btrfs: Remove redundant local zero structure
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
0b86a832 43
2b82032c
YZ
44static int init_first_rw_device(struct btrfs_trans_handle *trans,
45 struct btrfs_root *root,
46 struct btrfs_device *device);
47static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 48static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 49static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 50static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 51
8a4b83cc
CM
52static DEFINE_MUTEX(uuid_mutex);
53static LIST_HEAD(fs_uuids);
54
7d9eb12c
CM
55static void lock_chunks(struct btrfs_root *root)
56{
7d9eb12c
CM
57 mutex_lock(&root->fs_info->chunk_mutex);
58}
59
60static void unlock_chunks(struct btrfs_root *root)
61{
7d9eb12c
CM
62 mutex_unlock(&root->fs_info->chunk_mutex);
63}
64
2208a378
ID
65static struct btrfs_fs_devices *__alloc_fs_devices(void)
66{
67 struct btrfs_fs_devices *fs_devs;
68
69 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
70 if (!fs_devs)
71 return ERR_PTR(-ENOMEM);
72
73 mutex_init(&fs_devs->device_list_mutex);
74
75 INIT_LIST_HEAD(&fs_devs->devices);
76 INIT_LIST_HEAD(&fs_devs->alloc_list);
77 INIT_LIST_HEAD(&fs_devs->list);
78
79 return fs_devs;
80}
81
82/**
83 * alloc_fs_devices - allocate struct btrfs_fs_devices
84 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
85 * generated.
86 *
87 * Return: a pointer to a new &struct btrfs_fs_devices on success;
88 * ERR_PTR() on error. Returned struct is not linked onto any lists and
89 * can be destroyed with kfree() right away.
90 */
91static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
92{
93 struct btrfs_fs_devices *fs_devs;
94
95 fs_devs = __alloc_fs_devices();
96 if (IS_ERR(fs_devs))
97 return fs_devs;
98
99 if (fsid)
100 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
101 else
102 generate_random_uuid(fs_devs->fsid);
103
104 return fs_devs;
105}
106
e4404d6e
YZ
107static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
108{
109 struct btrfs_device *device;
110 WARN_ON(fs_devices->opened);
111 while (!list_empty(&fs_devices->devices)) {
112 device = list_entry(fs_devices->devices.next,
113 struct btrfs_device, dev_list);
114 list_del(&device->dev_list);
606686ee 115 rcu_string_free(device->name);
e4404d6e
YZ
116 kfree(device);
117 }
118 kfree(fs_devices);
119}
120
b8b8ff59
LC
121static void btrfs_kobject_uevent(struct block_device *bdev,
122 enum kobject_action action)
123{
124 int ret;
125
126 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
127 if (ret)
128 pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
129 action,
130 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
131 &disk_to_dev(bdev->bd_disk)->kobj);
132}
133
143bede5 134void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
135{
136 struct btrfs_fs_devices *fs_devices;
8a4b83cc 137
2b82032c
YZ
138 while (!list_empty(&fs_uuids)) {
139 fs_devices = list_entry(fs_uuids.next,
140 struct btrfs_fs_devices, list);
141 list_del(&fs_devices->list);
e4404d6e 142 free_fs_devices(fs_devices);
8a4b83cc 143 }
8a4b83cc
CM
144}
145
12bd2fc0
ID
146static struct btrfs_device *__alloc_device(void)
147{
148 struct btrfs_device *dev;
149
150 dev = kzalloc(sizeof(*dev), GFP_NOFS);
151 if (!dev)
152 return ERR_PTR(-ENOMEM);
153
154 INIT_LIST_HEAD(&dev->dev_list);
155 INIT_LIST_HEAD(&dev->dev_alloc_list);
156
157 spin_lock_init(&dev->io_lock);
158
159 spin_lock_init(&dev->reada_lock);
160 atomic_set(&dev->reada_in_flight, 0);
161 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
162 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
163
164 return dev;
165}
166
a1b32a59
CM
167static noinline struct btrfs_device *__find_device(struct list_head *head,
168 u64 devid, u8 *uuid)
8a4b83cc
CM
169{
170 struct btrfs_device *dev;
8a4b83cc 171
c6e30871 172 list_for_each_entry(dev, head, dev_list) {
a443755f 173 if (dev->devid == devid &&
8f18cf13 174 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 175 return dev;
a443755f 176 }
8a4b83cc
CM
177 }
178 return NULL;
179}
180
a1b32a59 181static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 182{
8a4b83cc
CM
183 struct btrfs_fs_devices *fs_devices;
184
c6e30871 185 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
186 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
187 return fs_devices;
188 }
189 return NULL;
190}
191
beaf8ab3
SB
192static int
193btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
194 int flush, struct block_device **bdev,
195 struct buffer_head **bh)
196{
197 int ret;
198
199 *bdev = blkdev_get_by_path(device_path, flags, holder);
200
201 if (IS_ERR(*bdev)) {
202 ret = PTR_ERR(*bdev);
203 printk(KERN_INFO "btrfs: open %s failed\n", device_path);
204 goto error;
205 }
206
207 if (flush)
208 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
209 ret = set_blocksize(*bdev, 4096);
210 if (ret) {
211 blkdev_put(*bdev, flags);
212 goto error;
213 }
214 invalidate_bdev(*bdev);
215 *bh = btrfs_read_dev_super(*bdev);
216 if (!*bh) {
217 ret = -EINVAL;
218 blkdev_put(*bdev, flags);
219 goto error;
220 }
221
222 return 0;
223
224error:
225 *bdev = NULL;
226 *bh = NULL;
227 return ret;
228}
229
ffbd517d
CM
230static void requeue_list(struct btrfs_pending_bios *pending_bios,
231 struct bio *head, struct bio *tail)
232{
233
234 struct bio *old_head;
235
236 old_head = pending_bios->head;
237 pending_bios->head = head;
238 if (pending_bios->tail)
239 tail->bi_next = old_head;
240 else
241 pending_bios->tail = tail;
242}
243
8b712842
CM
244/*
245 * we try to collect pending bios for a device so we don't get a large
246 * number of procs sending bios down to the same device. This greatly
247 * improves the schedulers ability to collect and merge the bios.
248 *
249 * But, it also turns into a long list of bios to process and that is sure
250 * to eventually make the worker thread block. The solution here is to
251 * make some progress and then put this work struct back at the end of
252 * the list if the block device is congested. This way, multiple devices
253 * can make progress from a single worker thread.
254 */
143bede5 255static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
256{
257 struct bio *pending;
258 struct backing_dev_info *bdi;
b64a2851 259 struct btrfs_fs_info *fs_info;
ffbd517d 260 struct btrfs_pending_bios *pending_bios;
8b712842
CM
261 struct bio *tail;
262 struct bio *cur;
263 int again = 0;
ffbd517d 264 unsigned long num_run;
d644d8a1 265 unsigned long batch_run = 0;
b64a2851 266 unsigned long limit;
b765ead5 267 unsigned long last_waited = 0;
d84275c9 268 int force_reg = 0;
0e588859 269 int sync_pending = 0;
211588ad
CM
270 struct blk_plug plug;
271
272 /*
273 * this function runs all the bios we've collected for
274 * a particular device. We don't want to wander off to
275 * another device without first sending all of these down.
276 * So, setup a plug here and finish it off before we return
277 */
278 blk_start_plug(&plug);
8b712842 279
bedf762b 280 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
281 fs_info = device->dev_root->fs_info;
282 limit = btrfs_async_submit_limit(fs_info);
283 limit = limit * 2 / 3;
284
8b712842
CM
285loop:
286 spin_lock(&device->io_lock);
287
a6837051 288loop_lock:
d84275c9 289 num_run = 0;
ffbd517d 290
8b712842
CM
291 /* take all the bios off the list at once and process them
292 * later on (without the lock held). But, remember the
293 * tail and other pointers so the bios can be properly reinserted
294 * into the list if we hit congestion
295 */
d84275c9 296 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 297 pending_bios = &device->pending_sync_bios;
d84275c9
CM
298 force_reg = 1;
299 } else {
ffbd517d 300 pending_bios = &device->pending_bios;
d84275c9
CM
301 force_reg = 0;
302 }
ffbd517d
CM
303
304 pending = pending_bios->head;
305 tail = pending_bios->tail;
8b712842 306 WARN_ON(pending && !tail);
8b712842
CM
307
308 /*
309 * if pending was null this time around, no bios need processing
310 * at all and we can stop. Otherwise it'll loop back up again
311 * and do an additional check so no bios are missed.
312 *
313 * device->running_pending is used to synchronize with the
314 * schedule_bio code.
315 */
ffbd517d
CM
316 if (device->pending_sync_bios.head == NULL &&
317 device->pending_bios.head == NULL) {
8b712842
CM
318 again = 0;
319 device->running_pending = 0;
ffbd517d
CM
320 } else {
321 again = 1;
322 device->running_pending = 1;
8b712842 323 }
ffbd517d
CM
324
325 pending_bios->head = NULL;
326 pending_bios->tail = NULL;
327
8b712842
CM
328 spin_unlock(&device->io_lock);
329
d397712b 330 while (pending) {
ffbd517d
CM
331
332 rmb();
d84275c9
CM
333 /* we want to work on both lists, but do more bios on the
334 * sync list than the regular list
335 */
336 if ((num_run > 32 &&
337 pending_bios != &device->pending_sync_bios &&
338 device->pending_sync_bios.head) ||
339 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
340 device->pending_bios.head)) {
ffbd517d
CM
341 spin_lock(&device->io_lock);
342 requeue_list(pending_bios, pending, tail);
343 goto loop_lock;
344 }
345
8b712842
CM
346 cur = pending;
347 pending = pending->bi_next;
348 cur->bi_next = NULL;
b64a2851 349
66657b31 350 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
351 waitqueue_active(&fs_info->async_submit_wait))
352 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
353
354 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 355
2ab1ba68
CM
356 /*
357 * if we're doing the sync list, record that our
358 * plug has some sync requests on it
359 *
360 * If we're doing the regular list and there are
361 * sync requests sitting around, unplug before
362 * we add more
363 */
364 if (pending_bios == &device->pending_sync_bios) {
365 sync_pending = 1;
366 } else if (sync_pending) {
367 blk_finish_plug(&plug);
368 blk_start_plug(&plug);
369 sync_pending = 0;
370 }
371
21adbd5c 372 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
373 num_run++;
374 batch_run++;
7eaceacc 375 if (need_resched())
ffbd517d 376 cond_resched();
8b712842
CM
377
378 /*
379 * we made progress, there is more work to do and the bdi
380 * is now congested. Back off and let other work structs
381 * run instead
382 */
57fd5a5f 383 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 384 fs_info->fs_devices->open_devices > 1) {
b765ead5 385 struct io_context *ioc;
8b712842 386
b765ead5
CM
387 ioc = current->io_context;
388
389 /*
390 * the main goal here is that we don't want to
391 * block if we're going to be able to submit
392 * more requests without blocking.
393 *
394 * This code does two great things, it pokes into
395 * the elevator code from a filesystem _and_
396 * it makes assumptions about how batching works.
397 */
398 if (ioc && ioc->nr_batch_requests > 0 &&
399 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
400 (last_waited == 0 ||
401 ioc->last_waited == last_waited)) {
402 /*
403 * we want to go through our batch of
404 * requests and stop. So, we copy out
405 * the ioc->last_waited time and test
406 * against it before looping
407 */
408 last_waited = ioc->last_waited;
7eaceacc 409 if (need_resched())
ffbd517d 410 cond_resched();
b765ead5
CM
411 continue;
412 }
8b712842 413 spin_lock(&device->io_lock);
ffbd517d 414 requeue_list(pending_bios, pending, tail);
a6837051 415 device->running_pending = 1;
8b712842
CM
416
417 spin_unlock(&device->io_lock);
418 btrfs_requeue_work(&device->work);
419 goto done;
420 }
d85c8a6f
CM
421 /* unplug every 64 requests just for good measure */
422 if (batch_run % 64 == 0) {
423 blk_finish_plug(&plug);
424 blk_start_plug(&plug);
425 sync_pending = 0;
426 }
8b712842 427 }
ffbd517d 428
51684082
CM
429 cond_resched();
430 if (again)
431 goto loop;
432
433 spin_lock(&device->io_lock);
434 if (device->pending_bios.head || device->pending_sync_bios.head)
435 goto loop_lock;
436 spin_unlock(&device->io_lock);
437
8b712842 438done:
211588ad 439 blk_finish_plug(&plug);
8b712842
CM
440}
441
b2950863 442static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
443{
444 struct btrfs_device *device;
445
446 device = container_of(work, struct btrfs_device, work);
447 run_scheduled_bios(device);
448}
449
a1b32a59 450static noinline int device_list_add(const char *path,
8a4b83cc
CM
451 struct btrfs_super_block *disk_super,
452 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
453{
454 struct btrfs_device *device;
455 struct btrfs_fs_devices *fs_devices;
606686ee 456 struct rcu_string *name;
8a4b83cc
CM
457 u64 found_transid = btrfs_super_generation(disk_super);
458
459 fs_devices = find_fsid(disk_super->fsid);
460 if (!fs_devices) {
2208a378
ID
461 fs_devices = alloc_fs_devices(disk_super->fsid);
462 if (IS_ERR(fs_devices))
463 return PTR_ERR(fs_devices);
464
8a4b83cc 465 list_add(&fs_devices->list, &fs_uuids);
8a4b83cc
CM
466 fs_devices->latest_devid = devid;
467 fs_devices->latest_trans = found_transid;
2208a378 468
8a4b83cc
CM
469 device = NULL;
470 } else {
a443755f
CM
471 device = __find_device(&fs_devices->devices, devid,
472 disk_super->dev_item.uuid);
8a4b83cc
CM
473 }
474 if (!device) {
2b82032c
YZ
475 if (fs_devices->opened)
476 return -EBUSY;
477
12bd2fc0
ID
478 device = btrfs_alloc_device(NULL, &devid,
479 disk_super->dev_item.uuid);
480 if (IS_ERR(device)) {
8a4b83cc 481 /* we can safely leave the fs_devices entry around */
12bd2fc0 482 return PTR_ERR(device);
8a4b83cc 483 }
606686ee
JB
484
485 name = rcu_string_strdup(path, GFP_NOFS);
486 if (!name) {
8a4b83cc
CM
487 kfree(device);
488 return -ENOMEM;
489 }
606686ee 490 rcu_assign_pointer(device->name, name);
90519d66 491
e5e9a520 492 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 493 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 494 fs_devices->num_devices++;
e5e9a520
CM
495 mutex_unlock(&fs_devices->device_list_mutex);
496
2b82032c 497 device->fs_devices = fs_devices;
606686ee
JB
498 } else if (!device->name || strcmp(device->name->str, path)) {
499 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
500 if (!name)
501 return -ENOMEM;
606686ee
JB
502 rcu_string_free(device->name);
503 rcu_assign_pointer(device->name, name);
cd02dca5
CM
504 if (device->missing) {
505 fs_devices->missing_devices--;
506 device->missing = 0;
507 }
8a4b83cc
CM
508 }
509
510 if (found_transid > fs_devices->latest_trans) {
511 fs_devices->latest_devid = devid;
512 fs_devices->latest_trans = found_transid;
513 }
8a4b83cc
CM
514 *fs_devices_ret = fs_devices;
515 return 0;
516}
517
e4404d6e
YZ
518static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
519{
520 struct btrfs_fs_devices *fs_devices;
521 struct btrfs_device *device;
522 struct btrfs_device *orig_dev;
523
2208a378
ID
524 fs_devices = alloc_fs_devices(orig->fsid);
525 if (IS_ERR(fs_devices))
526 return fs_devices;
e4404d6e 527
e4404d6e
YZ
528 fs_devices->latest_devid = orig->latest_devid;
529 fs_devices->latest_trans = orig->latest_trans;
02db0844 530 fs_devices->total_devices = orig->total_devices;
e4404d6e 531
46224705 532 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 533 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
534 struct rcu_string *name;
535
12bd2fc0
ID
536 device = btrfs_alloc_device(NULL, &orig_dev->devid,
537 orig_dev->uuid);
538 if (IS_ERR(device))
e4404d6e
YZ
539 goto error;
540
606686ee
JB
541 /*
542 * This is ok to do without rcu read locked because we hold the
543 * uuid mutex so nothing we touch in here is going to disappear.
544 */
545 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
546 if (!name) {
fd2696f3 547 kfree(device);
e4404d6e 548 goto error;
fd2696f3 549 }
606686ee 550 rcu_assign_pointer(device->name, name);
e4404d6e 551
e4404d6e
YZ
552 list_add(&device->dev_list, &fs_devices->devices);
553 device->fs_devices = fs_devices;
554 fs_devices->num_devices++;
555 }
556 return fs_devices;
557error:
558 free_fs_devices(fs_devices);
559 return ERR_PTR(-ENOMEM);
560}
561
8dabb742
SB
562void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
563 struct btrfs_fs_devices *fs_devices, int step)
dfe25020 564{
c6e30871 565 struct btrfs_device *device, *next;
dfe25020 566
a6b0d5c8
CM
567 struct block_device *latest_bdev = NULL;
568 u64 latest_devid = 0;
569 u64 latest_transid = 0;
570
dfe25020
CM
571 mutex_lock(&uuid_mutex);
572again:
46224705 573 /* This is the initialized path, it is safe to release the devices. */
c6e30871 574 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 575 if (device->in_fs_metadata) {
63a212ab
SB
576 if (!device->is_tgtdev_for_dev_replace &&
577 (!latest_transid ||
578 device->generation > latest_transid)) {
a6b0d5c8
CM
579 latest_devid = device->devid;
580 latest_transid = device->generation;
581 latest_bdev = device->bdev;
582 }
2b82032c 583 continue;
a6b0d5c8 584 }
2b82032c 585
8dabb742
SB
586 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
587 /*
588 * In the first step, keep the device which has
589 * the correct fsid and the devid that is used
590 * for the dev_replace procedure.
591 * In the second step, the dev_replace state is
592 * read from the device tree and it is known
593 * whether the procedure is really active or
594 * not, which means whether this device is
595 * used or whether it should be removed.
596 */
597 if (step == 0 || device->is_tgtdev_for_dev_replace) {
598 continue;
599 }
600 }
2b82032c 601 if (device->bdev) {
d4d77629 602 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
603 device->bdev = NULL;
604 fs_devices->open_devices--;
605 }
606 if (device->writeable) {
607 list_del_init(&device->dev_alloc_list);
608 device->writeable = 0;
8dabb742
SB
609 if (!device->is_tgtdev_for_dev_replace)
610 fs_devices->rw_devices--;
2b82032c 611 }
e4404d6e
YZ
612 list_del_init(&device->dev_list);
613 fs_devices->num_devices--;
606686ee 614 rcu_string_free(device->name);
e4404d6e 615 kfree(device);
dfe25020 616 }
2b82032c
YZ
617
618 if (fs_devices->seed) {
619 fs_devices = fs_devices->seed;
2b82032c
YZ
620 goto again;
621 }
622
a6b0d5c8
CM
623 fs_devices->latest_bdev = latest_bdev;
624 fs_devices->latest_devid = latest_devid;
625 fs_devices->latest_trans = latest_transid;
626
dfe25020 627 mutex_unlock(&uuid_mutex);
dfe25020 628}
a0af469b 629
1f78160c
XG
630static void __free_device(struct work_struct *work)
631{
632 struct btrfs_device *device;
633
634 device = container_of(work, struct btrfs_device, rcu_work);
635
636 if (device->bdev)
637 blkdev_put(device->bdev, device->mode);
638
606686ee 639 rcu_string_free(device->name);
1f78160c
XG
640 kfree(device);
641}
642
643static void free_device(struct rcu_head *head)
644{
645 struct btrfs_device *device;
646
647 device = container_of(head, struct btrfs_device, rcu);
648
649 INIT_WORK(&device->rcu_work, __free_device);
650 schedule_work(&device->rcu_work);
651}
652
2b82032c 653static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 654{
8a4b83cc 655 struct btrfs_device *device;
e4404d6e 656
2b82032c
YZ
657 if (--fs_devices->opened > 0)
658 return 0;
8a4b83cc 659
c9513edb 660 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 661 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 662 struct btrfs_device *new_device;
606686ee 663 struct rcu_string *name;
1f78160c
XG
664
665 if (device->bdev)
a0af469b 666 fs_devices->open_devices--;
1f78160c 667
f747cab7
ID
668 if (device->writeable &&
669 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
670 list_del_init(&device->dev_alloc_list);
671 fs_devices->rw_devices--;
672 }
673
d5e2003c
JB
674 if (device->can_discard)
675 fs_devices->num_can_discard--;
726551eb
JB
676 if (device->missing)
677 fs_devices->missing_devices--;
d5e2003c 678
a1e8780a
ID
679 new_device = btrfs_alloc_device(NULL, &device->devid,
680 device->uuid);
681 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
606686ee
JB
682
683 /* Safe because we are under uuid_mutex */
99f5944b
JB
684 if (device->name) {
685 name = rcu_string_strdup(device->name->str, GFP_NOFS);
a1e8780a 686 BUG_ON(!name); /* -ENOMEM */
99f5944b
JB
687 rcu_assign_pointer(new_device->name, name);
688 }
a1e8780a 689
1f78160c 690 list_replace_rcu(&device->dev_list, &new_device->dev_list);
a1e8780a 691 new_device->fs_devices = device->fs_devices;
1f78160c
XG
692
693 call_rcu(&device->rcu, free_device);
8a4b83cc 694 }
c9513edb
XG
695 mutex_unlock(&fs_devices->device_list_mutex);
696
e4404d6e
YZ
697 WARN_ON(fs_devices->open_devices);
698 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
699 fs_devices->opened = 0;
700 fs_devices->seeding = 0;
2b82032c 701
8a4b83cc
CM
702 return 0;
703}
704
2b82032c
YZ
705int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
706{
e4404d6e 707 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
708 int ret;
709
710 mutex_lock(&uuid_mutex);
711 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
712 if (!fs_devices->opened) {
713 seed_devices = fs_devices->seed;
714 fs_devices->seed = NULL;
715 }
2b82032c 716 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
717
718 while (seed_devices) {
719 fs_devices = seed_devices;
720 seed_devices = fs_devices->seed;
721 __btrfs_close_devices(fs_devices);
722 free_fs_devices(fs_devices);
723 }
bc178622
ES
724 /*
725 * Wait for rcu kworkers under __btrfs_close_devices
726 * to finish all blkdev_puts so device is really
727 * free when umount is done.
728 */
729 rcu_barrier();
2b82032c
YZ
730 return ret;
731}
732
e4404d6e
YZ
733static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
734 fmode_t flags, void *holder)
8a4b83cc 735{
d5e2003c 736 struct request_queue *q;
8a4b83cc
CM
737 struct block_device *bdev;
738 struct list_head *head = &fs_devices->devices;
8a4b83cc 739 struct btrfs_device *device;
a0af469b
CM
740 struct block_device *latest_bdev = NULL;
741 struct buffer_head *bh;
742 struct btrfs_super_block *disk_super;
743 u64 latest_devid = 0;
744 u64 latest_transid = 0;
a0af469b 745 u64 devid;
2b82032c 746 int seeding = 1;
a0af469b 747 int ret = 0;
8a4b83cc 748
d4d77629
TH
749 flags |= FMODE_EXCL;
750
c6e30871 751 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
752 if (device->bdev)
753 continue;
dfe25020
CM
754 if (!device->name)
755 continue;
756
f63e0cca
ES
757 /* Just open everything we can; ignore failures here */
758 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
759 &bdev, &bh))
beaf8ab3 760 continue;
a0af469b
CM
761
762 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 763 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
764 if (devid != device->devid)
765 goto error_brelse;
766
2b82032c
YZ
767 if (memcmp(device->uuid, disk_super->dev_item.uuid,
768 BTRFS_UUID_SIZE))
769 goto error_brelse;
770
771 device->generation = btrfs_super_generation(disk_super);
772 if (!latest_transid || device->generation > latest_transid) {
a0af469b 773 latest_devid = devid;
2b82032c 774 latest_transid = device->generation;
a0af469b
CM
775 latest_bdev = bdev;
776 }
777
2b82032c
YZ
778 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
779 device->writeable = 0;
780 } else {
781 device->writeable = !bdev_read_only(bdev);
782 seeding = 0;
783 }
784
d5e2003c
JB
785 q = bdev_get_queue(bdev);
786 if (blk_queue_discard(q)) {
787 device->can_discard = 1;
788 fs_devices->num_can_discard++;
789 }
790
8a4b83cc 791 device->bdev = bdev;
dfe25020 792 device->in_fs_metadata = 0;
15916de8
CM
793 device->mode = flags;
794
c289811c
CM
795 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
796 fs_devices->rotating = 1;
797
a0af469b 798 fs_devices->open_devices++;
55e50e45
ID
799 if (device->writeable &&
800 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
801 fs_devices->rw_devices++;
802 list_add(&device->dev_alloc_list,
803 &fs_devices->alloc_list);
804 }
4f6c9328 805 brelse(bh);
a0af469b 806 continue;
a061fc8d 807
a0af469b
CM
808error_brelse:
809 brelse(bh);
d4d77629 810 blkdev_put(bdev, flags);
a0af469b 811 continue;
8a4b83cc 812 }
a0af469b 813 if (fs_devices->open_devices == 0) {
20bcd649 814 ret = -EINVAL;
a0af469b
CM
815 goto out;
816 }
2b82032c
YZ
817 fs_devices->seeding = seeding;
818 fs_devices->opened = 1;
a0af469b
CM
819 fs_devices->latest_bdev = latest_bdev;
820 fs_devices->latest_devid = latest_devid;
821 fs_devices->latest_trans = latest_transid;
2b82032c 822 fs_devices->total_rw_bytes = 0;
a0af469b 823out:
2b82032c
YZ
824 return ret;
825}
826
827int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 828 fmode_t flags, void *holder)
2b82032c
YZ
829{
830 int ret;
831
832 mutex_lock(&uuid_mutex);
833 if (fs_devices->opened) {
e4404d6e
YZ
834 fs_devices->opened++;
835 ret = 0;
2b82032c 836 } else {
15916de8 837 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 838 }
8a4b83cc 839 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
840 return ret;
841}
842
6f60cbd3
DS
843/*
844 * Look for a btrfs signature on a device. This may be called out of the mount path
845 * and we are not allowed to call set_blocksize during the scan. The superblock
846 * is read via pagecache
847 */
97288f2c 848int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
849 struct btrfs_fs_devices **fs_devices_ret)
850{
851 struct btrfs_super_block *disk_super;
852 struct block_device *bdev;
6f60cbd3
DS
853 struct page *page;
854 void *p;
855 int ret = -EINVAL;
8a4b83cc 856 u64 devid;
f2984462 857 u64 transid;
02db0844 858 u64 total_devices;
6f60cbd3
DS
859 u64 bytenr;
860 pgoff_t index;
8a4b83cc 861
6f60cbd3
DS
862 /*
863 * we would like to check all the supers, but that would make
864 * a btrfs mount succeed after a mkfs from a different FS.
