mm/memunmap: don't access uninitialized memmap in memunmap_pages()
[linux-2.6-block.git] / fs / dax.c
CommitLineData
2025cf9e 1// SPDX-License-Identifier: GPL-2.0-only
d475c634
MW
2/*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
d475c634
MW
7 */
8
9#include <linux/atomic.h>
10#include <linux/blkdev.h>
11#include <linux/buffer_head.h>
d77e92e2 12#include <linux/dax.h>
d475c634
MW
13#include <linux/fs.h>
14#include <linux/genhd.h>
f7ca90b1
MW
15#include <linux/highmem.h>
16#include <linux/memcontrol.h>
17#include <linux/mm.h>
d475c634 18#include <linux/mutex.h>
9973c98e 19#include <linux/pagevec.h>
289c6aed 20#include <linux/sched.h>
f361bf4a 21#include <linux/sched/signal.h>
d475c634 22#include <linux/uio.h>
f7ca90b1 23#include <linux/vmstat.h>
34c0fd54 24#include <linux/pfn_t.h>
0e749e54 25#include <linux/sizes.h>
4b4bb46d 26#include <linux/mmu_notifier.h>
a254e568 27#include <linux/iomap.h>
11cf9d86 28#include <asm/pgalloc.h>
d475c634 29
282a8e03
RZ
30#define CREATE_TRACE_POINTS
31#include <trace/events/fs_dax.h>
32
cfc93c6c
MW
33static inline unsigned int pe_order(enum page_entry_size pe_size)
34{
35 if (pe_size == PE_SIZE_PTE)
36 return PAGE_SHIFT - PAGE_SHIFT;
37 if (pe_size == PE_SIZE_PMD)
38 return PMD_SHIFT - PAGE_SHIFT;
39 if (pe_size == PE_SIZE_PUD)
40 return PUD_SHIFT - PAGE_SHIFT;
41 return ~0;
42}
43
ac401cc7
JK
44/* We choose 4096 entries - same as per-zone page wait tables */
45#define DAX_WAIT_TABLE_BITS 12
46#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
917f3452
RZ
48/* The 'colour' (ie low bits) within a PMD of a page offset. */
49#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
977fbdcd 50#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
917f3452 51
cfc93c6c
MW
52/* The order of a PMD entry */
53#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
54
ce95ab0f 55static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
56
57static int __init init_dax_wait_table(void)
58{
59 int i;
60
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
63 return 0;
64}
65fs_initcall(init_dax_wait_table);
66
527b19d0 67/*
3159f943
MW
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
527b19d0
RZ
72 *
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75 * block allocation.
76 */
3159f943
MW
77#define DAX_SHIFT (4)
78#define DAX_LOCKED (1UL << 0)
79#define DAX_PMD (1UL << 1)
80#define DAX_ZERO_PAGE (1UL << 2)
81#define DAX_EMPTY (1UL << 3)
527b19d0 82
a77d19f4 83static unsigned long dax_to_pfn(void *entry)
527b19d0 84{
3159f943 85 return xa_to_value(entry) >> DAX_SHIFT;
527b19d0
RZ
86}
87
9f32d221
MW
88static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89{
90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91}
92
cfc93c6c
MW
93static bool dax_is_locked(void *entry)
94{
95 return xa_to_value(entry) & DAX_LOCKED;
96}
97
a77d19f4 98static unsigned int dax_entry_order(void *entry)
527b19d0 99{
3159f943 100 if (xa_to_value(entry) & DAX_PMD)
cfc93c6c 101 return PMD_ORDER;
527b19d0
RZ
102 return 0;
103}
104
fda490d3 105static unsigned long dax_is_pmd_entry(void *entry)
d1a5f2b4 106{
3159f943 107 return xa_to_value(entry) & DAX_PMD;
d1a5f2b4
DW
108}
109
fda490d3 110static bool dax_is_pte_entry(void *entry)
d475c634 111{
3159f943 112 return !(xa_to_value(entry) & DAX_PMD);
d475c634
MW
113}
114
642261ac 115static int dax_is_zero_entry(void *entry)
d475c634 116{
3159f943 117 return xa_to_value(entry) & DAX_ZERO_PAGE;
d475c634
MW
118}
119
642261ac 120static int dax_is_empty_entry(void *entry)
b2e0d162 121{
3159f943 122 return xa_to_value(entry) & DAX_EMPTY;
b2e0d162
DW
123}
124
23c84eb7
MWO
125/*
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
128 */
129static bool dax_is_conflict(void *entry)
130{
131 return entry == XA_RETRY_ENTRY;
132}
133
ac401cc7 134/*
a77d19f4 135 * DAX page cache entry locking
ac401cc7
JK
136 */
137struct exceptional_entry_key {
ec4907ff 138 struct xarray *xa;
63e95b5c 139 pgoff_t entry_start;
ac401cc7
JK
140};
141
142struct wait_exceptional_entry_queue {
ac6424b9 143 wait_queue_entry_t wait;
ac401cc7
JK
144 struct exceptional_entry_key key;
145};
146
b15cd800
MW
147static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148 void *entry, struct exceptional_entry_key *key)
63e95b5c
RZ
149{
150 unsigned long hash;
b15cd800 151 unsigned long index = xas->xa_index;
63e95b5c
RZ
152
153 /*
154 * If 'entry' is a PMD, align the 'index' that we use for the wait
155 * queue to the start of that PMD. This ensures that all offsets in
156 * the range covered by the PMD map to the same bit lock.
157 */
642261ac 158 if (dax_is_pmd_entry(entry))
917f3452 159 index &= ~PG_PMD_COLOUR;
b15cd800 160 key->xa = xas->xa;
63e95b5c
RZ
161 key->entry_start = index;
162
b15cd800 163 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
63e95b5c
RZ
164 return wait_table + hash;
165}
166
ec4907ff
MW
167static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168 unsigned int mode, int sync, void *keyp)
ac401cc7
JK
169{
170 struct exceptional_entry_key *key = keyp;
171 struct wait_exceptional_entry_queue *ewait =
172 container_of(wait, struct wait_exceptional_entry_queue, wait);
173
ec4907ff 174 if (key->xa != ewait->key.xa ||
63e95b5c 175 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
176 return 0;
177 return autoremove_wake_function(wait, mode, sync, NULL);
178}
179
e30331ff 180/*
b93b0163
MW
181 * @entry may no longer be the entry at the index in the mapping.
182 * The important information it's conveying is whether the entry at
183 * this index used to be a PMD entry.
e30331ff 184 */
b15cd800 185static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
e30331ff
RZ
186{
187 struct exceptional_entry_key key;
188 wait_queue_head_t *wq;
189
b15cd800 190 wq = dax_entry_waitqueue(xas, entry, &key);
e30331ff
RZ
191
192 /*
193 * Checking for locked entry and prepare_to_wait_exclusive() happens
b93b0163 194 * under the i_pages lock, ditto for entry handling in our callers.
e30331ff
RZ
195 * So at this point all tasks that could have seen our entry locked
196 * must be in the waitqueue and the following check will see them.
197 */
198 if (waitqueue_active(wq))
199 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
200}
201
cfc93c6c
MW
202/*
203 * Look up entry in page cache, wait for it to become unlocked if it
204 * is a DAX entry and return it. The caller must subsequently call
205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
23c84eb7
MWO
206 * if it did. The entry returned may have a larger order than @order.
207 * If @order is larger than the order of the entry found in i_pages, this
208 * function returns a dax_is_conflict entry.
cfc93c6c
MW
209 *
210 * Must be called with the i_pages lock held.
211 */
23c84eb7 212static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
cfc93c6c
MW
213{
214 void *entry;
215 struct wait_exceptional_entry_queue ewait;
216 wait_queue_head_t *wq;
217
218 init_wait(&ewait.wait);
219 ewait.wait.func = wake_exceptional_entry_func;
220
221 for (;;) {
0e40de03 222 entry = xas_find_conflict(xas);
23c84eb7
MWO
223 if (dax_entry_order(entry) < order)
224 return XA_RETRY_ENTRY;
0e40de03 225 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
cfc93c6c
MW
226 !dax_is_locked(entry))
227 return entry;
228
b15cd800 229 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
cfc93c6c
MW
230 prepare_to_wait_exclusive(wq, &ewait.wait,
231 TASK_UNINTERRUPTIBLE);
232 xas_unlock_irq(xas);
233 xas_reset(xas);
234 schedule();
235 finish_wait(wq, &ewait.wait);
236 xas_lock_irq(xas);
237 }
238}
239
55e56f06
MW
240/*
241 * The only thing keeping the address space around is the i_pages lock
242 * (it's cycled in clear_inode() after removing the entries from i_pages)
243 * After we call xas_unlock_irq(), we cannot touch xas->xa.
