scsi: aacraid: remove AAC_STAT_GOOD define
[linux-2.6-block.git] / fs / dax.c
CommitLineData
d475c634
MW
1/*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17#include <linux/atomic.h>
18#include <linux/blkdev.h>
19#include <linux/buffer_head.h>
d77e92e2 20#include <linux/dax.h>
d475c634
MW
21#include <linux/fs.h>
22#include <linux/genhd.h>
f7ca90b1
MW
23#include <linux/highmem.h>
24#include <linux/memcontrol.h>
25#include <linux/mm.h>
d475c634 26#include <linux/mutex.h>
9973c98e 27#include <linux/pagevec.h>
289c6aed 28#include <linux/sched.h>
f361bf4a 29#include <linux/sched/signal.h>
d475c634 30#include <linux/uio.h>
f7ca90b1 31#include <linux/vmstat.h>
34c0fd54 32#include <linux/pfn_t.h>
0e749e54 33#include <linux/sizes.h>
4b4bb46d 34#include <linux/mmu_notifier.h>
a254e568
CH
35#include <linux/iomap.h>
36#include "internal.h"
d475c634 37
282a8e03
RZ
38#define CREATE_TRACE_POINTS
39#include <trace/events/fs_dax.h>
40
ac401cc7
JK
41/* We choose 4096 entries - same as per-zone page wait tables */
42#define DAX_WAIT_TABLE_BITS 12
43#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
917f3452
RZ
45/* The 'colour' (ie low bits) within a PMD of a page offset. */
46#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
977fbdcd 47#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
917f3452 48
ce95ab0f 49static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
50
51static int __init init_dax_wait_table(void)
52{
53 int i;
54
55 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
56 init_waitqueue_head(wait_table + i);
57 return 0;
58}
59fs_initcall(init_dax_wait_table);
60
527b19d0
RZ
61/*
62 * We use lowest available bit in exceptional entry for locking, one bit for
63 * the entry size (PMD) and two more to tell us if the entry is a zero page or
64 * an empty entry that is just used for locking. In total four special bits.
65 *
66 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
68 * block allocation.
69 */
70#define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71#define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72#define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73#define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74#define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
75
3fe0791c 76static unsigned long dax_radix_pfn(void *entry)
527b19d0
RZ
77{
78 return (unsigned long)entry >> RADIX_DAX_SHIFT;
79}
80
3fe0791c 81static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
527b19d0
RZ
82{
83 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
3fe0791c 84 (pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
527b19d0
RZ
85}
86
87static unsigned int dax_radix_order(void *entry)
88{
89 if ((unsigned long)entry & RADIX_DAX_PMD)
90 return PMD_SHIFT - PAGE_SHIFT;
91 return 0;
92}
93
642261ac 94static int dax_is_pmd_entry(void *entry)
d1a5f2b4 95{
642261ac 96 return (unsigned long)entry & RADIX_DAX_PMD;
d1a5f2b4
DW
97}
98
642261ac 99static int dax_is_pte_entry(void *entry)
d475c634 100{
642261ac 101 return !((unsigned long)entry & RADIX_DAX_PMD);
d475c634
MW
102}
103
642261ac 104static int dax_is_zero_entry(void *entry)
d475c634 105{
91d25ba8 106 return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
d475c634
MW
107}
108
642261ac 109static int dax_is_empty_entry(void *entry)
b2e0d162 110{
642261ac 111 return (unsigned long)entry & RADIX_DAX_EMPTY;
b2e0d162
DW
112}
113
ac401cc7
JK
114/*
115 * DAX radix tree locking
116 */
117struct exceptional_entry_key {
118 struct address_space *mapping;
63e95b5c 119 pgoff_t entry_start;
ac401cc7
JK
120};
121
122struct wait_exceptional_entry_queue {
ac6424b9 123 wait_queue_entry_t wait;
ac401cc7
JK
124 struct exceptional_entry_key key;
125};
126
63e95b5c
RZ
127static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128 pgoff_t index, void *entry, struct exceptional_entry_key *key)
129{
130 unsigned long hash;
131
132 /*
133 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 * queue to the start of that PMD. This ensures that all offsets in
135 * the range covered by the PMD map to the same bit lock.
136 */
642261ac 137 if (dax_is_pmd_entry(entry))
917f3452 138 index &= ~PG_PMD_COLOUR;
63e95b5c
RZ
139
140 key->mapping = mapping;
141 key->entry_start = index;
142
143 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144 return wait_table + hash;
145}
146
ac6424b9 147static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
ac401cc7
JK
148 int sync, void *keyp)
149{
150 struct exceptional_entry_key *key = keyp;
151 struct wait_exceptional_entry_queue *ewait =
152 container_of(wait, struct wait_exceptional_entry_queue, wait);
153
154 if (key->mapping != ewait->key.mapping ||
63e95b5c 155 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
156 return 0;
157 return autoremove_wake_function(wait, mode, sync, NULL);
158}
159
e30331ff 160/*
b93b0163
MW
161 * @entry may no longer be the entry at the index in the mapping.
162 * The important information it's conveying is whether the entry at
163 * this index used to be a PMD entry.
e30331ff 164 */
d01ad197 165static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
e30331ff
RZ
166 pgoff_t index, void *entry, bool wake_all)
167{
168 struct exceptional_entry_key key;
169 wait_queue_head_t *wq;
170
171 wq = dax_entry_waitqueue(mapping, index, entry, &key);
172
173 /*
174 * Checking for locked entry and prepare_to_wait_exclusive() happens
b93b0163 175 * under the i_pages lock, ditto for entry handling in our callers.
e30331ff
RZ
176 * So at this point all tasks that could have seen our entry locked
177 * must be in the waitqueue and the following check will see them.
178 */
179 if (waitqueue_active(wq))
180 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
181}
182
ac401cc7 183/*
b93b0163
MW
184 * Check whether the given slot is locked. Must be called with the i_pages
185 * lock held.
ac401cc7
JK
186 */
187static inline int slot_locked(struct address_space *mapping, void **slot)
188{
189 unsigned long entry = (unsigned long)
b93b0163 190 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
ac401cc7
JK
191 return entry & RADIX_DAX_ENTRY_LOCK;
192}
193
194/*
b93b0163 195 * Mark the given slot as locked. Must be called with the i_pages lock held.
ac401cc7
JK
196 */
197static inline void *lock_slot(struct address_space *mapping, void **slot)
198{
199 unsigned long entry = (unsigned long)
b93b0163 200 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
ac401cc7
JK
201
202 entry |= RADIX_DAX_ENTRY_LOCK;
b93b0163 203 radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
ac401cc7
JK
204 return (void *)entry;
205}
206
207/*
b93b0163 208 * Mark the given slot as unlocked. Must be called with the i_pages lock held.
ac401cc7
JK
209 */
210static inline void *unlock_slot(struct address_space *mapping, void **slot)
211{
212 unsigned long entry = (unsigned long)
b93b0163 213 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
ac401cc7
JK
214
215 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
b93b0163 216 radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
ac401cc7
JK
217 return (void *)entry;
218}
219
220/*
221 * Lookup entry in radix tree, wait for it to become unlocked if it is
222 * exceptional entry and return it. The caller must call
223 * put_unlocked_mapping_entry() when he decided not to lock the entry or
224 * put_locked_mapping_entry() when he locked the entry and now wants to
225 * unlock it.
