mm/memunmap: don't access uninitialized memmap in memunmap_pages()
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10/*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
7a5cf791 18#include <linux/ratelimit.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/mm.h>
21#include <linux/fs.h>
0bf3d5c1 22#include <linux/fscrypt.h>
7a91bf7f 23#include <linux/fsnotify.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
1da177e4
LT
26#include <linux/hash.h>
27#include <linux/cache.h>
630d9c47 28#include <linux/export.h>
1da177e4
LT
29#include <linux/security.h>
30#include <linux/seqlock.h>
57c8a661 31#include <linux/memblock.h>
ceb5bdc2
NP
32#include <linux/bit_spinlock.h>
33#include <linux/rculist_bl.h>
f6041567 34#include <linux/list_lru.h>
07f3f05c 35#include "internal.h"
b2dba1af 36#include "mount.h"
1da177e4 37
789680d1
NP
38/*
39 * Usage:
873feea0 40 * dcache->d_inode->i_lock protects:
946e51f2 41 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
f1ee6162
N
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
19156840 46 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
47 * - the dcache lru lists and counters
48 * d_lock protects:
49 * - d_flags
50 * - d_name
51 * - d_lru
b7ab39f6 52 * - d_count
da502956 53 * - d_unhashed()
2fd6b7f5
NP
54 * - d_parent and d_subdirs
55 * - childrens' d_child and d_parent
946e51f2 56 * - d_u.d_alias, d_inode
789680d1
NP
57 *
58 * Ordering:
873feea0 59 * dentry->d_inode->i_lock
b5c84bf6 60 * dentry->d_lock
19156840 61 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 62 * dcache_hash_bucket lock
f1ee6162 63 * s_roots lock
789680d1 64 *
da502956
NP
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
67 * ...
68 * dentry->d_parent->d_lock
69 * dentry->d_lock
70 *
71 * If no ancestor relationship:
076515fc 72 * arbitrary, since it's serialized on rename_lock
789680d1 73 */
fa3536cc 74int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
74c3cbe3 77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 78
949854d0 79EXPORT_SYMBOL(rename_lock);
1da177e4 80
e18b890b 81static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 82
cdf01226
DH
83const struct qstr empty_name = QSTR_INIT("", 0);
84EXPORT_SYMBOL(empty_name);
85const struct qstr slash_name = QSTR_INIT("/", 1);
86EXPORT_SYMBOL(slash_name);
87
1da177e4
LT
88/*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
1da177e4 96
fa3536cc 97static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 98
b07ad996 99static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 100
8387ff25 101static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 102{
854d3e63 103 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
104}
105
94bdd655
AV
106#define IN_LOOKUP_SHIFT 10
107static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108
109static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110 unsigned int hash)
111{
112 hash += (unsigned long) parent / L1_CACHE_BYTES;
113 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114}
115
116
1da177e4
LT
117/* Statistics gathering. */
118struct dentry_stat_t dentry_stat = {
119 .age_limit = 45,
120};
121
3942c07c 122static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 123static DEFINE_PER_CPU(long, nr_dentry_unused);
af0c9af1 124static DEFINE_PER_CPU(long, nr_dentry_negative);
312d3ca8
CH
125
126#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
127
128/*
129 * Here we resort to our own counters instead of using generic per-cpu counters
130 * for consistency with what the vfs inode code does. We are expected to harvest
131 * better code and performance by having our own specialized counters.
132 *
133 * Please note that the loop is done over all possible CPUs, not over all online
134 * CPUs. The reason for this is that we don't want to play games with CPUs going
135 * on and off. If one of them goes off, we will just keep their counters.
136 *
137 * glommer: See cffbc8a for details, and if you ever intend to change this,
138 * please update all vfs counters to match.
139 */
3942c07c 140static long get_nr_dentry(void)
3e880fb5
NP
141{
142 int i;
3942c07c 143 long sum = 0;
3e880fb5
NP
144 for_each_possible_cpu(i)
145 sum += per_cpu(nr_dentry, i);
146 return sum < 0 ? 0 : sum;
147}
148
62d36c77
DC
149static long get_nr_dentry_unused(void)
150{
151 int i;
152 long sum = 0;
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry_unused, i);
155 return sum < 0 ? 0 : sum;
156}
157
af0c9af1
WL
158static long get_nr_dentry_negative(void)
159{
160 int i;
161 long sum = 0;
162
163 for_each_possible_cpu(i)
164 sum += per_cpu(nr_dentry_negative, i);
165 return sum < 0 ? 0 : sum;
166}
167
1f7e0616 168int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
169 size_t *lenp, loff_t *ppos)
170{
3e880fb5 171 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 172 dentry_stat.nr_unused = get_nr_dentry_unused();
af0c9af1 173 dentry_stat.nr_negative = get_nr_dentry_negative();
3942c07c 174 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
175}
176#endif
177
5483f18e
LT
178/*
179 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180 * The strings are both count bytes long, and count is non-zero.
181 */
e419b4cc
LT
182#ifdef CONFIG_DCACHE_WORD_ACCESS
183
184#include <asm/word-at-a-time.h>
185/*
186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187 * aligned allocation for this particular component. We don't
188 * strictly need the load_unaligned_zeropad() safety, but it
189 * doesn't hurt either.
190 *
191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192 * need the careful unaligned handling.
193 */
94753db5 194static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 195{
bfcfaa77 196 unsigned long a,b,mask;
bfcfaa77
LT
197
198 for (;;) {
bfe7aa6c 199 a = read_word_at_a_time(cs);
e419b4cc 200 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
201 if (tcount < sizeof(unsigned long))
202 break;
203 if (unlikely(a != b))
204 return 1;
205 cs += sizeof(unsigned long);
206 ct += sizeof(unsigned long);
207 tcount -= sizeof(unsigned long);
208 if (!tcount)
209 return 0;
210 }
a5c21dce 211 mask = bytemask_from_count(tcount);
bfcfaa77 212 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
213}
214
bfcfaa77 215#else
e419b4cc 216
94753db5 217static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 218{
5483f18e
LT
219 do {
220 if (*cs != *ct)
221 return 1;
222 cs++;
223 ct++;
224 tcount--;
225 } while (tcount);
226 return 0;
227}
228
e419b4cc
LT
229#endif
230
94753db5
LT
231static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232{
94753db5
LT
233 /*
234 * Be careful about RCU walk racing with rename:
506458ef 235 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
236 *
237 * NOTE! Even if a rename will mean that the length
238 * was not loaded atomically, we don't care. The
239 * RCU walk will check the sequence count eventually,
240 * and catch it. And we won't overrun the buffer,
241 * because we're reading the name pointer atomically,
242 * and a dentry name is guaranteed to be properly
243 * terminated with a NUL byte.
244 *
245 * End result: even if 'len' is wrong, we'll exit
246 * early because the data cannot match (there can
247 * be no NUL in the ct/tcount data)
248 */
506458ef 249 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 250
6326c71f 251 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
252}
253
8d85b484
AV
254struct external_name {
255 union {
256 atomic_t count;
257 struct rcu_head head;
258 } u;
259 unsigned char name[];
260};
261
262static inline struct external_name *external_name(struct dentry *dentry)
263{
264 return container_of(dentry->d_name.name, struct external_name, name[0]);
265}
266
9c82ab9c 267static void __d_free(struct rcu_head *head)
1da177e4 268{
9c82ab9c
CH
269 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270
8d85b484
AV
271 kmem_cache_free(dentry_cache, dentry);
272}
273
274static void __d_free_external(struct rcu_head *head)
275{
276 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
2e03b4bc 277 kfree(external_name(dentry));
f1782c9b 278 kmem_cache_free(dentry_cache, dentry);
1da177e4
LT
279}
280
810bb172
AV
281static inline int dname_external(const struct dentry *dentry)
282{
283 return dentry->d_name.name != dentry->d_iname;
284}
285
49d31c2f
AV
286void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287{
288 spin_lock(&dentry->d_lock);
230c6402 289 name->name = dentry->d_name;
49d31c2f 290 if (unlikely(dname_external(dentry))) {
230c6402 291 atomic_inc(&external_name(dentry)->u.count);
49d31c2f 292 } else {
6cd00a01
TH
293 memcpy(name->inline_name, dentry->d_iname,
294 dentry->d_name.len + 1);
230c6402 295 name->name.name = name->inline_name;
49d31c2f 296 }
230c6402 297 spin_unlock(&dentry->d_lock);
49d31c2f
AV
298}
299EXPORT_SYMBOL(take_dentry_name_snapshot);
300
301void release_dentry_name_snapshot(struct name_snapshot *name)
302{
230c6402 303 if (unlikely(name->name.name != name->inline_name)) {
49d31c2f 304 struct external_name *p;
230c6402 305 p = container_of(name->name.name, struct external_name, name[0]);
49d31c2f 306 if (unlikely(atomic_dec_and_test(&p->u.count)))
2e03b4bc 307 kfree_rcu(p, u.head);
49d31c2f
AV
308 }
309}
310EXPORT_SYMBOL(release_dentry_name_snapshot);
311
4bf46a27
DH
312static inline void __d_set_inode_and_type(struct dentry *dentry,
313 struct inode *inode,
314 unsigned type_flags)
315{
316 unsigned flags;
317
318 dentry->d_inode = inode;
4bf46a27
DH
319 flags = READ_ONCE(dentry->d_flags);
320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 flags |= type_flags;
322 WRITE_ONCE(dentry->d_flags, flags);
323}
324
4bf46a27
DH
325static inline void __d_clear_type_and_inode(struct dentry *dentry)
326{
327 unsigned flags = READ_ONCE(dentry->d_flags);
328
329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27 331 dentry->d_inode = NULL;
af0c9af1
WL
332 if (dentry->d_flags & DCACHE_LRU_LIST)
333 this_cpu_inc(nr_dentry_negative);
4bf46a27
DH
334}
335
b4f0354e
AV
336static void dentry_free(struct dentry *dentry)
337{
946e51f2 338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
339 if (unlikely(dname_external(dentry))) {
340 struct external_name *p = external_name(dentry);
341 if (likely(atomic_dec_and_test(&p->u.count))) {
342 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 return;
344 }
345 }
b4f0354e 346 /* if dentry was never visible to RCU, immediate free is OK */
5467a68c 347 if (dentry->d_flags & DCACHE_NORCU)
b4f0354e
AV
348 __d_free(&dentry->d_u.d_rcu);
349 else
350 call_rcu(&dentry->d_u.d_rcu, __d_free);
351}
352
1da177e4
LT
353/*
354 * Release the dentry's inode, using the filesystem
550dce01 355 * d_iput() operation if defined.
31e6b01f
NP
356 */
357static void dentry_unlink_inode(struct dentry * dentry)
358 __releases(dentry->d_lock)
873feea0 359 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
360{
361 struct inode *inode = dentry->d_inode;
a528aca7 362
4c0d7cd5 363 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 364 __d_clear_type_and_inode(dentry);
946e51f2 365 hlist_del_init(&dentry->d_u.d_alias);
4c0d7cd5 366 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 367 spin_unlock(&dentry->d_lock);
873feea0 368 spin_unlock(&inode->i_lock);
31e6b01f
NP
369 if (!inode->i_nlink)
370 fsnotify_inoderemove(inode);
371 if (dentry->d_op && dentry->d_op->d_iput)
372 dentry->d_op->d_iput(dentry, inode);
373 else
374 iput(inode);
375}
376
89dc77bc
LT
377/*
378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379 * is in use - which includes both the "real" per-superblock
380 * LRU list _and_ the DCACHE_SHRINK_LIST use.
381 *
382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383 * on the shrink list (ie not on the superblock LRU list).
384 *
385 * The per-cpu "nr_dentry_unused" counters are updated with
386 * the DCACHE_LRU_LIST bit.
387 *
af0c9af1
WL
388 * The per-cpu "nr_dentry_negative" counters are only updated
389 * when deleted from or added to the per-superblock LRU list, not
390 * from/to the shrink list. That is to avoid an unneeded dec/inc
391 * pair when moving from LRU to shrink list in select_collect().
392 *
89dc77bc
LT
393 * These helper functions make sure we always follow the
394 * rules. d_lock must be held by the caller.
395 */
396#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397static void d_lru_add(struct dentry *dentry)
398{
399 D_FLAG_VERIFY(dentry, 0);
400 dentry->d_flags |= DCACHE_LRU_LIST;
401 this_cpu_inc(nr_dentry_unused);
af0c9af1
WL
402 if (d_is_negative(dentry))
403 this_cpu_inc(nr_dentry_negative);
89dc77bc
LT
404 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405}
406
407static void d_lru_del(struct dentry *dentry)
408{
409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 dentry->d_flags &= ~DCACHE_LRU_LIST;
411 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
412 if (d_is_negative(dentry))
413 this_cpu_dec(nr_dentry_negative);
89dc77bc
LT
414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415}
416
417static void d_shrink_del(struct dentry *dentry)
418{
419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 list_del_init(&dentry->d_lru);
421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 this_cpu_dec(nr_dentry_unused);
423}
424
425static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426{
427 D_FLAG_VERIFY(dentry, 0);
428 list_add(&dentry->d_lru, list);
429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 this_cpu_inc(nr_dentry_unused);
431}
432
433/*
434 * These can only be called under the global LRU lock, ie during the
435 * callback for freeing the LRU list. "isolate" removes it from the
436 * LRU lists entirely, while shrink_move moves it to the indicated
437 * private list.
438 */
3f97b163 439static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
440{
441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 dentry->d_flags &= ~DCACHE_LRU_LIST;
443 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
444 if (d_is_negative(dentry))
445 this_cpu_dec(nr_dentry_negative);
3f97b163 446 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
447}
448
3f97b163
VD
449static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450 struct list_head *list)
89dc77bc
LT
451{
452 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453 dentry->d_flags |= DCACHE_SHRINK_LIST;
af0c9af1
WL
454 if (d_is_negative(dentry))
455 this_cpu_dec(nr_dentry_negative);
3f97b163 456 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
457}
458
789680d1
NP
459/**
460 * d_drop - drop a dentry
461 * @dentry: dentry to drop
462 *
463 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
464 * be found through a VFS lookup any more. Note that this is different from
465 * deleting the dentry - d_delete will try to mark the dentry negative if
466 * possible, giving a successful _negative_ lookup, while d_drop will
467 * just make the cache lookup fail.
