Btrfs: Update clone file ioctl
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
8a4b83cc 20#include <linux/buffer_head.h>
f2d8d74d 21#include <linux/blkdev.h>
788f20eb 22#include <linux/random.h>
593060d7 23#include <asm/div64.h>
0b86a832
CM
24#include "ctree.h"
25#include "extent_map.h"
26#include "disk-io.h"
27#include "transaction.h"
28#include "print-tree.h"
29#include "volumes.h"
8b712842 30#include "async-thread.h"
0b86a832 31
593060d7
CM
32struct map_lookup {
33 u64 type;
34 int io_align;
35 int io_width;
36 int stripe_len;
37 int sector_size;
38 int num_stripes;
321aecc6 39 int sub_stripes;
cea9e445 40 struct btrfs_bio_stripe stripes[];
593060d7
CM
41};
42
43#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 44 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 45
8a4b83cc
CM
46static DEFINE_MUTEX(uuid_mutex);
47static LIST_HEAD(fs_uuids);
48
a061fc8d
CM
49void btrfs_lock_volumes(void)
50{
51 mutex_lock(&uuid_mutex);
52}
53
54void btrfs_unlock_volumes(void)
55{
56 mutex_unlock(&uuid_mutex);
57}
58
7d9eb12c
CM
59static void lock_chunks(struct btrfs_root *root)
60{
61 mutex_lock(&root->fs_info->alloc_mutex);
62 mutex_lock(&root->fs_info->chunk_mutex);
63}
64
65static void unlock_chunks(struct btrfs_root *root)
66{
67 mutex_unlock(&root->fs_info->alloc_mutex);
68 mutex_unlock(&root->fs_info->chunk_mutex);
69}
70
8a4b83cc
CM
71int btrfs_cleanup_fs_uuids(void)
72{
73 struct btrfs_fs_devices *fs_devices;
74 struct list_head *uuid_cur;
75 struct list_head *devices_cur;
76 struct btrfs_device *dev;
77
78 list_for_each(uuid_cur, &fs_uuids) {
79 fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
80 list);
81 while(!list_empty(&fs_devices->devices)) {
82 devices_cur = fs_devices->devices.next;
83 dev = list_entry(devices_cur, struct btrfs_device,
84 dev_list);
8a4b83cc 85 if (dev->bdev) {
8a4b83cc 86 close_bdev_excl(dev->bdev);
a0af469b 87 fs_devices->open_devices--;
8a4b83cc
CM
88 }
89 list_del(&dev->dev_list);
dfe25020 90 kfree(dev->name);
8a4b83cc
CM
91 kfree(dev);
92 }
93 }
94 return 0;
95}
96
a443755f
CM
97static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
98 u8 *uuid)
8a4b83cc
CM
99{
100 struct btrfs_device *dev;
101 struct list_head *cur;
102
103 list_for_each(cur, head) {
104 dev = list_entry(cur, struct btrfs_device, dev_list);
a443755f 105 if (dev->devid == devid &&
8f18cf13 106 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 107 return dev;
a443755f 108 }
8a4b83cc
CM
109 }
110 return NULL;
111}
112
113static struct btrfs_fs_devices *find_fsid(u8 *fsid)
114{
115 struct list_head *cur;
116 struct btrfs_fs_devices *fs_devices;
117
118 list_for_each(cur, &fs_uuids) {
119 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
120 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
121 return fs_devices;
122 }
123 return NULL;
124}
125
8b712842
CM
126/*
127 * we try to collect pending bios for a device so we don't get a large
128 * number of procs sending bios down to the same device. This greatly
129 * improves the schedulers ability to collect and merge the bios.
130 *
131 * But, it also turns into a long list of bios to process and that is sure
132 * to eventually make the worker thread block. The solution here is to
133 * make some progress and then put this work struct back at the end of
134 * the list if the block device is congested. This way, multiple devices
135 * can make progress from a single worker thread.
136 */
137int run_scheduled_bios(struct btrfs_device *device)
138{
139 struct bio *pending;
140 struct backing_dev_info *bdi;
141 struct bio *tail;
142 struct bio *cur;
143 int again = 0;
144 unsigned long num_run = 0;
145
146 bdi = device->bdev->bd_inode->i_mapping->backing_dev_info;
147loop:
148 spin_lock(&device->io_lock);
149
150 /* take all the bios off the list at once and process them
151 * later on (without the lock held). But, remember the
152 * tail and other pointers so the bios can be properly reinserted
153 * into the list if we hit congestion
154 */
155 pending = device->pending_bios;
156 tail = device->pending_bio_tail;
157 WARN_ON(pending && !tail);
158 device->pending_bios = NULL;
159 device->pending_bio_tail = NULL;
160
161 /*
162 * if pending was null this time around, no bios need processing
163 * at all and we can stop. Otherwise it'll loop back up again
164 * and do an additional check so no bios are missed.
165 *
166 * device->running_pending is used to synchronize with the
167 * schedule_bio code.
168 */
169 if (pending) {
170 again = 1;
171 device->running_pending = 1;
172 } else {
173 again = 0;
174 device->running_pending = 0;
175 }
176 spin_unlock(&device->io_lock);
177
178 while(pending) {
179 cur = pending;
180 pending = pending->bi_next;
181 cur->bi_next = NULL;
182 atomic_dec(&device->dev_root->fs_info->nr_async_submits);
492bb6de
CM
183
184 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
185 bio_get(cur);
8b712842 186 submit_bio(cur->bi_rw, cur);
492bb6de 187 bio_put(cur);
8b712842
CM
188 num_run++;
189
190 /*
191 * we made progress, there is more work to do and the bdi
192 * is now congested. Back off and let other work structs
193 * run instead
194 */
492bb6de 195 if (pending && bdi_write_congested(bdi)) {
8b712842
CM
196 struct bio *old_head;
197
198 spin_lock(&device->io_lock);
492bb6de 199
8b712842
CM
200 old_head = device->pending_bios;
201 device->pending_bios = pending;
202 if (device->pending_bio_tail)
203 tail->bi_next = old_head;
204 else
205 device->pending_bio_tail = tail;
206
207 spin_unlock(&device->io_lock);
208 btrfs_requeue_work(&device->work);
209 goto done;
210 }
211 }
212 if (again)
213 goto loop;
214done:
215 return 0;
216}
217
218void pending_bios_fn(struct btrfs_work *work)
219{
220 struct btrfs_device *device;
221
222 device = container_of(work, struct btrfs_device, work);
223 run_scheduled_bios(device);
224}
225
8a4b83cc
CM
226static int device_list_add(const char *path,
227 struct btrfs_super_block *disk_super,
228 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
229{
230 struct btrfs_device *device;
231 struct btrfs_fs_devices *fs_devices;
232 u64 found_transid = btrfs_super_generation(disk_super);
233
234 fs_devices = find_fsid(disk_super->fsid);
235 if (!fs_devices) {
515dc322 236 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
237 if (!fs_devices)
238 return -ENOMEM;
239 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 240 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
241 list_add(&fs_devices->list, &fs_uuids);
242 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
243 fs_devices->latest_devid = devid;
244 fs_devices->latest_trans = found_transid;
8a4b83cc
CM
245 device = NULL;
246 } else {
a443755f
CM
247 device = __find_device(&fs_devices->devices, devid,
248 disk_super->dev_item.uuid);
8a4b83cc
CM
249 }
250 if (!device) {
251 device = kzalloc(sizeof(*device), GFP_NOFS);
252 if (!device) {
253 /* we can safely leave the fs_devices entry around */
254 return -ENOMEM;
255 }
256 device->devid = devid;
8b712842 257 device->work.func = pending_bios_fn;
a443755f
CM
258 memcpy(device->uuid, disk_super->dev_item.uuid,
259 BTRFS_UUID_SIZE);
f2984462 260 device->barriers = 1;
b248a415 261 spin_lock_init(&device->io_lock);
8a4b83cc
CM
262 device->name = kstrdup(path, GFP_NOFS);
263 if (!device->name) {
264 kfree(device);
265 return -ENOMEM;
266 }
267 list_add(&device->dev_list, &fs_devices->devices);
b3075717 268 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
8a4b83cc
CM
269 fs_devices->num_devices++;
270 }
271
272 if (found_transid > fs_devices->latest_trans) {
273 fs_devices->latest_devid = devid;
274 fs_devices->latest_trans = found_transid;
275 }
8a4b83cc
CM
276 *fs_devices_ret = fs_devices;
277 return 0;
278}
279
dfe25020
CM
280int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
281{
282 struct list_head *head = &fs_devices->devices;
283 struct list_head *cur;
284 struct btrfs_device *device;
285
286 mutex_lock(&uuid_mutex);
287again:
288 list_for_each(cur, head) {
289 device = list_entry(cur, struct btrfs_device, dev_list);
290 if (!device->in_fs_metadata) {
a74a4b97 291 struct block_device *bdev;
dfe25020
CM
292 list_del(&device->dev_list);
293 list_del(&device->dev_alloc_list);
294 fs_devices->num_devices--;
a74a4b97
CM
295 if (device->bdev) {
296 bdev = device->bdev;
297 fs_devices->open_devices--;
298 mutex_unlock(&uuid_mutex);
299 close_bdev_excl(bdev);
300 mutex_lock(&uuid_mutex);
301 }
dfe25020
CM
302 kfree(device->name);
303 kfree(device);
304 goto again;
305 }
306 }
307 mutex_unlock(&uuid_mutex);
308 return 0;
309}
a0af469b 310
8a4b83cc
CM
311int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
312{
313 struct list_head *head = &fs_devices->devices;
314 struct list_head *cur;
315 struct btrfs_device *device;
316
317 mutex_lock(&uuid_mutex);
318 list_for_each(cur, head) {
319 device = list_entry(cur, struct btrfs_device, dev_list);
320 if (device->bdev) {
321 close_bdev_excl(device->bdev);
a0af469b 322 fs_devices->open_devices--;
8a4b83cc
CM
323 }
324 device->bdev = NULL;
dfe25020 325 device->in_fs_metadata = 0;
8a4b83cc 326 }
a0af469b 327 fs_devices->mounted = 0;
8a4b83cc
CM
328 mutex_unlock(&uuid_mutex);
329 return 0;
330}
331
332int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
333 int flags, void *holder)
334{
335 struct block_device *bdev;
336 struct list_head *head = &fs_devices->devices;
337 struct list_head *cur;
338 struct btrfs_device *device;
a0af469b
CM
339 struct block_device *latest_bdev = NULL;
340 struct buffer_head *bh;
341 struct btrfs_super_block *disk_super;
342 u64 latest_devid = 0;
343 u64 latest_transid = 0;
344 u64 transid;
345 u64 devid;
346 int ret = 0;
8a4b83cc
CM
347
348 mutex_lock(&uuid_mutex);
a0af469b
CM
349 if (fs_devices->mounted)
350 goto out;
351
8a4b83cc
CM
352 list_for_each(cur, head) {
353 device = list_entry(cur, struct btrfs_device, dev_list);
c1c4d91c
CM
354 if (device->bdev)
355 continue;
356
dfe25020
CM
357 if (!device->name)
358 continue;
359
8a4b83cc 360 bdev = open_bdev_excl(device->name, flags, holder);
