Btrfs: remove ourselves from the cluster list under lock
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
4b4e25f2 31#include "compat.h"
0b86a832
CM
32#include "ctree.h"
33#include "extent_map.h"
34#include "disk-io.h"
35#include "transaction.h"
36#include "print-tree.h"
37#include "volumes.h"
53b381b3 38#include "raid56.h"
8b712842 39#include "async-thread.h"
21adbd5c 40#include "check-integrity.h"
606686ee 41#include "rcu-string.h"
3fed40cc 42#include "math.h"
8dabb742 43#include "dev-replace.h"
0b86a832 44
2b82032c
YZ
45static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 49static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 52
8a4b83cc
CM
53static DEFINE_MUTEX(uuid_mutex);
54static LIST_HEAD(fs_uuids);
55
7d9eb12c
CM
56static void lock_chunks(struct btrfs_root *root)
57{
7d9eb12c
CM
58 mutex_lock(&root->fs_info->chunk_mutex);
59}
60
61static void unlock_chunks(struct btrfs_root *root)
62{
7d9eb12c
CM
63 mutex_unlock(&root->fs_info->chunk_mutex);
64}
65
2208a378
ID
66static struct btrfs_fs_devices *__alloc_fs_devices(void)
67{
68 struct btrfs_fs_devices *fs_devs;
69
70 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71 if (!fs_devs)
72 return ERR_PTR(-ENOMEM);
73
74 mutex_init(&fs_devs->device_list_mutex);
75
76 INIT_LIST_HEAD(&fs_devs->devices);
77 INIT_LIST_HEAD(&fs_devs->alloc_list);
78 INIT_LIST_HEAD(&fs_devs->list);
79
80 return fs_devs;
81}
82
83/**
84 * alloc_fs_devices - allocate struct btrfs_fs_devices
85 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
86 * generated.
87 *
88 * Return: a pointer to a new &struct btrfs_fs_devices on success;
89 * ERR_PTR() on error. Returned struct is not linked onto any lists and
90 * can be destroyed with kfree() right away.
91 */
92static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
93{
94 struct btrfs_fs_devices *fs_devs;
95
96 fs_devs = __alloc_fs_devices();
97 if (IS_ERR(fs_devs))
98 return fs_devs;
99
100 if (fsid)
101 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
102 else
103 generate_random_uuid(fs_devs->fsid);
104
105 return fs_devs;
106}
107
e4404d6e
YZ
108static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
109{
110 struct btrfs_device *device;
111 WARN_ON(fs_devices->opened);
112 while (!list_empty(&fs_devices->devices)) {
113 device = list_entry(fs_devices->devices.next,
114 struct btrfs_device, dev_list);
115 list_del(&device->dev_list);
606686ee 116 rcu_string_free(device->name);
e4404d6e
YZ
117 kfree(device);
118 }
119 kfree(fs_devices);
120}
121
b8b8ff59
LC
122static void btrfs_kobject_uevent(struct block_device *bdev,
123 enum kobject_action action)
124{
125 int ret;
126
127 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
128 if (ret)
129 pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
130 action,
131 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
132 &disk_to_dev(bdev->bd_disk)->kobj);
133}
134
143bede5 135void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
136{
137 struct btrfs_fs_devices *fs_devices;
8a4b83cc 138
2b82032c
YZ
139 while (!list_empty(&fs_uuids)) {
140 fs_devices = list_entry(fs_uuids.next,
141 struct btrfs_fs_devices, list);
142 list_del(&fs_devices->list);
e4404d6e 143 free_fs_devices(fs_devices);
8a4b83cc 144 }
8a4b83cc
CM
145}
146
12bd2fc0
ID
147static struct btrfs_device *__alloc_device(void)
148{
149 struct btrfs_device *dev;
150
151 dev = kzalloc(sizeof(*dev), GFP_NOFS);
152 if (!dev)
153 return ERR_PTR(-ENOMEM);
154
155 INIT_LIST_HEAD(&dev->dev_list);
156 INIT_LIST_HEAD(&dev->dev_alloc_list);
157
158 spin_lock_init(&dev->io_lock);
159
160 spin_lock_init(&dev->reada_lock);
161 atomic_set(&dev->reada_in_flight, 0);
162 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
163 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
164
165 return dev;
166}
167
a1b32a59
CM
168static noinline struct btrfs_device *__find_device(struct list_head *head,
169 u64 devid, u8 *uuid)
8a4b83cc
CM
170{
171 struct btrfs_device *dev;
8a4b83cc 172
c6e30871 173 list_for_each_entry(dev, head, dev_list) {
a443755f 174 if (dev->devid == devid &&
8f18cf13 175 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 176 return dev;
a443755f 177 }
8a4b83cc
CM
178 }
179 return NULL;
180}
181
a1b32a59 182static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 183{
8a4b83cc
CM
184 struct btrfs_fs_devices *fs_devices;
185
c6e30871 186 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
187 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
188 return fs_devices;
189 }
190 return NULL;
191}
192
beaf8ab3
SB
193static int
194btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
195 int flush, struct block_device **bdev,
196 struct buffer_head **bh)
197{
198 int ret;
199
200 *bdev = blkdev_get_by_path(device_path, flags, holder);
201
202 if (IS_ERR(*bdev)) {
203 ret = PTR_ERR(*bdev);
204 printk(KERN_INFO "btrfs: open %s failed\n", device_path);
205 goto error;
206 }
207
208 if (flush)
209 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
210 ret = set_blocksize(*bdev, 4096);
211 if (ret) {
212 blkdev_put(*bdev, flags);
213 goto error;
214 }
215 invalidate_bdev(*bdev);
216 *bh = btrfs_read_dev_super(*bdev);
217 if (!*bh) {
218 ret = -EINVAL;
219 blkdev_put(*bdev, flags);
220 goto error;
221 }
222
223 return 0;
224
225error:
226 *bdev = NULL;
227 *bh = NULL;
228 return ret;
229}
230
ffbd517d
CM
231static void requeue_list(struct btrfs_pending_bios *pending_bios,
232 struct bio *head, struct bio *tail)
233{
234
235 struct bio *old_head;
236
237 old_head = pending_bios->head;
238 pending_bios->head = head;
239 if (pending_bios->tail)
240 tail->bi_next = old_head;
241 else
242 pending_bios->tail = tail;
243}
244
8b712842
CM
245/*
246 * we try to collect pending bios for a device so we don't get a large
247 * number of procs sending bios down to the same device. This greatly
248 * improves the schedulers ability to collect and merge the bios.
249 *
250 * But, it also turns into a long list of bios to process and that is sure
251 * to eventually make the worker thread block. The solution here is to
252 * make some progress and then put this work struct back at the end of
253 * the list if the block device is congested. This way, multiple devices
254 * can make progress from a single worker thread.
255 */
143bede5 256static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
257{
258 struct bio *pending;
259 struct backing_dev_info *bdi;
b64a2851 260 struct btrfs_fs_info *fs_info;
ffbd517d 261 struct btrfs_pending_bios *pending_bios;
8b712842
CM
262 struct bio *tail;
263 struct bio *cur;
264 int again = 0;
ffbd517d 265 unsigned long num_run;
d644d8a1 266 unsigned long batch_run = 0;
b64a2851 267 unsigned long limit;
b765ead5 268 unsigned long last_waited = 0;
d84275c9 269 int force_reg = 0;
0e588859 270 int sync_pending = 0;
211588ad
CM
271 struct blk_plug plug;
272
273 /*
274 * this function runs all the bios we've collected for
275 * a particular device. We don't want to wander off to
276 * another device without first sending all of these down.
277 * So, setup a plug here and finish it off before we return
278 */
279 blk_start_plug(&plug);
8b712842 280
bedf762b 281 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
282 fs_info = device->dev_root->fs_info;
283 limit = btrfs_async_submit_limit(fs_info);
284 limit = limit * 2 / 3;
285
8b712842
CM
286loop:
287 spin_lock(&device->io_lock);
288
a6837051 289loop_lock:
d84275c9 290 num_run = 0;
ffbd517d 291
8b712842
CM
292 /* take all the bios off the list at once and process them
293 * later on (without the lock held). But, remember the
294 * tail and other pointers so the bios can be properly reinserted
295 * into the list if we hit congestion
296 */
d84275c9 297 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 298 pending_bios = &device->pending_sync_bios;
d84275c9
CM
299 force_reg = 1;
300 } else {
ffbd517d 301 pending_bios = &device->pending_bios;
d84275c9
CM
302 force_reg = 0;
303 }
ffbd517d
CM
304
305 pending = pending_bios->head;
306 tail = pending_bios->tail;
8b712842 307 WARN_ON(pending && !tail);
8b712842
CM
308
309 /*
310 * if pending was null this time around, no bios need processing
311 * at all and we can stop. Otherwise it'll loop back up again
312 * and do an additional check so no bios are missed.
313 *
314 * device->running_pending is used to synchronize with the
315 * schedule_bio code.
316 */
ffbd517d
CM
317 if (device->pending_sync_bios.head == NULL &&
318 device->pending_bios.head == NULL) {
8b712842
CM
319 again = 0;
320 device->running_pending = 0;
ffbd517d
CM
321 } else {
322 again = 1;
323 device->running_pending = 1;
8b712842 324 }
ffbd517d
CM
325
326 pending_bios->head = NULL;
327 pending_bios->tail = NULL;
328
8b712842
CM
329 spin_unlock(&device->io_lock);
330
d397712b 331 while (pending) {
ffbd517d
CM
332
333 rmb();
d84275c9
CM
334 /* we want to work on both lists, but do more bios on the
335 * sync list than the regular list
336 */
337 if ((num_run > 32 &&
338 pending_bios != &device->pending_sync_bios &&
339 device->pending_sync_bios.head) ||
340 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
341 device->pending_bios.head)) {
ffbd517d
CM
342 spin_lock(&device->io_lock);
343 requeue_list(pending_bios, pending, tail);
344 goto loop_lock;
345 }
346
8b712842
CM
347 cur = pending;
348 pending = pending->bi_next;
349 cur->bi_next = NULL;
b64a2851 350
66657b31 351 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
352 waitqueue_active(&fs_info->async_submit_wait))
353 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
354
355 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 356
2ab1ba68
CM
357 /*
358 * if we're doing the sync list, record that our
359 * plug has some sync requests on it
360 *
361 * If we're doing the regular list and there are
362 * sync requests sitting around, unplug before
363 * we add more
364 */
365 if (pending_bios == &device->pending_sync_bios) {
366 sync_pending = 1;
367 } else if (sync_pending) {
368 blk_finish_plug(&plug);
369 blk_start_plug(&plug);
370 sync_pending = 0;
371 }
372
21adbd5c 373 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
374 num_run++;
375 batch_run++;
7eaceacc 376 if (need_resched())
ffbd517d 377 cond_resched();
8b712842
CM
378
379 /*
380 * we made progress, there is more work to do and the bdi
381 * is now congested. Back off and let other work structs
382 * run instead
383 */
57fd5a5f 384 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 385 fs_info->fs_devices->open_devices > 1) {
b765ead5 386 struct io_context *ioc;
8b712842 387
b765ead5
CM
388 ioc = current->io_context;
389
390 /*
391 * the main goal here is that we don't want to
392 * block if we're going to be able to submit
393 * more requests without blocking.
394 *
395 * This code does two great things, it pokes into
396 * the elevator code from a filesystem _and_
397 * it makes assumptions about how batching works.
398 */
399 if (ioc && ioc->nr_batch_requests > 0 &&
400 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
401 (last_waited == 0 ||
402 ioc->last_waited == last_waited)) {
403 /*
404 * we want to go through our batch of
405 * requests and stop. So, we copy out
406 * the ioc->last_waited time and test
407 * against it before looping
408 */
409 last_waited = ioc->last_waited;
7eaceacc 410 if (need_resched())
ffbd517d 411 cond_resched();
b765ead5
CM
412 continue;
413 }
8b712842 414 spin_lock(&device->io_lock);
ffbd517d 415 requeue_list(pending_bios, pending, tail);
a6837051 416 device->running_pending = 1;
8b712842
CM
417
418 spin_unlock(&device->io_lock);
419 btrfs_requeue_work(&device->work);
420 goto done;
421 }
d85c8a6f
CM
422 /* unplug every 64 requests just for good measure */
423 if (batch_run % 64 == 0) {
424 blk_finish_plug(&plug);
425 blk_start_plug(&plug);
426 sync_pending = 0;
427 }
8b712842 428 }
ffbd517d 429
51684082
CM
430 cond_resched();
431 if (again)
432 goto loop;
433
434 spin_lock(&device->io_lock);
435 if (device->pending_bios.head || device->pending_sync_bios.head)
436 goto loop_lock;
437 spin_unlock(&device->io_lock);
438
8b712842 439done:
211588ad 440 blk_finish_plug(&plug);
8b712842
CM
441}
442
b2950863 443static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
444{
445 struct btrfs_device *device;
446
447 device = container_of(work, struct btrfs_device, work);
448 run_scheduled_bios(device);
449}
450
a1b32a59 451static noinline int device_list_add(const char *path,
8a4b83cc
CM
452 struct btrfs_super_block *disk_super,
453 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
454{
455 struct btrfs_device *device;
456 struct btrfs_fs_devices *fs_devices;
606686ee 457 struct rcu_string *name;
8a4b83cc
CM
458 u64 found_transid = btrfs_super_generation(disk_super);
459
460 fs_devices = find_fsid(disk_super->fsid);
461 if (!fs_devices) {
2208a378
ID
462 fs_devices = alloc_fs_devices(disk_super->fsid);
463 if (IS_ERR(fs_devices))
464 return PTR_ERR(fs_devices);
465
8a4b83cc 466 list_add(&fs_devices->list, &fs_uuids);
8a4b83cc
CM
467 fs_devices->latest_devid = devid;
468 fs_devices->latest_trans = found_transid;
2208a378 469
8a4b83cc
CM
470 device = NULL;
471 } else {
a443755f
CM
472 device = __find_device(&fs_devices->devices, devid,
473 disk_super->dev_item.uuid);
8a4b83cc
CM
474 }
475 if (!device) {
2b82032c
YZ
476 if (fs_devices->opened)
477 return -EBUSY;
478
12bd2fc0
ID
479 device = btrfs_alloc_device(NULL, &devid,
480 disk_super->dev_item.uuid);
481 if (IS_ERR(device)) {
8a4b83cc 482 /* we can safely leave the fs_devices entry around */
12bd2fc0 483 return PTR_ERR(device);
8a4b83cc 484 }
606686ee
JB
485
486 name = rcu_string_strdup(path, GFP_NOFS);
487 if (!name) {
8a4b83cc
CM
488 kfree(device);
489 return -ENOMEM;
490 }
606686ee 491 rcu_assign_pointer(device->name, name);
90519d66 492
e5e9a520 493 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 494 list_add_rcu(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
495 mutex_unlock(&fs_devices->device_list_mutex);
496
2b82032c 497 device->fs_devices = fs_devices;
8a4b83cc 498 fs_devices->num_devices++;
606686ee
JB
499 } else if (!device->name || strcmp(device->name->str, path)) {
500 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
501 if (!name)
502 return -ENOMEM;
606686ee
JB
503 rcu_string_free(device->name);
504 rcu_assign_pointer(device->name, name);
cd02dca5
CM
505 if (device->missing) {
506 fs_devices->missing_devices--;
507 device->missing = 0;
508 }
8a4b83cc
CM
509 }
510
511 if (found_transid > fs_devices->latest_trans) {
512 fs_devices->latest_devid = devid;
513 fs_devices->latest_trans = found_transid;
514 }
8a4b83cc
CM
515 *fs_devices_ret = fs_devices;
516 return 0;
517}
518
e4404d6e
YZ
519static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
520{
521 struct btrfs_fs_devices *fs_devices;
522 struct btrfs_device *device;
523 struct btrfs_device *orig_dev;
524
2208a378
ID
525 fs_devices = alloc_fs_devices(orig->fsid);
526 if (IS_ERR(fs_devices))
527 return fs_devices;
e4404d6e 528
e4404d6e
YZ
529 fs_devices->latest_devid = orig->latest_devid;
530 fs_devices->latest_trans = orig->latest_trans;
02db0844 531 fs_devices->total_devices = orig->total_devices;
e4404d6e 532
46224705 533 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 534 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
535 struct rcu_string *name;
536
12bd2fc0
ID
537 device = btrfs_alloc_device(NULL, &orig_dev->devid,
538 orig_dev->uuid);
539 if (IS_ERR(device))
e4404d6e
YZ
540 goto error;
541
606686ee
JB
542 /*
543 * This is ok to do without rcu read locked because we hold the
544 * uuid mutex so nothing we touch in here is going to disappear.
545 */
546 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
547 if (!name) {
fd2696f3 548 kfree(device);
e4404d6e 549 goto error;
fd2696f3 550 }
606686ee 551 rcu_assign_pointer(device->name, name);
e4404d6e 552
e4404d6e
YZ
553 list_add(&device->dev_list, &fs_devices->devices);
554 device->fs_devices = fs_devices;
555 fs_devices->num_devices++;
556 }
557 return fs_devices;
558error:
559 free_fs_devices(fs_devices);
560 return ERR_PTR(-ENOMEM);
561}
562
8dabb742
SB
563void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
564 struct btrfs_fs_devices *fs_devices, int step)
dfe25020 565{
c6e30871 566 struct btrfs_device *device, *next;
dfe25020 567
a6b0d5c8
CM
568 struct block_device *latest_bdev = NULL;
569 u64 latest_devid = 0;
570 u64 latest_transid = 0;
571
dfe25020
CM
572 mutex_lock(&uuid_mutex);
573again:
46224705 574 /* This is the initialized path, it is safe to release the devices. */
c6e30871 575 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 576 if (device->in_fs_metadata) {
63a212ab
SB
577 if (!device->is_tgtdev_for_dev_replace &&
578 (!latest_transid ||
579 device->generation > latest_transid)) {
a6b0d5c8
CM
580 latest_devid = device->devid;
581 latest_transid = device->generation;
582 latest_bdev = device->bdev;
583 }
2b82032c 584 continue;
a6b0d5c8 585 }
2b82032c 586
8dabb742
SB
587 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
588 /*
589 * In the first step, keep the device which has
590 * the correct fsid and the devid that is used
591 * for the dev_replace procedure.
592 * In the second step, the dev_replace state is
593 * read from the device tree and it is known
594 * whether the procedure is really active or
595 * not, which means whether this device is
596 * used or whether it should be removed.
597 */
598 if (step == 0 || device->is_tgtdev_for_dev_replace) {
599 continue;
600 }
601 }
2b82032c 602 if (device->bdev) {
d4d77629 603 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
604 device->bdev = NULL;
605 fs_devices->open_devices--;
606 }
607 if (device->writeable) {
608 list_del_init(&device->dev_alloc_list);
609 device->writeable = 0;
8dabb742
SB
610 if (!device->is_tgtdev_for_dev_replace)
611 fs_devices->rw_devices--;
2b82032c 612 }
e4404d6e
YZ
613 list_del_init(&device->dev_list);
614 fs_devices->num_devices--;
606686ee 615 rcu_string_free(device->name);
e4404d6e 616 kfree(device);
dfe25020 617 }
2b82032c
YZ
618
619 if (fs_devices->seed) {
620 fs_devices = fs_devices->seed;
2b82032c
YZ
621 goto again;
622 }
623
a6b0d5c8
CM
624 fs_devices->latest_bdev = latest_bdev;
625 fs_devices->latest_devid = latest_devid;
626 fs_devices->latest_trans = latest_transid;
627
dfe25020 628 mutex_unlock(&uuid_mutex);
dfe25020 629}
a0af469b 630
1f78160c
XG
631static void __free_device(struct work_struct *work)
632{
633 struct btrfs_device *device;
634
635 device = container_of(work, struct btrfs_device, rcu_work);
636
637 if (device->bdev)
638 blkdev_put(device->bdev, device->mode);
639
606686ee 640 rcu_string_free(device->name);
1f78160c
XG
641 kfree(device);
642}
643
644static void free_device(struct rcu_head *head)
645{
646 struct btrfs_device *device;
647
648 device = container_of(head, struct btrfs_device, rcu);
649
650 INIT_WORK(&device->rcu_work, __free_device);
651 schedule_work(&device->rcu_work);
652}
653
2b82032c 654static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 655{
8a4b83cc 656 struct btrfs_device *device;
e4404d6e 657
2b82032c
YZ
658 if (--fs_devices->opened > 0)
659 return 0;
8a4b83cc 660
c9513edb 661 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 662 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 663 struct btrfs_device *new_device;
606686ee 664 struct rcu_string *name;
1f78160c
XG
665
666 if (device->bdev)
a0af469b 667 fs_devices->open_devices--;
1f78160c 668
8dabb742 669 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c
YZ
670 list_del_init(&device->dev_alloc_list);
671 fs_devices->rw_devices--;
672 }
673
d5e2003c
JB
674 if (device->can_discard)
675 fs_devices->num_can_discard--;
676
a1e8780a
ID
677 new_device = btrfs_alloc_device(NULL, &device->devid,
678 device->uuid);
679 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
606686ee
JB
680
681 /* Safe because we are under uuid_mutex */
99f5944b
JB
682 if (device->name) {
683 name = rcu_string_strdup(device->name->str, GFP_NOFS);
a1e8780a 684 BUG_ON(!name); /* -ENOMEM */
99f5944b
JB
685 rcu_assign_pointer(new_device->name, name);
686 }
a1e8780a 687
1f78160c 688 list_replace_rcu(&device->dev_list, &new_device->dev_list);
a1e8780a 689 new_device->fs_devices = device->fs_devices;
1f78160c
XG
690
691 call_rcu(&device->rcu, free_device);
8a4b83cc 692 }
c9513edb
XG
693 mutex_unlock(&fs_devices->device_list_mutex);
694
e4404d6e
YZ
695 WARN_ON(fs_devices->open_devices);
696 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
697 fs_devices->opened = 0;
698 fs_devices->seeding = 0;
2b82032c 699
8a4b83cc
CM
700 return 0;
701}
702
2b82032c
YZ
703int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
704{
e4404d6e 705 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
706 int ret;
707
708 mutex_lock(&uuid_mutex);
709 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
710 if (!fs_devices->opened) {
711 seed_devices = fs_devices->seed;
712 fs_devices->seed = NULL;
713 }
2b82032c 714 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
715
716 while (seed_devices) {
717 fs_devices = seed_devices;
718 seed_devices = fs_devices->seed;
719 __btrfs_close_devices(fs_devices);
720 free_fs_devices(fs_devices);
721 }
bc178622
ES
722 /*
723 * Wait for rcu kworkers under __btrfs_close_devices
724 * to finish all blkdev_puts so device is really
725 * free when umount is done.
726 */
727 rcu_barrier();
2b82032c
YZ
728 return ret;
729}
730
e4404d6e
YZ
731static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
732 fmode_t flags, void *holder)
8a4b83cc 733{
d5e2003c 734 struct request_queue *q;
8a4b83cc
CM
735 struct block_device *bdev;
736 struct list_head *head = &fs_devices->devices;
8a4b83cc 737 struct btrfs_device *device;
a0af469b
CM
738 struct block_device *latest_bdev = NULL;
739 struct buffer_head *bh;
740 struct btrfs_super_block *disk_super;
741 u64 latest_devid = 0;
742 u64 latest_transid = 0;
a0af469b 743 u64 devid;
2b82032c 744 int seeding = 1;
a0af469b 745 int ret = 0;
8a4b83cc 746
d4d77629
TH
747 flags |= FMODE_EXCL;
748
c6e30871 749 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
750 if (device->bdev)
751 continue;
dfe25020
CM
752 if (!device->name)
753 continue;
754
f63e0cca
ES
755 /* Just open everything we can; ignore failures here */
756 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
757 &bdev, &bh))
beaf8ab3 758 continue;
a0af469b
CM
759
760 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 761 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
762 if (devid != device->devid)
763 goto error_brelse;
764
2b82032c
YZ
765 if (memcmp(device->uuid, disk_super->dev_item.uuid,
766 BTRFS_UUID_SIZE))
767 goto error_brelse;
768
769 device->generation = btrfs_super_generation(disk_super);
770 if (!latest_transid || device->generation > latest_transid) {
a0af469b 771 latest_devid = devid;
2b82032c 772 latest_transid = device->generation;
a0af469b
CM
773 latest_bdev = bdev;
774 }
775
2b82032c
YZ
776 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
777 device->writeable = 0;
778 } else {
779 device->writeable = !bdev_read_only(bdev);
780 seeding = 0;
781 }
782
d5e2003c
JB
783 q = bdev_get_queue(bdev);
784 if (blk_queue_discard(q)) {
785 device->can_discard = 1;
786 fs_devices->num_can_discard++;
787 }
788
8a4b83cc 789 device->bdev = bdev;
dfe25020 790 device->in_fs_metadata = 0;
15916de8
CM
791 device->mode = flags;
792
c289811c
CM
793 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
794 fs_devices->rotating = 1;
795
a0af469b 796 fs_devices->open_devices++;
8dabb742 797 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c
YZ
798 fs_devices->rw_devices++;
799 list_add(&device->dev_alloc_list,
800 &fs_devices->alloc_list);
801 }
4f6c9328 802 brelse(bh);
a0af469b 803 continue;
a061fc8d 804
a0af469b
CM
805error_brelse:
806 brelse(bh);
d4d77629 807 blkdev_put(bdev, flags);
a0af469b 808 continue;
8a4b83cc 809 }
a0af469b 810 if (fs_devices->open_devices == 0) {
20bcd649 811 ret = -EINVAL;
a0af469b
CM
812 goto out;
813 }
2b82032c
YZ
814 fs_devices->seeding = seeding;
815 fs_devices->opened = 1;
a0af469b
CM
816 fs_devices->latest_bdev = latest_bdev;
817 fs_devices->latest_devid = latest_devid;
818 fs_devices->latest_trans = latest_transid;
2b82032c 819 fs_devices->total_rw_bytes = 0;
a0af469b 820out:
2b82032c
YZ
821 return ret;
822}
823
824int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 825 fmode_t flags, void *holder)
2b82032c
YZ
826{
827 int ret;
828
829 mutex_lock(&uuid_mutex);
830 if (fs_devices->opened) {
e4404d6e
YZ
831 fs_devices->opened++;
832 ret = 0;
2b82032c 833 } else {
15916de8 834 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 835 }
8a4b83cc 836 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
837 return ret;
838}
839
6f60cbd3
DS
840/*
841 * Look for a btrfs signature on a device. This may be called out of the mount path
842 * and we are not allowed to call set_blocksize during the scan. The superblock
843 * is read via pagecache
844 */
97288f2c 845int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
846 struct btrfs_fs_devices **fs_devices_ret)
847{
848 struct btrfs_super_block *disk_super;
849 struct block_device *bdev;
6f60cbd3
DS
850 struct page *page;
851 void *p;
852 int ret = -EINVAL;
8a4b83cc 853 u64 devid;
f2984462 854 u64 transid;
02db0844 855 u64 total_devices;
6f60cbd3
DS
856 u64 bytenr;
857 pgoff_t index;
8a4b83cc 858
6f60cbd3
DS
859 /*
860 * we would like to check all the supers, but that would make
861 * a btrfs mount succeed after a mkfs from a different FS.
