direct-io: always call ->end_io if non-NULL
[linux-2.6-block.git] / fs / dax.c
CommitLineData
d475c634
MW
1/*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17#include <linux/atomic.h>
18#include <linux/blkdev.h>
19#include <linux/buffer_head.h>
d77e92e2 20#include <linux/dax.h>
d475c634
MW
21#include <linux/fs.h>
22#include <linux/genhd.h>
f7ca90b1
MW
23#include <linux/highmem.h>
24#include <linux/memcontrol.h>
25#include <linux/mm.h>
d475c634 26#include <linux/mutex.h>
9973c98e 27#include <linux/pagevec.h>
2765cfbb 28#include <linux/pmem.h>
289c6aed 29#include <linux/sched.h>
d475c634 30#include <linux/uio.h>
f7ca90b1 31#include <linux/vmstat.h>
34c0fd54 32#include <linux/pfn_t.h>
0e749e54 33#include <linux/sizes.h>
d475c634 34
b2e0d162
DW
35static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
36{
37 struct request_queue *q = bdev->bd_queue;
38 long rc = -EIO;
39
40 dax->addr = (void __pmem *) ERR_PTR(-EIO);
41 if (blk_queue_enter(q, true) != 0)
42 return rc;
43
44 rc = bdev_direct_access(bdev, dax);
45 if (rc < 0) {
46 dax->addr = (void __pmem *) ERR_PTR(rc);
47 blk_queue_exit(q);
48 return rc;
49 }
50 return rc;
51}
52
53static void dax_unmap_atomic(struct block_device *bdev,
54 const struct blk_dax_ctl *dax)
55{
56 if (IS_ERR(dax->addr))
57 return;
58 blk_queue_exit(bdev->bd_queue);
59}
60
1ca19157
DC
61/*
62 * dax_clear_blocks() is called from within transaction context from XFS,
63 * and hence this means the stack from this point must follow GFP_NOFS
64 * semantics for all operations.
65 */
b2e0d162 66int dax_clear_blocks(struct inode *inode, sector_t block, long _size)
289c6aed
MW
67{
68 struct block_device *bdev = inode->i_sb->s_bdev;
b2e0d162
DW
69 struct blk_dax_ctl dax = {
70 .sector = block << (inode->i_blkbits - 9),
71 .size = _size,
72 };
289c6aed
MW
73
74 might_sleep();
75 do {
0e749e54 76 long count, sz;
289c6aed 77
b2e0d162 78 count = dax_map_atomic(bdev, &dax);
289c6aed
MW
79 if (count < 0)
80 return count;
0e749e54 81 sz = min_t(long, count, SZ_128K);
b2e0d162
DW
82 clear_pmem(dax.addr, sz);
83 dax.size -= sz;
84 dax.sector += sz / 512;
85 dax_unmap_atomic(bdev, &dax);
0e749e54 86 cond_resched();
b2e0d162 87 } while (dax.size);
289c6aed 88
2765cfbb 89 wmb_pmem();
289c6aed
MW
90 return 0;
91}
92EXPORT_SYMBOL_GPL(dax_clear_blocks);
93
2765cfbb 94/* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
e2e05394
RZ
95static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
96 loff_t pos, loff_t end)
d475c634
MW
97{
98 loff_t final = end - pos + first; /* The final byte of the buffer */
99
100 if (first > 0)
e2e05394 101 clear_pmem(addr, first);
d475c634 102 if (final < size)
e2e05394 103 clear_pmem(addr + final, size - final);
d475c634
MW
104}
105
106static bool buffer_written(struct buffer_head *bh)
107{
108 return buffer_mapped(bh) && !buffer_unwritten(bh);
109}
110
111/*
112 * When ext4 encounters a hole, it returns without modifying the buffer_head
113 * which means that we can't trust b_size. To cope with this, we set b_state
114 * to 0 before calling get_block and, if any bit is set, we know we can trust
115 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
116 * and would save us time calling get_block repeatedly.