865 * So, we need to add a special mount option to scan for
866 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
867 */
868 bytenr = btrfs_sb_offset(0);
d4d77629 869 flags |= FMODE_EXCL;
10f6327b 870 mutex_lock(&uuid_mutex);
6f60cbd3
DS
871
872 bdev = blkdev_get_by_path(path, flags, holder);
873
874 if (IS_ERR(bdev)) {
875 ret = PTR_ERR(bdev);
beaf8ab3 876 goto error;
6f60cbd3
DS
877 }
878
879 /* make sure our super fits in the device */
880 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
881 goto error_bdev_put;
882
883 /* make sure our super fits in the page */
884 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
885 goto error_bdev_put;
886
887 /* make sure our super doesn't straddle pages on disk */
888 index = bytenr >> PAGE_CACHE_SHIFT;
889 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
890 goto error_bdev_put;
891
892 /* pull in the page with our super */
893 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
894 index, GFP_NOFS);
895
896 if (IS_ERR_OR_NULL(page))
897 goto error_bdev_put;
898
899 p = kmap(page);
900
901 /* align our pointer to the offset of the super block */
902 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
903
904 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 905 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
906 goto error_unmap;
907
a343832f 908 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 909 transid = btrfs_super_generation(disk_super);
02db0844 910 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 911
d03f918a
SB
912 if (disk_super->label[0]) {
913 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
914 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
5138cccf 915 printk(KERN_INFO "btrfs: device label %s ", disk_super->label);
d03f918a 916 } else {
5138cccf 917 printk(KERN_INFO "btrfs: device fsid %pU ", disk_super->fsid);
d03f918a 918 }
6f60cbd3 919
c1c9ff7c 920 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
6f60cbd3 921
8a4b83cc 922 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
02db0844
JB
923 if (!ret && fs_devices_ret)
924 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
925
926error_unmap:
927 kunmap(page);
928 page_cache_release(page);
929
930error_bdev_put:
d4d77629 931 blkdev_put(bdev, flags);
8a4b83cc 932error:
beaf8ab3 933 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
934 return ret;
935}
0b86a832 936
6d07bcec
MX
937/* helper to account the used device space in the range */
938int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
939 u64 end, u64 *length)
940{
941 struct btrfs_key key;
942 struct btrfs_root *root = device->dev_root;
943 struct btrfs_dev_extent *dev_extent;
944 struct btrfs_path *path;
945 u64 extent_end;
946 int ret;
947 int slot;
948 struct extent_buffer *l;
949
950 *length = 0;
951
63a212ab 952 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
953 return 0;
954
955 path = btrfs_alloc_path();
956 if (!path)
957 return -ENOMEM;
958 path->reada = 2;
959
960 key.objectid = device->devid;
961 key.offset = start;
962 key.type = BTRFS_DEV_EXTENT_KEY;
963
964 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
965 if (ret < 0)
966 goto out;
967 if (ret > 0) {
968 ret = btrfs_previous_item(root, path, key.objectid, key.type);
969 if (ret < 0)
970 goto out;
971 }
972
973 while (1) {
974 l = path->nodes[0];
975 slot = path->slots[0];
976 if (slot >= btrfs_header_nritems(l)) {
977 ret = btrfs_next_leaf(root, path);
978 if (ret == 0)
979 continue;
980 if (ret < 0)
981 goto out;
982
983 break;
984 }
985 btrfs_item_key_to_cpu(l, &key, slot);
986
987 if (key.objectid < device->devid)
988 goto next;
989
990 if (key.objectid > device->devid)
991 break;
992
993 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
994 goto next;
995
996 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
997 extent_end = key.offset + btrfs_dev_extent_length(l,
998 dev_extent);
999 if (key.offset <= start && extent_end > end) {
1000 *length = end - start + 1;
1001 break;
1002 } else if (key.offset <= start && extent_end > start)
1003 *length += extent_end - start;
1004 else if (key.offset > start && extent_end <= end)
1005 *length += extent_end - key.offset;
1006 else if (key.offset > start && key.offset <= end) {
1007 *length += end - key.offset + 1;
1008 break;
1009 } else if (key.offset > end)
1010 break;
1011
1012next:
1013 path->slots[0]++;
1014 }
1015 ret = 0;
1016out:
1017 btrfs_free_path(path);
1018 return ret;
1019}
1020
6df9a95e
JB
1021static int contains_pending_extent(struct btrfs_trans_handle *trans,
1022 struct btrfs_device *device,
1023 u64 *start, u64 len)
1024{
1025 struct extent_map *em;
1026 int ret = 0;
1027
1028 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1029 struct map_lookup *map;
1030 int i;
1031
1032 map = (struct map_lookup *)em->bdev;
1033 for (i = 0; i < map->num_stripes; i++) {
1034 if (map->stripes[i].dev != device)
1035 continue;
1036 if (map->stripes[i].physical >= *start + len ||
1037 map->stripes[i].physical + em->orig_block_len <=
1038 *start)
1039 continue;
1040 *start = map->stripes[i].physical +
1041 em->orig_block_len;
1042 ret = 1;
1043 }
1044 }
1045
1046 return ret;
1047}
1048
1049
0b86a832 1050/*
7bfc837d 1051 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
1052 * @device: the device which we search the free space in
1053 * @num_bytes: the size of the free space that we need
1054 * @start: store the start of the free space.
1055 * @len: the size of the free space. that we find, or the size of the max
1056 * free space if we don't find suitable free space
1057 *
0b86a832
CM
1058 * this uses a pretty simple search, the expectation is that it is
1059 * called very infrequently and that a given device has a small number
1060 * of extents
7bfc837d
MX
1061 *
1062 * @start is used to store the start of the free space if we find. But if we
1063 * don't find suitable free space, it will be used to store the start position
1064 * of the max free space.
1065 *
1066 * @len is used to store the size of the free space that we find.
1067 * But if we don't find suitable free space, it is used to store the size of
1068 * the max free space.
0b86a832 1069 */
6df9a95e
JB
1070int find_free_dev_extent(struct btrfs_trans_handle *trans,
1071 struct btrfs_device *device, u64 num_bytes,
7bfc837d 1072 u64 *start, u64 *len)
0b86a832
CM
1073{
1074 struct btrfs_key key;
1075 struct btrfs_root *root = device->dev_root;
7bfc837d 1076 struct btrfs_dev_extent *dev_extent;
2b82032c 1077 struct btrfs_path *path;
7bfc837d
MX
1078 u64 hole_size;
1079 u64 max_hole_start;
1080 u64 max_hole_size;
1081 u64 extent_end;
1082 u64 search_start;
0b86a832
CM
1083 u64 search_end = device->total_bytes;
1084 int ret;
7bfc837d 1085 int slot;
0b86a832
CM
1086 struct extent_buffer *l;
1087
0b86a832
CM
1088 /* FIXME use last free of some kind */
1089
8a4b83cc
CM
1090 /* we don't want to overwrite the superblock on the drive,
1091 * so we make sure to start at an offset of at least 1MB
1092 */
a9c9bf68 1093 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 1094
6df9a95e
JB
1095 path = btrfs_alloc_path();
1096 if (!path)
1097 return -ENOMEM;
1098again:
7bfc837d
MX
1099 max_hole_start = search_start;
1100 max_hole_size = 0;
38c01b96 1101 hole_size = 0;
7bfc837d 1102
63a212ab 1103 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1104 ret = -ENOSPC;
6df9a95e 1105 goto out;
7bfc837d
MX
1106 }
1107
7bfc837d 1108 path->reada = 2;
6df9a95e
JB
1109 path->search_commit_root = 1;
1110 path->skip_locking = 1;
7bfc837d 1111
0b86a832
CM
1112 key.objectid = device->devid;
1113 key.offset = search_start;
1114 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1115
125ccb0a 1116 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1117 if (ret < 0)
7bfc837d 1118 goto out;
1fcbac58
YZ
1119 if (ret > 0) {
1120 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1121 if (ret < 0)
7bfc837d 1122 goto out;
1fcbac58 1123 }
7bfc837d 1124
0b86a832
CM
1125 while (1) {
1126 l = path->nodes[0];
1127 slot = path->slots[0];
1128 if (slot >= btrfs_header_nritems(l)) {
1129 ret = btrfs_next_leaf(root, path);
1130 if (ret == 0)
1131 continue;
1132 if (ret < 0)
7bfc837d
MX
1133 goto out;
1134
1135 break;
0b86a832
CM
1136 }
1137 btrfs_item_key_to_cpu(l, &key, slot);
1138
1139 if (key.objectid < device->devid)
1140 goto next;
1141
1142 if (key.objectid > device->devid)
7bfc837d 1143 break;
0b86a832 1144
7bfc837d
MX
1145 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1146 goto next;
9779b72f 1147
7bfc837d
MX
1148 if (key.offset > search_start) {
1149 hole_size = key.offset - search_start;
9779b72f 1150
6df9a95e
JB
1151 /*
1152 * Have to check before we set max_hole_start, otherwise
1153 * we could end up sending back this offset anyway.
1154 */
1155 if (contains_pending_extent(trans, device,
1156 &search_start,
1157 hole_size))
1158 hole_size = 0;
1159
7bfc837d
MX
1160 if (hole_size > max_hole_size) {
1161 max_hole_start = search_start;
1162 max_hole_size = hole_size;
1163 }
9779b72f 1164
7bfc837d
MX
1165 /*
1166 * If this free space is greater than which we need,
1167 * it must be the max free space that we have found
1168 * until now, so max_hole_start must point to the start
1169 * of this free space and the length of this free space
1170 * is stored in max_hole_size. Thus, we return
1171 * max_hole_start and max_hole_size and go back to the
1172 * caller.
1173 */
1174 if (hole_size >= num_bytes) {
1175 ret = 0;
1176 goto out;
0b86a832
CM
1177 }
1178 }
0b86a832 1179
0b86a832 1180 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1181 extent_end = key.offset + btrfs_dev_extent_length(l,
1182 dev_extent);
1183 if (extent_end > search_start)
1184 search_start = extent_end;
0b86a832
CM
1185next:
1186 path->slots[0]++;
1187 cond_resched();
1188 }
0b86a832 1189
38c01b96 1190 /*
1191 * At this point, search_start should be the end of
1192 * allocated dev extents, and when shrinking the device,
1193 * search_end may be smaller than search_start.
1194 */
1195 if (search_end > search_start)
1196 hole_size = search_end - search_start;
1197
7bfc837d
MX
1198 if (hole_size > max_hole_size) {
1199 max_hole_start = search_start;
1200 max_hole_size = hole_size;
0b86a832 1201 }
0b86a832 1202
6df9a95e
JB
1203 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1204 btrfs_release_path(path);
1205 goto again;
1206 }
1207
7bfc837d
MX
1208 /* See above. */
1209 if (hole_size < num_bytes)
1210 ret = -ENOSPC;
1211 else
1212 ret = 0;
1213
1214out:
2b82032c 1215 btrfs_free_path(path);
7bfc837d 1216 *start = max_hole_start;
b2117a39 1217 if (len)
7bfc837d 1218 *len = max_hole_size;
0b86a832
CM
1219 return ret;
1220}
1221
b2950863 1222static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1223 struct btrfs_device *device,
1224 u64 start)
1225{
1226 int ret;
1227 struct btrfs_path *path;
1228 struct btrfs_root *root = device->dev_root;
1229 struct btrfs_key key;
a061fc8d
CM
1230 struct btrfs_key found_key;
1231 struct extent_buffer *leaf = NULL;
1232 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1233
1234 path = btrfs_alloc_path();
1235 if (!path)
1236 return -ENOMEM;
1237
1238 key.objectid = device->devid;
1239 key.offset = start;
1240 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1241again:
8f18cf13 1242 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1243 if (ret > 0) {
1244 ret = btrfs_previous_item(root, path, key.objectid,
1245 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1246 if (ret)
1247 goto out;
a061fc8d
CM
1248 leaf = path->nodes[0];
1249 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1250 extent = btrfs_item_ptr(leaf, path->slots[0],
1251 struct btrfs_dev_extent);
1252 BUG_ON(found_key.offset > start || found_key.offset +
1253 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1254 key = found_key;
1255 btrfs_release_path(path);
1256 goto again;
a061fc8d
CM
1257 } else if (ret == 0) {
1258 leaf = path->nodes[0];
1259 extent = btrfs_item_ptr(leaf, path->slots[0],
1260 struct btrfs_dev_extent);
79787eaa
JM
1261 } else {
1262 btrfs_error(root->fs_info, ret, "Slot search failed");
1263 goto out;
a061fc8d 1264 }
8f18cf13 1265
2bf64758
JB
1266 if (device->bytes_used > 0) {
1267 u64 len = btrfs_dev_extent_length(leaf, extent);
1268 device->bytes_used -= len;
1269 spin_lock(&root->fs_info->free_chunk_lock);
1270 root->fs_info->free_chunk_space += len;
1271 spin_unlock(&root->fs_info->free_chunk_lock);
1272 }
8f18cf13 1273 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1274 if (ret) {
1275 btrfs_error(root->fs_info, ret,
1276 "Failed to remove dev extent item");
1277 }
b0b802d7 1278out:
8f18cf13
CM
1279 btrfs_free_path(path);
1280 return ret;
1281}
1282
48a3b636
ES
1283static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1284 struct btrfs_device *device,
1285 u64 chunk_tree, u64 chunk_objectid,
1286 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1287{
1288 int ret;
1289 struct btrfs_path *path;
1290 struct btrfs_root *root = device->dev_root;
1291 struct btrfs_dev_extent *extent;
1292 struct extent_buffer *leaf;
1293 struct btrfs_key key;
1294
dfe25020 1295 WARN_ON(!device->in_fs_metadata);
63a212ab 1296 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1297 path = btrfs_alloc_path();
1298 if (!path)
1299 return -ENOMEM;
1300
0b86a832 1301 key.objectid = device->devid;
2b82032c 1302 key.offset = start;
0b86a832
CM
1303 key.type = BTRFS_DEV_EXTENT_KEY;
1304 ret = btrfs_insert_empty_item(trans, root, path, &key,
1305 sizeof(*extent));
2cdcecbc
MF
1306 if (ret)
1307 goto out;
0b86a832
CM
1308
1309 leaf = path->nodes[0];
1310 extent = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_dev_extent);
e17cade2
CM
1312 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1313 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1314 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1315
1316 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1317 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1318
0b86a832
CM
1319 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1320 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1321out:
0b86a832
CM
1322 btrfs_free_path(path);
1323 return ret;
1324}
1325
6df9a95e 1326static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1327{
6df9a95e
JB
1328 struct extent_map_tree *em_tree;
1329 struct extent_map *em;
1330 struct rb_node *n;
1331 u64 ret = 0;
0b86a832 1332
6df9a95e
JB
1333 em_tree = &fs_info->mapping_tree.map_tree;
1334 read_lock(&em_tree->lock);
1335 n = rb_last(&em_tree->map);
1336 if (n) {
1337 em = rb_entry(n, struct extent_map, rb_node);
1338 ret = em->start + em->len;
0b86a832 1339 }
6df9a95e
JB
1340 read_unlock(&em_tree->lock);
1341
0b86a832
CM
1342 return ret;
1343}
1344
53f10659
ID
1345static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1346 u64 *devid_ret)
0b86a832
CM
1347{
1348 int ret;
1349 struct btrfs_key key;
1350 struct btrfs_key found_key;
2b82032c
YZ
1351 struct btrfs_path *path;
1352
2b82032c
YZ
1353 path = btrfs_alloc_path();
1354 if (!path)
1355 return -ENOMEM;
0b86a832
CM
1356
1357 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1358 key.type = BTRFS_DEV_ITEM_KEY;
1359 key.offset = (u64)-1;
1360
53f10659 1361 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1362 if (ret < 0)
1363 goto error;
1364
79787eaa 1365 BUG_ON(ret == 0); /* Corruption */
0b86a832 1366
53f10659
ID
1367 ret = btrfs_previous_item(fs_info->chunk_root, path,
1368 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1369 BTRFS_DEV_ITEM_KEY);
1370 if (ret) {
53f10659 1371 *devid_ret = 1;
0b86a832
CM
1372 } else {
1373 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1374 path->slots[0]);
53f10659 1375 *devid_ret = found_key.offset + 1;
0b86a832
CM
1376 }
1377 ret = 0;
1378error:
2b82032c 1379 btrfs_free_path(path);
0b86a832
CM
1380 return ret;
1381}
1382
1383/*
1384 * the device information is stored in the chunk root
1385 * the btrfs_device struct should be fully filled in
1386 */
48a3b636
ES
1387static int btrfs_add_device(struct btrfs_trans_handle *trans,
1388 struct btrfs_root *root,
1389 struct btrfs_device *device)
0b86a832
CM
1390{
1391 int ret;
1392 struct btrfs_path *path;
1393 struct btrfs_dev_item *dev_item;
1394 struct extent_buffer *leaf;
1395 struct btrfs_key key;
1396 unsigned long ptr;
0b86a832
CM
1397
1398 root = root->fs_info->chunk_root;
1399
1400 path = btrfs_alloc_path();
1401 if (!path)
1402 return -ENOMEM;
1403
0b86a832
CM
1404 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1405 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1406 key.offset = device->devid;
0b86a832
CM
1407
1408 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1409 sizeof(*dev_item));
0b86a832
CM
1410 if (ret)
1411 goto out;
1412
1413 leaf = path->nodes[0];
1414 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1415
1416 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1417 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1418 btrfs_set_device_type(leaf, dev_item, device->type);
1419 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1420 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1421 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1422 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1423 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1424 btrfs_set_device_group(leaf, dev_item, 0);
1425 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1426 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1427 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1428
410ba3a2 1429 ptr = btrfs_device_uuid(dev_item);
e17cade2 1430 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1431 ptr = btrfs_device_fsid(dev_item);
2b82032c 1432 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1433 btrfs_mark_buffer_dirty(leaf);
0b86a832 1434
2b82032c 1435 ret = 0;
0b86a832
CM
1436out:
1437 btrfs_free_path(path);
1438 return ret;
1439}
8f18cf13 1440
a061fc8d
CM
1441static int btrfs_rm_dev_item(struct btrfs_root *root,
1442 struct btrfs_device *device)
1443{
1444 int ret;
1445 struct btrfs_path *path;
a061fc8d 1446 struct btrfs_key key;
a061fc8d
CM
1447 struct btrfs_trans_handle *trans;
1448
1449 root = root->fs_info->chunk_root;
1450
1451 path = btrfs_alloc_path();
1452 if (!path)
1453 return -ENOMEM;
1454
a22285a6 1455 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1456 if (IS_ERR(trans)) {
1457 btrfs_free_path(path);
1458 return PTR_ERR(trans);
1459 }
a061fc8d
CM
1460 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1461 key.type = BTRFS_DEV_ITEM_KEY;
1462 key.offset = device->devid;
7d9eb12c 1463 lock_chunks(root);
a061fc8d
CM
1464
1465 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1466 if (ret < 0)
1467 goto out;
1468
1469 if (ret > 0) {
1470 ret = -ENOENT;
1471 goto out;
1472 }
1473
1474 ret = btrfs_del_item(trans, root, path);
1475 if (ret)
1476 goto out;
a061fc8d
CM
1477out:
1478 btrfs_free_path(path);
7d9eb12c 1479 unlock_chunks(root);
a061fc8d
CM
1480 btrfs_commit_transaction(trans, root);
1481 return ret;
1482}
1483
1484int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1485{
1486 struct btrfs_device *device;
2b82032c 1487 struct btrfs_device *next_device;
a061fc8d 1488 struct block_device *bdev;
dfe25020 1489 struct buffer_head *bh = NULL;
a061fc8d 1490 struct btrfs_super_block *disk_super;
1f78160c 1491 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1492 u64 all_avail;
1493 u64 devid;
2b82032c
YZ
1494 u64 num_devices;
1495 u8 *dev_uuid;
de98ced9 1496 unsigned seq;
a061fc8d 1497 int ret = 0;
1f78160c 1498 bool clear_super = false;
a061fc8d 1499
a061fc8d
CM
1500 mutex_lock(&uuid_mutex);
1501
de98ced9
MX
1502 do {
1503 seq = read_seqbegin(&root->fs_info->profiles_lock);
1504
1505 all_avail = root->fs_info->avail_data_alloc_bits |
1506 root->fs_info->avail_system_alloc_bits |
1507 root->fs_info->avail_metadata_alloc_bits;
1508 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1509
8dabb742
SB
1510 num_devices = root->fs_info->fs_devices->num_devices;
1511 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1512 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1513 WARN_ON(num_devices < 1);
1514 num_devices--;
1515 }
1516 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1517
1518 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1519 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1520 goto out;
1521 }
1522
8dabb742 1523 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1524 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1525 goto out;
1526 }
1527
53b381b3
DW
1528 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1529 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1530 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1531 goto out;
1532 }
1533 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1534 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1535 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1536 goto out;
1537 }
1538
dfe25020 1539 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1540 struct list_head *devices;
1541 struct btrfs_device *tmp;
a061fc8d 1542
dfe25020
CM
1543 device = NULL;
1544 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1545 /*
1546 * It is safe to read the devices since the volume_mutex
1547 * is held.
1548 */
c6e30871 1549 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1550 if (tmp->in_fs_metadata &&
1551 !tmp->is_tgtdev_for_dev_replace &&
1552 !tmp->bdev) {
dfe25020
CM
1553 device = tmp;
1554 break;
1555 }
1556 }
1557 bdev = NULL;
1558 bh = NULL;
1559 disk_super = NULL;
1560 if (!device) {
183860f6 1561 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1562 goto out;
1563 }
dfe25020 1564 } else {
beaf8ab3 1565 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1566 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1567 root->fs_info->bdev_holder, 0,
1568 &bdev, &bh);
1569 if (ret)
dfe25020 1570 goto out;
dfe25020 1571 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1572 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1573 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1574 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1575 disk_super->fsid);
dfe25020
CM
1576 if (!device) {
1577 ret = -ENOENT;
1578 goto error_brelse;
1579 }
2b82032c 1580 }
dfe25020 1581
63a212ab 1582 if (device->is_tgtdev_for_dev_replace) {
183860f6 1583 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1584 goto error_brelse;
1585 }
1586
2b82032c 1587 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1588 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1589 goto error_brelse;
1590 }
1591
1592 if (device->writeable) {
0c1daee0 1593 lock_chunks(root);
2b82032c 1594 list_del_init(&device->dev_alloc_list);
0c1daee0 1595 unlock_chunks(root);
2b82032c 1596 root->fs_info->fs_devices->rw_devices--;
1f78160c 1597 clear_super = true;
dfe25020 1598 }
a061fc8d 1599
d7901554 1600 mutex_unlock(&uuid_mutex);
a061fc8d 1601 ret = btrfs_shrink_device(device, 0);
d7901554 1602 mutex_lock(&uuid_mutex);
a061fc8d 1603 if (ret)
9b3517e9 1604 goto error_undo;
a061fc8d 1605
63a212ab
SB
1606 /*
1607 * TODO: the superblock still includes this device in its num_devices
1608 * counter although write_all_supers() is not locked out. This
1609 * could give a filesystem state which requires a degraded mount.
