btrfs: resurrect btrfs_crc32c()
[linux-2.6-block.git] / fs / dax.c
CommitLineData
2025cf9e 1// SPDX-License-Identifier: GPL-2.0-only
d475c634
MW
2/*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
d475c634
MW
7 */
8
9#include <linux/atomic.h>
10#include <linux/blkdev.h>
11#include <linux/buffer_head.h>
d77e92e2 12#include <linux/dax.h>
d475c634
MW
13#include <linux/fs.h>
14#include <linux/genhd.h>
f7ca90b1
MW
15#include <linux/highmem.h>
16#include <linux/memcontrol.h>
17#include <linux/mm.h>
d475c634 18#include <linux/mutex.h>
9973c98e 19#include <linux/pagevec.h>
289c6aed 20#include <linux/sched.h>
f361bf4a 21#include <linux/sched/signal.h>
d475c634 22#include <linux/uio.h>
f7ca90b1 23#include <linux/vmstat.h>
34c0fd54 24#include <linux/pfn_t.h>
0e749e54 25#include <linux/sizes.h>
4b4bb46d 26#include <linux/mmu_notifier.h>
a254e568 27#include <linux/iomap.h>
11cf9d86 28#include <asm/pgalloc.h>
a254e568 29#include "internal.h"
d475c634 30
282a8e03
RZ
31#define CREATE_TRACE_POINTS
32#include <trace/events/fs_dax.h>
33
cfc93c6c
MW
34static inline unsigned int pe_order(enum page_entry_size pe_size)
35{
36 if (pe_size == PE_SIZE_PTE)
37 return PAGE_SHIFT - PAGE_SHIFT;
38 if (pe_size == PE_SIZE_PMD)
39 return PMD_SHIFT - PAGE_SHIFT;
40 if (pe_size == PE_SIZE_PUD)
41 return PUD_SHIFT - PAGE_SHIFT;
42 return ~0;
43}
44
ac401cc7
JK
45/* We choose 4096 entries - same as per-zone page wait tables */
46#define DAX_WAIT_TABLE_BITS 12
47#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
48
917f3452
RZ
49/* The 'colour' (ie low bits) within a PMD of a page offset. */
50#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
977fbdcd 51#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
917f3452 52
cfc93c6c
MW
53/* The order of a PMD entry */
54#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
55
ce95ab0f 56static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
57
58static int __init init_dax_wait_table(void)
59{
60 int i;
61
62 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
63 init_waitqueue_head(wait_table + i);
64 return 0;
65}
66fs_initcall(init_dax_wait_table);
67
527b19d0 68/*
3159f943
MW
69 * DAX pagecache entries use XArray value entries so they can't be mistaken
70 * for pages. We use one bit for locking, one bit for the entry size (PMD)
71 * and two more to tell us if the entry is a zero page or an empty entry that
72 * is just used for locking. In total four special bits.
527b19d0
RZ
73 *
74 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
75 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
76 * block allocation.
77 */
3159f943
MW
78#define DAX_SHIFT (4)
79#define DAX_LOCKED (1UL << 0)
80#define DAX_PMD (1UL << 1)
81#define DAX_ZERO_PAGE (1UL << 2)
82#define DAX_EMPTY (1UL << 3)
527b19d0 83
a77d19f4 84static unsigned long dax_to_pfn(void *entry)
527b19d0 85{
3159f943 86 return xa_to_value(entry) >> DAX_SHIFT;
527b19d0
RZ
87}
88
9f32d221
MW
89static void *dax_make_entry(pfn_t pfn, unsigned long flags)
90{
91 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
92}
93
cfc93c6c
MW
94static bool dax_is_locked(void *entry)
95{
96 return xa_to_value(entry) & DAX_LOCKED;
97}
98
a77d19f4 99static unsigned int dax_entry_order(void *entry)
527b19d0 100{
3159f943 101 if (xa_to_value(entry) & DAX_PMD)
cfc93c6c 102 return PMD_ORDER;
527b19d0
RZ
103 return 0;
104}
105
fda490d3 106static unsigned long dax_is_pmd_entry(void *entry)
d1a5f2b4 107{
3159f943 108 return xa_to_value(entry) & DAX_PMD;
d1a5f2b4
DW
109}
110
fda490d3 111static bool dax_is_pte_entry(void *entry)
d475c634 112{
3159f943 113 return !(xa_to_value(entry) & DAX_PMD);
d475c634
MW
114}
115
642261ac 116static int dax_is_zero_entry(void *entry)
d475c634 117{
3159f943 118 return xa_to_value(entry) & DAX_ZERO_PAGE;
d475c634
MW
119}
120
642261ac 121static int dax_is_empty_entry(void *entry)
b2e0d162 122{
3159f943 123 return xa_to_value(entry) & DAX_EMPTY;
b2e0d162
DW
124}
125
ac401cc7 126/*
a77d19f4 127 * DAX page cache entry locking
ac401cc7
JK
128 */
129struct exceptional_entry_key {
ec4907ff 130 struct xarray *xa;
63e95b5c 131 pgoff_t entry_start;
ac401cc7
JK
132};
133
134struct wait_exceptional_entry_queue {
ac6424b9 135 wait_queue_entry_t wait;
ac401cc7
JK
136 struct exceptional_entry_key key;
137};
138
b15cd800
MW
139static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
140 void *entry, struct exceptional_entry_key *key)
63e95b5c
RZ
141{
142 unsigned long hash;
b15cd800 143 unsigned long index = xas->xa_index;
63e95b5c
RZ
144
145 /*
146 * If 'entry' is a PMD, align the 'index' that we use for the wait
147 * queue to the start of that PMD. This ensures that all offsets in
148 * the range covered by the PMD map to the same bit lock.
149 */
642261ac 150 if (dax_is_pmd_entry(entry))
917f3452 151 index &= ~PG_PMD_COLOUR;
b15cd800 152 key->xa = xas->xa;
63e95b5c
RZ
153 key->entry_start = index;
154
b15cd800 155 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
63e95b5c
RZ
156 return wait_table + hash;
157}
158
ec4907ff
MW
159static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
160 unsigned int mode, int sync, void *keyp)
ac401cc7
JK
161{
162 struct exceptional_entry_key *key = keyp;
163 struct wait_exceptional_entry_queue *ewait =
164 container_of(wait, struct wait_exceptional_entry_queue, wait);
165
ec4907ff 166 if (key->xa != ewait->key.xa ||
63e95b5c 167 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
168 return 0;
169 return autoremove_wake_function(wait, mode, sync, NULL);
170}
171
e30331ff 172/*
b93b0163
MW
173 * @entry may no longer be the entry at the index in the mapping.
174 * The important information it's conveying is whether the entry at
175 * this index used to be a PMD entry.
e30331ff 176 */
b15cd800 177static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
e30331ff
RZ
178{
179 struct exceptional_entry_key key;
180 wait_queue_head_t *wq;
181
b15cd800 182 wq = dax_entry_waitqueue(xas, entry, &key);
e30331ff
RZ
183
184 /*
185 * Checking for locked entry and prepare_to_wait_exclusive() happens
b93b0163 186 * under the i_pages lock, ditto for entry handling in our callers.
e30331ff
RZ
187 * So at this point all tasks that could have seen our entry locked
188 * must be in the waitqueue and the following check will see them.
189 */
190 if (waitqueue_active(wq))
191 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
192}
193
cfc93c6c
MW
194/*
195 * Look up entry in page cache, wait for it to become unlocked if it
196 * is a DAX entry and return it. The caller must subsequently call
197 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
198 * if it did.
199 *
200 * Must be called with the i_pages lock held.
