Btrfs: Add chunk uuids and update multi-device back references
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
8a4b83cc 20#include <linux/buffer_head.h>
593060d7 21#include <asm/div64.h>
0b86a832
CM
22#include "ctree.h"
23#include "extent_map.h"
24#include "disk-io.h"
25#include "transaction.h"
26#include "print-tree.h"
27#include "volumes.h"
28
593060d7
CM
29struct map_lookup {
30 u64 type;
31 int io_align;
32 int io_width;
33 int stripe_len;
34 int sector_size;
35 int num_stripes;
cea9e445 36 struct btrfs_bio_stripe stripes[];
593060d7
CM
37};
38
39#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 40 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 41
8a4b83cc
CM
42static DEFINE_MUTEX(uuid_mutex);
43static LIST_HEAD(fs_uuids);
44
45int btrfs_cleanup_fs_uuids(void)
46{
47 struct btrfs_fs_devices *fs_devices;
48 struct list_head *uuid_cur;
49 struct list_head *devices_cur;
50 struct btrfs_device *dev;
51
52 list_for_each(uuid_cur, &fs_uuids) {
53 fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
54 list);
55 while(!list_empty(&fs_devices->devices)) {
56 devices_cur = fs_devices->devices.next;
57 dev = list_entry(devices_cur, struct btrfs_device,
58 dev_list);
59 printk("uuid cleanup finds %s\n", dev->name);
60 if (dev->bdev) {
61 printk("closing\n");
62 close_bdev_excl(dev->bdev);
63 }
64 list_del(&dev->dev_list);
65 kfree(dev);
66 }
67 }
68 return 0;
69}
70
71static struct btrfs_device *__find_device(struct list_head *head, u64 devid)
72{
73 struct btrfs_device *dev;
74 struct list_head *cur;
75
76 list_for_each(cur, head) {
77 dev = list_entry(cur, struct btrfs_device, dev_list);
78 if (dev->devid == devid)
79 return dev;
80 }
81 return NULL;
82}
83
84static struct btrfs_fs_devices *find_fsid(u8 *fsid)
85{
86 struct list_head *cur;
87 struct btrfs_fs_devices *fs_devices;
88
89 list_for_each(cur, &fs_uuids) {
90 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
91 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
92 return fs_devices;
93 }
94 return NULL;
95}
96
97static int device_list_add(const char *path,
98 struct btrfs_super_block *disk_super,
99 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
100{
101 struct btrfs_device *device;
102 struct btrfs_fs_devices *fs_devices;
103 u64 found_transid = btrfs_super_generation(disk_super);
104
105 fs_devices = find_fsid(disk_super->fsid);
106 if (!fs_devices) {
107 fs_devices = kmalloc(sizeof(*fs_devices), GFP_NOFS);
108 if (!fs_devices)
109 return -ENOMEM;
110 INIT_LIST_HEAD(&fs_devices->devices);
111 list_add(&fs_devices->list, &fs_uuids);
112 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
113 fs_devices->latest_devid = devid;
114 fs_devices->latest_trans = found_transid;
115 fs_devices->lowest_devid = (u64)-1;
116 fs_devices->num_devices = 0;
117 device = NULL;
118 } else {
119 device = __find_device(&fs_devices->devices, devid);
120 }
121 if (!device) {
122 device = kzalloc(sizeof(*device), GFP_NOFS);
123 if (!device) {
124 /* we can safely leave the fs_devices entry around */
125 return -ENOMEM;
126 }
127 device->devid = devid;
f2984462 128 device->barriers = 1;
b248a415 129 spin_lock_init(&device->io_lock);
8a4b83cc
CM
130 device->name = kstrdup(path, GFP_NOFS);
131 if (!device->name) {
132 kfree(device);
133 return -ENOMEM;
134 }
135 list_add(&device->dev_list, &fs_devices->devices);
136 fs_devices->num_devices++;
137 }
138
139 if (found_transid > fs_devices->latest_trans) {
140 fs_devices->latest_devid = devid;
141 fs_devices->latest_trans = found_transid;
142 }
143 if (fs_devices->lowest_devid > devid) {
144 fs_devices->lowest_devid = devid;
145 printk("lowest devid now %Lu\n", devid);
146 }
147 *fs_devices_ret = fs_devices;
148 return 0;
149}
150
151int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
152{
153 struct list_head *head = &fs_devices->devices;
154 struct list_head *cur;
155 struct btrfs_device *device;
156
157 mutex_lock(&uuid_mutex);
158 list_for_each(cur, head) {
159 device = list_entry(cur, struct btrfs_device, dev_list);
160 if (device->bdev) {
161 close_bdev_excl(device->bdev);
162 printk("close devices closes %s\n", device->name);
163 }
164 device->bdev = NULL;
165 }