226 *
b93b0163 227 * Must be called with the i_pages lock held.
ac401cc7
JK
228 */
229static void *get_unlocked_mapping_entry(struct address_space *mapping,
230 pgoff_t index, void ***slotp)
231{
e3ad61c6 232 void *entry, **slot;
ac401cc7 233 struct wait_exceptional_entry_queue ewait;
63e95b5c 234 wait_queue_head_t *wq;
ac401cc7
JK
235
236 init_wait(&ewait.wait);
237 ewait.wait.func = wake_exceptional_entry_func;
ac401cc7
JK
238
239 for (;;) {
b93b0163 240 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
ac401cc7 241 &slot);
91d25ba8
RZ
242 if (!entry ||
243 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
ac401cc7
JK
244 !slot_locked(mapping, slot)) {
245 if (slotp)
246 *slotp = slot;
e3ad61c6 247 return entry;
ac401cc7 248 }
63e95b5c
RZ
249
250 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
ac401cc7
JK
251 prepare_to_wait_exclusive(wq, &ewait.wait,
252 TASK_UNINTERRUPTIBLE);
b93b0163 253 xa_unlock_irq(&mapping->i_pages);
ac401cc7
JK
254 schedule();
255 finish_wait(wq, &ewait.wait);
b93b0163 256 xa_lock_irq(&mapping->i_pages);
ac401cc7
JK
257 }
258}
259
b1aa812b
JK
260static void dax_unlock_mapping_entry(struct address_space *mapping,
261 pgoff_t index)
262{
263 void *entry, **slot;
264
b93b0163
MW
265 xa_lock_irq(&mapping->i_pages);
266 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
b1aa812b
JK
267 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
268 !slot_locked(mapping, slot))) {
b93b0163 269 xa_unlock_irq(&mapping->i_pages);
b1aa812b
JK
270 return;
271 }
272 unlock_slot(mapping, slot);
b93b0163 273 xa_unlock_irq(&mapping->i_pages);
b1aa812b
JK
274 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
275}
276
422476c4 277static void put_locked_mapping_entry(struct address_space *mapping,
91d25ba8 278 pgoff_t index)
422476c4 279{
91d25ba8 280 dax_unlock_mapping_entry(mapping, index);
422476c4
RZ
281}
282
283/*
284 * Called when we are done with radix tree entry we looked up via
285 * get_unlocked_mapping_entry() and which we didn't lock in the end.
286 */
287static void put_unlocked_mapping_entry(struct address_space *mapping,
288 pgoff_t index, void *entry)
289{
91d25ba8 290 if (!entry)
422476c4
RZ
291 return;
292
293 /* We have to wake up next waiter for the radix tree entry lock */
294 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
295}
296
d2c997c0
DW
297static unsigned long dax_entry_size(void *entry)
298{
299 if (dax_is_zero_entry(entry))
300 return 0;
301 else if (dax_is_empty_entry(entry))
302 return 0;
303 else if (dax_is_pmd_entry(entry))
304 return PMD_SIZE;
305 else
306 return PAGE_SIZE;
307}
308
309static unsigned long dax_radix_end_pfn(void *entry)
310{
311 return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
312}
313
314/*
315 * Iterate through all mapped pfns represented by an entry, i.e. skip
316 * 'empty' and 'zero' entries.
317 */
318#define for_each_mapped_pfn(entry, pfn) \
319 for (pfn = dax_radix_pfn(entry); \
320 pfn < dax_radix_end_pfn(entry); pfn++)
321
322static void dax_associate_entry(void *entry, struct address_space *mapping)
323{
324 unsigned long pfn;
325
326 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
327 return;
328
329 for_each_mapped_pfn(entry, pfn) {
330 struct page *page = pfn_to_page(pfn);
331
332 WARN_ON_ONCE(page->mapping);
333 page->mapping = mapping;
334 }
335}
336
337static void dax_disassociate_entry(void *entry, struct address_space *mapping,
338 bool trunc)
339{
340 unsigned long pfn;
341
342 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
343 return;
344
345 for_each_mapped_pfn(entry, pfn) {
346 struct page *page = pfn_to_page(pfn);
347
348 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
349 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
350 page->mapping = NULL;
351 }
352}
353
5fac7408
DW
354static struct page *dax_busy_page(void *entry)
355{
356 unsigned long pfn;
357
358 for_each_mapped_pfn(entry, pfn) {
359 struct page *page = pfn_to_page(pfn);
360
361 if (page_ref_count(page) > 1)
362 return page;
363 }
364 return NULL;
365}
366
ac401cc7 367/*
91d25ba8
RZ
368 * Find radix tree entry at given index. If it points to an exceptional entry,
369 * return it with the radix tree entry locked. If the radix tree doesn't
370 * contain given index, create an empty exceptional entry for the index and
371 * return with it locked.
ac401cc7 372 *
642261ac
RZ
373 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
374 * either return that locked entry or will return an error. This error will
91d25ba8
RZ
375 * happen if there are any 4k entries within the 2MiB range that we are
376 * requesting.
642261ac
RZ
377 *
378 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
379 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
380 * insertion will fail if it finds any 4k entries already in the tree, and a
381 * 4k insertion will cause an existing 2MiB entry to be unmapped and
382 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
383 * well as 2MiB empty entries.
384 *
385 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
386 * real storage backing them. We will leave these real 2MiB DAX entries in
387 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
388 *
ac401cc7
JK
389 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
390 * persistent memory the benefit is doubtful. We can add that later if we can
391 * show it helps.
392 */
642261ac
RZ
393static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
394 unsigned long size_flag)
ac401cc7 395{
642261ac 396 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
e3ad61c6 397 void *entry, **slot;
ac401cc7
JK
398
399restart:
b93b0163 400 xa_lock_irq(&mapping->i_pages);
e3ad61c6 401 entry = get_unlocked_mapping_entry(mapping, index, &slot);
642261ac 402
91d25ba8
RZ
403 if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
404 entry = ERR_PTR(-EIO);
405 goto out_unlock;
406 }
407
642261ac
RZ
408 if (entry) {
409 if (size_flag & RADIX_DAX_PMD) {
91d25ba8 410 if (dax_is_pte_entry(entry)) {
642261ac
RZ
411 put_unlocked_mapping_entry(mapping, index,
412 entry);
413 entry = ERR_PTR(-EEXIST);
414 goto out_unlock;
415 }
416 } else { /* trying to grab a PTE entry */
91d25ba8 417 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
418 (dax_is_zero_entry(entry) ||
419 dax_is_empty_entry(entry))) {
420 pmd_downgrade = true;
421 }
422 }
423 }
424
ac401cc7 425 /* No entry for given index? Make sure radix tree is big enough. */
642261ac 426 if (!entry || pmd_downgrade) {
ac401cc7
JK
427 int err;
428
642261ac
RZ
429 if (pmd_downgrade) {
430 /*
431 * Make sure 'entry' remains valid while we drop
b93b0163 432 * the i_pages lock.
642261ac
RZ
433 */
434 entry = lock_slot(mapping, slot);
435 }
436
b93b0163 437 xa_unlock_irq(&mapping->i_pages);
642261ac
RZ
438 /*
439 * Besides huge zero pages the only other thing that gets
440 * downgraded are empty entries which don't need to be
441 * unmapped.
442 */
443 if (pmd_downgrade && dax_is_zero_entry(entry))
977fbdcd
MW
444 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
445 PG_PMD_NR, false);
642261ac 446
ac401cc7
JK
447 err = radix_tree_preload(
448 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
0cb80b48
JK
449 if (err) {
450 if (pmd_downgrade)
91d25ba8 451 put_locked_mapping_entry(mapping, index);
ac401cc7 452 return ERR_PTR(err);
0cb80b48 453 }
b93b0163 454 xa_lock_irq(&mapping->i_pages);
642261ac 455
e11f8b7b
RZ
456 if (!entry) {
457 /*
b93b0163 458 * We needed to drop the i_pages lock while calling
e11f8b7b
RZ
459 * radix_tree_preload() and we didn't have an entry to
460 * lock. See if another thread inserted an entry at
461 * our index during this time.
