storage and make target internal.
2687 */
321bcf92
BF
2688 memcpy(target->d_iname, dentry->d_name.name,
2689 dentry->d_name.len + 1);
1da177e4
LT
2690 dentry->d_name.name = target->d_name.name;
2691 target->d_name.name = target->d_iname;
2692 }
2693 } else {
8d85b484 2694 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2695 /*
2696 * dentry:external, target:internal. Give dentry's
2697 * storage to target and make dentry internal
2698 */
2699 memcpy(dentry->d_iname, target->d_name.name,
2700 target->d_name.len + 1);
2701 target->d_name.name = dentry->d_name.name;
2702 dentry->d_name.name = dentry->d_iname;
2703 } else {
2704 /*
da1ce067 2705 * Both are internal.
1da177e4 2706 */
da1ce067
MS
2707 unsigned int i;
2708 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2709 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2710 swap(((long *) &dentry->d_iname)[i],
2711 ((long *) &target->d_iname)[i]);
2712 }
1da177e4
LT
2713 }
2714 }
a28ddb87 2715 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2716}
2717
8d85b484
AV
2718static void copy_name(struct dentry *dentry, struct dentry *target)
2719{
2720 struct external_name *old_name = NULL;
2721 if (unlikely(dname_external(dentry)))
2722 old_name = external_name(dentry);
2723 if (unlikely(dname_external(target))) {
2724 atomic_inc(&external_name(target)->u.count);
2725 dentry->d_name = target->d_name;
2726 } else {
2727 memcpy(dentry->d_iname, target->d_name.name,
2728 target->d_name.len + 1);
2729 dentry->d_name.name = dentry->d_iname;
2730 dentry->d_name.hash_len = target->d_name.hash_len;
2731 }
2732 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2733 kfree_rcu(old_name, u.head);
2734}
2735
2fd6b7f5
NP
2736static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2737{
2738 /*
2739 * XXXX: do we really need to take target->d_lock?
2740 */
2741 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2742 spin_lock(&target->d_parent->d_lock);
2743 else {
2744 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2745 spin_lock(&dentry->d_parent->d_lock);
2746 spin_lock_nested(&target->d_parent->d_lock,
2747 DENTRY_D_LOCK_NESTED);
2748 } else {
2749 spin_lock(&target->d_parent->d_lock);
2750 spin_lock_nested(&dentry->d_parent->d_lock,
2751 DENTRY_D_LOCK_NESTED);
2752 }
2753 }
2754 if (target < dentry) {
2755 spin_lock_nested(&target->d_lock, 2);
2756 spin_lock_nested(&dentry->d_lock, 3);
2757 } else {
2758 spin_lock_nested(&dentry->d_lock, 2);
2759 spin_lock_nested(&target->d_lock, 3);
2760 }
2761}
2762
986c0194 2763static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2764{
2765 if (target->d_parent != dentry->d_parent)
2766 spin_unlock(&dentry->d_parent->d_lock);
2767 if (target->d_parent != target)
2768 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2769 spin_unlock(&target->d_lock);
2770 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2771}
2772
1da177e4 2773/*
2fd6b7f5
NP
2774 * When switching names, the actual string doesn't strictly have to
2775 * be preserved in the target - because we're dropping the target
2776 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2777 * the new name before we switch, unless we are going to rehash
2778 * it. Note that if we *do* unhash the target, we are not allowed
2779 * to rehash it without giving it a new name/hash key - whether
2780 * we swap or overwrite the names here, resulting name won't match
2781 * the reality in filesystem; it's only there for d_path() purposes.
2782 * Note that all of this is happening under rename_lock, so the
2783 * any hash lookup seeing it in the middle of manipulations will
2784 * be discarded anyway. So we do not care what happens to the hash
2785 * key in that case.