166 mutex_unlock(&uuid_mutex);
167 return 0;
168}
169
170int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
171 int flags, void *holder)
172{
173 struct block_device *bdev;
174 struct list_head *head = &fs_devices->devices;
175 struct list_head *cur;
176 struct btrfs_device *device;
177 int ret;
178
179 mutex_lock(&uuid_mutex);
180 list_for_each(cur, head) {
181 device = list_entry(cur, struct btrfs_device, dev_list);
182 bdev = open_bdev_excl(device->name, flags, holder);
e17cade2 183
8a4b83cc
CM
184 if (IS_ERR(bdev)) {
185 printk("open %s failed\n", device->name);
186 ret = PTR_ERR(bdev);
187 goto fail;
188 }
189 if (device->devid == fs_devices->latest_devid)
190 fs_devices->latest_bdev = bdev;
191 if (device->devid == fs_devices->lowest_devid) {
192 fs_devices->lowest_bdev = bdev;
8a4b83cc
CM
193 }
194 device->bdev = bdev;
195 }
196 mutex_unlock(&uuid_mutex);
197 return 0;
198fail:
199 mutex_unlock(&uuid_mutex);
200 btrfs_close_devices(fs_devices);
201 return ret;
202}
203
204int btrfs_scan_one_device(const char *path, int flags, void *holder,
205 struct btrfs_fs_devices **fs_devices_ret)
206{
207 struct btrfs_super_block *disk_super;
208 struct block_device *bdev;
209 struct buffer_head *bh;
210 int ret;
211 u64 devid;
f2984462 212 u64 transid;
8a4b83cc
CM
213
214 mutex_lock(&uuid_mutex);
215
216 printk("scan one opens %s\n", path);
217 bdev = open_bdev_excl(path, flags, holder);
218
219 if (IS_ERR(bdev)) {
220 printk("open failed\n");
221 ret = PTR_ERR(bdev);
222 goto error;
223 }
224
225 ret = set_blocksize(bdev, 4096);
226 if (ret)
227 goto error_close;
228 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
229 if (!bh) {
230 ret = -EIO;
231 goto error_close;
232 }
233 disk_super = (struct btrfs_super_block *)bh->b_data;
234 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
235 sizeof(disk_super->magic))) {
236 printk("no btrfs found on %s\n", path);
e58ca020 237 ret = -EINVAL;
8a4b83cc
CM
238 goto error_brelse;
239 }
240 devid = le64_to_cpu(disk_super->dev_item.devid);
f2984462
CM
241 transid = btrfs_super_generation(disk_super);
242 printk("found device %Lu transid %Lu on %s\n", devid, transid, path);
8a4b83cc
CM
243 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
244
245error_brelse:
246 brelse(bh);
247error_close:
248 close_bdev_excl(bdev);
8a4b83cc
CM
249error:
250 mutex_unlock(&uuid_mutex);
251 return ret;
252}
0b86a832
CM
253
254/*
255 * this uses a pretty simple search, the expectation is that it is
256 * called very infrequently and that a given device has a small number
257 * of extents
258 */
259static int find_free_dev_extent(struct btrfs_trans_handle *trans,
260 struct btrfs_device *device,
261 struct btrfs_path *path,
262 u64 num_bytes, u64 *start)
263{
264 struct btrfs_key key;
265 struct btrfs_root *root = device->dev_root;
266 struct btrfs_dev_extent *dev_extent = NULL;
267 u64 hole_size = 0;
268 u64 last_byte = 0;
269 u64 search_start = 0;
270 u64 search_end = device->total_bytes;
271 int ret;
272 int slot = 0;
273 int start_found;
274 struct extent_buffer *l;
275
276 start_found = 0;
277 path->reada = 2;
278
279 /* FIXME use last free of some kind */
280
8a4b83cc
CM
281 /* we don't want to overwrite the superblock on the drive,
282 * so we make sure to start at an offset of at least 1MB
283 */
284 search_start = max((u64)1024 * 1024, search_start);
0b86a832
CM
285 key.objectid = device->devid;
286 key.offset = search_start;
287 key.type = BTRFS_DEV_EXTENT_KEY;
288 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
289 if (ret < 0)
290 goto error;
291 ret = btrfs_previous_item(root, path, 0, key.type);
292 if (ret < 0)
293 goto error;
294 l = path->nodes[0];
295 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
296 while (1) {
297 l = path->nodes[0];
298 slot = path->slots[0];
299 if (slot >= btrfs_header_nritems(l)) {
300 ret = btrfs_next_leaf(root, path);
301 if (ret == 0)
302 continue;
303 if (ret < 0)
304 goto error;
305no_more_items:
306 if (!start_found) {
307 if (search_start >= search_end) {
308 ret = -ENOSPC;
309 goto error;
310 }
311 *start = search_start;
312 start_found = 1;
313 goto check_pending;
314 }
315 *start = last_byte > search_start ?