e17cade2 361
8a4b83cc
CM
362 if (IS_ERR(bdev)) {
363 printk("open %s failed\n", device->name);
a0af469b 364 goto error;
8a4b83cc 365 }
a061fc8d 366 set_blocksize(bdev, 4096);
a0af469b
CM
367
368 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
369 if (!bh)
370 goto error_close;
371
372 disk_super = (struct btrfs_super_block *)bh->b_data;
373 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
374 sizeof(disk_super->magic)))
375 goto error_brelse;
376
377 devid = le64_to_cpu(disk_super->dev_item.devid);
378 if (devid != device->devid)
379 goto error_brelse;
380
381 transid = btrfs_super_generation(disk_super);
6af5ac3c 382 if (!latest_transid || transid > latest_transid) {
a0af469b
CM
383 latest_devid = devid;
384 latest_transid = transid;
385 latest_bdev = bdev;
386 }
387
8a4b83cc 388 device->bdev = bdev;
dfe25020 389 device->in_fs_metadata = 0;
a0af469b
CM
390 fs_devices->open_devices++;
391 continue;
a061fc8d 392
a0af469b
CM
393error_brelse:
394 brelse(bh);
395error_close:
396 close_bdev_excl(bdev);
397error:
398 continue;
8a4b83cc 399 }
a0af469b
CM
400 if (fs_devices->open_devices == 0) {
401 ret = -EIO;
402 goto out;
403 }
404 fs_devices->mounted = 1;
405 fs_devices->latest_bdev = latest_bdev;
406 fs_devices->latest_devid = latest_devid;
407 fs_devices->latest_trans = latest_transid;
408out:
8a4b83cc 409 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
410 return ret;
411}
412
413int btrfs_scan_one_device(const char *path, int flags, void *holder,
414 struct btrfs_fs_devices **fs_devices_ret)
415{
416 struct btrfs_super_block *disk_super;
417 struct block_device *bdev;
418 struct buffer_head *bh;
419 int ret;
420 u64 devid;
f2984462 421 u64 transid;
8a4b83cc
CM
422
423 mutex_lock(&uuid_mutex);
424
8a4b83cc
CM
425 bdev = open_bdev_excl(path, flags, holder);
426
427 if (IS_ERR(bdev)) {
8a4b83cc
CM
428 ret = PTR_ERR(bdev);
429 goto error;
430 }
431
432 ret = set_blocksize(bdev, 4096);
433 if (ret)
434 goto error_close;
435 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
436 if (!bh) {
437 ret = -EIO;
438 goto error_close;
439 }
440 disk_super = (struct btrfs_super_block *)bh->b_data;
441 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
442 sizeof(disk_super->magic))) {
e58ca020 443 ret = -EINVAL;
8a4b83cc
CM
444 goto error_brelse;
445 }
446 devid = le64_to_cpu(disk_super->dev_item.devid);
f2984462 447 transid = btrfs_super_generation(disk_super);
7ae9c09d
CM
448 if (disk_super->label[0])
449 printk("device label %s ", disk_super->label);
450 else {
451 /* FIXME, make a readl uuid parser */
452 printk("device fsid %llx-%llx ",
453 *(unsigned long long *)disk_super->fsid,
454 *(unsigned long long *)(disk_super->fsid + 8));
455 }
456 printk("devid %Lu transid %Lu %s\n", devid, transid, path);
8a4b83cc
CM
457 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
458
459error_brelse:
460 brelse(bh);
461error_close:
462 close_bdev_excl(bdev);
8a4b83cc
CM
463error:
464 mutex_unlock(&uuid_mutex);
465 return ret;
466}
0b86a832
CM
467
468/*
469 * this uses a pretty simple search, the expectation is that it is
470 * called very infrequently and that a given device has a small number
471 * of extents
472 */
473static int find_free_dev_extent(struct btrfs_trans_handle *trans,
474 struct btrfs_device *device,
475 struct btrfs_path *path,
476 u64 num_bytes, u64 *start)
477{
478 struct btrfs_key key;
479 struct btrfs_root *root = device->dev_root;
480 struct btrfs_dev_extent *dev_extent = NULL;
481 u64 hole_size = 0;
482 u64 last_byte = 0;
483 u64 search_start = 0;
484 u64 search_end = device->total_bytes;
485 int ret;
486 int slot = 0;
487 int start_found;
488 struct extent_buffer *l;
489
490 start_found = 0;
491 path->reada = 2;
492
493 /* FIXME use last free of some kind */
494
8a4b83cc
CM
495 /* we don't want to overwrite the superblock on the drive,
496 * so we make sure to start at an offset of at least 1MB
497 */
498 search_start = max((u64)1024 * 1024, search_start);
8f18cf13
CM
499
500 if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
501 search_start = max(root->fs_info->alloc_start, search_start);
502
0b86a832
CM
503 key.objectid = device->devid;
504 key.offset = search_start;
505 key.type = BTRFS_DEV_EXTENT_KEY;
506 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
507 if (ret < 0)
508 goto error;
509 ret = btrfs_previous_item(root, path, 0, key.type);
510 if (ret < 0)
511 goto error;
512 l = path->nodes[0];
513 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
514 while (1) {
515 l = path->nodes[0];
516 slot = path->slots[0];
517 if (slot >= btrfs_header_nritems(l)) {
518 ret = btrfs_next_leaf(root, path);
519 if (ret == 0)
520 continue;
521 if (ret < 0)
522 goto error;
523no_more_items:
524 if (!start_found) {
525 if (search_start >= search_end) {
526 ret = -ENOSPC;
527 goto error;
528 }
529 *start = search_start;
530 start_found = 1;
531 goto check_pending;
532 }
533 *start = last_byte > search_start ?
534 last_byte : search_start;
535 if (search_end <= *start) {
536 ret = -ENOSPC;
537 goto error;
538 }
539 goto check_pending;
540 }
541 btrfs_item_key_to_cpu(l, &key, slot);
542
543 if (key.objectid < device->devid)
544 goto next;
545
546 if (key.objectid > device->devid)
547 goto no_more_items;
548
549 if (key.offset >= search_start && key.offset > last_byte &&
550 start_found) {
551 if (last_byte < search_start)
552 last_byte = search_start;
553 hole_size = key.offset - last_byte;
554 if (key.offset > last_byte &&
555 hole_size >= num_bytes) {
556 *start = last_byte;
557 goto check_pending;
558 }
559 }
560 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
561 goto next;
562 }
563
564 start_found = 1;
565 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
566 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
567next:
568 path->slots[0]++;
569 cond_resched();
570 }
571check_pending:
572 /* we have to make sure we didn't find an extent that has already
573 * been allocated by the map tree or the original allocation
574 */
575 btrfs_release_path(root, path);
576 BUG_ON(*start < search_start);
577
6324fbf3 578 if (*start + num_bytes > search_end) {
0b86a832
CM
579 ret = -ENOSPC;
580 goto error;
581 }
582 /* check for pending inserts here */
583 return 0;
584
585error:
586 btrfs_release_path(root, path);
587 return ret;
588}
589
8f18cf13
CM
590int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
591 struct btrfs_device *device,
592 u64 start)
593{
594 int ret;
595 struct btrfs_path *path;
596 struct btrfs_root *root = device->dev_root;
597 struct btrfs_key key;
a061fc8d
CM
598 struct btrfs_key found_key;
599 struct extent_buffer *leaf = NULL;
600 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
601
602 path = btrfs_alloc_path();
603 if (!path)
604 return -ENOMEM;
605
606 key.objectid = device->devid;
607 key.offset = start;
608 key.type = BTRFS_DEV_EXTENT_KEY;
609
610 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
611 if (ret > 0) {
612 ret = btrfs_previous_item(root, path, key.objectid,
613 BTRFS_DEV_EXTENT_KEY);
614 BUG_ON(ret);
615 leaf = path->nodes[0];
616 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
617 extent = btrfs_item_ptr(leaf, path->slots[0],
618 struct btrfs_dev_extent);
619 BUG_ON(found_key.offset > start || found_key.offset +
620 btrfs_dev_extent_length(leaf, extent) < start);
621 ret = 0;
622 } else if (ret == 0) {
623 leaf = path->nodes[0];
624 extent = btrfs_item_ptr(leaf, path->slots[0],
625 struct btrfs_dev_extent);
626 }
8f18cf13
CM
627 BUG_ON(ret);
628
dfe25020
CM
629 if (device->bytes_used > 0)
630 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
8f18cf13
CM
631 ret = btrfs_del_item(trans, root, path);
632 BUG_ON(ret);
633
634 btrfs_free_path(path);
635 return ret;
636}
637
0b86a832
CM
638int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
639 struct btrfs_device *device,
e17cade2
CM
640 u64 chunk_tree, u64 chunk_objectid,
641 u64 chunk_offset,
642 u64 num_bytes, u64 *start)
0b86a832
CM
643{
644 int ret;
645 struct btrfs_path *path;
646 struct btrfs_root *root = device->dev_root;
647 struct btrfs_dev_extent *extent;
648 struct extent_buffer *leaf;
649 struct btrfs_key key;
650
dfe25020 651 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
652 path = btrfs_alloc_path();
653 if (!path)
654 return -ENOMEM;
655
656 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
6324fbf3 657 if (ret) {
0b86a832 658 goto err;
6324fbf3 659 }
0b86a832
CM
660
661 key.objectid = device->devid;
662 key.offset = *start;
663 key.type = BTRFS_DEV_EXTENT_KEY;
664 ret = btrfs_insert_empty_item(trans, root, path, &key,
665 sizeof(*extent));
666 BUG_ON(ret);
667
668 leaf = path->nodes[0];
669 extent = btrfs_item_ptr(leaf, path->slots[0],
670 struct btrfs_dev_extent);
e17cade2
CM
671 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
672 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
673 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
674
675 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
676 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
677 BTRFS_UUID_SIZE);
678
0b86a832
CM
679 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
680 btrfs_mark_buffer_dirty(leaf);
681err:
682 btrfs_free_path(path);
683 return ret;
684}
685
e17cade2 686static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
0b86a832
CM
687{
688 struct btrfs_path *path;
689 int ret;
690 struct btrfs_key key;
e17cade2 691 struct btrfs_chunk *chunk;
0b86a832
CM
692 struct btrfs_key found_key;
693
694 path = btrfs_alloc_path();
695 BUG_ON(!path);
696
e17cade2 697 key.objectid = objectid;
0b86a832
CM
698 key.offset = (u64)-1;
699 key.type = BTRFS_CHUNK_ITEM_KEY;
700
701 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
702 if (ret < 0)
703 goto error;
704
705 BUG_ON(ret == 0);
706
707 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
708 if (ret) {
e17cade2 709 *offset = 0;
0b86a832
CM
710 } else {
711 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
712 path->slots[0]);
e17cade2
CM
713 if (found_key.objectid != objectid)