244 */
245static void wait_entry_unlocked(struct xa_state *xas, void *entry)
246{
247 struct wait_exceptional_entry_queue ewait;
248 wait_queue_head_t *wq;
249
250 init_wait(&ewait.wait);
251 ewait.wait.func = wake_exceptional_entry_func;
252
253 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
d8a70641
DW
254 /*
255 * Unlike get_unlocked_entry() there is no guarantee that this
256 * path ever successfully retrieves an unlocked entry before an
257 * inode dies. Perform a non-exclusive wait in case this path
258 * never successfully performs its own wake up.
259 */
260 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
55e56f06
MW
261 xas_unlock_irq(xas);
262 schedule();
263 finish_wait(wq, &ewait.wait);
55e56f06
MW
264}
265
cfc93c6c
MW
266static void put_unlocked_entry(struct xa_state *xas, void *entry)
267{
268 /* If we were the only waiter woken, wake the next one */
61c30c98 269 if (entry && !dax_is_conflict(entry))
cfc93c6c
MW
270 dax_wake_entry(xas, entry, false);
271}
272
273/*
274 * We used the xa_state to get the entry, but then we locked the entry and
275 * dropped the xa_lock, so we know the xa_state is stale and must be reset
276 * before use.
277 */
278static void dax_unlock_entry(struct xa_state *xas, void *entry)
279{
280 void *old;
281
7ae2ea7d 282 BUG_ON(dax_is_locked(entry));
cfc93c6c
MW
283 xas_reset(xas);
284 xas_lock_irq(xas);
285 old = xas_store(xas, entry);
286 xas_unlock_irq(xas);
287 BUG_ON(!dax_is_locked(old));
288 dax_wake_entry(xas, entry, false);
289}
290
291/*
292 * Return: The entry stored at this location before it was locked.
293 */
294static void *dax_lock_entry(struct xa_state *xas, void *entry)
295{
296 unsigned long v = xa_to_value(entry);
297 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
298}
299
d2c997c0
DW
300static unsigned long dax_entry_size(void *entry)
301{
302 if (dax_is_zero_entry(entry))
303 return 0;
304 else if (dax_is_empty_entry(entry))
305 return 0;
306 else if (dax_is_pmd_entry(entry))
307 return PMD_SIZE;
308 else
309 return PAGE_SIZE;
310}
311
a77d19f4 312static unsigned long dax_end_pfn(void *entry)
d2c997c0 313{
a77d19f4 314 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
d2c997c0
DW
315}
316
317/*
318 * Iterate through all mapped pfns represented by an entry, i.e. skip
319 * 'empty' and 'zero' entries.
320 */
321#define for_each_mapped_pfn(entry, pfn) \
a77d19f4
MW
322 for (pfn = dax_to_pfn(entry); \
323 pfn < dax_end_pfn(entry); pfn++)
d2c997c0 324
73449daf
DW
325/*
326 * TODO: for reflink+dax we need a way to associate a single page with
327 * multiple address_space instances at different linear_page_index()
328 * offsets.
329 */
330static void dax_associate_entry(void *entry, struct address_space *mapping,
331 struct vm_area_struct *vma, unsigned long address)
d2c997c0 332{
73449daf
DW
333 unsigned long size = dax_entry_size(entry), pfn, index;
334 int i = 0;
d2c997c0
DW
335
336 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
337 return;
338
73449daf 339 index = linear_page_index(vma, address & ~(size - 1));
d2c997c0
DW
340 for_each_mapped_pfn(entry, pfn) {
341 struct page *page = pfn_to_page(pfn);
342
343 WARN_ON_ONCE(page->mapping);
344 page->mapping = mapping;
73449daf 345 page->index = index + i++;
d2c997c0
DW
346 }
347}
348
349static void dax_disassociate_entry(void *entry, struct address_space *mapping,
350 bool trunc)
351{
352 unsigned long pfn;
353
354 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
355 return;
356
357 for_each_mapped_pfn(entry, pfn) {
358 struct page *page = pfn_to_page(pfn);
359
360 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
361 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
362 page->mapping = NULL;
73449daf 363 page->index = 0;
d2c997c0
DW
364 }
365}
366
5fac7408
DW
367static struct page *dax_busy_page(void *entry)
368{
369 unsigned long pfn;
370
371 for_each_mapped_pfn(entry, pfn) {
372 struct page *page = pfn_to_page(pfn);
373
374 if (page_ref_count(page) > 1)
375 return page;
376 }
377 return NULL;
378}
379
c5bbd451
MW
380/*
381 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
382 * @page: The page whose entry we want to lock
383 *
384 * Context: Process context.
27359fd6
MW
385 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
386 * not be locked.
c5bbd451 387 */
27359fd6 388dax_entry_t dax_lock_page(struct page *page)
c2a7d2a1 389{
9f32d221
MW
390 XA_STATE(xas, NULL, 0);
391 void *entry;
c2a7d2a1 392
c5bbd451
MW
393 /* Ensure page->mapping isn't freed while we look at it */
394 rcu_read_lock();
c2a7d2a1 395 for (;;) {
9f32d221 396 struct address_space *mapping = READ_ONCE(page->mapping);
c2a7d2a1 397
27359fd6 398 entry = NULL;
c93db7bb 399 if (!mapping || !dax_mapping(mapping))
c5bbd451 400 break;
c2a7d2a1
DW
401
402 /*
403 * In the device-dax case there's no need to lock, a
404 * struct dev_pagemap pin is sufficient to keep the
405 * inode alive, and we assume we have dev_pagemap pin
406 * otherwise we would not have a valid pfn_to_page()
407 * translation.
408 */
27359fd6 409 entry = (void *)~0UL;
9f32d221 410 if (S_ISCHR(mapping->host->i_mode))
c5bbd451 411 break;
c2a7d2a1 412
9f32d221
MW
413 xas.xa = &mapping->i_pages;
414 xas_lock_irq(&xas);
c2a7d2a1 415 if (mapping != page->mapping) {
9f32d221 416 xas_unlock_irq(&xas);
c2a7d2a1
DW
417 continue;
418 }
9f32d221
MW
419 xas_set(&xas, page->index);
420 entry = xas_load(&xas);
421 if (dax_is_locked(entry)) {
c5bbd451 422 rcu_read_unlock();
55e56f06 423 wait_entry_unlocked(&xas, entry);
c5bbd451 424 rcu_read_lock();
6d7cd8c1 425 continue;
c2a7d2a1 426 }
9f32d221
MW
427 dax_lock_entry(&xas, entry);
428 xas_unlock_irq(&xas);
c5bbd451 429 break;
c2a7d2a1 430 }
c5bbd451 431 rcu_read_unlock();
27359fd6 432 return (dax_entry_t)entry;
c2a7d2a1
DW
433}
434
27359fd6 435void dax_unlock_page(struct page *page, dax_entry_t cookie)
c2a7d2a1
DW
436{
437 struct address_space *mapping = page->mapping;
9f32d221 438 XA_STATE(xas, &mapping->i_pages, page->index);
c2a7d2a1 439
9f32d221 440 if (S_ISCHR(mapping->host->i_mode))
c2a7d2a1
DW
441 return;
442
27359fd6 443 dax_unlock_entry(&xas, (void *)cookie);
c2a7d2a1
DW
444}
445
ac401cc7 446/*
a77d19f4
MW
447 * Find page cache entry at given index. If it is a DAX entry, return it
448 * with the entry locked. If the page cache doesn't contain an entry at
449 * that index, add a locked empty entry.
ac401cc7 450 *
3159f943 451 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
b15cd800
MW
452 * either return that locked entry or will return VM_FAULT_FALLBACK.