1610 */
a061fc8d
CM
1611 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1612 if (ret)
9b3517e9 1613 goto error_undo;
a061fc8d 1614
2bf64758
JB
1615 spin_lock(&root->fs_info->free_chunk_lock);
1616 root->fs_info->free_chunk_space = device->total_bytes -
1617 device->bytes_used;
1618 spin_unlock(&root->fs_info->free_chunk_lock);
1619
2b82032c 1620 device->in_fs_metadata = 0;
aa1b8cd4 1621 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1622
1623 /*
1624 * the device list mutex makes sure that we don't change
1625 * the device list while someone else is writing out all
d7306801
FDBM
1626 * the device supers. Whoever is writing all supers, should
1627 * lock the device list mutex before getting the number of
1628 * devices in the super block (super_copy). Conversely,
1629 * whoever updates the number of devices in the super block
1630 * (super_copy) should hold the device list mutex.
e5e9a520 1631 */
1f78160c
XG
1632
1633 cur_devices = device->fs_devices;
e5e9a520 1634 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1635 list_del_rcu(&device->dev_list);
e5e9a520 1636
e4404d6e 1637 device->fs_devices->num_devices--;
02db0844 1638 device->fs_devices->total_devices--;
2b82032c 1639
cd02dca5
CM
1640 if (device->missing)
1641 root->fs_info->fs_devices->missing_devices--;
1642
2b82032c
YZ
1643 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1644 struct btrfs_device, dev_list);
1645 if (device->bdev == root->fs_info->sb->s_bdev)
1646 root->fs_info->sb->s_bdev = next_device->bdev;
1647 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1648 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1649
1f78160c 1650 if (device->bdev)
e4404d6e 1651 device->fs_devices->open_devices--;
1f78160c
XG
1652
1653 call_rcu(&device->rcu, free_device);
e4404d6e 1654
6c41761f
DS
1655 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1656 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1657 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1658
1f78160c 1659 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1660 struct btrfs_fs_devices *fs_devices;
1661 fs_devices = root->fs_info->fs_devices;
1662 while (fs_devices) {
1f78160c 1663 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1664 break;
1665 fs_devices = fs_devices->seed;
2b82032c 1666 }
1f78160c
XG
1667 fs_devices->seed = cur_devices->seed;
1668 cur_devices->seed = NULL;
0c1daee0 1669 lock_chunks(root);
1f78160c 1670 __btrfs_close_devices(cur_devices);
0c1daee0 1671 unlock_chunks(root);
1f78160c 1672 free_fs_devices(cur_devices);
2b82032c
YZ
1673 }
1674
5af3e8cc
SB
1675 root->fs_info->num_tolerated_disk_barrier_failures =
1676 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1677
2b82032c
YZ
1678 /*
1679 * at this point, the device is zero sized. We want to
1680 * remove it from the devices list and zero out the old super
1681 */
aa1b8cd4 1682 if (clear_super && disk_super) {
dfe25020
CM
1683 /* make sure this device isn't detected as part of
1684 * the FS anymore
1685 */
1686 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1687 set_buffer_dirty(bh);
1688 sync_dirty_buffer(bh);
dfe25020 1689 }
a061fc8d 1690
a061fc8d 1691 ret = 0;
a061fc8d 1692
b8b8ff59 1693 /* Notify udev that device has changed */
3c911608
ES
1694 if (bdev)
1695 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1696
a061fc8d
CM
1697error_brelse:
1698 brelse(bh);
dfe25020 1699 if (bdev)
e525fd89 1700 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1701out:
1702 mutex_unlock(&uuid_mutex);
a061fc8d 1703 return ret;
9b3517e9
ID
1704error_undo:
1705 if (device->writeable) {
0c1daee0 1706 lock_chunks(root);
9b3517e9
ID
1707 list_add(&device->dev_alloc_list,
1708 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1709 unlock_chunks(root);
9b3517e9
ID
1710 root->fs_info->fs_devices->rw_devices++;
1711 }
1712 goto error_brelse;
a061fc8d
CM
1713}
1714
e93c89c1
SB
1715void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1716 struct btrfs_device *srcdev)
1717{
1718 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1719
e93c89c1
SB
1720 list_del_rcu(&srcdev->dev_list);
1721 list_del_rcu(&srcdev->dev_alloc_list);
1722 fs_info->fs_devices->num_devices--;
1723 if (srcdev->missing) {
1724 fs_info->fs_devices->missing_devices--;
1725 fs_info->fs_devices->rw_devices++;
1726 }
1727 if (srcdev->can_discard)
1728 fs_info->fs_devices->num_can_discard--;
1357272f 1729 if (srcdev->bdev) {
e93c89c1
SB
1730 fs_info->fs_devices->open_devices--;
1731
1357272f
ID
1732 /* zero out the old super */
1733 btrfs_scratch_superblock(srcdev);
1734 }
1735
e93c89c1
SB
1736 call_rcu(&srcdev->rcu, free_device);
1737}
1738
1739void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1740 struct btrfs_device *tgtdev)
1741{
1742 struct btrfs_device *next_device;
1743
1744 WARN_ON(!tgtdev);
1745 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1746 if (tgtdev->bdev) {
1747 btrfs_scratch_superblock(tgtdev);
1748 fs_info->fs_devices->open_devices--;
1749 }
1750 fs_info->fs_devices->num_devices--;
1751 if (tgtdev->can_discard)
1752 fs_info->fs_devices->num_can_discard++;
1753
1754 next_device = list_entry(fs_info->fs_devices->devices.next,
1755 struct btrfs_device, dev_list);
1756 if (tgtdev->bdev == fs_info->sb->s_bdev)
1757 fs_info->sb->s_bdev = next_device->bdev;
1758 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1759 fs_info->fs_devices->latest_bdev = next_device->bdev;
1760 list_del_rcu(&tgtdev->dev_list);
1761
1762 call_rcu(&tgtdev->rcu, free_device);
1763
1764 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1765}
1766
48a3b636
ES
1767static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1768 struct btrfs_device **device)
7ba15b7d
SB
1769{
1770 int ret = 0;
1771 struct btrfs_super_block *disk_super;
1772 u64 devid;
1773 u8 *dev_uuid;
1774 struct block_device *bdev;
1775 struct buffer_head *bh;
1776
1777 *device = NULL;
1778 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1779 root->fs_info->bdev_holder, 0, &bdev, &bh);
1780 if (ret)
1781 return ret;
1782 disk_super = (struct btrfs_super_block *)bh->b_data;
1783 devid = btrfs_stack_device_id(&disk_super->dev_item);
1784 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1785 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
1786 disk_super->fsid);
1787 brelse(bh);
1788 if (!*device)
1789 ret = -ENOENT;
1790 blkdev_put(bdev, FMODE_READ);
1791 return ret;
1792}
1793
1794int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1795 char *device_path,
1796 struct btrfs_device **device)
1797{
1798 *device = NULL;
1799 if (strcmp(device_path, "missing") == 0) {
1800 struct list_head *devices;
1801 struct btrfs_device *tmp;
1802
1803 devices = &root->fs_info->fs_devices->devices;
1804 /*
1805 * It is safe to read the devices since the volume_mutex
1806 * is held by the caller.
1807 */
1808 list_for_each_entry(tmp, devices, dev_list) {
1809 if (tmp->in_fs_metadata && !tmp->bdev) {
1810 *device = tmp;
1811 break;
1812 }
1813 }
1814
1815 if (!*device) {
1816 pr_err("btrfs: no missing device found\n");
1817 return -ENOENT;
1818 }
1819
1820 return 0;
1821 } else {
1822 return btrfs_find_device_by_path(root, device_path, device);
1823 }
1824}
1825
2b82032c
YZ
1826/*
1827 * does all the dirty work required for changing file system's UUID.
1828 */
125ccb0a 1829static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1830{
1831 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1832 struct btrfs_fs_devices *old_devices;
e4404d6e 1833 struct btrfs_fs_devices *seed_devices;
6c41761f 1834 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1835 struct btrfs_device *device;
1836 u64 super_flags;
1837
1838 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1839 if (!fs_devices->seeding)
2b82032c
YZ
1840 return -EINVAL;
1841
2208a378
ID
1842 seed_devices = __alloc_fs_devices();
1843 if (IS_ERR(seed_devices))
1844 return PTR_ERR(seed_devices);
2b82032c 1845
e4404d6e
YZ
1846 old_devices = clone_fs_devices(fs_devices);
1847 if (IS_ERR(old_devices)) {
1848 kfree(seed_devices);
1849 return PTR_ERR(old_devices);
2b82032c 1850 }
e4404d6e 1851
2b82032c
YZ
1852 list_add(&old_devices->list, &fs_uuids);
1853
e4404d6e
YZ
1854 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1855 seed_devices->opened = 1;
1856 INIT_LIST_HEAD(&seed_devices->devices);
1857 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1858 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1859
1860 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1861 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1862 synchronize_rcu);
c9513edb 1863
e4404d6e
YZ
1864 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1865 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1866 device->fs_devices = seed_devices;
1867 }
1868
2b82032c
YZ
1869 fs_devices->seeding = 0;
1870 fs_devices->num_devices = 0;
1871 fs_devices->open_devices = 0;
02db0844 1872 fs_devices->total_devices = 0;
e4404d6e 1873 fs_devices->seed = seed_devices;
2b82032c
YZ
1874
1875 generate_random_uuid(fs_devices->fsid);
1876 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1877 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
1878 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1879
2b82032c
YZ
1880 super_flags = btrfs_super_flags(disk_super) &
1881 ~BTRFS_SUPER_FLAG_SEEDING;
1882 btrfs_set_super_flags(disk_super, super_flags);
1883
1884 return 0;
1885}
1886
1887/*
1888 * strore the expected generation for seed devices in device items.
1889 */
1890static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1891 struct btrfs_root *root)
1892{
1893 struct btrfs_path *path;
1894 struct extent_buffer *leaf;
1895 struct btrfs_dev_item *dev_item;
1896 struct btrfs_device *device;
1897 struct btrfs_key key;
1898 u8 fs_uuid[BTRFS_UUID_SIZE];
1899 u8 dev_uuid[BTRFS_UUID_SIZE];
1900 u64 devid;
1901 int ret;
1902
1903 path = btrfs_alloc_path();
1904 if (!path)
1905 return -ENOMEM;
1906
1907 root = root->fs_info->chunk_root;
1908 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1909 key.offset = 0;
1910 key.type = BTRFS_DEV_ITEM_KEY;
1911
1912 while (1) {
1913 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1914 if (ret < 0)
1915 goto error;
1916
1917 leaf = path->nodes[0];
1918next_slot:
1919 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1920 ret = btrfs_next_leaf(root, path);
1921 if (ret > 0)
1922 break;
1923 if (ret < 0)
1924 goto error;
1925 leaf = path->nodes[0];
1926 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1927 btrfs_release_path(path);
2b82032c
YZ
1928 continue;
1929 }
1930
1931 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1932 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1933 key.type != BTRFS_DEV_ITEM_KEY)
1934 break;
1935
1936 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1937 struct btrfs_dev_item);
1938 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 1939 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 1940 BTRFS_UUID_SIZE);
1473b24e 1941 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 1942 BTRFS_UUID_SIZE);
aa1b8cd4
SB
1943 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1944 fs_uuid);
79787eaa 1945 BUG_ON(!device); /* Logic error */
2b82032c
YZ
1946
1947 if (device->fs_devices->seeding) {
1948 btrfs_set_device_generation(leaf, dev_item,
1949 device->generation);
1950 btrfs_mark_buffer_dirty(leaf);
1951 }
1952
1953 path->slots[0]++;
1954 goto next_slot;
1955 }
1956 ret = 0;
1957error:
1958 btrfs_free_path(path);
1959 return ret;
1960}
1961
788f20eb
CM
1962int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1963{
d5e2003c 1964 struct request_queue *q;
788f20eb
CM
1965 struct btrfs_trans_handle *trans;
1966 struct btrfs_device *device;
1967 struct block_device *bdev;
788f20eb 1968 struct list_head *devices;
2b82032c 1969 struct super_block *sb = root->fs_info->sb;
606686ee 1970 struct rcu_string *name;
788f20eb 1971 u64 total_bytes;
2b82032c 1972 int seeding_dev = 0;
788f20eb
CM
1973 int ret = 0;
1974
2b82032c 1975 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 1976 return -EROFS;
788f20eb 1977
a5d16333 1978 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1979 root->fs_info->bdev_holder);
7f59203a
JB
1980 if (IS_ERR(bdev))
1981 return PTR_ERR(bdev);
a2135011 1982
2b82032c
YZ
1983 if (root->fs_info->fs_devices->seeding) {
1984 seeding_dev = 1;
1985 down_write(&sb->s_umount);
1986 mutex_lock(&uuid_mutex);
1987 }
1988
8c8bee1d 1989 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 1990
788f20eb 1991 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
1992
1993 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 1994 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1995 if (device->bdev == bdev) {
1996 ret = -EEXIST;
d25628bd
LB
1997 mutex_unlock(
1998 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 1999 goto error;
788f20eb
CM
2000 }
2001 }
d25628bd 2002 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2003
12bd2fc0
ID
2004 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2005 if (IS_ERR(device)) {
788f20eb 2006 /* we can safely leave the fs_devices entry around */
12bd2fc0 2007 ret = PTR_ERR(device);
2b82032c 2008 goto error;
788f20eb
CM
2009 }
2010
606686ee
JB
2011 name = rcu_string_strdup(device_path, GFP_NOFS);
2012 if (!name) {
788f20eb 2013 kfree(device);
2b82032c
YZ
2014 ret = -ENOMEM;
2015 goto error;
788f20eb 2016 }
606686ee 2017 rcu_assign_pointer(device->name, name);
2b82032c 2018
a22285a6 2019 trans = btrfs_start_transaction(root, 0);
98d5dc13 2020 if (IS_ERR(trans)) {
606686ee 2021 rcu_string_free(device->name);
98d5dc13
TI
2022 kfree(device);
2023 ret = PTR_ERR(trans);
2024 goto error;
2025 }
2026
2b82032c
YZ
2027 lock_chunks(root);
2028
d5e2003c
JB
2029 q = bdev_get_queue(bdev);
2030 if (blk_queue_discard(q))
2031 device->can_discard = 1;
2b82032c 2032 device->writeable = 1;
2b82032c 2033 device->generation = trans->transid;
788f20eb
CM
2034 device->io_width = root->sectorsize;
2035 device->io_align = root->sectorsize;
2036 device->sector_size = root->sectorsize;
2037 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2038 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
2039 device->dev_root = root->fs_info->dev_root;
2040 device->bdev = bdev;
dfe25020 2041 device->in_fs_metadata = 1;
63a212ab 2042 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2043 device->mode = FMODE_EXCL;
27087f37 2044 device->dev_stats_valid = 1;
2b82032c 2045 set_blocksize(device->bdev, 4096);
788f20eb 2046
2b82032c
YZ
2047 if (seeding_dev) {
2048 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2049 ret = btrfs_prepare_sprout(root);
79787eaa 2050 BUG_ON(ret); /* -ENOMEM */
2b82032c 2051 }
788f20eb 2052
2b82032c 2053 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2054
e5e9a520 2055 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 2056 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2057 list_add(&device->dev_alloc_list,
2058 &root->fs_info->fs_devices->alloc_list);
2059 root->fs_info->fs_devices->num_devices++;
2060 root->fs_info->fs_devices->open_devices++;
2061 root->fs_info->fs_devices->rw_devices++;
02db0844 2062 root->fs_info->fs_devices->total_devices++;
d5e2003c
JB
2063 if (device->can_discard)
2064 root->fs_info->fs_devices->num_can_discard++;
2b82032c 2065 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2066
2bf64758
JB
2067 spin_lock(&root->fs_info->free_chunk_lock);
2068 root->fs_info->free_chunk_space += device->total_bytes;
2069 spin_unlock(&root->fs_info->free_chunk_lock);
2070
c289811c
CM
2071 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2072 root->fs_info->fs_devices->rotating = 1;
2073
6c41761f
DS
2074 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2075 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
2076 total_bytes + device->total_bytes);
2077
6c41761f
DS
2078 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2079 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 2080 total_bytes + 1);
e5e9a520 2081 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2082
2b82032c
YZ
2083 if (seeding_dev) {
2084 ret = init_first_rw_device(trans, root, device);
005d6427
DS
2085 if (ret) {
2086 btrfs_abort_transaction(trans, root, ret);
79787eaa 2087 goto error_trans;
005d6427 2088 }
2b82032c 2089 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2090 if (ret) {
2091 btrfs_abort_transaction(trans, root, ret);
79787eaa 2092 goto error_trans;
005d6427 2093 }
2b82032c
YZ
2094 } else {
2095 ret = btrfs_add_device(trans, root, device);
005d6427
DS
2096 if (ret) {
2097 btrfs_abort_transaction(trans, root, ret);
79787eaa 2098 goto error_trans;
005d6427 2099 }
2b82032c
YZ
2100 }
2101
913d952e
CM
2102 /*
2103 * we've got more storage, clear any full flags on the space
2104 * infos
2105 */
2106 btrfs_clear_space_info_full(root->fs_info);
2107
7d9eb12c 2108 unlock_chunks(root);
5af3e8cc
SB
2109 root->fs_info->num_tolerated_disk_barrier_failures =
2110 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2111 ret = btrfs_commit_transaction(trans, root);
a2135011 2112
2b82032c
YZ
2113 if (seeding_dev) {
2114 mutex_unlock(&uuid_mutex);
2115 up_write(&sb->s_umount);
788f20eb 2116
79787eaa
JM
2117 if (ret) /* transaction commit */
2118 return ret;
2119
2b82032c 2120 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
2121 if (ret < 0)
2122 btrfs_error(root->fs_info, ret,
2123 "Failed to relocate sys chunks after "
2124 "device initialization. This can be fixed "
2125 "using the \"btrfs balance\" command.");
671415b7
MX
2126 trans = btrfs_attach_transaction(root);
2127 if (IS_ERR(trans)) {
2128 if (PTR_ERR(trans) == -ENOENT)
2129 return 0;
2130 return PTR_ERR(trans);
2131 }
2132 ret = btrfs_commit_transaction(trans, root);
2b82032c 2133 }
c9e9f97b 2134
2b82032c 2135 return ret;
79787eaa
JM
2136
2137error_trans:
2138 unlock_chunks(root);
79787eaa 2139 btrfs_end_transaction(trans, root);
606686ee 2140 rcu_string_free(device->name);
79787eaa 2141 kfree(device);
2b82032c 2142error:
e525fd89 2143 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2144 if (seeding_dev) {
2145 mutex_unlock(&uuid_mutex);
2146 up_write(&sb->s_umount);
2147 }
c9e9f97b 2148 return ret;
788f20eb
CM
2149}
2150
e93c89c1
SB
2151int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2152 struct btrfs_device **device_out)
2153{
2154 struct request_queue *q;
2155 struct btrfs_device *device;
2156 struct block_device *bdev;
2157 struct btrfs_fs_info *fs_info = root->fs_info;
2158 struct list_head *devices;
2159 struct rcu_string *name;
12bd2fc0 2160 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2161 int ret = 0;
2162
2163 *device_out = NULL;
2164 if (fs_info->fs_devices->seeding)
2165 return -EINVAL;
2166
2167 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2168 fs_info->bdev_holder);
2169 if (IS_ERR(bdev))
2170 return PTR_ERR(bdev);
2171
2172 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2173
2174 devices = &fs_info->fs_devices->devices;
2175 list_for_each_entry(device, devices, dev_list) {
2176 if (device->bdev == bdev) {
2177 ret = -EEXIST;
2178 goto error;
2179 }
2180 }
2181
12bd2fc0
ID
2182 device = btrfs_alloc_device(NULL, &devid, NULL);
2183 if (IS_ERR(device)) {
2184 ret = PTR_ERR(device);
e93c89c1
SB
2185 goto error;
2186 }
2187
2188 name = rcu_string_strdup(device_path, GFP_NOFS);
2189 if (!name) {
2190 kfree(device);
2191 ret = -ENOMEM;
2192 goto error;
2193 }
2194 rcu_assign_pointer(device->name, name);
2195
2196 q = bdev_get_queue(bdev);
2197 if (blk_queue_discard(q))
2198 device->can_discard = 1;
2199 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2200 device->writeable = 1;
e93c89c1
SB
2201 device->generation = 0;
2202 device->io_width = root->sectorsize;
2203 device->io_align = root->sectorsize;
2204 device->sector_size = root->sectorsize;
2205 device->total_bytes = i_size_read(bdev->bd_inode);
2206 device->disk_total_bytes = device->total_bytes;
2207 device->dev_root = fs_info->dev_root;
2208 device->bdev = bdev;
2209 device->in_fs_metadata = 1;
2210 device->is_tgtdev_for_dev_replace = 1;
2211 device->mode = FMODE_EXCL;
27087f37 2212 device->dev_stats_valid = 1;
e93c89c1
SB
2213 set_blocksize(device->bdev, 4096);
2214 device->fs_devices = fs_info->fs_devices;
2215 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2216 fs_info->fs_devices->num_devices++;
2217 fs_info->fs_devices->open_devices++;
2218 if (device->can_discard)
2219 fs_info->fs_devices->num_can_discard++;
2220 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2221
2222 *device_out = device;
2223 return ret;
2224
2225error:
2226 blkdev_put(bdev, FMODE_EXCL);
2227 return ret;
2228}
2229
2230void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2231 struct btrfs_device *tgtdev)
2232{
2233 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2234 tgtdev->io_width = fs_info->dev_root->sectorsize;
2235 tgtdev->io_align = fs_info->dev_root->sectorsize;
2236 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2237 tgtdev->dev_root = fs_info->dev_root;
2238 tgtdev->in_fs_metadata = 1;
2239}
2240
d397712b
CM
2241static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2242 struct btrfs_device *device)
0b86a832
CM
2243{
2244 int ret;
2245 struct btrfs_path *path;
2246 struct btrfs_root *root;
2247 struct btrfs_dev_item *dev_item;
2248 struct extent_buffer *leaf;
2249 struct btrfs_key key;
2250
2251 root = device->dev_root->fs_info->chunk_root;
2252
2253 path = btrfs_alloc_path();
2254 if (!path)
2255 return -ENOMEM;
2256
2257 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2258 key.type = BTRFS_DEV_ITEM_KEY;
2259 key.offset = device->devid;
2260
2261 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2262 if (ret < 0)
2263 goto out;
2264
2265 if (ret > 0) {
2266 ret = -ENOENT;
2267 goto out;
2268 }
2269
2270 leaf = path->nodes[0];
2271 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2272
2273 btrfs_set_device_id(leaf, dev_item, device->devid);
2274 btrfs_set_device_type(leaf, dev_item, device->type);
2275 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2276 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2277 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 2278 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
2279 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2280 btrfs_mark_buffer_dirty(leaf);
2281
2282out:
2283 btrfs_free_path(path);
2284 return ret;
2285}
2286
7d9eb12c 2287static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2288 struct btrfs_device *device, u64 new_size)
2289{
2290 struct btrfs_super_block *super_copy =
6c41761f 2291 device->dev_root->fs_info->super_copy;
8f18cf13
CM
2292 u64 old_total = btrfs_super_total_bytes(super_copy);
2293 u64 diff = new_size - device->total_bytes;
2294
2b82032c
YZ
2295 if (!device->writeable)
2296 return -EACCES;
63a212ab
SB
2297 if (new_size <= device->total_bytes ||
2298 device->is_tgtdev_for_dev_replace)
2b82032c
YZ
2299 return -EINVAL;
2300
8f18cf13 2301 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2302 device->fs_devices->total_rw_bytes += diff;
2303
2304 device->total_bytes = new_size;
9779b72f 2305 device->disk_total_bytes = new_size;
4184ea7f
CM
2306 btrfs_clear_space_info_full(device->dev_root->fs_info);
2307
8f18cf13
CM
2308 return btrfs_update_device(trans, device);
2309}
2310
7d9eb12c
CM
2311int btrfs_grow_device(struct btrfs_trans_handle *trans,
2312 struct btrfs_device *device, u64 new_size)
2313{
2314 int ret;
2315 lock_chunks(device->dev_root);
2316 ret = __btrfs_grow_device(trans, device, new_size);
2317 unlock_chunks(device->dev_root);
2318 return ret;
2319}
2320
8f18cf13
CM
2321static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2322 struct btrfs_root *root,
2323 u64 chunk_tree, u64 chunk_objectid,
2324 u64 chunk_offset)
2325{
2326 int ret;
2327 struct btrfs_path *path;
2328 struct btrfs_key key;
2329
2330 root = root->fs_info->chunk_root;
2331 path = btrfs_alloc_path();
2332 if (!path)
2333 return -ENOMEM;
2334
2335 key.objectid = chunk_objectid;
