media: staging: media: use relevant lock
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
7a5cf791 17#include <linux/ratelimit.h>
1da177e4
LT
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/seqlock.h>
1da177e4 29#include <linux/bootmem.h>
ceb5bdc2
NP
30#include <linux/bit_spinlock.h>
31#include <linux/rculist_bl.h>
f6041567 32#include <linux/list_lru.h>
07f3f05c 33#include "internal.h"
b2dba1af 34#include "mount.h"
1da177e4 35
789680d1
NP
36/*
37 * Usage:
873feea0 38 * dcache->d_inode->i_lock protects:
946e51f2 39 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
40 * dcache_hash_bucket lock protects:
41 * - the dcache hash table
f1ee6162
N
42 * s_roots bl list spinlock protects:
43 * - the s_roots list (see __d_drop)
19156840 44 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
45 * - the dcache lru lists and counters
46 * d_lock protects:
47 * - d_flags
48 * - d_name
49 * - d_lru
b7ab39f6 50 * - d_count
da502956 51 * - d_unhashed()
2fd6b7f5
NP
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
946e51f2 54 * - d_u.d_alias, d_inode
789680d1
NP
55 *
56 * Ordering:
873feea0 57 * dentry->d_inode->i_lock
b5c84bf6 58 * dentry->d_lock
19156840 59 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 60 * dcache_hash_bucket lock
f1ee6162 61 * s_roots lock
789680d1 62 *
da502956
NP
63 * If there is an ancestor relationship:
64 * dentry->d_parent->...->d_parent->d_lock
65 * ...
66 * dentry->d_parent->d_lock
67 * dentry->d_lock
68 *
69 * If no ancestor relationship:
076515fc 70 * arbitrary, since it's serialized on rename_lock
789680d1 71 */
fa3536cc 72int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
73EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74
74c3cbe3 75__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 76
949854d0 77EXPORT_SYMBOL(rename_lock);
1da177e4 78
e18b890b 79static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 80
cdf01226
DH
81const struct qstr empty_name = QSTR_INIT("", 0);
82EXPORT_SYMBOL(empty_name);
83const struct qstr slash_name = QSTR_INIT("/", 1);
84EXPORT_SYMBOL(slash_name);
85
1da177e4
LT
86/*
87 * This is the single most critical data structure when it comes
88 * to the dcache: the hashtable for lookups. Somebody should try
89 * to make this good - I've just made it work.
90 *
91 * This hash-function tries to avoid losing too many bits of hash
92 * information, yet avoid using a prime hash-size or similar.
93 */
1da177e4 94
fa3536cc 95static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 96
b07ad996 97static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 98
8387ff25 99static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 100{
854d3e63 101 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
102}
103
94bdd655
AV
104#define IN_LOOKUP_SHIFT 10
105static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106
107static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108 unsigned int hash)
109{
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112}
113
114
1da177e4
LT
115/* Statistics gathering. */
116struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118};
119
3942c07c 120static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 121static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
122
123#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
124
125/*
126 * Here we resort to our own counters instead of using generic per-cpu counters
127 * for consistency with what the vfs inode code does. We are expected to harvest
128 * better code and performance by having our own specialized counters.
129 *
130 * Please note that the loop is done over all possible CPUs, not over all online
131 * CPUs. The reason for this is that we don't want to play games with CPUs going
132 * on and off. If one of them goes off, we will just keep their counters.
133 *
134 * glommer: See cffbc8a for details, and if you ever intend to change this,
135 * please update all vfs counters to match.
136 */
3942c07c 137static long get_nr_dentry(void)
3e880fb5
NP
138{
139 int i;
3942c07c 140 long sum = 0;
3e880fb5
NP
141 for_each_possible_cpu(i)
142 sum += per_cpu(nr_dentry, i);
143 return sum < 0 ? 0 : sum;
144}
145
62d36c77
DC
146static long get_nr_dentry_unused(void)
147{
148 int i;
149 long sum = 0;
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry_unused, i);
152 return sum < 0 ? 0 : sum;
153}
154
1f7e0616 155int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
156 size_t *lenp, loff_t *ppos)
157{
3e880fb5 158 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 159 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 160 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
161}
162#endif
163
5483f18e
LT
164/*
165 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166 * The strings are both count bytes long, and count is non-zero.
167 */
e419b4cc
LT
168#ifdef CONFIG_DCACHE_WORD_ACCESS
169
170#include <asm/word-at-a-time.h>
171/*
172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173 * aligned allocation for this particular component. We don't
174 * strictly need the load_unaligned_zeropad() safety, but it
175 * doesn't hurt either.
176 *
177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178 * need the careful unaligned handling.
179 */
94753db5 180static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 181{
bfcfaa77 182 unsigned long a,b,mask;
bfcfaa77
LT
183
184 for (;;) {
bfe7aa6c 185 a = read_word_at_a_time(cs);
e419b4cc 186 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
187 if (tcount < sizeof(unsigned long))
188 break;
189 if (unlikely(a != b))
190 return 1;
191 cs += sizeof(unsigned long);
192 ct += sizeof(unsigned long);
193 tcount -= sizeof(unsigned long);
194 if (!tcount)
195 return 0;
196 }
a5c21dce 197 mask = bytemask_from_count(tcount);
bfcfaa77 198 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
199}
200
bfcfaa77 201#else
e419b4cc 202
94753db5 203static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 204{
5483f18e
LT
205 do {
206 if (*cs != *ct)
207 return 1;
208 cs++;
209 ct++;
210 tcount--;
211 } while (tcount);
212 return 0;
213}
214
e419b4cc
LT
215#endif
216
94753db5
LT
217static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218{
94753db5
LT
219 /*
220 * Be careful about RCU walk racing with rename:
506458ef 221 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
222 *
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
230 *
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
234 */
506458ef 235 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 236
6326c71f 237 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
238}
239
8d85b484
AV
240struct external_name {
241 union {
242 atomic_t count;
243 struct rcu_head head;
244 } u;
245 unsigned char name[];
246};
247
248static inline struct external_name *external_name(struct dentry *dentry)
249{
250 return container_of(dentry->d_name.name, struct external_name, name[0]);
251}
252
9c82ab9c 253static void __d_free(struct rcu_head *head)
1da177e4 254{
9c82ab9c
CH
255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
8d85b484
AV
257 kmem_cache_free(dentry_cache, dentry);
258}
259
f1782c9b
RG
260static void __d_free_external_name(struct rcu_head *head)
261{
262 struct external_name *name = container_of(head, struct external_name,
263 u.head);
264
265 mod_node_page_state(page_pgdat(virt_to_page(name)),
266 NR_INDIRECTLY_RECLAIMABLE_BYTES,
267 -ksize(name));
268
269 kfree(name);
270}
271
8d85b484
AV
272static void __d_free_external(struct rcu_head *head)
273{
274 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
f1782c9b
RG
275
276 __d_free_external_name(&external_name(dentry)->u.head);
277
278 kmem_cache_free(dentry_cache, dentry);
1da177e4
LT
279}
280
810bb172
AV
281static inline int dname_external(const struct dentry *dentry)
282{
283 return dentry->d_name.name != dentry->d_iname;
284}
285
49d31c2f
AV
286void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287{
288 spin_lock(&dentry->d_lock);
289 if (unlikely(dname_external(dentry))) {
290 struct external_name *p = external_name(dentry);
291 atomic_inc(&p->u.count);
292 spin_unlock(&dentry->d_lock);
293 name->name = p->name;
294 } else {
295 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
296 spin_unlock(&dentry->d_lock);
297 name->name = name->inline_name;
298 }
299}
300EXPORT_SYMBOL(take_dentry_name_snapshot);
301
302void release_dentry_name_snapshot(struct name_snapshot *name)
303{
304 if (unlikely(name->name != name->inline_name)) {
305 struct external_name *p;
306 p = container_of(name->name, struct external_name, name[0]);
307 if (unlikely(atomic_dec_and_test(&p->u.count)))
f1782c9b 308 call_rcu(&p->u.head, __d_free_external_name);
49d31c2f
AV
309 }
310}
311EXPORT_SYMBOL(release_dentry_name_snapshot);
312
4bf46a27
DH
313static inline void __d_set_inode_and_type(struct dentry *dentry,
314 struct inode *inode,
315 unsigned type_flags)
316{
317 unsigned flags;
318
319 dentry->d_inode = inode;
4bf46a27
DH
320 flags = READ_ONCE(dentry->d_flags);
321 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
322 flags |= type_flags;
323 WRITE_ONCE(dentry->d_flags, flags);
324}
325
4bf46a27
DH
326static inline void __d_clear_type_and_inode(struct dentry *dentry)
327{
328 unsigned flags = READ_ONCE(dentry->d_flags);
329
330 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
331 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
332 dentry->d_inode = NULL;
333}
334
b4f0354e
AV
335static void dentry_free(struct dentry *dentry)
336{
946e51f2 337 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
338 if (unlikely(dname_external(dentry))) {
339 struct external_name *p = external_name(dentry);
340 if (likely(atomic_dec_and_test(&p->u.count))) {
341 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
342 return;
343 }
344 }
b4f0354e
AV
345 /* if dentry was never visible to RCU, immediate free is OK */
346 if (!(dentry->d_flags & DCACHE_RCUACCESS))
347 __d_free(&dentry->d_u.d_rcu);
348 else
349 call_rcu(&dentry->d_u.d_rcu, __d_free);
350}
351
1da177e4
LT
352/*
353 * Release the dentry's inode, using the filesystem
550dce01 354 * d_iput() operation if defined.
31e6b01f
NP
355 */
356static void dentry_unlink_inode(struct dentry * dentry)
357 __releases(dentry->d_lock)
873feea0 358 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
359{
360 struct inode *inode = dentry->d_inode;
550dce01 361 bool hashed = !d_unhashed(dentry);
a528aca7 362
550dce01
AV
363 if (hashed)
364 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 365 __d_clear_type_and_inode(dentry);
946e51f2 366 hlist_del_init(&dentry->d_u.d_alias);
550dce01
AV
367 if (hashed)
368 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 369 spin_unlock(&dentry->d_lock);
873feea0 370 spin_unlock(&inode->i_lock);
31e6b01f
NP
371 if (!inode->i_nlink)
372 fsnotify_inoderemove(inode);
373 if (dentry->d_op && dentry->d_op->d_iput)
374 dentry->d_op->d_iput(dentry, inode);
375 else
376 iput(inode);
377}
378
89dc77bc
LT
379/*
380 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
381 * is in use - which includes both the "real" per-superblock
382 * LRU list _and_ the DCACHE_SHRINK_LIST use.
383 *
384 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
385 * on the shrink list (ie not on the superblock LRU list).
386 *
387 * The per-cpu "nr_dentry_unused" counters are updated with
388 * the DCACHE_LRU_LIST bit.
389 *
390 * These helper functions make sure we always follow the
391 * rules. d_lock must be held by the caller.
392 */
393#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
394static void d_lru_add(struct dentry *dentry)
395{
396 D_FLAG_VERIFY(dentry, 0);
397 dentry->d_flags |= DCACHE_LRU_LIST;
398 this_cpu_inc(nr_dentry_unused);
399 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
400}
401
402static void d_lru_del(struct dentry *dentry)
403{
404 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
405 dentry->d_flags &= ~DCACHE_LRU_LIST;
406 this_cpu_dec(nr_dentry_unused);
407 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
408}
409
410static void d_shrink_del(struct dentry *dentry)
411{
412 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
413 list_del_init(&dentry->d_lru);
414 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
415 this_cpu_dec(nr_dentry_unused);
416}
417
418static void d_shrink_add(struct dentry *dentry, struct list_head *list)
419{
420 D_FLAG_VERIFY(dentry, 0);
421 list_add(&dentry->d_lru, list);
422 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
423 this_cpu_inc(nr_dentry_unused);
424}
425
426/*
427 * These can only be called under the global LRU lock, ie during the
428 * callback for freeing the LRU list. "isolate" removes it from the
429 * LRU lists entirely, while shrink_move moves it to the indicated
430 * private list.
431 */
3f97b163 432static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
433{
434 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
435 dentry->d_flags &= ~DCACHE_LRU_LIST;
436 this_cpu_dec(nr_dentry_unused);
3f97b163 437 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
438}
439
3f97b163
VD
440static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
441 struct list_head *list)
89dc77bc
LT
442{
443 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
444 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 445 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
446}
447
789680d1
NP
448/**
449 * d_drop - drop a dentry
450 * @dentry: dentry to drop
451 *
452 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
453 * be found through a VFS lookup any more. Note that this is different from
454 * deleting the dentry - d_delete will try to mark the dentry negative if
455 * possible, giving a successful _negative_ lookup, while d_drop will
456 * just make the cache lookup fail.
457 *
458 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
459 * reason (NFS timeouts or autofs deletes).
