btrfs: dev delete should remove sysfs entry
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
2b82032c
YZ
45static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 49static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 52
8a4b83cc
CM
53static DEFINE_MUTEX(uuid_mutex);
54static LIST_HEAD(fs_uuids);
55
7d9eb12c
CM
56static void lock_chunks(struct btrfs_root *root)
57{
7d9eb12c
CM
58 mutex_lock(&root->fs_info->chunk_mutex);
59}
60
61static void unlock_chunks(struct btrfs_root *root)
62{
7d9eb12c
CM
63 mutex_unlock(&root->fs_info->chunk_mutex);
64}
65
2208a378
ID
66static struct btrfs_fs_devices *__alloc_fs_devices(void)
67{
68 struct btrfs_fs_devices *fs_devs;
69
70 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71 if (!fs_devs)
72 return ERR_PTR(-ENOMEM);
73
74 mutex_init(&fs_devs->device_list_mutex);
75
76 INIT_LIST_HEAD(&fs_devs->devices);
77 INIT_LIST_HEAD(&fs_devs->alloc_list);
78 INIT_LIST_HEAD(&fs_devs->list);
79
80 return fs_devs;
81}
82
83/**
84 * alloc_fs_devices - allocate struct btrfs_fs_devices
85 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
86 * generated.
87 *
88 * Return: a pointer to a new &struct btrfs_fs_devices on success;
89 * ERR_PTR() on error. Returned struct is not linked onto any lists and
90 * can be destroyed with kfree() right away.
91 */
92static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
93{
94 struct btrfs_fs_devices *fs_devs;
95
96 fs_devs = __alloc_fs_devices();
97 if (IS_ERR(fs_devs))
98 return fs_devs;
99
100 if (fsid)
101 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
102 else
103 generate_random_uuid(fs_devs->fsid);
104
105 return fs_devs;
106}
107
e4404d6e
YZ
108static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
109{
110 struct btrfs_device *device;
111 WARN_ON(fs_devices->opened);
112 while (!list_empty(&fs_devices->devices)) {
113 device = list_entry(fs_devices->devices.next,
114 struct btrfs_device, dev_list);
115 list_del(&device->dev_list);
606686ee 116 rcu_string_free(device->name);
e4404d6e
YZ
117 kfree(device);
118 }
119 kfree(fs_devices);
120}
121
b8b8ff59
LC
122static void btrfs_kobject_uevent(struct block_device *bdev,
123 enum kobject_action action)
124{
125 int ret;
126
127 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
128 if (ret)
efe120a0 129 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
130 action,
131 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
132 &disk_to_dev(bdev->bd_disk)->kobj);
133}
134
143bede5 135void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
136{
137 struct btrfs_fs_devices *fs_devices;
8a4b83cc 138
2b82032c
YZ
139 while (!list_empty(&fs_uuids)) {
140 fs_devices = list_entry(fs_uuids.next,
141 struct btrfs_fs_devices, list);
142 list_del(&fs_devices->list);
e4404d6e 143 free_fs_devices(fs_devices);
8a4b83cc 144 }
8a4b83cc
CM
145}
146
12bd2fc0
ID
147static struct btrfs_device *__alloc_device(void)
148{
149 struct btrfs_device *dev;
150
151 dev = kzalloc(sizeof(*dev), GFP_NOFS);
152 if (!dev)
153 return ERR_PTR(-ENOMEM);
154
155 INIT_LIST_HEAD(&dev->dev_list);
156 INIT_LIST_HEAD(&dev->dev_alloc_list);
157
158 spin_lock_init(&dev->io_lock);
159
160 spin_lock_init(&dev->reada_lock);
161 atomic_set(&dev->reada_in_flight, 0);
162 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
163 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
164
165 return dev;
166}
167
a1b32a59
CM
168static noinline struct btrfs_device *__find_device(struct list_head *head,
169 u64 devid, u8 *uuid)
8a4b83cc
CM
170{
171 struct btrfs_device *dev;
8a4b83cc 172
c6e30871 173 list_for_each_entry(dev, head, dev_list) {
a443755f 174 if (dev->devid == devid &&
8f18cf13 175 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 176 return dev;
a443755f 177 }
8a4b83cc
CM
178 }
179 return NULL;
180}
181
a1b32a59 182static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 183{
8a4b83cc
CM
184 struct btrfs_fs_devices *fs_devices;
185
c6e30871 186 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
187 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
188 return fs_devices;
189 }
190 return NULL;
191}
192
beaf8ab3
SB
193static int
194btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
195 int flush, struct block_device **bdev,
196 struct buffer_head **bh)
197{
198 int ret;
199
200 *bdev = blkdev_get_by_path(device_path, flags, holder);
201
202 if (IS_ERR(*bdev)) {
203 ret = PTR_ERR(*bdev);
efe120a0 204 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
beaf8ab3
SB
205 goto error;
206 }
207
208 if (flush)
209 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
210 ret = set_blocksize(*bdev, 4096);
211 if (ret) {
212 blkdev_put(*bdev, flags);
213 goto error;
214 }
215 invalidate_bdev(*bdev);
216 *bh = btrfs_read_dev_super(*bdev);
217 if (!*bh) {
218 ret = -EINVAL;
219 blkdev_put(*bdev, flags);
220 goto error;
221 }
222
223 return 0;
224
225error:
226 *bdev = NULL;
227 *bh = NULL;
228 return ret;
229}
230
ffbd517d
CM
231static void requeue_list(struct btrfs_pending_bios *pending_bios,
232 struct bio *head, struct bio *tail)
233{
234
235 struct bio *old_head;
236
237 old_head = pending_bios->head;
238 pending_bios->head = head;
239 if (pending_bios->tail)
240 tail->bi_next = old_head;
241 else
242 pending_bios->tail = tail;
243}
244
8b712842
CM
245/*
246 * we try to collect pending bios for a device so we don't get a large
247 * number of procs sending bios down to the same device. This greatly
248 * improves the schedulers ability to collect and merge the bios.
249 *
250 * But, it also turns into a long list of bios to process and that is sure
251 * to eventually make the worker thread block. The solution here is to
252 * make some progress and then put this work struct back at the end of
253 * the list if the block device is congested. This way, multiple devices
254 * can make progress from a single worker thread.
255 */
143bede5 256static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
257{
258 struct bio *pending;
259 struct backing_dev_info *bdi;
b64a2851 260 struct btrfs_fs_info *fs_info;
ffbd517d 261 struct btrfs_pending_bios *pending_bios;
8b712842
CM
262 struct bio *tail;
263 struct bio *cur;
264 int again = 0;
ffbd517d 265 unsigned long num_run;
d644d8a1 266 unsigned long batch_run = 0;
b64a2851 267 unsigned long limit;
b765ead5 268 unsigned long last_waited = 0;
d84275c9 269 int force_reg = 0;
0e588859 270 int sync_pending = 0;
211588ad
CM
271 struct blk_plug plug;
272
273 /*
274 * this function runs all the bios we've collected for
275 * a particular device. We don't want to wander off to
276 * another device without first sending all of these down.
277 * So, setup a plug here and finish it off before we return
278 */
279 blk_start_plug(&plug);
8b712842 280
bedf762b 281 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
282 fs_info = device->dev_root->fs_info;
283 limit = btrfs_async_submit_limit(fs_info);
284 limit = limit * 2 / 3;
285
8b712842
CM
286loop:
287 spin_lock(&device->io_lock);
288
a6837051 289loop_lock:
d84275c9 290 num_run = 0;
ffbd517d 291
8b712842
CM
292 /* take all the bios off the list at once and process them
293 * later on (without the lock held). But, remember the
294 * tail and other pointers so the bios can be properly reinserted
295 * into the list if we hit congestion
296 */
d84275c9 297 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 298 pending_bios = &device->pending_sync_bios;
d84275c9
CM
299 force_reg = 1;
300 } else {
ffbd517d 301 pending_bios = &device->pending_bios;
d84275c9
CM
302 force_reg = 0;
303 }
ffbd517d
CM
304
305 pending = pending_bios->head;
306 tail = pending_bios->tail;
8b712842 307 WARN_ON(pending && !tail);
8b712842
CM
308
309 /*
310 * if pending was null this time around, no bios need processing
311 * at all and we can stop. Otherwise it'll loop back up again
312 * and do an additional check so no bios are missed.
313 *
314 * device->running_pending is used to synchronize with the
315 * schedule_bio code.
316 */
ffbd517d
CM
317 if (device->pending_sync_bios.head == NULL &&
318 device->pending_bios.head == NULL) {
8b712842
CM
319 again = 0;
320 device->running_pending = 0;
ffbd517d
CM
321 } else {
322 again = 1;
323 device->running_pending = 1;
8b712842 324 }
ffbd517d
CM
325
326 pending_bios->head = NULL;
327 pending_bios->tail = NULL;
328
8b712842
CM
329 spin_unlock(&device->io_lock);
330
d397712b 331 while (pending) {
ffbd517d
CM
332
333 rmb();
d84275c9
CM
334 /* we want to work on both lists, but do more bios on the
335 * sync list than the regular list
336 */
337 if ((num_run > 32 &&
338 pending_bios != &device->pending_sync_bios &&
339 device->pending_sync_bios.head) ||
340 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
341 device->pending_bios.head)) {
ffbd517d
CM
342 spin_lock(&device->io_lock);
343 requeue_list(pending_bios, pending, tail);
344 goto loop_lock;
345 }
346
8b712842
CM
347 cur = pending;
348 pending = pending->bi_next;
349 cur->bi_next = NULL;
b64a2851 350
66657b31 351 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
352 waitqueue_active(&fs_info->async_submit_wait))
353 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
354
355 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 356
2ab1ba68
CM
357 /*
358 * if we're doing the sync list, record that our
359 * plug has some sync requests on it
360 *
361 * If we're doing the regular list and there are
362 * sync requests sitting around, unplug before
363 * we add more
364 */
365 if (pending_bios == &device->pending_sync_bios) {
366 sync_pending = 1;
367 } else if (sync_pending) {
368 blk_finish_plug(&plug);
369 blk_start_plug(&plug);
370 sync_pending = 0;
371 }
372
21adbd5c 373 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
374 num_run++;
375 batch_run++;
7eaceacc 376 if (need_resched())
ffbd517d 377 cond_resched();
8b712842
CM
378
379 /*
380 * we made progress, there is more work to do and the bdi
381 * is now congested. Back off and let other work structs
382 * run instead
383 */
57fd5a5f 384 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 385 fs_info->fs_devices->open_devices > 1) {
b765ead5 386 struct io_context *ioc;
8b712842 387
b765ead5
CM
388 ioc = current->io_context;
389
390 /*
391 * the main goal here is that we don't want to
392 * block if we're going to be able to submit
393 * more requests without blocking.
394 *
395 * This code does two great things, it pokes into
396 * the elevator code from a filesystem _and_
397 * it makes assumptions about how batching works.
398 */
399 if (ioc && ioc->nr_batch_requests > 0 &&
400 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
401 (last_waited == 0 ||
402 ioc->last_waited == last_waited)) {
403 /*
404 * we want to go through our batch of
405 * requests and stop. So, we copy out
406 * the ioc->last_waited time and test
407 * against it before looping
408 */
409 last_waited = ioc->last_waited;
7eaceacc 410 if (need_resched())
ffbd517d 411 cond_resched();
b765ead5
CM
412 continue;
413 }
8b712842 414 spin_lock(&device->io_lock);
ffbd517d 415 requeue_list(pending_bios, pending, tail);
a6837051 416 device->running_pending = 1;
8b712842
CM
417
418 spin_unlock(&device->io_lock);
a8c93d4e
QW
419 btrfs_queue_work(fs_info->submit_workers,
420 &device->work);
8b712842
CM
421 goto done;
422 }
d85c8a6f
CM
423 /* unplug every 64 requests just for good measure */
424 if (batch_run % 64 == 0) {
425 blk_finish_plug(&plug);
426 blk_start_plug(&plug);
427 sync_pending = 0;
428 }
8b712842 429 }
ffbd517d 430
51684082
CM
431 cond_resched();
432 if (again)
433 goto loop;
434
435 spin_lock(&device->io_lock);
436 if (device->pending_bios.head || device->pending_sync_bios.head)
437 goto loop_lock;
438 spin_unlock(&device->io_lock);
439
8b712842 440done:
211588ad 441 blk_finish_plug(&plug);
8b712842
CM
442}
443
b2950863 444static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
445{
446 struct btrfs_device *device;
447
448 device = container_of(work, struct btrfs_device, work);
449 run_scheduled_bios(device);
450}
451
60999ca4
DS
452/*
453 * Add new device to list of registered devices
454 *
455 * Returns:
456 * 1 - first time device is seen
457 * 0 - device already known
458 * < 0 - error
459 */
a1b32a59 460static noinline int device_list_add(const char *path,
8a4b83cc
CM
461 struct btrfs_super_block *disk_super,
462 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
463{
464 struct btrfs_device *device;
465 struct btrfs_fs_devices *fs_devices;
606686ee 466 struct rcu_string *name;
60999ca4 467 int ret = 0;
8a4b83cc
CM
468 u64 found_transid = btrfs_super_generation(disk_super);
469
470 fs_devices = find_fsid(disk_super->fsid);
471 if (!fs_devices) {
2208a378
ID
472 fs_devices = alloc_fs_devices(disk_super->fsid);
473 if (IS_ERR(fs_devices))
474 return PTR_ERR(fs_devices);
475
8a4b83cc 476 list_add(&fs_devices->list, &fs_uuids);
8a4b83cc
CM
477 fs_devices->latest_devid = devid;
478 fs_devices->latest_trans = found_transid;
2208a378 479
8a4b83cc
CM
480 device = NULL;
481 } else {
a443755f
CM
482 device = __find_device(&fs_devices->devices, devid,
483 disk_super->dev_item.uuid);
8a4b83cc
CM
484 }
485 if (!device) {
2b82032c
YZ
486 if (fs_devices->opened)
487 return -EBUSY;
488
12bd2fc0
ID
489 device = btrfs_alloc_device(NULL, &devid,
490 disk_super->dev_item.uuid);
491 if (IS_ERR(device)) {
8a4b83cc 492 /* we can safely leave the fs_devices entry around */
12bd2fc0 493 return PTR_ERR(device);
8a4b83cc 494 }
606686ee
JB
495
496 name = rcu_string_strdup(path, GFP_NOFS);
497 if (!name) {
8a4b83cc
CM
498 kfree(device);
499 return -ENOMEM;
500 }
606686ee 501 rcu_assign_pointer(device->name, name);
90519d66 502
e5e9a520 503 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 504 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 505 fs_devices->num_devices++;
e5e9a520
CM
506 mutex_unlock(&fs_devices->device_list_mutex);
507
60999ca4 508 ret = 1;
2b82032c 509 device->fs_devices = fs_devices;
606686ee
JB
510 } else if (!device->name || strcmp(device->name->str, path)) {
511 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
512 if (!name)
513 return -ENOMEM;
606686ee
JB
514 rcu_string_free(device->name);
515 rcu_assign_pointer(device->name, name);
cd02dca5
CM
516 if (device->missing) {
517 fs_devices->missing_devices--;
518 device->missing = 0;
519 }
8a4b83cc
CM
520 }
521
522 if (found_transid > fs_devices->latest_trans) {
523 fs_devices->latest_devid = devid;
524 fs_devices->latest_trans = found_transid;
525 }
8a4b83cc 526 *fs_devices_ret = fs_devices;
60999ca4
DS
527
528 return ret;
8a4b83cc
CM
529}
530
e4404d6e
YZ
531static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
532{
533 struct btrfs_fs_devices *fs_devices;
534 struct btrfs_device *device;
535 struct btrfs_device *orig_dev;
536
2208a378
ID
537 fs_devices = alloc_fs_devices(orig->fsid);
538 if (IS_ERR(fs_devices))
539 return fs_devices;
e4404d6e 540
e4404d6e
YZ
541 fs_devices->latest_devid = orig->latest_devid;
542 fs_devices->latest_trans = orig->latest_trans;
02db0844 543 fs_devices->total_devices = orig->total_devices;
e4404d6e 544
46224705 545 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 546 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
547 struct rcu_string *name;
548
12bd2fc0
ID
549 device = btrfs_alloc_device(NULL, &orig_dev->devid,
550 orig_dev->uuid);
551 if (IS_ERR(device))
e4404d6e
YZ
552 goto error;
553
606686ee
JB
554 /*
555 * This is ok to do without rcu read locked because we hold the
556 * uuid mutex so nothing we touch in here is going to disappear.
557 */
558 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
559 if (!name) {
fd2696f3 560 kfree(device);
e4404d6e 561 goto error;
fd2696f3 562 }
606686ee 563 rcu_assign_pointer(device->name, name);
e4404d6e 564
e4404d6e
YZ
565 list_add(&device->dev_list, &fs_devices->devices);
566 device->fs_devices = fs_devices;
567 fs_devices->num_devices++;
568 }
569 return fs_devices;
570error:
571 free_fs_devices(fs_devices);
572 return ERR_PTR(-ENOMEM);
573}
574
8dabb742
SB
575void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
576 struct btrfs_fs_devices *fs_devices, int step)
dfe25020 577{
c6e30871 578 struct btrfs_device *device, *next;
dfe25020 579
a6b0d5c8
CM
580 struct block_device *latest_bdev = NULL;
581 u64 latest_devid = 0;
582 u64 latest_transid = 0;
583
dfe25020
CM
584 mutex_lock(&uuid_mutex);
585again:
46224705 586 /* This is the initialized path, it is safe to release the devices. */
c6e30871 587 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 588 if (device->in_fs_metadata) {
63a212ab
SB
589 if (!device->is_tgtdev_for_dev_replace &&
590 (!latest_transid ||
591 device->generation > latest_transid)) {
a6b0d5c8
CM
592 latest_devid = device->devid;
593 latest_transid = device->generation;
594 latest_bdev = device->bdev;
595 }
2b82032c 596 continue;
a6b0d5c8 597 }
2b82032c 598
8dabb742
SB
599 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
600 /*
601 * In the first step, keep the device which has
602 * the correct fsid and the devid that is used
603 * for the dev_replace procedure.
604 * In the second step, the dev_replace state is
605 * read from the device tree and it is known
606 * whether the procedure is really active or
607 * not, which means whether this device is
608 * used or whether it should be removed.
609 */
610 if (step == 0 || device->is_tgtdev_for_dev_replace) {
611 continue;
612 }
613 }
2b82032c 614 if (device->bdev) {
d4d77629 615 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
616 device->bdev = NULL;
617 fs_devices->open_devices--;
618 }
619 if (device->writeable) {
620 list_del_init(&device->dev_alloc_list);
621 device->writeable = 0;
8dabb742
SB
622 if (!device->is_tgtdev_for_dev_replace)
623 fs_devices->rw_devices--;
2b82032c 624 }
e4404d6e
YZ
625 list_del_init(&device->dev_list);
626 fs_devices->num_devices--;
606686ee 627 rcu_string_free(device->name);
e4404d6e 628 kfree(device);
dfe25020 629 }
2b82032c
YZ
630
631 if (fs_devices->seed) {
632 fs_devices = fs_devices->seed;
2b82032c
YZ
633 goto again;
634 }
635
a6b0d5c8
CM
636 fs_devices->latest_bdev = latest_bdev;
637 fs_devices->latest_devid = latest_devid;
638 fs_devices->latest_trans = latest_transid;
639
dfe25020 640 mutex_unlock(&uuid_mutex);
dfe25020 641}
a0af469b 642
1f78160c
XG
643static void __free_device(struct work_struct *work)
644{
645 struct btrfs_device *device;
646
647 device = container_of(work, struct btrfs_device, rcu_work);
648
649 if (device->bdev)
650 blkdev_put(device->bdev, device->mode);
651
606686ee 652 rcu_string_free(device->name);
1f78160c
XG
653 kfree(device);
654}
655
656static void free_device(struct rcu_head *head)
657{
658 struct btrfs_device *device;
659
660 device = container_of(head, struct btrfs_device, rcu);
661
662 INIT_WORK(&device->rcu_work, __free_device);
663 schedule_work(&device->rcu_work);
664}
665
2b82032c 666static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 667{
8a4b83cc 668 struct btrfs_device *device;
e4404d6e 669
2b82032c
YZ
670 if (--fs_devices->opened > 0)
671 return 0;
8a4b83cc 672
c9513edb 673 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 674 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 675 struct btrfs_device *new_device;
606686ee 676 struct rcu_string *name;
1f78160c
XG
677
678 if (device->bdev)
a0af469b 679 fs_devices->open_devices--;
1f78160c 680
f747cab7
ID
681 if (device->writeable &&
682 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
683 list_del_init(&device->dev_alloc_list);
684 fs_devices->rw_devices--;
685 }
686
d5e2003c
JB
687 if (device->can_discard)
688 fs_devices->num_can_discard--;
726551eb
JB
689 if (device->missing)
690 fs_devices->missing_devices--;
d5e2003c 691
a1e8780a
ID
692 new_device = btrfs_alloc_device(NULL, &device->devid,
693 device->uuid);
694 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
606686ee
JB
695
696 /* Safe because we are under uuid_mutex */
99f5944b
JB
697 if (device->name) {
698 name = rcu_string_strdup(device->name->str, GFP_NOFS);
a1e8780a 699 BUG_ON(!name); /* -ENOMEM */
99f5944b
JB
700 rcu_assign_pointer(new_device->name, name);
701 }
a1e8780a 702
1f78160c 703 list_replace_rcu(&device->dev_list, &new_device->dev_list);
a1e8780a 704 new_device->fs_devices = device->fs_devices;
1f78160c
XG
705
706 call_rcu(&device->rcu, free_device);
8a4b83cc 707 }
c9513edb
XG
708 mutex_unlock(&fs_devices->device_list_mutex);
709
e4404d6e
YZ
710 WARN_ON(fs_devices->open_devices);
711 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
712 fs_devices->opened = 0;
713 fs_devices->seeding = 0;
2b82032c 714
8a4b83cc
CM
715 return 0;
716}
717
2b82032c
YZ
718int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
719{
e4404d6e 720 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
721 int ret;
722
723 mutex_lock(&uuid_mutex);
724 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
725 if (!fs_devices->opened) {
726 seed_devices = fs_devices->seed;
727 fs_devices->seed = NULL;
728 }
2b82032c 729 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
730
731 while (seed_devices) {
732 fs_devices = seed_devices;
733 seed_devices = fs_devices->seed;
734 __btrfs_close_devices(fs_devices);
735 free_fs_devices(fs_devices);
736 }
bc178622
ES
737 /*
738 * Wait for rcu kworkers under __btrfs_close_devices
739 * to finish all blkdev_puts so device is really
740 * free when umount is done.
741 */
742 rcu_barrier();
2b82032c
YZ
743 return ret;
744}
745
e4404d6e
YZ
746static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
747 fmode_t flags, void *holder)
8a4b83cc 748{
d5e2003c 749 struct request_queue *q;
8a4b83cc
CM
750 struct block_device *bdev;
751 struct list_head *head = &fs_devices->devices;
8a4b83cc 752 struct btrfs_device *device;
a0af469b
CM
753 struct block_device *latest_bdev = NULL;
754 struct buffer_head *bh;
755 struct btrfs_super_block *disk_super;
756 u64 latest_devid = 0;
757 u64 latest_transid = 0;
a0af469b 758 u64 devid;
2b82032c 759 int seeding = 1;
a0af469b 760 int ret = 0;
8a4b83cc 761
d4d77629
TH
762 flags |= FMODE_EXCL;
763
c6e30871 764 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
765 if (device->bdev)
766 continue;
dfe25020
CM
767 if (!device->name)
768 continue;
769
f63e0cca
ES
770 /* Just open everything we can; ignore failures here */
771 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
772 &bdev, &bh))
beaf8ab3 773 continue;
a0af469b
CM
774
775 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 776 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
777 if (devid != device->devid)
778 goto error_brelse;
779
2b82032c
YZ
780 if (memcmp(device->uuid, disk_super->dev_item.uuid,
781 BTRFS_UUID_SIZE))
782 goto error_brelse;
783
784 device->generation = btrfs_super_generation(disk_super);
785 if (!latest_transid || device->generation > latest_transid) {
a0af469b 786 latest_devid = devid;
2b82032c 787 latest_transid = device->generation;
a0af469b
CM
788 latest_bdev = bdev;
789 }
790
2b82032c
YZ
791 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
792 device->writeable = 0;
793 } else {
794 device->writeable = !bdev_read_only(bdev);
795 seeding = 0;
796 }
797
d5e2003c
JB
798 q = bdev_get_queue(bdev);
799 if (blk_queue_discard(q)) {
800 device->can_discard = 1;
801 fs_devices->num_can_discard++;
802 }
803
8a4b83cc 804 device->bdev = bdev;
dfe25020 805 device->in_fs_metadata = 0;
15916de8
CM
806 device->mode = flags;
807
c289811c
CM
808 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
809 fs_devices->rotating = 1;
810
a0af469b 811 fs_devices->open_devices++;
55e50e45
ID
812 if (device->writeable &&
813 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
814 fs_devices->rw_devices++;
815 list_add(&device->dev_alloc_list,
816 &fs_devices->alloc_list);
817 }
4f6c9328 818 brelse(bh);
a0af469b 819 continue;
a061fc8d 820
a0af469b
CM
821error_brelse:
822 brelse(bh);
d4d77629 823 blkdev_put(bdev, flags);
a0af469b 824 continue;
8a4b83cc 825 }
a0af469b 826 if (fs_devices->open_devices == 0) {
20bcd649 827 ret = -EINVAL;
a0af469b
CM
828 goto out;
829 }
2b82032c
YZ
830 fs_devices->seeding = seeding;
831 fs_devices->opened = 1;
a0af469b
CM
832 fs_devices->latest_bdev = latest_bdev;
833 fs_devices->latest_devid = latest_devid;
834 fs_devices->latest_trans = latest_transid;
2b82032c 835 fs_devices->total_rw_bytes = 0;
a0af469b 836out:
2b82032c
YZ
837 return ret;
838}
839
840int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 841 fmode_t flags, void *holder)
2b82032c
YZ
842{
843 int ret;
844
845 mutex_lock(&uuid_mutex);
846 if (fs_devices->opened) {
e4404d6e
YZ
847 fs_devices->opened++;
848 ret = 0;
2b82032c 849 } else {
15916de8 850 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 851 }
8a4b83cc 852 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
853 return ret;
854}
855
6f60cbd3
DS
856/*
857 * Look for a btrfs signature on a device. This may be called out of the mount path
858 * and we are not allowed to call set_blocksize during the scan. The superblock
859 * is read via pagecache
860 */
97288f2c 861int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
862 struct btrfs_fs_devices **fs_devices_ret)
863{
864 struct btrfs_super_block *disk_super;
865 struct block_device *bdev;
6f60cbd3
DS
866 struct page *page;
867 void *p;
868 int ret = -EINVAL;
8a4b83cc 869 u64 devid;
f2984462 870 u64 transid;
02db0844 871 u64 total_devices;
6f60cbd3
DS
872 u64 bytenr;
873 pgoff_t index;
8a4b83cc 874
6f60cbd3
DS
875 /*
876 * we would like to check all the supers, but that would make
877 * a btrfs mount succeed after a mkfs from a different FS.