1da177e4 2786 */
9eaef27b 2787/*
18367501 2788 * __d_move - move a dentry
1da177e4
LT
2789 * @dentry: entry to move
2790 * @target: new dentry
da1ce067 2791 * @exchange: exchange the two dentries
1da177e4
LT
2792 *
2793 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2794 * dcache entries should not be moved in this way. Caller must hold
2795 * rename_lock, the i_mutex of the source and target directories,
2796 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2797 */
da1ce067
MS
2798static void __d_move(struct dentry *dentry, struct dentry *target,
2799 bool exchange)
1da177e4 2800{
84e710da
AV
2801 struct inode *dir = NULL;
2802 unsigned n;
1da177e4
LT
2803 if (!dentry->d_inode)
2804 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2805
2fd6b7f5
NP
2806 BUG_ON(d_ancestor(dentry, target));
2807 BUG_ON(d_ancestor(target, dentry));
2808
2fd6b7f5 2809 dentry_lock_for_move(dentry, target);
84e710da
AV
2810 if (unlikely(d_in_lookup(target))) {
2811 dir = target->d_parent->d_inode;
2812 n = start_dir_add(dir);
85c7f810 2813 __d_lookup_done(target);
84e710da 2814 }
1da177e4 2815
31e6b01f 2816 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2817 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2818
15d3c589 2819 /* unhash both */
ceb5bdc2 2820 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
ceb5bdc2 2821 __d_drop(dentry);
1da177e4
LT
2822 __d_drop(target);
2823
1da177e4 2824 /* Switch the names.. */
8d85b484
AV
2825 if (exchange)
2826 swap_names(dentry, target);
2827 else
2828 copy_name(dentry, target);
1da177e4 2829
15d3c589
AV
2830 /* rehash in new place(s) */
2831 __d_rehash(dentry);
2832 if (exchange)
2833 __d_rehash(target);
2834
63cf427a 2835 /* ... and switch them in the tree */
1da177e4 2836 if (IS_ROOT(dentry)) {
63cf427a 2837 /* splicing a tree */
3d56c25e 2838 dentry->d_flags |= DCACHE_RCUACCESS;
1da177e4
LT
2839 dentry->d_parent = target->d_parent;
2840 target->d_parent = target;
946e51f2
AV
2841 list_del_init(&target->d_child);
2842 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2843 } else {
63cf427a 2844 /* swapping two dentries */
9a8d5bb4 2845 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2846 list_move(&target->d_child, &target->d_parent->d_subdirs);
2847 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a 2848 if (exchange)
affda484
AV
2849 fsnotify_update_flags(target);
2850 fsnotify_update_flags(dentry);
1da177e4
LT
2851 }
2852
31e6b01f
NP
2853 write_seqcount_end(&target->d_seq);
2854 write_seqcount_end(&dentry->d_seq);
2855
84e710da
AV
2856 if (dir)
2857 end_dir_add(dir, n);
986c0194 2858 dentry_unlock_for_move(dentry, target);
18367501
AV
2859}
2860
2861/*
2862 * d_move - move a dentry
2863 * @dentry: entry to move
2864 * @target: new dentry
2865 *
2866 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2867 * dcache entries should not be moved in this way. See the locking
2868 * requirements for __d_move.
18367501
AV
2869 */
2870void d_move(struct dentry *dentry, struct dentry *target)
2871{
2872 write_seqlock(&rename_lock);
da1ce067 2873 __d_move(dentry, target, false);
1da177e4 2874 write_sequnlock(&rename_lock);
9eaef27b 2875}
ec4f8605 2876EXPORT_SYMBOL(d_move);
1da177e4 2877
da1ce067
MS
2878/*
2879 * d_exchange - exchange two dentries
2880 * @dentry1: first dentry
2881 * @dentry2: second dentry
2882 */
2883void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2884{
2885 write_seqlock(&rename_lock);
2886
2887 WARN_ON(!dentry1->d_inode);
2888 WARN_ON(!dentry2->d_inode);
2889 WARN_ON(IS_ROOT(dentry1));
2890 WARN_ON(IS_ROOT(dentry2));
2891
2892 __d_move(dentry1, dentry2, true);
2893
2894 write_sequnlock(&rename_lock);
2895}
2896
e2761a11
OH
2897/**
2898 * d_ancestor - search for an ancestor
2899 * @p1: ancestor dentry
2900 * @p2: child dentry
2901 *
2902 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2903 * an ancestor of p2, else NULL.
9eaef27b 2904 */
e2761a11 2905struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2906{
2907 struct dentry *p;
2908
871c0067 2909 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2910 if (p->d_parent == p1)
e2761a11 2911 return p;
9eaef27b 2912 }
e2761a11 2913 return NULL;
9eaef27b
TM
2914}
2915
2916/*
2917 * This helper attempts to cope with remotely renamed directories
2918 *
2919 * It assumes that the caller is already holding
a03e283b 2920 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2921 *
2922 * Note: If ever the locking in lock_rename() changes, then please
2923 * remember to update this too...
