Btrfs: fix memory leak of chunks' extent map
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
4b4e25f2 31#include "compat.h"
0b86a832
CM
32#include "ctree.h"
33#include "extent_map.h"
34#include "disk-io.h"
35#include "transaction.h"
36#include "print-tree.h"
37#include "volumes.h"
53b381b3 38#include "raid56.h"
8b712842 39#include "async-thread.h"
21adbd5c 40#include "check-integrity.h"
606686ee 41#include "rcu-string.h"
3fed40cc 42#include "math.h"
8dabb742 43#include "dev-replace.h"
0b86a832 44
2b82032c
YZ
45static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 49static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 52
8a4b83cc
CM
53static DEFINE_MUTEX(uuid_mutex);
54static LIST_HEAD(fs_uuids);
55
7d9eb12c
CM
56static void lock_chunks(struct btrfs_root *root)
57{
7d9eb12c
CM
58 mutex_lock(&root->fs_info->chunk_mutex);
59}
60
61static void unlock_chunks(struct btrfs_root *root)
62{
7d9eb12c
CM
63 mutex_unlock(&root->fs_info->chunk_mutex);
64}
65
2208a378
ID
66static struct btrfs_fs_devices *__alloc_fs_devices(void)
67{
68 struct btrfs_fs_devices *fs_devs;
69
70 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71 if (!fs_devs)
72 return ERR_PTR(-ENOMEM);
73
74 mutex_init(&fs_devs->device_list_mutex);
75
76 INIT_LIST_HEAD(&fs_devs->devices);
77 INIT_LIST_HEAD(&fs_devs->alloc_list);
78 INIT_LIST_HEAD(&fs_devs->list);
79
80 return fs_devs;
81}
82
83/**
84 * alloc_fs_devices - allocate struct btrfs_fs_devices
85 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
86 * generated.
87 *
88 * Return: a pointer to a new &struct btrfs_fs_devices on success;
89 * ERR_PTR() on error. Returned struct is not linked onto any lists and
90 * can be destroyed with kfree() right away.
91 */
92static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
93{
94 struct btrfs_fs_devices *fs_devs;
95
96 fs_devs = __alloc_fs_devices();
97 if (IS_ERR(fs_devs))
98 return fs_devs;
99
100 if (fsid)
101 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
102 else
103 generate_random_uuid(fs_devs->fsid);
104
105 return fs_devs;
106}
107
e4404d6e
YZ
108static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
109{
110 struct btrfs_device *device;
111 WARN_ON(fs_devices->opened);
112 while (!list_empty(&fs_devices->devices)) {
113 device = list_entry(fs_devices->devices.next,
114 struct btrfs_device, dev_list);
115 list_del(&device->dev_list);
606686ee 116 rcu_string_free(device->name);
e4404d6e
YZ
117 kfree(device);
118 }
119 kfree(fs_devices);
120}
121
b8b8ff59
LC
122static void btrfs_kobject_uevent(struct block_device *bdev,
123 enum kobject_action action)
124{
125 int ret;
126
127 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
128 if (ret)
129 pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
130 action,
131 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
132 &disk_to_dev(bdev->bd_disk)->kobj);
133}
134
143bede5 135void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
136{
137 struct btrfs_fs_devices *fs_devices;
8a4b83cc 138
2b82032c
YZ
139 while (!list_empty(&fs_uuids)) {
140 fs_devices = list_entry(fs_uuids.next,
141 struct btrfs_fs_devices, list);
142 list_del(&fs_devices->list);
e4404d6e 143 free_fs_devices(fs_devices);
8a4b83cc 144 }
8a4b83cc
CM
145}
146
12bd2fc0
ID
147static struct btrfs_device *__alloc_device(void)
148{
149 struct btrfs_device *dev;
150
151 dev = kzalloc(sizeof(*dev), GFP_NOFS);
152 if (!dev)
153 return ERR_PTR(-ENOMEM);
154
155 INIT_LIST_HEAD(&dev->dev_list);
156 INIT_LIST_HEAD(&dev->dev_alloc_list);
157
158 spin_lock_init(&dev->io_lock);
159
160 spin_lock_init(&dev->reada_lock);
161 atomic_set(&dev->reada_in_flight, 0);
162 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
163 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
164
165 return dev;
166}
167
a1b32a59
CM
168static noinline struct btrfs_device *__find_device(struct list_head *head,
169 u64 devid, u8 *uuid)
8a4b83cc
CM
170{
171 struct btrfs_device *dev;
8a4b83cc 172
c6e30871 173 list_for_each_entry(dev, head, dev_list) {
a443755f 174 if (dev->devid == devid &&
8f18cf13 175 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 176 return dev;
a443755f 177 }
8a4b83cc
CM
178 }
179 return NULL;
180}
181
a1b32a59 182static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 183{
8a4b83cc
CM
184 struct btrfs_fs_devices *fs_devices;
185
c6e30871 186 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
187 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
188 return fs_devices;
189 }
190 return NULL;
191}
192
beaf8ab3
SB
193static int
194btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
195 int flush, struct block_device **bdev,
196 struct buffer_head **bh)
197{
198 int ret;
199
200 *bdev = blkdev_get_by_path(device_path, flags, holder);
201
202 if (IS_ERR(*bdev)) {
203 ret = PTR_ERR(*bdev);
204 printk(KERN_INFO "btrfs: open %s failed\n", device_path);
205 goto error;
206 }
207
208 if (flush)
209 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
210 ret = set_blocksize(*bdev, 4096);
211 if (ret) {
212 blkdev_put(*bdev, flags);
213 goto error;
214 }
215 invalidate_bdev(*bdev);
216 *bh = btrfs_read_dev_super(*bdev);
217 if (!*bh) {
218 ret = -EINVAL;
219 blkdev_put(*bdev, flags);
220 goto error;
221 }
222
223 return 0;
224
225error:
226 *bdev = NULL;
227 *bh = NULL;
228 return ret;
229}
230
ffbd517d
CM
231static void requeue_list(struct btrfs_pending_bios *pending_bios,
232 struct bio *head, struct bio *tail)
233{
234
235 struct bio *old_head;
236
237 old_head = pending_bios->head;
238 pending_bios->head = head;
239 if (pending_bios->tail)
240 tail->bi_next = old_head;
241 else
242 pending_bios->tail = tail;
243}
244
8b712842
CM
245/*
246 * we try to collect pending bios for a device so we don't get a large
247 * number of procs sending bios down to the same device. This greatly
248 * improves the schedulers ability to collect and merge the bios.
249 *
250 * But, it also turns into a long list of bios to process and that is sure
251 * to eventually make the worker thread block. The solution here is to
252 * make some progress and then put this work struct back at the end of
253 * the list if the block device is congested. This way, multiple devices
254 * can make progress from a single worker thread.
255 */
143bede5 256static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
257{
258 struct bio *pending;
259 struct backing_dev_info *bdi;
b64a2851 260 struct btrfs_fs_info *fs_info;
ffbd517d 261 struct btrfs_pending_bios *pending_bios;
8b712842
CM
262 struct bio *tail;
263 struct bio *cur;
264 int again = 0;
ffbd517d 265 unsigned long num_run;
d644d8a1 266 unsigned long batch_run = 0;
b64a2851 267 unsigned long limit;
b765ead5 268 unsigned long last_waited = 0;
d84275c9 269 int force_reg = 0;
0e588859 270 int sync_pending = 0;
211588ad
CM
271 struct blk_plug plug;
272
273 /*
274 * this function runs all the bios we've collected for
275 * a particular device. We don't want to wander off to
276 * another device without first sending all of these down.
277 * So, setup a plug here and finish it off before we return
278 */
279 blk_start_plug(&plug);
8b712842 280
bedf762b 281 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
282 fs_info = device->dev_root->fs_info;
283 limit = btrfs_async_submit_limit(fs_info);
284 limit = limit * 2 / 3;
285
8b712842
CM
286loop:
287 spin_lock(&device->io_lock);
288
a6837051 289loop_lock:
d84275c9 290 num_run = 0;
ffbd517d 291
8b712842
CM
292 /* take all the bios off the list at once and process them
293 * later on (without the lock held). But, remember the
294 * tail and other pointers so the bios can be properly reinserted
295 * into the list if we hit congestion
296 */
d84275c9 297 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 298 pending_bios = &device->pending_sync_bios;
d84275c9
CM
299 force_reg = 1;
300 } else {
ffbd517d 301 pending_bios = &device->pending_bios;
d84275c9
CM
302 force_reg = 0;
303 }
ffbd517d
CM
304
305 pending = pending_bios->head;
306 tail = pending_bios->tail;
8b712842 307 WARN_ON(pending && !tail);
8b712842
CM
308
309 /*
310 * if pending was null this time around, no bios need processing
311 * at all and we can stop. Otherwise it'll loop back up again
312 * and do an additional check so no bios are missed.
313 *
314 * device->running_pending is used to synchronize with the
315 * schedule_bio code.
316 */
ffbd517d
CM
317 if (device->pending_sync_bios.head == NULL &&
318 device->pending_bios.head == NULL) {
8b712842
CM
319 again = 0;
320 device->running_pending = 0;
ffbd517d
CM
321 } else {
322 again = 1;
323 device->running_pending = 1;
8b712842 324 }
ffbd517d
CM
325
326 pending_bios->head = NULL;
327 pending_bios->tail = NULL;
328
8b712842
CM
329 spin_unlock(&device->io_lock);
330
d397712b 331 while (pending) {
ffbd517d
CM
332
333 rmb();
d84275c9
CM
334 /* we want to work on both lists, but do more bios on the
335 * sync list than the regular list
336 */
337 if ((num_run > 32 &&
338 pending_bios != &device->pending_sync_bios &&
339 device->pending_sync_bios.head) ||
340 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
341 device->pending_bios.head)) {
ffbd517d
CM
342 spin_lock(&device->io_lock);
343 requeue_list(pending_bios, pending, tail);
344 goto loop_lock;
345 }
346
8b712842
CM
347 cur = pending;
348 pending = pending->bi_next;
349 cur->bi_next = NULL;
b64a2851 350
66657b31 351 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
352 waitqueue_active(&fs_info->async_submit_wait))
353 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
354
355 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 356
2ab1ba68
CM
357 /*
358 * if we're doing the sync list, record that our
359 * plug has some sync requests on it
360 *
361 * If we're doing the regular list and there are
362 * sync requests sitting around, unplug before
363 * we add more
364 */
365 if (pending_bios == &device->pending_sync_bios) {
366 sync_pending = 1;
367 } else if (sync_pending) {
368 blk_finish_plug(&plug);
369 blk_start_plug(&plug);
370 sync_pending = 0;
371 }
372
21adbd5c 373 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
374 num_run++;
375 batch_run++;
7eaceacc 376 if (need_resched())
ffbd517d 377 cond_resched();
8b712842
CM
378
379 /*
380 * we made progress, there is more work to do and the bdi
381 * is now congested. Back off and let other work structs
382 * run instead
383 */
57fd5a5f 384 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 385 fs_info->fs_devices->open_devices > 1) {
b765ead5 386 struct io_context *ioc;
8b712842 387
b765ead5
CM
388 ioc = current->io_context;
389
390 /*
391 * the main goal here is that we don't want to
392 * block if we're going to be able to submit
393 * more requests without blocking.
394 *
395 * This code does two great things, it pokes into
396 * the elevator code from a filesystem _and_
397 * it makes assumptions about how batching works.
398 */
399 if (ioc && ioc->nr_batch_requests > 0 &&
400 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
401 (last_waited == 0 ||
402 ioc->last_waited == last_waited)) {
403 /*
404 * we want to go through our batch of
405 * requests and stop. So, we copy out
406 * the ioc->last_waited time and test
407 * against it before looping
408 */
409 last_waited = ioc->last_waited;
7eaceacc 410 if (need_resched())
ffbd517d 411 cond_resched();
b765ead5
CM
412 continue;
413 }
8b712842 414 spin_lock(&device->io_lock);
ffbd517d 415 requeue_list(pending_bios, pending, tail);
a6837051 416 device->running_pending = 1;
8b712842
CM
417
418 spin_unlock(&device->io_lock);
419 btrfs_requeue_work(&device->work);
420 goto done;
421 }
d85c8a6f
CM
422 /* unplug every 64 requests just for good measure */
423 if (batch_run % 64 == 0) {
424 blk_finish_plug(&plug);
425 blk_start_plug(&plug);
426 sync_pending = 0;
427 }
8b712842 428 }
ffbd517d 429
51684082
CM
430 cond_resched();
431 if (again)
432 goto loop;
433
434 spin_lock(&device->io_lock);
435 if (device->pending_bios.head || device->pending_sync_bios.head)
436 goto loop_lock;
437 spin_unlock(&device->io_lock);
438
8b712842 439done:
211588ad 440 blk_finish_plug(&plug);
8b712842
CM
441}
442
b2950863 443static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
444{
445 struct btrfs_device *device;
446
447 device = container_of(work, struct btrfs_device, work);
448 run_scheduled_bios(device);
449}
450
a1b32a59 451static noinline int device_list_add(const char *path,
8a4b83cc
CM
452 struct btrfs_super_block *disk_super,
453 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
454{
455 struct btrfs_device *device;
456 struct btrfs_fs_devices *fs_devices;
606686ee 457 struct rcu_string *name;
8a4b83cc
CM
458 u64 found_transid = btrfs_super_generation(disk_super);
459
460 fs_devices = find_fsid(disk_super->fsid);
461 if (!fs_devices) {
2208a378
ID
462 fs_devices = alloc_fs_devices(disk_super->fsid);
463 if (IS_ERR(fs_devices))
464 return PTR_ERR(fs_devices);
465
8a4b83cc 466 list_add(&fs_devices->list, &fs_uuids);
8a4b83cc
CM
467 fs_devices->latest_devid = devid;
468 fs_devices->latest_trans = found_transid;
2208a378 469
8a4b83cc
CM
470 device = NULL;
471 } else {
a443755f
CM
472 device = __find_device(&fs_devices->devices, devid,
473 disk_super->dev_item.uuid);
8a4b83cc
CM
474 }
475 if (!device) {
2b82032c
YZ
476 if (fs_devices->opened)
477 return -EBUSY;
478
12bd2fc0
ID
479 device = btrfs_alloc_device(NULL, &devid,
480 disk_super->dev_item.uuid);
481 if (IS_ERR(device)) {
8a4b83cc 482 /* we can safely leave the fs_devices entry around */
12bd2fc0 483 return PTR_ERR(device);
8a4b83cc 484 }
606686ee
JB
485
486 name = rcu_string_strdup(path, GFP_NOFS);
487 if (!name) {
8a4b83cc
CM
488 kfree(device);
489 return -ENOMEM;
490 }
606686ee 491 rcu_assign_pointer(device->name, name);
90519d66 492
e5e9a520 493 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 494 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 495 fs_devices->num_devices++;
e5e9a520
CM
496 mutex_unlock(&fs_devices->device_list_mutex);
497
2b82032c 498 device->fs_devices = fs_devices;
606686ee
JB
499 } else if (!device->name || strcmp(device->name->str, path)) {
500 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
501 if (!name)
502 return -ENOMEM;
606686ee
JB
503 rcu_string_free(device->name);
504 rcu_assign_pointer(device->name, name);
cd02dca5
CM
505 if (device->missing) {
506 fs_devices->missing_devices--;
507 device->missing = 0;
508 }
8a4b83cc
CM
509 }
510
511 if (found_transid > fs_devices->latest_trans) {
512 fs_devices->latest_devid = devid;
513 fs_devices->latest_trans = found_transid;
514 }
8a4b83cc
CM
515 *fs_devices_ret = fs_devices;
516 return 0;
517}
518
e4404d6e
YZ
519static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
520{
521 struct btrfs_fs_devices *fs_devices;
522 struct btrfs_device *device;
523 struct btrfs_device *orig_dev;
524
2208a378
ID
525 fs_devices = alloc_fs_devices(orig->fsid);
526 if (IS_ERR(fs_devices))
527 return fs_devices;
e4404d6e 528
e4404d6e
YZ
529 fs_devices->latest_devid = orig->latest_devid;
530 fs_devices->latest_trans = orig->latest_trans;
02db0844 531 fs_devices->total_devices = orig->total_devices;
e4404d6e 532
46224705 533 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 534 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
535 struct rcu_string *name;
536
12bd2fc0
ID
537 device = btrfs_alloc_device(NULL, &orig_dev->devid,
538 orig_dev->uuid);
539 if (IS_ERR(device))
e4404d6e
YZ
540 goto error;
541
606686ee
JB
542 /*
543 * This is ok to do without rcu read locked because we hold the
544 * uuid mutex so nothing we touch in here is going to disappear.
545 */
546 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
547 if (!name) {
fd2696f3 548 kfree(device);
e4404d6e 549 goto error;
fd2696f3 550 }
606686ee 551 rcu_assign_pointer(device->name, name);
e4404d6e 552
e4404d6e
YZ
553 list_add(&device->dev_list, &fs_devices->devices);
554 device->fs_devices = fs_devices;
555 fs_devices->num_devices++;
556 }
557 return fs_devices;
558error:
559 free_fs_devices(fs_devices);
560 return ERR_PTR(-ENOMEM);
561}
562
8dabb742
SB
563void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
564 struct btrfs_fs_devices *fs_devices, int step)
dfe25020 565{
c6e30871 566 struct btrfs_device *device, *next;
dfe25020 567
a6b0d5c8
CM
568 struct block_device *latest_bdev = NULL;
569 u64 latest_devid = 0;
570 u64 latest_transid = 0;
571
dfe25020
CM
572 mutex_lock(&uuid_mutex);
573again:
46224705 574 /* This is the initialized path, it is safe to release the devices. */
c6e30871 575 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 576 if (device->in_fs_metadata) {
63a212ab
SB
577 if (!device->is_tgtdev_for_dev_replace &&
578 (!latest_transid ||
579 device->generation > latest_transid)) {
a6b0d5c8
CM
580 latest_devid = device->devid;
581 latest_transid = device->generation;
582 latest_bdev = device->bdev;
583 }
2b82032c 584 continue;
a6b0d5c8 585 }
2b82032c 586
8dabb742
SB
587 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
588 /*
589 * In the first step, keep the device which has
590 * the correct fsid and the devid that is used
591 * for the dev_replace procedure.
592 * In the second step, the dev_replace state is
593 * read from the device tree and it is known
594 * whether the procedure is really active or
595 * not, which means whether this device is
596 * used or whether it should be removed.
597 */
598 if (step == 0 || device->is_tgtdev_for_dev_replace) {
599 continue;
600 }
601 }
2b82032c 602 if (device->bdev) {
d4d77629 603 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
604 device->bdev = NULL;
605 fs_devices->open_devices--;
606 }
607 if (device->writeable) {
608 list_del_init(&device->dev_alloc_list);
609 device->writeable = 0;
8dabb742
SB
610 if (!device->is_tgtdev_for_dev_replace)
611 fs_devices->rw_devices--;
2b82032c 612 }
e4404d6e
YZ
613 list_del_init(&device->dev_list);
614 fs_devices->num_devices--;
606686ee 615 rcu_string_free(device->name);
e4404d6e 616 kfree(device);
dfe25020 617 }
2b82032c
YZ
618
619 if (fs_devices->seed) {
620 fs_devices = fs_devices->seed;
2b82032c
YZ
621 goto again;
622 }
623
a6b0d5c8
CM
624 fs_devices->latest_bdev = latest_bdev;
625 fs_devices->latest_devid = latest_devid;
626 fs_devices->latest_trans = latest_transid;
627
dfe25020 628 mutex_unlock(&uuid_mutex);
dfe25020 629}
a0af469b 630
1f78160c
XG
631static void __free_device(struct work_struct *work)
632{
633 struct btrfs_device *device;
634
635 device = container_of(work, struct btrfs_device, rcu_work);
636
637 if (device->bdev)
638 blkdev_put(device->bdev, device->mode);
639
606686ee 640 rcu_string_free(device->name);
1f78160c
XG
641 kfree(device);
642}
643
644static void free_device(struct rcu_head *head)
645{
646 struct btrfs_device *device;
647
648 device = container_of(head, struct btrfs_device, rcu);
649
650 INIT_WORK(&device->rcu_work, __free_device);
651 schedule_work(&device->rcu_work);
652}
653
2b82032c 654static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 655{
8a4b83cc 656 struct btrfs_device *device;
e4404d6e 657
2b82032c
YZ
658 if (--fs_devices->opened > 0)
659 return 0;
8a4b83cc 660
c9513edb 661 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 662 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 663 struct btrfs_device *new_device;
606686ee 664 struct rcu_string *name;
1f78160c
XG
665
666 if (device->bdev)
a0af469b 667 fs_devices->open_devices--;
1f78160c 668
8dabb742 669 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c
YZ
670 list_del_init(&device->dev_alloc_list);
671 fs_devices->rw_devices--;
672 }
673
d5e2003c
JB
674 if (device->can_discard)
675 fs_devices->num_can_discard--;
726551eb
JB
676 if (device->missing)
677 fs_devices->missing_devices--;
d5e2003c 678
a1e8780a
ID
679 new_device = btrfs_alloc_device(NULL, &device->devid,
680 device->uuid);
681 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
606686ee
JB
682
683 /* Safe because we are under uuid_mutex */
99f5944b
JB
684 if (device->name) {
685 name = rcu_string_strdup(device->name->str, GFP_NOFS);
a1e8780a 686 BUG_ON(!name); /* -ENOMEM */
99f5944b
JB
687 rcu_assign_pointer(new_device->name, name);
688 }
a1e8780a 689
1f78160c 690 list_replace_rcu(&device->dev_list, &new_device->dev_list);
a1e8780a 691 new_device->fs_devices = device->fs_devices;
1f78160c
XG
692
693 call_rcu(&device->rcu, free_device);
8a4b83cc 694 }
c9513edb
XG
695 mutex_unlock(&fs_devices->device_list_mutex);
696
e4404d6e
YZ
697 WARN_ON(fs_devices->open_devices);
698 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
699 fs_devices->opened = 0;
700 fs_devices->seeding = 0;
2b82032c 701
8a4b83cc
CM
702 return 0;
703}
704
2b82032c
YZ
705int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
706{
e4404d6e 707 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
708 int ret;
709
710 mutex_lock(&uuid_mutex);
711 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
712 if (!fs_devices->opened) {
713 seed_devices = fs_devices->seed;
714 fs_devices->seed = NULL;
715 }
2b82032c 716 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
717
718 while (seed_devices) {
719 fs_devices = seed_devices;
720 seed_devices = fs_devices->seed;
721 __btrfs_close_devices(fs_devices);
722 free_fs_devices(fs_devices);
723 }
bc178622
ES
724 /*
725 * Wait for rcu kworkers under __btrfs_close_devices
726 * to finish all blkdev_puts so device is really
727 * free when umount is done.
728 */
729 rcu_barrier();
2b82032c
YZ
730 return ret;
731}
732
e4404d6e
YZ
733static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
734 fmode_t flags, void *holder)
8a4b83cc 735{
d5e2003c 736 struct request_queue *q;
8a4b83cc
CM
737 struct block_device *bdev;
738 struct list_head *head = &fs_devices->devices;
8a4b83cc 739 struct btrfs_device *device;
a0af469b
CM
740 struct block_device *latest_bdev = NULL;
741 struct buffer_head *bh;
742 struct btrfs_super_block *disk_super;
743 u64 latest_devid = 0;
744 u64 latest_transid = 0;
a0af469b 745 u64 devid;
2b82032c 746 int seeding = 1;
a0af469b 747 int ret = 0;
8a4b83cc 748
d4d77629
TH
749 flags |= FMODE_EXCL;
750
c6e30871 751 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
752 if (device->bdev)
753 continue;
dfe25020
CM
754 if (!device->name)
755 continue;
756
f63e0cca
ES
757 /* Just open everything we can; ignore failures here */
758 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
759 &bdev, &bh))
beaf8ab3 760 continue;
a0af469b
CM
761
762 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 763 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
764 if (devid != device->devid)
765 goto error_brelse;
766
2b82032c
YZ
767 if (memcmp(device->uuid, disk_super->dev_item.uuid,
768 BTRFS_UUID_SIZE))
769 goto error_brelse;
770
771 device->generation = btrfs_super_generation(disk_super);
772 if (!latest_transid || device->generation > latest_transid) {
a0af469b 773 latest_devid = devid;
2b82032c 774 latest_transid = device->generation;
a0af469b
CM
775 latest_bdev = bdev;
776 }
777
2b82032c
YZ
778 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
779 device->writeable = 0;
780 } else {
781 device->writeable = !bdev_read_only(bdev);
782 seeding = 0;
783 }
784
d5e2003c
JB
785 q = bdev_get_queue(bdev);
786 if (blk_queue_discard(q)) {
787 device->can_discard = 1;
788 fs_devices->num_can_discard++;
789 }
790
8a4b83cc 791 device->bdev = bdev;
dfe25020 792 device->in_fs_metadata = 0;
15916de8
CM
793 device->mode = flags;
794
c289811c
CM
795 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
796 fs_devices->rotating = 1;
797
a0af469b 798 fs_devices->open_devices++;
55e50e45
ID
799 if (device->writeable &&
800 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
801 fs_devices->rw_devices++;
802 list_add(&device->dev_alloc_list,
803 &fs_devices->alloc_list);
804 }
4f6c9328 805 brelse(bh);
a0af469b 806 continue;
a061fc8d 807
a0af469b
CM
808error_brelse:
809 brelse(bh);
d4d77629 810 blkdev_put(bdev, flags);
a0af469b 811 continue;
8a4b83cc 812 }
a0af469b 813 if (fs_devices->open_devices == 0) {
20bcd649 814 ret = -EINVAL;
a0af469b
CM
815 goto out;
816 }
2b82032c
YZ
817 fs_devices->seeding = seeding;
818 fs_devices->opened = 1;
a0af469b
CM
819 fs_devices->latest_bdev = latest_bdev;
820 fs_devices->latest_devid = latest_devid;
821 fs_devices->latest_trans = latest_transid;
2b82032c 822 fs_devices->total_rw_bytes = 0;
a0af469b 823out:
2b82032c
YZ
824 return ret;
825}
826
827int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 828 fmode_t flags, void *holder)
2b82032c
YZ
829{
830 int ret;
831
832 mutex_lock(&uuid_mutex);
833 if (fs_devices->opened) {
e4404d6e
YZ
834 fs_devices->opened++;
835 ret = 0;
2b82032c 836 } else {
15916de8 837 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 838 }
8a4b83cc 839 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
840 return ret;
841}
842
6f60cbd3
DS
843/*
844 * Look for a btrfs signature on a device. This may be called out of the mount path
845 * and we are not allowed to call set_blocksize during the scan. The superblock
846 * is read via pagecache
847 */
97288f2c 848int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
849 struct btrfs_fs_devices **fs_devices_ret)
850{
851 struct btrfs_super_block *disk_super;
852 struct block_device *bdev;
6f60cbd3
DS
853 struct page *page;
854 void *p;
855 int ret = -EINVAL;
8a4b83cc 856 u64 devid;
f2984462 857 u64 transid;
02db0844 858 u64 total_devices;
6f60cbd3
DS
859 u64 bytenr;
860 pgoff_t index;
8a4b83cc 861
6f60cbd3
DS
862 /*
863 * we would like to check all the supers, but that would make
864 * a btrfs mount succeed after a mkfs from a different FS.