117 */
118static bool buffer_size_valid(struct buffer_head *bh)
119{
120 return bh->b_state != 0;
121}
122
b2e0d162
DW
123
124static sector_t to_sector(const struct buffer_head *bh,
125 const struct inode *inode)
126{
127 sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
128
129 return sector;
130}
131
a95cd631
OS
132static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
133 loff_t start, loff_t end, get_block_t get_block,
134 struct buffer_head *bh)
d475c634 135{
b2e0d162
DW
136 loff_t pos = start, max = start, bh_max = start;
137 bool hole = false, need_wmb = false;
138 struct block_device *bdev = NULL;
139 int rw = iov_iter_rw(iter), rc;
140 long map_len = 0;
141 struct blk_dax_ctl dax = {
142 .addr = (void __pmem *) ERR_PTR(-EIO),
143 };
144
145 if (rw == READ)
d475c634
MW
146 end = min(end, i_size_read(inode));
147
148 while (pos < end) {
2765cfbb 149 size_t len;
d475c634
MW
150 if (pos == max) {
151 unsigned blkbits = inode->i_blkbits;
e94f5a22
JM
152 long page = pos >> PAGE_SHIFT;
153 sector_t block = page << (PAGE_SHIFT - blkbits);
d475c634
MW
154 unsigned first = pos - (block << blkbits);
155 long size;
156
157 if (pos == bh_max) {
158 bh->b_size = PAGE_ALIGN(end - pos);
159 bh->b_state = 0;
b2e0d162
DW
160 rc = get_block(inode, block, bh, rw == WRITE);
161 if (rc)
d475c634
MW
162 break;
163 if (!buffer_size_valid(bh))
164 bh->b_size = 1 << blkbits;
165 bh_max = pos - first + bh->b_size;
b2e0d162 166 bdev = bh->b_bdev;
d475c634
MW
167 } else {
168 unsigned done = bh->b_size -
169 (bh_max - (pos - first));
170 bh->b_blocknr += done >> blkbits;
171 bh->b_size -= done;
172 }
173
b2e0d162 174 hole = rw == READ && !buffer_written(bh);
d475c634 175 if (hole) {
d475c634
MW
176 size = bh->b_size - first;
177 } else {
b2e0d162
DW
178 dax_unmap_atomic(bdev, &dax);
179 dax.sector = to_sector(bh, inode);
180 dax.size = bh->b_size;
181 map_len = dax_map_atomic(bdev, &dax);
182 if (map_len < 0) {
183 rc = map_len;
d475c634 184 break;
b2e0d162 185 }
2765cfbb 186 if (buffer_unwritten(bh) || buffer_new(bh)) {
b2e0d162
DW
187 dax_new_buf(dax.addr, map_len, first,
188 pos, end);
2765cfbb
RZ
189 need_wmb = true;
190 }
b2e0d162
DW
191 dax.addr += first;
192 size = map_len - first;
d475c634
MW
193 }
194 max = min(pos + size, end);
195 }
196
2765cfbb 197 if (iov_iter_rw(iter) == WRITE) {
b2e0d162 198 len = copy_from_iter_pmem(dax.addr, max - pos, iter);
2765cfbb
RZ
199 need_wmb = true;
200 } else if (!hole)
b2e0d162 201 len = copy_to_iter((void __force *) dax.addr, max - pos,
e2e05394 202 iter);
d475c634
MW
203 else
204 len = iov_iter_zero(max - pos, iter);
205
cadfbb6e 206 if (!len) {
b2e0d162 207 rc = -EFAULT;
d475c634 208 break;
cadfbb6e 209 }
d475c634
MW
210
211 pos += len;
b2e0d162
DW
212 if (!IS_ERR(dax.addr))
213 dax.addr += len;
d475c634
MW
214 }
215
2765cfbb
RZ
216 if (need_wmb)
217 wmb_pmem();
b2e0d162 218 dax_unmap_atomic(bdev, &dax);
2765cfbb 219
b2e0d162 220 return (pos == start) ? rc : pos - start;
d475c634
MW
221}
222
223/**
224 * dax_do_io - Perform I/O to a DAX file
d475c634
MW
225 * @iocb: The control block for this I/O
226 * @inode: The file which the I/O is directed at
227 * @iter: The addresses to do I/O from or to
228 * @pos: The file offset where the I/O starts
229 * @get_block: The filesystem method used to translate file offsets to blocks
230 * @end_io: A filesystem callback for I/O completion
231 * @flags: See below
232 *
233 * This function uses the same locking scheme as do_blockdev_direct_IO:
234 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
235 * caller for writes. For reads, we take and release the i_mutex ourselves.
236 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
237 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
238 * is in progress.
239 */
a95cd631
OS
240ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
241 struct iov_iter *iter, loff_t pos, get_block_t get_block,
242 dio_iodone_t end_io, int flags)
d475c634
MW
243{
244 struct buffer_head bh;
245 ssize_t retval = -EINVAL;
246 loff_t end = pos + iov_iter_count(iter);
247
248 memset(&bh, 0, sizeof(bh));
eab95db6 249 bh.b_bdev = inode->i_sb->s_bdev;
d475c634 250
a95cd631 251 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
d475c634 252 struct address_space *mapping = inode->i_mapping;
5955102c 253 inode_lock(inode);
d475c634
MW
254 retval = filemap_write_and_wait_range(mapping, pos, end - 1);
255 if (retval) {
5955102c 256 inode_unlock(inode);
d475c634
MW
257 goto out;
258 }
259 }
260
261 /* Protects against truncate */
bbab37dd
MW
262 if (!(flags & DIO_SKIP_DIO_COUNT))
263 inode_dio_begin(inode);
d475c634 264
a95cd631 265 retval = dax_io(inode, iter, pos, end, get_block, &bh);
d475c634 266
a95cd631 267 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
5955102c 268 inode_unlock(inode);
d475c634 269
187372a3
CH
270 if (end_io) {
271 int err;
272
273 err = end_io(iocb, pos, retval, bh.b_private);
274 if (err)
275 retval = err;
276 }
d475c634 277
bbab37dd
MW
278 if (!(flags & DIO_SKIP_DIO_COUNT))
279 inode_dio_end(inode);
d475c634
MW
280 out:
281 return retval;
282}
283EXPORT_SYMBOL_GPL(dax_do_io);
f7ca90b1
MW
284
285/*
286 * The user has performed a load from a hole in the file. Allocating
287 * a new page in the file would cause excessive storage usage for
288 * workloads with sparse files. We allocate a page cache page instead.
289 * We'll kick it out of the page cache if it's ever written to,
290 * otherwise it will simply fall out of the page cache under memory
291 * pressure without ever having been dirtied.