9eaef27b 2924 */
b5ae6b15 2925static int __d_unalias(struct inode *inode,
873feea0 2926 struct dentry *dentry, struct dentry *alias)
9eaef27b 2927{
9902af79
AV
2928 struct mutex *m1 = NULL;
2929 struct rw_semaphore *m2 = NULL;
3d330dc1 2930 int ret = -ESTALE;
9eaef27b
TM
2931
2932 /* If alias and dentry share a parent, then no extra locks required */
2933 if (alias->d_parent == dentry->d_parent)
2934 goto out_unalias;
2935
9eaef27b 2936 /* See lock_rename() */
9eaef27b
TM
2937 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2938 goto out_err;
2939 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2940 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2941 goto out_err;
9902af79 2942 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2943out_unalias:
8ed936b5 2944 __d_move(alias, dentry, false);
b5ae6b15 2945 ret = 0;
9eaef27b 2946out_err:
9eaef27b 2947 if (m2)
9902af79 2948 up_read(m2);
9eaef27b
TM
2949 if (m1)
2950 mutex_unlock(m1);
2951 return ret;
2952}
2953
3f70bd51
BF
2954/**
2955 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2956 * @inode: the inode which may have a disconnected dentry
2957 * @dentry: a negative dentry which we want to point to the inode.
2958 *
da093a9b
BF
2959 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2960 * place of the given dentry and return it, else simply d_add the inode
2961 * to the dentry and return NULL.
3f70bd51 2962 *
908790fa
BF
2963 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2964 * we should error out: directories can't have multiple aliases.
2965 *
3f70bd51
BF
2966 * This is needed in the lookup routine of any filesystem that is exportable
2967 * (via knfsd) so that we can build dcache paths to directories effectively.
2968 *
2969 * If a dentry was found and moved, then it is returned. Otherwise NULL
2970 * is returned. This matches the expected return value of ->lookup.
2971 *
2972 * Cluster filesystems may call this function with a negative, hashed dentry.
2973 * In that case, we know that the inode will be a regular file, and also this
2974 * will only occur during atomic_open. So we need to check for the dentry
2975 * being already hashed only in the final case.
2976 */
2977struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2978{
3f70bd51
BF
2979 if (IS_ERR(inode))
2980 return ERR_CAST(inode);
2981
770bfad8
DH
2982 BUG_ON(!d_unhashed(dentry));
2983
de689f5e 2984 if (!inode)
b5ae6b15 2985 goto out;
de689f5e 2986
b9680917 2987 security_d_instantiate(dentry, inode);
873feea0 2988 spin_lock(&inode->i_lock);
9eaef27b 2989 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
2990 struct dentry *new = __d_find_any_alias(inode);
2991 if (unlikely(new)) {
a03e283b
EB
2992 /* The reference to new ensures it remains an alias */
2993 spin_unlock(&inode->i_lock);
18367501 2994 write_seqlock(&rename_lock);
b5ae6b15
AV
2995 if (unlikely(d_ancestor(new, dentry))) {
2996 write_sequnlock(&rename_lock);
b5ae6b15
AV
2997 dput(new);
2998 new = ERR_PTR(-ELOOP);
2999 pr_warn_ratelimited(
3000 "VFS: Lookup of '%s' in %s %s"
3001 " would have caused loop\n",
3002 dentry->d_name.name,
3003 inode->i_sb->s_type->name,
3004 inode->i_sb->s_id);
3005 } else if (!IS_ROOT(new)) {
3006 int err = __d_unalias(inode, dentry, new);
18367501 3007 write_sequnlock(&rename_lock);
b5ae6b15
AV
3008 if (err) {
3009 dput(new);
3010 new = ERR_PTR(err);
3011 }
18367501 3012 } else {
b5ae6b15
AV
3013 __d_move(new, dentry, false);
3014 write_sequnlock(&rename_lock);
dd179946 3015 }
b5ae6b15
AV
3016 iput(inode);
3017 return new;
9eaef27b 3018 }
770bfad8 3019 }
b5ae6b15 3020out:
ed782b5a 3021 __d_add(dentry, inode);
b5ae6b15 3022 return NULL;
770bfad8 3023}
b5ae6b15 3024EXPORT_SYMBOL(d_splice_alias);
770bfad8 3025
cdd16d02 3026static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
3027{
3028 *buflen -= namelen;
3029 if (*buflen < 0)
3030 return -ENAMETOOLONG;
3031 *buffer -= namelen;
3032 memcpy(*buffer, str, namelen);
3033 return 0;
3034}
3035
232d2d60
WL
3036/**
3037 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
3038 * @buffer: buffer pointer
3039 * @buflen: allocated length of the buffer
3040 * @name: name string and length qstr structure
232d2d60 3041 *
66702eb5 3042 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
232d2d60
WL
3043 * make sure that either the old or the new name pointer and length are
3044 * fetched. However, there may be mismatch between length and pointer.