865 * So, we need to add a special mount option to scan for
866 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
867 */
868 bytenr = btrfs_sb_offset(0);
d4d77629 869 flags |= FMODE_EXCL;
10f6327b 870 mutex_lock(&uuid_mutex);
6f60cbd3
DS
871
872 bdev = blkdev_get_by_path(path, flags, holder);
873
874 if (IS_ERR(bdev)) {
875 ret = PTR_ERR(bdev);
beaf8ab3 876 goto error;
6f60cbd3
DS
877 }
878
879 /* make sure our super fits in the device */
880 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
881 goto error_bdev_put;
882
883 /* make sure our super fits in the page */
884 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
885 goto error_bdev_put;
886
887 /* make sure our super doesn't straddle pages on disk */
888 index = bytenr >> PAGE_CACHE_SHIFT;
889 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
890 goto error_bdev_put;
891
892 /* pull in the page with our super */
893 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
894 index, GFP_NOFS);
895
896 if (IS_ERR_OR_NULL(page))
897 goto error_bdev_put;
898
899 p = kmap(page);
900
901 /* align our pointer to the offset of the super block */
902 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
903
904 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 905 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
906 goto error_unmap;
907
a343832f 908 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 909 transid = btrfs_super_generation(disk_super);
02db0844 910 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 911
d03f918a
SB
912 if (disk_super->label[0]) {
913 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
914 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
5138cccf 915 printk(KERN_INFO "btrfs: device label %s ", disk_super->label);
d03f918a 916 } else {
5138cccf 917 printk(KERN_INFO "btrfs: device fsid %pU ", disk_super->fsid);
d03f918a 918 }
6f60cbd3 919
c1c9ff7c 920 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
6f60cbd3 921
8a4b83cc 922 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
02db0844
JB
923 if (!ret && fs_devices_ret)
924 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
925
926error_unmap:
927 kunmap(page);
928 page_cache_release(page);
929
930error_bdev_put:
d4d77629 931 blkdev_put(bdev, flags);
8a4b83cc 932error:
beaf8ab3 933 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
934 return ret;
935}
0b86a832 936
6d07bcec
MX
937/* helper to account the used device space in the range */
938int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
939 u64 end, u64 *length)
940{
941 struct btrfs_key key;
942 struct btrfs_root *root = device->dev_root;
943 struct btrfs_dev_extent *dev_extent;
944 struct btrfs_path *path;
945 u64 extent_end;
946 int ret;
947 int slot;
948 struct extent_buffer *l;
949
950 *length = 0;
951
63a212ab 952 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
953 return 0;
954
955 path = btrfs_alloc_path();
956 if (!path)
957 return -ENOMEM;
958 path->reada = 2;
959
960 key.objectid = device->devid;
961 key.offset = start;
962 key.type = BTRFS_DEV_EXTENT_KEY;
963
964 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
965 if (ret < 0)
966 goto out;
967 if (ret > 0) {
968 ret = btrfs_previous_item(root, path, key.objectid, key.type);
969 if (ret < 0)
970 goto out;
971 }
972
973 while (1) {
974 l = path->nodes[0];
975 slot = path->slots[0];
976 if (slot >= btrfs_header_nritems(l)) {
977 ret = btrfs_next_leaf(root, path);
978 if (ret == 0)
979 continue;
980 if (ret < 0)
981 goto out;
982
983 break;
984 }
985 btrfs_item_key_to_cpu(l, &key, slot);
986
987 if (key.objectid < device->devid)
988 goto next;
989
990 if (key.objectid > device->devid)
991 break;
992
993 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
994 goto next;
995
996 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
997 extent_end = key.offset + btrfs_dev_extent_length(l,
998 dev_extent);
999 if (key.offset <= start && extent_end > end) {
1000 *length = end - start + 1;
1001 break;
1002 } else if (key.offset <= start && extent_end > start)
1003 *length += extent_end - start;
1004 else if (key.offset > start && extent_end <= end)
1005 *length += extent_end - key.offset;
1006 else if (key.offset > start && key.offset <= end) {
1007 *length += end - key.offset + 1;
1008 break;
1009 } else if (key.offset > end)
1010 break;
1011
1012next:
1013 path->slots[0]++;
1014 }
1015 ret = 0;
1016out:
1017 btrfs_free_path(path);
1018 return ret;
1019}
1020
6df9a95e
JB
1021static int contains_pending_extent(struct btrfs_trans_handle *trans,
1022 struct btrfs_device *device,
1023 u64 *start, u64 len)
1024{
1025 struct extent_map *em;
1026 int ret = 0;
1027
1028 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1029 struct map_lookup *map;
1030 int i;
1031
1032 map = (struct map_lookup *)em->bdev;
1033 for (i = 0; i < map->num_stripes; i++) {
1034 if (map->stripes[i].dev != device)
1035 continue;
1036 if (map->stripes[i].physical >= *start + len ||
1037 map->stripes[i].physical + em->orig_block_len <=
1038 *start)
1039 continue;
1040 *start = map->stripes[i].physical +
1041 em->orig_block_len;
1042 ret = 1;
1043 }
1044 }
1045
1046 return ret;
1047}
1048
1049
0b86a832 1050/*
7bfc837d 1051 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
1052 * @device: the device which we search the free space in
1053 * @num_bytes: the size of the free space that we need
1054 * @start: store the start of the free space.
1055 * @len: the size of the free space. that we find, or the size of the max
1056 * free space if we don't find suitable free space
1057 *
0b86a832
CM
1058 * this uses a pretty simple search, the expectation is that it is
1059 * called very infrequently and that a given device has a small number
1060 * of extents
7bfc837d
MX
1061 *
1062 * @start is used to store the start of the free space if we find. But if we
1063 * don't find suitable free space, it will be used to store the start position
1064 * of the max free space.
1065 *
1066 * @len is used to store the size of the free space that we find.
1067 * But if we don't find suitable free space, it is used to store the size of
1068 * the max free space.
0b86a832 1069 */
6df9a95e
JB
1070int find_free_dev_extent(struct btrfs_trans_handle *trans,
1071 struct btrfs_device *device, u64 num_bytes,
7bfc837d 1072 u64 *start, u64 *len)
0b86a832
CM
1073{
1074 struct btrfs_key key;
1075 struct btrfs_root *root = device->dev_root;
7bfc837d 1076 struct btrfs_dev_extent *dev_extent;
2b82032c 1077 struct btrfs_path *path;
7bfc837d
MX
1078 u64 hole_size;
1079 u64 max_hole_start;
1080 u64 max_hole_size;
1081 u64 extent_end;
1082 u64 search_start;
0b86a832
CM
1083 u64 search_end = device->total_bytes;
1084 int ret;
7bfc837d 1085 int slot;
0b86a832
CM
1086 struct extent_buffer *l;
1087
0b86a832
CM
1088 /* FIXME use last free of some kind */
1089
8a4b83cc
CM
1090 /* we don't want to overwrite the superblock on the drive,
1091 * so we make sure to start at an offset of at least 1MB
1092 */
a9c9bf68 1093 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 1094
6df9a95e
JB
1095 path = btrfs_alloc_path();
1096 if (!path)
1097 return -ENOMEM;
1098again:
7bfc837d
MX
1099 max_hole_start = search_start;
1100 max_hole_size = 0;
38c01b96 1101 hole_size = 0;
7bfc837d 1102
63a212ab 1103 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1104 ret = -ENOSPC;
6df9a95e 1105 goto out;
7bfc837d
MX
1106 }
1107
7bfc837d 1108 path->reada = 2;
6df9a95e
JB
1109 path->search_commit_root = 1;
1110 path->skip_locking = 1;
7bfc837d 1111
0b86a832
CM
1112 key.objectid = device->devid;
1113 key.offset = search_start;
1114 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1115
125ccb0a 1116 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1117 if (ret < 0)
7bfc837d 1118 goto out;
1fcbac58
YZ
1119 if (ret > 0) {
1120 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1121 if (ret < 0)
7bfc837d 1122 goto out;
1fcbac58 1123 }
7bfc837d 1124
0b86a832
CM
1125 while (1) {
1126 l = path->nodes[0];
1127 slot = path->slots[0];
1128 if (slot >= btrfs_header_nritems(l)) {
1129 ret = btrfs_next_leaf(root, path);
1130 if (ret == 0)
1131 continue;
1132 if (ret < 0)
7bfc837d
MX
1133 goto out;
1134
1135 break;
0b86a832
CM
1136 }
1137 btrfs_item_key_to_cpu(l, &key, slot);
1138
1139 if (key.objectid < device->devid)
1140 goto next;
1141
1142 if (key.objectid > device->devid)
7bfc837d 1143 break;
0b86a832 1144
7bfc837d
MX
1145 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1146 goto next;
9779b72f 1147
7bfc837d
MX
1148 if (key.offset > search_start) {
1149 hole_size = key.offset - search_start;
9779b72f 1150
6df9a95e
JB
1151 /*
1152 * Have to check before we set max_hole_start, otherwise
1153 * we could end up sending back this offset anyway.
1154 */
1155 if (contains_pending_extent(trans, device,
1156 &search_start,
1157 hole_size))
1158 hole_size = 0;
1159
7bfc837d
MX
1160 if (hole_size > max_hole_size) {
1161 max_hole_start = search_start;
1162 max_hole_size = hole_size;
1163 }
9779b72f 1164
7bfc837d
MX
1165 /*
1166 * If this free space is greater than which we need,
1167 * it must be the max free space that we have found
1168 * until now, so max_hole_start must point to the start
1169 * of this free space and the length of this free space
1170 * is stored in max_hole_size. Thus, we return
1171 * max_hole_start and max_hole_size and go back to the
1172 * caller.
1173 */
1174 if (hole_size >= num_bytes) {
1175 ret = 0;
1176 goto out;
0b86a832
CM
1177 }
1178 }
0b86a832 1179
0b86a832 1180 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1181 extent_end = key.offset + btrfs_dev_extent_length(l,
1182 dev_extent);
1183 if (extent_end > search_start)
1184 search_start = extent_end;
0b86a832
CM
1185next:
1186 path->slots[0]++;
1187 cond_resched();
1188 }
0b86a832 1189
38c01b96 1190 /*
1191 * At this point, search_start should be the end of
1192 * allocated dev extents, and when shrinking the device,
1193 * search_end may be smaller than search_start.
1194 */
1195 if (search_end > search_start)
1196 hole_size = search_end - search_start;
1197
7bfc837d
MX
1198 if (hole_size > max_hole_size) {
1199 max_hole_start = search_start;
1200 max_hole_size = hole_size;
0b86a832 1201 }
0b86a832 1202
6df9a95e
JB
1203 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1204 btrfs_release_path(path);
1205 goto again;
1206 }
1207
7bfc837d
MX
1208 /* See above. */
1209 if (hole_size < num_bytes)
1210 ret = -ENOSPC;
1211 else
1212 ret = 0;
1213
1214out:
2b82032c 1215 btrfs_free_path(path);
7bfc837d 1216 *start = max_hole_start;
b2117a39 1217 if (len)
7bfc837d 1218 *len = max_hole_size;
0b86a832
CM
1219 return ret;
1220}
1221
b2950863 1222static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1223 struct btrfs_device *device,
1224 u64 start)
1225{
1226 int ret;
1227 struct btrfs_path *path;
1228 struct btrfs_root *root = device->dev_root;
1229 struct btrfs_key key;
a061fc8d
CM
1230 struct btrfs_key found_key;
1231 struct extent_buffer *leaf = NULL;
1232 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1233
1234 path = btrfs_alloc_path();
1235 if (!path)
1236 return -ENOMEM;
1237
1238 key.objectid = device->devid;
1239 key.offset = start;
1240 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1241again:
8f18cf13 1242 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1243 if (ret > 0) {
1244 ret = btrfs_previous_item(root, path, key.objectid,
1245 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1246 if (ret)
1247 goto out;
a061fc8d
CM
1248 leaf = path->nodes[0];
1249 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1250 extent = btrfs_item_ptr(leaf, path->slots[0],
1251 struct btrfs_dev_extent);
1252 BUG_ON(found_key.offset > start || found_key.offset +
1253 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1254 key = found_key;
1255 btrfs_release_path(path);
1256 goto again;
a061fc8d
CM
1257 } else if (ret == 0) {
1258 leaf = path->nodes[0];
1259 extent = btrfs_item_ptr(leaf, path->slots[0],
1260 struct btrfs_dev_extent);
79787eaa
JM
1261 } else {
1262 btrfs_error(root->fs_info, ret, "Slot search failed");
1263 goto out;
a061fc8d 1264 }
8f18cf13 1265
2bf64758
JB
1266 if (device->bytes_used > 0) {
1267 u64 len = btrfs_dev_extent_length(leaf, extent);
1268 device->bytes_used -= len;
1269 spin_lock(&root->fs_info->free_chunk_lock);
1270 root->fs_info->free_chunk_space += len;
1271 spin_unlock(&root->fs_info->free_chunk_lock);
1272 }
8f18cf13 1273 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1274 if (ret) {
1275 btrfs_error(root->fs_info, ret,
1276 "Failed to remove dev extent item");
1277 }
b0b802d7 1278out:
8f18cf13
CM
1279 btrfs_free_path(path);
1280 return ret;
1281}
1282
48a3b636
ES
1283static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1284 struct btrfs_device *device,
1285 u64 chunk_tree, u64 chunk_objectid,
1286 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1287{
1288 int ret;
1289 struct btrfs_path *path;
1290 struct btrfs_root *root = device->dev_root;
1291 struct btrfs_dev_extent *extent;
1292 struct extent_buffer *leaf;
1293 struct btrfs_key key;
1294
dfe25020 1295 WARN_ON(!device->in_fs_metadata);
63a212ab 1296 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1297 path = btrfs_alloc_path();
1298 if (!path)
1299 return -ENOMEM;
1300
0b86a832 1301 key.objectid = device->devid;
2b82032c 1302 key.offset = start;
0b86a832
CM
1303 key.type = BTRFS_DEV_EXTENT_KEY;
1304 ret = btrfs_insert_empty_item(trans, root, path, &key,
1305 sizeof(*extent));
2cdcecbc
MF
1306 if (ret)
1307 goto out;
0b86a832
CM
1308
1309 leaf = path->nodes[0];
1310 extent = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_dev_extent);
e17cade2
CM
1312 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1313 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1314 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1315
1316 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1317 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1318
0b86a832
CM
1319 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1320 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1321out:
0b86a832
CM
1322 btrfs_free_path(path);
1323 return ret;
1324}
1325
6df9a95e 1326static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1327{
6df9a95e
JB
1328 struct extent_map_tree *em_tree;
1329 struct extent_map *em;
1330 struct rb_node *n;
1331 u64 ret = 0;
0b86a832 1332
6df9a95e
JB
1333 em_tree = &fs_info->mapping_tree.map_tree;
1334 read_lock(&em_tree->lock);
1335 n = rb_last(&em_tree->map);
1336 if (n) {
1337 em = rb_entry(n, struct extent_map, rb_node);
1338 ret = em->start + em->len;
0b86a832 1339 }
6df9a95e
JB
1340 read_unlock(&em_tree->lock);
1341
0b86a832
CM
1342 return ret;
1343}
1344
53f10659
ID
1345static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1346 u64 *devid_ret)
0b86a832
CM
1347{
1348 int ret;
1349 struct btrfs_key key;
1350 struct btrfs_key found_key;
2b82032c
YZ
1351 struct btrfs_path *path;
1352
2b82032c
YZ
1353 path = btrfs_alloc_path();
1354 if (!path)
1355 return -ENOMEM;
0b86a832
CM
1356
1357 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1358 key.type = BTRFS_DEV_ITEM_KEY;
1359 key.offset = (u64)-1;
1360
53f10659 1361 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1362 if (ret < 0)
1363 goto error;
1364
79787eaa 1365 BUG_ON(ret == 0); /* Corruption */
0b86a832 1366
53f10659
ID
1367 ret = btrfs_previous_item(fs_info->chunk_root, path,
1368 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1369 BTRFS_DEV_ITEM_KEY);
1370 if (ret) {
53f10659 1371 *devid_ret = 1;
0b86a832
CM
1372 } else {
1373 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1374 path->slots[0]);
53f10659 1375 *devid_ret = found_key.offset + 1;
0b86a832
CM
1376 }
1377 ret = 0;
1378error:
2b82032c 1379 btrfs_free_path(path);
0b86a832
CM
1380 return ret;
1381}
1382
1383/*
1384 * the device information is stored in the chunk root
1385 * the btrfs_device struct should be fully filled in
1386 */
48a3b636
ES
1387static int btrfs_add_device(struct btrfs_trans_handle *trans,
1388 struct btrfs_root *root,
1389 struct btrfs_device *device)
0b86a832
CM
1390{
1391 int ret;
1392 struct btrfs_path *path;
1393 struct btrfs_dev_item *dev_item;
1394 struct extent_buffer *leaf;
1395 struct btrfs_key key;
1396 unsigned long ptr;
0b86a832
CM
1397
1398 root = root->fs_info->chunk_root;
1399
1400 path = btrfs_alloc_path();
1401 if (!path)
1402 return -ENOMEM;
1403
0b86a832
CM
1404 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1405 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1406 key.offset = device->devid;
0b86a832
CM
1407
1408 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1409 sizeof(*dev_item));
0b86a832
CM
1410 if (ret)
1411 goto out;
1412
1413 leaf = path->nodes[0];
1414 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1415
1416 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1417 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1418 btrfs_set_device_type(leaf, dev_item, device->type);
1419 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1420 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1421 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1422 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1423 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1424 btrfs_set_device_group(leaf, dev_item, 0);
1425 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1426 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1427 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1428
410ba3a2 1429 ptr = btrfs_device_uuid(dev_item);
e17cade2 1430 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1431 ptr = btrfs_device_fsid(dev_item);
2b82032c 1432 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1433 btrfs_mark_buffer_dirty(leaf);
0b86a832 1434
2b82032c 1435 ret = 0;
0b86a832
CM
1436out:
1437 btrfs_free_path(path);
1438 return ret;
1439}
8f18cf13 1440
a061fc8d
CM
1441static int btrfs_rm_dev_item(struct btrfs_root *root,
1442 struct btrfs_device *device)
1443{
1444 int ret;
1445 struct btrfs_path *path;
a061fc8d 1446 struct btrfs_key key;
a061fc8d
CM
1447 struct btrfs_trans_handle *trans;
1448
1449 root = root->fs_info->chunk_root;
1450
1451 path = btrfs_alloc_path();
1452 if (!path)
1453 return -ENOMEM;
1454
a22285a6 1455 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1456 if (IS_ERR(trans)) {
1457 btrfs_free_path(path);
1458 return PTR_ERR(trans);
1459 }
a061fc8d
CM
1460 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1461 key.type = BTRFS_DEV_ITEM_KEY;
1462 key.offset = device->devid;
7d9eb12c 1463 lock_chunks(root);
a061fc8d
CM
1464
1465 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1466 if (ret < 0)
1467 goto out;
1468
1469 if (ret > 0) {
1470 ret = -ENOENT;
1471 goto out;
1472 }
1473
1474 ret = btrfs_del_item(trans, root, path);
1475 if (ret)
1476 goto out;
a061fc8d
CM
1477out:
1478 btrfs_free_path(path);
7d9eb12c 1479 unlock_chunks(root);
a061fc8d
CM
1480 btrfs_commit_transaction(trans, root);
1481 return ret;
1482}
1483
1484int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1485{
1486 struct btrfs_device *device;
2b82032c 1487 struct btrfs_device *next_device;
a061fc8d 1488 struct block_device *bdev;
dfe25020 1489 struct buffer_head *bh = NULL;
a061fc8d 1490 struct btrfs_super_block *disk_super;
1f78160c 1491 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1492 u64 all_avail;
1493 u64 devid;
2b82032c
YZ
1494 u64 num_devices;
1495 u8 *dev_uuid;
de98ced9 1496 unsigned seq;
a061fc8d 1497 int ret = 0;
1f78160c 1498 bool clear_super = false;
a061fc8d 1499
a061fc8d
CM
1500 mutex_lock(&uuid_mutex);
1501
de98ced9
MX
1502 do {
1503 seq = read_seqbegin(&root->fs_info->profiles_lock);
1504
1505 all_avail = root->fs_info->avail_data_alloc_bits |
1506 root->fs_info->avail_system_alloc_bits |
1507 root->fs_info->avail_metadata_alloc_bits;
1508 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1509
8dabb742
SB
1510 num_devices = root->fs_info->fs_devices->num_devices;
1511 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1512 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1513 WARN_ON(num_devices < 1);
1514 num_devices--;
1515 }
1516 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1517
1518 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1519 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1520 goto out;
1521 }
1522
8dabb742 1523 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1524 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1525 goto out;
1526 }
1527
53b381b3
DW
1528 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1529 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1530 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1531 goto out;
1532 }
1533 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1534 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1535 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1536 goto out;
1537 }
1538
dfe25020 1539 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1540 struct list_head *devices;
1541 struct btrfs_device *tmp;
a061fc8d 1542
dfe25020
CM
1543 device = NULL;
1544 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1545 /*
1546 * It is safe to read the devices since the volume_mutex
1547 * is held.
1548 */
c6e30871 1549 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1550 if (tmp->in_fs_metadata &&
1551 !tmp->is_tgtdev_for_dev_replace &&
1552 !tmp->bdev) {
dfe25020
CM
1553 device = tmp;
1554 break;
1555 }
1556 }
1557 bdev = NULL;
1558 bh = NULL;
1559 disk_super = NULL;
1560 if (!device) {
183860f6 1561 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1562 goto out;
1563 }
dfe25020 1564 } else {
beaf8ab3 1565 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1566 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1567 root->fs_info->bdev_holder, 0,
1568 &bdev, &bh);
1569 if (ret)
dfe25020 1570 goto out;
dfe25020 1571 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1572 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1573 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1574 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1575 disk_super->fsid);
dfe25020
CM
1576 if (!device) {
1577 ret = -ENOENT;
1578 goto error_brelse;
1579 }
2b82032c 1580 }
dfe25020 1581
63a212ab 1582 if (device->is_tgtdev_for_dev_replace) {
183860f6 1583 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1584 goto error_brelse;
1585 }
1586
2b82032c 1587 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1588 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1589 goto error_brelse;
1590 }
1591
1592 if (device->writeable) {
0c1daee0 1593 lock_chunks(root);
2b82032c 1594 list_del_init(&device->dev_alloc_list);
0c1daee0 1595 unlock_chunks(root);
2b82032c 1596 root->fs_info->fs_devices->rw_devices--;
1f78160c 1597 clear_super = true;
dfe25020 1598 }
a061fc8d 1599
d7901554 1600 mutex_unlock(&uuid_mutex);
a061fc8d 1601 ret = btrfs_shrink_device(device, 0);
d7901554 1602 mutex_lock(&uuid_mutex);
a061fc8d 1603 if (ret)
9b3517e9 1604 goto error_undo;
a061fc8d 1605
63a212ab
SB
1606 /*
1607 * TODO: the superblock still includes this device in its num_devices
1608 * counter although write_all_supers() is not locked out. This
1609 * could give a filesystem state which requires a degraded mount.