468 *
469 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
470 * reason (NFS timeouts or autofs deletes).
471 *
61647823
N
472 * __d_drop requires dentry->d_lock
473 * ___d_drop doesn't mark dentry as "unhashed"
474 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
789680d1 475 */
61647823 476static void ___d_drop(struct dentry *dentry)
789680d1 477{
0632a9ac
AV
478 struct hlist_bl_head *b;
479 /*
480 * Hashed dentries are normally on the dentry hashtable,
481 * with the exception of those newly allocated by
482 * d_obtain_root, which are always IS_ROOT:
483 */
484 if (unlikely(IS_ROOT(dentry)))
485 b = &dentry->d_sb->s_roots;
486 else
487 b = d_hash(dentry->d_name.hash);
b61625d2 488
0632a9ac
AV
489 hlist_bl_lock(b);
490 __hlist_bl_del(&dentry->d_hash);
491 hlist_bl_unlock(b);
789680d1 492}
61647823
N
493
494void __d_drop(struct dentry *dentry)
495{
0632a9ac
AV
496 if (!d_unhashed(dentry)) {
497 ___d_drop(dentry);
498 dentry->d_hash.pprev = NULL;
499 write_seqcount_invalidate(&dentry->d_seq);
500 }
61647823 501}
789680d1
NP
502EXPORT_SYMBOL(__d_drop);
503
504void d_drop(struct dentry *dentry)
505{
789680d1
NP
506 spin_lock(&dentry->d_lock);
507 __d_drop(dentry);
508 spin_unlock(&dentry->d_lock);
789680d1
NP
509}
510EXPORT_SYMBOL(d_drop);
511
ba65dc5e
AV
512static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513{
514 struct dentry *next;
515 /*
516 * Inform d_walk() and shrink_dentry_list() that we are no longer
517 * attached to the dentry tree
518 */
519 dentry->d_flags |= DCACHE_DENTRY_KILLED;
520 if (unlikely(list_empty(&dentry->d_child)))
521 return;
522 __list_del_entry(&dentry->d_child);
523 /*
524 * Cursors can move around the list of children. While we'd been
525 * a normal list member, it didn't matter - ->d_child.next would've
526 * been updated. However, from now on it won't be and for the
527 * things like d_walk() it might end up with a nasty surprise.
528 * Normally d_walk() doesn't care about cursors moving around -
529 * ->d_lock on parent prevents that and since a cursor has no children
530 * of its own, we get through it without ever unlocking the parent.
531 * There is one exception, though - if we ascend from a child that
532 * gets killed as soon as we unlock it, the next sibling is found
533 * using the value left in its ->d_child.next. And if _that_
534 * pointed to a cursor, and cursor got moved (e.g. by lseek())
535 * before d_walk() regains parent->d_lock, we'll end up skipping
536 * everything the cursor had been moved past.
537 *
538 * Solution: make sure that the pointer left behind in ->d_child.next
539 * points to something that won't be moving around. I.e. skip the
540 * cursors.
541 */
542 while (dentry->d_child.next != &parent->d_subdirs) {
543 next = list_entry(dentry->d_child.next, struct dentry, d_child);
544 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545 break;
546 dentry->d_child.next = next->d_child.next;
547 }
548}
549
e55fd011 550static void __dentry_kill(struct dentry *dentry)
77812a1e 551{
41edf278
AV
552 struct dentry *parent = NULL;
553 bool can_free = true;
41edf278 554 if (!IS_ROOT(dentry))
77812a1e 555 parent = dentry->d_parent;
31e6b01f 556
0d98439e
LT
557 /*
558 * The dentry is now unrecoverably dead to the world.
559 */
560 lockref_mark_dead(&dentry->d_lockref);
561
f0023bc6 562 /*
f0023bc6
SW
563 * inform the fs via d_prune that this dentry is about to be
564 * unhashed and destroyed.
565 */
29266201 566 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
567 dentry->d_op->d_prune(dentry);
568
01b60351
AV
569 if (dentry->d_flags & DCACHE_LRU_LIST) {
570 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571 d_lru_del(dentry);
01b60351 572 }
77812a1e
NP
573 /* if it was on the hash then remove it */
574 __d_drop(dentry);
ba65dc5e 575 dentry_unlist(dentry, parent);
03b3b889
AV
576 if (parent)
577 spin_unlock(&parent->d_lock);
550dce01
AV
578 if (dentry->d_inode)
579 dentry_unlink_inode(dentry);
580 else
581 spin_unlock(&dentry->d_lock);
03b3b889
AV
582 this_cpu_dec(nr_dentry);
583 if (dentry->d_op && dentry->d_op->d_release)
584 dentry->d_op->d_release(dentry);
585
41edf278
AV
586 spin_lock(&dentry->d_lock);
587 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588 dentry->d_flags |= DCACHE_MAY_FREE;
589 can_free = false;
590 }
591 spin_unlock(&dentry->d_lock);
41edf278
AV
592 if (likely(can_free))
593 dentry_free(dentry);
9c5f1d30 594 cond_resched();
e55fd011
AV
595}
596
8b987a46 597static struct dentry *__lock_parent(struct dentry *dentry)
046b961b 598{
8b987a46 599 struct dentry *parent;
046b961b 600 rcu_read_lock();
c2338f2d 601 spin_unlock(&dentry->d_lock);
046b961b 602again:
66702eb5 603 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
604 spin_lock(&parent->d_lock);
605 /*
606 * We can't blindly lock dentry until we are sure
607 * that we won't violate the locking order.
608 * Any changes of dentry->d_parent must have
609 * been done with parent->d_lock held, so
610 * spin_lock() above is enough of a barrier
611 * for checking if it's still our child.
612 */
613 if (unlikely(parent != dentry->d_parent)) {
614 spin_unlock(&parent->d_lock);
615 goto again;
616 }
65d8eb5a
AV
617 rcu_read_unlock();
618 if (parent != dentry)
9f12600f 619 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 620 else
046b961b
AV
621 parent = NULL;
622 return parent;
623}
624
8b987a46
AV
625static inline struct dentry *lock_parent(struct dentry *dentry)
626{
627 struct dentry *parent = dentry->d_parent;
628 if (IS_ROOT(dentry))
629 return NULL;
630 if (likely(spin_trylock(&parent->d_lock)))
631 return parent;
632 return __lock_parent(dentry);
633}
634
a338579f
AV
635static inline bool retain_dentry(struct dentry *dentry)
636{
637 WARN_ON(d_in_lookup(dentry));
638
639 /* Unreachable? Get rid of it */
640 if (unlikely(d_unhashed(dentry)))
641 return false;
642
643 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
644 return false;
645
646 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
647 if (dentry->d_op->d_delete(dentry))
648 return false;
649 }
62d9956c
AV
650 /* retain; LRU fodder */
651 dentry->d_lockref.count--;
652 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
653 d_lru_add(dentry);
654 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
655 dentry->d_flags |= DCACHE_REFERENCED;
a338579f
AV
656 return true;
657}
658
c1d0c1a2
JO
659/*
660 * Finish off a dentry we've decided to kill.
661 * dentry->d_lock must be held, returns with it unlocked.
662 * Returns dentry requiring refcount drop, or NULL if we're done.
663 */
664static struct dentry *dentry_kill(struct dentry *dentry)
665 __releases(dentry->d_lock)
666{
667 struct inode *inode = dentry->d_inode;
668 struct dentry *parent = NULL;
669
670 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
f657a666 671 goto slow_positive;
c1d0c1a2
JO
672
673 if (!IS_ROOT(dentry)) {
674 parent = dentry->d_parent;
675 if (unlikely(!spin_trylock(&parent->d_lock))) {
f657a666
AV
676 parent = __lock_parent(dentry);
677 if (likely(inode || !dentry->d_inode))
678 goto got_locks;
679 /* negative that became positive */
680 if (parent)
681 spin_unlock(&parent->d_lock);
682 inode = dentry->d_inode;
683 goto slow_positive;
c1d0c1a2
JO
684 }
685 }
c1d0c1a2
JO
686 __dentry_kill(dentry);
687 return parent;
688
f657a666
AV
689slow_positive:
690 spin_unlock(&dentry->d_lock);
691 spin_lock(&inode->i_lock);
692 spin_lock(&dentry->d_lock);
693 parent = lock_parent(dentry);
694got_locks:
695 if (unlikely(dentry->d_lockref.count != 1)) {
696 dentry->d_lockref.count--;
697 } else if (likely(!retain_dentry(dentry))) {
698 __dentry_kill(dentry);
699 return parent;
700 }
701 /* we are keeping it, after all */
702 if (inode)
703 spin_unlock(&inode->i_lock);
704 if (parent)
705 spin_unlock(&parent->d_lock);
c1d0c1a2 706 spin_unlock(&dentry->d_lock);
f657a666 707 return NULL;
c1d0c1a2
JO
708}
709
360f5479
LT
710/*
711 * Try to do a lockless dput(), and return whether that was successful.
712 *
713 * If unsuccessful, we return false, having already taken the dentry lock.
714 *
715 * The caller needs to hold the RCU read lock, so that the dentry is
716 * guaranteed to stay around even if the refcount goes down to zero!
717 */
718static inline bool fast_dput(struct dentry *dentry)
719{
720 int ret;
721 unsigned int d_flags;
722
723 /*
724 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 725 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
726 */
727 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
728 return lockref_put_or_lock(&dentry->d_lockref);
729
730 /*
731 * .. otherwise, we can try to just decrement the
732 * lockref optimistically.
733 */
734 ret = lockref_put_return(&dentry->d_lockref);
735
736 /*
737 * If the lockref_put_return() failed due to the lock being held
738 * by somebody else, the fast path has failed. We will need to
739 * get the lock, and then check the count again.
740 */
741 if (unlikely(ret < 0)) {
742 spin_lock(&dentry->d_lock);
743 if (dentry->d_lockref.count > 1) {
744 dentry->d_lockref.count--;
745 spin_unlock(&dentry->d_lock);
7964410f 746 return true;
360f5479 747 }
7964410f 748 return false;
360f5479
LT
749 }
750
751 /*
752 * If we weren't the last ref, we're done.
753 */
754 if (ret)
7964410f 755 return true;
360f5479
LT
756
757 /*
758 * Careful, careful. The reference count went down
759 * to zero, but we don't hold the dentry lock, so
760 * somebody else could get it again, and do another
761 * dput(), and we need to not race with that.
762 *
763 * However, there is a very special and common case
764 * where we don't care, because there is nothing to
765 * do: the dentry is still hashed, it does not have
766 * a 'delete' op, and it's referenced and already on
767 * the LRU list.
768 *
769 * NOTE! Since we aren't locked, these values are
770 * not "stable". However, it is sufficient that at
771 * some point after we dropped the reference the
772 * dentry was hashed and the flags had the proper
773 * value. Other dentry users may have re-gotten
774 * a reference to the dentry and change that, but
775 * our work is done - we can leave the dentry
776 * around with a zero refcount.
777 */
778 smp_rmb();
66702eb5 779 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 780 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
781
782 /* Nothing to do? Dropping the reference was all we needed? */
783 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
7964410f 784 return true;
360f5479
LT
785
786 /*
787 * Not the fast normal case? Get the lock. We've already decremented
788 * the refcount, but we'll need to re-check the situation after
789 * getting the lock.
790 */
791 spin_lock(&dentry->d_lock);
792
793 /*
794 * Did somebody else grab a reference to it in the meantime, and
795 * we're no longer the last user after all? Alternatively, somebody
796 * else could have killed it and marked it dead. Either way, we
797 * don't need to do anything else.
798 */
799 if (dentry->d_lockref.count) {
800 spin_unlock(&dentry->d_lock);
7964410f 801 return true;
360f5479
LT
802 }
803
804 /*
805 * Re-get the reference we optimistically dropped. We hold the
806 * lock, and we just tested that it was zero, so we can just
807 * set it to 1.
808 */
809 dentry->d_lockref.count = 1;
7964410f 810 return false;
360f5479
LT
811}
812
813
1da177e4
LT
814/*
815 * This is dput
816 *
817 * This is complicated by the fact that we do not want to put
818 * dentries that are no longer on any hash chain on the unused
819 * list: we'd much rather just get rid of them immediately.
820 *
821 * However, that implies that we have to traverse the dentry
822 * tree upwards to the parents which might _also_ now be
823 * scheduled for deletion (it may have been only waiting for
824 * its last child to go away).
825 *
826 * This tail recursion is done by hand as we don't want to depend
827 * on the compiler to always get this right (gcc generally doesn't).
828 * Real recursion would eat up our stack space.
829 */
830
831/*
832 * dput - release a dentry
833 * @dentry: dentry to release
834 *
835 * Release a dentry. This will drop the usage count and if appropriate
836 * call the dentry unlink method as well as removing it from the queues and
837 * releasing its resources. If the parent dentries were scheduled for release
838 * they too may now get deleted.