453 * This will happen if there are any PTE entries within the PMD range
454 * that we are requesting.
642261ac 455 *
b15cd800
MW
456 * We always favor PTE entries over PMD entries. There isn't a flow where we
457 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
458 * insertion will fail if it finds any PTE entries already in the tree, and a
459 * PTE insertion will cause an existing PMD entry to be unmapped and
460 * downgraded to PTE entries. This happens for both PMD zero pages as
461 * well as PMD empty entries.
642261ac 462 *
b15cd800
MW
463 * The exception to this downgrade path is for PMD entries that have
464 * real storage backing them. We will leave these real PMD entries in
465 * the tree, and PTE writes will simply dirty the entire PMD entry.
642261ac 466 *
ac401cc7
JK
467 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
468 * persistent memory the benefit is doubtful. We can add that later if we can
469 * show it helps.
b15cd800
MW
470 *
471 * On error, this function does not return an ERR_PTR. Instead it returns
472 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
473 * overlap with xarray value entries.
ac401cc7 474 */
b15cd800 475static void *grab_mapping_entry(struct xa_state *xas,
23c84eb7 476 struct address_space *mapping, unsigned int order)
ac401cc7 477{
b15cd800
MW
478 unsigned long index = xas->xa_index;
479 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
480 void *entry;
642261ac 481
b15cd800
MW
482retry:
483 xas_lock_irq(xas);
23c84eb7 484 entry = get_unlocked_entry(xas, order);
91d25ba8 485
642261ac 486 if (entry) {
23c84eb7
MWO
487 if (dax_is_conflict(entry))
488 goto fallback;
0e40de03 489 if (!xa_is_value(entry)) {
b15cd800
MW
490 xas_set_err(xas, EIO);
491 goto out_unlock;
492 }
493
23c84eb7 494 if (order == 0) {
91d25ba8 495 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
496 (dax_is_zero_entry(entry) ||
497 dax_is_empty_entry(entry))) {
498 pmd_downgrade = true;
499 }
500 }
501 }
502
b15cd800
MW
503 if (pmd_downgrade) {
504 /*
505 * Make sure 'entry' remains valid while we drop
506 * the i_pages lock.
507 */
508 dax_lock_entry(xas, entry);
642261ac 509
642261ac
RZ
510 /*
511 * Besides huge zero pages the only other thing that gets
512 * downgraded are empty entries which don't need to be
513 * unmapped.
514 */
b15cd800
MW
515 if (dax_is_zero_entry(entry)) {
516 xas_unlock_irq(xas);
517 unmap_mapping_pages(mapping,
518 xas->xa_index & ~PG_PMD_COLOUR,
519 PG_PMD_NR, false);
520 xas_reset(xas);
521 xas_lock_irq(xas);
e11f8b7b
RZ
522 }
523
b15cd800
MW
524 dax_disassociate_entry(entry, mapping, false);
525 xas_store(xas, NULL); /* undo the PMD join */
526 dax_wake_entry(xas, entry, true);
527 mapping->nrexceptional--;
528 entry = NULL;
529 xas_set(xas, index);
530 }
642261ac 531
b15cd800
MW
532 if (entry) {
533 dax_lock_entry(xas, entry);
534 } else {
23c84eb7
MWO
535 unsigned long flags = DAX_EMPTY;
536
537 if (order > 0)
538 flags |= DAX_PMD;
539 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
b15cd800
MW
540 dax_lock_entry(xas, entry);
541 if (xas_error(xas))
542 goto out_unlock;
ac401cc7 543 mapping->nrexceptional++;
ac401cc7 544 }
b15cd800
MW
545
546out_unlock:
547 xas_unlock_irq(xas);
548 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
549 goto retry;
550 if (xas->xa_node == XA_ERROR(-ENOMEM))
551 return xa_mk_internal(VM_FAULT_OOM);
552 if (xas_error(xas))
553 return xa_mk_internal(VM_FAULT_SIGBUS);
e3ad61c6 554 return entry;
b15cd800
MW
555fallback:
556 xas_unlock_irq(xas);
557 return xa_mk_internal(VM_FAULT_FALLBACK);
ac401cc7
JK
558}
559
5fac7408
DW
560/**
561 * dax_layout_busy_page - find first pinned page in @mapping
562 * @mapping: address space to scan for a page with ref count > 1
563 *
564 * DAX requires ZONE_DEVICE mapped pages. These pages are never
565 * 'onlined' to the page allocator so they are considered idle when
566 * page->count == 1. A filesystem uses this interface to determine if
567 * any page in the mapping is busy, i.e. for DMA, or other
568 * get_user_pages() usages.
569 *
570 * It is expected that the filesystem is holding locks to block the
571 * establishment of new mappings in this address_space. I.e. it expects
572 * to be able to run unmap_mapping_range() and subsequently not race
573 * mapping_mapped() becoming true.
574 */
575struct page *dax_layout_busy_page(struct address_space *mapping)
576{
084a8990
MW
577 XA_STATE(xas, &mapping->i_pages, 0);
578 void *entry;
579 unsigned int scanned = 0;
5fac7408 580 struct page *page = NULL;
5fac7408
DW
581
582 /*
583 * In the 'limited' case get_user_pages() for dax is disabled.
584 */
585 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
586 return NULL;
587
588 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
589 return NULL;
590
5fac7408
DW
591 /*
592 * If we race get_user_pages_fast() here either we'll see the
084a8990 593 * elevated page count in the iteration and wait, or
5fac7408
DW
594 * get_user_pages_fast() will see that the page it took a reference
595 * against is no longer mapped in the page tables and bail to the
596 * get_user_pages() slow path. The slow path is protected by
597 * pte_lock() and pmd_lock(). New references are not taken without
598 * holding those locks, and unmap_mapping_range() will not zero the
599 * pte or pmd without holding the respective lock, so we are
600 * guaranteed to either see new references or prevent new
601 * references from being established.
602 */
d75996dd 603 unmap_mapping_range(mapping, 0, 0, 0);
5fac7408 604
084a8990
MW
605 xas_lock_irq(&xas);
606 xas_for_each(&xas, entry, ULONG_MAX) {
607 if (WARN_ON_ONCE(!xa_is_value(entry)))
608 continue;
609 if (unlikely(dax_is_locked(entry)))
23c84eb7 610 entry = get_unlocked_entry(&xas, 0);
084a8990
MW
611 if (entry)
612 page = dax_busy_page(entry);
613 put_unlocked_entry(&xas, entry);
5fac7408
DW
614 if (page)
615 break;
084a8990
MW
616 if (++scanned % XA_CHECK_SCHED)
617 continue;
618
619 xas_pause(&xas);
620 xas_unlock_irq(&xas);
621 cond_resched();
622 xas_lock_irq(&xas);
5fac7408 623 }
084a8990 624 xas_unlock_irq(&xas);
5fac7408
DW
625 return page;
626}
627EXPORT_SYMBOL_GPL(dax_layout_busy_page);
628
a77d19f4 629static int __dax_invalidate_entry(struct address_space *mapping,
c6dcf52c
JK
630 pgoff_t index, bool trunc)
631{
07f2d89c 632 XA_STATE(xas, &mapping->i_pages, index);
c6dcf52c
JK
633 int ret = 0;
634 void *entry;
c6dcf52c 635
07f2d89c 636 xas_lock_irq(&xas);
23c84eb7 637 entry = get_unlocked_entry(&xas, 0);
3159f943 638 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
c6dcf52c
JK
639 goto out;
640 if (!trunc &&
07f2d89c
MW
641 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
642 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
c6dcf52c 643 goto out;
d2c997c0 644 dax_disassociate_entry(entry, mapping, trunc);
07f2d89c 645 xas_store(&xas, NULL);
c6dcf52c
JK
646 mapping->nrexceptional--;
647 ret = 1;
648out:
07f2d89c
MW
649 put_unlocked_entry(&xas, entry);
650 xas_unlock_irq(&xas);
c6dcf52c
JK
651 return ret;
652}
07f2d89c 653
ac401cc7 654/*
3159f943
MW
655 * Delete DAX entry at @index from @mapping. Wait for it
656 * to be unlocked before deleting it.
ac401cc7
JK
657 */
658int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
659{
a77d19f4 660 int ret = __dax_invalidate_entry(mapping, index, true);
ac401cc7 661
ac401cc7
JK
662 /*
663 * This gets called from truncate / punch_hole path. As such, the caller
664 * must hold locks protecting against concurrent modifications of the
a77d19f4 665 * page cache (usually fs-private i_mmap_sem for writing). Since the
3159f943 666 * caller has seen a DAX entry for this index, we better find it
ac401cc7
JK
667 * at that index as well...