714 *offset = 0;
715 else {
716 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
717 struct btrfs_chunk);
718 *offset = found_key.offset +
719 btrfs_chunk_length(path->nodes[0], chunk);
720 }
0b86a832
CM
721 }
722 ret = 0;
723error:
724 btrfs_free_path(path);
725 return ret;
726}
727
0b86a832
CM
728static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
729 u64 *objectid)
730{
731 int ret;
732 struct btrfs_key key;
733 struct btrfs_key found_key;
734
735 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
736 key.type = BTRFS_DEV_ITEM_KEY;
737 key.offset = (u64)-1;
738
739 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
740 if (ret < 0)
741 goto error;
742
743 BUG_ON(ret == 0);
744
745 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
746 BTRFS_DEV_ITEM_KEY);
747 if (ret) {
748 *objectid = 1;
749 } else {
750 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
751 path->slots[0]);
752 *objectid = found_key.offset + 1;
753 }
754 ret = 0;
755error:
756 btrfs_release_path(root, path);
757 return ret;
758}
759
760/*
761 * the device information is stored in the chunk root
762 * the btrfs_device struct should be fully filled in
763 */
764int btrfs_add_device(struct btrfs_trans_handle *trans,
765 struct btrfs_root *root,
766 struct btrfs_device *device)
767{
768 int ret;
769 struct btrfs_path *path;
770 struct btrfs_dev_item *dev_item;
771 struct extent_buffer *leaf;
772 struct btrfs_key key;
773 unsigned long ptr;
006a58a2 774 u64 free_devid = 0;
0b86a832
CM
775
776 root = root->fs_info->chunk_root;
777
778 path = btrfs_alloc_path();
779 if (!path)
780 return -ENOMEM;
781
782 ret = find_next_devid(root, path, &free_devid);
783 if (ret)
784 goto out;
785
786 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
787 key.type = BTRFS_DEV_ITEM_KEY;
788 key.offset = free_devid;
789
790 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 791 sizeof(*dev_item));
0b86a832
CM
792 if (ret)
793 goto out;
794
795 leaf = path->nodes[0];
796 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
797
8a4b83cc 798 device->devid = free_devid;
0b86a832
CM
799 btrfs_set_device_id(leaf, dev_item, device->devid);
800 btrfs_set_device_type(leaf, dev_item, device->type);
801 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
802 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
803 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
804 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
805 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
806 btrfs_set_device_group(leaf, dev_item, 0);
807 btrfs_set_device_seek_speed(leaf, dev_item, 0);
808 btrfs_set_device_bandwidth(leaf, dev_item, 0);
0b86a832 809
0b86a832 810 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 811 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
812 btrfs_mark_buffer_dirty(leaf);
813 ret = 0;
814
815out:
816 btrfs_free_path(path);
817 return ret;
818}
8f18cf13 819
a061fc8d
CM
820static int btrfs_rm_dev_item(struct btrfs_root *root,
821 struct btrfs_device *device)
822{
823 int ret;
824 struct btrfs_path *path;
825 struct block_device *bdev = device->bdev;
826 struct btrfs_device *next_dev;
827 struct btrfs_key key;
828 u64 total_bytes;
829 struct btrfs_fs_devices *fs_devices;
830 struct btrfs_trans_handle *trans;
831
832 root = root->fs_info->chunk_root;
833
834 path = btrfs_alloc_path();
835 if (!path)
836 return -ENOMEM;
837
838 trans = btrfs_start_transaction(root, 1);
839 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
840 key.type = BTRFS_DEV_ITEM_KEY;
841 key.offset = device->devid;
7d9eb12c 842 lock_chunks(root);
a061fc8d
CM
843
844 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
845 if (ret < 0)
846 goto out;
847
848 if (ret > 0) {
849 ret = -ENOENT;
850 goto out;
851 }
852
853 ret = btrfs_del_item(trans, root, path);
854 if (ret)
855 goto out;
856
857 /*
858 * at this point, the device is zero sized. We want to
859 * remove it from the devices list and zero out the old super
860 */
861 list_del_init(&device->dev_list);
862 list_del_init(&device->dev_alloc_list);
863 fs_devices = root->fs_info->fs_devices;
864
865 next_dev = list_entry(fs_devices->devices.next, struct btrfs_device,
866 dev_list);
a061fc8d
CM
867 if (bdev == root->fs_info->sb->s_bdev)
868 root->fs_info->sb->s_bdev = next_dev->bdev;
869 if (bdev == fs_devices->latest_bdev)
870 fs_devices->latest_bdev = next_dev->bdev;
871
a061fc8d
CM
872 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
873 btrfs_set_super_num_devices(&root->fs_info->super_copy,
874 total_bytes - 1);
875out:
876 btrfs_free_path(path);
7d9eb12c 877 unlock_chunks(root);
a061fc8d
CM
878 btrfs_commit_transaction(trans, root);
879 return ret;
880}
881
882int btrfs_rm_device(struct btrfs_root *root, char *device_path)
883{
884 struct btrfs_device *device;
885 struct block_device *bdev;
dfe25020 886 struct buffer_head *bh = NULL;
a061fc8d
CM
887 struct btrfs_super_block *disk_super;
888 u64 all_avail;
889 u64 devid;
890 int ret = 0;
891
a061fc8d 892 mutex_lock(&uuid_mutex);
7d9eb12c 893 mutex_lock(&root->fs_info->volume_mutex);
a061fc8d
CM
894
895 all_avail = root->fs_info->avail_data_alloc_bits |
896 root->fs_info->avail_system_alloc_bits |
897 root->fs_info->avail_metadata_alloc_bits;
898
899 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
dfe25020 900 btrfs_super_num_devices(&root->fs_info->super_copy) <= 4) {
a061fc8d
CM
901 printk("btrfs: unable to go below four devices on raid10\n");
902 ret = -EINVAL;
903 goto out;
904 }
905
906 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
dfe25020 907 btrfs_super_num_devices(&root->fs_info->super_copy) <= 2) {
a061fc8d
CM
908 printk("btrfs: unable to go below two devices on raid1\n");
909 ret = -EINVAL;
910 goto out;
911 }
912
dfe25020
CM
913 if (strcmp(device_path, "missing") == 0) {
914 struct list_head *cur;
915 struct list_head *devices;
916 struct btrfs_device *tmp;
a061fc8d 917
dfe25020
CM
918 device = NULL;
919 devices = &root->fs_info->fs_devices->devices;
920 list_for_each(cur, devices) {
921 tmp = list_entry(cur, struct btrfs_device, dev_list);
922 if (tmp->in_fs_metadata && !tmp->bdev) {
923 device = tmp;
924 break;
925 }
926 }
927 bdev = NULL;
928 bh = NULL;
929 disk_super = NULL;
930 if (!device) {
931 printk("btrfs: no missing devices found to remove\n");
932 goto out;
933 }
934
935 } else {
936 bdev = open_bdev_excl(device_path, 0,
937 root->fs_info->bdev_holder);
938 if (IS_ERR(bdev)) {
939 ret = PTR_ERR(bdev);
940 goto out;
941 }
a061fc8d 942
dfe25020
CM
943 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
944 if (!bh) {
945 ret = -EIO;
946 goto error_close;
947 }
948 disk_super = (struct btrfs_super_block *)bh->b_data;
949 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
950 sizeof(disk_super->magic))) {
951 ret = -ENOENT;
952 goto error_brelse;
953 }
954 if (memcmp(disk_super->fsid, root->fs_info->fsid,
955 BTRFS_FSID_SIZE)) {
956 ret = -ENOENT;
957 goto error_brelse;
958 }
959 devid = le64_to_cpu(disk_super->dev_item.devid);
960 device = btrfs_find_device(root, devid, NULL);
961 if (!device) {
962 ret = -ENOENT;
963 goto error_brelse;
964 }
965
966 }
a061fc8d 967 root->fs_info->fs_devices->num_devices--;
0ef3e66b 968 root->fs_info->fs_devices->open_devices--;
a061fc8d
CM
969
970 ret = btrfs_shrink_device(device, 0);
971 if (ret)
972 goto error_brelse;
973
974
975 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
976 if (ret)
977 goto error_brelse;
978
dfe25020
CM
979 if (bh) {
980 /* make sure this device isn't detected as part of
981 * the FS anymore
982 */
983 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
984 set_buffer_dirty(bh);
985 sync_dirty_buffer(bh);
a061fc8d 986
dfe25020
CM
987 brelse(bh);
988 }
a061fc8d 989
dfe25020
CM
990 if (device->bdev) {
991 /* one close for the device struct or super_block */
992 close_bdev_excl(device->bdev);
993 }
994 if (bdev) {
995 /* one close for us */
996 close_bdev_excl(bdev);
997 }
a061fc8d
CM
998 kfree(device->name);
999 kfree(device);
1000 ret = 0;
1001 goto out;
1002
1003error_brelse:
1004 brelse(bh);
1005error_close:
dfe25020
CM
1006 if (bdev)
1007 close_bdev_excl(bdev);
a061fc8d 1008out:
7d9eb12c 1009 mutex_unlock(&root->fs_info->volume_mutex);
a061fc8d 1010 mutex_unlock(&uuid_mutex);
a061fc8d
CM
1011 return ret;
1012}
1013
788f20eb
CM
1014int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1015{
1016 struct btrfs_trans_handle *trans;
1017 struct btrfs_device *device;
1018 struct block_device *bdev;
1019 struct list_head *cur;
1020 struct list_head *devices;
1021 u64 total_bytes;
1022 int ret = 0;
1023
1024
1025 bdev = open_bdev_excl(device_path, 0, root->fs_info->bdev_holder);
1026 if (!bdev) {
1027 return -EIO;
1028 }
a2135011 1029
7d9eb12c 1030 mutex_lock(&root->fs_info->volume_mutex);
a2135011 1031
788f20eb 1032 trans = btrfs_start_transaction(root, 1);
7d9eb12c 1033 lock_chunks(root);
788f20eb
CM
1034 devices = &root->fs_info->fs_devices->devices;
1035 list_for_each(cur, devices) {
1036 device = list_entry(cur, struct btrfs_device, dev_list);
1037 if (device->bdev == bdev) {
1038 ret = -EEXIST;
1039 goto out;
1040 }
1041 }
1042
1043 device = kzalloc(sizeof(*device), GFP_NOFS);
1044 if (!device) {
1045 /* we can safely leave the fs_devices entry around */
1046 ret = -ENOMEM;
1047 goto out_close_bdev;
1048 }
1049
1050 device->barriers = 1;
8b712842 1051 device->work.func = pending_bios_fn;
788f20eb
CM
1052 generate_random_uuid(device->uuid);
1053 spin_lock_init(&device->io_lock);
1054 device->name = kstrdup(device_path, GFP_NOFS);
1055 if (!device->name) {
1056 kfree(device);
1057 goto out_close_bdev;
1058 }
1059 device->io_width = root->sectorsize;
1060 device->io_align = root->sectorsize;
1061 device->sector_size = root->sectorsize;
1062 device->total_bytes = i_size_read(bdev->bd_inode);
1063 device->dev_root = root->fs_info->dev_root;
1064 device->bdev = bdev;
dfe25020 1065 device->in_fs_metadata = 1;
788f20eb
CM
1066
1067 ret = btrfs_add_device(trans, root, device);
1068 if (ret)
1069 goto out_close_bdev;