316 last_byte : search_start;
317 if (search_end <= *start) {
318 ret = -ENOSPC;
319 goto error;
320 }
321 goto check_pending;
322 }
323 btrfs_item_key_to_cpu(l, &key, slot);
324
325 if (key.objectid < device->devid)
326 goto next;
327
328 if (key.objectid > device->devid)
329 goto no_more_items;
330
331 if (key.offset >= search_start && key.offset > last_byte &&
332 start_found) {
333 if (last_byte < search_start)
334 last_byte = search_start;
335 hole_size = key.offset - last_byte;
336 if (key.offset > last_byte &&
337 hole_size >= num_bytes) {
338 *start = last_byte;
339 goto check_pending;
340 }
341 }
342 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
343 goto next;
344 }
345
346 start_found = 1;
347 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
348 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
349next:
350 path->slots[0]++;
351 cond_resched();
352 }
353check_pending:
354 /* we have to make sure we didn't find an extent that has already
355 * been allocated by the map tree or the original allocation
356 */
357 btrfs_release_path(root, path);
358 BUG_ON(*start < search_start);
359
6324fbf3 360 if (*start + num_bytes > search_end) {
0b86a832
CM
361 ret = -ENOSPC;
362 goto error;
363 }
364 /* check for pending inserts here */
365 return 0;
366
367error:
368 btrfs_release_path(root, path);
369 return ret;
370}
371
372int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
373 struct btrfs_device *device,
e17cade2
CM
374 u64 chunk_tree, u64 chunk_objectid,
375 u64 chunk_offset,
376 u64 num_bytes, u64 *start)
0b86a832
CM
377{
378 int ret;
379 struct btrfs_path *path;
380 struct btrfs_root *root = device->dev_root;
381 struct btrfs_dev_extent *extent;
382 struct extent_buffer *leaf;
383 struct btrfs_key key;
384
385 path = btrfs_alloc_path();
386 if (!path)
387 return -ENOMEM;
388
389 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
6324fbf3 390 if (ret) {
0b86a832 391 goto err;
6324fbf3 392 }
0b86a832
CM
393
394 key.objectid = device->devid;
395 key.offset = *start;
396 key.type = BTRFS_DEV_EXTENT_KEY;
397 ret = btrfs_insert_empty_item(trans, root, path, &key,
398 sizeof(*extent));
399 BUG_ON(ret);
400
401 leaf = path->nodes[0];
402 extent = btrfs_item_ptr(leaf, path->slots[0],
403 struct btrfs_dev_extent);
e17cade2
CM
404 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
405 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
406 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
407
408 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
409 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
410 BTRFS_UUID_SIZE);
411
0b86a832
CM
412 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
413 btrfs_mark_buffer_dirty(leaf);
414err:
415 btrfs_free_path(path);
416 return ret;
417}
418
e17cade2 419static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
0b86a832
CM
420{
421 struct btrfs_path *path;
422 int ret;
423 struct btrfs_key key;
e17cade2 424 struct btrfs_chunk *chunk;
0b86a832
CM
425 struct btrfs_key found_key;
426
427 path = btrfs_alloc_path();
428 BUG_ON(!path);
429
e17cade2 430 key.objectid = objectid;
0b86a832
CM
431 key.offset = (u64)-1;
432 key.type = BTRFS_CHUNK_ITEM_KEY;
433
434 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
435 if (ret < 0)
436 goto error;
437
438 BUG_ON(ret == 0);
439
440 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
441 if (ret) {
e17cade2 442 *offset = 0;
0b86a832
CM
443 } else {
444 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
445 path->slots[0]);
e17cade2
CM
446 if (found_key.objectid != objectid)
447 *offset = 0;
448 else {
449 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
450 struct btrfs_chunk);
451 *offset = found_key.offset +
452 btrfs_chunk_length(path->nodes[0], chunk);
453 }
0b86a832
CM
454 }
455 ret = 0;
456error:
457 btrfs_free_path(path);
458 return ret;
459}
460
0b86a832
CM
461static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
462 u64 *objectid)
463{
464 int ret;
465 struct btrfs_key key;
466 struct btrfs_key found_key;
467
468 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
469 key.type = BTRFS_DEV_ITEM_KEY;
470 key.offset = (u64)-1;
471
472 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
473 if (ret < 0)
474 goto error;
475
476 BUG_ON(ret == 0);
477
478 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
479 BTRFS_DEV_ITEM_KEY);
480 if (ret) {
481 *objectid = 1;
482 } else {
483 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
484 path->slots[0]);
485 *objectid = found_key.offset + 1;
486 }
487 ret = 0;
488error:
489 btrfs_release_path(root, path);
490 return ret;
491}
492
493/*
494 * the device information is stored in the chunk root
495 * the btrfs_device struct should be fully filled in
496 */
497int btrfs_add_device(struct btrfs_trans_handle *trans,
498 struct btrfs_root *root,
499 struct btrfs_device *device)
500{
501 int ret;
502 struct btrfs_path *path;
503 struct btrfs_dev_item *dev_item;
504 struct extent_buffer *leaf;
505 struct btrfs_key key;
506 unsigned long ptr;
507 u64 free_devid;
508
509 root = root->fs_info->chunk_root;