462 */
b93b0163 463 entry = __radix_tree_lookup(&mapping->i_pages, index,
e11f8b7b
RZ
464 NULL, &slot);
465 if (entry) {
466 radix_tree_preload_end();
b93b0163 467 xa_unlock_irq(&mapping->i_pages);
e11f8b7b
RZ
468 goto restart;
469 }
470 }
471
642261ac 472 if (pmd_downgrade) {
d2c997c0 473 dax_disassociate_entry(entry, mapping, false);
b93b0163 474 radix_tree_delete(&mapping->i_pages, index);
642261ac
RZ
475 mapping->nrexceptional--;
476 dax_wake_mapping_entry_waiter(mapping, index, entry,
477 true);
478 }
479
480 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
481
b93b0163 482 err = __radix_tree_insert(&mapping->i_pages, index,
642261ac 483 dax_radix_order(entry), entry);
ac401cc7
JK
484 radix_tree_preload_end();
485 if (err) {
b93b0163 486 xa_unlock_irq(&mapping->i_pages);
642261ac 487 /*
e11f8b7b
RZ
488 * Our insertion of a DAX entry failed, most likely
489 * because we were inserting a PMD entry and it
490 * collided with a PTE sized entry at a different
491 * index in the PMD range. We haven't inserted
492 * anything into the radix tree and have no waiters to
493 * wake.
642261ac 494 */
ac401cc7
JK
495 return ERR_PTR(err);
496 }
497 /* Good, we have inserted empty locked entry into the tree. */
498 mapping->nrexceptional++;
b93b0163 499 xa_unlock_irq(&mapping->i_pages);
e3ad61c6 500 return entry;
ac401cc7 501 }
e3ad61c6 502 entry = lock_slot(mapping, slot);
642261ac 503 out_unlock:
b93b0163 504 xa_unlock_irq(&mapping->i_pages);
e3ad61c6 505 return entry;
ac401cc7
JK
506}
507
5fac7408
DW
508/**
509 * dax_layout_busy_page - find first pinned page in @mapping
510 * @mapping: address space to scan for a page with ref count > 1
511 *
512 * DAX requires ZONE_DEVICE mapped pages. These pages are never
513 * 'onlined' to the page allocator so they are considered idle when
514 * page->count == 1. A filesystem uses this interface to determine if
515 * any page in the mapping is busy, i.e. for DMA, or other
516 * get_user_pages() usages.
517 *
518 * It is expected that the filesystem is holding locks to block the
519 * establishment of new mappings in this address_space. I.e. it expects
520 * to be able to run unmap_mapping_range() and subsequently not race
521 * mapping_mapped() becoming true.
522 */
523struct page *dax_layout_busy_page(struct address_space *mapping)
524{
525 pgoff_t indices[PAGEVEC_SIZE];
526 struct page *page = NULL;
527 struct pagevec pvec;
528 pgoff_t index, end;
529 unsigned i;
530
531 /*
532 * In the 'limited' case get_user_pages() for dax is disabled.
533 */
534 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
535 return NULL;
536
537 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
538 return NULL;
539
540 pagevec_init(&pvec);
541 index = 0;
542 end = -1;
543
544 /*
545 * If we race get_user_pages_fast() here either we'll see the
546 * elevated page count in the pagevec_lookup and wait, or
547 * get_user_pages_fast() will see that the page it took a reference
548 * against is no longer mapped in the page tables and bail to the
549 * get_user_pages() slow path. The slow path is protected by
550 * pte_lock() and pmd_lock(). New references are not taken without
551 * holding those locks, and unmap_mapping_range() will not zero the
552 * pte or pmd without holding the respective lock, so we are
553 * guaranteed to either see new references or prevent new
554 * references from being established.
555 */
556 unmap_mapping_range(mapping, 0, 0, 1);
557
558 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
559 min(end - index, (pgoff_t)PAGEVEC_SIZE),
560 indices)) {
561 for (i = 0; i < pagevec_count(&pvec); i++) {
562 struct page *pvec_ent = pvec.pages[i];
563 void *entry;
564
565 index = indices[i];
566 if (index >= end)
567 break;
568
569 if (!radix_tree_exceptional_entry(pvec_ent))
570 continue;
571
572 xa_lock_irq(&mapping->i_pages);
573 entry = get_unlocked_mapping_entry(mapping, index, NULL);
574 if (entry)
575 page = dax_busy_page(entry);
576 put_unlocked_mapping_entry(mapping, index, entry);
577 xa_unlock_irq(&mapping->i_pages);
578 if (page)
579 break;
580 }
581 pagevec_remove_exceptionals(&pvec);
582 pagevec_release(&pvec);
583 index++;
584
585 if (page)
586 break;
587 }
588 return page;
589}
590EXPORT_SYMBOL_GPL(dax_layout_busy_page);
591
c6dcf52c
JK
592static int __dax_invalidate_mapping_entry(struct address_space *mapping,
593 pgoff_t index, bool trunc)
594{
595 int ret = 0;
596 void *entry;
b93b0163 597 struct radix_tree_root *pages = &mapping->i_pages;
c6dcf52c 598
b93b0163 599 xa_lock_irq(pages);
c6dcf52c 600 entry = get_unlocked_mapping_entry(mapping, index, NULL);
91d25ba8 601 if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
c6dcf52c
JK
602 goto out;
603 if (!trunc &&
b93b0163
MW
604 (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
605 radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
c6dcf52c 606 goto out;
d2c997c0 607 dax_disassociate_entry(entry, mapping, trunc);
b93b0163 608 radix_tree_delete(pages, index);
c6dcf52c
JK
609 mapping->nrexceptional--;
610 ret = 1;
611out:
612 put_unlocked_mapping_entry(mapping, index, entry);
b93b0163 613 xa_unlock_irq(pages);
c6dcf52c
JK
614 return ret;
615}
ac401cc7
JK
616/*
617 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
618 * entry to get unlocked before deleting it.
619 */
620int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
621{
c6dcf52c 622 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
ac401cc7 623
ac401cc7
JK
624 /*
625 * This gets called from truncate / punch_hole path. As such, the caller
626 * must hold locks protecting against concurrent modifications of the
627 * radix tree (usually fs-private i_mmap_sem for writing). Since the
628 * caller has seen exceptional entry for this index, we better find it
629 * at that index as well...
630 */
c6dcf52c
JK
631 WARN_ON_ONCE(!ret);
632 return ret;
633}
634
c6dcf52c
JK
635/*
636 * Invalidate exceptional DAX entry if it is clean.
637 */
638int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
639 pgoff_t index)
640{
641 return __dax_invalidate_mapping_entry(mapping, index, false);
ac401cc7
JK
642}
643
cccbce67
DW
644static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
645 sector_t sector, size_t size, struct page *to,
646 unsigned long vaddr)
f7ca90b1 647{
cccbce67
DW
648 void *vto, *kaddr;
649 pgoff_t pgoff;
650 pfn_t pfn;
651 long rc;
652 int id;
653
654 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
655 if (rc)
656 return rc;
657
658 id = dax_read_lock();
659 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
660 if (rc < 0) {
661 dax_read_unlock(id);
662 return rc;
663 }
f7ca90b1 664 vto = kmap_atomic(to);
cccbce67 665 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
f7ca90b1 666 kunmap_atomic(vto);
cccbce67 667 dax_read_unlock(id);
f7ca90b1
MW
668 return 0;
669}
670
642261ac
RZ
671/*
672 * By this point grab_mapping_entry() has ensured that we have a locked entry
673 * of the appropriate size so we don't have to worry about downgrading PMDs to
674 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
675 * already in the tree, we will skip the insertion and just dirty the PMD as
676 * appropriate.