2336 key.offset = chunk_offset;
2337 key.type = BTRFS_CHUNK_ITEM_KEY;
2338
2339 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2340 if (ret < 0)
2341 goto out;
2342 else if (ret > 0) { /* Logic error or corruption */
2343 btrfs_error(root->fs_info, -ENOENT,
2344 "Failed lookup while freeing chunk.");
2345 ret = -ENOENT;
2346 goto out;
2347 }
8f18cf13
CM
2348
2349 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2350 if (ret < 0)
2351 btrfs_error(root->fs_info, ret,
2352 "Failed to delete chunk item.");
2353out:
8f18cf13 2354 btrfs_free_path(path);
65a246c5 2355 return ret;
8f18cf13
CM
2356}
2357
b2950863 2358static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2359 chunk_offset)
2360{
6c41761f 2361 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2362 struct btrfs_disk_key *disk_key;
2363 struct btrfs_chunk *chunk;
2364 u8 *ptr;
2365 int ret = 0;
2366 u32 num_stripes;
2367 u32 array_size;
2368 u32 len = 0;
2369 u32 cur;
2370 struct btrfs_key key;
2371
2372 array_size = btrfs_super_sys_array_size(super_copy);
2373
2374 ptr = super_copy->sys_chunk_array;
2375 cur = 0;
2376
2377 while (cur < array_size) {
2378 disk_key = (struct btrfs_disk_key *)ptr;
2379 btrfs_disk_key_to_cpu(&key, disk_key);
2380
2381 len = sizeof(*disk_key);
2382
2383 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2384 chunk = (struct btrfs_chunk *)(ptr + len);
2385 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2386 len += btrfs_chunk_item_size(num_stripes);
2387 } else {
2388 ret = -EIO;
2389 break;
2390 }
2391 if (key.objectid == chunk_objectid &&
2392 key.offset == chunk_offset) {
2393 memmove(ptr, ptr + len, array_size - (cur + len));
2394 array_size -= len;
2395 btrfs_set_super_sys_array_size(super_copy, array_size);
2396 } else {
2397 ptr += len;
2398 cur += len;
2399 }
2400 }
2401 return ret;
2402}
2403
b2950863 2404static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
2405 u64 chunk_tree, u64 chunk_objectid,
2406 u64 chunk_offset)
2407{
2408 struct extent_map_tree *em_tree;
2409 struct btrfs_root *extent_root;
2410 struct btrfs_trans_handle *trans;
2411 struct extent_map *em;
2412 struct map_lookup *map;
2413 int ret;
2414 int i;
2415
2416 root = root->fs_info->chunk_root;
2417 extent_root = root->fs_info->extent_root;
2418 em_tree = &root->fs_info->mapping_tree.map_tree;
2419
ba1bf481
JB
2420 ret = btrfs_can_relocate(extent_root, chunk_offset);
2421 if (ret)
2422 return -ENOSPC;
2423
8f18cf13 2424 /* step one, relocate all the extents inside this chunk */
1a40e23b 2425 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2426 if (ret)
2427 return ret;
8f18cf13 2428
a22285a6 2429 trans = btrfs_start_transaction(root, 0);
0f788c58
LB
2430 if (IS_ERR(trans)) {
2431 ret = PTR_ERR(trans);
2432 btrfs_std_error(root->fs_info, ret);
2433 return ret;
2434 }
8f18cf13 2435
7d9eb12c
CM
2436 lock_chunks(root);
2437
8f18cf13
CM
2438 /*
2439 * step two, delete the device extents and the
2440 * chunk tree entries
2441 */
890871be 2442 read_lock(&em_tree->lock);
8f18cf13 2443 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2444 read_unlock(&em_tree->lock);
8f18cf13 2445
285190d9 2446 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2447 em->start + em->len < chunk_offset);
8f18cf13
CM
2448 map = (struct map_lookup *)em->bdev;
2449
2450 for (i = 0; i < map->num_stripes; i++) {
2451 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2452 map->stripes[i].physical);
2453 BUG_ON(ret);
a061fc8d 2454
dfe25020
CM
2455 if (map->stripes[i].dev) {
2456 ret = btrfs_update_device(trans, map->stripes[i].dev);
2457 BUG_ON(ret);
2458 }
8f18cf13
CM
2459 }
2460 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2461 chunk_offset);
2462
2463 BUG_ON(ret);
2464
1abe9b8a 2465 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2466
8f18cf13
CM
2467 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2468 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2469 BUG_ON(ret);
8f18cf13
CM
2470 }
2471
2b82032c
YZ
2472 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2473 BUG_ON(ret);
2474
890871be 2475 write_lock(&em_tree->lock);
2b82032c 2476 remove_extent_mapping(em_tree, em);
890871be 2477 write_unlock(&em_tree->lock);
2b82032c
YZ
2478
2479 kfree(map);
2480 em->bdev = NULL;
2481
2482 /* once for the tree */
2483 free_extent_map(em);
2484 /* once for us */
2485 free_extent_map(em);
2486
2487 unlock_chunks(root);
2488 btrfs_end_transaction(trans, root);
2489 return 0;
2490}
2491
2492static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2493{
2494 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2495 struct btrfs_path *path;
2496 struct extent_buffer *leaf;
2497 struct btrfs_chunk *chunk;
2498 struct btrfs_key key;
2499 struct btrfs_key found_key;
2500 u64 chunk_tree = chunk_root->root_key.objectid;
2501 u64 chunk_type;
ba1bf481
JB
2502 bool retried = false;
2503 int failed = 0;
2b82032c
YZ
2504 int ret;
2505
2506 path = btrfs_alloc_path();
2507 if (!path)
2508 return -ENOMEM;
2509
ba1bf481 2510again:
2b82032c
YZ
2511 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2512 key.offset = (u64)-1;
2513 key.type = BTRFS_CHUNK_ITEM_KEY;
2514
2515 while (1) {
2516 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2517 if (ret < 0)
2518 goto error;
79787eaa 2519 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2520
2521 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2522 key.type);
2523 if (ret < 0)
2524 goto error;
2525 if (ret > 0)
2526 break;
1a40e23b 2527
2b82032c
YZ
2528 leaf = path->nodes[0];
2529 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2530
2b82032c
YZ
2531 chunk = btrfs_item_ptr(leaf, path->slots[0],
2532 struct btrfs_chunk);
2533 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2534 btrfs_release_path(path);
8f18cf13 2535
2b82032c
YZ
2536 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2537 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2538 found_key.objectid,
2539 found_key.offset);
ba1bf481
JB
2540 if (ret == -ENOSPC)
2541 failed++;
2542 else if (ret)
2543 BUG();
2b82032c 2544 }
8f18cf13 2545
2b82032c
YZ
2546 if (found_key.offset == 0)
2547 break;
2548 key.offset = found_key.offset - 1;
2549 }
2550 ret = 0;
ba1bf481
JB
2551 if (failed && !retried) {
2552 failed = 0;
2553 retried = true;
2554 goto again;
2555 } else if (failed && retried) {
2556 WARN_ON(1);
2557 ret = -ENOSPC;
2558 }
2b82032c
YZ
2559error:
2560 btrfs_free_path(path);
2561 return ret;
8f18cf13
CM
2562}
2563
0940ebf6
ID
2564static int insert_balance_item(struct btrfs_root *root,
2565 struct btrfs_balance_control *bctl)
2566{
2567 struct btrfs_trans_handle *trans;
2568 struct btrfs_balance_item *item;
2569 struct btrfs_disk_balance_args disk_bargs;
2570 struct btrfs_path *path;
2571 struct extent_buffer *leaf;
2572 struct btrfs_key key;
2573 int ret, err;
2574
2575 path = btrfs_alloc_path();
2576 if (!path)
2577 return -ENOMEM;
2578
2579 trans = btrfs_start_transaction(root, 0);
2580 if (IS_ERR(trans)) {
2581 btrfs_free_path(path);
2582 return PTR_ERR(trans);
2583 }
2584
2585 key.objectid = BTRFS_BALANCE_OBJECTID;
2586 key.type = BTRFS_BALANCE_ITEM_KEY;
2587 key.offset = 0;
2588
2589 ret = btrfs_insert_empty_item(trans, root, path, &key,
2590 sizeof(*item));
2591 if (ret)
2592 goto out;
2593
2594 leaf = path->nodes[0];
2595 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2596
2597 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2598
2599 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2600 btrfs_set_balance_data(leaf, item, &disk_bargs);
2601 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2602 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2603 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2604 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2605
2606 btrfs_set_balance_flags(leaf, item, bctl->flags);
2607
2608 btrfs_mark_buffer_dirty(leaf);
2609out:
2610 btrfs_free_path(path);
2611 err = btrfs_commit_transaction(trans, root);
2612 if (err && !ret)
2613 ret = err;
2614 return ret;
2615}
2616
2617static int del_balance_item(struct btrfs_root *root)
2618{
2619 struct btrfs_trans_handle *trans;
2620 struct btrfs_path *path;
2621 struct btrfs_key key;
2622 int ret, err;
2623
2624 path = btrfs_alloc_path();
2625 if (!path)
2626 return -ENOMEM;
2627
2628 trans = btrfs_start_transaction(root, 0);
2629 if (IS_ERR(trans)) {
2630 btrfs_free_path(path);
2631 return PTR_ERR(trans);
2632 }
2633
2634 key.objectid = BTRFS_BALANCE_OBJECTID;
2635 key.type = BTRFS_BALANCE_ITEM_KEY;
2636 key.offset = 0;
2637
2638 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2639 if (ret < 0)
2640 goto out;
2641 if (ret > 0) {
2642 ret = -ENOENT;
2643 goto out;
2644 }
2645
2646 ret = btrfs_del_item(trans, root, path);
2647out:
2648 btrfs_free_path(path);
2649 err = btrfs_commit_transaction(trans, root);
2650 if (err && !ret)
2651 ret = err;
2652 return ret;
2653}
2654
59641015
ID
2655/*
2656 * This is a heuristic used to reduce the number of chunks balanced on
2657 * resume after balance was interrupted.
2658 */
2659static void update_balance_args(struct btrfs_balance_control *bctl)
2660{
2661 /*
2662 * Turn on soft mode for chunk types that were being converted.
2663 */
2664 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2665 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2666 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2667 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2668 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2669 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2670
2671 /*
2672 * Turn on usage filter if is not already used. The idea is
2673 * that chunks that we have already balanced should be
2674 * reasonably full. Don't do it for chunks that are being
2675 * converted - that will keep us from relocating unconverted
2676 * (albeit full) chunks.
2677 */
2678 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2679 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2680 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2681 bctl->data.usage = 90;
2682 }
2683 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2684 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2685 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2686 bctl->sys.usage = 90;
2687 }
2688 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2689 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2690 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2691 bctl->meta.usage = 90;
2692 }
2693}
2694
c9e9f97b
ID
2695/*
2696 * Should be called with both balance and volume mutexes held to
2697 * serialize other volume operations (add_dev/rm_dev/resize) with
2698 * restriper. Same goes for unset_balance_control.
2699 */
2700static void set_balance_control(struct btrfs_balance_control *bctl)
2701{
2702 struct btrfs_fs_info *fs_info = bctl->fs_info;
2703
2704 BUG_ON(fs_info->balance_ctl);
2705
2706 spin_lock(&fs_info->balance_lock);
2707 fs_info->balance_ctl = bctl;
2708 spin_unlock(&fs_info->balance_lock);
2709}
2710
2711static void unset_balance_control(struct btrfs_fs_info *fs_info)
2712{
2713 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2714
2715 BUG_ON(!fs_info->balance_ctl);
2716
2717 spin_lock(&fs_info->balance_lock);
2718 fs_info->balance_ctl = NULL;
2719 spin_unlock(&fs_info->balance_lock);
2720
2721 kfree(bctl);
2722}
2723
ed25e9b2
ID
2724/*
2725 * Balance filters. Return 1 if chunk should be filtered out
2726 * (should not be balanced).
2727 */
899c81ea 2728static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2729 struct btrfs_balance_args *bargs)
2730{
899c81ea
ID
2731 chunk_type = chunk_to_extended(chunk_type) &
2732 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2733
899c81ea 2734 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2735 return 0;
2736
2737 return 1;
2738}
2739
5ce5b3c0
ID
2740static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2741 struct btrfs_balance_args *bargs)
2742{
2743 struct btrfs_block_group_cache *cache;
2744 u64 chunk_used, user_thresh;
2745 int ret = 1;
2746
2747 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2748 chunk_used = btrfs_block_group_used(&cache->item);
2749
a105bb88 2750 if (bargs->usage == 0)
3e39cea6 2751 user_thresh = 1;
a105bb88
ID
2752 else if (bargs->usage > 100)
2753 user_thresh = cache->key.offset;
2754 else
2755 user_thresh = div_factor_fine(cache->key.offset,
2756 bargs->usage);
2757
5ce5b3c0
ID
2758 if (chunk_used < user_thresh)
2759 ret = 0;
2760
2761 btrfs_put_block_group(cache);
2762 return ret;
2763}
2764
409d404b
ID
2765static int chunk_devid_filter(struct extent_buffer *leaf,
2766 struct btrfs_chunk *chunk,
2767 struct btrfs_balance_args *bargs)
2768{
2769 struct btrfs_stripe *stripe;
2770 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2771 int i;
2772
2773 for (i = 0; i < num_stripes; i++) {
2774 stripe = btrfs_stripe_nr(chunk, i);
2775 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2776 return 0;
2777 }
2778
2779 return 1;
2780}
2781
94e60d5a
ID
2782/* [pstart, pend) */
2783static int chunk_drange_filter(struct extent_buffer *leaf,
2784 struct btrfs_chunk *chunk,
2785 u64 chunk_offset,
2786 struct btrfs_balance_args *bargs)
2787{
2788 struct btrfs_stripe *stripe;
2789 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2790 u64 stripe_offset;
2791 u64 stripe_length;
2792 int factor;
2793 int i;
2794
2795 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2796 return 0;
2797
2798 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
2799 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2800 factor = num_stripes / 2;
2801 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2802 factor = num_stripes - 1;
2803 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2804 factor = num_stripes - 2;
2805 } else {
2806 factor = num_stripes;
2807 }
94e60d5a
ID
2808
2809 for (i = 0; i < num_stripes; i++) {
2810 stripe = btrfs_stripe_nr(chunk, i);
2811 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2812 continue;
2813
2814 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2815 stripe_length = btrfs_chunk_length(leaf, chunk);
2816 do_div(stripe_length, factor);
2817
2818 if (stripe_offset < bargs->pend &&
2819 stripe_offset + stripe_length > bargs->pstart)
2820 return 0;
2821 }
2822
2823 return 1;
2824}
2825
ea67176a
ID
2826/* [vstart, vend) */
2827static int chunk_vrange_filter(struct extent_buffer *leaf,
2828 struct btrfs_chunk *chunk,
2829 u64 chunk_offset,
2830 struct btrfs_balance_args *bargs)
2831{
2832 if (chunk_offset < bargs->vend &&
2833 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2834 /* at least part of the chunk is inside this vrange */
2835 return 0;
2836
2837 return 1;
2838}
2839
899c81ea 2840static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2841 struct btrfs_balance_args *bargs)
2842{
2843 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2844 return 0;
2845
899c81ea
ID
2846 chunk_type = chunk_to_extended(chunk_type) &
2847 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2848
899c81ea 2849 if (bargs->target == chunk_type)
cfa4c961
ID
2850 return 1;
2851
2852 return 0;
2853}
2854
f43ffb60
ID
2855static int should_balance_chunk(struct btrfs_root *root,
2856 struct extent_buffer *leaf,
2857 struct btrfs_chunk *chunk, u64 chunk_offset)
2858{
2859 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2860 struct btrfs_balance_args *bargs = NULL;
2861 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2862
2863 /* type filter */
2864 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2865 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2866 return 0;
2867 }
2868
2869 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2870 bargs = &bctl->data;
2871 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2872 bargs = &bctl->sys;
2873 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2874 bargs = &bctl->meta;
2875
ed25e9b2
ID
2876 /* profiles filter */
2877 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2878 chunk_profiles_filter(chunk_type, bargs)) {
2879 return 0;
5ce5b3c0
ID
2880 }
2881
2882 /* usage filter */
2883 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2884 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2885 return 0;
409d404b
ID
2886 }
2887
2888 /* devid filter */
2889 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2890 chunk_devid_filter(leaf, chunk, bargs)) {
2891 return 0;
94e60d5a
ID
2892 }
2893
2894 /* drange filter, makes sense only with devid filter */
2895 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2896 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2897 return 0;
ea67176a
ID
2898 }
2899
2900 /* vrange filter */
2901 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2902 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2903 return 0;
ed25e9b2
ID
2904 }
2905
cfa4c961
ID
2906 /* soft profile changing mode */
2907 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2908 chunk_soft_convert_filter(chunk_type, bargs)) {
2909 return 0;
2910 }
2911
f43ffb60
ID
2912 return 1;
2913}
2914
c9e9f97b 2915static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2916{
19a39dce 2917 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2918 struct btrfs_root *chunk_root = fs_info->chunk_root;
2919 struct btrfs_root *dev_root = fs_info->dev_root;
2920 struct list_head *devices;
ec44a35c
CM
2921 struct btrfs_device *device;
2922 u64 old_size;
2923 u64 size_to_free;
f43ffb60 2924 struct btrfs_chunk *chunk;
ec44a35c
CM
2925 struct btrfs_path *path;
2926 struct btrfs_key key;
ec44a35c 2927 struct btrfs_key found_key;
c9e9f97b 2928 struct btrfs_trans_handle *trans;
f43ffb60
ID
2929 struct extent_buffer *leaf;
2930 int slot;
c9e9f97b
ID
2931 int ret;
2932 int enospc_errors = 0;
19a39dce 2933 bool counting = true;
ec44a35c 2934
ec44a35c 2935 /* step one make some room on all the devices */
c9e9f97b 2936 devices = &fs_info->fs_devices->devices;
c6e30871 2937 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2938 old_size = device->total_bytes;
2939 size_to_free = div_factor(old_size, 1);
2940 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 2941 if (!device->writeable ||
63a212ab
SB
2942 device->total_bytes - device->bytes_used > size_to_free ||
2943 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
2944 continue;
2945
2946 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2947 if (ret == -ENOSPC)
2948 break;
ec44a35c
CM
2949 BUG_ON(ret);
2950
a22285a6 2951 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2952 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2953
2954 ret = btrfs_grow_device(trans, device, old_size);
2955 BUG_ON(ret);
2956
2957 btrfs_end_transaction(trans, dev_root);
2958 }
2959
2960 /* step two, relocate all the chunks */
2961 path = btrfs_alloc_path();
17e9f796
MF
2962 if (!path) {
2963 ret = -ENOMEM;
2964 goto error;
2965 }
19a39dce
ID
2966
2967 /* zero out stat counters */
2968 spin_lock(&fs_info->balance_lock);
2969 memset(&bctl->stat, 0, sizeof(bctl->stat));
2970 spin_unlock(&fs_info->balance_lock);
2971again:
ec44a35c
CM
2972 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2973 key.offset = (u64)-1;
2974 key.type = BTRFS_CHUNK_ITEM_KEY;
2975
d397712b 2976 while (1) {
19a39dce 2977 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2978 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2979 ret = -ECANCELED;
2980 goto error;
2981 }
2982
ec44a35c
CM
2983 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2984 if (ret < 0)
2985 goto error;
2986
2987 /*
2988 * this shouldn't happen, it means the last relocate
2989 * failed
2990 */
2991 if (ret == 0)
c9e9f97b 2992 BUG(); /* FIXME break ? */
ec44a35c
CM
2993
2994 ret = btrfs_previous_item(chunk_root, path, 0,
2995 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
2996 if (ret) {
2997 ret = 0;
ec44a35c 2998 break;
c9e9f97b 2999 }
7d9eb12c 3000
f43ffb60
ID
3001 leaf = path->nodes[0];
3002 slot = path->slots[0];
3003 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3004
ec44a35c
CM
3005 if (found_key.objectid != key.objectid)
3006 break;
7d9eb12c 3007
f43ffb60
ID
3008 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3009
19a39dce
ID
3010 if (!counting) {
3011 spin_lock(&fs_info->balance_lock);
3012 bctl->stat.considered++;
3013 spin_unlock(&fs_info->balance_lock);
3014 }
3015
f43ffb60
ID
3016 ret = should_balance_chunk(chunk_root, leaf, chunk,
3017 found_key.offset);
b3b4aa74 3018 btrfs_release_path(path);
f43ffb60
ID
3019 if (!ret)
3020 goto loop;
3021
19a39dce
ID
3022 if (counting) {
3023 spin_lock(&fs_info->balance_lock);
3024 bctl->stat.expected++;
3025 spin_unlock(&fs_info->balance_lock);
3026 goto loop;
3027 }
3028
ec44a35c
CM
3029 ret = btrfs_relocate_chunk(chunk_root,
3030 chunk_root->root_key.objectid,
3031 found_key.objectid,
3032 found_key.offset);
508794eb
JB
3033 if (ret && ret != -ENOSPC)
3034 goto error;
19a39dce 3035 if (ret == -ENOSPC) {
c9e9f97b 3036 enospc_errors++;
19a39dce
ID
3037 } else {
3038 spin_lock(&fs_info->balance_lock);
3039 bctl->stat.completed++;
3040 spin_unlock(&fs_info->balance_lock);
3041 }
f43ffb60 3042loop:
795a3321
ID
3043 if (found_key.offset == 0)
3044 break;
ba1bf481 3045 key.offset = found_key.offset - 1;
ec44a35c 3046 }
c9e9f97b 3047
19a39dce
ID
3048 if (counting) {
3049 btrfs_release_path(path);
3050 counting = false;
3051 goto again;
3052 }
ec44a35c
CM
3053error:
3054 btrfs_free_path(path);
c9e9f97b
ID
3055 if (enospc_errors) {
3056 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
3057 enospc_errors);
3058 if (!ret)
3059 ret = -ENOSPC;
3060 }
3061
ec44a35c
CM
3062 return ret;
3063}
3064
0c460c0d
ID
3065/**
3066 * alloc_profile_is_valid - see if a given profile is valid and reduced
3067 * @flags: profile to validate
3068 * @extended: if true @flags is treated as an extended profile
3069 */
3070static int alloc_profile_is_valid(u64 flags, int extended)
3071{
3072 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3073 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3074
3075 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3076
3077 /* 1) check that all other bits are zeroed */
3078 if (flags & ~mask)
3079 return 0;
3080
3081 /* 2) see if profile is reduced */
3082 if (flags == 0)
3083 return !extended; /* "0" is valid for usual profiles */
3084
3085 /* true if exactly one bit set */
3086 return (flags & (flags - 1)) == 0;
3087}
3088
837d5b6e
ID
3089static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3090{
a7e99c69
ID
3091 /* cancel requested || normal exit path */
3092 return atomic_read(&fs_info->balance_cancel_req) ||
3093 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3094 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3095}
3096
c9e9f97b
ID
3097static void __cancel_balance(struct btrfs_fs_info *fs_info)
3098{
0940ebf6
ID
3099 int ret;
3100
c9e9f97b 3101 unset_balance_control(fs_info);
0940ebf6 3102 ret = del_balance_item(fs_info->tree_root);
0f788c58
LB
3103 if (ret)
3104 btrfs_std_error(fs_info, ret);
ed0fb78f
ID
3105
3106 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3107}
3108
c9e9f97b
ID
3109/*
3110 * Should be called with both balance and volume mutexes held
3111 */
3112int btrfs_balance(struct btrfs_balance_control *bctl,
3113 struct btrfs_ioctl_balance_args *bargs)
3114{
3115 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3116 u64 allowed;
e4837f8f 3117 int mixed = 0;
c9e9f97b 3118 int ret;
8dabb742 3119 u64 num_devices;
de98ced9 3120 unsigned seq;
c9e9f97b 3121
837d5b6e 3122 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3123 atomic_read(&fs_info->balance_pause_req) ||
3124 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3125 ret = -EINVAL;
3126 goto out;
3127 }
3128
e4837f8f
ID
3129 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3130 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3131 mixed = 1;
3132
f43ffb60
ID
3133 /*
3134 * In case of mixed groups both data and meta should be picked,
3135 * and identical options should be given for both of them.
