mm/mmap: move common defines to mman-common.h
[linux-2.6-block.git] / fs / dax.c
CommitLineData
2025cf9e 1// SPDX-License-Identifier: GPL-2.0-only
d475c634
MW
2/*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
d475c634
MW
7 */
8
9#include <linux/atomic.h>
10#include <linux/blkdev.h>
11#include <linux/buffer_head.h>
d77e92e2 12#include <linux/dax.h>
d475c634
MW
13#include <linux/fs.h>
14#include <linux/genhd.h>
f7ca90b1
MW
15#include <linux/highmem.h>
16#include <linux/memcontrol.h>
17#include <linux/mm.h>
d475c634 18#include <linux/mutex.h>
9973c98e 19#include <linux/pagevec.h>
289c6aed 20#include <linux/sched.h>
f361bf4a 21#include <linux/sched/signal.h>
d475c634 22#include <linux/uio.h>
f7ca90b1 23#include <linux/vmstat.h>
34c0fd54 24#include <linux/pfn_t.h>
0e749e54 25#include <linux/sizes.h>
4b4bb46d 26#include <linux/mmu_notifier.h>
a254e568 27#include <linux/iomap.h>
11cf9d86 28#include <asm/pgalloc.h>
a254e568 29#include "internal.h"
d475c634 30
282a8e03
RZ
31#define CREATE_TRACE_POINTS
32#include <trace/events/fs_dax.h>
33
cfc93c6c
MW
34static inline unsigned int pe_order(enum page_entry_size pe_size)
35{
36 if (pe_size == PE_SIZE_PTE)
37 return PAGE_SHIFT - PAGE_SHIFT;
38 if (pe_size == PE_SIZE_PMD)
39 return PMD_SHIFT - PAGE_SHIFT;
40 if (pe_size == PE_SIZE_PUD)
41 return PUD_SHIFT - PAGE_SHIFT;
42 return ~0;
43}
44
ac401cc7
JK
45/* We choose 4096 entries - same as per-zone page wait tables */
46#define DAX_WAIT_TABLE_BITS 12
47#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
48
917f3452
RZ
49/* The 'colour' (ie low bits) within a PMD of a page offset. */
50#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
977fbdcd 51#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
917f3452 52
cfc93c6c
MW
53/* The order of a PMD entry */
54#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
55
ce95ab0f 56static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
57
58static int __init init_dax_wait_table(void)
59{
60 int i;
61
62 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
63 init_waitqueue_head(wait_table + i);
64 return 0;
65}
66fs_initcall(init_dax_wait_table);
67
527b19d0 68/*
3159f943
MW
69 * DAX pagecache entries use XArray value entries so they can't be mistaken
70 * for pages. We use one bit for locking, one bit for the entry size (PMD)
71 * and two more to tell us if the entry is a zero page or an empty entry that
72 * is just used for locking. In total four special bits.
527b19d0
RZ
73 *
74 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
75 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
76 * block allocation.
77 */
3159f943
MW
78#define DAX_SHIFT (4)
79#define DAX_LOCKED (1UL << 0)
80#define DAX_PMD (1UL << 1)
81#define DAX_ZERO_PAGE (1UL << 2)
82#define DAX_EMPTY (1UL << 3)
527b19d0 83
a77d19f4 84static unsigned long dax_to_pfn(void *entry)
527b19d0 85{
3159f943 86 return xa_to_value(entry) >> DAX_SHIFT;
527b19d0
RZ
87}
88
9f32d221
MW
89static void *dax_make_entry(pfn_t pfn, unsigned long flags)
90{
91 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
92}
93
cfc93c6c
MW
94static bool dax_is_locked(void *entry)
95{
96 return xa_to_value(entry) & DAX_LOCKED;
97}
98
a77d19f4 99static unsigned int dax_entry_order(void *entry)
527b19d0 100{
3159f943 101 if (xa_to_value(entry) & DAX_PMD)
cfc93c6c 102 return PMD_ORDER;
527b19d0
RZ
103 return 0;
104}
105
fda490d3 106static unsigned long dax_is_pmd_entry(void *entry)
d1a5f2b4 107{
3159f943 108 return xa_to_value(entry) & DAX_PMD;
d1a5f2b4
DW
109}
110
fda490d3 111static bool dax_is_pte_entry(void *entry)
d475c634 112{
3159f943 113 return !(xa_to_value(entry) & DAX_PMD);
d475c634
MW
114}
115
642261ac 116static int dax_is_zero_entry(void *entry)
d475c634 117{
3159f943 118 return xa_to_value(entry) & DAX_ZERO_PAGE;
d475c634
MW
119}
120
642261ac 121static int dax_is_empty_entry(void *entry)
b2e0d162 122{
3159f943 123 return xa_to_value(entry) & DAX_EMPTY;
b2e0d162
DW
124}
125
ac401cc7 126/*
a77d19f4 127 * DAX page cache entry locking
ac401cc7
JK
128 */
129struct exceptional_entry_key {
ec4907ff 130 struct xarray *xa;
63e95b5c 131 pgoff_t entry_start;
ac401cc7
JK
132};
133
134struct wait_exceptional_entry_queue {
ac6424b9 135 wait_queue_entry_t wait;
ac401cc7
JK
136 struct exceptional_entry_key key;
137};
138
b15cd800
MW
139static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
140 void *entry, struct exceptional_entry_key *key)
63e95b5c
RZ
141{
142 unsigned long hash;
b15cd800 143 unsigned long index = xas->xa_index;
63e95b5c
RZ
144
145 /*
146 * If 'entry' is a PMD, align the 'index' that we use for the wait
147 * queue to the start of that PMD. This ensures that all offsets in
148 * the range covered by the PMD map to the same bit lock.
149 */
642261ac 150 if (dax_is_pmd_entry(entry))
917f3452 151 index &= ~PG_PMD_COLOUR;
b15cd800 152 key->xa = xas->xa;
63e95b5c
RZ
153 key->entry_start = index;
154
b15cd800 155 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
63e95b5c
RZ
156 return wait_table + hash;
157}
158
ec4907ff
MW
159static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
160 unsigned int mode, int sync, void *keyp)
ac401cc7
JK
161{
162 struct exceptional_entry_key *key = keyp;
163 struct wait_exceptional_entry_queue *ewait =
164 container_of(wait, struct wait_exceptional_entry_queue, wait);
165
ec4907ff 166 if (key->xa != ewait->key.xa ||
63e95b5c 167 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
168 return 0;
169 return autoremove_wake_function(wait, mode, sync, NULL);
170}
171
e30331ff 172/*
b93b0163
MW
173 * @entry may no longer be the entry at the index in the mapping.
174 * The important information it's conveying is whether the entry at
175 * this index used to be a PMD entry.
e30331ff 176 */
b15cd800 177static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
e30331ff
RZ
178{
179 struct exceptional_entry_key key;
180 wait_queue_head_t *wq;
181
b15cd800 182 wq = dax_entry_waitqueue(xas, entry, &key);
e30331ff
RZ
183
184 /*
185 * Checking for locked entry and prepare_to_wait_exclusive() happens
b93b0163 186 * under the i_pages lock, ditto for entry handling in our callers.
e30331ff
RZ
187 * So at this point all tasks that could have seen our entry locked
188 * must be in the waitqueue and the following check will see them.
189 */
190 if (waitqueue_active(wq))
191 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
192}
193
cfc93c6c
MW
194/*
195 * Look up entry in page cache, wait for it to become unlocked if it
196 * is a DAX entry and return it. The caller must subsequently call
197 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
198 * if it did.
199 *
200 * Must be called with the i_pages lock held.