677 */
ac401cc7
JK
678static void *dax_insert_mapping_entry(struct address_space *mapping,
679 struct vm_fault *vmf,
3fe0791c 680 void *entry, pfn_t pfn_t,
f5b7b748 681 unsigned long flags, bool dirty)
9973c98e 682{
b93b0163 683 struct radix_tree_root *pages = &mapping->i_pages;
3fe0791c 684 unsigned long pfn = pfn_t_to_pfn(pfn_t);
ac401cc7 685 pgoff_t index = vmf->pgoff;
3fe0791c 686 void *new_entry;
9973c98e 687
f5b7b748 688 if (dirty)
d2b2a28e 689 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 690
91d25ba8
RZ
691 if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
692 /* we are replacing a zero page with block mapping */
693 if (dax_is_pmd_entry(entry))
977fbdcd
MW
694 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
695 PG_PMD_NR, false);
91d25ba8 696 else /* pte entry */
977fbdcd 697 unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
9973c98e
RZ
698 }
699
b93b0163 700 xa_lock_irq(pages);
3fe0791c 701 new_entry = dax_radix_locked_entry(pfn, flags);
d2c997c0
DW
702 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
703 dax_disassociate_entry(entry, mapping, false);
704 dax_associate_entry(new_entry, mapping);
705 }
642261ac 706
91d25ba8 707 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
642261ac
RZ
708 /*
709 * Only swap our new entry into the radix tree if the current
710 * entry is a zero page or an empty entry. If a normal PTE or
711 * PMD entry is already in the tree, we leave it alone. This
712 * means that if we are trying to insert a PTE and the
713 * existing entry is a PMD, we will just leave the PMD in the
714 * tree and dirty it if necessary.
715 */
f7942430 716 struct radix_tree_node *node;
ac401cc7
JK
717 void **slot;
718 void *ret;
9973c98e 719
b93b0163 720 ret = __radix_tree_lookup(pages, index, &node, &slot);
ac401cc7 721 WARN_ON_ONCE(ret != entry);
b93b0163 722 __radix_tree_replace(pages, node, slot,
c7df8ad2 723 new_entry, NULL);
91d25ba8 724 entry = new_entry;
9973c98e 725 }
91d25ba8 726
f5b7b748 727 if (dirty)
b93b0163 728 radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
91d25ba8 729
b93b0163 730 xa_unlock_irq(pages);
91d25ba8 731 return entry;
9973c98e
RZ
732}
733
4b4bb46d
JK
734static inline unsigned long
735pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
736{
737 unsigned long address;
738
739 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
740 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
741 return address;
742}
743
744/* Walk all mappings of a given index of a file and writeprotect them */
745static void dax_mapping_entry_mkclean(struct address_space *mapping,
746 pgoff_t index, unsigned long pfn)
747{
748 struct vm_area_struct *vma;
f729c8c9
RZ
749 pte_t pte, *ptep = NULL;
750 pmd_t *pmdp = NULL;
4b4bb46d 751 spinlock_t *ptl;
4b4bb46d
JK
752
753 i_mmap_lock_read(mapping);
754 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
a4d1a885 755 unsigned long address, start, end;
4b4bb46d
JK
756
757 cond_resched();
758
759 if (!(vma->vm_flags & VM_SHARED))
760 continue;
761
762 address = pgoff_address(index, vma);
a4d1a885
JG
763
764 /*
765 * Note because we provide start/end to follow_pte_pmd it will
766 * call mmu_notifier_invalidate_range_start() on our behalf
767 * before taking any lock.
768 */
769 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
4b4bb46d 770 continue;
4b4bb46d 771
0f10851e
JG
772 /*
773 * No need to call mmu_notifier_invalidate_range() as we are
774 * downgrading page table protection not changing it to point
775 * to a new page.
776 *
ad56b738 777 * See Documentation/vm/mmu_notifier.rst
0f10851e 778 */
f729c8c9
RZ
779 if (pmdp) {
780#ifdef CONFIG_FS_DAX_PMD
781 pmd_t pmd;
782
783 if (pfn != pmd_pfn(*pmdp))
784 goto unlock_pmd;
f6f37321 785 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
f729c8c9
RZ
786 goto unlock_pmd;
787
788 flush_cache_page(vma, address, pfn);
789 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
790 pmd = pmd_wrprotect(pmd);
791 pmd = pmd_mkclean(pmd);
792 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
f729c8c9 793unlock_pmd:
f729c8c9 794#endif
ee190ca6 795 spin_unlock(ptl);
f729c8c9
RZ
796 } else {
797 if (pfn != pte_pfn(*ptep))
798 goto unlock_pte;
799 if (!pte_dirty(*ptep) && !pte_write(*ptep))
800 goto unlock_pte;
801
802 flush_cache_page(vma, address, pfn);
803 pte = ptep_clear_flush(vma, address, ptep);
804 pte = pte_wrprotect(pte);
805 pte = pte_mkclean(pte);
806 set_pte_at(vma->vm_mm, address, ptep, pte);
f729c8c9
RZ
807unlock_pte:
808 pte_unmap_unlock(ptep, ptl);
809 }
4b4bb46d 810
a4d1a885 811 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
4b4bb46d
JK
812 }
813 i_mmap_unlock_read(mapping);
814}
815
3fe0791c
DW
816static int dax_writeback_one(struct dax_device *dax_dev,
817 struct address_space *mapping, pgoff_t index, void *entry)
9973c98e 818{
b93b0163 819 struct radix_tree_root *pages = &mapping->i_pages;
3fe0791c
DW
820 void *entry2, **slot;
821 unsigned long pfn;
822 long ret = 0;
cccbce67 823 size_t size;
9973c98e 824
9973c98e 825 /*
a6abc2c0
JK
826 * A page got tagged dirty in DAX mapping? Something is seriously
827 * wrong.
9973c98e 828 */
a6abc2c0
JK
829 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
830 return -EIO;
9973c98e 831
b93b0163 832 xa_lock_irq(pages);
a6abc2c0
JK
833 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
834 /* Entry got punched out / reallocated? */
91d25ba8 835 if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
a6abc2c0
JK
836 goto put_unlocked;
837 /*
838 * Entry got reallocated elsewhere? No need to writeback. We have to
3fe0791c 839 * compare pfns as we must not bail out due to difference in lockbit
a6abc2c0
JK
840 * or entry type.
841 */
3fe0791c 842 if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
a6abc2c0 843 goto put_unlocked;
642261ac
RZ
844 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
845 dax_is_zero_entry(entry))) {
9973c98e 846 ret = -EIO;
a6abc2c0 847 goto put_unlocked;
9973c98e
RZ
848 }
849
a6abc2c0 850 /* Another fsync thread may have already written back this entry */
b93b0163 851 if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
a6abc2c0
JK
852 goto put_unlocked;
853 /* Lock the entry to serialize with page faults */
854 entry = lock_slot(mapping, slot);
855 /*
856 * We can clear the tag now but we have to be careful so that concurrent
857 * dax_writeback_one() calls for the same index cannot finish before we
858 * actually flush the caches. This is achieved as the calls will look
b93b0163
MW
859 * at the entry only under the i_pages lock and once they do that
860 * they will see the entry locked and wait for it to unlock.
a6abc2c0 861 */
b93b0163
MW
862 radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
863 xa_unlock_irq(pages);
a6abc2c0 864
642261ac
RZ
865 /*
866 * Even if dax_writeback_mapping_range() was given a wbc->range_start
867 * in the middle of a PMD, the 'index' we are given will be aligned to
3fe0791c
DW
868 * the start index of the PMD, as will the pfn we pull from 'entry'.
869 * This allows us to flush for PMD_SIZE and not have to worry about
870 * partial PMD writebacks.
642261ac 871 */
3fe0791c 872 pfn = dax_radix_pfn(entry);
cccbce67
DW
873 size = PAGE_SIZE << dax_radix_order(entry);
874
3fe0791c
DW
875 dax_mapping_entry_mkclean(mapping, index, pfn);
876 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
4b4bb46d
JK
877 /*
878 * After we have flushed the cache, we can clear the dirty tag. There
879 * cannot be new dirty data in the pfn after the flush has completed as
880 * the pfn mappings are writeprotected and fault waits for mapping
881 * entry lock.