510
511 path = btrfs_alloc_path();
512 if (!path)
513 return -ENOMEM;
514
515 ret = find_next_devid(root, path, &free_devid);
516 if (ret)
517 goto out;
518
519 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
520 key.type = BTRFS_DEV_ITEM_KEY;
521 key.offset = free_devid;
522
523 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 524 sizeof(*dev_item));
0b86a832
CM
525 if (ret)
526 goto out;
527
528 leaf = path->nodes[0];
529 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
530
8a4b83cc 531 device->devid = free_devid;
0b86a832
CM
532 btrfs_set_device_id(leaf, dev_item, device->devid);
533 btrfs_set_device_type(leaf, dev_item, device->type);
534 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
535 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
536 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
537 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
538 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
539 btrfs_set_device_group(leaf, dev_item, 0);
540 btrfs_set_device_seek_speed(leaf, dev_item, 0);
541 btrfs_set_device_bandwidth(leaf, dev_item, 0);
0b86a832 542
0b86a832 543 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 544 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
545 btrfs_mark_buffer_dirty(leaf);
546 ret = 0;
547
548out:
549 btrfs_free_path(path);
550 return ret;
551}
552int btrfs_update_device(struct btrfs_trans_handle *trans,
553 struct btrfs_device *device)
554{
555 int ret;
556 struct btrfs_path *path;
557 struct btrfs_root *root;
558 struct btrfs_dev_item *dev_item;
559 struct extent_buffer *leaf;
560 struct btrfs_key key;
561
562 root = device->dev_root->fs_info->chunk_root;
563
564 path = btrfs_alloc_path();
565 if (!path)
566 return -ENOMEM;
567
568 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
569 key.type = BTRFS_DEV_ITEM_KEY;
570 key.offset = device->devid;
571
572 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
573 if (ret < 0)
574 goto out;
575
576 if (ret > 0) {
577 ret = -ENOENT;
578 goto out;
579 }
580
581 leaf = path->nodes[0];
582 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
583
584 btrfs_set_device_id(leaf, dev_item, device->devid);
585 btrfs_set_device_type(leaf, dev_item, device->type);
586 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
587 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
588 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
589 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
590 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
591 btrfs_mark_buffer_dirty(leaf);
592
593out:
594 btrfs_free_path(path);
595 return ret;
596}
597
598int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
599 struct btrfs_root *root,
600 struct btrfs_key *key,
601 struct btrfs_chunk *chunk, int item_size)
602{
603 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
604 struct btrfs_disk_key disk_key;
605 u32 array_size;
606 u8 *ptr;
607
608 array_size = btrfs_super_sys_array_size(super_copy);
609 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
610 return -EFBIG;
611
612 ptr = super_copy->sys_chunk_array + array_size;
613 btrfs_cpu_key_to_disk(&disk_key, key);
614 memcpy(ptr, &disk_key, sizeof(disk_key));
615 ptr += sizeof(disk_key);
616 memcpy(ptr, chunk, item_size);
617 item_size += sizeof(disk_key);
618 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
619 return 0;
620}
621
622int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
623 struct btrfs_root *extent_root, u64 *start,
6324fbf3 624 u64 *num_bytes, u64 type)
0b86a832
CM
625{
626 u64 dev_offset;
593060d7 627 struct btrfs_fs_info *info = extent_root->fs_info;
0b86a832
CM
628 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
629 struct btrfs_stripe *stripes;
630 struct btrfs_device *device = NULL;
631 struct btrfs_chunk *chunk;
6324fbf3 632 struct list_head private_devs;
8a4b83cc 633 struct list_head *dev_list = &extent_root->fs_info->fs_devices->devices;
6324fbf3 634 struct list_head *cur;
0b86a832
CM
635 struct extent_map_tree *em_tree;
636 struct map_lookup *map;
637 struct extent_map *em;
638 u64 physical;
639 u64 calc_size = 1024 * 1024 * 1024;
611f0e00 640 u64 min_free = calc_size;
6324fbf3
CM
641 u64 avail;
642 u64 max_avail = 0;
643 int num_stripes = 1;
644 int looped = 0;
0b86a832 645 int ret;
6324fbf3 646 int index;
593060d7 647 int stripe_len = 64 * 1024;
0b86a832
CM
648 struct btrfs_key key;
649
6324fbf3
CM
650 if (list_empty(dev_list))
651 return -ENOSPC;
593060d7 652
8790d502 653 if (type & (BTRFS_BLOCK_GROUP_RAID0))
593060d7 654 num_stripes = btrfs_super_num_devices(&info->super_copy);
611f0e00
CM
655 if (type & (BTRFS_BLOCK_GROUP_DUP))
656 num_stripes = 2;
8790d502
CM
657 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
658 num_stripes = min_t(u64, 2,
659 btrfs_super_num_devices(&info->super_copy));
660 }
6324fbf3
CM
661again:
662 INIT_LIST_HEAD(&private_devs);
663 cur = dev_list->next;
664 index = 0;
611f0e00
CM
665
666 if (type & BTRFS_BLOCK_GROUP_DUP)
667 min_free = calc_size * 2;
668
6324fbf3
CM
669 /* build a private list of devices we will allocate from */