862 * So, we need to add a special mount option to scan for
863 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
864 */
865 bytenr = btrfs_sb_offset(0);
d4d77629 866 flags |= FMODE_EXCL;
10f6327b 867 mutex_lock(&uuid_mutex);
6f60cbd3
DS
868
869 bdev = blkdev_get_by_path(path, flags, holder);
870
871 if (IS_ERR(bdev)) {
872 ret = PTR_ERR(bdev);
beaf8ab3 873 goto error;
6f60cbd3
DS
874 }
875
876 /* make sure our super fits in the device */
877 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
878 goto error_bdev_put;
879
880 /* make sure our super fits in the page */
881 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
882 goto error_bdev_put;
883
884 /* make sure our super doesn't straddle pages on disk */
885 index = bytenr >> PAGE_CACHE_SHIFT;
886 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
887 goto error_bdev_put;
888
889 /* pull in the page with our super */
890 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
891 index, GFP_NOFS);
892
893 if (IS_ERR_OR_NULL(page))
894 goto error_bdev_put;
895
896 p = kmap(page);
897
898 /* align our pointer to the offset of the super block */
899 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
900
901 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 902 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
903 goto error_unmap;
904
a343832f 905 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 906 transid = btrfs_super_generation(disk_super);
02db0844 907 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 908
d03f918a
SB
909 if (disk_super->label[0]) {
910 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
911 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
d397712b 912 printk(KERN_INFO "device label %s ", disk_super->label);
d03f918a 913 } else {
22b63a29 914 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
d03f918a 915 }
6f60cbd3 916
c1c9ff7c 917 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
6f60cbd3 918
8a4b83cc 919 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
02db0844
JB
920 if (!ret && fs_devices_ret)
921 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
922
923error_unmap:
924 kunmap(page);
925 page_cache_release(page);
926
927error_bdev_put:
d4d77629 928 blkdev_put(bdev, flags);
8a4b83cc 929error:
beaf8ab3 930 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
931 return ret;
932}
0b86a832 933
6d07bcec
MX
934/* helper to account the used device space in the range */
935int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
936 u64 end, u64 *length)
937{
938 struct btrfs_key key;
939 struct btrfs_root *root = device->dev_root;
940 struct btrfs_dev_extent *dev_extent;
941 struct btrfs_path *path;
942 u64 extent_end;
943 int ret;
944 int slot;
945 struct extent_buffer *l;
946
947 *length = 0;
948
63a212ab 949 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
950 return 0;
951
952 path = btrfs_alloc_path();
953 if (!path)
954 return -ENOMEM;
955 path->reada = 2;
956
957 key.objectid = device->devid;
958 key.offset = start;
959 key.type = BTRFS_DEV_EXTENT_KEY;
960
961 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
962 if (ret < 0)
963 goto out;
964 if (ret > 0) {
965 ret = btrfs_previous_item(root, path, key.objectid, key.type);
966 if (ret < 0)
967 goto out;
968 }
969
970 while (1) {
971 l = path->nodes[0];
972 slot = path->slots[0];
973 if (slot >= btrfs_header_nritems(l)) {
974 ret = btrfs_next_leaf(root, path);
975 if (ret == 0)
976 continue;
977 if (ret < 0)
978 goto out;
979
980 break;
981 }
982 btrfs_item_key_to_cpu(l, &key, slot);
983
984 if (key.objectid < device->devid)
985 goto next;
986
987 if (key.objectid > device->devid)
988 break;
989
990 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
991 goto next;
992
993 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
994 extent_end = key.offset + btrfs_dev_extent_length(l,
995 dev_extent);
996 if (key.offset <= start && extent_end > end) {
997 *length = end - start + 1;
998 break;
999 } else if (key.offset <= start && extent_end > start)
1000 *length += extent_end - start;
1001 else if (key.offset > start && extent_end <= end)
1002 *length += extent_end - key.offset;
1003 else if (key.offset > start && key.offset <= end) {
1004 *length += end - key.offset + 1;
1005 break;
1006 } else if (key.offset > end)
1007 break;
1008
1009next:
1010 path->slots[0]++;
1011 }
1012 ret = 0;
1013out:
1014 btrfs_free_path(path);
1015 return ret;
1016}
1017
6df9a95e
JB
1018static int contains_pending_extent(struct btrfs_trans_handle *trans,
1019 struct btrfs_device *device,
1020 u64 *start, u64 len)
1021{
1022 struct extent_map *em;
1023 int ret = 0;
1024
1025 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1026 struct map_lookup *map;
1027 int i;
1028
1029 map = (struct map_lookup *)em->bdev;
1030 for (i = 0; i < map->num_stripes; i++) {
1031 if (map->stripes[i].dev != device)
1032 continue;
1033 if (map->stripes[i].physical >= *start + len ||
1034 map->stripes[i].physical + em->orig_block_len <=
1035 *start)
1036 continue;
1037 *start = map->stripes[i].physical +
1038 em->orig_block_len;
1039 ret = 1;
1040 }
1041 }
1042
1043 return ret;
1044}
1045
1046
0b86a832 1047/*
7bfc837d 1048 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
1049 * @device: the device which we search the free space in
1050 * @num_bytes: the size of the free space that we need
1051 * @start: store the start of the free space.
1052 * @len: the size of the free space. that we find, or the size of the max
1053 * free space if we don't find suitable free space
1054 *
0b86a832
CM
1055 * this uses a pretty simple search, the expectation is that it is
1056 * called very infrequently and that a given device has a small number
1057 * of extents
7bfc837d
MX
1058 *
1059 * @start is used to store the start of the free space if we find. But if we
1060 * don't find suitable free space, it will be used to store the start position
1061 * of the max free space.
1062 *
1063 * @len is used to store the size of the free space that we find.
1064 * But if we don't find suitable free space, it is used to store the size of
1065 * the max free space.
0b86a832 1066 */
6df9a95e
JB
1067int find_free_dev_extent(struct btrfs_trans_handle *trans,
1068 struct btrfs_device *device, u64 num_bytes,
7bfc837d 1069 u64 *start, u64 *len)
0b86a832
CM
1070{
1071 struct btrfs_key key;
1072 struct btrfs_root *root = device->dev_root;
7bfc837d 1073 struct btrfs_dev_extent *dev_extent;
2b82032c 1074 struct btrfs_path *path;
7bfc837d
MX
1075 u64 hole_size;
1076 u64 max_hole_start;
1077 u64 max_hole_size;
1078 u64 extent_end;
1079 u64 search_start;
0b86a832
CM
1080 u64 search_end = device->total_bytes;
1081 int ret;
7bfc837d 1082 int slot;
0b86a832
CM
1083 struct extent_buffer *l;
1084
0b86a832
CM
1085 /* FIXME use last free of some kind */
1086
8a4b83cc
CM
1087 /* we don't want to overwrite the superblock on the drive,
1088 * so we make sure to start at an offset of at least 1MB
1089 */
a9c9bf68 1090 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 1091
6df9a95e
JB
1092 path = btrfs_alloc_path();
1093 if (!path)
1094 return -ENOMEM;
1095again:
7bfc837d
MX
1096 max_hole_start = search_start;
1097 max_hole_size = 0;
38c01b96 1098 hole_size = 0;
7bfc837d 1099
63a212ab 1100 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1101 ret = -ENOSPC;
6df9a95e 1102 goto out;
7bfc837d
MX
1103 }
1104
7bfc837d 1105 path->reada = 2;
6df9a95e
JB
1106 path->search_commit_root = 1;
1107 path->skip_locking = 1;
7bfc837d 1108
0b86a832
CM
1109 key.objectid = device->devid;
1110 key.offset = search_start;
1111 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1112
125ccb0a 1113 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1114 if (ret < 0)
7bfc837d 1115 goto out;
1fcbac58
YZ
1116 if (ret > 0) {
1117 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1118 if (ret < 0)
7bfc837d 1119 goto out;
1fcbac58 1120 }
7bfc837d 1121
0b86a832
CM
1122 while (1) {
1123 l = path->nodes[0];
1124 slot = path->slots[0];
1125 if (slot >= btrfs_header_nritems(l)) {
1126 ret = btrfs_next_leaf(root, path);
1127 if (ret == 0)
1128 continue;
1129 if (ret < 0)
7bfc837d
MX
1130 goto out;
1131
1132 break;
0b86a832
CM
1133 }
1134 btrfs_item_key_to_cpu(l, &key, slot);
1135
1136 if (key.objectid < device->devid)
1137 goto next;
1138
1139 if (key.objectid > device->devid)
7bfc837d 1140 break;
0b86a832 1141
7bfc837d
MX
1142 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1143 goto next;
9779b72f 1144
7bfc837d
MX
1145 if (key.offset > search_start) {
1146 hole_size = key.offset - search_start;
9779b72f 1147
6df9a95e
JB
1148 /*
1149 * Have to check before we set max_hole_start, otherwise
1150 * we could end up sending back this offset anyway.
1151 */
1152 if (contains_pending_extent(trans, device,
1153 &search_start,
1154 hole_size))
1155 hole_size = 0;
1156
7bfc837d
MX
1157 if (hole_size > max_hole_size) {
1158 max_hole_start = search_start;
1159 max_hole_size = hole_size;
1160 }
9779b72f 1161
7bfc837d
MX
1162 /*
1163 * If this free space is greater than which we need,
1164 * it must be the max free space that we have found
1165 * until now, so max_hole_start must point to the start
1166 * of this free space and the length of this free space
1167 * is stored in max_hole_size. Thus, we return
1168 * max_hole_start and max_hole_size and go back to the
1169 * caller.
1170 */
1171 if (hole_size >= num_bytes) {
1172 ret = 0;
1173 goto out;
0b86a832
CM
1174 }
1175 }
0b86a832 1176
0b86a832 1177 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1178 extent_end = key.offset + btrfs_dev_extent_length(l,
1179 dev_extent);
1180 if (extent_end > search_start)
1181 search_start = extent_end;
0b86a832
CM
1182next:
1183 path->slots[0]++;
1184 cond_resched();
1185 }
0b86a832 1186
38c01b96 1187 /*
1188 * At this point, search_start should be the end of
1189 * allocated dev extents, and when shrinking the device,
1190 * search_end may be smaller than search_start.
1191 */
1192 if (search_end > search_start)
1193 hole_size = search_end - search_start;
1194
7bfc837d
MX
1195 if (hole_size > max_hole_size) {
1196 max_hole_start = search_start;
1197 max_hole_size = hole_size;
0b86a832 1198 }
0b86a832 1199
6df9a95e
JB
1200 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1201 btrfs_release_path(path);
1202 goto again;
1203 }
1204
7bfc837d
MX
1205 /* See above. */
1206 if (hole_size < num_bytes)
1207 ret = -ENOSPC;
1208 else
1209 ret = 0;
1210
1211out:
2b82032c 1212 btrfs_free_path(path);
7bfc837d 1213 *start = max_hole_start;
b2117a39 1214 if (len)
7bfc837d 1215 *len = max_hole_size;
0b86a832
CM
1216 return ret;
1217}
1218
b2950863 1219static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1220 struct btrfs_device *device,
1221 u64 start)
1222{
1223 int ret;
1224 struct btrfs_path *path;
1225 struct btrfs_root *root = device->dev_root;
1226 struct btrfs_key key;
a061fc8d
CM
1227 struct btrfs_key found_key;
1228 struct extent_buffer *leaf = NULL;
1229 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1230
1231 path = btrfs_alloc_path();
1232 if (!path)
1233 return -ENOMEM;
1234
1235 key.objectid = device->devid;
1236 key.offset = start;
1237 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1238again:
8f18cf13 1239 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1240 if (ret > 0) {
1241 ret = btrfs_previous_item(root, path, key.objectid,
1242 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1243 if (ret)
1244 goto out;
a061fc8d
CM
1245 leaf = path->nodes[0];
1246 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1247 extent = btrfs_item_ptr(leaf, path->slots[0],
1248 struct btrfs_dev_extent);
1249 BUG_ON(found_key.offset > start || found_key.offset +
1250 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1251 key = found_key;
1252 btrfs_release_path(path);
1253 goto again;
a061fc8d
CM
1254 } else if (ret == 0) {
1255 leaf = path->nodes[0];
1256 extent = btrfs_item_ptr(leaf, path->slots[0],
1257 struct btrfs_dev_extent);
79787eaa
JM
1258 } else {
1259 btrfs_error(root->fs_info, ret, "Slot search failed");
1260 goto out;
a061fc8d 1261 }
8f18cf13 1262
2bf64758
JB
1263 if (device->bytes_used > 0) {
1264 u64 len = btrfs_dev_extent_length(leaf, extent);
1265 device->bytes_used -= len;
1266 spin_lock(&root->fs_info->free_chunk_lock);
1267 root->fs_info->free_chunk_space += len;
1268 spin_unlock(&root->fs_info->free_chunk_lock);
1269 }
8f18cf13 1270 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1271 if (ret) {
1272 btrfs_error(root->fs_info, ret,
1273 "Failed to remove dev extent item");
1274 }
b0b802d7 1275out:
8f18cf13
CM
1276 btrfs_free_path(path);
1277 return ret;
1278}
1279
48a3b636
ES
1280static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1281 struct btrfs_device *device,
1282 u64 chunk_tree, u64 chunk_objectid,
1283 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1284{
1285 int ret;
1286 struct btrfs_path *path;
1287 struct btrfs_root *root = device->dev_root;
1288 struct btrfs_dev_extent *extent;
1289 struct extent_buffer *leaf;
1290 struct btrfs_key key;
1291
dfe25020 1292 WARN_ON(!device->in_fs_metadata);
63a212ab 1293 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1294 path = btrfs_alloc_path();
1295 if (!path)
1296 return -ENOMEM;
1297
0b86a832 1298 key.objectid = device->devid;
2b82032c 1299 key.offset = start;
0b86a832
CM
1300 key.type = BTRFS_DEV_EXTENT_KEY;
1301 ret = btrfs_insert_empty_item(trans, root, path, &key,
1302 sizeof(*extent));
2cdcecbc
MF
1303 if (ret)
1304 goto out;
0b86a832
CM
1305
1306 leaf = path->nodes[0];
1307 extent = btrfs_item_ptr(leaf, path->slots[0],
1308 struct btrfs_dev_extent);
e17cade2
CM
1309 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1310 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1311 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1312
1313 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1314 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1315
0b86a832
CM
1316 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1317 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1318out:
0b86a832
CM
1319 btrfs_free_path(path);
1320 return ret;
1321}
1322
6df9a95e 1323static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1324{
6df9a95e
JB
1325 struct extent_map_tree *em_tree;
1326 struct extent_map *em;
1327 struct rb_node *n;
1328 u64 ret = 0;
0b86a832 1329
6df9a95e
JB
1330 em_tree = &fs_info->mapping_tree.map_tree;
1331 read_lock(&em_tree->lock);
1332 n = rb_last(&em_tree->map);
1333 if (n) {
1334 em = rb_entry(n, struct extent_map, rb_node);
1335 ret = em->start + em->len;
0b86a832 1336 }
6df9a95e
JB
1337 read_unlock(&em_tree->lock);
1338
0b86a832
CM
1339 return ret;
1340}
1341
53f10659
ID
1342static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1343 u64 *devid_ret)
0b86a832
CM
1344{
1345 int ret;
1346 struct btrfs_key key;
1347 struct btrfs_key found_key;
2b82032c
YZ
1348 struct btrfs_path *path;
1349
2b82032c
YZ
1350 path = btrfs_alloc_path();
1351 if (!path)
1352 return -ENOMEM;
0b86a832
CM
1353
1354 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1355 key.type = BTRFS_DEV_ITEM_KEY;
1356 key.offset = (u64)-1;
1357
53f10659 1358 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1359 if (ret < 0)
1360 goto error;
1361
79787eaa 1362 BUG_ON(ret == 0); /* Corruption */
0b86a832 1363
53f10659
ID
1364 ret = btrfs_previous_item(fs_info->chunk_root, path,
1365 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1366 BTRFS_DEV_ITEM_KEY);
1367 if (ret) {
53f10659 1368 *devid_ret = 1;
0b86a832
CM
1369 } else {
1370 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1371 path->slots[0]);
53f10659 1372 *devid_ret = found_key.offset + 1;
0b86a832
CM
1373 }
1374 ret = 0;
1375error:
2b82032c 1376 btrfs_free_path(path);
0b86a832
CM
1377 return ret;
1378}
1379
1380/*
1381 * the device information is stored in the chunk root
1382 * the btrfs_device struct should be fully filled in
1383 */
48a3b636
ES
1384static int btrfs_add_device(struct btrfs_trans_handle *trans,
1385 struct btrfs_root *root,
1386 struct btrfs_device *device)
0b86a832
CM
1387{
1388 int ret;
1389 struct btrfs_path *path;
1390 struct btrfs_dev_item *dev_item;
1391 struct extent_buffer *leaf;
1392 struct btrfs_key key;
1393 unsigned long ptr;
0b86a832
CM
1394
1395 root = root->fs_info->chunk_root;
1396
1397 path = btrfs_alloc_path();
1398 if (!path)
1399 return -ENOMEM;
1400
0b86a832
CM
1401 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1402 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1403 key.offset = device->devid;
0b86a832
CM
1404
1405 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1406 sizeof(*dev_item));
0b86a832
CM
1407 if (ret)
1408 goto out;
1409
1410 leaf = path->nodes[0];
1411 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1412
1413 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1414 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1415 btrfs_set_device_type(leaf, dev_item, device->type);
1416 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1417 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1418 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1419 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1420 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1421 btrfs_set_device_group(leaf, dev_item, 0);
1422 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1423 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1424 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1425
410ba3a2 1426 ptr = btrfs_device_uuid(dev_item);
e17cade2 1427 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1428 ptr = btrfs_device_fsid(dev_item);
2b82032c 1429 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1430 btrfs_mark_buffer_dirty(leaf);
0b86a832 1431
2b82032c 1432 ret = 0;
0b86a832
CM
1433out:
1434 btrfs_free_path(path);
1435 return ret;
1436}
8f18cf13 1437
a061fc8d
CM
1438static int btrfs_rm_dev_item(struct btrfs_root *root,
1439 struct btrfs_device *device)
1440{
1441 int ret;
1442 struct btrfs_path *path;
a061fc8d 1443 struct btrfs_key key;
a061fc8d
CM
1444 struct btrfs_trans_handle *trans;
1445
1446 root = root->fs_info->chunk_root;
1447
1448 path = btrfs_alloc_path();
1449 if (!path)
1450 return -ENOMEM;
1451
a22285a6 1452 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1453 if (IS_ERR(trans)) {
1454 btrfs_free_path(path);
1455 return PTR_ERR(trans);
1456 }
a061fc8d
CM
1457 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1458 key.type = BTRFS_DEV_ITEM_KEY;
1459 key.offset = device->devid;
7d9eb12c 1460 lock_chunks(root);
a061fc8d
CM
1461
1462 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1463 if (ret < 0)
1464 goto out;
1465
1466 if (ret > 0) {
1467 ret = -ENOENT;
1468 goto out;
1469 }
1470
1471 ret = btrfs_del_item(trans, root, path);
1472 if (ret)
1473 goto out;
a061fc8d
CM
1474out:
1475 btrfs_free_path(path);
7d9eb12c 1476 unlock_chunks(root);
a061fc8d
CM
1477 btrfs_commit_transaction(trans, root);
1478 return ret;
1479}
1480
1481int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1482{
1483 struct btrfs_device *device;
2b82032c 1484 struct btrfs_device *next_device;
a061fc8d 1485 struct block_device *bdev;
dfe25020 1486 struct buffer_head *bh = NULL;
a061fc8d 1487 struct btrfs_super_block *disk_super;
1f78160c 1488 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1489 u64 all_avail;
1490 u64 devid;
2b82032c
YZ
1491 u64 num_devices;
1492 u8 *dev_uuid;
de98ced9 1493 unsigned seq;
a061fc8d 1494 int ret = 0;
1f78160c 1495 bool clear_super = false;
a061fc8d 1496
a061fc8d
CM
1497 mutex_lock(&uuid_mutex);
1498
de98ced9
MX
1499 do {
1500 seq = read_seqbegin(&root->fs_info->profiles_lock);
1501
1502 all_avail = root->fs_info->avail_data_alloc_bits |
1503 root->fs_info->avail_system_alloc_bits |
1504 root->fs_info->avail_metadata_alloc_bits;
1505 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1506
8dabb742
SB
1507 num_devices = root->fs_info->fs_devices->num_devices;
1508 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1509 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1510 WARN_ON(num_devices < 1);
1511 num_devices--;
1512 }
1513 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1514
1515 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1516 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1517 goto out;
1518 }
1519
8dabb742 1520 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1521 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1522 goto out;
1523 }
1524
53b381b3
DW
1525 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1526 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1527 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1528 goto out;
1529 }
1530 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1531 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1532 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1533 goto out;
1534 }
1535
dfe25020 1536 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1537 struct list_head *devices;
1538 struct btrfs_device *tmp;
a061fc8d 1539
dfe25020
CM
1540 device = NULL;
1541 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1542 /*
1543 * It is safe to read the devices since the volume_mutex
1544 * is held.
1545 */
c6e30871 1546 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1547 if (tmp->in_fs_metadata &&
1548 !tmp->is_tgtdev_for_dev_replace &&
1549 !tmp->bdev) {
dfe25020
CM
1550 device = tmp;
1551 break;
1552 }
1553 }
1554 bdev = NULL;
1555 bh = NULL;
1556 disk_super = NULL;
1557 if (!device) {
183860f6 1558 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1559 goto out;
1560 }
dfe25020 1561 } else {
beaf8ab3 1562 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1563 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1564 root->fs_info->bdev_holder, 0,
1565 &bdev, &bh);
1566 if (ret)
dfe25020 1567 goto out;
dfe25020 1568 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1569 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1570 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1571 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1572 disk_super->fsid);
dfe25020
CM
1573 if (!device) {
1574 ret = -ENOENT;
1575 goto error_brelse;
1576 }
2b82032c 1577 }
dfe25020 1578
63a212ab 1579 if (device->is_tgtdev_for_dev_replace) {
183860f6 1580 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1581 goto error_brelse;
1582 }
1583
2b82032c 1584 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1585 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1586 goto error_brelse;
1587 }
1588
1589 if (device->writeable) {
0c1daee0 1590 lock_chunks(root);
2b82032c 1591 list_del_init(&device->dev_alloc_list);
0c1daee0 1592 unlock_chunks(root);
2b82032c 1593 root->fs_info->fs_devices->rw_devices--;
1f78160c 1594 clear_super = true;
dfe25020 1595 }
a061fc8d 1596
d7901554 1597 mutex_unlock(&uuid_mutex);
a061fc8d 1598 ret = btrfs_shrink_device(device, 0);
d7901554 1599 mutex_lock(&uuid_mutex);
a061fc8d 1600 if (ret)
9b3517e9 1601 goto error_undo;
a061fc8d 1602
63a212ab
SB
1603 /*
1604 * TODO: the superblock still includes this device in its num_devices
1605 * counter although write_all_supers() is not locked out. This
1606 * could give a filesystem state which requires a degraded mount.
1607 */
a061fc8d
CM
1608 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1609 if (ret)
9b3517e9 1610 goto error_undo;
a061fc8d 1611
2bf64758
JB
1612 spin_lock(&root->fs_info->free_chunk_lock);
1613 root->fs_info->free_chunk_space = device->total_bytes -
1614 device->bytes_used;
1615 spin_unlock(&root->fs_info->free_chunk_lock);
1616
2b82032c 1617 device->in_fs_metadata = 0;
aa1b8cd4 1618 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1619
1620 /*
1621 * the device list mutex makes sure that we don't change
1622 * the device list while someone else is writing out all
1623 * the device supers.