882 */
b93b0163
MW
883 xa_lock_irq(pages);
884 radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
885 xa_unlock_irq(pages);
f9bc3a07 886 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
91d25ba8 887 put_locked_mapping_entry(mapping, index);
9973c98e
RZ
888 return ret;
889
a6abc2c0
JK
890 put_unlocked:
891 put_unlocked_mapping_entry(mapping, index, entry2);
b93b0163 892 xa_unlock_irq(pages);
9973c98e
RZ
893 return ret;
894}
895
896/*
897 * Flush the mapping to the persistent domain within the byte range of [start,
898 * end]. This is required by data integrity operations to ensure file data is
899 * on persistent storage prior to completion of the operation.
900 */
7f6d5b52
RZ
901int dax_writeback_mapping_range(struct address_space *mapping,
902 struct block_device *bdev, struct writeback_control *wbc)
9973c98e
RZ
903{
904 struct inode *inode = mapping->host;
642261ac 905 pgoff_t start_index, end_index;
9973c98e 906 pgoff_t indices[PAGEVEC_SIZE];
cccbce67 907 struct dax_device *dax_dev;
9973c98e
RZ
908 struct pagevec pvec;
909 bool done = false;
910 int i, ret = 0;
9973c98e
RZ
911
912 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
913 return -EIO;
914
7f6d5b52
RZ
915 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
916 return 0;
917
cccbce67
DW
918 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
919 if (!dax_dev)
920 return -EIO;
921
09cbfeaf
KS
922 start_index = wbc->range_start >> PAGE_SHIFT;
923 end_index = wbc->range_end >> PAGE_SHIFT;
9973c98e 924
d14a3f48
RZ
925 trace_dax_writeback_range(inode, start_index, end_index);
926
9973c98e
RZ
927 tag_pages_for_writeback(mapping, start_index, end_index);
928
86679820 929 pagevec_init(&pvec);
9973c98e
RZ
930 while (!done) {
931 pvec.nr = find_get_entries_tag(mapping, start_index,
932 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
933 pvec.pages, indices);
934
935 if (pvec.nr == 0)
936 break;
937
938 for (i = 0; i < pvec.nr; i++) {
939 if (indices[i] > end_index) {
940 done = true;
941 break;
942 }
943
3fe0791c
DW
944 ret = dax_writeback_one(dax_dev, mapping, indices[i],
945 pvec.pages[i]);
819ec6b9
JL
946 if (ret < 0) {
947 mapping_set_error(mapping, ret);
d14a3f48 948 goto out;
819ec6b9 949 }
9973c98e 950 }
1eb643d0 951 start_index = indices[pvec.nr - 1] + 1;
9973c98e 952 }
d14a3f48 953out:
cccbce67 954 put_dax(dax_dev);
d14a3f48
RZ
955 trace_dax_writeback_range_done(inode, start_index, end_index);
956 return (ret < 0 ? ret : 0);
9973c98e
RZ
957}
958EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
959
31a6f1a6 960static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
f7ca90b1 961{
a3841f94 962 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
31a6f1a6
JK
963}
964
5e161e40
JK
965static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
966 pfn_t *pfnp)
f7ca90b1 967{
31a6f1a6 968 const sector_t sector = dax_iomap_sector(iomap, pos);
cccbce67 969 pgoff_t pgoff;
5e161e40 970 void *kaddr;
cccbce67 971 int id, rc;
5e161e40 972 long length;
f7ca90b1 973
5e161e40 974 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
cccbce67
DW
975 if (rc)
976 return rc;
cccbce67 977 id = dax_read_lock();
5e161e40
JK
978 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
979 &kaddr, pfnp);
980 if (length < 0) {
981 rc = length;
982 goto out;
cccbce67 983 }
5e161e40
JK
984 rc = -EINVAL;
985 if (PFN_PHYS(length) < size)
986 goto out;
987 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
988 goto out;
989 /* For larger pages we need devmap */
990 if (length > 1 && !pfn_t_devmap(*pfnp))
991 goto out;
992 rc = 0;
993out:
cccbce67 994 dax_read_unlock(id);
5e161e40 995 return rc;
0e3b210c 996}
0e3b210c 997
e30331ff 998/*
91d25ba8
RZ
999 * The user has performed a load from a hole in the file. Allocating a new
1000 * page in the file would cause excessive storage usage for workloads with
1001 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1002 * If this page is ever written to we will re-fault and change the mapping to
1003 * point to real DAX storage instead.
e30331ff 1004 */
ab77dab4 1005static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
e30331ff
RZ
1006 struct vm_fault *vmf)
1007{
1008 struct inode *inode = mapping->host;
91d25ba8 1009 unsigned long vaddr = vmf->address;
ab77dab4 1010 vm_fault_t ret = VM_FAULT_NOPAGE;
91d25ba8 1011 struct page *zero_page;
3fe0791c 1012 pfn_t pfn;
e30331ff 1013
91d25ba8
RZ
1014 zero_page = ZERO_PAGE(0);
1015 if (unlikely(!zero_page)) {
e30331ff
RZ
1016 ret = VM_FAULT_OOM;
1017 goto out;
1018 }
1019
3fe0791c 1020 pfn = page_to_pfn_t(zero_page);
cc4a90ac
MW
1021 dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE,
1022 false);
ab77dab4 1023 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
e30331ff
RZ
1024out:
1025 trace_dax_load_hole(inode, vmf, ret);
1026 return ret;
1027}
1028
4b0228fa
VV
1029static bool dax_range_is_aligned(struct block_device *bdev,
1030 unsigned int offset, unsigned int length)
1031{
1032 unsigned short sector_size = bdev_logical_block_size(bdev);
1033
1034 if (!IS_ALIGNED(offset, sector_size))
1035 return false;
1036 if (!IS_ALIGNED(length, sector_size))
1037 return false;
1038
1039 return true;
1040}
1041
cccbce67
DW
1042int __dax_zero_page_range(struct block_device *bdev,
1043 struct dax_device *dax_dev, sector_t sector,
1044 unsigned int offset, unsigned int size)
679c8bd3 1045{
cccbce67
DW
1046 if (dax_range_is_aligned(bdev, offset, size)) {
1047 sector_t start_sector = sector + (offset >> 9);
4b0228fa
VV
1048
1049 return blkdev_issue_zeroout(bdev, start_sector,
53ef7d0e 1050 size >> 9, GFP_NOFS, 0);
4b0228fa 1051 } else {
cccbce67
DW
1052 pgoff_t pgoff;
1053 long rc, id;
1054 void *kaddr;
1055 pfn_t pfn;
1056
e84b83b9 1057 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
cccbce67
DW
1058 if (rc)
1059 return rc;
1060
1061 id = dax_read_lock();
e84b83b9 1062 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
cccbce67
DW
1063 &pfn);
1064 if (rc < 0) {
1065 dax_read_unlock(id);
1066 return rc;
1067 }
81f55870 1068 memset(kaddr + offset, 0, size);
c3ca015f 1069 dax_flush(dax_dev, kaddr + offset, size);
cccbce67 1070 dax_read_unlock(id);
4b0228fa 1071 }
679c8bd3
CH
1072 return 0;
1073}
1074EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1075
a254e568 1076static loff_t
11c59c92 1077dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
a254e568
CH
1078 struct iomap *iomap)
1079{
cccbce67
DW
1080 struct block_device *bdev = iomap->bdev;
1081 struct dax_device *dax_dev = iomap->dax_dev;
a254e568
CH
1082 struct iov_iter *iter = data;
1083 loff_t end = pos + length, done = 0;
1084 ssize_t ret = 0;
a77d4786 1085 size_t xfer;
cccbce67 1086 int id;
a254e568
CH
1087
1088 if (iov_iter_rw(iter) == READ) {
1089 end = min(end, i_size_read(inode));
1090 if (pos >= end)
1091 return 0;
1092
1093 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1094 return iov_iter_zero(min(length, end - pos), iter);
1095 }
1096
1097 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1098 return -EIO;
1099
e3fce68c
JK
1100 /*
1101 * Write can allocate block for an area which has a hole page mapped
1102 * into page tables. We have to tear down these mappings so that data
1103 * written by write(2) is visible in mmap.