292 */
293static int dax_load_hole(struct address_space *mapping, struct page *page,
294 struct vm_fault *vmf)
295{
296 unsigned long size;
297 struct inode *inode = mapping->host;
298 if (!page)
299 page = find_or_create_page(mapping, vmf->pgoff,
300 GFP_KERNEL | __GFP_ZERO);
301 if (!page)
302 return VM_FAULT_OOM;
303 /* Recheck i_size under page lock to avoid truncate race */
304 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
305 if (vmf->pgoff >= size) {
306 unlock_page(page);
307 page_cache_release(page);
308 return VM_FAULT_SIGBUS;
309 }
310
311 vmf->page = page;
312 return VM_FAULT_LOCKED;
313}
314
b2e0d162
DW
315static int copy_user_bh(struct page *to, struct inode *inode,
316 struct buffer_head *bh, unsigned long vaddr)
f7ca90b1 317{
b2e0d162
DW
318 struct blk_dax_ctl dax = {
319 .sector = to_sector(bh, inode),
320 .size = bh->b_size,
321 };
322 struct block_device *bdev = bh->b_bdev;
e2e05394
RZ
323 void *vto;
324
b2e0d162
DW
325 if (dax_map_atomic(bdev, &dax) < 0)
326 return PTR_ERR(dax.addr);
f7ca90b1 327 vto = kmap_atomic(to);
b2e0d162 328 copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
f7ca90b1 329 kunmap_atomic(vto);
b2e0d162 330 dax_unmap_atomic(bdev, &dax);
f7ca90b1
MW
331 return 0;
332}
333
9973c98e
RZ
334#define NO_SECTOR -1
335#define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_CACHE_SHIFT))
336
337static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
338 sector_t sector, bool pmd_entry, bool dirty)
339{
340 struct radix_tree_root *page_tree = &mapping->page_tree;
341 pgoff_t pmd_index = DAX_PMD_INDEX(index);
342 int type, error = 0;
343 void *entry;
344
345 WARN_ON_ONCE(pmd_entry && !dirty);
346 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
347
348 spin_lock_irq(&mapping->tree_lock);
349
350 entry = radix_tree_lookup(page_tree, pmd_index);
351 if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
352 index = pmd_index;
353 goto dirty;
354 }
355
356 entry = radix_tree_lookup(page_tree, index);
357 if (entry) {
358 type = RADIX_DAX_TYPE(entry);
359 if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
360 type != RADIX_DAX_PMD)) {
361 error = -EIO;
362 goto unlock;
363 }
364
365 if (!pmd_entry || type == RADIX_DAX_PMD)
366 goto dirty;
367
368 /*
369 * We only insert dirty PMD entries into the radix tree. This
370 * means we don't need to worry about removing a dirty PTE
371 * entry and inserting a clean PMD entry, thus reducing the
372 * range we would flush with a follow-up fsync/msync call.
373 */
374 radix_tree_delete(&mapping->page_tree, index);
375 mapping->nrexceptional--;
376 }
377
378 if (sector == NO_SECTOR) {
379 /*
380 * This can happen during correct operation if our pfn_mkwrite
381 * fault raced against a hole punch operation. If this
382 * happens the pte that was hole punched will have been
383 * unmapped and the radix tree entry will have been removed by
384 * the time we are called, but the call will still happen. We
385 * will return all the way up to wp_pfn_shared(), where the
386 * pte_same() check will fail, eventually causing page fault
387 * to be retried by the CPU.
388 */
389 goto unlock;
390 }
391
392 error = radix_tree_insert(page_tree, index,
393 RADIX_DAX_ENTRY(sector, pmd_entry));
394 if (error)
395 goto unlock;
396
397 mapping->nrexceptional++;
398 dirty:
399 if (dirty)
400 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
401 unlock:
402 spin_unlock_irq(&mapping->tree_lock);
403 return error;
404}
405
406static int dax_writeback_one(struct block_device *bdev,
407 struct address_space *mapping, pgoff_t index, void *entry)
408{
409 struct radix_tree_root *page_tree = &mapping->page_tree;
410 int type = RADIX_DAX_TYPE(entry);
411 struct radix_tree_node *node;
412 struct blk_dax_ctl dax;
413 void **slot;
414 int ret = 0;
415
416 spin_lock_irq(&mapping->tree_lock);
417 /*
418 * Regular page slots are stabilized by the page lock even
419 * without the tree itself locked. These unlocked entries
420 * need verification under the tree lock.
421 */
422 if (!__radix_tree_lookup(page_tree, index, &node, &slot))
423 goto unlock;
424 if (*slot != entry)
425 goto unlock;
426
427 /* another fsync thread may have already written back this entry */
428 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
429 goto unlock;
430
431 if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
432 ret = -EIO;
433 goto unlock;
434 }
435
436 dax.sector = RADIX_DAX_SECTOR(entry);
437 dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
438 spin_unlock_irq(&mapping->tree_lock);
439
440 /*
441 * We cannot hold tree_lock while calling dax_map_atomic() because it
442 * eventually calls cond_resched().