670 while(index < num_stripes) {
671 device = list_entry(cur, struct btrfs_device, dev_list);
611f0e00 672
6324fbf3
CM
673 avail = device->total_bytes - device->bytes_used;
674 cur = cur->next;
675 if (avail > max_avail)
676 max_avail = avail;
611f0e00 677 if (avail >= min_free) {
6324fbf3
CM
678 list_move_tail(&device->dev_list, &private_devs);
679 index++;
611f0e00
CM
680 if (type & BTRFS_BLOCK_GROUP_DUP)
681 index++;
6324fbf3
CM
682 }
683 if (cur == dev_list)
684 break;
685 }
686 if (index < num_stripes) {
687 list_splice(&private_devs, dev_list);
688 if (!looped && max_avail > 0) {
689 looped = 1;
690 calc_size = max_avail;
691 goto again;
692 }
693 return -ENOSPC;
694 }
0b86a832 695
e17cade2
CM
696 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
697 key.type = BTRFS_CHUNK_ITEM_KEY;
698 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
699 &key.offset);
0b86a832
CM
700 if (ret)
701 return ret;
702
0b86a832
CM
703 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
704 if (!chunk)
705 return -ENOMEM;
706
593060d7
CM
707 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
708 if (!map) {
709 kfree(chunk);
710 return -ENOMEM;
711 }
712
0b86a832
CM
713 stripes = &chunk->stripe;
714
611f0e00 715 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
8790d502
CM
716 *num_bytes = calc_size;
717 else
718 *num_bytes = calc_size * num_stripes;
719
6324fbf3 720 index = 0;
e17cade2 721printk("new chunk type %Lu start %Lu size %Lu\n", type, key.offset, *num_bytes);
0b86a832 722 while(index < num_stripes) {
e17cade2 723 struct btrfs_stripe *stripe;
6324fbf3
CM
724 BUG_ON(list_empty(&private_devs));
725 cur = private_devs.next;
726 device = list_entry(cur, struct btrfs_device, dev_list);
611f0e00
CM
727
728 /* loop over this device again if we're doing a dup group */
729 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
730 (index == num_stripes - 1))
731 list_move_tail(&device->dev_list, dev_list);
0b86a832
CM
732
733 ret = btrfs_alloc_dev_extent(trans, device,
e17cade2
CM
734 info->chunk_root->root_key.objectid,
735 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
736 calc_size, &dev_offset);
0b86a832 737 BUG_ON(ret);
e17cade2 738printk("alloc chunk start %Lu size %Lu from dev %Lu type %Lu\n", key.offset, calc_size, device->devid, type);
0b86a832
CM
739 device->bytes_used += calc_size;
740 ret = btrfs_update_device(trans, device);
741 BUG_ON(ret);
742
593060d7
CM
743 map->stripes[index].dev = device;
744 map->stripes[index].physical = dev_offset;
e17cade2
CM
745 stripe = stripes + index;
746 btrfs_set_stack_stripe_devid(stripe, device->devid);
747 btrfs_set_stack_stripe_offset(stripe, dev_offset);
748 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
0b86a832
CM
749 physical = dev_offset;
750 index++;
751 }
6324fbf3 752 BUG_ON(!list_empty(&private_devs));
0b86a832 753
e17cade2
CM
754 /* key was set above */
755 btrfs_set_stack_chunk_length(chunk, *num_bytes);
0b86a832 756 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
593060d7 757 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
0b86a832
CM
758 btrfs_set_stack_chunk_type(chunk, type);
759 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
593060d7
CM
760 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
761 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
0b86a832 762 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
593060d7
CM
763 map->sector_size = extent_root->sectorsize;
764 map->stripe_len = stripe_len;
765 map->io_align = stripe_len;
766 map->io_width = stripe_len;
767 map->type = type;
768 map->num_stripes = num_stripes;
0b86a832
CM
769
770 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
771 btrfs_chunk_item_size(num_stripes));
772 BUG_ON(ret);
e17cade2 773 *start = key.offset;;
0b86a832
CM
774
775 em = alloc_extent_map(GFP_NOFS);
776 if (!em)
777 return -ENOMEM;
0b86a832 778 em->bdev = (struct block_device *)map;
e17cade2
CM
779 em->start = key.offset;
780 em->len = *num_bytes;
0b86a832
CM
781 em->block_start = 0;
782
0b86a832
CM
783 kfree(chunk);
784
785 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
786 spin_lock(&em_tree->lock);
787 ret = add_extent_mapping(em_tree, em);
0b86a832 788 spin_unlock(&em_tree->lock);
b248a415 789 BUG_ON(ret);
0b86a832
CM
790 free_extent_map(em);
791 return ret;
792}
793
794void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
795{
796 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
797}
798
799void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
800{
801 struct extent_map *em;
802
803 while(1) {
804 spin_lock(&tree->map_tree.lock);
805 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
806 if (em)
807 remove_extent_mapping(&tree->map_tree, em);
808 spin_unlock(&tree->map_tree.lock);
809 if (!em)
810 break;
811 kfree(em->bdev);
812 /* once for us */
813 free_extent_map(em);
814 /* once for the tree */
815 free_extent_map(em);
816 }
817}
818
f188591e
CM
819int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
820{
821 struct extent_map *em;
822 struct map_lookup *map;