1da177e4 839 */
1da177e4
LT
840void dput(struct dentry *dentry)
841{
1088a640
AV
842 while (dentry) {
843 might_sleep();
1da177e4 844
1088a640
AV
845 rcu_read_lock();
846 if (likely(fast_dput(dentry))) {
847 rcu_read_unlock();
848 return;
849 }
47be6184 850
1088a640 851 /* Slow case: now with the dentry lock held */
360f5479 852 rcu_read_unlock();
360f5479 853
1088a640
AV
854 if (likely(retain_dentry(dentry))) {
855 spin_unlock(&dentry->d_lock);
856 return;
857 }
265ac902 858
1088a640 859 dentry = dentry_kill(dentry);
47be6184 860 }
1da177e4 861}
ec4f8605 862EXPORT_SYMBOL(dput);
1da177e4 863
9bdebc2b
AV
864static void __dput_to_list(struct dentry *dentry, struct list_head *list)
865__must_hold(&dentry->d_lock)
866{
867 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
868 /* let the owner of the list it's on deal with it */
869 --dentry->d_lockref.count;
870 } else {
871 if (dentry->d_flags & DCACHE_LRU_LIST)
872 d_lru_del(dentry);
873 if (!--dentry->d_lockref.count)
874 d_shrink_add(dentry, list);
875 }
876}
877
878void dput_to_list(struct dentry *dentry, struct list_head *list)
879{
880 rcu_read_lock();
881 if (likely(fast_dput(dentry))) {
882 rcu_read_unlock();
883 return;
884 }
885 rcu_read_unlock();
886 if (!retain_dentry(dentry))
887 __dput_to_list(dentry, list);
888 spin_unlock(&dentry->d_lock);
889}
1da177e4 890
b5c84bf6 891/* This must be called with d_lock held */
dc0474be 892static inline void __dget_dlock(struct dentry *dentry)
23044507 893{
98474236 894 dentry->d_lockref.count++;
23044507
NP
895}
896
dc0474be 897static inline void __dget(struct dentry *dentry)
1da177e4 898{
98474236 899 lockref_get(&dentry->d_lockref);
1da177e4
LT
900}
901
b7ab39f6
NP
902struct dentry *dget_parent(struct dentry *dentry)
903{
df3d0bbc 904 int gotref;
b7ab39f6
NP
905 struct dentry *ret;
906
df3d0bbc
WL
907 /*
908 * Do optimistic parent lookup without any
909 * locking.
910 */
911 rcu_read_lock();
66702eb5 912 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
913 gotref = lockref_get_not_zero(&ret->d_lockref);
914 rcu_read_unlock();
915 if (likely(gotref)) {
66702eb5 916 if (likely(ret == READ_ONCE(dentry->d_parent)))
df3d0bbc
WL
917 return ret;
918 dput(ret);
919 }
920
b7ab39f6 921repeat:
a734eb45
NP
922 /*
923 * Don't need rcu_dereference because we re-check it was correct under
924 * the lock.
925 */
926 rcu_read_lock();
b7ab39f6 927 ret = dentry->d_parent;
a734eb45
NP
928 spin_lock(&ret->d_lock);
929 if (unlikely(ret != dentry->d_parent)) {
930 spin_unlock(&ret->d_lock);
931 rcu_read_unlock();
b7ab39f6
NP
932 goto repeat;
933 }
a734eb45 934 rcu_read_unlock();
98474236
WL
935 BUG_ON(!ret->d_lockref.count);
936 ret->d_lockref.count++;
b7ab39f6 937 spin_unlock(&ret->d_lock);
b7ab39f6
NP
938 return ret;
939}
940EXPORT_SYMBOL(dget_parent);
941
61fec493
AV
942static struct dentry * __d_find_any_alias(struct inode *inode)
943{
944 struct dentry *alias;
945
946 if (hlist_empty(&inode->i_dentry))
947 return NULL;
948 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
949 __dget(alias);
950 return alias;
951}
952
953/**
954 * d_find_any_alias - find any alias for a given inode
955 * @inode: inode to find an alias for
956 *
957 * If any aliases exist for the given inode, take and return a
958 * reference for one of them. If no aliases exist, return %NULL.
959 */
960struct dentry *d_find_any_alias(struct inode *inode)
961{
962 struct dentry *de;
963
964 spin_lock(&inode->i_lock);
965 de = __d_find_any_alias(inode);
966 spin_unlock(&inode->i_lock);
967 return de;
968}
969EXPORT_SYMBOL(d_find_any_alias);
970
1da177e4
LT
971/**
972 * d_find_alias - grab a hashed alias of inode
973 * @inode: inode in question
1da177e4
LT
974 *
975 * If inode has a hashed alias, or is a directory and has any alias,
976 * acquire the reference to alias and return it. Otherwise return NULL.
977 * Notice that if inode is a directory there can be only one alias and
978 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
979 * of a filesystem, or if the directory was renamed and d_revalidate
980 * was the first vfs operation to notice.
1da177e4 981 *
21c0d8fd 982 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 983 * any other hashed alias over that one.
1da177e4 984 */
52ed46f0 985static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 986{
61fec493
AV
987 struct dentry *alias;
988
989 if (S_ISDIR(inode->i_mode))
990 return __d_find_any_alias(inode);
1da177e4 991
946e51f2 992 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 993 spin_lock(&alias->d_lock);
61fec493 994 if (!d_unhashed(alias)) {
8d80d7da
BF
995 __dget_dlock(alias);
996 spin_unlock(&alias->d_lock);
997 return alias;
1da177e4 998 }
da502956 999 spin_unlock(&alias->d_lock);
1da177e4 1000 }
da502956 1001 return NULL;
1da177e4
LT
1002}
1003
da502956 1004struct dentry *d_find_alias(struct inode *inode)
1da177e4 1005{
214fda1f
DH
1006 struct dentry *de = NULL;
1007
b3d9b7a3 1008 if (!hlist_empty(&inode->i_dentry)) {
873feea0 1009 spin_lock(&inode->i_lock);
52ed46f0 1010 de = __d_find_alias(inode);
873feea0 1011 spin_unlock(&inode->i_lock);
214fda1f 1012 }
1da177e4
LT
1013 return de;
1014}
ec4f8605 1015EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
1016
1017/*
1018 * Try to kill dentries associated with this inode.
1019 * WARNING: you must own a reference to inode.
1020 */
1021void d_prune_aliases(struct inode *inode)
1022{
0cdca3f9 1023 struct dentry *dentry;
1da177e4 1024restart:
873feea0 1025 spin_lock(&inode->i_lock);
946e51f2 1026 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 1027 spin_lock(&dentry->d_lock);
98474236 1028 if (!dentry->d_lockref.count) {
29355c39
AV
1029 struct dentry *parent = lock_parent(dentry);
1030 if (likely(!dentry->d_lockref.count)) {
1031 __dentry_kill(dentry);
4a7795d3 1032 dput(parent);
29355c39
AV
1033 goto restart;
1034 }
1035 if (parent)
1036 spin_unlock(&parent->d_lock);
1da177e4
LT
1037 }
1038 spin_unlock(&dentry->d_lock);
1039 }
873feea0 1040 spin_unlock(&inode->i_lock);
1da177e4 1041}
ec4f8605 1042EXPORT_SYMBOL(d_prune_aliases);
1da177e4 1043
3b3f09f4
AV
1044/*
1045 * Lock a dentry from shrink list.
8f04da2a
JO
1046 * Called under rcu_read_lock() and dentry->d_lock; the former
1047 * guarantees that nothing we access will be freed under us.
3b3f09f4 1048 * Note that dentry is *not* protected from concurrent dentry_kill(),
8f04da2a
JO
1049 * d_delete(), etc.
1050 *
3b3f09f4
AV
1051 * Return false if dentry has been disrupted or grabbed, leaving
1052 * the caller to kick it off-list. Otherwise, return true and have
1053 * that dentry's inode and parent both locked.
1054 */
1055static bool shrink_lock_dentry(struct dentry *dentry)
1da177e4 1056{
3b3f09f4
AV
1057 struct inode *inode;
1058 struct dentry *parent;
da3bbdd4 1059
3b3f09f4
AV
1060 if (dentry->d_lockref.count)
1061 return false;
1062
1063 inode = dentry->d_inode;
1064 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
3b3f09f4
AV
1065 spin_unlock(&dentry->d_lock);
1066 spin_lock(&inode->i_lock);
ec33679d 1067 spin_lock(&dentry->d_lock);
3b3f09f4
AV
1068 if (unlikely(dentry->d_lockref.count))
1069 goto out;
1070 /* changed inode means that somebody had grabbed it */
1071 if (unlikely(inode != dentry->d_inode))
1072 goto out;
3b3f09f4 1073 }
046b961b 1074
3b3f09f4
AV
1075 parent = dentry->d_parent;
1076 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1077 return true;
dd1f6b2e 1078
3b3f09f4 1079 spin_unlock(&dentry->d_lock);
3b3f09f4
AV
1080 spin_lock(&parent->d_lock);
1081 if (unlikely(parent != dentry->d_parent)) {
1082 spin_unlock(&parent->d_lock);
1083 spin_lock(&dentry->d_lock);
1084 goto out;
1085 }
1086 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
8f04da2a 1087 if (likely(!dentry->d_lockref.count))
3b3f09f4 1088 return true;
3b3f09f4
AV
1089 spin_unlock(&parent->d_lock);
1090out:
1091 if (inode)
1092 spin_unlock(&inode->i_lock);
3b3f09f4
AV
1093 return false;
1094}
77812a1e 1095
9bdebc2b 1096void shrink_dentry_list(struct list_head *list)
3b3f09f4
AV
1097{
1098 while (!list_empty(list)) {
1099 struct dentry *dentry, *parent;
64fd72e0 1100
3b3f09f4
AV
1101 dentry = list_entry(list->prev, struct dentry, d_lru);
1102 spin_lock(&dentry->d_lock);
8f04da2a 1103 rcu_read_lock();
3b3f09f4
AV
1104 if (!shrink_lock_dentry(dentry)) {
1105 bool can_free = false;
8f04da2a 1106 rcu_read_unlock();
3b3f09f4
AV
1107 d_shrink_del(dentry);
1108 if (dentry->d_lockref.count < 0)
1109 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1110 spin_unlock(&dentry->d_lock);
1111 if (can_free)
1112 dentry_free(dentry);
1113 continue;
1114 }
8f04da2a 1115 rcu_read_unlock();
3b3f09f4
AV
1116 d_shrink_del(dentry);
1117 parent = dentry->d_parent;
9bdebc2b
AV
1118 if (parent != dentry)
1119 __dput_to_list(parent, list);
ff2fde99 1120 __dentry_kill(dentry);
da3bbdd4 1121 }
3049cfe2
CH
1122}
1123
3f97b163
VD
1124static enum lru_status dentry_lru_isolate(struct list_head *item,
1125 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1126{
1127 struct list_head *freeable = arg;
1128 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1129
1130
1131 /*
1132 * we are inverting the lru lock/dentry->d_lock here,
1133 * so use a trylock. If we fail to get the lock, just skip
1134 * it
1135 */
1136 if (!spin_trylock(&dentry->d_lock))
1137 return LRU_SKIP;
1138
1139 /*
1140 * Referenced dentries are still in use. If they have active
1141 * counts, just remove them from the LRU. Otherwise give them
1142 * another pass through the LRU.
1143 */
1144 if (dentry->d_lockref.count) {
3f97b163 1145 d_lru_isolate(lru, dentry);
f6041567
DC
1146 spin_unlock(&dentry->d_lock);
1147 return LRU_REMOVED;
1148 }
1149
1150 if (dentry->d_flags & DCACHE_REFERENCED) {
1151 dentry->d_flags &= ~DCACHE_REFERENCED;
1152 spin_unlock(&dentry->d_lock);
1153
1154 /*
1155 * The list move itself will be made by the common LRU code. At
1156 * this point, we've dropped the dentry->d_lock but keep the
1157 * lru lock. This is safe to do, since every list movement is
1158 * protected by the lru lock even if both locks are held.
1159 *
1160 * This is guaranteed by the fact that all LRU management
1161 * functions are intermediated by the LRU API calls like
1162 * list_lru_add and list_lru_del. List movement in this file
1163 * only ever occur through this functions or through callbacks
1164 * like this one, that are called from the LRU API.
1165 *
1166 * The only exceptions to this are functions like
1167 * shrink_dentry_list, and code that first checks for the
1168 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1169 * operating only with stack provided lists after they are
1170 * properly isolated from the main list. It is thus, always a
1171 * local access.
1172 */
1173 return LRU_ROTATE;
1174 }
1175
3f97b163 1176 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1177 spin_unlock(&dentry->d_lock);
1178
1179 return LRU_REMOVED;
1180}
1181
3049cfe2 1182/**
b48f03b3
DC
1183 * prune_dcache_sb - shrink the dcache
1184 * @sb: superblock
503c358c 1185 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1186 *
503c358c
VD
1187 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1188 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1189 * function.
3049cfe2 1190 *
b48f03b3
DC
1191 * This function may fail to free any resources if all the dentries are in
1192 * use.
3049cfe2 1193 */
503c358c 1194long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1195{
f6041567
DC
1196 LIST_HEAD(dispose);
1197 long freed;
3049cfe2 1198
503c358c
VD
1199 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1200 dentry_lru_isolate, &dispose);
f6041567 1201 shrink_dentry_list(&dispose);
0a234c6d 1202 return freed;
da3bbdd4 1203}
23044507 1204
4e717f5c 1205static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1206 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1207{
4e717f5c
GC
1208 struct list_head *freeable = arg;
1209 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1210
4e717f5c
GC
1211 /*
1212 * we are inverting the lru lock/dentry->d_lock here,
1213 * so use a trylock. If we fail to get the lock, just skip
1214 * it
1215 */
1216 if (!spin_trylock(&dentry->d_lock))
1217 return LRU_SKIP;
1218
3f97b163 1219 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1220 spin_unlock(&dentry->d_lock);
ec33679d 1221
4e717f5c 1222 return LRU_REMOVED;
da3bbdd4
KM
1223}
1224
4e717f5c 1225
1da177e4
LT
1226/**
1227 * shrink_dcache_sb - shrink dcache for a superblock
1228 * @sb: superblock
1229 *
3049cfe2
CH
1230 * Shrink the dcache for the specified super block. This is used to free
1231 * the dcache before unmounting a file system.