1624 */
1f78160c
XG
1625
1626 cur_devices = device->fs_devices;
e5e9a520 1627 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1628 list_del_rcu(&device->dev_list);
e5e9a520 1629
e4404d6e 1630 device->fs_devices->num_devices--;
02db0844 1631 device->fs_devices->total_devices--;
2b82032c 1632
cd02dca5
CM
1633 if (device->missing)
1634 root->fs_info->fs_devices->missing_devices--;
1635
2b82032c
YZ
1636 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1637 struct btrfs_device, dev_list);
1638 if (device->bdev == root->fs_info->sb->s_bdev)
1639 root->fs_info->sb->s_bdev = next_device->bdev;
1640 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1641 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1642
1f78160c 1643 if (device->bdev)
e4404d6e 1644 device->fs_devices->open_devices--;
1f78160c
XG
1645
1646 call_rcu(&device->rcu, free_device);
1647 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1648
6c41761f
DS
1649 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1650 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
2b82032c 1651
1f78160c 1652 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1653 struct btrfs_fs_devices *fs_devices;
1654 fs_devices = root->fs_info->fs_devices;
1655 while (fs_devices) {
1f78160c 1656 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1657 break;
1658 fs_devices = fs_devices->seed;
2b82032c 1659 }
1f78160c
XG
1660 fs_devices->seed = cur_devices->seed;
1661 cur_devices->seed = NULL;
0c1daee0 1662 lock_chunks(root);
1f78160c 1663 __btrfs_close_devices(cur_devices);
0c1daee0 1664 unlock_chunks(root);
1f78160c 1665 free_fs_devices(cur_devices);
2b82032c
YZ
1666 }
1667
5af3e8cc
SB
1668 root->fs_info->num_tolerated_disk_barrier_failures =
1669 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1670
2b82032c
YZ
1671 /*
1672 * at this point, the device is zero sized. We want to
1673 * remove it from the devices list and zero out the old super
1674 */
aa1b8cd4 1675 if (clear_super && disk_super) {
dfe25020
CM
1676 /* make sure this device isn't detected as part of
1677 * the FS anymore
1678 */
1679 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1680 set_buffer_dirty(bh);
1681 sync_dirty_buffer(bh);
dfe25020 1682 }
a061fc8d 1683
a061fc8d 1684 ret = 0;
a061fc8d 1685
b8b8ff59 1686 /* Notify udev that device has changed */
3c911608
ES
1687 if (bdev)
1688 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1689
a061fc8d
CM
1690error_brelse:
1691 brelse(bh);
dfe25020 1692 if (bdev)
e525fd89 1693 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1694out:
1695 mutex_unlock(&uuid_mutex);
a061fc8d 1696 return ret;
9b3517e9
ID
1697error_undo:
1698 if (device->writeable) {
0c1daee0 1699 lock_chunks(root);
9b3517e9
ID
1700 list_add(&device->dev_alloc_list,
1701 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1702 unlock_chunks(root);
9b3517e9
ID
1703 root->fs_info->fs_devices->rw_devices++;
1704 }
1705 goto error_brelse;
a061fc8d
CM
1706}
1707
e93c89c1
SB
1708void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1709 struct btrfs_device *srcdev)
1710{
1711 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1712 list_del_rcu(&srcdev->dev_list);
1713 list_del_rcu(&srcdev->dev_alloc_list);
1714 fs_info->fs_devices->num_devices--;
1715 if (srcdev->missing) {
1716 fs_info->fs_devices->missing_devices--;
1717 fs_info->fs_devices->rw_devices++;
1718 }
1719 if (srcdev->can_discard)
1720 fs_info->fs_devices->num_can_discard--;
1721 if (srcdev->bdev)
1722 fs_info->fs_devices->open_devices--;
1723
1724 call_rcu(&srcdev->rcu, free_device);
1725}
1726
1727void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1728 struct btrfs_device *tgtdev)
1729{
1730 struct btrfs_device *next_device;
1731
1732 WARN_ON(!tgtdev);
1733 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1734 if (tgtdev->bdev) {
1735 btrfs_scratch_superblock(tgtdev);
1736 fs_info->fs_devices->open_devices--;
1737 }
1738 fs_info->fs_devices->num_devices--;
1739 if (tgtdev->can_discard)
1740 fs_info->fs_devices->num_can_discard++;
1741
1742 next_device = list_entry(fs_info->fs_devices->devices.next,
1743 struct btrfs_device, dev_list);
1744 if (tgtdev->bdev == fs_info->sb->s_bdev)
1745 fs_info->sb->s_bdev = next_device->bdev;
1746 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1747 fs_info->fs_devices->latest_bdev = next_device->bdev;
1748 list_del_rcu(&tgtdev->dev_list);
1749
1750 call_rcu(&tgtdev->rcu, free_device);
1751
1752 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1753}
1754
48a3b636
ES
1755static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1756 struct btrfs_device **device)
7ba15b7d
SB
1757{
1758 int ret = 0;
1759 struct btrfs_super_block *disk_super;
1760 u64 devid;
1761 u8 *dev_uuid;
1762 struct block_device *bdev;
1763 struct buffer_head *bh;
1764
1765 *device = NULL;
1766 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1767 root->fs_info->bdev_holder, 0, &bdev, &bh);
1768 if (ret)
1769 return ret;
1770 disk_super = (struct btrfs_super_block *)bh->b_data;
1771 devid = btrfs_stack_device_id(&disk_super->dev_item);
1772 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1773 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
1774 disk_super->fsid);
1775 brelse(bh);
1776 if (!*device)
1777 ret = -ENOENT;
1778 blkdev_put(bdev, FMODE_READ);
1779 return ret;
1780}
1781
1782int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1783 char *device_path,
1784 struct btrfs_device **device)
1785{
1786 *device = NULL;
1787 if (strcmp(device_path, "missing") == 0) {
1788 struct list_head *devices;
1789 struct btrfs_device *tmp;
1790
1791 devices = &root->fs_info->fs_devices->devices;
1792 /*
1793 * It is safe to read the devices since the volume_mutex
1794 * is held by the caller.
1795 */
1796 list_for_each_entry(tmp, devices, dev_list) {
1797 if (tmp->in_fs_metadata && !tmp->bdev) {
1798 *device = tmp;
1799 break;
1800 }
1801 }
1802
1803 if (!*device) {
1804 pr_err("btrfs: no missing device found\n");
1805 return -ENOENT;
1806 }
1807
1808 return 0;
1809 } else {
1810 return btrfs_find_device_by_path(root, device_path, device);
1811 }
1812}
1813
2b82032c
YZ
1814/*
1815 * does all the dirty work required for changing file system's UUID.
1816 */
125ccb0a 1817static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1818{
1819 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1820 struct btrfs_fs_devices *old_devices;
e4404d6e 1821 struct btrfs_fs_devices *seed_devices;
6c41761f 1822 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1823 struct btrfs_device *device;
1824 u64 super_flags;
1825
1826 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1827 if (!fs_devices->seeding)
2b82032c
YZ
1828 return -EINVAL;
1829
2208a378
ID
1830 seed_devices = __alloc_fs_devices();
1831 if (IS_ERR(seed_devices))
1832 return PTR_ERR(seed_devices);
2b82032c 1833
e4404d6e
YZ
1834 old_devices = clone_fs_devices(fs_devices);
1835 if (IS_ERR(old_devices)) {
1836 kfree(seed_devices);
1837 return PTR_ERR(old_devices);
2b82032c 1838 }
e4404d6e 1839
2b82032c
YZ
1840 list_add(&old_devices->list, &fs_uuids);
1841
e4404d6e
YZ
1842 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1843 seed_devices->opened = 1;
1844 INIT_LIST_HEAD(&seed_devices->devices);
1845 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1846 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1847
1848 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1849 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1850 synchronize_rcu);
c9513edb
XG
1851 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1852
e4404d6e
YZ
1853 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1854 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1855 device->fs_devices = seed_devices;
1856 }
1857
2b82032c
YZ
1858 fs_devices->seeding = 0;
1859 fs_devices->num_devices = 0;
1860 fs_devices->open_devices = 0;
02db0844 1861 fs_devices->total_devices = 0;
e4404d6e 1862 fs_devices->seed = seed_devices;
2b82032c
YZ
1863
1864 generate_random_uuid(fs_devices->fsid);
1865 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1866 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1867 super_flags = btrfs_super_flags(disk_super) &
1868 ~BTRFS_SUPER_FLAG_SEEDING;
1869 btrfs_set_super_flags(disk_super, super_flags);
1870
1871 return 0;
1872}
1873
1874/*
1875 * strore the expected generation for seed devices in device items.
1876 */
1877static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1878 struct btrfs_root *root)
1879{
1880 struct btrfs_path *path;
1881 struct extent_buffer *leaf;
1882 struct btrfs_dev_item *dev_item;
1883 struct btrfs_device *device;
1884 struct btrfs_key key;
1885 u8 fs_uuid[BTRFS_UUID_SIZE];
1886 u8 dev_uuid[BTRFS_UUID_SIZE];
1887 u64 devid;
1888 int ret;
1889
1890 path = btrfs_alloc_path();
1891 if (!path)
1892 return -ENOMEM;
1893
1894 root = root->fs_info->chunk_root;
1895 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1896 key.offset = 0;
1897 key.type = BTRFS_DEV_ITEM_KEY;
1898
1899 while (1) {
1900 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1901 if (ret < 0)
1902 goto error;
1903
1904 leaf = path->nodes[0];
1905next_slot:
1906 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1907 ret = btrfs_next_leaf(root, path);
1908 if (ret > 0)
1909 break;
1910 if (ret < 0)
1911 goto error;
1912 leaf = path->nodes[0];
1913 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1914 btrfs_release_path(path);
2b82032c
YZ
1915 continue;
1916 }
1917
1918 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1919 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1920 key.type != BTRFS_DEV_ITEM_KEY)
1921 break;
1922
1923 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1924 struct btrfs_dev_item);
1925 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 1926 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 1927 BTRFS_UUID_SIZE);
1473b24e 1928 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 1929 BTRFS_UUID_SIZE);
aa1b8cd4
SB
1930 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1931 fs_uuid);
79787eaa 1932 BUG_ON(!device); /* Logic error */
2b82032c
YZ
1933
1934 if (device->fs_devices->seeding) {
1935 btrfs_set_device_generation(leaf, dev_item,
1936 device->generation);
1937 btrfs_mark_buffer_dirty(leaf);
1938 }
1939
1940 path->slots[0]++;
1941 goto next_slot;
1942 }
1943 ret = 0;
1944error:
1945 btrfs_free_path(path);
1946 return ret;
1947}
1948
788f20eb
CM
1949int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1950{
d5e2003c 1951 struct request_queue *q;
788f20eb
CM
1952 struct btrfs_trans_handle *trans;
1953 struct btrfs_device *device;
1954 struct block_device *bdev;
788f20eb 1955 struct list_head *devices;
2b82032c 1956 struct super_block *sb = root->fs_info->sb;
606686ee 1957 struct rcu_string *name;
788f20eb 1958 u64 total_bytes;
2b82032c 1959 int seeding_dev = 0;
788f20eb
CM
1960 int ret = 0;
1961
2b82032c 1962 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 1963 return -EROFS;
788f20eb 1964
a5d16333 1965 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1966 root->fs_info->bdev_holder);
7f59203a
JB
1967 if (IS_ERR(bdev))
1968 return PTR_ERR(bdev);
a2135011 1969
2b82032c
YZ
1970 if (root->fs_info->fs_devices->seeding) {
1971 seeding_dev = 1;
1972 down_write(&sb->s_umount);
1973 mutex_lock(&uuid_mutex);
1974 }
1975
8c8bee1d 1976 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 1977
788f20eb 1978 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
1979
1980 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 1981 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1982 if (device->bdev == bdev) {
1983 ret = -EEXIST;
d25628bd
LB
1984 mutex_unlock(
1985 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 1986 goto error;
788f20eb
CM
1987 }
1988 }
d25628bd 1989 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1990
12bd2fc0
ID
1991 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
1992 if (IS_ERR(device)) {
788f20eb 1993 /* we can safely leave the fs_devices entry around */
12bd2fc0 1994 ret = PTR_ERR(device);
2b82032c 1995 goto error;
788f20eb
CM
1996 }
1997
606686ee
JB
1998 name = rcu_string_strdup(device_path, GFP_NOFS);
1999 if (!name) {
788f20eb 2000 kfree(device);
2b82032c
YZ
2001 ret = -ENOMEM;
2002 goto error;
788f20eb 2003 }
606686ee 2004 rcu_assign_pointer(device->name, name);
2b82032c 2005
a22285a6 2006 trans = btrfs_start_transaction(root, 0);
98d5dc13 2007 if (IS_ERR(trans)) {
606686ee 2008 rcu_string_free(device->name);
98d5dc13
TI
2009 kfree(device);
2010 ret = PTR_ERR(trans);
2011 goto error;
2012 }
2013
2b82032c
YZ
2014 lock_chunks(root);
2015
d5e2003c
JB
2016 q = bdev_get_queue(bdev);
2017 if (blk_queue_discard(q))
2018 device->can_discard = 1;
2b82032c 2019 device->writeable = 1;
2b82032c 2020 device->generation = trans->transid;
788f20eb
CM
2021 device->io_width = root->sectorsize;
2022 device->io_align = root->sectorsize;
2023 device->sector_size = root->sectorsize;
2024 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2025 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
2026 device->dev_root = root->fs_info->dev_root;
2027 device->bdev = bdev;
dfe25020 2028 device->in_fs_metadata = 1;
63a212ab 2029 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2030 device->mode = FMODE_EXCL;
2b82032c 2031 set_blocksize(device->bdev, 4096);
788f20eb 2032
2b82032c
YZ
2033 if (seeding_dev) {
2034 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2035 ret = btrfs_prepare_sprout(root);
79787eaa 2036 BUG_ON(ret); /* -ENOMEM */
2b82032c 2037 }
788f20eb 2038
2b82032c 2039 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2040
e5e9a520 2041 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 2042 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2043 list_add(&device->dev_alloc_list,
2044 &root->fs_info->fs_devices->alloc_list);
2045 root->fs_info->fs_devices->num_devices++;
2046 root->fs_info->fs_devices->open_devices++;
2047 root->fs_info->fs_devices->rw_devices++;
02db0844 2048 root->fs_info->fs_devices->total_devices++;
d5e2003c
JB
2049 if (device->can_discard)
2050 root->fs_info->fs_devices->num_can_discard++;
2b82032c 2051 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2052
2bf64758
JB
2053 spin_lock(&root->fs_info->free_chunk_lock);
2054 root->fs_info->free_chunk_space += device->total_bytes;
2055 spin_unlock(&root->fs_info->free_chunk_lock);
2056
c289811c
CM
2057 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2058 root->fs_info->fs_devices->rotating = 1;
2059
6c41761f
DS
2060 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2061 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
2062 total_bytes + device->total_bytes);
2063
6c41761f
DS
2064 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2065 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 2066 total_bytes + 1);
e5e9a520 2067 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2068
2b82032c
YZ
2069 if (seeding_dev) {
2070 ret = init_first_rw_device(trans, root, device);
005d6427
DS
2071 if (ret) {
2072 btrfs_abort_transaction(trans, root, ret);
79787eaa 2073 goto error_trans;
005d6427 2074 }
2b82032c 2075 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2076 if (ret) {
2077 btrfs_abort_transaction(trans, root, ret);
79787eaa 2078 goto error_trans;
005d6427 2079 }
2b82032c
YZ
2080 } else {
2081 ret = btrfs_add_device(trans, root, device);
005d6427
DS
2082 if (ret) {
2083 btrfs_abort_transaction(trans, root, ret);
79787eaa 2084 goto error_trans;
005d6427 2085 }
2b82032c
YZ
2086 }
2087
913d952e
CM
2088 /*
2089 * we've got more storage, clear any full flags on the space
2090 * infos
2091 */
2092 btrfs_clear_space_info_full(root->fs_info);
2093
7d9eb12c 2094 unlock_chunks(root);
5af3e8cc
SB
2095 root->fs_info->num_tolerated_disk_barrier_failures =
2096 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2097 ret = btrfs_commit_transaction(trans, root);
a2135011 2098
2b82032c
YZ
2099 if (seeding_dev) {
2100 mutex_unlock(&uuid_mutex);
2101 up_write(&sb->s_umount);
788f20eb 2102
79787eaa
JM
2103 if (ret) /* transaction commit */
2104 return ret;
2105
2b82032c 2106 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
2107 if (ret < 0)
2108 btrfs_error(root->fs_info, ret,
2109 "Failed to relocate sys chunks after "
2110 "device initialization. This can be fixed "
2111 "using the \"btrfs balance\" command.");
671415b7
MX
2112 trans = btrfs_attach_transaction(root);
2113 if (IS_ERR(trans)) {
2114 if (PTR_ERR(trans) == -ENOENT)
2115 return 0;
2116 return PTR_ERR(trans);
2117 }
2118 ret = btrfs_commit_transaction(trans, root);
2b82032c 2119 }
c9e9f97b 2120
2b82032c 2121 return ret;
79787eaa
JM
2122
2123error_trans:
2124 unlock_chunks(root);
79787eaa 2125 btrfs_end_transaction(trans, root);
606686ee 2126 rcu_string_free(device->name);
79787eaa 2127 kfree(device);
2b82032c 2128error:
e525fd89 2129 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2130 if (seeding_dev) {
2131 mutex_unlock(&uuid_mutex);
2132 up_write(&sb->s_umount);
2133 }
c9e9f97b 2134 return ret;
788f20eb
CM
2135}
2136
e93c89c1
SB
2137int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2138 struct btrfs_device **device_out)
2139{
2140 struct request_queue *q;
2141 struct btrfs_device *device;
2142 struct block_device *bdev;
2143 struct btrfs_fs_info *fs_info = root->fs_info;
2144 struct list_head *devices;
2145 struct rcu_string *name;
12bd2fc0 2146 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2147 int ret = 0;
2148
2149 *device_out = NULL;
2150 if (fs_info->fs_devices->seeding)
2151 return -EINVAL;
2152
2153 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2154 fs_info->bdev_holder);
2155 if (IS_ERR(bdev))
2156 return PTR_ERR(bdev);
2157
2158 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2159
2160 devices = &fs_info->fs_devices->devices;
2161 list_for_each_entry(device, devices, dev_list) {
2162 if (device->bdev == bdev) {
2163 ret = -EEXIST;
2164 goto error;
2165 }
2166 }
2167
12bd2fc0
ID
2168 device = btrfs_alloc_device(NULL, &devid, NULL);
2169 if (IS_ERR(device)) {
2170 ret = PTR_ERR(device);
e93c89c1
SB
2171 goto error;
2172 }
2173
2174 name = rcu_string_strdup(device_path, GFP_NOFS);
2175 if (!name) {
2176 kfree(device);
2177 ret = -ENOMEM;
2178 goto error;
2179 }
2180 rcu_assign_pointer(device->name, name);
2181
2182 q = bdev_get_queue(bdev);
2183 if (blk_queue_discard(q))
2184 device->can_discard = 1;
2185 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2186 device->writeable = 1;
e93c89c1
SB
2187 device->generation = 0;
2188 device->io_width = root->sectorsize;
2189 device->io_align = root->sectorsize;
2190 device->sector_size = root->sectorsize;
2191 device->total_bytes = i_size_read(bdev->bd_inode);
2192 device->disk_total_bytes = device->total_bytes;
2193 device->dev_root = fs_info->dev_root;
2194 device->bdev = bdev;
2195 device->in_fs_metadata = 1;
2196 device->is_tgtdev_for_dev_replace = 1;
2197 device->mode = FMODE_EXCL;
2198 set_blocksize(device->bdev, 4096);
2199 device->fs_devices = fs_info->fs_devices;
2200 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2201 fs_info->fs_devices->num_devices++;
2202 fs_info->fs_devices->open_devices++;
2203 if (device->can_discard)
2204 fs_info->fs_devices->num_can_discard++;
2205 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2206
2207 *device_out = device;
2208 return ret;
2209
2210error:
2211 blkdev_put(bdev, FMODE_EXCL);
2212 return ret;
2213}
2214
2215void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2216 struct btrfs_device *tgtdev)
2217{
2218 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2219 tgtdev->io_width = fs_info->dev_root->sectorsize;
2220 tgtdev->io_align = fs_info->dev_root->sectorsize;
2221 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2222 tgtdev->dev_root = fs_info->dev_root;
2223 tgtdev->in_fs_metadata = 1;
2224}
2225
d397712b
CM
2226static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2227 struct btrfs_device *device)
0b86a832
CM
2228{
2229 int ret;
2230 struct btrfs_path *path;
2231 struct btrfs_root *root;
2232 struct btrfs_dev_item *dev_item;
2233 struct extent_buffer *leaf;
2234 struct btrfs_key key;
2235
2236 root = device->dev_root->fs_info->chunk_root;
2237
2238 path = btrfs_alloc_path();
2239 if (!path)
2240 return -ENOMEM;
2241
2242 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2243 key.type = BTRFS_DEV_ITEM_KEY;
2244 key.offset = device->devid;
2245
2246 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2247 if (ret < 0)
2248 goto out;
2249
2250 if (ret > 0) {
2251 ret = -ENOENT;
2252 goto out;
2253 }
2254
2255 leaf = path->nodes[0];
2256 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2257
2258 btrfs_set_device_id(leaf, dev_item, device->devid);
2259 btrfs_set_device_type(leaf, dev_item, device->type);
2260 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2261 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2262 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 2263 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
2264 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2265 btrfs_mark_buffer_dirty(leaf);
2266
2267out:
2268 btrfs_free_path(path);
2269 return ret;
2270}
2271
7d9eb12c 2272static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2273 struct btrfs_device *device, u64 new_size)
2274{
2275 struct btrfs_super_block *super_copy =
6c41761f 2276 device->dev_root->fs_info->super_copy;
8f18cf13
CM
2277 u64 old_total = btrfs_super_total_bytes(super_copy);
2278 u64 diff = new_size - device->total_bytes;
2279
2b82032c
YZ
2280 if (!device->writeable)
2281 return -EACCES;
63a212ab
SB
2282 if (new_size <= device->total_bytes ||
2283 device->is_tgtdev_for_dev_replace)
2b82032c
YZ
2284 return -EINVAL;
2285
8f18cf13 2286 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2287 device->fs_devices->total_rw_bytes += diff;
2288
2289 device->total_bytes = new_size;
9779b72f 2290 device->disk_total_bytes = new_size;
4184ea7f
CM
2291 btrfs_clear_space_info_full(device->dev_root->fs_info);
2292
8f18cf13
CM
2293 return btrfs_update_device(trans, device);
2294}
2295
7d9eb12c
CM
2296int btrfs_grow_device(struct btrfs_trans_handle *trans,
2297 struct btrfs_device *device, u64 new_size)
2298{
2299 int ret;
2300 lock_chunks(device->dev_root);
2301 ret = __btrfs_grow_device(trans, device, new_size);
2302 unlock_chunks(device->dev_root);
2303 return ret;
2304}
2305
8f18cf13
CM
2306static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2307 struct btrfs_root *root,
2308 u64 chunk_tree, u64 chunk_objectid,
2309 u64 chunk_offset)
2310{
2311 int ret;
2312 struct btrfs_path *path;
2313 struct btrfs_key key;
2314
2315 root = root->fs_info->chunk_root;
2316 path = btrfs_alloc_path();
2317 if (!path)
2318 return -ENOMEM;
2319
2320 key.objectid = chunk_objectid;
2321 key.offset = chunk_offset;
2322 key.type = BTRFS_CHUNK_ITEM_KEY;
2323
2324 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2325 if (ret < 0)
2326 goto out;
2327 else if (ret > 0) { /* Logic error or corruption */
2328 btrfs_error(root->fs_info, -ENOENT,
2329 "Failed lookup while freeing chunk.");
2330 ret = -ENOENT;
2331 goto out;
2332 }
8f18cf13
CM
2333
2334 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2335 if (ret < 0)
2336 btrfs_error(root->fs_info, ret,
2337 "Failed to delete chunk item.");
2338out:
8f18cf13 2339 btrfs_free_path(path);
65a246c5 2340 return ret;
8f18cf13
CM
2341}
2342