201 */
202static void *get_unlocked_entry(struct xa_state *xas)
203{
204 void *entry;
205 struct wait_exceptional_entry_queue ewait;
206 wait_queue_head_t *wq;
207
208 init_wait(&ewait.wait);
209 ewait.wait.func = wake_exceptional_entry_func;
210
211 for (;;) {
0e40de03
MW
212 entry = xas_find_conflict(xas);
213 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
cfc93c6c
MW
214 !dax_is_locked(entry))
215 return entry;
216
b15cd800 217 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
cfc93c6c
MW
218 prepare_to_wait_exclusive(wq, &ewait.wait,
219 TASK_UNINTERRUPTIBLE);
220 xas_unlock_irq(xas);
221 xas_reset(xas);
222 schedule();
223 finish_wait(wq, &ewait.wait);
224 xas_lock_irq(xas);
225 }
226}
227
55e56f06
MW
228/*
229 * The only thing keeping the address space around is the i_pages lock
230 * (it's cycled in clear_inode() after removing the entries from i_pages)
231 * After we call xas_unlock_irq(), we cannot touch xas->xa.
232 */
233static void wait_entry_unlocked(struct xa_state *xas, void *entry)
234{
235 struct wait_exceptional_entry_queue ewait;
236 wait_queue_head_t *wq;
237
238 init_wait(&ewait.wait);
239 ewait.wait.func = wake_exceptional_entry_func;
240
241 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
d8a70641
DW
242 /*
243 * Unlike get_unlocked_entry() there is no guarantee that this
244 * path ever successfully retrieves an unlocked entry before an
245 * inode dies. Perform a non-exclusive wait in case this path
246 * never successfully performs its own wake up.
247 */
248 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
55e56f06
MW
249 xas_unlock_irq(xas);
250 schedule();
251 finish_wait(wq, &ewait.wait);
55e56f06
MW
252}
253
cfc93c6c
MW
254static void put_unlocked_entry(struct xa_state *xas, void *entry)
255{
256 /* If we were the only waiter woken, wake the next one */
257 if (entry)
258 dax_wake_entry(xas, entry, false);
259}
260
261/*
262 * We used the xa_state to get the entry, but then we locked the entry and
263 * dropped the xa_lock, so we know the xa_state is stale and must be reset
264 * before use.
265 */
266static void dax_unlock_entry(struct xa_state *xas, void *entry)
267{
268 void *old;
269
7ae2ea7d 270 BUG_ON(dax_is_locked(entry));
cfc93c6c
MW
271 xas_reset(xas);
272 xas_lock_irq(xas);
273 old = xas_store(xas, entry);
274 xas_unlock_irq(xas);
275 BUG_ON(!dax_is_locked(old));
276 dax_wake_entry(xas, entry, false);
277}
278
279/*
280 * Return: The entry stored at this location before it was locked.
281 */
282static void *dax_lock_entry(struct xa_state *xas, void *entry)
283{
284 unsigned long v = xa_to_value(entry);
285 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
286}
287
d2c997c0
DW
288static unsigned long dax_entry_size(void *entry)
289{
290 if (dax_is_zero_entry(entry))
291 return 0;
292 else if (dax_is_empty_entry(entry))
293 return 0;
294 else if (dax_is_pmd_entry(entry))
295 return PMD_SIZE;
296 else
297 return PAGE_SIZE;
298}
299
a77d19f4 300static unsigned long dax_end_pfn(void *entry)
d2c997c0 301{
a77d19f4 302 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
d2c997c0
DW
303}
304
305/*
306 * Iterate through all mapped pfns represented by an entry, i.e. skip
307 * 'empty' and 'zero' entries.
308 */
309#define for_each_mapped_pfn(entry, pfn) \
a77d19f4
MW
310 for (pfn = dax_to_pfn(entry); \
311 pfn < dax_end_pfn(entry); pfn++)
d2c997c0 312
73449daf
DW
313/*
314 * TODO: for reflink+dax we need a way to associate a single page with
315 * multiple address_space instances at different linear_page_index()
316 * offsets.
317 */
318static void dax_associate_entry(void *entry, struct address_space *mapping,
319 struct vm_area_struct *vma, unsigned long address)
d2c997c0 320{
73449daf
DW
321 unsigned long size = dax_entry_size(entry), pfn, index;
322 int i = 0;
d2c997c0
DW
323
324 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
325 return;
326
73449daf 327 index = linear_page_index(vma, address & ~(size - 1));
d2c997c0
DW
328 for_each_mapped_pfn(entry, pfn) {
329 struct page *page = pfn_to_page(pfn);
330
331 WARN_ON_ONCE(page->mapping);
332 page->mapping = mapping;
73449daf 333 page->index = index + i++;
d2c997c0
DW
334 }
335}
336
337static void dax_disassociate_entry(void *entry, struct address_space *mapping,
338 bool trunc)
339{
340 unsigned long pfn;
341
342 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
343 return;
344
345 for_each_mapped_pfn(entry, pfn) {
346 struct page *page = pfn_to_page(pfn);
347
348 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
349 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
350 page->mapping = NULL;
73449daf 351 page->index = 0;
d2c997c0
DW
352 }
353}
354
5fac7408
DW
355static struct page *dax_busy_page(void *entry)
356{
357 unsigned long pfn;
358
359 for_each_mapped_pfn(entry, pfn) {
360 struct page *page = pfn_to_page(pfn);
361
362 if (page_ref_count(page) > 1)
363 return page;
364 }
365 return NULL;
366}
367
c5bbd451
MW
368/*
369 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
370 * @page: The page whose entry we want to lock
371 *
372 * Context: Process context.
27359fd6
MW
373 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
374 * not be locked.
c5bbd451 375 */
27359fd6 376dax_entry_t dax_lock_page(struct page *page)
c2a7d2a1 377{
9f32d221
MW
378 XA_STATE(xas, NULL, 0);
379 void *entry;
c2a7d2a1 380
c5bbd451
MW
381 /* Ensure page->mapping isn't freed while we look at it */
382 rcu_read_lock();
c2a7d2a1 383 for (;;) {
9f32d221 384 struct address_space *mapping = READ_ONCE(page->mapping);
c2a7d2a1 385
27359fd6 386 entry = NULL;
c93db7bb 387 if (!mapping || !dax_mapping(mapping))
c5bbd451 388 break;
c2a7d2a1
DW
389
390 /*
391 * In the device-dax case there's no need to lock, a
392 * struct dev_pagemap pin is sufficient to keep the
393 * inode alive, and we assume we have dev_pagemap pin
394 * otherwise we would not have a valid pfn_to_page()
395 * translation.
396 */
27359fd6 397 entry = (void *)~0UL;
9f32d221 398 if (S_ISCHR(mapping->host->i_mode))
c5bbd451 399 break;
c2a7d2a1 400
9f32d221
MW
401 xas.xa = &mapping->i_pages;
402 xas_lock_irq(&xas);
c2a7d2a1 403 if (mapping != page->mapping) {
9f32d221 404 xas_unlock_irq(&xas);
c2a7d2a1
DW
405 continue;
406 }
9f32d221
MW
407 xas_set(&xas, page->index);
408 entry = xas_load(&xas);
409 if (dax_is_locked(entry)) {
c5bbd451 410 rcu_read_unlock();
55e56f06 411 wait_entry_unlocked(&xas, entry);
c5bbd451 412 rcu_read_lock();
6d7cd8c1 413 continue;
c2a7d2a1 414 }
9f32d221
MW
415 dax_lock_entry(&xas, entry);
416 xas_unlock_irq(&xas);
c5bbd451 417 break;
c2a7d2a1 418 }
c5bbd451 419 rcu_read_unlock();
27359fd6 420 return (dax_entry_t)entry;
c2a7d2a1
DW
421}
422
27359fd6 423void dax_unlock_page(struct page *page, dax_entry_t cookie)
c2a7d2a1
DW
424{
425 struct address_space *mapping = page->mapping;
9f32d221 426 XA_STATE(xas, &mapping->i_pages, page->index);
c2a7d2a1 427
9f32d221 428 if (S_ISCHR(mapping->host->i_mode))
c2a7d2a1
DW
429 return;
430
27359fd6 431 dax_unlock_entry(&xas, (void *)cookie);
c2a7d2a1
DW
432}
433
ac401cc7 434/*
a77d19f4
MW
435 * Find page cache entry at given index. If it is a DAX entry, return it
436 * with the entry locked. If the page cache doesn't contain an entry at
437 * that index, add a locked empty entry.
ac401cc7 438 *
3159f943 439 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
b15cd800
MW
440 * either return that locked entry or will return VM_FAULT_FALLBACK.