3136 */
e4837f8f
ID
3137 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3138 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3139 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3140 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3141 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3142 printk(KERN_ERR "btrfs: with mixed groups data and "
3143 "metadata balance options must be the same\n");
3144 ret = -EINVAL;
3145 goto out;
3146 }
3147 }
3148
8dabb742
SB
3149 num_devices = fs_info->fs_devices->num_devices;
3150 btrfs_dev_replace_lock(&fs_info->dev_replace);
3151 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3152 BUG_ON(num_devices < 1);
3153 num_devices--;
3154 }
3155 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3156 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3157 if (num_devices == 1)
e4d8ec0f 3158 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3159 else if (num_devices > 1)
e4d8ec0f 3160 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3161 if (num_devices > 2)
3162 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3163 if (num_devices > 3)
3164 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3165 BTRFS_BLOCK_GROUP_RAID6);
6728b198
ID
3166 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3167 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3168 (bctl->data.target & ~allowed))) {
e4d8ec0f
ID
3169 printk(KERN_ERR "btrfs: unable to start balance with target "
3170 "data profile %llu\n",
c1c9ff7c 3171 bctl->data.target);
e4d8ec0f
ID
3172 ret = -EINVAL;
3173 goto out;
3174 }
6728b198
ID
3175 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3176 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3177 (bctl->meta.target & ~allowed))) {
e4d8ec0f
ID
3178 printk(KERN_ERR "btrfs: unable to start balance with target "
3179 "metadata profile %llu\n",
c1c9ff7c 3180 bctl->meta.target);
e4d8ec0f
ID
3181 ret = -EINVAL;
3182 goto out;
3183 }
6728b198
ID
3184 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3185 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3186 (bctl->sys.target & ~allowed))) {
e4d8ec0f
ID
3187 printk(KERN_ERR "btrfs: unable to start balance with target "
3188 "system profile %llu\n",
c1c9ff7c 3189 bctl->sys.target);
e4d8ec0f
ID
3190 ret = -EINVAL;
3191 goto out;
3192 }
3193
e4837f8f
ID
3194 /* allow dup'ed data chunks only in mixed mode */
3195 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3196 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
e4d8ec0f
ID
3197 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
3198 ret = -EINVAL;
3199 goto out;
3200 }
3201
3202 /* allow to reduce meta or sys integrity only if force set */
3203 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3204 BTRFS_BLOCK_GROUP_RAID10 |
3205 BTRFS_BLOCK_GROUP_RAID5 |
3206 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3207 do {
3208 seq = read_seqbegin(&fs_info->profiles_lock);
3209
3210 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3211 (fs_info->avail_system_alloc_bits & allowed) &&
3212 !(bctl->sys.target & allowed)) ||
3213 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3214 (fs_info->avail_metadata_alloc_bits & allowed) &&
3215 !(bctl->meta.target & allowed))) {
3216 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3217 printk(KERN_INFO "btrfs: force reducing metadata "
3218 "integrity\n");
3219 } else {
3220 printk(KERN_ERR "btrfs: balance will reduce metadata "
3221 "integrity, use force if you want this\n");
3222 ret = -EINVAL;
3223 goto out;
3224 }
e4d8ec0f 3225 }
de98ced9 3226 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3227
5af3e8cc
SB
3228 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3229 int num_tolerated_disk_barrier_failures;
3230 u64 target = bctl->sys.target;
3231
3232 num_tolerated_disk_barrier_failures =
3233 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3234 if (num_tolerated_disk_barrier_failures > 0 &&
3235 (target &
3236 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3237 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3238 num_tolerated_disk_barrier_failures = 0;
3239 else if (num_tolerated_disk_barrier_failures > 1 &&
3240 (target &
3241 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3242 num_tolerated_disk_barrier_failures = 1;
3243
3244 fs_info->num_tolerated_disk_barrier_failures =
3245 num_tolerated_disk_barrier_failures;
3246 }
3247
0940ebf6 3248 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3249 if (ret && ret != -EEXIST)
0940ebf6
ID
3250 goto out;
3251
59641015
ID
3252 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3253 BUG_ON(ret == -EEXIST);
3254 set_balance_control(bctl);
3255 } else {
3256 BUG_ON(ret != -EEXIST);
3257 spin_lock(&fs_info->balance_lock);
3258 update_balance_args(bctl);
3259 spin_unlock(&fs_info->balance_lock);
3260 }
c9e9f97b 3261
837d5b6e 3262 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3263 mutex_unlock(&fs_info->balance_mutex);
3264
3265 ret = __btrfs_balance(fs_info);
3266
3267 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3268 atomic_dec(&fs_info->balance_running);
c9e9f97b 3269
bf023ecf
ID
3270 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3271 fs_info->num_tolerated_disk_barrier_failures =
3272 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3273 }
3274
c9e9f97b
ID
3275 if (bargs) {
3276 memset(bargs, 0, sizeof(*bargs));
19a39dce 3277 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3278 }
3279
3a01aa7a
ID
3280 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3281 balance_need_close(fs_info)) {
3282 __cancel_balance(fs_info);
3283 }
3284
837d5b6e 3285 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3286
3287 return ret;
3288out:
59641015
ID
3289 if (bctl->flags & BTRFS_BALANCE_RESUME)
3290 __cancel_balance(fs_info);
ed0fb78f 3291 else {
59641015 3292 kfree(bctl);
ed0fb78f
ID
3293 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3294 }
59641015
ID
3295 return ret;
3296}
3297
3298static int balance_kthread(void *data)
3299{
2b6ba629 3300 struct btrfs_fs_info *fs_info = data;
9555c6c1 3301 int ret = 0;
59641015
ID
3302
3303 mutex_lock(&fs_info->volume_mutex);
3304 mutex_lock(&fs_info->balance_mutex);
3305
2b6ba629 3306 if (fs_info->balance_ctl) {
9555c6c1 3307 printk(KERN_INFO "btrfs: continuing balance\n");
2b6ba629 3308 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3309 }
59641015
ID
3310
3311 mutex_unlock(&fs_info->balance_mutex);
3312 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3313
59641015
ID
3314 return ret;
3315}
3316
2b6ba629
ID
3317int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3318{
3319 struct task_struct *tsk;
3320
3321 spin_lock(&fs_info->balance_lock);
3322 if (!fs_info->balance_ctl) {
3323 spin_unlock(&fs_info->balance_lock);
3324 return 0;
3325 }
3326 spin_unlock(&fs_info->balance_lock);
3327
3328 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3329 printk(KERN_INFO "btrfs: force skipping balance\n");
3330 return 0;
3331 }
3332
3333 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3334 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3335}
3336
68310a5e 3337int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3338{
59641015
ID
3339 struct btrfs_balance_control *bctl;
3340 struct btrfs_balance_item *item;
3341 struct btrfs_disk_balance_args disk_bargs;
3342 struct btrfs_path *path;
3343 struct extent_buffer *leaf;
3344 struct btrfs_key key;
3345 int ret;
3346
3347 path = btrfs_alloc_path();
3348 if (!path)
3349 return -ENOMEM;
3350
59641015
ID
3351 key.objectid = BTRFS_BALANCE_OBJECTID;
3352 key.type = BTRFS_BALANCE_ITEM_KEY;
3353 key.offset = 0;
3354
68310a5e 3355 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3356 if (ret < 0)
68310a5e 3357 goto out;
59641015
ID
3358 if (ret > 0) { /* ret = -ENOENT; */
3359 ret = 0;
68310a5e
ID
3360 goto out;
3361 }
3362
3363 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3364 if (!bctl) {
3365 ret = -ENOMEM;
3366 goto out;
59641015
ID
3367 }
3368
3369 leaf = path->nodes[0];
3370 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3371
68310a5e
ID
3372 bctl->fs_info = fs_info;
3373 bctl->flags = btrfs_balance_flags(leaf, item);
3374 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3375
3376 btrfs_balance_data(leaf, item, &disk_bargs);
3377 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3378 btrfs_balance_meta(leaf, item, &disk_bargs);
3379 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3380 btrfs_balance_sys(leaf, item, &disk_bargs);
3381 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3382
ed0fb78f
ID
3383 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3384
68310a5e
ID
3385 mutex_lock(&fs_info->volume_mutex);
3386 mutex_lock(&fs_info->balance_mutex);
59641015 3387
68310a5e
ID
3388 set_balance_control(bctl);
3389
3390 mutex_unlock(&fs_info->balance_mutex);
3391 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3392out:
3393 btrfs_free_path(path);
ec44a35c
CM
3394 return ret;
3395}
3396
837d5b6e
ID
3397int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3398{
3399 int ret = 0;
3400
3401 mutex_lock(&fs_info->balance_mutex);
3402 if (!fs_info->balance_ctl) {
3403 mutex_unlock(&fs_info->balance_mutex);
3404 return -ENOTCONN;
3405 }
3406
3407 if (atomic_read(&fs_info->balance_running)) {
3408 atomic_inc(&fs_info->balance_pause_req);
3409 mutex_unlock(&fs_info->balance_mutex);
3410
3411 wait_event(fs_info->balance_wait_q,
3412 atomic_read(&fs_info->balance_running) == 0);
3413
3414 mutex_lock(&fs_info->balance_mutex);
3415 /* we are good with balance_ctl ripped off from under us */
3416 BUG_ON(atomic_read(&fs_info->balance_running));
3417 atomic_dec(&fs_info->balance_pause_req);
3418 } else {
3419 ret = -ENOTCONN;
3420 }
3421
3422 mutex_unlock(&fs_info->balance_mutex);
3423 return ret;
3424}
3425
a7e99c69
ID
3426int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3427{
e649e587
ID
3428 if (fs_info->sb->s_flags & MS_RDONLY)
3429 return -EROFS;
3430
a7e99c69
ID
3431 mutex_lock(&fs_info->balance_mutex);
3432 if (!fs_info->balance_ctl) {
3433 mutex_unlock(&fs_info->balance_mutex);
3434 return -ENOTCONN;
3435 }
3436
3437 atomic_inc(&fs_info->balance_cancel_req);
3438 /*
3439 * if we are running just wait and return, balance item is
3440 * deleted in btrfs_balance in this case
3441 */
3442 if (atomic_read(&fs_info->balance_running)) {
3443 mutex_unlock(&fs_info->balance_mutex);
3444 wait_event(fs_info->balance_wait_q,
3445 atomic_read(&fs_info->balance_running) == 0);
3446 mutex_lock(&fs_info->balance_mutex);
3447 } else {
3448 /* __cancel_balance needs volume_mutex */
3449 mutex_unlock(&fs_info->balance_mutex);
3450 mutex_lock(&fs_info->volume_mutex);
3451 mutex_lock(&fs_info->balance_mutex);
3452
3453 if (fs_info->balance_ctl)
3454 __cancel_balance(fs_info);
3455
3456 mutex_unlock(&fs_info->volume_mutex);
3457 }
3458
3459 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3460 atomic_dec(&fs_info->balance_cancel_req);
3461 mutex_unlock(&fs_info->balance_mutex);
3462 return 0;
3463}
3464
803b2f54
SB
3465static int btrfs_uuid_scan_kthread(void *data)
3466{
3467 struct btrfs_fs_info *fs_info = data;
3468 struct btrfs_root *root = fs_info->tree_root;
3469 struct btrfs_key key;
3470 struct btrfs_key max_key;
3471 struct btrfs_path *path = NULL;
3472 int ret = 0;
3473 struct extent_buffer *eb;
3474 int slot;
3475 struct btrfs_root_item root_item;
3476 u32 item_size;
f45388f3 3477 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
3478
3479 path = btrfs_alloc_path();
3480 if (!path) {
3481 ret = -ENOMEM;
3482 goto out;
3483 }
3484
3485 key.objectid = 0;
3486 key.type = BTRFS_ROOT_ITEM_KEY;
3487 key.offset = 0;
3488
3489 max_key.objectid = (u64)-1;
3490 max_key.type = BTRFS_ROOT_ITEM_KEY;
3491 max_key.offset = (u64)-1;
3492
3493 path->keep_locks = 1;
3494
3495 while (1) {
6174d3cb 3496 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
3497 if (ret) {
3498 if (ret > 0)
3499 ret = 0;
3500 break;
3501 }
3502
3503 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3504 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3505 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3506 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3507 goto skip;
3508
3509 eb = path->nodes[0];
3510 slot = path->slots[0];
3511 item_size = btrfs_item_size_nr(eb, slot);
3512 if (item_size < sizeof(root_item))
3513 goto skip;
3514
803b2f54
SB
3515 read_extent_buffer(eb, &root_item,
3516 btrfs_item_ptr_offset(eb, slot),
3517 (int)sizeof(root_item));
3518 if (btrfs_root_refs(&root_item) == 0)
3519 goto skip;
f45388f3
FDBM
3520
3521 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3522 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3523 if (trans)
3524 goto update_tree;
3525
3526 btrfs_release_path(path);
803b2f54
SB
3527 /*
3528 * 1 - subvol uuid item
3529 * 1 - received_subvol uuid item
3530 */
3531 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3532 if (IS_ERR(trans)) {
3533 ret = PTR_ERR(trans);
3534 break;
3535 }
f45388f3
FDBM
3536 continue;
3537 } else {
3538 goto skip;
3539 }
3540update_tree:
3541 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
3542 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3543 root_item.uuid,
3544 BTRFS_UUID_KEY_SUBVOL,
3545 key.objectid);
3546 if (ret < 0) {
3547 pr_warn("btrfs: uuid_tree_add failed %d\n",
3548 ret);
803b2f54
SB
3549 break;
3550 }
3551 }
3552
3553 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
3554 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3555 root_item.received_uuid,
3556 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3557 key.objectid);
3558 if (ret < 0) {
3559 pr_warn("btrfs: uuid_tree_add failed %d\n",
3560 ret);
803b2f54
SB
3561 break;
3562 }
3563 }
3564
f45388f3 3565skip:
803b2f54
SB
3566 if (trans) {
3567 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 3568 trans = NULL;
803b2f54
SB
3569 if (ret)
3570 break;
3571 }
3572
803b2f54
SB
3573 btrfs_release_path(path);
3574 if (key.offset < (u64)-1) {
3575 key.offset++;
3576 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3577 key.offset = 0;
3578 key.type = BTRFS_ROOT_ITEM_KEY;
3579 } else if (key.objectid < (u64)-1) {
3580 key.offset = 0;
3581 key.type = BTRFS_ROOT_ITEM_KEY;
3582 key.objectid++;
3583 } else {
3584 break;
3585 }
3586 cond_resched();
3587 }
3588
3589out:
3590 btrfs_free_path(path);
f45388f3
FDBM
3591 if (trans && !IS_ERR(trans))
3592 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54
SB
3593 if (ret)
3594 pr_warn("btrfs: btrfs_uuid_scan_kthread failed %d\n", ret);
70f80175
SB
3595 else
3596 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
3597 up(&fs_info->uuid_tree_rescan_sem);
3598 return 0;
3599}
3600
70f80175
SB
3601/*
3602 * Callback for btrfs_uuid_tree_iterate().
3603 * returns:
3604 * 0 check succeeded, the entry is not outdated.
3605 * < 0 if an error occured.
3606 * > 0 if the check failed, which means the caller shall remove the entry.
3607 */
3608static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3609 u8 *uuid, u8 type, u64 subid)
3610{
3611 struct btrfs_key key;
3612 int ret = 0;
3613 struct btrfs_root *subvol_root;
3614
3615 if (type != BTRFS_UUID_KEY_SUBVOL &&
3616 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3617 goto out;
3618
3619 key.objectid = subid;
3620 key.type = BTRFS_ROOT_ITEM_KEY;
3621 key.offset = (u64)-1;
3622 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3623 if (IS_ERR(subvol_root)) {
3624 ret = PTR_ERR(subvol_root);
3625 if (ret == -ENOENT)
3626 ret = 1;
3627 goto out;
3628 }
3629
3630 switch (type) {
3631 case BTRFS_UUID_KEY_SUBVOL:
3632 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3633 ret = 1;
3634 break;
3635 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3636 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3637 BTRFS_UUID_SIZE))
3638 ret = 1;
3639 break;
3640 }
3641
3642out:
3643 return ret;
3644}
3645
3646static int btrfs_uuid_rescan_kthread(void *data)
3647{
3648 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3649 int ret;
3650
3651 /*
3652 * 1st step is to iterate through the existing UUID tree and
3653 * to delete all entries that contain outdated data.
3654 * 2nd step is to add all missing entries to the UUID tree.
3655 */
3656 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3657 if (ret < 0) {
3658 pr_warn("btrfs: iterating uuid_tree failed %d\n", ret);
3659 up(&fs_info->uuid_tree_rescan_sem);
3660 return ret;
3661 }
3662 return btrfs_uuid_scan_kthread(data);
3663}
3664
f7a81ea4
SB
3665int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3666{
3667 struct btrfs_trans_handle *trans;
3668 struct btrfs_root *tree_root = fs_info->tree_root;
3669 struct btrfs_root *uuid_root;
803b2f54
SB
3670 struct task_struct *task;
3671 int ret;
f7a81ea4
SB
3672
3673 /*
3674 * 1 - root node
3675 * 1 - root item
3676 */
3677 trans = btrfs_start_transaction(tree_root, 2);
3678 if (IS_ERR(trans))
3679 return PTR_ERR(trans);
3680
3681 uuid_root = btrfs_create_tree(trans, fs_info,
3682 BTRFS_UUID_TREE_OBJECTID);
3683 if (IS_ERR(uuid_root)) {
3684 btrfs_abort_transaction(trans, tree_root,
3685 PTR_ERR(uuid_root));
3686 return PTR_ERR(uuid_root);
3687 }
3688
3689 fs_info->uuid_root = uuid_root;
3690
803b2f54
SB
3691 ret = btrfs_commit_transaction(trans, tree_root);
3692 if (ret)
3693 return ret;
3694
3695 down(&fs_info->uuid_tree_rescan_sem);
3696 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3697 if (IS_ERR(task)) {
70f80175 3698 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
803b2f54
SB
3699 pr_warn("btrfs: failed to start uuid_scan task\n");
3700 up(&fs_info->uuid_tree_rescan_sem);
3701 return PTR_ERR(task);
3702 }
3703
3704 return 0;
f7a81ea4 3705}
803b2f54 3706
70f80175
SB
3707int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3708{
3709 struct task_struct *task;
3710
3711 down(&fs_info->uuid_tree_rescan_sem);
3712 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3713 if (IS_ERR(task)) {
3714 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3715 pr_warn("btrfs: failed to start uuid_rescan task\n");
3716 up(&fs_info->uuid_tree_rescan_sem);
3717 return PTR_ERR(task);
3718 }
3719
3720 return 0;
3721}
3722
8f18cf13
CM
3723/*
3724 * shrinking a device means finding all of the device extents past
3725 * the new size, and then following the back refs to the chunks.
3726 * The chunk relocation code actually frees the device extent
3727 */
3728int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3729{
3730 struct btrfs_trans_handle *trans;
3731 struct btrfs_root *root = device->dev_root;
3732 struct btrfs_dev_extent *dev_extent = NULL;
3733 struct btrfs_path *path;
3734 u64 length;
3735 u64 chunk_tree;
3736 u64 chunk_objectid;
3737 u64 chunk_offset;
3738 int ret;
3739 int slot;
ba1bf481
JB
3740 int failed = 0;
3741 bool retried = false;
8f18cf13
CM
3742 struct extent_buffer *l;
3743 struct btrfs_key key;
6c41761f 3744 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3745 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3746 u64 old_size = device->total_bytes;
8f18cf13
CM
3747 u64 diff = device->total_bytes - new_size;
3748
63a212ab
SB
3749 if (device->is_tgtdev_for_dev_replace)
3750 return -EINVAL;
3751
8f18cf13
CM
3752 path = btrfs_alloc_path();
3753 if (!path)
3754 return -ENOMEM;
3755
8f18cf13
CM
3756 path->reada = 2;
3757
7d9eb12c
CM
3758 lock_chunks(root);
3759
8f18cf13 3760 device->total_bytes = new_size;
2bf64758 3761 if (device->writeable) {
2b82032c 3762 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3763 spin_lock(&root->fs_info->free_chunk_lock);
3764 root->fs_info->free_chunk_space -= diff;
3765 spin_unlock(&root->fs_info->free_chunk_lock);
3766 }
7d9eb12c 3767 unlock_chunks(root);
8f18cf13 3768
ba1bf481 3769again:
8f18cf13
CM
3770 key.objectid = device->devid;
3771 key.offset = (u64)-1;
3772 key.type = BTRFS_DEV_EXTENT_KEY;
3773
213e64da 3774 do {
8f18cf13
CM
3775 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3776 if (ret < 0)
3777 goto done;
3778
3779 ret = btrfs_previous_item(root, path, 0, key.type);
3780 if (ret < 0)
3781 goto done;
3782 if (ret) {
3783 ret = 0;
b3b4aa74 3784 btrfs_release_path(path);
bf1fb512 3785 break;
8f18cf13
CM
3786 }
3787
3788 l = path->nodes[0];
3789 slot = path->slots[0];
3790 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3791
ba1bf481 3792 if (key.objectid != device->devid) {
b3b4aa74 3793 btrfs_release_path(path);
bf1fb512 3794 break;
ba1bf481 3795 }
8f18cf13
CM
3796
3797 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3798 length = btrfs_dev_extent_length(l, dev_extent);
3799
ba1bf481 3800 if (key.offset + length <= new_size) {
b3b4aa74 3801 btrfs_release_path(path);
d6397bae 3802 break;
ba1bf481 3803 }
8f18cf13
CM
3804
3805 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3806 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3807 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3808 btrfs_release_path(path);
8f18cf13
CM
3809
3810 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3811 chunk_offset);
ba1bf481 3812 if (ret && ret != -ENOSPC)
8f18cf13 3813 goto done;
ba1bf481
JB
3814 if (ret == -ENOSPC)
3815 failed++;
213e64da 3816 } while (key.offset-- > 0);
ba1bf481
JB
3817
3818 if (failed && !retried) {
3819 failed = 0;
3820 retried = true;
3821 goto again;
3822 } else if (failed && retried) {
3823 ret = -ENOSPC;
3824 lock_chunks(root);
3825
3826 device->total_bytes = old_size;
3827 if (device->writeable)
3828 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3829 spin_lock(&root->fs_info->free_chunk_lock);
3830 root->fs_info->free_chunk_space += diff;
3831 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3832 unlock_chunks(root);
3833 goto done;
8f18cf13
CM
3834 }
3835
d6397bae 3836 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3837 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3838 if (IS_ERR(trans)) {
3839 ret = PTR_ERR(trans);
3840 goto done;
3841 }
3842
d6397bae
CB
3843 lock_chunks(root);
3844
3845 device->disk_total_bytes = new_size;
3846 /* Now btrfs_update_device() will change the on-disk size. */
3847 ret = btrfs_update_device(trans, device);
3848 if (ret) {
3849 unlock_chunks(root);
3850 btrfs_end_transaction(trans, root);
3851 goto done;
3852 }
3853 WARN_ON(diff > old_total);
3854 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3855 unlock_chunks(root);
3856 btrfs_end_transaction(trans, root);
8f18cf13
CM
3857done:
3858 btrfs_free_path(path);
3859 return ret;
3860}
3861
125ccb0a 3862static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3863 struct btrfs_key *key,
3864 struct btrfs_chunk *chunk, int item_size)
3865{
6c41761f 3866 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3867 struct btrfs_disk_key disk_key;
3868 u32 array_size;
3869 u8 *ptr;
3870
3871 array_size = btrfs_super_sys_array_size(super_copy);
3872 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3873 return -EFBIG;
3874
3875 ptr = super_copy->sys_chunk_array + array_size;
3876 btrfs_cpu_key_to_disk(&disk_key, key);
3877 memcpy(ptr, &disk_key, sizeof(disk_key));
3878 ptr += sizeof(disk_key);
3879 memcpy(ptr, chunk, item_size);
3880 item_size += sizeof(disk_key);
3881 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3882 return 0;
3883}
3884
73c5de00
AJ
3885/*
3886 * sort the devices in descending order by max_avail, total_avail
3887 */
3888static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3889{
73c5de00
AJ
3890 const struct btrfs_device_info *di_a = a;
3891 const struct btrfs_device_info *di_b = b;
9b3f68b9 3892
73c5de00 3893 if (di_a->max_avail > di_b->max_avail)
b2117a39 3894 return -1;
73c5de00 3895 if (di_a->max_avail < di_b->max_avail)
b2117a39 3896 return 1;
73c5de00
AJ
3897 if (di_a->total_avail > di_b->total_avail)
3898 return -1;
3899 if (di_a->total_avail < di_b->total_avail)
3900 return 1;
3901 return 0;
b2117a39 3902}
0b86a832 3903
48a3b636 3904static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
e6ec716f
MX
3905 [BTRFS_RAID_RAID10] = {
3906 .sub_stripes = 2,
3907 .dev_stripes = 1,
3908 .devs_max = 0, /* 0 == as many as possible */
3909 .devs_min = 4,
3910 .devs_increment = 2,
3911 .ncopies = 2,
3912 },
3913 [BTRFS_RAID_RAID1] = {
3914 .sub_stripes = 1,
3915 .dev_stripes = 1,
3916 .devs_max = 2,
3917 .devs_min = 2,
3918 .devs_increment = 2,
3919 .ncopies = 2,
3920 },
3921 [BTRFS_RAID_DUP] = {
3922 .sub_stripes = 1,
3923 .dev_stripes = 2,
3924 .devs_max = 1,
3925 .devs_min = 1,
3926 .devs_increment = 1,
3927 .ncopies = 2,
3928 },
3929 [BTRFS_RAID_RAID0] = {
3930 .sub_stripes = 1,
3931 .dev_stripes = 1,
3932 .devs_max = 0,
3933 .devs_min = 2,
3934 .devs_increment = 1,
3935 .ncopies = 1,
3936 },
3937 [BTRFS_RAID_SINGLE] = {
3938 .sub_stripes = 1,
3939 .dev_stripes = 1,
3940 .devs_max = 1,
3941 .devs_min = 1,
3942 .devs_increment = 1,
3943 .ncopies = 1,
3944 },
e942f883
CM
3945 [BTRFS_RAID_RAID5] = {
3946 .sub_stripes = 1,
3947 .dev_stripes = 1,
3948 .devs_max = 0,
3949 .devs_min = 2,
3950 .devs_increment = 1,
3951 .ncopies = 2,
3952 },
3953 [BTRFS_RAID_RAID6] = {
3954 .sub_stripes = 1,
3955 .dev_stripes = 1,
3956 .devs_max = 0,
3957 .devs_min = 3,
3958 .devs_increment = 1,
3959 .ncopies = 3,
3960 },
31e50229
LB
3961};
3962
53b381b3
DW
3963static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3964{
3965 /* TODO allow them to set a preferred stripe size */
3966 return 64 * 1024;
3967}
3968
3969static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3970{
53b381b3
DW
3971 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3972 return;
3973
ceda0864 3974 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
3975}
3976
73c5de00 3977static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
3978 struct btrfs_root *extent_root, u64 start,
3979 u64 type)
b2117a39 3980{
73c5de00
AJ
3981 struct btrfs_fs_info *info = extent_root->fs_info;
3982 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3983 struct list_head *cur;
3984 struct map_lookup *map = NULL;
3985 struct extent_map_tree *em_tree;
3986 struct extent_map *em;
3987 struct btrfs_device_info *devices_info = NULL;
3988 u64 total_avail;
3989 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
3990 int data_stripes; /* number of stripes that count for
3991 block group size */
73c5de00
AJ
3992 int sub_stripes; /* sub_stripes info for map */
3993 int dev_stripes; /* stripes per dev */
3994 int devs_max; /* max devs to use */
3995 int devs_min; /* min devs needed */
3996 int devs_increment; /* ndevs has to be a multiple of this */
3997 int ncopies; /* how many copies to data has */
3998 int ret;
3999 u64 max_stripe_size;
4000 u64 max_chunk_size;
4001 u64 stripe_size;
4002 u64 num_bytes;
53b381b3 4003 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4004 int ndevs;
4005 int i;
4006 int j;
31e50229 4007 int index;
593060d7 4008
0c460c0d 4009 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4010
73c5de00
AJ
4011 if (list_empty(&fs_devices->alloc_list))
4012 return -ENOSPC;
b2117a39 4013
31e50229 4014 index = __get_raid_index(type);
73c5de00 4015
31e50229
LB
4016 sub_stripes = btrfs_raid_array[index].sub_stripes;
4017 dev_stripes = btrfs_raid_array[index].dev_stripes;
4018 devs_max = btrfs_raid_array[index].devs_max;
4019 devs_min = btrfs_raid_array[index].devs_min;
4020 devs_increment = btrfs_raid_array[index].devs_increment;
4021 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4022
9b3f68b9 4023 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4024 max_stripe_size = 1024 * 1024 * 1024;
4025 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 4026 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4027 /* for larger filesystems, use larger metadata chunks */
4028 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4029 max_stripe_size = 1024 * 1024 * 1024;
4030 else
4031 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4032 max_chunk_size = max_stripe_size;
a40a90a0 4033 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4034 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
4035 max_chunk_size = 2 * max_stripe_size;
4036 } else {
4037 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
4038 type);
4039 BUG_ON(1);
9b3f68b9
CM
4040 }
4041
2b82032c
YZ
4042 /* we don't want a chunk larger than 10% of writeable space */
4043 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4044 max_chunk_size);
9b3f68b9 4045
73c5de00
AJ
4046 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4047 GFP_NOFS);
4048 if (!devices_info)
4049 return -ENOMEM;
0cad8a11 4050
73c5de00 4051 cur = fs_devices->alloc_list.next;
9b3f68b9 4052
9f680ce0 4053 /*
73c5de00
AJ
4054 * in the first pass through the devices list, we gather information
4055 * about the available holes on each device.