1610 */
a061fc8d
CM
1611 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1612 if (ret)
9b3517e9 1613 goto error_undo;
a061fc8d 1614
2bf64758
JB
1615 spin_lock(&root->fs_info->free_chunk_lock);
1616 root->fs_info->free_chunk_space = device->total_bytes -
1617 device->bytes_used;
1618 spin_unlock(&root->fs_info->free_chunk_lock);
1619
2b82032c 1620 device->in_fs_metadata = 0;
aa1b8cd4 1621 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1622
1623 /*
1624 * the device list mutex makes sure that we don't change
1625 * the device list while someone else is writing out all
d7306801
FDBM
1626 * the device supers. Whoever is writing all supers, should
1627 * lock the device list mutex before getting the number of
1628 * devices in the super block (super_copy). Conversely,
1629 * whoever updates the number of devices in the super block
1630 * (super_copy) should hold the device list mutex.
e5e9a520 1631 */
1f78160c
XG
1632
1633 cur_devices = device->fs_devices;
e5e9a520 1634 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1635 list_del_rcu(&device->dev_list);
e5e9a520 1636
e4404d6e 1637 device->fs_devices->num_devices--;
02db0844 1638 device->fs_devices->total_devices--;
2b82032c 1639
cd02dca5
CM
1640 if (device->missing)
1641 root->fs_info->fs_devices->missing_devices--;
1642
2b82032c
YZ
1643 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1644 struct btrfs_device, dev_list);
1645 if (device->bdev == root->fs_info->sb->s_bdev)
1646 root->fs_info->sb->s_bdev = next_device->bdev;
1647 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1648 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1649
1f78160c 1650 if (device->bdev)
e4404d6e 1651 device->fs_devices->open_devices--;
1f78160c
XG
1652
1653 call_rcu(&device->rcu, free_device);
e4404d6e 1654
6c41761f
DS
1655 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1656 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1657 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1658
1f78160c 1659 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1660 struct btrfs_fs_devices *fs_devices;
1661 fs_devices = root->fs_info->fs_devices;
1662 while (fs_devices) {
1f78160c 1663 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1664 break;
1665 fs_devices = fs_devices->seed;
2b82032c 1666 }
1f78160c
XG
1667 fs_devices->seed = cur_devices->seed;
1668 cur_devices->seed = NULL;
0c1daee0 1669 lock_chunks(root);
1f78160c 1670 __btrfs_close_devices(cur_devices);
0c1daee0 1671 unlock_chunks(root);
1f78160c 1672 free_fs_devices(cur_devices);
2b82032c
YZ
1673 }
1674
5af3e8cc
SB
1675 root->fs_info->num_tolerated_disk_barrier_failures =
1676 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1677
2b82032c
YZ
1678 /*
1679 * at this point, the device is zero sized. We want to
1680 * remove it from the devices list and zero out the old super
1681 */
aa1b8cd4 1682 if (clear_super && disk_super) {
dfe25020
CM
1683 /* make sure this device isn't detected as part of
1684 * the FS anymore
1685 */
1686 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1687 set_buffer_dirty(bh);
1688 sync_dirty_buffer(bh);
dfe25020 1689 }
a061fc8d 1690
a061fc8d 1691 ret = 0;
a061fc8d 1692
b8b8ff59 1693 /* Notify udev that device has changed */
3c911608
ES
1694 if (bdev)
1695 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1696
a061fc8d
CM
1697error_brelse:
1698 brelse(bh);
dfe25020 1699 if (bdev)
e525fd89 1700 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1701out:
1702 mutex_unlock(&uuid_mutex);
a061fc8d 1703 return ret;
9b3517e9
ID
1704error_undo:
1705 if (device->writeable) {
0c1daee0 1706 lock_chunks(root);
9b3517e9
ID
1707 list_add(&device->dev_alloc_list,
1708 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1709 unlock_chunks(root);
9b3517e9
ID
1710 root->fs_info->fs_devices->rw_devices++;
1711 }
1712 goto error_brelse;
a061fc8d
CM
1713}
1714
e93c89c1
SB
1715void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1716 struct btrfs_device *srcdev)
1717{
1718 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1719
e93c89c1
SB
1720 list_del_rcu(&srcdev->dev_list);
1721 list_del_rcu(&srcdev->dev_alloc_list);
1722 fs_info->fs_devices->num_devices--;
1723 if (srcdev->missing) {
1724 fs_info->fs_devices->missing_devices--;
1725 fs_info->fs_devices->rw_devices++;
1726 }
1727 if (srcdev->can_discard)
1728 fs_info->fs_devices->num_can_discard--;
1357272f 1729 if (srcdev->bdev) {
e93c89c1
SB
1730 fs_info->fs_devices->open_devices--;
1731
1357272f
ID
1732 /* zero out the old super */
1733 btrfs_scratch_superblock(srcdev);
1734 }
1735
e93c89c1
SB
1736 call_rcu(&srcdev->rcu, free_device);
1737}
1738
1739void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1740 struct btrfs_device *tgtdev)
1741{
1742 struct btrfs_device *next_device;
1743
1744 WARN_ON(!tgtdev);
1745 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1746 if (tgtdev->bdev) {
1747 btrfs_scratch_superblock(tgtdev);
1748 fs_info->fs_devices->open_devices--;
1749 }
1750 fs_info->fs_devices->num_devices--;
1751 if (tgtdev->can_discard)
1752 fs_info->fs_devices->num_can_discard++;
1753
1754 next_device = list_entry(fs_info->fs_devices->devices.next,
1755 struct btrfs_device, dev_list);
1756 if (tgtdev->bdev == fs_info->sb->s_bdev)
1757 fs_info->sb->s_bdev = next_device->bdev;
1758 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1759 fs_info->fs_devices->latest_bdev = next_device->bdev;
1760 list_del_rcu(&tgtdev->dev_list);
1761
1762 call_rcu(&tgtdev->rcu, free_device);
1763
1764 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1765}
1766
48a3b636
ES
1767static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1768 struct btrfs_device **device)
7ba15b7d
SB
1769{
1770 int ret = 0;
1771 struct btrfs_super_block *disk_super;
1772 u64 devid;
1773 u8 *dev_uuid;
1774 struct block_device *bdev;
1775 struct buffer_head *bh;
1776
1777 *device = NULL;
1778 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1779 root->fs_info->bdev_holder, 0, &bdev, &bh);
1780 if (ret)
1781 return ret;
1782 disk_super = (struct btrfs_super_block *)bh->b_data;
1783 devid = btrfs_stack_device_id(&disk_super->dev_item);
1784 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1785 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
1786 disk_super->fsid);
1787 brelse(bh);
1788 if (!*device)
1789 ret = -ENOENT;
1790 blkdev_put(bdev, FMODE_READ);
1791 return ret;
1792}
1793
1794int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1795 char *device_path,
1796 struct btrfs_device **device)
1797{
1798 *device = NULL;
1799 if (strcmp(device_path, "missing") == 0) {
1800 struct list_head *devices;
1801 struct btrfs_device *tmp;
1802
1803 devices = &root->fs_info->fs_devices->devices;
1804 /*
1805 * It is safe to read the devices since the volume_mutex
1806 * is held by the caller.
1807 */
1808 list_for_each_entry(tmp, devices, dev_list) {
1809 if (tmp->in_fs_metadata && !tmp->bdev) {
1810 *device = tmp;
1811 break;
1812 }
1813 }
1814
1815 if (!*device) {
1816 pr_err("btrfs: no missing device found\n");
1817 return -ENOENT;
1818 }
1819
1820 return 0;
1821 } else {
1822 return btrfs_find_device_by_path(root, device_path, device);
1823 }
1824}
1825
2b82032c
YZ
1826/*
1827 * does all the dirty work required for changing file system's UUID.
1828 */
125ccb0a 1829static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1830{
1831 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1832 struct btrfs_fs_devices *old_devices;
e4404d6e 1833 struct btrfs_fs_devices *seed_devices;
6c41761f 1834 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1835 struct btrfs_device *device;
1836 u64 super_flags;
1837
1838 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1839 if (!fs_devices->seeding)
2b82032c
YZ
1840 return -EINVAL;
1841
2208a378
ID
1842 seed_devices = __alloc_fs_devices();
1843 if (IS_ERR(seed_devices))
1844 return PTR_ERR(seed_devices);
2b82032c 1845
e4404d6e
YZ
1846 old_devices = clone_fs_devices(fs_devices);
1847 if (IS_ERR(old_devices)) {
1848 kfree(seed_devices);
1849 return PTR_ERR(old_devices);
2b82032c 1850 }
e4404d6e 1851
2b82032c
YZ
1852 list_add(&old_devices->list, &fs_uuids);
1853
e4404d6e
YZ
1854 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1855 seed_devices->opened = 1;
1856 INIT_LIST_HEAD(&seed_devices->devices);
1857 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1858 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1859
1860 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1861 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1862 synchronize_rcu);
c9513edb 1863
e4404d6e
YZ
1864 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1865 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1866 device->fs_devices = seed_devices;
1867 }
1868
2b82032c
YZ
1869 fs_devices->seeding = 0;
1870 fs_devices->num_devices = 0;
1871 fs_devices->open_devices = 0;
02db0844 1872 fs_devices->total_devices = 0;
e4404d6e 1873 fs_devices->seed = seed_devices;
2b82032c
YZ
1874
1875 generate_random_uuid(fs_devices->fsid);
1876 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1877 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
1878 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1879
2b82032c
YZ
1880 super_flags = btrfs_super_flags(disk_super) &
1881 ~BTRFS_SUPER_FLAG_SEEDING;
1882 btrfs_set_super_flags(disk_super, super_flags);
1883
1884 return 0;
1885}
1886
1887/*
1888 * strore the expected generation for seed devices in device items.
1889 */
1890static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1891 struct btrfs_root *root)
1892{
1893 struct btrfs_path *path;
1894 struct extent_buffer *leaf;
1895 struct btrfs_dev_item *dev_item;
1896 struct btrfs_device *device;
1897 struct btrfs_key key;
1898 u8 fs_uuid[BTRFS_UUID_SIZE];
1899 u8 dev_uuid[BTRFS_UUID_SIZE];
1900 u64 devid;
1901 int ret;
1902
1903 path = btrfs_alloc_path();
1904 if (!path)
1905 return -ENOMEM;
1906
1907 root = root->fs_info->chunk_root;
1908 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1909 key.offset = 0;
1910 key.type = BTRFS_DEV_ITEM_KEY;
1911
1912 while (1) {
1913 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1914 if (ret < 0)
1915 goto error;
1916
1917 leaf = path->nodes[0];
1918next_slot:
1919 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1920 ret = btrfs_next_leaf(root, path);
1921 if (ret > 0)
1922 break;
1923 if (ret < 0)
1924 goto error;
1925 leaf = path->nodes[0];
1926 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1927 btrfs_release_path(path);
2b82032c
YZ
1928 continue;
1929 }
1930
1931 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1932 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1933 key.type != BTRFS_DEV_ITEM_KEY)
1934 break;
1935
1936 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1937 struct btrfs_dev_item);
1938 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 1939 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 1940 BTRFS_UUID_SIZE);
1473b24e 1941 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 1942 BTRFS_UUID_SIZE);
aa1b8cd4
SB
1943 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1944 fs_uuid);
79787eaa 1945 BUG_ON(!device); /* Logic error */
2b82032c
YZ
1946
1947 if (device->fs_devices->seeding) {
1948 btrfs_set_device_generation(leaf, dev_item,
1949 device->generation);
1950 btrfs_mark_buffer_dirty(leaf);
1951 }
1952
1953 path->slots[0]++;
1954 goto next_slot;
1955 }
1956 ret = 0;
1957error:
1958 btrfs_free_path(path);
1959 return ret;
1960}
1961
788f20eb
CM
1962int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1963{
d5e2003c 1964 struct request_queue *q;
788f20eb
CM
1965 struct btrfs_trans_handle *trans;
1966 struct btrfs_device *device;
1967 struct block_device *bdev;
788f20eb 1968 struct list_head *devices;
2b82032c 1969 struct super_block *sb = root->fs_info->sb;
606686ee 1970 struct rcu_string *name;
788f20eb 1971 u64 total_bytes;
2b82032c 1972 int seeding_dev = 0;
788f20eb
CM
1973 int ret = 0;
1974
2b82032c 1975 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 1976 return -EROFS;
788f20eb 1977
a5d16333 1978 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1979 root->fs_info->bdev_holder);
7f59203a
JB
1980 if (IS_ERR(bdev))
1981 return PTR_ERR(bdev);
a2135011 1982
2b82032c
YZ
1983 if (root->fs_info->fs_devices->seeding) {
1984 seeding_dev = 1;
1985 down_write(&sb->s_umount);
1986 mutex_lock(&uuid_mutex);
1987 }
1988
8c8bee1d 1989 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 1990
788f20eb 1991 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
1992
1993 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 1994 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1995 if (device->bdev == bdev) {
1996 ret = -EEXIST;
d25628bd
LB
1997 mutex_unlock(
1998 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 1999 goto error;
788f20eb
CM
2000 }
2001 }
d25628bd 2002 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2003
12bd2fc0
ID
2004 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2005 if (IS_ERR(device)) {
788f20eb 2006 /* we can safely leave the fs_devices entry around */
12bd2fc0 2007 ret = PTR_ERR(device);
2b82032c 2008 goto error;
788f20eb
CM
2009 }
2010
606686ee
JB
2011 name = rcu_string_strdup(device_path, GFP_NOFS);
2012 if (!name) {
788f20eb 2013 kfree(device);
2b82032c
YZ
2014 ret = -ENOMEM;
2015 goto error;
788f20eb 2016 }
606686ee 2017 rcu_assign_pointer(device->name, name);
2b82032c 2018
a22285a6 2019 trans = btrfs_start_transaction(root, 0);
98d5dc13 2020 if (IS_ERR(trans)) {
606686ee 2021 rcu_string_free(device->name);
98d5dc13
TI
2022 kfree(device);
2023 ret = PTR_ERR(trans);
2024 goto error;
2025 }
2026
2b82032c
YZ
2027 lock_chunks(root);
2028
d5e2003c
JB
2029 q = bdev_get_queue(bdev);
2030 if (blk_queue_discard(q))
2031 device->can_discard = 1;
2b82032c 2032 device->writeable = 1;
2b82032c 2033 device->generation = trans->transid;
788f20eb
CM
2034 device->io_width = root->sectorsize;
2035 device->io_align = root->sectorsize;
2036 device->sector_size = root->sectorsize;
2037 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2038 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
2039 device->dev_root = root->fs_info->dev_root;
2040 device->bdev = bdev;
dfe25020 2041 device->in_fs_metadata = 1;
63a212ab 2042 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2043 device->mode = FMODE_EXCL;
2b82032c 2044 set_blocksize(device->bdev, 4096);
788f20eb 2045
2b82032c
YZ
2046 if (seeding_dev) {
2047 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2048 ret = btrfs_prepare_sprout(root);
79787eaa 2049 BUG_ON(ret); /* -ENOMEM */
2b82032c 2050 }
788f20eb 2051
2b82032c 2052 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2053
e5e9a520 2054 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 2055 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2056 list_add(&device->dev_alloc_list,
2057 &root->fs_info->fs_devices->alloc_list);
2058 root->fs_info->fs_devices->num_devices++;
2059 root->fs_info->fs_devices->open_devices++;
2060 root->fs_info->fs_devices->rw_devices++;
02db0844 2061 root->fs_info->fs_devices->total_devices++;
d5e2003c
JB
2062 if (device->can_discard)
2063 root->fs_info->fs_devices->num_can_discard++;
2b82032c 2064 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2065
2bf64758
JB
2066 spin_lock(&root->fs_info->free_chunk_lock);
2067 root->fs_info->free_chunk_space += device->total_bytes;
2068 spin_unlock(&root->fs_info->free_chunk_lock);
2069
c289811c
CM
2070 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2071 root->fs_info->fs_devices->rotating = 1;
2072
6c41761f
DS
2073 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2074 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
2075 total_bytes + device->total_bytes);
2076
6c41761f
DS
2077 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2078 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 2079 total_bytes + 1);
e5e9a520 2080 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2081
2b82032c
YZ
2082 if (seeding_dev) {
2083 ret = init_first_rw_device(trans, root, device);
005d6427
DS
2084 if (ret) {
2085 btrfs_abort_transaction(trans, root, ret);
79787eaa 2086 goto error_trans;
005d6427 2087 }
2b82032c 2088 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2089 if (ret) {
2090 btrfs_abort_transaction(trans, root, ret);
79787eaa 2091 goto error_trans;
005d6427 2092 }
2b82032c
YZ
2093 } else {
2094 ret = btrfs_add_device(trans, root, device);
005d6427
DS
2095 if (ret) {
2096 btrfs_abort_transaction(trans, root, ret);
79787eaa 2097 goto error_trans;
005d6427 2098 }
2b82032c
YZ
2099 }
2100
913d952e
CM
2101 /*
2102 * we've got more storage, clear any full flags on the space
2103 * infos
2104 */
2105 btrfs_clear_space_info_full(root->fs_info);
2106
7d9eb12c 2107 unlock_chunks(root);
5af3e8cc
SB
2108 root->fs_info->num_tolerated_disk_barrier_failures =
2109 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2110 ret = btrfs_commit_transaction(trans, root);
a2135011 2111
2b82032c
YZ
2112 if (seeding_dev) {
2113 mutex_unlock(&uuid_mutex);
2114 up_write(&sb->s_umount);
788f20eb 2115
79787eaa
JM
2116 if (ret) /* transaction commit */
2117 return ret;
2118
2b82032c 2119 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
2120 if (ret < 0)
2121 btrfs_error(root->fs_info, ret,
2122 "Failed to relocate sys chunks after "
2123 "device initialization. This can be fixed "
2124 "using the \"btrfs balance\" command.");
671415b7
MX
2125 trans = btrfs_attach_transaction(root);
2126 if (IS_ERR(trans)) {
2127 if (PTR_ERR(trans) == -ENOENT)
2128 return 0;
2129 return PTR_ERR(trans);
2130 }
2131 ret = btrfs_commit_transaction(trans, root);
2b82032c 2132 }
c9e9f97b 2133
2b82032c 2134 return ret;
79787eaa
JM
2135
2136error_trans:
2137 unlock_chunks(root);
79787eaa 2138 btrfs_end_transaction(trans, root);
606686ee 2139 rcu_string_free(device->name);
79787eaa 2140 kfree(device);
2b82032c 2141error:
e525fd89 2142 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2143 if (seeding_dev) {
2144 mutex_unlock(&uuid_mutex);
2145 up_write(&sb->s_umount);
2146 }
c9e9f97b 2147 return ret;
788f20eb
CM
2148}
2149
e93c89c1
SB
2150int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2151 struct btrfs_device **device_out)
2152{
2153 struct request_queue *q;
2154 struct btrfs_device *device;
2155 struct block_device *bdev;
2156 struct btrfs_fs_info *fs_info = root->fs_info;
2157 struct list_head *devices;
2158 struct rcu_string *name;
12bd2fc0 2159 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2160 int ret = 0;
2161
2162 *device_out = NULL;
2163 if (fs_info->fs_devices->seeding)
2164 return -EINVAL;
2165
2166 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2167 fs_info->bdev_holder);
2168 if (IS_ERR(bdev))
2169 return PTR_ERR(bdev);
2170
2171 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2172
2173 devices = &fs_info->fs_devices->devices;
2174 list_for_each_entry(device, devices, dev_list) {
2175 if (device->bdev == bdev) {
2176 ret = -EEXIST;
2177 goto error;
2178 }
2179 }
2180
12bd2fc0
ID
2181 device = btrfs_alloc_device(NULL, &devid, NULL);
2182 if (IS_ERR(device)) {
2183 ret = PTR_ERR(device);
e93c89c1
SB
2184 goto error;
2185 }
2186
2187 name = rcu_string_strdup(device_path, GFP_NOFS);
2188 if (!name) {
2189 kfree(device);
2190 ret = -ENOMEM;
2191 goto error;
2192 }
2193 rcu_assign_pointer(device->name, name);
2194
2195 q = bdev_get_queue(bdev);
2196 if (blk_queue_discard(q))
2197 device->can_discard = 1;
2198 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2199 device->writeable = 1;
e93c89c1
SB
2200 device->generation = 0;
2201 device->io_width = root->sectorsize;
2202 device->io_align = root->sectorsize;
2203 device->sector_size = root->sectorsize;
2204 device->total_bytes = i_size_read(bdev->bd_inode);
2205 device->disk_total_bytes = device->total_bytes;
2206 device->dev_root = fs_info->dev_root;
2207 device->bdev = bdev;
2208 device->in_fs_metadata = 1;
2209 device->is_tgtdev_for_dev_replace = 1;
2210 device->mode = FMODE_EXCL;
2211 set_blocksize(device->bdev, 4096);
2212 device->fs_devices = fs_info->fs_devices;
2213 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2214 fs_info->fs_devices->num_devices++;
2215 fs_info->fs_devices->open_devices++;
2216 if (device->can_discard)
2217 fs_info->fs_devices->num_can_discard++;
2218 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2219
2220 *device_out = device;
2221 return ret;
2222
2223error:
2224 blkdev_put(bdev, FMODE_EXCL);
2225 return ret;
2226}
2227
2228void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2229 struct btrfs_device *tgtdev)
2230{
2231 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2232 tgtdev->io_width = fs_info->dev_root->sectorsize;
2233 tgtdev->io_align = fs_info->dev_root->sectorsize;
2234 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2235 tgtdev->dev_root = fs_info->dev_root;
2236 tgtdev->in_fs_metadata = 1;
2237}
2238
d397712b
CM
2239static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2240 struct btrfs_device *device)
0b86a832
CM
2241{
2242 int ret;
2243 struct btrfs_path *path;
2244 struct btrfs_root *root;
2245 struct btrfs_dev_item *dev_item;
2246 struct extent_buffer *leaf;
2247 struct btrfs_key key;
2248
2249 root = device->dev_root->fs_info->chunk_root;
2250
2251 path = btrfs_alloc_path();
2252 if (!path)
2253 return -ENOMEM;
2254
2255 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2256 key.type = BTRFS_DEV_ITEM_KEY;
2257 key.offset = device->devid;
2258
2259 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2260 if (ret < 0)
2261 goto out;
2262
2263 if (ret > 0) {
2264 ret = -ENOENT;
2265 goto out;
2266 }
2267
2268 leaf = path->nodes[0];
2269 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2270
2271 btrfs_set_device_id(leaf, dev_item, device->devid);
2272 btrfs_set_device_type(leaf, dev_item, device->type);
2273 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2274 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2275 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 2276 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
2277 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2278 btrfs_mark_buffer_dirty(leaf);
2279
2280out:
2281 btrfs_free_path(path);
2282 return ret;
2283}
2284
7d9eb12c 2285static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2286 struct btrfs_device *device, u64 new_size)
2287{
2288 struct btrfs_super_block *super_copy =
6c41761f 2289 device->dev_root->fs_info->super_copy;
8f18cf13
CM
2290 u64 old_total = btrfs_super_total_bytes(super_copy);
2291 u64 diff = new_size - device->total_bytes;
2292
2b82032c
YZ
2293 if (!device->writeable)
2294 return -EACCES;
63a212ab
SB
2295 if (new_size <= device->total_bytes ||
2296 device->is_tgtdev_for_dev_replace)
2b82032c
YZ
2297 return -EINVAL;
2298
8f18cf13 2299 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2300 device->fs_devices->total_rw_bytes += diff;
2301
2302 device->total_bytes = new_size;
9779b72f 2303 device->disk_total_bytes = new_size;
4184ea7f
CM
2304 btrfs_clear_space_info_full(device->dev_root->fs_info);
2305
8f18cf13
CM
2306 return btrfs_update_device(trans, device);
2307}
2308
7d9eb12c
CM
2309int btrfs_grow_device(struct btrfs_trans_handle *trans,
2310 struct btrfs_device *device, u64 new_size)
2311{
2312 int ret;
2313 lock_chunks(device->dev_root);
2314 ret = __btrfs_grow_device(trans, device, new_size);
2315 unlock_chunks(device->dev_root);
2316 return ret;
2317}
2318
8f18cf13
CM
2319static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2320 struct btrfs_root *root,
2321 u64 chunk_tree, u64 chunk_objectid,
2322 u64 chunk_offset)
2323{
2324 int ret;
2325 struct btrfs_path *path;
2326 struct btrfs_key key;
2327
2328 root = root->fs_info->chunk_root;
2329 path = btrfs_alloc_path();
2330 if (!path)
2331 return -ENOMEM;
2332
2333 key.objectid = chunk_objectid;
2334 key.offset = chunk_offset;
2335 key.type = BTRFS_CHUNK_ITEM_KEY;