201 */
202static void *get_unlocked_entry(struct xa_state *xas)
203{
204 void *entry;
205 struct wait_exceptional_entry_queue ewait;
206 wait_queue_head_t *wq;
207
208 init_wait(&ewait.wait);
209 ewait.wait.func = wake_exceptional_entry_func;
210
211 for (;;) {
0e40de03
MW
212 entry = xas_find_conflict(xas);
213 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
cfc93c6c
MW
214 !dax_is_locked(entry))
215 return entry;
216
b15cd800 217 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
cfc93c6c
MW
218 prepare_to_wait_exclusive(wq, &ewait.wait,
219 TASK_UNINTERRUPTIBLE);
220 xas_unlock_irq(xas);
221 xas_reset(xas);
222 schedule();
223 finish_wait(wq, &ewait.wait);
224 xas_lock_irq(xas);
225 }
226}
227
55e56f06
MW
228/*
229 * The only thing keeping the address space around is the i_pages lock
230 * (it's cycled in clear_inode() after removing the entries from i_pages)
231 * After we call xas_unlock_irq(), we cannot touch xas->xa.
232 */
233static void wait_entry_unlocked(struct xa_state *xas, void *entry)
234{
235 struct wait_exceptional_entry_queue ewait;
236 wait_queue_head_t *wq;
237
238 init_wait(&ewait.wait);
239 ewait.wait.func = wake_exceptional_entry_func;
240
241 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
d8a70641
DW
242 /*
243 * Unlike get_unlocked_entry() there is no guarantee that this
244 * path ever successfully retrieves an unlocked entry before an
245 * inode dies. Perform a non-exclusive wait in case this path
246 * never successfully performs its own wake up.
247 */
248 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
55e56f06
MW
249 xas_unlock_irq(xas);
250 schedule();
251 finish_wait(wq, &ewait.wait);
55e56f06
MW
252}
253
cfc93c6c
MW
254static void put_unlocked_entry(struct xa_state *xas, void *entry)
255{
256 /* If we were the only waiter woken, wake the next one */
257 if (entry)
258 dax_wake_entry(xas, entry, false);
259}
260
261/*
262 * We used the xa_state to get the entry, but then we locked the entry and
263 * dropped the xa_lock, so we know the xa_state is stale and must be reset
264 * before use.
265 */
266static void dax_unlock_entry(struct xa_state *xas, void *entry)
267{
268 void *old;
269
7ae2ea7d 270 BUG_ON(dax_is_locked(entry));
cfc93c6c
MW
271 xas_reset(xas);
272 xas_lock_irq(xas);
273 old = xas_store(xas, entry);
274 xas_unlock_irq(xas);
275 BUG_ON(!dax_is_locked(old));
276 dax_wake_entry(xas, entry, false);
277}
278
279/*
280 * Return: The entry stored at this location before it was locked.
281 */
282static void *dax_lock_entry(struct xa_state *xas, void *entry)
283{
284 unsigned long v = xa_to_value(entry);
285 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
286}
287
d2c997c0
DW
288static unsigned long dax_entry_size(void *entry)
289{
290 if (dax_is_zero_entry(entry))
291 return 0;
292 else if (dax_is_empty_entry(entry))
293 return 0;
294 else if (dax_is_pmd_entry(entry))
295 return PMD_SIZE;
296 else
297 return PAGE_SIZE;
298}
299
a77d19f4 300static unsigned long dax_end_pfn(void *entry)
d2c997c0 301{
a77d19f4 302 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
d2c997c0
DW
303}
304
305/*
306 * Iterate through all mapped pfns represented by an entry, i.e. skip
307 * 'empty' and 'zero' entries.
308 */
309#define for_each_mapped_pfn(entry, pfn) \
a77d19f4
MW
310 for (pfn = dax_to_pfn(entry); \
311 pfn < dax_end_pfn(entry); pfn++)
d2c997c0 312
73449daf
DW
313/*
314 * TODO: for reflink+dax we need a way to associate a single page with
315 * multiple address_space instances at different linear_page_index()
316 * offsets.
317 */
318static void dax_associate_entry(void *entry, struct address_space *mapping,
319 struct vm_area_struct *vma, unsigned long address)
d2c997c0 320{
73449daf
DW
321 unsigned long size = dax_entry_size(entry), pfn, index;
322 int i = 0;
d2c997c0
DW
323
324 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
325 return;
326
73449daf 327 index = linear_page_index(vma, address & ~(size - 1));
d2c997c0
DW
328 for_each_mapped_pfn(entry, pfn) {
329 struct page *page = pfn_to_page(pfn);
330
331 WARN_ON_ONCE(page->mapping);
332 page->mapping = mapping;
73449daf 333 page->index = index + i++;
d2c997c0
DW
334 }
335}
336
337static void dax_disassociate_entry(void *entry, struct address_space *mapping,
338 bool trunc)
339{
340 unsigned long pfn;
341
342 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
343 return;
344
345 for_each_mapped_pfn(entry, pfn) {
346 struct page *page = pfn_to_page(pfn);
347
348 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
349 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
350 page->mapping = NULL;
73449daf 351 page->index = 0;
d2c997c0
DW
352 }
353}
354
5fac7408
DW
355static struct page *dax_busy_page(void *entry)
356{
357 unsigned long pfn;
358
359 for_each_mapped_pfn(entry, pfn) {
360 struct page *page = pfn_to_page(pfn);
361
362 if (page_ref_count(page) > 1)
363 return page;
364 }
365 return NULL;
366}
367
c5bbd451
MW
368/*
369 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
370 * @page: The page whose entry we want to lock
371 *
372 * Context: Process context.
27359fd6
MW
373 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
374 * not be locked.
c5bbd451 375 */
27359fd6 376dax_entry_t dax_lock_page(struct page *page)
c2a7d2a1 377{
9f32d221
MW
378 XA_STATE(xas, NULL, 0);
379 void *entry;
c2a7d2a1 380
c5bbd451
MW
381 /* Ensure page->mapping isn't freed while we look at it */
382 rcu_read_lock();
c2a7d2a1 383 for (;;) {
9f32d221 384 struct address_space *mapping = READ_ONCE(page->mapping);
c2a7d2a1 385
27359fd6 386 entry = NULL;
c93db7bb 387 if (!mapping || !dax_mapping(mapping))
c5bbd451 388 break;
c2a7d2a1
DW
389
390 /*
391 * In the device-dax case there's no need to lock, a
392 * struct dev_pagemap pin is sufficient to keep the
393 * inode alive, and we assume we have dev_pagemap pin
394 * otherwise we would not have a valid pfn_to_page()
395 * translation.
396 */
27359fd6 397 entry = (void *)~0UL;
9f32d221 398 if (S_ISCHR(mapping->host->i_mode))
c5bbd451 399 break;
c2a7d2a1 400
9f32d221
MW
401 xas.xa = &mapping->i_pages;
402 xas_lock_irq(&xas);
c2a7d2a1 403 if (mapping != page->mapping) {
9f32d221 404 xas_unlock_irq(&xas);
c2a7d2a1
DW
405 continue;
406 }
9f32d221
MW
407 xas_set(&xas, page->index);
408 entry = xas_load(&xas);
409 if (dax_is_locked(entry)) {
c5bbd451 410 rcu_read_unlock();
55e56f06 411 wait_entry_unlocked(&xas, entry);
c5bbd451 412 rcu_read_lock();
6d7cd8c1 413 continue;
c2a7d2a1 414 }
9f32d221
MW
415 dax_lock_entry(&xas, entry);
416 xas_unlock_irq(&xas);
c5bbd451 417 break;
c2a7d2a1 418 }
c5bbd451 419 rcu_read_unlock();
27359fd6 420 return (dax_entry_t)entry;
c2a7d2a1
DW
421}
422
27359fd6 423void dax_unlock_page(struct page *page, dax_entry_t cookie)
c2a7d2a1
DW
424{
425 struct address_space *mapping = page->mapping;
9f32d221 426 XA_STATE(xas, &mapping->i_pages, page->index);
c2a7d2a1 427
9f32d221 428 if (S_ISCHR(mapping->host->i_mode))
c2a7d2a1
DW
429 return;
430
27359fd6 431 dax_unlock_entry(&xas, (void *)cookie);
c2a7d2a1
DW
432}
433
ac401cc7 434/*
a77d19f4
MW
435 * Find page cache entry at given index. If it is a DAX entry, return it
436 * with the entry locked. If the page cache doesn't contain an entry at
437 * that index, add a locked empty entry.
ac401cc7 438 *
3159f943 439 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
b15cd800
MW
440 * either return that locked entry or will return VM_FAULT_FALLBACK.