1070
1071 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1072 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1073 total_bytes + device->total_bytes);
1074
1075 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1076 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1077 total_bytes + 1);
1078
1079 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1080 list_add(&device->dev_alloc_list,
1081 &root->fs_info->fs_devices->alloc_list);
1082 root->fs_info->fs_devices->num_devices++;
a0af469b 1083 root->fs_info->fs_devices->open_devices++;
788f20eb 1084out:
7d9eb12c 1085 unlock_chunks(root);
788f20eb 1086 btrfs_end_transaction(trans, root);
7d9eb12c 1087 mutex_unlock(&root->fs_info->volume_mutex);
a2135011 1088
788f20eb
CM
1089 return ret;
1090
1091out_close_bdev:
1092 close_bdev_excl(bdev);
1093 goto out;
1094}
1095
0b86a832
CM
1096int btrfs_update_device(struct btrfs_trans_handle *trans,
1097 struct btrfs_device *device)
1098{
1099 int ret;
1100 struct btrfs_path *path;
1101 struct btrfs_root *root;
1102 struct btrfs_dev_item *dev_item;
1103 struct extent_buffer *leaf;
1104 struct btrfs_key key;
1105
1106 root = device->dev_root->fs_info->chunk_root;
1107
1108 path = btrfs_alloc_path();
1109 if (!path)
1110 return -ENOMEM;
1111
1112 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1113 key.type = BTRFS_DEV_ITEM_KEY;
1114 key.offset = device->devid;
1115
1116 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1117 if (ret < 0)
1118 goto out;
1119
1120 if (ret > 0) {
1121 ret = -ENOENT;
1122 goto out;
1123 }
1124
1125 leaf = path->nodes[0];
1126 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1127
1128 btrfs_set_device_id(leaf, dev_item, device->devid);
1129 btrfs_set_device_type(leaf, dev_item, device->type);
1130 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1131 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1132 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1133 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1134 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1135 btrfs_mark_buffer_dirty(leaf);
1136
1137out:
1138 btrfs_free_path(path);
1139 return ret;
1140}
1141
7d9eb12c 1142static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1143 struct btrfs_device *device, u64 new_size)
1144{
1145 struct btrfs_super_block *super_copy =
1146 &device->dev_root->fs_info->super_copy;
1147 u64 old_total = btrfs_super_total_bytes(super_copy);
1148 u64 diff = new_size - device->total_bytes;
1149
1150 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1151 return btrfs_update_device(trans, device);
1152}
1153
7d9eb12c
CM
1154int btrfs_grow_device(struct btrfs_trans_handle *trans,
1155 struct btrfs_device *device, u64 new_size)
1156{
1157 int ret;
1158 lock_chunks(device->dev_root);
1159 ret = __btrfs_grow_device(trans, device, new_size);
1160 unlock_chunks(device->dev_root);
1161 return ret;
1162}
1163
8f18cf13
CM
1164static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1165 struct btrfs_root *root,
1166 u64 chunk_tree, u64 chunk_objectid,
1167 u64 chunk_offset)
1168{
1169 int ret;
1170 struct btrfs_path *path;
1171 struct btrfs_key key;
1172
1173 root = root->fs_info->chunk_root;
1174 path = btrfs_alloc_path();
1175 if (!path)
1176 return -ENOMEM;
1177
1178 key.objectid = chunk_objectid;
1179 key.offset = chunk_offset;
1180 key.type = BTRFS_CHUNK_ITEM_KEY;
1181
1182 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1183 BUG_ON(ret);
1184
1185 ret = btrfs_del_item(trans, root, path);
1186 BUG_ON(ret);
1187
1188 btrfs_free_path(path);
1189 return 0;
1190}
1191
1192int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1193 chunk_offset)
1194{
1195 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1196 struct btrfs_disk_key *disk_key;
1197 struct btrfs_chunk *chunk;
1198 u8 *ptr;
1199 int ret = 0;
1200 u32 num_stripes;
1201 u32 array_size;
1202 u32 len = 0;
1203 u32 cur;
1204 struct btrfs_key key;
1205
1206 array_size = btrfs_super_sys_array_size(super_copy);
1207
1208 ptr = super_copy->sys_chunk_array;
1209 cur = 0;
1210
1211 while (cur < array_size) {
1212 disk_key = (struct btrfs_disk_key *)ptr;
1213 btrfs_disk_key_to_cpu(&key, disk_key);
1214
1215 len = sizeof(*disk_key);
1216
1217 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1218 chunk = (struct btrfs_chunk *)(ptr + len);
1219 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1220 len += btrfs_chunk_item_size(num_stripes);
1221 } else {
1222 ret = -EIO;
1223 break;
1224 }
1225 if (key.objectid == chunk_objectid &&
1226 key.offset == chunk_offset) {
1227 memmove(ptr, ptr + len, array_size - (cur + len));
1228 array_size -= len;
1229 btrfs_set_super_sys_array_size(super_copy, array_size);
1230 } else {
1231 ptr += len;
1232 cur += len;
1233 }
1234 }
1235 return ret;
1236}
1237
1238
1239int btrfs_relocate_chunk(struct btrfs_root *root,
1240 u64 chunk_tree, u64 chunk_objectid,
1241 u64 chunk_offset)
1242{
1243 struct extent_map_tree *em_tree;
1244 struct btrfs_root *extent_root;
1245 struct btrfs_trans_handle *trans;
1246 struct extent_map *em;
1247 struct map_lookup *map;
1248 int ret;
1249 int i;
1250
323da79c
CM
1251 printk("btrfs relocating chunk %llu\n",
1252 (unsigned long long)chunk_offset);
8f18cf13
CM
1253 root = root->fs_info->chunk_root;
1254 extent_root = root->fs_info->extent_root;
1255 em_tree = &root->fs_info->mapping_tree.map_tree;
1256
1257 /* step one, relocate all the extents inside this chunk */
1258 ret = btrfs_shrink_extent_tree(extent_root, chunk_offset);
1259 BUG_ON(ret);
1260
1261 trans = btrfs_start_transaction(root, 1);
1262 BUG_ON(!trans);
1263
7d9eb12c
CM
1264 lock_chunks(root);
1265
8f18cf13
CM
1266 /*
1267 * step two, delete the device extents and the
1268 * chunk tree entries
1269 */
1270 spin_lock(&em_tree->lock);
1271 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1272 spin_unlock(&em_tree->lock);
1273
a061fc8d
CM
1274 BUG_ON(em->start > chunk_offset ||
1275 em->start + em->len < chunk_offset);
8f18cf13
CM
1276 map = (struct map_lookup *)em->bdev;
1277
1278 for (i = 0; i < map->num_stripes; i++) {
1279 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1280 map->stripes[i].physical);
1281 BUG_ON(ret);
a061fc8d 1282
dfe25020
CM
1283 if (map->stripes[i].dev) {
1284 ret = btrfs_update_device(trans, map->stripes[i].dev);
1285 BUG_ON(ret);
1286 }
8f18cf13
CM
1287 }
1288 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1289 chunk_offset);
1290
1291 BUG_ON(ret);
1292
1293 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1294 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1295 BUG_ON(ret);
8f18cf13
CM
1296 }
1297
8f18cf13
CM
1298 spin_lock(&em_tree->lock);
1299 remove_extent_mapping(em_tree, em);
1300 kfree(map);
1301 em->bdev = NULL;
1302
1303 /* once for the tree */
1304 free_extent_map(em);
1305 spin_unlock(&em_tree->lock);
1306
8f18cf13
CM
1307 /* once for us */
1308 free_extent_map(em);
1309
7d9eb12c 1310 unlock_chunks(root);
8f18cf13
CM
1311 btrfs_end_transaction(trans, root);
1312 return 0;
1313}
1314
ec44a35c
CM
1315static u64 div_factor(u64 num, int factor)
1316{
1317 if (factor == 10)
1318 return num;
1319 num *= factor;
1320 do_div(num, 10);
1321 return num;
1322}
1323
1324
1325int btrfs_balance(struct btrfs_root *dev_root)
1326{
1327 int ret;
1328 struct list_head *cur;
1329 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1330 struct btrfs_device *device;
1331 u64 old_size;
1332 u64 size_to_free;
1333 struct btrfs_path *path;
1334 struct btrfs_key key;
1335 struct btrfs_chunk *chunk;
1336 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1337 struct btrfs_trans_handle *trans;
1338 struct btrfs_key found_key;
1339
1340
7d9eb12c 1341 mutex_lock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
1342 dev_root = dev_root->fs_info->dev_root;
1343
ec44a35c
CM
1344 /* step one make some room on all the devices */
1345 list_for_each(cur, devices) {
1346 device = list_entry(cur, struct btrfs_device, dev_list);
1347 old_size = device->total_bytes;
1348 size_to_free = div_factor(old_size, 1);
1349 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1350 if (device->total_bytes - device->bytes_used > size_to_free)
1351 continue;
1352
1353 ret = btrfs_shrink_device(device, old_size - size_to_free);
1354 BUG_ON(ret);
1355
1356 trans = btrfs_start_transaction(dev_root, 1);
1357 BUG_ON(!trans);
1358
1359 ret = btrfs_grow_device(trans, device, old_size);
1360 BUG_ON(ret);
1361
1362 btrfs_end_transaction(trans, dev_root);
1363 }
1364
1365 /* step two, relocate all the chunks */
1366 path = btrfs_alloc_path();
1367 BUG_ON(!path);
1368
1369 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1370 key.offset = (u64)-1;
1371 key.type = BTRFS_CHUNK_ITEM_KEY;
1372
1373 while(1) {
1374 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1375 if (ret < 0)
1376 goto error;
1377
1378 /*
1379 * this shouldn't happen, it means the last relocate
1380 * failed
1381 */
1382 if (ret == 0)
1383 break;
1384
1385 ret = btrfs_previous_item(chunk_root, path, 0,
1386 BTRFS_CHUNK_ITEM_KEY);
7d9eb12c 1387 if (ret)
ec44a35c 1388 break;
7d9eb12c 1389
ec44a35c
CM
1390 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1391 path->slots[0]);
1392 if (found_key.objectid != key.objectid)
1393 break;
7d9eb12c 1394
ec44a35c
CM
1395 chunk = btrfs_item_ptr(path->nodes[0],
1396 path->slots[0],
1397 struct btrfs_chunk);
1398 key.offset = found_key.offset;
1399 /* chunk zero is special */
1400 if (key.offset == 0)
1401 break;
1402
7d9eb12c 1403 btrfs_release_path(chunk_root, path);
ec44a35c
CM
1404 ret = btrfs_relocate_chunk(chunk_root,
1405 chunk_root->root_key.objectid,
1406 found_key.objectid,
1407 found_key.offset);
1408 BUG_ON(ret);
ec44a35c
CM
1409 }
1410 ret = 0;
1411error:
1412 btrfs_free_path(path);
7d9eb12c 1413 mutex_unlock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
1414 return ret;
1415}
1416
8f18cf13
CM
1417/*
1418 * shrinking a device means finding all of the device extents past
1419 * the new size, and then following the back refs to the chunks.