441 * This will happen if there are any PTE entries within the PMD range
442 * that we are requesting.
642261ac 443 *
b15cd800
MW
444 * We always favor PTE entries over PMD entries. There isn't a flow where we
445 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
446 * insertion will fail if it finds any PTE entries already in the tree, and a
447 * PTE insertion will cause an existing PMD entry to be unmapped and
448 * downgraded to PTE entries. This happens for both PMD zero pages as
449 * well as PMD empty entries.
642261ac 450 *
b15cd800
MW
451 * The exception to this downgrade path is for PMD entries that have
452 * real storage backing them. We will leave these real PMD entries in
453 * the tree, and PTE writes will simply dirty the entire PMD entry.
642261ac 454 *
ac401cc7
JK
455 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
456 * persistent memory the benefit is doubtful. We can add that later if we can
457 * show it helps.
b15cd800
MW
458 *
459 * On error, this function does not return an ERR_PTR. Instead it returns
460 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
461 * overlap with xarray value entries.
ac401cc7 462 */
b15cd800
MW
463static void *grab_mapping_entry(struct xa_state *xas,
464 struct address_space *mapping, unsigned long size_flag)
ac401cc7 465{
b15cd800
MW
466 unsigned long index = xas->xa_index;
467 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
468 void *entry;
642261ac 469
b15cd800
MW
470retry:
471 xas_lock_irq(xas);
472 entry = get_unlocked_entry(xas);
91d25ba8 473
642261ac 474 if (entry) {
0e40de03 475 if (!xa_is_value(entry)) {
b15cd800
MW
476 xas_set_err(xas, EIO);
477 goto out_unlock;
478 }
479
3159f943 480 if (size_flag & DAX_PMD) {
91d25ba8 481 if (dax_is_pte_entry(entry)) {
b15cd800
MW
482 put_unlocked_entry(xas, entry);
483 goto fallback;
642261ac
RZ
484 }
485 } else { /* trying to grab a PTE entry */
91d25ba8 486 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
487 (dax_is_zero_entry(entry) ||
488 dax_is_empty_entry(entry))) {
489 pmd_downgrade = true;
490 }
491 }
492 }
493
b15cd800
MW
494 if (pmd_downgrade) {
495 /*
496 * Make sure 'entry' remains valid while we drop
497 * the i_pages lock.
498 */
499 dax_lock_entry(xas, entry);
642261ac 500
642261ac
RZ
501 /*
502 * Besides huge zero pages the only other thing that gets
503 * downgraded are empty entries which don't need to be
504 * unmapped.
505 */
b15cd800
MW
506 if (dax_is_zero_entry(entry)) {
507 xas_unlock_irq(xas);
508 unmap_mapping_pages(mapping,
509 xas->xa_index & ~PG_PMD_COLOUR,
510 PG_PMD_NR, false);
511 xas_reset(xas);
512 xas_lock_irq(xas);
e11f8b7b
RZ
513 }
514
b15cd800
MW
515 dax_disassociate_entry(entry, mapping, false);
516 xas_store(xas, NULL); /* undo the PMD join */
517 dax_wake_entry(xas, entry, true);
518 mapping->nrexceptional--;
519 entry = NULL;
520 xas_set(xas, index);
521 }
642261ac 522
b15cd800
MW
523 if (entry) {
524 dax_lock_entry(xas, entry);
525 } else {
526 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
527 dax_lock_entry(xas, entry);
528 if (xas_error(xas))
529 goto out_unlock;
ac401cc7 530 mapping->nrexceptional++;
ac401cc7 531 }
b15cd800
MW
532
533out_unlock:
534 xas_unlock_irq(xas);
535 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
536 goto retry;
537 if (xas->xa_node == XA_ERROR(-ENOMEM))
538 return xa_mk_internal(VM_FAULT_OOM);
539 if (xas_error(xas))
540 return xa_mk_internal(VM_FAULT_SIGBUS);
e3ad61c6 541 return entry;
b15cd800
MW
542fallback:
543 xas_unlock_irq(xas);
544 return xa_mk_internal(VM_FAULT_FALLBACK);
ac401cc7
JK
545}
546
5fac7408
DW
547/**
548 * dax_layout_busy_page - find first pinned page in @mapping
549 * @mapping: address space to scan for a page with ref count > 1
550 *
551 * DAX requires ZONE_DEVICE mapped pages. These pages are never
552 * 'onlined' to the page allocator so they are considered idle when
553 * page->count == 1. A filesystem uses this interface to determine if
554 * any page in the mapping is busy, i.e. for DMA, or other
555 * get_user_pages() usages.
556 *
557 * It is expected that the filesystem is holding locks to block the
558 * establishment of new mappings in this address_space. I.e. it expects
559 * to be able to run unmap_mapping_range() and subsequently not race
560 * mapping_mapped() becoming true.
561 */
562struct page *dax_layout_busy_page(struct address_space *mapping)
563{
084a8990
MW
564 XA_STATE(xas, &mapping->i_pages, 0);
565 void *entry;
566 unsigned int scanned = 0;
5fac7408 567 struct page *page = NULL;
5fac7408
DW
568
569 /*
570 * In the 'limited' case get_user_pages() for dax is disabled.
571 */
572 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
573 return NULL;
574
575 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
576 return NULL;
577
5fac7408
DW
578 /*
579 * If we race get_user_pages_fast() here either we'll see the
084a8990 580 * elevated page count in the iteration and wait, or
5fac7408
DW
581 * get_user_pages_fast() will see that the page it took a reference
582 * against is no longer mapped in the page tables and bail to the
583 * get_user_pages() slow path. The slow path is protected by
584 * pte_lock() and pmd_lock(). New references are not taken without
585 * holding those locks, and unmap_mapping_range() will not zero the
586 * pte or pmd without holding the respective lock, so we are
587 * guaranteed to either see new references or prevent new
588 * references from being established.
589 */
590 unmap_mapping_range(mapping, 0, 0, 1);
591
084a8990
MW
592 xas_lock_irq(&xas);
593 xas_for_each(&xas, entry, ULONG_MAX) {
594 if (WARN_ON_ONCE(!xa_is_value(entry)))
595 continue;
596 if (unlikely(dax_is_locked(entry)))
597 entry = get_unlocked_entry(&xas);
598 if (entry)
599 page = dax_busy_page(entry);
600 put_unlocked_entry(&xas, entry);
5fac7408
DW
601 if (page)
602 break;
084a8990
MW
603 if (++scanned % XA_CHECK_SCHED)
604 continue;
605
606 xas_pause(&xas);
607 xas_unlock_irq(&xas);
608 cond_resched();
609 xas_lock_irq(&xas);
5fac7408 610 }
084a8990 611 xas_unlock_irq(&xas);
5fac7408
DW
612 return page;
613}
614EXPORT_SYMBOL_GPL(dax_layout_busy_page);
615
a77d19f4 616static int __dax_invalidate_entry(struct address_space *mapping,
c6dcf52c
JK
617 pgoff_t index, bool trunc)
618{
07f2d89c 619 XA_STATE(xas, &mapping->i_pages, index);
c6dcf52c
JK
620 int ret = 0;
621 void *entry;
c6dcf52c 622
07f2d89c
MW
623 xas_lock_irq(&xas);
624 entry = get_unlocked_entry(&xas);
3159f943 625 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
c6dcf52c
JK
626 goto out;
627 if (!trunc &&
07f2d89c
MW
628 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
629 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
c6dcf52c 630 goto out;
d2c997c0 631 dax_disassociate_entry(entry, mapping, trunc);
07f2d89c 632 xas_store(&xas, NULL);
c6dcf52c
JK
633 mapping->nrexceptional--;
634 ret = 1;
635out:
07f2d89c
MW
636 put_unlocked_entry(&xas, entry);
637 xas_unlock_irq(&xas);
c6dcf52c
JK
638 return ret;
639}
07f2d89c 640
ac401cc7 641/*
3159f943
MW
642 * Delete DAX entry at @index from @mapping. Wait for it
643 * to be unlocked before deleting it.
ac401cc7
JK
644 */
645int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
646{
a77d19f4 647 int ret = __dax_invalidate_entry(mapping, index, true);
ac401cc7 648
ac401cc7
JK
649 /*
650 * This gets called from truncate / punch_hole path. As such, the caller
651 * must hold locks protecting against concurrent modifications of the
a77d19f4 652 * page cache (usually fs-private i_mmap_sem for writing). Since the
3159f943 653 * caller has seen a DAX entry for this index, we better find it
ac401cc7
JK
654 * at that index as well...