460 *
61647823
N
461 * __d_drop requires dentry->d_lock
462 * ___d_drop doesn't mark dentry as "unhashed"
463 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
789680d1 464 */
61647823 465static void ___d_drop(struct dentry *dentry)
789680d1 466{
0632a9ac
AV
467 struct hlist_bl_head *b;
468 /*
469 * Hashed dentries are normally on the dentry hashtable,
470 * with the exception of those newly allocated by
471 * d_obtain_root, which are always IS_ROOT:
472 */
473 if (unlikely(IS_ROOT(dentry)))
474 b = &dentry->d_sb->s_roots;
475 else
476 b = d_hash(dentry->d_name.hash);
b61625d2 477
0632a9ac
AV
478 hlist_bl_lock(b);
479 __hlist_bl_del(&dentry->d_hash);
480 hlist_bl_unlock(b);
789680d1 481}
61647823
N
482
483void __d_drop(struct dentry *dentry)
484{
0632a9ac
AV
485 if (!d_unhashed(dentry)) {
486 ___d_drop(dentry);
487 dentry->d_hash.pprev = NULL;
488 write_seqcount_invalidate(&dentry->d_seq);
489 }
61647823 490}
789680d1
NP
491EXPORT_SYMBOL(__d_drop);
492
493void d_drop(struct dentry *dentry)
494{
789680d1
NP
495 spin_lock(&dentry->d_lock);
496 __d_drop(dentry);
497 spin_unlock(&dentry->d_lock);
789680d1
NP
498}
499EXPORT_SYMBOL(d_drop);
500
ba65dc5e
AV
501static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
502{
503 struct dentry *next;
504 /*
505 * Inform d_walk() and shrink_dentry_list() that we are no longer
506 * attached to the dentry tree
507 */
508 dentry->d_flags |= DCACHE_DENTRY_KILLED;
509 if (unlikely(list_empty(&dentry->d_child)))
510 return;
511 __list_del_entry(&dentry->d_child);
512 /*
513 * Cursors can move around the list of children. While we'd been
514 * a normal list member, it didn't matter - ->d_child.next would've
515 * been updated. However, from now on it won't be and for the
516 * things like d_walk() it might end up with a nasty surprise.
517 * Normally d_walk() doesn't care about cursors moving around -
518 * ->d_lock on parent prevents that and since a cursor has no children
519 * of its own, we get through it without ever unlocking the parent.
520 * There is one exception, though - if we ascend from a child that
521 * gets killed as soon as we unlock it, the next sibling is found
522 * using the value left in its ->d_child.next. And if _that_
523 * pointed to a cursor, and cursor got moved (e.g. by lseek())
524 * before d_walk() regains parent->d_lock, we'll end up skipping
525 * everything the cursor had been moved past.
526 *
527 * Solution: make sure that the pointer left behind in ->d_child.next
528 * points to something that won't be moving around. I.e. skip the
529 * cursors.
530 */
531 while (dentry->d_child.next != &parent->d_subdirs) {
532 next = list_entry(dentry->d_child.next, struct dentry, d_child);
533 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
534 break;
535 dentry->d_child.next = next->d_child.next;
536 }
537}
538
e55fd011 539static void __dentry_kill(struct dentry *dentry)
77812a1e 540{
41edf278
AV
541 struct dentry *parent = NULL;
542 bool can_free = true;
41edf278 543 if (!IS_ROOT(dentry))
77812a1e 544 parent = dentry->d_parent;
31e6b01f 545
0d98439e
LT
546 /*
547 * The dentry is now unrecoverably dead to the world.
548 */
549 lockref_mark_dead(&dentry->d_lockref);
550
f0023bc6 551 /*
f0023bc6
SW
552 * inform the fs via d_prune that this dentry is about to be
553 * unhashed and destroyed.
554 */
29266201 555 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
556 dentry->d_op->d_prune(dentry);
557
01b60351
AV
558 if (dentry->d_flags & DCACHE_LRU_LIST) {
559 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
560 d_lru_del(dentry);
01b60351 561 }
77812a1e
NP
562 /* if it was on the hash then remove it */
563 __d_drop(dentry);
ba65dc5e 564 dentry_unlist(dentry, parent);
03b3b889
AV
565 if (parent)
566 spin_unlock(&parent->d_lock);
550dce01
AV
567 if (dentry->d_inode)
568 dentry_unlink_inode(dentry);
569 else
570 spin_unlock(&dentry->d_lock);
03b3b889
AV
571 this_cpu_dec(nr_dentry);
572 if (dentry->d_op && dentry->d_op->d_release)
573 dentry->d_op->d_release(dentry);
574
41edf278
AV
575 spin_lock(&dentry->d_lock);
576 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
577 dentry->d_flags |= DCACHE_MAY_FREE;
578 can_free = false;
579 }
580 spin_unlock(&dentry->d_lock);
41edf278
AV
581 if (likely(can_free))
582 dentry_free(dentry);
e55fd011
AV
583}
584
8b987a46 585static struct dentry *__lock_parent(struct dentry *dentry)
046b961b 586{
8b987a46 587 struct dentry *parent;
046b961b 588 rcu_read_lock();
c2338f2d 589 spin_unlock(&dentry->d_lock);
046b961b 590again:
66702eb5 591 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
592 spin_lock(&parent->d_lock);
593 /*
594 * We can't blindly lock dentry until we are sure
595 * that we won't violate the locking order.
596 * Any changes of dentry->d_parent must have
597 * been done with parent->d_lock held, so
598 * spin_lock() above is enough of a barrier
599 * for checking if it's still our child.
600 */
601 if (unlikely(parent != dentry->d_parent)) {
602 spin_unlock(&parent->d_lock);
603 goto again;
604 }
65d8eb5a
AV
605 rcu_read_unlock();
606 if (parent != dentry)
9f12600f 607 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 608 else
046b961b
AV
609 parent = NULL;
610 return parent;
611}
612
8b987a46
AV
613static inline struct dentry *lock_parent(struct dentry *dentry)
614{
615 struct dentry *parent = dentry->d_parent;
616 if (IS_ROOT(dentry))
617 return NULL;
618 if (likely(spin_trylock(&parent->d_lock)))
619 return parent;
620 return __lock_parent(dentry);
621}
622
a338579f
AV
623static inline bool retain_dentry(struct dentry *dentry)
624{
625 WARN_ON(d_in_lookup(dentry));
626
627 /* Unreachable? Get rid of it */
628 if (unlikely(d_unhashed(dentry)))
629 return false;
630
631 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
632 return false;
633
634 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
635 if (dentry->d_op->d_delete(dentry))
636 return false;
637 }
62d9956c
AV
638 /* retain; LRU fodder */
639 dentry->d_lockref.count--;
640 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
641 d_lru_add(dentry);
642 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
643 dentry->d_flags |= DCACHE_REFERENCED;
a338579f
AV
644 return true;
645}
646
c1d0c1a2
JO
647/*
648 * Finish off a dentry we've decided to kill.
649 * dentry->d_lock must be held, returns with it unlocked.
650 * Returns dentry requiring refcount drop, or NULL if we're done.
651 */
652static struct dentry *dentry_kill(struct dentry *dentry)
653 __releases(dentry->d_lock)
654{
655 struct inode *inode = dentry->d_inode;
656 struct dentry *parent = NULL;
657
658 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
f657a666 659 goto slow_positive;
c1d0c1a2
JO
660
661 if (!IS_ROOT(dentry)) {
662 parent = dentry->d_parent;
663 if (unlikely(!spin_trylock(&parent->d_lock))) {
f657a666
AV
664 parent = __lock_parent(dentry);
665 if (likely(inode || !dentry->d_inode))
666 goto got_locks;
667 /* negative that became positive */
668 if (parent)
669 spin_unlock(&parent->d_lock);
670 inode = dentry->d_inode;
671 goto slow_positive;
c1d0c1a2
JO
672 }
673 }
c1d0c1a2
JO
674 __dentry_kill(dentry);
675 return parent;
676
f657a666
AV
677slow_positive:
678 spin_unlock(&dentry->d_lock);
679 spin_lock(&inode->i_lock);
680 spin_lock(&dentry->d_lock);
681 parent = lock_parent(dentry);
682got_locks:
683 if (unlikely(dentry->d_lockref.count != 1)) {
684 dentry->d_lockref.count--;
685 } else if (likely(!retain_dentry(dentry))) {
686 __dentry_kill(dentry);
687 return parent;
688 }
689 /* we are keeping it, after all */
690 if (inode)
691 spin_unlock(&inode->i_lock);
692 if (parent)
693 spin_unlock(&parent->d_lock);
c1d0c1a2 694 spin_unlock(&dentry->d_lock);
f657a666 695 return NULL;
c1d0c1a2
JO
696}
697
360f5479
LT
698/*
699 * Try to do a lockless dput(), and return whether that was successful.
700 *
701 * If unsuccessful, we return false, having already taken the dentry lock.
702 *
703 * The caller needs to hold the RCU read lock, so that the dentry is
704 * guaranteed to stay around even if the refcount goes down to zero!
705 */
706static inline bool fast_dput(struct dentry *dentry)
707{
708 int ret;
709 unsigned int d_flags;
710
711 /*
712 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 713 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
714 */
715 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
716 return lockref_put_or_lock(&dentry->d_lockref);
717
718 /*
719 * .. otherwise, we can try to just decrement the
720 * lockref optimistically.
721 */
722 ret = lockref_put_return(&dentry->d_lockref);
723
724 /*
725 * If the lockref_put_return() failed due to the lock being held
726 * by somebody else, the fast path has failed. We will need to
727 * get the lock, and then check the count again.
728 */
729 if (unlikely(ret < 0)) {
730 spin_lock(&dentry->d_lock);
731 if (dentry->d_lockref.count > 1) {
732 dentry->d_lockref.count--;
733 spin_unlock(&dentry->d_lock);
734 return 1;
735 }
736 return 0;
737 }
738
739 /*
740 * If we weren't the last ref, we're done.
741 */
742 if (ret)
743 return 1;
744
745 /*
746 * Careful, careful. The reference count went down
747 * to zero, but we don't hold the dentry lock, so
748 * somebody else could get it again, and do another
749 * dput(), and we need to not race with that.
750 *
751 * However, there is a very special and common case
752 * where we don't care, because there is nothing to
753 * do: the dentry is still hashed, it does not have
754 * a 'delete' op, and it's referenced and already on
755 * the LRU list.
756 *
757 * NOTE! Since we aren't locked, these values are
758 * not "stable". However, it is sufficient that at
759 * some point after we dropped the reference the
760 * dentry was hashed and the flags had the proper
761 * value. Other dentry users may have re-gotten
762 * a reference to the dentry and change that, but
763 * our work is done - we can leave the dentry
764 * around with a zero refcount.
765 */
766 smp_rmb();
66702eb5 767 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 768 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
769
770 /* Nothing to do? Dropping the reference was all we needed? */
771 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
772 return 1;
773
774 /*
775 * Not the fast normal case? Get the lock. We've already decremented
776 * the refcount, but we'll need to re-check the situation after
777 * getting the lock.
778 */
779 spin_lock(&dentry->d_lock);
780
781 /*
782 * Did somebody else grab a reference to it in the meantime, and
783 * we're no longer the last user after all? Alternatively, somebody
784 * else could have killed it and marked it dead. Either way, we
785 * don't need to do anything else.
786 */
787 if (dentry->d_lockref.count) {
788 spin_unlock(&dentry->d_lock);
789 return 1;
790 }
791
792 /*
793 * Re-get the reference we optimistically dropped. We hold the
794 * lock, and we just tested that it was zero, so we can just
795 * set it to 1.
796 */
797 dentry->d_lockref.count = 1;
798 return 0;
799}
800
801
1da177e4
LT
802/*
803 * This is dput
804 *
805 * This is complicated by the fact that we do not want to put
806 * dentries that are no longer on any hash chain on the unused
807 * list: we'd much rather just get rid of them immediately.
808 *
809 * However, that implies that we have to traverse the dentry
810 * tree upwards to the parents which might _also_ now be
811 * scheduled for deletion (it may have been only waiting for
812 * its last child to go away).
813 *
814 * This tail recursion is done by hand as we don't want to depend
815 * on the compiler to always get this right (gcc generally doesn't).
816 * Real recursion would eat up our stack space.
817 */
818
819/*
820 * dput - release a dentry
821 * @dentry: dentry to release
822 *
823 * Release a dentry. This will drop the usage count and if appropriate
824 * call the dentry unlink method as well as removing it from the queues and
825 * releasing its resources. If the parent dentries were scheduled for release
826 * they too may now get deleted.
1da177e4 827 */
1da177e4
LT
828void dput(struct dentry *dentry)
829{
8aab6a27 830 if (unlikely(!dentry))
1da177e4
LT
831 return;
832
833repeat:
47be6184
WF
834 might_sleep();
835
360f5479
LT
836 rcu_read_lock();
837 if (likely(fast_dput(dentry))) {
838 rcu_read_unlock();
1da177e4 839 return;
360f5479
LT
840 }
841
842 /* Slow case: now with the dentry lock held */
843 rcu_read_unlock();
1da177e4 844
a338579f 845 if (likely(retain_dentry(dentry))) {
a338579f
AV
846 spin_unlock(&dentry->d_lock);
847 return;
1da177e4 848 }
265ac902 849
8cbf74da 850 dentry = dentry_kill(dentry);
47be6184
WF
851 if (dentry) {
852 cond_resched();
d52b9086 853 goto repeat;
47be6184 854 }
1da177e4 855}
ec4f8605 856EXPORT_SYMBOL(dput);
1da177e4 857
1da177e4 858
b5c84bf6 859/* This must be called with d_lock held */
dc0474be 860static inline void __dget_dlock(struct dentry *dentry)
23044507 861{
98474236 862 dentry->d_lockref.count++;
23044507
NP
863}
864
dc0474be 865static inline void __dget(struct dentry *dentry)
1da177e4 866{
98474236 867 lockref_get(&dentry->d_lockref);
1da177e4
LT
868}
869
b7ab39f6
NP
870struct dentry *dget_parent(struct dentry *dentry)
871{
df3d0bbc 872 int gotref;
b7ab39f6
NP
873 struct dentry *ret;
874
df3d0bbc
WL
875 /*
876 * Do optimistic parent lookup without any
877 * locking.
878 */
879 rcu_read_lock();
66702eb5 880 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
881 gotref = lockref_get_not_zero(&ret->d_lockref);
882 rcu_read_unlock();
883 if (likely(gotref)) {
66702eb5 884 if (likely(ret == READ_ONCE(dentry->d_parent)))
df3d0bbc
WL
885 return ret;
886 dput(ret);
887 }
888
b7ab39f6 889repeat:
a734eb45
NP
890 /*
891 * Don't need rcu_dereference because we re-check it was correct under
892 * the lock.