1420 * The chunk relocation code actually frees the device extent
1421 */
1422int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1423{
1424 struct btrfs_trans_handle *trans;
1425 struct btrfs_root *root = device->dev_root;
1426 struct btrfs_dev_extent *dev_extent = NULL;
1427 struct btrfs_path *path;
1428 u64 length;
1429 u64 chunk_tree;
1430 u64 chunk_objectid;
1431 u64 chunk_offset;
1432 int ret;
1433 int slot;
1434 struct extent_buffer *l;
1435 struct btrfs_key key;
1436 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1437 u64 old_total = btrfs_super_total_bytes(super_copy);
1438 u64 diff = device->total_bytes - new_size;
1439
1440
1441 path = btrfs_alloc_path();
1442 if (!path)
1443 return -ENOMEM;
1444
1445 trans = btrfs_start_transaction(root, 1);
1446 if (!trans) {
1447 ret = -ENOMEM;
1448 goto done;
1449 }
1450
1451 path->reada = 2;
1452
7d9eb12c
CM
1453 lock_chunks(root);
1454
8f18cf13
CM
1455 device->total_bytes = new_size;
1456 ret = btrfs_update_device(trans, device);
1457 if (ret) {
7d9eb12c 1458 unlock_chunks(root);
8f18cf13
CM
1459 btrfs_end_transaction(trans, root);
1460 goto done;
1461 }
1462 WARN_ON(diff > old_total);
1463 btrfs_set_super_total_bytes(super_copy, old_total - diff);
7d9eb12c 1464 unlock_chunks(root);
8f18cf13
CM
1465 btrfs_end_transaction(trans, root);
1466
1467 key.objectid = device->devid;
1468 key.offset = (u64)-1;
1469 key.type = BTRFS_DEV_EXTENT_KEY;
1470
1471 while (1) {
1472 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1473 if (ret < 0)
1474 goto done;
1475
1476 ret = btrfs_previous_item(root, path, 0, key.type);
1477 if (ret < 0)
1478 goto done;
1479 if (ret) {
1480 ret = 0;
1481 goto done;
1482 }
1483
1484 l = path->nodes[0];
1485 slot = path->slots[0];
1486 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1487
1488 if (key.objectid != device->devid)
1489 goto done;
1490
1491 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1492 length = btrfs_dev_extent_length(l, dev_extent);
1493
1494 if (key.offset + length <= new_size)
1495 goto done;
1496
1497 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1498 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1499 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1500 btrfs_release_path(root, path);
1501
1502 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
1503 chunk_offset);
1504 if (ret)
1505 goto done;
1506 }
1507
1508done:
1509 btrfs_free_path(path);
1510 return ret;
1511}
1512
0b86a832
CM
1513int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
1514 struct btrfs_root *root,
1515 struct btrfs_key *key,
1516 struct btrfs_chunk *chunk, int item_size)
1517{
1518 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1519 struct btrfs_disk_key disk_key;
1520 u32 array_size;
1521 u8 *ptr;
1522
1523 array_size = btrfs_super_sys_array_size(super_copy);
1524 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
1525 return -EFBIG;
1526
1527 ptr = super_copy->sys_chunk_array + array_size;
1528 btrfs_cpu_key_to_disk(&disk_key, key);
1529 memcpy(ptr, &disk_key, sizeof(disk_key));
1530 ptr += sizeof(disk_key);
1531 memcpy(ptr, chunk, item_size);
1532 item_size += sizeof(disk_key);
1533 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
1534 return 0;
1535}
1536
9b3f68b9
CM
1537static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
1538 int sub_stripes)
1539{
1540 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
1541 return calc_size;
1542 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1543 return calc_size * (num_stripes / sub_stripes);
1544 else
1545 return calc_size * num_stripes;
1546}
1547
1548
0b86a832
CM
1549int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
1550 struct btrfs_root *extent_root, u64 *start,
6324fbf3 1551 u64 *num_bytes, u64 type)
0b86a832
CM
1552{
1553 u64 dev_offset;
593060d7 1554 struct btrfs_fs_info *info = extent_root->fs_info;
0b86a832 1555 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
8f18cf13 1556 struct btrfs_path *path;
0b86a832
CM
1557 struct btrfs_stripe *stripes;
1558 struct btrfs_device *device = NULL;
1559 struct btrfs_chunk *chunk;
6324fbf3 1560 struct list_head private_devs;
b3075717 1561 struct list_head *dev_list;
6324fbf3 1562 struct list_head *cur;
0b86a832
CM
1563 struct extent_map_tree *em_tree;
1564 struct map_lookup *map;
1565 struct extent_map *em;
a40a90a0 1566 int min_stripe_size = 1 * 1024 * 1024;
0b86a832
CM
1567 u64 physical;
1568 u64 calc_size = 1024 * 1024 * 1024;
9b3f68b9
CM
1569 u64 max_chunk_size = calc_size;
1570 u64 min_free;
6324fbf3
CM
1571 u64 avail;
1572 u64 max_avail = 0;
9b3f68b9 1573 u64 percent_max;
6324fbf3 1574 int num_stripes = 1;
a40a90a0 1575 int min_stripes = 1;
321aecc6 1576 int sub_stripes = 0;
6324fbf3 1577 int looped = 0;
0b86a832 1578 int ret;
6324fbf3 1579 int index;
593060d7 1580 int stripe_len = 64 * 1024;
0b86a832
CM
1581 struct btrfs_key key;
1582
ec44a35c
CM
1583 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
1584 (type & BTRFS_BLOCK_GROUP_DUP)) {
1585 WARN_ON(1);
1586 type &= ~BTRFS_BLOCK_GROUP_DUP;
1587 }
b3075717 1588 dev_list = &extent_root->fs_info->fs_devices->alloc_list;
6324fbf3
CM
1589 if (list_empty(dev_list))
1590 return -ENOSPC;
593060d7 1591
a40a90a0 1592 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
0ef3e66b 1593 num_stripes = extent_root->fs_info->fs_devices->open_devices;
a40a90a0
CM
1594 min_stripes = 2;
1595 }
1596 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
611f0e00 1597 num_stripes = 2;
a40a90a0
CM
1598 min_stripes = 2;
1599 }
8790d502
CM
1600 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
1601 num_stripes = min_t(u64, 2,
0ef3e66b 1602 extent_root->fs_info->fs_devices->open_devices);
9b3f68b9
CM
1603 if (num_stripes < 2)
1604 return -ENOSPC;
a40a90a0 1605 min_stripes = 2;
8790d502 1606 }
321aecc6 1607 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
0ef3e66b 1608 num_stripes = extent_root->fs_info->fs_devices->open_devices;
321aecc6
CM
1609 if (num_stripes < 4)
1610 return -ENOSPC;
1611 num_stripes &= ~(u32)1;
1612 sub_stripes = 2;
a40a90a0 1613 min_stripes = 4;
321aecc6 1614 }
9b3f68b9
CM
1615
1616 if (type & BTRFS_BLOCK_GROUP_DATA) {
1617 max_chunk_size = 10 * calc_size;
a40a90a0 1618 min_stripe_size = 64 * 1024 * 1024;
9b3f68b9
CM
1619 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1620 max_chunk_size = 4 * calc_size;
a40a90a0
CM
1621 min_stripe_size = 32 * 1024 * 1024;
1622 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1623 calc_size = 8 * 1024 * 1024;
1624 max_chunk_size = calc_size * 2;
1625 min_stripe_size = 1 * 1024 * 1024;
9b3f68b9
CM
1626 }
1627
8f18cf13
CM
1628 path = btrfs_alloc_path();
1629 if (!path)
1630 return -ENOMEM;
1631
9b3f68b9
CM
1632 /* we don't want a chunk larger than 10% of the FS */
1633 percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
1634 max_chunk_size = min(percent_max, max_chunk_size);
1635
a40a90a0 1636again:
9b3f68b9
CM
1637 if (calc_size * num_stripes > max_chunk_size) {
1638 calc_size = max_chunk_size;
1639 do_div(calc_size, num_stripes);
1640 do_div(calc_size, stripe_len);
1641 calc_size *= stripe_len;
1642 }
1643 /* we don't want tiny stripes */
a40a90a0 1644 calc_size = max_t(u64, min_stripe_size, calc_size);
9b3f68b9 1645
9b3f68b9
CM
1646 do_div(calc_size, stripe_len);
1647 calc_size *= stripe_len;
1648
6324fbf3
CM
1649 INIT_LIST_HEAD(&private_devs);
1650 cur = dev_list->next;
1651 index = 0;
611f0e00
CM
1652
1653 if (type & BTRFS_BLOCK_GROUP_DUP)
1654 min_free = calc_size * 2;
9b3f68b9
CM
1655 else
1656 min_free = calc_size;
611f0e00 1657
ad5bd91e
CM
1658 /* we add 1MB because we never use the first 1MB of the device */
1659 min_free += 1024 * 1024;
1660
6324fbf3
CM
1661 /* build a private list of devices we will allocate from */
1662 while(index < num_stripes) {
b3075717 1663 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
611f0e00 1664
dfe25020
CM
1665 if (device->total_bytes > device->bytes_used)
1666 avail = device->total_bytes - device->bytes_used;
1667 else
1668 avail = 0;
6324fbf3 1669 cur = cur->next;
8f18cf13 1670
dfe25020 1671 if (device->in_fs_metadata && avail >= min_free) {
8f18cf13
CM
1672 u64 ignored_start = 0;
1673 ret = find_free_dev_extent(trans, device, path,
1674 min_free,
1675 &ignored_start);
1676 if (ret == 0) {
1677 list_move_tail(&device->dev_alloc_list,
1678 &private_devs);
611f0e00 1679 index++;
8f18cf13
CM
1680 if (type & BTRFS_BLOCK_GROUP_DUP)
1681 index++;
1682 }
dfe25020 1683 } else if (device->in_fs_metadata && avail > max_avail)
a40a90a0 1684 max_avail = avail;
6324fbf3
CM
1685 if (cur == dev_list)
1686 break;
1687 }
1688 if (index < num_stripes) {
1689 list_splice(&private_devs, dev_list);
a40a90a0
CM
1690 if (index >= min_stripes) {
1691 num_stripes = index;
1692 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
1693 num_stripes /= sub_stripes;
1694 num_stripes *= sub_stripes;
1695 }
1696 looped = 1;
1697 goto again;
1698 }
6324fbf3
CM
1699 if (!looped && max_avail > 0) {