443 */
444 ret = dax_map_atomic(bdev, &dax);
445 if (ret < 0)
446 return ret;
447
448 if (WARN_ON_ONCE(ret < dax.size)) {
449 ret = -EIO;
450 goto unmap;
451 }
452
453 wb_cache_pmem(dax.addr, dax.size);
454
455 spin_lock_irq(&mapping->tree_lock);
456 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
457 spin_unlock_irq(&mapping->tree_lock);
458 unmap:
459 dax_unmap_atomic(bdev, &dax);
460 return ret;
461
462 unlock:
463 spin_unlock_irq(&mapping->tree_lock);
464 return ret;
465}
466
467/*
468 * Flush the mapping to the persistent domain within the byte range of [start,
469 * end]. This is required by data integrity operations to ensure file data is
470 * on persistent storage prior to completion of the operation.
471 */
472int dax_writeback_mapping_range(struct address_space *mapping, loff_t start,
473 loff_t end)
474{
475 struct inode *inode = mapping->host;
476 struct block_device *bdev = inode->i_sb->s_bdev;
477 pgoff_t start_index, end_index, pmd_index;
478 pgoff_t indices[PAGEVEC_SIZE];
479 struct pagevec pvec;
480 bool done = false;
481 int i, ret = 0;
482 void *entry;
483
484 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
485 return -EIO;
486
487 start_index = start >> PAGE_CACHE_SHIFT;
488 end_index = end >> PAGE_CACHE_SHIFT;
489 pmd_index = DAX_PMD_INDEX(start_index);
490
491 rcu_read_lock();
492 entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
493 rcu_read_unlock();
494
495 /* see if the start of our range is covered by a PMD entry */
496 if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
497 start_index = pmd_index;
498
499 tag_pages_for_writeback(mapping, start_index, end_index);
500
501 pagevec_init(&pvec, 0);
502 while (!done) {
503 pvec.nr = find_get_entries_tag(mapping, start_index,
504 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
505 pvec.pages, indices);
506
507 if (pvec.nr == 0)
508 break;
509
510 for (i = 0; i < pvec.nr; i++) {
511 if (indices[i] > end_index) {
512 done = true;
513 break;
514 }
515
516 ret = dax_writeback_one(bdev, mapping, indices[i],
517 pvec.pages[i]);
518 if (ret < 0)
519 return ret;
520 }
521 }
522 wmb_pmem();
523 return 0;
524}
525EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
526
f7ca90b1
MW
527static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
528 struct vm_area_struct *vma, struct vm_fault *vmf)
529{
f7ca90b1 530 unsigned long vaddr = (unsigned long)vmf->virtual_address;
b2e0d162
DW
531 struct address_space *mapping = inode->i_mapping;
532 struct block_device *bdev = bh->b_bdev;
533 struct blk_dax_ctl dax = {
534 .sector = to_sector(bh, inode),
535 .size = bh->b_size,
536 };
f7ca90b1
MW
537 pgoff_t size;
538 int error;
539
0f90cc66
RZ
540 i_mmap_lock_read(mapping);
541
f7ca90b1
MW
542 /*
543 * Check truncate didn't happen while we were allocating a block.
544 * If it did, this block may or may not be still allocated to the
545 * file. We can't tell the filesystem to free it because we can't
546 * take i_mutex here. In the worst case, the file still has blocks
547 * allocated past the end of the file.
548 */
549 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
550 if (unlikely(vmf->pgoff >= size)) {
551 error = -EIO;
552 goto out;
553 }
554
b2e0d162
DW
555 if (dax_map_atomic(bdev, &dax) < 0) {
556 error = PTR_ERR(dax.addr);
f7ca90b1
MW
557 goto out;
558 }
559
2765cfbb 560 if (buffer_unwritten(bh) || buffer_new(bh)) {
b2e0d162 561 clear_pmem(dax.addr, PAGE_SIZE);
2765cfbb
RZ
562 wmb_pmem();
563 }
b2e0d162 564 dax_unmap_atomic(bdev, &dax);
f7ca90b1 565
9973c98e
RZ
566 error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
567 vmf->flags & FAULT_FLAG_WRITE);
568 if (error)
569 goto out;
570
01c8f1c4 571 error = vm_insert_mixed(vma, vaddr, dax.pfn);
f7ca90b1
MW
572
573 out:
0f90cc66
RZ
574 i_mmap_unlock_read(mapping);
575
f7ca90b1
MW
576 return error;
577}
578
ce5c5d55
DC
579/**
580 * __dax_fault - handle a page fault on a DAX file
581 * @vma: The virtual memory area where the fault occurred
582 * @vmf: The description of the fault
583 * @get_block: The filesystem method used to translate file offsets to blocks
b2442c5a
DC
584 * @complete_unwritten: The filesystem method used to convert unwritten blocks
585 * to written so the data written to them is exposed. This is required for
586 * required by write faults for filesystems that will return unwritten
587 * extent mappings from @get_block, but it is optional for reads as
588 * dax_insert_mapping() will always zero unwritten blocks. If the fs does
589 * not support unwritten extents, the it should pass NULL.
ce5c5d55
DC
590 *
591 * When a page fault occurs, filesystems may call this helper in their
592 * fault handler for DAX files. __dax_fault() assumes the caller has done all
593 * the necessary locking for the page fault to proceed successfully.