668 */
c6dcf52c
JK
669 WARN_ON_ONCE(!ret);
670 return ret;
671}
672
c6dcf52c 673/*
3159f943 674 * Invalidate DAX entry if it is clean.
c6dcf52c
JK
675 */
676int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
677 pgoff_t index)
678{
a77d19f4 679 return __dax_invalidate_entry(mapping, index, false);
ac401cc7
JK
680}
681
cccbce67
DW
682static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
683 sector_t sector, size_t size, struct page *to,
684 unsigned long vaddr)
f7ca90b1 685{
cccbce67
DW
686 void *vto, *kaddr;
687 pgoff_t pgoff;
cccbce67
DW
688 long rc;
689 int id;
690
691 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
692 if (rc)
693 return rc;
694
695 id = dax_read_lock();
86ed913b 696 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
cccbce67
DW
697 if (rc < 0) {
698 dax_read_unlock(id);
699 return rc;
700 }
f7ca90b1 701 vto = kmap_atomic(to);
cccbce67 702 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
f7ca90b1 703 kunmap_atomic(vto);
cccbce67 704 dax_read_unlock(id);
f7ca90b1
MW
705 return 0;
706}
707
642261ac
RZ
708/*
709 * By this point grab_mapping_entry() has ensured that we have a locked entry
710 * of the appropriate size so we don't have to worry about downgrading PMDs to
711 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
712 * already in the tree, we will skip the insertion and just dirty the PMD as
713 * appropriate.
714 */
b15cd800
MW
715static void *dax_insert_entry(struct xa_state *xas,
716 struct address_space *mapping, struct vm_fault *vmf,
717 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
9973c98e 718{
b15cd800 719 void *new_entry = dax_make_entry(pfn, flags);
9973c98e 720
f5b7b748 721 if (dirty)
d2b2a28e 722 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 723
3159f943 724 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
b15cd800 725 unsigned long index = xas->xa_index;
91d25ba8
RZ
726 /* we are replacing a zero page with block mapping */
727 if (dax_is_pmd_entry(entry))
977fbdcd 728 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
b15cd800 729 PG_PMD_NR, false);
91d25ba8 730 else /* pte entry */
b15cd800 731 unmap_mapping_pages(mapping, index, 1, false);
9973c98e
RZ
732 }
733
b15cd800
MW
734 xas_reset(xas);
735 xas_lock_irq(xas);
1571c029
JK
736 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
737 void *old;
738
d2c997c0 739 dax_disassociate_entry(entry, mapping, false);
73449daf 740 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
642261ac 741 /*
a77d19f4 742 * Only swap our new entry into the page cache if the current
642261ac 743 * entry is a zero page or an empty entry. If a normal PTE or
a77d19f4 744 * PMD entry is already in the cache, we leave it alone. This
642261ac
RZ
745 * means that if we are trying to insert a PTE and the
746 * existing entry is a PMD, we will just leave the PMD in the
747 * tree and dirty it if necessary.
748 */
1571c029 749 old = dax_lock_entry(xas, new_entry);
b15cd800
MW
750 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
751 DAX_LOCKED));
91d25ba8 752 entry = new_entry;
b15cd800
MW
753 } else {
754 xas_load(xas); /* Walk the xa_state */
9973c98e 755 }
91d25ba8 756
f5b7b748 757 if (dirty)
b15cd800 758 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
91d25ba8 759
b15cd800 760 xas_unlock_irq(xas);
91d25ba8 761 return entry;
9973c98e
RZ
762}
763
a77d19f4
MW
764static inline
765unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
4b4bb46d
JK
766{
767 unsigned long address;
768
769 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
770 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
771 return address;
772}
773
774/* Walk all mappings of a given index of a file and writeprotect them */
a77d19f4
MW
775static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
776 unsigned long pfn)
4b4bb46d
JK
777{
778 struct vm_area_struct *vma;
f729c8c9
RZ
779 pte_t pte, *ptep = NULL;
780 pmd_t *pmdp = NULL;
4b4bb46d 781 spinlock_t *ptl;
4b4bb46d
JK
782
783 i_mmap_lock_read(mapping);
784 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
ac46d4f3
JG
785 struct mmu_notifier_range range;
786 unsigned long address;
4b4bb46d
JK
787
788 cond_resched();
789
790 if (!(vma->vm_flags & VM_SHARED))
791 continue;
792
793 address = pgoff_address(index, vma);
a4d1a885
JG
794
795 /*
0cefc36b 796 * Note because we provide range to follow_pte_pmd it will
a4d1a885
JG
797 * call mmu_notifier_invalidate_range_start() on our behalf
798 * before taking any lock.
799 */
ac46d4f3
JG
800 if (follow_pte_pmd(vma->vm_mm, address, &range,
801 &ptep, &pmdp, &ptl))
4b4bb46d 802 continue;
4b4bb46d 803
0f10851e
JG
804 /*
805 * No need to call mmu_notifier_invalidate_range() as we are
806 * downgrading page table protection not changing it to point
807 * to a new page.
808 *
ad56b738 809 * See Documentation/vm/mmu_notifier.rst
0f10851e 810 */
f729c8c9
RZ
811 if (pmdp) {
812#ifdef CONFIG_FS_DAX_PMD
813 pmd_t pmd;
814
815 if (pfn != pmd_pfn(*pmdp))
816 goto unlock_pmd;
f6f37321 817 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
f729c8c9
RZ
818 goto unlock_pmd;
819
820 flush_cache_page(vma, address, pfn);
024eee0e 821 pmd = pmdp_invalidate(vma, address, pmdp);
f729c8c9
RZ
822 pmd = pmd_wrprotect(pmd);
823 pmd = pmd_mkclean(pmd);
824 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
f729c8c9 825unlock_pmd:
f729c8c9 826#endif
ee190ca6 827 spin_unlock(ptl);
f729c8c9
RZ
828 } else {
829 if (pfn != pte_pfn(*ptep))
830 goto unlock_pte;
831 if (!pte_dirty(*ptep) && !pte_write(*ptep))
832 goto unlock_pte;
833
834 flush_cache_page(vma, address, pfn);
835 pte = ptep_clear_flush(vma, address, ptep);
836 pte = pte_wrprotect(pte);
837 pte = pte_mkclean(pte);
838 set_pte_at(vma->vm_mm, address, ptep, pte);
f729c8c9
RZ
839unlock_pte:
840 pte_unmap_unlock(ptep, ptl);
841 }
4b4bb46d 842
ac46d4f3 843 mmu_notifier_invalidate_range_end(&range);
4b4bb46d
JK
844 }
845 i_mmap_unlock_read(mapping);
846}
847
9fc747f6
MW
848static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
849 struct address_space *mapping, void *entry)
9973c98e 850{
e4b3448b 851 unsigned long pfn, index, count;
3fe0791c 852 long ret = 0;
9973c98e 853
9973c98e 854 /*
a6abc2c0
JK
855 * A page got tagged dirty in DAX mapping? Something is seriously
856 * wrong.
9973c98e 857 */
3159f943 858 if (WARN_ON(!xa_is_value(entry)))
a6abc2c0 859 return -EIO;
9973c98e 860
9fc747f6
MW
861 if (unlikely(dax_is_locked(entry))) {
862 void *old_entry = entry;
863
23c84eb7 864 entry = get_unlocked_entry(xas, 0);
9fc747f6
MW
865
866 /* Entry got punched out / reallocated? */
867 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
868 goto put_unlocked;
869 /*
870 * Entry got reallocated elsewhere? No need to writeback.
871 * We have to compare pfns as we must not bail out due to
872 * difference in lockbit or entry type.