1da177e4 1232 */
3049cfe2 1233void shrink_dcache_sb(struct super_block *sb)
1da177e4 1234{
4e717f5c
GC
1235 do {
1236 LIST_HEAD(dispose);
1237
1dbd449c 1238 list_lru_walk(&sb->s_dentry_lru,
b17c070f 1239 dentry_lru_isolate_shrink, &dispose, 1024);
4e717f5c 1240 shrink_dentry_list(&dispose);
b17c070f 1241 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1242}
ec4f8605 1243EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1244
db14fc3a
MS
1245/**
1246 * enum d_walk_ret - action to talke during tree walk
1247 * @D_WALK_CONTINUE: contrinue walk
1248 * @D_WALK_QUIT: quit walk
1249 * @D_WALK_NORETRY: quit when retry is needed
1250 * @D_WALK_SKIP: skip this dentry and its children
1251 */
1252enum d_walk_ret {
1253 D_WALK_CONTINUE,
1254 D_WALK_QUIT,
1255 D_WALK_NORETRY,
1256 D_WALK_SKIP,
1257};
c826cb7d 1258
1da177e4 1259/**
db14fc3a
MS
1260 * d_walk - walk the dentry tree
1261 * @parent: start of walk
1262 * @data: data passed to @enter() and @finish()
1263 * @enter: callback when first entering the dentry
1da177e4 1264 *
3a8e3611 1265 * The @enter() callbacks are called with d_lock held.
1da177e4 1266 */
db14fc3a 1267static void d_walk(struct dentry *parent, void *data,
3a8e3611 1268 enum d_walk_ret (*enter)(void *, struct dentry *))
1da177e4 1269{
949854d0 1270 struct dentry *this_parent;
1da177e4 1271 struct list_head *next;
48f5ec21 1272 unsigned seq = 0;
db14fc3a
MS
1273 enum d_walk_ret ret;
1274 bool retry = true;
949854d0 1275
58db63d0 1276again:
48f5ec21 1277 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1278 this_parent = parent;
2fd6b7f5 1279 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1280
1281 ret = enter(data, this_parent);
1282 switch (ret) {
1283 case D_WALK_CONTINUE:
1284 break;
1285 case D_WALK_QUIT:
1286 case D_WALK_SKIP:
1287 goto out_unlock;
1288 case D_WALK_NORETRY:
1289 retry = false;
1290 break;
1291 }
1da177e4
LT
1292repeat:
1293 next = this_parent->d_subdirs.next;
1294resume:
1295 while (next != &this_parent->d_subdirs) {
1296 struct list_head *tmp = next;
946e51f2 1297 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1298 next = tmp->next;
2fd6b7f5 1299
ba65dc5e
AV
1300 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1301 continue;
1302
2fd6b7f5 1303 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1304
1305 ret = enter(data, dentry);
1306 switch (ret) {
1307 case D_WALK_CONTINUE:
1308 break;
1309 case D_WALK_QUIT:
2fd6b7f5 1310 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1311 goto out_unlock;
1312 case D_WALK_NORETRY:
1313 retry = false;
1314 break;
1315 case D_WALK_SKIP:
1316 spin_unlock(&dentry->d_lock);
1317 continue;
2fd6b7f5 1318 }
db14fc3a 1319
1da177e4 1320 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1321 spin_unlock(&this_parent->d_lock);
1322 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1323 this_parent = dentry;
2fd6b7f5 1324 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1325 goto repeat;
1326 }
2fd6b7f5 1327 spin_unlock(&dentry->d_lock);
1da177e4
LT
1328 }
1329 /*
1330 * All done at this level ... ascend and resume the search.
1331 */
ca5358ef
AV
1332 rcu_read_lock();
1333ascend:
1da177e4 1334 if (this_parent != parent) {
c826cb7d 1335 struct dentry *child = this_parent;
31dec132
AV
1336 this_parent = child->d_parent;
1337
31dec132
AV
1338 spin_unlock(&child->d_lock);
1339 spin_lock(&this_parent->d_lock);
1340
ca5358ef
AV
1341 /* might go back up the wrong parent if we have had a rename. */
1342 if (need_seqretry(&rename_lock, seq))
949854d0 1343 goto rename_retry;
2159184e
AV
1344 /* go into the first sibling still alive */
1345 do {
1346 next = child->d_child.next;
ca5358ef
AV
1347 if (next == &this_parent->d_subdirs)
1348 goto ascend;
1349 child = list_entry(next, struct dentry, d_child);
2159184e 1350 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1351 rcu_read_unlock();
1da177e4
LT
1352 goto resume;
1353 }
ca5358ef 1354 if (need_seqretry(&rename_lock, seq))
949854d0 1355 goto rename_retry;
ca5358ef 1356 rcu_read_unlock();
db14fc3a
MS
1357
1358out_unlock:
1359 spin_unlock(&this_parent->d_lock);
48f5ec21 1360 done_seqretry(&rename_lock, seq);
db14fc3a 1361 return;
58db63d0
NP
1362
1363rename_retry:
ca5358ef
AV
1364 spin_unlock(&this_parent->d_lock);
1365 rcu_read_unlock();
1366 BUG_ON(seq & 1);
db14fc3a
MS
1367 if (!retry)
1368 return;
48f5ec21 1369 seq = 1;
58db63d0 1370 goto again;
1da177e4 1371}
db14fc3a 1372
01619491
IK
1373struct check_mount {
1374 struct vfsmount *mnt;
1375 unsigned int mounted;
1376};
1377
1378static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1379{
1380 struct check_mount *info = data;
1381 struct path path = { .mnt = info->mnt, .dentry = dentry };
1382
1383 if (likely(!d_mountpoint(dentry)))
1384 return D_WALK_CONTINUE;
1385 if (__path_is_mountpoint(&path)) {
1386 info->mounted = 1;
1387 return D_WALK_QUIT;
1388 }
1389 return D_WALK_CONTINUE;
1390}
1391
1392/**
1393 * path_has_submounts - check for mounts over a dentry in the
1394 * current namespace.
1395 * @parent: path to check.
1396 *
1397 * Return true if the parent or its subdirectories contain
1398 * a mount point in the current namespace.
1399 */
1400int path_has_submounts(const struct path *parent)
1401{
1402 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1403
1404 read_seqlock_excl(&mount_lock);
3a8e3611 1405 d_walk(parent->dentry, &data, path_check_mount);
01619491
IK
1406 read_sequnlock_excl(&mount_lock);
1407
1408 return data.mounted;
1409}
1410EXPORT_SYMBOL(path_has_submounts);
1411
eed81007
MS
1412/*
1413 * Called by mount code to set a mountpoint and check if the mountpoint is
1414 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1415 * subtree can become unreachable).
1416 *
1ffe46d1 1417 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1418 * this reason take rename_lock and d_lock on dentry and ancestors.
1419 */
1420int d_set_mounted(struct dentry *dentry)
1421{
1422 struct dentry *p;
1423 int ret = -ENOENT;
1424 write_seqlock(&rename_lock);
1425 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1426 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1427 spin_lock(&p->d_lock);
1428 if (unlikely(d_unhashed(p))) {
1429 spin_unlock(&p->d_lock);
1430 goto out;
1431 }
1432 spin_unlock(&p->d_lock);
1433 }
1434 spin_lock(&dentry->d_lock);
1435 if (!d_unlinked(dentry)) {
3895dbf8
EB
1436 ret = -EBUSY;
1437 if (!d_mountpoint(dentry)) {
1438 dentry->d_flags |= DCACHE_MOUNTED;
1439 ret = 0;
1440 }
eed81007
MS
1441 }
1442 spin_unlock(&dentry->d_lock);
1443out:
1444 write_sequnlock(&rename_lock);
1445 return ret;
1446}
1447
1da177e4 1448/*
fd517909 1449 * Search the dentry child list of the specified parent,
1da177e4
LT
1450 * and move any unused dentries to the end of the unused
1451 * list for prune_dcache(). We descend to the next level
1452 * whenever the d_subdirs list is non-empty and continue
1453 * searching.
1454 *
1455 * It returns zero iff there are no unused children,
1456 * otherwise it returns the number of children moved to
1457 * the end of the unused list. This may not be the total
1458 * number of unused children, because select_parent can
1459 * drop the lock and return early due to latency
1460 * constraints.
1461 */
1da177e4 1462
db14fc3a
MS
1463struct select_data {
1464 struct dentry *start;
9bdebc2b
AV
1465 union {
1466 long found;
1467 struct dentry *victim;
1468 };
db14fc3a 1469 struct list_head dispose;
db14fc3a 1470};
23044507 1471
db14fc3a
MS
1472static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1473{
1474 struct select_data *data = _data;
1475 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1476
db14fc3a
MS
1477 if (data->start == dentry)
1478 goto out;
2fd6b7f5 1479
fe91522a 1480 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1481 data->found++;
fe91522a
AV
1482 } else {
1483 if (dentry->d_flags & DCACHE_LRU_LIST)
1484 d_lru_del(dentry);
1485 if (!dentry->d_lockref.count) {
1486 d_shrink_add(dentry, &data->dispose);
1487 data->found++;
1488 }
1da177e4 1489 }
db14fc3a
MS
1490 /*
1491 * We can return to the caller if we have found some (this
1492 * ensures forward progress). We'll be coming back to find
1493 * the rest.
1494 */
fe91522a
AV
1495 if (!list_empty(&data->dispose))
1496 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1497out:
db14fc3a 1498 return ret;
1da177e4
LT
1499}
1500
9bdebc2b
AV
1501static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1502{
1503 struct select_data *data = _data;
1504 enum d_walk_ret ret = D_WALK_CONTINUE;
1505
1506 if (data->start == dentry)
1507 goto out;
1508
1509 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1510 if (!dentry->d_lockref.count) {
1511 rcu_read_lock();
1512 data->victim = dentry;
1513 return D_WALK_QUIT;
1514 }
1515 } else {
1516 if (dentry->d_flags & DCACHE_LRU_LIST)
1517 d_lru_del(dentry);
1518 if (!dentry->d_lockref.count)
1519 d_shrink_add(dentry, &data->dispose);
1520 }
1521 /*
1522 * We can return to the caller if we have found some (this
1523 * ensures forward progress). We'll be coming back to find
1524 * the rest.
1525 */
1526 if (!list_empty(&data->dispose))
1527 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1528out:
1529 return ret;
1530}
1531
1da177e4
LT
1532/**
1533 * shrink_dcache_parent - prune dcache
1534 * @parent: parent of entries to prune
1535 *
1536 * Prune the dcache to remove unused children of the parent dentry.
1537 */
db14fc3a 1538void shrink_dcache_parent(struct dentry *parent)
1da177e4 1539{
db14fc3a 1540 for (;;) {
9bdebc2b 1541 struct select_data data = {.start = parent};
1da177e4 1542
db14fc3a 1543 INIT_LIST_HEAD(&data.dispose);
3a8e3611 1544 d_walk(parent, &data, select_collect);
4fb48871
AV
1545
1546 if (!list_empty(&data.dispose)) {
1547 shrink_dentry_list(&data.dispose);
1548 continue;
1549 }
1550
1551 cond_resched();
db14fc3a
MS
1552 if (!data.found)
1553 break;
9bdebc2b
AV
1554 data.victim = NULL;
1555 d_walk(parent, &data, select_collect2);
1556 if (data.victim) {
1557 struct dentry *parent;
1558 spin_lock(&data.victim->d_lock);
1559 if (!shrink_lock_dentry(data.victim)) {
1560 spin_unlock(&data.victim->d_lock);
1561 rcu_read_unlock();
1562 } else {
1563 rcu_read_unlock();
1564 parent = data.victim->d_parent;
1565 if (parent != data.victim)
1566 __dput_to_list(parent, &data.dispose);
1567 __dentry_kill(data.victim);
1568 }
1569 }
1570 if (!list_empty(&data.dispose))
1571 shrink_dentry_list(&data.dispose);
421348f1 1572 }
1da177e4 1573}
ec4f8605 1574EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1575
9c8c10e2 1576static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1577{
9c8c10e2
AV
1578 /* it has busy descendents; complain about those instead */
1579 if (!list_empty(&dentry->d_subdirs))
1580 return D_WALK_CONTINUE;
42c32608 1581
9c8c10e2
AV
1582 /* root with refcount 1 is fine */
1583 if (dentry == _data && dentry->d_lockref.count == 1)
1584 return D_WALK_CONTINUE;
1585
1586 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1587 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1588 dentry,
1589 dentry->d_inode ?
1590 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1591 dentry,
42c32608
AV
1592 dentry->d_lockref.count,
1593 dentry->d_sb->s_type->name,
1594 dentry->d_sb->s_id);
9c8c10e2
AV
1595 WARN_ON(1);
1596 return D_WALK_CONTINUE;
1597}
1598
1599static void do_one_tree(struct dentry *dentry)
1600{
1601 shrink_dcache_parent(dentry);
3a8e3611 1602 d_walk(dentry, dentry, umount_check);
9c8c10e2
AV
1603 d_drop(dentry);
1604 dput(dentry);
42c32608
AV
1605}
1606
1607/*
1608 * destroy the dentries attached to a superblock on unmounting
1609 */
1610void shrink_dcache_for_umount(struct super_block *sb)
1611{
1612 struct dentry *dentry;
1613
9c8c10e2 1614 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1615
1616 dentry = sb->s_root;
1617 sb->s_root = NULL;
9c8c10e2 1618 do_one_tree(dentry);
42c32608 1619
f1ee6162
N
1620 while (!hlist_bl_empty(&sb->s_roots)) {
1621 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1622 do_one_tree(dentry);
42c32608
AV
1623 }
1624}
1625
ff17fa56 1626static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
848ac114 1627{
ff17fa56 1628 struct dentry **victim = _data;
848ac114 1629 if (d_mountpoint(dentry)) {
8ed936b5 1630 __dget_dlock(dentry);
ff17fa56 1631 *victim = dentry;
848ac114
MS
1632 return D_WALK_QUIT;
1633 }
ff17fa56 1634 return D_WALK_CONTINUE;
848ac114
MS
1635}
1636
1637/**
1ffe46d1
EB
1638 * d_invalidate - detach submounts, prune dcache, and drop
1639 * @dentry: dentry to invalidate (aka detach, prune and drop)
848ac114 1640 */
5542aa2f 1641void d_invalidate(struct dentry *dentry)
848ac114 1642{
ff17fa56 1643 bool had_submounts = false;
1ffe46d1
EB
1644 spin_lock(&dentry->d_lock);
1645 if (d_unhashed(dentry)) {
1646 spin_unlock(&dentry->d_lock);
5542aa2f 1647 return;
1ffe46d1 1648 }
ff17fa56 1649 __d_drop(dentry);
1ffe46d1
EB
1650 spin_unlock(&dentry->d_lock);
1651
848ac114 1652 /* Negative dentries can be dropped without further checks */
ff17fa56 1653 if (!dentry->d_inode)
5542aa2f 1654 return;
848ac114 1655
ff17fa56 1656 shrink_dcache_parent(dentry);
848ac114 1657 for (;;) {
ff17fa56 1658 struct dentry *victim = NULL;
3a8e3611 1659 d_walk(dentry, &victim, find_submount);
ff17fa56
AV
1660 if (!victim) {
1661 if (had_submounts)
1662 shrink_dcache_parent(dentry);
81be24d2 1663 return;
8ed936b5 1664 }
ff17fa56
AV
1665 had_submounts = true;
1666 detach_mounts(victim);
1667 dput(victim);
848ac114 1668 }
848ac114 1669}
1ffe46d1 1670EXPORT_SYMBOL(d_invalidate);
848ac114 1671
1da177e4 1672/**
a4464dbc
AV
1673 * __d_alloc - allocate a dcache entry
1674 * @sb: filesystem it will belong to
1da177e4
LT
1675 * @name: qstr of the name
1676 *
1677 * Allocates a dentry. It returns %NULL if there is insufficient memory
1678 * available. On a success the dentry is returned. The name passed in is
1679 * copied and the copy passed in may be reused after this call.