1104 */
cd656375 1105 if (iomap->flags & IOMAP_F_NEW) {
e3fce68c
JK
1106 invalidate_inode_pages2_range(inode->i_mapping,
1107 pos >> PAGE_SHIFT,
1108 (end - 1) >> PAGE_SHIFT);
1109 }
1110
cccbce67 1111 id = dax_read_lock();
a254e568
CH
1112 while (pos < end) {
1113 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67
DW
1114 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1115 const sector_t sector = dax_iomap_sector(iomap, pos);
a254e568 1116 ssize_t map_len;
cccbce67
DW
1117 pgoff_t pgoff;
1118 void *kaddr;
1119 pfn_t pfn;
a254e568 1120
d1908f52
MH
1121 if (fatal_signal_pending(current)) {
1122 ret = -EINTR;
1123 break;
1124 }
1125
cccbce67
DW
1126 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1127 if (ret)
1128 break;
1129
1130 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1131 &kaddr, &pfn);
a254e568
CH
1132 if (map_len < 0) {
1133 ret = map_len;
1134 break;
1135 }
1136
cccbce67
DW
1137 map_len = PFN_PHYS(map_len);
1138 kaddr += offset;
a254e568
CH
1139 map_len -= offset;
1140 if (map_len > end - pos)
1141 map_len = end - pos;
1142
a2e050f5
RZ
1143 /*
1144 * The userspace address for the memory copy has already been
1145 * validated via access_ok() in either vfs_read() or
1146 * vfs_write(), depending on which operation we are doing.
1147 */
a254e568 1148 if (iov_iter_rw(iter) == WRITE)
a77d4786 1149 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
fec53774 1150 map_len, iter);
a254e568 1151 else
a77d4786 1152 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
b3a9a0c3 1153 map_len, iter);
a254e568 1154
a77d4786
DW
1155 pos += xfer;
1156 length -= xfer;
1157 done += xfer;
1158
1159 if (xfer == 0)
1160 ret = -EFAULT;
1161 if (xfer < map_len)
1162 break;
a254e568 1163 }
cccbce67 1164 dax_read_unlock(id);
a254e568
CH
1165
1166 return done ? done : ret;
1167}
1168
1169/**
11c59c92 1170 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1171 * @iocb: The control block for this I/O
1172 * @iter: The addresses to do I/O from or to
1173 * @ops: iomap ops passed from the file system
1174 *
1175 * This function performs read and write operations to directly mapped
1176 * persistent memory. The callers needs to take care of read/write exclusion
1177 * and evicting any page cache pages in the region under I/O.
1178 */
1179ssize_t
11c59c92 1180dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1181 const struct iomap_ops *ops)
a254e568
CH
1182{
1183 struct address_space *mapping = iocb->ki_filp->f_mapping;
1184 struct inode *inode = mapping->host;
1185 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1186 unsigned flags = 0;
1187
168316db
CH
1188 if (iov_iter_rw(iter) == WRITE) {
1189 lockdep_assert_held_exclusive(&inode->i_rwsem);
a254e568 1190 flags |= IOMAP_WRITE;
168316db
CH
1191 } else {
1192 lockdep_assert_held(&inode->i_rwsem);
1193 }
a254e568 1194
a254e568
CH
1195 while (iov_iter_count(iter)) {
1196 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1197 iter, dax_iomap_actor);
a254e568
CH
1198 if (ret <= 0)
1199 break;
1200 pos += ret;
1201 done += ret;
1202 }
1203
1204 iocb->ki_pos += done;
1205 return done ? done : ret;
1206}
11c59c92 1207EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1208
ab77dab4 1209static vm_fault_t dax_fault_return(int error)
9f141d6e
JK
1210{
1211 if (error == 0)
1212 return VM_FAULT_NOPAGE;
1213 if (error == -ENOMEM)
1214 return VM_FAULT_OOM;
1215 return VM_FAULT_SIGBUS;
1216}
1217
aaa422c4
DW
1218/*
1219 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1220 * flushed on write-faults (non-cow), but not read-faults.
1221 */
1222static bool dax_fault_is_synchronous(unsigned long flags,
1223 struct vm_area_struct *vma, struct iomap *iomap)
1224{
1225 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1226 && (iomap->flags & IOMAP_F_DIRTY);
1227}
1228
ab77dab4 1229static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
c0b24625 1230 int *iomap_errp, const struct iomap_ops *ops)
a7d73fe6 1231{
a0987ad5
JK
1232 struct vm_area_struct *vma = vmf->vma;
1233 struct address_space *mapping = vma->vm_file->f_mapping;
a7d73fe6 1234 struct inode *inode = mapping->host;
1a29d85e 1235 unsigned long vaddr = vmf->address;
a7d73fe6 1236 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
a7d73fe6 1237 struct iomap iomap = { 0 };
9484ab1b 1238 unsigned flags = IOMAP_FAULT;
a7d73fe6 1239 int error, major = 0;
d2c43ef1 1240 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1241 bool sync;
ab77dab4 1242 vm_fault_t ret = 0;
a7d73fe6 1243 void *entry;
1b5a1cb2 1244 pfn_t pfn;
a7d73fe6 1245
ab77dab4 1246 trace_dax_pte_fault(inode, vmf, ret);
a7d73fe6
CH
1247 /*
1248 * Check whether offset isn't beyond end of file now. Caller is supposed
1249 * to hold locks serializing us with truncate / punch hole so this is
1250 * a reliable test.
1251 */
a9c42b33 1252 if (pos >= i_size_read(inode)) {
ab77dab4 1253 ret = VM_FAULT_SIGBUS;
a9c42b33
RZ
1254 goto out;
1255 }
a7d73fe6 1256
d2c43ef1 1257 if (write && !vmf->cow_page)
a7d73fe6
CH
1258 flags |= IOMAP_WRITE;
1259
13e451fd
JK
1260 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1261 if (IS_ERR(entry)) {
ab77dab4 1262 ret = dax_fault_return(PTR_ERR(entry));
13e451fd
JK
1263 goto out;
1264 }
1265
e2093926
RZ
1266 /*
1267 * It is possible, particularly with mixed reads & writes to private
1268 * mappings, that we have raced with a PMD fault that overlaps with
1269 * the PTE we need to set up. If so just return and the fault will be
1270 * retried.
1271 */
1272 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
ab77dab4 1273 ret = VM_FAULT_NOPAGE;
e2093926
RZ
1274 goto unlock_entry;
1275 }
1276
a7d73fe6
CH
1277 /*
1278 * Note that we don't bother to use iomap_apply here: DAX required
1279 * the file system block size to be equal the page size, which means
1280 * that we never have to deal with more than a single extent here.