b2950863 2343static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2344 chunk_offset)
2345{
6c41761f 2346 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2347 struct btrfs_disk_key *disk_key;
2348 struct btrfs_chunk *chunk;
2349 u8 *ptr;
2350 int ret = 0;
2351 u32 num_stripes;
2352 u32 array_size;
2353 u32 len = 0;
2354 u32 cur;
2355 struct btrfs_key key;
2356
2357 array_size = btrfs_super_sys_array_size(super_copy);
2358
2359 ptr = super_copy->sys_chunk_array;
2360 cur = 0;
2361
2362 while (cur < array_size) {
2363 disk_key = (struct btrfs_disk_key *)ptr;
2364 btrfs_disk_key_to_cpu(&key, disk_key);
2365
2366 len = sizeof(*disk_key);
2367
2368 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2369 chunk = (struct btrfs_chunk *)(ptr + len);
2370 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2371 len += btrfs_chunk_item_size(num_stripes);
2372 } else {
2373 ret = -EIO;
2374 break;
2375 }
2376 if (key.objectid == chunk_objectid &&
2377 key.offset == chunk_offset) {
2378 memmove(ptr, ptr + len, array_size - (cur + len));
2379 array_size -= len;
2380 btrfs_set_super_sys_array_size(super_copy, array_size);
2381 } else {
2382 ptr += len;
2383 cur += len;
2384 }
2385 }
2386 return ret;
2387}
2388
b2950863 2389static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
2390 u64 chunk_tree, u64 chunk_objectid,
2391 u64 chunk_offset)
2392{
2393 struct extent_map_tree *em_tree;
2394 struct btrfs_root *extent_root;
2395 struct btrfs_trans_handle *trans;
2396 struct extent_map *em;
2397 struct map_lookup *map;
2398 int ret;
2399 int i;
2400
2401 root = root->fs_info->chunk_root;
2402 extent_root = root->fs_info->extent_root;
2403 em_tree = &root->fs_info->mapping_tree.map_tree;
2404
ba1bf481
JB
2405 ret = btrfs_can_relocate(extent_root, chunk_offset);
2406 if (ret)
2407 return -ENOSPC;
2408
8f18cf13 2409 /* step one, relocate all the extents inside this chunk */
1a40e23b 2410 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2411 if (ret)
2412 return ret;
8f18cf13 2413
a22285a6 2414 trans = btrfs_start_transaction(root, 0);
0f788c58
LB
2415 if (IS_ERR(trans)) {
2416 ret = PTR_ERR(trans);
2417 btrfs_std_error(root->fs_info, ret);
2418 return ret;
2419 }
8f18cf13 2420
7d9eb12c
CM
2421 lock_chunks(root);
2422
8f18cf13
CM
2423 /*
2424 * step two, delete the device extents and the
2425 * chunk tree entries
2426 */
890871be 2427 read_lock(&em_tree->lock);
8f18cf13 2428 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2429 read_unlock(&em_tree->lock);
8f18cf13 2430
285190d9 2431 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2432 em->start + em->len < chunk_offset);
8f18cf13
CM
2433 map = (struct map_lookup *)em->bdev;
2434
2435 for (i = 0; i < map->num_stripes; i++) {
2436 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2437 map->stripes[i].physical);
2438 BUG_ON(ret);
a061fc8d 2439
dfe25020
CM
2440 if (map->stripes[i].dev) {
2441 ret = btrfs_update_device(trans, map->stripes[i].dev);
2442 BUG_ON(ret);
2443 }
8f18cf13
CM
2444 }
2445 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2446 chunk_offset);
2447
2448 BUG_ON(ret);
2449
1abe9b8a 2450 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2451
8f18cf13
CM
2452 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2453 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2454 BUG_ON(ret);
8f18cf13
CM
2455 }
2456
2b82032c
YZ
2457 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2458 BUG_ON(ret);
2459
890871be 2460 write_lock(&em_tree->lock);
2b82032c 2461 remove_extent_mapping(em_tree, em);
890871be 2462 write_unlock(&em_tree->lock);
2b82032c
YZ
2463
2464 kfree(map);
2465 em->bdev = NULL;
2466
2467 /* once for the tree */
2468 free_extent_map(em);
2469 /* once for us */
2470 free_extent_map(em);
2471
2472 unlock_chunks(root);
2473 btrfs_end_transaction(trans, root);
2474 return 0;
2475}
2476
2477static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2478{
2479 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2480 struct btrfs_path *path;
2481 struct extent_buffer *leaf;
2482 struct btrfs_chunk *chunk;
2483 struct btrfs_key key;
2484 struct btrfs_key found_key;
2485 u64 chunk_tree = chunk_root->root_key.objectid;
2486 u64 chunk_type;
ba1bf481
JB
2487 bool retried = false;
2488 int failed = 0;
2b82032c
YZ
2489 int ret;
2490
2491 path = btrfs_alloc_path();
2492 if (!path)
2493 return -ENOMEM;
2494
ba1bf481 2495again:
2b82032c
YZ
2496 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2497 key.offset = (u64)-1;
2498 key.type = BTRFS_CHUNK_ITEM_KEY;
2499
2500 while (1) {
2501 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2502 if (ret < 0)
2503 goto error;
79787eaa 2504 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2505
2506 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2507 key.type);
2508 if (ret < 0)
2509 goto error;
2510 if (ret > 0)
2511 break;
1a40e23b 2512
2b82032c
YZ
2513 leaf = path->nodes[0];
2514 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2515
2b82032c
YZ
2516 chunk = btrfs_item_ptr(leaf, path->slots[0],
2517 struct btrfs_chunk);
2518 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2519 btrfs_release_path(path);
8f18cf13 2520
2b82032c
YZ
2521 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2522 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2523 found_key.objectid,
2524 found_key.offset);
ba1bf481
JB
2525 if (ret == -ENOSPC)
2526 failed++;
2527 else if (ret)
2528 BUG();
2b82032c 2529 }
8f18cf13 2530
2b82032c
YZ
2531 if (found_key.offset == 0)
2532 break;
2533 key.offset = found_key.offset - 1;
2534 }
2535 ret = 0;
ba1bf481
JB
2536 if (failed && !retried) {
2537 failed = 0;
2538 retried = true;
2539 goto again;
2540 } else if (failed && retried) {
2541 WARN_ON(1);
2542 ret = -ENOSPC;
2543 }
2b82032c
YZ
2544error:
2545 btrfs_free_path(path);
2546 return ret;
8f18cf13
CM
2547}
2548
0940ebf6
ID
2549static int insert_balance_item(struct btrfs_root *root,
2550 struct btrfs_balance_control *bctl)
2551{
2552 struct btrfs_trans_handle *trans;
2553 struct btrfs_balance_item *item;
2554 struct btrfs_disk_balance_args disk_bargs;
2555 struct btrfs_path *path;
2556 struct extent_buffer *leaf;
2557 struct btrfs_key key;
2558 int ret, err;
2559
2560 path = btrfs_alloc_path();
2561 if (!path)
2562 return -ENOMEM;
2563
2564 trans = btrfs_start_transaction(root, 0);
2565 if (IS_ERR(trans)) {
2566 btrfs_free_path(path);
2567 return PTR_ERR(trans);
2568 }
2569
2570 key.objectid = BTRFS_BALANCE_OBJECTID;
2571 key.type = BTRFS_BALANCE_ITEM_KEY;
2572 key.offset = 0;
2573
2574 ret = btrfs_insert_empty_item(trans, root, path, &key,
2575 sizeof(*item));
2576 if (ret)
2577 goto out;
2578
2579 leaf = path->nodes[0];
2580 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2581
2582 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2583
2584 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2585 btrfs_set_balance_data(leaf, item, &disk_bargs);
2586 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2587 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2588 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2589 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2590
2591 btrfs_set_balance_flags(leaf, item, bctl->flags);
2592
2593 btrfs_mark_buffer_dirty(leaf);
2594out:
2595 btrfs_free_path(path);
2596 err = btrfs_commit_transaction(trans, root);
2597 if (err && !ret)
2598 ret = err;
2599 return ret;
2600}
2601
2602static int del_balance_item(struct btrfs_root *root)
2603{
2604 struct btrfs_trans_handle *trans;
2605 struct btrfs_path *path;
2606 struct btrfs_key key;
2607 int ret, err;
2608
2609 path = btrfs_alloc_path();
2610 if (!path)
2611 return -ENOMEM;
2612
2613 trans = btrfs_start_transaction(root, 0);
2614 if (IS_ERR(trans)) {
2615 btrfs_free_path(path);
2616 return PTR_ERR(trans);
2617 }
2618
2619 key.objectid = BTRFS_BALANCE_OBJECTID;
2620 key.type = BTRFS_BALANCE_ITEM_KEY;
2621 key.offset = 0;
2622
2623 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2624 if (ret < 0)
2625 goto out;
2626 if (ret > 0) {
2627 ret = -ENOENT;
2628 goto out;
2629 }
2630
2631 ret = btrfs_del_item(trans, root, path);
2632out:
2633 btrfs_free_path(path);
2634 err = btrfs_commit_transaction(trans, root);
2635 if (err && !ret)
2636 ret = err;
2637 return ret;
2638}
2639
59641015
ID
2640/*
2641 * This is a heuristic used to reduce the number of chunks balanced on
2642 * resume after balance was interrupted.
2643 */
2644static void update_balance_args(struct btrfs_balance_control *bctl)
2645{
2646 /*
2647 * Turn on soft mode for chunk types that were being converted.
2648 */
2649 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2650 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2651 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2652 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2653 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2654 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2655
2656 /*
2657 * Turn on usage filter if is not already used. The idea is
2658 * that chunks that we have already balanced should be
2659 * reasonably full. Don't do it for chunks that are being
2660 * converted - that will keep us from relocating unconverted
2661 * (albeit full) chunks.
2662 */
2663 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2664 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2665 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2666 bctl->data.usage = 90;
2667 }
2668 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2669 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2670 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2671 bctl->sys.usage = 90;
2672 }
2673 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2674 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2675 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2676 bctl->meta.usage = 90;
2677 }
2678}
2679
c9e9f97b
ID
2680/*
2681 * Should be called with both balance and volume mutexes held to
2682 * serialize other volume operations (add_dev/rm_dev/resize) with
2683 * restriper. Same goes for unset_balance_control.
2684 */
2685static void set_balance_control(struct btrfs_balance_control *bctl)
2686{
2687 struct btrfs_fs_info *fs_info = bctl->fs_info;
2688
2689 BUG_ON(fs_info->balance_ctl);
2690
2691 spin_lock(&fs_info->balance_lock);
2692 fs_info->balance_ctl = bctl;
2693 spin_unlock(&fs_info->balance_lock);
2694}
2695
2696static void unset_balance_control(struct btrfs_fs_info *fs_info)
2697{
2698 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2699
2700 BUG_ON(!fs_info->balance_ctl);
2701
2702 spin_lock(&fs_info->balance_lock);
2703 fs_info->balance_ctl = NULL;
2704 spin_unlock(&fs_info->balance_lock);
2705
2706 kfree(bctl);
2707}
2708
ed25e9b2
ID
2709/*
2710 * Balance filters. Return 1 if chunk should be filtered out
2711 * (should not be balanced).
2712 */
899c81ea 2713static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2714 struct btrfs_balance_args *bargs)
2715{
899c81ea
ID
2716 chunk_type = chunk_to_extended(chunk_type) &
2717 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2718
899c81ea 2719 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2720 return 0;
2721
2722 return 1;
2723}
2724
5ce5b3c0
ID
2725static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2726 struct btrfs_balance_args *bargs)
2727{
2728 struct btrfs_block_group_cache *cache;
2729 u64 chunk_used, user_thresh;
2730 int ret = 1;
2731
2732 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2733 chunk_used = btrfs_block_group_used(&cache->item);
2734
a105bb88 2735 if (bargs->usage == 0)
3e39cea6 2736 user_thresh = 1;
a105bb88
ID
2737 else if (bargs->usage > 100)
2738 user_thresh = cache->key.offset;
2739 else
2740 user_thresh = div_factor_fine(cache->key.offset,
2741 bargs->usage);
2742
5ce5b3c0
ID
2743 if (chunk_used < user_thresh)
2744 ret = 0;
2745
2746 btrfs_put_block_group(cache);
2747 return ret;
2748}
2749
409d404b
ID
2750static int chunk_devid_filter(struct extent_buffer *leaf,
2751 struct btrfs_chunk *chunk,
2752 struct btrfs_balance_args *bargs)
2753{
2754 struct btrfs_stripe *stripe;
2755 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2756 int i;
2757
2758 for (i = 0; i < num_stripes; i++) {
2759 stripe = btrfs_stripe_nr(chunk, i);
2760 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2761 return 0;
2762 }
2763
2764 return 1;
2765}
2766
94e60d5a
ID
2767/* [pstart, pend) */
2768static int chunk_drange_filter(struct extent_buffer *leaf,
2769 struct btrfs_chunk *chunk,
2770 u64 chunk_offset,
2771 struct btrfs_balance_args *bargs)
2772{
2773 struct btrfs_stripe *stripe;
2774 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2775 u64 stripe_offset;
2776 u64 stripe_length;
2777 int factor;
2778 int i;
2779
2780 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2781 return 0;
2782
2783 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
2784 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2785 factor = num_stripes / 2;
2786 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2787 factor = num_stripes - 1;
2788 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2789 factor = num_stripes - 2;
2790 } else {
2791 factor = num_stripes;
2792 }
94e60d5a
ID
2793
2794 for (i = 0; i < num_stripes; i++) {
2795 stripe = btrfs_stripe_nr(chunk, i);
2796 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2797 continue;
2798
2799 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2800 stripe_length = btrfs_chunk_length(leaf, chunk);
2801 do_div(stripe_length, factor);
2802
2803 if (stripe_offset < bargs->pend &&
2804 stripe_offset + stripe_length > bargs->pstart)
2805 return 0;
2806 }
2807
2808 return 1;
2809}
2810
ea67176a
ID
2811/* [vstart, vend) */
2812static int chunk_vrange_filter(struct extent_buffer *leaf,
2813 struct btrfs_chunk *chunk,
2814 u64 chunk_offset,
2815 struct btrfs_balance_args *bargs)
2816{
2817 if (chunk_offset < bargs->vend &&
2818 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2819 /* at least part of the chunk is inside this vrange */
2820 return 0;
2821
2822 return 1;
2823}
2824
899c81ea 2825static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2826 struct btrfs_balance_args *bargs)
2827{
2828 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2829 return 0;
2830
899c81ea
ID
2831 chunk_type = chunk_to_extended(chunk_type) &
2832 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2833
899c81ea 2834 if (bargs->target == chunk_type)
cfa4c961
ID
2835 return 1;
2836
2837 return 0;
2838}
2839
f43ffb60
ID
2840static int should_balance_chunk(struct btrfs_root *root,
2841 struct extent_buffer *leaf,
2842 struct btrfs_chunk *chunk, u64 chunk_offset)
2843{
2844 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2845 struct btrfs_balance_args *bargs = NULL;
2846 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2847
2848 /* type filter */
2849 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2850 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2851 return 0;
2852 }
2853
2854 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2855 bargs = &bctl->data;
2856 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2857 bargs = &bctl->sys;
2858 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2859 bargs = &bctl->meta;
2860
ed25e9b2
ID
2861 /* profiles filter */
2862 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2863 chunk_profiles_filter(chunk_type, bargs)) {
2864 return 0;
5ce5b3c0
ID
2865 }
2866
2867 /* usage filter */
2868 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2869 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2870 return 0;
409d404b
ID
2871 }
2872
2873 /* devid filter */
2874 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2875 chunk_devid_filter(leaf, chunk, bargs)) {
2876 return 0;
94e60d5a
ID
2877 }
2878
2879 /* drange filter, makes sense only with devid filter */
2880 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2881 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2882 return 0;
ea67176a
ID
2883 }
2884
2885 /* vrange filter */
2886 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2887 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2888 return 0;
ed25e9b2
ID
2889 }
2890
cfa4c961
ID
2891 /* soft profile changing mode */
2892 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2893 chunk_soft_convert_filter(chunk_type, bargs)) {
2894 return 0;
2895 }
2896
f43ffb60
ID
2897 return 1;
2898}
2899
c9e9f97b 2900static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2901{
19a39dce 2902 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2903 struct btrfs_root *chunk_root = fs_info->chunk_root;
2904 struct btrfs_root *dev_root = fs_info->dev_root;
2905 struct list_head *devices;
ec44a35c
CM
2906 struct btrfs_device *device;
2907 u64 old_size;
2908 u64 size_to_free;
f43ffb60 2909 struct btrfs_chunk *chunk;
ec44a35c
CM
2910 struct btrfs_path *path;
2911 struct btrfs_key key;
ec44a35c 2912 struct btrfs_key found_key;
c9e9f97b 2913 struct btrfs_trans_handle *trans;
f43ffb60
ID
2914 struct extent_buffer *leaf;
2915 int slot;
c9e9f97b
ID
2916 int ret;
2917 int enospc_errors = 0;
19a39dce 2918 bool counting = true;
ec44a35c 2919
ec44a35c 2920 /* step one make some room on all the devices */
c9e9f97b 2921 devices = &fs_info->fs_devices->devices;
c6e30871 2922 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2923 old_size = device->total_bytes;
2924 size_to_free = div_factor(old_size, 1);
2925 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 2926 if (!device->writeable ||
63a212ab
SB
2927 device->total_bytes - device->bytes_used > size_to_free ||
2928 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
2929 continue;
2930
2931 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2932 if (ret == -ENOSPC)
2933 break;
ec44a35c
CM
2934 BUG_ON(ret);
2935
a22285a6 2936 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2937 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2938
2939 ret = btrfs_grow_device(trans, device, old_size);
2940 BUG_ON(ret);
2941
2942 btrfs_end_transaction(trans, dev_root);
2943 }
2944
2945 /* step two, relocate all the chunks */
2946 path = btrfs_alloc_path();
17e9f796
MF
2947 if (!path) {
2948 ret = -ENOMEM;
2949 goto error;
2950 }
19a39dce
ID
2951
2952 /* zero out stat counters */
2953 spin_lock(&fs_info->balance_lock);
2954 memset(&bctl->stat, 0, sizeof(bctl->stat));
2955 spin_unlock(&fs_info->balance_lock);
2956again:
ec44a35c
CM
2957 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2958 key.offset = (u64)-1;
2959 key.type = BTRFS_CHUNK_ITEM_KEY;
2960
d397712b 2961 while (1) {
19a39dce 2962 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2963 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2964 ret = -ECANCELED;
2965 goto error;
2966 }
2967
ec44a35c
CM
2968 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2969 if (ret < 0)
2970 goto error;
2971
2972 /*
2973 * this shouldn't happen, it means the last relocate
2974 * failed
2975 */
2976 if (ret == 0)
c9e9f97b 2977 BUG(); /* FIXME break ? */
ec44a35c
CM
2978
2979 ret = btrfs_previous_item(chunk_root, path, 0,
2980 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
2981 if (ret) {
2982 ret = 0;
ec44a35c 2983 break;
c9e9f97b 2984 }
7d9eb12c 2985
f43ffb60
ID
2986 leaf = path->nodes[0];
2987 slot = path->slots[0];
2988 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 2989
ec44a35c
CM
2990 if (found_key.objectid != key.objectid)
2991 break;
7d9eb12c 2992
ec44a35c 2993 /* chunk zero is special */
ba1bf481 2994 if (found_key.offset == 0)
ec44a35c
CM
2995 break;
2996
f43ffb60
ID
2997 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2998
19a39dce
ID
2999 if (!counting) {
3000 spin_lock(&fs_info->balance_lock);
3001 bctl->stat.considered++;
3002 spin_unlock(&fs_info->balance_lock);
3003 }
3004
f43ffb60
ID
3005 ret = should_balance_chunk(chunk_root, leaf, chunk,
3006 found_key.offset);
b3b4aa74 3007 btrfs_release_path(path);
f43ffb60
ID
3008 if (!ret)
3009 goto loop;
3010
19a39dce
ID
3011 if (counting) {
3012 spin_lock(&fs_info->balance_lock);
3013 bctl->stat.expected++;
3014 spin_unlock(&fs_info->balance_lock);
3015 goto loop;
3016 }
3017
ec44a35c
CM
3018 ret = btrfs_relocate_chunk(chunk_root,
3019 chunk_root->root_key.objectid,
3020 found_key.objectid,
3021 found_key.offset);
508794eb
JB
3022 if (ret && ret != -ENOSPC)
3023 goto error;
19a39dce 3024 if (ret == -ENOSPC) {
c9e9f97b 3025 enospc_errors++;
19a39dce
ID
3026 } else {
3027 spin_lock(&fs_info->balance_lock);
3028 bctl->stat.completed++;
3029 spin_unlock(&fs_info->balance_lock);
3030 }
f43ffb60 3031loop:
ba1bf481 3032 key.offset = found_key.offset - 1;
ec44a35c 3033 }
c9e9f97b 3034
19a39dce
ID
3035 if (counting) {
3036 btrfs_release_path(path);
3037 counting = false;
3038 goto again;
3039 }
ec44a35c
CM
3040error:
3041 btrfs_free_path(path);
c9e9f97b
ID
3042 if (enospc_errors) {
3043 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
3044 enospc_errors);
3045 if (!ret)
3046 ret = -ENOSPC;
3047 }
3048
ec44a35c
CM
3049 return ret;
3050}
3051
0c460c0d
ID
3052/**
3053 * alloc_profile_is_valid - see if a given profile is valid and reduced
3054 * @flags: profile to validate
3055 * @extended: if true @flags is treated as an extended profile
3056 */
3057static int alloc_profile_is_valid(u64 flags, int extended)
3058{
3059 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3060 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3061
3062 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3063
3064 /* 1) check that all other bits are zeroed */
3065 if (flags & ~mask)
3066 return 0;
3067
3068 /* 2) see if profile is reduced */
3069 if (flags == 0)
3070 return !extended; /* "0" is valid for usual profiles */
3071
3072 /* true if exactly one bit set */
3073 return (flags & (flags - 1)) == 0;
3074}
3075
837d5b6e
ID
3076static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3077{
a7e99c69
ID
3078 /* cancel requested || normal exit path */
3079 return atomic_read(&fs_info->balance_cancel_req) ||
3080 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3081 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3082}
3083
c9e9f97b
ID
3084static void __cancel_balance(struct btrfs_fs_info *fs_info)
3085{
0940ebf6
ID
3086 int ret;
3087
c9e9f97b 3088 unset_balance_control(fs_info);
0940ebf6 3089 ret = del_balance_item(fs_info->tree_root);
0f788c58
LB
3090 if (ret)
3091 btrfs_std_error(fs_info, ret);
ed0fb78f
ID
3092
3093 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3094}
3095
c9e9f97b
ID
3096/*
3097 * Should be called with both balance and volume mutexes held
3098 */
3099int btrfs_balance(struct btrfs_balance_control *bctl,
3100 struct btrfs_ioctl_balance_args *bargs)
3101{
3102 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3103 u64 allowed;
e4837f8f 3104 int mixed = 0;
c9e9f97b 3105 int ret;
8dabb742 3106 u64 num_devices;
de98ced9 3107 unsigned seq;
c9e9f97b 3108
837d5b6e 3109 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3110 atomic_read(&fs_info->balance_pause_req) ||
3111 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3112 ret = -EINVAL;
3113 goto out;
3114 }
3115
e4837f8f
ID
3116 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3117 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3118 mixed = 1;
3119
f43ffb60
ID
3120 /*
3121 * In case of mixed groups both data and meta should be picked,
3122 * and identical options should be given for both of them.