594 */
595int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
e842f290 596 get_block_t get_block, dax_iodone_t complete_unwritten)
f7ca90b1
MW
597{
598 struct file *file = vma->vm_file;
599 struct address_space *mapping = file->f_mapping;
600 struct inode *inode = mapping->host;
601 struct page *page;
602 struct buffer_head bh;
603 unsigned long vaddr = (unsigned long)vmf->virtual_address;
604 unsigned blkbits = inode->i_blkbits;
605 sector_t block;
606 pgoff_t size;
607 int error;
608 int major = 0;
609
610 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
611 if (vmf->pgoff >= size)
612 return VM_FAULT_SIGBUS;
613
614 memset(&bh, 0, sizeof(bh));
615 block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
eab95db6 616 bh.b_bdev = inode->i_sb->s_bdev;
f7ca90b1
MW
617 bh.b_size = PAGE_SIZE;
618
619 repeat:
620 page = find_get_page(mapping, vmf->pgoff);
621 if (page) {
622 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
623 page_cache_release(page);
624 return VM_FAULT_RETRY;
625 }
626 if (unlikely(page->mapping != mapping)) {
627 unlock_page(page);
628 page_cache_release(page);
629 goto repeat;
630 }
631 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
632 if (unlikely(vmf->pgoff >= size)) {
633 /*
634 * We have a struct page covering a hole in the file
635 * from a read fault and we've raced with a truncate
636 */
637 error = -EIO;
0f90cc66 638 goto unlock_page;
f7ca90b1
MW
639 }
640 }
641
642 error = get_block(inode, block, &bh, 0);
643 if (!error && (bh.b_size < PAGE_SIZE))
644 error = -EIO; /* fs corruption? */
645 if (error)
0f90cc66 646 goto unlock_page;
f7ca90b1
MW
647
648 if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
649 if (vmf->flags & FAULT_FLAG_WRITE) {
650 error = get_block(inode, block, &bh, 1);
651 count_vm_event(PGMAJFAULT);
652 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
653 major = VM_FAULT_MAJOR;
654 if (!error && (bh.b_size < PAGE_SIZE))
655 error = -EIO;
656 if (error)
0f90cc66 657 goto unlock_page;
f7ca90b1
MW
658 } else {
659 return dax_load_hole(mapping, page, vmf);
660 }
661 }
662
663 if (vmf->cow_page) {
664 struct page *new_page = vmf->cow_page;
665 if (buffer_written(&bh))
b2e0d162 666 error = copy_user_bh(new_page, inode, &bh, vaddr);
f7ca90b1
MW
667 else
668 clear_user_highpage(new_page, vaddr);
669 if (error)
0f90cc66 670 goto unlock_page;
f7ca90b1
MW
671 vmf->page = page;
672 if (!page) {
0f90cc66 673 i_mmap_lock_read(mapping);
f7ca90b1
MW
674 /* Check we didn't race with truncate */
675 size = (i_size_read(inode) + PAGE_SIZE - 1) >>
676 PAGE_SHIFT;
677 if (vmf->pgoff >= size) {
0f90cc66 678 i_mmap_unlock_read(mapping);
f7ca90b1 679 error = -EIO;
0f90cc66 680 goto out;
f7ca90b1
MW
681 }
682 }
683 return VM_FAULT_LOCKED;
684 }
685
686 /* Check we didn't race with a read fault installing a new page */
687 if (!page && major)
688 page = find_lock_page(mapping, vmf->pgoff);
689
690 if (page) {
691 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
692 PAGE_CACHE_SIZE, 0);
693 delete_from_page_cache(page);
694 unlock_page(page);
695 page_cache_release(page);
9973c98e 696 page = NULL;
f7ca90b1
MW
697 }
698
e842f290
DC
699 /*
700 * If we successfully insert the new mapping over an unwritten extent,
701 * we need to ensure we convert the unwritten extent. If there is an
702 * error inserting the mapping, the filesystem needs to leave it as
703 * unwritten to prevent exposure of the stale underlying data to
704 * userspace, but we still need to call the completion function so
705 * the private resources on the mapping buffer can be released. We
706 * indicate what the callback should do via the uptodate variable, same
707 * as for normal BH based IO completions.
708 */
f7ca90b1 709 error = dax_insert_mapping(inode, &bh, vma, vmf);
b2442c5a
DC
710 if (buffer_unwritten(&bh)) {
711 if (complete_unwritten)
712 complete_unwritten(&bh, !error);
713 else
714 WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
715 }
f7ca90b1
MW
716
717 out:
718 if (error == -ENOMEM)
719 return VM_FAULT_OOM | major;
720 /* -EBUSY is fine, somebody else faulted on the same PTE */
721 if ((error < 0) && (error != -EBUSY))
722 return VM_FAULT_SIGBUS | major;
723 return VM_FAULT_NOPAGE | major;
724
0f90cc66 725 unlock_page:
f7ca90b1
MW
726 if (page) {
727 unlock_page(page);
728 page_cache_release(page);
729 }
730 goto out;
731}
ce5c5d55 732EXPORT_SYMBOL(__dax_fault);
f7ca90b1
MW
733
734/**
735 * dax_fault - handle a page fault on a DAX file
736 * @vma: The virtual memory area where the fault occurred
737 * @vmf: The description of the fault
738 * @get_block: The filesystem method used to translate file offsets to blocks
739 *
740 * When a page fault occurs, filesystems may call this helper in their
741 * fault handler for DAX files.