9f680ce0 4056 */
73c5de00
AJ
4057 ndevs = 0;
4058 while (cur != &fs_devices->alloc_list) {
4059 struct btrfs_device *device;
4060 u64 max_avail;
4061 u64 dev_offset;
b2117a39 4062
73c5de00 4063 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4064
73c5de00 4065 cur = cur->next;
b2117a39 4066
73c5de00 4067 if (!device->writeable) {
31b1a2bd 4068 WARN(1, KERN_ERR
73c5de00 4069 "btrfs: read-only device in alloc_list\n");
73c5de00
AJ
4070 continue;
4071 }
b2117a39 4072
63a212ab
SB
4073 if (!device->in_fs_metadata ||
4074 device->is_tgtdev_for_dev_replace)
73c5de00 4075 continue;
b2117a39 4076
73c5de00
AJ
4077 if (device->total_bytes > device->bytes_used)
4078 total_avail = device->total_bytes - device->bytes_used;
4079 else
4080 total_avail = 0;
38c01b96 4081
4082 /* If there is no space on this device, skip it. */
4083 if (total_avail == 0)
4084 continue;
b2117a39 4085
6df9a95e 4086 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4087 max_stripe_size * dev_stripes,
4088 &dev_offset, &max_avail);
4089 if (ret && ret != -ENOSPC)
4090 goto error;
b2117a39 4091
73c5de00
AJ
4092 if (ret == 0)
4093 max_avail = max_stripe_size * dev_stripes;
b2117a39 4094
73c5de00
AJ
4095 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4096 continue;
b2117a39 4097
063d006f
ES
4098 if (ndevs == fs_devices->rw_devices) {
4099 WARN(1, "%s: found more than %llu devices\n",
4100 __func__, fs_devices->rw_devices);
4101 break;
4102 }
73c5de00
AJ
4103 devices_info[ndevs].dev_offset = dev_offset;
4104 devices_info[ndevs].max_avail = max_avail;
4105 devices_info[ndevs].total_avail = total_avail;
4106 devices_info[ndevs].dev = device;
4107 ++ndevs;
4108 }
b2117a39 4109
73c5de00
AJ
4110 /*
4111 * now sort the devices by hole size / available space
4112 */
4113 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4114 btrfs_cmp_device_info, NULL);
b2117a39 4115
73c5de00
AJ
4116 /* round down to number of usable stripes */
4117 ndevs -= ndevs % devs_increment;
b2117a39 4118
73c5de00
AJ
4119 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4120 ret = -ENOSPC;
4121 goto error;
b2117a39 4122 }
9f680ce0 4123
73c5de00
AJ
4124 if (devs_max && ndevs > devs_max)
4125 ndevs = devs_max;
4126 /*
4127 * the primary goal is to maximize the number of stripes, so use as many
4128 * devices as possible, even if the stripes are not maximum sized.
4129 */
4130 stripe_size = devices_info[ndevs-1].max_avail;
4131 num_stripes = ndevs * dev_stripes;
b2117a39 4132
53b381b3
DW
4133 /*
4134 * this will have to be fixed for RAID1 and RAID10 over
4135 * more drives
4136 */
4137 data_stripes = num_stripes / ncopies;
4138
53b381b3
DW
4139 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4140 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4141 btrfs_super_stripesize(info->super_copy));
4142 data_stripes = num_stripes - 1;
4143 }
4144 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4145 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4146 btrfs_super_stripesize(info->super_copy));
4147 data_stripes = num_stripes - 2;
4148 }
86db2578
CM
4149
4150 /*
4151 * Use the number of data stripes to figure out how big this chunk
4152 * is really going to be in terms of logical address space,
4153 * and compare that answer with the max chunk size
4154 */
4155 if (stripe_size * data_stripes > max_chunk_size) {
4156 u64 mask = (1ULL << 24) - 1;
4157 stripe_size = max_chunk_size;
4158 do_div(stripe_size, data_stripes);
4159
4160 /* bump the answer up to a 16MB boundary */
4161 stripe_size = (stripe_size + mask) & ~mask;
4162
4163 /* but don't go higher than the limits we found
4164 * while searching for free extents
4165 */
4166 if (stripe_size > devices_info[ndevs-1].max_avail)
4167 stripe_size = devices_info[ndevs-1].max_avail;
4168 }
4169
73c5de00 4170 do_div(stripe_size, dev_stripes);
37db63a4
ID
4171
4172 /* align to BTRFS_STRIPE_LEN */
53b381b3
DW
4173 do_div(stripe_size, raid_stripe_len);
4174 stripe_size *= raid_stripe_len;
b2117a39
MX
4175
4176 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4177 if (!map) {
4178 ret = -ENOMEM;
4179 goto error;
4180 }
4181 map->num_stripes = num_stripes;
9b3f68b9 4182
73c5de00
AJ
4183 for (i = 0; i < ndevs; ++i) {
4184 for (j = 0; j < dev_stripes; ++j) {
4185 int s = i * dev_stripes + j;
4186 map->stripes[s].dev = devices_info[i].dev;
4187 map->stripes[s].physical = devices_info[i].dev_offset +
4188 j * stripe_size;
6324fbf3 4189 }
6324fbf3 4190 }
2b82032c 4191 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4192 map->stripe_len = raid_stripe_len;
4193 map->io_align = raid_stripe_len;
4194 map->io_width = raid_stripe_len;
2b82032c 4195 map->type = type;
2b82032c 4196 map->sub_stripes = sub_stripes;
0b86a832 4197
53b381b3 4198 num_bytes = stripe_size * data_stripes;
0b86a832 4199
73c5de00 4200 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4201
172ddd60 4202 em = alloc_extent_map();
2b82032c 4203 if (!em) {
b2117a39
MX
4204 ret = -ENOMEM;
4205 goto error;
593060d7 4206 }
2b82032c
YZ
4207 em->bdev = (struct block_device *)map;
4208 em->start = start;
73c5de00 4209 em->len = num_bytes;
2b82032c
YZ
4210 em->block_start = 0;
4211 em->block_len = em->len;
6df9a95e 4212 em->orig_block_len = stripe_size;
593060d7 4213
2b82032c 4214 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4215 write_lock(&em_tree->lock);
09a2a8f9 4216 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4217 if (!ret) {
4218 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4219 atomic_inc(&em->refs);
4220 }
890871be 4221 write_unlock(&em_tree->lock);
0f5d42b2
JB
4222 if (ret) {
4223 free_extent_map(em);
1dd4602f 4224 goto error;
0f5d42b2 4225 }
0b86a832 4226
04487488
JB
4227 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4228 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4229 start, num_bytes);
6df9a95e
JB
4230 if (ret)
4231 goto error_del_extent;
2b82032c 4232
0f5d42b2 4233 free_extent_map(em);
53b381b3
DW
4234 check_raid56_incompat_flag(extent_root->fs_info, type);
4235
b2117a39 4236 kfree(devices_info);
2b82032c 4237 return 0;
b2117a39 4238
6df9a95e 4239error_del_extent:
0f5d42b2
JB
4240 write_lock(&em_tree->lock);
4241 remove_extent_mapping(em_tree, em);
4242 write_unlock(&em_tree->lock);
4243
4244 /* One for our allocation */
4245 free_extent_map(em);
4246 /* One for the tree reference */
4247 free_extent_map(em);
b2117a39
MX
4248error:
4249 kfree(map);
4250 kfree(devices_info);
4251 return ret;
2b82032c
YZ
4252}
4253
6df9a95e 4254int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4255 struct btrfs_root *extent_root,
6df9a95e 4256 u64 chunk_offset, u64 chunk_size)
2b82032c 4257{
2b82032c
YZ
4258 struct btrfs_key key;
4259 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4260 struct btrfs_device *device;
4261 struct btrfs_chunk *chunk;
4262 struct btrfs_stripe *stripe;
6df9a95e
JB
4263 struct extent_map_tree *em_tree;
4264 struct extent_map *em;
4265 struct map_lookup *map;
4266 size_t item_size;
4267 u64 dev_offset;
4268 u64 stripe_size;
4269 int i = 0;
2b82032c
YZ
4270 int ret;
4271
6df9a95e
JB
4272 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4273 read_lock(&em_tree->lock);
4274 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4275 read_unlock(&em_tree->lock);
4276
4277 if (!em) {
4278 btrfs_crit(extent_root->fs_info, "unable to find logical "
4279 "%Lu len %Lu", chunk_offset, chunk_size);
4280 return -EINVAL;
4281 }
4282
4283 if (em->start != chunk_offset || em->len != chunk_size) {
4284 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4285 " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
4286 chunk_size, em->start, em->len);
4287 free_extent_map(em);
4288 return -EINVAL;
4289 }
4290
4291 map = (struct map_lookup *)em->bdev;
4292 item_size = btrfs_chunk_item_size(map->num_stripes);
4293 stripe_size = em->orig_block_len;
4294
2b82032c 4295 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4296 if (!chunk) {
4297 ret = -ENOMEM;
4298 goto out;
4299 }
4300
4301 for (i = 0; i < map->num_stripes; i++) {
4302 device = map->stripes[i].dev;
4303 dev_offset = map->stripes[i].physical;
2b82032c 4304
2b82032c 4305 device->bytes_used += stripe_size;
0b86a832 4306 ret = btrfs_update_device(trans, device);
3acd3953 4307 if (ret)
6df9a95e
JB
4308 goto out;
4309 ret = btrfs_alloc_dev_extent(trans, device,
4310 chunk_root->root_key.objectid,
4311 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4312 chunk_offset, dev_offset,
4313 stripe_size);
4314 if (ret)
4315 goto out;
2b82032c
YZ
4316 }
4317
2bf64758
JB
4318 spin_lock(&extent_root->fs_info->free_chunk_lock);
4319 extent_root->fs_info->free_chunk_space -= (stripe_size *
4320 map->num_stripes);
4321 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4322
2b82032c 4323 stripe = &chunk->stripe;
6df9a95e
JB
4324 for (i = 0; i < map->num_stripes; i++) {
4325 device = map->stripes[i].dev;
4326 dev_offset = map->stripes[i].physical;
0b86a832 4327
e17cade2
CM
4328 btrfs_set_stack_stripe_devid(stripe, device->devid);
4329 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4330 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4331 stripe++;
0b86a832
CM
4332 }
4333
2b82032c 4334 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4335 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4336 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4337 btrfs_set_stack_chunk_type(chunk, map->type);
4338 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4339 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4340 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4341 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4342 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4343
2b82032c
YZ
4344 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4345 key.type = BTRFS_CHUNK_ITEM_KEY;
4346 key.offset = chunk_offset;
0b86a832 4347
2b82032c 4348 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4349 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4350 /*
4351 * TODO: Cleanup of inserted chunk root in case of
4352 * failure.
4353 */
125ccb0a 4354 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4355 item_size);
8f18cf13 4356 }
1abe9b8a 4357
6df9a95e 4358out:
0b86a832 4359 kfree(chunk);
6df9a95e 4360 free_extent_map(em);
4ed1d16e 4361 return ret;
2b82032c 4362}
0b86a832 4363
2b82032c
YZ
4364/*
4365 * Chunk allocation falls into two parts. The first part does works
4366 * that make the new allocated chunk useable, but not do any operation
4367 * that modifies the chunk tree. The second part does the works that
4368 * require modifying the chunk tree. This division is important for the
4369 * bootstrap process of adding storage to a seed btrfs.
4370 */
4371int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4372 struct btrfs_root *extent_root, u64 type)
4373{
4374 u64 chunk_offset;
2b82032c 4375
6df9a95e
JB
4376 chunk_offset = find_next_chunk(extent_root->fs_info);
4377 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4378}
4379
d397712b 4380static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4381 struct btrfs_root *root,
4382 struct btrfs_device *device)
4383{
4384 u64 chunk_offset;
4385 u64 sys_chunk_offset;
2b82032c 4386 u64 alloc_profile;
2b82032c
YZ
4387 struct btrfs_fs_info *fs_info = root->fs_info;
4388 struct btrfs_root *extent_root = fs_info->extent_root;
4389 int ret;
4390
6df9a95e 4391 chunk_offset = find_next_chunk(fs_info);
de98ced9 4392 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4393 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4394 alloc_profile);
79787eaa
JM
4395 if (ret)
4396 return ret;
2b82032c 4397
6df9a95e 4398 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4399 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4400 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4401 alloc_profile);
005d6427
DS
4402 if (ret) {
4403 btrfs_abort_transaction(trans, root, ret);
4404 goto out;
4405 }
2b82032c
YZ
4406
4407 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
79787eaa 4408 if (ret)
005d6427 4409 btrfs_abort_transaction(trans, root, ret);
005d6427 4410out:
79787eaa 4411 return ret;
2b82032c
YZ
4412}
4413
4414int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4415{
4416 struct extent_map *em;
4417 struct map_lookup *map;
4418 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4419 int readonly = 0;
4420 int i;
4421
890871be 4422 read_lock(&map_tree->map_tree.lock);
2b82032c 4423 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4424 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4425 if (!em)
4426 return 1;
4427
f48b9075
JB
4428 if (btrfs_test_opt(root, DEGRADED)) {
4429 free_extent_map(em);
4430 return 0;
4431 }
4432
2b82032c
YZ
4433 map = (struct map_lookup *)em->bdev;
4434 for (i = 0; i < map->num_stripes; i++) {
4435 if (!map->stripes[i].dev->writeable) {
4436 readonly = 1;
4437 break;
4438 }
4439 }
0b86a832 4440 free_extent_map(em);
2b82032c 4441 return readonly;
0b86a832
CM
4442}
4443
4444void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4445{
a8067e02 4446 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4447}
4448
4449void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4450{
4451 struct extent_map *em;
4452
d397712b 4453 while (1) {
890871be 4454 write_lock(&tree->map_tree.lock);
0b86a832
CM
4455 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4456 if (em)
4457 remove_extent_mapping(&tree->map_tree, em);
890871be 4458 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4459 if (!em)
4460 break;
4461 kfree(em->bdev);
4462 /* once for us */
4463 free_extent_map(em);
4464 /* once for the tree */
4465 free_extent_map(em);
4466 }
4467}
4468
5d964051 4469int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4470{
5d964051 4471 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4472 struct extent_map *em;
4473 struct map_lookup *map;
4474 struct extent_map_tree *em_tree = &map_tree->map_tree;
4475 int ret;
4476
890871be 4477 read_lock(&em_tree->lock);
f188591e 4478 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4479 read_unlock(&em_tree->lock);
f188591e 4480
fb7669b5
JB
4481 /*
4482 * We could return errors for these cases, but that could get ugly and
4483 * we'd probably do the same thing which is just not do anything else
4484 * and exit, so return 1 so the callers don't try to use other copies.
4485 */
4486 if (!em) {
ccf39f92 4487 btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical,
fb7669b5
JB
4488 logical+len);
4489 return 1;
4490 }
4491
4492 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4493 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
fb7669b5
JB
4494 "%Lu-%Lu\n", logical, logical+len, em->start,
4495 em->start + em->len);
7d3d1744 4496 free_extent_map(em);
fb7669b5
JB
4497 return 1;
4498 }
4499
f188591e
CM
4500 map = (struct map_lookup *)em->bdev;
4501 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4502 ret = map->num_stripes;
321aecc6
CM
4503 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4504 ret = map->sub_stripes;
53b381b3
DW
4505 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4506 ret = 2;
4507 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4508 ret = 3;
f188591e
CM
4509 else
4510 ret = 1;
4511 free_extent_map(em);
ad6d620e
SB
4512
4513 btrfs_dev_replace_lock(&fs_info->dev_replace);
4514 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4515 ret++;
4516 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4517
f188591e
CM
4518 return ret;
4519}
4520
53b381b3
DW
4521unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4522 struct btrfs_mapping_tree *map_tree,
4523 u64 logical)
4524{
4525 struct extent_map *em;
4526 struct map_lookup *map;
4527 struct extent_map_tree *em_tree = &map_tree->map_tree;
4528 unsigned long len = root->sectorsize;
4529
4530 read_lock(&em_tree->lock);
4531 em = lookup_extent_mapping(em_tree, logical, len);
4532 read_unlock(&em_tree->lock);
4533 BUG_ON(!em);
4534
4535 BUG_ON(em->start > logical || em->start + em->len < logical);
4536 map = (struct map_lookup *)em->bdev;
4537 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4538 BTRFS_BLOCK_GROUP_RAID6)) {
4539 len = map->stripe_len * nr_data_stripes(map);
4540 }
4541 free_extent_map(em);
4542 return len;
4543}
4544
4545int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4546 u64 logical, u64 len, int mirror_num)
4547{
4548 struct extent_map *em;
4549 struct map_lookup *map;
4550 struct extent_map_tree *em_tree = &map_tree->map_tree;
4551 int ret = 0;
4552
4553 read_lock(&em_tree->lock);
4554 em = lookup_extent_mapping(em_tree, logical, len);
4555 read_unlock(&em_tree->lock);
4556 BUG_ON(!em);
4557
4558 BUG_ON(em->start > logical || em->start + em->len < logical);
4559 map = (struct map_lookup *)em->bdev;
4560 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4561 BTRFS_BLOCK_GROUP_RAID6))
4562 ret = 1;
4563 free_extent_map(em);
4564 return ret;
4565}
4566
30d9861f
SB
4567static int find_live_mirror(struct btrfs_fs_info *fs_info,
4568 struct map_lookup *map, int first, int num,
4569 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4570{
4571 int i;
30d9861f
SB
4572 int tolerance;
4573 struct btrfs_device *srcdev;
4574
4575 if (dev_replace_is_ongoing &&
4576 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4577 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4578 srcdev = fs_info->dev_replace.srcdev;
4579 else
4580 srcdev = NULL;
4581
4582 /*
4583 * try to avoid the drive that is the source drive for a
4584 * dev-replace procedure, only choose it if no other non-missing
4585 * mirror is available
4586 */
4587 for (tolerance = 0; tolerance < 2; tolerance++) {
4588 if (map->stripes[optimal].dev->bdev &&
4589 (tolerance || map->stripes[optimal].dev != srcdev))
4590 return optimal;
4591 for (i = first; i < first + num; i++) {
4592 if (map->stripes[i].dev->bdev &&
4593 (tolerance || map->stripes[i].dev != srcdev))
4594 return i;
4595 }
dfe25020 4596 }
30d9861f 4597
dfe25020
CM
4598 /* we couldn't find one that doesn't fail. Just return something
4599 * and the io error handling code will clean up eventually
4600 */
4601 return optimal;
4602}
4603
53b381b3
DW
4604static inline int parity_smaller(u64 a, u64 b)
4605{
4606 return a > b;
4607}
4608
4609/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4610static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4611{
4612 struct btrfs_bio_stripe s;
4613 int i;
4614 u64 l;
4615 int again = 1;
4616
4617 while (again) {
4618 again = 0;
4619 for (i = 0; i < bbio->num_stripes - 1; i++) {
4620 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4621 s = bbio->stripes[i];
4622 l = raid_map[i];
4623 bbio->stripes[i] = bbio->stripes[i+1];
4624 raid_map[i] = raid_map[i+1];
4625 bbio->stripes[i+1] = s;
4626 raid_map[i+1] = l;
4627 again = 1;
4628 }
4629 }
4630 }
4631}
4632
3ec706c8 4633static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4634 u64 logical, u64 *length,
a1d3c478 4635 struct btrfs_bio **bbio_ret,
53b381b3 4636 int mirror_num, u64 **raid_map_ret)
0b86a832
CM
4637{
4638 struct extent_map *em;
4639 struct map_lookup *map;
3ec706c8 4640 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
4641 struct extent_map_tree *em_tree = &map_tree->map_tree;
4642 u64 offset;
593060d7 4643 u64 stripe_offset;
fce3bb9a 4644 u64 stripe_end_offset;
593060d7 4645 u64 stripe_nr;
fce3bb9a
LD
4646 u64 stripe_nr_orig;
4647 u64 stripe_nr_end;
53b381b3
DW
4648 u64 stripe_len;
4649 u64 *raid_map = NULL;
593060d7 4650 int stripe_index;
cea9e445 4651 int i;
de11cc12 4652 int ret = 0;
f2d8d74d 4653 int num_stripes;
a236aed1 4654 int max_errors = 0;
a1d3c478 4655 struct btrfs_bio *bbio = NULL;
472262f3
SB
4656 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4657 int dev_replace_is_ongoing = 0;
4658 int num_alloc_stripes;
ad6d620e
SB
4659 int patch_the_first_stripe_for_dev_replace = 0;
4660 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 4661 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 4662
890871be 4663 read_lock(&em_tree->lock);
0b86a832 4664 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 4665 read_unlock(&em_tree->lock);
f2d8d74d 4666
3b951516 4667 if (!em) {
c2cf52eb 4668 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 4669 logical, *length);
9bb91873
JB
4670 return -EINVAL;
4671 }
4672
4673 if (em->start > logical || em->start + em->len < logical) {
4674 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4675 "found %Lu-%Lu\n", logical, em->start,
4676 em->start + em->len);
7d3d1744 4677 free_extent_map(em);
9bb91873 4678 return -EINVAL;
3b951516 4679 }
0b86a832 4680
0b86a832
CM
4681 map = (struct map_lookup *)em->bdev;
4682 offset = logical - em->start;
593060d7 4683
53b381b3 4684 stripe_len = map->stripe_len;
593060d7
CM
4685 stripe_nr = offset;
4686 /*
4687 * stripe_nr counts the total number of stripes we have to stride
4688 * to get to this block
4689 */
53b381b3 4690 do_div(stripe_nr, stripe_len);
593060d7 4691
53b381b3 4692 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
4693 BUG_ON(offset < stripe_offset);
4694
4695 /* stripe_offset is the offset of this block in its stripe*/
4696 stripe_offset = offset - stripe_offset;
4697
53b381b3
DW
4698 /* if we're here for raid56, we need to know the stripe aligned start */
4699 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4700 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4701 raid56_full_stripe_start = offset;
4702
4703 /* allow a write of a full stripe, but make sure we don't
4704 * allow straddling of stripes
4705 */
4706 do_div(raid56_full_stripe_start, full_stripe_len);
4707 raid56_full_stripe_start *= full_stripe_len;
4708 }
4709
4710 if (rw & REQ_DISCARD) {
4711 /* we don't discard raid56 yet */
4712 if (map->type &
4713 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4714 ret = -EOPNOTSUPP;
4715 goto out;
4716 }
fce3bb9a 4717 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
4718 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4719 u64 max_len;
4720 /* For writes to RAID[56], allow a full stripeset across all disks.
4721 For other RAID types and for RAID[56] reads, just allow a single
4722 stripe (on a single disk). */
4723 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4724 (rw & REQ_WRITE)) {
4725 max_len = stripe_len * nr_data_stripes(map) -
4726 (offset - raid56_full_stripe_start);
4727 } else {
4728 /* we limit the length of each bio to what fits in a stripe */
4729 max_len = stripe_len - stripe_offset;
4730 }
4731 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
4732 } else {
4733 *length = em->len - offset;
4734 }
f2d8d74d 4735
53b381b3
DW
4736 /* This is for when we're called from btrfs_merge_bio_hook() and all
4737 it cares about is the length */
a1d3c478 4738 if (!bbio_ret)
cea9e445
CM
4739 goto out;
4740
472262f3
SB
4741 btrfs_dev_replace_lock(dev_replace);
4742 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4743 if (!dev_replace_is_ongoing)
4744 btrfs_dev_replace_unlock(dev_replace);
4745
ad6d620e
SB
4746 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4747 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4748 dev_replace->tgtdev != NULL) {
4749 /*
4750 * in dev-replace case, for repair case (that's the only
4751 * case where the mirror is selected explicitly when
4752 * calling btrfs_map_block), blocks left of the left cursor
4753 * can also be read from the target drive.