873 */
874 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
875 goto put_unlocked;
876 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
877 dax_is_zero_entry(entry))) {
878 ret = -EIO;
879 goto put_unlocked;
880 }
881
882 /* Another fsync thread may have already done this entry */
883 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
884 goto put_unlocked;
9973c98e
RZ
885 }
886
a6abc2c0 887 /* Lock the entry to serialize with page faults */
9fc747f6
MW
888 dax_lock_entry(xas, entry);
889
a6abc2c0
JK
890 /*
891 * We can clear the tag now but we have to be careful so that concurrent
892 * dax_writeback_one() calls for the same index cannot finish before we
893 * actually flush the caches. This is achieved as the calls will look
b93b0163
MW
894 * at the entry only under the i_pages lock and once they do that
895 * they will see the entry locked and wait for it to unlock.
a6abc2c0 896 */
9fc747f6
MW
897 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
898 xas_unlock_irq(xas);
a6abc2c0 899
642261ac 900 /*
e4b3448b
MW
901 * If dax_writeback_mapping_range() was given a wbc->range_start
902 * in the middle of a PMD, the 'index' we use needs to be
903 * aligned to the start of the PMD.
3fe0791c
DW
904 * This allows us to flush for PMD_SIZE and not have to worry about
905 * partial PMD writebacks.
642261ac 906 */
a77d19f4 907 pfn = dax_to_pfn(entry);
e4b3448b
MW
908 count = 1UL << dax_entry_order(entry);
909 index = xas->xa_index & ~(count - 1);
cccbce67 910
e4b3448b
MW
911 dax_entry_mkclean(mapping, index, pfn);
912 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
4b4bb46d
JK
913 /*
914 * After we have flushed the cache, we can clear the dirty tag. There
915 * cannot be new dirty data in the pfn after the flush has completed as
916 * the pfn mappings are writeprotected and fault waits for mapping
917 * entry lock.
918 */
9fc747f6
MW
919 xas_reset(xas);
920 xas_lock_irq(xas);
921 xas_store(xas, entry);
922 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
923 dax_wake_entry(xas, entry, false);
924
e4b3448b 925 trace_dax_writeback_one(mapping->host, index, count);
9973c98e
RZ
926 return ret;
927
a6abc2c0 928 put_unlocked:
9fc747f6 929 put_unlocked_entry(xas, entry);
9973c98e
RZ
930 return ret;
931}
932
933/*
934 * Flush the mapping to the persistent domain within the byte range of [start,
935 * end]. This is required by data integrity operations to ensure file data is
936 * on persistent storage prior to completion of the operation.
937 */
7f6d5b52
RZ
938int dax_writeback_mapping_range(struct address_space *mapping,
939 struct block_device *bdev, struct writeback_control *wbc)
9973c98e 940{
9fc747f6 941 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
9973c98e 942 struct inode *inode = mapping->host;
9fc747f6 943 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
cccbce67 944 struct dax_device *dax_dev;
9fc747f6
MW
945 void *entry;
946 int ret = 0;
947 unsigned int scanned = 0;
9973c98e
RZ
948
949 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
950 return -EIO;
951
7f6d5b52
RZ
952 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
953 return 0;
954
cccbce67
DW
955 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
956 if (!dax_dev)
957 return -EIO;
958
9fc747f6 959 trace_dax_writeback_range(inode, xas.xa_index, end_index);
9973c98e 960
9fc747f6 961 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
9973c98e 962
9fc747f6
MW
963 xas_lock_irq(&xas);
964 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
965 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
966 if (ret < 0) {
967 mapping_set_error(mapping, ret);
9973c98e 968 break;
9973c98e 969 }
9fc747f6
MW
970 if (++scanned % XA_CHECK_SCHED)
971 continue;
972
973 xas_pause(&xas);
974 xas_unlock_irq(&xas);
975 cond_resched();
976 xas_lock_irq(&xas);
9973c98e 977 }
9fc747f6 978 xas_unlock_irq(&xas);
cccbce67 979 put_dax(dax_dev);
9fc747f6
MW
980 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
981 return ret;
9973c98e
RZ
982}
983EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
984
31a6f1a6 985static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
f7ca90b1 986{
a3841f94 987 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
31a6f1a6
JK
988}
989
5e161e40
JK
990static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
991 pfn_t *pfnp)
f7ca90b1 992{
31a6f1a6 993 const sector_t sector = dax_iomap_sector(iomap, pos);
cccbce67
DW
994 pgoff_t pgoff;
995 int id, rc;
5e161e40 996 long length;
f7ca90b1 997
5e161e40 998 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
cccbce67
DW
999 if (rc)
1000 return rc;
cccbce67 1001 id = dax_read_lock();
5e161e40 1002 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
86ed913b 1003 NULL, pfnp);
5e161e40
JK
1004 if (length < 0) {
1005 rc = length;
1006 goto out;
cccbce67 1007 }
5e161e40
JK
1008 rc = -EINVAL;
1009 if (PFN_PHYS(length) < size)
1010 goto out;
1011 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1012 goto out;
1013 /* For larger pages we need devmap */
1014 if (length > 1 && !pfn_t_devmap(*pfnp))
1015 goto out;
1016 rc = 0;
1017out:
cccbce67 1018 dax_read_unlock(id);
5e161e40 1019 return rc;
0e3b210c 1020}
0e3b210c 1021
e30331ff 1022/*
91d25ba8
RZ
1023 * The user has performed a load from a hole in the file. Allocating a new
1024 * page in the file would cause excessive storage usage for workloads with
1025 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1026 * If this page is ever written to we will re-fault and change the mapping to
1027 * point to real DAX storage instead.
e30331ff 1028 */
b15cd800
MW
1029static vm_fault_t dax_load_hole(struct xa_state *xas,
1030 struct address_space *mapping, void **entry,
1031 struct vm_fault *vmf)
e30331ff
RZ
1032{
1033 struct inode *inode = mapping->host;
91d25ba8 1034 unsigned long vaddr = vmf->address;
b90ca5cc
MW
1035 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1036 vm_fault_t ret;
e30331ff 1037
b15cd800 1038 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943
MW
1039 DAX_ZERO_PAGE, false);
1040
ab77dab4 1041 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
e30331ff
RZ
1042 trace_dax_load_hole(inode, vmf, ret);
1043 return ret;
1044}
1045
4b0228fa
VV
1046static bool dax_range_is_aligned(struct block_device *bdev,
1047 unsigned int offset, unsigned int length)
1048{
1049 unsigned short sector_size = bdev_logical_block_size(bdev);
1050
1051 if (!IS_ALIGNED(offset, sector_size))
1052 return false;
1053 if (!IS_ALIGNED(length, sector_size))
1054 return false;
1055
1056 return true;
1057}
1058
cccbce67
DW
1059int __dax_zero_page_range(struct block_device *bdev,
1060 struct dax_device *dax_dev, sector_t sector,
1061 unsigned int offset, unsigned int size)
679c8bd3 1062{
cccbce67
DW
1063 if (dax_range_is_aligned(bdev, offset, size)) {
1064 sector_t start_sector = sector + (offset >> 9);
4b0228fa
VV
1065
1066 return blkdev_issue_zeroout(bdev, start_sector,
53ef7d0e 1067 size >> 9, GFP_NOFS, 0);
4b0228fa 1068 } else {
cccbce67
DW
1069 pgoff_t pgoff;
1070 long rc, id;
1071 void *kaddr;
cccbce67 1072
e84b83b9 1073 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
cccbce67
DW
1074 if (rc)
1075 return rc;
1076
1077 id = dax_read_lock();
86ed913b 1078 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
cccbce67
DW
1079 if (rc < 0) {
1080 dax_read_unlock(id);
1081 return rc;
1082 }
81f55870 1083 memset(kaddr + offset, 0, size);
c3ca015f 1084 dax_flush(dax_dev, kaddr + offset, size);
cccbce67 1085 dax_read_unlock(id);
4b0228fa 1086 }
679c8bd3
CH
1087 return 0;
1088}
1089EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1090
a254e568 1091static loff_t
11c59c92 1092dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
a254e568
CH
1093 struct iomap *iomap)
1094{
cccbce67
DW
1095 struct block_device *bdev = iomap->bdev;
1096 struct dax_device *dax_dev = iomap->dax_dev;
a254e568
CH
1097 struct iov_iter *iter = data;
1098 loff_t end = pos + length, done = 0;
1099 ssize_t ret = 0;
a77d4786 1100 size_t xfer;
cccbce67 1101 int id;
a254e568
CH
1102
1103 if (iov_iter_rw(iter) == READ) {
1104 end = min(end, i_size_read(inode));
1105 if (pos >= end)
1106 return 0;
1107
1108 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1109 return iov_iter_zero(min(length, end - pos), iter);
1110 }
1111
1112 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1113 return -EIO;
1114
e3fce68c
JK
1115 /*
1116 * Write can allocate block for an area which has a hole page mapped
1117 * into page tables. We have to tear down these mappings so that data
1118 * written by write(2) is visible in mmap.