878 * So, we need to add a special mount option to scan for
879 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
880 */
881 bytenr = btrfs_sb_offset(0);
d4d77629 882 flags |= FMODE_EXCL;
10f6327b 883 mutex_lock(&uuid_mutex);
6f60cbd3
DS
884
885 bdev = blkdev_get_by_path(path, flags, holder);
886
887 if (IS_ERR(bdev)) {
888 ret = PTR_ERR(bdev);
beaf8ab3 889 goto error;
6f60cbd3
DS
890 }
891
892 /* make sure our super fits in the device */
893 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
894 goto error_bdev_put;
895
896 /* make sure our super fits in the page */
897 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
898 goto error_bdev_put;
899
900 /* make sure our super doesn't straddle pages on disk */
901 index = bytenr >> PAGE_CACHE_SHIFT;
902 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
903 goto error_bdev_put;
904
905 /* pull in the page with our super */
906 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
907 index, GFP_NOFS);
908
909 if (IS_ERR_OR_NULL(page))
910 goto error_bdev_put;
911
912 p = kmap(page);
913
914 /* align our pointer to the offset of the super block */
915 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
916
917 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 918 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
919 goto error_unmap;
920
a343832f 921 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 922 transid = btrfs_super_generation(disk_super);
02db0844 923 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 924
8a4b83cc 925 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
926 if (ret > 0) {
927 if (disk_super->label[0]) {
928 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
929 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
930 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
931 } else {
932 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
933 }
934
935 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
936 ret = 0;
937 }
02db0844
JB
938 if (!ret && fs_devices_ret)
939 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
940
941error_unmap:
942 kunmap(page);
943 page_cache_release(page);
944
945error_bdev_put:
d4d77629 946 blkdev_put(bdev, flags);
8a4b83cc 947error:
beaf8ab3 948 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
949 return ret;
950}
0b86a832 951
6d07bcec
MX
952/* helper to account the used device space in the range */
953int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
954 u64 end, u64 *length)
955{
956 struct btrfs_key key;
957 struct btrfs_root *root = device->dev_root;
958 struct btrfs_dev_extent *dev_extent;
959 struct btrfs_path *path;
960 u64 extent_end;
961 int ret;
962 int slot;
963 struct extent_buffer *l;
964
965 *length = 0;
966
63a212ab 967 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
968 return 0;
969
970 path = btrfs_alloc_path();
971 if (!path)
972 return -ENOMEM;
973 path->reada = 2;
974
975 key.objectid = device->devid;
976 key.offset = start;
977 key.type = BTRFS_DEV_EXTENT_KEY;
978
979 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
980 if (ret < 0)
981 goto out;
982 if (ret > 0) {
983 ret = btrfs_previous_item(root, path, key.objectid, key.type);
984 if (ret < 0)
985 goto out;
986 }
987
988 while (1) {
989 l = path->nodes[0];
990 slot = path->slots[0];
991 if (slot >= btrfs_header_nritems(l)) {
992 ret = btrfs_next_leaf(root, path);
993 if (ret == 0)
994 continue;
995 if (ret < 0)
996 goto out;
997
998 break;
999 }
1000 btrfs_item_key_to_cpu(l, &key, slot);
1001
1002 if (key.objectid < device->devid)
1003 goto next;
1004
1005 if (key.objectid > device->devid)
1006 break;
1007
1008 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1009 goto next;
1010
1011 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1012 extent_end = key.offset + btrfs_dev_extent_length(l,
1013 dev_extent);
1014 if (key.offset <= start && extent_end > end) {
1015 *length = end - start + 1;
1016 break;
1017 } else if (key.offset <= start && extent_end > start)
1018 *length += extent_end - start;
1019 else if (key.offset > start && extent_end <= end)
1020 *length += extent_end - key.offset;
1021 else if (key.offset > start && key.offset <= end) {
1022 *length += end - key.offset + 1;
1023 break;
1024 } else if (key.offset > end)
1025 break;
1026
1027next:
1028 path->slots[0]++;
1029 }
1030 ret = 0;
1031out:
1032 btrfs_free_path(path);
1033 return ret;
1034}
1035
6df9a95e
JB
1036static int contains_pending_extent(struct btrfs_trans_handle *trans,
1037 struct btrfs_device *device,
1038 u64 *start, u64 len)
1039{
1040 struct extent_map *em;
1041 int ret = 0;
1042
1043 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1044 struct map_lookup *map;
1045 int i;
1046
1047 map = (struct map_lookup *)em->bdev;
1048 for (i = 0; i < map->num_stripes; i++) {
1049 if (map->stripes[i].dev != device)
1050 continue;
1051 if (map->stripes[i].physical >= *start + len ||
1052 map->stripes[i].physical + em->orig_block_len <=
1053 *start)
1054 continue;
1055 *start = map->stripes[i].physical +
1056 em->orig_block_len;
1057 ret = 1;
1058 }
1059 }
1060
1061 return ret;
1062}
1063
1064
0b86a832 1065/*
7bfc837d 1066 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
1067 * @device: the device which we search the free space in
1068 * @num_bytes: the size of the free space that we need
1069 * @start: store the start of the free space.
1070 * @len: the size of the free space. that we find, or the size of the max
1071 * free space if we don't find suitable free space
1072 *
0b86a832
CM
1073 * this uses a pretty simple search, the expectation is that it is
1074 * called very infrequently and that a given device has a small number
1075 * of extents
7bfc837d
MX
1076 *
1077 * @start is used to store the start of the free space if we find. But if we
1078 * don't find suitable free space, it will be used to store the start position
1079 * of the max free space.
1080 *
1081 * @len is used to store the size of the free space that we find.
1082 * But if we don't find suitable free space, it is used to store the size of
1083 * the max free space.
0b86a832 1084 */
6df9a95e
JB
1085int find_free_dev_extent(struct btrfs_trans_handle *trans,
1086 struct btrfs_device *device, u64 num_bytes,
7bfc837d 1087 u64 *start, u64 *len)
0b86a832
CM
1088{
1089 struct btrfs_key key;
1090 struct btrfs_root *root = device->dev_root;
7bfc837d 1091 struct btrfs_dev_extent *dev_extent;
2b82032c 1092 struct btrfs_path *path;
7bfc837d
MX
1093 u64 hole_size;
1094 u64 max_hole_start;
1095 u64 max_hole_size;
1096 u64 extent_end;
1097 u64 search_start;
0b86a832
CM
1098 u64 search_end = device->total_bytes;
1099 int ret;
7bfc837d 1100 int slot;
0b86a832
CM
1101 struct extent_buffer *l;
1102
0b86a832
CM
1103 /* FIXME use last free of some kind */
1104
8a4b83cc
CM
1105 /* we don't want to overwrite the superblock on the drive,
1106 * so we make sure to start at an offset of at least 1MB
1107 */
a9c9bf68 1108 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 1109
6df9a95e
JB
1110 path = btrfs_alloc_path();
1111 if (!path)
1112 return -ENOMEM;
1113again:
7bfc837d
MX
1114 max_hole_start = search_start;
1115 max_hole_size = 0;
38c01b96 1116 hole_size = 0;
7bfc837d 1117
63a212ab 1118 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1119 ret = -ENOSPC;
6df9a95e 1120 goto out;
7bfc837d
MX
1121 }
1122
7bfc837d 1123 path->reada = 2;
6df9a95e
JB
1124 path->search_commit_root = 1;
1125 path->skip_locking = 1;
7bfc837d 1126
0b86a832
CM
1127 key.objectid = device->devid;
1128 key.offset = search_start;
1129 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1130
125ccb0a 1131 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1132 if (ret < 0)
7bfc837d 1133 goto out;
1fcbac58
YZ
1134 if (ret > 0) {
1135 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1136 if (ret < 0)
7bfc837d 1137 goto out;
1fcbac58 1138 }
7bfc837d 1139
0b86a832
CM
1140 while (1) {
1141 l = path->nodes[0];
1142 slot = path->slots[0];
1143 if (slot >= btrfs_header_nritems(l)) {
1144 ret = btrfs_next_leaf(root, path);
1145 if (ret == 0)
1146 continue;
1147 if (ret < 0)
7bfc837d
MX
1148 goto out;
1149
1150 break;
0b86a832
CM
1151 }
1152 btrfs_item_key_to_cpu(l, &key, slot);
1153
1154 if (key.objectid < device->devid)
1155 goto next;
1156
1157 if (key.objectid > device->devid)
7bfc837d 1158 break;
0b86a832 1159
7bfc837d
MX
1160 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1161 goto next;
9779b72f 1162
7bfc837d
MX
1163 if (key.offset > search_start) {
1164 hole_size = key.offset - search_start;
9779b72f 1165
6df9a95e
JB
1166 /*
1167 * Have to check before we set max_hole_start, otherwise
1168 * we could end up sending back this offset anyway.
1169 */
1170 if (contains_pending_extent(trans, device,
1171 &search_start,
1172 hole_size))
1173 hole_size = 0;
1174
7bfc837d
MX
1175 if (hole_size > max_hole_size) {
1176 max_hole_start = search_start;
1177 max_hole_size = hole_size;
1178 }
9779b72f 1179
7bfc837d
MX
1180 /*
1181 * If this free space is greater than which we need,
1182 * it must be the max free space that we have found
1183 * until now, so max_hole_start must point to the start
1184 * of this free space and the length of this free space
1185 * is stored in max_hole_size. Thus, we return
1186 * max_hole_start and max_hole_size and go back to the
1187 * caller.
1188 */
1189 if (hole_size >= num_bytes) {
1190 ret = 0;
1191 goto out;
0b86a832
CM
1192 }
1193 }
0b86a832 1194
0b86a832 1195 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1196 extent_end = key.offset + btrfs_dev_extent_length(l,
1197 dev_extent);
1198 if (extent_end > search_start)
1199 search_start = extent_end;
0b86a832
CM
1200next:
1201 path->slots[0]++;
1202 cond_resched();
1203 }
0b86a832 1204
38c01b96 1205 /*
1206 * At this point, search_start should be the end of
1207 * allocated dev extents, and when shrinking the device,
1208 * search_end may be smaller than search_start.
1209 */
1210 if (search_end > search_start)
1211 hole_size = search_end - search_start;
1212
7bfc837d
MX
1213 if (hole_size > max_hole_size) {
1214 max_hole_start = search_start;
1215 max_hole_size = hole_size;
0b86a832 1216 }
0b86a832 1217
6df9a95e
JB
1218 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1219 btrfs_release_path(path);
1220 goto again;
1221 }
1222
7bfc837d
MX
1223 /* See above. */
1224 if (hole_size < num_bytes)
1225 ret = -ENOSPC;
1226 else
1227 ret = 0;
1228
1229out:
2b82032c 1230 btrfs_free_path(path);
7bfc837d 1231 *start = max_hole_start;
b2117a39 1232 if (len)
7bfc837d 1233 *len = max_hole_size;
0b86a832
CM
1234 return ret;
1235}
1236
b2950863 1237static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1238 struct btrfs_device *device,
1239 u64 start)
1240{
1241 int ret;
1242 struct btrfs_path *path;
1243 struct btrfs_root *root = device->dev_root;
1244 struct btrfs_key key;
a061fc8d
CM
1245 struct btrfs_key found_key;
1246 struct extent_buffer *leaf = NULL;
1247 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1248
1249 path = btrfs_alloc_path();
1250 if (!path)
1251 return -ENOMEM;
1252
1253 key.objectid = device->devid;
1254 key.offset = start;
1255 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1256again:
8f18cf13 1257 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1258 if (ret > 0) {
1259 ret = btrfs_previous_item(root, path, key.objectid,
1260 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1261 if (ret)
1262 goto out;
a061fc8d
CM
1263 leaf = path->nodes[0];
1264 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1265 extent = btrfs_item_ptr(leaf, path->slots[0],
1266 struct btrfs_dev_extent);
1267 BUG_ON(found_key.offset > start || found_key.offset +
1268 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1269 key = found_key;
1270 btrfs_release_path(path);
1271 goto again;
a061fc8d
CM
1272 } else if (ret == 0) {
1273 leaf = path->nodes[0];
1274 extent = btrfs_item_ptr(leaf, path->slots[0],
1275 struct btrfs_dev_extent);
79787eaa
JM
1276 } else {
1277 btrfs_error(root->fs_info, ret, "Slot search failed");
1278 goto out;
a061fc8d 1279 }
8f18cf13 1280
2bf64758
JB
1281 if (device->bytes_used > 0) {
1282 u64 len = btrfs_dev_extent_length(leaf, extent);
1283 device->bytes_used -= len;
1284 spin_lock(&root->fs_info->free_chunk_lock);
1285 root->fs_info->free_chunk_space += len;
1286 spin_unlock(&root->fs_info->free_chunk_lock);
1287 }
8f18cf13 1288 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1289 if (ret) {
1290 btrfs_error(root->fs_info, ret,
1291 "Failed to remove dev extent item");
1292 }
b0b802d7 1293out:
8f18cf13
CM
1294 btrfs_free_path(path);
1295 return ret;
1296}
1297
48a3b636
ES
1298static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1299 struct btrfs_device *device,
1300 u64 chunk_tree, u64 chunk_objectid,
1301 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1302{
1303 int ret;
1304 struct btrfs_path *path;
1305 struct btrfs_root *root = device->dev_root;
1306 struct btrfs_dev_extent *extent;
1307 struct extent_buffer *leaf;
1308 struct btrfs_key key;
1309
dfe25020 1310 WARN_ON(!device->in_fs_metadata);
63a212ab 1311 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1312 path = btrfs_alloc_path();
1313 if (!path)
1314 return -ENOMEM;
1315
0b86a832 1316 key.objectid = device->devid;
2b82032c 1317 key.offset = start;
0b86a832
CM
1318 key.type = BTRFS_DEV_EXTENT_KEY;
1319 ret = btrfs_insert_empty_item(trans, root, path, &key,
1320 sizeof(*extent));
2cdcecbc
MF
1321 if (ret)
1322 goto out;
0b86a832
CM
1323
1324 leaf = path->nodes[0];
1325 extent = btrfs_item_ptr(leaf, path->slots[0],
1326 struct btrfs_dev_extent);
e17cade2
CM
1327 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1328 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1329 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1330
1331 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1332 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1333
0b86a832
CM
1334 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1335 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1336out:
0b86a832
CM
1337 btrfs_free_path(path);
1338 return ret;
1339}
1340
6df9a95e 1341static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1342{
6df9a95e
JB
1343 struct extent_map_tree *em_tree;
1344 struct extent_map *em;
1345 struct rb_node *n;
1346 u64 ret = 0;
0b86a832 1347
6df9a95e
JB
1348 em_tree = &fs_info->mapping_tree.map_tree;
1349 read_lock(&em_tree->lock);
1350 n = rb_last(&em_tree->map);
1351 if (n) {
1352 em = rb_entry(n, struct extent_map, rb_node);
1353 ret = em->start + em->len;
0b86a832 1354 }
6df9a95e
JB
1355 read_unlock(&em_tree->lock);
1356
0b86a832
CM
1357 return ret;
1358}
1359
53f10659
ID
1360static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1361 u64 *devid_ret)
0b86a832
CM
1362{
1363 int ret;
1364 struct btrfs_key key;
1365 struct btrfs_key found_key;
2b82032c
YZ
1366 struct btrfs_path *path;
1367
2b82032c
YZ
1368 path = btrfs_alloc_path();
1369 if (!path)
1370 return -ENOMEM;
0b86a832
CM
1371
1372 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1373 key.type = BTRFS_DEV_ITEM_KEY;
1374 key.offset = (u64)-1;
1375
53f10659 1376 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1377 if (ret < 0)
1378 goto error;
1379
79787eaa 1380 BUG_ON(ret == 0); /* Corruption */
0b86a832 1381
53f10659
ID
1382 ret = btrfs_previous_item(fs_info->chunk_root, path,
1383 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1384 BTRFS_DEV_ITEM_KEY);
1385 if (ret) {
53f10659 1386 *devid_ret = 1;
0b86a832
CM
1387 } else {
1388 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1389 path->slots[0]);
53f10659 1390 *devid_ret = found_key.offset + 1;
0b86a832
CM
1391 }
1392 ret = 0;
1393error:
2b82032c 1394 btrfs_free_path(path);
0b86a832
CM
1395 return ret;
1396}
1397
1398/*
1399 * the device information is stored in the chunk root
1400 * the btrfs_device struct should be fully filled in
1401 */
48a3b636
ES
1402static int btrfs_add_device(struct btrfs_trans_handle *trans,
1403 struct btrfs_root *root,
1404 struct btrfs_device *device)
0b86a832
CM
1405{
1406 int ret;
1407 struct btrfs_path *path;
1408 struct btrfs_dev_item *dev_item;
1409 struct extent_buffer *leaf;
1410 struct btrfs_key key;
1411 unsigned long ptr;
0b86a832
CM
1412
1413 root = root->fs_info->chunk_root;
1414
1415 path = btrfs_alloc_path();
1416 if (!path)
1417 return -ENOMEM;
1418
0b86a832
CM
1419 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1420 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1421 key.offset = device->devid;
0b86a832
CM
1422
1423 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1424 sizeof(*dev_item));
0b86a832
CM
1425 if (ret)
1426 goto out;
1427
1428 leaf = path->nodes[0];
1429 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1430
1431 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1432 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1433 btrfs_set_device_type(leaf, dev_item, device->type);
1434 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1435 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1436 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1437 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1438 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1439 btrfs_set_device_group(leaf, dev_item, 0);
1440 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1441 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1442 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1443
410ba3a2 1444 ptr = btrfs_device_uuid(dev_item);
e17cade2 1445 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1446 ptr = btrfs_device_fsid(dev_item);
2b82032c 1447 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1448 btrfs_mark_buffer_dirty(leaf);
0b86a832 1449
2b82032c 1450 ret = 0;
0b86a832
CM
1451out:
1452 btrfs_free_path(path);
1453 return ret;
1454}
8f18cf13 1455
5a1972bd
QW
1456/*
1457 * Function to update ctime/mtime for a given device path.
1458 * Mainly used for ctime/mtime based probe like libblkid.
1459 */
1460static void update_dev_time(char *path_name)
1461{
1462 struct file *filp;
1463
1464 filp = filp_open(path_name, O_RDWR, 0);
1465 if (!filp)
1466 return;
1467 file_update_time(filp);
1468 filp_close(filp, NULL);
1469 return;
1470}
1471
a061fc8d
CM
1472static int btrfs_rm_dev_item(struct btrfs_root *root,
1473 struct btrfs_device *device)
1474{
1475 int ret;
1476 struct btrfs_path *path;
a061fc8d 1477 struct btrfs_key key;
a061fc8d
CM
1478 struct btrfs_trans_handle *trans;
1479
1480 root = root->fs_info->chunk_root;
1481
1482 path = btrfs_alloc_path();
1483 if (!path)
1484 return -ENOMEM;
1485
a22285a6 1486 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1487 if (IS_ERR(trans)) {
1488 btrfs_free_path(path);
1489 return PTR_ERR(trans);
1490 }
a061fc8d
CM
1491 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1492 key.type = BTRFS_DEV_ITEM_KEY;
1493 key.offset = device->devid;
7d9eb12c 1494 lock_chunks(root);
a061fc8d
CM
1495
1496 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1497 if (ret < 0)
1498 goto out;
1499
1500 if (ret > 0) {
1501 ret = -ENOENT;
1502 goto out;
1503 }
1504
1505 ret = btrfs_del_item(trans, root, path);
1506 if (ret)
1507 goto out;
a061fc8d
CM
1508out:
1509 btrfs_free_path(path);
7d9eb12c 1510 unlock_chunks(root);
a061fc8d
CM
1511 btrfs_commit_transaction(trans, root);
1512 return ret;
1513}
1514
1515int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1516{
1517 struct btrfs_device *device;
2b82032c 1518 struct btrfs_device *next_device;
a061fc8d 1519 struct block_device *bdev;
dfe25020 1520 struct buffer_head *bh = NULL;
a061fc8d 1521 struct btrfs_super_block *disk_super;
1f78160c 1522 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1523 u64 all_avail;
1524 u64 devid;
2b82032c
YZ
1525 u64 num_devices;
1526 u8 *dev_uuid;
de98ced9 1527 unsigned seq;
a061fc8d 1528 int ret = 0;
1f78160c 1529 bool clear_super = false;
a061fc8d 1530
a061fc8d
CM
1531 mutex_lock(&uuid_mutex);
1532
de98ced9
MX
1533 do {
1534 seq = read_seqbegin(&root->fs_info->profiles_lock);
1535
1536 all_avail = root->fs_info->avail_data_alloc_bits |
1537 root->fs_info->avail_system_alloc_bits |
1538 root->fs_info->avail_metadata_alloc_bits;
1539 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1540
8dabb742
SB
1541 num_devices = root->fs_info->fs_devices->num_devices;
1542 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1543 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1544 WARN_ON(num_devices < 1);
1545 num_devices--;
1546 }
1547 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1548
1549 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1550 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1551 goto out;
1552 }
1553
8dabb742 1554 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1555 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1556 goto out;
1557 }
1558
53b381b3
DW
1559 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1560 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1561 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1562 goto out;
1563 }
1564 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1565 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1566 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1567 goto out;
1568 }
1569
dfe25020 1570 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1571 struct list_head *devices;
1572 struct btrfs_device *tmp;
a061fc8d 1573
dfe25020
CM
1574 device = NULL;
1575 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1576 /*
1577 * It is safe to read the devices since the volume_mutex
1578 * is held.
1579 */
c6e30871 1580 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1581 if (tmp->in_fs_metadata &&
1582 !tmp->is_tgtdev_for_dev_replace &&
1583 !tmp->bdev) {
dfe25020
CM
1584 device = tmp;
1585 break;
1586 }
1587 }
1588 bdev = NULL;
1589 bh = NULL;
1590 disk_super = NULL;
1591 if (!device) {
183860f6 1592 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1593 goto out;
1594 }
dfe25020 1595 } else {
beaf8ab3 1596 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1597 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1598 root->fs_info->bdev_holder, 0,
1599 &bdev, &bh);
1600 if (ret)
dfe25020 1601 goto out;
dfe25020 1602 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1603 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1604 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1605 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1606 disk_super->fsid);
dfe25020
CM
1607 if (!device) {
1608 ret = -ENOENT;
1609 goto error_brelse;
1610 }
2b82032c 1611 }
dfe25020 1612
63a212ab 1613 if (device->is_tgtdev_for_dev_replace) {
183860f6 1614 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1615 goto error_brelse;
1616 }
1617
2b82032c 1618 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1619 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1620 goto error_brelse;
1621 }
1622
1623 if (device->writeable) {
0c1daee0 1624 lock_chunks(root);
2b82032c 1625 list_del_init(&device->dev_alloc_list);
0c1daee0 1626 unlock_chunks(root);
2b82032c 1627 root->fs_info->fs_devices->rw_devices--;
1f78160c 1628 clear_super = true;
dfe25020 1629 }
a061fc8d 1630
d7901554 1631 mutex_unlock(&uuid_mutex);
a061fc8d 1632 ret = btrfs_shrink_device(device, 0);
d7901554 1633 mutex_lock(&uuid_mutex);
a061fc8d 1634 if (ret)
9b3517e9 1635 goto error_undo;
a061fc8d 1636
63a212ab
SB
1637 /*
1638 * TODO: the superblock still includes this device in its num_devices
1639 * counter although write_all_supers() is not locked out. This
1640 * could give a filesystem state which requires a degraded mount.