1700 looped = 1;
1701 calc_size = max_avail;
1702 goto again;
1703 }
8f18cf13 1704 btrfs_free_path(path);
6324fbf3
CM
1705 return -ENOSPC;
1706 }
e17cade2
CM
1707 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1708 key.type = BTRFS_CHUNK_ITEM_KEY;
1709 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1710 &key.offset);
8f18cf13
CM
1711 if (ret) {
1712 btrfs_free_path(path);
0b86a832 1713 return ret;
8f18cf13 1714 }
0b86a832 1715
0b86a832 1716 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
8f18cf13
CM
1717 if (!chunk) {
1718 btrfs_free_path(path);
0b86a832 1719 return -ENOMEM;
8f18cf13 1720 }
0b86a832 1721
593060d7
CM
1722 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1723 if (!map) {
1724 kfree(chunk);
8f18cf13 1725 btrfs_free_path(path);
593060d7
CM
1726 return -ENOMEM;
1727 }
8f18cf13
CM
1728 btrfs_free_path(path);
1729 path = NULL;
593060d7 1730
0b86a832 1731 stripes = &chunk->stripe;
9b3f68b9
CM
1732 *num_bytes = chunk_bytes_by_type(type, calc_size,
1733 num_stripes, sub_stripes);
0b86a832 1734
6324fbf3 1735 index = 0;
0b86a832 1736 while(index < num_stripes) {
e17cade2 1737 struct btrfs_stripe *stripe;
6324fbf3
CM
1738 BUG_ON(list_empty(&private_devs));
1739 cur = private_devs.next;
b3075717 1740 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
611f0e00
CM
1741
1742 /* loop over this device again if we're doing a dup group */
1743 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
1744 (index == num_stripes - 1))
b3075717 1745 list_move_tail(&device->dev_alloc_list, dev_list);
0b86a832
CM
1746
1747 ret = btrfs_alloc_dev_extent(trans, device,
e17cade2
CM
1748 info->chunk_root->root_key.objectid,
1749 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
1750 calc_size, &dev_offset);
0b86a832 1751 BUG_ON(ret);
0b86a832
CM
1752 device->bytes_used += calc_size;
1753 ret = btrfs_update_device(trans, device);
1754 BUG_ON(ret);
1755
593060d7
CM
1756 map->stripes[index].dev = device;
1757 map->stripes[index].physical = dev_offset;
e17cade2
CM
1758 stripe = stripes + index;
1759 btrfs_set_stack_stripe_devid(stripe, device->devid);
1760 btrfs_set_stack_stripe_offset(stripe, dev_offset);
1761 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
0b86a832
CM
1762 physical = dev_offset;
1763 index++;
1764 }
6324fbf3 1765 BUG_ON(!list_empty(&private_devs));
0b86a832 1766
e17cade2
CM
1767 /* key was set above */
1768 btrfs_set_stack_chunk_length(chunk, *num_bytes);
0b86a832 1769 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
593060d7 1770 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
0b86a832
CM
1771 btrfs_set_stack_chunk_type(chunk, type);
1772 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
593060d7
CM
1773 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
1774 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
0b86a832 1775 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
321aecc6 1776 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
593060d7
CM
1777 map->sector_size = extent_root->sectorsize;
1778 map->stripe_len = stripe_len;
1779 map->io_align = stripe_len;
1780 map->io_width = stripe_len;
1781 map->type = type;
1782 map->num_stripes = num_stripes;
321aecc6 1783 map->sub_stripes = sub_stripes;
0b86a832
CM
1784
1785 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1786 btrfs_chunk_item_size(num_stripes));
1787 BUG_ON(ret);
e17cade2 1788 *start = key.offset;;
0b86a832
CM
1789
1790 em = alloc_extent_map(GFP_NOFS);
1791 if (!em)
1792 return -ENOMEM;
0b86a832 1793 em->bdev = (struct block_device *)map;
e17cade2
CM
1794 em->start = key.offset;
1795 em->len = *num_bytes;
0b86a832
CM
1796 em->block_start = 0;
1797
8f18cf13
CM
1798 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1799 ret = btrfs_add_system_chunk(trans, chunk_root, &key,
1800 chunk, btrfs_chunk_item_size(num_stripes));
1801 BUG_ON(ret);
1802 }
0b86a832
CM
1803 kfree(chunk);
1804
1805 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
1806 spin_lock(&em_tree->lock);
1807 ret = add_extent_mapping(em_tree, em);
0b86a832 1808 spin_unlock(&em_tree->lock);
b248a415 1809 BUG_ON(ret);
0b86a832
CM
1810 free_extent_map(em);
1811 return ret;
1812}
1813
1814void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
1815{
1816 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
1817}
1818
1819void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
1820{
1821 struct extent_map *em;
1822
1823 while(1) {
1824 spin_lock(&tree->map_tree.lock);
1825 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
1826 if (em)
1827 remove_extent_mapping(&tree->map_tree, em);
1828 spin_unlock(&tree->map_tree.lock);
1829 if (!em)
1830 break;
1831 kfree(em->bdev);
1832 /* once for us */
1833 free_extent_map(em);
1834 /* once for the tree */
1835 free_extent_map(em);
1836 }
1837}
1838
f188591e
CM
1839int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
1840{
1841 struct extent_map *em;
1842 struct map_lookup *map;
1843 struct extent_map_tree *em_tree = &map_tree->map_tree;
1844 int ret;
1845
1846 spin_lock(&em_tree->lock);
1847 em = lookup_extent_mapping(em_tree, logical, len);
b248a415 1848 spin_unlock(&em_tree->lock);
f188591e
CM
1849 BUG_ON(!em);
1850
1851 BUG_ON(em->start > logical || em->start + em->len < logical);
1852 map = (struct map_lookup *)em->bdev;
1853 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
1854 ret = map->num_stripes;
321aecc6
CM
1855 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1856 ret = map->sub_stripes;
f188591e
CM
1857 else
1858 ret = 1;
1859 free_extent_map(em);
f188591e
CM
1860 return ret;
1861}
1862
dfe25020
CM
1863static int find_live_mirror(struct map_lookup *map, int first, int num,
1864 int optimal)
1865{
1866 int i;
1867 if (map->stripes[optimal].dev->bdev)
1868 return optimal;
1869 for (i = first; i < first + num; i++) {
1870 if (map->stripes[i].dev->bdev)
1871 return i;
1872 }
1873 /* we couldn't find one that doesn't fail. Just return something
1874 * and the io error handling code will clean up eventually
1875 */
1876 return optimal;
1877}
1878
f2d8d74d
CM
1879static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1880 u64 logical, u64 *length,
1881 struct btrfs_multi_bio **multi_ret,
1882 int mirror_num, struct page *unplug_page)
0b86a832
CM
1883{
1884 struct extent_map *em;
1885 struct map_lookup *map;
1886 struct extent_map_tree *em_tree = &map_tree->map_tree;
1887 u64 offset;
593060d7
CM
1888 u64 stripe_offset;
1889 u64 stripe_nr;
cea9e445 1890 int stripes_allocated = 8;
321aecc6 1891 int stripes_required = 1;
593060d7 1892 int stripe_index;
cea9e445 1893 int i;
f2d8d74d 1894 int num_stripes;
a236aed1 1895 int max_errors = 0;
cea9e445 1896 struct btrfs_multi_bio *multi = NULL;
0b86a832 1897
cea9e445
CM
1898 if (multi_ret && !(rw & (1 << BIO_RW))) {
1899 stripes_allocated = 1;
1900 }
1901again:
1902 if (multi_ret) {
1903 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
1904 GFP_NOFS);
1905 if (!multi)
1906 return -ENOMEM;
a236aed1
CM
1907
1908 atomic_set(&multi->error, 0);
cea9e445 1909 }
0b86a832
CM
1910
1911 spin_lock(&em_tree->lock);
1912 em = lookup_extent_mapping(em_tree, logical, *length);
b248a415 1913 spin_unlock(&em_tree->lock);
f2d8d74d
CM
1914
1915 if (!em && unplug_page)
1916 return 0;
1917
3b951516 1918 if (!em) {
a061fc8d 1919 printk("unable to find logical %Lu len %Lu\n", logical, *length);
f2d8d74d 1920 BUG();
3b951516 1921 }
0b86a832
CM
1922
1923 BUG_ON(em->start > logical || em->start + em->len < logical);
1924 map = (struct map_lookup *)em->bdev;
1925 offset = logical - em->start;
593060d7 1926
f188591e
CM
1927 if (mirror_num > map->num_stripes)
1928 mirror_num = 0;
1929
cea9e445 1930 /* if our multi bio struct is too small, back off and try again */
321aecc6
CM
1931 if (rw & (1 << BIO_RW)) {
1932 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1933 BTRFS_BLOCK_GROUP_DUP)) {
1934 stripes_required = map->num_stripes;
a236aed1 1935 max_errors = 1;
321aecc6
CM
1936 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1937 stripes_required = map->sub_stripes;
a236aed1 1938 max_errors = 1;
321aecc6
CM
1939 }
1940 }
1941 if (multi_ret && rw == WRITE &&
1942 stripes_allocated < stripes_required) {
cea9e445 1943 stripes_allocated = map->num_stripes;
cea9e445
CM
1944 free_extent_map(em);
1945 kfree(multi);
1946 goto again;
1947 }
593060d7
CM
1948 stripe_nr = offset;
1949 /*
1950 * stripe_nr counts the total number of stripes we have to stride
1951 * to get to this block
1952 */
1953 do_div(stripe_nr, map->stripe_len);
1954
1955 stripe_offset = stripe_nr * map->stripe_len;
1956 BUG_ON(offset < stripe_offset);
1957
1958 /* stripe_offset is the offset of this block in its stripe*/
1959 stripe_offset = offset - stripe_offset;
1960
cea9e445 1961 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
321aecc6 1962 BTRFS_BLOCK_GROUP_RAID10 |
cea9e445
CM
1963 BTRFS_BLOCK_GROUP_DUP)) {
1964 /* we limit the length of each bio to what fits in a stripe */
1965 *length = min_t(u64, em->len - offset,