742 */
743int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
e842f290 744 get_block_t get_block, dax_iodone_t complete_unwritten)
f7ca90b1
MW
745{
746 int result;
747 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
748
749 if (vmf->flags & FAULT_FLAG_WRITE) {
750 sb_start_pagefault(sb);
751 file_update_time(vma->vm_file);
752 }
ce5c5d55 753 result = __dax_fault(vma, vmf, get_block, complete_unwritten);
f7ca90b1
MW
754 if (vmf->flags & FAULT_FLAG_WRITE)
755 sb_end_pagefault(sb);
756
757 return result;
758}
759EXPORT_SYMBOL_GPL(dax_fault);
4c0ccfef 760
844f35db
MW
761#ifdef CONFIG_TRANSPARENT_HUGEPAGE
762/*
763 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
764 * more often than one might expect in the below function.
765 */
766#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
767
cbb38e41
DW
768static void __dax_dbg(struct buffer_head *bh, unsigned long address,
769 const char *reason, const char *fn)
770{
771 if (bh) {
772 char bname[BDEVNAME_SIZE];
773 bdevname(bh->b_bdev, bname);
774 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
775 "length %zd fallback: %s\n", fn, current->comm,
776 address, bname, bh->b_state, (u64)bh->b_blocknr,
777 bh->b_size, reason);
778 } else {
779 pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
780 current->comm, address, reason);
781 }
782}
783
784#define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd")
785
844f35db
MW
786int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
787 pmd_t *pmd, unsigned int flags, get_block_t get_block,
788 dax_iodone_t complete_unwritten)
789{
790 struct file *file = vma->vm_file;
791 struct address_space *mapping = file->f_mapping;
792 struct inode *inode = mapping->host;
793 struct buffer_head bh;
794 unsigned blkbits = inode->i_blkbits;
795 unsigned long pmd_addr = address & PMD_MASK;
796 bool write = flags & FAULT_FLAG_WRITE;
b2e0d162 797 struct block_device *bdev;
844f35db 798 pgoff_t size, pgoff;
b2e0d162 799 sector_t block;
9973c98e
RZ
800 int error, result = 0;
801 bool alloc = false;
844f35db 802
c046c321 803 /* dax pmd mappings require pfn_t_devmap() */
ee82c9ed
DW
804 if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
805 return VM_FAULT_FALLBACK;
806
844f35db 807 /* Fall back to PTEs if we're going to COW */
59bf4fb9
TK
808 if (write && !(vma->vm_flags & VM_SHARED)) {
809 split_huge_pmd(vma, pmd, address);
cbb38e41 810 dax_pmd_dbg(NULL, address, "cow write");
844f35db 811 return VM_FAULT_FALLBACK;
59bf4fb9 812 }
844f35db 813 /* If the PMD would extend outside the VMA */
cbb38e41
DW
814 if (pmd_addr < vma->vm_start) {
815 dax_pmd_dbg(NULL, address, "vma start unaligned");
844f35db 816 return VM_FAULT_FALLBACK;
cbb38e41
DW
817 }
818 if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
819 dax_pmd_dbg(NULL, address, "vma end unaligned");
844f35db 820 return VM_FAULT_FALLBACK;
cbb38e41 821 }
844f35db 822
3fdd1b47 823 pgoff = linear_page_index(vma, pmd_addr);
844f35db
MW
824 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
825 if (pgoff >= size)
826 return VM_FAULT_SIGBUS;
827 /* If the PMD would cover blocks out of the file */
cbb38e41
DW
828 if ((pgoff | PG_PMD_COLOUR) >= size) {
829 dax_pmd_dbg(NULL, address,
830 "offset + huge page size > file size");
844f35db 831 return VM_FAULT_FALLBACK;
cbb38e41 832 }
844f35db
MW
833
834 memset(&bh, 0, sizeof(bh));
d4bbe706 835 bh.b_bdev = inode->i_sb->s_bdev;
844f35db
MW
836 block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
837
838 bh.b_size = PMD_SIZE;
9973c98e
RZ
839
840 if (get_block(inode, block, &bh, 0) != 0)
844f35db 841 return VM_FAULT_SIGBUS;
9973c98e
RZ
842
843 if (!buffer_mapped(&bh) && write) {
844 if (get_block(inode, block, &bh, 1) != 0)
845 return VM_FAULT_SIGBUS;
846 alloc = true;
847 }
848
b2e0d162 849 bdev = bh.b_bdev;
844f35db
MW
850
851 /*
852 * If the filesystem isn't willing to tell us the length of a hole,
853 * just fall back to PTEs. Calling get_block 512 times in a loop
854 * would be silly.
855 */
cbb38e41
DW
856 if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
857 dax_pmd_dbg(&bh, address, "allocated block too small");
9973c98e
RZ
858 return VM_FAULT_FALLBACK;
859 }
860
861 /*
862 * If we allocated new storage, make sure no process has any
863 * zero pages covering this hole
864 */
865 if (alloc) {
866 loff_t lstart = pgoff << PAGE_SHIFT;
867 loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
868
869 truncate_pagecache_range(inode, lstart, lend);
cbb38e41 870 }
844f35db 871
de14b9cb 872 i_mmap_lock_read(mapping);
46c043ed 873
84c4e5e6
MW
874 /*
875 * If a truncate happened while we were allocating blocks, we may
876 * leave blocks allocated to the file that are beyond EOF. We can't
877 * take i_mutex here, so just leave them hanging; they'll be freed
878 * when the file is deleted.