2336
2337 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2338 if (ret < 0)
2339 goto out;
2340 else if (ret > 0) { /* Logic error or corruption */
2341 btrfs_error(root->fs_info, -ENOENT,
2342 "Failed lookup while freeing chunk.");
2343 ret = -ENOENT;
2344 goto out;
2345 }
8f18cf13
CM
2346
2347 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2348 if (ret < 0)
2349 btrfs_error(root->fs_info, ret,
2350 "Failed to delete chunk item.");
2351out:
8f18cf13 2352 btrfs_free_path(path);
65a246c5 2353 return ret;
8f18cf13
CM
2354}
2355
b2950863 2356static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2357 chunk_offset)
2358{
6c41761f 2359 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2360 struct btrfs_disk_key *disk_key;
2361 struct btrfs_chunk *chunk;
2362 u8 *ptr;
2363 int ret = 0;
2364 u32 num_stripes;
2365 u32 array_size;
2366 u32 len = 0;
2367 u32 cur;
2368 struct btrfs_key key;
2369
2370 array_size = btrfs_super_sys_array_size(super_copy);
2371
2372 ptr = super_copy->sys_chunk_array;
2373 cur = 0;
2374
2375 while (cur < array_size) {
2376 disk_key = (struct btrfs_disk_key *)ptr;
2377 btrfs_disk_key_to_cpu(&key, disk_key);
2378
2379 len = sizeof(*disk_key);
2380
2381 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2382 chunk = (struct btrfs_chunk *)(ptr + len);
2383 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2384 len += btrfs_chunk_item_size(num_stripes);
2385 } else {
2386 ret = -EIO;
2387 break;
2388 }
2389 if (key.objectid == chunk_objectid &&
2390 key.offset == chunk_offset) {
2391 memmove(ptr, ptr + len, array_size - (cur + len));
2392 array_size -= len;
2393 btrfs_set_super_sys_array_size(super_copy, array_size);
2394 } else {
2395 ptr += len;
2396 cur += len;
2397 }
2398 }
2399 return ret;
2400}
2401
b2950863 2402static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
2403 u64 chunk_tree, u64 chunk_objectid,
2404 u64 chunk_offset)
2405{
2406 struct extent_map_tree *em_tree;
2407 struct btrfs_root *extent_root;
2408 struct btrfs_trans_handle *trans;
2409 struct extent_map *em;
2410 struct map_lookup *map;
2411 int ret;
2412 int i;
2413
2414 root = root->fs_info->chunk_root;
2415 extent_root = root->fs_info->extent_root;
2416 em_tree = &root->fs_info->mapping_tree.map_tree;
2417
ba1bf481
JB
2418 ret = btrfs_can_relocate(extent_root, chunk_offset);
2419 if (ret)
2420 return -ENOSPC;
2421
8f18cf13 2422 /* step one, relocate all the extents inside this chunk */
1a40e23b 2423 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2424 if (ret)
2425 return ret;
8f18cf13 2426
a22285a6 2427 trans = btrfs_start_transaction(root, 0);
0f788c58
LB
2428 if (IS_ERR(trans)) {
2429 ret = PTR_ERR(trans);
2430 btrfs_std_error(root->fs_info, ret);
2431 return ret;
2432 }
8f18cf13 2433
7d9eb12c
CM
2434 lock_chunks(root);
2435
8f18cf13
CM
2436 /*
2437 * step two, delete the device extents and the
2438 * chunk tree entries
2439 */
890871be 2440 read_lock(&em_tree->lock);
8f18cf13 2441 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2442 read_unlock(&em_tree->lock);
8f18cf13 2443
285190d9 2444 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2445 em->start + em->len < chunk_offset);
8f18cf13
CM
2446 map = (struct map_lookup *)em->bdev;
2447
2448 for (i = 0; i < map->num_stripes; i++) {
2449 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2450 map->stripes[i].physical);
2451 BUG_ON(ret);
a061fc8d 2452
dfe25020
CM
2453 if (map->stripes[i].dev) {
2454 ret = btrfs_update_device(trans, map->stripes[i].dev);
2455 BUG_ON(ret);
2456 }
8f18cf13
CM
2457 }
2458 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2459 chunk_offset);
2460
2461 BUG_ON(ret);
2462
1abe9b8a 2463 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2464
8f18cf13
CM
2465 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2466 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2467 BUG_ON(ret);
8f18cf13
CM
2468 }
2469
2b82032c
YZ
2470 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2471 BUG_ON(ret);
2472
890871be 2473 write_lock(&em_tree->lock);
2b82032c 2474 remove_extent_mapping(em_tree, em);
890871be 2475 write_unlock(&em_tree->lock);
2b82032c
YZ
2476
2477 kfree(map);
2478 em->bdev = NULL;
2479
2480 /* once for the tree */
2481 free_extent_map(em);
2482 /* once for us */
2483 free_extent_map(em);
2484
2485 unlock_chunks(root);
2486 btrfs_end_transaction(trans, root);
2487 return 0;
2488}
2489
2490static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2491{
2492 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2493 struct btrfs_path *path;
2494 struct extent_buffer *leaf;
2495 struct btrfs_chunk *chunk;
2496 struct btrfs_key key;
2497 struct btrfs_key found_key;
2498 u64 chunk_tree = chunk_root->root_key.objectid;
2499 u64 chunk_type;
ba1bf481
JB
2500 bool retried = false;
2501 int failed = 0;
2b82032c
YZ
2502 int ret;
2503
2504 path = btrfs_alloc_path();
2505 if (!path)
2506 return -ENOMEM;
2507
ba1bf481 2508again:
2b82032c
YZ
2509 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2510 key.offset = (u64)-1;
2511 key.type = BTRFS_CHUNK_ITEM_KEY;
2512
2513 while (1) {
2514 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2515 if (ret < 0)
2516 goto error;
79787eaa 2517 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2518
2519 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2520 key.type);
2521 if (ret < 0)
2522 goto error;
2523 if (ret > 0)
2524 break;
1a40e23b 2525
2b82032c
YZ
2526 leaf = path->nodes[0];
2527 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2528
2b82032c
YZ
2529 chunk = btrfs_item_ptr(leaf, path->slots[0],
2530 struct btrfs_chunk);
2531 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2532 btrfs_release_path(path);
8f18cf13 2533
2b82032c
YZ
2534 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2535 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2536 found_key.objectid,
2537 found_key.offset);
ba1bf481
JB
2538 if (ret == -ENOSPC)
2539 failed++;
2540 else if (ret)
2541 BUG();
2b82032c 2542 }
8f18cf13 2543
2b82032c
YZ
2544 if (found_key.offset == 0)
2545 break;
2546 key.offset = found_key.offset - 1;
2547 }
2548 ret = 0;
ba1bf481
JB
2549 if (failed && !retried) {
2550 failed = 0;
2551 retried = true;
2552 goto again;
2553 } else if (failed && retried) {
2554 WARN_ON(1);
2555 ret = -ENOSPC;
2556 }
2b82032c
YZ
2557error:
2558 btrfs_free_path(path);
2559 return ret;
8f18cf13
CM
2560}
2561
0940ebf6
ID
2562static int insert_balance_item(struct btrfs_root *root,
2563 struct btrfs_balance_control *bctl)
2564{
2565 struct btrfs_trans_handle *trans;
2566 struct btrfs_balance_item *item;
2567 struct btrfs_disk_balance_args disk_bargs;
2568 struct btrfs_path *path;
2569 struct extent_buffer *leaf;
2570 struct btrfs_key key;
2571 int ret, err;
2572
2573 path = btrfs_alloc_path();
2574 if (!path)
2575 return -ENOMEM;
2576
2577 trans = btrfs_start_transaction(root, 0);
2578 if (IS_ERR(trans)) {
2579 btrfs_free_path(path);
2580 return PTR_ERR(trans);
2581 }
2582
2583 key.objectid = BTRFS_BALANCE_OBJECTID;
2584 key.type = BTRFS_BALANCE_ITEM_KEY;
2585 key.offset = 0;
2586
2587 ret = btrfs_insert_empty_item(trans, root, path, &key,
2588 sizeof(*item));
2589 if (ret)
2590 goto out;
2591
2592 leaf = path->nodes[0];
2593 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2594
2595 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2596
2597 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2598 btrfs_set_balance_data(leaf, item, &disk_bargs);
2599 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2600 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2601 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2602 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2603
2604 btrfs_set_balance_flags(leaf, item, bctl->flags);
2605
2606 btrfs_mark_buffer_dirty(leaf);
2607out:
2608 btrfs_free_path(path);
2609 err = btrfs_commit_transaction(trans, root);
2610 if (err && !ret)
2611 ret = err;
2612 return ret;
2613}
2614
2615static int del_balance_item(struct btrfs_root *root)
2616{
2617 struct btrfs_trans_handle *trans;
2618 struct btrfs_path *path;
2619 struct btrfs_key key;
2620 int ret, err;
2621
2622 path = btrfs_alloc_path();
2623 if (!path)
2624 return -ENOMEM;
2625
2626 trans = btrfs_start_transaction(root, 0);
2627 if (IS_ERR(trans)) {
2628 btrfs_free_path(path);
2629 return PTR_ERR(trans);
2630 }
2631
2632 key.objectid = BTRFS_BALANCE_OBJECTID;
2633 key.type = BTRFS_BALANCE_ITEM_KEY;
2634 key.offset = 0;
2635
2636 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2637 if (ret < 0)
2638 goto out;
2639 if (ret > 0) {
2640 ret = -ENOENT;
2641 goto out;
2642 }
2643
2644 ret = btrfs_del_item(trans, root, path);
2645out:
2646 btrfs_free_path(path);
2647 err = btrfs_commit_transaction(trans, root);
2648 if (err && !ret)
2649 ret = err;
2650 return ret;
2651}
2652
59641015
ID
2653/*
2654 * This is a heuristic used to reduce the number of chunks balanced on
2655 * resume after balance was interrupted.
2656 */
2657static void update_balance_args(struct btrfs_balance_control *bctl)
2658{
2659 /*
2660 * Turn on soft mode for chunk types that were being converted.
2661 */
2662 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2663 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2664 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2665 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2666 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2667 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2668
2669 /*
2670 * Turn on usage filter if is not already used. The idea is
2671 * that chunks that we have already balanced should be
2672 * reasonably full. Don't do it for chunks that are being
2673 * converted - that will keep us from relocating unconverted
2674 * (albeit full) chunks.
2675 */
2676 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2677 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2678 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2679 bctl->data.usage = 90;
2680 }
2681 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2682 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2683 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2684 bctl->sys.usage = 90;
2685 }
2686 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2687 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2688 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2689 bctl->meta.usage = 90;
2690 }
2691}
2692
c9e9f97b
ID
2693/*
2694 * Should be called with both balance and volume mutexes held to
2695 * serialize other volume operations (add_dev/rm_dev/resize) with
2696 * restriper. Same goes for unset_balance_control.
2697 */
2698static void set_balance_control(struct btrfs_balance_control *bctl)
2699{
2700 struct btrfs_fs_info *fs_info = bctl->fs_info;
2701
2702 BUG_ON(fs_info->balance_ctl);
2703
2704 spin_lock(&fs_info->balance_lock);
2705 fs_info->balance_ctl = bctl;
2706 spin_unlock(&fs_info->balance_lock);
2707}
2708
2709static void unset_balance_control(struct btrfs_fs_info *fs_info)
2710{
2711 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2712
2713 BUG_ON(!fs_info->balance_ctl);
2714
2715 spin_lock(&fs_info->balance_lock);
2716 fs_info->balance_ctl = NULL;
2717 spin_unlock(&fs_info->balance_lock);
2718
2719 kfree(bctl);
2720}
2721
ed25e9b2
ID
2722/*
2723 * Balance filters. Return 1 if chunk should be filtered out
2724 * (should not be balanced).
2725 */
899c81ea 2726static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2727 struct btrfs_balance_args *bargs)
2728{
899c81ea
ID
2729 chunk_type = chunk_to_extended(chunk_type) &
2730 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2731
899c81ea 2732 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2733 return 0;
2734
2735 return 1;
2736}
2737
5ce5b3c0
ID
2738static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2739 struct btrfs_balance_args *bargs)
2740{
2741 struct btrfs_block_group_cache *cache;
2742 u64 chunk_used, user_thresh;
2743 int ret = 1;
2744
2745 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2746 chunk_used = btrfs_block_group_used(&cache->item);
2747
a105bb88 2748 if (bargs->usage == 0)
3e39cea6 2749 user_thresh = 1;
a105bb88
ID
2750 else if (bargs->usage > 100)
2751 user_thresh = cache->key.offset;
2752 else
2753 user_thresh = div_factor_fine(cache->key.offset,
2754 bargs->usage);
2755
5ce5b3c0
ID
2756 if (chunk_used < user_thresh)
2757 ret = 0;
2758
2759 btrfs_put_block_group(cache);
2760 return ret;
2761}
2762
409d404b
ID
2763static int chunk_devid_filter(struct extent_buffer *leaf,
2764 struct btrfs_chunk *chunk,
2765 struct btrfs_balance_args *bargs)
2766{
2767 struct btrfs_stripe *stripe;
2768 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2769 int i;
2770
2771 for (i = 0; i < num_stripes; i++) {
2772 stripe = btrfs_stripe_nr(chunk, i);
2773 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2774 return 0;
2775 }
2776
2777 return 1;
2778}
2779
94e60d5a
ID
2780/* [pstart, pend) */
2781static int chunk_drange_filter(struct extent_buffer *leaf,
2782 struct btrfs_chunk *chunk,
2783 u64 chunk_offset,
2784 struct btrfs_balance_args *bargs)
2785{
2786 struct btrfs_stripe *stripe;
2787 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2788 u64 stripe_offset;
2789 u64 stripe_length;
2790 int factor;
2791 int i;
2792
2793 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2794 return 0;
2795
2796 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
2797 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2798 factor = num_stripes / 2;
2799 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2800 factor = num_stripes - 1;
2801 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2802 factor = num_stripes - 2;
2803 } else {
2804 factor = num_stripes;
2805 }
94e60d5a
ID
2806
2807 for (i = 0; i < num_stripes; i++) {
2808 stripe = btrfs_stripe_nr(chunk, i);
2809 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2810 continue;
2811
2812 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2813 stripe_length = btrfs_chunk_length(leaf, chunk);
2814 do_div(stripe_length, factor);
2815
2816 if (stripe_offset < bargs->pend &&
2817 stripe_offset + stripe_length > bargs->pstart)
2818 return 0;
2819 }
2820
2821 return 1;
2822}
2823
ea67176a
ID
2824/* [vstart, vend) */
2825static int chunk_vrange_filter(struct extent_buffer *leaf,
2826 struct btrfs_chunk *chunk,
2827 u64 chunk_offset,
2828 struct btrfs_balance_args *bargs)
2829{
2830 if (chunk_offset < bargs->vend &&
2831 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2832 /* at least part of the chunk is inside this vrange */
2833 return 0;
2834
2835 return 1;
2836}
2837
899c81ea 2838static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2839 struct btrfs_balance_args *bargs)
2840{
2841 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2842 return 0;
2843
899c81ea
ID
2844 chunk_type = chunk_to_extended(chunk_type) &
2845 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2846
899c81ea 2847 if (bargs->target == chunk_type)
cfa4c961
ID
2848 return 1;
2849
2850 return 0;
2851}
2852
f43ffb60
ID
2853static int should_balance_chunk(struct btrfs_root *root,
2854 struct extent_buffer *leaf,
2855 struct btrfs_chunk *chunk, u64 chunk_offset)
2856{
2857 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2858 struct btrfs_balance_args *bargs = NULL;
2859 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2860
2861 /* type filter */
2862 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2863 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2864 return 0;
2865 }
2866
2867 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2868 bargs = &bctl->data;
2869 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2870 bargs = &bctl->sys;
2871 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2872 bargs = &bctl->meta;
2873
ed25e9b2
ID
2874 /* profiles filter */
2875 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2876 chunk_profiles_filter(chunk_type, bargs)) {
2877 return 0;
5ce5b3c0
ID
2878 }
2879
2880 /* usage filter */
2881 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2882 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2883 return 0;
409d404b
ID
2884 }
2885
2886 /* devid filter */
2887 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2888 chunk_devid_filter(leaf, chunk, bargs)) {
2889 return 0;
94e60d5a
ID
2890 }
2891
2892 /* drange filter, makes sense only with devid filter */
2893 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2894 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2895 return 0;
ea67176a
ID
2896 }
2897
2898 /* vrange filter */
2899 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2900 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2901 return 0;
ed25e9b2
ID
2902 }
2903
cfa4c961
ID
2904 /* soft profile changing mode */
2905 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2906 chunk_soft_convert_filter(chunk_type, bargs)) {
2907 return 0;
2908 }
2909
f43ffb60
ID
2910 return 1;
2911}
2912
c9e9f97b 2913static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2914{
19a39dce 2915 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2916 struct btrfs_root *chunk_root = fs_info->chunk_root;
2917 struct btrfs_root *dev_root = fs_info->dev_root;
2918 struct list_head *devices;
ec44a35c
CM
2919 struct btrfs_device *device;
2920 u64 old_size;
2921 u64 size_to_free;
f43ffb60 2922 struct btrfs_chunk *chunk;
ec44a35c
CM
2923 struct btrfs_path *path;
2924 struct btrfs_key key;
ec44a35c 2925 struct btrfs_key found_key;
c9e9f97b 2926 struct btrfs_trans_handle *trans;
f43ffb60
ID
2927 struct extent_buffer *leaf;
2928 int slot;
c9e9f97b
ID
2929 int ret;
2930 int enospc_errors = 0;
19a39dce 2931 bool counting = true;
ec44a35c 2932
ec44a35c 2933 /* step one make some room on all the devices */
c9e9f97b 2934 devices = &fs_info->fs_devices->devices;
c6e30871 2935 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2936 old_size = device->total_bytes;
2937 size_to_free = div_factor(old_size, 1);
2938 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 2939 if (!device->writeable ||
63a212ab
SB
2940 device->total_bytes - device->bytes_used > size_to_free ||
2941 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
2942 continue;
2943
2944 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2945 if (ret == -ENOSPC)
2946 break;
ec44a35c
CM
2947 BUG_ON(ret);
2948
a22285a6 2949 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2950 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2951
2952 ret = btrfs_grow_device(trans, device, old_size);
2953 BUG_ON(ret);
2954
2955 btrfs_end_transaction(trans, dev_root);
2956 }
2957
2958 /* step two, relocate all the chunks */
2959 path = btrfs_alloc_path();
17e9f796
MF
2960 if (!path) {
2961 ret = -ENOMEM;
2962 goto error;
2963 }
19a39dce
ID
2964
2965 /* zero out stat counters */
2966 spin_lock(&fs_info->balance_lock);
2967 memset(&bctl->stat, 0, sizeof(bctl->stat));
2968 spin_unlock(&fs_info->balance_lock);
2969again:
ec44a35c
CM
2970 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2971 key.offset = (u64)-1;
2972 key.type = BTRFS_CHUNK_ITEM_KEY;
2973
d397712b 2974 while (1) {
19a39dce 2975 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2976 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2977 ret = -ECANCELED;
2978 goto error;
2979 }
2980
ec44a35c
CM
2981 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2982 if (ret < 0)
2983 goto error;
2984
2985 /*
2986 * this shouldn't happen, it means the last relocate
2987 * failed
2988 */
2989 if (ret == 0)
c9e9f97b 2990 BUG(); /* FIXME break ? */
ec44a35c
CM
2991
2992 ret = btrfs_previous_item(chunk_root, path, 0,
2993 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
2994 if (ret) {
2995 ret = 0;
ec44a35c 2996 break;
c9e9f97b 2997 }
7d9eb12c 2998
f43ffb60
ID
2999 leaf = path->nodes[0];
3000 slot = path->slots[0];
3001 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3002
ec44a35c
CM
3003 if (found_key.objectid != key.objectid)
3004 break;
7d9eb12c 3005
f43ffb60
ID
3006 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3007
19a39dce
ID
3008 if (!counting) {
3009 spin_lock(&fs_info->balance_lock);
3010 bctl->stat.considered++;
3011 spin_unlock(&fs_info->balance_lock);
3012 }
3013
f43ffb60
ID
3014 ret = should_balance_chunk(chunk_root, leaf, chunk,
3015 found_key.offset);
b3b4aa74 3016 btrfs_release_path(path);
f43ffb60
ID
3017 if (!ret)
3018 goto loop;
3019
19a39dce
ID
3020 if (counting) {
3021 spin_lock(&fs_info->balance_lock);
3022 bctl->stat.expected++;
3023 spin_unlock(&fs_info->balance_lock);
3024 goto loop;
3025 }
3026
ec44a35c
CM
3027 ret = btrfs_relocate_chunk(chunk_root,
3028 chunk_root->root_key.objectid,
3029 found_key.objectid,
3030 found_key.offset);
508794eb
JB
3031 if (ret && ret != -ENOSPC)
3032 goto error;
19a39dce 3033 if (ret == -ENOSPC) {
c9e9f97b 3034 enospc_errors++;
19a39dce
ID
3035 } else {
3036 spin_lock(&fs_info->balance_lock);
3037 bctl->stat.completed++;
3038 spin_unlock(&fs_info->balance_lock);
3039 }
f43ffb60 3040loop:
795a3321
ID
3041 if (found_key.offset == 0)
3042 break;
ba1bf481 3043 key.offset = found_key.offset - 1;
ec44a35c 3044 }
c9e9f97b 3045
19a39dce
ID
3046 if (counting) {
3047 btrfs_release_path(path);
3048 counting = false;
3049 goto again;
3050 }
ec44a35c
CM
3051error:
3052 btrfs_free_path(path);
c9e9f97b
ID
3053 if (enospc_errors) {
3054 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
3055 enospc_errors);
3056 if (!ret)
3057 ret = -ENOSPC;
3058 }
3059
ec44a35c
CM
3060 return ret;
3061}
3062
0c460c0d
ID
3063/**
3064 * alloc_profile_is_valid - see if a given profile is valid and reduced
3065 * @flags: profile to validate
3066 * @extended: if true @flags is treated as an extended profile
3067 */
3068static int alloc_profile_is_valid(u64 flags, int extended)
3069{
3070 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3071 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3072
3073 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3074
3075 /* 1) check that all other bits are zeroed */
3076 if (flags & ~mask)
3077 return 0;
3078
3079 /* 2) see if profile is reduced */
3080 if (flags == 0)
3081 return !extended; /* "0" is valid for usual profiles */
3082
3083 /* true if exactly one bit set */
3084 return (flags & (flags - 1)) == 0;
3085}
3086
837d5b6e
ID
3087static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3088{
a7e99c69
ID
3089 /* cancel requested || normal exit path */
3090 return atomic_read(&fs_info->balance_cancel_req) ||
3091 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3092 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3093}
3094
c9e9f97b
ID
3095static void __cancel_balance(struct btrfs_fs_info *fs_info)
3096{
0940ebf6
ID
3097 int ret;
3098
c9e9f97b 3099 unset_balance_control(fs_info);
0940ebf6 3100 ret = del_balance_item(fs_info->tree_root);
0f788c58
LB
3101 if (ret)
3102 btrfs_std_error(fs_info, ret);
ed0fb78f
ID
3103
3104 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3105}
3106
c9e9f97b
ID
3107/*
3108 * Should be called with both balance and volume mutexes held
3109 */
3110int btrfs_balance(struct btrfs_balance_control *bctl,
3111 struct btrfs_ioctl_balance_args *bargs)
3112{
3113 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3114 u64 allowed;
e4837f8f 3115 int mixed = 0;
c9e9f97b 3116 int ret;
8dabb742 3117 u64 num_devices;
de98ced9 3118 unsigned seq;
c9e9f97b 3119
837d5b6e 3120 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3121 atomic_read(&fs_info->balance_pause_req) ||
3122 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3123 ret = -EINVAL;
3124 goto out;
3125 }
3126
e4837f8f
ID
3127 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3128 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3129 mixed = 1;
3130
f43ffb60
ID
3131 /*
3132 * In case of mixed groups both data and meta should be picked,
3133 * and identical options should be given for both of them.