3123 */
e4837f8f
ID
3124 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3125 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3126 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3127 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3128 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3129 printk(KERN_ERR "btrfs: with mixed groups data and "
3130 "metadata balance options must be the same\n");
3131 ret = -EINVAL;
3132 goto out;
3133 }
3134 }
3135
8dabb742
SB
3136 num_devices = fs_info->fs_devices->num_devices;
3137 btrfs_dev_replace_lock(&fs_info->dev_replace);
3138 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3139 BUG_ON(num_devices < 1);
3140 num_devices--;
3141 }
3142 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3143 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3144 if (num_devices == 1)
e4d8ec0f 3145 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3146 else if (num_devices > 1)
e4d8ec0f 3147 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3148 if (num_devices > 2)
3149 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3150 if (num_devices > 3)
3151 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3152 BTRFS_BLOCK_GROUP_RAID6);
6728b198
ID
3153 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3154 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3155 (bctl->data.target & ~allowed))) {
e4d8ec0f
ID
3156 printk(KERN_ERR "btrfs: unable to start balance with target "
3157 "data profile %llu\n",
c1c9ff7c 3158 bctl->data.target);
e4d8ec0f
ID
3159 ret = -EINVAL;
3160 goto out;
3161 }
6728b198
ID
3162 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3163 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3164 (bctl->meta.target & ~allowed))) {
e4d8ec0f
ID
3165 printk(KERN_ERR "btrfs: unable to start balance with target "
3166 "metadata profile %llu\n",
c1c9ff7c 3167 bctl->meta.target);
e4d8ec0f
ID
3168 ret = -EINVAL;
3169 goto out;
3170 }
6728b198
ID
3171 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3172 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3173 (bctl->sys.target & ~allowed))) {
e4d8ec0f
ID
3174 printk(KERN_ERR "btrfs: unable to start balance with target "
3175 "system profile %llu\n",
c1c9ff7c 3176 bctl->sys.target);
e4d8ec0f
ID
3177 ret = -EINVAL;
3178 goto out;
3179 }
3180
e4837f8f
ID
3181 /* allow dup'ed data chunks only in mixed mode */
3182 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3183 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
e4d8ec0f
ID
3184 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
3185 ret = -EINVAL;
3186 goto out;
3187 }
3188
3189 /* allow to reduce meta or sys integrity only if force set */
3190 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3191 BTRFS_BLOCK_GROUP_RAID10 |
3192 BTRFS_BLOCK_GROUP_RAID5 |
3193 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3194 do {
3195 seq = read_seqbegin(&fs_info->profiles_lock);
3196
3197 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3198 (fs_info->avail_system_alloc_bits & allowed) &&
3199 !(bctl->sys.target & allowed)) ||
3200 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3201 (fs_info->avail_metadata_alloc_bits & allowed) &&
3202 !(bctl->meta.target & allowed))) {
3203 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3204 printk(KERN_INFO "btrfs: force reducing metadata "
3205 "integrity\n");
3206 } else {
3207 printk(KERN_ERR "btrfs: balance will reduce metadata "
3208 "integrity, use force if you want this\n");
3209 ret = -EINVAL;
3210 goto out;
3211 }
e4d8ec0f 3212 }
de98ced9 3213 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3214
5af3e8cc
SB
3215 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3216 int num_tolerated_disk_barrier_failures;
3217 u64 target = bctl->sys.target;
3218
3219 num_tolerated_disk_barrier_failures =
3220 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3221 if (num_tolerated_disk_barrier_failures > 0 &&
3222 (target &
3223 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3224 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3225 num_tolerated_disk_barrier_failures = 0;
3226 else if (num_tolerated_disk_barrier_failures > 1 &&
3227 (target &
3228 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3229 num_tolerated_disk_barrier_failures = 1;
3230
3231 fs_info->num_tolerated_disk_barrier_failures =
3232 num_tolerated_disk_barrier_failures;
3233 }
3234
0940ebf6 3235 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3236 if (ret && ret != -EEXIST)
0940ebf6
ID
3237 goto out;
3238
59641015
ID
3239 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3240 BUG_ON(ret == -EEXIST);
3241 set_balance_control(bctl);
3242 } else {
3243 BUG_ON(ret != -EEXIST);
3244 spin_lock(&fs_info->balance_lock);
3245 update_balance_args(bctl);
3246 spin_unlock(&fs_info->balance_lock);
3247 }
c9e9f97b 3248
837d5b6e 3249 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3250 mutex_unlock(&fs_info->balance_mutex);
3251
3252 ret = __btrfs_balance(fs_info);
3253
3254 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3255 atomic_dec(&fs_info->balance_running);
c9e9f97b 3256
bf023ecf
ID
3257 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3258 fs_info->num_tolerated_disk_barrier_failures =
3259 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3260 }
3261
c9e9f97b
ID
3262 if (bargs) {
3263 memset(bargs, 0, sizeof(*bargs));
19a39dce 3264 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3265 }
3266
3a01aa7a
ID
3267 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3268 balance_need_close(fs_info)) {
3269 __cancel_balance(fs_info);
3270 }
3271
837d5b6e 3272 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3273
3274 return ret;
3275out:
59641015
ID
3276 if (bctl->flags & BTRFS_BALANCE_RESUME)
3277 __cancel_balance(fs_info);
ed0fb78f 3278 else {
59641015 3279 kfree(bctl);
ed0fb78f
ID
3280 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3281 }
59641015
ID
3282 return ret;
3283}
3284
3285static int balance_kthread(void *data)
3286{
2b6ba629 3287 struct btrfs_fs_info *fs_info = data;
9555c6c1 3288 int ret = 0;
59641015
ID
3289
3290 mutex_lock(&fs_info->volume_mutex);
3291 mutex_lock(&fs_info->balance_mutex);
3292
2b6ba629 3293 if (fs_info->balance_ctl) {
9555c6c1 3294 printk(KERN_INFO "btrfs: continuing balance\n");
2b6ba629 3295 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3296 }
59641015
ID
3297
3298 mutex_unlock(&fs_info->balance_mutex);
3299 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3300
59641015
ID
3301 return ret;
3302}
3303
2b6ba629
ID
3304int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3305{
3306 struct task_struct *tsk;
3307
3308 spin_lock(&fs_info->balance_lock);
3309 if (!fs_info->balance_ctl) {
3310 spin_unlock(&fs_info->balance_lock);
3311 return 0;
3312 }
3313 spin_unlock(&fs_info->balance_lock);
3314
3315 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3316 printk(KERN_INFO "btrfs: force skipping balance\n");
3317 return 0;
3318 }
3319
3320 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
97a184fe 3321 return PTR_RET(tsk);
2b6ba629
ID
3322}
3323
68310a5e 3324int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3325{
59641015
ID
3326 struct btrfs_balance_control *bctl;
3327 struct btrfs_balance_item *item;
3328 struct btrfs_disk_balance_args disk_bargs;
3329 struct btrfs_path *path;
3330 struct extent_buffer *leaf;
3331 struct btrfs_key key;
3332 int ret;
3333
3334 path = btrfs_alloc_path();
3335 if (!path)
3336 return -ENOMEM;
3337
59641015
ID
3338 key.objectid = BTRFS_BALANCE_OBJECTID;
3339 key.type = BTRFS_BALANCE_ITEM_KEY;
3340 key.offset = 0;
3341
68310a5e 3342 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3343 if (ret < 0)
68310a5e 3344 goto out;
59641015
ID
3345 if (ret > 0) { /* ret = -ENOENT; */
3346 ret = 0;
68310a5e
ID
3347 goto out;
3348 }
3349
3350 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3351 if (!bctl) {
3352 ret = -ENOMEM;
3353 goto out;
59641015
ID
3354 }
3355
3356 leaf = path->nodes[0];
3357 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3358
68310a5e
ID
3359 bctl->fs_info = fs_info;
3360 bctl->flags = btrfs_balance_flags(leaf, item);
3361 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3362
3363 btrfs_balance_data(leaf, item, &disk_bargs);
3364 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3365 btrfs_balance_meta(leaf, item, &disk_bargs);
3366 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3367 btrfs_balance_sys(leaf, item, &disk_bargs);
3368 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3369
ed0fb78f
ID
3370 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3371
68310a5e
ID
3372 mutex_lock(&fs_info->volume_mutex);
3373 mutex_lock(&fs_info->balance_mutex);
59641015 3374
68310a5e
ID
3375 set_balance_control(bctl);
3376
3377 mutex_unlock(&fs_info->balance_mutex);
3378 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3379out:
3380 btrfs_free_path(path);
ec44a35c
CM
3381 return ret;
3382}
3383
837d5b6e
ID
3384int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3385{
3386 int ret = 0;
3387
3388 mutex_lock(&fs_info->balance_mutex);
3389 if (!fs_info->balance_ctl) {
3390 mutex_unlock(&fs_info->balance_mutex);
3391 return -ENOTCONN;
3392 }
3393
3394 if (atomic_read(&fs_info->balance_running)) {
3395 atomic_inc(&fs_info->balance_pause_req);
3396 mutex_unlock(&fs_info->balance_mutex);
3397
3398 wait_event(fs_info->balance_wait_q,
3399 atomic_read(&fs_info->balance_running) == 0);
3400
3401 mutex_lock(&fs_info->balance_mutex);
3402 /* we are good with balance_ctl ripped off from under us */
3403 BUG_ON(atomic_read(&fs_info->balance_running));
3404 atomic_dec(&fs_info->balance_pause_req);
3405 } else {
3406 ret = -ENOTCONN;
3407 }
3408
3409 mutex_unlock(&fs_info->balance_mutex);
3410 return ret;
3411}
3412
a7e99c69
ID
3413int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3414{
3415 mutex_lock(&fs_info->balance_mutex);
3416 if (!fs_info->balance_ctl) {
3417 mutex_unlock(&fs_info->balance_mutex);
3418 return -ENOTCONN;
3419 }
3420
3421 atomic_inc(&fs_info->balance_cancel_req);
3422 /*
3423 * if we are running just wait and return, balance item is
3424 * deleted in btrfs_balance in this case
3425 */
3426 if (atomic_read(&fs_info->balance_running)) {
3427 mutex_unlock(&fs_info->balance_mutex);
3428 wait_event(fs_info->balance_wait_q,
3429 atomic_read(&fs_info->balance_running) == 0);
3430 mutex_lock(&fs_info->balance_mutex);
3431 } else {
3432 /* __cancel_balance needs volume_mutex */
3433 mutex_unlock(&fs_info->balance_mutex);
3434 mutex_lock(&fs_info->volume_mutex);
3435 mutex_lock(&fs_info->balance_mutex);
3436
3437 if (fs_info->balance_ctl)
3438 __cancel_balance(fs_info);
3439
3440 mutex_unlock(&fs_info->volume_mutex);
3441 }
3442
3443 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3444 atomic_dec(&fs_info->balance_cancel_req);
3445 mutex_unlock(&fs_info->balance_mutex);
3446 return 0;
3447}
3448
803b2f54
SB
3449static int btrfs_uuid_scan_kthread(void *data)
3450{
3451 struct btrfs_fs_info *fs_info = data;
3452 struct btrfs_root *root = fs_info->tree_root;
3453 struct btrfs_key key;
3454 struct btrfs_key max_key;
3455 struct btrfs_path *path = NULL;
3456 int ret = 0;
3457 struct extent_buffer *eb;
3458 int slot;
3459 struct btrfs_root_item root_item;
3460 u32 item_size;
3461 struct btrfs_trans_handle *trans;
3462
3463 path = btrfs_alloc_path();
3464 if (!path) {
3465 ret = -ENOMEM;
3466 goto out;
3467 }
3468
3469 key.objectid = 0;
3470 key.type = BTRFS_ROOT_ITEM_KEY;
3471 key.offset = 0;
3472
3473 max_key.objectid = (u64)-1;
3474 max_key.type = BTRFS_ROOT_ITEM_KEY;
3475 max_key.offset = (u64)-1;
3476
3477 path->keep_locks = 1;
3478
3479 while (1) {
3480 ret = btrfs_search_forward(root, &key, &max_key, path, 0);
3481 if (ret) {
3482 if (ret > 0)
3483 ret = 0;
3484 break;
3485 }
3486
3487 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3488 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3489 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3490 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3491 goto skip;
3492
3493 eb = path->nodes[0];
3494 slot = path->slots[0];
3495 item_size = btrfs_item_size_nr(eb, slot);
3496 if (item_size < sizeof(root_item))
3497 goto skip;
3498
3499 trans = NULL;
3500 read_extent_buffer(eb, &root_item,
3501 btrfs_item_ptr_offset(eb, slot),
3502 (int)sizeof(root_item));
3503 if (btrfs_root_refs(&root_item) == 0)
3504 goto skip;
3505 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3506 /*
3507 * 1 - subvol uuid item
3508 * 1 - received_subvol uuid item
3509 */
3510 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3511 if (IS_ERR(trans)) {
3512 ret = PTR_ERR(trans);
3513 break;
3514 }
3515 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3516 root_item.uuid,
3517 BTRFS_UUID_KEY_SUBVOL,
3518 key.objectid);
3519 if (ret < 0) {
3520 pr_warn("btrfs: uuid_tree_add failed %d\n",
3521 ret);
3522 btrfs_end_transaction(trans,
3523 fs_info->uuid_root);
3524 break;
3525 }
3526 }
3527
3528 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3529 if (!trans) {
3530 /* 1 - received_subvol uuid item */
3531 trans = btrfs_start_transaction(
3532 fs_info->uuid_root, 1);
3533 if (IS_ERR(trans)) {
3534 ret = PTR_ERR(trans);
3535 break;
3536 }
3537 }
3538 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3539 root_item.received_uuid,
3540 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3541 key.objectid);
3542 if (ret < 0) {
3543 pr_warn("btrfs: uuid_tree_add failed %d\n",
3544 ret);
3545 btrfs_end_transaction(trans,
3546 fs_info->uuid_root);
3547 break;
3548 }
3549 }
3550
3551 if (trans) {
3552 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3553 if (ret)
3554 break;
3555 }
3556
3557skip:
3558 btrfs_release_path(path);
3559 if (key.offset < (u64)-1) {
3560 key.offset++;
3561 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3562 key.offset = 0;
3563 key.type = BTRFS_ROOT_ITEM_KEY;
3564 } else if (key.objectid < (u64)-1) {
3565 key.offset = 0;
3566 key.type = BTRFS_ROOT_ITEM_KEY;
3567 key.objectid++;
3568 } else {
3569 break;
3570 }
3571 cond_resched();
3572 }
3573
3574out:
3575 btrfs_free_path(path);
3576 if (ret)
3577 pr_warn("btrfs: btrfs_uuid_scan_kthread failed %d\n", ret);
70f80175
SB
3578 else
3579 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
3580 up(&fs_info->uuid_tree_rescan_sem);
3581 return 0;
3582}
3583
70f80175
SB
3584/*
3585 * Callback for btrfs_uuid_tree_iterate().
3586 * returns:
3587 * 0 check succeeded, the entry is not outdated.
3588 * < 0 if an error occured.
3589 * > 0 if the check failed, which means the caller shall remove the entry.
3590 */
3591static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3592 u8 *uuid, u8 type, u64 subid)
3593{
3594 struct btrfs_key key;
3595 int ret = 0;
3596 struct btrfs_root *subvol_root;
3597
3598 if (type != BTRFS_UUID_KEY_SUBVOL &&
3599 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3600 goto out;
3601
3602 key.objectid = subid;
3603 key.type = BTRFS_ROOT_ITEM_KEY;
3604 key.offset = (u64)-1;
3605 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3606 if (IS_ERR(subvol_root)) {
3607 ret = PTR_ERR(subvol_root);
3608 if (ret == -ENOENT)
3609 ret = 1;
3610 goto out;
3611 }
3612
3613 switch (type) {
3614 case BTRFS_UUID_KEY_SUBVOL:
3615 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3616 ret = 1;
3617 break;
3618 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3619 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3620 BTRFS_UUID_SIZE))
3621 ret = 1;
3622 break;
3623 }
3624
3625out:
3626 return ret;
3627}
3628
3629static int btrfs_uuid_rescan_kthread(void *data)
3630{
3631 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3632 int ret;
3633
3634 /*
3635 * 1st step is to iterate through the existing UUID tree and
3636 * to delete all entries that contain outdated data.
3637 * 2nd step is to add all missing entries to the UUID tree.
3638 */
3639 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3640 if (ret < 0) {
3641 pr_warn("btrfs: iterating uuid_tree failed %d\n", ret);
3642 up(&fs_info->uuid_tree_rescan_sem);
3643 return ret;
3644 }
3645 return btrfs_uuid_scan_kthread(data);
3646}
3647
f7a81ea4
SB
3648int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3649{
3650 struct btrfs_trans_handle *trans;
3651 struct btrfs_root *tree_root = fs_info->tree_root;
3652 struct btrfs_root *uuid_root;
803b2f54
SB
3653 struct task_struct *task;
3654 int ret;
f7a81ea4
SB
3655
3656 /*
3657 * 1 - root node
3658 * 1 - root item
3659 */
3660 trans = btrfs_start_transaction(tree_root, 2);
3661 if (IS_ERR(trans))
3662 return PTR_ERR(trans);
3663
3664 uuid_root = btrfs_create_tree(trans, fs_info,
3665 BTRFS_UUID_TREE_OBJECTID);
3666 if (IS_ERR(uuid_root)) {
3667 btrfs_abort_transaction(trans, tree_root,
3668 PTR_ERR(uuid_root));
3669 return PTR_ERR(uuid_root);
3670 }
3671
3672 fs_info->uuid_root = uuid_root;
3673
803b2f54
SB
3674 ret = btrfs_commit_transaction(trans, tree_root);
3675 if (ret)
3676 return ret;
3677
3678 down(&fs_info->uuid_tree_rescan_sem);
3679 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3680 if (IS_ERR(task)) {
70f80175 3681 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
803b2f54
SB
3682 pr_warn("btrfs: failed to start uuid_scan task\n");
3683 up(&fs_info->uuid_tree_rescan_sem);
3684 return PTR_ERR(task);
3685 }
3686
3687 return 0;
f7a81ea4 3688}
803b2f54 3689
70f80175
SB
3690int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3691{
3692 struct task_struct *task;
3693
3694 down(&fs_info->uuid_tree_rescan_sem);
3695 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3696 if (IS_ERR(task)) {
3697 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3698 pr_warn("btrfs: failed to start uuid_rescan task\n");
3699 up(&fs_info->uuid_tree_rescan_sem);
3700 return PTR_ERR(task);
3701 }
3702
3703 return 0;
3704}
3705
8f18cf13
CM
3706/*
3707 * shrinking a device means finding all of the device extents past
3708 * the new size, and then following the back refs to the chunks.
3709 * The chunk relocation code actually frees the device extent
3710 */
3711int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3712{
3713 struct btrfs_trans_handle *trans;
3714 struct btrfs_root *root = device->dev_root;
3715 struct btrfs_dev_extent *dev_extent = NULL;
3716 struct btrfs_path *path;
3717 u64 length;
3718 u64 chunk_tree;
3719 u64 chunk_objectid;
3720 u64 chunk_offset;
3721 int ret;
3722 int slot;
ba1bf481
JB
3723 int failed = 0;
3724 bool retried = false;
8f18cf13
CM
3725 struct extent_buffer *l;
3726 struct btrfs_key key;
6c41761f 3727 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3728 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3729 u64 old_size = device->total_bytes;
8f18cf13
CM
3730 u64 diff = device->total_bytes - new_size;
3731
63a212ab
SB
3732 if (device->is_tgtdev_for_dev_replace)
3733 return -EINVAL;
3734
8f18cf13
CM
3735 path = btrfs_alloc_path();
3736 if (!path)
3737 return -ENOMEM;
3738
8f18cf13
CM
3739 path->reada = 2;
3740
7d9eb12c
CM
3741 lock_chunks(root);
3742
8f18cf13 3743 device->total_bytes = new_size;
2bf64758 3744 if (device->writeable) {
2b82032c 3745 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3746 spin_lock(&root->fs_info->free_chunk_lock);
3747 root->fs_info->free_chunk_space -= diff;
3748 spin_unlock(&root->fs_info->free_chunk_lock);
3749 }
7d9eb12c 3750 unlock_chunks(root);
8f18cf13 3751
ba1bf481 3752again:
8f18cf13
CM
3753 key.objectid = device->devid;
3754 key.offset = (u64)-1;
3755 key.type = BTRFS_DEV_EXTENT_KEY;
3756
213e64da 3757 do {
8f18cf13
CM
3758 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3759 if (ret < 0)
3760 goto done;
3761
3762 ret = btrfs_previous_item(root, path, 0, key.type);
3763 if (ret < 0)
3764 goto done;
3765 if (ret) {
3766 ret = 0;
b3b4aa74 3767 btrfs_release_path(path);
bf1fb512 3768 break;
8f18cf13
CM
3769 }
3770
3771 l = path->nodes[0];
3772 slot = path->slots[0];
3773 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3774
ba1bf481 3775 if (key.objectid != device->devid) {
b3b4aa74 3776 btrfs_release_path(path);
bf1fb512 3777 break;
ba1bf481 3778 }
8f18cf13
CM
3779
3780 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3781 length = btrfs_dev_extent_length(l, dev_extent);
3782
ba1bf481 3783 if (key.offset + length <= new_size) {
b3b4aa74 3784 btrfs_release_path(path);
d6397bae 3785 break;
ba1bf481 3786 }
8f18cf13
CM
3787
3788 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3789 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3790 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3791 btrfs_release_path(path);
8f18cf13
CM
3792
3793 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3794 chunk_offset);
ba1bf481 3795 if (ret && ret != -ENOSPC)
8f18cf13 3796 goto done;
ba1bf481
JB
3797 if (ret == -ENOSPC)
3798 failed++;
213e64da 3799 } while (key.offset-- > 0);
ba1bf481
JB
3800
3801 if (failed && !retried) {
3802 failed = 0;
3803 retried = true;
3804 goto again;
3805 } else if (failed && retried) {
3806 ret = -ENOSPC;
3807 lock_chunks(root);
3808
3809 device->total_bytes = old_size;
3810 if (device->writeable)
3811 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3812 spin_lock(&root->fs_info->free_chunk_lock);
3813 root->fs_info->free_chunk_space += diff;
3814 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3815 unlock_chunks(root);
3816 goto done;
8f18cf13
CM
3817 }
3818
d6397bae 3819 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3820 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3821 if (IS_ERR(trans)) {
3822 ret = PTR_ERR(trans);
3823 goto done;
3824 }
3825
d6397bae
CB
3826 lock_chunks(root);
3827
3828 device->disk_total_bytes = new_size;
3829 /* Now btrfs_update_device() will change the on-disk size. */
3830 ret = btrfs_update_device(trans, device);
3831 if (ret) {
3832 unlock_chunks(root);
3833 btrfs_end_transaction(trans, root);
3834 goto done;
3835 }
3836 WARN_ON(diff > old_total);
3837 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3838 unlock_chunks(root);
3839 btrfs_end_transaction(trans, root);
8f18cf13
CM
3840done:
3841 btrfs_free_path(path);
3842 return ret;
3843}
3844
125ccb0a 3845static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3846 struct btrfs_key *key,
3847 struct btrfs_chunk *chunk, int item_size)
3848{
6c41761f 3849 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3850 struct btrfs_disk_key disk_key;
3851 u32 array_size;
3852 u8 *ptr;
3853
3854 array_size = btrfs_super_sys_array_size(super_copy);
3855 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3856 return -EFBIG;
3857
3858 ptr = super_copy->sys_chunk_array + array_size;
3859 btrfs_cpu_key_to_disk(&disk_key, key);
3860 memcpy(ptr, &disk_key, sizeof(disk_key));
3861 ptr += sizeof(disk_key);
3862 memcpy(ptr, chunk, item_size);
3863 item_size += sizeof(disk_key);
3864 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3865 return 0;
3866}
3867
73c5de00
AJ
3868/*
3869 * sort the devices in descending order by max_avail, total_avail
3870 */
3871static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3872{
73c5de00
AJ
3873 const struct btrfs_device_info *di_a = a;
3874 const struct btrfs_device_info *di_b = b;
9b3f68b9 3875
73c5de00 3876 if (di_a->max_avail > di_b->max_avail)
b2117a39 3877 return -1;
73c5de00 3878 if (di_a->max_avail < di_b->max_avail)
b2117a39 3879 return 1;
73c5de00
AJ
3880 if (di_a->total_avail > di_b->total_avail)
3881 return -1;
3882 if (di_a->total_avail < di_b->total_avail)
3883 return 1;
3884 return 0;
b2117a39 3885}
0b86a832 3886
48a3b636 3887static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
e6ec716f
MX
3888 [BTRFS_RAID_RAID10] = {
3889 .sub_stripes = 2,
3890 .dev_stripes = 1,
3891 .devs_max = 0, /* 0 == as many as possible */
3892 .devs_min = 4,
3893 .devs_increment = 2,
3894 .ncopies = 2,
3895 },
3896 [BTRFS_RAID_RAID1] = {
3897 .sub_stripes = 1,
3898 .dev_stripes = 1,
3899 .devs_max = 2,
3900 .devs_min = 2,
3901 .devs_increment = 2,
3902 .ncopies = 2,
3903 },
3904 [BTRFS_RAID_DUP] = {
3905 .sub_stripes = 1,
3906 .dev_stripes = 2,
3907 .devs_max = 1,
3908 .devs_min = 1,
3909 .devs_increment = 1,
3910 .ncopies = 2,
3911 },
3912 [BTRFS_RAID_RAID0] = {
3913 .sub_stripes = 1,
3914 .dev_stripes = 1,
3915 .devs_max = 0,
3916 .devs_min = 2,
3917 .devs_increment = 1,
3918 .ncopies = 1,
3919 },
3920 [BTRFS_RAID_SINGLE] = {
3921 .sub_stripes = 1,
3922 .dev_stripes = 1,
3923 .devs_max = 1,
3924 .devs_min = 1,
3925 .devs_increment = 1,
3926 .ncopies = 1,
3927 },
e942f883
CM
3928 [BTRFS_RAID_RAID5] = {
3929 .sub_stripes = 1,
3930 .dev_stripes = 1,
3931 .devs_max = 0,
3932 .devs_min = 2,
3933 .devs_increment = 1,
3934 .ncopies = 2,
3935 },
3936 [BTRFS_RAID_RAID6] = {
3937 .sub_stripes = 1,
3938 .dev_stripes = 1,
3939 .devs_max = 0,
3940 .devs_min = 3,
3941 .devs_increment = 1,
3942 .ncopies = 3,
3943 },
31e50229
LB
3944};
3945
53b381b3
DW
3946static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3947{
3948 /* TODO allow them to set a preferred stripe size */
3949 return 64 * 1024;
3950}
3951
3952static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3953{
53b381b3
DW
3954 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3955 return;
3956
ceda0864 3957 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
3958}
3959
73c5de00 3960static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
3961 struct btrfs_root *extent_root, u64 start,
3962 u64 type)
b2117a39 3963{
73c5de00
AJ
3964 struct btrfs_fs_info *info = extent_root->fs_info;
3965 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3966 struct list_head *cur;
3967 struct map_lookup *map = NULL;
3968 struct extent_map_tree *em_tree;
3969 struct extent_map *em;
3970 struct btrfs_device_info *devices_info = NULL;
3971 u64 total_avail;
3972 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
3973 int data_stripes; /* number of stripes that count for
3974 block group size */
73c5de00
AJ
3975 int sub_stripes; /* sub_stripes info for map */
3976 int dev_stripes; /* stripes per dev */
3977 int devs_max; /* max devs to use */
3978 int devs_min; /* min devs needed */
3979 int devs_increment; /* ndevs has to be a multiple of this */
3980 int ncopies; /* how many copies to data has */
3981 int ret;
3982 u64 max_stripe_size;
3983 u64 max_chunk_size;
3984 u64 stripe_size;
3985 u64 num_bytes;
53b381b3 3986 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
3987 int ndevs;
3988 int i;
3989 int j;
31e50229 3990 int index;
593060d7 3991
0c460c0d 3992 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 3993
73c5de00
AJ
3994 if (list_empty(&fs_devices->alloc_list))
3995 return -ENOSPC;
b2117a39 3996
31e50229 3997 index = __get_raid_index(type);
73c5de00 3998
31e50229
LB
3999 sub_stripes = btrfs_raid_array[index].sub_stripes;
4000 dev_stripes = btrfs_raid_array[index].dev_stripes;
4001 devs_max = btrfs_raid_array[index].devs_max;
4002 devs_min = btrfs_raid_array[index].devs_min;
4003 devs_increment = btrfs_raid_array[index].devs_increment;
4004 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4005
9b3f68b9 4006 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4007 max_stripe_size = 1024 * 1024 * 1024;
4008 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 4009 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4010 /* for larger filesystems, use larger metadata chunks */
4011 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4012 max_stripe_size = 1024 * 1024 * 1024;
4013 else
4014 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4015 max_chunk_size = max_stripe_size;
a40a90a0 4016 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4017 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
4018 max_chunk_size = 2 * max_stripe_size;
4019 } else {
4020 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
4021 type);
4022 BUG_ON(1);
9b3f68b9
CM
4023 }
4024
2b82032c
YZ
4025 /* we don't want a chunk larger than 10% of writeable space */
4026 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4027 max_chunk_size);
9b3f68b9 4028
73c5de00
AJ
4029 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4030 GFP_NOFS);
4031 if (!devices_info)
4032 return -ENOMEM;
0cad8a11 4033
73c5de00 4034 cur = fs_devices->alloc_list.next;
9b3f68b9 4035
9f680ce0 4036 /*
73c5de00
AJ
4037 * in the first pass through the devices list, we gather information
4038 * about the available holes on each device.