823 struct extent_map_tree *em_tree = &map_tree->map_tree;
824 int ret;
825
826 spin_lock(&em_tree->lock);
827 em = lookup_extent_mapping(em_tree, logical, len);
b248a415 828 spin_unlock(&em_tree->lock);
f188591e
CM
829 BUG_ON(!em);
830
831 BUG_ON(em->start > logical || em->start + em->len < logical);
832 map = (struct map_lookup *)em->bdev;
833 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
834 ret = map->num_stripes;
835 else
836 ret = 1;
837 free_extent_map(em);
f188591e
CM
838 return ret;
839}
840
8790d502 841int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
cea9e445 842 u64 logical, u64 *length,
f188591e 843 struct btrfs_multi_bio **multi_ret, int mirror_num)
0b86a832
CM
844{
845 struct extent_map *em;
846 struct map_lookup *map;
847 struct extent_map_tree *em_tree = &map_tree->map_tree;
848 u64 offset;
593060d7
CM
849 u64 stripe_offset;
850 u64 stripe_nr;
cea9e445 851 int stripes_allocated = 8;
593060d7 852 int stripe_index;
cea9e445
CM
853 int i;
854 struct btrfs_multi_bio *multi = NULL;
0b86a832 855
cea9e445
CM
856 if (multi_ret && !(rw & (1 << BIO_RW))) {
857 stripes_allocated = 1;
858 }
859again:
860 if (multi_ret) {
861 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
862 GFP_NOFS);
863 if (!multi)
864 return -ENOMEM;
865 }
0b86a832
CM
866
867 spin_lock(&em_tree->lock);
868 em = lookup_extent_mapping(em_tree, logical, *length);
b248a415 869 spin_unlock(&em_tree->lock);
0b86a832
CM
870 BUG_ON(!em);
871
872 BUG_ON(em->start > logical || em->start + em->len < logical);
873 map = (struct map_lookup *)em->bdev;
874 offset = logical - em->start;
593060d7 875
f188591e
CM
876 if (mirror_num > map->num_stripes)
877 mirror_num = 0;
878
cea9e445
CM
879 /* if our multi bio struct is too small, back off and try again */
880 if (multi_ret && (rw & (1 << BIO_RW)) &&
881 stripes_allocated < map->num_stripes &&
882 ((map->type & BTRFS_BLOCK_GROUP_RAID1) ||
883 (map->type & BTRFS_BLOCK_GROUP_DUP))) {
884 stripes_allocated = map->num_stripes;
cea9e445
CM
885 free_extent_map(em);
886 kfree(multi);
887 goto again;
888 }
593060d7
CM
889 stripe_nr = offset;
890 /*
891 * stripe_nr counts the total number of stripes we have to stride
892 * to get to this block
893 */
894 do_div(stripe_nr, map->stripe_len);
895
896 stripe_offset = stripe_nr * map->stripe_len;
897 BUG_ON(offset < stripe_offset);
898
899 /* stripe_offset is the offset of this block in its stripe*/
900 stripe_offset = offset - stripe_offset;
901
cea9e445
CM
902 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
903 BTRFS_BLOCK_GROUP_DUP)) {
904 /* we limit the length of each bio to what fits in a stripe */
905 *length = min_t(u64, em->len - offset,
906 map->stripe_len - stripe_offset);
907 } else {
908 *length = em->len - offset;
909 }
910 if (!multi_ret)
911 goto out;
912
913 multi->num_stripes = 1;
914 stripe_index = 0;
8790d502 915 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
8790d502 916 if (rw & (1 << BIO_RW))
cea9e445 917 multi->num_stripes = map->num_stripes;
f188591e
CM
918 else if (mirror_num) {
919 stripe_index = mirror_num - 1;
920 } else {
8790d502
CM
921 int i;
922 u64 least = (u64)-1;
923 struct btrfs_device *cur;
924
925 for (i = 0; i < map->num_stripes; i++) {
926 cur = map->stripes[i].dev;
927 spin_lock(&cur->io_lock);
928 if (cur->total_ios < least) {
929 least = cur->total_ios;
930 stripe_index = i;
931 }
932 spin_unlock(&cur->io_lock);
933 }
8790d502 934 }
611f0e00 935 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
cea9e445
CM
936 if (rw & (1 << BIO_RW))
937 multi->num_stripes = map->num_stripes;
f188591e
CM
938 else if (mirror_num)
939 stripe_index = mirror_num - 1;
8790d502
CM
940 } else {
941 /*
942 * after this do_div call, stripe_nr is the number of stripes
943 * on this device we have to walk to find the data, and
944 * stripe_index is the number of our device in the stripe array
945 */
946 stripe_index = do_div(stripe_nr, map->num_stripes);
947 }
593060d7 948 BUG_ON(stripe_index >= map->num_stripes);
cea9e445
CM
949 BUG_ON(stripe_index != 0 && multi->num_stripes > 1);
950
951 for (i = 0; i < multi->num_stripes; i++) {
952 multi->stripes[i].physical =
953 map->stripes[stripe_index].physical + stripe_offset +
954 stripe_nr * map->stripe_len;
955 multi->stripes[i].dev = map->stripes[stripe_index].dev;
956 stripe_index++;
593060d7 957 }
cea9e445
CM
958 *multi_ret = multi;
959out:
0b86a832 960 free_extent_map(em);
0b86a832
CM
961 return 0;
962}
963
8790d502
CM
964#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
965static void end_bio_multi_stripe(struct bio *bio, int err)
966#else
967static int end_bio_multi_stripe(struct bio *bio,
968 unsigned int bytes_done, int err)
969#endif
970{
cea9e445 971 struct btrfs_multi_bio *multi = bio->bi_private;
8790d502
CM
972
973#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
974 if (bio->bi_size)
975 return 1;
976#endif
977 if (err)
978 multi->error = err;
979
cea9e445 980 if (atomic_dec_and_test(&multi->stripes_pending)) {
8790d502
CM
981 bio->bi_private = multi->private;
982 bio->bi_end_io = multi->end_io;
983
984 if (!err && multi->error)