3045 * The length cannot be trusted, we need to copy it byte-by-byte until
3046 * the length is reached or a null byte is found. It also prepends "/" at
3047 * the beginning of the name. The sequence number check at the caller will
3048 * retry it again when a d_move() does happen. So any garbage in the buffer
3049 * due to mismatched pointer and length will be discarded.
6d13f694
AV
3050 *
3051 * Data dependency barrier is needed to make sure that we see that terminating
3052 * NUL. Alpha strikes again, film at 11...
232d2d60 3053 */
9aba36de 3054static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
cdd16d02 3055{
66702eb5
MR
3056 const char *dname = READ_ONCE(name->name);
3057 u32 dlen = READ_ONCE(name->len);
232d2d60
WL
3058 char *p;
3059
6d13f694
AV
3060 smp_read_barrier_depends();
3061
232d2d60 3062 *buflen -= dlen + 1;
e825196d
AV
3063 if (*buflen < 0)
3064 return -ENAMETOOLONG;
232d2d60
WL
3065 p = *buffer -= dlen + 1;
3066 *p++ = '/';
3067 while (dlen--) {
3068 char c = *dname++;
3069 if (!c)
3070 break;
3071 *p++ = c;
3072 }
3073 return 0;
cdd16d02
MS
3074}
3075
1da177e4 3076/**
208898c1 3077 * prepend_path - Prepend path string to a buffer
9d1bc601 3078 * @path: the dentry/vfsmount to report
02125a82 3079 * @root: root vfsmnt/dentry
f2eb6575
MS
3080 * @buffer: pointer to the end of the buffer
3081 * @buflen: pointer to buffer length
552ce544 3082 *
18129977
WL
3083 * The function will first try to write out the pathname without taking any
3084 * lock other than the RCU read lock to make sure that dentries won't go away.
3085 * It only checks the sequence number of the global rename_lock as any change
3086 * in the dentry's d_seq will be preceded by changes in the rename_lock
3087 * sequence number. If the sequence number had been changed, it will restart
3088 * the whole pathname back-tracing sequence again by taking the rename_lock.
3089 * In this case, there is no need to take the RCU read lock as the recursive
3090 * parent pointer references will keep the dentry chain alive as long as no
3091 * rename operation is performed.
1da177e4 3092 */
02125a82
AV
3093static int prepend_path(const struct path *path,
3094 const struct path *root,
f2eb6575 3095 char **buffer, int *buflen)
1da177e4 3096{
ede4cebc
AV
3097 struct dentry *dentry;
3098 struct vfsmount *vfsmnt;
3099 struct mount *mnt;
f2eb6575 3100 int error = 0;
48a066e7 3101 unsigned seq, m_seq = 0;
232d2d60
WL
3102 char *bptr;
3103 int blen;
6092d048 3104
48f5ec21 3105 rcu_read_lock();
48a066e7
AV
3106restart_mnt:
3107 read_seqbegin_or_lock(&mount_lock, &m_seq);
3108 seq = 0;
4ec6c2ae 3109 rcu_read_lock();
232d2d60
WL
3110restart:
3111 bptr = *buffer;
3112 blen = *buflen;
48a066e7 3113 error = 0;
ede4cebc
AV
3114 dentry = path->dentry;
3115 vfsmnt = path->mnt;
3116 mnt = real_mount(vfsmnt);
232d2d60 3117 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 3118 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
3119 struct dentry * parent;
3120
1da177e4 3121 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
66702eb5 3122 struct mount *parent = READ_ONCE(mnt->mnt_parent);
cde93be4
EB
3123 /* Escaped? */
3124 if (dentry != vfsmnt->mnt_root) {
3125 bptr = *buffer;
3126 blen = *buflen;
3127 error = 3;
3128 break;
3129 }
552ce544 3130 /* Global root? */
48a066e7 3131 if (mnt != parent) {
66702eb5 3132 dentry = READ_ONCE(mnt->mnt_mountpoint);
48a066e7 3133 mnt = parent;
232d2d60
WL
3134 vfsmnt = &mnt->mnt;
3135 continue;
3136 }
232d2d60
WL
3137 if (!error)
3138 error = is_mounted(vfsmnt) ? 1 : 2;