1641 */
a061fc8d
CM
1642 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1643 if (ret)
9b3517e9 1644 goto error_undo;
a061fc8d 1645
2bf64758
JB
1646 spin_lock(&root->fs_info->free_chunk_lock);
1647 root->fs_info->free_chunk_space = device->total_bytes -
1648 device->bytes_used;
1649 spin_unlock(&root->fs_info->free_chunk_lock);
1650
2b82032c 1651 device->in_fs_metadata = 0;
aa1b8cd4 1652 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1653
1654 /*
1655 * the device list mutex makes sure that we don't change
1656 * the device list while someone else is writing out all
d7306801
FDBM
1657 * the device supers. Whoever is writing all supers, should
1658 * lock the device list mutex before getting the number of
1659 * devices in the super block (super_copy). Conversely,
1660 * whoever updates the number of devices in the super block
1661 * (super_copy) should hold the device list mutex.
e5e9a520 1662 */
1f78160c
XG
1663
1664 cur_devices = device->fs_devices;
e5e9a520 1665 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1666 list_del_rcu(&device->dev_list);
e5e9a520 1667
e4404d6e 1668 device->fs_devices->num_devices--;
02db0844 1669 device->fs_devices->total_devices--;
2b82032c 1670
cd02dca5
CM
1671 if (device->missing)
1672 root->fs_info->fs_devices->missing_devices--;
1673
2b82032c
YZ
1674 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1675 struct btrfs_device, dev_list);
1676 if (device->bdev == root->fs_info->sb->s_bdev)
1677 root->fs_info->sb->s_bdev = next_device->bdev;
1678 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1679 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1680
1f78160c 1681 if (device->bdev)
e4404d6e 1682 device->fs_devices->open_devices--;
1f78160c 1683
99994cde
AJ
1684 /* remove sysfs entry */
1685 btrfs_kobj_rm_device(root->fs_info, device);
1686
1f78160c 1687 call_rcu(&device->rcu, free_device);
e4404d6e 1688
6c41761f
DS
1689 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1690 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1691 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1692
1f78160c 1693 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1694 struct btrfs_fs_devices *fs_devices;
1695 fs_devices = root->fs_info->fs_devices;
1696 while (fs_devices) {
8321cf25
RS
1697 if (fs_devices->seed == cur_devices) {
1698 fs_devices->seed = cur_devices->seed;
e4404d6e 1699 break;
8321cf25 1700 }
e4404d6e 1701 fs_devices = fs_devices->seed;
2b82032c 1702 }
1f78160c 1703 cur_devices->seed = NULL;
0c1daee0 1704 lock_chunks(root);
1f78160c 1705 __btrfs_close_devices(cur_devices);
0c1daee0 1706 unlock_chunks(root);
1f78160c 1707 free_fs_devices(cur_devices);
2b82032c
YZ
1708 }
1709
5af3e8cc
SB
1710 root->fs_info->num_tolerated_disk_barrier_failures =
1711 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1712
2b82032c
YZ
1713 /*
1714 * at this point, the device is zero sized. We want to
1715 * remove it from the devices list and zero out the old super
1716 */
aa1b8cd4 1717 if (clear_super && disk_super) {
4d90d28b
AJ
1718 u64 bytenr;
1719 int i;
1720
dfe25020
CM
1721 /* make sure this device isn't detected as part of
1722 * the FS anymore
1723 */
1724 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1725 set_buffer_dirty(bh);
1726 sync_dirty_buffer(bh);
4d90d28b
AJ
1727
1728 /* clear the mirror copies of super block on the disk
1729 * being removed, 0th copy is been taken care above and
1730 * the below would take of the rest
1731 */
1732 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1733 bytenr = btrfs_sb_offset(i);
1734 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1735 i_size_read(bdev->bd_inode))
1736 break;
1737
1738 brelse(bh);
1739 bh = __bread(bdev, bytenr / 4096,
1740 BTRFS_SUPER_INFO_SIZE);
1741 if (!bh)
1742 continue;
1743
1744 disk_super = (struct btrfs_super_block *)bh->b_data;
1745
1746 if (btrfs_super_bytenr(disk_super) != bytenr ||
1747 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1748 continue;
1749 }
1750 memset(&disk_super->magic, 0,
1751 sizeof(disk_super->magic));
1752 set_buffer_dirty(bh);
1753 sync_dirty_buffer(bh);
1754 }
dfe25020 1755 }
a061fc8d 1756
a061fc8d 1757 ret = 0;
a061fc8d 1758
5a1972bd
QW
1759 if (bdev) {
1760 /* Notify udev that device has changed */
3c911608 1761 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1762
5a1972bd
QW
1763 /* Update ctime/mtime for device path for libblkid */
1764 update_dev_time(device_path);
1765 }
1766
a061fc8d
CM
1767error_brelse:
1768 brelse(bh);
dfe25020 1769 if (bdev)
e525fd89 1770 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1771out:
1772 mutex_unlock(&uuid_mutex);
a061fc8d 1773 return ret;
9b3517e9
ID
1774error_undo:
1775 if (device->writeable) {
0c1daee0 1776 lock_chunks(root);
9b3517e9
ID
1777 list_add(&device->dev_alloc_list,
1778 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1779 unlock_chunks(root);
9b3517e9
ID
1780 root->fs_info->fs_devices->rw_devices++;
1781 }
1782 goto error_brelse;
a061fc8d
CM
1783}
1784
e93c89c1
SB
1785void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1786 struct btrfs_device *srcdev)
1787{
1788 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1789
e93c89c1
SB
1790 list_del_rcu(&srcdev->dev_list);
1791 list_del_rcu(&srcdev->dev_alloc_list);
1792 fs_info->fs_devices->num_devices--;
1793 if (srcdev->missing) {
1794 fs_info->fs_devices->missing_devices--;
1795 fs_info->fs_devices->rw_devices++;
1796 }
1797 if (srcdev->can_discard)
1798 fs_info->fs_devices->num_can_discard--;
1357272f 1799 if (srcdev->bdev) {
e93c89c1
SB
1800 fs_info->fs_devices->open_devices--;
1801
1357272f
ID
1802 /* zero out the old super */
1803 btrfs_scratch_superblock(srcdev);
1804 }
1805
e93c89c1
SB
1806 call_rcu(&srcdev->rcu, free_device);
1807}
1808
1809void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1810 struct btrfs_device *tgtdev)
1811{
1812 struct btrfs_device *next_device;
1813
1814 WARN_ON(!tgtdev);
1815 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1816 if (tgtdev->bdev) {
1817 btrfs_scratch_superblock(tgtdev);
1818 fs_info->fs_devices->open_devices--;
1819 }
1820 fs_info->fs_devices->num_devices--;
1821 if (tgtdev->can_discard)
1822 fs_info->fs_devices->num_can_discard++;
1823
1824 next_device = list_entry(fs_info->fs_devices->devices.next,
1825 struct btrfs_device, dev_list);
1826 if (tgtdev->bdev == fs_info->sb->s_bdev)
1827 fs_info->sb->s_bdev = next_device->bdev;
1828 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1829 fs_info->fs_devices->latest_bdev = next_device->bdev;
1830 list_del_rcu(&tgtdev->dev_list);
1831
1832 call_rcu(&tgtdev->rcu, free_device);
1833
1834 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1835}
1836
48a3b636
ES
1837static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1838 struct btrfs_device **device)
7ba15b7d
SB
1839{
1840 int ret = 0;
1841 struct btrfs_super_block *disk_super;
1842 u64 devid;
1843 u8 *dev_uuid;
1844 struct block_device *bdev;
1845 struct buffer_head *bh;
1846
1847 *device = NULL;
1848 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1849 root->fs_info->bdev_holder, 0, &bdev, &bh);
1850 if (ret)
1851 return ret;
1852 disk_super = (struct btrfs_super_block *)bh->b_data;
1853 devid = btrfs_stack_device_id(&disk_super->dev_item);
1854 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1855 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
1856 disk_super->fsid);
1857 brelse(bh);
1858 if (!*device)
1859 ret = -ENOENT;
1860 blkdev_put(bdev, FMODE_READ);
1861 return ret;
1862}
1863
1864int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1865 char *device_path,
1866 struct btrfs_device **device)
1867{
1868 *device = NULL;
1869 if (strcmp(device_path, "missing") == 0) {
1870 struct list_head *devices;
1871 struct btrfs_device *tmp;
1872
1873 devices = &root->fs_info->fs_devices->devices;
1874 /*
1875 * It is safe to read the devices since the volume_mutex
1876 * is held by the caller.
1877 */
1878 list_for_each_entry(tmp, devices, dev_list) {
1879 if (tmp->in_fs_metadata && !tmp->bdev) {
1880 *device = tmp;
1881 break;
1882 }
1883 }
1884
1885 if (!*device) {
efe120a0 1886 btrfs_err(root->fs_info, "no missing device found");
7ba15b7d
SB
1887 return -ENOENT;
1888 }
1889
1890 return 0;
1891 } else {
1892 return btrfs_find_device_by_path(root, device_path, device);
1893 }
1894}
1895
2b82032c
YZ
1896/*
1897 * does all the dirty work required for changing file system's UUID.
1898 */
125ccb0a 1899static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1900{
1901 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1902 struct btrfs_fs_devices *old_devices;
e4404d6e 1903 struct btrfs_fs_devices *seed_devices;
6c41761f 1904 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1905 struct btrfs_device *device;
1906 u64 super_flags;
1907
1908 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1909 if (!fs_devices->seeding)
2b82032c
YZ
1910 return -EINVAL;
1911
2208a378
ID
1912 seed_devices = __alloc_fs_devices();
1913 if (IS_ERR(seed_devices))
1914 return PTR_ERR(seed_devices);
2b82032c 1915
e4404d6e
YZ
1916 old_devices = clone_fs_devices(fs_devices);
1917 if (IS_ERR(old_devices)) {
1918 kfree(seed_devices);
1919 return PTR_ERR(old_devices);
2b82032c 1920 }
e4404d6e 1921
2b82032c
YZ
1922 list_add(&old_devices->list, &fs_uuids);
1923
e4404d6e
YZ
1924 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1925 seed_devices->opened = 1;
1926 INIT_LIST_HEAD(&seed_devices->devices);
1927 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1928 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1929
1930 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1931 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1932 synchronize_rcu);
c9513edb 1933
e4404d6e
YZ
1934 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1935 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1936 device->fs_devices = seed_devices;
1937 }
1938
2b82032c
YZ
1939 fs_devices->seeding = 0;
1940 fs_devices->num_devices = 0;
1941 fs_devices->open_devices = 0;
e4404d6e 1942 fs_devices->seed = seed_devices;
2b82032c
YZ
1943
1944 generate_random_uuid(fs_devices->fsid);
1945 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1946 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
1947 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1948
2b82032c
YZ
1949 super_flags = btrfs_super_flags(disk_super) &
1950 ~BTRFS_SUPER_FLAG_SEEDING;
1951 btrfs_set_super_flags(disk_super, super_flags);
1952
1953 return 0;
1954}
1955
1956/*
1957 * strore the expected generation for seed devices in device items.
1958 */
1959static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1960 struct btrfs_root *root)
1961{
1962 struct btrfs_path *path;
1963 struct extent_buffer *leaf;
1964 struct btrfs_dev_item *dev_item;
1965 struct btrfs_device *device;
1966 struct btrfs_key key;
1967 u8 fs_uuid[BTRFS_UUID_SIZE];
1968 u8 dev_uuid[BTRFS_UUID_SIZE];
1969 u64 devid;
1970 int ret;
1971
1972 path = btrfs_alloc_path();
1973 if (!path)
1974 return -ENOMEM;
1975
1976 root = root->fs_info->chunk_root;
1977 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1978 key.offset = 0;
1979 key.type = BTRFS_DEV_ITEM_KEY;
1980
1981 while (1) {
1982 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1983 if (ret < 0)
1984 goto error;
1985
1986 leaf = path->nodes[0];
1987next_slot:
1988 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1989 ret = btrfs_next_leaf(root, path);
1990 if (ret > 0)
1991 break;
1992 if (ret < 0)
1993 goto error;
1994 leaf = path->nodes[0];
1995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1996 btrfs_release_path(path);
2b82032c
YZ
1997 continue;
1998 }
1999
2000 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2001 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2002 key.type != BTRFS_DEV_ITEM_KEY)
2003 break;
2004
2005 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2006 struct btrfs_dev_item);
2007 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2008 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2009 BTRFS_UUID_SIZE);
1473b24e 2010 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2011 BTRFS_UUID_SIZE);
aa1b8cd4
SB
2012 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2013 fs_uuid);
79787eaa 2014 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2015
2016 if (device->fs_devices->seeding) {
2017 btrfs_set_device_generation(leaf, dev_item,
2018 device->generation);
2019 btrfs_mark_buffer_dirty(leaf);
2020 }
2021
2022 path->slots[0]++;
2023 goto next_slot;
2024 }
2025 ret = 0;
2026error:
2027 btrfs_free_path(path);
2028 return ret;
2029}
2030
788f20eb
CM
2031int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2032{
d5e2003c 2033 struct request_queue *q;
788f20eb
CM
2034 struct btrfs_trans_handle *trans;
2035 struct btrfs_device *device;
2036 struct block_device *bdev;
788f20eb 2037 struct list_head *devices;
2b82032c 2038 struct super_block *sb = root->fs_info->sb;
606686ee 2039 struct rcu_string *name;
788f20eb 2040 u64 total_bytes;
2b82032c 2041 int seeding_dev = 0;
788f20eb
CM
2042 int ret = 0;
2043
2b82032c 2044 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 2045 return -EROFS;
788f20eb 2046
a5d16333 2047 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 2048 root->fs_info->bdev_holder);
7f59203a
JB
2049 if (IS_ERR(bdev))
2050 return PTR_ERR(bdev);
a2135011 2051
2b82032c
YZ
2052 if (root->fs_info->fs_devices->seeding) {
2053 seeding_dev = 1;
2054 down_write(&sb->s_umount);
2055 mutex_lock(&uuid_mutex);
2056 }
2057
8c8bee1d 2058 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2059
788f20eb 2060 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2061
2062 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2063 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2064 if (device->bdev == bdev) {
2065 ret = -EEXIST;
d25628bd
LB
2066 mutex_unlock(
2067 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2068 goto error;
788f20eb
CM
2069 }
2070 }
d25628bd 2071 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2072
12bd2fc0
ID
2073 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2074 if (IS_ERR(device)) {
788f20eb 2075 /* we can safely leave the fs_devices entry around */
12bd2fc0 2076 ret = PTR_ERR(device);
2b82032c 2077 goto error;
788f20eb
CM
2078 }
2079
606686ee
JB
2080 name = rcu_string_strdup(device_path, GFP_NOFS);
2081 if (!name) {
788f20eb 2082 kfree(device);
2b82032c
YZ
2083 ret = -ENOMEM;
2084 goto error;
788f20eb 2085 }
606686ee 2086 rcu_assign_pointer(device->name, name);
2b82032c 2087
a22285a6 2088 trans = btrfs_start_transaction(root, 0);
98d5dc13 2089 if (IS_ERR(trans)) {
606686ee 2090 rcu_string_free(device->name);
98d5dc13
TI
2091 kfree(device);
2092 ret = PTR_ERR(trans);
2093 goto error;
2094 }
2095
2b82032c
YZ
2096 lock_chunks(root);
2097
d5e2003c
JB
2098 q = bdev_get_queue(bdev);
2099 if (blk_queue_discard(q))
2100 device->can_discard = 1;
2b82032c 2101 device->writeable = 1;
2b82032c 2102 device->generation = trans->transid;
788f20eb
CM
2103 device->io_width = root->sectorsize;
2104 device->io_align = root->sectorsize;
2105 device->sector_size = root->sectorsize;
2106 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2107 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
2108 device->dev_root = root->fs_info->dev_root;
2109 device->bdev = bdev;
dfe25020 2110 device->in_fs_metadata = 1;
63a212ab 2111 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2112 device->mode = FMODE_EXCL;
27087f37 2113 device->dev_stats_valid = 1;
2b82032c 2114 set_blocksize(device->bdev, 4096);
788f20eb 2115
2b82032c
YZ
2116 if (seeding_dev) {
2117 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2118 ret = btrfs_prepare_sprout(root);
79787eaa 2119 BUG_ON(ret); /* -ENOMEM */
2b82032c 2120 }
788f20eb 2121
2b82032c 2122 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2123
e5e9a520 2124 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 2125 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2126 list_add(&device->dev_alloc_list,
2127 &root->fs_info->fs_devices->alloc_list);
2128 root->fs_info->fs_devices->num_devices++;
2129 root->fs_info->fs_devices->open_devices++;
2130 root->fs_info->fs_devices->rw_devices++;
02db0844 2131 root->fs_info->fs_devices->total_devices++;
d5e2003c
JB
2132 if (device->can_discard)
2133 root->fs_info->fs_devices->num_can_discard++;
2b82032c 2134 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2135
2bf64758
JB
2136 spin_lock(&root->fs_info->free_chunk_lock);
2137 root->fs_info->free_chunk_space += device->total_bytes;
2138 spin_unlock(&root->fs_info->free_chunk_lock);
2139
c289811c
CM
2140 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2141 root->fs_info->fs_devices->rotating = 1;
2142
6c41761f
DS
2143 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2144 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
2145 total_bytes + device->total_bytes);
2146
6c41761f
DS
2147 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2148 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 2149 total_bytes + 1);
e5e9a520 2150 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2151
2b82032c
YZ
2152 if (seeding_dev) {
2153 ret = init_first_rw_device(trans, root, device);
005d6427
DS
2154 if (ret) {
2155 btrfs_abort_transaction(trans, root, ret);
79787eaa 2156 goto error_trans;
005d6427 2157 }
2b82032c 2158 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2159 if (ret) {
2160 btrfs_abort_transaction(trans, root, ret);
79787eaa 2161 goto error_trans;
005d6427 2162 }
2b82032c
YZ
2163 } else {
2164 ret = btrfs_add_device(trans, root, device);
005d6427
DS
2165 if (ret) {
2166 btrfs_abort_transaction(trans, root, ret);
79787eaa 2167 goto error_trans;
005d6427 2168 }
2b82032c
YZ
2169 }
2170
913d952e
CM
2171 /*
2172 * we've got more storage, clear any full flags on the space
2173 * infos
2174 */
2175 btrfs_clear_space_info_full(root->fs_info);
2176
7d9eb12c 2177 unlock_chunks(root);
5af3e8cc
SB
2178 root->fs_info->num_tolerated_disk_barrier_failures =
2179 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2180 ret = btrfs_commit_transaction(trans, root);
a2135011 2181
2b82032c
YZ
2182 if (seeding_dev) {
2183 mutex_unlock(&uuid_mutex);
2184 up_write(&sb->s_umount);
788f20eb 2185
79787eaa
JM
2186 if (ret) /* transaction commit */
2187 return ret;
2188
2b82032c 2189 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
2190 if (ret < 0)
2191 btrfs_error(root->fs_info, ret,
2192 "Failed to relocate sys chunks after "
2193 "device initialization. This can be fixed "
2194 "using the \"btrfs balance\" command.");
671415b7
MX
2195 trans = btrfs_attach_transaction(root);
2196 if (IS_ERR(trans)) {
2197 if (PTR_ERR(trans) == -ENOENT)
2198 return 0;
2199 return PTR_ERR(trans);
2200 }
2201 ret = btrfs_commit_transaction(trans, root);
2b82032c 2202 }
c9e9f97b 2203
5a1972bd
QW
2204 /* Update ctime/mtime for libblkid */
2205 update_dev_time(device_path);
2b82032c 2206 return ret;
79787eaa
JM
2207
2208error_trans:
2209 unlock_chunks(root);
79787eaa 2210 btrfs_end_transaction(trans, root);
606686ee 2211 rcu_string_free(device->name);
79787eaa 2212 kfree(device);
2b82032c 2213error:
e525fd89 2214 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2215 if (seeding_dev) {
2216 mutex_unlock(&uuid_mutex);
2217 up_write(&sb->s_umount);
2218 }
c9e9f97b 2219 return ret;
788f20eb
CM
2220}
2221
e93c89c1
SB
2222int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2223 struct btrfs_device **device_out)
2224{
2225 struct request_queue *q;
2226 struct btrfs_device *device;
2227 struct block_device *bdev;
2228 struct btrfs_fs_info *fs_info = root->fs_info;
2229 struct list_head *devices;
2230 struct rcu_string *name;
12bd2fc0 2231 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2232 int ret = 0;
2233
2234 *device_out = NULL;
2235 if (fs_info->fs_devices->seeding)
2236 return -EINVAL;
2237
2238 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2239 fs_info->bdev_holder);
2240 if (IS_ERR(bdev))
2241 return PTR_ERR(bdev);
2242
2243 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2244
2245 devices = &fs_info->fs_devices->devices;
2246 list_for_each_entry(device, devices, dev_list) {
2247 if (device->bdev == bdev) {
2248 ret = -EEXIST;
2249 goto error;
2250 }
2251 }
2252
12bd2fc0
ID
2253 device = btrfs_alloc_device(NULL, &devid, NULL);
2254 if (IS_ERR(device)) {
2255 ret = PTR_ERR(device);
e93c89c1
SB
2256 goto error;
2257 }
2258
2259 name = rcu_string_strdup(device_path, GFP_NOFS);
2260 if (!name) {
2261 kfree(device);
2262 ret = -ENOMEM;
2263 goto error;
2264 }
2265 rcu_assign_pointer(device->name, name);
2266
2267 q = bdev_get_queue(bdev);
2268 if (blk_queue_discard(q))
2269 device->can_discard = 1;
2270 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2271 device->writeable = 1;
e93c89c1
SB
2272 device->generation = 0;
2273 device->io_width = root->sectorsize;
2274 device->io_align = root->sectorsize;
2275 device->sector_size = root->sectorsize;
2276 device->total_bytes = i_size_read(bdev->bd_inode);
2277 device->disk_total_bytes = device->total_bytes;
2278 device->dev_root = fs_info->dev_root;
2279 device->bdev = bdev;
2280 device->in_fs_metadata = 1;
2281 device->is_tgtdev_for_dev_replace = 1;
2282 device->mode = FMODE_EXCL;
27087f37 2283 device->dev_stats_valid = 1;
e93c89c1
SB
2284 set_blocksize(device->bdev, 4096);
2285 device->fs_devices = fs_info->fs_devices;
2286 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2287 fs_info->fs_devices->num_devices++;
2288 fs_info->fs_devices->open_devices++;
2289 if (device->can_discard)
2290 fs_info->fs_devices->num_can_discard++;
2291 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2292
2293 *device_out = device;
2294 return ret;
2295
2296error:
2297 blkdev_put(bdev, FMODE_EXCL);
2298 return ret;
2299}
2300
2301void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2302 struct btrfs_device *tgtdev)
2303{
2304 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2305 tgtdev->io_width = fs_info->dev_root->sectorsize;
2306 tgtdev->io_align = fs_info->dev_root->sectorsize;
2307 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2308 tgtdev->dev_root = fs_info->dev_root;
2309 tgtdev->in_fs_metadata = 1;
2310}
2311
d397712b
CM
2312static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2313 struct btrfs_device *device)
0b86a832
CM
2314{
2315 int ret;
2316 struct btrfs_path *path;
2317 struct btrfs_root *root;
2318 struct btrfs_dev_item *dev_item;
2319 struct extent_buffer *leaf;
2320 struct btrfs_key key;
2321
2322 root = device->dev_root->fs_info->chunk_root;
2323
2324 path = btrfs_alloc_path();
2325 if (!path)
2326 return -ENOMEM;
2327
2328 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2329 key.type = BTRFS_DEV_ITEM_KEY;
2330 key.offset = device->devid;
2331
2332 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2333 if (ret < 0)
2334 goto out;
2335
2336 if (ret > 0) {
2337 ret = -ENOENT;
2338 goto out;
2339 }
2340
2341 leaf = path->nodes[0];
2342 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2343
2344 btrfs_set_device_id(leaf, dev_item, device->devid);
2345 btrfs_set_device_type(leaf, dev_item, device->type);
2346 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2347 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2348 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 2349 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
2350 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2351 btrfs_mark_buffer_dirty(leaf);
2352
2353out:
2354 btrfs_free_path(path);
2355 return ret;
2356}
2357
7d9eb12c 2358static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2359 struct btrfs_device *device, u64 new_size)
2360{
2361 struct btrfs_super_block *super_copy =
6c41761f 2362 device->dev_root->fs_info->super_copy;
8f18cf13
CM
2363 u64 old_total = btrfs_super_total_bytes(super_copy);
2364 u64 diff = new_size - device->total_bytes;
2365
2b82032c
YZ
2366 if (!device->writeable)
2367 return -EACCES;
63a212ab
SB
2368 if (new_size <= device->total_bytes ||
2369 device->is_tgtdev_for_dev_replace)
2b82032c
YZ
2370 return -EINVAL;
2371
8f18cf13 2372 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2373 device->fs_devices->total_rw_bytes += diff;
2374
2375 device->total_bytes = new_size;
9779b72f 2376 device->disk_total_bytes = new_size;
4184ea7f
CM
2377 btrfs_clear_space_info_full(device->dev_root->fs_info);
2378
8f18cf13
CM
2379 return btrfs_update_device(trans, device);
2380}
2381
7d9eb12c
CM
2382int btrfs_grow_device(struct btrfs_trans_handle *trans,
2383 struct btrfs_device *device, u64 new_size)
2384{
2385 int ret;
2386 lock_chunks(device->dev_root);
2387 ret = __btrfs_grow_device(trans, device, new_size);
2388 unlock_chunks(device->dev_root);
2389 return ret;
2390}
2391
8f18cf13
CM