985 err = multi->error;
986 kfree(multi);
987
73f61b2a
M
988#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
989 bio_endio(bio, bio->bi_size, err);
990#else
8790d502 991 bio_endio(bio, err);
73f61b2a 992#endif
8790d502
CM
993 } else {
994 bio_put(bio);
995 }
996#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
997 return 0;
998#endif
999}
1000
f188591e
CM
1001int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
1002 int mirror_num)
0b86a832
CM
1003{
1004 struct btrfs_mapping_tree *map_tree;
1005 struct btrfs_device *dev;
8790d502 1006 struct bio *first_bio = bio;
0b86a832 1007 u64 logical = bio->bi_sector << 9;
0b86a832
CM
1008 u64 length = 0;
1009 u64 map_length;
1010 struct bio_vec *bvec;
cea9e445 1011 struct btrfs_multi_bio *multi = NULL;
0b86a832
CM
1012 int i;
1013 int ret;
8790d502
CM
1014 int dev_nr = 0;
1015 int total_devs = 1;
0b86a832
CM
1016
1017 bio_for_each_segment(bvec, bio, i) {
1018 length += bvec->bv_len;
1019 }
8790d502 1020
0b86a832
CM
1021 map_tree = &root->fs_info->mapping_tree;
1022 map_length = length;
cea9e445 1023
f188591e
CM
1024 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
1025 mirror_num);
cea9e445
CM
1026 BUG_ON(ret);
1027
1028 total_devs = multi->num_stripes;
1029 if (map_length < length) {
1030 printk("mapping failed logical %Lu bio len %Lu "
1031 "len %Lu\n", logical, length, map_length);
1032 BUG();
1033 }
1034 multi->end_io = first_bio->bi_end_io;
1035 multi->private = first_bio->bi_private;
1036 atomic_set(&multi->stripes_pending, multi->num_stripes);
1037
8790d502 1038 while(dev_nr < total_devs) {
8790d502 1039 if (total_devs > 1) {
8790d502
CM
1040 if (dev_nr < total_devs - 1) {
1041 bio = bio_clone(first_bio, GFP_NOFS);
1042 BUG_ON(!bio);
1043 } else {
1044 bio = first_bio;
1045 }
1046 bio->bi_private = multi;
1047 bio->bi_end_io = end_bio_multi_stripe;
1048 }
cea9e445
CM
1049 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
1050 dev = multi->stripes[dev_nr].dev;
8790d502
CM
1051 bio->bi_bdev = dev->bdev;
1052 spin_lock(&dev->io_lock);
1053 dev->total_ios++;
1054 spin_unlock(&dev->io_lock);
1055 submit_bio(rw, bio);
1056 dev_nr++;
1057 }
cea9e445
CM
1058 if (total_devs == 1)
1059 kfree(multi);
0b86a832
CM
1060 return 0;
1061}
1062
1063struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid)
1064{
8a4b83cc 1065 struct list_head *head = &root->fs_info->fs_devices->devices;
0b86a832 1066
8a4b83cc 1067 return __find_device(head, devid);
0b86a832
CM
1068}
1069
1070static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
1071 struct extent_buffer *leaf,
1072 struct btrfs_chunk *chunk)
1073{
1074 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1075 struct map_lookup *map;
1076 struct extent_map *em;
1077 u64 logical;
1078 u64 length;
1079 u64 devid;
593060d7 1080 int num_stripes;
0b86a832 1081 int ret;
593060d7 1082 int i;
0b86a832 1083
e17cade2
CM
1084 logical = key->offset;
1085 length = btrfs_chunk_length(leaf, chunk);
0b86a832
CM
1086 spin_lock(&map_tree->map_tree.lock);
1087 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
b248a415 1088 spin_unlock(&map_tree->map_tree.lock);
0b86a832
CM
1089
1090 /* already mapped? */
1091 if (em && em->start <= logical && em->start + em->len > logical) {
1092 free_extent_map(em);
0b86a832
CM
1093 return 0;
1094 } else if (em) {
1095 free_extent_map(em);
1096 }
0b86a832
CM
1097
1098 map = kzalloc(sizeof(*map), GFP_NOFS);
1099 if (!map)
1100 return -ENOMEM;
1101
1102 em = alloc_extent_map(GFP_NOFS);
1103 if (!em)
1104 return -ENOMEM;
593060d7
CM
1105 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1106 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
1107 if (!map) {
1108 free_extent_map(em);
1109 return -ENOMEM;
1110 }
1111
1112 em->bdev = (struct block_device *)map;
1113 em->start = logical;
1114 em->len = length;
1115 em->block_start = 0;
1116
593060d7
CM
1117 map->num_stripes = num_stripes;
1118 map->io_width = btrfs_chunk_io_width(leaf, chunk);
1119 map->io_align = btrfs_chunk_io_align(leaf, chunk);
1120 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1121 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1122 map->type = btrfs_chunk_type(leaf, chunk);
1123 for (i = 0; i < num_stripes; i++) {
1124 map->stripes[i].physical =
1125 btrfs_stripe_offset_nr(leaf, chunk, i);
1126 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1127 map->stripes[i].dev = btrfs_find_device(root, devid);
1128 if (!map->stripes[i].dev) {
1129 kfree(map);
1130 free_extent_map(em);
1131 return -EIO;
1132 }
0b86a832
CM
1133 }
1134
1135 spin_lock(&map_tree->map_tree.lock);
1136 ret = add_extent_mapping(&map_tree->map_tree, em);
0b86a832 1137 spin_unlock(&map_tree->map_tree.lock);
b248a415 1138 BUG_ON(ret);
0b86a832
CM
1139 free_extent_map(em);
1140
1141 return 0;
1142}
1143
1144static int fill_device_from_item(struct extent_buffer *leaf,
1145 struct btrfs_dev_item *dev_item,
1146 struct btrfs_device *device)
1147{
1148 unsigned long ptr;
0b86a832
CM
1149
1150 device->devid = btrfs_device_id(leaf, dev_item);