655 */
c6dcf52c
JK
656 WARN_ON_ONCE(!ret);
657 return ret;
658}
659
c6dcf52c 660/*
3159f943 661 * Invalidate DAX entry if it is clean.
c6dcf52c
JK
662 */
663int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
664 pgoff_t index)
665{
a77d19f4 666 return __dax_invalidate_entry(mapping, index, false);
ac401cc7
JK
667}
668
cccbce67
DW
669static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
670 sector_t sector, size_t size, struct page *to,
671 unsigned long vaddr)
f7ca90b1 672{
cccbce67
DW
673 void *vto, *kaddr;
674 pgoff_t pgoff;
cccbce67
DW
675 long rc;
676 int id;
677
678 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
679 if (rc)
680 return rc;
681
682 id = dax_read_lock();
86ed913b 683 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
cccbce67
DW
684 if (rc < 0) {
685 dax_read_unlock(id);
686 return rc;
687 }
f7ca90b1 688 vto = kmap_atomic(to);
cccbce67 689 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
f7ca90b1 690 kunmap_atomic(vto);
cccbce67 691 dax_read_unlock(id);
f7ca90b1
MW
692 return 0;
693}
694
642261ac
RZ
695/*
696 * By this point grab_mapping_entry() has ensured that we have a locked entry
697 * of the appropriate size so we don't have to worry about downgrading PMDs to
698 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
699 * already in the tree, we will skip the insertion and just dirty the PMD as
700 * appropriate.
701 */
b15cd800
MW
702static void *dax_insert_entry(struct xa_state *xas,
703 struct address_space *mapping, struct vm_fault *vmf,
704 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
9973c98e 705{
b15cd800 706 void *new_entry = dax_make_entry(pfn, flags);
9973c98e 707
f5b7b748 708 if (dirty)
d2b2a28e 709 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 710
3159f943 711 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
b15cd800 712 unsigned long index = xas->xa_index;
91d25ba8
RZ
713 /* we are replacing a zero page with block mapping */
714 if (dax_is_pmd_entry(entry))
977fbdcd 715 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
b15cd800 716 PG_PMD_NR, false);
91d25ba8 717 else /* pte entry */
b15cd800 718 unmap_mapping_pages(mapping, index, 1, false);
9973c98e
RZ
719 }
720
b15cd800
MW
721 xas_reset(xas);
722 xas_lock_irq(xas);
d2c997c0
DW
723 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
724 dax_disassociate_entry(entry, mapping, false);
73449daf 725 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
d2c997c0 726 }
642261ac 727
91d25ba8 728 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
642261ac 729 /*
a77d19f4 730 * Only swap our new entry into the page cache if the current
642261ac 731 * entry is a zero page or an empty entry. If a normal PTE or
a77d19f4 732 * PMD entry is already in the cache, we leave it alone. This
642261ac
RZ
733 * means that if we are trying to insert a PTE and the
734 * existing entry is a PMD, we will just leave the PMD in the
735 * tree and dirty it if necessary.
736 */
b15cd800
MW
737 void *old = dax_lock_entry(xas, new_entry);
738 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
739 DAX_LOCKED));
91d25ba8 740 entry = new_entry;
b15cd800
MW
741 } else {
742 xas_load(xas); /* Walk the xa_state */
9973c98e 743 }
91d25ba8 744
f5b7b748 745 if (dirty)
b15cd800 746 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
91d25ba8 747
b15cd800 748 xas_unlock_irq(xas);
91d25ba8 749 return entry;
9973c98e
RZ
750}
751
a77d19f4
MW
752static inline
753unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
4b4bb46d
JK
754{
755 unsigned long address;
756
757 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
758 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
759 return address;
760}
761
762/* Walk all mappings of a given index of a file and writeprotect them */
a77d19f4
MW
763static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
764 unsigned long pfn)
4b4bb46d
JK
765{
766 struct vm_area_struct *vma;
f729c8c9
RZ
767 pte_t pte, *ptep = NULL;
768 pmd_t *pmdp = NULL;
4b4bb46d 769 spinlock_t *ptl;
4b4bb46d
JK
770
771 i_mmap_lock_read(mapping);
772 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
ac46d4f3
JG
773 struct mmu_notifier_range range;
774 unsigned long address;
4b4bb46d
JK
775
776 cond_resched();
777
778 if (!(vma->vm_flags & VM_SHARED))
779 continue;
780
781 address = pgoff_address(index, vma);
a4d1a885
JG
782
783 /*
0cefc36b 784 * Note because we provide range to follow_pte_pmd it will
a4d1a885
JG
785 * call mmu_notifier_invalidate_range_start() on our behalf
786 * before taking any lock.
787 */
ac46d4f3
JG
788 if (follow_pte_pmd(vma->vm_mm, address, &range,
789 &ptep, &pmdp, &ptl))
4b4bb46d 790 continue;
4b4bb46d 791
0f10851e
JG
792 /*
793 * No need to call mmu_notifier_invalidate_range() as we are
794 * downgrading page table protection not changing it to point
795 * to a new page.
796 *
ad56b738 797 * See Documentation/vm/mmu_notifier.rst
0f10851e 798 */
f729c8c9
RZ
799 if (pmdp) {
800#ifdef CONFIG_FS_DAX_PMD
801 pmd_t pmd;
802
803 if (pfn != pmd_pfn(*pmdp))
804 goto unlock_pmd;
f6f37321 805 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
f729c8c9
RZ
806 goto unlock_pmd;
807
808 flush_cache_page(vma, address, pfn);
024eee0e 809 pmd = pmdp_invalidate(vma, address, pmdp);
f729c8c9
RZ
810 pmd = pmd_wrprotect(pmd);
811 pmd = pmd_mkclean(pmd);
812 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
f729c8c9 813unlock_pmd:
f729c8c9 814#endif
ee190ca6 815 spin_unlock(ptl);
f729c8c9
RZ
816 } else {
817 if (pfn != pte_pfn(*ptep))
818 goto unlock_pte;
819 if (!pte_dirty(*ptep) && !pte_write(*ptep))
820 goto unlock_pte;
821
822 flush_cache_page(vma, address, pfn);
823 pte = ptep_clear_flush(vma, address, ptep);
824 pte = pte_wrprotect(pte);
825 pte = pte_mkclean(pte);
826 set_pte_at(vma->vm_mm, address, ptep, pte);
f729c8c9
RZ
827unlock_pte:
828 pte_unmap_unlock(ptep, ptl);
829 }
4b4bb46d 830
ac46d4f3 831 mmu_notifier_invalidate_range_end(&range);
4b4bb46d
JK
832 }
833 i_mmap_unlock_read(mapping);
834}
835
9fc747f6
MW
836static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
837 struct address_space *mapping, void *entry)
9973c98e 838{
e4b3448b 839 unsigned long pfn, index, count;
3fe0791c 840 long ret = 0;
9973c98e 841
9973c98e 842 /*
a6abc2c0
JK
843 * A page got tagged dirty in DAX mapping? Something is seriously
844 * wrong.
9973c98e 845 */
3159f943 846 if (WARN_ON(!xa_is_value(entry)))
a6abc2c0 847 return -EIO;
9973c98e 848
9fc747f6
MW
849 if (unlikely(dax_is_locked(entry))) {
850 void *old_entry = entry;
851
852 entry = get_unlocked_entry(xas);
853
854 /* Entry got punched out / reallocated? */
855 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
856 goto put_unlocked;
857 /*
858 * Entry got reallocated elsewhere? No need to writeback.
859 * We have to compare pfns as we must not bail out due to
860 * difference in lockbit or entry type.