1281 */
1282 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
c0b24625
JK
1283 if (iomap_errp)
1284 *iomap_errp = error;
a9c42b33 1285 if (error) {
ab77dab4 1286 ret = dax_fault_return(error);
13e451fd 1287 goto unlock_entry;
a9c42b33 1288 }
a7d73fe6 1289 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
13e451fd
JK
1290 error = -EIO; /* fs corruption? */
1291 goto error_finish_iomap;
a7d73fe6
CH
1292 }
1293
a7d73fe6 1294 if (vmf->cow_page) {
31a6f1a6
JK
1295 sector_t sector = dax_iomap_sector(&iomap, pos);
1296
a7d73fe6
CH
1297 switch (iomap.type) {
1298 case IOMAP_HOLE:
1299 case IOMAP_UNWRITTEN:
1300 clear_user_highpage(vmf->cow_page, vaddr);
1301 break;
1302 case IOMAP_MAPPED:
cccbce67
DW
1303 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1304 sector, PAGE_SIZE, vmf->cow_page, vaddr);
a7d73fe6
CH
1305 break;
1306 default:
1307 WARN_ON_ONCE(1);
1308 error = -EIO;
1309 break;
1310 }
1311
1312 if (error)
13e451fd 1313 goto error_finish_iomap;
b1aa812b
JK
1314
1315 __SetPageUptodate(vmf->cow_page);
ab77dab4
SJ
1316 ret = finish_fault(vmf);
1317 if (!ret)
1318 ret = VM_FAULT_DONE_COW;
13e451fd 1319 goto finish_iomap;
a7d73fe6
CH
1320 }
1321
aaa422c4 1322 sync = dax_fault_is_synchronous(flags, vma, &iomap);
caa51d26 1323
a7d73fe6
CH
1324 switch (iomap.type) {
1325 case IOMAP_MAPPED:
1326 if (iomap.flags & IOMAP_F_NEW) {
1327 count_vm_event(PGMAJFAULT);
a0987ad5 1328 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
a7d73fe6
CH
1329 major = VM_FAULT_MAJOR;
1330 }
1b5a1cb2
JK
1331 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1332 if (error < 0)
1333 goto error_finish_iomap;
1334
3fe0791c 1335 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
caa51d26 1336 0, write && !sync);
1b5a1cb2 1337
caa51d26
JK
1338 /*
1339 * If we are doing synchronous page fault and inode needs fsync,
1340 * we can insert PTE into page tables only after that happens.
1341 * Skip insertion for now and return the pfn so that caller can
1342 * insert it after fsync is done.
1343 */
1344 if (sync) {
1345 if (WARN_ON_ONCE(!pfnp)) {
1346 error = -EIO;
1347 goto error_finish_iomap;
1348 }
1349 *pfnp = pfn;
ab77dab4 1350 ret = VM_FAULT_NEEDDSYNC | major;
caa51d26
JK
1351 goto finish_iomap;
1352 }
1b5a1cb2
JK
1353 trace_dax_insert_mapping(inode, vmf, entry);
1354 if (write)
ab77dab4 1355 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1b5a1cb2 1356 else
ab77dab4 1357 ret = vmf_insert_mixed(vma, vaddr, pfn);
1b5a1cb2 1358
ab77dab4 1359 goto finish_iomap;
a7d73fe6
CH
1360 case IOMAP_UNWRITTEN:
1361 case IOMAP_HOLE:
d2c43ef1 1362 if (!write) {
ab77dab4 1363 ret = dax_load_hole(mapping, entry, vmf);
13e451fd 1364 goto finish_iomap;
1550290b 1365 }
a7d73fe6
CH
1366 /*FALLTHRU*/
1367 default:
1368 WARN_ON_ONCE(1);
1369 error = -EIO;
1370 break;
1371 }
1372
13e451fd 1373 error_finish_iomap:
ab77dab4 1374 ret = dax_fault_return(error);
9f141d6e
JK
1375 finish_iomap:
1376 if (ops->iomap_end) {
1377 int copied = PAGE_SIZE;
1378
ab77dab4 1379 if (ret & VM_FAULT_ERROR)
9f141d6e
JK
1380 copied = 0;
1381 /*
1382 * The fault is done by now and there's no way back (other
1383 * thread may be already happily using PTE we have installed).
1384 * Just ignore error from ->iomap_end since we cannot do much
1385 * with it.
1386 */
1387 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1550290b 1388 }
13e451fd 1389 unlock_entry:
91d25ba8 1390 put_locked_mapping_entry(mapping, vmf->pgoff);
13e451fd 1391 out:
ab77dab4
SJ
1392 trace_dax_pte_fault_done(inode, vmf, ret);
1393 return ret | major;
a7d73fe6 1394}
642261ac
RZ
1395
1396#ifdef CONFIG_FS_DAX_PMD
ab77dab4 1397static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
91d25ba8 1398 void *entry)
642261ac 1399{
f4200391
DJ
1400 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1401 unsigned long pmd_addr = vmf->address & PMD_MASK;
653b2ea3 1402 struct inode *inode = mapping->host;
642261ac 1403 struct page *zero_page;
653b2ea3 1404 void *ret = NULL;
642261ac
RZ
1405 spinlock_t *ptl;
1406 pmd_t pmd_entry;
3fe0791c 1407 pfn_t pfn;
642261ac 1408
f4200391 1409 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
642261ac
RZ
1410
1411 if (unlikely(!zero_page))
653b2ea3 1412 goto fallback;
642261ac 1413
3fe0791c
DW
1414 pfn = page_to_pfn_t(zero_page);
1415 ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
f5b7b748 1416 RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
642261ac 1417
f4200391
DJ
1418 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1419 if (!pmd_none(*(vmf->pmd))) {
642261ac 1420 spin_unlock(ptl);
653b2ea3 1421 goto fallback;
642261ac
RZ
1422 }
1423
f4200391 1424 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
642261ac 1425 pmd_entry = pmd_mkhuge(pmd_entry);
f4200391 1426 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
642261ac 1427 spin_unlock(ptl);
f4200391 1428 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
642261ac 1429 return VM_FAULT_NOPAGE;
653b2ea3
RZ
1430
1431fallback:
f4200391 1432 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
653b2ea3 1433 return VM_FAULT_FALLBACK;
642261ac
RZ
1434}
1435
ab77dab4 1436static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
a2d58167 1437 const struct iomap_ops *ops)
642261ac 1438{
f4200391 1439 struct vm_area_struct *vma = vmf->vma;
642261ac 1440 struct address_space *mapping = vma->vm_file->f_mapping;
d8a849e1
DJ
1441 unsigned long pmd_addr = vmf->address & PMD_MASK;
1442 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1443 bool sync;
9484ab1b 1444 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac 1445 struct inode *inode = mapping->host;
ab77dab4 1446 vm_fault_t result = VM_FAULT_FALLBACK;
642261ac
RZ
1447 struct iomap iomap = { 0 };
1448 pgoff_t max_pgoff, pgoff;
642261ac
RZ
1449 void *entry;
1450 loff_t pos;
1451 int error;
302a5e31 1452 pfn_t pfn;
642261ac 1453
282a8e03
RZ
1454 /*
1455 * Check whether offset isn't beyond end of file now. Caller is
1456 * supposed to hold locks serializing us with truncate / punch hole so
1457 * this is a reliable test.
1458 */
1459 pgoff = linear_page_index(vma, pmd_addr);
957ac8c4 1460 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
282a8e03 1461
f4200391 1462 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
282a8e03 1463
fffa281b
RZ
1464 /*
1465 * Make sure that the faulting address's PMD offset (color) matches
1466 * the PMD offset from the start of the file. This is necessary so
1467 * that a PMD range in the page table overlaps exactly with a PMD
1468 * range in the radix tree.
1469 */
1470 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1471 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1472 goto fallback;
1473
642261ac
RZ
1474 /* Fall back to PTEs if we're going to COW */
1475 if (write && !(vma->vm_flags & VM_SHARED))
1476 goto fallback;
1477
1478 /* If the PMD would extend outside the VMA */
1479 if (pmd_addr < vma->vm_start)
1480 goto fallback;
1481 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1482 goto fallback;
1483
957ac8c4 1484 if (pgoff >= max_pgoff) {
282a8e03
RZ
1485 result = VM_FAULT_SIGBUS;
1486 goto out;
1487 }
642261ac
RZ
1488
1489 /* If the PMD would extend beyond the file size */
957ac8c4 1490 if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
642261ac
RZ
1491 goto fallback;
1492
876f2946 1493 /*
91d25ba8
RZ
1494 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1495 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1496 * is already in the tree, for instance), it will return -EEXIST and
1497 * we just fall back to 4k entries.