1680 */
1681
a4464dbc 1682struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1683{
1684 struct dentry *dentry;
1685 char *dname;
285b102d 1686 int err;
1da177e4 1687
e12ba74d 1688 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1689 if (!dentry)
1690 return NULL;
1691
6326c71f
LT
1692 /*
1693 * We guarantee that the inline name is always NUL-terminated.
1694 * This way the memcpy() done by the name switching in rename
1695 * will still always have a NUL at the end, even if we might
1696 * be overwriting an internal NUL character
1697 */
1698 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1699 if (unlikely(!name)) {
cdf01226 1700 name = &slash_name;
798434bd
AV
1701 dname = dentry->d_iname;
1702 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1703 size_t size = offsetof(struct external_name, name[1]);
2e03b4bc
VB
1704 struct external_name *p = kmalloc(size + name->len,
1705 GFP_KERNEL_ACCOUNT |
1706 __GFP_RECLAIMABLE);
1707 if (!p) {
1da177e4
LT
1708 kmem_cache_free(dentry_cache, dentry);
1709 return NULL;
1710 }
2e03b4bc
VB
1711 atomic_set(&p->u.count, 1);
1712 dname = p->name;
1da177e4
LT
1713 } else {
1714 dname = dentry->d_iname;
1715 }
1da177e4
LT
1716
1717 dentry->d_name.len = name->len;
1718 dentry->d_name.hash = name->hash;
1719 memcpy(dname, name->name, name->len);
1720 dname[name->len] = 0;
1721
6326c71f 1722 /* Make sure we always see the terminating NUL character */
7088efa9 1723 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1724
98474236 1725 dentry->d_lockref.count = 1;
dea3667b 1726 dentry->d_flags = 0;
1da177e4 1727 spin_lock_init(&dentry->d_lock);
31e6b01f 1728 seqcount_init(&dentry->d_seq);
1da177e4 1729 dentry->d_inode = NULL;
a4464dbc
AV
1730 dentry->d_parent = dentry;
1731 dentry->d_sb = sb;
1da177e4
LT
1732 dentry->d_op = NULL;
1733 dentry->d_fsdata = NULL;
ceb5bdc2 1734 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1735 INIT_LIST_HEAD(&dentry->d_lru);
1736 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1737 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1738 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1739 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1740
285b102d
MS
1741 if (dentry->d_op && dentry->d_op->d_init) {
1742 err = dentry->d_op->d_init(dentry);
1743 if (err) {
1744 if (dname_external(dentry))
1745 kfree(external_name(dentry));
1746 kmem_cache_free(dentry_cache, dentry);
1747 return NULL;
1748 }
1749 }
1750
3e880fb5 1751 this_cpu_inc(nr_dentry);
312d3ca8 1752
1da177e4
LT
1753 return dentry;
1754}
a4464dbc
AV
1755
1756/**
1757 * d_alloc - allocate a dcache entry
1758 * @parent: parent of entry to allocate
1759 * @name: qstr of the name
1760 *
1761 * Allocates a dentry. It returns %NULL if there is insufficient memory
1762 * available. On a success the dentry is returned. The name passed in is
1763 * copied and the copy passed in may be reused after this call.
1764 */
1765struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1766{
1767 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1768 if (!dentry)
1769 return NULL;
a4464dbc
AV
1770 spin_lock(&parent->d_lock);
1771 /*
1772 * don't need child lock because it is not subject
1773 * to concurrency here
1774 */
1775 __dget_dlock(parent);
1776 dentry->d_parent = parent;
946e51f2 1777 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1778 spin_unlock(&parent->d_lock);
1779
1780 return dentry;
1781}
ec4f8605 1782EXPORT_SYMBOL(d_alloc);
1da177e4 1783
f9c34674
MS
1784struct dentry *d_alloc_anon(struct super_block *sb)
1785{
1786 return __d_alloc(sb, NULL);
1787}
1788EXPORT_SYMBOL(d_alloc_anon);
1789
ba65dc5e
AV
1790struct dentry *d_alloc_cursor(struct dentry * parent)
1791{
f9c34674 1792 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e 1793 if (dentry) {
5467a68c 1794 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
ba65dc5e
AV
1795 dentry->d_parent = dget(parent);
1796 }
1797 return dentry;
1798}
1799
e1a24bb0
BF
1800/**
1801 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1802 * @sb: the superblock
1803 * @name: qstr of the name
1804 *
1805 * For a filesystem that just pins its dentries in memory and never
1806 * performs lookups at all, return an unhashed IS_ROOT dentry.
5467a68c
AV
1807 * This is used for pipes, sockets et.al. - the stuff that should
1808 * never be anyone's children or parents. Unlike all other
1809 * dentries, these will not have RCU delay between dropping the
1810 * last reference and freeing them.
ab1152dd
AV
1811 *
1812 * The only user is alloc_file_pseudo() and that's what should
1813 * be considered a public interface. Don't use directly.
e1a24bb0 1814 */
4b936885
NP
1815struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1816{
5467a68c
AV
1817 struct dentry *dentry = __d_alloc(sb, name);
1818 if (likely(dentry))
1819 dentry->d_flags |= DCACHE_NORCU;
1820 return dentry;
4b936885 1821}
4b936885 1822
1da177e4
LT
1823struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1824{
1825 struct qstr q;
1826
1827 q.name = name;
8387ff25 1828 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1829 return d_alloc(parent, &q);
1830}
ef26ca97 1831EXPORT_SYMBOL(d_alloc_name);
1da177e4 1832
fb045adb
NP
1833void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1834{
6f7f7caa
LT
1835 WARN_ON_ONCE(dentry->d_op);
1836 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1837 DCACHE_OP_COMPARE |
1838 DCACHE_OP_REVALIDATE |
ecf3d1f1 1839 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1840 DCACHE_OP_DELETE |
d101a125 1841 DCACHE_OP_REAL));
fb045adb
NP
1842 dentry->d_op = op;
1843 if (!op)
1844 return;
1845 if (op->d_hash)
1846 dentry->d_flags |= DCACHE_OP_HASH;
1847 if (op->d_compare)
1848 dentry->d_flags |= DCACHE_OP_COMPARE;
1849 if (op->d_revalidate)
1850 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1851 if (op->d_weak_revalidate)
1852 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1853 if (op->d_delete)
1854 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1855 if (op->d_prune)
1856 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1857 if (op->d_real)
1858 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1859
1860}
1861EXPORT_SYMBOL(d_set_d_op);
1862
df1a085a
DH
1863
1864/*
1865 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1866 * @dentry - The dentry to mark
1867 *
1868 * Mark a dentry as falling through to the lower layer (as set with
1869 * d_pin_lower()). This flag may be recorded on the medium.
1870 */
1871void d_set_fallthru(struct dentry *dentry)
1872{
1873 spin_lock(&dentry->d_lock);
1874 dentry->d_flags |= DCACHE_FALLTHRU;
1875 spin_unlock(&dentry->d_lock);
1876}
1877EXPORT_SYMBOL(d_set_fallthru);
1878
b18825a7
DH
1879static unsigned d_flags_for_inode(struct inode *inode)
1880{
44bdb5e5 1881 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1882
1883 if (!inode)
1884 return DCACHE_MISS_TYPE;
1885
1886 if (S_ISDIR(inode->i_mode)) {
1887 add_flags = DCACHE_DIRECTORY_TYPE;
1888 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1889 if (unlikely(!inode->i_op->lookup))
1890 add_flags = DCACHE_AUTODIR_TYPE;
1891 else
1892 inode->i_opflags |= IOP_LOOKUP;
1893 }
44bdb5e5
DH
1894 goto type_determined;
1895 }
1896
1897 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1898 if (unlikely(inode->i_op->get_link)) {
b18825a7 1899 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1900 goto type_determined;
1901 }
1902 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1903 }
1904
44bdb5e5
DH
1905 if (unlikely(!S_ISREG(inode->i_mode)))
1906 add_flags = DCACHE_SPECIAL_TYPE;
1907
1908type_determined:
b18825a7
DH
1909 if (unlikely(IS_AUTOMOUNT(inode)))
1910 add_flags |= DCACHE_NEED_AUTOMOUNT;
1911 return add_flags;
1912}
1913
360da900
OH
1914static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1915{
b18825a7 1916 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1917 WARN_ON(d_in_lookup(dentry));
b18825a7 1918
b23fb0a6 1919 spin_lock(&dentry->d_lock);
af0c9af1
WL
1920 /*
1921 * Decrement negative dentry count if it was in the LRU list.
1922 */
1923 if (dentry->d_flags & DCACHE_LRU_LIST)
1924 this_cpu_dec(nr_dentry_negative);
de689f5e 1925 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1926 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1927 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1928 raw_write_seqcount_end(&dentry->d_seq);
affda484 1929 fsnotify_update_flags(dentry);
b23fb0a6 1930 spin_unlock(&dentry->d_lock);
360da900
OH
1931}
1932
1da177e4
LT
1933/**
1934 * d_instantiate - fill in inode information for a dentry
1935 * @entry: dentry to complete
1936 * @inode: inode to attach to this dentry
1937 *
1938 * Fill in inode information in the entry.
1939 *
1940 * This turns negative dentries into productive full members
1941 * of society.
1942 *
1943 * NOTE! This assumes that the inode count has been incremented
1944 * (or otherwise set) by the caller to indicate that it is now
1945 * in use by the dcache.
1946 */
1947
1948void d_instantiate(struct dentry *entry, struct inode * inode)
1949{
946e51f2 1950 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1951 if (inode) {
b9680917 1952 security_d_instantiate(entry, inode);
873feea0 1953 spin_lock(&inode->i_lock);
de689f5e 1954 __d_instantiate(entry, inode);
873feea0 1955 spin_unlock(&inode->i_lock);
de689f5e 1956 }
1da177e4 1957}
ec4f8605 1958EXPORT_SYMBOL(d_instantiate);
1da177e4 1959
1e2e547a
AV
1960/*
1961 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1962 * with lockdep-related part of unlock_new_inode() done before
1963 * anything else. Use that instead of open-coding d_instantiate()/
1964 * unlock_new_inode() combinations.
1965 */
1966void d_instantiate_new(struct dentry *entry, struct inode *inode)
1967{
1968 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1969 BUG_ON(!inode);
1970 lockdep_annotate_inode_mutex_key(inode);
1971 security_d_instantiate(entry, inode);
1972 spin_lock(&inode->i_lock);
1973 __d_instantiate(entry, inode);
1974 WARN_ON(!(inode->i_state & I_NEW));
c2b6d621 1975 inode->i_state &= ~I_NEW & ~I_CREATING;
1e2e547a
AV
1976 smp_mb();
1977 wake_up_bit(&inode->i_state, __I_NEW);
1978 spin_unlock(&inode->i_lock);
1979}
1980EXPORT_SYMBOL(d_instantiate_new);
1981
adc0e91a
AV
1982struct dentry *d_make_root(struct inode *root_inode)
1983{
1984 struct dentry *res = NULL;
1985
1986 if (root_inode) {
f9c34674 1987 res = d_alloc_anon(root_inode->i_sb);
5467a68c 1988 if (res)
adc0e91a 1989 d_instantiate(res, root_inode);
5467a68c 1990 else
adc0e91a
AV
1991 iput(root_inode);
1992 }
1993 return res;
1994}
1995EXPORT_SYMBOL(d_make_root);
1996
f9c34674
MS
1997static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1998 struct inode *inode,
1999 bool disconnected)
4ea3ada2 2000{
9308a612 2001 struct dentry *res;
b18825a7 2002 unsigned add_flags;
4ea3ada2 2003
f9c34674 2004 security_d_instantiate(dentry, inode);
873feea0 2005 spin_lock(&inode->i_lock);
d891eedb 2006 res = __d_find_any_alias(inode);
9308a612 2007 if (res) {
873feea0 2008 spin_unlock(&inode->i_lock);
f9c34674 2009 dput(dentry);
9308a612
CH
2010 goto out_iput;
2011 }
2012
2013 /* attach a disconnected dentry */
1a0a397e
BF
2014 add_flags = d_flags_for_inode(inode);
2015
2016 if (disconnected)
2017 add_flags |= DCACHE_DISCONNECTED;
b18825a7 2018
f9c34674
MS
2019 spin_lock(&dentry->d_lock);
2020 __d_set_inode_and_type(dentry, inode, add_flags);
2021 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 2022 if (!disconnected) {
139351f1
LT
2023 hlist_bl_lock(&dentry->d_sb->s_roots);
2024 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2025 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 2026 }
f9c34674 2027 spin_unlock(&dentry->d_lock);
873feea0 2028 spin_unlock(&inode->i_lock);
9308a612 2029
f9c34674 2030 return dentry;
9308a612
CH
2031
2032 out_iput:
2033 iput(inode);
2034 return res;
4ea3ada2 2035}
1a0a397e 2036
f9c34674
MS
2037struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2038{
2039 return __d_instantiate_anon(dentry, inode, true);
2040}
2041EXPORT_SYMBOL(d_instantiate_anon);
2042
2043static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2044{
2045 struct dentry *tmp;
2046 struct dentry *res;
2047
2048 if (!inode)
2049 return ERR_PTR(-ESTALE);
2050 if (IS_ERR(inode))
2051 return ERR_CAST(inode);
2052
2053 res = d_find_any_alias(inode);
2054 if (res)
2055 goto out_iput;
2056
2057 tmp = d_alloc_anon(inode->i_sb);
2058 if (!tmp) {
2059 res = ERR_PTR(-ENOMEM);
2060 goto out_iput;
2061 }
2062
2063 return __d_instantiate_anon(tmp, inode, disconnected);
2064
2065out_iput:
2066 iput(inode);
2067 return res;
2068}
2069
1a0a397e
BF
2070/**
2071 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2072 * @inode: inode to allocate the dentry for
2073 *
2074 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2075 * similar open by handle operations. The returned dentry may be anonymous,
2076 * or may have a full name (if the inode was already in the cache).