1966 map->stripe_len - stripe_offset);
1967 } else {
1968 *length = em->len - offset;
1969 }
f2d8d74d
CM
1970
1971 if (!multi_ret && !unplug_page)
cea9e445
CM
1972 goto out;
1973
f2d8d74d 1974 num_stripes = 1;
cea9e445 1975 stripe_index = 0;
8790d502 1976 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
f2d8d74d
CM
1977 if (unplug_page || (rw & (1 << BIO_RW)))
1978 num_stripes = map->num_stripes;
2fff734f 1979 else if (mirror_num)
f188591e 1980 stripe_index = mirror_num - 1;
dfe25020
CM
1981 else {
1982 stripe_index = find_live_mirror(map, 0,
1983 map->num_stripes,
1984 current->pid % map->num_stripes);
1985 }
2fff734f 1986
611f0e00 1987 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
cea9e445 1988 if (rw & (1 << BIO_RW))
f2d8d74d 1989 num_stripes = map->num_stripes;
f188591e
CM
1990 else if (mirror_num)
1991 stripe_index = mirror_num - 1;
2fff734f 1992
321aecc6
CM
1993 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1994 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
1995
1996 stripe_index = do_div(stripe_nr, factor);
1997 stripe_index *= map->sub_stripes;
1998
f2d8d74d
CM
1999 if (unplug_page || (rw & (1 << BIO_RW)))
2000 num_stripes = map->sub_stripes;
321aecc6
CM
2001 else if (mirror_num)
2002 stripe_index += mirror_num - 1;
dfe25020
CM
2003 else {
2004 stripe_index = find_live_mirror(map, stripe_index,
2005 map->sub_stripes, stripe_index +
2006 current->pid % map->sub_stripes);
2007 }
8790d502
CM
2008 } else {
2009 /*
2010 * after this do_div call, stripe_nr is the number of stripes
2011 * on this device we have to walk to find the data, and
2012 * stripe_index is the number of our device in the stripe array
2013 */
2014 stripe_index = do_div(stripe_nr, map->num_stripes);
2015 }
593060d7 2016 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 2017
f2d8d74d
CM
2018 for (i = 0; i < num_stripes; i++) {
2019 if (unplug_page) {
2020 struct btrfs_device *device;
2021 struct backing_dev_info *bdi;
2022
2023 device = map->stripes[stripe_index].dev;
dfe25020
CM
2024 if (device->bdev) {
2025 bdi = blk_get_backing_dev_info(device->bdev);
2026 if (bdi->unplug_io_fn) {
2027 bdi->unplug_io_fn(bdi, unplug_page);
2028 }
f2d8d74d
CM
2029 }
2030 } else {
2031 multi->stripes[i].physical =
2032 map->stripes[stripe_index].physical +
2033 stripe_offset + stripe_nr * map->stripe_len;
2034 multi->stripes[i].dev = map->stripes[stripe_index].dev;
2035 }
cea9e445 2036 stripe_index++;
593060d7 2037 }
f2d8d74d
CM
2038 if (multi_ret) {
2039 *multi_ret = multi;
2040 multi->num_stripes = num_stripes;
a236aed1 2041 multi->max_errors = max_errors;
f2d8d74d 2042 }
cea9e445 2043out:
0b86a832 2044 free_extent_map(em);
0b86a832
CM
2045 return 0;
2046}
2047
f2d8d74d
CM
2048int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2049 u64 logical, u64 *length,
2050 struct btrfs_multi_bio **multi_ret, int mirror_num)
2051{
2052 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2053 mirror_num, NULL);
2054}
2055
2056int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2057 u64 logical, struct page *page)
2058{
2059 u64 length = PAGE_CACHE_SIZE;
2060 return __btrfs_map_block(map_tree, READ, logical, &length,
2061 NULL, 0, page);
2062}
2063
2064
8790d502
CM
2065#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
2066static void end_bio_multi_stripe(struct bio *bio, int err)
2067#else
2068static int end_bio_multi_stripe(struct bio *bio,
2069 unsigned int bytes_done, int err)
2070#endif
2071{
cea9e445 2072 struct btrfs_multi_bio *multi = bio->bi_private;
8790d502
CM
2073
2074#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2075 if (bio->bi_size)
2076 return 1;
2077#endif
2078 if (err)
a236aed1 2079 atomic_inc(&multi->error);
8790d502 2080
cea9e445 2081 if (atomic_dec_and_test(&multi->stripes_pending)) {
8790d502
CM
2082 bio->bi_private = multi->private;
2083 bio->bi_end_io = multi->end_io;
a236aed1
CM
2084 /* only send an error to the higher layers if it is
2085 * beyond the tolerance of the multi-bio
2086 */
1259ab75 2087 if (atomic_read(&multi->error) > multi->max_errors) {
a236aed1 2088 err = -EIO;
1259ab75
CM
2089 } else if (err) {
2090 /*
2091 * this bio is actually up to date, we didn't
2092 * go over the max number of errors
2093 */
2094 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 2095 err = 0;
1259ab75 2096 }
8790d502
CM
2097 kfree(multi);
2098
73f61b2a
M
2099#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2100 bio_endio(bio, bio->bi_size, err);
2101#else
8790d502 2102 bio_endio(bio, err);
73f61b2a 2103#endif
8790d502
CM
2104 } else {
2105 bio_put(bio);
2106 }
2107#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2108 return 0;
2109#endif
2110}
2111
8b712842
CM
2112struct async_sched {
2113 struct bio *bio;
2114 int rw;
2115 struct btrfs_fs_info *info;
2116 struct btrfs_work work;
2117};
2118
2119/*
2120 * see run_scheduled_bios for a description of why bios are collected for
2121 * async submit.
2122 *
2123 * This will add one bio to the pending list for a device and make sure
2124 * the work struct is scheduled.
2125 */
2126int schedule_bio(struct btrfs_root *root, struct btrfs_device *device,
2127 int rw, struct bio *bio)
2128{
2129 int should_queue = 1;
2130
2131 /* don't bother with additional async steps for reads, right now */
2132 if (!(rw & (1 << BIO_RW))) {
492bb6de 2133 bio_get(bio);
8b712842 2134 submit_bio(rw, bio);
492bb6de 2135 bio_put(bio);
8b712842
CM
2136 return 0;
2137 }
2138
2139 /*
2140 * nr_async_sumbits allows us to reliably return congestion to the
2141 * higher layers. Otherwise, the async bio makes it appear we have
2142 * made progress against dirty pages when we've really just put it
2143 * on a queue for later
2144 */
2145 atomic_inc(&root->fs_info->nr_async_submits);
492bb6de 2146 WARN_ON(bio->bi_next);
8b712842
CM
2147 bio->bi_next = NULL;
2148 bio->bi_rw |= rw;
2149
2150 spin_lock(&device->io_lock);
2151
2152 if (device->pending_bio_tail)
2153 device->pending_bio_tail->bi_next = bio;
2154
2155 device->pending_bio_tail = bio;
2156 if (!device->pending_bios)
2157 device->pending_bios = bio;
2158 if (device->running_pending)
2159 should_queue = 0;
2160
2161 spin_unlock(&device->io_lock);
2162
2163 if (should_queue)
1cc127b5
CM
2164 btrfs_queue_worker(&root->fs_info->submit_workers,
2165 &device->work);
8b712842
CM
2166 return 0;
2167}
2168
f188591e 2169int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 2170 int mirror_num, int async_submit)
0b86a832
CM
2171{
2172 struct btrfs_mapping_tree *map_tree;
2173 struct btrfs_device *dev;
8790d502 2174 struct bio *first_bio = bio;
0b86a832 2175 u64 logical = bio->bi_sector << 9;
0b86a832
CM
2176 u64 length = 0;
2177 u64 map_length;
cea9e445 2178 struct btrfs_multi_bio *multi = NULL;
0b86a832 2179 int ret;
8790d502
CM
2180 int dev_nr = 0;
2181 int total_devs = 1;
0b86a832 2182
f2d8d74d 2183 length = bio->bi_size;
0b86a832
CM
2184 map_tree = &root->fs_info->mapping_tree;
2185 map_length = length;
cea9e445 2186
f188591e
CM
2187 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2188 mirror_num);
cea9e445
CM
2189 BUG_ON(ret);
2190
2191 total_devs = multi->num_stripes;
2192 if (map_length < length) {
2193 printk("mapping failed logical %Lu bio len %Lu "
2194 "len %Lu\n", logical, length, map_length);
2195 BUG();
2196 }
2197 multi->end_io = first_bio->bi_end_io;
2198 multi->private = first_bio->bi_private;
2199 atomic_set(&multi->stripes_pending, multi->num_stripes);
2200
8790d502 2201 while(dev_nr < total_devs) {
8790d502 2202 if (total_devs > 1) {
8790d502
CM
2203 if (dev_nr < total_devs - 1) {
2204 bio = bio_clone(first_bio, GFP_NOFS);
2205 BUG_ON(!bio);
2206 } else {
2207 bio = first_bio;
2208 }
2209 bio->bi_private = multi;
2210 bio->bi_end_io = end_bio_multi_stripe;
2211 }
cea9e445
CM
2212 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2213 dev = multi->stripes[dev_nr].dev;
dfe25020
CM
2214 if (dev && dev->bdev) {
2215 bio->bi_bdev = dev->bdev;
8b712842
CM
2216 if (async_submit)
2217 schedule_bio(root, dev, rw, bio);
2218 else
2219 submit_bio(rw, bio);
dfe25020
CM
2220 } else {
2221 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2222 bio->bi_sector = logical >> 9;
2223#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2224 bio_endio(bio, bio->bi_size, -EIO);
2225#else
2226 bio_endio(bio, -EIO);
2227#endif
2228 }
8790d502
CM
2229 dev_nr++;
2230 }
cea9e445
CM
2231 if (total_devs == 1)
2232 kfree(multi);
0b86a832
CM
2233 return 0;
2234}
2235
a443755f
CM
2236struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2237 u8 *uuid)
0b86a832 2238{
8a4b83cc 2239 struct list_head *head = &root->fs_info->fs_devices->devices;
0b86a832 2240
a443755f 2241 return __find_device(head, devid, uuid);
0b86a832
CM
2242}
2243
dfe25020
CM
2244static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
2245 u64 devid, u8 *dev_uuid)
2246{
2247 struct btrfs_device *device;
2248 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2249
2250 device = kzalloc(sizeof(*device), GFP_NOFS);