9f680ce0 4039 */
73c5de00
AJ
4040 ndevs = 0;
4041 while (cur != &fs_devices->alloc_list) {
4042 struct btrfs_device *device;
4043 u64 max_avail;
4044 u64 dev_offset;
b2117a39 4045
73c5de00 4046 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4047
73c5de00 4048 cur = cur->next;
b2117a39 4049
73c5de00 4050 if (!device->writeable) {
31b1a2bd 4051 WARN(1, KERN_ERR
73c5de00 4052 "btrfs: read-only device in alloc_list\n");
73c5de00
AJ
4053 continue;
4054 }
b2117a39 4055
63a212ab
SB
4056 if (!device->in_fs_metadata ||
4057 device->is_tgtdev_for_dev_replace)
73c5de00 4058 continue;
b2117a39 4059
73c5de00
AJ
4060 if (device->total_bytes > device->bytes_used)
4061 total_avail = device->total_bytes - device->bytes_used;
4062 else
4063 total_avail = 0;
38c01b96 4064
4065 /* If there is no space on this device, skip it. */
4066 if (total_avail == 0)
4067 continue;
b2117a39 4068
6df9a95e 4069 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4070 max_stripe_size * dev_stripes,
4071 &dev_offset, &max_avail);
4072 if (ret && ret != -ENOSPC)
4073 goto error;
b2117a39 4074
73c5de00
AJ
4075 if (ret == 0)
4076 max_avail = max_stripe_size * dev_stripes;
b2117a39 4077
73c5de00
AJ
4078 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4079 continue;
b2117a39 4080
063d006f
ES
4081 if (ndevs == fs_devices->rw_devices) {
4082 WARN(1, "%s: found more than %llu devices\n",
4083 __func__, fs_devices->rw_devices);
4084 break;
4085 }
73c5de00
AJ
4086 devices_info[ndevs].dev_offset = dev_offset;
4087 devices_info[ndevs].max_avail = max_avail;
4088 devices_info[ndevs].total_avail = total_avail;
4089 devices_info[ndevs].dev = device;
4090 ++ndevs;
4091 }
b2117a39 4092
73c5de00
AJ
4093 /*
4094 * now sort the devices by hole size / available space
4095 */
4096 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4097 btrfs_cmp_device_info, NULL);
b2117a39 4098
73c5de00
AJ
4099 /* round down to number of usable stripes */
4100 ndevs -= ndevs % devs_increment;
b2117a39 4101
73c5de00
AJ
4102 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4103 ret = -ENOSPC;
4104 goto error;
b2117a39 4105 }
9f680ce0 4106
73c5de00
AJ
4107 if (devs_max && ndevs > devs_max)
4108 ndevs = devs_max;
4109 /*
4110 * the primary goal is to maximize the number of stripes, so use as many
4111 * devices as possible, even if the stripes are not maximum sized.
4112 */
4113 stripe_size = devices_info[ndevs-1].max_avail;
4114 num_stripes = ndevs * dev_stripes;
b2117a39 4115
53b381b3
DW
4116 /*
4117 * this will have to be fixed for RAID1 and RAID10 over
4118 * more drives
4119 */
4120 data_stripes = num_stripes / ncopies;
4121
53b381b3
DW
4122 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4123 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4124 btrfs_super_stripesize(info->super_copy));
4125 data_stripes = num_stripes - 1;
4126 }
4127 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4128 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4129 btrfs_super_stripesize(info->super_copy));
4130 data_stripes = num_stripes - 2;
4131 }
86db2578
CM
4132
4133 /*
4134 * Use the number of data stripes to figure out how big this chunk
4135 * is really going to be in terms of logical address space,
4136 * and compare that answer with the max chunk size
4137 */
4138 if (stripe_size * data_stripes > max_chunk_size) {
4139 u64 mask = (1ULL << 24) - 1;
4140 stripe_size = max_chunk_size;
4141 do_div(stripe_size, data_stripes);
4142
4143 /* bump the answer up to a 16MB boundary */
4144 stripe_size = (stripe_size + mask) & ~mask;
4145
4146 /* but don't go higher than the limits we found
4147 * while searching for free extents
4148 */
4149 if (stripe_size > devices_info[ndevs-1].max_avail)
4150 stripe_size = devices_info[ndevs-1].max_avail;
4151 }
4152
73c5de00 4153 do_div(stripe_size, dev_stripes);
37db63a4
ID
4154
4155 /* align to BTRFS_STRIPE_LEN */
53b381b3
DW
4156 do_div(stripe_size, raid_stripe_len);
4157 stripe_size *= raid_stripe_len;
b2117a39
MX
4158
4159 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4160 if (!map) {
4161 ret = -ENOMEM;
4162 goto error;
4163 }
4164 map->num_stripes = num_stripes;
9b3f68b9 4165
73c5de00
AJ
4166 for (i = 0; i < ndevs; ++i) {
4167 for (j = 0; j < dev_stripes; ++j) {
4168 int s = i * dev_stripes + j;
4169 map->stripes[s].dev = devices_info[i].dev;
4170 map->stripes[s].physical = devices_info[i].dev_offset +
4171 j * stripe_size;
6324fbf3 4172 }
6324fbf3 4173 }
2b82032c 4174 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4175 map->stripe_len = raid_stripe_len;
4176 map->io_align = raid_stripe_len;
4177 map->io_width = raid_stripe_len;
2b82032c 4178 map->type = type;
2b82032c 4179 map->sub_stripes = sub_stripes;
0b86a832 4180
53b381b3 4181 num_bytes = stripe_size * data_stripes;
0b86a832 4182
73c5de00 4183 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4184
172ddd60 4185 em = alloc_extent_map();
2b82032c 4186 if (!em) {
b2117a39
MX
4187 ret = -ENOMEM;
4188 goto error;
593060d7 4189 }
2b82032c
YZ
4190 em->bdev = (struct block_device *)map;
4191 em->start = start;
73c5de00 4192 em->len = num_bytes;
2b82032c
YZ
4193 em->block_start = 0;
4194 em->block_len = em->len;
6df9a95e 4195 em->orig_block_len = stripe_size;
593060d7 4196
2b82032c 4197 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4198 write_lock(&em_tree->lock);
09a2a8f9 4199 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4200 if (!ret) {
4201 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4202 atomic_inc(&em->refs);
4203 }
890871be 4204 write_unlock(&em_tree->lock);
0f5d42b2
JB
4205 if (ret) {
4206 free_extent_map(em);
1dd4602f 4207 goto error;
0f5d42b2 4208 }
0b86a832 4209
04487488
JB
4210 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4211 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4212 start, num_bytes);
6df9a95e
JB
4213 if (ret)
4214 goto error_del_extent;
2b82032c 4215
0f5d42b2 4216 free_extent_map(em);
53b381b3
DW
4217 check_raid56_incompat_flag(extent_root->fs_info, type);
4218
b2117a39 4219 kfree(devices_info);
2b82032c 4220 return 0;
b2117a39 4221
6df9a95e 4222error_del_extent:
0f5d42b2
JB
4223 write_lock(&em_tree->lock);
4224 remove_extent_mapping(em_tree, em);
4225 write_unlock(&em_tree->lock);
4226
4227 /* One for our allocation */
4228 free_extent_map(em);
4229 /* One for the tree reference */
4230 free_extent_map(em);
b2117a39
MX
4231error:
4232 kfree(map);
4233 kfree(devices_info);
4234 return ret;
2b82032c
YZ
4235}
4236
6df9a95e 4237int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4238 struct btrfs_root *extent_root,
6df9a95e 4239 u64 chunk_offset, u64 chunk_size)
2b82032c 4240{
2b82032c
YZ
4241 struct btrfs_key key;
4242 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4243 struct btrfs_device *device;
4244 struct btrfs_chunk *chunk;
4245 struct btrfs_stripe *stripe;
6df9a95e
JB
4246 struct extent_map_tree *em_tree;
4247 struct extent_map *em;
4248 struct map_lookup *map;
4249 size_t item_size;
4250 u64 dev_offset;
4251 u64 stripe_size;
4252 int i = 0;
2b82032c
YZ
4253 int ret;
4254
6df9a95e
JB
4255 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4256 read_lock(&em_tree->lock);
4257 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4258 read_unlock(&em_tree->lock);
4259
4260 if (!em) {
4261 btrfs_crit(extent_root->fs_info, "unable to find logical "
4262 "%Lu len %Lu", chunk_offset, chunk_size);
4263 return -EINVAL;
4264 }
4265
4266 if (em->start != chunk_offset || em->len != chunk_size) {
4267 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4268 " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
4269 chunk_size, em->start, em->len);
4270 free_extent_map(em);
4271 return -EINVAL;
4272 }
4273
4274 map = (struct map_lookup *)em->bdev;
4275 item_size = btrfs_chunk_item_size(map->num_stripes);
4276 stripe_size = em->orig_block_len;
4277
2b82032c 4278 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4279 if (!chunk) {
4280 ret = -ENOMEM;
4281 goto out;
4282 }
4283
4284 for (i = 0; i < map->num_stripes; i++) {
4285 device = map->stripes[i].dev;
4286 dev_offset = map->stripes[i].physical;
2b82032c 4287
2b82032c 4288 device->bytes_used += stripe_size;
0b86a832 4289 ret = btrfs_update_device(trans, device);
3acd3953 4290 if (ret)
6df9a95e
JB
4291 goto out;
4292 ret = btrfs_alloc_dev_extent(trans, device,
4293 chunk_root->root_key.objectid,
4294 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4295 chunk_offset, dev_offset,
4296 stripe_size);
4297 if (ret)
4298 goto out;
2b82032c
YZ
4299 }
4300
2bf64758
JB
4301 spin_lock(&extent_root->fs_info->free_chunk_lock);
4302 extent_root->fs_info->free_chunk_space -= (stripe_size *
4303 map->num_stripes);
4304 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4305
2b82032c 4306 stripe = &chunk->stripe;
6df9a95e
JB
4307 for (i = 0; i < map->num_stripes; i++) {
4308 device = map->stripes[i].dev;
4309 dev_offset = map->stripes[i].physical;
0b86a832 4310
e17cade2
CM
4311 btrfs_set_stack_stripe_devid(stripe, device->devid);
4312 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4313 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4314 stripe++;
0b86a832
CM
4315 }
4316
2b82032c 4317 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4318 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4319 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4320 btrfs_set_stack_chunk_type(chunk, map->type);
4321 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4322 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4323 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4324 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4325 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4326
2b82032c
YZ
4327 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4328 key.type = BTRFS_CHUNK_ITEM_KEY;
4329 key.offset = chunk_offset;
0b86a832 4330
2b82032c 4331 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4332 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4333 /*
4334 * TODO: Cleanup of inserted chunk root in case of
4335 * failure.
4336 */
125ccb0a 4337 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4338 item_size);
8f18cf13 4339 }
1abe9b8a 4340
6df9a95e 4341out:
0b86a832 4342 kfree(chunk);
6df9a95e 4343 free_extent_map(em);
4ed1d16e 4344 return ret;
2b82032c 4345}
0b86a832 4346
2b82032c
YZ
4347/*
4348 * Chunk allocation falls into two parts. The first part does works
4349 * that make the new allocated chunk useable, but not do any operation
4350 * that modifies the chunk tree. The second part does the works that
4351 * require modifying the chunk tree. This division is important for the
4352 * bootstrap process of adding storage to a seed btrfs.
4353 */
4354int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4355 struct btrfs_root *extent_root, u64 type)
4356{
4357 u64 chunk_offset;
2b82032c 4358
6df9a95e
JB
4359 chunk_offset = find_next_chunk(extent_root->fs_info);
4360 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4361}
4362
d397712b 4363static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4364 struct btrfs_root *root,
4365 struct btrfs_device *device)
4366{
4367 u64 chunk_offset;
4368 u64 sys_chunk_offset;
2b82032c 4369 u64 alloc_profile;
2b82032c
YZ
4370 struct btrfs_fs_info *fs_info = root->fs_info;
4371 struct btrfs_root *extent_root = fs_info->extent_root;
4372 int ret;
4373
6df9a95e 4374 chunk_offset = find_next_chunk(fs_info);
de98ced9 4375 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4376 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4377 alloc_profile);
79787eaa
JM
4378 if (ret)
4379 return ret;
2b82032c 4380
6df9a95e 4381 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4382 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4383 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4384 alloc_profile);
005d6427
DS
4385 if (ret) {
4386 btrfs_abort_transaction(trans, root, ret);
4387 goto out;
4388 }
2b82032c
YZ
4389
4390 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
79787eaa 4391 if (ret)
005d6427 4392 btrfs_abort_transaction(trans, root, ret);
005d6427 4393out:
79787eaa 4394 return ret;
2b82032c
YZ
4395}
4396
4397int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4398{
4399 struct extent_map *em;
4400 struct map_lookup *map;
4401 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4402 int readonly = 0;
4403 int i;
4404
890871be 4405 read_lock(&map_tree->map_tree.lock);
2b82032c 4406 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4407 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4408 if (!em)
4409 return 1;
4410
f48b9075
JB
4411 if (btrfs_test_opt(root, DEGRADED)) {
4412 free_extent_map(em);
4413 return 0;
4414 }
4415
2b82032c
YZ
4416 map = (struct map_lookup *)em->bdev;
4417 for (i = 0; i < map->num_stripes; i++) {
4418 if (!map->stripes[i].dev->writeable) {
4419 readonly = 1;
4420 break;
4421 }
4422 }
0b86a832 4423 free_extent_map(em);
2b82032c 4424 return readonly;
0b86a832
CM
4425}
4426
4427void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4428{
a8067e02 4429 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4430}
4431
4432void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4433{
4434 struct extent_map *em;
4435
d397712b 4436 while (1) {
890871be 4437 write_lock(&tree->map_tree.lock);
0b86a832
CM
4438 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4439 if (em)
4440 remove_extent_mapping(&tree->map_tree, em);
890871be 4441 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4442 if (!em)
4443 break;
4444 kfree(em->bdev);
4445 /* once for us */
4446 free_extent_map(em);
4447 /* once for the tree */
4448 free_extent_map(em);
4449 }
4450}
4451
5d964051 4452int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4453{
5d964051 4454 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4455 struct extent_map *em;
4456 struct map_lookup *map;
4457 struct extent_map_tree *em_tree = &map_tree->map_tree;
4458 int ret;
4459
890871be 4460 read_lock(&em_tree->lock);
f188591e 4461 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4462 read_unlock(&em_tree->lock);
f188591e 4463
fb7669b5
JB
4464 /*
4465 * We could return errors for these cases, but that could get ugly and
4466 * we'd probably do the same thing which is just not do anything else
4467 * and exit, so return 1 so the callers don't try to use other copies.
4468 */
4469 if (!em) {
ccf39f92 4470 btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical,
fb7669b5
JB
4471 logical+len);
4472 return 1;
4473 }
4474
4475 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4476 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
fb7669b5
JB
4477 "%Lu-%Lu\n", logical, logical+len, em->start,
4478 em->start + em->len);
4479 return 1;
4480 }
4481
f188591e
CM
4482 map = (struct map_lookup *)em->bdev;
4483 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4484 ret = map->num_stripes;
321aecc6
CM
4485 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4486 ret = map->sub_stripes;
53b381b3
DW
4487 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4488 ret = 2;
4489 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4490 ret = 3;
f188591e
CM
4491 else
4492 ret = 1;
4493 free_extent_map(em);
ad6d620e
SB
4494
4495 btrfs_dev_replace_lock(&fs_info->dev_replace);
4496 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4497 ret++;
4498 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4499
f188591e
CM
4500 return ret;
4501}
4502
53b381b3
DW
4503unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4504 struct btrfs_mapping_tree *map_tree,
4505 u64 logical)
4506{
4507 struct extent_map *em;
4508 struct map_lookup *map;
4509 struct extent_map_tree *em_tree = &map_tree->map_tree;
4510 unsigned long len = root->sectorsize;
4511
4512 read_lock(&em_tree->lock);
4513 em = lookup_extent_mapping(em_tree, logical, len);
4514 read_unlock(&em_tree->lock);
4515 BUG_ON(!em);
4516
4517 BUG_ON(em->start > logical || em->start + em->len < logical);
4518 map = (struct map_lookup *)em->bdev;
4519 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4520 BTRFS_BLOCK_GROUP_RAID6)) {
4521 len = map->stripe_len * nr_data_stripes(map);
4522 }
4523 free_extent_map(em);
4524 return len;
4525}
4526
4527int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4528 u64 logical, u64 len, int mirror_num)
4529{
4530 struct extent_map *em;
4531 struct map_lookup *map;
4532 struct extent_map_tree *em_tree = &map_tree->map_tree;
4533 int ret = 0;
4534
4535 read_lock(&em_tree->lock);
4536 em = lookup_extent_mapping(em_tree, logical, len);
4537 read_unlock(&em_tree->lock);
4538 BUG_ON(!em);
4539
4540 BUG_ON(em->start > logical || em->start + em->len < logical);
4541 map = (struct map_lookup *)em->bdev;
4542 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4543 BTRFS_BLOCK_GROUP_RAID6))
4544 ret = 1;
4545 free_extent_map(em);
4546 return ret;
4547}
4548
30d9861f
SB
4549static int find_live_mirror(struct btrfs_fs_info *fs_info,
4550 struct map_lookup *map, int first, int num,
4551 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4552{
4553 int i;
30d9861f
SB
4554 int tolerance;
4555 struct btrfs_device *srcdev;
4556
4557 if (dev_replace_is_ongoing &&
4558 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4559 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4560 srcdev = fs_info->dev_replace.srcdev;
4561 else
4562 srcdev = NULL;
4563
4564 /*
4565 * try to avoid the drive that is the source drive for a
4566 * dev-replace procedure, only choose it if no other non-missing
4567 * mirror is available
4568 */
4569 for (tolerance = 0; tolerance < 2; tolerance++) {
4570 if (map->stripes[optimal].dev->bdev &&
4571 (tolerance || map->stripes[optimal].dev != srcdev))
4572 return optimal;
4573 for (i = first; i < first + num; i++) {
4574 if (map->stripes[i].dev->bdev &&
4575 (tolerance || map->stripes[i].dev != srcdev))
4576 return i;
4577 }
dfe25020 4578 }
30d9861f 4579
dfe25020
CM
4580 /* we couldn't find one that doesn't fail. Just return something
4581 * and the io error handling code will clean up eventually
4582 */
4583 return optimal;
4584}
4585
53b381b3
DW
4586static inline int parity_smaller(u64 a, u64 b)
4587{
4588 return a > b;
4589}
4590
4591/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4592static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4593{
4594 struct btrfs_bio_stripe s;
4595 int i;
4596 u64 l;
4597 int again = 1;
4598
4599 while (again) {
4600 again = 0;
4601 for (i = 0; i < bbio->num_stripes - 1; i++) {
4602 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4603 s = bbio->stripes[i];
4604 l = raid_map[i];
4605 bbio->stripes[i] = bbio->stripes[i+1];
4606 raid_map[i] = raid_map[i+1];
4607 bbio->stripes[i+1] = s;
4608 raid_map[i+1] = l;
4609 again = 1;
4610 }
4611 }
4612 }
4613}
4614
3ec706c8 4615static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4616 u64 logical, u64 *length,
a1d3c478 4617 struct btrfs_bio **bbio_ret,
53b381b3 4618 int mirror_num, u64 **raid_map_ret)
0b86a832
CM
4619{
4620 struct extent_map *em;
4621 struct map_lookup *map;
3ec706c8 4622 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
4623 struct extent_map_tree *em_tree = &map_tree->map_tree;
4624 u64 offset;
593060d7 4625 u64 stripe_offset;
fce3bb9a 4626 u64 stripe_end_offset;
593060d7 4627 u64 stripe_nr;
fce3bb9a
LD
4628 u64 stripe_nr_orig;
4629 u64 stripe_nr_end;
53b381b3
DW
4630 u64 stripe_len;
4631 u64 *raid_map = NULL;
593060d7 4632 int stripe_index;
cea9e445 4633 int i;
de11cc12 4634 int ret = 0;
f2d8d74d 4635 int num_stripes;
a236aed1 4636 int max_errors = 0;
a1d3c478 4637 struct btrfs_bio *bbio = NULL;
472262f3
SB
4638 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4639 int dev_replace_is_ongoing = 0;
4640 int num_alloc_stripes;
ad6d620e
SB
4641 int patch_the_first_stripe_for_dev_replace = 0;
4642 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 4643 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 4644
890871be 4645 read_lock(&em_tree->lock);
0b86a832 4646 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 4647 read_unlock(&em_tree->lock);
f2d8d74d 4648
3b951516 4649 if (!em) {
c2cf52eb 4650 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 4651 logical, *length);
9bb91873
JB
4652 return -EINVAL;
4653 }
4654
4655 if (em->start > logical || em->start + em->len < logical) {
4656 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4657 "found %Lu-%Lu\n", logical, em->start,
4658 em->start + em->len);
4659 return -EINVAL;
3b951516 4660 }
0b86a832 4661
0b86a832
CM
4662 map = (struct map_lookup *)em->bdev;
4663 offset = logical - em->start;
593060d7 4664
53b381b3 4665 stripe_len = map->stripe_len;
593060d7
CM
4666 stripe_nr = offset;
4667 /*
4668 * stripe_nr counts the total number of stripes we have to stride
4669 * to get to this block
4670 */
53b381b3 4671 do_div(stripe_nr, stripe_len);
593060d7 4672
53b381b3 4673 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
4674 BUG_ON(offset < stripe_offset);
4675
4676 /* stripe_offset is the offset of this block in its stripe*/
4677 stripe_offset = offset - stripe_offset;
4678
53b381b3
DW
4679 /* if we're here for raid56, we need to know the stripe aligned start */
4680 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4681 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4682 raid56_full_stripe_start = offset;
4683
4684 /* allow a write of a full stripe, but make sure we don't
4685 * allow straddling of stripes
4686 */
4687 do_div(raid56_full_stripe_start, full_stripe_len);
4688 raid56_full_stripe_start *= full_stripe_len;
4689 }
4690
4691 if (rw & REQ_DISCARD) {
4692 /* we don't discard raid56 yet */
4693 if (map->type &
4694 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4695 ret = -EOPNOTSUPP;
4696 goto out;
4697 }
fce3bb9a 4698 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
4699 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4700 u64 max_len;
4701 /* For writes to RAID[56], allow a full stripeset across all disks.
4702 For other RAID types and for RAID[56] reads, just allow a single
4703 stripe (on a single disk). */
4704 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4705 (rw & REQ_WRITE)) {
4706 max_len = stripe_len * nr_data_stripes(map) -
4707 (offset - raid56_full_stripe_start);
4708 } else {
4709 /* we limit the length of each bio to what fits in a stripe */
4710 max_len = stripe_len - stripe_offset;
4711 }
4712 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
4713 } else {
4714 *length = em->len - offset;
4715 }
f2d8d74d 4716
53b381b3
DW
4717 /* This is for when we're called from btrfs_merge_bio_hook() and all
4718 it cares about is the length */
a1d3c478 4719 if (!bbio_ret)
cea9e445
CM
4720 goto out;
4721
472262f3
SB
4722 btrfs_dev_replace_lock(dev_replace);
4723 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4724 if (!dev_replace_is_ongoing)
4725 btrfs_dev_replace_unlock(dev_replace);
4726
ad6d620e
SB
4727 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4728 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4729 dev_replace->tgtdev != NULL) {
4730 /*
4731 * in dev-replace case, for repair case (that's the only
4732 * case where the mirror is selected explicitly when
4733 * calling btrfs_map_block), blocks left of the left cursor
4734 * can also be read from the target drive.