441 * This will happen if there are any PTE entries within the PMD range
442 * that we are requesting.
642261ac 443 *
b15cd800
MW
444 * We always favor PTE entries over PMD entries. There isn't a flow where we
445 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
446 * insertion will fail if it finds any PTE entries already in the tree, and a
447 * PTE insertion will cause an existing PMD entry to be unmapped and
448 * downgraded to PTE entries. This happens for both PMD zero pages as
449 * well as PMD empty entries.
642261ac 450 *
b15cd800
MW
451 * The exception to this downgrade path is for PMD entries that have
452 * real storage backing them. We will leave these real PMD entries in
453 * the tree, and PTE writes will simply dirty the entire PMD entry.
642261ac 454 *
ac401cc7
JK
455 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
456 * persistent memory the benefit is doubtful. We can add that later if we can
457 * show it helps.
b15cd800
MW
458 *
459 * On error, this function does not return an ERR_PTR. Instead it returns
460 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
461 * overlap with xarray value entries.
ac401cc7 462 */
b15cd800
MW
463static void *grab_mapping_entry(struct xa_state *xas,
464 struct address_space *mapping, unsigned long size_flag)
ac401cc7 465{
b15cd800
MW
466 unsigned long index = xas->xa_index;
467 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
468 void *entry;
642261ac 469
b15cd800
MW
470retry:
471 xas_lock_irq(xas);
472 entry = get_unlocked_entry(xas);
91d25ba8 473
642261ac 474 if (entry) {
0e40de03 475 if (!xa_is_value(entry)) {
b15cd800
MW
476 xas_set_err(xas, EIO);
477 goto out_unlock;
478 }
479
3159f943 480 if (size_flag & DAX_PMD) {
91d25ba8 481 if (dax_is_pte_entry(entry)) {
b15cd800
MW
482 put_unlocked_entry(xas, entry);
483 goto fallback;
642261ac
RZ
484 }
485 } else { /* trying to grab a PTE entry */
91d25ba8 486 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
487 (dax_is_zero_entry(entry) ||
488 dax_is_empty_entry(entry))) {
489 pmd_downgrade = true;
490 }
491 }
492 }
493
b15cd800
MW
494 if (pmd_downgrade) {
495 /*
496 * Make sure 'entry' remains valid while we drop
497 * the i_pages lock.
498 */
499 dax_lock_entry(xas, entry);
642261ac 500
642261ac
RZ
501 /*
502 * Besides huge zero pages the only other thing that gets
503 * downgraded are empty entries which don't need to be
504 * unmapped.
505 */
b15cd800
MW
506 if (dax_is_zero_entry(entry)) {
507 xas_unlock_irq(xas);
508 unmap_mapping_pages(mapping,
509 xas->xa_index & ~PG_PMD_COLOUR,
510 PG_PMD_NR, false);
511 xas_reset(xas);
512 xas_lock_irq(xas);
e11f8b7b
RZ
513 }
514
b15cd800
MW
515 dax_disassociate_entry(entry, mapping, false);
516 xas_store(xas, NULL); /* undo the PMD join */
517 dax_wake_entry(xas, entry, true);
518 mapping->nrexceptional--;
519 entry = NULL;
520 xas_set(xas, index);
521 }
642261ac 522
b15cd800
MW
523 if (entry) {
524 dax_lock_entry(xas, entry);
525 } else {
526 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
527 dax_lock_entry(xas, entry);
528 if (xas_error(xas))
529 goto out_unlock;
ac401cc7 530 mapping->nrexceptional++;
ac401cc7 531 }
b15cd800
MW
532
533out_unlock:
534 xas_unlock_irq(xas);
535 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
536 goto retry;
537 if (xas->xa_node == XA_ERROR(-ENOMEM))
538 return xa_mk_internal(VM_FAULT_OOM);
539 if (xas_error(xas))
540 return xa_mk_internal(VM_FAULT_SIGBUS);
e3ad61c6 541 return entry;
b15cd800
MW
542fallback:
543 xas_unlock_irq(xas);
544 return xa_mk_internal(VM_FAULT_FALLBACK);
ac401cc7
JK
545}
546
5fac7408
DW
547/**
548 * dax_layout_busy_page - find first pinned page in @mapping
549 * @mapping: address space to scan for a page with ref count > 1
550 *
551 * DAX requires ZONE_DEVICE mapped pages. These pages are never
552 * 'onlined' to the page allocator so they are considered idle when
553 * page->count == 1. A filesystem uses this interface to determine if
554 * any page in the mapping is busy, i.e. for DMA, or other
555 * get_user_pages() usages.
556 *
557 * It is expected that the filesystem is holding locks to block the
558 * establishment of new mappings in this address_space. I.e. it expects
559 * to be able to run unmap_mapping_range() and subsequently not race
560 * mapping_mapped() becoming true.
561 */
562struct page *dax_layout_busy_page(struct address_space *mapping)
563{
084a8990
MW
564 XA_STATE(xas, &mapping->i_pages, 0);
565 void *entry;
566 unsigned int scanned = 0;
5fac7408 567 struct page *page = NULL;
5fac7408
DW
568
569 /*
570 * In the 'limited' case get_user_pages() for dax is disabled.
571 */
572 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
573 return NULL;
574
575 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
576 return NULL;
577
5fac7408
DW
578 /*
579 * If we race get_user_pages_fast() here either we'll see the
084a8990 580 * elevated page count in the iteration and wait, or
5fac7408
DW
581 * get_user_pages_fast() will see that the page it took a reference
582 * against is no longer mapped in the page tables and bail to the
583 * get_user_pages() slow path. The slow path is protected by
584 * pte_lock() and pmd_lock(). New references are not taken without
585 * holding those locks, and unmap_mapping_range() will not zero the
586 * pte or pmd without holding the respective lock, so we are
587 * guaranteed to either see new references or prevent new
588 * references from being established.
589 */
590 unmap_mapping_range(mapping, 0, 0, 1);
591
084a8990
MW
592 xas_lock_irq(&xas);
593 xas_for_each(&xas, entry, ULONG_MAX) {
594 if (WARN_ON_ONCE(!xa_is_value(entry)))
595 continue;
596 if (unlikely(dax_is_locked(entry)))
597 entry = get_unlocked_entry(&xas);
598 if (entry)
599 page = dax_busy_page(entry);
600 put_unlocked_entry(&xas, entry);
5fac7408
DW
601 if (page)
602 break;
084a8990
MW
603 if (++scanned % XA_CHECK_SCHED)
604 continue;
605
606 xas_pause(&xas);
607 xas_unlock_irq(&xas);
608 cond_resched();
609 xas_lock_irq(&xas);
5fac7408 610 }
084a8990 611 xas_unlock_irq(&xas);
5fac7408
DW
612 return page;
613}
614EXPORT_SYMBOL_GPL(dax_layout_busy_page);
615
a77d19f4 616static int __dax_invalidate_entry(struct address_space *mapping,
c6dcf52c
JK
617 pgoff_t index, bool trunc)
618{
07f2d89c 619 XA_STATE(xas, &mapping->i_pages, index);
c6dcf52c
JK
620 int ret = 0;
621 void *entry;
c6dcf52c 622
07f2d89c
MW
623 xas_lock_irq(&xas);
624 entry = get_unlocked_entry(&xas);
3159f943 625 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
c6dcf52c
JK
626 goto out;
627 if (!trunc &&
07f2d89c
MW
628 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
629 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
c6dcf52c 630 goto out;
d2c997c0 631 dax_disassociate_entry(entry, mapping, trunc);
07f2d89c 632 xas_store(&xas, NULL);
c6dcf52c
JK
633 mapping->nrexceptional--;
634 ret = 1;
635out:
07f2d89c
MW
636 put_unlocked_entry(&xas, entry);
637 xas_unlock_irq(&xas);
c6dcf52c
JK
638 return ret;
639}
07f2d89c 640
ac401cc7 641/*
3159f943
MW
642 * Delete DAX entry at @index from @mapping. Wait for it
643 * to be unlocked before deleting it.
ac401cc7
JK
644 */
645int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
646{
a77d19f4 647 int ret = __dax_invalidate_entry(mapping, index, true);
ac401cc7 648
ac401cc7
JK
649 /*
650 * This gets called from truncate / punch_hole path. As such, the caller
651 * must hold locks protecting against concurrent modifications of the
a77d19f4 652 * page cache (usually fs-private i_mmap_sem for writing). Since the
3159f943 653 * caller has seen a DAX entry for this index, we better find it
ac401cc7
JK
654 * at that index as well...