3134 */
e4837f8f
ID
3135 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3136 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3137 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3138 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3139 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3140 printk(KERN_ERR "btrfs: with mixed groups data and "
3141 "metadata balance options must be the same\n");
3142 ret = -EINVAL;
3143 goto out;
3144 }
3145 }
3146
8dabb742
SB
3147 num_devices = fs_info->fs_devices->num_devices;
3148 btrfs_dev_replace_lock(&fs_info->dev_replace);
3149 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3150 BUG_ON(num_devices < 1);
3151 num_devices--;
3152 }
3153 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3154 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3155 if (num_devices == 1)
e4d8ec0f 3156 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3157 else if (num_devices > 1)
e4d8ec0f 3158 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3159 if (num_devices > 2)
3160 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3161 if (num_devices > 3)
3162 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3163 BTRFS_BLOCK_GROUP_RAID6);
6728b198
ID
3164 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3165 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3166 (bctl->data.target & ~allowed))) {
e4d8ec0f
ID
3167 printk(KERN_ERR "btrfs: unable to start balance with target "
3168 "data profile %llu\n",
c1c9ff7c 3169 bctl->data.target);
e4d8ec0f
ID
3170 ret = -EINVAL;
3171 goto out;
3172 }
6728b198
ID
3173 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3174 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3175 (bctl->meta.target & ~allowed))) {
e4d8ec0f
ID
3176 printk(KERN_ERR "btrfs: unable to start balance with target "
3177 "metadata profile %llu\n",
c1c9ff7c 3178 bctl->meta.target);
e4d8ec0f
ID
3179 ret = -EINVAL;
3180 goto out;
3181 }
6728b198
ID
3182 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3183 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3184 (bctl->sys.target & ~allowed))) {
e4d8ec0f
ID
3185 printk(KERN_ERR "btrfs: unable to start balance with target "
3186 "system profile %llu\n",
c1c9ff7c 3187 bctl->sys.target);
e4d8ec0f
ID
3188 ret = -EINVAL;
3189 goto out;
3190 }
3191
e4837f8f
ID
3192 /* allow dup'ed data chunks only in mixed mode */
3193 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3194 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
e4d8ec0f
ID
3195 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
3196 ret = -EINVAL;
3197 goto out;
3198 }
3199
3200 /* allow to reduce meta or sys integrity only if force set */
3201 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3202 BTRFS_BLOCK_GROUP_RAID10 |
3203 BTRFS_BLOCK_GROUP_RAID5 |
3204 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3205 do {
3206 seq = read_seqbegin(&fs_info->profiles_lock);
3207
3208 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3209 (fs_info->avail_system_alloc_bits & allowed) &&
3210 !(bctl->sys.target & allowed)) ||
3211 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3212 (fs_info->avail_metadata_alloc_bits & allowed) &&
3213 !(bctl->meta.target & allowed))) {
3214 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3215 printk(KERN_INFO "btrfs: force reducing metadata "
3216 "integrity\n");
3217 } else {
3218 printk(KERN_ERR "btrfs: balance will reduce metadata "
3219 "integrity, use force if you want this\n");
3220 ret = -EINVAL;
3221 goto out;
3222 }
e4d8ec0f 3223 }
de98ced9 3224 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3225
5af3e8cc
SB
3226 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3227 int num_tolerated_disk_barrier_failures;
3228 u64 target = bctl->sys.target;
3229
3230 num_tolerated_disk_barrier_failures =
3231 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3232 if (num_tolerated_disk_barrier_failures > 0 &&
3233 (target &
3234 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3235 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3236 num_tolerated_disk_barrier_failures = 0;
3237 else if (num_tolerated_disk_barrier_failures > 1 &&
3238 (target &
3239 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3240 num_tolerated_disk_barrier_failures = 1;
3241
3242 fs_info->num_tolerated_disk_barrier_failures =
3243 num_tolerated_disk_barrier_failures;
3244 }
3245
0940ebf6 3246 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3247 if (ret && ret != -EEXIST)
0940ebf6
ID
3248 goto out;
3249
59641015
ID
3250 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3251 BUG_ON(ret == -EEXIST);
3252 set_balance_control(bctl);
3253 } else {
3254 BUG_ON(ret != -EEXIST);
3255 spin_lock(&fs_info->balance_lock);
3256 update_balance_args(bctl);
3257 spin_unlock(&fs_info->balance_lock);
3258 }
c9e9f97b 3259
837d5b6e 3260 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3261 mutex_unlock(&fs_info->balance_mutex);
3262
3263 ret = __btrfs_balance(fs_info);
3264
3265 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3266 atomic_dec(&fs_info->balance_running);
c9e9f97b 3267
bf023ecf
ID
3268 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3269 fs_info->num_tolerated_disk_barrier_failures =
3270 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3271 }
3272
c9e9f97b
ID
3273 if (bargs) {
3274 memset(bargs, 0, sizeof(*bargs));
19a39dce 3275 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3276 }
3277
3a01aa7a
ID
3278 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3279 balance_need_close(fs_info)) {
3280 __cancel_balance(fs_info);
3281 }
3282
837d5b6e 3283 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3284
3285 return ret;
3286out:
59641015
ID
3287 if (bctl->flags & BTRFS_BALANCE_RESUME)
3288 __cancel_balance(fs_info);
ed0fb78f 3289 else {
59641015 3290 kfree(bctl);
ed0fb78f
ID
3291 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3292 }
59641015
ID
3293 return ret;
3294}
3295
3296static int balance_kthread(void *data)
3297{
2b6ba629 3298 struct btrfs_fs_info *fs_info = data;
9555c6c1 3299 int ret = 0;
59641015
ID
3300
3301 mutex_lock(&fs_info->volume_mutex);
3302 mutex_lock(&fs_info->balance_mutex);
3303
2b6ba629 3304 if (fs_info->balance_ctl) {
9555c6c1 3305 printk(KERN_INFO "btrfs: continuing balance\n");
2b6ba629 3306 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3307 }
59641015
ID
3308
3309 mutex_unlock(&fs_info->balance_mutex);
3310 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3311
59641015
ID
3312 return ret;
3313}
3314
2b6ba629
ID
3315int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3316{
3317 struct task_struct *tsk;
3318
3319 spin_lock(&fs_info->balance_lock);
3320 if (!fs_info->balance_ctl) {
3321 spin_unlock(&fs_info->balance_lock);
3322 return 0;
3323 }
3324 spin_unlock(&fs_info->balance_lock);
3325
3326 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3327 printk(KERN_INFO "btrfs: force skipping balance\n");
3328 return 0;
3329 }
3330
3331 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3332 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3333}
3334
68310a5e 3335int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3336{
59641015
ID
3337 struct btrfs_balance_control *bctl;
3338 struct btrfs_balance_item *item;
3339 struct btrfs_disk_balance_args disk_bargs;
3340 struct btrfs_path *path;
3341 struct extent_buffer *leaf;
3342 struct btrfs_key key;
3343 int ret;
3344
3345 path = btrfs_alloc_path();
3346 if (!path)
3347 return -ENOMEM;
3348
59641015
ID
3349 key.objectid = BTRFS_BALANCE_OBJECTID;
3350 key.type = BTRFS_BALANCE_ITEM_KEY;
3351 key.offset = 0;
3352
68310a5e 3353 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3354 if (ret < 0)
68310a5e 3355 goto out;
59641015
ID
3356 if (ret > 0) { /* ret = -ENOENT; */
3357 ret = 0;
68310a5e
ID
3358 goto out;
3359 }
3360
3361 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3362 if (!bctl) {
3363 ret = -ENOMEM;
3364 goto out;
59641015
ID
3365 }
3366
3367 leaf = path->nodes[0];
3368 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3369
68310a5e
ID
3370 bctl->fs_info = fs_info;
3371 bctl->flags = btrfs_balance_flags(leaf, item);
3372 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3373
3374 btrfs_balance_data(leaf, item, &disk_bargs);
3375 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3376 btrfs_balance_meta(leaf, item, &disk_bargs);
3377 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3378 btrfs_balance_sys(leaf, item, &disk_bargs);
3379 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3380
ed0fb78f
ID
3381 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3382
68310a5e
ID
3383 mutex_lock(&fs_info->volume_mutex);
3384 mutex_lock(&fs_info->balance_mutex);
59641015 3385
68310a5e
ID
3386 set_balance_control(bctl);
3387
3388 mutex_unlock(&fs_info->balance_mutex);
3389 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3390out:
3391 btrfs_free_path(path);
ec44a35c
CM
3392 return ret;
3393}
3394
837d5b6e
ID
3395int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3396{
3397 int ret = 0;
3398
3399 mutex_lock(&fs_info->balance_mutex);
3400 if (!fs_info->balance_ctl) {
3401 mutex_unlock(&fs_info->balance_mutex);
3402 return -ENOTCONN;
3403 }
3404
3405 if (atomic_read(&fs_info->balance_running)) {
3406 atomic_inc(&fs_info->balance_pause_req);
3407 mutex_unlock(&fs_info->balance_mutex);
3408
3409 wait_event(fs_info->balance_wait_q,
3410 atomic_read(&fs_info->balance_running) == 0);
3411
3412 mutex_lock(&fs_info->balance_mutex);
3413 /* we are good with balance_ctl ripped off from under us */
3414 BUG_ON(atomic_read(&fs_info->balance_running));
3415 atomic_dec(&fs_info->balance_pause_req);
3416 } else {
3417 ret = -ENOTCONN;
3418 }
3419
3420 mutex_unlock(&fs_info->balance_mutex);
3421 return ret;
3422}
3423
a7e99c69
ID
3424int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3425{
3426 mutex_lock(&fs_info->balance_mutex);
3427 if (!fs_info->balance_ctl) {
3428 mutex_unlock(&fs_info->balance_mutex);
3429 return -ENOTCONN;
3430 }
3431
3432 atomic_inc(&fs_info->balance_cancel_req);
3433 /*
3434 * if we are running just wait and return, balance item is
3435 * deleted in btrfs_balance in this case
3436 */
3437 if (atomic_read(&fs_info->balance_running)) {
3438 mutex_unlock(&fs_info->balance_mutex);
3439 wait_event(fs_info->balance_wait_q,
3440 atomic_read(&fs_info->balance_running) == 0);
3441 mutex_lock(&fs_info->balance_mutex);
3442 } else {
3443 /* __cancel_balance needs volume_mutex */
3444 mutex_unlock(&fs_info->balance_mutex);
3445 mutex_lock(&fs_info->volume_mutex);
3446 mutex_lock(&fs_info->balance_mutex);
3447
3448 if (fs_info->balance_ctl)
3449 __cancel_balance(fs_info);
3450
3451 mutex_unlock(&fs_info->volume_mutex);
3452 }
3453
3454 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3455 atomic_dec(&fs_info->balance_cancel_req);
3456 mutex_unlock(&fs_info->balance_mutex);
3457 return 0;
3458}
3459
803b2f54
SB
3460static int btrfs_uuid_scan_kthread(void *data)
3461{
3462 struct btrfs_fs_info *fs_info = data;
3463 struct btrfs_root *root = fs_info->tree_root;
3464 struct btrfs_key key;
3465 struct btrfs_key max_key;
3466 struct btrfs_path *path = NULL;
3467 int ret = 0;
3468 struct extent_buffer *eb;
3469 int slot;
3470 struct btrfs_root_item root_item;
3471 u32 item_size;
f45388f3 3472 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
3473
3474 path = btrfs_alloc_path();
3475 if (!path) {
3476 ret = -ENOMEM;
3477 goto out;
3478 }
3479
3480 key.objectid = 0;
3481 key.type = BTRFS_ROOT_ITEM_KEY;
3482 key.offset = 0;
3483
3484 max_key.objectid = (u64)-1;
3485 max_key.type = BTRFS_ROOT_ITEM_KEY;
3486 max_key.offset = (u64)-1;
3487
3488 path->keep_locks = 1;
3489
3490 while (1) {
3491 ret = btrfs_search_forward(root, &key, &max_key, path, 0);
3492 if (ret) {
3493 if (ret > 0)
3494 ret = 0;
3495 break;
3496 }
3497
3498 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3499 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3500 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3501 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3502 goto skip;
3503
3504 eb = path->nodes[0];
3505 slot = path->slots[0];
3506 item_size = btrfs_item_size_nr(eb, slot);
3507 if (item_size < sizeof(root_item))
3508 goto skip;
3509
803b2f54
SB
3510 read_extent_buffer(eb, &root_item,
3511 btrfs_item_ptr_offset(eb, slot),
3512 (int)sizeof(root_item));
3513 if (btrfs_root_refs(&root_item) == 0)
3514 goto skip;
f45388f3
FDBM
3515
3516 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3517 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3518 if (trans)
3519 goto update_tree;
3520
3521 btrfs_release_path(path);
803b2f54
SB
3522 /*
3523 * 1 - subvol uuid item
3524 * 1 - received_subvol uuid item
3525 */
3526 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3527 if (IS_ERR(trans)) {
3528 ret = PTR_ERR(trans);
3529 break;
3530 }
f45388f3
FDBM
3531 continue;
3532 } else {
3533 goto skip;
3534 }
3535update_tree:
3536 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
3537 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3538 root_item.uuid,
3539 BTRFS_UUID_KEY_SUBVOL,
3540 key.objectid);
3541 if (ret < 0) {
3542 pr_warn("btrfs: uuid_tree_add failed %d\n",
3543 ret);
803b2f54
SB
3544 break;
3545 }
3546 }
3547
3548 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
3549 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3550 root_item.received_uuid,
3551 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3552 key.objectid);
3553 if (ret < 0) {
3554 pr_warn("btrfs: uuid_tree_add failed %d\n",
3555 ret);
803b2f54
SB
3556 break;
3557 }
3558 }
3559
f45388f3 3560skip:
803b2f54
SB
3561 if (trans) {
3562 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 3563 trans = NULL;
803b2f54
SB
3564 if (ret)
3565 break;
3566 }
3567
803b2f54
SB
3568 btrfs_release_path(path);
3569 if (key.offset < (u64)-1) {
3570 key.offset++;
3571 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3572 key.offset = 0;
3573 key.type = BTRFS_ROOT_ITEM_KEY;
3574 } else if (key.objectid < (u64)-1) {
3575 key.offset = 0;
3576 key.type = BTRFS_ROOT_ITEM_KEY;
3577 key.objectid++;
3578 } else {
3579 break;
3580 }
3581 cond_resched();
3582 }
3583
3584out:
3585 btrfs_free_path(path);
f45388f3
FDBM
3586 if (trans && !IS_ERR(trans))
3587 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54
SB
3588 if (ret)
3589 pr_warn("btrfs: btrfs_uuid_scan_kthread failed %d\n", ret);
70f80175
SB
3590 else
3591 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
3592 up(&fs_info->uuid_tree_rescan_sem);
3593 return 0;
3594}
3595
70f80175
SB
3596/*
3597 * Callback for btrfs_uuid_tree_iterate().
3598 * returns:
3599 * 0 check succeeded, the entry is not outdated.
3600 * < 0 if an error occured.
3601 * > 0 if the check failed, which means the caller shall remove the entry.
3602 */
3603static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3604 u8 *uuid, u8 type, u64 subid)
3605{
3606 struct btrfs_key key;
3607 int ret = 0;
3608 struct btrfs_root *subvol_root;
3609
3610 if (type != BTRFS_UUID_KEY_SUBVOL &&
3611 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3612 goto out;
3613
3614 key.objectid = subid;
3615 key.type = BTRFS_ROOT_ITEM_KEY;
3616 key.offset = (u64)-1;
3617 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3618 if (IS_ERR(subvol_root)) {
3619 ret = PTR_ERR(subvol_root);
3620 if (ret == -ENOENT)
3621 ret = 1;
3622 goto out;
3623 }
3624
3625 switch (type) {
3626 case BTRFS_UUID_KEY_SUBVOL:
3627 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3628 ret = 1;
3629 break;
3630 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3631 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3632 BTRFS_UUID_SIZE))
3633 ret = 1;
3634 break;
3635 }
3636
3637out:
3638 return ret;
3639}
3640
3641static int btrfs_uuid_rescan_kthread(void *data)
3642{
3643 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3644 int ret;
3645
3646 /*
3647 * 1st step is to iterate through the existing UUID tree and
3648 * to delete all entries that contain outdated data.
3649 * 2nd step is to add all missing entries to the UUID tree.
3650 */
3651 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3652 if (ret < 0) {
3653 pr_warn("btrfs: iterating uuid_tree failed %d\n", ret);
3654 up(&fs_info->uuid_tree_rescan_sem);
3655 return ret;
3656 }
3657 return btrfs_uuid_scan_kthread(data);
3658}
3659
f7a81ea4
SB
3660int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3661{
3662 struct btrfs_trans_handle *trans;
3663 struct btrfs_root *tree_root = fs_info->tree_root;
3664 struct btrfs_root *uuid_root;
803b2f54
SB
3665 struct task_struct *task;
3666 int ret;
f7a81ea4
SB
3667
3668 /*
3669 * 1 - root node
3670 * 1 - root item
3671 */
3672 trans = btrfs_start_transaction(tree_root, 2);
3673 if (IS_ERR(trans))
3674 return PTR_ERR(trans);
3675
3676 uuid_root = btrfs_create_tree(trans, fs_info,
3677 BTRFS_UUID_TREE_OBJECTID);
3678 if (IS_ERR(uuid_root)) {
3679 btrfs_abort_transaction(trans, tree_root,
3680 PTR_ERR(uuid_root));
3681 return PTR_ERR(uuid_root);
3682 }
3683
3684 fs_info->uuid_root = uuid_root;
3685
803b2f54
SB
3686 ret = btrfs_commit_transaction(trans, tree_root);
3687 if (ret)
3688 return ret;
3689
3690 down(&fs_info->uuid_tree_rescan_sem);
3691 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3692 if (IS_ERR(task)) {
70f80175 3693 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
803b2f54
SB
3694 pr_warn("btrfs: failed to start uuid_scan task\n");
3695 up(&fs_info->uuid_tree_rescan_sem);
3696 return PTR_ERR(task);
3697 }
3698
3699 return 0;
f7a81ea4 3700}
803b2f54 3701
70f80175
SB
3702int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3703{
3704 struct task_struct *task;
3705
3706 down(&fs_info->uuid_tree_rescan_sem);
3707 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3708 if (IS_ERR(task)) {
3709 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3710 pr_warn("btrfs: failed to start uuid_rescan task\n");
3711 up(&fs_info->uuid_tree_rescan_sem);
3712 return PTR_ERR(task);
3713 }
3714
3715 return 0;
3716}
3717
8f18cf13
CM
3718/*
3719 * shrinking a device means finding all of the device extents past
3720 * the new size, and then following the back refs to the chunks.
3721 * The chunk relocation code actually frees the device extent
3722 */
3723int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3724{
3725 struct btrfs_trans_handle *trans;
3726 struct btrfs_root *root = device->dev_root;
3727 struct btrfs_dev_extent *dev_extent = NULL;
3728 struct btrfs_path *path;
3729 u64 length;
3730 u64 chunk_tree;
3731 u64 chunk_objectid;
3732 u64 chunk_offset;
3733 int ret;
3734 int slot;
ba1bf481
JB
3735 int failed = 0;
3736 bool retried = false;
8f18cf13
CM
3737 struct extent_buffer *l;
3738 struct btrfs_key key;
6c41761f 3739 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3740 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3741 u64 old_size = device->total_bytes;
8f18cf13
CM
3742 u64 diff = device->total_bytes - new_size;
3743
63a212ab
SB
3744 if (device->is_tgtdev_for_dev_replace)
3745 return -EINVAL;
3746
8f18cf13
CM
3747 path = btrfs_alloc_path();
3748 if (!path)
3749 return -ENOMEM;
3750
8f18cf13
CM
3751 path->reada = 2;
3752
7d9eb12c
CM
3753 lock_chunks(root);
3754
8f18cf13 3755 device->total_bytes = new_size;
2bf64758 3756 if (device->writeable) {
2b82032c 3757 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3758 spin_lock(&root->fs_info->free_chunk_lock);
3759 root->fs_info->free_chunk_space -= diff;
3760 spin_unlock(&root->fs_info->free_chunk_lock);
3761 }
7d9eb12c 3762 unlock_chunks(root);
8f18cf13 3763
ba1bf481 3764again:
8f18cf13
CM
3765 key.objectid = device->devid;
3766 key.offset = (u64)-1;
3767 key.type = BTRFS_DEV_EXTENT_KEY;
3768
213e64da 3769 do {
8f18cf13
CM
3770 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3771 if (ret < 0)
3772 goto done;
3773
3774 ret = btrfs_previous_item(root, path, 0, key.type);
3775 if (ret < 0)
3776 goto done;
3777 if (ret) {
3778 ret = 0;
b3b4aa74 3779 btrfs_release_path(path);
bf1fb512 3780 break;
8f18cf13
CM
3781 }
3782
3783 l = path->nodes[0];
3784 slot = path->slots[0];
3785 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3786
ba1bf481 3787 if (key.objectid != device->devid) {
b3b4aa74 3788 btrfs_release_path(path);
bf1fb512 3789 break;
ba1bf481 3790 }
8f18cf13
CM
3791
3792 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3793 length = btrfs_dev_extent_length(l, dev_extent);
3794
ba1bf481 3795 if (key.offset + length <= new_size) {
b3b4aa74 3796 btrfs_release_path(path);
d6397bae 3797 break;
ba1bf481 3798 }
8f18cf13
CM
3799
3800 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3801 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3802 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3803 btrfs_release_path(path);
8f18cf13
CM
3804
3805 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3806 chunk_offset);
ba1bf481 3807 if (ret && ret != -ENOSPC)
8f18cf13 3808 goto done;
ba1bf481
JB
3809 if (ret == -ENOSPC)
3810 failed++;
213e64da 3811 } while (key.offset-- > 0);
ba1bf481
JB
3812
3813 if (failed && !retried) {
3814 failed = 0;
3815 retried = true;
3816 goto again;
3817 } else if (failed && retried) {
3818 ret = -ENOSPC;
3819 lock_chunks(root);
3820
3821 device->total_bytes = old_size;
3822 if (device->writeable)
3823 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3824 spin_lock(&root->fs_info->free_chunk_lock);
3825 root->fs_info->free_chunk_space += diff;
3826 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3827 unlock_chunks(root);
3828 goto done;
8f18cf13
CM
3829 }
3830
d6397bae 3831 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3832 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3833 if (IS_ERR(trans)) {
3834 ret = PTR_ERR(trans);
3835 goto done;
3836 }
3837
d6397bae
CB
3838 lock_chunks(root);
3839
3840 device->disk_total_bytes = new_size;
3841 /* Now btrfs_update_device() will change the on-disk size. */
3842 ret = btrfs_update_device(trans, device);
3843 if (ret) {
3844 unlock_chunks(root);
3845 btrfs_end_transaction(trans, root);
3846 goto done;
3847 }
3848 WARN_ON(diff > old_total);
3849 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3850 unlock_chunks(root);
3851 btrfs_end_transaction(trans, root);
8f18cf13
CM
3852done:
3853 btrfs_free_path(path);
3854 return ret;
3855}
3856
125ccb0a 3857static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3858 struct btrfs_key *key,
3859 struct btrfs_chunk *chunk, int item_size)
3860{
6c41761f 3861 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3862 struct btrfs_disk_key disk_key;
3863 u32 array_size;
3864 u8 *ptr;
3865
3866 array_size = btrfs_super_sys_array_size(super_copy);
3867 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3868 return -EFBIG;
3869
3870 ptr = super_copy->sys_chunk_array + array_size;
3871 btrfs_cpu_key_to_disk(&disk_key, key);
3872 memcpy(ptr, &disk_key, sizeof(disk_key));
3873 ptr += sizeof(disk_key);
3874 memcpy(ptr, chunk, item_size);
3875 item_size += sizeof(disk_key);
3876 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3877 return 0;
3878}
3879
73c5de00
AJ
3880/*
3881 * sort the devices in descending order by max_avail, total_avail
3882 */
3883static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3884{
73c5de00
AJ
3885 const struct btrfs_device_info *di_a = a;
3886 const struct btrfs_device_info *di_b = b;
9b3f68b9 3887
73c5de00 3888 if (di_a->max_avail > di_b->max_avail)
b2117a39 3889 return -1;
73c5de00 3890 if (di_a->max_avail < di_b->max_avail)
b2117a39 3891 return 1;
73c5de00
AJ
3892 if (di_a->total_avail > di_b->total_avail)
3893 return -1;
3894 if (di_a->total_avail < di_b->total_avail)
3895 return 1;
3896 return 0;
b2117a39 3897}
0b86a832 3898
48a3b636 3899static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
e6ec716f
MX
3900 [BTRFS_RAID_RAID10] = {
3901 .sub_stripes = 2,
3902 .dev_stripes = 1,
3903 .devs_max = 0, /* 0 == as many as possible */
3904 .devs_min = 4,
3905 .devs_increment = 2,
3906 .ncopies = 2,
3907 },
3908 [BTRFS_RAID_RAID1] = {
3909 .sub_stripes = 1,
3910 .dev_stripes = 1,
3911 .devs_max = 2,
3912 .devs_min = 2,
3913 .devs_increment = 2,
3914 .ncopies = 2,
3915 },
3916 [BTRFS_RAID_DUP] = {
3917 .sub_stripes = 1,
3918 .dev_stripes = 2,
3919 .devs_max = 1,
3920 .devs_min = 1,
3921 .devs_increment = 1,
3922 .ncopies = 2,
3923 },
3924 [BTRFS_RAID_RAID0] = {
3925 .sub_stripes = 1,
3926 .dev_stripes = 1,
3927 .devs_max = 0,
3928 .devs_min = 2,
3929 .devs_increment = 1,
3930 .ncopies = 1,
3931 },
3932 [BTRFS_RAID_SINGLE] = {
3933 .sub_stripes = 1,
3934 .dev_stripes = 1,
3935 .devs_max = 1,
3936 .devs_min = 1,
3937 .devs_increment = 1,
3938 .ncopies = 1,
3939 },
e942f883
CM
3940 [BTRFS_RAID_RAID5] = {
3941 .sub_stripes = 1,
3942 .dev_stripes = 1,
3943 .devs_max = 0,
3944 .devs_min = 2,
3945 .devs_increment = 1,
3946 .ncopies = 2,
3947 },
3948 [BTRFS_RAID_RAID6] = {
3949 .sub_stripes = 1,
3950 .dev_stripes = 1,
3951 .devs_max = 0,
3952 .devs_min = 3,
3953 .devs_increment = 1,
3954 .ncopies = 3,
3955 },
31e50229
LB
3956};
3957
53b381b3
DW
3958static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3959{
3960 /* TODO allow them to set a preferred stripe size */
3961 return 64 * 1024;
3962}
3963
3964static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3965{
53b381b3
DW
3966 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3967 return;
3968
ceda0864 3969 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
3970}
3971
73c5de00 3972static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
3973 struct btrfs_root *extent_root, u64 start,
3974 u64 type)
b2117a39 3975{
73c5de00
AJ
3976 struct btrfs_fs_info *info = extent_root->fs_info;
3977 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3978 struct list_head *cur;
3979 struct map_lookup *map = NULL;
3980 struct extent_map_tree *em_tree;
3981 struct extent_map *em;
3982 struct btrfs_device_info *devices_info = NULL;
3983 u64 total_avail;
3984 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
3985 int data_stripes; /* number of stripes that count for
3986 block group size */
73c5de00
AJ
3987 int sub_stripes; /* sub_stripes info for map */
3988 int dev_stripes; /* stripes per dev */
3989 int devs_max; /* max devs to use */
3990 int devs_min; /* min devs needed */
3991 int devs_increment; /* ndevs has to be a multiple of this */
3992 int ncopies; /* how many copies to data has */
3993 int ret;
3994 u64 max_stripe_size;
3995 u64 max_chunk_size;
3996 u64 stripe_size;
3997 u64 num_bytes;
53b381b3 3998 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
3999 int ndevs;
4000 int i;
4001 int j;
31e50229 4002 int index;
593060d7 4003
0c460c0d 4004 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4005
73c5de00
AJ
4006 if (list_empty(&fs_devices->alloc_list))
4007 return -ENOSPC;
b2117a39 4008
31e50229 4009 index = __get_raid_index(type);
73c5de00 4010
31e50229
LB
4011 sub_stripes = btrfs_raid_array[index].sub_stripes;
4012 dev_stripes = btrfs_raid_array[index].dev_stripes;
4013 devs_max = btrfs_raid_array[index].devs_max;
4014 devs_min = btrfs_raid_array[index].devs_min;
4015 devs_increment = btrfs_raid_array[index].devs_increment;
4016 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4017
9b3f68b9 4018 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4019 max_stripe_size = 1024 * 1024 * 1024;
4020 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 4021 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4022 /* for larger filesystems, use larger metadata chunks */
4023 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4024 max_stripe_size = 1024 * 1024 * 1024;
4025 else
4026 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4027 max_chunk_size = max_stripe_size;
a40a90a0 4028 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4029 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
4030 max_chunk_size = 2 * max_stripe_size;
4031 } else {
4032 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
4033 type);
4034 BUG_ON(1);
9b3f68b9
CM
4035 }
4036
2b82032c
YZ
4037 /* we don't want a chunk larger than 10% of writeable space */
4038 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4039 max_chunk_size);
9b3f68b9 4040
73c5de00
AJ
4041 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4042 GFP_NOFS);
4043 if (!devices_info)
4044 return -ENOMEM;
0cad8a11 4045
73c5de00 4046 cur = fs_devices->alloc_list.next;
9b3f68b9 4047
9f680ce0 4048 /*
73c5de00
AJ
4049 * in the first pass through the devices list, we gather information
4050 * about the available holes on each device.