893 */
894 rcu_read_lock();
b7ab39f6 895 ret = dentry->d_parent;
a734eb45
NP
896 spin_lock(&ret->d_lock);
897 if (unlikely(ret != dentry->d_parent)) {
898 spin_unlock(&ret->d_lock);
899 rcu_read_unlock();
b7ab39f6
NP
900 goto repeat;
901 }
a734eb45 902 rcu_read_unlock();
98474236
WL
903 BUG_ON(!ret->d_lockref.count);
904 ret->d_lockref.count++;
b7ab39f6 905 spin_unlock(&ret->d_lock);
b7ab39f6
NP
906 return ret;
907}
908EXPORT_SYMBOL(dget_parent);
909
1da177e4
LT
910/**
911 * d_find_alias - grab a hashed alias of inode
912 * @inode: inode in question
1da177e4
LT
913 *
914 * If inode has a hashed alias, or is a directory and has any alias,
915 * acquire the reference to alias and return it. Otherwise return NULL.
916 * Notice that if inode is a directory there can be only one alias and
917 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
918 * of a filesystem, or if the directory was renamed and d_revalidate
919 * was the first vfs operation to notice.
1da177e4 920 *
21c0d8fd 921 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 922 * any other hashed alias over that one.
1da177e4 923 */
52ed46f0 924static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 925{
da502956 926 struct dentry *alias, *discon_alias;
1da177e4 927
da502956
NP
928again:
929 discon_alias = NULL;
946e51f2 930 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 931 spin_lock(&alias->d_lock);
1da177e4 932 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 933 if (IS_ROOT(alias) &&
da502956 934 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 935 discon_alias = alias;
52ed46f0 936 } else {
dc0474be 937 __dget_dlock(alias);
da502956
NP
938 spin_unlock(&alias->d_lock);
939 return alias;
940 }
941 }
942 spin_unlock(&alias->d_lock);
943 }
944 if (discon_alias) {
945 alias = discon_alias;
946 spin_lock(&alias->d_lock);
947 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
948 __dget_dlock(alias);
949 spin_unlock(&alias->d_lock);
950 return alias;
1da177e4 951 }
da502956
NP
952 spin_unlock(&alias->d_lock);
953 goto again;
1da177e4 954 }
da502956 955 return NULL;
1da177e4
LT
956}
957
da502956 958struct dentry *d_find_alias(struct inode *inode)
1da177e4 959{
214fda1f
DH
960 struct dentry *de = NULL;
961
b3d9b7a3 962 if (!hlist_empty(&inode->i_dentry)) {
873feea0 963 spin_lock(&inode->i_lock);
52ed46f0 964 de = __d_find_alias(inode);
873feea0 965 spin_unlock(&inode->i_lock);
214fda1f 966 }
1da177e4
LT
967 return de;
968}
ec4f8605 969EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
970
971/*
972 * Try to kill dentries associated with this inode.
973 * WARNING: you must own a reference to inode.
974 */
975void d_prune_aliases(struct inode *inode)
976{
0cdca3f9 977 struct dentry *dentry;
1da177e4 978restart:
873feea0 979 spin_lock(&inode->i_lock);
946e51f2 980 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 981 spin_lock(&dentry->d_lock);
98474236 982 if (!dentry->d_lockref.count) {
29355c39
AV
983 struct dentry *parent = lock_parent(dentry);
984 if (likely(!dentry->d_lockref.count)) {
985 __dentry_kill(dentry);
4a7795d3 986 dput(parent);
29355c39
AV
987 goto restart;
988 }
989 if (parent)
990 spin_unlock(&parent->d_lock);
1da177e4
LT
991 }
992 spin_unlock(&dentry->d_lock);
993 }
873feea0 994 spin_unlock(&inode->i_lock);
1da177e4 995}
ec4f8605 996EXPORT_SYMBOL(d_prune_aliases);
1da177e4 997
3b3f09f4
AV
998/*
999 * Lock a dentry from shrink list.
8f04da2a
JO
1000 * Called under rcu_read_lock() and dentry->d_lock; the former
1001 * guarantees that nothing we access will be freed under us.
3b3f09f4 1002 * Note that dentry is *not* protected from concurrent dentry_kill(),
8f04da2a
JO
1003 * d_delete(), etc.
1004 *
3b3f09f4
AV
1005 * Return false if dentry has been disrupted or grabbed, leaving
1006 * the caller to kick it off-list. Otherwise, return true and have
1007 * that dentry's inode and parent both locked.
1008 */
1009static bool shrink_lock_dentry(struct dentry *dentry)
1da177e4 1010{
3b3f09f4
AV
1011 struct inode *inode;
1012 struct dentry *parent;
da3bbdd4 1013
3b3f09f4
AV
1014 if (dentry->d_lockref.count)
1015 return false;
1016
1017 inode = dentry->d_inode;
1018 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
3b3f09f4
AV
1019 spin_unlock(&dentry->d_lock);
1020 spin_lock(&inode->i_lock);
ec33679d 1021 spin_lock(&dentry->d_lock);
3b3f09f4
AV
1022 if (unlikely(dentry->d_lockref.count))
1023 goto out;
1024 /* changed inode means that somebody had grabbed it */
1025 if (unlikely(inode != dentry->d_inode))
1026 goto out;
3b3f09f4 1027 }
046b961b 1028
3b3f09f4
AV
1029 parent = dentry->d_parent;
1030 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1031 return true;
dd1f6b2e 1032
3b3f09f4 1033 spin_unlock(&dentry->d_lock);
3b3f09f4
AV
1034 spin_lock(&parent->d_lock);
1035 if (unlikely(parent != dentry->d_parent)) {
1036 spin_unlock(&parent->d_lock);
1037 spin_lock(&dentry->d_lock);
1038 goto out;
1039 }
1040 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
8f04da2a 1041 if (likely(!dentry->d_lockref.count))
3b3f09f4 1042 return true;
3b3f09f4
AV
1043 spin_unlock(&parent->d_lock);
1044out:
1045 if (inode)
1046 spin_unlock(&inode->i_lock);
3b3f09f4
AV
1047 return false;
1048}
77812a1e 1049
3b3f09f4
AV
1050static void shrink_dentry_list(struct list_head *list)
1051{
1052 while (!list_empty(list)) {
1053 struct dentry *dentry, *parent;
64fd72e0 1054
32785c05
NB
1055 cond_resched();
1056
3b3f09f4
AV
1057 dentry = list_entry(list->prev, struct dentry, d_lru);
1058 spin_lock(&dentry->d_lock);
8f04da2a 1059 rcu_read_lock();
3b3f09f4
AV
1060 if (!shrink_lock_dentry(dentry)) {
1061 bool can_free = false;
8f04da2a 1062 rcu_read_unlock();
3b3f09f4
AV
1063 d_shrink_del(dentry);
1064 if (dentry->d_lockref.count < 0)
1065 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1066 spin_unlock(&dentry->d_lock);
1067 if (can_free)
1068 dentry_free(dentry);
1069 continue;
1070 }
8f04da2a 1071 rcu_read_unlock();
3b3f09f4
AV
1072 d_shrink_del(dentry);
1073 parent = dentry->d_parent;
ff2fde99 1074 __dentry_kill(dentry);
3b3f09f4
AV
1075 if (parent == dentry)
1076 continue;
5c47e6d0
AV
1077 /*
1078 * We need to prune ancestors too. This is necessary to prevent
1079 * quadratic behavior of shrink_dcache_parent(), but is also
1080 * expected to be beneficial in reducing dentry cache
1081 * fragmentation.
1082 */
1083 dentry = parent;
8f04da2a
JO
1084 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1085 dentry = dentry_kill(dentry);
da3bbdd4 1086 }
3049cfe2
CH
1087}
1088
3f97b163
VD
1089static enum lru_status dentry_lru_isolate(struct list_head *item,
1090 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1091{
1092 struct list_head *freeable = arg;
1093 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1094
1095
1096 /*
1097 * we are inverting the lru lock/dentry->d_lock here,
1098 * so use a trylock. If we fail to get the lock, just skip
1099 * it
1100 */
1101 if (!spin_trylock(&dentry->d_lock))
1102 return LRU_SKIP;
1103
1104 /*
1105 * Referenced dentries are still in use. If they have active
1106 * counts, just remove them from the LRU. Otherwise give them
1107 * another pass through the LRU.
1108 */
1109 if (dentry->d_lockref.count) {
3f97b163 1110 d_lru_isolate(lru, dentry);
f6041567
DC
1111 spin_unlock(&dentry->d_lock);
1112 return LRU_REMOVED;
1113 }
1114
1115 if (dentry->d_flags & DCACHE_REFERENCED) {
1116 dentry->d_flags &= ~DCACHE_REFERENCED;
1117 spin_unlock(&dentry->d_lock);
1118
1119 /*
1120 * The list move itself will be made by the common LRU code. At
1121 * this point, we've dropped the dentry->d_lock but keep the
1122 * lru lock. This is safe to do, since every list movement is
1123 * protected by the lru lock even if both locks are held.
1124 *
1125 * This is guaranteed by the fact that all LRU management
1126 * functions are intermediated by the LRU API calls like
1127 * list_lru_add and list_lru_del. List movement in this file
1128 * only ever occur through this functions or through callbacks
1129 * like this one, that are called from the LRU API.
1130 *
1131 * The only exceptions to this are functions like
1132 * shrink_dentry_list, and code that first checks for the
1133 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1134 * operating only with stack provided lists after they are
1135 * properly isolated from the main list. It is thus, always a
1136 * local access.
1137 */
1138 return LRU_ROTATE;
1139 }
1140
3f97b163 1141 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1142 spin_unlock(&dentry->d_lock);
1143
1144 return LRU_REMOVED;
1145}
1146
3049cfe2 1147/**
b48f03b3
DC
1148 * prune_dcache_sb - shrink the dcache
1149 * @sb: superblock
503c358c 1150 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1151 *
503c358c
VD
1152 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1153 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1154 * function.
3049cfe2 1155 *
b48f03b3
DC
1156 * This function may fail to free any resources if all the dentries are in
1157 * use.
3049cfe2 1158 */
503c358c 1159long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1160{
f6041567
DC
1161 LIST_HEAD(dispose);
1162 long freed;
3049cfe2 1163
503c358c
VD
1164 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1165 dentry_lru_isolate, &dispose);
f6041567 1166 shrink_dentry_list(&dispose);
0a234c6d 1167 return freed;
da3bbdd4 1168}
23044507 1169
4e717f5c 1170static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1171 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1172{
4e717f5c
GC
1173 struct list_head *freeable = arg;
1174 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1175
4e717f5c
GC
1176 /*
1177 * we are inverting the lru lock/dentry->d_lock here,
1178 * so use a trylock. If we fail to get the lock, just skip
1179 * it
1180 */
1181 if (!spin_trylock(&dentry->d_lock))
1182 return LRU_SKIP;
1183
3f97b163 1184 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1185 spin_unlock(&dentry->d_lock);
ec33679d 1186
4e717f5c 1187 return LRU_REMOVED;
da3bbdd4
KM
1188}
1189
4e717f5c 1190
1da177e4
LT
1191/**
1192 * shrink_dcache_sb - shrink dcache for a superblock
1193 * @sb: superblock
1194 *
3049cfe2
CH
1195 * Shrink the dcache for the specified super block. This is used to free
1196 * the dcache before unmounting a file system.
1da177e4 1197 */
3049cfe2 1198void shrink_dcache_sb(struct super_block *sb)
1da177e4 1199{
4e717f5c
GC
1200 long freed;
1201
1202 do {
1203 LIST_HEAD(dispose);
1204
1205 freed = list_lru_walk(&sb->s_dentry_lru,
b17c070f 1206 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1207
4e717f5c
GC
1208 this_cpu_sub(nr_dentry_unused, freed);
1209 shrink_dentry_list(&dispose);
b17c070f 1210 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1211}
ec4f8605 1212EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1213
db14fc3a
MS
1214/**
1215 * enum d_walk_ret - action to talke during tree walk
1216 * @D_WALK_CONTINUE: contrinue walk
1217 * @D_WALK_QUIT: quit walk
1218 * @D_WALK_NORETRY: quit when retry is needed
1219 * @D_WALK_SKIP: skip this dentry and its children
1220 */
1221enum d_walk_ret {
1222 D_WALK_CONTINUE,
1223 D_WALK_QUIT,
1224 D_WALK_NORETRY,
1225 D_WALK_SKIP,
1226};
c826cb7d 1227
1da177e4 1228/**
db14fc3a
MS
1229 * d_walk - walk the dentry tree
1230 * @parent: start of walk
1231 * @data: data passed to @enter() and @finish()
1232 * @enter: callback when first entering the dentry
1233 * @finish: callback when successfully finished the walk
1da177e4 1234 *
db14fc3a 1235 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1236 */
db14fc3a
MS
1237static void d_walk(struct dentry *parent, void *data,
1238 enum d_walk_ret (*enter)(void *, struct dentry *),
1239 void (*finish)(void *))
1da177e4 1240{
949854d0 1241 struct dentry *this_parent;
1da177e4 1242 struct list_head *next;
48f5ec21 1243 unsigned seq = 0;
db14fc3a
MS
1244 enum d_walk_ret ret;
1245 bool retry = true;
949854d0 1246
58db63d0 1247again:
48f5ec21 1248 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1249 this_parent = parent;
2fd6b7f5 1250 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1251
1252 ret = enter(data, this_parent);
1253 switch (ret) {
1254 case D_WALK_CONTINUE:
1255 break;
1256 case D_WALK_QUIT:
1257 case D_WALK_SKIP:
1258 goto out_unlock;
1259 case D_WALK_NORETRY:
1260 retry = false;
1261 break;
1262 }
1da177e4
LT
1263repeat:
1264 next = this_parent->d_subdirs.next;
1265resume:
1266 while (next != &this_parent->d_subdirs) {
1267 struct list_head *tmp = next;
946e51f2 1268 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1269 next = tmp->next;
2fd6b7f5 1270
ba65dc5e
AV
1271 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1272 continue;
1273
2fd6b7f5 1274 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1275
1276 ret = enter(data, dentry);
1277 switch (ret) {
1278 case D_WALK_CONTINUE:
1279 break;
1280 case D_WALK_QUIT:
2fd6b7f5 1281 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1282 goto out_unlock;
1283 case D_WALK_NORETRY:
1284 retry = false;
1285 break;
1286 case D_WALK_SKIP:
1287 spin_unlock(&dentry->d_lock);
1288 continue;
2fd6b7f5 1289 }
db14fc3a 1290
1da177e4 1291 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1292 spin_unlock(&this_parent->d_lock);
1293 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1294 this_parent = dentry;
2fd6b7f5 1295 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1296 goto repeat;
1297 }
2fd6b7f5 1298 spin_unlock(&dentry->d_lock);
1da177e4
LT
1299 }
1300 /*
1301 * All done at this level ... ascend and resume the search.