861 */
862 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
863 goto put_unlocked;
864 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
865 dax_is_zero_entry(entry))) {
866 ret = -EIO;
867 goto put_unlocked;
868 }
869
870 /* Another fsync thread may have already done this entry */
871 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
872 goto put_unlocked;
9973c98e
RZ
873 }
874
a6abc2c0 875 /* Lock the entry to serialize with page faults */
9fc747f6
MW
876 dax_lock_entry(xas, entry);
877
a6abc2c0
JK
878 /*
879 * We can clear the tag now but we have to be careful so that concurrent
880 * dax_writeback_one() calls for the same index cannot finish before we
881 * actually flush the caches. This is achieved as the calls will look
b93b0163
MW
882 * at the entry only under the i_pages lock and once they do that
883 * they will see the entry locked and wait for it to unlock.
a6abc2c0 884 */
9fc747f6
MW
885 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
886 xas_unlock_irq(xas);
a6abc2c0 887
642261ac 888 /*
e4b3448b
MW
889 * If dax_writeback_mapping_range() was given a wbc->range_start
890 * in the middle of a PMD, the 'index' we use needs to be
891 * aligned to the start of the PMD.
3fe0791c
DW
892 * This allows us to flush for PMD_SIZE and not have to worry about
893 * partial PMD writebacks.
642261ac 894 */
a77d19f4 895 pfn = dax_to_pfn(entry);
e4b3448b
MW
896 count = 1UL << dax_entry_order(entry);
897 index = xas->xa_index & ~(count - 1);
cccbce67 898
e4b3448b
MW
899 dax_entry_mkclean(mapping, index, pfn);
900 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
4b4bb46d
JK
901 /*
902 * After we have flushed the cache, we can clear the dirty tag. There
903 * cannot be new dirty data in the pfn after the flush has completed as
904 * the pfn mappings are writeprotected and fault waits for mapping
905 * entry lock.
906 */
9fc747f6
MW
907 xas_reset(xas);
908 xas_lock_irq(xas);
909 xas_store(xas, entry);
910 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
911 dax_wake_entry(xas, entry, false);
912
e4b3448b 913 trace_dax_writeback_one(mapping->host, index, count);
9973c98e
RZ
914 return ret;
915
a6abc2c0 916 put_unlocked:
9fc747f6 917 put_unlocked_entry(xas, entry);
9973c98e
RZ
918 return ret;
919}
920
921/*
922 * Flush the mapping to the persistent domain within the byte range of [start,
923 * end]. This is required by data integrity operations to ensure file data is
924 * on persistent storage prior to completion of the operation.
925 */
7f6d5b52
RZ
926int dax_writeback_mapping_range(struct address_space *mapping,
927 struct block_device *bdev, struct writeback_control *wbc)
9973c98e 928{
9fc747f6 929 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
9973c98e 930 struct inode *inode = mapping->host;
9fc747f6 931 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
cccbce67 932 struct dax_device *dax_dev;
9fc747f6
MW
933 void *entry;
934 int ret = 0;
935 unsigned int scanned = 0;
9973c98e
RZ
936
937 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
938 return -EIO;
939
7f6d5b52
RZ
940 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
941 return 0;
942
cccbce67
DW
943 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
944 if (!dax_dev)
945 return -EIO;
946
9fc747f6 947 trace_dax_writeback_range(inode, xas.xa_index, end_index);
9973c98e 948
9fc747f6 949 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
9973c98e 950
9fc747f6
MW
951 xas_lock_irq(&xas);
952 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
953 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
954 if (ret < 0) {
955 mapping_set_error(mapping, ret);
9973c98e 956 break;
9973c98e 957 }
9fc747f6
MW
958 if (++scanned % XA_CHECK_SCHED)
959 continue;
960
961 xas_pause(&xas);
962 xas_unlock_irq(&xas);
963 cond_resched();
964 xas_lock_irq(&xas);
9973c98e 965 }
9fc747f6 966 xas_unlock_irq(&xas);
cccbce67 967 put_dax(dax_dev);
9fc747f6
MW
968 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
969 return ret;
9973c98e
RZ
970}
971EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
972
31a6f1a6 973static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
f7ca90b1 974{
a3841f94 975 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
31a6f1a6
JK
976}
977
5e161e40
JK
978static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
979 pfn_t *pfnp)
f7ca90b1 980{
31a6f1a6 981 const sector_t sector = dax_iomap_sector(iomap, pos);
cccbce67
DW
982 pgoff_t pgoff;
983 int id, rc;
5e161e40 984 long length;
f7ca90b1 985
5e161e40 986 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
cccbce67
DW
987 if (rc)
988 return rc;
cccbce67 989 id = dax_read_lock();
5e161e40 990 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
86ed913b 991 NULL, pfnp);
5e161e40
JK
992 if (length < 0) {
993 rc = length;
994 goto out;
cccbce67 995 }
5e161e40
JK
996 rc = -EINVAL;
997 if (PFN_PHYS(length) < size)
998 goto out;
999 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1000 goto out;
1001 /* For larger pages we need devmap */
1002 if (length > 1 && !pfn_t_devmap(*pfnp))
1003 goto out;
1004 rc = 0;
1005out:
cccbce67 1006 dax_read_unlock(id);
5e161e40 1007 return rc;
0e3b210c 1008}
0e3b210c 1009
e30331ff 1010/*
91d25ba8
RZ
1011 * The user has performed a load from a hole in the file. Allocating a new
1012 * page in the file would cause excessive storage usage for workloads with
1013 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1014 * If this page is ever written to we will re-fault and change the mapping to
1015 * point to real DAX storage instead.
e30331ff 1016 */
b15cd800
MW
1017static vm_fault_t dax_load_hole(struct xa_state *xas,
1018 struct address_space *mapping, void **entry,
1019 struct vm_fault *vmf)
e30331ff
RZ
1020{
1021 struct inode *inode = mapping->host;
91d25ba8 1022 unsigned long vaddr = vmf->address;
b90ca5cc
MW
1023 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1024 vm_fault_t ret;
e30331ff 1025
b15cd800 1026 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943
MW
1027 DAX_ZERO_PAGE, false);
1028
ab77dab4 1029 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
e30331ff
RZ
1030 trace_dax_load_hole(inode, vmf, ret);
1031 return ret;
1032}
1033
4b0228fa
VV
1034static bool dax_range_is_aligned(struct block_device *bdev,
1035 unsigned int offset, unsigned int length)
1036{
1037 unsigned short sector_size = bdev_logical_block_size(bdev);
1038
1039 if (!IS_ALIGNED(offset, sector_size))
1040 return false;
1041 if (!IS_ALIGNED(length, sector_size))
1042 return false;
1043
1044 return true;
1045}
1046
cccbce67
DW
1047int __dax_zero_page_range(struct block_device *bdev,
1048 struct dax_device *dax_dev, sector_t sector,
1049 unsigned int offset, unsigned int size)
679c8bd3 1050{
cccbce67
DW
1051 if (dax_range_is_aligned(bdev, offset, size)) {
1052 sector_t start_sector = sector + (offset >> 9);
4b0228fa
VV
1053
1054 return blkdev_issue_zeroout(bdev, start_sector,
53ef7d0e 1055 size >> 9, GFP_NOFS, 0);
4b0228fa 1056 } else {
cccbce67
DW
1057 pgoff_t pgoff;
1058 long rc, id;
1059 void *kaddr;
cccbce67 1060
e84b83b9 1061 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
cccbce67
DW
1062 if (rc)
1063 return rc;
1064
1065 id = dax_read_lock();
86ed913b 1066 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
cccbce67
DW
1067 if (rc < 0) {
1068 dax_read_unlock(id);
1069 return rc;
1070 }
81f55870 1071 memset(kaddr + offset, 0, size);
c3ca015f 1072 dax_flush(dax_dev, kaddr + offset, size);
cccbce67 1073 dax_read_unlock(id);
4b0228fa 1074 }
679c8bd3
CH
1075 return 0;
1076}
1077EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1078
a254e568 1079static loff_t
11c59c92 1080dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
a254e568
CH
1081 struct iomap *iomap)
1082{
cccbce67
DW
1083 struct block_device *bdev = iomap->bdev;
1084 struct dax_device *dax_dev = iomap->dax_dev;
a254e568
CH
1085 struct iov_iter *iter = data;
1086 loff_t end = pos + length, done = 0;
1087 ssize_t ret = 0;
a77d4786 1088 size_t xfer;
cccbce67 1089 int id;
a254e568
CH
1090
1091 if (iov_iter_rw(iter) == READ) {
1092 end = min(end, i_size_read(inode));
1093 if (pos >= end)
1094 return 0;
1095
1096 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1097 return iov_iter_zero(min(length, end - pos), iter);
1098 }
1099
1100 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1101 return -EIO;
1102
e3fce68c
JK
1103 /*
1104 * Write can allocate block for an area which has a hole page mapped
1105 * into page tables. We have to tear down these mappings so that data
1106 * written by write(2) is visible in mmap.