9f680ce0 4051 */
73c5de00
AJ
4052 ndevs = 0;
4053 while (cur != &fs_devices->alloc_list) {
4054 struct btrfs_device *device;
4055 u64 max_avail;
4056 u64 dev_offset;
b2117a39 4057
73c5de00 4058 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4059
73c5de00 4060 cur = cur->next;
b2117a39 4061
73c5de00 4062 if (!device->writeable) {
31b1a2bd 4063 WARN(1, KERN_ERR
73c5de00 4064 "btrfs: read-only device in alloc_list\n");
73c5de00
AJ
4065 continue;
4066 }
b2117a39 4067
63a212ab
SB
4068 if (!device->in_fs_metadata ||
4069 device->is_tgtdev_for_dev_replace)
73c5de00 4070 continue;
b2117a39 4071
73c5de00
AJ
4072 if (device->total_bytes > device->bytes_used)
4073 total_avail = device->total_bytes - device->bytes_used;
4074 else
4075 total_avail = 0;
38c01b96 4076
4077 /* If there is no space on this device, skip it. */
4078 if (total_avail == 0)
4079 continue;
b2117a39 4080
6df9a95e 4081 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4082 max_stripe_size * dev_stripes,
4083 &dev_offset, &max_avail);
4084 if (ret && ret != -ENOSPC)
4085 goto error;
b2117a39 4086
73c5de00
AJ
4087 if (ret == 0)
4088 max_avail = max_stripe_size * dev_stripes;
b2117a39 4089
73c5de00
AJ
4090 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4091 continue;
b2117a39 4092
063d006f
ES
4093 if (ndevs == fs_devices->rw_devices) {
4094 WARN(1, "%s: found more than %llu devices\n",
4095 __func__, fs_devices->rw_devices);
4096 break;
4097 }
73c5de00
AJ
4098 devices_info[ndevs].dev_offset = dev_offset;
4099 devices_info[ndevs].max_avail = max_avail;
4100 devices_info[ndevs].total_avail = total_avail;
4101 devices_info[ndevs].dev = device;
4102 ++ndevs;
4103 }
b2117a39 4104
73c5de00
AJ
4105 /*
4106 * now sort the devices by hole size / available space
4107 */
4108 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4109 btrfs_cmp_device_info, NULL);
b2117a39 4110
73c5de00
AJ
4111 /* round down to number of usable stripes */
4112 ndevs -= ndevs % devs_increment;
b2117a39 4113
73c5de00
AJ
4114 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4115 ret = -ENOSPC;
4116 goto error;
b2117a39 4117 }
9f680ce0 4118
73c5de00
AJ
4119 if (devs_max && ndevs > devs_max)
4120 ndevs = devs_max;
4121 /*
4122 * the primary goal is to maximize the number of stripes, so use as many
4123 * devices as possible, even if the stripes are not maximum sized.
4124 */
4125 stripe_size = devices_info[ndevs-1].max_avail;
4126 num_stripes = ndevs * dev_stripes;
b2117a39 4127
53b381b3
DW
4128 /*
4129 * this will have to be fixed for RAID1 and RAID10 over
4130 * more drives
4131 */
4132 data_stripes = num_stripes / ncopies;
4133
53b381b3
DW
4134 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4135 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4136 btrfs_super_stripesize(info->super_copy));
4137 data_stripes = num_stripes - 1;
4138 }
4139 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4140 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4141 btrfs_super_stripesize(info->super_copy));
4142 data_stripes = num_stripes - 2;
4143 }
86db2578
CM
4144
4145 /*
4146 * Use the number of data stripes to figure out how big this chunk
4147 * is really going to be in terms of logical address space,
4148 * and compare that answer with the max chunk size
4149 */
4150 if (stripe_size * data_stripes > max_chunk_size) {
4151 u64 mask = (1ULL << 24) - 1;
4152 stripe_size = max_chunk_size;
4153 do_div(stripe_size, data_stripes);
4154
4155 /* bump the answer up to a 16MB boundary */
4156 stripe_size = (stripe_size + mask) & ~mask;
4157
4158 /* but don't go higher than the limits we found
4159 * while searching for free extents
4160 */
4161 if (stripe_size > devices_info[ndevs-1].max_avail)
4162 stripe_size = devices_info[ndevs-1].max_avail;
4163 }
4164
73c5de00 4165 do_div(stripe_size, dev_stripes);
37db63a4
ID
4166
4167 /* align to BTRFS_STRIPE_LEN */
53b381b3
DW
4168 do_div(stripe_size, raid_stripe_len);
4169 stripe_size *= raid_stripe_len;
b2117a39
MX
4170
4171 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4172 if (!map) {
4173 ret = -ENOMEM;
4174 goto error;
4175 }
4176 map->num_stripes = num_stripes;
9b3f68b9 4177
73c5de00
AJ
4178 for (i = 0; i < ndevs; ++i) {
4179 for (j = 0; j < dev_stripes; ++j) {
4180 int s = i * dev_stripes + j;
4181 map->stripes[s].dev = devices_info[i].dev;
4182 map->stripes[s].physical = devices_info[i].dev_offset +
4183 j * stripe_size;
6324fbf3 4184 }
6324fbf3 4185 }
2b82032c 4186 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4187 map->stripe_len = raid_stripe_len;
4188 map->io_align = raid_stripe_len;
4189 map->io_width = raid_stripe_len;
2b82032c 4190 map->type = type;
2b82032c 4191 map->sub_stripes = sub_stripes;
0b86a832 4192
53b381b3 4193 num_bytes = stripe_size * data_stripes;
0b86a832 4194
73c5de00 4195 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4196
172ddd60 4197 em = alloc_extent_map();
2b82032c 4198 if (!em) {
b2117a39
MX
4199 ret = -ENOMEM;
4200 goto error;
593060d7 4201 }
2b82032c
YZ
4202 em->bdev = (struct block_device *)map;
4203 em->start = start;
73c5de00 4204 em->len = num_bytes;
2b82032c
YZ
4205 em->block_start = 0;
4206 em->block_len = em->len;
6df9a95e 4207 em->orig_block_len = stripe_size;
593060d7 4208
2b82032c 4209 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4210 write_lock(&em_tree->lock);
09a2a8f9 4211 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4212 if (!ret) {
4213 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4214 atomic_inc(&em->refs);
4215 }
890871be 4216 write_unlock(&em_tree->lock);
0f5d42b2
JB
4217 if (ret) {
4218 free_extent_map(em);
1dd4602f 4219 goto error;
0f5d42b2 4220 }
0b86a832 4221
04487488
JB
4222 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4223 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4224 start, num_bytes);
6df9a95e
JB
4225 if (ret)
4226 goto error_del_extent;
2b82032c 4227
0f5d42b2 4228 free_extent_map(em);
53b381b3
DW
4229 check_raid56_incompat_flag(extent_root->fs_info, type);
4230
b2117a39 4231 kfree(devices_info);
2b82032c 4232 return 0;
b2117a39 4233
6df9a95e 4234error_del_extent:
0f5d42b2
JB
4235 write_lock(&em_tree->lock);
4236 remove_extent_mapping(em_tree, em);
4237 write_unlock(&em_tree->lock);
4238
4239 /* One for our allocation */
4240 free_extent_map(em);
4241 /* One for the tree reference */
4242 free_extent_map(em);
b2117a39
MX
4243error:
4244 kfree(map);
4245 kfree(devices_info);
4246 return ret;
2b82032c
YZ
4247}
4248
6df9a95e 4249int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4250 struct btrfs_root *extent_root,
6df9a95e 4251 u64 chunk_offset, u64 chunk_size)
2b82032c 4252{
2b82032c
YZ
4253 struct btrfs_key key;
4254 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4255 struct btrfs_device *device;
4256 struct btrfs_chunk *chunk;
4257 struct btrfs_stripe *stripe;
6df9a95e
JB
4258 struct extent_map_tree *em_tree;
4259 struct extent_map *em;
4260 struct map_lookup *map;
4261 size_t item_size;
4262 u64 dev_offset;
4263 u64 stripe_size;
4264 int i = 0;
2b82032c
YZ
4265 int ret;
4266
6df9a95e
JB
4267 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4268 read_lock(&em_tree->lock);
4269 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4270 read_unlock(&em_tree->lock);
4271
4272 if (!em) {
4273 btrfs_crit(extent_root->fs_info, "unable to find logical "
4274 "%Lu len %Lu", chunk_offset, chunk_size);
4275 return -EINVAL;
4276 }
4277
4278 if (em->start != chunk_offset || em->len != chunk_size) {
4279 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4280 " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
4281 chunk_size, em->start, em->len);
4282 free_extent_map(em);
4283 return -EINVAL;
4284 }
4285
4286 map = (struct map_lookup *)em->bdev;
4287 item_size = btrfs_chunk_item_size(map->num_stripes);
4288 stripe_size = em->orig_block_len;
4289
2b82032c 4290 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4291 if (!chunk) {
4292 ret = -ENOMEM;
4293 goto out;
4294 }
4295
4296 for (i = 0; i < map->num_stripes; i++) {
4297 device = map->stripes[i].dev;
4298 dev_offset = map->stripes[i].physical;
2b82032c 4299
2b82032c 4300 device->bytes_used += stripe_size;
0b86a832 4301 ret = btrfs_update_device(trans, device);
3acd3953 4302 if (ret)
6df9a95e
JB
4303 goto out;
4304 ret = btrfs_alloc_dev_extent(trans, device,
4305 chunk_root->root_key.objectid,
4306 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4307 chunk_offset, dev_offset,
4308 stripe_size);
4309 if (ret)
4310 goto out;
2b82032c
YZ
4311 }
4312
2bf64758
JB
4313 spin_lock(&extent_root->fs_info->free_chunk_lock);
4314 extent_root->fs_info->free_chunk_space -= (stripe_size *
4315 map->num_stripes);
4316 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4317
2b82032c 4318 stripe = &chunk->stripe;
6df9a95e
JB
4319 for (i = 0; i < map->num_stripes; i++) {
4320 device = map->stripes[i].dev;
4321 dev_offset = map->stripes[i].physical;
0b86a832 4322
e17cade2
CM
4323 btrfs_set_stack_stripe_devid(stripe, device->devid);
4324 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4325 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4326 stripe++;
0b86a832
CM
4327 }
4328
2b82032c 4329 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4330 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4331 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4332 btrfs_set_stack_chunk_type(chunk, map->type);
4333 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4334 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4335 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4336 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4337 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4338
2b82032c
YZ
4339 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4340 key.type = BTRFS_CHUNK_ITEM_KEY;
4341 key.offset = chunk_offset;
0b86a832 4342
2b82032c 4343 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4344 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4345 /*
4346 * TODO: Cleanup of inserted chunk root in case of
4347 * failure.
4348 */
125ccb0a 4349 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4350 item_size);
8f18cf13 4351 }
1abe9b8a 4352
6df9a95e 4353out:
0b86a832 4354 kfree(chunk);
6df9a95e 4355 free_extent_map(em);
4ed1d16e 4356 return ret;
2b82032c 4357}
0b86a832 4358
2b82032c
YZ
4359/*
4360 * Chunk allocation falls into two parts. The first part does works
4361 * that make the new allocated chunk useable, but not do any operation
4362 * that modifies the chunk tree. The second part does the works that
4363 * require modifying the chunk tree. This division is important for the
4364 * bootstrap process of adding storage to a seed btrfs.
4365 */
4366int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4367 struct btrfs_root *extent_root, u64 type)
4368{
4369 u64 chunk_offset;
2b82032c 4370
6df9a95e
JB
4371 chunk_offset = find_next_chunk(extent_root->fs_info);
4372 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4373}
4374
d397712b 4375static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4376 struct btrfs_root *root,
4377 struct btrfs_device *device)
4378{
4379 u64 chunk_offset;
4380 u64 sys_chunk_offset;
2b82032c 4381 u64 alloc_profile;
2b82032c
YZ
4382 struct btrfs_fs_info *fs_info = root->fs_info;
4383 struct btrfs_root *extent_root = fs_info->extent_root;
4384 int ret;
4385
6df9a95e 4386 chunk_offset = find_next_chunk(fs_info);
de98ced9 4387 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4388 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4389 alloc_profile);
79787eaa
JM
4390 if (ret)
4391 return ret;
2b82032c 4392
6df9a95e 4393 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4394 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4395 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4396 alloc_profile);
005d6427
DS
4397 if (ret) {
4398 btrfs_abort_transaction(trans, root, ret);
4399 goto out;
4400 }
2b82032c
YZ
4401
4402 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
79787eaa 4403 if (ret)
005d6427 4404 btrfs_abort_transaction(trans, root, ret);
005d6427 4405out:
79787eaa 4406 return ret;
2b82032c
YZ
4407}
4408
4409int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4410{
4411 struct extent_map *em;
4412 struct map_lookup *map;
4413 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4414 int readonly = 0;
4415 int i;
4416
890871be 4417 read_lock(&map_tree->map_tree.lock);
2b82032c 4418 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4419 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4420 if (!em)
4421 return 1;
4422
f48b9075
JB
4423 if (btrfs_test_opt(root, DEGRADED)) {
4424 free_extent_map(em);
4425 return 0;
4426 }
4427
2b82032c
YZ
4428 map = (struct map_lookup *)em->bdev;
4429 for (i = 0; i < map->num_stripes; i++) {
4430 if (!map->stripes[i].dev->writeable) {
4431 readonly = 1;
4432 break;
4433 }
4434 }
0b86a832 4435 free_extent_map(em);
2b82032c 4436 return readonly;
0b86a832
CM
4437}
4438
4439void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4440{
a8067e02 4441 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4442}
4443
4444void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4445{
4446 struct extent_map *em;
4447
d397712b 4448 while (1) {
890871be 4449 write_lock(&tree->map_tree.lock);
0b86a832
CM
4450 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4451 if (em)
4452 remove_extent_mapping(&tree->map_tree, em);
890871be 4453 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4454 if (!em)
4455 break;
4456 kfree(em->bdev);
4457 /* once for us */
4458 free_extent_map(em);
4459 /* once for the tree */
4460 free_extent_map(em);
4461 }
4462}
4463
5d964051 4464int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4465{
5d964051 4466 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4467 struct extent_map *em;
4468 struct map_lookup *map;
4469 struct extent_map_tree *em_tree = &map_tree->map_tree;
4470 int ret;
4471
890871be 4472 read_lock(&em_tree->lock);
f188591e 4473 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4474 read_unlock(&em_tree->lock);
f188591e 4475
fb7669b5
JB
4476 /*
4477 * We could return errors for these cases, but that could get ugly and
4478 * we'd probably do the same thing which is just not do anything else
4479 * and exit, so return 1 so the callers don't try to use other copies.
4480 */
4481 if (!em) {
ccf39f92 4482 btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical,
fb7669b5
JB
4483 logical+len);
4484 return 1;
4485 }
4486
4487 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4488 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
fb7669b5
JB
4489 "%Lu-%Lu\n", logical, logical+len, em->start,
4490 em->start + em->len);
7d3d1744 4491 free_extent_map(em);
fb7669b5
JB
4492 return 1;
4493 }
4494
f188591e
CM
4495 map = (struct map_lookup *)em->bdev;
4496 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4497 ret = map->num_stripes;
321aecc6
CM
4498 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4499 ret = map->sub_stripes;
53b381b3
DW
4500 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4501 ret = 2;
4502 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4503 ret = 3;
f188591e
CM
4504 else
4505 ret = 1;
4506 free_extent_map(em);
ad6d620e
SB
4507
4508 btrfs_dev_replace_lock(&fs_info->dev_replace);
4509 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4510 ret++;
4511 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4512
f188591e
CM
4513 return ret;
4514}
4515
53b381b3
DW
4516unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4517 struct btrfs_mapping_tree *map_tree,
4518 u64 logical)
4519{
4520 struct extent_map *em;
4521 struct map_lookup *map;
4522 struct extent_map_tree *em_tree = &map_tree->map_tree;
4523 unsigned long len = root->sectorsize;
4524
4525 read_lock(&em_tree->lock);
4526 em = lookup_extent_mapping(em_tree, logical, len);
4527 read_unlock(&em_tree->lock);
4528 BUG_ON(!em);
4529
4530 BUG_ON(em->start > logical || em->start + em->len < logical);
4531 map = (struct map_lookup *)em->bdev;
4532 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4533 BTRFS_BLOCK_GROUP_RAID6)) {
4534 len = map->stripe_len * nr_data_stripes(map);
4535 }
4536 free_extent_map(em);
4537 return len;
4538}
4539
4540int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4541 u64 logical, u64 len, int mirror_num)
4542{
4543 struct extent_map *em;
4544 struct map_lookup *map;
4545 struct extent_map_tree *em_tree = &map_tree->map_tree;
4546 int ret = 0;
4547
4548 read_lock(&em_tree->lock);
4549 em = lookup_extent_mapping(em_tree, logical, len);
4550 read_unlock(&em_tree->lock);
4551 BUG_ON(!em);
4552
4553 BUG_ON(em->start > logical || em->start + em->len < logical);
4554 map = (struct map_lookup *)em->bdev;
4555 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4556 BTRFS_BLOCK_GROUP_RAID6))
4557 ret = 1;
4558 free_extent_map(em);
4559 return ret;
4560}
4561
30d9861f
SB
4562static int find_live_mirror(struct btrfs_fs_info *fs_info,
4563 struct map_lookup *map, int first, int num,
4564 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4565{
4566 int i;
30d9861f
SB
4567 int tolerance;
4568 struct btrfs_device *srcdev;
4569
4570 if (dev_replace_is_ongoing &&
4571 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4572 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4573 srcdev = fs_info->dev_replace.srcdev;
4574 else
4575 srcdev = NULL;
4576
4577 /*
4578 * try to avoid the drive that is the source drive for a
4579 * dev-replace procedure, only choose it if no other non-missing
4580 * mirror is available
4581 */
4582 for (tolerance = 0; tolerance < 2; tolerance++) {
4583 if (map->stripes[optimal].dev->bdev &&
4584 (tolerance || map->stripes[optimal].dev != srcdev))
4585 return optimal;
4586 for (i = first; i < first + num; i++) {
4587 if (map->stripes[i].dev->bdev &&
4588 (tolerance || map->stripes[i].dev != srcdev))
4589 return i;
4590 }
dfe25020 4591 }
30d9861f 4592
dfe25020
CM
4593 /* we couldn't find one that doesn't fail. Just return something
4594 * and the io error handling code will clean up eventually
4595 */
4596 return optimal;
4597}
4598
53b381b3
DW
4599static inline int parity_smaller(u64 a, u64 b)
4600{
4601 return a > b;
4602}
4603
4604/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4605static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4606{
4607 struct btrfs_bio_stripe s;
4608 int i;
4609 u64 l;
4610 int again = 1;
4611
4612 while (again) {
4613 again = 0;
4614 for (i = 0; i < bbio->num_stripes - 1; i++) {
4615 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4616 s = bbio->stripes[i];
4617 l = raid_map[i];
4618 bbio->stripes[i] = bbio->stripes[i+1];
4619 raid_map[i] = raid_map[i+1];
4620 bbio->stripes[i+1] = s;
4621 raid_map[i+1] = l;
4622 again = 1;
4623 }
4624 }
4625 }
4626}
4627
3ec706c8 4628static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4629 u64 logical, u64 *length,
a1d3c478 4630 struct btrfs_bio **bbio_ret,
53b381b3 4631 int mirror_num, u64 **raid_map_ret)
0b86a832
CM
4632{
4633 struct extent_map *em;
4634 struct map_lookup *map;
3ec706c8 4635 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
4636 struct extent_map_tree *em_tree = &map_tree->map_tree;
4637 u64 offset;
593060d7 4638 u64 stripe_offset;
fce3bb9a 4639 u64 stripe_end_offset;
593060d7 4640 u64 stripe_nr;
fce3bb9a
LD
4641 u64 stripe_nr_orig;
4642 u64 stripe_nr_end;
53b381b3
DW
4643 u64 stripe_len;
4644 u64 *raid_map = NULL;
593060d7 4645 int stripe_index;
cea9e445 4646 int i;
de11cc12 4647 int ret = 0;
f2d8d74d 4648 int num_stripes;
a236aed1 4649 int max_errors = 0;
a1d3c478 4650 struct btrfs_bio *bbio = NULL;
472262f3
SB
4651 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4652 int dev_replace_is_ongoing = 0;
4653 int num_alloc_stripes;
ad6d620e
SB
4654 int patch_the_first_stripe_for_dev_replace = 0;
4655 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 4656 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 4657
890871be 4658 read_lock(&em_tree->lock);
0b86a832 4659 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 4660 read_unlock(&em_tree->lock);
f2d8d74d 4661
3b951516 4662 if (!em) {
c2cf52eb 4663 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 4664 logical, *length);
9bb91873
JB
4665 return -EINVAL;
4666 }
4667
4668 if (em->start > logical || em->start + em->len < logical) {
4669 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4670 "found %Lu-%Lu\n", logical, em->start,
4671 em->start + em->len);
7d3d1744 4672 free_extent_map(em);
9bb91873 4673 return -EINVAL;
3b951516 4674 }
0b86a832 4675
0b86a832
CM
4676 map = (struct map_lookup *)em->bdev;
4677 offset = logical - em->start;
593060d7 4678
53b381b3 4679 stripe_len = map->stripe_len;
593060d7
CM
4680 stripe_nr = offset;
4681 /*
4682 * stripe_nr counts the total number of stripes we have to stride
4683 * to get to this block
4684 */
53b381b3 4685 do_div(stripe_nr, stripe_len);
593060d7 4686
53b381b3 4687 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
4688 BUG_ON(offset < stripe_offset);
4689
4690 /* stripe_offset is the offset of this block in its stripe*/
4691 stripe_offset = offset - stripe_offset;
4692
53b381b3
DW
4693 /* if we're here for raid56, we need to know the stripe aligned start */
4694 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4695 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4696 raid56_full_stripe_start = offset;
4697
4698 /* allow a write of a full stripe, but make sure we don't
4699 * allow straddling of stripes
4700 */
4701 do_div(raid56_full_stripe_start, full_stripe_len);
4702 raid56_full_stripe_start *= full_stripe_len;
4703 }
4704
4705 if (rw & REQ_DISCARD) {
4706 /* we don't discard raid56 yet */
4707 if (map->type &
4708 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4709 ret = -EOPNOTSUPP;
4710 goto out;
4711 }
fce3bb9a 4712 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
4713 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4714 u64 max_len;
4715 /* For writes to RAID[56], allow a full stripeset across all disks.