3139 break;
1da177e4
LT
3140 }
3141 parent = dentry->d_parent;
3142 prefetch(parent);
232d2d60 3143 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
3144 if (error)
3145 break;
3146
1da177e4
LT
3147 dentry = parent;
3148 }
48f5ec21
AV
3149 if (!(seq & 1))
3150 rcu_read_unlock();
3151 if (need_seqretry(&rename_lock, seq)) {
3152 seq = 1;
232d2d60 3153 goto restart;
48f5ec21
AV
3154 }
3155 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
3156
3157 if (!(m_seq & 1))
3158 rcu_read_unlock();
48a066e7
AV
3159 if (need_seqretry(&mount_lock, m_seq)) {
3160 m_seq = 1;
3161 goto restart_mnt;
3162 }
3163 done_seqretry(&mount_lock, m_seq);
1da177e4 3164
232d2d60
WL
3165 if (error >= 0 && bptr == *buffer) {
3166 if (--blen < 0)
3167 error = -ENAMETOOLONG;
3168 else
3169 *--bptr = '/';
3170 }
3171 *buffer = bptr;
3172 *buflen = blen;
7ea600b5 3173 return error;
f2eb6575 3174}
be285c71 3175
f2eb6575
MS
3176/**
3177 * __d_path - return the path of a dentry
3178 * @path: the dentry/vfsmount to report
02125a82 3179 * @root: root vfsmnt/dentry
cd956a1c 3180 * @buf: buffer to return value in
f2eb6575
MS
3181 * @buflen: buffer length
3182 *
ffd1f4ed 3183 * Convert a dentry into an ASCII path name.
f2eb6575
MS
3184 *
3185 * Returns a pointer into the buffer or an error code if the
3186 * path was too long.
3187 *
be148247 3188 * "buflen" should be positive.
f2eb6575 3189 *
02125a82 3190 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 3191 */
02125a82
AV
3192char *__d_path(const struct path *path,
3193 const struct path *root,
f2eb6575
MS
3194 char *buf, int buflen)
3195{
3196 char *res = buf + buflen;
3197 int error;
3198
3199 prepend(&res, &buflen, "\0", 1);
f2eb6575 3200 error = prepend_path(path, root, &res, &buflen);
be148247 3201
02125a82
AV
3202 if (error < 0)
3203 return ERR_PTR(error);
3204 if (error > 0)
3205 return NULL;
3206 return res;
3207}
3208
3209char *d_absolute_path(const struct path *path,
3210 char *buf, int buflen)
3211{
3212 struct path root = {};
3213 char *res = buf + buflen;
3214 int error;
3215
3216 prepend(&res, &buflen, "\0", 1);
02125a82 3217 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3218
3219 if (error > 1)
3220 error = -EINVAL;
3221 if (error < 0)
f2eb6575 3222 return ERR_PTR(error);
f2eb6575 3223 return res;
1da177e4
LT
3224}
3225
ffd1f4ed
MS
3226/*
3227 * same as __d_path but appends "(deleted)" for unlinked files.
3228 */
02125a82
AV
3229static int path_with_deleted(const struct path *path,
3230 const struct path *root,
3231 char **buf, int *buflen)
ffd1f4ed
MS
3232{
3233 prepend(buf, buflen, "\0", 1);
3234 if (d_unlinked(path->dentry)) {
3235 int error = prepend(buf, buflen, " (deleted)", 10);
3236 if (error)
3237 return error;
3238 }
3239
3240 return prepend_path(path, root, buf, buflen);
3241}
3242
8df9d1a4
MS
3243static int prepend_unreachable(char **buffer, int *buflen)
3244{
3245 return prepend(buffer, buflen, "(unreachable)", 13);
3246}
3247
68f0d9d9
LT
3248static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3249{
3250 unsigned seq;
3251
3252 do {
3253 seq = read_seqcount_begin(&fs->seq);
3254 *root = fs->root;
3255 } while (read_seqcount_retry(&fs->seq, seq));
3256}
3257
a03a8a70
JB
3258/**
3259 * d_path - return the path of a dentry
cf28b486 3260 * @path: path to report
a03a8a70
JB
3261 * @buf: buffer to return value in
3262 * @buflen: buffer length
3263 *
3264 * Convert a dentry into an ASCII path name. If the entry has been deleted
3265 * the string " (deleted)" is appended. Note that this is ambiguous.