2077 *
2078 * When called on a directory inode, we must ensure that the inode only ever
2079 * has one dentry. If a dentry is found, that is returned instead of
2080 * allocating a new one.
2081 *
2082 * On successful return, the reference to the inode has been transferred
2083 * to the dentry. In case of an error the reference on the inode is released.
2084 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2085 * be passed in and the error will be propagated to the return value,
2086 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2087 */
2088struct dentry *d_obtain_alias(struct inode *inode)
2089{
f9c34674 2090 return __d_obtain_alias(inode, true);
1a0a397e 2091}
adc48720 2092EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2093
1a0a397e
BF
2094/**
2095 * d_obtain_root - find or allocate a dentry for a given inode
2096 * @inode: inode to allocate the dentry for
2097 *
2098 * Obtain an IS_ROOT dentry for the root of a filesystem.
2099 *
2100 * We must ensure that directory inodes only ever have one dentry. If a
2101 * dentry is found, that is returned instead of allocating a new one.
2102 *
2103 * On successful return, the reference to the inode has been transferred
2104 * to the dentry. In case of an error the reference on the inode is
2105 * released. A %NULL or IS_ERR inode may be passed in and will be the
2106 * error will be propagate to the return value, with a %NULL @inode
2107 * replaced by ERR_PTR(-ESTALE).
2108 */
2109struct dentry *d_obtain_root(struct inode *inode)
2110{
f9c34674 2111 return __d_obtain_alias(inode, false);
1a0a397e
BF
2112}
2113EXPORT_SYMBOL(d_obtain_root);
2114
9403540c
BN
2115/**
2116 * d_add_ci - lookup or allocate new dentry with case-exact name
2117 * @inode: the inode case-insensitive lookup has found
2118 * @dentry: the negative dentry that was passed to the parent's lookup func
2119 * @name: the case-exact name to be associated with the returned dentry
2120 *
2121 * This is to avoid filling the dcache with case-insensitive names to the
2122 * same inode, only the actual correct case is stored in the dcache for
2123 * case-insensitive filesystems.
2124 *
2125 * For a case-insensitive lookup match and if the the case-exact dentry
2126 * already exists in in the dcache, use it and return it.
2127 *
2128 * If no entry exists with the exact case name, allocate new dentry with
2129 * the exact case, and return the spliced entry.
2130 */
e45b590b 2131struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2132 struct qstr *name)
2133{
d9171b93 2134 struct dentry *found, *res;
9403540c 2135
b6520c81
CH
2136 /*
2137 * First check if a dentry matching the name already exists,
2138 * if not go ahead and create it now.
2139 */
9403540c 2140 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2141 if (found) {
2142 iput(inode);
2143 return found;
2144 }
2145 if (d_in_lookup(dentry)) {
2146 found = d_alloc_parallel(dentry->d_parent, name,
2147 dentry->d_wait);
2148 if (IS_ERR(found) || !d_in_lookup(found)) {
2149 iput(inode);
2150 return found;
9403540c 2151 }
d9171b93
AV
2152 } else {
2153 found = d_alloc(dentry->d_parent, name);
2154 if (!found) {
2155 iput(inode);
2156 return ERR_PTR(-ENOMEM);
2157 }
2158 }
2159 res = d_splice_alias(inode, found);
2160 if (res) {
2161 dput(found);
2162 return res;
9403540c 2163 }
4f522a24 2164 return found;
9403540c 2165}
ec4f8605 2166EXPORT_SYMBOL(d_add_ci);
1da177e4 2167
12f8ad4b 2168
d4c91a8f
AV
2169static inline bool d_same_name(const struct dentry *dentry,
2170 const struct dentry *parent,
2171 const struct qstr *name)
12f8ad4b 2172{
d4c91a8f
AV
2173 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2174 if (dentry->d_name.len != name->len)
2175 return false;
2176 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2177 }
6fa67e70 2178 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2179 dentry->d_name.len, dentry->d_name.name,
2180 name) == 0;
12f8ad4b
LT
2181}
2182
31e6b01f
NP
2183/**
2184 * __d_lookup_rcu - search for a dentry (racy, store-free)
2185 * @parent: parent dentry
2186 * @name: qstr of name we wish to find
1f1e6e52 2187 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2188 * Returns: dentry, or NULL
2189 *
2190 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2191 * resolution (store-free path walking) design described in
2192 * Documentation/filesystems/path-lookup.txt.
2193 *
2194 * This is not to be used outside core vfs.
2195 *
2196 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2197 * held, and rcu_read_lock held. The returned dentry must not be stored into
2198 * without taking d_lock and checking d_seq sequence count against @seq
2199 * returned here.
2200 *
15570086 2201 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2202 * function.
2203 *
2204 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2205 * the returned dentry, so long as its parent's seqlock is checked after the
2206 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2207 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2208 *
2209 * NOTE! The caller *has* to check the resulting dentry against the sequence
2210 * number we've returned before using any of the resulting dentry state!
31e6b01f 2211 */
8966be90
LT
2212struct dentry *__d_lookup_rcu(const struct dentry *parent,
2213 const struct qstr *name,
da53be12 2214 unsigned *seqp)
31e6b01f 2215{
26fe5750 2216 u64 hashlen = name->hash_len;
31e6b01f 2217 const unsigned char *str = name->name;
8387ff25 2218 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2219 struct hlist_bl_node *node;
31e6b01f
NP
2220 struct dentry *dentry;
2221
2222 /*
2223 * Note: There is significant duplication with __d_lookup_rcu which is
2224 * required to prevent single threaded performance regressions
2225 * especially on architectures where smp_rmb (in seqcounts) are costly.
2226 * Keep the two functions in sync.
2227 */
2228
2229 /*
2230 * The hash list is protected using RCU.
2231 *
2232 * Carefully use d_seq when comparing a candidate dentry, to avoid
2233 * races with d_move().
2234 *
2235 * It is possible that concurrent renames can mess up our list
2236 * walk here and result in missing our dentry, resulting in the
2237 * false-negative result. d_lookup() protects against concurrent
2238 * renames using rename_lock seqlock.
2239 *
b0a4bb83 2240 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2241 */
b07ad996 2242 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2243 unsigned seq;
31e6b01f 2244
31e6b01f 2245seqretry:
12f8ad4b
LT
2246 /*
2247 * The dentry sequence count protects us from concurrent
da53be12 2248 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2249 *
2250 * The caller must perform a seqcount check in order
da53be12 2251 * to do anything useful with the returned dentry.
12f8ad4b
LT
2252 *
2253 * NOTE! We do a "raw" seqcount_begin here. That means that
2254 * we don't wait for the sequence count to stabilize if it
2255 * is in the middle of a sequence change. If we do the slow
2256 * dentry compare, we will do seqretries until it is stable,
2257 * and if we end up with a successful lookup, we actually
2258 * want to exit RCU lookup anyway.
d4c91a8f
AV
2259 *
2260 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2261 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2262 */
2263 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2264 if (dentry->d_parent != parent)
2265 continue;
2e321806
LT
2266 if (d_unhashed(dentry))
2267 continue;
12f8ad4b 2268
830c0f0e 2269 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2270 int tlen;
2271 const char *tname;
26fe5750
LT
2272 if (dentry->d_name.hash != hashlen_hash(hashlen))
2273 continue;
d4c91a8f
AV
2274 tlen = dentry->d_name.len;
2275 tname = dentry->d_name.name;
2276 /* we want a consistent (name,len) pair */
2277 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2278 cpu_relax();
12f8ad4b
LT
2279 goto seqretry;
2280 }
6fa67e70 2281 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2282 tlen, tname, name) != 0)
2283 continue;
2284 } else {
2285 if (dentry->d_name.hash_len != hashlen)
2286 continue;
2287 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2288 continue;
31e6b01f 2289 }
da53be12 2290 *seqp = seq;
d4c91a8f 2291 return dentry;
31e6b01f
NP
2292 }
2293 return NULL;
2294}
2295
1da177e4
LT
2296/**
2297 * d_lookup - search for a dentry
2298 * @parent: parent dentry
2299 * @name: qstr of name we wish to find
b04f784e 2300 * Returns: dentry, or NULL
1da177e4 2301 *
b04f784e
NP
2302 * d_lookup searches the children of the parent dentry for the name in
2303 * question. If the dentry is found its reference count is incremented and the
2304 * dentry is returned. The caller must use dput to free the entry when it has
2305 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2306 */
da2d8455 2307struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2308{
31e6b01f 2309 struct dentry *dentry;
949854d0 2310 unsigned seq;
1da177e4 2311
b8314f93
DY
2312 do {
2313 seq = read_seqbegin(&rename_lock);
2314 dentry = __d_lookup(parent, name);
2315 if (dentry)
1da177e4
LT
2316 break;
2317 } while (read_seqretry(&rename_lock, seq));
2318 return dentry;
2319}
ec4f8605 2320EXPORT_SYMBOL(d_lookup);
1da177e4 2321
31e6b01f 2322/**
b04f784e
NP
2323 * __d_lookup - search for a dentry (racy)
2324 * @parent: parent dentry
2325 * @name: qstr of name we wish to find
2326 * Returns: dentry, or NULL
2327 *
2328 * __d_lookup is like d_lookup, however it may (rarely) return a
2329 * false-negative result due to unrelated rename activity.
2330 *
2331 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2332 * however it must be used carefully, eg. with a following d_lookup in
2333 * the case of failure.
2334 *
2335 * __d_lookup callers must be commented.
2336 */
a713ca2a 2337struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2338{
1da177e4 2339 unsigned int hash = name->hash;
8387ff25 2340 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2341 struct hlist_bl_node *node;
31e6b01f 2342 struct dentry *found = NULL;
665a7583 2343 struct dentry *dentry;
1da177e4 2344
31e6b01f
NP
2345 /*
2346 * Note: There is significant duplication with __d_lookup_rcu which is
2347 * required to prevent single threaded performance regressions
2348 * especially on architectures where smp_rmb (in seqcounts) are costly.
2349 * Keep the two functions in sync.
2350 */
2351
b04f784e
NP
2352 /*
2353 * The hash list is protected using RCU.
2354 *
2355 * Take d_lock when comparing a candidate dentry, to avoid races
2356 * with d_move().
2357 *
2358 * It is possible that concurrent renames can mess up our list
2359 * walk here and result in missing our dentry, resulting in the
2360 * false-negative result. d_lookup() protects against concurrent
2361 * renames using rename_lock seqlock.
2362 *
b0a4bb83 2363 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2364 */
1da177e4
LT
2365 rcu_read_lock();
2366
b07ad996 2367 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2368
1da177e4
LT
2369 if (dentry->d_name.hash != hash)
2370 continue;
1da177e4
LT
2371
2372 spin_lock(&dentry->d_lock);
1da177e4
LT
2373 if (dentry->d_parent != parent)
2374 goto next;
d0185c08
LT
2375 if (d_unhashed(dentry))
2376 goto next;
2377
d4c91a8f
AV
2378 if (!d_same_name(dentry, parent, name))
2379 goto next;
1da177e4 2380
98474236 2381 dentry->d_lockref.count++;
d0185c08 2382 found = dentry;
1da177e4
LT
2383 spin_unlock(&dentry->d_lock);
2384 break;
2385next:
2386 spin_unlock(&dentry->d_lock);
2387 }
2388 rcu_read_unlock();
2389
2390 return found;
2391}
2392
3e7e241f
EB
2393/**
2394 * d_hash_and_lookup - hash the qstr then search for a dentry
2395 * @dir: Directory to search in
2396 * @name: qstr of name we wish to find
2397 *
4f522a24 2398 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2399 */
2400struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2401{
3e7e241f
EB
2402 /*
2403 * Check for a fs-specific hash function. Note that we must
2404 * calculate the standard hash first, as the d_op->d_hash()
2405 * routine may choose to leave the hash value unchanged.
2406 */
8387ff25 2407 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2408 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2409 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2410 if (unlikely(err < 0))
2411 return ERR_PTR(err);
3e7e241f 2412 }
4f522a24 2413 return d_lookup(dir, name);
3e7e241f 2414}
4f522a24 2415EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2416
1da177e4
LT
2417/*
2418 * When a file is deleted, we have two options:
2419 * - turn this dentry into a negative dentry
2420 * - unhash this dentry and free it.
2421 *
2422 * Usually, we want to just turn this into
2423 * a negative dentry, but if anybody else is
2424 * currently using the dentry or the inode
2425 * we can't do that and we fall back on removing
2426 * it from the hash queues and waiting for
2427 * it to be deleted later when it has no users
2428 */
2429
2430/**
2431 * d_delete - delete a dentry
2432 * @dentry: The dentry to delete
2433 *
2434 * Turn the dentry into a negative dentry if possible, otherwise
2435 * remove it from the hash queues so it can be deleted later
2436 */
2437
2438void d_delete(struct dentry * dentry)
2439{
c19457f0 2440 struct inode *inode = dentry->d_inode;
c19457f0
AV
2441
2442 spin_lock(&inode->i_lock);
2443 spin_lock(&dentry->d_lock);
1da177e4
LT
2444 /*
2445 * Are we the only user?