879 */
844f35db
MW
880 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
881 if (pgoff >= size) {
882 result = VM_FAULT_SIGBUS;
883 goto out;
884 }
cbb38e41 885 if ((pgoff | PG_PMD_COLOUR) >= size) {
de14b9cb
RZ
886 dax_pmd_dbg(&bh, address,
887 "offset + huge page size > file size");
844f35db 888 goto fallback;
cbb38e41 889 }
844f35db 890
844f35db 891 if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
844f35db 892 spinlock_t *ptl;
d295e341 893 pmd_t entry;
844f35db 894 struct page *zero_page = get_huge_zero_page();
d295e341 895
cbb38e41
DW
896 if (unlikely(!zero_page)) {
897 dax_pmd_dbg(&bh, address, "no zero page");
844f35db 898 goto fallback;
cbb38e41 899 }
844f35db 900
d295e341
KS
901 ptl = pmd_lock(vma->vm_mm, pmd);
902 if (!pmd_none(*pmd)) {
903 spin_unlock(ptl);
cbb38e41 904 dax_pmd_dbg(&bh, address, "pmd already present");
d295e341
KS
905 goto fallback;
906 }
907
cbb38e41
DW
908 dev_dbg(part_to_dev(bdev->bd_part),
909 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
910 __func__, current->comm, address,
911 (unsigned long long) to_sector(&bh, inode));
912
d295e341
KS
913 entry = mk_pmd(zero_page, vma->vm_page_prot);
914 entry = pmd_mkhuge(entry);
915 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
844f35db 916 result = VM_FAULT_NOPAGE;
d295e341 917 spin_unlock(ptl);
844f35db 918 } else {
b2e0d162
DW
919 struct blk_dax_ctl dax = {
920 .sector = to_sector(&bh, inode),
921 .size = PMD_SIZE,
922 };
923 long length = dax_map_atomic(bdev, &dax);
924
844f35db
MW
925 if (length < 0) {
926 result = VM_FAULT_SIGBUS;
927 goto out;
928 }
cbb38e41
DW
929 if (length < PMD_SIZE) {
930 dax_pmd_dbg(&bh, address, "dax-length too small");
931 dax_unmap_atomic(bdev, &dax);
932 goto fallback;
933 }
934 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
935 dax_pmd_dbg(&bh, address, "pfn unaligned");
b2e0d162 936 dax_unmap_atomic(bdev, &dax);
844f35db 937 goto fallback;
b2e0d162 938 }
844f35db 939
c046c321 940 if (!pfn_t_devmap(dax.pfn)) {
b2e0d162 941 dax_unmap_atomic(bdev, &dax);
cbb38e41 942 dax_pmd_dbg(&bh, address, "pfn not in memmap");
152d7bd8 943 goto fallback;
b2e0d162 944 }
152d7bd8 945
0f90cc66 946 if (buffer_unwritten(&bh) || buffer_new(&bh)) {
b2e0d162 947 clear_pmem(dax.addr, PMD_SIZE);
0f90cc66
RZ
948 wmb_pmem();
949 count_vm_event(PGMAJFAULT);
950 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
951 result |= VM_FAULT_MAJOR;
952 }
b2e0d162 953 dax_unmap_atomic(bdev, &dax);
0f90cc66 954
9973c98e
RZ
955 /*
956 * For PTE faults we insert a radix tree entry for reads, and
957 * leave it clean. Then on the first write we dirty the radix
958 * tree entry via the dax_pfn_mkwrite() path. This sequence
959 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
960 * call into get_block() to translate the pgoff to a sector in
961 * order to be able to create a new radix tree entry.
962 *
963 * The PMD path doesn't have an equivalent to
964 * dax_pfn_mkwrite(), though, so for a read followed by a
965 * write we traverse all the way through __dax_pmd_fault()
966 * twice. This means we can just skip inserting a radix tree
967 * entry completely on the initial read and just wait until
968 * the write to insert a dirty entry.
969 */
970 if (write) {
971 error = dax_radix_entry(mapping, pgoff, dax.sector,
972 true, true);
973 if (error) {
974 dax_pmd_dbg(&bh, address,
975 "PMD radix insertion failed");
976 goto fallback;
977 }
978 }
979
cbb38e41
DW
980 dev_dbg(part_to_dev(bdev->bd_part),
981 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
982 __func__, current->comm, address,
983 pfn_t_to_pfn(dax.pfn),
984 (unsigned long long) dax.sector);
34c0fd54 985 result |= vmf_insert_pfn_pmd(vma, address, pmd,
f25748e3 986 dax.pfn, write);
844f35db
MW
987 }
988
989 out:
0f90cc66
RZ
990 i_mmap_unlock_read(mapping);
991
844f35db
MW
992 if (buffer_unwritten(&bh))
993 complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
994
995 return result;
996
997 fallback:
998 count_vm_event(THP_FAULT_FALLBACK);
999 result = VM_FAULT_FALLBACK;
1000 goto out;
1001}
1002EXPORT_SYMBOL_GPL(__dax_pmd_fault);
1003
1004/**
1005 * dax_pmd_fault - handle a PMD fault on a DAX file
1006 * @vma: The virtual memory area where the fault occurred
1007 * @vmf: The description of the fault
1008 * @get_block: The filesystem method used to translate file offsets to blocks
1009 *
1010 * When a page fault occurs, filesystems may call this helper in their
1011 * pmd_fault handler for DAX files.