1119 */
cd656375 1120 if (iomap->flags & IOMAP_F_NEW) {
e3fce68c
JK
1121 invalidate_inode_pages2_range(inode->i_mapping,
1122 pos >> PAGE_SHIFT,
1123 (end - 1) >> PAGE_SHIFT);
1124 }
1125
cccbce67 1126 id = dax_read_lock();
a254e568
CH
1127 while (pos < end) {
1128 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67
DW
1129 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1130 const sector_t sector = dax_iomap_sector(iomap, pos);
a254e568 1131 ssize_t map_len;
cccbce67
DW
1132 pgoff_t pgoff;
1133 void *kaddr;
a254e568 1134
d1908f52
MH
1135 if (fatal_signal_pending(current)) {
1136 ret = -EINTR;
1137 break;
1138 }
1139
cccbce67
DW
1140 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1141 if (ret)
1142 break;
1143
1144 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
86ed913b 1145 &kaddr, NULL);
a254e568
CH
1146 if (map_len < 0) {
1147 ret = map_len;
1148 break;
1149 }
1150
cccbce67
DW
1151 map_len = PFN_PHYS(map_len);
1152 kaddr += offset;
a254e568
CH
1153 map_len -= offset;
1154 if (map_len > end - pos)
1155 map_len = end - pos;
1156
a2e050f5
RZ
1157 /*
1158 * The userspace address for the memory copy has already been
1159 * validated via access_ok() in either vfs_read() or
1160 * vfs_write(), depending on which operation we are doing.
1161 */
a254e568 1162 if (iov_iter_rw(iter) == WRITE)
a77d4786 1163 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
fec53774 1164 map_len, iter);
a254e568 1165 else
a77d4786 1166 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
b3a9a0c3 1167 map_len, iter);
a254e568 1168
a77d4786
DW
1169 pos += xfer;
1170 length -= xfer;
1171 done += xfer;
1172
1173 if (xfer == 0)
1174 ret = -EFAULT;
1175 if (xfer < map_len)
1176 break;
a254e568 1177 }
cccbce67 1178 dax_read_unlock(id);
a254e568
CH
1179
1180 return done ? done : ret;
1181}
1182
1183/**
11c59c92 1184 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1185 * @iocb: The control block for this I/O
1186 * @iter: The addresses to do I/O from or to
1187 * @ops: iomap ops passed from the file system
1188 *
1189 * This function performs read and write operations to directly mapped
1190 * persistent memory. The callers needs to take care of read/write exclusion
1191 * and evicting any page cache pages in the region under I/O.
1192 */
1193ssize_t
11c59c92 1194dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1195 const struct iomap_ops *ops)
a254e568
CH
1196{
1197 struct address_space *mapping = iocb->ki_filp->f_mapping;
1198 struct inode *inode = mapping->host;
1199 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1200 unsigned flags = 0;
1201
168316db 1202 if (iov_iter_rw(iter) == WRITE) {
9ffbe8ac 1203 lockdep_assert_held_write(&inode->i_rwsem);
a254e568 1204 flags |= IOMAP_WRITE;
168316db
CH
1205 } else {
1206 lockdep_assert_held(&inode->i_rwsem);
1207 }
a254e568 1208
a254e568
CH
1209 while (iov_iter_count(iter)) {
1210 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1211 iter, dax_iomap_actor);
a254e568
CH
1212 if (ret <= 0)
1213 break;
1214 pos += ret;
1215 done += ret;
1216 }
1217
1218 iocb->ki_pos += done;
1219 return done ? done : ret;
1220}
11c59c92 1221EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1222
ab77dab4 1223static vm_fault_t dax_fault_return(int error)
9f141d6e
JK
1224{
1225 if (error == 0)
1226 return VM_FAULT_NOPAGE;
c9aed74e 1227 return vmf_error(error);
9f141d6e
JK
1228}
1229
aaa422c4
DW
1230/*
1231 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1232 * flushed on write-faults (non-cow), but not read-faults.
1233 */
1234static bool dax_fault_is_synchronous(unsigned long flags,
1235 struct vm_area_struct *vma, struct iomap *iomap)
1236{
1237 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1238 && (iomap->flags & IOMAP_F_DIRTY);
1239}
1240
ab77dab4 1241static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
c0b24625 1242 int *iomap_errp, const struct iomap_ops *ops)
a7d73fe6 1243{
a0987ad5
JK
1244 struct vm_area_struct *vma = vmf->vma;
1245 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1246 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
a7d73fe6 1247 struct inode *inode = mapping->host;
1a29d85e 1248 unsigned long vaddr = vmf->address;
a7d73fe6 1249 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
a7d73fe6 1250 struct iomap iomap = { 0 };
9484ab1b 1251 unsigned flags = IOMAP_FAULT;
a7d73fe6 1252 int error, major = 0;
d2c43ef1 1253 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1254 bool sync;
ab77dab4 1255 vm_fault_t ret = 0;
a7d73fe6 1256 void *entry;
1b5a1cb2 1257 pfn_t pfn;
a7d73fe6 1258
ab77dab4 1259 trace_dax_pte_fault(inode, vmf, ret);
a7d73fe6
CH
1260 /*
1261 * Check whether offset isn't beyond end of file now. Caller is supposed
1262 * to hold locks serializing us with truncate / punch hole so this is
1263 * a reliable test.
1264 */
a9c42b33 1265 if (pos >= i_size_read(inode)) {
ab77dab4 1266 ret = VM_FAULT_SIGBUS;
a9c42b33
RZ
1267 goto out;
1268 }
a7d73fe6 1269
d2c43ef1 1270 if (write && !vmf->cow_page)
a7d73fe6
CH
1271 flags |= IOMAP_WRITE;
1272
b15cd800
MW
1273 entry = grab_mapping_entry(&xas, mapping, 0);
1274 if (xa_is_internal(entry)) {
1275 ret = xa_to_internal(entry);
13e451fd
JK
1276 goto out;
1277 }
1278
e2093926
RZ
1279 /*
1280 * It is possible, particularly with mixed reads & writes to private
1281 * mappings, that we have raced with a PMD fault that overlaps with
1282 * the PTE we need to set up. If so just return and the fault will be
1283 * retried.
1284 */
1285 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
ab77dab4 1286 ret = VM_FAULT_NOPAGE;
e2093926
RZ
1287 goto unlock_entry;
1288 }
1289
a7d73fe6
CH
1290 /*
1291 * Note that we don't bother to use iomap_apply here: DAX required
1292 * the file system block size to be equal the page size, which means
1293 * that we never have to deal with more than a single extent here.