1302 */
ca5358ef
AV
1303 rcu_read_lock();
1304ascend:
1da177e4 1305 if (this_parent != parent) {
c826cb7d 1306 struct dentry *child = this_parent;
31dec132
AV
1307 this_parent = child->d_parent;
1308
31dec132
AV
1309 spin_unlock(&child->d_lock);
1310 spin_lock(&this_parent->d_lock);
1311
ca5358ef
AV
1312 /* might go back up the wrong parent if we have had a rename. */
1313 if (need_seqretry(&rename_lock, seq))
949854d0 1314 goto rename_retry;
2159184e
AV
1315 /* go into the first sibling still alive */
1316 do {
1317 next = child->d_child.next;
ca5358ef
AV
1318 if (next == &this_parent->d_subdirs)
1319 goto ascend;
1320 child = list_entry(next, struct dentry, d_child);
2159184e 1321 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1322 rcu_read_unlock();
1da177e4
LT
1323 goto resume;
1324 }
ca5358ef 1325 if (need_seqretry(&rename_lock, seq))
949854d0 1326 goto rename_retry;
ca5358ef 1327 rcu_read_unlock();
db14fc3a
MS
1328 if (finish)
1329 finish(data);
1330
1331out_unlock:
1332 spin_unlock(&this_parent->d_lock);
48f5ec21 1333 done_seqretry(&rename_lock, seq);
db14fc3a 1334 return;
58db63d0
NP
1335
1336rename_retry:
ca5358ef
AV
1337 spin_unlock(&this_parent->d_lock);
1338 rcu_read_unlock();
1339 BUG_ON(seq & 1);
db14fc3a
MS
1340 if (!retry)
1341 return;
48f5ec21 1342 seq = 1;
58db63d0 1343 goto again;
1da177e4 1344}
db14fc3a 1345
01619491
IK
1346struct check_mount {
1347 struct vfsmount *mnt;
1348 unsigned int mounted;
1349};
1350
1351static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1352{
1353 struct check_mount *info = data;
1354 struct path path = { .mnt = info->mnt, .dentry = dentry };
1355
1356 if (likely(!d_mountpoint(dentry)))
1357 return D_WALK_CONTINUE;
1358 if (__path_is_mountpoint(&path)) {
1359 info->mounted = 1;
1360 return D_WALK_QUIT;
1361 }
1362 return D_WALK_CONTINUE;
1363}
1364
1365/**
1366 * path_has_submounts - check for mounts over a dentry in the
1367 * current namespace.
1368 * @parent: path to check.
1369 *
1370 * Return true if the parent or its subdirectories contain
1371 * a mount point in the current namespace.
1372 */
1373int path_has_submounts(const struct path *parent)
1374{
1375 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1376
1377 read_seqlock_excl(&mount_lock);
1378 d_walk(parent->dentry, &data, path_check_mount, NULL);
1379 read_sequnlock_excl(&mount_lock);
1380
1381 return data.mounted;
1382}
1383EXPORT_SYMBOL(path_has_submounts);
1384
eed81007
MS
1385/*
1386 * Called by mount code to set a mountpoint and check if the mountpoint is
1387 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1388 * subtree can become unreachable).
1389 *
1ffe46d1 1390 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1391 * this reason take rename_lock and d_lock on dentry and ancestors.
1392 */
1393int d_set_mounted(struct dentry *dentry)
1394{
1395 struct dentry *p;
1396 int ret = -ENOENT;
1397 write_seqlock(&rename_lock);
1398 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1399 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1400 spin_lock(&p->d_lock);
1401 if (unlikely(d_unhashed(p))) {
1402 spin_unlock(&p->d_lock);
1403 goto out;
1404 }
1405 spin_unlock(&p->d_lock);
1406 }
1407 spin_lock(&dentry->d_lock);
1408 if (!d_unlinked(dentry)) {
3895dbf8
EB
1409 ret = -EBUSY;
1410 if (!d_mountpoint(dentry)) {
1411 dentry->d_flags |= DCACHE_MOUNTED;
1412 ret = 0;
1413 }
eed81007
MS
1414 }
1415 spin_unlock(&dentry->d_lock);
1416out:
1417 write_sequnlock(&rename_lock);
1418 return ret;
1419}
1420
1da177e4 1421/*
fd517909 1422 * Search the dentry child list of the specified parent,
1da177e4
LT
1423 * and move any unused dentries to the end of the unused
1424 * list for prune_dcache(). We descend to the next level
1425 * whenever the d_subdirs list is non-empty and continue
1426 * searching.
1427 *
1428 * It returns zero iff there are no unused children,
1429 * otherwise it returns the number of children moved to
1430 * the end of the unused list. This may not be the total
1431 * number of unused children, because select_parent can
1432 * drop the lock and return early due to latency
1433 * constraints.
1434 */
1da177e4 1435
db14fc3a
MS
1436struct select_data {
1437 struct dentry *start;
1438 struct list_head dispose;
1439 int found;
1440};
23044507 1441
db14fc3a
MS
1442static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1443{
1444 struct select_data *data = _data;
1445 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1446
db14fc3a
MS
1447 if (data->start == dentry)
1448 goto out;
2fd6b7f5 1449
fe91522a 1450 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1451 data->found++;
fe91522a
AV
1452 } else {
1453 if (dentry->d_flags & DCACHE_LRU_LIST)
1454 d_lru_del(dentry);
1455 if (!dentry->d_lockref.count) {
1456 d_shrink_add(dentry, &data->dispose);
1457 data->found++;
1458 }
1da177e4 1459 }
db14fc3a
MS
1460 /*
1461 * We can return to the caller if we have found some (this
1462 * ensures forward progress). We'll be coming back to find
1463 * the rest.
1464 */
fe91522a
AV
1465 if (!list_empty(&data->dispose))
1466 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1467out:
db14fc3a 1468 return ret;
1da177e4
LT
1469}
1470
1471/**
1472 * shrink_dcache_parent - prune dcache
1473 * @parent: parent of entries to prune
1474 *
1475 * Prune the dcache to remove unused children of the parent dentry.
1476 */
db14fc3a 1477void shrink_dcache_parent(struct dentry *parent)
1da177e4 1478{
db14fc3a
MS
1479 for (;;) {
1480 struct select_data data;
1da177e4 1481
db14fc3a
MS
1482 INIT_LIST_HEAD(&data.dispose);
1483 data.start = parent;
1484 data.found = 0;
1485
1486 d_walk(parent, &data, select_collect, NULL);
1487 if (!data.found)
1488 break;
1489
1490 shrink_dentry_list(&data.dispose);
421348f1 1491 }
1da177e4 1492}
ec4f8605 1493EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1494
9c8c10e2 1495static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1496{
9c8c10e2
AV
1497 /* it has busy descendents; complain about those instead */
1498 if (!list_empty(&dentry->d_subdirs))
1499 return D_WALK_CONTINUE;
42c32608 1500
9c8c10e2
AV
1501 /* root with refcount 1 is fine */
1502 if (dentry == _data && dentry->d_lockref.count == 1)
1503 return D_WALK_CONTINUE;
1504
1505 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1506 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1507 dentry,
1508 dentry->d_inode ?
1509 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1510 dentry,
42c32608
AV
1511 dentry->d_lockref.count,
1512 dentry->d_sb->s_type->name,
1513 dentry->d_sb->s_id);
9c8c10e2
AV
1514 WARN_ON(1);
1515 return D_WALK_CONTINUE;
1516}
1517
1518static void do_one_tree(struct dentry *dentry)
1519{
1520 shrink_dcache_parent(dentry);
1521 d_walk(dentry, dentry, umount_check, NULL);
1522 d_drop(dentry);
1523 dput(dentry);
42c32608
AV
1524}
1525
1526/*
1527 * destroy the dentries attached to a superblock on unmounting
1528 */
1529void shrink_dcache_for_umount(struct super_block *sb)
1530{
1531 struct dentry *dentry;
1532
9c8c10e2 1533 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1534
1535 dentry = sb->s_root;
1536 sb->s_root = NULL;
9c8c10e2 1537 do_one_tree(dentry);
42c32608 1538
f1ee6162
N
1539 while (!hlist_bl_empty(&sb->s_roots)) {
1540 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1541 do_one_tree(dentry);
42c32608
AV
1542 }
1543}
1544
8ed936b5
EB
1545struct detach_data {
1546 struct select_data select;
1547 struct dentry *mountpoint;
1548};
1549static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1550{
8ed936b5 1551 struct detach_data *data = _data;
848ac114
MS
1552
1553 if (d_mountpoint(dentry)) {
8ed936b5
EB
1554 __dget_dlock(dentry);
1555 data->mountpoint = dentry;
848ac114
MS
1556 return D_WALK_QUIT;
1557 }
1558
8ed936b5 1559 return select_collect(&data->select, dentry);
848ac114
MS
1560}
1561
1562static void check_and_drop(void *_data)
1563{
8ed936b5 1564 struct detach_data *data = _data;
848ac114 1565
81be24d2 1566 if (!data->mountpoint && list_empty(&data->select.dispose))
8ed936b5 1567 __d_drop(data->select.start);
848ac114
MS
1568}
1569
1570/**
1ffe46d1
EB
1571 * d_invalidate - detach submounts, prune dcache, and drop
1572 * @dentry: dentry to invalidate (aka detach, prune and drop)
1573 *
1ffe46d1 1574 * no dcache lock.
848ac114 1575 *
8ed936b5
EB
1576 * The final d_drop is done as an atomic operation relative to
1577 * rename_lock ensuring there are no races with d_set_mounted. This
1578 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1579 */
5542aa2f 1580void d_invalidate(struct dentry *dentry)
848ac114 1581{
1ffe46d1
EB
1582 /*
1583 * If it's already been dropped, return OK.
1584 */
1585 spin_lock(&dentry->d_lock);
1586 if (d_unhashed(dentry)) {
1587 spin_unlock(&dentry->d_lock);
5542aa2f 1588 return;
1ffe46d1
EB
1589 }
1590 spin_unlock(&dentry->d_lock);
1591
848ac114
MS
1592 /* Negative dentries can be dropped without further checks */
1593 if (!dentry->d_inode) {
1594 d_drop(dentry);
5542aa2f 1595 return;
848ac114
MS
1596 }
1597
1598 for (;;) {
8ed936b5 1599 struct detach_data data;
848ac114 1600
8ed936b5
EB
1601 data.mountpoint = NULL;
1602 INIT_LIST_HEAD(&data.select.dispose);
1603 data.select.start = dentry;
1604 data.select.found = 0;
1605
1606 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1607
81be24d2 1608 if (!list_empty(&data.select.dispose))
8ed936b5 1609 shrink_dentry_list(&data.select.dispose);
81be24d2
AV
1610 else if (!data.mountpoint)
1611 return;
848ac114 1612
8ed936b5
EB
1613 if (data.mountpoint) {
1614 detach_mounts(data.mountpoint);
1615 dput(data.mountpoint);
1616 }
848ac114 1617 }
848ac114 1618}
1ffe46d1 1619EXPORT_SYMBOL(d_invalidate);
848ac114 1620
1da177e4 1621/**
a4464dbc
AV
1622 * __d_alloc - allocate a dcache entry
1623 * @sb: filesystem it will belong to
1da177e4
LT
1624 * @name: qstr of the name
1625 *
1626 * Allocates a dentry. It returns %NULL if there is insufficient memory
1627 * available. On a success the dentry is returned. The name passed in is
1628 * copied and the copy passed in may be reused after this call.
1629 */
1630
a4464dbc 1631struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4 1632{
f1782c9b 1633 struct external_name *ext = NULL;
1da177e4
LT
1634 struct dentry *dentry;
1635 char *dname;
285b102d 1636 int err;
1da177e4 1637
e12ba74d 1638 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1639 if (!dentry)
1640 return NULL;
1641
6326c71f
LT
1642 /*
1643 * We guarantee that the inline name is always NUL-terminated.