2251 list_add(&device->dev_list,
2252 &fs_devices->devices);
2253 list_add(&device->dev_alloc_list,
2254 &fs_devices->alloc_list);
2255 device->barriers = 1;
2256 device->dev_root = root->fs_info->dev_root;
2257 device->devid = devid;
8b712842 2258 device->work.func = pending_bios_fn;
dfe25020
CM
2259 fs_devices->num_devices++;
2260 spin_lock_init(&device->io_lock);
2261 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
2262 return device;
2263}
2264
2265
0b86a832
CM
2266static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
2267 struct extent_buffer *leaf,
2268 struct btrfs_chunk *chunk)
2269{
2270 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2271 struct map_lookup *map;
2272 struct extent_map *em;
2273 u64 logical;
2274 u64 length;
2275 u64 devid;
a443755f 2276 u8 uuid[BTRFS_UUID_SIZE];
593060d7 2277 int num_stripes;
0b86a832 2278 int ret;
593060d7 2279 int i;
0b86a832 2280
e17cade2
CM
2281 logical = key->offset;
2282 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 2283
0b86a832
CM
2284 spin_lock(&map_tree->map_tree.lock);
2285 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
b248a415 2286 spin_unlock(&map_tree->map_tree.lock);
0b86a832
CM
2287
2288 /* already mapped? */
2289 if (em && em->start <= logical && em->start + em->len > logical) {
2290 free_extent_map(em);
0b86a832
CM
2291 return 0;
2292 } else if (em) {
2293 free_extent_map(em);
2294 }
0b86a832
CM
2295
2296 map = kzalloc(sizeof(*map), GFP_NOFS);
2297 if (!map)
2298 return -ENOMEM;
2299
2300 em = alloc_extent_map(GFP_NOFS);
2301 if (!em)
2302 return -ENOMEM;
593060d7
CM
2303 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2304 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
2305 if (!map) {
2306 free_extent_map(em);
2307 return -ENOMEM;
2308 }
2309
2310 em->bdev = (struct block_device *)map;
2311 em->start = logical;
2312 em->len = length;
2313 em->block_start = 0;
2314
593060d7
CM
2315 map->num_stripes = num_stripes;
2316 map->io_width = btrfs_chunk_io_width(leaf, chunk);
2317 map->io_align = btrfs_chunk_io_align(leaf, chunk);
2318 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
2319 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
2320 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 2321 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
2322 for (i = 0; i < num_stripes; i++) {
2323 map->stripes[i].physical =
2324 btrfs_stripe_offset_nr(leaf, chunk, i);
2325 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
2326 read_extent_buffer(leaf, uuid, (unsigned long)
2327 btrfs_stripe_dev_uuid_nr(chunk, i),
2328 BTRFS_UUID_SIZE);
2329 map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
dfe25020
CM
2330
2331 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
2332 kfree(map);
2333 free_extent_map(em);
2334 return -EIO;
2335 }
dfe25020
CM
2336 if (!map->stripes[i].dev) {
2337 map->stripes[i].dev =
2338 add_missing_dev(root, devid, uuid);
2339 if (!map->stripes[i].dev) {
2340 kfree(map);
2341 free_extent_map(em);
2342 return -EIO;
2343 }
2344 }
2345 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
2346 }
2347
2348 spin_lock(&map_tree->map_tree.lock);
2349 ret = add_extent_mapping(&map_tree->map_tree, em);
0b86a832 2350 spin_unlock(&map_tree->map_tree.lock);
b248a415 2351 BUG_ON(ret);
0b86a832
CM
2352 free_extent_map(em);
2353
2354 return 0;
2355}
2356
2357static int fill_device_from_item(struct extent_buffer *leaf,
2358 struct btrfs_dev_item *dev_item,
2359 struct btrfs_device *device)
2360{
2361 unsigned long ptr;
0b86a832
CM
2362
2363 device->devid = btrfs_device_id(leaf, dev_item);
2364 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
2365 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
2366 device->type = btrfs_device_type(leaf, dev_item);
2367 device->io_align = btrfs_device_io_align(leaf, dev_item);
2368 device->io_width = btrfs_device_io_width(leaf, dev_item);
2369 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
2370
2371 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 2372 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 2373
0b86a832
CM
2374 return 0;
2375}
2376
0d81ba5d 2377static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
2378 struct extent_buffer *leaf,
2379 struct btrfs_dev_item *dev_item)
2380{
2381 struct btrfs_device *device;
2382 u64 devid;
2383 int ret;
a443755f
CM
2384 u8 dev_uuid[BTRFS_UUID_SIZE];
2385
0b86a832 2386 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
2387 read_extent_buffer(leaf, dev_uuid,
2388 (unsigned long)btrfs_device_uuid(dev_item),
2389 BTRFS_UUID_SIZE);
2390 device = btrfs_find_device(root, devid, dev_uuid);
6324fbf3 2391 if (!device) {
dfe25020
CM
2392 printk("warning devid %Lu missing\n", devid);
2393 device = add_missing_dev(root, devid, dev_uuid);
6324fbf3
CM
2394 if (!device)
2395 return -ENOMEM;
6324fbf3 2396 }
0b86a832
CM
2397
2398 fill_device_from_item(leaf, dev_item, device);
2399 device->dev_root = root->fs_info->dev_root;
dfe25020 2400 device->in_fs_metadata = 1;
0b86a832
CM
2401 ret = 0;
2402#if 0
2403 ret = btrfs_open_device(device);
2404 if (ret) {
2405 kfree(device);
2406 }
2407#endif
2408 return ret;
2409}
2410
0d81ba5d
CM
2411int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
2412{
2413 struct btrfs_dev_item *dev_item;
2414
2415 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
2416 dev_item);
2417 return read_one_dev(root, buf, dev_item);
2418}
2419
0b86a832
CM
2420int btrfs_read_sys_array(struct btrfs_root *root)
2421{
2422 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
a061fc8d 2423 struct extent_buffer *sb;
0b86a832 2424 struct btrfs_disk_key *disk_key;
0b86a832 2425 struct btrfs_chunk *chunk;
84eed90f
CM
2426 u8 *ptr;
2427 unsigned long sb_ptr;
2428 int ret = 0;
0b86a832
CM
2429 u32 num_stripes;
2430 u32 array_size;
2431 u32 len = 0;
0b86a832 2432 u32 cur;
84eed90f 2433 struct btrfs_key key;
0b86a832 2434
a061fc8d
CM
2435 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
2436 BTRFS_SUPER_INFO_SIZE);
2437 if (!sb)
2438 return -ENOMEM;
2439 btrfs_set_buffer_uptodate(sb);
2440 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
2441 array_size = btrfs_super_sys_array_size(super_copy);
2442
0b86a832
CM
2443 ptr = super_copy->sys_chunk_array;
2444 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
2445 cur = 0;
2446
2447 while (cur < array_size) {
2448 disk_key = (struct btrfs_disk_key *)ptr;
2449 btrfs_disk_key_to_cpu(&key, disk_key);
2450
a061fc8d 2451 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
2452 sb_ptr += len;
2453 cur += len;
2454
0d81ba5d 2455 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 2456 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 2457 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
2458 if (ret)
2459 break;
0b86a832
CM
2460 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
2461 len = btrfs_chunk_item_size(num_stripes);
2462 } else {
84eed90f
CM
2463 ret = -EIO;
2464 break;
0b86a832
CM
2465 }
2466 ptr += len;
2467 sb_ptr += len;
2468 cur += len;
2469 }
a061fc8d 2470 free_extent_buffer(sb);
84eed90f 2471 return ret;
0b86a832
CM
2472}
2473
2474int btrfs_read_chunk_tree(struct btrfs_root *root)
2475{
2476 struct btrfs_path *path;
2477 struct extent_buffer *leaf;
2478 struct btrfs_key key;
2479 struct btrfs_key found_key;
2480 int ret;
2481 int slot;
2482
2483 root = root->fs_info->chunk_root;
2484
2485 path = btrfs_alloc_path();
2486 if (!path)
2487 return -ENOMEM;
2488
2489 /* first we search for all of the device items, and then we
2490 * read in all of the chunk items. This way we can create chunk
2491 * mappings that reference all of the devices that are afound
2492 */
2493 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2494 key.offset = 0;
2495 key.type = 0;
2496again:
2497 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2498 while(1) {
2499 leaf = path->nodes[0];
2500 slot = path->slots[0];
2501 if (slot >= btrfs_header_nritems(leaf)) {
2502 ret = btrfs_next_leaf(root, path);
2503 if (ret == 0)
2504 continue;
2505 if (ret < 0)
2506 goto error;
2507 break;
2508 }
2509 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2510 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
2511 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
2512 break;
2513 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
2514 struct btrfs_dev_item *dev_item;
2515 dev_item = btrfs_item_ptr(leaf, slot,
2516 struct btrfs_dev_item);
0d81ba5d 2517 ret = read_one_dev(root, leaf, dev_item);
0b86a832
CM
2518 BUG_ON(ret);
2519 }
2520 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
2521 struct btrfs_chunk *chunk;
2522 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2523 ret = read_one_chunk(root, &found_key, leaf, chunk);
2524 }
2525 path->slots[0]++;
2526 }
2527 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
2528 key.objectid = 0;
2529 btrfs_release_path(root, path);
2530 goto again;
2531 }
2532
2533 btrfs_free_path(path);
2534 ret = 0;
2535error:
2536 return ret;
2537}