4716 For other RAID types and for RAID[56] reads, just allow a single
4717 stripe (on a single disk). */
4718 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4719 (rw & REQ_WRITE)) {
4720 max_len = stripe_len * nr_data_stripes(map) -
4721 (offset - raid56_full_stripe_start);
4722 } else {
4723 /* we limit the length of each bio to what fits in a stripe */
4724 max_len = stripe_len - stripe_offset;
4725 }
4726 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
4727 } else {
4728 *length = em->len - offset;
4729 }
f2d8d74d 4730
53b381b3
DW
4731 /* This is for when we're called from btrfs_merge_bio_hook() and all
4732 it cares about is the length */
a1d3c478 4733 if (!bbio_ret)
cea9e445
CM
4734 goto out;
4735
472262f3
SB
4736 btrfs_dev_replace_lock(dev_replace);
4737 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4738 if (!dev_replace_is_ongoing)
4739 btrfs_dev_replace_unlock(dev_replace);
4740
ad6d620e
SB
4741 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4742 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4743 dev_replace->tgtdev != NULL) {
4744 /*
4745 * in dev-replace case, for repair case (that's the only
4746 * case where the mirror is selected explicitly when
4747 * calling btrfs_map_block), blocks left of the left cursor
4748 * can also be read from the target drive.
4749 * For REQ_GET_READ_MIRRORS, the target drive is added as
4750 * the last one to the array of stripes. For READ, it also
4751 * needs to be supported using the same mirror number.
4752 * If the requested block is not left of the left cursor,
4753 * EIO is returned. This can happen because btrfs_num_copies()
4754 * returns one more in the dev-replace case.
4755 */
4756 u64 tmp_length = *length;
4757 struct btrfs_bio *tmp_bbio = NULL;
4758 int tmp_num_stripes;
4759 u64 srcdev_devid = dev_replace->srcdev->devid;
4760 int index_srcdev = 0;
4761 int found = 0;
4762 u64 physical_of_found = 0;
4763
4764 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
53b381b3 4765 logical, &tmp_length, &tmp_bbio, 0, NULL);
ad6d620e
SB
4766 if (ret) {
4767 WARN_ON(tmp_bbio != NULL);
4768 goto out;
4769 }
4770
4771 tmp_num_stripes = tmp_bbio->num_stripes;
4772 if (mirror_num > tmp_num_stripes) {
4773 /*
4774 * REQ_GET_READ_MIRRORS does not contain this
4775 * mirror, that means that the requested area
4776 * is not left of the left cursor
4777 */
4778 ret = -EIO;
4779 kfree(tmp_bbio);
4780 goto out;
4781 }
4782
4783 /*
4784 * process the rest of the function using the mirror_num
4785 * of the source drive. Therefore look it up first.
4786 * At the end, patch the device pointer to the one of the
4787 * target drive.
4788 */
4789 for (i = 0; i < tmp_num_stripes; i++) {
4790 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4791 /*
4792 * In case of DUP, in order to keep it
4793 * simple, only add the mirror with the
4794 * lowest physical address
4795 */
4796 if (found &&
4797 physical_of_found <=
4798 tmp_bbio->stripes[i].physical)
4799 continue;
4800 index_srcdev = i;
4801 found = 1;
4802 physical_of_found =
4803 tmp_bbio->stripes[i].physical;
4804 }
4805 }
4806
4807 if (found) {
4808 mirror_num = index_srcdev + 1;
4809 patch_the_first_stripe_for_dev_replace = 1;
4810 physical_to_patch_in_first_stripe = physical_of_found;
4811 } else {
4812 WARN_ON(1);
4813 ret = -EIO;
4814 kfree(tmp_bbio);
4815 goto out;
4816 }
4817
4818 kfree(tmp_bbio);
4819 } else if (mirror_num > map->num_stripes) {
4820 mirror_num = 0;
4821 }
4822
f2d8d74d 4823 num_stripes = 1;
cea9e445 4824 stripe_index = 0;
fce3bb9a 4825 stripe_nr_orig = stripe_nr;
fda2832f 4826 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
fce3bb9a
LD
4827 do_div(stripe_nr_end, map->stripe_len);
4828 stripe_end_offset = stripe_nr_end * map->stripe_len -
4829 (offset + *length);
53b381b3 4830
fce3bb9a
LD
4831 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4832 if (rw & REQ_DISCARD)
4833 num_stripes = min_t(u64, map->num_stripes,
4834 stripe_nr_end - stripe_nr_orig);
4835 stripe_index = do_div(stripe_nr, map->num_stripes);
4836 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 4837 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 4838 num_stripes = map->num_stripes;
2fff734f 4839 else if (mirror_num)
f188591e 4840 stripe_index = mirror_num - 1;
dfe25020 4841 else {
30d9861f 4842 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 4843 map->num_stripes,
30d9861f
SB
4844 current->pid % map->num_stripes,
4845 dev_replace_is_ongoing);
a1d3c478 4846 mirror_num = stripe_index + 1;
dfe25020 4847 }
2fff734f 4848
611f0e00 4849 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 4850 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 4851 num_stripes = map->num_stripes;
a1d3c478 4852 } else if (mirror_num) {
f188591e 4853 stripe_index = mirror_num - 1;
a1d3c478
JS
4854 } else {
4855 mirror_num = 1;
4856 }
2fff734f 4857
321aecc6
CM
4858 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4859 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
4860
4861 stripe_index = do_div(stripe_nr, factor);
4862 stripe_index *= map->sub_stripes;
4863
29a8d9a0 4864 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 4865 num_stripes = map->sub_stripes;
fce3bb9a
LD
4866 else if (rw & REQ_DISCARD)
4867 num_stripes = min_t(u64, map->sub_stripes *
4868 (stripe_nr_end - stripe_nr_orig),
4869 map->num_stripes);
321aecc6
CM
4870 else if (mirror_num)
4871 stripe_index += mirror_num - 1;
dfe25020 4872 else {
3e74317a 4873 int old_stripe_index = stripe_index;
30d9861f
SB
4874 stripe_index = find_live_mirror(fs_info, map,
4875 stripe_index,
dfe25020 4876 map->sub_stripes, stripe_index +
30d9861f
SB
4877 current->pid % map->sub_stripes,
4878 dev_replace_is_ongoing);
3e74317a 4879 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 4880 }
53b381b3
DW
4881
4882 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4883 BTRFS_BLOCK_GROUP_RAID6)) {
4884 u64 tmp;
4885
4886 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4887 && raid_map_ret) {
4888 int i, rot;
4889
4890 /* push stripe_nr back to the start of the full stripe */
4891 stripe_nr = raid56_full_stripe_start;
4892 do_div(stripe_nr, stripe_len);
4893
4894 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4895
4896 /* RAID[56] write or recovery. Return all stripes */
4897 num_stripes = map->num_stripes;
4898 max_errors = nr_parity_stripes(map);
4899
4900 raid_map = kmalloc(sizeof(u64) * num_stripes,
4901 GFP_NOFS);
4902 if (!raid_map) {
4903 ret = -ENOMEM;
4904 goto out;
4905 }
4906
4907 /* Work out the disk rotation on this stripe-set */
4908 tmp = stripe_nr;
4909 rot = do_div(tmp, num_stripes);
4910
4911 /* Fill in the logical address of each stripe */
4912 tmp = stripe_nr * nr_data_stripes(map);
4913 for (i = 0; i < nr_data_stripes(map); i++)
4914 raid_map[(i+rot) % num_stripes] =
4915 em->start + (tmp + i) * map->stripe_len;
4916
4917 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4918 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4919 raid_map[(i+rot+1) % num_stripes] =
4920 RAID6_Q_STRIPE;
4921
4922 *length = map->stripe_len;
4923 stripe_index = 0;
4924 stripe_offset = 0;
4925 } else {
4926 /*
4927 * Mirror #0 or #1 means the original data block.
4928 * Mirror #2 is RAID5 parity block.
4929 * Mirror #3 is RAID6 Q block.
4930 */
4931 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4932 if (mirror_num > 1)
4933 stripe_index = nr_data_stripes(map) +
4934 mirror_num - 2;
4935
4936 /* We distribute the parity blocks across stripes */
4937 tmp = stripe_nr + stripe_index;
4938 stripe_index = do_div(tmp, map->num_stripes);
4939 }
8790d502
CM
4940 } else {
4941 /*
4942 * after this do_div call, stripe_nr is the number of stripes
4943 * on this device we have to walk to find the data, and
4944 * stripe_index is the number of our device in the stripe array
4945 */
4946 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 4947 mirror_num = stripe_index + 1;
8790d502 4948 }
593060d7 4949 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 4950
472262f3 4951 num_alloc_stripes = num_stripes;
ad6d620e
SB
4952 if (dev_replace_is_ongoing) {
4953 if (rw & (REQ_WRITE | REQ_DISCARD))
4954 num_alloc_stripes <<= 1;
4955 if (rw & REQ_GET_READ_MIRRORS)
4956 num_alloc_stripes++;
4957 }
472262f3 4958 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
de11cc12 4959 if (!bbio) {
eb2067f7 4960 kfree(raid_map);
de11cc12
LZ
4961 ret = -ENOMEM;
4962 goto out;
4963 }
4964 atomic_set(&bbio->error, 0);
4965
fce3bb9a 4966 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
4967 int factor = 0;
4968 int sub_stripes = 0;
4969 u64 stripes_per_dev = 0;
4970 u32 remaining_stripes = 0;
b89203f7 4971 u32 last_stripe = 0;
ec9ef7a1
LZ
4972
4973 if (map->type &
4974 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4975 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4976 sub_stripes = 1;
4977 else
4978 sub_stripes = map->sub_stripes;
4979
4980 factor = map->num_stripes / sub_stripes;
4981 stripes_per_dev = div_u64_rem(stripe_nr_end -
4982 stripe_nr_orig,
4983 factor,
4984 &remaining_stripes);
b89203f7
LB
4985 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
4986 last_stripe *= sub_stripes;
ec9ef7a1
LZ
4987 }
4988
fce3bb9a 4989 for (i = 0; i < num_stripes; i++) {
a1d3c478 4990 bbio->stripes[i].physical =
f2d8d74d
CM
4991 map->stripes[stripe_index].physical +
4992 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 4993 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 4994
ec9ef7a1
LZ
4995 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
4996 BTRFS_BLOCK_GROUP_RAID10)) {
4997 bbio->stripes[i].length = stripes_per_dev *
4998 map->stripe_len;
b89203f7 4999
ec9ef7a1
LZ
5000 if (i / sub_stripes < remaining_stripes)
5001 bbio->stripes[i].length +=
5002 map->stripe_len;
b89203f7
LB
5003
5004 /*
5005 * Special for the first stripe and
5006 * the last stripe:
5007 *
5008 * |-------|...|-------|
5009 * |----------|
5010 * off end_off
5011 */
ec9ef7a1 5012 if (i < sub_stripes)
a1d3c478 5013 bbio->stripes[i].length -=
fce3bb9a 5014 stripe_offset;
b89203f7
LB
5015
5016 if (stripe_index >= last_stripe &&
5017 stripe_index <= (last_stripe +
5018 sub_stripes - 1))
a1d3c478 5019 bbio->stripes[i].length -=
fce3bb9a 5020 stripe_end_offset;
b89203f7 5021
ec9ef7a1
LZ
5022 if (i == sub_stripes - 1)
5023 stripe_offset = 0;
fce3bb9a 5024 } else
a1d3c478 5025 bbio->stripes[i].length = *length;
fce3bb9a
LD
5026
5027 stripe_index++;
5028 if (stripe_index == map->num_stripes) {
5029 /* This could only happen for RAID0/10 */
5030 stripe_index = 0;
5031 stripe_nr++;
5032 }
5033 }
5034 } else {
5035 for (i = 0; i < num_stripes; i++) {
a1d3c478 5036 bbio->stripes[i].physical =
212a17ab
LT
5037 map->stripes[stripe_index].physical +
5038 stripe_offset +
5039 stripe_nr * map->stripe_len;
a1d3c478 5040 bbio->stripes[i].dev =
212a17ab 5041 map->stripes[stripe_index].dev;
fce3bb9a 5042 stripe_index++;
f2d8d74d 5043 }
593060d7 5044 }
de11cc12 5045
29a8d9a0 5046 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
de11cc12
LZ
5047 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5048 BTRFS_BLOCK_GROUP_RAID10 |
53b381b3 5049 BTRFS_BLOCK_GROUP_RAID5 |
de11cc12
LZ
5050 BTRFS_BLOCK_GROUP_DUP)) {
5051 max_errors = 1;
53b381b3
DW
5052 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5053 max_errors = 2;
de11cc12 5054 }
f2d8d74d 5055 }
de11cc12 5056
472262f3
SB
5057 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5058 dev_replace->tgtdev != NULL) {
5059 int index_where_to_add;
5060 u64 srcdev_devid = dev_replace->srcdev->devid;
5061
5062 /*
5063 * duplicate the write operations while the dev replace
5064 * procedure is running. Since the copying of the old disk
5065 * to the new disk takes place at run time while the
5066 * filesystem is mounted writable, the regular write
5067 * operations to the old disk have to be duplicated to go
5068 * to the new disk as well.
5069 * Note that device->missing is handled by the caller, and
5070 * that the write to the old disk is already set up in the
5071 * stripes array.
5072 */
5073 index_where_to_add = num_stripes;
5074 for (i = 0; i < num_stripes; i++) {
5075 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5076 /* write to new disk, too */
5077 struct btrfs_bio_stripe *new =
5078 bbio->stripes + index_where_to_add;
5079 struct btrfs_bio_stripe *old =
5080 bbio->stripes + i;
5081
5082 new->physical = old->physical;
5083 new->length = old->length;
5084 new->dev = dev_replace->tgtdev;
5085 index_where_to_add++;
5086 max_errors++;
5087 }
5088 }
5089 num_stripes = index_where_to_add;
ad6d620e
SB
5090 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5091 dev_replace->tgtdev != NULL) {
5092 u64 srcdev_devid = dev_replace->srcdev->devid;
5093 int index_srcdev = 0;
5094 int found = 0;
5095 u64 physical_of_found = 0;
5096
5097 /*
5098 * During the dev-replace procedure, the target drive can
5099 * also be used to read data in case it is needed to repair
5100 * a corrupt block elsewhere. This is possible if the
5101 * requested area is left of the left cursor. In this area,
5102 * the target drive is a full copy of the source drive.
5103 */
5104 for (i = 0; i < num_stripes; i++) {
5105 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5106 /*
5107 * In case of DUP, in order to keep it
5108 * simple, only add the mirror with the
5109 * lowest physical address
5110 */
5111 if (found &&
5112 physical_of_found <=
5113 bbio->stripes[i].physical)
5114 continue;
5115 index_srcdev = i;
5116 found = 1;
5117 physical_of_found = bbio->stripes[i].physical;
5118 }
5119 }
5120 if (found) {
5121 u64 length = map->stripe_len;
5122
5123 if (physical_of_found + length <=
5124 dev_replace->cursor_left) {
5125 struct btrfs_bio_stripe *tgtdev_stripe =
5126 bbio->stripes + num_stripes;
5127
5128 tgtdev_stripe->physical = physical_of_found;
5129 tgtdev_stripe->length =
5130 bbio->stripes[index_srcdev].length;
5131 tgtdev_stripe->dev = dev_replace->tgtdev;
5132
5133 num_stripes++;
5134 }
5135 }
472262f3
SB
5136 }
5137
de11cc12
LZ
5138 *bbio_ret = bbio;
5139 bbio->num_stripes = num_stripes;
5140 bbio->max_errors = max_errors;
5141 bbio->mirror_num = mirror_num;
ad6d620e
SB
5142
5143 /*
5144 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5145 * mirror_num == num_stripes + 1 && dev_replace target drive is
5146 * available as a mirror
5147 */
5148 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5149 WARN_ON(num_stripes > 1);
5150 bbio->stripes[0].dev = dev_replace->tgtdev;
5151 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5152 bbio->mirror_num = map->num_stripes + 1;
5153 }
53b381b3
DW
5154 if (raid_map) {
5155 sort_parity_stripes(bbio, raid_map);
5156 *raid_map_ret = raid_map;
5157 }
cea9e445 5158out:
472262f3
SB
5159 if (dev_replace_is_ongoing)
5160 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5161 free_extent_map(em);
de11cc12 5162 return ret;
0b86a832
CM
5163}
5164
3ec706c8 5165int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5166 u64 logical, u64 *length,
a1d3c478 5167 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5168{
3ec706c8 5169 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
53b381b3 5170 mirror_num, NULL);
f2d8d74d
CM
5171}
5172
a512bbf8
YZ
5173int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5174 u64 chunk_start, u64 physical, u64 devid,
5175 u64 **logical, int *naddrs, int *stripe_len)
5176{
5177 struct extent_map_tree *em_tree = &map_tree->map_tree;
5178 struct extent_map *em;
5179 struct map_lookup *map;
5180 u64 *buf;
5181 u64 bytenr;
5182 u64 length;
5183 u64 stripe_nr;
53b381b3 5184 u64 rmap_len;
a512bbf8
YZ
5185 int i, j, nr = 0;
5186
890871be 5187 read_lock(&em_tree->lock);
a512bbf8 5188 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5189 read_unlock(&em_tree->lock);
a512bbf8 5190
835d974f
JB
5191 if (!em) {
5192 printk(KERN_ERR "btrfs: couldn't find em for chunk %Lu\n",
5193 chunk_start);
5194 return -EIO;
5195 }
5196
5197 if (em->start != chunk_start) {
5198 printk(KERN_ERR "btrfs: bad chunk start, em=%Lu, wanted=%Lu\n",
5199 em->start, chunk_start);
5200 free_extent_map(em);
5201 return -EIO;
5202 }
a512bbf8
YZ
5203 map = (struct map_lookup *)em->bdev;
5204
5205 length = em->len;
53b381b3
DW
5206 rmap_len = map->stripe_len;
5207
a512bbf8
YZ
5208 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5209 do_div(length, map->num_stripes / map->sub_stripes);
5210 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5211 do_div(length, map->num_stripes);
53b381b3
DW
5212 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5213 BTRFS_BLOCK_GROUP_RAID6)) {
5214 do_div(length, nr_data_stripes(map));
5215 rmap_len = map->stripe_len * nr_data_stripes(map);
5216 }
a512bbf8
YZ
5217
5218 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 5219 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5220
5221 for (i = 0; i < map->num_stripes; i++) {
5222 if (devid && map->stripes[i].dev->devid != devid)
5223 continue;
5224 if (map->stripes[i].physical > physical ||
5225 map->stripes[i].physical + length <= physical)
5226 continue;
5227
5228 stripe_nr = physical - map->stripes[i].physical;
5229 do_div(stripe_nr, map->stripe_len);
5230
5231 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5232 stripe_nr = stripe_nr * map->num_stripes + i;
5233 do_div(stripe_nr, map->sub_stripes);
5234 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5235 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5236 } /* else if RAID[56], multiply by nr_data_stripes().
5237 * Alternatively, just use rmap_len below instead of
5238 * map->stripe_len */
5239
5240 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5241 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5242 for (j = 0; j < nr; j++) {
5243 if (buf[j] == bytenr)
5244 break;
5245 }
934d375b
CM
5246 if (j == nr) {
5247 WARN_ON(nr >= map->num_stripes);
a512bbf8 5248 buf[nr++] = bytenr;
934d375b 5249 }
a512bbf8
YZ
5250 }
5251
a512bbf8
YZ
5252 *logical = buf;
5253 *naddrs = nr;
53b381b3 5254 *stripe_len = rmap_len;
a512bbf8
YZ
5255
5256 free_extent_map(em);
5257 return 0;
f2d8d74d
CM
5258}
5259
a1d3c478 5260static void btrfs_end_bio(struct bio *bio, int err)
8790d502 5261{
9be3395b 5262 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5263 int is_orig_bio = 0;
8790d502 5264
442a4f63 5265 if (err) {
a1d3c478 5266 atomic_inc(&bbio->error);
442a4f63
SB
5267 if (err == -EIO || err == -EREMOTEIO) {
5268 unsigned int stripe_index =
9be3395b 5269 btrfs_io_bio(bio)->stripe_index;
442a4f63
SB
5270 struct btrfs_device *dev;
5271
5272 BUG_ON(stripe_index >= bbio->num_stripes);
5273 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5274 if (dev->bdev) {
5275 if (bio->bi_rw & WRITE)
5276 btrfs_dev_stat_inc(dev,
5277 BTRFS_DEV_STAT_WRITE_ERRS);
5278 else
5279 btrfs_dev_stat_inc(dev,
5280 BTRFS_DEV_STAT_READ_ERRS);
5281 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5282 btrfs_dev_stat_inc(dev,
5283 BTRFS_DEV_STAT_FLUSH_ERRS);
5284 btrfs_dev_stat_print_on_error(dev);
5285 }
442a4f63
SB
5286 }
5287 }
8790d502 5288
a1d3c478 5289 if (bio == bbio->orig_bio)
7d2b4daa
CM
5290 is_orig_bio = 1;
5291
a1d3c478 5292 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5293 if (!is_orig_bio) {
5294 bio_put(bio);
a1d3c478 5295 bio = bbio->orig_bio;
7d2b4daa 5296 }
a1d3c478
JS
5297 bio->bi_private = bbio->private;
5298 bio->bi_end_io = bbio->end_io;
9be3395b 5299 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5300 /* only send an error to the higher layers if it is
53b381b3 5301 * beyond the tolerance of the btrfs bio
a236aed1 5302 */
a1d3c478 5303 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 5304 err = -EIO;
5dbc8fca 5305 } else {
1259ab75
CM
5306 /*
5307 * this bio is actually up to date, we didn't
5308 * go over the max number of errors
5309 */
5310 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 5311 err = 0;
1259ab75 5312 }
a1d3c478 5313 kfree(bbio);
8790d502
CM
5314
5315 bio_endio(bio, err);
7d2b4daa 5316 } else if (!is_orig_bio) {
8790d502
CM
5317 bio_put(bio);
5318 }
8790d502
CM
5319}
5320
8b712842
CM
5321struct async_sched {
5322 struct bio *bio;
5323 int rw;
5324 struct btrfs_fs_info *info;
5325 struct btrfs_work work;
5326};
5327
5328/*
5329 * see run_scheduled_bios for a description of why bios are collected for
5330 * async submit.
5331 *
5332 * This will add one bio to the pending list for a device and make sure
5333 * the work struct is scheduled.