1644 * This way the memcpy() done by the name switching in rename
1645 * will still always have a NUL at the end, even if we might
1646 * be overwriting an internal NUL character
1647 */
1648 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1649 if (unlikely(!name)) {
cdf01226 1650 name = &slash_name;
798434bd
AV
1651 dname = dentry->d_iname;
1652 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1653 size_t size = offsetof(struct external_name, name[1]);
f1782c9b
RG
1654
1655 ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1656 if (!ext) {
1da177e4
LT
1657 kmem_cache_free(dentry_cache, dentry);
1658 return NULL;
1659 }
f1782c9b
RG
1660 atomic_set(&ext->u.count, 1);
1661 dname = ext->name;
1da177e4
LT
1662 } else {
1663 dname = dentry->d_iname;
1664 }
1da177e4
LT
1665
1666 dentry->d_name.len = name->len;
1667 dentry->d_name.hash = name->hash;
1668 memcpy(dname, name->name, name->len);
1669 dname[name->len] = 0;
1670
6326c71f 1671 /* Make sure we always see the terminating NUL character */
7088efa9 1672 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1673
98474236 1674 dentry->d_lockref.count = 1;
dea3667b 1675 dentry->d_flags = 0;
1da177e4 1676 spin_lock_init(&dentry->d_lock);
31e6b01f 1677 seqcount_init(&dentry->d_seq);
1da177e4 1678 dentry->d_inode = NULL;
a4464dbc
AV
1679 dentry->d_parent = dentry;
1680 dentry->d_sb = sb;
1da177e4
LT
1681 dentry->d_op = NULL;
1682 dentry->d_fsdata = NULL;
ceb5bdc2 1683 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1684 INIT_LIST_HEAD(&dentry->d_lru);
1685 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1686 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1687 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1688 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1689
285b102d
MS
1690 if (dentry->d_op && dentry->d_op->d_init) {
1691 err = dentry->d_op->d_init(dentry);
1692 if (err) {
1693 if (dname_external(dentry))
1694 kfree(external_name(dentry));
1695 kmem_cache_free(dentry_cache, dentry);
1696 return NULL;
1697 }
1698 }
1699
f1782c9b
RG
1700 if (unlikely(ext)) {
1701 pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1702 mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1703 ksize(ext));
1704 }
1705
3e880fb5 1706 this_cpu_inc(nr_dentry);
312d3ca8 1707
1da177e4
LT
1708 return dentry;
1709}
a4464dbc
AV
1710
1711/**
1712 * d_alloc - allocate a dcache entry
1713 * @parent: parent of entry to allocate
1714 * @name: qstr of the name
1715 *
1716 * Allocates a dentry. It returns %NULL if there is insufficient memory
1717 * available. On a success the dentry is returned. The name passed in is
1718 * copied and the copy passed in may be reused after this call.
1719 */
1720struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1721{
1722 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1723 if (!dentry)
1724 return NULL;
3d56c25e 1725 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1726 spin_lock(&parent->d_lock);
1727 /*
1728 * don't need child lock because it is not subject
1729 * to concurrency here
1730 */
1731 __dget_dlock(parent);
1732 dentry->d_parent = parent;
946e51f2 1733 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1734 spin_unlock(&parent->d_lock);
1735
1736 return dentry;
1737}
ec4f8605 1738EXPORT_SYMBOL(d_alloc);
1da177e4 1739
f9c34674
MS
1740struct dentry *d_alloc_anon(struct super_block *sb)
1741{
1742 return __d_alloc(sb, NULL);
1743}
1744EXPORT_SYMBOL(d_alloc_anon);
1745
ba65dc5e
AV
1746struct dentry *d_alloc_cursor(struct dentry * parent)
1747{
f9c34674 1748 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e
AV
1749 if (dentry) {
1750 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1751 dentry->d_parent = dget(parent);
1752 }
1753 return dentry;
1754}
1755
e1a24bb0
BF
1756/**
1757 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1758 * @sb: the superblock
1759 * @name: qstr of the name
1760 *
1761 * For a filesystem that just pins its dentries in memory and never
1762 * performs lookups at all, return an unhashed IS_ROOT dentry.
1763 */
4b936885
NP
1764struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1765{
e1a24bb0 1766 return __d_alloc(sb, name);
4b936885
NP
1767}
1768EXPORT_SYMBOL(d_alloc_pseudo);
1769
1da177e4
LT
1770struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1771{
1772 struct qstr q;
1773
1774 q.name = name;
8387ff25 1775 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1776 return d_alloc(parent, &q);
1777}
ef26ca97 1778EXPORT_SYMBOL(d_alloc_name);
1da177e4 1779
fb045adb
NP
1780void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1781{
6f7f7caa
LT
1782 WARN_ON_ONCE(dentry->d_op);
1783 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1784 DCACHE_OP_COMPARE |
1785 DCACHE_OP_REVALIDATE |
ecf3d1f1 1786 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1787 DCACHE_OP_DELETE |
d101a125 1788 DCACHE_OP_REAL));
fb045adb
NP
1789 dentry->d_op = op;
1790 if (!op)
1791 return;
1792 if (op->d_hash)
1793 dentry->d_flags |= DCACHE_OP_HASH;
1794 if (op->d_compare)
1795 dentry->d_flags |= DCACHE_OP_COMPARE;
1796 if (op->d_revalidate)
1797 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1798 if (op->d_weak_revalidate)
1799 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1800 if (op->d_delete)
1801 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1802 if (op->d_prune)
1803 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1804 if (op->d_real)
1805 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1806
1807}
1808EXPORT_SYMBOL(d_set_d_op);
1809
df1a085a
DH
1810
1811/*
1812 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1813 * @dentry - The dentry to mark
1814 *
1815 * Mark a dentry as falling through to the lower layer (as set with
1816 * d_pin_lower()). This flag may be recorded on the medium.
1817 */
1818void d_set_fallthru(struct dentry *dentry)
1819{
1820 spin_lock(&dentry->d_lock);
1821 dentry->d_flags |= DCACHE_FALLTHRU;
1822 spin_unlock(&dentry->d_lock);
1823}
1824EXPORT_SYMBOL(d_set_fallthru);
1825
b18825a7
DH
1826static unsigned d_flags_for_inode(struct inode *inode)
1827{
44bdb5e5 1828 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1829
1830 if (!inode)
1831 return DCACHE_MISS_TYPE;
1832
1833 if (S_ISDIR(inode->i_mode)) {
1834 add_flags = DCACHE_DIRECTORY_TYPE;
1835 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1836 if (unlikely(!inode->i_op->lookup))
1837 add_flags = DCACHE_AUTODIR_TYPE;
1838 else
1839 inode->i_opflags |= IOP_LOOKUP;
1840 }
44bdb5e5
DH
1841 goto type_determined;
1842 }
1843
1844 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1845 if (unlikely(inode->i_op->get_link)) {
b18825a7 1846 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1847 goto type_determined;
1848 }
1849 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1850 }
1851
44bdb5e5
DH
1852 if (unlikely(!S_ISREG(inode->i_mode)))
1853 add_flags = DCACHE_SPECIAL_TYPE;
1854
1855type_determined:
b18825a7
DH
1856 if (unlikely(IS_AUTOMOUNT(inode)))
1857 add_flags |= DCACHE_NEED_AUTOMOUNT;
1858 return add_flags;
1859}
1860
360da900
OH
1861static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1862{
b18825a7 1863 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1864 WARN_ON(d_in_lookup(dentry));
b18825a7 1865
b23fb0a6 1866 spin_lock(&dentry->d_lock);
de689f5e 1867 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1868 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1869 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1870 raw_write_seqcount_end(&dentry->d_seq);
affda484 1871 fsnotify_update_flags(dentry);
b23fb0a6 1872 spin_unlock(&dentry->d_lock);
360da900
OH
1873}
1874
1da177e4
LT
1875/**
1876 * d_instantiate - fill in inode information for a dentry
1877 * @entry: dentry to complete
1878 * @inode: inode to attach to this dentry
1879 *
1880 * Fill in inode information in the entry.
1881 *
1882 * This turns negative dentries into productive full members
1883 * of society.
1884 *
1885 * NOTE! This assumes that the inode count has been incremented
1886 * (or otherwise set) by the caller to indicate that it is now
1887 * in use by the dcache.
1888 */
1889
1890void d_instantiate(struct dentry *entry, struct inode * inode)
1891{
946e51f2 1892 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1893 if (inode) {
b9680917 1894 security_d_instantiate(entry, inode);
873feea0 1895 spin_lock(&inode->i_lock);
de689f5e 1896 __d_instantiate(entry, inode);
873feea0 1897 spin_unlock(&inode->i_lock);
de689f5e 1898 }
1da177e4 1899}
ec4f8605 1900EXPORT_SYMBOL(d_instantiate);
1da177e4 1901
b70a80e7
MS
1902/**
1903 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1904 * @entry: dentry to complete
1905 * @inode: inode to attach to this dentry
1906 *
1907 * Fill in inode information in the entry. If a directory alias is found, then
1908 * return an error (and drop inode). Together with d_materialise_unique() this
1909 * guarantees that a directory inode may never have more than one alias.
1910 */
1911int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1912{
946e51f2 1913 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1914
b9680917 1915 security_d_instantiate(entry, inode);
b70a80e7
MS
1916 spin_lock(&inode->i_lock);
1917 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1918 spin_unlock(&inode->i_lock);
1919 iput(inode);
1920 return -EBUSY;
1921 }
1922 __d_instantiate(entry, inode);
1923 spin_unlock(&inode->i_lock);
b70a80e7
MS
1924
1925 return 0;
1926}
1927EXPORT_SYMBOL(d_instantiate_no_diralias);
1928
adc0e91a
AV
1929struct dentry *d_make_root(struct inode *root_inode)
1930{
1931 struct dentry *res = NULL;
1932
1933 if (root_inode) {
f9c34674 1934 res = d_alloc_anon(root_inode->i_sb);
adc0e91a
AV
1935 if (res)
1936 d_instantiate(res, root_inode);
1937 else
1938 iput(root_inode);
1939 }
1940 return res;
1941}
1942EXPORT_SYMBOL(d_make_root);
1943
d891eedb
BF
1944static struct dentry * __d_find_any_alias(struct inode *inode)
1945{
1946 struct dentry *alias;
1947
b3d9b7a3 1948 if (hlist_empty(&inode->i_dentry))
d891eedb 1949 return NULL;
946e51f2 1950 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1951 __dget(alias);
1952 return alias;
1953}
1954
46f72b34
SW
1955/**
1956 * d_find_any_alias - find any alias for a given inode
1957 * @inode: inode to find an alias for
1958 *
1959 * If any aliases exist for the given inode, take and return a
1960 * reference for one of them. If no aliases exist, return %NULL.
1961 */
1962struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1963{
1964 struct dentry *de;
1965
1966 spin_lock(&inode->i_lock);
1967 de = __d_find_any_alias(inode);
1968 spin_unlock(&inode->i_lock);
1969 return de;
1970}
46f72b34 1971EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1972
f9c34674
MS
1973static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1974 struct inode *inode,
1975 bool disconnected)
4ea3ada2 1976{
9308a612 1977 struct dentry *res;
b18825a7 1978 unsigned add_flags;
4ea3ada2 1979
f9c34674 1980 security_d_instantiate(dentry, inode);
873feea0 1981 spin_lock(&inode->i_lock);
d891eedb 1982 res = __d_find_any_alias(inode);
9308a612 1983 if (res) {
873feea0 1984 spin_unlock(&inode->i_lock);
f9c34674 1985 dput(dentry);
9308a612
CH
1986 goto out_iput;
1987 }
1988
1989 /* attach a disconnected dentry */
1a0a397e
BF
1990 add_flags = d_flags_for_inode(inode);
1991
1992 if (disconnected)
1993 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1994
f9c34674
MS
1995 spin_lock(&dentry->d_lock);
1996 __d_set_inode_and_type(dentry, inode, add_flags);
1997 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 1998 if (!disconnected) {
139351f1
LT
1999 hlist_bl_lock(&dentry->d_sb->s_roots);
2000 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2001 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 2002 }
f9c34674 2003 spin_unlock(&dentry->d_lock);
873feea0 2004 spin_unlock(&inode->i_lock);
9308a612 2005
f9c34674 2006 return dentry;
9308a612
CH
2007
2008 out_iput:
2009 iput(inode);
2010 return res;
4ea3ada2 2011}
1a0a397e 2012
f9c34674
MS
2013struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2014{
2015 return __d_instantiate_anon(dentry, inode, true);
2016}
2017EXPORT_SYMBOL(d_instantiate_anon);
2018
2019static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2020{
2021 struct dentry *tmp;
2022 struct dentry *res;
2023
2024 if (!inode)
2025 return ERR_PTR(-ESTALE);
2026 if (IS_ERR(inode))
2027 return ERR_CAST(inode);
2028
2029 res = d_find_any_alias(inode);
2030 if (res)
2031 goto out_iput;
2032
2033 tmp = d_alloc_anon(inode->i_sb);
2034 if (!tmp) {
2035 res = ERR_PTR(-ENOMEM);
2036 goto out_iput;
2037 }
2038
2039 return __d_instantiate_anon(tmp, inode, disconnected);
2040
2041out_iput:
2042 iput(inode);
2043 return res;
2044}
2045
1a0a397e
BF
2046/**
2047 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2048 * @inode: inode to allocate the dentry for
2049 *
2050 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2051 * similar open by handle operations. The returned dentry may be anonymous,
2052 * or may have a full name (if the inode was already in the cache).
2053 *
2054 * When called on a directory inode, we must ensure that the inode only ever
2055 * has one dentry. If a dentry is found, that is returned instead of
2056 * allocating a new one.
2057 *
2058 * On successful return, the reference to the inode has been transferred
2059 * to the dentry. In case of an error the reference on the inode is released.
2060 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2061 * be passed in and the error will be propagated to the return value,
2062 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2063 */
2064struct dentry *d_obtain_alias(struct inode *inode)
2065{
f9c34674 2066 return __d_obtain_alias(inode, true);
1a0a397e 2067}
adc48720 2068EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2069
1a0a397e
BF
2070/**
2071 * d_obtain_root - find or allocate a dentry for a given inode
2072 * @inode: inode to allocate the dentry for
2073 *
2074 * Obtain an IS_ROOT dentry for the root of a filesystem.