1294 */
1295 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
c0b24625
JK
1296 if (iomap_errp)
1297 *iomap_errp = error;
a9c42b33 1298 if (error) {
ab77dab4 1299 ret = dax_fault_return(error);
13e451fd 1300 goto unlock_entry;
a9c42b33 1301 }
a7d73fe6 1302 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
13e451fd
JK
1303 error = -EIO; /* fs corruption? */
1304 goto error_finish_iomap;
a7d73fe6
CH
1305 }
1306
a7d73fe6 1307 if (vmf->cow_page) {
31a6f1a6
JK
1308 sector_t sector = dax_iomap_sector(&iomap, pos);
1309
a7d73fe6
CH
1310 switch (iomap.type) {
1311 case IOMAP_HOLE:
1312 case IOMAP_UNWRITTEN:
1313 clear_user_highpage(vmf->cow_page, vaddr);
1314 break;
1315 case IOMAP_MAPPED:
cccbce67
DW
1316 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1317 sector, PAGE_SIZE, vmf->cow_page, vaddr);
a7d73fe6
CH
1318 break;
1319 default:
1320 WARN_ON_ONCE(1);
1321 error = -EIO;
1322 break;
1323 }
1324
1325 if (error)
13e451fd 1326 goto error_finish_iomap;
b1aa812b
JK
1327
1328 __SetPageUptodate(vmf->cow_page);
ab77dab4
SJ
1329 ret = finish_fault(vmf);
1330 if (!ret)
1331 ret = VM_FAULT_DONE_COW;
13e451fd 1332 goto finish_iomap;
a7d73fe6
CH
1333 }
1334
aaa422c4 1335 sync = dax_fault_is_synchronous(flags, vma, &iomap);
caa51d26 1336
a7d73fe6
CH
1337 switch (iomap.type) {
1338 case IOMAP_MAPPED:
1339 if (iomap.flags & IOMAP_F_NEW) {
1340 count_vm_event(PGMAJFAULT);
a0987ad5 1341 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
a7d73fe6
CH
1342 major = VM_FAULT_MAJOR;
1343 }
1b5a1cb2
JK
1344 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1345 if (error < 0)
1346 goto error_finish_iomap;
1347
b15cd800 1348 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
caa51d26 1349 0, write && !sync);
1b5a1cb2 1350
caa51d26
JK
1351 /*
1352 * If we are doing synchronous page fault and inode needs fsync,
1353 * we can insert PTE into page tables only after that happens.
1354 * Skip insertion for now and return the pfn so that caller can
1355 * insert it after fsync is done.
1356 */
1357 if (sync) {
1358 if (WARN_ON_ONCE(!pfnp)) {
1359 error = -EIO;
1360 goto error_finish_iomap;
1361 }
1362 *pfnp = pfn;
ab77dab4 1363 ret = VM_FAULT_NEEDDSYNC | major;
caa51d26
JK
1364 goto finish_iomap;
1365 }
1b5a1cb2
JK
1366 trace_dax_insert_mapping(inode, vmf, entry);
1367 if (write)
ab77dab4 1368 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1b5a1cb2 1369 else
ab77dab4 1370 ret = vmf_insert_mixed(vma, vaddr, pfn);
1b5a1cb2 1371
ab77dab4 1372 goto finish_iomap;
a7d73fe6
CH
1373 case IOMAP_UNWRITTEN:
1374 case IOMAP_HOLE:
d2c43ef1 1375 if (!write) {
b15cd800 1376 ret = dax_load_hole(&xas, mapping, &entry, vmf);
13e451fd 1377 goto finish_iomap;
1550290b 1378 }
a7d73fe6
CH
1379 /*FALLTHRU*/
1380 default:
1381 WARN_ON_ONCE(1);
1382 error = -EIO;
1383 break;
1384 }
1385
13e451fd 1386 error_finish_iomap:
ab77dab4 1387 ret = dax_fault_return(error);
9f141d6e
JK
1388 finish_iomap:
1389 if (ops->iomap_end) {
1390 int copied = PAGE_SIZE;
1391
ab77dab4 1392 if (ret & VM_FAULT_ERROR)
9f141d6e
JK
1393 copied = 0;
1394 /*
1395 * The fault is done by now and there's no way back (other
1396 * thread may be already happily using PTE we have installed).
1397 * Just ignore error from ->iomap_end since we cannot do much
1398 * with it.
1399 */
1400 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1550290b 1401 }
13e451fd 1402 unlock_entry:
b15cd800 1403 dax_unlock_entry(&xas, entry);
13e451fd 1404 out:
ab77dab4
SJ
1405 trace_dax_pte_fault_done(inode, vmf, ret);
1406 return ret | major;
a7d73fe6 1407}
642261ac
RZ
1408
1409#ifdef CONFIG_FS_DAX_PMD
b15cd800
MW
1410static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1411 struct iomap *iomap, void **entry)
642261ac 1412{
f4200391
DJ
1413 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1414 unsigned long pmd_addr = vmf->address & PMD_MASK;
11cf9d86 1415 struct vm_area_struct *vma = vmf->vma;
653b2ea3 1416 struct inode *inode = mapping->host;
11cf9d86 1417 pgtable_t pgtable = NULL;
642261ac
RZ
1418 struct page *zero_page;
1419 spinlock_t *ptl;
1420 pmd_t pmd_entry;
3fe0791c 1421 pfn_t pfn;
642261ac 1422
f4200391 1423 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
642261ac
RZ
1424
1425 if (unlikely(!zero_page))
653b2ea3 1426 goto fallback;
642261ac 1427
3fe0791c 1428 pfn = page_to_pfn_t(zero_page);
b15cd800 1429 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943 1430 DAX_PMD | DAX_ZERO_PAGE, false);
642261ac 1431
11cf9d86
AK
1432 if (arch_needs_pgtable_deposit()) {
1433 pgtable = pte_alloc_one(vma->vm_mm);
1434 if (!pgtable)
1435 return VM_FAULT_OOM;
1436 }
1437
f4200391
DJ
1438 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1439 if (!pmd_none(*(vmf->pmd))) {
642261ac 1440 spin_unlock(ptl);
653b2ea3 1441 goto fallback;
642261ac
RZ
1442 }
1443
11cf9d86
AK
1444 if (pgtable) {
1445 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1446 mm_inc_nr_ptes(vma->vm_mm);
1447 }
f4200391 1448 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
642261ac 1449 pmd_entry = pmd_mkhuge(pmd_entry);
f4200391 1450 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
642261ac 1451 spin_unlock(ptl);
b15cd800 1452 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
642261ac 1453 return VM_FAULT_NOPAGE;
653b2ea3
RZ
1454
1455fallback:
11cf9d86
AK
1456 if (pgtable)
1457 pte_free(vma->vm_mm, pgtable);
b15cd800 1458 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
653b2ea3 1459 return VM_FAULT_FALLBACK;
642261ac
RZ
1460}
1461
ab77dab4 1462static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
a2d58167 1463 const struct iomap_ops *ops)
642261ac 1464{
f4200391 1465 struct vm_area_struct *vma = vmf->vma;
642261ac 1466 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1467 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
d8a849e1
DJ
1468 unsigned long pmd_addr = vmf->address & PMD_MASK;
1469 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1470 bool sync;
9484ab1b 1471 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac 1472 struct inode *inode = mapping->host;
ab77dab4 1473 vm_fault_t result = VM_FAULT_FALLBACK;
642261ac 1474 struct iomap iomap = { 0 };
b15cd800 1475 pgoff_t max_pgoff;
642261ac
RZ
1476 void *entry;
1477 loff_t pos;
1478 int error;
302a5e31 1479 pfn_t pfn;
642261ac 1480
282a8e03
RZ
1481 /*
1482 * Check whether offset isn't beyond end of file now. Caller is
1483 * supposed to hold locks serializing us with truncate / punch hole so
1484 * this is a reliable test.
1485 */
957ac8c4 1486 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
282a8e03 1487
f4200391 1488 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
282a8e03 1489
fffa281b
RZ
1490 /*
1491 * Make sure that the faulting address's PMD offset (color) matches
1492 * the PMD offset from the start of the file. This is necessary so
1493 * that a PMD range in the page table overlaps exactly with a PMD
a77d19f4 1494 * range in the page cache.
fffa281b
RZ
1495 */
1496 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1497 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1498 goto fallback;
1499
642261ac
RZ
1500 /* Fall back to PTEs if we're going to COW */
1501 if (write && !(vma->vm_flags & VM_SHARED))
1502 goto fallback;
1503
1504 /* If the PMD would extend outside the VMA */
1505 if (pmd_addr < vma->vm_start)
1506 goto fallback;
1507 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1508 goto fallback;
1509
b15cd800 1510 if (xas.xa_index >= max_pgoff) {
282a8e03
RZ
1511 result = VM_FAULT_SIGBUS;
1512 goto out;
1513 }
642261ac
RZ
1514
1515 /* If the PMD would extend beyond the file size */
b15cd800 1516 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
642261ac
RZ
1517 goto fallback;
1518
876f2946 1519 /*
b15cd800
MW
1520 * grab_mapping_entry() will make sure we get an empty PMD entry,
1521 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1522 * entry is already in the array, for instance), it will return
1523 * VM_FAULT_FALLBACK.