2446 */
98474236 2447 if (dentry->d_lockref.count == 1) {
13e3c5e5 2448 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2449 dentry_unlink_inode(dentry);
c19457f0 2450 } else {
1da177e4 2451 __d_drop(dentry);
c19457f0
AV
2452 spin_unlock(&dentry->d_lock);
2453 spin_unlock(&inode->i_lock);
2454 }
1da177e4 2455}
ec4f8605 2456EXPORT_SYMBOL(d_delete);
1da177e4 2457
15d3c589 2458static void __d_rehash(struct dentry *entry)
1da177e4 2459{
15d3c589 2460 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2461
1879fd6a 2462 hlist_bl_lock(b);
b07ad996 2463 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2464 hlist_bl_unlock(b);
1da177e4
LT
2465}
2466
2467/**
2468 * d_rehash - add an entry back to the hash
2469 * @entry: dentry to add to the hash
2470 *
2471 * Adds a dentry to the hash according to its name.
2472 */
2473
2474void d_rehash(struct dentry * entry)
2475{
1da177e4 2476 spin_lock(&entry->d_lock);
15d3c589 2477 __d_rehash(entry);
1da177e4 2478 spin_unlock(&entry->d_lock);
1da177e4 2479}
ec4f8605 2480EXPORT_SYMBOL(d_rehash);
1da177e4 2481
84e710da
AV
2482static inline unsigned start_dir_add(struct inode *dir)
2483{
2484
2485 for (;;) {
2486 unsigned n = dir->i_dir_seq;
2487 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2488 return n;
2489 cpu_relax();
2490 }
2491}
2492
2493static inline void end_dir_add(struct inode *dir, unsigned n)
2494{
2495 smp_store_release(&dir->i_dir_seq, n + 2);
2496}
2497
d9171b93
AV
2498static void d_wait_lookup(struct dentry *dentry)
2499{
2500 if (d_in_lookup(dentry)) {
2501 DECLARE_WAITQUEUE(wait, current);
2502 add_wait_queue(dentry->d_wait, &wait);
2503 do {
2504 set_current_state(TASK_UNINTERRUPTIBLE);
2505 spin_unlock(&dentry->d_lock);
2506 schedule();
2507 spin_lock(&dentry->d_lock);
2508 } while (d_in_lookup(dentry));
2509 }
2510}
2511
94bdd655 2512struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2513 const struct qstr *name,
2514 wait_queue_head_t *wq)
94bdd655 2515{
94bdd655 2516 unsigned int hash = name->hash;
94bdd655
AV
2517 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2518 struct hlist_bl_node *node;
2519 struct dentry *new = d_alloc(parent, name);
2520 struct dentry *dentry;
2521 unsigned seq, r_seq, d_seq;
2522
2523 if (unlikely(!new))
2524 return ERR_PTR(-ENOMEM);
2525
2526retry:
2527 rcu_read_lock();
015555fd 2528 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2529 r_seq = read_seqbegin(&rename_lock);
2530 dentry = __d_lookup_rcu(parent, name, &d_seq);
2531 if (unlikely(dentry)) {
2532 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2533 rcu_read_unlock();
2534 goto retry;
2535 }
2536 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2537 rcu_read_unlock();
2538 dput(dentry);
2539 goto retry;
2540 }
2541 rcu_read_unlock();
2542 dput(new);
2543 return dentry;
2544 }
2545 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2546 rcu_read_unlock();
2547 goto retry;
2548 }
015555fd
WD
2549
2550 if (unlikely(seq & 1)) {
2551 rcu_read_unlock();
2552 goto retry;
2553 }
2554
94bdd655 2555 hlist_bl_lock(b);
8cc07c80 2556 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2557 hlist_bl_unlock(b);
2558 rcu_read_unlock();
2559 goto retry;
2560 }
94bdd655
AV
2561 /*
2562 * No changes for the parent since the beginning of d_lookup().
2563 * Since all removals from the chain happen with hlist_bl_lock(),
2564 * any potential in-lookup matches are going to stay here until
2565 * we unlock the chain. All fields are stable in everything
2566 * we encounter.
2567 */
2568 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2569 if (dentry->d_name.hash != hash)
2570 continue;
2571 if (dentry->d_parent != parent)
2572 continue;
d4c91a8f
AV
2573 if (!d_same_name(dentry, parent, name))
2574 continue;
94bdd655 2575 hlist_bl_unlock(b);
e7d6ef97
AV
2576 /* now we can try to grab a reference */
2577 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2578 rcu_read_unlock();
2579 goto retry;
2580 }
2581
2582 rcu_read_unlock();
2583 /*
2584 * somebody is likely to be still doing lookup for it;
2585 * wait for them to finish
2586 */
d9171b93
AV
2587 spin_lock(&dentry->d_lock);
2588 d_wait_lookup(dentry);
2589 /*
2590 * it's not in-lookup anymore; in principle we should repeat
2591 * everything from dcache lookup, but it's likely to be what
2592 * d_lookup() would've found anyway. If it is, just return it;
2593 * otherwise we really have to repeat the whole thing.
2594 */
2595 if (unlikely(dentry->d_name.hash != hash))
2596 goto mismatch;
2597 if (unlikely(dentry->d_parent != parent))
2598 goto mismatch;
2599 if (unlikely(d_unhashed(dentry)))
2600 goto mismatch;
d4c91a8f
AV
2601 if (unlikely(!d_same_name(dentry, parent, name)))
2602 goto mismatch;
d9171b93
AV
2603 /* OK, it *is* a hashed match; return it */
2604 spin_unlock(&dentry->d_lock);
94bdd655
AV
2605 dput(new);
2606 return dentry;
2607 }
e7d6ef97 2608 rcu_read_unlock();
94bdd655
AV
2609 /* we can't take ->d_lock here; it's OK, though. */
2610 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2611 new->d_wait = wq;
94bdd655
AV
2612 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2613 hlist_bl_unlock(b);
2614 return new;
d9171b93
AV
2615mismatch:
2616 spin_unlock(&dentry->d_lock);
2617 dput(dentry);
2618 goto retry;
94bdd655
AV
2619}
2620EXPORT_SYMBOL(d_alloc_parallel);
2621
85c7f810
AV
2622void __d_lookup_done(struct dentry *dentry)
2623{
94bdd655
AV
2624 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2625 dentry->d_name.hash);
2626 hlist_bl_lock(b);
85c7f810 2627 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2628 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2629 wake_up_all(dentry->d_wait);
2630 dentry->d_wait = NULL;
94bdd655
AV
2631 hlist_bl_unlock(b);
2632 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2633 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2634}
2635EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2636
2637/* inode->i_lock held if inode is non-NULL */
2638
2639static inline void __d_add(struct dentry *dentry, struct inode *inode)
2640{
84e710da
AV
2641 struct inode *dir = NULL;
2642 unsigned n;
0568d705 2643 spin_lock(&dentry->d_lock);
84e710da
AV
2644 if (unlikely(d_in_lookup(dentry))) {
2645 dir = dentry->d_parent->d_inode;
2646 n = start_dir_add(dir);
85c7f810 2647 __d_lookup_done(dentry);
84e710da 2648 }
ed782b5a 2649 if (inode) {
0568d705
AV
2650 unsigned add_flags = d_flags_for_inode(inode);
2651 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2652 raw_write_seqcount_begin(&dentry->d_seq);
2653 __d_set_inode_and_type(dentry, inode, add_flags);
2654 raw_write_seqcount_end(&dentry->d_seq);
affda484 2655 fsnotify_update_flags(dentry);
ed782b5a 2656 }
15d3c589 2657 __d_rehash(dentry);
84e710da
AV
2658 if (dir)
2659 end_dir_add(dir, n);
0568d705
AV
2660 spin_unlock(&dentry->d_lock);
2661 if (inode)
2662 spin_unlock(&inode->i_lock);
ed782b5a
AV
2663}
2664
34d0d19d
AV
2665/**
2666 * d_add - add dentry to hash queues
2667 * @entry: dentry to add
2668 * @inode: The inode to attach to this dentry
2669 *
2670 * This adds the entry to the hash queues and initializes @inode.
2671 * The entry was actually filled in earlier during d_alloc().
2672 */
2673
2674void d_add(struct dentry *entry, struct inode *inode)
2675{
b9680917
AV
2676 if (inode) {
2677 security_d_instantiate(entry, inode);
ed782b5a 2678 spin_lock(&inode->i_lock);
b9680917 2679 }
ed782b5a 2680 __d_add(entry, inode);
34d0d19d
AV
2681}
2682EXPORT_SYMBOL(d_add);
2683
668d0cd5
AV
2684/**
2685 * d_exact_alias - find and hash an exact unhashed alias
2686 * @entry: dentry to add
2687 * @inode: The inode to go with this dentry
2688 *
2689 * If an unhashed dentry with the same name/parent and desired
2690 * inode already exists, hash and return it. Otherwise, return
2691 * NULL.
2692 *
2693 * Parent directory should be locked.
2694 */
2695struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2696{
2697 struct dentry *alias;
668d0cd5
AV
2698 unsigned int hash = entry->d_name.hash;
2699
2700 spin_lock(&inode->i_lock);
2701 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2702 /*
2703 * Don't need alias->d_lock here, because aliases with
2704 * d_parent == entry->d_parent are not subject to name or
2705 * parent changes, because the parent inode i_mutex is held.
2706 */
2707 if (alias->d_name.hash != hash)
2708 continue;
2709 if (alias->d_parent != entry->d_parent)
2710 continue;
d4c91a8f 2711 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2712 continue;
2713 spin_lock(&alias->d_lock);
2714 if (!d_unhashed(alias)) {
2715 spin_unlock(&alias->d_lock);
2716 alias = NULL;
2717 } else {
2718 __dget_dlock(alias);
15d3c589 2719 __d_rehash(alias);
668d0cd5
AV
2720 spin_unlock(&alias->d_lock);
2721 }
2722 spin_unlock(&inode->i_lock);
2723 return alias;
2724 }
2725 spin_unlock(&inode->i_lock);
2726 return NULL;
2727}
2728EXPORT_SYMBOL(d_exact_alias);
2729
8d85b484 2730static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2731{
8d85b484
AV
2732 if (unlikely(dname_external(target))) {
2733 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2734 /*
2735 * Both external: swap the pointers
2736 */
9a8d5bb4 2737 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2738 } else {
2739 /*
2740 * dentry:internal, target:external. Steal target's
2741 * storage and make target internal.
2742 */
321bcf92
BF
2743 memcpy(target->d_iname, dentry->d_name.name,
2744 dentry->d_name.len + 1);
1da177e4
LT
2745 dentry->d_name.name = target->d_name.name;
2746 target->d_name.name = target->d_iname;
2747 }
2748 } else {
8d85b484 2749 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2750 /*
2751 * dentry:external, target:internal. Give dentry's
2752 * storage to target and make dentry internal
2753 */
2754 memcpy(dentry->d_iname, target->d_name.name,
2755 target->d_name.len + 1);
2756 target->d_name.name = dentry->d_name.name;
2757 dentry->d_name.name = dentry->d_iname;
2758 } else {
2759 /*
da1ce067 2760 * Both are internal.
1da177e4 2761 */
da1ce067
MS
2762 unsigned int i;
2763 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2764 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2765 swap(((long *) &dentry->d_iname)[i],
2766 ((long *) &target->d_iname)[i]);
2767 }
1da177e4
LT
2768 }
2769 }
a28ddb87 2770 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2771}
2772
8d85b484
AV
2773static void copy_name(struct dentry *dentry, struct dentry *target)
2774{
2775 struct external_name *old_name = NULL;
2776 if (unlikely(dname_external(dentry)))
2777 old_name = external_name(dentry);
2778 if (unlikely(dname_external(target))) {
2779 atomic_inc(&external_name(target)->u.count);
2780 dentry->d_name = target->d_name;
2781 } else {
2782 memcpy(dentry->d_iname, target->d_name.name,
2783 target->d_name.len + 1);
2784 dentry->d_name.name = dentry->d_iname;
2785 dentry->d_name.hash_len = target->d_name.hash_len;
2786 }
2787 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2e03b4bc 2788 kfree_rcu(old_name, u.head);
8d85b484
AV
2789}
2790
9eaef27b 2791/*
18367501 2792 * __d_move - move a dentry
1da177e4
LT
2793 * @dentry: entry to move
2794 * @target: new dentry
da1ce067 2795 * @exchange: exchange the two dentries
1da177e4
LT
2796 *
2797 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2798 * dcache entries should not be moved in this way. Caller must hold
2799 * rename_lock, the i_mutex of the source and target directories,
2800 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2801 */
da1ce067
MS
2802static void __d_move(struct dentry *dentry, struct dentry *target,
2803 bool exchange)
1da177e4 2804{
42177007 2805 struct dentry *old_parent, *p;
84e710da
AV
2806 struct inode *dir = NULL;
2807 unsigned n;
1da177e4 2808
42177007
AV
2809 WARN_ON(!dentry->d_inode);
2810 if (WARN_ON(dentry == target))
2811 return;
2812
2fd6b7f5 2813 BUG_ON(d_ancestor(target, dentry));
42177007
AV
2814 old_parent = dentry->d_parent;
2815 p = d_ancestor(old_parent, target);
2816 if (IS_ROOT(dentry)) {
2817 BUG_ON(p);
2818 spin_lock(&target->d_parent->d_lock);
2819 } else if (!p) {
2820 /* target is not a descendent of dentry->d_parent */
2821 spin_lock(&target->d_parent->d_lock);
2822 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2823 } else {
2824 BUG_ON(p == dentry);
2825 spin_lock(&old_parent->d_lock);
2826 if (p != target)
2827 spin_lock_nested(&target->d_parent->d_lock,
2828 DENTRY_D_LOCK_NESTED);
2829 }
2830 spin_lock_nested(&dentry->d_lock, 2);
2831 spin_lock_nested(&target->d_lock, 3);
2fd6b7f5 2832
84e710da
AV
2833 if (unlikely(d_in_lookup(target))) {
2834 dir = target->d_parent->d_inode;
2835 n = start_dir_add(dir);
85c7f810 2836 __d_lookup_done(target);
84e710da 2837 }
1da177e4 2838
31e6b01f 2839 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2840 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2841
15d3c589 2842 /* unhash both */
0632a9ac
AV
2843 if (!d_unhashed(dentry))
2844 ___d_drop(dentry);
2845 if (!d_unhashed(target))
2846 ___d_drop(target);
1da177e4 2847
076515fc
AV
2848 /* ... and switch them in the tree */
2849 dentry->d_parent = target->d_parent;
2850 if (!exchange) {
8d85b484 2851 copy_name(dentry, target);
61647823 2852 target->d_hash.pprev = NULL;
076515fc 2853 dentry->d_parent->d_lockref.count++;
5467a68c 2854 if (dentry != old_parent) /* wasn't IS_ROOT */
076515fc 2855 WARN_ON(!--old_parent->d_lockref.count);
1da177e4 2856 } else {
076515fc
AV
2857 target->d_parent = old_parent;
2858 swap_names(dentry, target);
946e51f2 2859 list_move(&target->d_child, &target->d_parent->d_subdirs);
076515fc
AV
2860 __d_rehash(target);
2861 fsnotify_update_flags(target);
1da177e4 2862 }
076515fc
AV
2863 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2864 __d_rehash(dentry);
2865 fsnotify_update_flags(dentry);
0bf3d5c1 2866 fscrypt_handle_d_move(dentry);
1da177e4 2867
31e6b01f
NP
2868 write_seqcount_end(&target->d_seq);
2869 write_seqcount_end(&dentry->d_seq);
2870
84e710da
AV
2871 if (dir)
2872 end_dir_add(dir, n);
076515fc
AV
2873
2874 if (dentry->d_parent != old_parent)
2875 spin_unlock(&dentry->d_parent->d_lock);
2876 if (dentry != old_parent)
2877 spin_unlock(&old_parent->d_lock);
2878 spin_unlock(&target->d_lock);
2879 spin_unlock(&dentry->d_lock);
18367501
AV
2880}
2881
2882/*
2883 * d_move - move a dentry
2884 * @dentry: entry to move
2885 * @target: new dentry
2886 *
2887 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2888 * dcache entries should not be moved in this way. See the locking
2889 * requirements for __d_move.