2075 *
2076 * We must ensure that directory inodes only ever have one dentry. If a
2077 * dentry is found, that is returned instead of allocating a new one.
2078 *
2079 * On successful return, the reference to the inode has been transferred
2080 * to the dentry. In case of an error the reference on the inode is
2081 * released. A %NULL or IS_ERR inode may be passed in and will be the
2082 * error will be propagate to the return value, with a %NULL @inode
2083 * replaced by ERR_PTR(-ESTALE).
2084 */
2085struct dentry *d_obtain_root(struct inode *inode)
2086{
f9c34674 2087 return __d_obtain_alias(inode, false);
1a0a397e
BF
2088}
2089EXPORT_SYMBOL(d_obtain_root);
2090
9403540c
BN
2091/**
2092 * d_add_ci - lookup or allocate new dentry with case-exact name
2093 * @inode: the inode case-insensitive lookup has found
2094 * @dentry: the negative dentry that was passed to the parent's lookup func
2095 * @name: the case-exact name to be associated with the returned dentry
2096 *
2097 * This is to avoid filling the dcache with case-insensitive names to the
2098 * same inode, only the actual correct case is stored in the dcache for
2099 * case-insensitive filesystems.
2100 *
2101 * For a case-insensitive lookup match and if the the case-exact dentry
2102 * already exists in in the dcache, use it and return it.
2103 *
2104 * If no entry exists with the exact case name, allocate new dentry with
2105 * the exact case, and return the spliced entry.
2106 */
e45b590b 2107struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2108 struct qstr *name)
2109{
d9171b93 2110 struct dentry *found, *res;
9403540c 2111
b6520c81
CH
2112 /*
2113 * First check if a dentry matching the name already exists,
2114 * if not go ahead and create it now.
2115 */
9403540c 2116 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2117 if (found) {
2118 iput(inode);
2119 return found;
2120 }
2121 if (d_in_lookup(dentry)) {
2122 found = d_alloc_parallel(dentry->d_parent, name,
2123 dentry->d_wait);
2124 if (IS_ERR(found) || !d_in_lookup(found)) {
2125 iput(inode);
2126 return found;
9403540c 2127 }
d9171b93
AV
2128 } else {
2129 found = d_alloc(dentry->d_parent, name);
2130 if (!found) {
2131 iput(inode);
2132 return ERR_PTR(-ENOMEM);
2133 }
2134 }
2135 res = d_splice_alias(inode, found);
2136 if (res) {
2137 dput(found);
2138 return res;
9403540c 2139 }
4f522a24 2140 return found;
9403540c 2141}
ec4f8605 2142EXPORT_SYMBOL(d_add_ci);
1da177e4 2143
12f8ad4b 2144
d4c91a8f
AV
2145static inline bool d_same_name(const struct dentry *dentry,
2146 const struct dentry *parent,
2147 const struct qstr *name)
12f8ad4b 2148{
d4c91a8f
AV
2149 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2150 if (dentry->d_name.len != name->len)
2151 return false;
2152 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2153 }
6fa67e70 2154 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2155 dentry->d_name.len, dentry->d_name.name,
2156 name) == 0;
12f8ad4b
LT
2157}
2158
31e6b01f
NP
2159/**
2160 * __d_lookup_rcu - search for a dentry (racy, store-free)
2161 * @parent: parent dentry
2162 * @name: qstr of name we wish to find
1f1e6e52 2163 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2164 * Returns: dentry, or NULL
2165 *
2166 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2167 * resolution (store-free path walking) design described in
2168 * Documentation/filesystems/path-lookup.txt.
2169 *
2170 * This is not to be used outside core vfs.
2171 *
2172 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2173 * held, and rcu_read_lock held. The returned dentry must not be stored into
2174 * without taking d_lock and checking d_seq sequence count against @seq
2175 * returned here.
2176 *
15570086 2177 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2178 * function.
2179 *
2180 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2181 * the returned dentry, so long as its parent's seqlock is checked after the
2182 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2183 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2184 *
2185 * NOTE! The caller *has* to check the resulting dentry against the sequence
2186 * number we've returned before using any of the resulting dentry state!
31e6b01f 2187 */
8966be90
LT
2188struct dentry *__d_lookup_rcu(const struct dentry *parent,
2189 const struct qstr *name,
da53be12 2190 unsigned *seqp)
31e6b01f 2191{
26fe5750 2192 u64 hashlen = name->hash_len;
31e6b01f 2193 const unsigned char *str = name->name;
8387ff25 2194 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2195 struct hlist_bl_node *node;
31e6b01f
NP
2196 struct dentry *dentry;
2197
2198 /*
2199 * Note: There is significant duplication with __d_lookup_rcu which is
2200 * required to prevent single threaded performance regressions
2201 * especially on architectures where smp_rmb (in seqcounts) are costly.
2202 * Keep the two functions in sync.
2203 */
2204
2205 /*
2206 * The hash list is protected using RCU.
2207 *
2208 * Carefully use d_seq when comparing a candidate dentry, to avoid
2209 * races with d_move().
2210 *
2211 * It is possible that concurrent renames can mess up our list
2212 * walk here and result in missing our dentry, resulting in the
2213 * false-negative result. d_lookup() protects against concurrent
2214 * renames using rename_lock seqlock.
2215 *
b0a4bb83 2216 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2217 */
b07ad996 2218 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2219 unsigned seq;
31e6b01f 2220
31e6b01f 2221seqretry:
12f8ad4b
LT
2222 /*
2223 * The dentry sequence count protects us from concurrent
da53be12 2224 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2225 *
2226 * The caller must perform a seqcount check in order
da53be12 2227 * to do anything useful with the returned dentry.
12f8ad4b
LT
2228 *
2229 * NOTE! We do a "raw" seqcount_begin here. That means that
2230 * we don't wait for the sequence count to stabilize if it
2231 * is in the middle of a sequence change. If we do the slow
2232 * dentry compare, we will do seqretries until it is stable,
2233 * and if we end up with a successful lookup, we actually
2234 * want to exit RCU lookup anyway.
d4c91a8f
AV
2235 *
2236 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2237 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2238 */
2239 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2240 if (dentry->d_parent != parent)
2241 continue;
2e321806
LT
2242 if (d_unhashed(dentry))
2243 continue;
12f8ad4b 2244
830c0f0e 2245 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2246 int tlen;
2247 const char *tname;
26fe5750
LT
2248 if (dentry->d_name.hash != hashlen_hash(hashlen))
2249 continue;
d4c91a8f
AV
2250 tlen = dentry->d_name.len;
2251 tname = dentry->d_name.name;
2252 /* we want a consistent (name,len) pair */
2253 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2254 cpu_relax();
12f8ad4b
LT
2255 goto seqretry;
2256 }
6fa67e70 2257 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2258 tlen, tname, name) != 0)
2259 continue;
2260 } else {
2261 if (dentry->d_name.hash_len != hashlen)
2262 continue;
2263 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2264 continue;
31e6b01f 2265 }
da53be12 2266 *seqp = seq;
d4c91a8f 2267 return dentry;
31e6b01f
NP
2268 }
2269 return NULL;
2270}
2271
1da177e4
LT
2272/**
2273 * d_lookup - search for a dentry
2274 * @parent: parent dentry
2275 * @name: qstr of name we wish to find
b04f784e 2276 * Returns: dentry, or NULL
1da177e4 2277 *
b04f784e
NP
2278 * d_lookup searches the children of the parent dentry for the name in
2279 * question. If the dentry is found its reference count is incremented and the
2280 * dentry is returned. The caller must use dput to free the entry when it has
2281 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2282 */
da2d8455 2283struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2284{
31e6b01f 2285 struct dentry *dentry;
949854d0 2286 unsigned seq;
1da177e4 2287
b8314f93
DY
2288 do {
2289 seq = read_seqbegin(&rename_lock);
2290 dentry = __d_lookup(parent, name);
2291 if (dentry)
1da177e4
LT
2292 break;
2293 } while (read_seqretry(&rename_lock, seq));
2294 return dentry;
2295}
ec4f8605 2296EXPORT_SYMBOL(d_lookup);
1da177e4 2297
31e6b01f 2298/**
b04f784e
NP
2299 * __d_lookup - search for a dentry (racy)
2300 * @parent: parent dentry
2301 * @name: qstr of name we wish to find
2302 * Returns: dentry, or NULL
2303 *
2304 * __d_lookup is like d_lookup, however it may (rarely) return a
2305 * false-negative result due to unrelated rename activity.
2306 *
2307 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2308 * however it must be used carefully, eg. with a following d_lookup in
2309 * the case of failure.
2310 *
2311 * __d_lookup callers must be commented.
2312 */
a713ca2a 2313struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2314{
1da177e4 2315 unsigned int hash = name->hash;
8387ff25 2316 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2317 struct hlist_bl_node *node;
31e6b01f 2318 struct dentry *found = NULL;
665a7583 2319 struct dentry *dentry;
1da177e4 2320
31e6b01f
NP
2321 /*
2322 * Note: There is significant duplication with __d_lookup_rcu which is
2323 * required to prevent single threaded performance regressions
2324 * especially on architectures where smp_rmb (in seqcounts) are costly.
2325 * Keep the two functions in sync.
2326 */
2327
b04f784e
NP
2328 /*
2329 * The hash list is protected using RCU.
2330 *
2331 * Take d_lock when comparing a candidate dentry, to avoid races
2332 * with d_move().
2333 *
2334 * It is possible that concurrent renames can mess up our list
2335 * walk here and result in missing our dentry, resulting in the
2336 * false-negative result. d_lookup() protects against concurrent
2337 * renames using rename_lock seqlock.
2338 *
b0a4bb83 2339 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2340 */
1da177e4
LT
2341 rcu_read_lock();
2342
b07ad996 2343 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2344
1da177e4
LT
2345 if (dentry->d_name.hash != hash)
2346 continue;
1da177e4
LT
2347
2348 spin_lock(&dentry->d_lock);
1da177e4
LT
2349 if (dentry->d_parent != parent)
2350 goto next;
d0185c08
LT
2351 if (d_unhashed(dentry))
2352 goto next;
2353
d4c91a8f
AV
2354 if (!d_same_name(dentry, parent, name))
2355 goto next;
1da177e4 2356
98474236 2357 dentry->d_lockref.count++;
d0185c08 2358 found = dentry;
1da177e4
LT
2359 spin_unlock(&dentry->d_lock);
2360 break;
2361next:
2362 spin_unlock(&dentry->d_lock);
2363 }
2364 rcu_read_unlock();
2365
2366 return found;
2367}
2368
3e7e241f
EB
2369/**
2370 * d_hash_and_lookup - hash the qstr then search for a dentry
2371 * @dir: Directory to search in
2372 * @name: qstr of name we wish to find
2373 *
4f522a24 2374 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2375 */
2376struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2377{
3e7e241f
EB
2378 /*
2379 * Check for a fs-specific hash function. Note that we must
2380 * calculate the standard hash first, as the d_op->d_hash()
2381 * routine may choose to leave the hash value unchanged.
2382 */
8387ff25 2383 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2384 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2385 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2386 if (unlikely(err < 0))
2387 return ERR_PTR(err);
3e7e241f 2388 }
4f522a24 2389 return d_lookup(dir, name);
3e7e241f 2390}
4f522a24 2391EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2392
1da177e4
LT
2393/*
2394 * When a file is deleted, we have two options:
2395 * - turn this dentry into a negative dentry
2396 * - unhash this dentry and free it.
2397 *
2398 * Usually, we want to just turn this into
2399 * a negative dentry, but if anybody else is
2400 * currently using the dentry or the inode
2401 * we can't do that and we fall back on removing
2402 * it from the hash queues and waiting for
2403 * it to be deleted later when it has no users
2404 */
2405
2406/**
2407 * d_delete - delete a dentry
2408 * @dentry: The dentry to delete
2409 *
2410 * Turn the dentry into a negative dentry if possible, otherwise
2411 * remove it from the hash queues so it can be deleted later
2412 */
2413
2414void d_delete(struct dentry * dentry)
2415{
c19457f0
AV
2416 struct inode *inode = dentry->d_inode;
2417 int isdir = d_is_dir(dentry);
2418
2419 spin_lock(&inode->i_lock);
2420 spin_lock(&dentry->d_lock);
1da177e4
LT
2421 /*
2422 * Are we the only user?
2423 */
98474236 2424 if (dentry->d_lockref.count == 1) {
13e3c5e5 2425 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2426 dentry_unlink_inode(dentry);
c19457f0 2427 } else {
1da177e4 2428 __d_drop(dentry);
c19457f0
AV
2429 spin_unlock(&dentry->d_lock);
2430 spin_unlock(&inode->i_lock);
2431 }
7a91bf7f 2432 fsnotify_nameremove(dentry, isdir);
1da177e4 2433}
ec4f8605 2434EXPORT_SYMBOL(d_delete);
1da177e4 2435
15d3c589 2436static void __d_rehash(struct dentry *entry)
1da177e4 2437{
15d3c589 2438 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2439
1879fd6a 2440 hlist_bl_lock(b);
b07ad996 2441 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2442 hlist_bl_unlock(b);
1da177e4
LT
2443}
2444
2445/**
2446 * d_rehash - add an entry back to the hash
2447 * @entry: dentry to add to the hash
2448 *
2449 * Adds a dentry to the hash according to its name.