655 */
c6dcf52c
JK
656 WARN_ON_ONCE(!ret);
657 return ret;
658}
659
c6dcf52c 660/*
3159f943 661 * Invalidate DAX entry if it is clean.
c6dcf52c
JK
662 */
663int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
664 pgoff_t index)
665{
a77d19f4 666 return __dax_invalidate_entry(mapping, index, false);
ac401cc7
JK
667}
668
cccbce67
DW
669static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
670 sector_t sector, size_t size, struct page *to,
671 unsigned long vaddr)
f7ca90b1 672{
cccbce67
DW
673 void *vto, *kaddr;
674 pgoff_t pgoff;
cccbce67
DW
675 long rc;
676 int id;
677
678 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
679 if (rc)
680 return rc;
681
682 id = dax_read_lock();
86ed913b 683 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
cccbce67
DW
684 if (rc < 0) {
685 dax_read_unlock(id);
686 return rc;
687 }
f7ca90b1 688 vto = kmap_atomic(to);
cccbce67 689 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
f7ca90b1 690 kunmap_atomic(vto);
cccbce67 691 dax_read_unlock(id);
f7ca90b1
MW
692 return 0;
693}
694
642261ac
RZ
695/*
696 * By this point grab_mapping_entry() has ensured that we have a locked entry
697 * of the appropriate size so we don't have to worry about downgrading PMDs to
698 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
699 * already in the tree, we will skip the insertion and just dirty the PMD as
700 * appropriate.
701 */
b15cd800
MW
702static void *dax_insert_entry(struct xa_state *xas,
703 struct address_space *mapping, struct vm_fault *vmf,
704 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
9973c98e 705{
b15cd800 706 void *new_entry = dax_make_entry(pfn, flags);
9973c98e 707
f5b7b748 708 if (dirty)
d2b2a28e 709 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 710
3159f943 711 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
b15cd800 712 unsigned long index = xas->xa_index;
91d25ba8
RZ
713 /* we are replacing a zero page with block mapping */
714 if (dax_is_pmd_entry(entry))
977fbdcd 715 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
b15cd800 716 PG_PMD_NR, false);
91d25ba8 717 else /* pte entry */
b15cd800 718 unmap_mapping_pages(mapping, index, 1, false);
9973c98e
RZ
719 }
720
b15cd800
MW
721 xas_reset(xas);
722 xas_lock_irq(xas);
1571c029
JK
723 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
724 void *old;
725
d2c997c0 726 dax_disassociate_entry(entry, mapping, false);
73449daf 727 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
642261ac 728 /*
a77d19f4 729 * Only swap our new entry into the page cache if the current
642261ac 730 * entry is a zero page or an empty entry. If a normal PTE or
a77d19f4 731 * PMD entry is already in the cache, we leave it alone. This
642261ac
RZ
732 * means that if we are trying to insert a PTE and the
733 * existing entry is a PMD, we will just leave the PMD in the
734 * tree and dirty it if necessary.
735 */
1571c029 736 old = dax_lock_entry(xas, new_entry);
b15cd800
MW
737 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
738 DAX_LOCKED));
91d25ba8 739 entry = new_entry;
b15cd800
MW
740 } else {
741 xas_load(xas); /* Walk the xa_state */
9973c98e 742 }
91d25ba8 743
f5b7b748 744 if (dirty)
b15cd800 745 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
91d25ba8 746
b15cd800 747 xas_unlock_irq(xas);
91d25ba8 748 return entry;
9973c98e
RZ
749}
750
a77d19f4
MW
751static inline
752unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
4b4bb46d
JK
753{
754 unsigned long address;
755
756 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
757 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
758 return address;
759}
760
761/* Walk all mappings of a given index of a file and writeprotect them */
a77d19f4
MW
762static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
763 unsigned long pfn)
4b4bb46d
JK
764{
765 struct vm_area_struct *vma;
f729c8c9
RZ
766 pte_t pte, *ptep = NULL;
767 pmd_t *pmdp = NULL;
4b4bb46d 768 spinlock_t *ptl;
4b4bb46d
JK
769
770 i_mmap_lock_read(mapping);
771 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
ac46d4f3
JG
772 struct mmu_notifier_range range;
773 unsigned long address;
4b4bb46d
JK
774
775 cond_resched();
776
777 if (!(vma->vm_flags & VM_SHARED))
778 continue;
779
780 address = pgoff_address(index, vma);
a4d1a885
JG
781
782 /*
0cefc36b 783 * Note because we provide range to follow_pte_pmd it will
a4d1a885
JG
784 * call mmu_notifier_invalidate_range_start() on our behalf
785 * before taking any lock.
786 */
ac46d4f3
JG
787 if (follow_pte_pmd(vma->vm_mm, address, &range,
788 &ptep, &pmdp, &ptl))
4b4bb46d 789 continue;
4b4bb46d 790
0f10851e
JG
791 /*
792 * No need to call mmu_notifier_invalidate_range() as we are
793 * downgrading page table protection not changing it to point
794 * to a new page.
795 *
ad56b738 796 * See Documentation/vm/mmu_notifier.rst
0f10851e 797 */
f729c8c9
RZ
798 if (pmdp) {
799#ifdef CONFIG_FS_DAX_PMD
800 pmd_t pmd;
801
802 if (pfn != pmd_pfn(*pmdp))
803 goto unlock_pmd;
f6f37321 804 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
f729c8c9
RZ
805 goto unlock_pmd;
806
807 flush_cache_page(vma, address, pfn);
024eee0e 808 pmd = pmdp_invalidate(vma, address, pmdp);
f729c8c9
RZ
809 pmd = pmd_wrprotect(pmd);
810 pmd = pmd_mkclean(pmd);
811 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
f729c8c9 812unlock_pmd:
f729c8c9 813#endif
ee190ca6 814 spin_unlock(ptl);
f729c8c9
RZ
815 } else {
816 if (pfn != pte_pfn(*ptep))
817 goto unlock_pte;
818 if (!pte_dirty(*ptep) && !pte_write(*ptep))
819 goto unlock_pte;
820
821 flush_cache_page(vma, address, pfn);
822 pte = ptep_clear_flush(vma, address, ptep);
823 pte = pte_wrprotect(pte);
824 pte = pte_mkclean(pte);
825 set_pte_at(vma->vm_mm, address, ptep, pte);
f729c8c9
RZ
826unlock_pte:
827 pte_unmap_unlock(ptep, ptl);
828 }
4b4bb46d 829
ac46d4f3 830 mmu_notifier_invalidate_range_end(&range);
4b4bb46d
JK
831 }
832 i_mmap_unlock_read(mapping);
833}
834
9fc747f6
MW
835static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
836 struct address_space *mapping, void *entry)
9973c98e 837{
e4b3448b 838 unsigned long pfn, index, count;
3fe0791c 839 long ret = 0;
9973c98e 840
9973c98e 841 /*
a6abc2c0
JK
842 * A page got tagged dirty in DAX mapping? Something is seriously
843 * wrong.
9973c98e 844 */
3159f943 845 if (WARN_ON(!xa_is_value(entry)))
a6abc2c0 846 return -EIO;
9973c98e 847
9fc747f6
MW
848 if (unlikely(dax_is_locked(entry))) {
849 void *old_entry = entry;
850
851 entry = get_unlocked_entry(xas);
852
853 /* Entry got punched out / reallocated? */
854 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
855 goto put_unlocked;
856 /*
857 * Entry got reallocated elsewhere? No need to writeback.
858 * We have to compare pfns as we must not bail out due to
859 * difference in lockbit or entry type.