3266 *
52afeefb
AV
3267 * Returns a pointer into the buffer or an error code if the path was
3268 * too long. Note: Callers should use the returned pointer, not the passed
3269 * in buffer, to use the name! The implementation often starts at an offset
3270 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3271 *
31f3e0b3 3272 * "buflen" should be positive.
a03a8a70 3273 */
20d4fdc1 3274char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3275{
ffd1f4ed 3276 char *res = buf + buflen;
6ac08c39 3277 struct path root;
ffd1f4ed 3278 int error;
1da177e4 3279
c23fbb6b
ED
3280 /*
3281 * We have various synthetic filesystems that never get mounted. On
3282 * these filesystems dentries are never used for lookup purposes, and
3283 * thus don't need to be hashed. They also don't need a name until a
3284 * user wants to identify the object in /proc/pid/fd/. The little hack
3285 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3286 *
3287 * Some pseudo inodes are mountable. When they are mounted
3288 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3289 * and instead have d_path return the mounted path.
c23fbb6b 3290 */
f48cfddc
EB
3291 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3292 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3293 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3294
68f0d9d9
LT
3295 rcu_read_lock();
3296 get_fs_root_rcu(current->fs, &root);
02125a82 3297 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3298 rcu_read_unlock();
3299
02125a82 3300 if (error < 0)
ffd1f4ed 3301 res = ERR_PTR(error);
1da177e4
LT
3302 return res;
3303}
ec4f8605 3304EXPORT_SYMBOL(d_path);
1da177e4 3305
c23fbb6b
ED
3306/*
3307 * Helper function for dentry_operations.d_dname() members
3308 */
3309char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3310 const char *fmt, ...)
3311{
3312 va_list args;
3313 char temp[64];
3314 int sz;
3315
3316 va_start(args, fmt);
3317 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3318 va_end(args);
3319
3320 if (sz > sizeof(temp) || sz > buflen)
3321 return ERR_PTR(-ENAMETOOLONG);
3322
3323 buffer += buflen - sz;
3324 return memcpy(buffer, temp, sz);
3325}
3326
118b2302
AV
3327char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3328{
3329 char *end = buffer + buflen;
3330 /* these dentries are never renamed, so d_lock is not needed */
3331 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3332 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3333 prepend(&end, &buflen, "/", 1))
3334 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3335 return end;
118b2302 3336}
31bbe16f 3337EXPORT_SYMBOL(simple_dname);
118b2302 3338
6092d048
RP
3339/*
3340 * Write full pathname from the root of the filesystem into the buffer.
3341 */
f6500801 3342static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3343{
f6500801 3344 struct dentry *dentry;
232d2d60
WL
3345 char *end, *retval;
3346 int len, seq = 0;
3347 int error = 0;
6092d048 3348
f6500801
AV
3349 if (buflen < 2)
3350 goto Elong;
3351
48f5ec21 3352 rcu_read_lock();
232d2d60 3353restart:
f6500801 3354 dentry = d;
232d2d60
WL
3355 end = buf + buflen;
3356 len = buflen;
3357 prepend(&end, &len, "\0", 1);
6092d048
RP
3358 /* Get '/' right */
3359 retval = end-1;
3360 *retval = '/';
232d2d60 3361 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3362 while (!IS_ROOT(dentry)) {
3363 struct dentry *parent = dentry->d_parent;
6092d048 3364
6092d048 3365 prefetch(parent);
232d2d60
WL
3366 error = prepend_name(&end, &len, &dentry->d_name);
3367 if (error)
3368 break;
6092d048
RP
3369
3370 retval = end;
3371 dentry = parent;