1151 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1152 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1153 device->type = btrfs_device_type(leaf, dev_item);
1154 device->io_align = btrfs_device_io_align(leaf, dev_item);
1155 device->io_width = btrfs_device_io_width(leaf, dev_item);
1156 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
1157
1158 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1159 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 1160
0b86a832
CM
1161 return 0;
1162}
1163
0d81ba5d 1164static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
1165 struct extent_buffer *leaf,
1166 struct btrfs_dev_item *dev_item)
1167{
1168 struct btrfs_device *device;
1169 u64 devid;
1170 int ret;
0b86a832 1171 devid = btrfs_device_id(leaf, dev_item);
6324fbf3
CM
1172 device = btrfs_find_device(root, devid);
1173 if (!device) {
8a4b83cc 1174 printk("warning devid %Lu not found already\n", devid);
f2984462 1175 device = kzalloc(sizeof(*device), GFP_NOFS);
6324fbf3
CM
1176 if (!device)
1177 return -ENOMEM;
8a4b83cc
CM
1178 list_add(&device->dev_list,
1179 &root->fs_info->fs_devices->devices);
b248a415 1180 device->barriers = 1;
8790d502 1181 spin_lock_init(&device->io_lock);
6324fbf3 1182 }
0b86a832
CM
1183
1184 fill_device_from_item(leaf, dev_item, device);
1185 device->dev_root = root->fs_info->dev_root;
0b86a832
CM
1186 ret = 0;
1187#if 0
1188 ret = btrfs_open_device(device);
1189 if (ret) {
1190 kfree(device);
1191 }
1192#endif
1193 return ret;
1194}
1195
0d81ba5d
CM
1196int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
1197{
1198 struct btrfs_dev_item *dev_item;
1199
1200 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1201 dev_item);
1202 return read_one_dev(root, buf, dev_item);
1203}
1204
0b86a832
CM
1205int btrfs_read_sys_array(struct btrfs_root *root)
1206{
1207 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1208 struct extent_buffer *sb = root->fs_info->sb_buffer;
1209 struct btrfs_disk_key *disk_key;
0b86a832
CM
1210 struct btrfs_chunk *chunk;
1211 struct btrfs_key key;
1212 u32 num_stripes;
1213 u32 array_size;
1214 u32 len = 0;
1215 u8 *ptr;
1216 unsigned long sb_ptr;
1217 u32 cur;
1218 int ret;
0b86a832
CM
1219
1220 array_size = btrfs_super_sys_array_size(super_copy);
1221
1222 /*
1223 * we do this loop twice, once for the device items and
1224 * once for all of the chunks. This way there are device
1225 * structs filled in for every chunk
1226 */
0b86a832
CM
1227 ptr = super_copy->sys_chunk_array;
1228 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
1229 cur = 0;
1230
1231 while (cur < array_size) {
1232 disk_key = (struct btrfs_disk_key *)ptr;
1233 btrfs_disk_key_to_cpu(&key, disk_key);
1234
1235 len = sizeof(*disk_key);
1236 ptr += len;
1237 sb_ptr += len;
1238 cur += len;
1239
0d81ba5d 1240 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 1241 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d
CM
1242 ret = read_one_chunk(root, &key, sb, chunk);
1243 BUG_ON(ret);
0b86a832
CM
1244 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1245 len = btrfs_chunk_item_size(num_stripes);
1246 } else {
1247 BUG();
1248 }
1249 ptr += len;
1250 sb_ptr += len;
1251 cur += len;
1252 }
0b86a832
CM
1253 return 0;
1254}
1255
1256int btrfs_read_chunk_tree(struct btrfs_root *root)
1257{
1258 struct btrfs_path *path;
1259 struct extent_buffer *leaf;
1260 struct btrfs_key key;
1261 struct btrfs_key found_key;
1262 int ret;
1263 int slot;
1264
1265 root = root->fs_info->chunk_root;
1266
1267 path = btrfs_alloc_path();
1268 if (!path)
1269 return -ENOMEM;
1270
1271 /* first we search for all of the device items, and then we
1272 * read in all of the chunk items. This way we can create chunk
1273 * mappings that reference all of the devices that are afound
1274 */
1275 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1276 key.offset = 0;
1277 key.type = 0;
1278again:
1279 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1280 while(1) {
1281 leaf = path->nodes[0];
1282 slot = path->slots[0];
1283 if (slot >= btrfs_header_nritems(leaf)) {
1284 ret = btrfs_next_leaf(root, path);
1285 if (ret == 0)
1286 continue;
1287 if (ret < 0)
1288 goto error;
1289 break;
1290 }
1291 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1292 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1293 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
1294 break;
1295 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1296 struct btrfs_dev_item *dev_item;
1297 dev_item = btrfs_item_ptr(leaf, slot,
1298 struct btrfs_dev_item);
0d81ba5d 1299 ret = read_one_dev(root, leaf, dev_item);
0b86a832
CM
1300 BUG_ON(ret);
1301 }
1302 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1303 struct btrfs_chunk *chunk;
1304 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1305 ret = read_one_chunk(root, &found_key, leaf, chunk);
1306 }
1307 path->slots[0]++;
1308 }
1309 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1310 key.objectid = 0;
1311 btrfs_release_path(root, path);
1312 goto again;
1313 }
1314
1315 btrfs_free_path(path);
1316 ret = 0;
1317error:
1318 return ret;
1319}
1320