1107 */
cd656375 1108 if (iomap->flags & IOMAP_F_NEW) {
e3fce68c
JK
1109 invalidate_inode_pages2_range(inode->i_mapping,
1110 pos >> PAGE_SHIFT,
1111 (end - 1) >> PAGE_SHIFT);
1112 }
1113
cccbce67 1114 id = dax_read_lock();
a254e568
CH
1115 while (pos < end) {
1116 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67
DW
1117 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1118 const sector_t sector = dax_iomap_sector(iomap, pos);
a254e568 1119 ssize_t map_len;
cccbce67
DW
1120 pgoff_t pgoff;
1121 void *kaddr;
a254e568 1122
d1908f52
MH
1123 if (fatal_signal_pending(current)) {
1124 ret = -EINTR;
1125 break;
1126 }
1127
cccbce67
DW
1128 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1129 if (ret)
1130 break;
1131
1132 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
86ed913b 1133 &kaddr, NULL);
a254e568
CH
1134 if (map_len < 0) {
1135 ret = map_len;
1136 break;
1137 }
1138
cccbce67
DW
1139 map_len = PFN_PHYS(map_len);
1140 kaddr += offset;
a254e568
CH
1141 map_len -= offset;
1142 if (map_len > end - pos)
1143 map_len = end - pos;
1144
a2e050f5
RZ
1145 /*
1146 * The userspace address for the memory copy has already been
1147 * validated via access_ok() in either vfs_read() or
1148 * vfs_write(), depending on which operation we are doing.
1149 */
a254e568 1150 if (iov_iter_rw(iter) == WRITE)
a77d4786 1151 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
fec53774 1152 map_len, iter);
a254e568 1153 else
a77d4786 1154 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
b3a9a0c3 1155 map_len, iter);
a254e568 1156
a77d4786
DW
1157 pos += xfer;
1158 length -= xfer;
1159 done += xfer;
1160
1161 if (xfer == 0)
1162 ret = -EFAULT;
1163 if (xfer < map_len)
1164 break;
a254e568 1165 }
cccbce67 1166 dax_read_unlock(id);
a254e568
CH
1167
1168 return done ? done : ret;
1169}
1170
1171/**
11c59c92 1172 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1173 * @iocb: The control block for this I/O
1174 * @iter: The addresses to do I/O from or to
1175 * @ops: iomap ops passed from the file system
1176 *
1177 * This function performs read and write operations to directly mapped
1178 * persistent memory. The callers needs to take care of read/write exclusion
1179 * and evicting any page cache pages in the region under I/O.
1180 */
1181ssize_t
11c59c92 1182dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1183 const struct iomap_ops *ops)
a254e568
CH
1184{
1185 struct address_space *mapping = iocb->ki_filp->f_mapping;
1186 struct inode *inode = mapping->host;
1187 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1188 unsigned flags = 0;
1189
168316db
CH
1190 if (iov_iter_rw(iter) == WRITE) {
1191 lockdep_assert_held_exclusive(&inode->i_rwsem);
a254e568 1192 flags |= IOMAP_WRITE;
168316db
CH
1193 } else {
1194 lockdep_assert_held(&inode->i_rwsem);
1195 }
a254e568 1196
a254e568
CH
1197 while (iov_iter_count(iter)) {
1198 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1199 iter, dax_iomap_actor);
a254e568
CH
1200 if (ret <= 0)
1201 break;
1202 pos += ret;
1203 done += ret;
1204 }
1205
1206 iocb->ki_pos += done;
1207 return done ? done : ret;
1208}
11c59c92 1209EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1210
ab77dab4 1211static vm_fault_t dax_fault_return(int error)
9f141d6e
JK
1212{
1213 if (error == 0)
1214 return VM_FAULT_NOPAGE;
c9aed74e 1215 return vmf_error(error);
9f141d6e
JK
1216}
1217
aaa422c4
DW
1218/*
1219 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1220 * flushed on write-faults (non-cow), but not read-faults.
1221 */
1222static bool dax_fault_is_synchronous(unsigned long flags,
1223 struct vm_area_struct *vma, struct iomap *iomap)
1224{
1225 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1226 && (iomap->flags & IOMAP_F_DIRTY);
1227}
1228
ab77dab4 1229static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
c0b24625 1230 int *iomap_errp, const struct iomap_ops *ops)
a7d73fe6 1231{
a0987ad5
JK
1232 struct vm_area_struct *vma = vmf->vma;
1233 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1234 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
a7d73fe6 1235 struct inode *inode = mapping->host;
1a29d85e 1236 unsigned long vaddr = vmf->address;
a7d73fe6 1237 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
a7d73fe6 1238 struct iomap iomap = { 0 };
9484ab1b 1239 unsigned flags = IOMAP_FAULT;
a7d73fe6 1240 int error, major = 0;
d2c43ef1 1241 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1242 bool sync;
ab77dab4 1243 vm_fault_t ret = 0;
a7d73fe6 1244 void *entry;
1b5a1cb2 1245 pfn_t pfn;
a7d73fe6 1246
ab77dab4 1247 trace_dax_pte_fault(inode, vmf, ret);
a7d73fe6
CH
1248 /*
1249 * Check whether offset isn't beyond end of file now. Caller is supposed
1250 * to hold locks serializing us with truncate / punch hole so this is
1251 * a reliable test.
1252 */
a9c42b33 1253 if (pos >= i_size_read(inode)) {
ab77dab4 1254 ret = VM_FAULT_SIGBUS;
a9c42b33
RZ
1255 goto out;
1256 }
a7d73fe6 1257
d2c43ef1 1258 if (write && !vmf->cow_page)
a7d73fe6
CH
1259 flags |= IOMAP_WRITE;
1260
b15cd800
MW
1261 entry = grab_mapping_entry(&xas, mapping, 0);
1262 if (xa_is_internal(entry)) {
1263 ret = xa_to_internal(entry);
13e451fd
JK
1264 goto out;
1265 }
1266
e2093926
RZ
1267 /*
1268 * It is possible, particularly with mixed reads & writes to private
1269 * mappings, that we have raced with a PMD fault that overlaps with
1270 * the PTE we need to set up. If so just return and the fault will be
1271 * retried.
1272 */
1273 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
ab77dab4 1274 ret = VM_FAULT_NOPAGE;
e2093926
RZ
1275 goto unlock_entry;
1276 }
1277
a7d73fe6
CH
1278 /*
1279 * Note that we don't bother to use iomap_apply here: DAX required
1280 * the file system block size to be equal the page size, which means
1281 * that we never have to deal with more than a single extent here.