4735 * For REQ_GET_READ_MIRRORS, the target drive is added as
4736 * the last one to the array of stripes. For READ, it also
4737 * needs to be supported using the same mirror number.
4738 * If the requested block is not left of the left cursor,
4739 * EIO is returned. This can happen because btrfs_num_copies()
4740 * returns one more in the dev-replace case.
4741 */
4742 u64 tmp_length = *length;
4743 struct btrfs_bio *tmp_bbio = NULL;
4744 int tmp_num_stripes;
4745 u64 srcdev_devid = dev_replace->srcdev->devid;
4746 int index_srcdev = 0;
4747 int found = 0;
4748 u64 physical_of_found = 0;
4749
4750 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
53b381b3 4751 logical, &tmp_length, &tmp_bbio, 0, NULL);
ad6d620e
SB
4752 if (ret) {
4753 WARN_ON(tmp_bbio != NULL);
4754 goto out;
4755 }
4756
4757 tmp_num_stripes = tmp_bbio->num_stripes;
4758 if (mirror_num > tmp_num_stripes) {
4759 /*
4760 * REQ_GET_READ_MIRRORS does not contain this
4761 * mirror, that means that the requested area
4762 * is not left of the left cursor
4763 */
4764 ret = -EIO;
4765 kfree(tmp_bbio);
4766 goto out;
4767 }
4768
4769 /*
4770 * process the rest of the function using the mirror_num
4771 * of the source drive. Therefore look it up first.
4772 * At the end, patch the device pointer to the one of the
4773 * target drive.
4774 */
4775 for (i = 0; i < tmp_num_stripes; i++) {
4776 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4777 /*
4778 * In case of DUP, in order to keep it
4779 * simple, only add the mirror with the
4780 * lowest physical address
4781 */
4782 if (found &&
4783 physical_of_found <=
4784 tmp_bbio->stripes[i].physical)
4785 continue;
4786 index_srcdev = i;
4787 found = 1;
4788 physical_of_found =
4789 tmp_bbio->stripes[i].physical;
4790 }
4791 }
4792
4793 if (found) {
4794 mirror_num = index_srcdev + 1;
4795 patch_the_first_stripe_for_dev_replace = 1;
4796 physical_to_patch_in_first_stripe = physical_of_found;
4797 } else {
4798 WARN_ON(1);
4799 ret = -EIO;
4800 kfree(tmp_bbio);
4801 goto out;
4802 }
4803
4804 kfree(tmp_bbio);
4805 } else if (mirror_num > map->num_stripes) {
4806 mirror_num = 0;
4807 }
4808
f2d8d74d 4809 num_stripes = 1;
cea9e445 4810 stripe_index = 0;
fce3bb9a 4811 stripe_nr_orig = stripe_nr;
fda2832f 4812 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
fce3bb9a
LD
4813 do_div(stripe_nr_end, map->stripe_len);
4814 stripe_end_offset = stripe_nr_end * map->stripe_len -
4815 (offset + *length);
53b381b3 4816
fce3bb9a
LD
4817 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4818 if (rw & REQ_DISCARD)
4819 num_stripes = min_t(u64, map->num_stripes,
4820 stripe_nr_end - stripe_nr_orig);
4821 stripe_index = do_div(stripe_nr, map->num_stripes);
4822 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 4823 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 4824 num_stripes = map->num_stripes;
2fff734f 4825 else if (mirror_num)
f188591e 4826 stripe_index = mirror_num - 1;
dfe25020 4827 else {
30d9861f 4828 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 4829 map->num_stripes,
30d9861f
SB
4830 current->pid % map->num_stripes,
4831 dev_replace_is_ongoing);
a1d3c478 4832 mirror_num = stripe_index + 1;
dfe25020 4833 }
2fff734f 4834
611f0e00 4835 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 4836 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 4837 num_stripes = map->num_stripes;
a1d3c478 4838 } else if (mirror_num) {
f188591e 4839 stripe_index = mirror_num - 1;
a1d3c478
JS
4840 } else {
4841 mirror_num = 1;
4842 }
2fff734f 4843
321aecc6
CM
4844 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4845 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
4846
4847 stripe_index = do_div(stripe_nr, factor);
4848 stripe_index *= map->sub_stripes;
4849
29a8d9a0 4850 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 4851 num_stripes = map->sub_stripes;
fce3bb9a
LD
4852 else if (rw & REQ_DISCARD)
4853 num_stripes = min_t(u64, map->sub_stripes *
4854 (stripe_nr_end - stripe_nr_orig),
4855 map->num_stripes);
321aecc6
CM
4856 else if (mirror_num)
4857 stripe_index += mirror_num - 1;
dfe25020 4858 else {
3e74317a 4859 int old_stripe_index = stripe_index;
30d9861f
SB
4860 stripe_index = find_live_mirror(fs_info, map,
4861 stripe_index,
dfe25020 4862 map->sub_stripes, stripe_index +
30d9861f
SB
4863 current->pid % map->sub_stripes,
4864 dev_replace_is_ongoing);
3e74317a 4865 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 4866 }
53b381b3
DW
4867
4868 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4869 BTRFS_BLOCK_GROUP_RAID6)) {
4870 u64 tmp;
4871
4872 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4873 && raid_map_ret) {
4874 int i, rot;
4875
4876 /* push stripe_nr back to the start of the full stripe */
4877 stripe_nr = raid56_full_stripe_start;
4878 do_div(stripe_nr, stripe_len);
4879
4880 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4881
4882 /* RAID[56] write or recovery. Return all stripes */
4883 num_stripes = map->num_stripes;
4884 max_errors = nr_parity_stripes(map);
4885
4886 raid_map = kmalloc(sizeof(u64) * num_stripes,
4887 GFP_NOFS);
4888 if (!raid_map) {
4889 ret = -ENOMEM;
4890 goto out;
4891 }
4892
4893 /* Work out the disk rotation on this stripe-set */
4894 tmp = stripe_nr;
4895 rot = do_div(tmp, num_stripes);
4896
4897 /* Fill in the logical address of each stripe */
4898 tmp = stripe_nr * nr_data_stripes(map);
4899 for (i = 0; i < nr_data_stripes(map); i++)
4900 raid_map[(i+rot) % num_stripes] =
4901 em->start + (tmp + i) * map->stripe_len;
4902
4903 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4904 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4905 raid_map[(i+rot+1) % num_stripes] =
4906 RAID6_Q_STRIPE;
4907
4908 *length = map->stripe_len;
4909 stripe_index = 0;
4910 stripe_offset = 0;
4911 } else {
4912 /*
4913 * Mirror #0 or #1 means the original data block.
4914 * Mirror #2 is RAID5 parity block.
4915 * Mirror #3 is RAID6 Q block.
4916 */
4917 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4918 if (mirror_num > 1)
4919 stripe_index = nr_data_stripes(map) +
4920 mirror_num - 2;
4921
4922 /* We distribute the parity blocks across stripes */
4923 tmp = stripe_nr + stripe_index;
4924 stripe_index = do_div(tmp, map->num_stripes);
4925 }
8790d502
CM
4926 } else {
4927 /*
4928 * after this do_div call, stripe_nr is the number of stripes
4929 * on this device we have to walk to find the data, and
4930 * stripe_index is the number of our device in the stripe array
4931 */
4932 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 4933 mirror_num = stripe_index + 1;
8790d502 4934 }
593060d7 4935 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 4936
472262f3 4937 num_alloc_stripes = num_stripes;
ad6d620e
SB
4938 if (dev_replace_is_ongoing) {
4939 if (rw & (REQ_WRITE | REQ_DISCARD))
4940 num_alloc_stripes <<= 1;
4941 if (rw & REQ_GET_READ_MIRRORS)
4942 num_alloc_stripes++;
4943 }
472262f3 4944 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
de11cc12 4945 if (!bbio) {
eb2067f7 4946 kfree(raid_map);
de11cc12
LZ
4947 ret = -ENOMEM;
4948 goto out;
4949 }
4950 atomic_set(&bbio->error, 0);
4951
fce3bb9a 4952 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
4953 int factor = 0;
4954 int sub_stripes = 0;
4955 u64 stripes_per_dev = 0;
4956 u32 remaining_stripes = 0;
b89203f7 4957 u32 last_stripe = 0;
ec9ef7a1
LZ
4958
4959 if (map->type &
4960 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4961 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4962 sub_stripes = 1;
4963 else
4964 sub_stripes = map->sub_stripes;
4965
4966 factor = map->num_stripes / sub_stripes;
4967 stripes_per_dev = div_u64_rem(stripe_nr_end -
4968 stripe_nr_orig,
4969 factor,
4970 &remaining_stripes);
b89203f7
LB
4971 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
4972 last_stripe *= sub_stripes;
ec9ef7a1
LZ
4973 }
4974
fce3bb9a 4975 for (i = 0; i < num_stripes; i++) {
a1d3c478 4976 bbio->stripes[i].physical =
f2d8d74d
CM
4977 map->stripes[stripe_index].physical +
4978 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 4979 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 4980
ec9ef7a1
LZ
4981 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
4982 BTRFS_BLOCK_GROUP_RAID10)) {
4983 bbio->stripes[i].length = stripes_per_dev *
4984 map->stripe_len;
b89203f7 4985
ec9ef7a1
LZ
4986 if (i / sub_stripes < remaining_stripes)
4987 bbio->stripes[i].length +=
4988 map->stripe_len;
b89203f7
LB
4989
4990 /*
4991 * Special for the first stripe and
4992 * the last stripe:
4993 *
4994 * |-------|...|-------|
4995 * |----------|
4996 * off end_off
4997 */
ec9ef7a1 4998 if (i < sub_stripes)
a1d3c478 4999 bbio->stripes[i].length -=
fce3bb9a 5000 stripe_offset;
b89203f7
LB
5001
5002 if (stripe_index >= last_stripe &&
5003 stripe_index <= (last_stripe +
5004 sub_stripes - 1))
a1d3c478 5005 bbio->stripes[i].length -=
fce3bb9a 5006 stripe_end_offset;
b89203f7 5007
ec9ef7a1
LZ
5008 if (i == sub_stripes - 1)
5009 stripe_offset = 0;
fce3bb9a 5010 } else
a1d3c478 5011 bbio->stripes[i].length = *length;
fce3bb9a
LD
5012
5013 stripe_index++;
5014 if (stripe_index == map->num_stripes) {
5015 /* This could only happen for RAID0/10 */
5016 stripe_index = 0;
5017 stripe_nr++;
5018 }
5019 }
5020 } else {
5021 for (i = 0; i < num_stripes; i++) {
a1d3c478 5022 bbio->stripes[i].physical =
212a17ab
LT
5023 map->stripes[stripe_index].physical +
5024 stripe_offset +
5025 stripe_nr * map->stripe_len;
a1d3c478 5026 bbio->stripes[i].dev =
212a17ab 5027 map->stripes[stripe_index].dev;
fce3bb9a 5028 stripe_index++;
f2d8d74d 5029 }
593060d7 5030 }
de11cc12 5031
29a8d9a0 5032 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
de11cc12
LZ
5033 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5034 BTRFS_BLOCK_GROUP_RAID10 |
53b381b3 5035 BTRFS_BLOCK_GROUP_RAID5 |
de11cc12
LZ
5036 BTRFS_BLOCK_GROUP_DUP)) {
5037 max_errors = 1;
53b381b3
DW
5038 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5039 max_errors = 2;
de11cc12 5040 }
f2d8d74d 5041 }
de11cc12 5042
472262f3
SB
5043 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5044 dev_replace->tgtdev != NULL) {
5045 int index_where_to_add;
5046 u64 srcdev_devid = dev_replace->srcdev->devid;
5047
5048 /*
5049 * duplicate the write operations while the dev replace
5050 * procedure is running. Since the copying of the old disk
5051 * to the new disk takes place at run time while the
5052 * filesystem is mounted writable, the regular write
5053 * operations to the old disk have to be duplicated to go
5054 * to the new disk as well.
5055 * Note that device->missing is handled by the caller, and
5056 * that the write to the old disk is already set up in the
5057 * stripes array.
5058 */
5059 index_where_to_add = num_stripes;
5060 for (i = 0; i < num_stripes; i++) {
5061 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5062 /* write to new disk, too */
5063 struct btrfs_bio_stripe *new =
5064 bbio->stripes + index_where_to_add;
5065 struct btrfs_bio_stripe *old =
5066 bbio->stripes + i;
5067
5068 new->physical = old->physical;
5069 new->length = old->length;
5070 new->dev = dev_replace->tgtdev;
5071 index_where_to_add++;
5072 max_errors++;
5073 }
5074 }
5075 num_stripes = index_where_to_add;
ad6d620e
SB
5076 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5077 dev_replace->tgtdev != NULL) {
5078 u64 srcdev_devid = dev_replace->srcdev->devid;
5079 int index_srcdev = 0;
5080 int found = 0;
5081 u64 physical_of_found = 0;
5082
5083 /*
5084 * During the dev-replace procedure, the target drive can
5085 * also be used to read data in case it is needed to repair
5086 * a corrupt block elsewhere. This is possible if the
5087 * requested area is left of the left cursor. In this area,
5088 * the target drive is a full copy of the source drive.
5089 */
5090 for (i = 0; i < num_stripes; i++) {
5091 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5092 /*
5093 * In case of DUP, in order to keep it
5094 * simple, only add the mirror with the
5095 * lowest physical address
5096 */
5097 if (found &&
5098 physical_of_found <=
5099 bbio->stripes[i].physical)
5100 continue;
5101 index_srcdev = i;
5102 found = 1;
5103 physical_of_found = bbio->stripes[i].physical;
5104 }
5105 }
5106 if (found) {
5107 u64 length = map->stripe_len;
5108
5109 if (physical_of_found + length <=
5110 dev_replace->cursor_left) {
5111 struct btrfs_bio_stripe *tgtdev_stripe =
5112 bbio->stripes + num_stripes;
5113
5114 tgtdev_stripe->physical = physical_of_found;
5115 tgtdev_stripe->length =
5116 bbio->stripes[index_srcdev].length;
5117 tgtdev_stripe->dev = dev_replace->tgtdev;
5118
5119 num_stripes++;
5120 }
5121 }
472262f3
SB
5122 }
5123
de11cc12
LZ
5124 *bbio_ret = bbio;
5125 bbio->num_stripes = num_stripes;
5126 bbio->max_errors = max_errors;
5127 bbio->mirror_num = mirror_num;
ad6d620e
SB
5128
5129 /*
5130 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5131 * mirror_num == num_stripes + 1 && dev_replace target drive is
5132 * available as a mirror
5133 */
5134 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5135 WARN_ON(num_stripes > 1);
5136 bbio->stripes[0].dev = dev_replace->tgtdev;
5137 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5138 bbio->mirror_num = map->num_stripes + 1;
5139 }
53b381b3
DW
5140 if (raid_map) {
5141 sort_parity_stripes(bbio, raid_map);
5142 *raid_map_ret = raid_map;
5143 }
cea9e445 5144out:
472262f3
SB
5145 if (dev_replace_is_ongoing)
5146 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5147 free_extent_map(em);
de11cc12 5148 return ret;
0b86a832
CM
5149}
5150
3ec706c8 5151int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5152 u64 logical, u64 *length,
a1d3c478 5153 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5154{
3ec706c8 5155 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
53b381b3 5156 mirror_num, NULL);
f2d8d74d
CM
5157}
5158
a512bbf8
YZ
5159int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5160 u64 chunk_start, u64 physical, u64 devid,
5161 u64 **logical, int *naddrs, int *stripe_len)
5162{
5163 struct extent_map_tree *em_tree = &map_tree->map_tree;
5164 struct extent_map *em;
5165 struct map_lookup *map;
5166 u64 *buf;
5167 u64 bytenr;
5168 u64 length;
5169 u64 stripe_nr;
53b381b3 5170 u64 rmap_len;
a512bbf8
YZ
5171 int i, j, nr = 0;
5172
890871be 5173 read_lock(&em_tree->lock);
a512bbf8 5174 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5175 read_unlock(&em_tree->lock);
a512bbf8 5176
835d974f
JB
5177 if (!em) {
5178 printk(KERN_ERR "btrfs: couldn't find em for chunk %Lu\n",
5179 chunk_start);
5180 return -EIO;
5181 }
5182
5183 if (em->start != chunk_start) {
5184 printk(KERN_ERR "btrfs: bad chunk start, em=%Lu, wanted=%Lu\n",
5185 em->start, chunk_start);
5186 free_extent_map(em);
5187 return -EIO;
5188 }
a512bbf8
YZ
5189 map = (struct map_lookup *)em->bdev;
5190
5191 length = em->len;
53b381b3
DW
5192 rmap_len = map->stripe_len;
5193
a512bbf8
YZ
5194 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5195 do_div(length, map->num_stripes / map->sub_stripes);
5196 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5197 do_div(length, map->num_stripes);
53b381b3
DW
5198 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5199 BTRFS_BLOCK_GROUP_RAID6)) {
5200 do_div(length, nr_data_stripes(map));
5201 rmap_len = map->stripe_len * nr_data_stripes(map);
5202 }
a512bbf8
YZ
5203
5204 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 5205 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5206
5207 for (i = 0; i < map->num_stripes; i++) {
5208 if (devid && map->stripes[i].dev->devid != devid)
5209 continue;
5210 if (map->stripes[i].physical > physical ||
5211 map->stripes[i].physical + length <= physical)
5212 continue;
5213
5214 stripe_nr = physical - map->stripes[i].physical;
5215 do_div(stripe_nr, map->stripe_len);
5216
5217 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5218 stripe_nr = stripe_nr * map->num_stripes + i;
5219 do_div(stripe_nr, map->sub_stripes);
5220 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5221 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5222 } /* else if RAID[56], multiply by nr_data_stripes().
5223 * Alternatively, just use rmap_len below instead of
5224 * map->stripe_len */
5225
5226 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5227 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5228 for (j = 0; j < nr; j++) {
5229 if (buf[j] == bytenr)
5230 break;
5231 }
934d375b
CM
5232 if (j == nr) {
5233 WARN_ON(nr >= map->num_stripes);
a512bbf8 5234 buf[nr++] = bytenr;
934d375b 5235 }
a512bbf8
YZ
5236 }
5237
a512bbf8
YZ
5238 *logical = buf;
5239 *naddrs = nr;
53b381b3 5240 *stripe_len = rmap_len;
a512bbf8
YZ
5241
5242 free_extent_map(em);
5243 return 0;
f2d8d74d
CM
5244}
5245
a1d3c478 5246static void btrfs_end_bio(struct bio *bio, int err)
8790d502 5247{
9be3395b 5248 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5249 int is_orig_bio = 0;
8790d502 5250
442a4f63 5251 if (err) {
a1d3c478 5252 atomic_inc(&bbio->error);
442a4f63
SB
5253 if (err == -EIO || err == -EREMOTEIO) {
5254 unsigned int stripe_index =
9be3395b 5255 btrfs_io_bio(bio)->stripe_index;
442a4f63
SB
5256 struct btrfs_device *dev;
5257
5258 BUG_ON(stripe_index >= bbio->num_stripes);
5259 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5260 if (dev->bdev) {
5261 if (bio->bi_rw & WRITE)
5262 btrfs_dev_stat_inc(dev,
5263 BTRFS_DEV_STAT_WRITE_ERRS);
5264 else
5265 btrfs_dev_stat_inc(dev,
5266 BTRFS_DEV_STAT_READ_ERRS);
5267 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5268 btrfs_dev_stat_inc(dev,
5269 BTRFS_DEV_STAT_FLUSH_ERRS);
5270 btrfs_dev_stat_print_on_error(dev);
5271 }
442a4f63
SB
5272 }
5273 }
8790d502 5274
a1d3c478 5275 if (bio == bbio->orig_bio)
7d2b4daa
CM
5276 is_orig_bio = 1;
5277
a1d3c478 5278 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5279 if (!is_orig_bio) {
5280 bio_put(bio);
a1d3c478 5281 bio = bbio->orig_bio;
7d2b4daa 5282 }
a1d3c478
JS
5283 bio->bi_private = bbio->private;
5284 bio->bi_end_io = bbio->end_io;
9be3395b 5285 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5286 /* only send an error to the higher layers if it is
53b381b3 5287 * beyond the tolerance of the btrfs bio
a236aed1 5288 */
a1d3c478 5289 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 5290 err = -EIO;
5dbc8fca 5291 } else {
1259ab75
CM
5292 /*
5293 * this bio is actually up to date, we didn't
5294 * go over the max number of errors
5295 */
5296 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 5297 err = 0;
1259ab75 5298 }
a1d3c478 5299 kfree(bbio);
8790d502
CM
5300
5301 bio_endio(bio, err);
7d2b4daa 5302 } else if (!is_orig_bio) {
8790d502
CM
5303 bio_put(bio);
5304 }
8790d502
CM
5305}
5306
8b712842
CM
5307struct async_sched {
5308 struct bio *bio;
5309 int rw;
5310 struct btrfs_fs_info *info;
5311 struct btrfs_work work;
5312};
5313
5314/*
5315 * see run_scheduled_bios for a description of why bios are collected for
5316 * async submit.
5317 *
5318 * This will add one bio to the pending list for a device and make sure
5319 * the work struct is scheduled.
5320 */
48a3b636
ES
5321static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5322 struct btrfs_device *device,
5323 int rw, struct bio *bio)
8b712842
CM
5324{
5325 int should_queue = 1;
ffbd517d 5326 struct btrfs_pending_bios *pending_bios;
8b712842 5327
53b381b3
DW
5328 if (device->missing || !device->bdev) {
5329 bio_endio(bio, -EIO);
5330 return;
5331 }
5332
8b712842 5333 /* don't bother with additional async steps for reads, right now */
7b6d91da 5334 if (!(rw & REQ_WRITE)) {
492bb6de 5335 bio_get(bio);
21adbd5c 5336 btrfsic_submit_bio(rw, bio);
492bb6de 5337 bio_put(bio);
143bede5 5338 return;
8b712842
CM
5339 }
5340
5341 /*
0986fe9e 5342 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5343 * higher layers. Otherwise, the async bio makes it appear we have
5344 * made progress against dirty pages when we've really just put it
5345 * on a queue for later
5346 */
0986fe9e 5347 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5348 WARN_ON(bio->bi_next);
8b712842
CM
5349 bio->bi_next = NULL;
5350 bio->bi_rw |= rw;
5351
5352 spin_lock(&device->io_lock);
7b6d91da 5353 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5354 pending_bios = &device->pending_sync_bios;
5355 else
5356 pending_bios = &device->pending_bios;
8b712842 5357
ffbd517d
CM
5358 if (pending_bios->tail)
5359 pending_bios->tail->bi_next = bio;
8b712842 5360
ffbd517d
CM
5361 pending_bios->tail = bio;
5362 if (!pending_bios->head)
5363 pending_bios->head = bio;
8b712842
CM
5364 if (device->running_pending)
5365 should_queue = 0;
5366
5367 spin_unlock(&device->io_lock);
5368
5369 if (should_queue)
1cc127b5
CM
5370 btrfs_queue_worker(&root->fs_info->submit_workers,
5371 &device->work);
8b712842
CM
5372}
5373
de1ee92a
JB
5374static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5375 sector_t sector)
5376{
5377 struct bio_vec *prev;
5378 struct request_queue *q = bdev_get_queue(bdev);
5379 unsigned short max_sectors = queue_max_sectors(q);
5380 struct bvec_merge_data bvm = {
5381 .bi_bdev = bdev,
5382 .bi_sector = sector,
5383 .bi_rw = bio->bi_rw,
5384 };
5385
5386 if (bio->bi_vcnt == 0) {
5387 WARN_ON(1);
5388 return 1;
5389 }
5390
5391 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
aa8b57aa 5392 if (bio_sectors(bio) > max_sectors)
de1ee92a
JB
5393 return 0;
5394
5395 if (!q->merge_bvec_fn)
5396 return 1;
5397
5398 bvm.bi_size = bio->bi_size - prev->bv_len;
5399 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5400 return 0;
5401 return 1;
5402}
5403
5404static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5405 struct bio *bio, u64 physical, int dev_nr,
5406 int rw, int async)
5407{
5408 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5409
5410 bio->bi_private = bbio;
9be3395b 5411 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a
JB
5412 bio->bi_end_io = btrfs_end_bio;
5413 bio->bi_sector = physical >> 9;
5414#ifdef DEBUG
5415 {
5416 struct rcu_string *name;
5417
5418 rcu_read_lock();
5419 name = rcu_dereference(dev->name);
d1423248 5420 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a
JB
5421 "(%s id %llu), size=%u\n", rw,
5422 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5423 name->str, dev->devid, bio->bi_size);
5424 rcu_read_unlock();
5425 }
5426#endif
5427 bio->bi_bdev = dev->bdev;
5428 if (async)
53b381b3 5429 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5430 else
5431 btrfsic_submit_bio(rw, bio);
5432}
5433
5434static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5435 struct bio *first_bio, struct btrfs_device *dev,
5436 int dev_nr, int rw, int async)
5437{
5438 struct bio_vec *bvec = first_bio->bi_io_vec;
5439 struct bio *bio;
5440 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5441 u64 physical = bbio->stripes[dev_nr].physical;
5442
5443again:
5444 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5445 if (!bio)
5446 return -ENOMEM;
5447
5448 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5449 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5450 bvec->bv_offset) < bvec->bv_len) {
5451 u64 len = bio->bi_size;
5452
5453 atomic_inc(&bbio->stripes_pending);
5454 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5455 rw, async);
5456 physical += len;
5457 goto again;
5458 }
5459 bvec++;
5460 }
5461
5462 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5463 return 0;
5464}
5465
5466static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5467{
5468 atomic_inc(&bbio->error);
5469 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5470 bio->bi_private = bbio->private;
5471 bio->bi_end_io = bbio->end_io;
9be3395b 5472 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
de1ee92a
JB
5473 bio->bi_sector = logical >> 9;
5474 kfree(bbio);
5475 bio_endio(bio, -EIO);
5476 }
5477}
5478
f188591e 5479int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5480 int mirror_num, int async_submit)
0b86a832 5481{
0b86a832 5482 struct btrfs_device *dev;
8790d502 5483 struct bio *first_bio = bio;
a62b9401 5484 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
5485 u64 length = 0;
5486 u64 map_length;
53b381b3 5487 u64 *raid_map = NULL;
0b86a832 5488 int ret;
8790d502
CM
5489 int dev_nr = 0;
5490 int total_devs = 1;
a1d3c478 5491 struct btrfs_bio *bbio = NULL;
0b86a832 5492
f2d8d74d 5493 length = bio->bi_size;
0b86a832 5494 map_length = length;
cea9e445 5495
53b381b3
DW
5496 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5497 mirror_num, &raid_map);
5498 if (ret) /* -ENOMEM */
79787eaa 5499 return ret;
cea9e445 5500
a1d3c478 5501 total_devs = bbio->num_stripes;
53b381b3
DW
5502 bbio->orig_bio = first_bio;
5503 bbio->private = first_bio->bi_private;
5504 bbio->end_io = first_bio->bi_end_io;
5505 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5506
5507 if (raid_map) {
5508 /* In this case, map_length has been set to the length of
5509 a single stripe; not the whole write */
5510 if (rw & WRITE) {
5511 return raid56_parity_write(root, bio, bbio,
5512 raid_map, map_length);
5513 } else {
5514 return raid56_parity_recover(root, bio, bbio,
5515 raid_map, map_length,
5516 mirror_num);
5517 }
5518 }
5519
cea9e445 5520 if (map_length < length) {
c2cf52eb 5521 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 5522 logical, length, map_length);
cea9e445
CM
5523 BUG();
5524 }
a1d3c478 5525
d397712b 5526 while (dev_nr < total_devs) {
de1ee92a
JB
5527 dev = bbio->stripes[dev_nr].dev;
5528 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5529 bbio_error(bbio, first_bio, logical);
5530 dev_nr++;
5531 continue;
5532 }
5533
5534 /*
5535 * Check and see if we're ok with this bio based on it's size
5536 * and offset with the given device.