876f2946 1524 */
23c84eb7 1525 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
b15cd800
MW
1526 if (xa_is_internal(entry)) {
1527 result = xa_to_internal(entry);
876f2946 1528 goto fallback;
b15cd800 1529 }
876f2946 1530
e2093926
RZ
1531 /*
1532 * It is possible, particularly with mixed reads & writes to private
1533 * mappings, that we have raced with a PTE fault that overlaps with
1534 * the PMD we need to set up. If so just return and the fault will be
1535 * retried.
1536 */
1537 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1538 !pmd_devmap(*vmf->pmd)) {
1539 result = 0;
1540 goto unlock_entry;
1541 }
1542
642261ac
RZ
1543 /*
1544 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1545 * setting up a mapping, so really we're using iomap_begin() as a way
1546 * to look up our filesystem block.
1547 */
b15cd800 1548 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
642261ac
RZ
1549 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1550 if (error)
876f2946 1551 goto unlock_entry;
9f141d6e 1552
642261ac
RZ
1553 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1554 goto finish_iomap;
1555
aaa422c4 1556 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
caa51d26 1557
642261ac
RZ
1558 switch (iomap.type) {
1559 case IOMAP_MAPPED:
302a5e31
JK
1560 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1561 if (error < 0)
1562 goto finish_iomap;
1563
b15cd800 1564 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
3159f943 1565 DAX_PMD, write && !sync);
302a5e31 1566
caa51d26
JK
1567 /*
1568 * If we are doing synchronous page fault and inode needs fsync,
1569 * we can insert PMD into page tables only after that happens.
1570 * Skip insertion for now and return the pfn so that caller can
1571 * insert it after fsync is done.
1572 */
1573 if (sync) {
1574 if (WARN_ON_ONCE(!pfnp))
1575 goto finish_iomap;
1576 *pfnp = pfn;
1577 result = VM_FAULT_NEEDDSYNC;
1578 goto finish_iomap;
1579 }
1580
302a5e31 1581 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
fce86ff5 1582 result = vmf_insert_pfn_pmd(vmf, pfn, write);
642261ac
RZ
1583 break;
1584 case IOMAP_UNWRITTEN:
1585 case IOMAP_HOLE:
1586 if (WARN_ON_ONCE(write))
876f2946 1587 break;
b15cd800 1588 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
642261ac
RZ
1589 break;
1590 default:
1591 WARN_ON_ONCE(1);
1592 break;
1593 }
1594
1595 finish_iomap:
1596 if (ops->iomap_end) {
9f141d6e
JK
1597 int copied = PMD_SIZE;
1598
1599 if (result == VM_FAULT_FALLBACK)
1600 copied = 0;
1601 /*
1602 * The fault is done by now and there's no way back (other
1603 * thread may be already happily using PMD we have installed).
1604 * Just ignore error from ->iomap_end since we cannot do much
1605 * with it.
1606 */
1607 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1608 &iomap);
642261ac 1609 }
876f2946 1610 unlock_entry:
b15cd800 1611 dax_unlock_entry(&xas, entry);
642261ac
RZ
1612 fallback:
1613 if (result == VM_FAULT_FALLBACK) {
d8a849e1 1614 split_huge_pmd(vma, vmf->pmd, vmf->address);
642261ac
RZ
1615 count_vm_event(THP_FAULT_FALLBACK);
1616 }
282a8e03 1617out:
f4200391 1618 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
642261ac
RZ
1619 return result;
1620}
a2d58167 1621#else
ab77dab4 1622static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
01cddfe9 1623 const struct iomap_ops *ops)
a2d58167
DJ
1624{
1625 return VM_FAULT_FALLBACK;
1626}
642261ac 1627#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1628
1629/**
1630 * dax_iomap_fault - handle a page fault on a DAX file
1631 * @vmf: The description of the fault
cec04e8c 1632 * @pe_size: Size of the page to fault in
9a0dd422 1633 * @pfnp: PFN to insert for synchronous faults if fsync is required
c0b24625 1634 * @iomap_errp: Storage for detailed error code in case of error
cec04e8c 1635 * @ops: Iomap ops passed from the file system
a2d58167
DJ
1636 *
1637 * When a page fault occurs, filesystems may call this helper in
1638 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1639 * has done all the necessary locking for page fault to proceed
1640 * successfully.
1641 */
ab77dab4 1642vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
c0b24625 1643 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
a2d58167 1644{
c791ace1
DJ
1645 switch (pe_size) {
1646 case PE_SIZE_PTE:
c0b24625 1647 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
c791ace1 1648 case PE_SIZE_PMD:
9a0dd422 1649 return dax_iomap_pmd_fault(vmf, pfnp, ops);
a2d58167
DJ
1650 default:
1651 return VM_FAULT_FALLBACK;
1652 }
1653}
1654EXPORT_SYMBOL_GPL(dax_iomap_fault);
71eab6df 1655
a77d19f4 1656/*
71eab6df
JK
1657 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1658 * @vmf: The description of the fault
71eab6df 1659 * @pfn: PFN to insert
cfc93c6c 1660 * @order: Order of entry to insert.
71eab6df 1661 *
a77d19f4
MW
1662 * This function inserts a writeable PTE or PMD entry into the page tables
1663 * for an mmaped DAX file. It also marks the page cache entry as dirty.
71eab6df 1664 */
cfc93c6c
MW
1665static vm_fault_t
1666dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
71eab6df
JK
1667{
1668 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cfc93c6c
MW
1669 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1670 void *entry;
ab77dab4 1671 vm_fault_t ret;
71eab6df 1672
cfc93c6c 1673 xas_lock_irq(&xas);
23c84eb7 1674 entry = get_unlocked_entry(&xas, order);
71eab6df 1675 /* Did we race with someone splitting entry or so? */
23c84eb7
MWO
1676 if (!entry || dax_is_conflict(entry) ||
1677 (order == 0 && !dax_is_pte_entry(entry))) {
cfc93c6c
MW
1678 put_unlocked_entry(&xas, entry);
1679 xas_unlock_irq(&xas);
71eab6df
JK
1680 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1681 VM_FAULT_NOPAGE);
1682 return VM_FAULT_NOPAGE;
1683 }
cfc93c6c
MW
1684 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1685 dax_lock_entry(&xas, entry);
1686 xas_unlock_irq(&xas);
1687 if (order == 0)
ab77dab4 1688 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
71eab6df 1689#ifdef CONFIG_FS_DAX_PMD
cfc93c6c 1690 else if (order == PMD_ORDER)
fce86ff5 1691 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
71eab6df 1692#endif
cfc93c6c 1693 else
ab77dab4 1694 ret = VM_FAULT_FALLBACK;
cfc93c6c 1695 dax_unlock_entry(&xas, entry);
ab77dab4
SJ
1696 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1697 return ret;
71eab6df
JK
1698}
1699
1700/**
1701 * dax_finish_sync_fault - finish synchronous page fault
1702 * @vmf: The description of the fault
1703 * @pe_size: Size of entry to be inserted
1704 * @pfn: PFN to insert
1705 *
1706 * This function ensures that the file range touched by the page fault is
1707 * stored persistently on the media and handles inserting of appropriate page
1708 * table entry.
1709 */
ab77dab4
SJ
1710vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1711 enum page_entry_size pe_size, pfn_t pfn)
71eab6df
JK
1712{
1713 int err;
1714 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
cfc93c6c
MW
1715 unsigned int order = pe_order(pe_size);
1716 size_t len = PAGE_SIZE << order;
71eab6df 1717
71eab6df
JK
1718 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1719 if (err)
1720 return VM_FAULT_SIGBUS;
cfc93c6c 1721 return dax_insert_pfn_mkwrite(vmf, pfn, order);
71eab6df
JK
1722}
1723EXPORT_SYMBOL_GPL(dax_finish_sync_fault);