3372 }
48f5ec21
AV
3373 if (!(seq & 1))
3374 rcu_read_unlock();
3375 if (need_seqretry(&rename_lock, seq)) {
3376 seq = 1;
232d2d60 3377 goto restart;
48f5ec21
AV
3378 }
3379 done_seqretry(&rename_lock, seq);
232d2d60
WL
3380 if (error)
3381 goto Elong;
c103135c
AV
3382 return retval;
3383Elong:
3384 return ERR_PTR(-ENAMETOOLONG);
3385}
ec2447c2
NP
3386
3387char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3388{
232d2d60 3389 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3390}
3391EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3392
3393char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3394{
3395 char *p = NULL;
3396 char *retval;
3397
c103135c
AV
3398 if (d_unlinked(dentry)) {
3399 p = buf + buflen;
3400 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3401 goto Elong;
3402 buflen++;
3403 }
3404 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3405 if (!IS_ERR(retval) && p)
3406 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3407 return retval;
3408Elong:
6092d048
RP
3409 return ERR_PTR(-ENAMETOOLONG);
3410}
3411
8b19e341
LT
3412static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3413 struct path *pwd)
5762482f 3414{
8b19e341
LT
3415 unsigned seq;
3416
3417 do {
3418 seq = read_seqcount_begin(&fs->seq);
3419 *root = fs->root;
3420 *pwd = fs->pwd;
3421 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3422}
3423
1da177e4
LT
3424/*
3425 * NOTE! The user-level library version returns a
3426 * character pointer. The kernel system call just
3427 * returns the length of the buffer filled (which
3428 * includes the ending '\0' character), or a negative
3429 * error value. So libc would do something like
3430 *
3431 * char *getcwd(char * buf, size_t size)
3432 * {
3433 * int retval;
3434 *
3435 * retval = sys_getcwd(buf, size);
3436 * if (retval >= 0)
3437 * return buf;
3438 * errno = -retval;
3439 * return NULL;
3440 * }
3441 */
3cdad428 3442SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3443{
552ce544 3444 int error;
6ac08c39 3445 struct path pwd, root;
3272c544 3446 char *page = __getname();
1da177e4
LT
3447
3448 if (!page)
3449 return -ENOMEM;
3450
8b19e341
LT
3451 rcu_read_lock();
3452 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3453
552ce544 3454 error = -ENOENT;
f3da392e 3455 if (!d_unlinked(pwd.dentry)) {
552ce544 3456 unsigned long len;
3272c544
LT
3457 char *cwd = page + PATH_MAX;
3458 int buflen = PATH_MAX;
1da177e4 3459
8df9d1a4 3460 prepend(&cwd, &buflen, "\0", 1);
02125a82 3461 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3462 rcu_read_unlock();
552ce544 3463
02125a82 3464 if (error < 0)
552ce544
LT
3465 goto out;
3466
8df9d1a4 3467 /* Unreachable from current root */
02125a82 3468 if (error > 0) {
8df9d1a4
MS
3469 error = prepend_unreachable(&cwd, &buflen);
3470 if (error)
3471 goto out;
3472 }
3473
552ce544 3474 error = -ERANGE;
3272c544 3475 len = PATH_MAX + page - cwd;
552ce544
LT
3476 if (len <= size) {
3477 error = len;
3478 if (copy_to_user(buf, cwd, len))
3479 error = -EFAULT;
3480 }
949854d0 3481 } else {
ff812d72 3482 rcu_read_unlock();
949854d0 3483 }
1da177e4
LT
3484
3485out:
3272c544 3486 __putname(page);
1da177e4
LT
3487 return error;
3488}
3489
3490/*
3491 * Test whether new_dentry is a subdirectory of old_dentry.
3492 *
3493 * Trivially implemented using the dcache structure
3494 */
3495
3496/**
3497 * is_subdir - is new dentry a subdirectory of old_dentry
3498 * @new_dentry: new dentry
3499 * @old_dentry: old dentry
3500 *
a6e5787f
YB
3501 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3502 * Returns false otherwise.