2392static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2393 struct btrfs_root *root,
2394 u64 chunk_tree, u64 chunk_objectid,
2395 u64 chunk_offset)
2396{
2397 int ret;
2398 struct btrfs_path *path;
2399 struct btrfs_key key;
2400
2401 root = root->fs_info->chunk_root;
2402 path = btrfs_alloc_path();
2403 if (!path)
2404 return -ENOMEM;
2405
2406 key.objectid = chunk_objectid;
2407 key.offset = chunk_offset;
2408 key.type = BTRFS_CHUNK_ITEM_KEY;
2409
2410 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2411 if (ret < 0)
2412 goto out;
2413 else if (ret > 0) { /* Logic error or corruption */
2414 btrfs_error(root->fs_info, -ENOENT,
2415 "Failed lookup while freeing chunk.");
2416 ret = -ENOENT;
2417 goto out;
2418 }
8f18cf13
CM
2419
2420 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2421 if (ret < 0)
2422 btrfs_error(root->fs_info, ret,
2423 "Failed to delete chunk item.");
2424out:
8f18cf13 2425 btrfs_free_path(path);
65a246c5 2426 return ret;
8f18cf13
CM
2427}
2428
b2950863 2429static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2430 chunk_offset)
2431{
6c41761f 2432 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2433 struct btrfs_disk_key *disk_key;
2434 struct btrfs_chunk *chunk;
2435 u8 *ptr;
2436 int ret = 0;
2437 u32 num_stripes;
2438 u32 array_size;
2439 u32 len = 0;
2440 u32 cur;
2441 struct btrfs_key key;
2442
2443 array_size = btrfs_super_sys_array_size(super_copy);
2444
2445 ptr = super_copy->sys_chunk_array;
2446 cur = 0;
2447
2448 while (cur < array_size) {
2449 disk_key = (struct btrfs_disk_key *)ptr;
2450 btrfs_disk_key_to_cpu(&key, disk_key);
2451
2452 len = sizeof(*disk_key);
2453
2454 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2455 chunk = (struct btrfs_chunk *)(ptr + len);
2456 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2457 len += btrfs_chunk_item_size(num_stripes);
2458 } else {
2459 ret = -EIO;
2460 break;
2461 }
2462 if (key.objectid == chunk_objectid &&
2463 key.offset == chunk_offset) {
2464 memmove(ptr, ptr + len, array_size - (cur + len));
2465 array_size -= len;
2466 btrfs_set_super_sys_array_size(super_copy, array_size);
2467 } else {
2468 ptr += len;
2469 cur += len;
2470 }
2471 }
2472 return ret;
2473}
2474
b2950863 2475static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
2476 u64 chunk_tree, u64 chunk_objectid,
2477 u64 chunk_offset)
2478{
2479 struct extent_map_tree *em_tree;
2480 struct btrfs_root *extent_root;
2481 struct btrfs_trans_handle *trans;
2482 struct extent_map *em;
2483 struct map_lookup *map;
2484 int ret;
2485 int i;
2486
2487 root = root->fs_info->chunk_root;
2488 extent_root = root->fs_info->extent_root;
2489 em_tree = &root->fs_info->mapping_tree.map_tree;
2490
ba1bf481
JB
2491 ret = btrfs_can_relocate(extent_root, chunk_offset);
2492 if (ret)
2493 return -ENOSPC;
2494
8f18cf13 2495 /* step one, relocate all the extents inside this chunk */
1a40e23b 2496 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2497 if (ret)
2498 return ret;
8f18cf13 2499
a22285a6 2500 trans = btrfs_start_transaction(root, 0);
0f788c58
LB
2501 if (IS_ERR(trans)) {
2502 ret = PTR_ERR(trans);
2503 btrfs_std_error(root->fs_info, ret);
2504 return ret;
2505 }
8f18cf13 2506
7d9eb12c
CM
2507 lock_chunks(root);
2508
8f18cf13
CM
2509 /*
2510 * step two, delete the device extents and the
2511 * chunk tree entries
2512 */
890871be 2513 read_lock(&em_tree->lock);
8f18cf13 2514 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2515 read_unlock(&em_tree->lock);
8f18cf13 2516
285190d9 2517 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2518 em->start + em->len < chunk_offset);
8f18cf13
CM
2519 map = (struct map_lookup *)em->bdev;
2520
2521 for (i = 0; i < map->num_stripes; i++) {
2522 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2523 map->stripes[i].physical);
2524 BUG_ON(ret);
a061fc8d 2525
dfe25020
CM
2526 if (map->stripes[i].dev) {
2527 ret = btrfs_update_device(trans, map->stripes[i].dev);
2528 BUG_ON(ret);
2529 }
8f18cf13
CM
2530 }
2531 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2532 chunk_offset);
2533
2534 BUG_ON(ret);
2535
1abe9b8a 2536 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2537
8f18cf13
CM
2538 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2539 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2540 BUG_ON(ret);
8f18cf13
CM
2541 }
2542
2b82032c
YZ
2543 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2544 BUG_ON(ret);
2545
890871be 2546 write_lock(&em_tree->lock);
2b82032c 2547 remove_extent_mapping(em_tree, em);
890871be 2548 write_unlock(&em_tree->lock);
2b82032c 2549
2b82032c
YZ
2550 /* once for the tree */
2551 free_extent_map(em);
2552 /* once for us */
2553 free_extent_map(em);
2554
2555 unlock_chunks(root);
2556 btrfs_end_transaction(trans, root);
2557 return 0;
2558}
2559
2560static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2561{
2562 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2563 struct btrfs_path *path;
2564 struct extent_buffer *leaf;
2565 struct btrfs_chunk *chunk;
2566 struct btrfs_key key;
2567 struct btrfs_key found_key;
2568 u64 chunk_tree = chunk_root->root_key.objectid;
2569 u64 chunk_type;
ba1bf481
JB
2570 bool retried = false;
2571 int failed = 0;
2b82032c
YZ
2572 int ret;
2573
2574 path = btrfs_alloc_path();
2575 if (!path)
2576 return -ENOMEM;
2577
ba1bf481 2578again:
2b82032c
YZ
2579 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2580 key.offset = (u64)-1;
2581 key.type = BTRFS_CHUNK_ITEM_KEY;
2582
2583 while (1) {
2584 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2585 if (ret < 0)
2586 goto error;
79787eaa 2587 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2588
2589 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2590 key.type);
2591 if (ret < 0)
2592 goto error;
2593 if (ret > 0)
2594 break;
1a40e23b 2595
2b82032c
YZ
2596 leaf = path->nodes[0];
2597 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2598
2b82032c
YZ
2599 chunk = btrfs_item_ptr(leaf, path->slots[0],
2600 struct btrfs_chunk);
2601 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2602 btrfs_release_path(path);
8f18cf13 2603
2b82032c
YZ
2604 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2605 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2606 found_key.objectid,
2607 found_key.offset);
ba1bf481
JB
2608 if (ret == -ENOSPC)
2609 failed++;
2610 else if (ret)
2611 BUG();
2b82032c 2612 }
8f18cf13 2613
2b82032c
YZ
2614 if (found_key.offset == 0)
2615 break;
2616 key.offset = found_key.offset - 1;
2617 }
2618 ret = 0;
ba1bf481
JB
2619 if (failed && !retried) {
2620 failed = 0;
2621 retried = true;
2622 goto again;
fae7f21c 2623 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2624 ret = -ENOSPC;
2625 }
2b82032c
YZ
2626error:
2627 btrfs_free_path(path);
2628 return ret;
8f18cf13
CM
2629}
2630
0940ebf6
ID
2631static int insert_balance_item(struct btrfs_root *root,
2632 struct btrfs_balance_control *bctl)
2633{
2634 struct btrfs_trans_handle *trans;
2635 struct btrfs_balance_item *item;
2636 struct btrfs_disk_balance_args disk_bargs;
2637 struct btrfs_path *path;
2638 struct extent_buffer *leaf;
2639 struct btrfs_key key;
2640 int ret, err;
2641
2642 path = btrfs_alloc_path();
2643 if (!path)
2644 return -ENOMEM;
2645
2646 trans = btrfs_start_transaction(root, 0);
2647 if (IS_ERR(trans)) {
2648 btrfs_free_path(path);
2649 return PTR_ERR(trans);
2650 }
2651
2652 key.objectid = BTRFS_BALANCE_OBJECTID;
2653 key.type = BTRFS_BALANCE_ITEM_KEY;
2654 key.offset = 0;
2655
2656 ret = btrfs_insert_empty_item(trans, root, path, &key,
2657 sizeof(*item));
2658 if (ret)
2659 goto out;
2660
2661 leaf = path->nodes[0];
2662 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2663
2664 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2665
2666 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2667 btrfs_set_balance_data(leaf, item, &disk_bargs);
2668 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2669 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2670 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2671 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2672
2673 btrfs_set_balance_flags(leaf, item, bctl->flags);
2674
2675 btrfs_mark_buffer_dirty(leaf);
2676out:
2677 btrfs_free_path(path);
2678 err = btrfs_commit_transaction(trans, root);
2679 if (err && !ret)
2680 ret = err;
2681 return ret;
2682}
2683
2684static int del_balance_item(struct btrfs_root *root)
2685{
2686 struct btrfs_trans_handle *trans;
2687 struct btrfs_path *path;
2688 struct btrfs_key key;
2689 int ret, err;
2690
2691 path = btrfs_alloc_path();
2692 if (!path)
2693 return -ENOMEM;
2694
2695 trans = btrfs_start_transaction(root, 0);
2696 if (IS_ERR(trans)) {
2697 btrfs_free_path(path);
2698 return PTR_ERR(trans);
2699 }
2700
2701 key.objectid = BTRFS_BALANCE_OBJECTID;
2702 key.type = BTRFS_BALANCE_ITEM_KEY;
2703 key.offset = 0;
2704
2705 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2706 if (ret < 0)
2707 goto out;
2708 if (ret > 0) {
2709 ret = -ENOENT;
2710 goto out;
2711 }
2712
2713 ret = btrfs_del_item(trans, root, path);
2714out:
2715 btrfs_free_path(path);
2716 err = btrfs_commit_transaction(trans, root);
2717 if (err && !ret)
2718 ret = err;
2719 return ret;
2720}
2721
59641015
ID
2722/*
2723 * This is a heuristic used to reduce the number of chunks balanced on
2724 * resume after balance was interrupted.
2725 */
2726static void update_balance_args(struct btrfs_balance_control *bctl)
2727{
2728 /*
2729 * Turn on soft mode for chunk types that were being converted.
2730 */
2731 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2732 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2733 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2734 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2735 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2736 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2737
2738 /*
2739 * Turn on usage filter if is not already used. The idea is
2740 * that chunks that we have already balanced should be
2741 * reasonably full. Don't do it for chunks that are being
2742 * converted - that will keep us from relocating unconverted
2743 * (albeit full) chunks.
2744 */
2745 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2746 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2747 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2748 bctl->data.usage = 90;
2749 }
2750 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2751 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2752 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2753 bctl->sys.usage = 90;
2754 }
2755 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2756 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2757 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2758 bctl->meta.usage = 90;
2759 }
2760}
2761
c9e9f97b
ID
2762/*
2763 * Should be called with both balance and volume mutexes held to
2764 * serialize other volume operations (add_dev/rm_dev/resize) with
2765 * restriper. Same goes for unset_balance_control.
2766 */
2767static void set_balance_control(struct btrfs_balance_control *bctl)
2768{
2769 struct btrfs_fs_info *fs_info = bctl->fs_info;
2770
2771 BUG_ON(fs_info->balance_ctl);
2772
2773 spin_lock(&fs_info->balance_lock);
2774 fs_info->balance_ctl = bctl;
2775 spin_unlock(&fs_info->balance_lock);
2776}
2777
2778static void unset_balance_control(struct btrfs_fs_info *fs_info)
2779{
2780 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2781
2782 BUG_ON(!fs_info->balance_ctl);
2783
2784 spin_lock(&fs_info->balance_lock);
2785 fs_info->balance_ctl = NULL;
2786 spin_unlock(&fs_info->balance_lock);
2787
2788 kfree(bctl);
2789}
2790
ed25e9b2
ID
2791/*
2792 * Balance filters. Return 1 if chunk should be filtered out
2793 * (should not be balanced).
2794 */
899c81ea 2795static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2796 struct btrfs_balance_args *bargs)
2797{
899c81ea
ID
2798 chunk_type = chunk_to_extended(chunk_type) &
2799 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2800
899c81ea 2801 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2802 return 0;
2803
2804 return 1;
2805}
2806
5ce5b3c0
ID
2807static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2808 struct btrfs_balance_args *bargs)
2809{
2810 struct btrfs_block_group_cache *cache;
2811 u64 chunk_used, user_thresh;
2812 int ret = 1;
2813
2814 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2815 chunk_used = btrfs_block_group_used(&cache->item);
2816
a105bb88 2817 if (bargs->usage == 0)
3e39cea6 2818 user_thresh = 1;
a105bb88
ID
2819 else if (bargs->usage > 100)
2820 user_thresh = cache->key.offset;
2821 else
2822 user_thresh = div_factor_fine(cache->key.offset,
2823 bargs->usage);
2824
5ce5b3c0
ID
2825 if (chunk_used < user_thresh)
2826 ret = 0;
2827
2828 btrfs_put_block_group(cache);
2829 return ret;
2830}
2831
409d404b
ID
2832static int chunk_devid_filter(struct extent_buffer *leaf,
2833 struct btrfs_chunk *chunk,
2834 struct btrfs_balance_args *bargs)
2835{
2836 struct btrfs_stripe *stripe;
2837 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2838 int i;
2839
2840 for (i = 0; i < num_stripes; i++) {
2841 stripe = btrfs_stripe_nr(chunk, i);
2842 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2843 return 0;
2844 }
2845
2846 return 1;
2847}
2848
94e60d5a
ID
2849/* [pstart, pend) */
2850static int chunk_drange_filter(struct extent_buffer *leaf,
2851 struct btrfs_chunk *chunk,
2852 u64 chunk_offset,
2853 struct btrfs_balance_args *bargs)
2854{
2855 struct btrfs_stripe *stripe;
2856 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2857 u64 stripe_offset;
2858 u64 stripe_length;
2859 int factor;
2860 int i;
2861
2862 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2863 return 0;
2864
2865 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
2866 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2867 factor = num_stripes / 2;
2868 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2869 factor = num_stripes - 1;
2870 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2871 factor = num_stripes - 2;
2872 } else {
2873 factor = num_stripes;
2874 }
94e60d5a
ID
2875
2876 for (i = 0; i < num_stripes; i++) {
2877 stripe = btrfs_stripe_nr(chunk, i);
2878 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2879 continue;
2880
2881 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2882 stripe_length = btrfs_chunk_length(leaf, chunk);
2883 do_div(stripe_length, factor);
2884
2885 if (stripe_offset < bargs->pend &&
2886 stripe_offset + stripe_length > bargs->pstart)
2887 return 0;
2888 }
2889
2890 return 1;
2891}
2892
ea67176a
ID
2893/* [vstart, vend) */
2894static int chunk_vrange_filter(struct extent_buffer *leaf,
2895 struct btrfs_chunk *chunk,
2896 u64 chunk_offset,
2897 struct btrfs_balance_args *bargs)
2898{
2899 if (chunk_offset < bargs->vend &&
2900 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2901 /* at least part of the chunk is inside this vrange */
2902 return 0;
2903
2904 return 1;
2905}
2906
899c81ea 2907static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2908 struct btrfs_balance_args *bargs)
2909{
2910 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2911 return 0;
2912
899c81ea
ID
2913 chunk_type = chunk_to_extended(chunk_type) &
2914 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2915
899c81ea 2916 if (bargs->target == chunk_type)
cfa4c961
ID
2917 return 1;
2918
2919 return 0;
2920}
2921
f43ffb60
ID
2922static int should_balance_chunk(struct btrfs_root *root,
2923 struct extent_buffer *leaf,
2924 struct btrfs_chunk *chunk, u64 chunk_offset)
2925{
2926 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2927 struct btrfs_balance_args *bargs = NULL;
2928 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2929
2930 /* type filter */
2931 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2932 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2933 return 0;
2934 }
2935
2936 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2937 bargs = &bctl->data;
2938 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2939 bargs = &bctl->sys;
2940 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2941 bargs = &bctl->meta;
2942
ed25e9b2
ID
2943 /* profiles filter */
2944 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2945 chunk_profiles_filter(chunk_type, bargs)) {
2946 return 0;
5ce5b3c0
ID
2947 }
2948
2949 /* usage filter */
2950 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2951 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2952 return 0;
409d404b
ID
2953 }
2954
2955 /* devid filter */
2956 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2957 chunk_devid_filter(leaf, chunk, bargs)) {
2958 return 0;
94e60d5a
ID
2959 }
2960
2961 /* drange filter, makes sense only with devid filter */
2962 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2963 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2964 return 0;
ea67176a
ID
2965 }
2966
2967 /* vrange filter */
2968 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2969 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2970 return 0;
ed25e9b2
ID
2971 }
2972
cfa4c961
ID
2973 /* soft profile changing mode */
2974 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2975 chunk_soft_convert_filter(chunk_type, bargs)) {
2976 return 0;
2977 }
2978
7d824b6f
DS
2979 /*
2980 * limited by count, must be the last filter
2981 */
2982 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
2983 if (bargs->limit == 0)
2984 return 0;
2985 else
2986 bargs->limit--;
2987 }
2988
f43ffb60
ID
2989 return 1;
2990}
2991
c9e9f97b 2992static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2993{
19a39dce 2994 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2995 struct btrfs_root *chunk_root = fs_info->chunk_root;
2996 struct btrfs_root *dev_root = fs_info->dev_root;
2997 struct list_head *devices;
ec44a35c
CM
2998 struct btrfs_device *device;
2999 u64 old_size;
3000 u64 size_to_free;
f43ffb60 3001 struct btrfs_chunk *chunk;
ec44a35c
CM
3002 struct btrfs_path *path;
3003 struct btrfs_key key;
ec44a35c 3004 struct btrfs_key found_key;
c9e9f97b 3005 struct btrfs_trans_handle *trans;
f43ffb60
ID
3006 struct extent_buffer *leaf;
3007 int slot;
c9e9f97b
ID
3008 int ret;
3009 int enospc_errors = 0;
19a39dce 3010 bool counting = true;
7d824b6f
DS
3011 u64 limit_data = bctl->data.limit;
3012 u64 limit_meta = bctl->meta.limit;
3013 u64 limit_sys = bctl->sys.limit;
ec44a35c 3014
ec44a35c 3015 /* step one make some room on all the devices */
c9e9f97b 3016 devices = &fs_info->fs_devices->devices;
c6e30871 3017 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
3018 old_size = device->total_bytes;
3019 size_to_free = div_factor(old_size, 1);
3020 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 3021 if (!device->writeable ||
63a212ab
SB
3022 device->total_bytes - device->bytes_used > size_to_free ||
3023 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3024 continue;
3025
3026 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3027 if (ret == -ENOSPC)
3028 break;
ec44a35c
CM
3029 BUG_ON(ret);
3030
a22285a6 3031 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 3032 BUG_ON(IS_ERR(trans));
ec44a35c
CM
3033
3034 ret = btrfs_grow_device(trans, device, old_size);
3035 BUG_ON(ret);
3036
3037 btrfs_end_transaction(trans, dev_root);
3038 }
3039
3040 /* step two, relocate all the chunks */
3041 path = btrfs_alloc_path();
17e9f796
MF
3042 if (!path) {
3043 ret = -ENOMEM;
3044 goto error;
3045 }
19a39dce
ID
3046
3047 /* zero out stat counters */
3048 spin_lock(&fs_info->balance_lock);
3049 memset(&bctl->stat, 0, sizeof(bctl->stat));
3050 spin_unlock(&fs_info->balance_lock);
3051again:
7d824b6f
DS
3052 if (!counting) {
3053 bctl->data.limit = limit_data;
3054 bctl->meta.limit = limit_meta;
3055 bctl->sys.limit = limit_sys;
3056 }
ec44a35c
CM
3057 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3058 key.offset = (u64)-1;
3059 key.type = BTRFS_CHUNK_ITEM_KEY;
3060
d397712b 3061 while (1) {
19a39dce 3062 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3063 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3064 ret = -ECANCELED;
3065 goto error;
3066 }
3067
ec44a35c
CM
3068 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3069 if (ret < 0)
3070 goto error;
3071
3072 /*
3073 * this shouldn't happen, it means the last relocate
3074 * failed
3075 */
3076 if (ret == 0)
c9e9f97b 3077 BUG(); /* FIXME break ? */
ec44a35c
CM
3078
3079 ret = btrfs_previous_item(chunk_root, path, 0,
3080 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
3081 if (ret) {
3082 ret = 0;
ec44a35c 3083 break;
c9e9f97b 3084 }
7d9eb12c 3085
f43ffb60
ID
3086 leaf = path->nodes[0];
3087 slot = path->slots[0];
3088 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3089
ec44a35c
CM
3090 if (found_key.objectid != key.objectid)
3091 break;
7d9eb12c 3092
f43ffb60
ID
3093 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3094
19a39dce
ID
3095 if (!counting) {
3096 spin_lock(&fs_info->balance_lock);
3097 bctl->stat.considered++;
3098 spin_unlock(&fs_info->balance_lock);
3099 }
3100
f43ffb60
ID
3101 ret = should_balance_chunk(chunk_root, leaf, chunk,
3102 found_key.offset);
b3b4aa74 3103 btrfs_release_path(path);
f43ffb60
ID
3104 if (!ret)
3105 goto loop;
3106
19a39dce
ID
3107 if (counting) {
3108 spin_lock(&fs_info->balance_lock);
3109 bctl->stat.expected++;
3110 spin_unlock(&fs_info->balance_lock);
3111 goto loop;
3112 }
3113
ec44a35c
CM
3114 ret = btrfs_relocate_chunk(chunk_root,
3115 chunk_root->root_key.objectid,
3116 found_key.objectid,
3117 found_key.offset);
508794eb
JB
3118 if (ret && ret != -ENOSPC)
3119 goto error;
19a39dce 3120 if (ret == -ENOSPC) {
c9e9f97b 3121 enospc_errors++;
19a39dce
ID
3122 } else {
3123 spin_lock(&fs_info->balance_lock);
3124 bctl->stat.completed++;
3125 spin_unlock(&fs_info->balance_lock);
3126 }
f43ffb60 3127loop:
795a3321
ID
3128 if (found_key.offset == 0)
3129 break;
ba1bf481 3130 key.offset = found_key.offset - 1;
ec44a35c 3131 }
c9e9f97b 3132
19a39dce
ID
3133 if (counting) {
3134 btrfs_release_path(path);
3135 counting = false;
3136 goto again;
3137 }
ec44a35c
CM
3138error:
3139 btrfs_free_path(path);
c9e9f97b 3140 if (enospc_errors) {
efe120a0 3141 btrfs_info(fs_info, "%d enospc errors during balance",
c9e9f97b
ID
3142 enospc_errors);
3143 if (!ret)
3144 ret = -ENOSPC;
3145 }
3146
ec44a35c
CM
3147 return ret;
3148}
3149
0c460c0d
ID
3150/**
3151 * alloc_profile_is_valid - see if a given profile is valid and reduced
3152 * @flags: profile to validate
3153 * @extended: if true @flags is treated as an extended profile
3154 */
3155static int alloc_profile_is_valid(u64 flags, int extended)
3156{
3157 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3158 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3159
3160 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3161
3162 /* 1) check that all other bits are zeroed */
3163 if (flags & ~mask)
3164 return 0;
3165
3166 /* 2) see if profile is reduced */
3167 if (flags == 0)
3168 return !extended; /* "0" is valid for usual profiles */
3169
3170 /* true if exactly one bit set */
3171 return (flags & (flags - 1)) == 0;
3172}
3173
837d5b6e
ID
3174static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3175{
a7e99c69
ID
3176 /* cancel requested || normal exit path */
3177 return atomic_read(&fs_info->balance_cancel_req) ||
3178 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3179 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3180}
3181
c9e9f97b
ID
3182static void __cancel_balance(struct btrfs_fs_info *fs_info)
3183{
0940ebf6
ID
3184 int ret;
3185
c9e9f97b 3186 unset_balance_control(fs_info);
0940ebf6 3187 ret = del_balance_item(fs_info->tree_root);
0f788c58
LB
3188 if (ret)
3189 btrfs_std_error(fs_info, ret);
ed0fb78f
ID
3190
3191 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3192}
3193
c9e9f97b
ID
3194/*
3195 * Should be called with both balance and volume mutexes held
3196 */
3197int btrfs_balance(struct btrfs_balance_control *bctl,
3198 struct btrfs_ioctl_balance_args *bargs)
3199{
3200 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3201 u64 allowed;
e4837f8f 3202 int mixed = 0;
c9e9f97b 3203 int ret;
8dabb742 3204 u64 num_devices;
de98ced9 3205 unsigned seq;
c9e9f97b 3206
837d5b6e 3207 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3208 atomic_read(&fs_info->balance_pause_req) ||
3209 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3210 ret = -EINVAL;
3211 goto out;
3212 }
3213
e4837f8f
ID
3214 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3215 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3216 mixed = 1;
3217
f43ffb60
ID
3218 /*
3219 * In case of mixed groups both data and meta should be picked,
3220 * and identical options should be given for both of them.