4754 * For REQ_GET_READ_MIRRORS, the target drive is added as
4755 * the last one to the array of stripes. For READ, it also
4756 * needs to be supported using the same mirror number.
4757 * If the requested block is not left of the left cursor,
4758 * EIO is returned. This can happen because btrfs_num_copies()
4759 * returns one more in the dev-replace case.
4760 */
4761 u64 tmp_length = *length;
4762 struct btrfs_bio *tmp_bbio = NULL;
4763 int tmp_num_stripes;
4764 u64 srcdev_devid = dev_replace->srcdev->devid;
4765 int index_srcdev = 0;
4766 int found = 0;
4767 u64 physical_of_found = 0;
4768
4769 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
53b381b3 4770 logical, &tmp_length, &tmp_bbio, 0, NULL);
ad6d620e
SB
4771 if (ret) {
4772 WARN_ON(tmp_bbio != NULL);
4773 goto out;
4774 }
4775
4776 tmp_num_stripes = tmp_bbio->num_stripes;
4777 if (mirror_num > tmp_num_stripes) {
4778 /*
4779 * REQ_GET_READ_MIRRORS does not contain this
4780 * mirror, that means that the requested area
4781 * is not left of the left cursor
4782 */
4783 ret = -EIO;
4784 kfree(tmp_bbio);
4785 goto out;
4786 }
4787
4788 /*
4789 * process the rest of the function using the mirror_num
4790 * of the source drive. Therefore look it up first.
4791 * At the end, patch the device pointer to the one of the
4792 * target drive.
4793 */
4794 for (i = 0; i < tmp_num_stripes; i++) {
4795 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4796 /*
4797 * In case of DUP, in order to keep it
4798 * simple, only add the mirror with the
4799 * lowest physical address
4800 */
4801 if (found &&
4802 physical_of_found <=
4803 tmp_bbio->stripes[i].physical)
4804 continue;
4805 index_srcdev = i;
4806 found = 1;
4807 physical_of_found =
4808 tmp_bbio->stripes[i].physical;
4809 }
4810 }
4811
4812 if (found) {
4813 mirror_num = index_srcdev + 1;
4814 patch_the_first_stripe_for_dev_replace = 1;
4815 physical_to_patch_in_first_stripe = physical_of_found;
4816 } else {
4817 WARN_ON(1);
4818 ret = -EIO;
4819 kfree(tmp_bbio);
4820 goto out;
4821 }
4822
4823 kfree(tmp_bbio);
4824 } else if (mirror_num > map->num_stripes) {
4825 mirror_num = 0;
4826 }
4827
f2d8d74d 4828 num_stripes = 1;
cea9e445 4829 stripe_index = 0;
fce3bb9a 4830 stripe_nr_orig = stripe_nr;
fda2832f 4831 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
fce3bb9a
LD
4832 do_div(stripe_nr_end, map->stripe_len);
4833 stripe_end_offset = stripe_nr_end * map->stripe_len -
4834 (offset + *length);
53b381b3 4835
fce3bb9a
LD
4836 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4837 if (rw & REQ_DISCARD)
4838 num_stripes = min_t(u64, map->num_stripes,
4839 stripe_nr_end - stripe_nr_orig);
4840 stripe_index = do_div(stripe_nr, map->num_stripes);
4841 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 4842 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 4843 num_stripes = map->num_stripes;
2fff734f 4844 else if (mirror_num)
f188591e 4845 stripe_index = mirror_num - 1;
dfe25020 4846 else {
30d9861f 4847 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 4848 map->num_stripes,
30d9861f
SB
4849 current->pid % map->num_stripes,
4850 dev_replace_is_ongoing);
a1d3c478 4851 mirror_num = stripe_index + 1;
dfe25020 4852 }
2fff734f 4853
611f0e00 4854 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 4855 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 4856 num_stripes = map->num_stripes;
a1d3c478 4857 } else if (mirror_num) {
f188591e 4858 stripe_index = mirror_num - 1;
a1d3c478
JS
4859 } else {
4860 mirror_num = 1;
4861 }
2fff734f 4862
321aecc6
CM
4863 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4864 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
4865
4866 stripe_index = do_div(stripe_nr, factor);
4867 stripe_index *= map->sub_stripes;
4868
29a8d9a0 4869 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 4870 num_stripes = map->sub_stripes;
fce3bb9a
LD
4871 else if (rw & REQ_DISCARD)
4872 num_stripes = min_t(u64, map->sub_stripes *
4873 (stripe_nr_end - stripe_nr_orig),
4874 map->num_stripes);
321aecc6
CM
4875 else if (mirror_num)
4876 stripe_index += mirror_num - 1;
dfe25020 4877 else {
3e74317a 4878 int old_stripe_index = stripe_index;
30d9861f
SB
4879 stripe_index = find_live_mirror(fs_info, map,
4880 stripe_index,
dfe25020 4881 map->sub_stripes, stripe_index +
30d9861f
SB
4882 current->pid % map->sub_stripes,
4883 dev_replace_is_ongoing);
3e74317a 4884 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 4885 }
53b381b3
DW
4886
4887 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4888 BTRFS_BLOCK_GROUP_RAID6)) {
4889 u64 tmp;
4890
4891 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4892 && raid_map_ret) {
4893 int i, rot;
4894
4895 /* push stripe_nr back to the start of the full stripe */
4896 stripe_nr = raid56_full_stripe_start;
4897 do_div(stripe_nr, stripe_len);
4898
4899 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4900
4901 /* RAID[56] write or recovery. Return all stripes */
4902 num_stripes = map->num_stripes;
4903 max_errors = nr_parity_stripes(map);
4904
4905 raid_map = kmalloc(sizeof(u64) * num_stripes,
4906 GFP_NOFS);
4907 if (!raid_map) {
4908 ret = -ENOMEM;
4909 goto out;
4910 }
4911
4912 /* Work out the disk rotation on this stripe-set */
4913 tmp = stripe_nr;
4914 rot = do_div(tmp, num_stripes);
4915
4916 /* Fill in the logical address of each stripe */
4917 tmp = stripe_nr * nr_data_stripes(map);
4918 for (i = 0; i < nr_data_stripes(map); i++)
4919 raid_map[(i+rot) % num_stripes] =
4920 em->start + (tmp + i) * map->stripe_len;
4921
4922 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4923 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4924 raid_map[(i+rot+1) % num_stripes] =
4925 RAID6_Q_STRIPE;
4926
4927 *length = map->stripe_len;
4928 stripe_index = 0;
4929 stripe_offset = 0;
4930 } else {
4931 /*
4932 * Mirror #0 or #1 means the original data block.
4933 * Mirror #2 is RAID5 parity block.
4934 * Mirror #3 is RAID6 Q block.
4935 */
4936 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4937 if (mirror_num > 1)
4938 stripe_index = nr_data_stripes(map) +
4939 mirror_num - 2;
4940
4941 /* We distribute the parity blocks across stripes */
4942 tmp = stripe_nr + stripe_index;
4943 stripe_index = do_div(tmp, map->num_stripes);
4944 }
8790d502
CM
4945 } else {
4946 /*
4947 * after this do_div call, stripe_nr is the number of stripes
4948 * on this device we have to walk to find the data, and
4949 * stripe_index is the number of our device in the stripe array
4950 */
4951 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 4952 mirror_num = stripe_index + 1;
8790d502 4953 }
593060d7 4954 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 4955
472262f3 4956 num_alloc_stripes = num_stripes;
ad6d620e
SB
4957 if (dev_replace_is_ongoing) {
4958 if (rw & (REQ_WRITE | REQ_DISCARD))
4959 num_alloc_stripes <<= 1;
4960 if (rw & REQ_GET_READ_MIRRORS)
4961 num_alloc_stripes++;
4962 }
472262f3 4963 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
de11cc12 4964 if (!bbio) {
eb2067f7 4965 kfree(raid_map);
de11cc12
LZ
4966 ret = -ENOMEM;
4967 goto out;
4968 }
4969 atomic_set(&bbio->error, 0);
4970
fce3bb9a 4971 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
4972 int factor = 0;
4973 int sub_stripes = 0;
4974 u64 stripes_per_dev = 0;
4975 u32 remaining_stripes = 0;
b89203f7 4976 u32 last_stripe = 0;
ec9ef7a1
LZ
4977
4978 if (map->type &
4979 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4980 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4981 sub_stripes = 1;
4982 else
4983 sub_stripes = map->sub_stripes;
4984
4985 factor = map->num_stripes / sub_stripes;
4986 stripes_per_dev = div_u64_rem(stripe_nr_end -
4987 stripe_nr_orig,
4988 factor,
4989 &remaining_stripes);
b89203f7
LB
4990 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
4991 last_stripe *= sub_stripes;
ec9ef7a1
LZ
4992 }
4993
fce3bb9a 4994 for (i = 0; i < num_stripes; i++) {
a1d3c478 4995 bbio->stripes[i].physical =
f2d8d74d
CM
4996 map->stripes[stripe_index].physical +
4997 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 4998 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 4999
ec9ef7a1
LZ
5000 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5001 BTRFS_BLOCK_GROUP_RAID10)) {
5002 bbio->stripes[i].length = stripes_per_dev *
5003 map->stripe_len;
b89203f7 5004
ec9ef7a1
LZ
5005 if (i / sub_stripes < remaining_stripes)
5006 bbio->stripes[i].length +=
5007 map->stripe_len;
b89203f7
LB
5008
5009 /*
5010 * Special for the first stripe and
5011 * the last stripe:
5012 *
5013 * |-------|...|-------|
5014 * |----------|
5015 * off end_off
5016 */
ec9ef7a1 5017 if (i < sub_stripes)
a1d3c478 5018 bbio->stripes[i].length -=
fce3bb9a 5019 stripe_offset;
b89203f7
LB
5020
5021 if (stripe_index >= last_stripe &&
5022 stripe_index <= (last_stripe +
5023 sub_stripes - 1))
a1d3c478 5024 bbio->stripes[i].length -=
fce3bb9a 5025 stripe_end_offset;
b89203f7 5026
ec9ef7a1
LZ
5027 if (i == sub_stripes - 1)
5028 stripe_offset = 0;
fce3bb9a 5029 } else
a1d3c478 5030 bbio->stripes[i].length = *length;
fce3bb9a
LD
5031
5032 stripe_index++;
5033 if (stripe_index == map->num_stripes) {
5034 /* This could only happen for RAID0/10 */
5035 stripe_index = 0;
5036 stripe_nr++;
5037 }
5038 }
5039 } else {
5040 for (i = 0; i < num_stripes; i++) {
a1d3c478 5041 bbio->stripes[i].physical =
212a17ab
LT
5042 map->stripes[stripe_index].physical +
5043 stripe_offset +
5044 stripe_nr * map->stripe_len;
a1d3c478 5045 bbio->stripes[i].dev =
212a17ab 5046 map->stripes[stripe_index].dev;
fce3bb9a 5047 stripe_index++;
f2d8d74d 5048 }
593060d7 5049 }
de11cc12 5050
29a8d9a0 5051 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
de11cc12
LZ
5052 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5053 BTRFS_BLOCK_GROUP_RAID10 |
53b381b3 5054 BTRFS_BLOCK_GROUP_RAID5 |
de11cc12
LZ
5055 BTRFS_BLOCK_GROUP_DUP)) {
5056 max_errors = 1;
53b381b3
DW
5057 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5058 max_errors = 2;
de11cc12 5059 }
f2d8d74d 5060 }
de11cc12 5061
472262f3
SB
5062 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5063 dev_replace->tgtdev != NULL) {
5064 int index_where_to_add;
5065 u64 srcdev_devid = dev_replace->srcdev->devid;
5066
5067 /*
5068 * duplicate the write operations while the dev replace
5069 * procedure is running. Since the copying of the old disk
5070 * to the new disk takes place at run time while the
5071 * filesystem is mounted writable, the regular write
5072 * operations to the old disk have to be duplicated to go
5073 * to the new disk as well.
5074 * Note that device->missing is handled by the caller, and
5075 * that the write to the old disk is already set up in the
5076 * stripes array.
5077 */
5078 index_where_to_add = num_stripes;
5079 for (i = 0; i < num_stripes; i++) {
5080 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5081 /* write to new disk, too */
5082 struct btrfs_bio_stripe *new =
5083 bbio->stripes + index_where_to_add;
5084 struct btrfs_bio_stripe *old =
5085 bbio->stripes + i;
5086
5087 new->physical = old->physical;
5088 new->length = old->length;
5089 new->dev = dev_replace->tgtdev;
5090 index_where_to_add++;
5091 max_errors++;
5092 }
5093 }
5094 num_stripes = index_where_to_add;
ad6d620e
SB
5095 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5096 dev_replace->tgtdev != NULL) {
5097 u64 srcdev_devid = dev_replace->srcdev->devid;
5098 int index_srcdev = 0;
5099 int found = 0;
5100 u64 physical_of_found = 0;
5101
5102 /*
5103 * During the dev-replace procedure, the target drive can
5104 * also be used to read data in case it is needed to repair
5105 * a corrupt block elsewhere. This is possible if the
5106 * requested area is left of the left cursor. In this area,
5107 * the target drive is a full copy of the source drive.
5108 */
5109 for (i = 0; i < num_stripes; i++) {
5110 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5111 /*
5112 * In case of DUP, in order to keep it
5113 * simple, only add the mirror with the
5114 * lowest physical address
5115 */
5116 if (found &&
5117 physical_of_found <=
5118 bbio->stripes[i].physical)
5119 continue;
5120 index_srcdev = i;
5121 found = 1;
5122 physical_of_found = bbio->stripes[i].physical;
5123 }
5124 }
5125 if (found) {
5126 u64 length = map->stripe_len;
5127
5128 if (physical_of_found + length <=
5129 dev_replace->cursor_left) {
5130 struct btrfs_bio_stripe *tgtdev_stripe =
5131 bbio->stripes + num_stripes;
5132
5133 tgtdev_stripe->physical = physical_of_found;
5134 tgtdev_stripe->length =
5135 bbio->stripes[index_srcdev].length;
5136 tgtdev_stripe->dev = dev_replace->tgtdev;
5137
5138 num_stripes++;
5139 }
5140 }
472262f3
SB
5141 }
5142
de11cc12
LZ
5143 *bbio_ret = bbio;
5144 bbio->num_stripes = num_stripes;
5145 bbio->max_errors = max_errors;
5146 bbio->mirror_num = mirror_num;
ad6d620e
SB
5147
5148 /*
5149 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5150 * mirror_num == num_stripes + 1 && dev_replace target drive is
5151 * available as a mirror
5152 */
5153 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5154 WARN_ON(num_stripes > 1);
5155 bbio->stripes[0].dev = dev_replace->tgtdev;
5156 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5157 bbio->mirror_num = map->num_stripes + 1;
5158 }
53b381b3
DW
5159 if (raid_map) {
5160 sort_parity_stripes(bbio, raid_map);
5161 *raid_map_ret = raid_map;
5162 }
cea9e445 5163out:
472262f3
SB
5164 if (dev_replace_is_ongoing)
5165 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5166 free_extent_map(em);
de11cc12 5167 return ret;
0b86a832
CM
5168}
5169
3ec706c8 5170int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5171 u64 logical, u64 *length,
a1d3c478 5172 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5173{
3ec706c8 5174 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
53b381b3 5175 mirror_num, NULL);
f2d8d74d
CM
5176}
5177
a512bbf8
YZ
5178int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5179 u64 chunk_start, u64 physical, u64 devid,
5180 u64 **logical, int *naddrs, int *stripe_len)
5181{
5182 struct extent_map_tree *em_tree = &map_tree->map_tree;
5183 struct extent_map *em;
5184 struct map_lookup *map;
5185 u64 *buf;
5186 u64 bytenr;
5187 u64 length;
5188 u64 stripe_nr;
53b381b3 5189 u64 rmap_len;
a512bbf8
YZ
5190 int i, j, nr = 0;
5191
890871be 5192 read_lock(&em_tree->lock);
a512bbf8 5193 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5194 read_unlock(&em_tree->lock);
a512bbf8 5195
835d974f
JB
5196 if (!em) {
5197 printk(KERN_ERR "btrfs: couldn't find em for chunk %Lu\n",
5198 chunk_start);
5199 return -EIO;
5200 }
5201
5202 if (em->start != chunk_start) {
5203 printk(KERN_ERR "btrfs: bad chunk start, em=%Lu, wanted=%Lu\n",
5204 em->start, chunk_start);
5205 free_extent_map(em);
5206 return -EIO;
5207 }
a512bbf8
YZ
5208 map = (struct map_lookup *)em->bdev;
5209
5210 length = em->len;
53b381b3
DW
5211 rmap_len = map->stripe_len;
5212
a512bbf8
YZ
5213 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5214 do_div(length, map->num_stripes / map->sub_stripes);
5215 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5216 do_div(length, map->num_stripes);
53b381b3
DW
5217 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5218 BTRFS_BLOCK_GROUP_RAID6)) {
5219 do_div(length, nr_data_stripes(map));
5220 rmap_len = map->stripe_len * nr_data_stripes(map);
5221 }
a512bbf8
YZ
5222
5223 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 5224 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5225
5226 for (i = 0; i < map->num_stripes; i++) {
5227 if (devid && map->stripes[i].dev->devid != devid)
5228 continue;
5229 if (map->stripes[i].physical > physical ||
5230 map->stripes[i].physical + length <= physical)
5231 continue;
5232
5233 stripe_nr = physical - map->stripes[i].physical;
5234 do_div(stripe_nr, map->stripe_len);
5235
5236 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5237 stripe_nr = stripe_nr * map->num_stripes + i;
5238 do_div(stripe_nr, map->sub_stripes);
5239 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5240 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5241 } /* else if RAID[56], multiply by nr_data_stripes().
5242 * Alternatively, just use rmap_len below instead of
5243 * map->stripe_len */
5244
5245 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5246 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5247 for (j = 0; j < nr; j++) {
5248 if (buf[j] == bytenr)
5249 break;
5250 }
934d375b
CM
5251 if (j == nr) {
5252 WARN_ON(nr >= map->num_stripes);
a512bbf8 5253 buf[nr++] = bytenr;
934d375b 5254 }
a512bbf8
YZ
5255 }
5256
a512bbf8
YZ
5257 *logical = buf;
5258 *naddrs = nr;
53b381b3 5259 *stripe_len = rmap_len;
a512bbf8
YZ
5260
5261 free_extent_map(em);
5262 return 0;
f2d8d74d
CM
5263}
5264
a1d3c478 5265static void btrfs_end_bio(struct bio *bio, int err)
8790d502 5266{
9be3395b 5267 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5268 int is_orig_bio = 0;
8790d502 5269
442a4f63 5270 if (err) {
a1d3c478 5271 atomic_inc(&bbio->error);
442a4f63
SB
5272 if (err == -EIO || err == -EREMOTEIO) {
5273 unsigned int stripe_index =
9be3395b 5274 btrfs_io_bio(bio)->stripe_index;
442a4f63
SB
5275 struct btrfs_device *dev;
5276
5277 BUG_ON(stripe_index >= bbio->num_stripes);
5278 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5279 if (dev->bdev) {
5280 if (bio->bi_rw & WRITE)
5281 btrfs_dev_stat_inc(dev,
5282 BTRFS_DEV_STAT_WRITE_ERRS);
5283 else
5284 btrfs_dev_stat_inc(dev,
5285 BTRFS_DEV_STAT_READ_ERRS);
5286 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5287 btrfs_dev_stat_inc(dev,
5288 BTRFS_DEV_STAT_FLUSH_ERRS);
5289 btrfs_dev_stat_print_on_error(dev);
5290 }
442a4f63
SB
5291 }
5292 }
8790d502 5293
a1d3c478 5294 if (bio == bbio->orig_bio)
7d2b4daa
CM
5295 is_orig_bio = 1;
5296
a1d3c478 5297 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5298 if (!is_orig_bio) {
5299 bio_put(bio);
a1d3c478 5300 bio = bbio->orig_bio;
7d2b4daa 5301 }
a1d3c478
JS
5302 bio->bi_private = bbio->private;
5303 bio->bi_end_io = bbio->end_io;
9be3395b 5304 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5305 /* only send an error to the higher layers if it is
53b381b3 5306 * beyond the tolerance of the btrfs bio
a236aed1 5307 */
a1d3c478 5308 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 5309 err = -EIO;
5dbc8fca 5310 } else {
1259ab75
CM
5311 /*
5312 * this bio is actually up to date, we didn't
5313 * go over the max number of errors
5314 */
5315 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 5316 err = 0;
1259ab75 5317 }
a1d3c478 5318 kfree(bbio);
8790d502
CM
5319
5320 bio_endio(bio, err);
7d2b4daa 5321 } else if (!is_orig_bio) {
8790d502
CM
5322 bio_put(bio);
5323 }
8790d502
CM
5324}
5325
8b712842
CM
5326struct async_sched {
5327 struct bio *bio;
5328 int rw;
5329 struct btrfs_fs_info *info;
5330 struct btrfs_work work;
5331};
5332
5333/*
5334 * see run_scheduled_bios for a description of why bios are collected for
5335 * async submit.
5336 *
5337 * This will add one bio to the pending list for a device and make sure
5338 * the work struct is scheduled.
5339 */
48a3b636
ES
5340static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5341 struct btrfs_device *device,
5342 int rw, struct bio *bio)
8b712842
CM
5343{
5344 int should_queue = 1;
ffbd517d 5345 struct btrfs_pending_bios *pending_bios;
8b712842 5346
53b381b3
DW
5347 if (device->missing || !device->bdev) {
5348 bio_endio(bio, -EIO);
5349 return;
5350 }
5351
8b712842 5352 /* don't bother with additional async steps for reads, right now */
7b6d91da 5353 if (!(rw & REQ_WRITE)) {
492bb6de 5354 bio_get(bio);
21adbd5c 5355 btrfsic_submit_bio(rw, bio);
492bb6de 5356 bio_put(bio);
143bede5 5357 return;
8b712842
CM
5358 }
5359
5360 /*
0986fe9e 5361 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5362 * higher layers. Otherwise, the async bio makes it appear we have
5363 * made progress against dirty pages when we've really just put it
5364 * on a queue for later
5365 */
0986fe9e 5366 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5367 WARN_ON(bio->bi_next);
8b712842
CM
5368 bio->bi_next = NULL;
5369 bio->bi_rw |= rw;
5370
5371 spin_lock(&device->io_lock);
7b6d91da 5372 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5373 pending_bios = &device->pending_sync_bios;
5374 else
5375 pending_bios = &device->pending_bios;
8b712842 5376
ffbd517d
CM
5377 if (pending_bios->tail)
5378 pending_bios->tail->bi_next = bio;
8b712842 5379
ffbd517d
CM
5380 pending_bios->tail = bio;
5381 if (!pending_bios->head)
5382 pending_bios->head = bio;
8b712842
CM
5383 if (device->running_pending)
5384 should_queue = 0;
5385
5386 spin_unlock(&device->io_lock);
5387
5388 if (should_queue)
1cc127b5
CM
5389 btrfs_queue_worker(&root->fs_info->submit_workers,
5390 &device->work);
8b712842
CM
5391}
5392
de1ee92a
JB
5393static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5394 sector_t sector)
5395{
5396 struct bio_vec *prev;
5397 struct request_queue *q = bdev_get_queue(bdev);
5398 unsigned short max_sectors = queue_max_sectors(q);
5399 struct bvec_merge_data bvm = {
5400 .bi_bdev = bdev,
5401 .bi_sector = sector,
5402 .bi_rw = bio->bi_rw,
5403 };
5404
5405 if (bio->bi_vcnt == 0) {
5406 WARN_ON(1);
5407 return 1;
5408 }
5409
5410 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
aa8b57aa 5411 if (bio_sectors(bio) > max_sectors)
de1ee92a
JB
5412 return 0;
5413
5414 if (!q->merge_bvec_fn)
5415 return 1;
5416
5417 bvm.bi_size = bio->bi_size - prev->bv_len;
5418 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5419 return 0;
5420 return 1;
5421}
5422
5423static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5424 struct bio *bio, u64 physical, int dev_nr,
5425 int rw, int async)
5426{
5427 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5428
5429 bio->bi_private = bbio;
9be3395b 5430 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a
JB
5431 bio->bi_end_io = btrfs_end_bio;
5432 bio->bi_sector = physical >> 9;
5433#ifdef DEBUG
5434 {
5435 struct rcu_string *name;
5436
5437 rcu_read_lock();
5438 name = rcu_dereference(dev->name);
d1423248 5439 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a
JB
5440 "(%s id %llu), size=%u\n", rw,
5441 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5442 name->str, dev->devid, bio->bi_size);
5443 rcu_read_unlock();
5444 }
5445#endif
5446 bio->bi_bdev = dev->bdev;
5447 if (async)
53b381b3 5448 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5449 else
5450 btrfsic_submit_bio(rw, bio);
5451}
5452
5453static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5454 struct bio *first_bio, struct btrfs_device *dev,
5455 int dev_nr, int rw, int async)
5456{
5457 struct bio_vec *bvec = first_bio->bi_io_vec;
5458 struct bio *bio;
5459 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5460 u64 physical = bbio->stripes[dev_nr].physical;
5461
5462again:
5463 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5464 if (!bio)
5465 return -ENOMEM;
5466
5467 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5468 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5469 bvec->bv_offset) < bvec->bv_len) {
5470 u64 len = bio->bi_size;
5471
5472 atomic_inc(&bbio->stripes_pending);
5473 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5474 rw, async);
5475 physical += len;
5476 goto again;
5477 }
5478 bvec++;
5479 }
5480
5481 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5482 return 0;
5483}
5484
5485static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5486{
5487 atomic_inc(&bbio->error);
5488 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5489 bio->bi_private = bbio->private;
5490 bio->bi_end_io = bbio->end_io;
9be3395b 5491 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
de1ee92a
JB
5492 bio->bi_sector = logical >> 9;
5493 kfree(bbio);
5494 bio_endio(bio, -EIO);
5495 }
5496}
5497
f188591e 5498int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5499 int mirror_num, int async_submit)
0b86a832 5500{
0b86a832 5501 struct btrfs_device *dev;
8790d502 5502 struct bio *first_bio = bio;
a62b9401 5503 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
5504 u64 length = 0;
5505 u64 map_length;
53b381b3 5506 u64 *raid_map = NULL;
0b86a832 5507 int ret;
8790d502
CM
5508 int dev_nr = 0;
5509 int total_devs = 1;
a1d3c478 5510 struct btrfs_bio *bbio = NULL;
0b86a832 5511
f2d8d74d 5512 length = bio->bi_size;
0b86a832 5513 map_length = length;
cea9e445 5514
53b381b3
DW
5515 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5516 mirror_num, &raid_map);
5517 if (ret) /* -ENOMEM */
79787eaa 5518 return ret;
cea9e445 5519
a1d3c478 5520 total_devs = bbio->num_stripes;
53b381b3
DW
5521 bbio->orig_bio = first_bio;
5522 bbio->private = first_bio->bi_private;
5523 bbio->end_io = first_bio->bi_end_io;
5524 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5525
5526 if (raid_map) {
5527 /* In this case, map_length has been set to the length of
5528 a single stripe; not the whole write */
5529 if (rw & WRITE) {
5530 return raid56_parity_write(root, bio, bbio,
5531 raid_map, map_length);
5532 } else {
5533 return raid56_parity_recover(root, bio, bbio,
5534 raid_map, map_length,
5535 mirror_num);
5536 }
5537 }
5538
cea9e445 5539 if (map_length < length) {
c2cf52eb 5540 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 5541 logical, length, map_length);
cea9e445
CM
5542 BUG();
5543 }
a1d3c478 5544
d397712b 5545 while (dev_nr < total_devs) {
de1ee92a
JB
5546 dev = bbio->stripes[dev_nr].dev;
5547 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5548 bbio_error(bbio, first_bio, logical);
5549 dev_nr++;
5550 continue;
5551 }
5552
5553 /*
5554 * Check and see if we're ok with this bio based on it's size
5555 * and offset with the given device.