1282 */
1283 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
c0b24625
JK
1284 if (iomap_errp)
1285 *iomap_errp = error;
a9c42b33 1286 if (error) {
ab77dab4 1287 ret = dax_fault_return(error);
13e451fd 1288 goto unlock_entry;
a9c42b33 1289 }
a7d73fe6 1290 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
13e451fd
JK
1291 error = -EIO; /* fs corruption? */
1292 goto error_finish_iomap;
a7d73fe6
CH
1293 }
1294
a7d73fe6 1295 if (vmf->cow_page) {
31a6f1a6
JK
1296 sector_t sector = dax_iomap_sector(&iomap, pos);
1297
a7d73fe6
CH
1298 switch (iomap.type) {
1299 case IOMAP_HOLE:
1300 case IOMAP_UNWRITTEN:
1301 clear_user_highpage(vmf->cow_page, vaddr);
1302 break;
1303 case IOMAP_MAPPED:
cccbce67
DW
1304 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1305 sector, PAGE_SIZE, vmf->cow_page, vaddr);
a7d73fe6
CH
1306 break;
1307 default:
1308 WARN_ON_ONCE(1);
1309 error = -EIO;
1310 break;
1311 }
1312
1313 if (error)
13e451fd 1314 goto error_finish_iomap;
b1aa812b
JK
1315
1316 __SetPageUptodate(vmf->cow_page);
ab77dab4
SJ
1317 ret = finish_fault(vmf);
1318 if (!ret)
1319 ret = VM_FAULT_DONE_COW;
13e451fd 1320 goto finish_iomap;
a7d73fe6
CH
1321 }
1322
aaa422c4 1323 sync = dax_fault_is_synchronous(flags, vma, &iomap);
caa51d26 1324
a7d73fe6
CH
1325 switch (iomap.type) {
1326 case IOMAP_MAPPED:
1327 if (iomap.flags & IOMAP_F_NEW) {
1328 count_vm_event(PGMAJFAULT);
a0987ad5 1329 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
a7d73fe6
CH
1330 major = VM_FAULT_MAJOR;
1331 }
1b5a1cb2
JK
1332 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1333 if (error < 0)
1334 goto error_finish_iomap;
1335
b15cd800 1336 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
caa51d26 1337 0, write && !sync);
1b5a1cb2 1338
caa51d26
JK
1339 /*
1340 * If we are doing synchronous page fault and inode needs fsync,
1341 * we can insert PTE into page tables only after that happens.
1342 * Skip insertion for now and return the pfn so that caller can
1343 * insert it after fsync is done.
1344 */
1345 if (sync) {
1346 if (WARN_ON_ONCE(!pfnp)) {
1347 error = -EIO;
1348 goto error_finish_iomap;
1349 }
1350 *pfnp = pfn;
ab77dab4 1351 ret = VM_FAULT_NEEDDSYNC | major;
caa51d26
JK
1352 goto finish_iomap;
1353 }
1b5a1cb2
JK
1354 trace_dax_insert_mapping(inode, vmf, entry);
1355 if (write)
ab77dab4 1356 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1b5a1cb2 1357 else
ab77dab4 1358 ret = vmf_insert_mixed(vma, vaddr, pfn);
1b5a1cb2 1359
ab77dab4 1360 goto finish_iomap;
a7d73fe6
CH
1361 case IOMAP_UNWRITTEN:
1362 case IOMAP_HOLE:
d2c43ef1 1363 if (!write) {
b15cd800 1364 ret = dax_load_hole(&xas, mapping, &entry, vmf);
13e451fd 1365 goto finish_iomap;
1550290b 1366 }
a7d73fe6
CH
1367 /*FALLTHRU*/
1368 default:
1369 WARN_ON_ONCE(1);
1370 error = -EIO;
1371 break;
1372 }
1373
13e451fd 1374 error_finish_iomap:
ab77dab4 1375 ret = dax_fault_return(error);
9f141d6e
JK
1376 finish_iomap:
1377 if (ops->iomap_end) {
1378 int copied = PAGE_SIZE;
1379
ab77dab4 1380 if (ret & VM_FAULT_ERROR)
9f141d6e
JK
1381 copied = 0;
1382 /*
1383 * The fault is done by now and there's no way back (other
1384 * thread may be already happily using PTE we have installed).
1385 * Just ignore error from ->iomap_end since we cannot do much
1386 * with it.
1387 */
1388 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1550290b 1389 }
13e451fd 1390 unlock_entry:
b15cd800 1391 dax_unlock_entry(&xas, entry);
13e451fd 1392 out:
ab77dab4
SJ
1393 trace_dax_pte_fault_done(inode, vmf, ret);
1394 return ret | major;
a7d73fe6 1395}
642261ac
RZ
1396
1397#ifdef CONFIG_FS_DAX_PMD
b15cd800
MW
1398static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1399 struct iomap *iomap, void **entry)
642261ac 1400{
f4200391
DJ
1401 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1402 unsigned long pmd_addr = vmf->address & PMD_MASK;
11cf9d86 1403 struct vm_area_struct *vma = vmf->vma;
653b2ea3 1404 struct inode *inode = mapping->host;
11cf9d86 1405 pgtable_t pgtable = NULL;
642261ac
RZ
1406 struct page *zero_page;
1407 spinlock_t *ptl;
1408 pmd_t pmd_entry;
3fe0791c 1409 pfn_t pfn;
642261ac 1410
f4200391 1411 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
642261ac
RZ
1412
1413 if (unlikely(!zero_page))
653b2ea3 1414 goto fallback;
642261ac 1415
3fe0791c 1416 pfn = page_to_pfn_t(zero_page);
b15cd800 1417 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943 1418 DAX_PMD | DAX_ZERO_PAGE, false);
642261ac 1419
11cf9d86
AK
1420 if (arch_needs_pgtable_deposit()) {
1421 pgtable = pte_alloc_one(vma->vm_mm);
1422 if (!pgtable)
1423 return VM_FAULT_OOM;
1424 }
1425
f4200391
DJ
1426 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1427 if (!pmd_none(*(vmf->pmd))) {
642261ac 1428 spin_unlock(ptl);
653b2ea3 1429 goto fallback;
642261ac
RZ
1430 }
1431
11cf9d86
AK
1432 if (pgtable) {
1433 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1434 mm_inc_nr_ptes(vma->vm_mm);
1435 }
f4200391 1436 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
642261ac 1437 pmd_entry = pmd_mkhuge(pmd_entry);
f4200391 1438 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
642261ac 1439 spin_unlock(ptl);
b15cd800 1440 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
642261ac 1441 return VM_FAULT_NOPAGE;
653b2ea3
RZ
1442
1443fallback:
11cf9d86
AK
1444 if (pgtable)
1445 pte_free(vma->vm_mm, pgtable);
b15cd800 1446 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
653b2ea3 1447 return VM_FAULT_FALLBACK;
642261ac
RZ
1448}
1449
ab77dab4 1450static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
a2d58167 1451 const struct iomap_ops *ops)
642261ac 1452{
f4200391 1453 struct vm_area_struct *vma = vmf->vma;
642261ac 1454 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1455 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
d8a849e1
DJ
1456 unsigned long pmd_addr = vmf->address & PMD_MASK;
1457 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1458 bool sync;
9484ab1b 1459 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac 1460 struct inode *inode = mapping->host;
ab77dab4 1461 vm_fault_t result = VM_FAULT_FALLBACK;
642261ac 1462 struct iomap iomap = { 0 };
b15cd800 1463 pgoff_t max_pgoff;
642261ac
RZ
1464 void *entry;
1465 loff_t pos;
1466 int error;
302a5e31 1467 pfn_t pfn;
642261ac 1468
282a8e03
RZ
1469 /*
1470 * Check whether offset isn't beyond end of file now. Caller is
1471 * supposed to hold locks serializing us with truncate / punch hole so
1472 * this is a reliable test.
1473 */
957ac8c4 1474 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
282a8e03 1475
f4200391 1476 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
282a8e03 1477
fffa281b
RZ
1478 /*
1479 * Make sure that the faulting address's PMD offset (color) matches
1480 * the PMD offset from the start of the file. This is necessary so
1481 * that a PMD range in the page table overlaps exactly with a PMD
a77d19f4 1482 * range in the page cache.
fffa281b
RZ
1483 */
1484 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1485 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1486 goto fallback;
1487
642261ac
RZ
1488 /* Fall back to PTEs if we're going to COW */
1489 if (write && !(vma->vm_flags & VM_SHARED))
1490 goto fallback;
1491
1492 /* If the PMD would extend outside the VMA */
1493 if (pmd_addr < vma->vm_start)
1494 goto fallback;
1495 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1496 goto fallback;
1497
b15cd800 1498 if (xas.xa_index >= max_pgoff) {
282a8e03
RZ
1499 result = VM_FAULT_SIGBUS;
1500 goto out;
1501 }
642261ac
RZ
1502
1503 /* If the PMD would extend beyond the file size */
b15cd800 1504 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
642261ac
RZ
1505 goto fallback;
1506
876f2946 1507 /*
b15cd800
MW
1508 * grab_mapping_entry() will make sure we get an empty PMD entry,
1509 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1510 * entry is already in the array, for instance), it will return
1511 * VM_FAULT_FALLBACK.