876f2946
RZ
1498 */
1499 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1500 if (IS_ERR(entry))
1501 goto fallback;
1502
e2093926
RZ
1503 /*
1504 * It is possible, particularly with mixed reads & writes to private
1505 * mappings, that we have raced with a PTE fault that overlaps with
1506 * the PMD we need to set up. If so just return and the fault will be
1507 * retried.
1508 */
1509 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1510 !pmd_devmap(*vmf->pmd)) {
1511 result = 0;
1512 goto unlock_entry;
1513 }
1514
642261ac
RZ
1515 /*
1516 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1517 * setting up a mapping, so really we're using iomap_begin() as a way
1518 * to look up our filesystem block.
1519 */
1520 pos = (loff_t)pgoff << PAGE_SHIFT;
1521 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1522 if (error)
876f2946 1523 goto unlock_entry;
9f141d6e 1524
642261ac
RZ
1525 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1526 goto finish_iomap;
1527
aaa422c4 1528 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
caa51d26 1529
642261ac
RZ
1530 switch (iomap.type) {
1531 case IOMAP_MAPPED:
302a5e31
JK
1532 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1533 if (error < 0)
1534 goto finish_iomap;
1535
3fe0791c 1536 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
caa51d26 1537 RADIX_DAX_PMD, write && !sync);
302a5e31 1538
caa51d26
JK
1539 /*
1540 * If we are doing synchronous page fault and inode needs fsync,
1541 * we can insert PMD into page tables only after that happens.
1542 * Skip insertion for now and return the pfn so that caller can
1543 * insert it after fsync is done.
1544 */
1545 if (sync) {
1546 if (WARN_ON_ONCE(!pfnp))
1547 goto finish_iomap;
1548 *pfnp = pfn;
1549 result = VM_FAULT_NEEDDSYNC;
1550 goto finish_iomap;
1551 }
1552
302a5e31
JK
1553 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1554 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1555 write);
642261ac
RZ
1556 break;
1557 case IOMAP_UNWRITTEN:
1558 case IOMAP_HOLE:
1559 if (WARN_ON_ONCE(write))
876f2946 1560 break;
91d25ba8 1561 result = dax_pmd_load_hole(vmf, &iomap, entry);
642261ac
RZ
1562 break;
1563 default:
1564 WARN_ON_ONCE(1);
1565 break;
1566 }
1567
1568 finish_iomap:
1569 if (ops->iomap_end) {
9f141d6e
JK
1570 int copied = PMD_SIZE;
1571
1572 if (result == VM_FAULT_FALLBACK)
1573 copied = 0;
1574 /*
1575 * The fault is done by now and there's no way back (other
1576 * thread may be already happily using PMD we have installed).
1577 * Just ignore error from ->iomap_end since we cannot do much
1578 * with it.
1579 */
1580 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1581 &iomap);
642261ac 1582 }
876f2946 1583 unlock_entry:
91d25ba8 1584 put_locked_mapping_entry(mapping, pgoff);
642261ac
RZ
1585 fallback:
1586 if (result == VM_FAULT_FALLBACK) {
d8a849e1 1587 split_huge_pmd(vma, vmf->pmd, vmf->address);
642261ac
RZ
1588 count_vm_event(THP_FAULT_FALLBACK);
1589 }
282a8e03 1590out:
f4200391 1591 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
642261ac
RZ
1592 return result;
1593}
a2d58167 1594#else
ab77dab4 1595static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
01cddfe9 1596 const struct iomap_ops *ops)
a2d58167
DJ
1597{
1598 return VM_FAULT_FALLBACK;
1599}
642261ac 1600#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1601
1602/**
1603 * dax_iomap_fault - handle a page fault on a DAX file
1604 * @vmf: The description of the fault
cec04e8c 1605 * @pe_size: Size of the page to fault in
9a0dd422 1606 * @pfnp: PFN to insert for synchronous faults if fsync is required
c0b24625 1607 * @iomap_errp: Storage for detailed error code in case of error
cec04e8c 1608 * @ops: Iomap ops passed from the file system
a2d58167
DJ
1609 *
1610 * When a page fault occurs, filesystems may call this helper in
1611 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1612 * has done all the necessary locking for page fault to proceed
1613 * successfully.
1614 */
ab77dab4 1615vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
c0b24625 1616 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
a2d58167 1617{
c791ace1
DJ
1618 switch (pe_size) {
1619 case PE_SIZE_PTE:
c0b24625 1620 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
c791ace1 1621 case PE_SIZE_PMD:
9a0dd422 1622 return dax_iomap_pmd_fault(vmf, pfnp, ops);
a2d58167
DJ
1623 default:
1624 return VM_FAULT_FALLBACK;
1625 }
1626}
1627EXPORT_SYMBOL_GPL(dax_iomap_fault);
71eab6df
JK
1628
1629/**
1630 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1631 * @vmf: The description of the fault
1632 * @pe_size: Size of entry to be inserted
1633 * @pfn: PFN to insert
1634 *
1635 * This function inserts writeable PTE or PMD entry into page tables for mmaped
1636 * DAX file. It takes care of marking corresponding radix tree entry as dirty
1637 * as well.
1638 */
ab77dab4 1639static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
71eab6df
JK
1640 enum page_entry_size pe_size,
1641 pfn_t pfn)
1642{
1643 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1644 void *entry, **slot;
1645 pgoff_t index = vmf->pgoff;
ab77dab4 1646 vm_fault_t ret;
71eab6df 1647
b93b0163 1648 xa_lock_irq(&mapping->i_pages);
71eab6df
JK
1649 entry = get_unlocked_mapping_entry(mapping, index, &slot);
1650 /* Did we race with someone splitting entry or so? */
1651 if (!entry ||
1652 (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1653 (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1654 put_unlocked_mapping_entry(mapping, index, entry);
b93b0163 1655 xa_unlock_irq(&mapping->i_pages);
71eab6df
JK
1656 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1657 VM_FAULT_NOPAGE);
1658 return VM_FAULT_NOPAGE;
1659 }
b93b0163 1660 radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
71eab6df 1661 entry = lock_slot(mapping, slot);
b93b0163 1662 xa_unlock_irq(&mapping->i_pages);
71eab6df
JK
1663 switch (pe_size) {
1664 case PE_SIZE_PTE:
ab77dab4 1665 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
71eab6df
JK
1666 break;
1667#ifdef CONFIG_FS_DAX_PMD
1668 case PE_SIZE_PMD:
ab77dab4 1669 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
71eab6df
JK
1670 pfn, true);
1671 break;
1672#endif
1673 default:
ab77dab4 1674 ret = VM_FAULT_FALLBACK;
71eab6df
JK
1675 }
1676 put_locked_mapping_entry(mapping, index);
ab77dab4
SJ
1677 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1678 return ret;
71eab6df
JK
1679}
1680
1681/**
1682 * dax_finish_sync_fault - finish synchronous page fault
1683 * @vmf: The description of the fault
1684 * @pe_size: Size of entry to be inserted
1685 * @pfn: PFN to insert
1686 *
1687 * This function ensures that the file range touched by the page fault is
1688 * stored persistently on the media and handles inserting of appropriate page
1689 * table entry.
1690 */
ab77dab4
SJ
1691vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1692 enum page_entry_size pe_size, pfn_t pfn)
71eab6df
JK
1693{
1694 int err;
1695 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1696 size_t len = 0;
1697
1698 if (pe_size == PE_SIZE_PTE)
1699 len = PAGE_SIZE;
1700 else if (pe_size == PE_SIZE_PMD)
1701 len = PMD_SIZE;
1702 else
1703 WARN_ON_ONCE(1);
1704 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1705 if (err)
1706 return VM_FAULT_SIGBUS;
1707 return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1708}
1709EXPORT_SYMBOL_GPL(dax_finish_sync_fault);