3221 */
e4837f8f
ID
3222 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3223 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3224 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3225 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3226 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
efe120a0
FH
3227 btrfs_err(fs_info, "with mixed groups data and "
3228 "metadata balance options must be the same");
f43ffb60
ID
3229 ret = -EINVAL;
3230 goto out;
3231 }
3232 }
3233
8dabb742
SB
3234 num_devices = fs_info->fs_devices->num_devices;
3235 btrfs_dev_replace_lock(&fs_info->dev_replace);
3236 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3237 BUG_ON(num_devices < 1);
3238 num_devices--;
3239 }
3240 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3241 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3242 if (num_devices == 1)
e4d8ec0f 3243 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3244 else if (num_devices > 1)
e4d8ec0f 3245 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3246 if (num_devices > 2)
3247 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3248 if (num_devices > 3)
3249 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3250 BTRFS_BLOCK_GROUP_RAID6);
6728b198
ID
3251 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3252 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3253 (bctl->data.target & ~allowed))) {
efe120a0
FH
3254 btrfs_err(fs_info, "unable to start balance with target "
3255 "data profile %llu",
c1c9ff7c 3256 bctl->data.target);
e4d8ec0f
ID
3257 ret = -EINVAL;
3258 goto out;
3259 }
6728b198
ID
3260 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3261 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3262 (bctl->meta.target & ~allowed))) {
efe120a0
FH
3263 btrfs_err(fs_info,
3264 "unable to start balance with target metadata profile %llu",
c1c9ff7c 3265 bctl->meta.target);
e4d8ec0f
ID
3266 ret = -EINVAL;
3267 goto out;
3268 }
6728b198
ID
3269 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3270 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3271 (bctl->sys.target & ~allowed))) {
efe120a0
FH
3272 btrfs_err(fs_info,
3273 "unable to start balance with target system profile %llu",
c1c9ff7c 3274 bctl->sys.target);
e4d8ec0f
ID
3275 ret = -EINVAL;
3276 goto out;
3277 }
3278
e4837f8f
ID
3279 /* allow dup'ed data chunks only in mixed mode */
3280 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3281 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
efe120a0 3282 btrfs_err(fs_info, "dup for data is not allowed");
e4d8ec0f
ID
3283 ret = -EINVAL;
3284 goto out;
3285 }
3286
3287 /* allow to reduce meta or sys integrity only if force set */
3288 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3289 BTRFS_BLOCK_GROUP_RAID10 |
3290 BTRFS_BLOCK_GROUP_RAID5 |
3291 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3292 do {
3293 seq = read_seqbegin(&fs_info->profiles_lock);
3294
3295 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3296 (fs_info->avail_system_alloc_bits & allowed) &&
3297 !(bctl->sys.target & allowed)) ||
3298 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3299 (fs_info->avail_metadata_alloc_bits & allowed) &&
3300 !(bctl->meta.target & allowed))) {
3301 if (bctl->flags & BTRFS_BALANCE_FORCE) {
efe120a0 3302 btrfs_info(fs_info, "force reducing metadata integrity");
de98ced9 3303 } else {
efe120a0
FH
3304 btrfs_err(fs_info, "balance will reduce metadata "
3305 "integrity, use force if you want this");
de98ced9
MX
3306 ret = -EINVAL;
3307 goto out;
3308 }
e4d8ec0f 3309 }
de98ced9 3310 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3311
5af3e8cc
SB
3312 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3313 int num_tolerated_disk_barrier_failures;
3314 u64 target = bctl->sys.target;
3315
3316 num_tolerated_disk_barrier_failures =
3317 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3318 if (num_tolerated_disk_barrier_failures > 0 &&
3319 (target &
3320 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3321 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3322 num_tolerated_disk_barrier_failures = 0;
3323 else if (num_tolerated_disk_barrier_failures > 1 &&
3324 (target &
3325 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3326 num_tolerated_disk_barrier_failures = 1;
3327
3328 fs_info->num_tolerated_disk_barrier_failures =
3329 num_tolerated_disk_barrier_failures;
3330 }
3331
0940ebf6 3332 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3333 if (ret && ret != -EEXIST)
0940ebf6
ID
3334 goto out;
3335
59641015
ID
3336 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3337 BUG_ON(ret == -EEXIST);
3338 set_balance_control(bctl);
3339 } else {
3340 BUG_ON(ret != -EEXIST);
3341 spin_lock(&fs_info->balance_lock);
3342 update_balance_args(bctl);
3343 spin_unlock(&fs_info->balance_lock);
3344 }
c9e9f97b 3345
837d5b6e 3346 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3347 mutex_unlock(&fs_info->balance_mutex);
3348
3349 ret = __btrfs_balance(fs_info);
3350
3351 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3352 atomic_dec(&fs_info->balance_running);
c9e9f97b 3353
bf023ecf
ID
3354 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3355 fs_info->num_tolerated_disk_barrier_failures =
3356 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3357 }
3358
c9e9f97b
ID
3359 if (bargs) {
3360 memset(bargs, 0, sizeof(*bargs));
19a39dce 3361 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3362 }
3363
3a01aa7a
ID
3364 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3365 balance_need_close(fs_info)) {
3366 __cancel_balance(fs_info);
3367 }
3368
837d5b6e 3369 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3370
3371 return ret;
3372out:
59641015
ID
3373 if (bctl->flags & BTRFS_BALANCE_RESUME)
3374 __cancel_balance(fs_info);
ed0fb78f 3375 else {
59641015 3376 kfree(bctl);
ed0fb78f
ID
3377 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3378 }
59641015
ID
3379 return ret;
3380}
3381
3382static int balance_kthread(void *data)
3383{
2b6ba629 3384 struct btrfs_fs_info *fs_info = data;
9555c6c1 3385 int ret = 0;
59641015
ID
3386
3387 mutex_lock(&fs_info->volume_mutex);
3388 mutex_lock(&fs_info->balance_mutex);
3389
2b6ba629 3390 if (fs_info->balance_ctl) {
efe120a0 3391 btrfs_info(fs_info, "continuing balance");
2b6ba629 3392 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3393 }
59641015
ID
3394
3395 mutex_unlock(&fs_info->balance_mutex);
3396 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3397
59641015
ID
3398 return ret;
3399}
3400
2b6ba629
ID
3401int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3402{
3403 struct task_struct *tsk;
3404
3405 spin_lock(&fs_info->balance_lock);
3406 if (!fs_info->balance_ctl) {
3407 spin_unlock(&fs_info->balance_lock);
3408 return 0;
3409 }
3410 spin_unlock(&fs_info->balance_lock);
3411
3412 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
efe120a0 3413 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3414 return 0;
3415 }
3416
3417 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3418 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3419}
3420
68310a5e 3421int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3422{
59641015
ID
3423 struct btrfs_balance_control *bctl;
3424 struct btrfs_balance_item *item;
3425 struct btrfs_disk_balance_args disk_bargs;
3426 struct btrfs_path *path;
3427 struct extent_buffer *leaf;
3428 struct btrfs_key key;
3429 int ret;
3430
3431 path = btrfs_alloc_path();
3432 if (!path)
3433 return -ENOMEM;
3434
59641015
ID
3435 key.objectid = BTRFS_BALANCE_OBJECTID;
3436 key.type = BTRFS_BALANCE_ITEM_KEY;
3437 key.offset = 0;
3438
68310a5e 3439 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3440 if (ret < 0)
68310a5e 3441 goto out;
59641015
ID
3442 if (ret > 0) { /* ret = -ENOENT; */
3443 ret = 0;
68310a5e
ID
3444 goto out;
3445 }
3446
3447 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3448 if (!bctl) {
3449 ret = -ENOMEM;
3450 goto out;
59641015
ID
3451 }
3452
3453 leaf = path->nodes[0];
3454 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3455
68310a5e
ID
3456 bctl->fs_info = fs_info;
3457 bctl->flags = btrfs_balance_flags(leaf, item);
3458 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3459
3460 btrfs_balance_data(leaf, item, &disk_bargs);
3461 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3462 btrfs_balance_meta(leaf, item, &disk_bargs);
3463 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3464 btrfs_balance_sys(leaf, item, &disk_bargs);
3465 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3466
ed0fb78f
ID
3467 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3468
68310a5e
ID
3469 mutex_lock(&fs_info->volume_mutex);
3470 mutex_lock(&fs_info->balance_mutex);
59641015 3471
68310a5e
ID
3472 set_balance_control(bctl);
3473
3474 mutex_unlock(&fs_info->balance_mutex);
3475 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3476out:
3477 btrfs_free_path(path);
ec44a35c
CM
3478 return ret;
3479}
3480
837d5b6e
ID
3481int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3482{
3483 int ret = 0;
3484
3485 mutex_lock(&fs_info->balance_mutex);
3486 if (!fs_info->balance_ctl) {
3487 mutex_unlock(&fs_info->balance_mutex);
3488 return -ENOTCONN;
3489 }
3490
3491 if (atomic_read(&fs_info->balance_running)) {
3492 atomic_inc(&fs_info->balance_pause_req);
3493 mutex_unlock(&fs_info->balance_mutex);
3494
3495 wait_event(fs_info->balance_wait_q,
3496 atomic_read(&fs_info->balance_running) == 0);
3497
3498 mutex_lock(&fs_info->balance_mutex);
3499 /* we are good with balance_ctl ripped off from under us */
3500 BUG_ON(atomic_read(&fs_info->balance_running));
3501 atomic_dec(&fs_info->balance_pause_req);
3502 } else {
3503 ret = -ENOTCONN;
3504 }
3505
3506 mutex_unlock(&fs_info->balance_mutex);
3507 return ret;
3508}
3509
a7e99c69
ID
3510int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3511{
e649e587
ID
3512 if (fs_info->sb->s_flags & MS_RDONLY)
3513 return -EROFS;
3514
a7e99c69
ID
3515 mutex_lock(&fs_info->balance_mutex);
3516 if (!fs_info->balance_ctl) {
3517 mutex_unlock(&fs_info->balance_mutex);
3518 return -ENOTCONN;
3519 }
3520
3521 atomic_inc(&fs_info->balance_cancel_req);
3522 /*
3523 * if we are running just wait and return, balance item is
3524 * deleted in btrfs_balance in this case
3525 */
3526 if (atomic_read(&fs_info->balance_running)) {
3527 mutex_unlock(&fs_info->balance_mutex);
3528 wait_event(fs_info->balance_wait_q,
3529 atomic_read(&fs_info->balance_running) == 0);
3530 mutex_lock(&fs_info->balance_mutex);
3531 } else {
3532 /* __cancel_balance needs volume_mutex */
3533 mutex_unlock(&fs_info->balance_mutex);
3534 mutex_lock(&fs_info->volume_mutex);
3535 mutex_lock(&fs_info->balance_mutex);
3536
3537 if (fs_info->balance_ctl)
3538 __cancel_balance(fs_info);
3539
3540 mutex_unlock(&fs_info->volume_mutex);
3541 }
3542
3543 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3544 atomic_dec(&fs_info->balance_cancel_req);
3545 mutex_unlock(&fs_info->balance_mutex);
3546 return 0;
3547}
3548
803b2f54
SB
3549static int btrfs_uuid_scan_kthread(void *data)
3550{
3551 struct btrfs_fs_info *fs_info = data;
3552 struct btrfs_root *root = fs_info->tree_root;
3553 struct btrfs_key key;
3554 struct btrfs_key max_key;
3555 struct btrfs_path *path = NULL;
3556 int ret = 0;
3557 struct extent_buffer *eb;
3558 int slot;
3559 struct btrfs_root_item root_item;
3560 u32 item_size;
f45388f3 3561 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
3562
3563 path = btrfs_alloc_path();
3564 if (!path) {
3565 ret = -ENOMEM;
3566 goto out;
3567 }
3568
3569 key.objectid = 0;
3570 key.type = BTRFS_ROOT_ITEM_KEY;
3571 key.offset = 0;
3572
3573 max_key.objectid = (u64)-1;
3574 max_key.type = BTRFS_ROOT_ITEM_KEY;
3575 max_key.offset = (u64)-1;
3576
3577 path->keep_locks = 1;
3578
3579 while (1) {
6174d3cb 3580 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
3581 if (ret) {
3582 if (ret > 0)
3583 ret = 0;
3584 break;
3585 }
3586
3587 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3588 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3589 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3590 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3591 goto skip;
3592
3593 eb = path->nodes[0];
3594 slot = path->slots[0];
3595 item_size = btrfs_item_size_nr(eb, slot);
3596 if (item_size < sizeof(root_item))
3597 goto skip;
3598
803b2f54
SB
3599 read_extent_buffer(eb, &root_item,
3600 btrfs_item_ptr_offset(eb, slot),
3601 (int)sizeof(root_item));
3602 if (btrfs_root_refs(&root_item) == 0)
3603 goto skip;
f45388f3
FDBM
3604
3605 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3606 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3607 if (trans)
3608 goto update_tree;
3609
3610 btrfs_release_path(path);
803b2f54
SB
3611 /*
3612 * 1 - subvol uuid item
3613 * 1 - received_subvol uuid item
3614 */
3615 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3616 if (IS_ERR(trans)) {
3617 ret = PTR_ERR(trans);
3618 break;
3619 }
f45388f3
FDBM
3620 continue;
3621 } else {
3622 goto skip;
3623 }
3624update_tree:
3625 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
3626 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3627 root_item.uuid,
3628 BTRFS_UUID_KEY_SUBVOL,
3629 key.objectid);
3630 if (ret < 0) {
efe120a0 3631 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3632 ret);
803b2f54
SB
3633 break;
3634 }
3635 }
3636
3637 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
3638 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3639 root_item.received_uuid,
3640 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3641 key.objectid);
3642 if (ret < 0) {
efe120a0 3643 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3644 ret);
803b2f54
SB
3645 break;
3646 }
3647 }
3648
f45388f3 3649skip:
803b2f54
SB
3650 if (trans) {
3651 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 3652 trans = NULL;
803b2f54
SB
3653 if (ret)
3654 break;
3655 }
3656
803b2f54
SB
3657 btrfs_release_path(path);
3658 if (key.offset < (u64)-1) {
3659 key.offset++;
3660 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3661 key.offset = 0;
3662 key.type = BTRFS_ROOT_ITEM_KEY;
3663 } else if (key.objectid < (u64)-1) {
3664 key.offset = 0;
3665 key.type = BTRFS_ROOT_ITEM_KEY;
3666 key.objectid++;
3667 } else {
3668 break;
3669 }
3670 cond_resched();
3671 }
3672
3673out:
3674 btrfs_free_path(path);
f45388f3
FDBM
3675 if (trans && !IS_ERR(trans))
3676 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 3677 if (ret)
efe120a0 3678 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175
SB
3679 else
3680 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
3681 up(&fs_info->uuid_tree_rescan_sem);
3682 return 0;
3683}
3684
70f80175
SB
3685/*
3686 * Callback for btrfs_uuid_tree_iterate().
3687 * returns:
3688 * 0 check succeeded, the entry is not outdated.
3689 * < 0 if an error occured.
3690 * > 0 if the check failed, which means the caller shall remove the entry.
3691 */
3692static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3693 u8 *uuid, u8 type, u64 subid)
3694{
3695 struct btrfs_key key;
3696 int ret = 0;
3697 struct btrfs_root *subvol_root;
3698
3699 if (type != BTRFS_UUID_KEY_SUBVOL &&
3700 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3701 goto out;
3702
3703 key.objectid = subid;
3704 key.type = BTRFS_ROOT_ITEM_KEY;
3705 key.offset = (u64)-1;
3706 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3707 if (IS_ERR(subvol_root)) {
3708 ret = PTR_ERR(subvol_root);
3709 if (ret == -ENOENT)
3710 ret = 1;
3711 goto out;
3712 }
3713
3714 switch (type) {
3715 case BTRFS_UUID_KEY_SUBVOL:
3716 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3717 ret = 1;
3718 break;
3719 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3720 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3721 BTRFS_UUID_SIZE))
3722 ret = 1;
3723 break;
3724 }
3725
3726out:
3727 return ret;
3728}
3729
3730static int btrfs_uuid_rescan_kthread(void *data)
3731{
3732 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3733 int ret;
3734
3735 /*
3736 * 1st step is to iterate through the existing UUID tree and
3737 * to delete all entries that contain outdated data.
3738 * 2nd step is to add all missing entries to the UUID tree.
3739 */
3740 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3741 if (ret < 0) {
efe120a0 3742 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
3743 up(&fs_info->uuid_tree_rescan_sem);
3744 return ret;
3745 }
3746 return btrfs_uuid_scan_kthread(data);
3747}
3748
f7a81ea4
SB
3749int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3750{
3751 struct btrfs_trans_handle *trans;
3752 struct btrfs_root *tree_root = fs_info->tree_root;
3753 struct btrfs_root *uuid_root;
803b2f54
SB
3754 struct task_struct *task;
3755 int ret;
f7a81ea4
SB
3756
3757 /*
3758 * 1 - root node
3759 * 1 - root item
3760 */
3761 trans = btrfs_start_transaction(tree_root, 2);
3762 if (IS_ERR(trans))
3763 return PTR_ERR(trans);
3764
3765 uuid_root = btrfs_create_tree(trans, fs_info,
3766 BTRFS_UUID_TREE_OBJECTID);
3767 if (IS_ERR(uuid_root)) {
3768 btrfs_abort_transaction(trans, tree_root,
3769 PTR_ERR(uuid_root));
3770 return PTR_ERR(uuid_root);
3771 }
3772
3773 fs_info->uuid_root = uuid_root;
3774
803b2f54
SB
3775 ret = btrfs_commit_transaction(trans, tree_root);
3776 if (ret)
3777 return ret;
3778
3779 down(&fs_info->uuid_tree_rescan_sem);
3780 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3781 if (IS_ERR(task)) {
70f80175 3782 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 3783 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
3784 up(&fs_info->uuid_tree_rescan_sem);
3785 return PTR_ERR(task);
3786 }
3787
3788 return 0;
f7a81ea4 3789}
803b2f54 3790
70f80175
SB
3791int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3792{
3793 struct task_struct *task;
3794
3795 down(&fs_info->uuid_tree_rescan_sem);
3796 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3797 if (IS_ERR(task)) {
3798 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 3799 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
3800 up(&fs_info->uuid_tree_rescan_sem);
3801 return PTR_ERR(task);
3802 }
3803
3804 return 0;
3805}
3806
8f18cf13
CM
3807/*
3808 * shrinking a device means finding all of the device extents past
3809 * the new size, and then following the back refs to the chunks.
3810 * The chunk relocation code actually frees the device extent
3811 */
3812int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3813{
3814 struct btrfs_trans_handle *trans;
3815 struct btrfs_root *root = device->dev_root;
3816 struct btrfs_dev_extent *dev_extent = NULL;
3817 struct btrfs_path *path;
3818 u64 length;
3819 u64 chunk_tree;
3820 u64 chunk_objectid;
3821 u64 chunk_offset;
3822 int ret;
3823 int slot;
ba1bf481
JB
3824 int failed = 0;
3825 bool retried = false;
8f18cf13
CM
3826 struct extent_buffer *l;
3827 struct btrfs_key key;
6c41761f 3828 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3829 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3830 u64 old_size = device->total_bytes;
8f18cf13
CM
3831 u64 diff = device->total_bytes - new_size;
3832
63a212ab
SB
3833 if (device->is_tgtdev_for_dev_replace)
3834 return -EINVAL;
3835
8f18cf13
CM
3836 path = btrfs_alloc_path();
3837 if (!path)
3838 return -ENOMEM;
3839
8f18cf13
CM
3840 path->reada = 2;
3841
7d9eb12c
CM
3842 lock_chunks(root);
3843
8f18cf13 3844 device->total_bytes = new_size;
2bf64758 3845 if (device->writeable) {
2b82032c 3846 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3847 spin_lock(&root->fs_info->free_chunk_lock);
3848 root->fs_info->free_chunk_space -= diff;
3849 spin_unlock(&root->fs_info->free_chunk_lock);
3850 }
7d9eb12c 3851 unlock_chunks(root);
8f18cf13 3852
ba1bf481 3853again:
8f18cf13
CM
3854 key.objectid = device->devid;
3855 key.offset = (u64)-1;
3856 key.type = BTRFS_DEV_EXTENT_KEY;
3857
213e64da 3858 do {
8f18cf13
CM
3859 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3860 if (ret < 0)
3861 goto done;
3862
3863 ret = btrfs_previous_item(root, path, 0, key.type);
3864 if (ret < 0)
3865 goto done;
3866 if (ret) {
3867 ret = 0;
b3b4aa74 3868 btrfs_release_path(path);
bf1fb512 3869 break;
8f18cf13
CM
3870 }
3871
3872 l = path->nodes[0];
3873 slot = path->slots[0];
3874 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3875
ba1bf481 3876 if (key.objectid != device->devid) {
b3b4aa74 3877 btrfs_release_path(path);
bf1fb512 3878 break;
ba1bf481 3879 }
8f18cf13
CM
3880
3881 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3882 length = btrfs_dev_extent_length(l, dev_extent);
3883
ba1bf481 3884 if (key.offset + length <= new_size) {
b3b4aa74 3885 btrfs_release_path(path);
d6397bae 3886 break;
ba1bf481 3887 }
8f18cf13
CM
3888
3889 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3890 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3891 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3892 btrfs_release_path(path);
8f18cf13
CM
3893
3894 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3895 chunk_offset);
ba1bf481 3896 if (ret && ret != -ENOSPC)
8f18cf13 3897 goto done;
ba1bf481
JB
3898 if (ret == -ENOSPC)
3899 failed++;
213e64da 3900 } while (key.offset-- > 0);
ba1bf481
JB
3901
3902 if (failed && !retried) {
3903 failed = 0;
3904 retried = true;
3905 goto again;
3906 } else if (failed && retried) {
3907 ret = -ENOSPC;
3908 lock_chunks(root);
3909
3910 device->total_bytes = old_size;
3911 if (device->writeable)
3912 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3913 spin_lock(&root->fs_info->free_chunk_lock);
3914 root->fs_info->free_chunk_space += diff;
3915 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3916 unlock_chunks(root);
3917 goto done;
8f18cf13
CM
3918 }
3919
d6397bae 3920 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3921 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3922 if (IS_ERR(trans)) {
3923 ret = PTR_ERR(trans);
3924 goto done;
3925 }
3926
d6397bae
CB
3927 lock_chunks(root);
3928
3929 device->disk_total_bytes = new_size;
3930 /* Now btrfs_update_device() will change the on-disk size. */
3931 ret = btrfs_update_device(trans, device);
3932 if (ret) {
3933 unlock_chunks(root);
3934 btrfs_end_transaction(trans, root);
3935 goto done;
3936 }
3937 WARN_ON(diff > old_total);
3938 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3939 unlock_chunks(root);
3940 btrfs_end_transaction(trans, root);
8f18cf13
CM
3941done:
3942 btrfs_free_path(path);
3943 return ret;
3944}
3945
125ccb0a 3946static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3947 struct btrfs_key *key,
3948 struct btrfs_chunk *chunk, int item_size)
3949{
6c41761f 3950 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3951 struct btrfs_disk_key disk_key;
3952 u32 array_size;
3953 u8 *ptr;
3954
3955 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e
GH
3956 if (array_size + item_size + sizeof(disk_key)
3957 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
0b86a832
CM
3958 return -EFBIG;
3959
3960 ptr = super_copy->sys_chunk_array + array_size;
3961 btrfs_cpu_key_to_disk(&disk_key, key);
3962 memcpy(ptr, &disk_key, sizeof(disk_key));
3963 ptr += sizeof(disk_key);
3964 memcpy(ptr, chunk, item_size);
3965 item_size += sizeof(disk_key);
3966 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3967 return 0;
3968}
3969
73c5de00
AJ
3970/*
3971 * sort the devices in descending order by max_avail, total_avail
3972 */
3973static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3974{
73c5de00
AJ
3975 const struct btrfs_device_info *di_a = a;
3976 const struct btrfs_device_info *di_b = b;
9b3f68b9 3977
73c5de00 3978 if (di_a->max_avail > di_b->max_avail)
b2117a39 3979 return -1;
73c5de00 3980 if (di_a->max_avail < di_b->max_avail)
b2117a39 3981 return 1;
73c5de00
AJ
3982 if (di_a->total_avail > di_b->total_avail)
3983 return -1;
3984 if (di_a->total_avail < di_b->total_avail)
3985 return 1;
3986 return 0;
b2117a39 3987}
0b86a832 3988
48a3b636 3989static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
e6ec716f
MX
3990 [BTRFS_RAID_RAID10] = {
3991 .sub_stripes = 2,
3992 .dev_stripes = 1,
3993 .devs_max = 0, /* 0 == as many as possible */
3994 .devs_min = 4,
3995 .devs_increment = 2,
3996 .ncopies = 2,
3997 },
3998 [BTRFS_RAID_RAID1] = {
3999 .sub_stripes = 1,
4000 .dev_stripes = 1,
4001 .devs_max = 2,
4002 .devs_min = 2,
4003 .devs_increment = 2,
4004 .ncopies = 2,
4005 },
4006 [BTRFS_RAID_DUP] = {
4007 .sub_stripes = 1,
4008 .dev_stripes = 2,
4009 .devs_max = 1,
4010 .devs_min = 1,
4011 .devs_increment = 1,
4012 .ncopies = 2,
4013 },
4014 [BTRFS_RAID_RAID0] = {
4015 .sub_stripes = 1,
4016 .dev_stripes = 1,
4017 .devs_max = 0,
4018 .devs_min = 2,
4019 .devs_increment = 1,
4020 .ncopies = 1,
4021 },
4022 [BTRFS_RAID_SINGLE] = {
4023 .sub_stripes = 1,
4024 .dev_stripes = 1,
4025 .devs_max = 1,
4026 .devs_min = 1,
4027 .devs_increment = 1,
4028 .ncopies = 1,
4029 },
e942f883
CM
4030 [BTRFS_RAID_RAID5] = {
4031 .sub_stripes = 1,
4032 .dev_stripes = 1,
4033 .devs_max = 0,
4034 .devs_min = 2,
4035 .devs_increment = 1,
4036 .ncopies = 2,
4037 },
4038 [BTRFS_RAID_RAID6] = {
4039 .sub_stripes = 1,
4040 .dev_stripes = 1,
4041 .devs_max = 0,
4042 .devs_min = 3,
4043 .devs_increment = 1,
4044 .ncopies = 3,
4045 },
31e50229
LB
4046};
4047
53b381b3
DW
4048static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4049{
4050 /* TODO allow them to set a preferred stripe size */
4051 return 64 * 1024;
4052}
4053
4054static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4055{
53b381b3
DW
4056 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
4057 return;
4058
ceda0864 4059 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4060}
4061
23f8f9b7
GH
4062#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4063 - sizeof(struct btrfs_item) \
4064 - sizeof(struct btrfs_chunk)) \
4065 / sizeof(struct btrfs_stripe) + 1)
4066
4067#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4068 - 2 * sizeof(struct btrfs_disk_key) \
4069 - 2 * sizeof(struct btrfs_chunk)) \
4070 / sizeof(struct btrfs_stripe) + 1)
4071
73c5de00 4072static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4073 struct btrfs_root *extent_root, u64 start,
4074 u64 type)
b2117a39 4075{
73c5de00
AJ
4076 struct btrfs_fs_info *info = extent_root->fs_info;
4077 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4078 struct list_head *cur;
4079 struct map_lookup *map = NULL;
4080 struct extent_map_tree *em_tree;
4081 struct extent_map *em;
4082 struct btrfs_device_info *devices_info = NULL;
4083 u64 total_avail;
4084 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4085 int data_stripes; /* number of stripes that count for
4086 block group size */
73c5de00
AJ
4087 int sub_stripes; /* sub_stripes info for map */
4088 int dev_stripes; /* stripes per dev */
4089 int devs_max; /* max devs to use */
4090 int devs_min; /* min devs needed */
4091 int devs_increment; /* ndevs has to be a multiple of this */
4092 int ncopies; /* how many copies to data has */
4093 int ret;
4094 u64 max_stripe_size;
4095 u64 max_chunk_size;
4096 u64 stripe_size;
4097 u64 num_bytes;
53b381b3 4098 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4099 int ndevs;
4100 int i;
4101 int j;
31e50229 4102 int index;
593060d7 4103
0c460c0d 4104 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4105
73c5de00
AJ
4106 if (list_empty(&fs_devices->alloc_list))
4107 return -ENOSPC;
b2117a39 4108
31e50229 4109 index = __get_raid_index(type);
73c5de00 4110
31e50229
LB
4111 sub_stripes = btrfs_raid_array[index].sub_stripes;
4112 dev_stripes = btrfs_raid_array[index].dev_stripes;
4113 devs_max = btrfs_raid_array[index].devs_max;
4114 devs_min = btrfs_raid_array[index].devs_min;
4115 devs_increment = btrfs_raid_array[index].devs_increment;
4116 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4117
9b3f68b9 4118 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4119 max_stripe_size = 1024 * 1024 * 1024;
4120 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4121 if (!devs_max)
4122 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4123 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4124 /* for larger filesystems, use larger metadata chunks */
4125 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4126 max_stripe_size = 1024 * 1024 * 1024;
4127 else
4128 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4129 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4130 if (!devs_max)
4131 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4132 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4133 max_stripe_size = 32 * 1024 * 1024;
73c5de00 4134 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4135 if (!devs_max)
4136 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4137 } else {
351fd353 4138 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4139 type);
4140 BUG_ON(1);
9b3f68b9
CM
4141 }
4142
2b82032c
YZ
4143 /* we don't want a chunk larger than 10% of writeable space */
4144 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4145 max_chunk_size);
9b3f68b9 4146
73c5de00
AJ
4147 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4148 GFP_NOFS);
4149 if (!devices_info)
4150 return -ENOMEM;
0cad8a11 4151
73c5de00 4152 cur = fs_devices->alloc_list.next;
9b3f68b9 4153
9f680ce0 4154 /*
73c5de00
AJ
4155 * in the first pass through the devices list, we gather information
4156 * about the available holes on each device.