5537 */
5538 if (!bio_size_ok(dev->bdev, first_bio,
5539 bbio->stripes[dev_nr].physical >> 9)) {
5540 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5541 dev_nr, rw, async_submit);
5542 BUG_ON(ret);
5543 dev_nr++;
5544 continue;
5545 }
5546
a1d3c478 5547 if (dev_nr < total_devs - 1) {
9be3395b 5548 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 5549 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
5550 } else {
5551 bio = first_bio;
8790d502 5552 }
de1ee92a
JB
5553
5554 submit_stripe_bio(root, bbio, bio,
5555 bbio->stripes[dev_nr].physical, dev_nr, rw,
5556 async_submit);
8790d502
CM
5557 dev_nr++;
5558 }
0b86a832
CM
5559 return 0;
5560}
5561
aa1b8cd4 5562struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 5563 u8 *uuid, u8 *fsid)
0b86a832 5564{
2b82032c
YZ
5565 struct btrfs_device *device;
5566 struct btrfs_fs_devices *cur_devices;
5567
aa1b8cd4 5568 cur_devices = fs_info->fs_devices;
2b82032c
YZ
5569 while (cur_devices) {
5570 if (!fsid ||
5571 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5572 device = __find_device(&cur_devices->devices,
5573 devid, uuid);
5574 if (device)
5575 return device;
5576 }
5577 cur_devices = cur_devices->seed;
5578 }
5579 return NULL;
0b86a832
CM
5580}
5581
dfe25020
CM
5582static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5583 u64 devid, u8 *dev_uuid)
5584{
5585 struct btrfs_device *device;
5586 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5587
12bd2fc0
ID
5588 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5589 if (IS_ERR(device))
7cbd8a83 5590 return NULL;
12bd2fc0
ID
5591
5592 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 5593 device->fs_devices = fs_devices;
dfe25020 5594 fs_devices->num_devices++;
12bd2fc0
ID
5595
5596 device->missing = 1;
cd02dca5 5597 fs_devices->missing_devices++;
12bd2fc0 5598
dfe25020
CM
5599 return device;
5600}
5601
12bd2fc0
ID
5602/**
5603 * btrfs_alloc_device - allocate struct btrfs_device
5604 * @fs_info: used only for generating a new devid, can be NULL if
5605 * devid is provided (i.e. @devid != NULL).
5606 * @devid: a pointer to devid for this device. If NULL a new devid
5607 * is generated.
5608 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5609 * is generated.
5610 *
5611 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5612 * on error. Returned struct is not linked onto any lists and can be
5613 * destroyed with kfree() right away.
5614 */
5615struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5616 const u64 *devid,
5617 const u8 *uuid)
5618{
5619 struct btrfs_device *dev;
5620 u64 tmp;
5621
5622 if (!devid && !fs_info) {
5623 WARN_ON(1);
5624 return ERR_PTR(-EINVAL);
5625 }
5626
5627 dev = __alloc_device();
5628 if (IS_ERR(dev))
5629 return dev;
5630
5631 if (devid)
5632 tmp = *devid;
5633 else {
5634 int ret;
5635
5636 ret = find_next_devid(fs_info, &tmp);
5637 if (ret) {
5638 kfree(dev);
5639 return ERR_PTR(ret);
5640 }
5641 }
5642 dev->devid = tmp;
5643
5644 if (uuid)
5645 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5646 else
5647 generate_random_uuid(dev->uuid);
5648
5649 dev->work.func = pending_bios_fn;
5650
5651 return dev;
5652}
5653
0b86a832
CM
5654static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5655 struct extent_buffer *leaf,
5656 struct btrfs_chunk *chunk)
5657{
5658 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5659 struct map_lookup *map;
5660 struct extent_map *em;
5661 u64 logical;
5662 u64 length;
5663 u64 devid;
a443755f 5664 u8 uuid[BTRFS_UUID_SIZE];
593060d7 5665 int num_stripes;
0b86a832 5666 int ret;
593060d7 5667 int i;
0b86a832 5668
e17cade2
CM
5669 logical = key->offset;
5670 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 5671
890871be 5672 read_lock(&map_tree->map_tree.lock);
0b86a832 5673 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 5674 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
5675
5676 /* already mapped? */
5677 if (em && em->start <= logical && em->start + em->len > logical) {
5678 free_extent_map(em);
0b86a832
CM
5679 return 0;
5680 } else if (em) {
5681 free_extent_map(em);
5682 }
0b86a832 5683
172ddd60 5684 em = alloc_extent_map();
0b86a832
CM
5685 if (!em)
5686 return -ENOMEM;
593060d7
CM
5687 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5688 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
5689 if (!map) {
5690 free_extent_map(em);
5691 return -ENOMEM;
5692 }
5693
5694 em->bdev = (struct block_device *)map;
5695 em->start = logical;
5696 em->len = length;
70c8a91c 5697 em->orig_start = 0;
0b86a832 5698 em->block_start = 0;
c8b97818 5699 em->block_len = em->len;
0b86a832 5700
593060d7
CM
5701 map->num_stripes = num_stripes;
5702 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5703 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5704 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5705 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5706 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 5707 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
5708 for (i = 0; i < num_stripes; i++) {
5709 map->stripes[i].physical =
5710 btrfs_stripe_offset_nr(leaf, chunk, i);
5711 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
5712 read_extent_buffer(leaf, uuid, (unsigned long)
5713 btrfs_stripe_dev_uuid_nr(chunk, i),
5714 BTRFS_UUID_SIZE);
aa1b8cd4
SB
5715 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5716 uuid, NULL);
dfe25020 5717 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
5718 kfree(map);
5719 free_extent_map(em);
5720 return -EIO;
5721 }
dfe25020
CM
5722 if (!map->stripes[i].dev) {
5723 map->stripes[i].dev =
5724 add_missing_dev(root, devid, uuid);
5725 if (!map->stripes[i].dev) {
5726 kfree(map);
5727 free_extent_map(em);
5728 return -EIO;
5729 }
5730 }
5731 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
5732 }
5733
890871be 5734 write_lock(&map_tree->map_tree.lock);
09a2a8f9 5735 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 5736 write_unlock(&map_tree->map_tree.lock);
79787eaa 5737 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
5738 free_extent_map(em);
5739
5740 return 0;
5741}
5742
143bede5 5743static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
5744 struct btrfs_dev_item *dev_item,
5745 struct btrfs_device *device)
5746{
5747 unsigned long ptr;
0b86a832
CM
5748
5749 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
5750 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5751 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
5752 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5753 device->type = btrfs_device_type(leaf, dev_item);
5754 device->io_align = btrfs_device_io_align(leaf, dev_item);
5755 device->io_width = btrfs_device_io_width(leaf, dev_item);
5756 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 5757 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 5758 device->is_tgtdev_for_dev_replace = 0;
0b86a832 5759
410ba3a2 5760 ptr = btrfs_device_uuid(dev_item);
e17cade2 5761 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
5762}
5763
2b82032c
YZ
5764static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5765{
5766 struct btrfs_fs_devices *fs_devices;
5767 int ret;
5768
b367e47f 5769 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
5770
5771 fs_devices = root->fs_info->fs_devices->seed;
5772 while (fs_devices) {
5773 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5774 ret = 0;
5775 goto out;
5776 }
5777 fs_devices = fs_devices->seed;
5778 }
5779
5780 fs_devices = find_fsid(fsid);
5781 if (!fs_devices) {
5782 ret = -ENOENT;
5783 goto out;
5784 }
e4404d6e
YZ
5785
5786 fs_devices = clone_fs_devices(fs_devices);
5787 if (IS_ERR(fs_devices)) {
5788 ret = PTR_ERR(fs_devices);
2b82032c
YZ
5789 goto out;
5790 }
5791
97288f2c 5792 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 5793 root->fs_info->bdev_holder);
48d28232
JL
5794 if (ret) {
5795 free_fs_devices(fs_devices);
2b82032c 5796 goto out;
48d28232 5797 }
2b82032c
YZ
5798
5799 if (!fs_devices->seeding) {
5800 __btrfs_close_devices(fs_devices);
e4404d6e 5801 free_fs_devices(fs_devices);
2b82032c
YZ
5802 ret = -EINVAL;
5803 goto out;
5804 }
5805
5806 fs_devices->seed = root->fs_info->fs_devices->seed;
5807 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 5808out:
2b82032c
YZ
5809 return ret;
5810}
5811
0d81ba5d 5812static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
5813 struct extent_buffer *leaf,
5814 struct btrfs_dev_item *dev_item)
5815{
5816 struct btrfs_device *device;
5817 u64 devid;
5818 int ret;
2b82032c 5819 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
5820 u8 dev_uuid[BTRFS_UUID_SIZE];
5821
0b86a832 5822 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 5823 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 5824 BTRFS_UUID_SIZE);
1473b24e 5825 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
5826 BTRFS_UUID_SIZE);
5827
5828 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5829 ret = open_seed_devices(root, fs_uuid);
e4404d6e 5830 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 5831 return ret;
2b82032c
YZ
5832 }
5833
aa1b8cd4 5834 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
2b82032c 5835 if (!device || !device->bdev) {
e4404d6e 5836 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
5837 return -EIO;
5838
5839 if (!device) {
c1c9ff7c 5840 btrfs_warn(root->fs_info, "devid %llu missing", devid);
2b82032c
YZ
5841 device = add_missing_dev(root, devid, dev_uuid);
5842 if (!device)
5843 return -ENOMEM;
cd02dca5
CM
5844 } else if (!device->missing) {
5845 /*
5846 * this happens when a device that was properly setup
5847 * in the device info lists suddenly goes bad.
5848 * device->bdev is NULL, and so we have to set
5849 * device->missing to one here
5850 */
5851 root->fs_info->fs_devices->missing_devices++;
5852 device->missing = 1;
2b82032c
YZ
5853 }
5854 }
5855
5856 if (device->fs_devices != root->fs_info->fs_devices) {
5857 BUG_ON(device->writeable);
5858 if (device->generation !=
5859 btrfs_device_generation(leaf, dev_item))
5860 return -EINVAL;
6324fbf3 5861 }
0b86a832
CM
5862
5863 fill_device_from_item(leaf, dev_item, device);
dfe25020 5864 device->in_fs_metadata = 1;
63a212ab 5865 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 5866 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
5867 spin_lock(&root->fs_info->free_chunk_lock);
5868 root->fs_info->free_chunk_space += device->total_bytes -
5869 device->bytes_used;
5870 spin_unlock(&root->fs_info->free_chunk_lock);
5871 }
0b86a832 5872 ret = 0;
0b86a832
CM
5873 return ret;
5874}
5875
e4404d6e 5876int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 5877{
6c41761f 5878 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 5879 struct extent_buffer *sb;
0b86a832 5880 struct btrfs_disk_key *disk_key;
0b86a832 5881 struct btrfs_chunk *chunk;
84eed90f
CM
5882 u8 *ptr;
5883 unsigned long sb_ptr;
5884 int ret = 0;
0b86a832
CM
5885 u32 num_stripes;
5886 u32 array_size;
5887 u32 len = 0;
0b86a832 5888 u32 cur;
84eed90f 5889 struct btrfs_key key;
0b86a832 5890
e4404d6e 5891 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
5892 BTRFS_SUPER_INFO_SIZE);
5893 if (!sb)
5894 return -ENOMEM;
5895 btrfs_set_buffer_uptodate(sb);
85d4e461 5896 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
5897 /*
5898 * The sb extent buffer is artifical and just used to read the system array.
5899 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5900 * pages up-to-date when the page is larger: extent does not cover the
5901 * whole page and consequently check_page_uptodate does not find all
5902 * the page's extents up-to-date (the hole beyond sb),
5903 * write_extent_buffer then triggers a WARN_ON.
5904 *
5905 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5906 * but sb spans only this function. Add an explicit SetPageUptodate call
5907 * to silence the warning eg. on PowerPC 64.
5908 */
5909 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 5910 SetPageUptodate(sb->pages[0]);
4008c04a 5911
a061fc8d 5912 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
5913 array_size = btrfs_super_sys_array_size(super_copy);
5914
0b86a832
CM
5915 ptr = super_copy->sys_chunk_array;
5916 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5917 cur = 0;
5918
5919 while (cur < array_size) {
5920 disk_key = (struct btrfs_disk_key *)ptr;
5921 btrfs_disk_key_to_cpu(&key, disk_key);
5922
a061fc8d 5923 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
5924 sb_ptr += len;
5925 cur += len;
5926
0d81ba5d 5927 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 5928 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 5929 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
5930 if (ret)
5931 break;
0b86a832
CM
5932 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5933 len = btrfs_chunk_item_size(num_stripes);
5934 } else {
84eed90f
CM
5935 ret = -EIO;
5936 break;
0b86a832
CM
5937 }
5938 ptr += len;
5939 sb_ptr += len;
5940 cur += len;
5941 }
a061fc8d 5942 free_extent_buffer(sb);
84eed90f 5943 return ret;
0b86a832
CM
5944}
5945
5946int btrfs_read_chunk_tree(struct btrfs_root *root)
5947{
5948 struct btrfs_path *path;
5949 struct extent_buffer *leaf;
5950 struct btrfs_key key;
5951 struct btrfs_key found_key;
5952 int ret;
5953 int slot;
5954
5955 root = root->fs_info->chunk_root;
5956
5957 path = btrfs_alloc_path();
5958 if (!path)
5959 return -ENOMEM;
5960
b367e47f
LZ
5961 mutex_lock(&uuid_mutex);
5962 lock_chunks(root);
5963
395927a9
FDBM
5964 /*
5965 * Read all device items, and then all the chunk items. All
5966 * device items are found before any chunk item (their object id
5967 * is smaller than the lowest possible object id for a chunk
5968 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
5969 */
5970 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
5971 key.offset = 0;
5972 key.type = 0;
0b86a832 5973 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
5974 if (ret < 0)
5975 goto error;
d397712b 5976 while (1) {
0b86a832
CM
5977 leaf = path->nodes[0];
5978 slot = path->slots[0];
5979 if (slot >= btrfs_header_nritems(leaf)) {
5980 ret = btrfs_next_leaf(root, path);
5981 if (ret == 0)
5982 continue;
5983 if (ret < 0)
5984 goto error;
5985 break;
5986 }
5987 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
5988 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
5989 struct btrfs_dev_item *dev_item;
5990 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 5991 struct btrfs_dev_item);
395927a9
FDBM
5992 ret = read_one_dev(root, leaf, dev_item);
5993 if (ret)
5994 goto error;
0b86a832
CM
5995 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
5996 struct btrfs_chunk *chunk;
5997 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
5998 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
5999 if (ret)
6000 goto error;
0b86a832
CM
6001 }
6002 path->slots[0]++;
6003 }
0b86a832
CM
6004 ret = 0;
6005error:
b367e47f
LZ
6006 unlock_chunks(root);
6007 mutex_unlock(&uuid_mutex);
6008
2b82032c 6009 btrfs_free_path(path);
0b86a832
CM
6010 return ret;
6011}
442a4f63 6012
cb517eab
MX
6013void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6014{
6015 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6016 struct btrfs_device *device;
6017
6018 mutex_lock(&fs_devices->device_list_mutex);
6019 list_for_each_entry(device, &fs_devices->devices, dev_list)
6020 device->dev_root = fs_info->dev_root;
6021 mutex_unlock(&fs_devices->device_list_mutex);
6022}
6023
733f4fbb
SB
6024static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6025{
6026 int i;
6027
6028 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6029 btrfs_dev_stat_reset(dev, i);
6030}
6031
6032int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6033{
6034 struct btrfs_key key;
6035 struct btrfs_key found_key;
6036 struct btrfs_root *dev_root = fs_info->dev_root;
6037 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6038 struct extent_buffer *eb;
6039 int slot;
6040 int ret = 0;
6041 struct btrfs_device *device;
6042 struct btrfs_path *path = NULL;
6043 int i;
6044
6045 path = btrfs_alloc_path();
6046 if (!path) {
6047 ret = -ENOMEM;
6048 goto out;
6049 }
6050
6051 mutex_lock(&fs_devices->device_list_mutex);
6052 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6053 int item_size;
6054 struct btrfs_dev_stats_item *ptr;
6055
6056 key.objectid = 0;
6057 key.type = BTRFS_DEV_STATS_KEY;
6058 key.offset = device->devid;
6059 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6060 if (ret) {
733f4fbb
SB
6061 __btrfs_reset_dev_stats(device);
6062 device->dev_stats_valid = 1;
6063 btrfs_release_path(path);
6064 continue;
6065 }
6066 slot = path->slots[0];
6067 eb = path->nodes[0];
6068 btrfs_item_key_to_cpu(eb, &found_key, slot);
6069 item_size = btrfs_item_size_nr(eb, slot);
6070
6071 ptr = btrfs_item_ptr(eb, slot,
6072 struct btrfs_dev_stats_item);
6073
6074 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6075 if (item_size >= (1 + i) * sizeof(__le64))
6076 btrfs_dev_stat_set(device, i,
6077 btrfs_dev_stats_value(eb, ptr, i));
6078 else
6079 btrfs_dev_stat_reset(device, i);
6080 }
6081
6082 device->dev_stats_valid = 1;
6083 btrfs_dev_stat_print_on_load(device);
6084 btrfs_release_path(path);
6085 }
6086 mutex_unlock(&fs_devices->device_list_mutex);
6087
6088out:
6089 btrfs_free_path(path);
6090 return ret < 0 ? ret : 0;
6091}
6092
6093static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6094 struct btrfs_root *dev_root,
6095 struct btrfs_device *device)
6096{
6097 struct btrfs_path *path;
6098 struct btrfs_key key;
6099 struct extent_buffer *eb;
6100 struct btrfs_dev_stats_item *ptr;
6101 int ret;
6102 int i;
6103
6104 key.objectid = 0;
6105 key.type = BTRFS_DEV_STATS_KEY;
6106 key.offset = device->devid;
6107
6108 path = btrfs_alloc_path();
6109 BUG_ON(!path);
6110 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6111 if (ret < 0) {
606686ee
JB
6112 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
6113 ret, rcu_str_deref(device->name));
733f4fbb
SB
6114 goto out;
6115 }
6116
6117 if (ret == 0 &&
6118 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6119 /* need to delete old one and insert a new one */
6120 ret = btrfs_del_item(trans, dev_root, path);
6121 if (ret != 0) {
606686ee
JB
6122 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
6123 rcu_str_deref(device->name), ret);
733f4fbb
SB
6124 goto out;
6125 }
6126 ret = 1;
6127 }
6128
6129 if (ret == 1) {
6130 /* need to insert a new item */
6131 btrfs_release_path(path);
6132 ret = btrfs_insert_empty_item(trans, dev_root, path,
6133 &key, sizeof(*ptr));
6134 if (ret < 0) {
606686ee
JB
6135 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
6136 rcu_str_deref(device->name), ret);
733f4fbb
SB
6137 goto out;
6138 }
6139 }
6140
6141 eb = path->nodes[0];
6142 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6143 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6144 btrfs_set_dev_stats_value(eb, ptr, i,
6145 btrfs_dev_stat_read(device, i));
6146 btrfs_mark_buffer_dirty(eb);
6147
6148out:
6149 btrfs_free_path(path);
6150 return ret;
6151}
6152
6153/*
6154 * called from commit_transaction. Writes all changed device stats to disk.
6155 */
6156int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6157 struct btrfs_fs_info *fs_info)
6158{
6159 struct btrfs_root *dev_root = fs_info->dev_root;
6160 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6161 struct btrfs_device *device;
6162 int ret = 0;
6163
6164 mutex_lock(&fs_devices->device_list_mutex);
6165 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6166 if (!device->dev_stats_valid || !device->dev_stats_dirty)
6167 continue;
6168
6169 ret = update_dev_stat_item(trans, dev_root, device);
6170 if (!ret)
6171 device->dev_stats_dirty = 0;
6172 }
6173 mutex_unlock(&fs_devices->device_list_mutex);
6174
6175 return ret;
6176}
6177
442a4f63
SB
6178void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6179{
6180 btrfs_dev_stat_inc(dev, index);
6181 btrfs_dev_stat_print_on_error(dev);
6182}
6183
48a3b636 6184static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6185{
733f4fbb
SB
6186 if (!dev->dev_stats_valid)
6187 return;
606686ee 6188 printk_ratelimited_in_rcu(KERN_ERR
442a4f63 6189 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6190 rcu_str_deref(dev->name),
442a4f63
SB
6191 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6192 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6193 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6194 btrfs_dev_stat_read(dev,
6195 BTRFS_DEV_STAT_CORRUPTION_ERRS),
6196 btrfs_dev_stat_read(dev,
6197 BTRFS_DEV_STAT_GENERATION_ERRS));
6198}
c11d2c23 6199
733f4fbb
SB
6200static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6201{
a98cdb85
SB
6202 int i;
6203
6204 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6205 if (btrfs_dev_stat_read(dev, i) != 0)
6206 break;
6207 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6208 return; /* all values == 0, suppress message */
6209
606686ee
JB
6210 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6211 rcu_str_deref(dev->name),
733f4fbb
SB
6212 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6213 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6214 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6215 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6216 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6217}
6218
c11d2c23 6219int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6220 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6221{
6222 struct btrfs_device *dev;
6223 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6224 int i;
6225
6226 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6227 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6228 mutex_unlock(&fs_devices->device_list_mutex);
6229
6230 if (!dev) {
6231 printk(KERN_WARNING
6232 "btrfs: get dev_stats failed, device not found\n");
6233 return -ENODEV;
733f4fbb
SB
6234 } else if (!dev->dev_stats_valid) {
6235 printk(KERN_WARNING
6236 "btrfs: get dev_stats failed, not yet valid\n");
6237 return -ENODEV;
b27f7c0c 6238 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6239 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6240 if (stats->nr_items > i)
6241 stats->values[i] =
6242 btrfs_dev_stat_read_and_reset(dev, i);
6243 else
6244 btrfs_dev_stat_reset(dev, i);
6245 }
6246 } else {
6247 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6248 if (stats->nr_items > i)
6249 stats->values[i] = btrfs_dev_stat_read(dev, i);
6250 }
6251 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6252 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6253 return 0;
6254}
a8a6dab7
SB
6255
6256int btrfs_scratch_superblock(struct btrfs_device *device)
6257{
6258 struct buffer_head *bh;
6259 struct btrfs_super_block *disk_super;
6260
6261 bh = btrfs_read_dev_super(device->bdev);
6262 if (!bh)
6263 return -EINVAL;
6264 disk_super = (struct btrfs_super_block *)bh->b_data;
6265
6266 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6267 set_buffer_dirty(bh);
6268 sync_dirty_buffer(bh);
6269 brelse(bh);
6270
6271 return 0;
6272}