18367501
AV
2890 */
2891void d_move(struct dentry *dentry, struct dentry *target)
2892{
2893 write_seqlock(&rename_lock);
da1ce067 2894 __d_move(dentry, target, false);
1da177e4 2895 write_sequnlock(&rename_lock);
9eaef27b 2896}
ec4f8605 2897EXPORT_SYMBOL(d_move);
1da177e4 2898
da1ce067
MS
2899/*
2900 * d_exchange - exchange two dentries
2901 * @dentry1: first dentry
2902 * @dentry2: second dentry
2903 */
2904void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2905{
2906 write_seqlock(&rename_lock);
2907
2908 WARN_ON(!dentry1->d_inode);
2909 WARN_ON(!dentry2->d_inode);
2910 WARN_ON(IS_ROOT(dentry1));
2911 WARN_ON(IS_ROOT(dentry2));
2912
2913 __d_move(dentry1, dentry2, true);
2914
2915 write_sequnlock(&rename_lock);
2916}
2917
e2761a11
OH
2918/**
2919 * d_ancestor - search for an ancestor
2920 * @p1: ancestor dentry
2921 * @p2: child dentry
2922 *
2923 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2924 * an ancestor of p2, else NULL.
9eaef27b 2925 */
e2761a11 2926struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2927{
2928 struct dentry *p;
2929
871c0067 2930 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2931 if (p->d_parent == p1)
e2761a11 2932 return p;
9eaef27b 2933 }
e2761a11 2934 return NULL;
9eaef27b
TM
2935}
2936
2937/*
2938 * This helper attempts to cope with remotely renamed directories
2939 *
2940 * It assumes that the caller is already holding
a03e283b 2941 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2942 *
2943 * Note: If ever the locking in lock_rename() changes, then please
2944 * remember to update this too...
9eaef27b 2945 */
b5ae6b15 2946static int __d_unalias(struct inode *inode,
873feea0 2947 struct dentry *dentry, struct dentry *alias)
9eaef27b 2948{
9902af79
AV
2949 struct mutex *m1 = NULL;
2950 struct rw_semaphore *m2 = NULL;
3d330dc1 2951 int ret = -ESTALE;
9eaef27b
TM
2952
2953 /* If alias and dentry share a parent, then no extra locks required */
2954 if (alias->d_parent == dentry->d_parent)
2955 goto out_unalias;
2956
9eaef27b 2957 /* See lock_rename() */
9eaef27b
TM
2958 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2959 goto out_err;
2960 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2961 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2962 goto out_err;
9902af79 2963 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2964out_unalias:
8ed936b5 2965 __d_move(alias, dentry, false);
b5ae6b15 2966 ret = 0;
9eaef27b 2967out_err:
9eaef27b 2968 if (m2)
9902af79 2969 up_read(m2);
9eaef27b
TM
2970 if (m1)
2971 mutex_unlock(m1);
2972 return ret;
2973}
2974
3f70bd51
BF
2975/**
2976 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2977 * @inode: the inode which may have a disconnected dentry
2978 * @dentry: a negative dentry which we want to point to the inode.
2979 *
da093a9b
BF
2980 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2981 * place of the given dentry and return it, else simply d_add the inode
2982 * to the dentry and return NULL.
3f70bd51 2983 *
908790fa
BF
2984 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2985 * we should error out: directories can't have multiple aliases.
2986 *
3f70bd51
BF
2987 * This is needed in the lookup routine of any filesystem that is exportable
2988 * (via knfsd) so that we can build dcache paths to directories effectively.
2989 *
2990 * If a dentry was found and moved, then it is returned. Otherwise NULL
2991 * is returned. This matches the expected return value of ->lookup.
2992 *
2993 * Cluster filesystems may call this function with a negative, hashed dentry.
2994 * In that case, we know that the inode will be a regular file, and also this
2995 * will only occur during atomic_open. So we need to check for the dentry
2996 * being already hashed only in the final case.
2997 */
2998struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2999{
3f70bd51
BF
3000 if (IS_ERR(inode))
3001 return ERR_CAST(inode);
3002
770bfad8
DH
3003 BUG_ON(!d_unhashed(dentry));
3004
de689f5e 3005 if (!inode)
b5ae6b15 3006 goto out;
de689f5e 3007
b9680917 3008 security_d_instantiate(dentry, inode);
873feea0 3009 spin_lock(&inode->i_lock);
9eaef27b 3010 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
3011 struct dentry *new = __d_find_any_alias(inode);
3012 if (unlikely(new)) {
a03e283b
EB
3013 /* The reference to new ensures it remains an alias */
3014 spin_unlock(&inode->i_lock);
18367501 3015 write_seqlock(&rename_lock);
b5ae6b15
AV
3016 if (unlikely(d_ancestor(new, dentry))) {
3017 write_sequnlock(&rename_lock);
b5ae6b15
AV
3018 dput(new);
3019 new = ERR_PTR(-ELOOP);
3020 pr_warn_ratelimited(
3021 "VFS: Lookup of '%s' in %s %s"
3022 " would have caused loop\n",
3023 dentry->d_name.name,
3024 inode->i_sb->s_type->name,
3025 inode->i_sb->s_id);
3026 } else if (!IS_ROOT(new)) {
076515fc 3027 struct dentry *old_parent = dget(new->d_parent);
b5ae6b15 3028 int err = __d_unalias(inode, dentry, new);
18367501 3029 write_sequnlock(&rename_lock);
b5ae6b15
AV
3030 if (err) {
3031 dput(new);
3032 new = ERR_PTR(err);
3033 }
076515fc 3034 dput(old_parent);
18367501 3035 } else {
b5ae6b15
AV
3036 __d_move(new, dentry, false);
3037 write_sequnlock(&rename_lock);
dd179946 3038 }
b5ae6b15
AV
3039 iput(inode);
3040 return new;
9eaef27b 3041 }
770bfad8 3042 }
b5ae6b15 3043out:
ed782b5a 3044 __d_add(dentry, inode);
b5ae6b15 3045 return NULL;
770bfad8 3046}
b5ae6b15 3047EXPORT_SYMBOL(d_splice_alias);
770bfad8 3048
1da177e4
LT
3049/*
3050 * Test whether new_dentry is a subdirectory of old_dentry.
3051 *
3052 * Trivially implemented using the dcache structure
3053 */
3054
3055/**
3056 * is_subdir - is new dentry a subdirectory of old_dentry
3057 * @new_dentry: new dentry
3058 * @old_dentry: old dentry
3059 *
a6e5787f
YB
3060 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3061 * Returns false otherwise.
1da177e4
LT
3062 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3063 */
3064
a6e5787f 3065bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3066{
a6e5787f 3067 bool result;
949854d0 3068 unsigned seq;
1da177e4 3069
e2761a11 3070 if (new_dentry == old_dentry)
a6e5787f 3071 return true;
e2761a11 3072
e2761a11 3073 do {
1da177e4 3074 /* for restarting inner loop in case of seq retry */
1da177e4 3075 seq = read_seqbegin(&rename_lock);
949854d0
NP
3076 /*
3077 * Need rcu_readlock to protect against the d_parent trashing
3078 * due to d_move
3079 */
3080 rcu_read_lock();
e2761a11 3081 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3082 result = true;
e2761a11 3083 else
a6e5787f 3084 result = false;
949854d0 3085 rcu_read_unlock();
1da177e4 3086 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3087
3088 return result;
3089}
e8f9e5b7 3090EXPORT_SYMBOL(is_subdir);
1da177e4 3091
db14fc3a 3092static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3093{
db14fc3a
MS
3094 struct dentry *root = data;
3095 if (dentry != root) {
3096 if (d_unhashed(dentry) || !dentry->d_inode)
3097 return D_WALK_SKIP;
1da177e4 3098
01ddc4ed
MS
3099 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3100 dentry->d_flags |= DCACHE_GENOCIDE;
3101 dentry->d_lockref.count--;
3102 }
1da177e4 3103 }
db14fc3a
MS
3104 return D_WALK_CONTINUE;
3105}
58db63d0 3106
db14fc3a
MS
3107void d_genocide(struct dentry *parent)
3108{
3a8e3611 3109 d_walk(parent, parent, d_genocide_kill);
1da177e4
LT
3110}
3111
cbd4a5bc
AV
3112EXPORT_SYMBOL(d_genocide);
3113
60545d0d 3114void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3115{
60545d0d
AV
3116 inode_dec_link_count(inode);
3117 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3118 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3119 !d_unlinked(dentry));
3120 spin_lock(&dentry->d_parent->d_lock);
3121 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3122 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3123 (unsigned long long)inode->i_ino);
3124 spin_unlock(&dentry->d_lock);
3125 spin_unlock(&dentry->d_parent->d_lock);
3126 d_instantiate(dentry, inode);
1da177e4 3127}
60545d0d 3128EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3129
3130static __initdata unsigned long dhash_entries;
3131static int __init set_dhash_entries(char *str)
3132{
3133 if (!str)
3134 return 0;
3135 dhash_entries = simple_strtoul(str, &str, 0);
3136 return 1;
3137}
3138__setup("dhash_entries=", set_dhash_entries);
3139
3140static void __init dcache_init_early(void)
3141{
1da177e4
LT
3142 /* If hashes are distributed across NUMA nodes, defer
3143 * hash allocation until vmalloc space is available.
3144 */
3145 if (hashdist)
3146 return;
3147
3148 dentry_hashtable =
3149 alloc_large_system_hash("Dentry cache",
b07ad996 3150 sizeof(struct hlist_bl_head),
1da177e4
LT
3151 dhash_entries,
3152 13,
3d375d78 3153 HASH_EARLY | HASH_ZERO,
1da177e4 3154 &d_hash_shift,
b35d786b 3155 NULL,
31fe62b9 3156 0,
1da177e4 3157 0);
854d3e63 3158 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3159}
3160
74bf17cf 3161static void __init dcache_init(void)
1da177e4 3162{
3d375d78 3163 /*
1da177e4
LT
3164 * A constructor could be added for stable state like the lists,
3165 * but it is probably not worth it because of the cache nature
3d375d78 3166 * of the dcache.
1da177e4 3167 */
80344266
DW
3168 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3169 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3170 d_iname);
1da177e4
LT
3171
3172 /* Hash may have been set up in dcache_init_early */
3173 if (!hashdist)
3174 return;
3175
3176 dentry_hashtable =
3177 alloc_large_system_hash("Dentry cache",
b07ad996 3178 sizeof(struct hlist_bl_head),
1da177e4
LT
3179 dhash_entries,
3180 13,
3d375d78 3181 HASH_ZERO,
1da177e4 3182 &d_hash_shift,
b35d786b 3183 NULL,
31fe62b9 3184 0,
1da177e4 3185 0);
854d3e63 3186 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3187}
3188
3189/* SLAB cache for __getname() consumers */
e18b890b 3190struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3191EXPORT_SYMBOL(names_cachep);
1da177e4 3192
1da177e4
LT
3193void __init vfs_caches_init_early(void)
3194{
6916363f
SAS
3195 int i;
3196
3197 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3198 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3199
1da177e4
LT
3200 dcache_init_early();
3201 inode_init_early();
3202}
3203
4248b0da 3204void __init vfs_caches_init(void)
1da177e4 3205{
6a9b8820
DW
3206 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3207 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3208
74bf17cf
DC
3209 dcache_init();
3210 inode_init();
4248b0da
MG
3211 files_init();
3212 files_maxfiles_init();
74bf17cf 3213 mnt_init();
1da177e4
LT
3214 bdev_cache_init();
3215 chrdev_init();
3216}