9f680ce0 4157 */
73c5de00
AJ
4158 ndevs = 0;
4159 while (cur != &fs_devices->alloc_list) {
4160 struct btrfs_device *device;
4161 u64 max_avail;
4162 u64 dev_offset;
b2117a39 4163
73c5de00 4164 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4165
73c5de00 4166 cur = cur->next;
b2117a39 4167
73c5de00 4168 if (!device->writeable) {
31b1a2bd 4169 WARN(1, KERN_ERR
efe120a0 4170 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4171 continue;
4172 }
b2117a39 4173
63a212ab
SB
4174 if (!device->in_fs_metadata ||
4175 device->is_tgtdev_for_dev_replace)
73c5de00 4176 continue;
b2117a39 4177
73c5de00
AJ
4178 if (device->total_bytes > device->bytes_used)
4179 total_avail = device->total_bytes - device->bytes_used;
4180 else
4181 total_avail = 0;
38c01b96 4182
4183 /* If there is no space on this device, skip it. */
4184 if (total_avail == 0)
4185 continue;
b2117a39 4186
6df9a95e 4187 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4188 max_stripe_size * dev_stripes,
4189 &dev_offset, &max_avail);
4190 if (ret && ret != -ENOSPC)
4191 goto error;
b2117a39 4192
73c5de00
AJ
4193 if (ret == 0)
4194 max_avail = max_stripe_size * dev_stripes;
b2117a39 4195
73c5de00
AJ
4196 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4197 continue;
b2117a39 4198
063d006f
ES
4199 if (ndevs == fs_devices->rw_devices) {
4200 WARN(1, "%s: found more than %llu devices\n",
4201 __func__, fs_devices->rw_devices);
4202 break;
4203 }
73c5de00
AJ
4204 devices_info[ndevs].dev_offset = dev_offset;
4205 devices_info[ndevs].max_avail = max_avail;
4206 devices_info[ndevs].total_avail = total_avail;
4207 devices_info[ndevs].dev = device;
4208 ++ndevs;
4209 }
b2117a39 4210
73c5de00
AJ
4211 /*
4212 * now sort the devices by hole size / available space
4213 */
4214 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4215 btrfs_cmp_device_info, NULL);
b2117a39 4216
73c5de00
AJ
4217 /* round down to number of usable stripes */
4218 ndevs -= ndevs % devs_increment;
b2117a39 4219
73c5de00
AJ
4220 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4221 ret = -ENOSPC;
4222 goto error;
b2117a39 4223 }
9f680ce0 4224
73c5de00
AJ
4225 if (devs_max && ndevs > devs_max)
4226 ndevs = devs_max;
4227 /*
4228 * the primary goal is to maximize the number of stripes, so use as many
4229 * devices as possible, even if the stripes are not maximum sized.
4230 */
4231 stripe_size = devices_info[ndevs-1].max_avail;
4232 num_stripes = ndevs * dev_stripes;
b2117a39 4233
53b381b3
DW
4234 /*
4235 * this will have to be fixed for RAID1 and RAID10 over
4236 * more drives
4237 */
4238 data_stripes = num_stripes / ncopies;
4239
53b381b3
DW
4240 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4241 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4242 btrfs_super_stripesize(info->super_copy));
4243 data_stripes = num_stripes - 1;
4244 }
4245 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4246 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4247 btrfs_super_stripesize(info->super_copy));
4248 data_stripes = num_stripes - 2;
4249 }
86db2578
CM
4250
4251 /*
4252 * Use the number of data stripes to figure out how big this chunk
4253 * is really going to be in terms of logical address space,
4254 * and compare that answer with the max chunk size
4255 */
4256 if (stripe_size * data_stripes > max_chunk_size) {
4257 u64 mask = (1ULL << 24) - 1;
4258 stripe_size = max_chunk_size;
4259 do_div(stripe_size, data_stripes);
4260
4261 /* bump the answer up to a 16MB boundary */
4262 stripe_size = (stripe_size + mask) & ~mask;
4263
4264 /* but don't go higher than the limits we found
4265 * while searching for free extents
4266 */
4267 if (stripe_size > devices_info[ndevs-1].max_avail)
4268 stripe_size = devices_info[ndevs-1].max_avail;
4269 }
4270
73c5de00 4271 do_div(stripe_size, dev_stripes);
37db63a4
ID
4272
4273 /* align to BTRFS_STRIPE_LEN */
53b381b3
DW
4274 do_div(stripe_size, raid_stripe_len);
4275 stripe_size *= raid_stripe_len;
b2117a39
MX
4276
4277 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4278 if (!map) {
4279 ret = -ENOMEM;
4280 goto error;
4281 }
4282 map->num_stripes = num_stripes;
9b3f68b9 4283
73c5de00
AJ
4284 for (i = 0; i < ndevs; ++i) {
4285 for (j = 0; j < dev_stripes; ++j) {
4286 int s = i * dev_stripes + j;
4287 map->stripes[s].dev = devices_info[i].dev;
4288 map->stripes[s].physical = devices_info[i].dev_offset +
4289 j * stripe_size;
6324fbf3 4290 }
6324fbf3 4291 }
2b82032c 4292 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4293 map->stripe_len = raid_stripe_len;
4294 map->io_align = raid_stripe_len;
4295 map->io_width = raid_stripe_len;
2b82032c 4296 map->type = type;
2b82032c 4297 map->sub_stripes = sub_stripes;
0b86a832 4298
53b381b3 4299 num_bytes = stripe_size * data_stripes;
0b86a832 4300
73c5de00 4301 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4302
172ddd60 4303 em = alloc_extent_map();
2b82032c 4304 if (!em) {
298a8f9c 4305 kfree(map);
b2117a39
MX
4306 ret = -ENOMEM;
4307 goto error;
593060d7 4308 }
298a8f9c 4309 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
2b82032c
YZ
4310 em->bdev = (struct block_device *)map;
4311 em->start = start;
73c5de00 4312 em->len = num_bytes;
2b82032c
YZ
4313 em->block_start = 0;
4314 em->block_len = em->len;
6df9a95e 4315 em->orig_block_len = stripe_size;
593060d7 4316
2b82032c 4317 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4318 write_lock(&em_tree->lock);
09a2a8f9 4319 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4320 if (!ret) {
4321 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4322 atomic_inc(&em->refs);
4323 }
890871be 4324 write_unlock(&em_tree->lock);
0f5d42b2
JB
4325 if (ret) {
4326 free_extent_map(em);
1dd4602f 4327 goto error;
0f5d42b2 4328 }
0b86a832 4329
04487488
JB
4330 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4331 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4332 start, num_bytes);
6df9a95e
JB
4333 if (ret)
4334 goto error_del_extent;
2b82032c 4335
0f5d42b2 4336 free_extent_map(em);
53b381b3
DW
4337 check_raid56_incompat_flag(extent_root->fs_info, type);
4338
b2117a39 4339 kfree(devices_info);
2b82032c 4340 return 0;
b2117a39 4341
6df9a95e 4342error_del_extent:
0f5d42b2
JB
4343 write_lock(&em_tree->lock);
4344 remove_extent_mapping(em_tree, em);
4345 write_unlock(&em_tree->lock);
4346
4347 /* One for our allocation */
4348 free_extent_map(em);
4349 /* One for the tree reference */
4350 free_extent_map(em);
b2117a39 4351error:
b2117a39
MX
4352 kfree(devices_info);
4353 return ret;
2b82032c
YZ
4354}
4355
6df9a95e 4356int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4357 struct btrfs_root *extent_root,
6df9a95e 4358 u64 chunk_offset, u64 chunk_size)
2b82032c 4359{
2b82032c
YZ
4360 struct btrfs_key key;
4361 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4362 struct btrfs_device *device;
4363 struct btrfs_chunk *chunk;
4364 struct btrfs_stripe *stripe;
6df9a95e
JB
4365 struct extent_map_tree *em_tree;
4366 struct extent_map *em;
4367 struct map_lookup *map;
4368 size_t item_size;
4369 u64 dev_offset;
4370 u64 stripe_size;
4371 int i = 0;
2b82032c
YZ
4372 int ret;
4373
6df9a95e
JB
4374 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4375 read_lock(&em_tree->lock);
4376 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4377 read_unlock(&em_tree->lock);
4378
4379 if (!em) {
4380 btrfs_crit(extent_root->fs_info, "unable to find logical "
4381 "%Lu len %Lu", chunk_offset, chunk_size);
4382 return -EINVAL;
4383 }
4384
4385 if (em->start != chunk_offset || em->len != chunk_size) {
4386 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
351fd353 4387 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
6df9a95e
JB
4388 chunk_size, em->start, em->len);
4389 free_extent_map(em);
4390 return -EINVAL;
4391 }
4392
4393 map = (struct map_lookup *)em->bdev;
4394 item_size = btrfs_chunk_item_size(map->num_stripes);
4395 stripe_size = em->orig_block_len;
4396
2b82032c 4397 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4398 if (!chunk) {
4399 ret = -ENOMEM;
4400 goto out;
4401 }
4402
4403 for (i = 0; i < map->num_stripes; i++) {
4404 device = map->stripes[i].dev;
4405 dev_offset = map->stripes[i].physical;
2b82032c 4406
2b82032c 4407 device->bytes_used += stripe_size;
0b86a832 4408 ret = btrfs_update_device(trans, device);
3acd3953 4409 if (ret)
6df9a95e
JB
4410 goto out;
4411 ret = btrfs_alloc_dev_extent(trans, device,
4412 chunk_root->root_key.objectid,
4413 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4414 chunk_offset, dev_offset,
4415 stripe_size);
4416 if (ret)
4417 goto out;
2b82032c
YZ
4418 }
4419
2bf64758
JB
4420 spin_lock(&extent_root->fs_info->free_chunk_lock);
4421 extent_root->fs_info->free_chunk_space -= (stripe_size *
4422 map->num_stripes);
4423 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4424
2b82032c 4425 stripe = &chunk->stripe;
6df9a95e
JB
4426 for (i = 0; i < map->num_stripes; i++) {
4427 device = map->stripes[i].dev;
4428 dev_offset = map->stripes[i].physical;
0b86a832 4429
e17cade2
CM
4430 btrfs_set_stack_stripe_devid(stripe, device->devid);
4431 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4432 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4433 stripe++;
0b86a832
CM
4434 }
4435
2b82032c 4436 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4437 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4438 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4439 btrfs_set_stack_chunk_type(chunk, map->type);
4440 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4441 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4442 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4443 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4444 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4445
2b82032c
YZ
4446 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4447 key.type = BTRFS_CHUNK_ITEM_KEY;
4448 key.offset = chunk_offset;
0b86a832 4449
2b82032c 4450 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4451 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4452 /*
4453 * TODO: Cleanup of inserted chunk root in case of
4454 * failure.
4455 */
125ccb0a 4456 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4457 item_size);
8f18cf13 4458 }
1abe9b8a 4459
6df9a95e 4460out:
0b86a832 4461 kfree(chunk);
6df9a95e 4462 free_extent_map(em);
4ed1d16e 4463 return ret;
2b82032c 4464}
0b86a832 4465
2b82032c
YZ
4466/*
4467 * Chunk allocation falls into two parts. The first part does works
4468 * that make the new allocated chunk useable, but not do any operation
4469 * that modifies the chunk tree. The second part does the works that
4470 * require modifying the chunk tree. This division is important for the
4471 * bootstrap process of adding storage to a seed btrfs.
4472 */
4473int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4474 struct btrfs_root *extent_root, u64 type)
4475{
4476 u64 chunk_offset;
2b82032c 4477
6df9a95e
JB
4478 chunk_offset = find_next_chunk(extent_root->fs_info);
4479 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4480}
4481
d397712b 4482static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4483 struct btrfs_root *root,
4484 struct btrfs_device *device)
4485{
4486 u64 chunk_offset;
4487 u64 sys_chunk_offset;
2b82032c 4488 u64 alloc_profile;
2b82032c
YZ
4489 struct btrfs_fs_info *fs_info = root->fs_info;
4490 struct btrfs_root *extent_root = fs_info->extent_root;
4491 int ret;
4492
6df9a95e 4493 chunk_offset = find_next_chunk(fs_info);
de98ced9 4494 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4495 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4496 alloc_profile);
79787eaa
JM
4497 if (ret)
4498 return ret;
2b82032c 4499
6df9a95e 4500 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4501 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4502 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4503 alloc_profile);
005d6427
DS
4504 if (ret) {
4505 btrfs_abort_transaction(trans, root, ret);
4506 goto out;
4507 }
2b82032c
YZ
4508
4509 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
79787eaa 4510 if (ret)
005d6427 4511 btrfs_abort_transaction(trans, root, ret);
005d6427 4512out:
79787eaa 4513 return ret;
2b82032c
YZ
4514}
4515
4516int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4517{
4518 struct extent_map *em;
4519 struct map_lookup *map;
4520 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4521 int readonly = 0;
4522 int i;
4523
890871be 4524 read_lock(&map_tree->map_tree.lock);
2b82032c 4525 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4526 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4527 if (!em)
4528 return 1;
4529
f48b9075
JB
4530 if (btrfs_test_opt(root, DEGRADED)) {
4531 free_extent_map(em);
4532 return 0;
4533 }
4534
2b82032c
YZ
4535 map = (struct map_lookup *)em->bdev;
4536 for (i = 0; i < map->num_stripes; i++) {
4537 if (!map->stripes[i].dev->writeable) {
4538 readonly = 1;
4539 break;
4540 }
4541 }
0b86a832 4542 free_extent_map(em);
2b82032c 4543 return readonly;
0b86a832
CM
4544}
4545
4546void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4547{
a8067e02 4548 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4549}
4550
4551void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4552{
4553 struct extent_map *em;
4554
d397712b 4555 while (1) {
890871be 4556 write_lock(&tree->map_tree.lock);
0b86a832
CM
4557 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4558 if (em)
4559 remove_extent_mapping(&tree->map_tree, em);
890871be 4560 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4561 if (!em)
4562 break;
0b86a832
CM
4563 /* once for us */
4564 free_extent_map(em);
4565 /* once for the tree */
4566 free_extent_map(em);
4567 }
4568}
4569
5d964051 4570int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4571{
5d964051 4572 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4573 struct extent_map *em;
4574 struct map_lookup *map;
4575 struct extent_map_tree *em_tree = &map_tree->map_tree;
4576 int ret;
4577
890871be 4578 read_lock(&em_tree->lock);
f188591e 4579 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4580 read_unlock(&em_tree->lock);
f188591e 4581
fb7669b5
JB
4582 /*
4583 * We could return errors for these cases, but that could get ugly and
4584 * we'd probably do the same thing which is just not do anything else
4585 * and exit, so return 1 so the callers don't try to use other copies.
4586 */
4587 if (!em) {
351fd353 4588 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
4589 logical+len);
4590 return 1;
4591 }
4592
4593 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4594 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
351fd353 4595 "%Lu-%Lu", logical, logical+len, em->start,
fb7669b5 4596 em->start + em->len);
7d3d1744 4597 free_extent_map(em);
fb7669b5
JB
4598 return 1;
4599 }
4600
f188591e
CM
4601 map = (struct map_lookup *)em->bdev;
4602 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4603 ret = map->num_stripes;
321aecc6
CM
4604 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4605 ret = map->sub_stripes;
53b381b3
DW
4606 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4607 ret = 2;
4608 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4609 ret = 3;
f188591e
CM
4610 else
4611 ret = 1;
4612 free_extent_map(em);
ad6d620e
SB
4613
4614 btrfs_dev_replace_lock(&fs_info->dev_replace);
4615 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4616 ret++;
4617 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4618
f188591e
CM
4619 return ret;
4620}
4621
53b381b3
DW
4622unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4623 struct btrfs_mapping_tree *map_tree,
4624 u64 logical)
4625{
4626 struct extent_map *em;
4627 struct map_lookup *map;
4628 struct extent_map_tree *em_tree = &map_tree->map_tree;
4629 unsigned long len = root->sectorsize;
4630
4631 read_lock(&em_tree->lock);
4632 em = lookup_extent_mapping(em_tree, logical, len);
4633 read_unlock(&em_tree->lock);
4634 BUG_ON(!em);
4635
4636 BUG_ON(em->start > logical || em->start + em->len < logical);
4637 map = (struct map_lookup *)em->bdev;
4638 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4639 BTRFS_BLOCK_GROUP_RAID6)) {
4640 len = map->stripe_len * nr_data_stripes(map);
4641 }
4642 free_extent_map(em);
4643 return len;
4644}
4645
4646int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4647 u64 logical, u64 len, int mirror_num)
4648{
4649 struct extent_map *em;
4650 struct map_lookup *map;
4651 struct extent_map_tree *em_tree = &map_tree->map_tree;
4652 int ret = 0;
4653
4654 read_lock(&em_tree->lock);
4655 em = lookup_extent_mapping(em_tree, logical, len);
4656 read_unlock(&em_tree->lock);
4657 BUG_ON(!em);
4658
4659 BUG_ON(em->start > logical || em->start + em->len < logical);
4660 map = (struct map_lookup *)em->bdev;
4661 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4662 BTRFS_BLOCK_GROUP_RAID6))
4663 ret = 1;
4664 free_extent_map(em);
4665 return ret;
4666}
4667
30d9861f
SB
4668static int find_live_mirror(struct btrfs_fs_info *fs_info,
4669 struct map_lookup *map, int first, int num,
4670 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4671{
4672 int i;
30d9861f
SB
4673 int tolerance;
4674 struct btrfs_device *srcdev;
4675
4676 if (dev_replace_is_ongoing &&
4677 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4678 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4679 srcdev = fs_info->dev_replace.srcdev;
4680 else
4681 srcdev = NULL;
4682
4683 /*
4684 * try to avoid the drive that is the source drive for a
4685 * dev-replace procedure, only choose it if no other non-missing
4686 * mirror is available
4687 */
4688 for (tolerance = 0; tolerance < 2; tolerance++) {
4689 if (map->stripes[optimal].dev->bdev &&
4690 (tolerance || map->stripes[optimal].dev != srcdev))
4691 return optimal;
4692 for (i = first; i < first + num; i++) {
4693 if (map->stripes[i].dev->bdev &&
4694 (tolerance || map->stripes[i].dev != srcdev))
4695 return i;
4696 }
dfe25020 4697 }
30d9861f 4698
dfe25020
CM
4699 /* we couldn't find one that doesn't fail. Just return something
4700 * and the io error handling code will clean up eventually
4701 */
4702 return optimal;
4703}
4704
53b381b3
DW
4705static inline int parity_smaller(u64 a, u64 b)
4706{
4707 return a > b;
4708}
4709
4710/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4711static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4712{
4713 struct btrfs_bio_stripe s;
4714 int i;
4715 u64 l;
4716 int again = 1;
4717
4718 while (again) {
4719 again = 0;
4720 for (i = 0; i < bbio->num_stripes - 1; i++) {
4721 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4722 s = bbio->stripes[i];
4723 l = raid_map[i];
4724 bbio->stripes[i] = bbio->stripes[i+1];
4725 raid_map[i] = raid_map[i+1];
4726 bbio->stripes[i+1] = s;
4727 raid_map[i+1] = l;
4728 again = 1;
4729 }
4730 }
4731 }
4732}
4733
3ec706c8 4734static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4735 u64 logical, u64 *length,
a1d3c478 4736 struct btrfs_bio **bbio_ret,
53b381b3 4737 int mirror_num, u64 **raid_map_ret)
0b86a832
CM
4738{
4739 struct extent_map *em;
4740 struct map_lookup *map;
3ec706c8 4741 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
4742 struct extent_map_tree *em_tree = &map_tree->map_tree;
4743 u64 offset;
593060d7 4744 u64 stripe_offset;
fce3bb9a 4745 u64 stripe_end_offset;
593060d7 4746 u64 stripe_nr;
fce3bb9a
LD
4747 u64 stripe_nr_orig;
4748 u64 stripe_nr_end;
53b381b3
DW
4749 u64 stripe_len;
4750 u64 *raid_map = NULL;
593060d7 4751 int stripe_index;
cea9e445 4752 int i;
de11cc12 4753 int ret = 0;
f2d8d74d 4754 int num_stripes;
a236aed1 4755 int max_errors = 0;
a1d3c478 4756 struct btrfs_bio *bbio = NULL;
472262f3
SB
4757 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4758 int dev_replace_is_ongoing = 0;
4759 int num_alloc_stripes;
ad6d620e
SB
4760 int patch_the_first_stripe_for_dev_replace = 0;
4761 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 4762 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 4763
890871be 4764 read_lock(&em_tree->lock);
0b86a832 4765 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 4766 read_unlock(&em_tree->lock);
f2d8d74d 4767
3b951516 4768 if (!em) {
c2cf52eb 4769 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 4770 logical, *length);
9bb91873
JB
4771 return -EINVAL;
4772 }
4773
4774 if (em->start > logical || em->start + em->len < logical) {
4775 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
351fd353 4776 "found %Lu-%Lu", logical, em->start,
9bb91873 4777 em->start + em->len);
7d3d1744 4778 free_extent_map(em);
9bb91873 4779 return -EINVAL;
3b951516 4780 }
0b86a832 4781
0b86a832
CM
4782 map = (struct map_lookup *)em->bdev;
4783 offset = logical - em->start;
593060d7 4784
53b381b3 4785 stripe_len = map->stripe_len;
593060d7
CM
4786 stripe_nr = offset;
4787 /*
4788 * stripe_nr counts the total number of stripes we have to stride
4789 * to get to this block
4790 */
53b381b3 4791 do_div(stripe_nr, stripe_len);
593060d7 4792
53b381b3 4793 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
4794 BUG_ON(offset < stripe_offset);
4795
4796 /* stripe_offset is the offset of this block in its stripe*/
4797 stripe_offset = offset - stripe_offset;
4798
53b381b3
DW
4799 /* if we're here for raid56, we need to know the stripe aligned start */
4800 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4801 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4802 raid56_full_stripe_start = offset;
4803
4804 /* allow a write of a full stripe, but make sure we don't
4805 * allow straddling of stripes
4806 */
4807 do_div(raid56_full_stripe_start, full_stripe_len);
4808 raid56_full_stripe_start *= full_stripe_len;
4809 }
4810
4811 if (rw & REQ_DISCARD) {
4812 /* we don't discard raid56 yet */
4813 if (map->type &
4814 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4815 ret = -EOPNOTSUPP;
4816 goto out;
4817 }
fce3bb9a 4818 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
4819 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4820 u64 max_len;
4821 /* For writes to RAID[56], allow a full stripeset across all disks.
4822 For other RAID types and for RAID[56] reads, just allow a single
4823 stripe (on a single disk). */
4824 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4825 (rw & REQ_WRITE)) {
4826 max_len = stripe_len * nr_data_stripes(map) -
4827 (offset - raid56_full_stripe_start);
4828 } else {
4829 /* we limit the length of each bio to what fits in a stripe */
4830 max_len = stripe_len - stripe_offset;
4831 }
4832 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
4833 } else {
4834 *length = em->len - offset;
4835 }
f2d8d74d 4836
53b381b3
DW
4837 /* This is for when we're called from btrfs_merge_bio_hook() and all
4838 it cares about is the length */
a1d3c478 4839 if (!bbio_ret)
cea9e445
CM
4840 goto out;
4841
472262f3
SB
4842 btrfs_dev_replace_lock(dev_replace);
4843 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4844 if (!dev_replace_is_ongoing)
4845 btrfs_dev_replace_unlock(dev_replace);
4846
ad6d620e
SB
4847 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4848 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4849 dev_replace->tgtdev != NULL) {
4850 /*
4851 * in dev-replace case, for repair case (that's the only
4852 * case where the mirror is selected explicitly when
4853 * calling btrfs_map_block), blocks left of the left cursor
4854 * can also be read from the target drive.
4855 * For REQ_GET_READ_MIRRORS, the target drive is added as
4856 * the last one to the array of stripes. For READ, it also
4857 * needs to be supported using the same mirror number.
4858 * If the requested block is not left of the left cursor,
4859 * EIO is returned. This can happen because btrfs_num_copies()
4860 * returns one more in the dev-replace case.