860 */
861 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
862 goto put_unlocked;
863 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
864 dax_is_zero_entry(entry))) {
865 ret = -EIO;
866 goto put_unlocked;
867 }
868
869 /* Another fsync thread may have already done this entry */
870 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
871 goto put_unlocked;
9973c98e
RZ
872 }
873
a6abc2c0 874 /* Lock the entry to serialize with page faults */
9fc747f6
MW
875 dax_lock_entry(xas, entry);
876
a6abc2c0
JK
877 /*
878 * We can clear the tag now but we have to be careful so that concurrent
879 * dax_writeback_one() calls for the same index cannot finish before we
880 * actually flush the caches. This is achieved as the calls will look
b93b0163
MW
881 * at the entry only under the i_pages lock and once they do that
882 * they will see the entry locked and wait for it to unlock.
a6abc2c0 883 */
9fc747f6
MW
884 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
885 xas_unlock_irq(xas);
a6abc2c0 886
642261ac 887 /*
e4b3448b
MW
888 * If dax_writeback_mapping_range() was given a wbc->range_start
889 * in the middle of a PMD, the 'index' we use needs to be
890 * aligned to the start of the PMD.
3fe0791c
DW
891 * This allows us to flush for PMD_SIZE and not have to worry about
892 * partial PMD writebacks.
642261ac 893 */
a77d19f4 894 pfn = dax_to_pfn(entry);
e4b3448b
MW
895 count = 1UL << dax_entry_order(entry);
896 index = xas->xa_index & ~(count - 1);
cccbce67 897
e4b3448b
MW
898 dax_entry_mkclean(mapping, index, pfn);
899 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
4b4bb46d
JK
900 /*
901 * After we have flushed the cache, we can clear the dirty tag. There
902 * cannot be new dirty data in the pfn after the flush has completed as
903 * the pfn mappings are writeprotected and fault waits for mapping
904 * entry lock.
905 */
9fc747f6
MW
906 xas_reset(xas);
907 xas_lock_irq(xas);
908 xas_store(xas, entry);
909 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
910 dax_wake_entry(xas, entry, false);
911
e4b3448b 912 trace_dax_writeback_one(mapping->host, index, count);
9973c98e
RZ
913 return ret;
914
a6abc2c0 915 put_unlocked:
9fc747f6 916 put_unlocked_entry(xas, entry);
9973c98e
RZ
917 return ret;
918}
919
920/*
921 * Flush the mapping to the persistent domain within the byte range of [start,
922 * end]. This is required by data integrity operations to ensure file data is
923 * on persistent storage prior to completion of the operation.
924 */
7f6d5b52
RZ
925int dax_writeback_mapping_range(struct address_space *mapping,
926 struct block_device *bdev, struct writeback_control *wbc)
9973c98e 927{
9fc747f6 928 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
9973c98e 929 struct inode *inode = mapping->host;
9fc747f6 930 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
cccbce67 931 struct dax_device *dax_dev;
9fc747f6
MW
932 void *entry;
933 int ret = 0;
934 unsigned int scanned = 0;
9973c98e
RZ
935
936 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
937 return -EIO;
938
7f6d5b52
RZ
939 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
940 return 0;
941
cccbce67
DW
942 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
943 if (!dax_dev)
944 return -EIO;
945
9fc747f6 946 trace_dax_writeback_range(inode, xas.xa_index, end_index);
9973c98e 947
9fc747f6 948 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
9973c98e 949
9fc747f6
MW
950 xas_lock_irq(&xas);
951 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
952 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
953 if (ret < 0) {
954 mapping_set_error(mapping, ret);
9973c98e 955 break;
9973c98e 956 }
9fc747f6
MW
957 if (++scanned % XA_CHECK_SCHED)
958 continue;
959
960 xas_pause(&xas);
961 xas_unlock_irq(&xas);
962 cond_resched();
963 xas_lock_irq(&xas);
9973c98e 964 }
9fc747f6 965 xas_unlock_irq(&xas);
cccbce67 966 put_dax(dax_dev);
9fc747f6
MW
967 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
968 return ret;
9973c98e
RZ
969}
970EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
971
31a6f1a6 972static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
f7ca90b1 973{
a3841f94 974 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
31a6f1a6
JK
975}
976
5e161e40
JK
977static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
978 pfn_t *pfnp)
f7ca90b1 979{
31a6f1a6 980 const sector_t sector = dax_iomap_sector(iomap, pos);
cccbce67
DW
981 pgoff_t pgoff;
982 int id, rc;
5e161e40 983 long length;
f7ca90b1 984
5e161e40 985 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
cccbce67
DW
986 if (rc)
987 return rc;
cccbce67 988 id = dax_read_lock();
5e161e40 989 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
86ed913b 990 NULL, pfnp);
5e161e40
JK
991 if (length < 0) {
992 rc = length;
993 goto out;
cccbce67 994 }
5e161e40
JK
995 rc = -EINVAL;
996 if (PFN_PHYS(length) < size)
997 goto out;
998 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
999 goto out;
1000 /* For larger pages we need devmap */
1001 if (length > 1 && !pfn_t_devmap(*pfnp))
1002 goto out;
1003 rc = 0;
1004out:
cccbce67 1005 dax_read_unlock(id);
5e161e40 1006 return rc;
0e3b210c 1007}
0e3b210c 1008
e30331ff 1009/*
91d25ba8
RZ
1010 * The user has performed a load from a hole in the file. Allocating a new
1011 * page in the file would cause excessive storage usage for workloads with
1012 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1013 * If this page is ever written to we will re-fault and change the mapping to
1014 * point to real DAX storage instead.
e30331ff 1015 */
b15cd800
MW
1016static vm_fault_t dax_load_hole(struct xa_state *xas,
1017 struct address_space *mapping, void **entry,
1018 struct vm_fault *vmf)
e30331ff
RZ
1019{
1020 struct inode *inode = mapping->host;
91d25ba8 1021 unsigned long vaddr = vmf->address;
b90ca5cc
MW
1022 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1023 vm_fault_t ret;
e30331ff 1024
b15cd800 1025 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943
MW
1026 DAX_ZERO_PAGE, false);
1027
ab77dab4 1028 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
e30331ff
RZ
1029 trace_dax_load_hole(inode, vmf, ret);
1030 return ret;
1031}
1032
4b0228fa
VV
1033static bool dax_range_is_aligned(struct block_device *bdev,
1034 unsigned int offset, unsigned int length)
1035{
1036 unsigned short sector_size = bdev_logical_block_size(bdev);
1037
1038 if (!IS_ALIGNED(offset, sector_size))
1039 return false;
1040 if (!IS_ALIGNED(length, sector_size))
1041 return false;
1042
1043 return true;
1044}
1045
cccbce67
DW
1046int __dax_zero_page_range(struct block_device *bdev,
1047 struct dax_device *dax_dev, sector_t sector,
1048 unsigned int offset, unsigned int size)
679c8bd3 1049{
cccbce67
DW
1050 if (dax_range_is_aligned(bdev, offset, size)) {
1051 sector_t start_sector = sector + (offset >> 9);
4b0228fa
VV
1052
1053 return blkdev_issue_zeroout(bdev, start_sector,
53ef7d0e 1054 size >> 9, GFP_NOFS, 0);
4b0228fa 1055 } else {
cccbce67
DW
1056 pgoff_t pgoff;
1057 long rc, id;
1058 void *kaddr;
cccbce67 1059
e84b83b9 1060 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
cccbce67
DW
1061 if (rc)
1062 return rc;
1063
1064 id = dax_read_lock();
86ed913b 1065 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
cccbce67
DW
1066 if (rc < 0) {
1067 dax_read_unlock(id);
1068 return rc;
1069 }
81f55870 1070 memset(kaddr + offset, 0, size);
c3ca015f 1071 dax_flush(dax_dev, kaddr + offset, size);
cccbce67 1072 dax_read_unlock(id);
4b0228fa 1073 }
679c8bd3
CH
1074 return 0;
1075}
1076EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1077
a254e568 1078static loff_t
11c59c92 1079dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
a254e568
CH
1080 struct iomap *iomap)
1081{
cccbce67
DW
1082 struct block_device *bdev = iomap->bdev;
1083 struct dax_device *dax_dev = iomap->dax_dev;
a254e568
CH
1084 struct iov_iter *iter = data;
1085 loff_t end = pos + length, done = 0;
1086 ssize_t ret = 0;
a77d4786 1087 size_t xfer;
cccbce67 1088 int id;
a254e568
CH
1089
1090 if (iov_iter_rw(iter) == READ) {
1091 end = min(end, i_size_read(inode));
1092 if (pos >= end)
1093 return 0;
1094
1095 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1096 return iov_iter_zero(min(length, end - pos), iter);
1097 }
1098
1099 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1100 return -EIO;
1101
e3fce68c
JK
1102 /*
1103 * Write can allocate block for an area which has a hole page mapped
1104 * into page tables. We have to tear down these mappings so that data
1105 * written by write(2) is visible in mmap.