1012 */
1013int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1014 pmd_t *pmd, unsigned int flags, get_block_t get_block,
1015 dax_iodone_t complete_unwritten)
1016{
1017 int result;
1018 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1019
1020 if (flags & FAULT_FLAG_WRITE) {
1021 sb_start_pagefault(sb);
1022 file_update_time(vma->vm_file);
1023 }
1024 result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
1025 complete_unwritten);
1026 if (flags & FAULT_FLAG_WRITE)
1027 sb_end_pagefault(sb);
1028
1029 return result;
1030}
1031EXPORT_SYMBOL_GPL(dax_pmd_fault);
dd8a2b6c 1032#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
844f35db 1033
0e3b210c
BH
1034/**
1035 * dax_pfn_mkwrite - handle first write to DAX page
1036 * @vma: The virtual memory area where the fault occurred
1037 * @vmf: The description of the fault
0e3b210c
BH
1038 */
1039int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1040{
9973c98e 1041 struct file *file = vma->vm_file;
0e3b210c 1042
9973c98e
RZ
1043 /*
1044 * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1045 * RADIX_DAX_PTE entry already exists in the radix tree from a
1046 * previous call to __dax_fault(). We just want to look up that PTE
1047 * entry using vmf->pgoff and make sure the dirty tag is set. This
1048 * saves us from having to make a call to get_block() here to look
1049 * up the sector.
1050 */
1051 dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false, true);
0e3b210c
BH
1052 return VM_FAULT_NOPAGE;
1053}
1054EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1055
4c0ccfef 1056/**
25726bc1 1057 * dax_zero_page_range - zero a range within a page of a DAX file
4c0ccfef
MW
1058 * @inode: The file being truncated
1059 * @from: The file offset that is being truncated to
25726bc1 1060 * @length: The number of bytes to zero
4c0ccfef
MW
1061 * @get_block: The filesystem method used to translate file offsets to blocks
1062 *
25726bc1
MW
1063 * This function can be called by a filesystem when it is zeroing part of a
1064 * page in a DAX file. This is intended for hole-punch operations. If
1065 * you are truncating a file, the helper function dax_truncate_page() may be
1066 * more convenient.
4c0ccfef
MW
1067 *
1068 * We work in terms of PAGE_CACHE_SIZE here for commonality with
1069 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1070 * took care of disposing of the unnecessary blocks. Even if the filesystem
1071 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
25726bc1 1072 * since the file might be mmapped.
4c0ccfef 1073 */
25726bc1
MW
1074int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1075 get_block_t get_block)
4c0ccfef
MW
1076{
1077 struct buffer_head bh;
1078 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1079 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4c0ccfef
MW
1080 int err;
1081
1082 /* Block boundary? Nothing to do */
1083 if (!length)
1084 return 0;
25726bc1 1085 BUG_ON((offset + length) > PAGE_CACHE_SIZE);
4c0ccfef
MW
1086
1087 memset(&bh, 0, sizeof(bh));
eab95db6 1088 bh.b_bdev = inode->i_sb->s_bdev;
4c0ccfef
MW
1089 bh.b_size = PAGE_CACHE_SIZE;
1090 err = get_block(inode, index, &bh, 0);
1091 if (err < 0)
1092 return err;
1093 if (buffer_written(&bh)) {
b2e0d162
DW
1094 struct block_device *bdev = bh.b_bdev;
1095 struct blk_dax_ctl dax = {
1096 .sector = to_sector(&bh, inode),
1097 .size = PAGE_CACHE_SIZE,
1098 };
1099
1100 if (dax_map_atomic(bdev, &dax) < 0)
1101 return PTR_ERR(dax.addr);
1102 clear_pmem(dax.addr + offset, length);
2765cfbb 1103 wmb_pmem();
b2e0d162 1104 dax_unmap_atomic(bdev, &dax);
4c0ccfef
MW
1105 }
1106
1107 return 0;
1108}
25726bc1
MW
1109EXPORT_SYMBOL_GPL(dax_zero_page_range);
1110
1111/**
1112 * dax_truncate_page - handle a partial page being truncated in a DAX file
1113 * @inode: The file being truncated
1114 * @from: The file offset that is being truncated to
1115 * @get_block: The filesystem method used to translate file offsets to blocks
1116 *
1117 * Similar to block_truncate_page(), this function can be called by a
1118 * filesystem when it is truncating a DAX file to handle the partial page.
1119 *
1120 * We work in terms of PAGE_CACHE_SIZE here for commonality with
1121 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1122 * took care of disposing of the unnecessary blocks. Even if the filesystem
1123 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1124 * since the file might be mmapped.
1125 */
1126int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1127{
1128 unsigned length = PAGE_CACHE_ALIGN(from) - from;
1129 return dax_zero_page_range(inode, from, length, get_block);
1130}
4c0ccfef 1131EXPORT_SYMBOL_GPL(dax_truncate_page);