1da177e4
LT
3503 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3504 */
3505
a6e5787f 3506bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3507{
a6e5787f 3508 bool result;
949854d0 3509 unsigned seq;
1da177e4 3510
e2761a11 3511 if (new_dentry == old_dentry)
a6e5787f 3512 return true;
e2761a11 3513
e2761a11 3514 do {
1da177e4 3515 /* for restarting inner loop in case of seq retry */
1da177e4 3516 seq = read_seqbegin(&rename_lock);
949854d0
NP
3517 /*
3518 * Need rcu_readlock to protect against the d_parent trashing
3519 * due to d_move
3520 */
3521 rcu_read_lock();
e2761a11 3522 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3523 result = true;
e2761a11 3524 else
a6e5787f 3525 result = false;
949854d0 3526 rcu_read_unlock();
1da177e4 3527 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3528
3529 return result;
3530}
3531
db14fc3a 3532static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3533{
db14fc3a
MS
3534 struct dentry *root = data;
3535 if (dentry != root) {
3536 if (d_unhashed(dentry) || !dentry->d_inode)
3537 return D_WALK_SKIP;
1da177e4 3538
01ddc4ed
MS
3539 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3540 dentry->d_flags |= DCACHE_GENOCIDE;
3541 dentry->d_lockref.count--;
3542 }
1da177e4 3543 }
db14fc3a
MS
3544 return D_WALK_CONTINUE;
3545}
58db63d0 3546
db14fc3a
MS
3547void d_genocide(struct dentry *parent)
3548{
3549 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3550}
3551
60545d0d 3552void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3553{
60545d0d
AV
3554 inode_dec_link_count(inode);
3555 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3556 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3557 !d_unlinked(dentry));
3558 spin_lock(&dentry->d_parent->d_lock);
3559 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3560 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3561 (unsigned long long)inode->i_ino);
3562 spin_unlock(&dentry->d_lock);
3563 spin_unlock(&dentry->d_parent->d_lock);
3564 d_instantiate(dentry, inode);
1da177e4 3565}
60545d0d 3566EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3567
3568static __initdata unsigned long dhash_entries;
3569static int __init set_dhash_entries(char *str)
3570{
3571 if (!str)
3572 return 0;
3573 dhash_entries = simple_strtoul(str, &str, 0);
3574 return 1;
3575}
3576__setup("dhash_entries=", set_dhash_entries);
3577
3578static void __init dcache_init_early(void)
3579{
1da177e4
LT
3580 /* If hashes are distributed across NUMA nodes, defer
3581 * hash allocation until vmalloc space is available.
3582 */
3583 if (hashdist)
3584 return;
3585
3586 dentry_hashtable =
3587 alloc_large_system_hash("Dentry cache",
b07ad996 3588 sizeof(struct hlist_bl_head),
1da177e4
LT
3589 dhash_entries,
3590 13,
3d375d78 3591 HASH_EARLY | HASH_ZERO,
1da177e4
LT
3592 &d_hash_shift,
3593 &d_hash_mask,
31fe62b9 3594 0,
1da177e4 3595 0);
1da177e4
LT
3596}
3597
74bf17cf 3598static void __init dcache_init(void)
1da177e4 3599{
3d375d78 3600 /*
1da177e4
LT
3601 * A constructor could be added for stable state like the lists,
3602 * but it is probably not worth it because of the cache nature
3d375d78 3603 * of the dcache.
1da177e4 3604 */
0a31bd5f 3605 dentry_cache = KMEM_CACHE(dentry,
5d097056 3606 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
1da177e4
LT
3607
3608 /* Hash may have been set up in dcache_init_early */
3609 if (!hashdist)
3610 return;
3611
3612 dentry_hashtable =
3613 alloc_large_system_hash("Dentry cache",
b07ad996 3614 sizeof(struct hlist_bl_head),
1da177e4
LT
3615 dhash_entries,
3616 13,
3d375d78 3617 HASH_ZERO,
1da177e4
LT
3618 &d_hash_shift,
3619 &d_hash_mask,
31fe62b9 3620 0,
1da177e4 3621 0);
1da177e4
LT
3622}
3623
3624/* SLAB cache for __getname() consumers */
e18b890b 3625struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3626EXPORT_SYMBOL(names_cachep);
1da177e4 3627
1da177e4
LT
3628EXPORT_SYMBOL(d_genocide);
3629
1da177e4
LT
3630void __init vfs_caches_init_early(void)
3631{
6916363f
SAS
3632 int i;
3633
3634 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3635 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3636
1da177e4
LT
3637 dcache_init_early();
3638 inode_init_early();
3639}
3640
4248b0da 3641void __init vfs_caches_init(void)
1da177e4 3642{
1da177e4 3643 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3644 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3645
74bf17cf
DC
3646 dcache_init();
3647 inode_init();
4248b0da
MG
3648 files_init();
3649 files_maxfiles_init();
74bf17cf 3650 mnt_init();
1da177e4
LT
3651 bdev_cache_init();
3652 chrdev_init();
3653}