1106 */
cd656375 1107 if (iomap->flags & IOMAP_F_NEW) {
e3fce68c
JK
1108 invalidate_inode_pages2_range(inode->i_mapping,
1109 pos >> PAGE_SHIFT,
1110 (end - 1) >> PAGE_SHIFT);
1111 }
1112
cccbce67 1113 id = dax_read_lock();
a254e568
CH
1114 while (pos < end) {
1115 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67
DW
1116 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1117 const sector_t sector = dax_iomap_sector(iomap, pos);
a254e568 1118 ssize_t map_len;
cccbce67
DW
1119 pgoff_t pgoff;
1120 void *kaddr;
a254e568 1121
d1908f52
MH
1122 if (fatal_signal_pending(current)) {
1123 ret = -EINTR;
1124 break;
1125 }
1126
cccbce67
DW
1127 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1128 if (ret)
1129 break;
1130
1131 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
86ed913b 1132 &kaddr, NULL);
a254e568
CH
1133 if (map_len < 0) {
1134 ret = map_len;
1135 break;
1136 }
1137
cccbce67
DW
1138 map_len = PFN_PHYS(map_len);
1139 kaddr += offset;
a254e568
CH
1140 map_len -= offset;
1141 if (map_len > end - pos)
1142 map_len = end - pos;
1143
a2e050f5
RZ
1144 /*
1145 * The userspace address for the memory copy has already been
1146 * validated via access_ok() in either vfs_read() or
1147 * vfs_write(), depending on which operation we are doing.
1148 */
a254e568 1149 if (iov_iter_rw(iter) == WRITE)
a77d4786 1150 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
fec53774 1151 map_len, iter);
a254e568 1152 else
a77d4786 1153 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
b3a9a0c3 1154 map_len, iter);
a254e568 1155
a77d4786
DW
1156 pos += xfer;
1157 length -= xfer;
1158 done += xfer;
1159
1160 if (xfer == 0)
1161 ret = -EFAULT;
1162 if (xfer < map_len)
1163 break;
a254e568 1164 }
cccbce67 1165 dax_read_unlock(id);
a254e568
CH
1166
1167 return done ? done : ret;
1168}
1169
1170/**
11c59c92 1171 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1172 * @iocb: The control block for this I/O
1173 * @iter: The addresses to do I/O from or to
1174 * @ops: iomap ops passed from the file system
1175 *
1176 * This function performs read and write operations to directly mapped
1177 * persistent memory. The callers needs to take care of read/write exclusion
1178 * and evicting any page cache pages in the region under I/O.
1179 */
1180ssize_t
11c59c92 1181dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1182 const struct iomap_ops *ops)
a254e568
CH
1183{
1184 struct address_space *mapping = iocb->ki_filp->f_mapping;
1185 struct inode *inode = mapping->host;
1186 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1187 unsigned flags = 0;
1188
168316db 1189 if (iov_iter_rw(iter) == WRITE) {
9ffbe8ac 1190 lockdep_assert_held_write(&inode->i_rwsem);
a254e568 1191 flags |= IOMAP_WRITE;
168316db
CH
1192 } else {
1193 lockdep_assert_held(&inode->i_rwsem);
1194 }
a254e568 1195
a254e568
CH
1196 while (iov_iter_count(iter)) {
1197 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1198 iter, dax_iomap_actor);
a254e568
CH
1199 if (ret <= 0)
1200 break;
1201 pos += ret;
1202 done += ret;
1203 }
1204
1205 iocb->ki_pos += done;
1206 return done ? done : ret;
1207}
11c59c92 1208EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1209
ab77dab4 1210static vm_fault_t dax_fault_return(int error)
9f141d6e
JK
1211{
1212 if (error == 0)
1213 return VM_FAULT_NOPAGE;
c9aed74e 1214 return vmf_error(error);
9f141d6e
JK
1215}
1216
aaa422c4
DW
1217/*
1218 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1219 * flushed on write-faults (non-cow), but not read-faults.
1220 */
1221static bool dax_fault_is_synchronous(unsigned long flags,
1222 struct vm_area_struct *vma, struct iomap *iomap)
1223{
1224 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1225 && (iomap->flags & IOMAP_F_DIRTY);
1226}
1227
ab77dab4 1228static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
c0b24625 1229 int *iomap_errp, const struct iomap_ops *ops)
a7d73fe6 1230{
a0987ad5
JK
1231 struct vm_area_struct *vma = vmf->vma;
1232 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1233 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
a7d73fe6 1234 struct inode *inode = mapping->host;
1a29d85e 1235 unsigned long vaddr = vmf->address;
a7d73fe6 1236 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
a7d73fe6 1237 struct iomap iomap = { 0 };
9484ab1b 1238 unsigned flags = IOMAP_FAULT;
a7d73fe6 1239 int error, major = 0;
d2c43ef1 1240 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1241 bool sync;
ab77dab4 1242 vm_fault_t ret = 0;
a7d73fe6 1243 void *entry;
1b5a1cb2 1244 pfn_t pfn;
a7d73fe6 1245
ab77dab4 1246 trace_dax_pte_fault(inode, vmf, ret);
a7d73fe6
CH
1247 /*
1248 * Check whether offset isn't beyond end of file now. Caller is supposed
1249 * to hold locks serializing us with truncate / punch hole so this is
1250 * a reliable test.
1251 */
a9c42b33 1252 if (pos >= i_size_read(inode)) {
ab77dab4 1253 ret = VM_FAULT_SIGBUS;
a9c42b33
RZ
1254 goto out;
1255 }
a7d73fe6 1256
d2c43ef1 1257 if (write && !vmf->cow_page)
a7d73fe6
CH
1258 flags |= IOMAP_WRITE;
1259
b15cd800
MW
1260 entry = grab_mapping_entry(&xas, mapping, 0);
1261 if (xa_is_internal(entry)) {
1262 ret = xa_to_internal(entry);
13e451fd
JK
1263 goto out;
1264 }
1265
e2093926
RZ
1266 /*
1267 * It is possible, particularly with mixed reads & writes to private
1268 * mappings, that we have raced with a PMD fault that overlaps with
1269 * the PTE we need to set up. If so just return and the fault will be
1270 * retried.
1271 */
1272 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
ab77dab4 1273 ret = VM_FAULT_NOPAGE;
e2093926
RZ
1274 goto unlock_entry;
1275 }
1276
a7d73fe6
CH
1277 /*
1278 * Note that we don't bother to use iomap_apply here: DAX required
1279 * the file system block size to be equal the page size, which means
1280 * that we never have to deal with more than a single extent here.