876f2946 1512 */
b15cd800
MW
1513 entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1514 if (xa_is_internal(entry)) {
1515 result = xa_to_internal(entry);
876f2946 1516 goto fallback;
b15cd800 1517 }
876f2946 1518
e2093926
RZ
1519 /*
1520 * It is possible, particularly with mixed reads & writes to private
1521 * mappings, that we have raced with a PTE fault that overlaps with
1522 * the PMD we need to set up. If so just return and the fault will be
1523 * retried.
1524 */
1525 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1526 !pmd_devmap(*vmf->pmd)) {
1527 result = 0;
1528 goto unlock_entry;
1529 }
1530
642261ac
RZ
1531 /*
1532 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1533 * setting up a mapping, so really we're using iomap_begin() as a way
1534 * to look up our filesystem block.
1535 */
b15cd800 1536 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
642261ac
RZ
1537 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1538 if (error)
876f2946 1539 goto unlock_entry;
9f141d6e 1540
642261ac
RZ
1541 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1542 goto finish_iomap;
1543
aaa422c4 1544 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
caa51d26 1545
642261ac
RZ
1546 switch (iomap.type) {
1547 case IOMAP_MAPPED:
302a5e31
JK
1548 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1549 if (error < 0)
1550 goto finish_iomap;
1551
b15cd800 1552 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
3159f943 1553 DAX_PMD, write && !sync);
302a5e31 1554
caa51d26
JK
1555 /*
1556 * If we are doing synchronous page fault and inode needs fsync,
1557 * we can insert PMD into page tables only after that happens.
1558 * Skip insertion for now and return the pfn so that caller can
1559 * insert it after fsync is done.
1560 */
1561 if (sync) {
1562 if (WARN_ON_ONCE(!pfnp))
1563 goto finish_iomap;
1564 *pfnp = pfn;
1565 result = VM_FAULT_NEEDDSYNC;
1566 goto finish_iomap;
1567 }
1568
302a5e31 1569 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
fce86ff5 1570 result = vmf_insert_pfn_pmd(vmf, pfn, write);
642261ac
RZ
1571 break;
1572 case IOMAP_UNWRITTEN:
1573 case IOMAP_HOLE:
1574 if (WARN_ON_ONCE(write))
876f2946 1575 break;
b15cd800 1576 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
642261ac
RZ
1577 break;
1578 default:
1579 WARN_ON_ONCE(1);
1580 break;
1581 }
1582
1583 finish_iomap:
1584 if (ops->iomap_end) {
9f141d6e
JK
1585 int copied = PMD_SIZE;
1586
1587 if (result == VM_FAULT_FALLBACK)
1588 copied = 0;
1589 /*
1590 * The fault is done by now and there's no way back (other
1591 * thread may be already happily using PMD we have installed).
1592 * Just ignore error from ->iomap_end since we cannot do much
1593 * with it.
1594 */
1595 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1596 &iomap);
642261ac 1597 }
876f2946 1598 unlock_entry:
b15cd800 1599 dax_unlock_entry(&xas, entry);
642261ac
RZ
1600 fallback:
1601 if (result == VM_FAULT_FALLBACK) {
d8a849e1 1602 split_huge_pmd(vma, vmf->pmd, vmf->address);
642261ac
RZ
1603 count_vm_event(THP_FAULT_FALLBACK);
1604 }
282a8e03 1605out:
f4200391 1606 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
642261ac
RZ
1607 return result;
1608}
a2d58167 1609#else
ab77dab4 1610static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
01cddfe9 1611 const struct iomap_ops *ops)
a2d58167
DJ
1612{
1613 return VM_FAULT_FALLBACK;
1614}
642261ac 1615#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1616
1617/**
1618 * dax_iomap_fault - handle a page fault on a DAX file
1619 * @vmf: The description of the fault
cec04e8c 1620 * @pe_size: Size of the page to fault in
9a0dd422 1621 * @pfnp: PFN to insert for synchronous faults if fsync is required
c0b24625 1622 * @iomap_errp: Storage for detailed error code in case of error
cec04e8c 1623 * @ops: Iomap ops passed from the file system
a2d58167
DJ
1624 *
1625 * When a page fault occurs, filesystems may call this helper in
1626 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1627 * has done all the necessary locking for page fault to proceed
1628 * successfully.
1629 */
ab77dab4 1630vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
c0b24625 1631 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
a2d58167 1632{
c791ace1
DJ
1633 switch (pe_size) {
1634 case PE_SIZE_PTE:
c0b24625 1635 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
c791ace1 1636 case PE_SIZE_PMD:
9a0dd422 1637 return dax_iomap_pmd_fault(vmf, pfnp, ops);
a2d58167
DJ
1638 default:
1639 return VM_FAULT_FALLBACK;
1640 }
1641}
1642EXPORT_SYMBOL_GPL(dax_iomap_fault);
71eab6df 1643
a77d19f4 1644/*
71eab6df
JK
1645 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1646 * @vmf: The description of the fault
71eab6df 1647 * @pfn: PFN to insert
cfc93c6c 1648 * @order: Order of entry to insert.
71eab6df 1649 *
a77d19f4
MW
1650 * This function inserts a writeable PTE or PMD entry into the page tables
1651 * for an mmaped DAX file. It also marks the page cache entry as dirty.
71eab6df 1652 */
cfc93c6c
MW
1653static vm_fault_t
1654dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
71eab6df
JK
1655{
1656 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cfc93c6c
MW
1657 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1658 void *entry;
ab77dab4 1659 vm_fault_t ret;
71eab6df 1660
cfc93c6c
MW
1661 xas_lock_irq(&xas);
1662 entry = get_unlocked_entry(&xas);
71eab6df
JK
1663 /* Did we race with someone splitting entry or so? */
1664 if (!entry ||
cfc93c6c 1665 (order == 0 && !dax_is_pte_entry(entry)) ||
0e40de03 1666 (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
cfc93c6c
MW
1667 put_unlocked_entry(&xas, entry);
1668 xas_unlock_irq(&xas);
71eab6df
JK
1669 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1670 VM_FAULT_NOPAGE);
1671 return VM_FAULT_NOPAGE;
1672 }
cfc93c6c
MW
1673 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1674 dax_lock_entry(&xas, entry);
1675 xas_unlock_irq(&xas);
1676 if (order == 0)
ab77dab4 1677 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
71eab6df 1678#ifdef CONFIG_FS_DAX_PMD
cfc93c6c 1679 else if (order == PMD_ORDER)
fce86ff5 1680 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
71eab6df 1681#endif
cfc93c6c 1682 else
ab77dab4 1683 ret = VM_FAULT_FALLBACK;
cfc93c6c 1684 dax_unlock_entry(&xas, entry);
ab77dab4
SJ
1685 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1686 return ret;
71eab6df
JK
1687}
1688
1689/**
1690 * dax_finish_sync_fault - finish synchronous page fault
1691 * @vmf: The description of the fault
1692 * @pe_size: Size of entry to be inserted
1693 * @pfn: PFN to insert
1694 *
1695 * This function ensures that the file range touched by the page fault is
1696 * stored persistently on the media and handles inserting of appropriate page
1697 * table entry.
1698 */
ab77dab4
SJ
1699vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1700 enum page_entry_size pe_size, pfn_t pfn)
71eab6df
JK
1701{
1702 int err;
1703 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
cfc93c6c
MW
1704 unsigned int order = pe_order(pe_size);
1705 size_t len = PAGE_SIZE << order;
71eab6df 1706
71eab6df
JK
1707 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1708 if (err)
1709 return VM_FAULT_SIGBUS;
cfc93c6c 1710 return dax_insert_pfn_mkwrite(vmf, pfn, order);
71eab6df
JK
1711}
1712EXPORT_SYMBOL_GPL(dax_finish_sync_fault);