5556 */
5557 if (!bio_size_ok(dev->bdev, first_bio,
5558 bbio->stripes[dev_nr].physical >> 9)) {
5559 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5560 dev_nr, rw, async_submit);
5561 BUG_ON(ret);
5562 dev_nr++;
5563 continue;
5564 }
5565
a1d3c478 5566 if (dev_nr < total_devs - 1) {
9be3395b 5567 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 5568 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
5569 } else {
5570 bio = first_bio;
8790d502 5571 }
de1ee92a
JB
5572
5573 submit_stripe_bio(root, bbio, bio,
5574 bbio->stripes[dev_nr].physical, dev_nr, rw,
5575 async_submit);
8790d502
CM
5576 dev_nr++;
5577 }
0b86a832
CM
5578 return 0;
5579}
5580
aa1b8cd4 5581struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 5582 u8 *uuid, u8 *fsid)
0b86a832 5583{
2b82032c
YZ
5584 struct btrfs_device *device;
5585 struct btrfs_fs_devices *cur_devices;
5586
aa1b8cd4 5587 cur_devices = fs_info->fs_devices;
2b82032c
YZ
5588 while (cur_devices) {
5589 if (!fsid ||
5590 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5591 device = __find_device(&cur_devices->devices,
5592 devid, uuid);
5593 if (device)
5594 return device;
5595 }
5596 cur_devices = cur_devices->seed;
5597 }
5598 return NULL;
0b86a832
CM
5599}
5600
dfe25020
CM
5601static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5602 u64 devid, u8 *dev_uuid)
5603{
5604 struct btrfs_device *device;
5605 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5606
12bd2fc0
ID
5607 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5608 if (IS_ERR(device))
7cbd8a83 5609 return NULL;
12bd2fc0
ID
5610
5611 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 5612 device->fs_devices = fs_devices;
dfe25020 5613 fs_devices->num_devices++;
12bd2fc0
ID
5614
5615 device->missing = 1;
cd02dca5 5616 fs_devices->missing_devices++;
12bd2fc0 5617
dfe25020
CM
5618 return device;
5619}
5620
12bd2fc0
ID
5621/**
5622 * btrfs_alloc_device - allocate struct btrfs_device
5623 * @fs_info: used only for generating a new devid, can be NULL if
5624 * devid is provided (i.e. @devid != NULL).
5625 * @devid: a pointer to devid for this device. If NULL a new devid
5626 * is generated.
5627 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5628 * is generated.
5629 *
5630 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5631 * on error. Returned struct is not linked onto any lists and can be
5632 * destroyed with kfree() right away.
5633 */
5634struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5635 const u64 *devid,
5636 const u8 *uuid)
5637{
5638 struct btrfs_device *dev;
5639 u64 tmp;
5640
5641 if (!devid && !fs_info) {
5642 WARN_ON(1);
5643 return ERR_PTR(-EINVAL);
5644 }
5645
5646 dev = __alloc_device();
5647 if (IS_ERR(dev))
5648 return dev;
5649
5650 if (devid)
5651 tmp = *devid;
5652 else {
5653 int ret;
5654
5655 ret = find_next_devid(fs_info, &tmp);
5656 if (ret) {
5657 kfree(dev);
5658 return ERR_PTR(ret);
5659 }
5660 }
5661 dev->devid = tmp;
5662
5663 if (uuid)
5664 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5665 else
5666 generate_random_uuid(dev->uuid);
5667
5668 dev->work.func = pending_bios_fn;
5669
5670 return dev;
5671}
5672
0b86a832
CM
5673static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5674 struct extent_buffer *leaf,
5675 struct btrfs_chunk *chunk)
5676{
5677 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5678 struct map_lookup *map;
5679 struct extent_map *em;
5680 u64 logical;
5681 u64 length;
5682 u64 devid;
a443755f 5683 u8 uuid[BTRFS_UUID_SIZE];
593060d7 5684 int num_stripes;
0b86a832 5685 int ret;
593060d7 5686 int i;
0b86a832 5687
e17cade2
CM
5688 logical = key->offset;
5689 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 5690
890871be 5691 read_lock(&map_tree->map_tree.lock);
0b86a832 5692 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 5693 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
5694
5695 /* already mapped? */
5696 if (em && em->start <= logical && em->start + em->len > logical) {
5697 free_extent_map(em);
0b86a832
CM
5698 return 0;
5699 } else if (em) {
5700 free_extent_map(em);
5701 }
0b86a832 5702
172ddd60 5703 em = alloc_extent_map();
0b86a832
CM
5704 if (!em)
5705 return -ENOMEM;
593060d7
CM
5706 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5707 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
5708 if (!map) {
5709 free_extent_map(em);
5710 return -ENOMEM;
5711 }
5712
5713 em->bdev = (struct block_device *)map;
5714 em->start = logical;
5715 em->len = length;
70c8a91c 5716 em->orig_start = 0;
0b86a832 5717 em->block_start = 0;
c8b97818 5718 em->block_len = em->len;
0b86a832 5719
593060d7
CM
5720 map->num_stripes = num_stripes;
5721 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5722 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5723 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5724 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5725 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 5726 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
5727 for (i = 0; i < num_stripes; i++) {
5728 map->stripes[i].physical =
5729 btrfs_stripe_offset_nr(leaf, chunk, i);
5730 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
5731 read_extent_buffer(leaf, uuid, (unsigned long)
5732 btrfs_stripe_dev_uuid_nr(chunk, i),
5733 BTRFS_UUID_SIZE);
aa1b8cd4
SB
5734 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5735 uuid, NULL);
dfe25020 5736 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
5737 kfree(map);
5738 free_extent_map(em);
5739 return -EIO;
5740 }
dfe25020
CM
5741 if (!map->stripes[i].dev) {
5742 map->stripes[i].dev =
5743 add_missing_dev(root, devid, uuid);
5744 if (!map->stripes[i].dev) {
5745 kfree(map);
5746 free_extent_map(em);
5747 return -EIO;
5748 }
5749 }
5750 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
5751 }
5752
890871be 5753 write_lock(&map_tree->map_tree.lock);
09a2a8f9 5754 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 5755 write_unlock(&map_tree->map_tree.lock);
79787eaa 5756 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
5757 free_extent_map(em);
5758
5759 return 0;
5760}
5761
143bede5 5762static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
5763 struct btrfs_dev_item *dev_item,
5764 struct btrfs_device *device)
5765{
5766 unsigned long ptr;
0b86a832
CM
5767
5768 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
5769 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5770 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
5771 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5772 device->type = btrfs_device_type(leaf, dev_item);
5773 device->io_align = btrfs_device_io_align(leaf, dev_item);
5774 device->io_width = btrfs_device_io_width(leaf, dev_item);
5775 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 5776 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 5777 device->is_tgtdev_for_dev_replace = 0;
0b86a832 5778
410ba3a2 5779 ptr = btrfs_device_uuid(dev_item);
e17cade2 5780 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
5781}
5782
2b82032c
YZ
5783static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5784{
5785 struct btrfs_fs_devices *fs_devices;
5786 int ret;
5787
b367e47f 5788 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
5789
5790 fs_devices = root->fs_info->fs_devices->seed;
5791 while (fs_devices) {
5792 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5793 ret = 0;
5794 goto out;
5795 }
5796 fs_devices = fs_devices->seed;
5797 }
5798
5799 fs_devices = find_fsid(fsid);
5800 if (!fs_devices) {
5801 ret = -ENOENT;
5802 goto out;
5803 }
e4404d6e
YZ
5804
5805 fs_devices = clone_fs_devices(fs_devices);
5806 if (IS_ERR(fs_devices)) {
5807 ret = PTR_ERR(fs_devices);
2b82032c
YZ
5808 goto out;
5809 }
5810
97288f2c 5811 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 5812 root->fs_info->bdev_holder);
48d28232
JL
5813 if (ret) {
5814 free_fs_devices(fs_devices);
2b82032c 5815 goto out;
48d28232 5816 }
2b82032c
YZ
5817
5818 if (!fs_devices->seeding) {
5819 __btrfs_close_devices(fs_devices);
e4404d6e 5820 free_fs_devices(fs_devices);
2b82032c
YZ
5821 ret = -EINVAL;
5822 goto out;
5823 }
5824
5825 fs_devices->seed = root->fs_info->fs_devices->seed;
5826 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 5827out:
2b82032c
YZ
5828 return ret;
5829}
5830
0d81ba5d 5831static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
5832 struct extent_buffer *leaf,
5833 struct btrfs_dev_item *dev_item)
5834{
5835 struct btrfs_device *device;
5836 u64 devid;
5837 int ret;
2b82032c 5838 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
5839 u8 dev_uuid[BTRFS_UUID_SIZE];
5840
0b86a832 5841 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 5842 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 5843 BTRFS_UUID_SIZE);
1473b24e 5844 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
5845 BTRFS_UUID_SIZE);
5846
5847 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5848 ret = open_seed_devices(root, fs_uuid);
e4404d6e 5849 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 5850 return ret;
2b82032c
YZ
5851 }
5852
aa1b8cd4 5853 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
2b82032c 5854 if (!device || !device->bdev) {
e4404d6e 5855 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
5856 return -EIO;
5857
5858 if (!device) {
c1c9ff7c 5859 btrfs_warn(root->fs_info, "devid %llu missing", devid);
2b82032c
YZ
5860 device = add_missing_dev(root, devid, dev_uuid);
5861 if (!device)
5862 return -ENOMEM;
cd02dca5
CM
5863 } else if (!device->missing) {
5864 /*
5865 * this happens when a device that was properly setup
5866 * in the device info lists suddenly goes bad.
5867 * device->bdev is NULL, and so we have to set
5868 * device->missing to one here
5869 */
5870 root->fs_info->fs_devices->missing_devices++;
5871 device->missing = 1;
2b82032c
YZ
5872 }
5873 }
5874
5875 if (device->fs_devices != root->fs_info->fs_devices) {
5876 BUG_ON(device->writeable);
5877 if (device->generation !=
5878 btrfs_device_generation(leaf, dev_item))
5879 return -EINVAL;
6324fbf3 5880 }
0b86a832
CM
5881
5882 fill_device_from_item(leaf, dev_item, device);
dfe25020 5883 device->in_fs_metadata = 1;
63a212ab 5884 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 5885 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
5886 spin_lock(&root->fs_info->free_chunk_lock);
5887 root->fs_info->free_chunk_space += device->total_bytes -
5888 device->bytes_used;
5889 spin_unlock(&root->fs_info->free_chunk_lock);
5890 }
0b86a832 5891 ret = 0;
0b86a832
CM
5892 return ret;
5893}
5894
e4404d6e 5895int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 5896{
6c41761f 5897 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 5898 struct extent_buffer *sb;
0b86a832 5899 struct btrfs_disk_key *disk_key;
0b86a832 5900 struct btrfs_chunk *chunk;
84eed90f
CM
5901 u8 *ptr;
5902 unsigned long sb_ptr;
5903 int ret = 0;
0b86a832
CM
5904 u32 num_stripes;
5905 u32 array_size;
5906 u32 len = 0;
0b86a832 5907 u32 cur;
84eed90f 5908 struct btrfs_key key;
0b86a832 5909
e4404d6e 5910 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
5911 BTRFS_SUPER_INFO_SIZE);
5912 if (!sb)
5913 return -ENOMEM;
5914 btrfs_set_buffer_uptodate(sb);
85d4e461 5915 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
5916 /*
5917 * The sb extent buffer is artifical and just used to read the system array.
5918 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5919 * pages up-to-date when the page is larger: extent does not cover the
5920 * whole page and consequently check_page_uptodate does not find all
5921 * the page's extents up-to-date (the hole beyond sb),
5922 * write_extent_buffer then triggers a WARN_ON.
5923 *
5924 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5925 * but sb spans only this function. Add an explicit SetPageUptodate call
5926 * to silence the warning eg. on PowerPC 64.
5927 */
5928 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 5929 SetPageUptodate(sb->pages[0]);
4008c04a 5930
a061fc8d 5931 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
5932 array_size = btrfs_super_sys_array_size(super_copy);
5933
0b86a832
CM
5934 ptr = super_copy->sys_chunk_array;
5935 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5936 cur = 0;
5937
5938 while (cur < array_size) {
5939 disk_key = (struct btrfs_disk_key *)ptr;
5940 btrfs_disk_key_to_cpu(&key, disk_key);
5941
a061fc8d 5942 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
5943 sb_ptr += len;
5944 cur += len;
5945
0d81ba5d 5946 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 5947 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 5948 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
5949 if (ret)
5950 break;
0b86a832
CM
5951 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5952 len = btrfs_chunk_item_size(num_stripes);
5953 } else {
84eed90f
CM
5954 ret = -EIO;
5955 break;
0b86a832
CM
5956 }
5957 ptr += len;
5958 sb_ptr += len;
5959 cur += len;
5960 }
a061fc8d 5961 free_extent_buffer(sb);
84eed90f 5962 return ret;
0b86a832
CM
5963}
5964
5965int btrfs_read_chunk_tree(struct btrfs_root *root)
5966{
5967 struct btrfs_path *path;
5968 struct extent_buffer *leaf;
5969 struct btrfs_key key;
5970 struct btrfs_key found_key;
5971 int ret;
5972 int slot;
5973
5974 root = root->fs_info->chunk_root;
5975
5976 path = btrfs_alloc_path();
5977 if (!path)
5978 return -ENOMEM;
5979
b367e47f
LZ
5980 mutex_lock(&uuid_mutex);
5981 lock_chunks(root);
5982
395927a9
FDBM
5983 /*
5984 * Read all device items, and then all the chunk items. All
5985 * device items are found before any chunk item (their object id
5986 * is smaller than the lowest possible object id for a chunk
5987 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
5988 */
5989 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
5990 key.offset = 0;
5991 key.type = 0;
0b86a832 5992 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
5993 if (ret < 0)
5994 goto error;
d397712b 5995 while (1) {
0b86a832
CM
5996 leaf = path->nodes[0];
5997 slot = path->slots[0];
5998 if (slot >= btrfs_header_nritems(leaf)) {
5999 ret = btrfs_next_leaf(root, path);
6000 if (ret == 0)
6001 continue;
6002 if (ret < 0)
6003 goto error;
6004 break;
6005 }
6006 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6007 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6008 struct btrfs_dev_item *dev_item;
6009 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6010 struct btrfs_dev_item);
395927a9
FDBM
6011 ret = read_one_dev(root, leaf, dev_item);
6012 if (ret)
6013 goto error;
0b86a832
CM
6014 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6015 struct btrfs_chunk *chunk;
6016 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6017 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6018 if (ret)
6019 goto error;
0b86a832
CM
6020 }
6021 path->slots[0]++;
6022 }
0b86a832
CM
6023 ret = 0;
6024error:
b367e47f
LZ
6025 unlock_chunks(root);
6026 mutex_unlock(&uuid_mutex);
6027
2b82032c 6028 btrfs_free_path(path);
0b86a832
CM
6029 return ret;
6030}
442a4f63 6031
cb517eab
MX
6032void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6033{
6034 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6035 struct btrfs_device *device;
6036
6037 mutex_lock(&fs_devices->device_list_mutex);
6038 list_for_each_entry(device, &fs_devices->devices, dev_list)
6039 device->dev_root = fs_info->dev_root;
6040 mutex_unlock(&fs_devices->device_list_mutex);
6041}
6042
733f4fbb
SB
6043static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6044{
6045 int i;
6046
6047 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6048 btrfs_dev_stat_reset(dev, i);
6049}
6050
6051int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6052{
6053 struct btrfs_key key;
6054 struct btrfs_key found_key;
6055 struct btrfs_root *dev_root = fs_info->dev_root;
6056 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6057 struct extent_buffer *eb;
6058 int slot;
6059 int ret = 0;
6060 struct btrfs_device *device;
6061 struct btrfs_path *path = NULL;
6062 int i;
6063
6064 path = btrfs_alloc_path();
6065 if (!path) {
6066 ret = -ENOMEM;
6067 goto out;
6068 }
6069
6070 mutex_lock(&fs_devices->device_list_mutex);
6071 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6072 int item_size;
6073 struct btrfs_dev_stats_item *ptr;
6074
6075 key.objectid = 0;
6076 key.type = BTRFS_DEV_STATS_KEY;
6077 key.offset = device->devid;
6078 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6079 if (ret) {
733f4fbb
SB
6080 __btrfs_reset_dev_stats(device);
6081 device->dev_stats_valid = 1;
6082 btrfs_release_path(path);
6083 continue;
6084 }
6085 slot = path->slots[0];
6086 eb = path->nodes[0];
6087 btrfs_item_key_to_cpu(eb, &found_key, slot);
6088 item_size = btrfs_item_size_nr(eb, slot);
6089
6090 ptr = btrfs_item_ptr(eb, slot,
6091 struct btrfs_dev_stats_item);
6092
6093 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6094 if (item_size >= (1 + i) * sizeof(__le64))
6095 btrfs_dev_stat_set(device, i,
6096 btrfs_dev_stats_value(eb, ptr, i));
6097 else
6098 btrfs_dev_stat_reset(device, i);
6099 }
6100
6101 device->dev_stats_valid = 1;
6102 btrfs_dev_stat_print_on_load(device);
6103 btrfs_release_path(path);
6104 }
6105 mutex_unlock(&fs_devices->device_list_mutex);
6106
6107out:
6108 btrfs_free_path(path);
6109 return ret < 0 ? ret : 0;
6110}
6111
6112static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6113 struct btrfs_root *dev_root,
6114 struct btrfs_device *device)
6115{
6116 struct btrfs_path *path;
6117 struct btrfs_key key;
6118 struct extent_buffer *eb;
6119 struct btrfs_dev_stats_item *ptr;
6120 int ret;
6121 int i;
6122
6123 key.objectid = 0;
6124 key.type = BTRFS_DEV_STATS_KEY;
6125 key.offset = device->devid;
6126
6127 path = btrfs_alloc_path();
6128 BUG_ON(!path);
6129 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6130 if (ret < 0) {
606686ee
JB
6131 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
6132 ret, rcu_str_deref(device->name));
733f4fbb
SB
6133 goto out;
6134 }
6135
6136 if (ret == 0 &&
6137 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6138 /* need to delete old one and insert a new one */
6139 ret = btrfs_del_item(trans, dev_root, path);
6140 if (ret != 0) {
606686ee
JB
6141 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
6142 rcu_str_deref(device->name), ret);
733f4fbb
SB
6143 goto out;
6144 }
6145 ret = 1;
6146 }
6147
6148 if (ret == 1) {
6149 /* need to insert a new item */
6150 btrfs_release_path(path);
6151 ret = btrfs_insert_empty_item(trans, dev_root, path,
6152 &key, sizeof(*ptr));
6153 if (ret < 0) {
606686ee
JB
6154 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
6155 rcu_str_deref(device->name), ret);
733f4fbb
SB
6156 goto out;
6157 }
6158 }
6159
6160 eb = path->nodes[0];
6161 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6162 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6163 btrfs_set_dev_stats_value(eb, ptr, i,
6164 btrfs_dev_stat_read(device, i));
6165 btrfs_mark_buffer_dirty(eb);
6166
6167out:
6168 btrfs_free_path(path);
6169 return ret;
6170}
6171
6172/*
6173 * called from commit_transaction. Writes all changed device stats to disk.
6174 */
6175int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6176 struct btrfs_fs_info *fs_info)
6177{
6178 struct btrfs_root *dev_root = fs_info->dev_root;
6179 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6180 struct btrfs_device *device;
6181 int ret = 0;
6182
6183 mutex_lock(&fs_devices->device_list_mutex);
6184 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6185 if (!device->dev_stats_valid || !device->dev_stats_dirty)
6186 continue;
6187
6188 ret = update_dev_stat_item(trans, dev_root, device);
6189 if (!ret)
6190 device->dev_stats_dirty = 0;
6191 }
6192 mutex_unlock(&fs_devices->device_list_mutex);
6193
6194 return ret;
6195}
6196
442a4f63
SB
6197void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6198{
6199 btrfs_dev_stat_inc(dev, index);
6200 btrfs_dev_stat_print_on_error(dev);
6201}
6202
48a3b636 6203static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6204{
733f4fbb
SB
6205 if (!dev->dev_stats_valid)
6206 return;
606686ee 6207 printk_ratelimited_in_rcu(KERN_ERR
442a4f63 6208 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6209 rcu_str_deref(dev->name),
442a4f63
SB
6210 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6211 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6212 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6213 btrfs_dev_stat_read(dev,
6214 BTRFS_DEV_STAT_CORRUPTION_ERRS),
6215 btrfs_dev_stat_read(dev,
6216 BTRFS_DEV_STAT_GENERATION_ERRS));
6217}
c11d2c23 6218
733f4fbb
SB
6219static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6220{
a98cdb85
SB
6221 int i;
6222
6223 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6224 if (btrfs_dev_stat_read(dev, i) != 0)
6225 break;
6226 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6227 return; /* all values == 0, suppress message */
6228
606686ee
JB
6229 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6230 rcu_str_deref(dev->name),
733f4fbb
SB
6231 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6232 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6233 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6234 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6235 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6236}
6237
c11d2c23 6238int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6239 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6240{
6241 struct btrfs_device *dev;
6242 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6243 int i;
6244
6245 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6246 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6247 mutex_unlock(&fs_devices->device_list_mutex);
6248
6249 if (!dev) {
6250 printk(KERN_WARNING
6251 "btrfs: get dev_stats failed, device not found\n");
6252 return -ENODEV;
733f4fbb
SB
6253 } else if (!dev->dev_stats_valid) {
6254 printk(KERN_WARNING
6255 "btrfs: get dev_stats failed, not yet valid\n");
6256 return -ENODEV;
b27f7c0c 6257 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6258 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6259 if (stats->nr_items > i)
6260 stats->values[i] =
6261 btrfs_dev_stat_read_and_reset(dev, i);
6262 else
6263 btrfs_dev_stat_reset(dev, i);
6264 }
6265 } else {
6266 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6267 if (stats->nr_items > i)
6268 stats->values[i] = btrfs_dev_stat_read(dev, i);
6269 }
6270 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6271 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6272 return 0;
6273}
a8a6dab7
SB
6274
6275int btrfs_scratch_superblock(struct btrfs_device *device)
6276{
6277 struct buffer_head *bh;
6278 struct btrfs_super_block *disk_super;
6279
6280 bh = btrfs_read_dev_super(device->bdev);
6281 if (!bh)
6282 return -EINVAL;
6283 disk_super = (struct btrfs_super_block *)bh->b_data;
6284
6285 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6286 set_buffer_dirty(bh);
6287 sync_dirty_buffer(bh);
6288 brelse(bh);
6289
6290 return 0;
6291}