1281 */
1282 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
c0b24625
JK
1283 if (iomap_errp)
1284 *iomap_errp = error;
a9c42b33 1285 if (error) {
ab77dab4 1286 ret = dax_fault_return(error);
13e451fd 1287 goto unlock_entry;
a9c42b33 1288 }
a7d73fe6 1289 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
13e451fd
JK
1290 error = -EIO; /* fs corruption? */
1291 goto error_finish_iomap;
a7d73fe6
CH
1292 }
1293
a7d73fe6 1294 if (vmf->cow_page) {
31a6f1a6
JK
1295 sector_t sector = dax_iomap_sector(&iomap, pos);
1296
a7d73fe6
CH
1297 switch (iomap.type) {
1298 case IOMAP_HOLE:
1299 case IOMAP_UNWRITTEN:
1300 clear_user_highpage(vmf->cow_page, vaddr);
1301 break;
1302 case IOMAP_MAPPED:
cccbce67
DW
1303 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1304 sector, PAGE_SIZE, vmf->cow_page, vaddr);
a7d73fe6
CH
1305 break;
1306 default:
1307 WARN_ON_ONCE(1);
1308 error = -EIO;
1309 break;
1310 }
1311
1312 if (error)
13e451fd 1313 goto error_finish_iomap;
b1aa812b
JK
1314
1315 __SetPageUptodate(vmf->cow_page);
ab77dab4
SJ
1316 ret = finish_fault(vmf);
1317 if (!ret)
1318 ret = VM_FAULT_DONE_COW;
13e451fd 1319 goto finish_iomap;
a7d73fe6
CH
1320 }
1321
aaa422c4 1322 sync = dax_fault_is_synchronous(flags, vma, &iomap);
caa51d26 1323
a7d73fe6
CH
1324 switch (iomap.type) {
1325 case IOMAP_MAPPED:
1326 if (iomap.flags & IOMAP_F_NEW) {
1327 count_vm_event(PGMAJFAULT);
a0987ad5 1328 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
a7d73fe6
CH
1329 major = VM_FAULT_MAJOR;
1330 }
1b5a1cb2
JK
1331 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1332 if (error < 0)
1333 goto error_finish_iomap;
1334
b15cd800 1335 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
caa51d26 1336 0, write && !sync);
1b5a1cb2 1337
caa51d26
JK
1338 /*
1339 * If we are doing synchronous page fault and inode needs fsync,
1340 * we can insert PTE into page tables only after that happens.
1341 * Skip insertion for now and return the pfn so that caller can
1342 * insert it after fsync is done.
1343 */
1344 if (sync) {
1345 if (WARN_ON_ONCE(!pfnp)) {
1346 error = -EIO;
1347 goto error_finish_iomap;
1348 }
1349 *pfnp = pfn;
ab77dab4 1350 ret = VM_FAULT_NEEDDSYNC | major;
caa51d26
JK
1351 goto finish_iomap;
1352 }
1b5a1cb2
JK
1353 trace_dax_insert_mapping(inode, vmf, entry);
1354 if (write)
ab77dab4 1355 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1b5a1cb2 1356 else
ab77dab4 1357 ret = vmf_insert_mixed(vma, vaddr, pfn);
1b5a1cb2 1358
ab77dab4 1359 goto finish_iomap;
a7d73fe6
CH
1360 case IOMAP_UNWRITTEN:
1361 case IOMAP_HOLE:
d2c43ef1 1362 if (!write) {
b15cd800 1363 ret = dax_load_hole(&xas, mapping, &entry, vmf);
13e451fd 1364 goto finish_iomap;
1550290b 1365 }
a7d73fe6
CH
1366 /*FALLTHRU*/
1367 default:
1368 WARN_ON_ONCE(1);
1369 error = -EIO;
1370 break;
1371 }
1372
13e451fd 1373 error_finish_iomap:
ab77dab4 1374 ret = dax_fault_return(error);
9f141d6e
JK
1375 finish_iomap:
1376 if (ops->iomap_end) {
1377 int copied = PAGE_SIZE;
1378
ab77dab4 1379 if (ret & VM_FAULT_ERROR)
9f141d6e
JK
1380 copied = 0;
1381 /*
1382 * The fault is done by now and there's no way back (other
1383 * thread may be already happily using PTE we have installed).
1384 * Just ignore error from ->iomap_end since we cannot do much
1385 * with it.
1386 */
1387 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1550290b 1388 }
13e451fd 1389 unlock_entry:
b15cd800 1390 dax_unlock_entry(&xas, entry);
13e451fd 1391 out:
ab77dab4
SJ
1392 trace_dax_pte_fault_done(inode, vmf, ret);
1393 return ret | major;
a7d73fe6 1394}
642261ac
RZ
1395
1396#ifdef CONFIG_FS_DAX_PMD
b15cd800
MW
1397static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1398 struct iomap *iomap, void **entry)
642261ac 1399{
f4200391
DJ
1400 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1401 unsigned long pmd_addr = vmf->address & PMD_MASK;
11cf9d86 1402 struct vm_area_struct *vma = vmf->vma;
653b2ea3 1403 struct inode *inode = mapping->host;
11cf9d86 1404 pgtable_t pgtable = NULL;
642261ac
RZ
1405 struct page *zero_page;
1406 spinlock_t *ptl;
1407 pmd_t pmd_entry;
3fe0791c 1408 pfn_t pfn;
642261ac 1409
f4200391 1410 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
642261ac
RZ
1411
1412 if (unlikely(!zero_page))
653b2ea3 1413 goto fallback;
642261ac 1414
3fe0791c 1415 pfn = page_to_pfn_t(zero_page);
b15cd800 1416 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943 1417 DAX_PMD | DAX_ZERO_PAGE, false);
642261ac 1418
11cf9d86
AK
1419 if (arch_needs_pgtable_deposit()) {
1420 pgtable = pte_alloc_one(vma->vm_mm);
1421 if (!pgtable)
1422 return VM_FAULT_OOM;
1423 }
1424
f4200391
DJ
1425 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1426 if (!pmd_none(*(vmf->pmd))) {
642261ac 1427 spin_unlock(ptl);
653b2ea3 1428 goto fallback;
642261ac
RZ
1429 }
1430
11cf9d86
AK
1431 if (pgtable) {
1432 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1433 mm_inc_nr_ptes(vma->vm_mm);
1434 }
f4200391 1435 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
642261ac 1436 pmd_entry = pmd_mkhuge(pmd_entry);
f4200391 1437 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
642261ac 1438 spin_unlock(ptl);
b15cd800 1439 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
642261ac 1440 return VM_FAULT_NOPAGE;
653b2ea3
RZ
1441
1442fallback:
11cf9d86
AK
1443 if (pgtable)
1444 pte_free(vma->vm_mm, pgtable);
b15cd800 1445 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
653b2ea3 1446 return VM_FAULT_FALLBACK;
642261ac
RZ
1447}
1448
ab77dab4 1449static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
a2d58167 1450 const struct iomap_ops *ops)
642261ac 1451{
f4200391 1452 struct vm_area_struct *vma = vmf->vma;
642261ac 1453 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1454 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
d8a849e1
DJ
1455 unsigned long pmd_addr = vmf->address & PMD_MASK;
1456 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1457 bool sync;
9484ab1b 1458 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac 1459 struct inode *inode = mapping->host;
ab77dab4 1460 vm_fault_t result = VM_FAULT_FALLBACK;
642261ac 1461 struct iomap iomap = { 0 };
b15cd800 1462 pgoff_t max_pgoff;
642261ac
RZ
1463 void *entry;
1464 loff_t pos;
1465 int error;
302a5e31 1466 pfn_t pfn;
642261ac 1467
282a8e03
RZ
1468 /*
1469 * Check whether offset isn't beyond end of file now. Caller is
1470 * supposed to hold locks serializing us with truncate / punch hole so
1471 * this is a reliable test.
1472 */
957ac8c4 1473 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
282a8e03 1474
f4200391 1475 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
282a8e03 1476
fffa281b
RZ
1477 /*
1478 * Make sure that the faulting address's PMD offset (color) matches
1479 * the PMD offset from the start of the file. This is necessary so
1480 * that a PMD range in the page table overlaps exactly with a PMD
a77d19f4 1481 * range in the page cache.
fffa281b
RZ
1482 */
1483 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1484 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1485 goto fallback;
1486
642261ac
RZ
1487 /* Fall back to PTEs if we're going to COW */
1488 if (write && !(vma->vm_flags & VM_SHARED))
1489 goto fallback;
1490
1491 /* If the PMD would extend outside the VMA */
1492 if (pmd_addr < vma->vm_start)
1493 goto fallback;
1494 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1495 goto fallback;
1496
b15cd800 1497 if (xas.xa_index >= max_pgoff) {
282a8e03
RZ
1498 result = VM_FAULT_SIGBUS;
1499 goto out;
1500 }
642261ac
RZ
1501
1502 /* If the PMD would extend beyond the file size */
b15cd800 1503 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
642261ac
RZ
1504 goto fallback;
1505
876f2946 1506 /*
b15cd800
MW
1507 * grab_mapping_entry() will make sure we get an empty PMD entry,
1508 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1509 * entry is already in the array, for instance), it will return
1510 * VM_FAULT_FALLBACK.