2450 */
2451
2452void d_rehash(struct dentry * entry)
2453{
1da177e4 2454 spin_lock(&entry->d_lock);
15d3c589 2455 __d_rehash(entry);
1da177e4 2456 spin_unlock(&entry->d_lock);
1da177e4 2457}
ec4f8605 2458EXPORT_SYMBOL(d_rehash);
1da177e4 2459
84e710da
AV
2460static inline unsigned start_dir_add(struct inode *dir)
2461{
2462
2463 for (;;) {
2464 unsigned n = dir->i_dir_seq;
2465 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2466 return n;
2467 cpu_relax();
2468 }
2469}
2470
2471static inline void end_dir_add(struct inode *dir, unsigned n)
2472{
2473 smp_store_release(&dir->i_dir_seq, n + 2);
2474}
2475
d9171b93
AV
2476static void d_wait_lookup(struct dentry *dentry)
2477{
2478 if (d_in_lookup(dentry)) {
2479 DECLARE_WAITQUEUE(wait, current);
2480 add_wait_queue(dentry->d_wait, &wait);
2481 do {
2482 set_current_state(TASK_UNINTERRUPTIBLE);
2483 spin_unlock(&dentry->d_lock);
2484 schedule();
2485 spin_lock(&dentry->d_lock);
2486 } while (d_in_lookup(dentry));
2487 }
2488}
2489
94bdd655 2490struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2491 const struct qstr *name,
2492 wait_queue_head_t *wq)
94bdd655 2493{
94bdd655 2494 unsigned int hash = name->hash;
94bdd655
AV
2495 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2496 struct hlist_bl_node *node;
2497 struct dentry *new = d_alloc(parent, name);
2498 struct dentry *dentry;
2499 unsigned seq, r_seq, d_seq;
2500
2501 if (unlikely(!new))
2502 return ERR_PTR(-ENOMEM);
2503
2504retry:
2505 rcu_read_lock();
015555fd 2506 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2507 r_seq = read_seqbegin(&rename_lock);
2508 dentry = __d_lookup_rcu(parent, name, &d_seq);
2509 if (unlikely(dentry)) {
2510 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2511 rcu_read_unlock();
2512 goto retry;
2513 }
2514 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2515 rcu_read_unlock();
2516 dput(dentry);
2517 goto retry;
2518 }
2519 rcu_read_unlock();
2520 dput(new);
2521 return dentry;
2522 }
2523 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2524 rcu_read_unlock();
2525 goto retry;
2526 }
015555fd
WD
2527
2528 if (unlikely(seq & 1)) {
2529 rcu_read_unlock();
2530 goto retry;
2531 }
2532
94bdd655 2533 hlist_bl_lock(b);
8cc07c80 2534 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2535 hlist_bl_unlock(b);
2536 rcu_read_unlock();
2537 goto retry;
2538 }
94bdd655
AV
2539 /*
2540 * No changes for the parent since the beginning of d_lookup().
2541 * Since all removals from the chain happen with hlist_bl_lock(),
2542 * any potential in-lookup matches are going to stay here until
2543 * we unlock the chain. All fields are stable in everything
2544 * we encounter.
2545 */
2546 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2547 if (dentry->d_name.hash != hash)
2548 continue;
2549 if (dentry->d_parent != parent)
2550 continue;
d4c91a8f
AV
2551 if (!d_same_name(dentry, parent, name))
2552 continue;
94bdd655 2553 hlist_bl_unlock(b);
e7d6ef97
AV
2554 /* now we can try to grab a reference */
2555 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2556 rcu_read_unlock();
2557 goto retry;
2558 }
2559
2560 rcu_read_unlock();
2561 /*
2562 * somebody is likely to be still doing lookup for it;
2563 * wait for them to finish
2564 */
d9171b93
AV
2565 spin_lock(&dentry->d_lock);
2566 d_wait_lookup(dentry);
2567 /*
2568 * it's not in-lookup anymore; in principle we should repeat
2569 * everything from dcache lookup, but it's likely to be what
2570 * d_lookup() would've found anyway. If it is, just return it;
2571 * otherwise we really have to repeat the whole thing.
2572 */
2573 if (unlikely(dentry->d_name.hash != hash))
2574 goto mismatch;
2575 if (unlikely(dentry->d_parent != parent))
2576 goto mismatch;
2577 if (unlikely(d_unhashed(dentry)))
2578 goto mismatch;
d4c91a8f
AV
2579 if (unlikely(!d_same_name(dentry, parent, name)))
2580 goto mismatch;
d9171b93
AV
2581 /* OK, it *is* a hashed match; return it */
2582 spin_unlock(&dentry->d_lock);
94bdd655
AV
2583 dput(new);
2584 return dentry;
2585 }
e7d6ef97 2586 rcu_read_unlock();
94bdd655
AV
2587 /* we can't take ->d_lock here; it's OK, though. */
2588 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2589 new->d_wait = wq;
94bdd655
AV
2590 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2591 hlist_bl_unlock(b);
2592 return new;
d9171b93
AV
2593mismatch:
2594 spin_unlock(&dentry->d_lock);
2595 dput(dentry);
2596 goto retry;
94bdd655
AV
2597}
2598EXPORT_SYMBOL(d_alloc_parallel);
2599
85c7f810
AV
2600void __d_lookup_done(struct dentry *dentry)
2601{
94bdd655
AV
2602 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2603 dentry->d_name.hash);
2604 hlist_bl_lock(b);
85c7f810 2605 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2606 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2607 wake_up_all(dentry->d_wait);
2608 dentry->d_wait = NULL;
94bdd655
AV
2609 hlist_bl_unlock(b);
2610 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2611 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2612}
2613EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2614
2615/* inode->i_lock held if inode is non-NULL */
2616
2617static inline void __d_add(struct dentry *dentry, struct inode *inode)
2618{
84e710da
AV
2619 struct inode *dir = NULL;
2620 unsigned n;
0568d705 2621 spin_lock(&dentry->d_lock);
84e710da
AV
2622 if (unlikely(d_in_lookup(dentry))) {
2623 dir = dentry->d_parent->d_inode;
2624 n = start_dir_add(dir);
85c7f810 2625 __d_lookup_done(dentry);
84e710da 2626 }
ed782b5a 2627 if (inode) {
0568d705
AV
2628 unsigned add_flags = d_flags_for_inode(inode);
2629 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2630 raw_write_seqcount_begin(&dentry->d_seq);
2631 __d_set_inode_and_type(dentry, inode, add_flags);
2632 raw_write_seqcount_end(&dentry->d_seq);
affda484 2633 fsnotify_update_flags(dentry);
ed782b5a 2634 }
15d3c589 2635 __d_rehash(dentry);
84e710da
AV
2636 if (dir)
2637 end_dir_add(dir, n);
0568d705
AV
2638 spin_unlock(&dentry->d_lock);
2639 if (inode)
2640 spin_unlock(&inode->i_lock);
ed782b5a
AV
2641}
2642
34d0d19d
AV
2643/**
2644 * d_add - add dentry to hash queues
2645 * @entry: dentry to add
2646 * @inode: The inode to attach to this dentry
2647 *
2648 * This adds the entry to the hash queues and initializes @inode.
2649 * The entry was actually filled in earlier during d_alloc().
2650 */
2651
2652void d_add(struct dentry *entry, struct inode *inode)
2653{
b9680917
AV
2654 if (inode) {
2655 security_d_instantiate(entry, inode);
ed782b5a 2656 spin_lock(&inode->i_lock);
b9680917 2657 }
ed782b5a 2658 __d_add(entry, inode);
34d0d19d
AV
2659}
2660EXPORT_SYMBOL(d_add);
2661
668d0cd5
AV
2662/**
2663 * d_exact_alias - find and hash an exact unhashed alias
2664 * @entry: dentry to add
2665 * @inode: The inode to go with this dentry
2666 *
2667 * If an unhashed dentry with the same name/parent and desired
2668 * inode already exists, hash and return it. Otherwise, return
2669 * NULL.
2670 *
2671 * Parent directory should be locked.
2672 */
2673struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2674{
2675 struct dentry *alias;
668d0cd5
AV
2676 unsigned int hash = entry->d_name.hash;
2677
2678 spin_lock(&inode->i_lock);
2679 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2680 /*
2681 * Don't need alias->d_lock here, because aliases with
2682 * d_parent == entry->d_parent are not subject to name or
2683 * parent changes, because the parent inode i_mutex is held.
2684 */
2685 if (alias->d_name.hash != hash)
2686 continue;
2687 if (alias->d_parent != entry->d_parent)
2688 continue;
d4c91a8f 2689 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2690 continue;
2691 spin_lock(&alias->d_lock);
2692 if (!d_unhashed(alias)) {
2693 spin_unlock(&alias->d_lock);
2694 alias = NULL;
2695 } else {
2696 __dget_dlock(alias);
15d3c589 2697 __d_rehash(alias);
668d0cd5
AV
2698 spin_unlock(&alias->d_lock);
2699 }
2700 spin_unlock(&inode->i_lock);
2701 return alias;
2702 }
2703 spin_unlock(&inode->i_lock);
2704 return NULL;
2705}
2706EXPORT_SYMBOL(d_exact_alias);
2707
fb2d5b86
NP
2708/**
2709 * dentry_update_name_case - update case insensitive dentry with a new name
2710 * @dentry: dentry to be updated
2711 * @name: new name
2712 *
2713 * Update a case insensitive dentry with new case of name.
2714 *
2715 * dentry must have been returned by d_lookup with name @name. Old and new
2716 * name lengths must match (ie. no d_compare which allows mismatched name
2717 * lengths).
2718 *
2719 * Parent inode i_mutex must be held over d_lookup and into this call (to
2720 * keep renames and concurrent inserts, and readdir(2) away).
2721 */
9aba36de 2722void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
fb2d5b86 2723{
5955102c 2724 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2725 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2726
fb2d5b86 2727 spin_lock(&dentry->d_lock);
31e6b01f 2728 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2729 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2730 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2731 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2732}
2733EXPORT_SYMBOL(dentry_update_name_case);
2734
8d85b484 2735static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2736{
8d85b484
AV
2737 if (unlikely(dname_external(target))) {
2738 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2739 /*
2740 * Both external: swap the pointers
2741 */
9a8d5bb4 2742 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2743 } else {
2744 /*
2745 * dentry:internal, target:external. Steal target's
2746 * storage and make target internal.
2747 */
321bcf92
BF
2748 memcpy(target->d_iname, dentry->d_name.name,
2749 dentry->d_name.len + 1);
1da177e4
LT
2750 dentry->d_name.name = target->d_name.name;
2751 target->d_name.name = target->d_iname;
2752 }
2753 } else {
8d85b484 2754 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2755 /*
2756 * dentry:external, target:internal. Give dentry's
2757 * storage to target and make dentry internal
2758 */
2759 memcpy(dentry->d_iname, target->d_name.name,
2760 target->d_name.len + 1);
2761 target->d_name.name = dentry->d_name.name;
2762 dentry->d_name.name = dentry->d_iname;
2763 } else {
2764 /*
da1ce067 2765 * Both are internal.
1da177e4 2766 */
da1ce067
MS
2767 unsigned int i;
2768 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2769 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2770 swap(((long *) &dentry->d_iname)[i],
2771 ((long *) &target->d_iname)[i]);
2772 }
1da177e4
LT
2773 }
2774 }
a28ddb87 2775 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2776}
2777
8d85b484
AV
2778static void copy_name(struct dentry *dentry, struct dentry *target)
2779{
2780 struct external_name *old_name = NULL;
2781 if (unlikely(dname_external(dentry)))
2782 old_name = external_name(dentry);
2783 if (unlikely(dname_external(target))) {
2784 atomic_inc(&external_name(target)->u.count);
2785 dentry->d_name = target->d_name;
2786 } else {
2787 memcpy(dentry->d_iname, target->d_name.name,
2788 target->d_name.len + 1);
2789 dentry->d_name.name = dentry->d_iname;
2790 dentry->d_name.hash_len = target->d_name.hash_len;
2791 }
2792 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
f1782c9b 2793 call_rcu(&old_name->u.head, __d_free_external_name);
8d85b484
AV
2794}
2795
9eaef27b 2796/*
18367501 2797 * __d_move - move a dentry
1da177e4
LT
2798 * @dentry: entry to move
2799 * @target: new dentry
da1ce067 2800 * @exchange: exchange the two dentries
1da177e4
LT
2801 *
2802 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2803 * dcache entries should not be moved in this way. Caller must hold
2804 * rename_lock, the i_mutex of the source and target directories,
2805 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2806 */
da1ce067
MS
2807static void __d_move(struct dentry *dentry, struct dentry *target,
2808 bool exchange)
1da177e4 2809{
42177007 2810 struct dentry *old_parent, *p;
84e710da
AV
2811 struct inode *dir = NULL;
2812 unsigned n;
1da177e4 2813
42177007
AV
2814 WARN_ON(!dentry->d_inode);
2815 if (WARN_ON(dentry == target))
2816 return;
2817
2fd6b7f5 2818 BUG_ON(d_ancestor(target, dentry));
42177007
AV
2819 old_parent = dentry->d_parent;
2820 p = d_ancestor(old_parent, target);
2821 if (IS_ROOT(dentry)) {
2822 BUG_ON(p);
2823 spin_lock(&target->d_parent->d_lock);
2824 } else if (!p) {
2825 /* target is not a descendent of dentry->d_parent */
2826 spin_lock(&target->d_parent->d_lock);
2827 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2828 } else {
2829 BUG_ON(p == dentry);
2830 spin_lock(&old_parent->d_lock);
2831 if (p != target)
2832 spin_lock_nested(&target->d_parent->d_lock,
2833 DENTRY_D_LOCK_NESTED);
2834 }
2835 spin_lock_nested(&dentry->d_lock, 2);
2836 spin_lock_nested(&target->d_lock, 3);
2fd6b7f5 2837
84e710da
AV
2838 if (unlikely(d_in_lookup(target))) {
2839 dir = target->d_parent->d_inode;
2840 n = start_dir_add(dir);
85c7f810 2841 __d_lookup_done(target);
84e710da 2842 }
1da177e4 2843
31e6b01f 2844 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2845 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2846
15d3c589 2847 /* unhash both */
0632a9ac
AV
2848 if (!d_unhashed(dentry))
2849 ___d_drop(dentry);
2850 if (!d_unhashed(target))
2851 ___d_drop(target);
1da177e4 2852
076515fc
AV
2853 /* ... and switch them in the tree */
2854 dentry->d_parent = target->d_parent;
2855 if (!exchange) {
8d85b484 2856 copy_name(dentry, target);
61647823 2857 target->d_hash.pprev = NULL;
076515fc
AV
2858 dentry->d_parent->d_lockref.count++;
2859 if (dentry == old_parent)
2860 dentry->d_flags |= DCACHE_RCUACCESS;
2861 else
2862 WARN_ON(!--old_parent->d_lockref.count);
1da177e4 2863 } else {
076515fc
AV
2864 target->d_parent = old_parent;
2865 swap_names(dentry, target);
946e51f2 2866 list_move(&target->d_child, &target->d_parent->d_subdirs);
076515fc
AV
2867 __d_rehash(target);
2868 fsnotify_update_flags(target);
1da177e4 2869 }
076515fc
AV
2870 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2871 __d_rehash(dentry);
2872 fsnotify_update_flags(dentry);
1da177e4 2873
31e6b01f
NP
2874 write_seqcount_end(&target->d_seq);
2875 write_seqcount_end(&dentry->d_seq);
2876
84e710da
AV
2877 if (dir)
2878 end_dir_add(dir, n);
076515fc
AV
2879
2880 if (dentry->d_parent != old_parent)
2881 spin_unlock(&dentry->d_parent->d_lock);
2882 if (dentry != old_parent)
2883 spin_unlock(&old_parent->d_lock);
2884 spin_unlock(&target->d_lock);
2885 spin_unlock(&dentry->d_lock);
18367501
AV
2886}
2887
2888/*
2889 * d_move - move a dentry
2890 * @dentry: entry to move
2891 * @target: new dentry
2892 *
2893 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2894 * dcache entries should not be moved in this way. See the locking
2895 * requirements for __d_move.