4861 */
4862 u64 tmp_length = *length;
4863 struct btrfs_bio *tmp_bbio = NULL;
4864 int tmp_num_stripes;
4865 u64 srcdev_devid = dev_replace->srcdev->devid;
4866 int index_srcdev = 0;
4867 int found = 0;
4868 u64 physical_of_found = 0;
4869
4870 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
53b381b3 4871 logical, &tmp_length, &tmp_bbio, 0, NULL);
ad6d620e
SB
4872 if (ret) {
4873 WARN_ON(tmp_bbio != NULL);
4874 goto out;
4875 }
4876
4877 tmp_num_stripes = tmp_bbio->num_stripes;
4878 if (mirror_num > tmp_num_stripes) {
4879 /*
4880 * REQ_GET_READ_MIRRORS does not contain this
4881 * mirror, that means that the requested area
4882 * is not left of the left cursor
4883 */
4884 ret = -EIO;
4885 kfree(tmp_bbio);
4886 goto out;
4887 }
4888
4889 /*
4890 * process the rest of the function using the mirror_num
4891 * of the source drive. Therefore look it up first.
4892 * At the end, patch the device pointer to the one of the
4893 * target drive.
4894 */
4895 for (i = 0; i < tmp_num_stripes; i++) {
4896 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4897 /*
4898 * In case of DUP, in order to keep it
4899 * simple, only add the mirror with the
4900 * lowest physical address
4901 */
4902 if (found &&
4903 physical_of_found <=
4904 tmp_bbio->stripes[i].physical)
4905 continue;
4906 index_srcdev = i;
4907 found = 1;
4908 physical_of_found =
4909 tmp_bbio->stripes[i].physical;
4910 }
4911 }
4912
4913 if (found) {
4914 mirror_num = index_srcdev + 1;
4915 patch_the_first_stripe_for_dev_replace = 1;
4916 physical_to_patch_in_first_stripe = physical_of_found;
4917 } else {
4918 WARN_ON(1);
4919 ret = -EIO;
4920 kfree(tmp_bbio);
4921 goto out;
4922 }
4923
4924 kfree(tmp_bbio);
4925 } else if (mirror_num > map->num_stripes) {
4926 mirror_num = 0;
4927 }
4928
f2d8d74d 4929 num_stripes = 1;
cea9e445 4930 stripe_index = 0;
fce3bb9a 4931 stripe_nr_orig = stripe_nr;
fda2832f 4932 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
fce3bb9a
LD
4933 do_div(stripe_nr_end, map->stripe_len);
4934 stripe_end_offset = stripe_nr_end * map->stripe_len -
4935 (offset + *length);
53b381b3 4936
fce3bb9a
LD
4937 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4938 if (rw & REQ_DISCARD)
4939 num_stripes = min_t(u64, map->num_stripes,
4940 stripe_nr_end - stripe_nr_orig);
4941 stripe_index = do_div(stripe_nr, map->num_stripes);
4942 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 4943 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 4944 num_stripes = map->num_stripes;
2fff734f 4945 else if (mirror_num)
f188591e 4946 stripe_index = mirror_num - 1;
dfe25020 4947 else {
30d9861f 4948 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 4949 map->num_stripes,
30d9861f
SB
4950 current->pid % map->num_stripes,
4951 dev_replace_is_ongoing);
a1d3c478 4952 mirror_num = stripe_index + 1;
dfe25020 4953 }
2fff734f 4954
611f0e00 4955 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 4956 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 4957 num_stripes = map->num_stripes;
a1d3c478 4958 } else if (mirror_num) {
f188591e 4959 stripe_index = mirror_num - 1;
a1d3c478
JS
4960 } else {
4961 mirror_num = 1;
4962 }
2fff734f 4963
321aecc6
CM
4964 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4965 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
4966
4967 stripe_index = do_div(stripe_nr, factor);
4968 stripe_index *= map->sub_stripes;
4969
29a8d9a0 4970 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 4971 num_stripes = map->sub_stripes;
fce3bb9a
LD
4972 else if (rw & REQ_DISCARD)
4973 num_stripes = min_t(u64, map->sub_stripes *
4974 (stripe_nr_end - stripe_nr_orig),
4975 map->num_stripes);
321aecc6
CM
4976 else if (mirror_num)
4977 stripe_index += mirror_num - 1;
dfe25020 4978 else {
3e74317a 4979 int old_stripe_index = stripe_index;
30d9861f
SB
4980 stripe_index = find_live_mirror(fs_info, map,
4981 stripe_index,
dfe25020 4982 map->sub_stripes, stripe_index +
30d9861f
SB
4983 current->pid % map->sub_stripes,
4984 dev_replace_is_ongoing);
3e74317a 4985 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 4986 }
53b381b3
DW
4987
4988 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4989 BTRFS_BLOCK_GROUP_RAID6)) {
4990 u64 tmp;
4991
4992 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4993 && raid_map_ret) {
4994 int i, rot;
4995
4996 /* push stripe_nr back to the start of the full stripe */
4997 stripe_nr = raid56_full_stripe_start;
4998 do_div(stripe_nr, stripe_len);
4999
5000 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5001
5002 /* RAID[56] write or recovery. Return all stripes */
5003 num_stripes = map->num_stripes;
5004 max_errors = nr_parity_stripes(map);
5005
d9b0d9ba 5006 raid_map = kmalloc_array(num_stripes, sizeof(u64),
53b381b3
DW
5007 GFP_NOFS);
5008 if (!raid_map) {
5009 ret = -ENOMEM;
5010 goto out;
5011 }
5012
5013 /* Work out the disk rotation on this stripe-set */
5014 tmp = stripe_nr;
5015 rot = do_div(tmp, num_stripes);
5016
5017 /* Fill in the logical address of each stripe */
5018 tmp = stripe_nr * nr_data_stripes(map);
5019 for (i = 0; i < nr_data_stripes(map); i++)
5020 raid_map[(i+rot) % num_stripes] =
5021 em->start + (tmp + i) * map->stripe_len;
5022
5023 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5024 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5025 raid_map[(i+rot+1) % num_stripes] =
5026 RAID6_Q_STRIPE;
5027
5028 *length = map->stripe_len;
5029 stripe_index = 0;
5030 stripe_offset = 0;
5031 } else {
5032 /*
5033 * Mirror #0 or #1 means the original data block.
5034 * Mirror #2 is RAID5 parity block.
5035 * Mirror #3 is RAID6 Q block.
5036 */
5037 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5038 if (mirror_num > 1)
5039 stripe_index = nr_data_stripes(map) +
5040 mirror_num - 2;
5041
5042 /* We distribute the parity blocks across stripes */
5043 tmp = stripe_nr + stripe_index;
5044 stripe_index = do_div(tmp, map->num_stripes);
5045 }
8790d502
CM
5046 } else {
5047 /*
5048 * after this do_div call, stripe_nr is the number of stripes
5049 * on this device we have to walk to find the data, and
5050 * stripe_index is the number of our device in the stripe array
5051 */
5052 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 5053 mirror_num = stripe_index + 1;
8790d502 5054 }
593060d7 5055 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 5056
472262f3 5057 num_alloc_stripes = num_stripes;
ad6d620e
SB
5058 if (dev_replace_is_ongoing) {
5059 if (rw & (REQ_WRITE | REQ_DISCARD))
5060 num_alloc_stripes <<= 1;
5061 if (rw & REQ_GET_READ_MIRRORS)
5062 num_alloc_stripes++;
5063 }
472262f3 5064 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
de11cc12 5065 if (!bbio) {
eb2067f7 5066 kfree(raid_map);
de11cc12
LZ
5067 ret = -ENOMEM;
5068 goto out;
5069 }
5070 atomic_set(&bbio->error, 0);
5071
fce3bb9a 5072 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
5073 int factor = 0;
5074 int sub_stripes = 0;
5075 u64 stripes_per_dev = 0;
5076 u32 remaining_stripes = 0;
b89203f7 5077 u32 last_stripe = 0;
ec9ef7a1
LZ
5078
5079 if (map->type &
5080 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5081 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5082 sub_stripes = 1;
5083 else
5084 sub_stripes = map->sub_stripes;
5085
5086 factor = map->num_stripes / sub_stripes;
5087 stripes_per_dev = div_u64_rem(stripe_nr_end -
5088 stripe_nr_orig,
5089 factor,
5090 &remaining_stripes);
b89203f7
LB
5091 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5092 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5093 }
5094
fce3bb9a 5095 for (i = 0; i < num_stripes; i++) {
a1d3c478 5096 bbio->stripes[i].physical =
f2d8d74d
CM
5097 map->stripes[stripe_index].physical +
5098 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5099 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5100
ec9ef7a1
LZ
5101 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5102 BTRFS_BLOCK_GROUP_RAID10)) {
5103 bbio->stripes[i].length = stripes_per_dev *
5104 map->stripe_len;
b89203f7 5105
ec9ef7a1
LZ
5106 if (i / sub_stripes < remaining_stripes)
5107 bbio->stripes[i].length +=
5108 map->stripe_len;
b89203f7
LB
5109
5110 /*
5111 * Special for the first stripe and
5112 * the last stripe:
5113 *
5114 * |-------|...|-------|
5115 * |----------|
5116 * off end_off
5117 */
ec9ef7a1 5118 if (i < sub_stripes)
a1d3c478 5119 bbio->stripes[i].length -=
fce3bb9a 5120 stripe_offset;
b89203f7
LB
5121
5122 if (stripe_index >= last_stripe &&
5123 stripe_index <= (last_stripe +
5124 sub_stripes - 1))
a1d3c478 5125 bbio->stripes[i].length -=
fce3bb9a 5126 stripe_end_offset;
b89203f7 5127
ec9ef7a1
LZ
5128 if (i == sub_stripes - 1)
5129 stripe_offset = 0;
fce3bb9a 5130 } else
a1d3c478 5131 bbio->stripes[i].length = *length;
fce3bb9a
LD
5132
5133 stripe_index++;
5134 if (stripe_index == map->num_stripes) {
5135 /* This could only happen for RAID0/10 */
5136 stripe_index = 0;
5137 stripe_nr++;
5138 }
5139 }
5140 } else {
5141 for (i = 0; i < num_stripes; i++) {
a1d3c478 5142 bbio->stripes[i].physical =
212a17ab
LT
5143 map->stripes[stripe_index].physical +
5144 stripe_offset +
5145 stripe_nr * map->stripe_len;
a1d3c478 5146 bbio->stripes[i].dev =
212a17ab 5147 map->stripes[stripe_index].dev;
fce3bb9a 5148 stripe_index++;
f2d8d74d 5149 }
593060d7 5150 }
de11cc12 5151
29a8d9a0 5152 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
de11cc12
LZ
5153 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5154 BTRFS_BLOCK_GROUP_RAID10 |
53b381b3 5155 BTRFS_BLOCK_GROUP_RAID5 |
de11cc12
LZ
5156 BTRFS_BLOCK_GROUP_DUP)) {
5157 max_errors = 1;
53b381b3
DW
5158 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5159 max_errors = 2;
de11cc12 5160 }
f2d8d74d 5161 }
de11cc12 5162
472262f3
SB
5163 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5164 dev_replace->tgtdev != NULL) {
5165 int index_where_to_add;
5166 u64 srcdev_devid = dev_replace->srcdev->devid;
5167
5168 /*
5169 * duplicate the write operations while the dev replace
5170 * procedure is running. Since the copying of the old disk
5171 * to the new disk takes place at run time while the
5172 * filesystem is mounted writable, the regular write
5173 * operations to the old disk have to be duplicated to go
5174 * to the new disk as well.
5175 * Note that device->missing is handled by the caller, and
5176 * that the write to the old disk is already set up in the
5177 * stripes array.
5178 */
5179 index_where_to_add = num_stripes;
5180 for (i = 0; i < num_stripes; i++) {
5181 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5182 /* write to new disk, too */
5183 struct btrfs_bio_stripe *new =
5184 bbio->stripes + index_where_to_add;
5185 struct btrfs_bio_stripe *old =
5186 bbio->stripes + i;
5187
5188 new->physical = old->physical;
5189 new->length = old->length;
5190 new->dev = dev_replace->tgtdev;
5191 index_where_to_add++;
5192 max_errors++;
5193 }
5194 }
5195 num_stripes = index_where_to_add;
ad6d620e
SB
5196 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5197 dev_replace->tgtdev != NULL) {
5198 u64 srcdev_devid = dev_replace->srcdev->devid;
5199 int index_srcdev = 0;
5200 int found = 0;
5201 u64 physical_of_found = 0;
5202
5203 /*
5204 * During the dev-replace procedure, the target drive can
5205 * also be used to read data in case it is needed to repair
5206 * a corrupt block elsewhere. This is possible if the
5207 * requested area is left of the left cursor. In this area,
5208 * the target drive is a full copy of the source drive.
5209 */
5210 for (i = 0; i < num_stripes; i++) {
5211 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5212 /*
5213 * In case of DUP, in order to keep it
5214 * simple, only add the mirror with the
5215 * lowest physical address
5216 */
5217 if (found &&
5218 physical_of_found <=
5219 bbio->stripes[i].physical)
5220 continue;
5221 index_srcdev = i;
5222 found = 1;
5223 physical_of_found = bbio->stripes[i].physical;
5224 }
5225 }
5226 if (found) {
5227 u64 length = map->stripe_len;
5228
5229 if (physical_of_found + length <=
5230 dev_replace->cursor_left) {
5231 struct btrfs_bio_stripe *tgtdev_stripe =
5232 bbio->stripes + num_stripes;
5233
5234 tgtdev_stripe->physical = physical_of_found;
5235 tgtdev_stripe->length =
5236 bbio->stripes[index_srcdev].length;
5237 tgtdev_stripe->dev = dev_replace->tgtdev;
5238
5239 num_stripes++;
5240 }
5241 }
472262f3
SB
5242 }
5243
de11cc12
LZ
5244 *bbio_ret = bbio;
5245 bbio->num_stripes = num_stripes;
5246 bbio->max_errors = max_errors;
5247 bbio->mirror_num = mirror_num;
ad6d620e
SB
5248
5249 /*
5250 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5251 * mirror_num == num_stripes + 1 && dev_replace target drive is
5252 * available as a mirror
5253 */
5254 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5255 WARN_ON(num_stripes > 1);
5256 bbio->stripes[0].dev = dev_replace->tgtdev;
5257 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5258 bbio->mirror_num = map->num_stripes + 1;
5259 }
53b381b3
DW
5260 if (raid_map) {
5261 sort_parity_stripes(bbio, raid_map);
5262 *raid_map_ret = raid_map;
5263 }
cea9e445 5264out:
472262f3
SB
5265 if (dev_replace_is_ongoing)
5266 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5267 free_extent_map(em);
de11cc12 5268 return ret;
0b86a832
CM
5269}
5270
3ec706c8 5271int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5272 u64 logical, u64 *length,
a1d3c478 5273 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5274{
3ec706c8 5275 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
53b381b3 5276 mirror_num, NULL);
f2d8d74d
CM
5277}
5278
a512bbf8
YZ
5279int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5280 u64 chunk_start, u64 physical, u64 devid,
5281 u64 **logical, int *naddrs, int *stripe_len)
5282{
5283 struct extent_map_tree *em_tree = &map_tree->map_tree;
5284 struct extent_map *em;
5285 struct map_lookup *map;
5286 u64 *buf;
5287 u64 bytenr;
5288 u64 length;
5289 u64 stripe_nr;
53b381b3 5290 u64 rmap_len;
a512bbf8
YZ
5291 int i, j, nr = 0;
5292
890871be 5293 read_lock(&em_tree->lock);
a512bbf8 5294 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5295 read_unlock(&em_tree->lock);
a512bbf8 5296
835d974f 5297 if (!em) {
efe120a0 5298 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
835d974f
JB
5299 chunk_start);
5300 return -EIO;
5301 }
5302
5303 if (em->start != chunk_start) {
efe120a0 5304 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
835d974f
JB
5305 em->start, chunk_start);
5306 free_extent_map(em);
5307 return -EIO;
5308 }
a512bbf8
YZ
5309 map = (struct map_lookup *)em->bdev;
5310
5311 length = em->len;
53b381b3
DW
5312 rmap_len = map->stripe_len;
5313
a512bbf8
YZ
5314 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5315 do_div(length, map->num_stripes / map->sub_stripes);
5316 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5317 do_div(length, map->num_stripes);
53b381b3
DW
5318 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5319 BTRFS_BLOCK_GROUP_RAID6)) {
5320 do_div(length, nr_data_stripes(map));
5321 rmap_len = map->stripe_len * nr_data_stripes(map);
5322 }
a512bbf8
YZ
5323
5324 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 5325 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5326
5327 for (i = 0; i < map->num_stripes; i++) {
5328 if (devid && map->stripes[i].dev->devid != devid)
5329 continue;
5330 if (map->stripes[i].physical > physical ||
5331 map->stripes[i].physical + length <= physical)
5332 continue;
5333
5334 stripe_nr = physical - map->stripes[i].physical;
5335 do_div(stripe_nr, map->stripe_len);
5336
5337 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5338 stripe_nr = stripe_nr * map->num_stripes + i;
5339 do_div(stripe_nr, map->sub_stripes);
5340 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5341 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5342 } /* else if RAID[56], multiply by nr_data_stripes().
5343 * Alternatively, just use rmap_len below instead of
5344 * map->stripe_len */
5345
5346 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5347 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5348 for (j = 0; j < nr; j++) {
5349 if (buf[j] == bytenr)
5350 break;
5351 }
934d375b
CM
5352 if (j == nr) {
5353 WARN_ON(nr >= map->num_stripes);
a512bbf8 5354 buf[nr++] = bytenr;
934d375b 5355 }
a512bbf8
YZ
5356 }
5357
a512bbf8
YZ
5358 *logical = buf;
5359 *naddrs = nr;
53b381b3 5360 *stripe_len = rmap_len;
a512bbf8
YZ
5361
5362 free_extent_map(em);
5363 return 0;
f2d8d74d
CM
5364}
5365
8408c716
MX
5366static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5367{
5368 if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5369 bio_endio_nodec(bio, err);
5370 else
5371 bio_endio(bio, err);
5372 kfree(bbio);
5373}
5374
a1d3c478 5375static void btrfs_end_bio(struct bio *bio, int err)
8790d502 5376{
9be3395b 5377 struct btrfs_bio *bbio = bio->bi_private;
c404e0dc 5378 struct btrfs_device *dev = bbio->stripes[0].dev;
7d2b4daa 5379 int is_orig_bio = 0;
8790d502 5380
442a4f63 5381 if (err) {
a1d3c478 5382 atomic_inc(&bbio->error);
442a4f63
SB
5383 if (err == -EIO || err == -EREMOTEIO) {
5384 unsigned int stripe_index =
9be3395b 5385 btrfs_io_bio(bio)->stripe_index;
442a4f63
SB
5386
5387 BUG_ON(stripe_index >= bbio->num_stripes);
5388 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5389 if (dev->bdev) {
5390 if (bio->bi_rw & WRITE)
5391 btrfs_dev_stat_inc(dev,
5392 BTRFS_DEV_STAT_WRITE_ERRS);
5393 else
5394 btrfs_dev_stat_inc(dev,
5395 BTRFS_DEV_STAT_READ_ERRS);
5396 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5397 btrfs_dev_stat_inc(dev,
5398 BTRFS_DEV_STAT_FLUSH_ERRS);
5399 btrfs_dev_stat_print_on_error(dev);
5400 }
442a4f63
SB
5401 }
5402 }
8790d502 5403
a1d3c478 5404 if (bio == bbio->orig_bio)
7d2b4daa
CM
5405 is_orig_bio = 1;
5406
c404e0dc
MX
5407 btrfs_bio_counter_dec(bbio->fs_info);
5408
a1d3c478 5409 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5410 if (!is_orig_bio) {
5411 bio_put(bio);
a1d3c478 5412 bio = bbio->orig_bio;
7d2b4daa 5413 }
c7b22bb1 5414
a1d3c478
JS
5415 bio->bi_private = bbio->private;
5416 bio->bi_end_io = bbio->end_io;
9be3395b 5417 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5418 /* only send an error to the higher layers if it is
53b381b3 5419 * beyond the tolerance of the btrfs bio
a236aed1 5420 */
a1d3c478 5421 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 5422 err = -EIO;
5dbc8fca 5423 } else {
1259ab75
CM
5424 /*
5425 * this bio is actually up to date, we didn't
5426 * go over the max number of errors
5427 */
5428 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 5429 err = 0;
1259ab75 5430 }
c55f1396 5431
8408c716 5432 btrfs_end_bbio(bbio, bio, err);
7d2b4daa 5433 } else if (!is_orig_bio) {
8790d502
CM
5434 bio_put(bio);
5435 }
8790d502
CM
5436}
5437
8b712842
CM
5438/*
5439 * see run_scheduled_bios for a description of why bios are collected for
5440 * async submit.
5441 *
5442 * This will add one bio to the pending list for a device and make sure
5443 * the work struct is scheduled.
5444 */
48a3b636
ES
5445static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5446 struct btrfs_device *device,
5447 int rw, struct bio *bio)
8b712842
CM
5448{
5449 int should_queue = 1;
ffbd517d 5450 struct btrfs_pending_bios *pending_bios;
8b712842 5451
53b381b3
DW
5452 if (device->missing || !device->bdev) {
5453 bio_endio(bio, -EIO);
5454 return;
5455 }
5456
8b712842 5457 /* don't bother with additional async steps for reads, right now */
7b6d91da 5458 if (!(rw & REQ_WRITE)) {
492bb6de 5459 bio_get(bio);
21adbd5c 5460 btrfsic_submit_bio(rw, bio);
492bb6de 5461 bio_put(bio);
143bede5 5462 return;
8b712842
CM
5463 }
5464
5465 /*
0986fe9e 5466 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5467 * higher layers. Otherwise, the async bio makes it appear we have
5468 * made progress against dirty pages when we've really just put it
5469 * on a queue for later
5470 */
0986fe9e 5471 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5472 WARN_ON(bio->bi_next);
8b712842
CM
5473 bio->bi_next = NULL;
5474 bio->bi_rw |= rw;
5475
5476 spin_lock(&device->io_lock);
7b6d91da 5477 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5478 pending_bios = &device->pending_sync_bios;
5479 else
5480 pending_bios = &device->pending_bios;
8b712842 5481
ffbd517d
CM
5482 if (pending_bios->tail)
5483 pending_bios->tail->bi_next = bio;
8b712842 5484
ffbd517d
CM
5485 pending_bios->tail = bio;
5486 if (!pending_bios->head)
5487 pending_bios->head = bio;
8b712842
CM
5488 if (device->running_pending)
5489 should_queue = 0;
5490
5491 spin_unlock(&device->io_lock);
5492
5493 if (should_queue)
a8c93d4e
QW
5494 btrfs_queue_work(root->fs_info->submit_workers,
5495 &device->work);
8b712842
CM
5496}
5497
de1ee92a
JB
5498static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5499 sector_t sector)
5500{
5501 struct bio_vec *prev;
5502 struct request_queue *q = bdev_get_queue(bdev);
475bf36f 5503 unsigned int max_sectors = queue_max_sectors(q);
de1ee92a
JB
5504 struct bvec_merge_data bvm = {
5505 .bi_bdev = bdev,
5506 .bi_sector = sector,
5507 .bi_rw = bio->bi_rw,
5508 };
5509
fae7f21c 5510 if (WARN_ON(bio->bi_vcnt == 0))
de1ee92a 5511 return 1;
de1ee92a
JB
5512
5513 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
aa8b57aa 5514 if (bio_sectors(bio) > max_sectors)
de1ee92a
JB
5515 return 0;
5516
5517 if (!q->merge_bvec_fn)
5518 return 1;
5519
4f024f37 5520 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
de1ee92a
JB
5521 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5522 return 0;
5523 return 1;
5524}
5525
5526static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5527 struct bio *bio, u64 physical, int dev_nr,
5528 int rw, int async)
5529{
5530 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5531
5532 bio->bi_private = bbio;
9be3395b 5533 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 5534 bio->bi_end_io = btrfs_end_bio;
4f024f37 5535 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
5536#ifdef DEBUG
5537 {
5538 struct rcu_string *name;
5539
5540 rcu_read_lock();
5541 name = rcu_dereference(dev->name);
d1423248 5542 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a
JB
5543 "(%s id %llu), size=%u\n", rw,
5544 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5545 name->str, dev->devid, bio->bi_size);
5546 rcu_read_unlock();
5547 }
5548#endif
5549 bio->bi_bdev = dev->bdev;
c404e0dc
MX
5550
5551 btrfs_bio_counter_inc_noblocked(root->fs_info);
5552
de1ee92a 5553 if (async)
53b381b3 5554 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5555 else
5556 btrfsic_submit_bio(rw, bio);
5557}
5558
5559static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5560 struct bio *first_bio, struct btrfs_device *dev,
5561 int dev_nr, int rw, int async)
5562{
5563 struct bio_vec *bvec = first_bio->bi_io_vec;
5564 struct bio *bio;
5565 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5566 u64 physical = bbio->stripes[dev_nr].physical;
5567
5568again:
5569 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5570 if (!bio)
5571 return -ENOMEM;
5572
5573 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5574 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5575 bvec->bv_offset) < bvec->bv_len) {
4f024f37 5576 u64 len = bio->bi_iter.bi_size;
de1ee92a
JB
5577
5578 atomic_inc(&bbio->stripes_pending);
5579 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5580 rw, async);
5581 physical += len;
5582 goto again;
5583 }
5584 bvec++;
5585 }
5586
5587 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5588 return 0;
5589}
5590
5591static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5592{
5593 atomic_inc(&bbio->error);
5594 if (atomic_dec_and_test(&bbio->stripes_pending)) {
8408c716
MX
5595 /* Shoud be the original bio. */
5596 WARN_ON(bio != bbio->orig_bio);
5597
de1ee92a
JB
5598 bio->bi_private = bbio->private;
5599 bio->bi_end_io = bbio->end_io;
9be3395b 5600 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 5601 bio->bi_iter.bi_sector = logical >> 9;
8408c716
MX
5602
5603 btrfs_end_bbio(bbio, bio, -EIO);
de1ee92a
JB
5604 }
5605}
5606
f188591e 5607int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5608 int mirror_num, int async_submit)
0b86a832 5609{
0b86a832 5610 struct btrfs_device *dev;
8790d502 5611 struct bio *first_bio = bio;
4f024f37 5612 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
5613 u64 length = 0;
5614 u64 map_length;
53b381b3 5615 u64 *raid_map = NULL;
0b86a832 5616 int ret;
8790d502
CM
5617 int dev_nr = 0;
5618 int total_devs = 1;
a1d3c478 5619 struct btrfs_bio *bbio = NULL;
0b86a832 5620
4f024f37 5621 length = bio->bi_iter.bi_size;
0b86a832 5622 map_length = length;
cea9e445 5623
c404e0dc 5624 btrfs_bio_counter_inc_blocked(root->fs_info);
53b381b3
DW
5625 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5626 mirror_num, &raid_map);
c404e0dc
MX
5627 if (ret) {
5628 btrfs_bio_counter_dec(root->fs_info);
79787eaa 5629 return ret;
c404e0dc 5630 }
cea9e445 5631
a1d3c478 5632 total_devs = bbio->num_stripes;
53b381b3
DW
5633 bbio->orig_bio = first_bio;
5634 bbio->private = first_bio->bi_private;
5635 bbio->end_io = first_bio->bi_end_io;
c404e0dc 5636 bbio->fs_info = root->fs_info;
53b381b3
DW
5637 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5638
5639 if (raid_map) {
5640 /* In this case, map_length has been set to the length of
5641 a single stripe; not the whole write */
5642 if (rw & WRITE) {
c404e0dc
MX
5643 ret = raid56_parity_write(root, bio, bbio,
5644 raid_map, map_length);
53b381b3 5645 } else {
c404e0dc
MX
5646 ret = raid56_parity_recover(root, bio, bbio,
5647 raid_map, map_length,
5648 mirror_num);
53b381b3 5649 }
c404e0dc
MX
5650 /*
5651 * FIXME, replace dosen't support raid56 yet, please fix
5652 * it in the future.