876f2946 1511 */
b15cd800
MW
1512 entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1513 if (xa_is_internal(entry)) {
1514 result = xa_to_internal(entry);
876f2946 1515 goto fallback;
b15cd800 1516 }
876f2946 1517
e2093926
RZ
1518 /*
1519 * It is possible, particularly with mixed reads & writes to private
1520 * mappings, that we have raced with a PTE fault that overlaps with
1521 * the PMD we need to set up. If so just return and the fault will be
1522 * retried.
1523 */
1524 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1525 !pmd_devmap(*vmf->pmd)) {
1526 result = 0;
1527 goto unlock_entry;
1528 }
1529
642261ac
RZ
1530 /*
1531 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1532 * setting up a mapping, so really we're using iomap_begin() as a way
1533 * to look up our filesystem block.
1534 */
b15cd800 1535 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
642261ac
RZ
1536 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1537 if (error)
876f2946 1538 goto unlock_entry;
9f141d6e 1539
642261ac
RZ
1540 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1541 goto finish_iomap;
1542
aaa422c4 1543 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
caa51d26 1544
642261ac
RZ
1545 switch (iomap.type) {
1546 case IOMAP_MAPPED:
302a5e31
JK
1547 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1548 if (error < 0)
1549 goto finish_iomap;
1550
b15cd800 1551 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
3159f943 1552 DAX_PMD, write && !sync);
302a5e31 1553
caa51d26
JK
1554 /*
1555 * If we are doing synchronous page fault and inode needs fsync,
1556 * we can insert PMD into page tables only after that happens.
1557 * Skip insertion for now and return the pfn so that caller can
1558 * insert it after fsync is done.
1559 */
1560 if (sync) {
1561 if (WARN_ON_ONCE(!pfnp))
1562 goto finish_iomap;
1563 *pfnp = pfn;
1564 result = VM_FAULT_NEEDDSYNC;
1565 goto finish_iomap;
1566 }
1567
302a5e31 1568 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
fce86ff5 1569 result = vmf_insert_pfn_pmd(vmf, pfn, write);
642261ac
RZ
1570 break;
1571 case IOMAP_UNWRITTEN:
1572 case IOMAP_HOLE:
1573 if (WARN_ON_ONCE(write))
876f2946 1574 break;
b15cd800 1575 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
642261ac
RZ
1576 break;
1577 default:
1578 WARN_ON_ONCE(1);
1579 break;
1580 }
1581
1582 finish_iomap:
1583 if (ops->iomap_end) {
9f141d6e
JK
1584 int copied = PMD_SIZE;
1585
1586 if (result == VM_FAULT_FALLBACK)
1587 copied = 0;
1588 /*
1589 * The fault is done by now and there's no way back (other
1590 * thread may be already happily using PMD we have installed).
1591 * Just ignore error from ->iomap_end since we cannot do much
1592 * with it.
1593 */
1594 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1595 &iomap);
642261ac 1596 }
876f2946 1597 unlock_entry:
b15cd800 1598 dax_unlock_entry(&xas, entry);
642261ac
RZ
1599 fallback:
1600 if (result == VM_FAULT_FALLBACK) {
d8a849e1 1601 split_huge_pmd(vma, vmf->pmd, vmf->address);
642261ac
RZ
1602 count_vm_event(THP_FAULT_FALLBACK);
1603 }
282a8e03 1604out:
f4200391 1605 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
642261ac
RZ
1606 return result;
1607}
a2d58167 1608#else
ab77dab4 1609static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
01cddfe9 1610 const struct iomap_ops *ops)
a2d58167
DJ
1611{
1612 return VM_FAULT_FALLBACK;
1613}
642261ac 1614#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1615
1616/**
1617 * dax_iomap_fault - handle a page fault on a DAX file
1618 * @vmf: The description of the fault
cec04e8c 1619 * @pe_size: Size of the page to fault in
9a0dd422 1620 * @pfnp: PFN to insert for synchronous faults if fsync is required
c0b24625 1621 * @iomap_errp: Storage for detailed error code in case of error
cec04e8c 1622 * @ops: Iomap ops passed from the file system
a2d58167
DJ
1623 *
1624 * When a page fault occurs, filesystems may call this helper in
1625 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1626 * has done all the necessary locking for page fault to proceed
1627 * successfully.
1628 */
ab77dab4 1629vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
c0b24625 1630 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
a2d58167 1631{
c791ace1
DJ
1632 switch (pe_size) {
1633 case PE_SIZE_PTE:
c0b24625 1634 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
c791ace1 1635 case PE_SIZE_PMD:
9a0dd422 1636 return dax_iomap_pmd_fault(vmf, pfnp, ops);
a2d58167
DJ
1637 default:
1638 return VM_FAULT_FALLBACK;
1639 }
1640}
1641EXPORT_SYMBOL_GPL(dax_iomap_fault);
71eab6df 1642
a77d19f4 1643/*
71eab6df
JK
1644 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1645 * @vmf: The description of the fault
71eab6df 1646 * @pfn: PFN to insert
cfc93c6c 1647 * @order: Order of entry to insert.
71eab6df 1648 *
a77d19f4
MW
1649 * This function inserts a writeable PTE or PMD entry into the page tables
1650 * for an mmaped DAX file. It also marks the page cache entry as dirty.
71eab6df 1651 */
cfc93c6c
MW
1652static vm_fault_t
1653dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
71eab6df
JK
1654{
1655 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cfc93c6c
MW
1656 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1657 void *entry;
ab77dab4 1658 vm_fault_t ret;
71eab6df 1659
cfc93c6c
MW
1660 xas_lock_irq(&xas);
1661 entry = get_unlocked_entry(&xas);
71eab6df
JK
1662 /* Did we race with someone splitting entry or so? */
1663 if (!entry ||
cfc93c6c 1664 (order == 0 && !dax_is_pte_entry(entry)) ||
0e40de03 1665 (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
cfc93c6c
MW
1666 put_unlocked_entry(&xas, entry);
1667 xas_unlock_irq(&xas);
71eab6df
JK
1668 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1669 VM_FAULT_NOPAGE);
1670 return VM_FAULT_NOPAGE;
1671 }
cfc93c6c
MW
1672 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1673 dax_lock_entry(&xas, entry);
1674 xas_unlock_irq(&xas);
1675 if (order == 0)
ab77dab4 1676 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
71eab6df 1677#ifdef CONFIG_FS_DAX_PMD
cfc93c6c 1678 else if (order == PMD_ORDER)
fce86ff5 1679 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
71eab6df 1680#endif
cfc93c6c 1681 else
ab77dab4 1682 ret = VM_FAULT_FALLBACK;
cfc93c6c 1683 dax_unlock_entry(&xas, entry);
ab77dab4
SJ
1684 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1685 return ret;
71eab6df
JK
1686}
1687
1688/**
1689 * dax_finish_sync_fault - finish synchronous page fault
1690 * @vmf: The description of the fault
1691 * @pe_size: Size of entry to be inserted
1692 * @pfn: PFN to insert
1693 *
1694 * This function ensures that the file range touched by the page fault is
1695 * stored persistently on the media and handles inserting of appropriate page
1696 * table entry.
1697 */
ab77dab4
SJ
1698vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1699 enum page_entry_size pe_size, pfn_t pfn)
71eab6df
JK
1700{
1701 int err;
1702 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
cfc93c6c
MW
1703 unsigned int order = pe_order(pe_size);
1704 size_t len = PAGE_SIZE << order;
71eab6df 1705
71eab6df
JK
1706 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1707 if (err)
1708 return VM_FAULT_SIGBUS;
cfc93c6c 1709 return dax_insert_pfn_mkwrite(vmf, pfn, order);
71eab6df
JK
1710}
1711EXPORT_SYMBOL_GPL(dax_finish_sync_fault);