18367501
AV
2896 */
2897void d_move(struct dentry *dentry, struct dentry *target)
2898{
2899 write_seqlock(&rename_lock);
da1ce067 2900 __d_move(dentry, target, false);
1da177e4 2901 write_sequnlock(&rename_lock);
9eaef27b 2902}
ec4f8605 2903EXPORT_SYMBOL(d_move);
1da177e4 2904
da1ce067
MS
2905/*
2906 * d_exchange - exchange two dentries
2907 * @dentry1: first dentry
2908 * @dentry2: second dentry
2909 */
2910void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2911{
2912 write_seqlock(&rename_lock);
2913
2914 WARN_ON(!dentry1->d_inode);
2915 WARN_ON(!dentry2->d_inode);
2916 WARN_ON(IS_ROOT(dentry1));
2917 WARN_ON(IS_ROOT(dentry2));
2918
2919 __d_move(dentry1, dentry2, true);
2920
2921 write_sequnlock(&rename_lock);
2922}
2923
e2761a11
OH
2924/**
2925 * d_ancestor - search for an ancestor
2926 * @p1: ancestor dentry
2927 * @p2: child dentry
2928 *
2929 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2930 * an ancestor of p2, else NULL.
9eaef27b 2931 */
e2761a11 2932struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2933{
2934 struct dentry *p;
2935
871c0067 2936 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2937 if (p->d_parent == p1)
e2761a11 2938 return p;
9eaef27b 2939 }
e2761a11 2940 return NULL;
9eaef27b
TM
2941}
2942
2943/*
2944 * This helper attempts to cope with remotely renamed directories
2945 *
2946 * It assumes that the caller is already holding
a03e283b 2947 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2948 *
2949 * Note: If ever the locking in lock_rename() changes, then please
2950 * remember to update this too...
9eaef27b 2951 */
b5ae6b15 2952static int __d_unalias(struct inode *inode,
873feea0 2953 struct dentry *dentry, struct dentry *alias)
9eaef27b 2954{
9902af79
AV
2955 struct mutex *m1 = NULL;
2956 struct rw_semaphore *m2 = NULL;
3d330dc1 2957 int ret = -ESTALE;
9eaef27b
TM
2958
2959 /* If alias and dentry share a parent, then no extra locks required */
2960 if (alias->d_parent == dentry->d_parent)
2961 goto out_unalias;
2962
9eaef27b 2963 /* See lock_rename() */
9eaef27b
TM
2964 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2965 goto out_err;
2966 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2967 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2968 goto out_err;
9902af79 2969 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2970out_unalias:
8ed936b5 2971 __d_move(alias, dentry, false);
b5ae6b15 2972 ret = 0;
9eaef27b 2973out_err:
9eaef27b 2974 if (m2)
9902af79 2975 up_read(m2);
9eaef27b
TM
2976 if (m1)
2977 mutex_unlock(m1);
2978 return ret;
2979}
2980
3f70bd51
BF
2981/**
2982 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2983 * @inode: the inode which may have a disconnected dentry
2984 * @dentry: a negative dentry which we want to point to the inode.
2985 *
da093a9b
BF
2986 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2987 * place of the given dentry and return it, else simply d_add the inode
2988 * to the dentry and return NULL.
3f70bd51 2989 *
908790fa
BF
2990 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2991 * we should error out: directories can't have multiple aliases.
2992 *
3f70bd51
BF
2993 * This is needed in the lookup routine of any filesystem that is exportable
2994 * (via knfsd) so that we can build dcache paths to directories effectively.
2995 *
2996 * If a dentry was found and moved, then it is returned. Otherwise NULL
2997 * is returned. This matches the expected return value of ->lookup.
2998 *
2999 * Cluster filesystems may call this function with a negative, hashed dentry.
3000 * In that case, we know that the inode will be a regular file, and also this
3001 * will only occur during atomic_open. So we need to check for the dentry
3002 * being already hashed only in the final case.
3003 */
3004struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3005{
3f70bd51
BF
3006 if (IS_ERR(inode))
3007 return ERR_CAST(inode);
3008
770bfad8
DH
3009 BUG_ON(!d_unhashed(dentry));
3010
de689f5e 3011 if (!inode)
b5ae6b15 3012 goto out;
de689f5e 3013
b9680917 3014 security_d_instantiate(dentry, inode);
873feea0 3015 spin_lock(&inode->i_lock);
9eaef27b 3016 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
3017 struct dentry *new = __d_find_any_alias(inode);
3018 if (unlikely(new)) {
a03e283b
EB
3019 /* The reference to new ensures it remains an alias */
3020 spin_unlock(&inode->i_lock);
18367501 3021 write_seqlock(&rename_lock);
b5ae6b15
AV
3022 if (unlikely(d_ancestor(new, dentry))) {
3023 write_sequnlock(&rename_lock);
b5ae6b15
AV
3024 dput(new);
3025 new = ERR_PTR(-ELOOP);
3026 pr_warn_ratelimited(
3027 "VFS: Lookup of '%s' in %s %s"
3028 " would have caused loop\n",
3029 dentry->d_name.name,
3030 inode->i_sb->s_type->name,
3031 inode->i_sb->s_id);
3032 } else if (!IS_ROOT(new)) {
076515fc 3033 struct dentry *old_parent = dget(new->d_parent);
b5ae6b15 3034 int err = __d_unalias(inode, dentry, new);
18367501 3035 write_sequnlock(&rename_lock);
b5ae6b15
AV
3036 if (err) {
3037 dput(new);
3038 new = ERR_PTR(err);
3039 }
076515fc 3040 dput(old_parent);
18367501 3041 } else {
b5ae6b15
AV
3042 __d_move(new, dentry, false);
3043 write_sequnlock(&rename_lock);
dd179946 3044 }
b5ae6b15
AV
3045 iput(inode);
3046 return new;
9eaef27b 3047 }
770bfad8 3048 }
b5ae6b15 3049out:
ed782b5a 3050 __d_add(dentry, inode);
b5ae6b15 3051 return NULL;
770bfad8 3052}
b5ae6b15 3053EXPORT_SYMBOL(d_splice_alias);
770bfad8 3054
1da177e4
LT
3055/*
3056 * Test whether new_dentry is a subdirectory of old_dentry.
3057 *
3058 * Trivially implemented using the dcache structure
3059 */
3060
3061/**
3062 * is_subdir - is new dentry a subdirectory of old_dentry
3063 * @new_dentry: new dentry
3064 * @old_dentry: old dentry
3065 *
a6e5787f
YB
3066 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3067 * Returns false otherwise.
1da177e4
LT
3068 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3069 */
3070
a6e5787f 3071bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3072{
a6e5787f 3073 bool result;
949854d0 3074 unsigned seq;
1da177e4 3075
e2761a11 3076 if (new_dentry == old_dentry)
a6e5787f 3077 return true;
e2761a11 3078
e2761a11 3079 do {
1da177e4 3080 /* for restarting inner loop in case of seq retry */
1da177e4 3081 seq = read_seqbegin(&rename_lock);
949854d0
NP
3082 /*
3083 * Need rcu_readlock to protect against the d_parent trashing
3084 * due to d_move
3085 */
3086 rcu_read_lock();
e2761a11 3087 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3088 result = true;
e2761a11 3089 else
a6e5787f 3090 result = false;
949854d0 3091 rcu_read_unlock();
1da177e4 3092 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3093
3094 return result;
3095}
e8f9e5b7 3096EXPORT_SYMBOL(is_subdir);
1da177e4 3097
db14fc3a 3098static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3099{
db14fc3a
MS
3100 struct dentry *root = data;
3101 if (dentry != root) {
3102 if (d_unhashed(dentry) || !dentry->d_inode)
3103 return D_WALK_SKIP;
1da177e4 3104
01ddc4ed
MS
3105 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3106 dentry->d_flags |= DCACHE_GENOCIDE;
3107 dentry->d_lockref.count--;
3108 }
1da177e4 3109 }
db14fc3a
MS
3110 return D_WALK_CONTINUE;
3111}
58db63d0 3112
db14fc3a
MS
3113void d_genocide(struct dentry *parent)
3114{
3115 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3116}
3117
cbd4a5bc
AV
3118EXPORT_SYMBOL(d_genocide);
3119
60545d0d 3120void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3121{
60545d0d
AV
3122 inode_dec_link_count(inode);
3123 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3124 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3125 !d_unlinked(dentry));
3126 spin_lock(&dentry->d_parent->d_lock);
3127 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3128 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3129 (unsigned long long)inode->i_ino);
3130 spin_unlock(&dentry->d_lock);
3131 spin_unlock(&dentry->d_parent->d_lock);
3132 d_instantiate(dentry, inode);
1da177e4 3133}
60545d0d 3134EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3135
3136static __initdata unsigned long dhash_entries;
3137static int __init set_dhash_entries(char *str)
3138{
3139 if (!str)
3140 return 0;
3141 dhash_entries = simple_strtoul(str, &str, 0);
3142 return 1;
3143}
3144__setup("dhash_entries=", set_dhash_entries);
3145
3146static void __init dcache_init_early(void)
3147{
1da177e4
LT
3148 /* If hashes are distributed across NUMA nodes, defer
3149 * hash allocation until vmalloc space is available.
3150 */
3151 if (hashdist)
3152 return;
3153
3154 dentry_hashtable =
3155 alloc_large_system_hash("Dentry cache",
b07ad996 3156 sizeof(struct hlist_bl_head),
1da177e4
LT
3157 dhash_entries,
3158 13,
3d375d78 3159 HASH_EARLY | HASH_ZERO,
1da177e4 3160 &d_hash_shift,
b35d786b 3161 NULL,
31fe62b9 3162 0,
1da177e4 3163 0);
854d3e63 3164 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3165}
3166
74bf17cf 3167static void __init dcache_init(void)
1da177e4 3168{
3d375d78 3169 /*
1da177e4
LT
3170 * A constructor could be added for stable state like the lists,
3171 * but it is probably not worth it because of the cache nature
3d375d78 3172 * of the dcache.
1da177e4 3173 */
80344266
DW
3174 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3175 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3176 d_iname);
1da177e4
LT
3177
3178 /* Hash may have been set up in dcache_init_early */
3179 if (!hashdist)
3180 return;
3181
3182 dentry_hashtable =
3183 alloc_large_system_hash("Dentry cache",
b07ad996 3184 sizeof(struct hlist_bl_head),
1da177e4
LT
3185 dhash_entries,
3186 13,
3d375d78 3187 HASH_ZERO,
1da177e4 3188 &d_hash_shift,
b35d786b 3189 NULL,
31fe62b9 3190 0,
1da177e4 3191 0);
854d3e63 3192 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3193}
3194
3195/* SLAB cache for __getname() consumers */
e18b890b 3196struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3197EXPORT_SYMBOL(names_cachep);
1da177e4 3198
1da177e4
LT
3199void __init vfs_caches_init_early(void)
3200{
6916363f
SAS
3201 int i;
3202
3203 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3204 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3205
1da177e4
LT
3206 dcache_init_early();
3207 inode_init_early();
3208}
3209
4248b0da 3210void __init vfs_caches_init(void)
1da177e4 3211{
6a9b8820
DW
3212 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3213 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3214
74bf17cf
DC
3215 dcache_init();
3216 inode_init();
4248b0da
MG
3217 files_init();
3218 files_maxfiles_init();
74bf17cf 3219 mnt_init();
1da177e4
LT
3220 bdev_cache_init();
3221 chrdev_init();
3222}