5653 */
5654 btrfs_bio_counter_dec(root->fs_info);
5655 return ret;
53b381b3
DW
5656 }
5657
cea9e445 5658 if (map_length < length) {
c2cf52eb 5659 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 5660 logical, length, map_length);
cea9e445
CM
5661 BUG();
5662 }
a1d3c478 5663
d397712b 5664 while (dev_nr < total_devs) {
de1ee92a
JB
5665 dev = bbio->stripes[dev_nr].dev;
5666 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5667 bbio_error(bbio, first_bio, logical);
5668 dev_nr++;
5669 continue;
5670 }
5671
5672 /*
5673 * Check and see if we're ok with this bio based on it's size
5674 * and offset with the given device.
5675 */
5676 if (!bio_size_ok(dev->bdev, first_bio,
5677 bbio->stripes[dev_nr].physical >> 9)) {
5678 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5679 dev_nr, rw, async_submit);
5680 BUG_ON(ret);
5681 dev_nr++;
5682 continue;
5683 }
5684
a1d3c478 5685 if (dev_nr < total_devs - 1) {
9be3395b 5686 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 5687 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
5688 } else {
5689 bio = first_bio;
c55f1396 5690 bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
8790d502 5691 }
de1ee92a
JB
5692
5693 submit_stripe_bio(root, bbio, bio,
5694 bbio->stripes[dev_nr].physical, dev_nr, rw,
5695 async_submit);
8790d502
CM
5696 dev_nr++;
5697 }
c404e0dc 5698 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
5699 return 0;
5700}
5701
aa1b8cd4 5702struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 5703 u8 *uuid, u8 *fsid)
0b86a832 5704{
2b82032c
YZ
5705 struct btrfs_device *device;
5706 struct btrfs_fs_devices *cur_devices;
5707
aa1b8cd4 5708 cur_devices = fs_info->fs_devices;
2b82032c
YZ
5709 while (cur_devices) {
5710 if (!fsid ||
5711 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5712 device = __find_device(&cur_devices->devices,
5713 devid, uuid);
5714 if (device)
5715 return device;
5716 }
5717 cur_devices = cur_devices->seed;
5718 }
5719 return NULL;
0b86a832
CM
5720}
5721
dfe25020
CM
5722static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5723 u64 devid, u8 *dev_uuid)
5724{
5725 struct btrfs_device *device;
5726 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5727
12bd2fc0
ID
5728 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5729 if (IS_ERR(device))
7cbd8a83 5730 return NULL;
12bd2fc0
ID
5731
5732 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 5733 device->fs_devices = fs_devices;
dfe25020 5734 fs_devices->num_devices++;
12bd2fc0
ID
5735
5736 device->missing = 1;
cd02dca5 5737 fs_devices->missing_devices++;
12bd2fc0 5738
dfe25020
CM
5739 return device;
5740}
5741
12bd2fc0
ID
5742/**
5743 * btrfs_alloc_device - allocate struct btrfs_device
5744 * @fs_info: used only for generating a new devid, can be NULL if
5745 * devid is provided (i.e. @devid != NULL).
5746 * @devid: a pointer to devid for this device. If NULL a new devid
5747 * is generated.
5748 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5749 * is generated.
5750 *
5751 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5752 * on error. Returned struct is not linked onto any lists and can be
5753 * destroyed with kfree() right away.
5754 */
5755struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5756 const u64 *devid,
5757 const u8 *uuid)
5758{
5759 struct btrfs_device *dev;
5760 u64 tmp;
5761
fae7f21c 5762 if (WARN_ON(!devid && !fs_info))
12bd2fc0 5763 return ERR_PTR(-EINVAL);
12bd2fc0
ID
5764
5765 dev = __alloc_device();
5766 if (IS_ERR(dev))
5767 return dev;
5768
5769 if (devid)
5770 tmp = *devid;
5771 else {
5772 int ret;
5773
5774 ret = find_next_devid(fs_info, &tmp);
5775 if (ret) {
5776 kfree(dev);
5777 return ERR_PTR(ret);
5778 }
5779 }
5780 dev->devid = tmp;
5781
5782 if (uuid)
5783 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5784 else
5785 generate_random_uuid(dev->uuid);
5786
a8c93d4e 5787 btrfs_init_work(&dev->work, pending_bios_fn, NULL, NULL);
12bd2fc0
ID
5788
5789 return dev;
5790}
5791
0b86a832
CM
5792static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5793 struct extent_buffer *leaf,
5794 struct btrfs_chunk *chunk)
5795{
5796 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5797 struct map_lookup *map;
5798 struct extent_map *em;
5799 u64 logical;
5800 u64 length;
5801 u64 devid;
a443755f 5802 u8 uuid[BTRFS_UUID_SIZE];
593060d7 5803 int num_stripes;
0b86a832 5804 int ret;
593060d7 5805 int i;
0b86a832 5806
e17cade2
CM
5807 logical = key->offset;
5808 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 5809
890871be 5810 read_lock(&map_tree->map_tree.lock);
0b86a832 5811 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 5812 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
5813
5814 /* already mapped? */
5815 if (em && em->start <= logical && em->start + em->len > logical) {
5816 free_extent_map(em);
0b86a832
CM
5817 return 0;
5818 } else if (em) {
5819 free_extent_map(em);
5820 }
0b86a832 5821
172ddd60 5822 em = alloc_extent_map();
0b86a832
CM
5823 if (!em)
5824 return -ENOMEM;
593060d7
CM
5825 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5826 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
5827 if (!map) {
5828 free_extent_map(em);
5829 return -ENOMEM;
5830 }
5831
298a8f9c 5832 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
0b86a832
CM
5833 em->bdev = (struct block_device *)map;
5834 em->start = logical;
5835 em->len = length;
70c8a91c 5836 em->orig_start = 0;
0b86a832 5837 em->block_start = 0;
c8b97818 5838 em->block_len = em->len;
0b86a832 5839
593060d7
CM
5840 map->num_stripes = num_stripes;
5841 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5842 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5843 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5844 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5845 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 5846 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
5847 for (i = 0; i < num_stripes; i++) {
5848 map->stripes[i].physical =
5849 btrfs_stripe_offset_nr(leaf, chunk, i);
5850 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
5851 read_extent_buffer(leaf, uuid, (unsigned long)
5852 btrfs_stripe_dev_uuid_nr(chunk, i),
5853 BTRFS_UUID_SIZE);
aa1b8cd4
SB
5854 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5855 uuid, NULL);
dfe25020 5856 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
5857 free_extent_map(em);
5858 return -EIO;
5859 }
dfe25020
CM
5860 if (!map->stripes[i].dev) {
5861 map->stripes[i].dev =
5862 add_missing_dev(root, devid, uuid);
5863 if (!map->stripes[i].dev) {
dfe25020
CM
5864 free_extent_map(em);
5865 return -EIO;
5866 }
5867 }
5868 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
5869 }
5870
890871be 5871 write_lock(&map_tree->map_tree.lock);
09a2a8f9 5872 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 5873 write_unlock(&map_tree->map_tree.lock);
79787eaa 5874 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
5875 free_extent_map(em);
5876
5877 return 0;
5878}
5879
143bede5 5880static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
5881 struct btrfs_dev_item *dev_item,
5882 struct btrfs_device *device)
5883{
5884 unsigned long ptr;
0b86a832
CM
5885
5886 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
5887 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5888 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
5889 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5890 device->type = btrfs_device_type(leaf, dev_item);
5891 device->io_align = btrfs_device_io_align(leaf, dev_item);
5892 device->io_width = btrfs_device_io_width(leaf, dev_item);
5893 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 5894 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 5895 device->is_tgtdev_for_dev_replace = 0;
0b86a832 5896
410ba3a2 5897 ptr = btrfs_device_uuid(dev_item);
e17cade2 5898 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
5899}
5900
2b82032c
YZ
5901static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5902{
5903 struct btrfs_fs_devices *fs_devices;
5904 int ret;
5905
b367e47f 5906 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
5907
5908 fs_devices = root->fs_info->fs_devices->seed;
5909 while (fs_devices) {
5910 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5911 ret = 0;
5912 goto out;
5913 }
5914 fs_devices = fs_devices->seed;
5915 }
5916
5917 fs_devices = find_fsid(fsid);
5918 if (!fs_devices) {
5919 ret = -ENOENT;
5920 goto out;
5921 }
e4404d6e
YZ
5922
5923 fs_devices = clone_fs_devices(fs_devices);
5924 if (IS_ERR(fs_devices)) {
5925 ret = PTR_ERR(fs_devices);
2b82032c
YZ
5926 goto out;
5927 }
5928
97288f2c 5929 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 5930 root->fs_info->bdev_holder);
48d28232
JL
5931 if (ret) {
5932 free_fs_devices(fs_devices);
2b82032c 5933 goto out;
48d28232 5934 }
2b82032c
YZ
5935
5936 if (!fs_devices->seeding) {
5937 __btrfs_close_devices(fs_devices);
e4404d6e 5938 free_fs_devices(fs_devices);
2b82032c
YZ
5939 ret = -EINVAL;
5940 goto out;
5941 }
5942
5943 fs_devices->seed = root->fs_info->fs_devices->seed;
5944 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 5945out:
2b82032c
YZ
5946 return ret;
5947}
5948
0d81ba5d 5949static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
5950 struct extent_buffer *leaf,
5951 struct btrfs_dev_item *dev_item)
5952{
5953 struct btrfs_device *device;
5954 u64 devid;
5955 int ret;
2b82032c 5956 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
5957 u8 dev_uuid[BTRFS_UUID_SIZE];
5958
0b86a832 5959 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 5960 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 5961 BTRFS_UUID_SIZE);
1473b24e 5962 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
5963 BTRFS_UUID_SIZE);
5964
5965 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5966 ret = open_seed_devices(root, fs_uuid);
e4404d6e 5967 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 5968 return ret;
2b82032c
YZ
5969 }
5970
aa1b8cd4 5971 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
2b82032c 5972 if (!device || !device->bdev) {
e4404d6e 5973 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
5974 return -EIO;
5975
5976 if (!device) {
c1c9ff7c 5977 btrfs_warn(root->fs_info, "devid %llu missing", devid);
2b82032c
YZ
5978 device = add_missing_dev(root, devid, dev_uuid);
5979 if (!device)
5980 return -ENOMEM;
cd02dca5
CM
5981 } else if (!device->missing) {
5982 /*
5983 * this happens when a device that was properly setup
5984 * in the device info lists suddenly goes bad.
5985 * device->bdev is NULL, and so we have to set
5986 * device->missing to one here
5987 */
5988 root->fs_info->fs_devices->missing_devices++;
5989 device->missing = 1;
2b82032c
YZ
5990 }
5991 }
5992
5993 if (device->fs_devices != root->fs_info->fs_devices) {
5994 BUG_ON(device->writeable);
5995 if (device->generation !=
5996 btrfs_device_generation(leaf, dev_item))
5997 return -EINVAL;
6324fbf3 5998 }
0b86a832
CM
5999
6000 fill_device_from_item(leaf, dev_item, device);
dfe25020 6001 device->in_fs_metadata = 1;
63a212ab 6002 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6003 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
6004 spin_lock(&root->fs_info->free_chunk_lock);
6005 root->fs_info->free_chunk_space += device->total_bytes -
6006 device->bytes_used;
6007 spin_unlock(&root->fs_info->free_chunk_lock);
6008 }
0b86a832 6009 ret = 0;
0b86a832
CM
6010 return ret;
6011}
6012
e4404d6e 6013int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 6014{
6c41761f 6015 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 6016 struct extent_buffer *sb;
0b86a832 6017 struct btrfs_disk_key *disk_key;
0b86a832 6018 struct btrfs_chunk *chunk;
84eed90f
CM
6019 u8 *ptr;
6020 unsigned long sb_ptr;
6021 int ret = 0;
0b86a832
CM
6022 u32 num_stripes;
6023 u32 array_size;
6024 u32 len = 0;
0b86a832 6025 u32 cur;
84eed90f 6026 struct btrfs_key key;
0b86a832 6027
e4404d6e 6028 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
6029 BTRFS_SUPER_INFO_SIZE);
6030 if (!sb)
6031 return -ENOMEM;
6032 btrfs_set_buffer_uptodate(sb);
85d4e461 6033 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
6034 /*
6035 * The sb extent buffer is artifical and just used to read the system array.
6036 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6037 * pages up-to-date when the page is larger: extent does not cover the
6038 * whole page and consequently check_page_uptodate does not find all
6039 * the page's extents up-to-date (the hole beyond sb),
6040 * write_extent_buffer then triggers a WARN_ON.
6041 *
6042 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6043 * but sb spans only this function. Add an explicit SetPageUptodate call
6044 * to silence the warning eg. on PowerPC 64.
6045 */
6046 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6047 SetPageUptodate(sb->pages[0]);
4008c04a 6048
a061fc8d 6049 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6050 array_size = btrfs_super_sys_array_size(super_copy);
6051
0b86a832
CM
6052 ptr = super_copy->sys_chunk_array;
6053 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
6054 cur = 0;
6055
6056 while (cur < array_size) {
6057 disk_key = (struct btrfs_disk_key *)ptr;
6058 btrfs_disk_key_to_cpu(&key, disk_key);
6059
a061fc8d 6060 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
6061 sb_ptr += len;
6062 cur += len;
6063
0d81ba5d 6064 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 6065 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 6066 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6067 if (ret)
6068 break;
0b86a832
CM
6069 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6070 len = btrfs_chunk_item_size(num_stripes);
6071 } else {
84eed90f
CM
6072 ret = -EIO;
6073 break;
0b86a832
CM
6074 }
6075 ptr += len;
6076 sb_ptr += len;
6077 cur += len;
6078 }
a061fc8d 6079 free_extent_buffer(sb);
84eed90f 6080 return ret;
0b86a832
CM
6081}
6082
6083int btrfs_read_chunk_tree(struct btrfs_root *root)
6084{
6085 struct btrfs_path *path;
6086 struct extent_buffer *leaf;
6087 struct btrfs_key key;
6088 struct btrfs_key found_key;
6089 int ret;
6090 int slot;
6091
6092 root = root->fs_info->chunk_root;
6093
6094 path = btrfs_alloc_path();
6095 if (!path)
6096 return -ENOMEM;
6097
b367e47f
LZ
6098 mutex_lock(&uuid_mutex);
6099 lock_chunks(root);
6100
395927a9
FDBM
6101 /*
6102 * Read all device items, and then all the chunk items. All
6103 * device items are found before any chunk item (their object id
6104 * is smaller than the lowest possible object id for a chunk
6105 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6106 */
6107 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6108 key.offset = 0;
6109 key.type = 0;
0b86a832 6110 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6111 if (ret < 0)
6112 goto error;
d397712b 6113 while (1) {
0b86a832
CM
6114 leaf = path->nodes[0];
6115 slot = path->slots[0];
6116 if (slot >= btrfs_header_nritems(leaf)) {
6117 ret = btrfs_next_leaf(root, path);
6118 if (ret == 0)
6119 continue;
6120 if (ret < 0)
6121 goto error;
6122 break;
6123 }
6124 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6125 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6126 struct btrfs_dev_item *dev_item;
6127 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6128 struct btrfs_dev_item);
395927a9
FDBM
6129 ret = read_one_dev(root, leaf, dev_item);
6130 if (ret)
6131 goto error;
0b86a832
CM
6132 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6133 struct btrfs_chunk *chunk;
6134 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6135 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6136 if (ret)
6137 goto error;
0b86a832
CM
6138 }
6139 path->slots[0]++;
6140 }
0b86a832
CM
6141 ret = 0;
6142error:
b367e47f
LZ
6143 unlock_chunks(root);
6144 mutex_unlock(&uuid_mutex);
6145
2b82032c 6146 btrfs_free_path(path);
0b86a832
CM
6147 return ret;
6148}
442a4f63 6149
cb517eab
MX
6150void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6151{
6152 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6153 struct btrfs_device *device;
6154
29cc83f6
LB
6155 while (fs_devices) {
6156 mutex_lock(&fs_devices->device_list_mutex);
6157 list_for_each_entry(device, &fs_devices->devices, dev_list)
6158 device->dev_root = fs_info->dev_root;
6159 mutex_unlock(&fs_devices->device_list_mutex);
6160
6161 fs_devices = fs_devices->seed;
6162 }
cb517eab
MX
6163}
6164
733f4fbb
SB
6165static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6166{
6167 int i;
6168
6169 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6170 btrfs_dev_stat_reset(dev, i);
6171}
6172
6173int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6174{
6175 struct btrfs_key key;
6176 struct btrfs_key found_key;
6177 struct btrfs_root *dev_root = fs_info->dev_root;
6178 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6179 struct extent_buffer *eb;
6180 int slot;
6181 int ret = 0;
6182 struct btrfs_device *device;
6183 struct btrfs_path *path = NULL;
6184 int i;
6185
6186 path = btrfs_alloc_path();
6187 if (!path) {
6188 ret = -ENOMEM;
6189 goto out;
6190 }
6191
6192 mutex_lock(&fs_devices->device_list_mutex);
6193 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6194 int item_size;
6195 struct btrfs_dev_stats_item *ptr;
6196
6197 key.objectid = 0;
6198 key.type = BTRFS_DEV_STATS_KEY;
6199 key.offset = device->devid;
6200 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6201 if (ret) {
733f4fbb
SB
6202 __btrfs_reset_dev_stats(device);
6203 device->dev_stats_valid = 1;
6204 btrfs_release_path(path);
6205 continue;
6206 }
6207 slot = path->slots[0];
6208 eb = path->nodes[0];
6209 btrfs_item_key_to_cpu(eb, &found_key, slot);
6210 item_size = btrfs_item_size_nr(eb, slot);
6211
6212 ptr = btrfs_item_ptr(eb, slot,
6213 struct btrfs_dev_stats_item);
6214
6215 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6216 if (item_size >= (1 + i) * sizeof(__le64))
6217 btrfs_dev_stat_set(device, i,
6218 btrfs_dev_stats_value(eb, ptr, i));
6219 else
6220 btrfs_dev_stat_reset(device, i);
6221 }
6222
6223 device->dev_stats_valid = 1;
6224 btrfs_dev_stat_print_on_load(device);
6225 btrfs_release_path(path);
6226 }
6227 mutex_unlock(&fs_devices->device_list_mutex);
6228
6229out:
6230 btrfs_free_path(path);
6231 return ret < 0 ? ret : 0;
6232}
6233
6234static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6235 struct btrfs_root *dev_root,
6236 struct btrfs_device *device)
6237{
6238 struct btrfs_path *path;
6239 struct btrfs_key key;
6240 struct extent_buffer *eb;
6241 struct btrfs_dev_stats_item *ptr;
6242 int ret;
6243 int i;
6244
6245 key.objectid = 0;
6246 key.type = BTRFS_DEV_STATS_KEY;
6247 key.offset = device->devid;
6248
6249 path = btrfs_alloc_path();
6250 BUG_ON(!path);
6251 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6252 if (ret < 0) {
efe120a0
FH
6253 printk_in_rcu(KERN_WARNING "BTRFS: "
6254 "error %d while searching for dev_stats item for device %s!\n",
606686ee 6255 ret, rcu_str_deref(device->name));
733f4fbb
SB
6256 goto out;
6257 }
6258
6259 if (ret == 0 &&
6260 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6261 /* need to delete old one and insert a new one */
6262 ret = btrfs_del_item(trans, dev_root, path);
6263 if (ret != 0) {
efe120a0
FH
6264 printk_in_rcu(KERN_WARNING "BTRFS: "
6265 "delete too small dev_stats item for device %s failed %d!\n",
606686ee 6266 rcu_str_deref(device->name), ret);
733f4fbb
SB
6267 goto out;
6268 }
6269 ret = 1;
6270 }
6271
6272 if (ret == 1) {
6273 /* need to insert a new item */
6274 btrfs_release_path(path);
6275 ret = btrfs_insert_empty_item(trans, dev_root, path,
6276 &key, sizeof(*ptr));
6277 if (ret < 0) {
efe120a0
FH
6278 printk_in_rcu(KERN_WARNING "BTRFS: "
6279 "insert dev_stats item for device %s failed %d!\n",
606686ee 6280 rcu_str_deref(device->name), ret);
733f4fbb
SB
6281 goto out;
6282 }
6283 }
6284
6285 eb = path->nodes[0];
6286 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6287 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6288 btrfs_set_dev_stats_value(eb, ptr, i,
6289 btrfs_dev_stat_read(device, i));
6290 btrfs_mark_buffer_dirty(eb);
6291
6292out:
6293 btrfs_free_path(path);
6294 return ret;
6295}
6296
6297/*
6298 * called from commit_transaction. Writes all changed device stats to disk.
6299 */
6300int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6301 struct btrfs_fs_info *fs_info)
6302{
6303 struct btrfs_root *dev_root = fs_info->dev_root;
6304 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6305 struct btrfs_device *device;
6306 int ret = 0;
6307
6308 mutex_lock(&fs_devices->device_list_mutex);
6309 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6310 if (!device->dev_stats_valid || !device->dev_stats_dirty)
6311 continue;
6312
6313 ret = update_dev_stat_item(trans, dev_root, device);
6314 if (!ret)
6315 device->dev_stats_dirty = 0;
6316 }
6317 mutex_unlock(&fs_devices->device_list_mutex);
6318
6319 return ret;
6320}
6321
442a4f63
SB
6322void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6323{
6324 btrfs_dev_stat_inc(dev, index);
6325 btrfs_dev_stat_print_on_error(dev);
6326}
6327
48a3b636 6328static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6329{
733f4fbb
SB
6330 if (!dev->dev_stats_valid)
6331 return;
efe120a0
FH
6332 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6333 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6334 rcu_str_deref(dev->name),
442a4f63
SB
6335 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6336 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6337 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
6338 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6339 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 6340}
c11d2c23 6341
733f4fbb
SB
6342static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6343{
a98cdb85
SB
6344 int i;
6345
6346 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6347 if (btrfs_dev_stat_read(dev, i) != 0)
6348 break;
6349 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6350 return; /* all values == 0, suppress message */
6351
efe120a0
FH
6352 printk_in_rcu(KERN_INFO "BTRFS: "
6353 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6354 rcu_str_deref(dev->name),
733f4fbb
SB
6355 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6356 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6357 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6358 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6359 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6360}
6361
c11d2c23 6362int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6363 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6364{
6365 struct btrfs_device *dev;
6366 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6367 int i;
6368
6369 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6370 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6371 mutex_unlock(&fs_devices->device_list_mutex);
6372
6373 if (!dev) {
efe120a0 6374 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
c11d2c23 6375 return -ENODEV;
733f4fbb 6376 } else if (!dev->dev_stats_valid) {
efe120a0 6377 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
733f4fbb 6378 return -ENODEV;
b27f7c0c 6379 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6380 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6381 if (stats->nr_items > i)
6382 stats->values[i] =
6383 btrfs_dev_stat_read_and_reset(dev, i);
6384 else
6385 btrfs_dev_stat_reset(dev, i);
6386 }
6387 } else {
6388 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6389 if (stats->nr_items > i)
6390 stats->values[i] = btrfs_dev_stat_read(dev, i);
6391 }
6392 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6393 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6394 return 0;
6395}
a8a6dab7
SB
6396
6397int btrfs_scratch_superblock(struct btrfs_device *device)
6398{
6399 struct buffer_head *bh;
6400 struct btrfs_super_block *disk_super;
6401
6402 bh = btrfs_read_dev_super(device->bdev);
6403 if (!bh)
6404 return -EINVAL;
6405 disk_super = (struct btrfs_super_block *)bh->b_data;
6406
6407 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6408 set_buffer_dirty(bh);
6409 sync_dirty_buffer(bh);
6410 brelse(bh);
6411
6412 return 0;
6413}