5334 */
48a3b636
ES
5335static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5336 struct btrfs_device *device,
5337 int rw, struct bio *bio)
8b712842
CM
5338{
5339 int should_queue = 1;
ffbd517d 5340 struct btrfs_pending_bios *pending_bios;
8b712842 5341
53b381b3
DW
5342 if (device->missing || !device->bdev) {
5343 bio_endio(bio, -EIO);
5344 return;
5345 }
5346
8b712842 5347 /* don't bother with additional async steps for reads, right now */
7b6d91da 5348 if (!(rw & REQ_WRITE)) {
492bb6de 5349 bio_get(bio);
21adbd5c 5350 btrfsic_submit_bio(rw, bio);
492bb6de 5351 bio_put(bio);
143bede5 5352 return;
8b712842
CM
5353 }
5354
5355 /*
0986fe9e 5356 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5357 * higher layers. Otherwise, the async bio makes it appear we have
5358 * made progress against dirty pages when we've really just put it
5359 * on a queue for later
5360 */
0986fe9e 5361 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5362 WARN_ON(bio->bi_next);
8b712842
CM
5363 bio->bi_next = NULL;
5364 bio->bi_rw |= rw;
5365
5366 spin_lock(&device->io_lock);
7b6d91da 5367 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5368 pending_bios = &device->pending_sync_bios;
5369 else
5370 pending_bios = &device->pending_bios;
8b712842 5371
ffbd517d
CM
5372 if (pending_bios->tail)
5373 pending_bios->tail->bi_next = bio;
8b712842 5374
ffbd517d
CM
5375 pending_bios->tail = bio;
5376 if (!pending_bios->head)
5377 pending_bios->head = bio;
8b712842
CM
5378 if (device->running_pending)
5379 should_queue = 0;
5380
5381 spin_unlock(&device->io_lock);
5382
5383 if (should_queue)
1cc127b5
CM
5384 btrfs_queue_worker(&root->fs_info->submit_workers,
5385 &device->work);
8b712842
CM
5386}
5387
de1ee92a
JB
5388static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5389 sector_t sector)
5390{
5391 struct bio_vec *prev;
5392 struct request_queue *q = bdev_get_queue(bdev);
5393 unsigned short max_sectors = queue_max_sectors(q);
5394 struct bvec_merge_data bvm = {
5395 .bi_bdev = bdev,
5396 .bi_sector = sector,
5397 .bi_rw = bio->bi_rw,
5398 };
5399
5400 if (bio->bi_vcnt == 0) {
5401 WARN_ON(1);
5402 return 1;
5403 }
5404
5405 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
aa8b57aa 5406 if (bio_sectors(bio) > max_sectors)
de1ee92a
JB
5407 return 0;
5408
5409 if (!q->merge_bvec_fn)
5410 return 1;
5411
5412 bvm.bi_size = bio->bi_size - prev->bv_len;
5413 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5414 return 0;
5415 return 1;
5416}
5417
5418static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5419 struct bio *bio, u64 physical, int dev_nr,
5420 int rw, int async)
5421{
5422 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5423
5424 bio->bi_private = bbio;
9be3395b 5425 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a
JB
5426 bio->bi_end_io = btrfs_end_bio;
5427 bio->bi_sector = physical >> 9;
5428#ifdef DEBUG
5429 {
5430 struct rcu_string *name;
5431
5432 rcu_read_lock();
5433 name = rcu_dereference(dev->name);
d1423248 5434 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a
JB
5435 "(%s id %llu), size=%u\n", rw,
5436 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5437 name->str, dev->devid, bio->bi_size);
5438 rcu_read_unlock();
5439 }
5440#endif
5441 bio->bi_bdev = dev->bdev;
5442 if (async)
53b381b3 5443 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5444 else
5445 btrfsic_submit_bio(rw, bio);
5446}
5447
5448static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5449 struct bio *first_bio, struct btrfs_device *dev,
5450 int dev_nr, int rw, int async)
5451{
5452 struct bio_vec *bvec = first_bio->bi_io_vec;
5453 struct bio *bio;
5454 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5455 u64 physical = bbio->stripes[dev_nr].physical;
5456
5457again:
5458 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5459 if (!bio)
5460 return -ENOMEM;
5461
5462 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5463 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5464 bvec->bv_offset) < bvec->bv_len) {
5465 u64 len = bio->bi_size;
5466
5467 atomic_inc(&bbio->stripes_pending);
5468 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5469 rw, async);
5470 physical += len;
5471 goto again;
5472 }
5473 bvec++;
5474 }
5475
5476 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5477 return 0;
5478}
5479
5480static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5481{
5482 atomic_inc(&bbio->error);
5483 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5484 bio->bi_private = bbio->private;
5485 bio->bi_end_io = bbio->end_io;
9be3395b 5486 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
de1ee92a
JB
5487 bio->bi_sector = logical >> 9;
5488 kfree(bbio);
5489 bio_endio(bio, -EIO);
5490 }
5491}
5492
f188591e 5493int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5494 int mirror_num, int async_submit)
0b86a832 5495{
0b86a832 5496 struct btrfs_device *dev;
8790d502 5497 struct bio *first_bio = bio;
a62b9401 5498 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
5499 u64 length = 0;
5500 u64 map_length;
53b381b3 5501 u64 *raid_map = NULL;
0b86a832 5502 int ret;
8790d502
CM
5503 int dev_nr = 0;
5504 int total_devs = 1;
a1d3c478 5505 struct btrfs_bio *bbio = NULL;
0b86a832 5506
f2d8d74d 5507 length = bio->bi_size;
0b86a832 5508 map_length = length;
cea9e445 5509
53b381b3
DW
5510 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5511 mirror_num, &raid_map);
5512 if (ret) /* -ENOMEM */
79787eaa 5513 return ret;
cea9e445 5514
a1d3c478 5515 total_devs = bbio->num_stripes;
53b381b3
DW
5516 bbio->orig_bio = first_bio;
5517 bbio->private = first_bio->bi_private;
5518 bbio->end_io = first_bio->bi_end_io;
5519 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5520
5521 if (raid_map) {
5522 /* In this case, map_length has been set to the length of
5523 a single stripe; not the whole write */
5524 if (rw & WRITE) {
5525 return raid56_parity_write(root, bio, bbio,
5526 raid_map, map_length);
5527 } else {
5528 return raid56_parity_recover(root, bio, bbio,
5529 raid_map, map_length,
5530 mirror_num);
5531 }
5532 }
5533
cea9e445 5534 if (map_length < length) {
c2cf52eb 5535 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 5536 logical, length, map_length);
cea9e445
CM
5537 BUG();
5538 }
a1d3c478 5539
d397712b 5540 while (dev_nr < total_devs) {
de1ee92a
JB
5541 dev = bbio->stripes[dev_nr].dev;
5542 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5543 bbio_error(bbio, first_bio, logical);
5544 dev_nr++;
5545 continue;
5546 }
5547
5548 /*
5549 * Check and see if we're ok with this bio based on it's size
5550 * and offset with the given device.
5551 */
5552 if (!bio_size_ok(dev->bdev, first_bio,
5553 bbio->stripes[dev_nr].physical >> 9)) {
5554 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5555 dev_nr, rw, async_submit);
5556 BUG_ON(ret);
5557 dev_nr++;
5558 continue;
5559 }
5560
a1d3c478 5561 if (dev_nr < total_devs - 1) {
9be3395b 5562 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 5563 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
5564 } else {
5565 bio = first_bio;
8790d502 5566 }
de1ee92a
JB
5567
5568 submit_stripe_bio(root, bbio, bio,
5569 bbio->stripes[dev_nr].physical, dev_nr, rw,
5570 async_submit);
8790d502
CM
5571 dev_nr++;
5572 }
0b86a832
CM
5573 return 0;
5574}
5575
aa1b8cd4 5576struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 5577 u8 *uuid, u8 *fsid)
0b86a832 5578{
2b82032c
YZ
5579 struct btrfs_device *device;
5580 struct btrfs_fs_devices *cur_devices;
5581
aa1b8cd4 5582 cur_devices = fs_info->fs_devices;
2b82032c
YZ
5583 while (cur_devices) {
5584 if (!fsid ||
5585 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5586 device = __find_device(&cur_devices->devices,
5587 devid, uuid);
5588 if (device)
5589 return device;
5590 }
5591 cur_devices = cur_devices->seed;
5592 }
5593 return NULL;
0b86a832
CM
5594}
5595
dfe25020
CM
5596static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5597 u64 devid, u8 *dev_uuid)
5598{
5599 struct btrfs_device *device;
5600 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5601
12bd2fc0
ID
5602 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5603 if (IS_ERR(device))
7cbd8a83 5604 return NULL;
12bd2fc0
ID
5605
5606 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 5607 device->fs_devices = fs_devices;
dfe25020 5608 fs_devices->num_devices++;
12bd2fc0
ID
5609
5610 device->missing = 1;
cd02dca5 5611 fs_devices->missing_devices++;
12bd2fc0 5612
dfe25020
CM
5613 return device;
5614}
5615
12bd2fc0
ID
5616/**
5617 * btrfs_alloc_device - allocate struct btrfs_device
5618 * @fs_info: used only for generating a new devid, can be NULL if
5619 * devid is provided (i.e. @devid != NULL).
5620 * @devid: a pointer to devid for this device. If NULL a new devid
5621 * is generated.
5622 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5623 * is generated.
5624 *
5625 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5626 * on error. Returned struct is not linked onto any lists and can be
5627 * destroyed with kfree() right away.
5628 */
5629struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5630 const u64 *devid,
5631 const u8 *uuid)
5632{
5633 struct btrfs_device *dev;
5634 u64 tmp;
5635
5636 if (!devid && !fs_info) {
5637 WARN_ON(1);
5638 return ERR_PTR(-EINVAL);
5639 }
5640
5641 dev = __alloc_device();
5642 if (IS_ERR(dev))
5643 return dev;
5644
5645 if (devid)
5646 tmp = *devid;
5647 else {
5648 int ret;
5649
5650 ret = find_next_devid(fs_info, &tmp);
5651 if (ret) {
5652 kfree(dev);
5653 return ERR_PTR(ret);
5654 }
5655 }
5656 dev->devid = tmp;
5657
5658 if (uuid)
5659 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5660 else
5661 generate_random_uuid(dev->uuid);
5662
5663 dev->work.func = pending_bios_fn;
5664
5665 return dev;
5666}
5667
0b86a832
CM
5668static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5669 struct extent_buffer *leaf,
5670 struct btrfs_chunk *chunk)
5671{
5672 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5673 struct map_lookup *map;
5674 struct extent_map *em;
5675 u64 logical;
5676 u64 length;
5677 u64 devid;
a443755f 5678 u8 uuid[BTRFS_UUID_SIZE];
593060d7 5679 int num_stripes;
0b86a832 5680 int ret;
593060d7 5681 int i;
0b86a832 5682
e17cade2
CM
5683 logical = key->offset;
5684 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 5685
890871be 5686 read_lock(&map_tree->map_tree.lock);
0b86a832 5687 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 5688 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
5689
5690 /* already mapped? */
5691 if (em && em->start <= logical && em->start + em->len > logical) {
5692 free_extent_map(em);
0b86a832
CM
5693 return 0;
5694 } else if (em) {
5695 free_extent_map(em);
5696 }
0b86a832 5697
172ddd60 5698 em = alloc_extent_map();
0b86a832
CM
5699 if (!em)
5700 return -ENOMEM;
593060d7
CM
5701 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5702 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
5703 if (!map) {
5704 free_extent_map(em);
5705 return -ENOMEM;
5706 }
5707
5708 em->bdev = (struct block_device *)map;
5709 em->start = logical;
5710 em->len = length;
70c8a91c 5711 em->orig_start = 0;
0b86a832 5712 em->block_start = 0;
c8b97818 5713 em->block_len = em->len;
0b86a832 5714
593060d7
CM
5715 map->num_stripes = num_stripes;
5716 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5717 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5718 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5719 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5720 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 5721 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
5722 for (i = 0; i < num_stripes; i++) {
5723 map->stripes[i].physical =
5724 btrfs_stripe_offset_nr(leaf, chunk, i);
5725 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
5726 read_extent_buffer(leaf, uuid, (unsigned long)
5727 btrfs_stripe_dev_uuid_nr(chunk, i),
5728 BTRFS_UUID_SIZE);
aa1b8cd4
SB
5729 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5730 uuid, NULL);
dfe25020 5731 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
5732 kfree(map);
5733 free_extent_map(em);
5734 return -EIO;
5735 }
dfe25020
CM
5736 if (!map->stripes[i].dev) {
5737 map->stripes[i].dev =
5738 add_missing_dev(root, devid, uuid);
5739 if (!map->stripes[i].dev) {
5740 kfree(map);
5741 free_extent_map(em);
5742 return -EIO;
5743 }
5744 }
5745 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
5746 }
5747
890871be 5748 write_lock(&map_tree->map_tree.lock);
09a2a8f9 5749 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 5750 write_unlock(&map_tree->map_tree.lock);
79787eaa 5751 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
5752 free_extent_map(em);
5753
5754 return 0;
5755}
5756
143bede5 5757static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
5758 struct btrfs_dev_item *dev_item,
5759 struct btrfs_device *device)
5760{
5761 unsigned long ptr;
0b86a832
CM
5762
5763 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
5764 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5765 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
5766 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5767 device->type = btrfs_device_type(leaf, dev_item);
5768 device->io_align = btrfs_device_io_align(leaf, dev_item);
5769 device->io_width = btrfs_device_io_width(leaf, dev_item);
5770 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 5771 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 5772 device->is_tgtdev_for_dev_replace = 0;
0b86a832 5773
410ba3a2 5774 ptr = btrfs_device_uuid(dev_item);
e17cade2 5775 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
5776}
5777
2b82032c
YZ
5778static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5779{
5780 struct btrfs_fs_devices *fs_devices;
5781 int ret;
5782
b367e47f 5783 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
5784
5785 fs_devices = root->fs_info->fs_devices->seed;
5786 while (fs_devices) {
5787 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5788 ret = 0;
5789 goto out;
5790 }
5791 fs_devices = fs_devices->seed;
5792 }
5793
5794 fs_devices = find_fsid(fsid);
5795 if (!fs_devices) {
5796 ret = -ENOENT;
5797 goto out;
5798 }
e4404d6e
YZ
5799
5800 fs_devices = clone_fs_devices(fs_devices);
5801 if (IS_ERR(fs_devices)) {
5802 ret = PTR_ERR(fs_devices);
2b82032c
YZ
5803 goto out;
5804 }
5805
97288f2c 5806 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 5807 root->fs_info->bdev_holder);
48d28232
JL
5808 if (ret) {
5809 free_fs_devices(fs_devices);
2b82032c 5810 goto out;
48d28232 5811 }
2b82032c
YZ
5812
5813 if (!fs_devices->seeding) {
5814 __btrfs_close_devices(fs_devices);
e4404d6e 5815 free_fs_devices(fs_devices);
2b82032c
YZ
5816 ret = -EINVAL;
5817 goto out;
5818 }
5819
5820 fs_devices->seed = root->fs_info->fs_devices->seed;
5821 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 5822out:
2b82032c
YZ
5823 return ret;
5824}
5825
0d81ba5d 5826static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
5827 struct extent_buffer *leaf,
5828 struct btrfs_dev_item *dev_item)
5829{
5830 struct btrfs_device *device;
5831 u64 devid;
5832 int ret;
2b82032c 5833 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
5834 u8 dev_uuid[BTRFS_UUID_SIZE];
5835
0b86a832 5836 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 5837 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 5838 BTRFS_UUID_SIZE);
1473b24e 5839 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
5840 BTRFS_UUID_SIZE);
5841
5842 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5843 ret = open_seed_devices(root, fs_uuid);
e4404d6e 5844 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 5845 return ret;
2b82032c
YZ
5846 }
5847
aa1b8cd4 5848 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
2b82032c 5849 if (!device || !device->bdev) {
e4404d6e 5850 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
5851 return -EIO;
5852
5853 if (!device) {
c1c9ff7c 5854 btrfs_warn(root->fs_info, "devid %llu missing", devid);
2b82032c
YZ
5855 device = add_missing_dev(root, devid, dev_uuid);
5856 if (!device)
5857 return -ENOMEM;
cd02dca5
CM
5858 } else if (!device->missing) {
5859 /*
5860 * this happens when a device that was properly setup
5861 * in the device info lists suddenly goes bad.
5862 * device->bdev is NULL, and so we have to set
5863 * device->missing to one here
5864 */
5865 root->fs_info->fs_devices->missing_devices++;
5866 device->missing = 1;
2b82032c
YZ
5867 }
5868 }
5869
5870 if (device->fs_devices != root->fs_info->fs_devices) {
5871 BUG_ON(device->writeable);
5872 if (device->generation !=
5873 btrfs_device_generation(leaf, dev_item))
5874 return -EINVAL;
6324fbf3 5875 }
0b86a832
CM
5876
5877 fill_device_from_item(leaf, dev_item, device);
dfe25020 5878 device->in_fs_metadata = 1;
63a212ab 5879 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 5880 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
5881 spin_lock(&root->fs_info->free_chunk_lock);
5882 root->fs_info->free_chunk_space += device->total_bytes -
5883 device->bytes_used;
5884 spin_unlock(&root->fs_info->free_chunk_lock);
5885 }
0b86a832 5886 ret = 0;
0b86a832
CM
5887 return ret;
5888}
5889
e4404d6e 5890int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 5891{
6c41761f 5892 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 5893 struct extent_buffer *sb;
0b86a832 5894 struct btrfs_disk_key *disk_key;
0b86a832 5895 struct btrfs_chunk *chunk;
84eed90f
CM
5896 u8 *ptr;
5897 unsigned long sb_ptr;
5898 int ret = 0;
0b86a832
CM
5899 u32 num_stripes;
5900 u32 array_size;
5901 u32 len = 0;
0b86a832 5902 u32 cur;
84eed90f 5903 struct btrfs_key key;
0b86a832 5904
e4404d6e 5905 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
5906 BTRFS_SUPER_INFO_SIZE);
5907 if (!sb)
5908 return -ENOMEM;
5909 btrfs_set_buffer_uptodate(sb);
85d4e461 5910 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
5911 /*
5912 * The sb extent buffer is artifical and just used to read the system array.
5913 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5914 * pages up-to-date when the page is larger: extent does not cover the
5915 * whole page and consequently check_page_uptodate does not find all
5916 * the page's extents up-to-date (the hole beyond sb),
5917 * write_extent_buffer then triggers a WARN_ON.
5918 *
5919 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5920 * but sb spans only this function. Add an explicit SetPageUptodate call
5921 * to silence the warning eg. on PowerPC 64.
5922 */
5923 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 5924 SetPageUptodate(sb->pages[0]);
4008c04a 5925
a061fc8d 5926 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
5927 array_size = btrfs_super_sys_array_size(super_copy);
5928
0b86a832
CM
5929 ptr = super_copy->sys_chunk_array;
5930 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5931 cur = 0;
5932
5933 while (cur < array_size) {
5934 disk_key = (struct btrfs_disk_key *)ptr;
5935 btrfs_disk_key_to_cpu(&key, disk_key);
5936
a061fc8d 5937 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
5938 sb_ptr += len;
5939 cur += len;
5940
0d81ba5d 5941 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 5942 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 5943 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
5944 if (ret)
5945 break;
0b86a832
CM
5946 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5947 len = btrfs_chunk_item_size(num_stripes);
5948 } else {
84eed90f
CM
5949 ret = -EIO;
5950 break;
0b86a832
CM
5951 }
5952 ptr += len;
5953 sb_ptr += len;
5954 cur += len;
5955 }
a061fc8d 5956 free_extent_buffer(sb);
84eed90f 5957 return ret;
0b86a832
CM
5958}
5959
5960int btrfs_read_chunk_tree(struct btrfs_root *root)
5961{
5962 struct btrfs_path *path;
5963 struct extent_buffer *leaf;
5964 struct btrfs_key key;
5965 struct btrfs_key found_key;
5966 int ret;
5967 int slot;
5968
5969 root = root->fs_info->chunk_root;
5970
5971 path = btrfs_alloc_path();
5972 if (!path)
5973 return -ENOMEM;
5974
b367e47f
LZ
5975 mutex_lock(&uuid_mutex);
5976 lock_chunks(root);
5977
395927a9
FDBM
5978 /*
5979 * Read all device items, and then all the chunk items. All
5980 * device items are found before any chunk item (their object id
5981 * is smaller than the lowest possible object id for a chunk
5982 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
5983 */
5984 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
5985 key.offset = 0;
5986 key.type = 0;
0b86a832 5987 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
5988 if (ret < 0)
5989 goto error;
d397712b 5990 while (1) {
0b86a832
CM
5991 leaf = path->nodes[0];
5992 slot = path->slots[0];
5993 if (slot >= btrfs_header_nritems(leaf)) {
5994 ret = btrfs_next_leaf(root, path);
5995 if (ret == 0)
5996 continue;
5997 if (ret < 0)
5998 goto error;
5999 break;
6000 }
6001 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6002 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6003 struct btrfs_dev_item *dev_item;
6004 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6005 struct btrfs_dev_item);
395927a9
FDBM
6006 ret = read_one_dev(root, leaf, dev_item);
6007 if (ret)
6008 goto error;
0b86a832
CM
6009 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6010 struct btrfs_chunk *chunk;
6011 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6012 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6013 if (ret)
6014 goto error;
0b86a832
CM
6015 }
6016 path->slots[0]++;
6017 }
0b86a832
CM
6018 ret = 0;
6019error:
b367e47f
LZ
6020 unlock_chunks(root);
6021 mutex_unlock(&uuid_mutex);
6022
2b82032c 6023 btrfs_free_path(path);
0b86a832
CM
6024 return ret;
6025}
442a4f63 6026
cb517eab
MX
6027void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6028{
6029 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6030 struct btrfs_device *device;
6031
6032 mutex_lock(&fs_devices->device_list_mutex);
6033 list_for_each_entry(device, &fs_devices->devices, dev_list)
6034 device->dev_root = fs_info->dev_root;
6035 mutex_unlock(&fs_devices->device_list_mutex);
6036}
6037
733f4fbb
SB
6038static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6039{
6040 int i;
6041
6042 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6043 btrfs_dev_stat_reset(dev, i);
6044}
6045
6046int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6047{
6048 struct btrfs_key key;
6049 struct btrfs_key found_key;
6050 struct btrfs_root *dev_root = fs_info->dev_root;
6051 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6052 struct extent_buffer *eb;
6053 int slot;
6054 int ret = 0;
6055 struct btrfs_device *device;
6056 struct btrfs_path *path = NULL;
6057 int i;
6058
6059 path = btrfs_alloc_path();
6060 if (!path) {
6061 ret = -ENOMEM;
6062 goto out;
6063 }
6064
6065 mutex_lock(&fs_devices->device_list_mutex);
6066 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6067 int item_size;
6068 struct btrfs_dev_stats_item *ptr;
6069
6070 key.objectid = 0;
6071 key.type = BTRFS_DEV_STATS_KEY;
6072 key.offset = device->devid;
6073 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6074 if (ret) {
733f4fbb
SB
6075 __btrfs_reset_dev_stats(device);
6076 device->dev_stats_valid = 1;
6077 btrfs_release_path(path);
6078 continue;
6079 }
6080 slot = path->slots[0];
6081 eb = path->nodes[0];
6082 btrfs_item_key_to_cpu(eb, &found_key, slot);
6083 item_size = btrfs_item_size_nr(eb, slot);
6084
6085 ptr = btrfs_item_ptr(eb, slot,
6086 struct btrfs_dev_stats_item);
6087
6088 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6089 if (item_size >= (1 + i) * sizeof(__le64))
6090 btrfs_dev_stat_set(device, i,
6091 btrfs_dev_stats_value(eb, ptr, i));
6092 else
6093 btrfs_dev_stat_reset(device, i);
6094 }
6095
6096 device->dev_stats_valid = 1;
6097 btrfs_dev_stat_print_on_load(device);
6098 btrfs_release_path(path);
6099 }
6100 mutex_unlock(&fs_devices->device_list_mutex);
6101
6102out:
6103 btrfs_free_path(path);
6104 return ret < 0 ? ret : 0;
6105}
6106
6107static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6108 struct btrfs_root *dev_root,
6109 struct btrfs_device *device)
6110{
6111 struct btrfs_path *path;
6112 struct btrfs_key key;
6113 struct extent_buffer *eb;
6114 struct btrfs_dev_stats_item *ptr;
6115 int ret;
6116 int i;
6117
6118 key.objectid = 0;
6119 key.type = BTRFS_DEV_STATS_KEY;
6120 key.offset = device->devid;
6121
6122 path = btrfs_alloc_path();
6123 BUG_ON(!path);
6124 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6125 if (ret < 0) {
606686ee
JB
6126 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
6127 ret, rcu_str_deref(device->name));
733f4fbb
SB
6128 goto out;
6129 }
6130
6131 if (ret == 0 &&
6132 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6133 /* need to delete old one and insert a new one */
6134 ret = btrfs_del_item(trans, dev_root, path);
6135 if (ret != 0) {
606686ee
JB
6136 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
6137 rcu_str_deref(device->name), ret);
733f4fbb
SB
6138 goto out;
6139 }
6140 ret = 1;
6141 }
6142
6143 if (ret == 1) {
6144 /* need to insert a new item */
6145 btrfs_release_path(path);
6146 ret = btrfs_insert_empty_item(trans, dev_root, path,
6147 &key, sizeof(*ptr));
6148 if (ret < 0) {
606686ee
JB
6149 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
6150 rcu_str_deref(device->name), ret);
733f4fbb
SB
6151 goto out;
6152 }
6153 }
6154
6155 eb = path->nodes[0];
6156 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6157 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6158 btrfs_set_dev_stats_value(eb, ptr, i,
6159 btrfs_dev_stat_read(device, i));
6160 btrfs_mark_buffer_dirty(eb);
6161
6162out:
6163 btrfs_free_path(path);
6164 return ret;
6165}
6166
6167/*
6168 * called from commit_transaction. Writes all changed device stats to disk.
6169 */
6170int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6171 struct btrfs_fs_info *fs_info)
6172{
6173 struct btrfs_root *dev_root = fs_info->dev_root;
6174 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6175 struct btrfs_device *device;
6176 int ret = 0;
6177
6178 mutex_lock(&fs_devices->device_list_mutex);
6179 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6180 if (!device->dev_stats_valid || !device->dev_stats_dirty)
6181 continue;
6182
6183 ret = update_dev_stat_item(trans, dev_root, device);
6184 if (!ret)
6185 device->dev_stats_dirty = 0;
6186 }
6187 mutex_unlock(&fs_devices->device_list_mutex);
6188
6189 return ret;
6190}
6191
442a4f63
SB
6192void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6193{
6194 btrfs_dev_stat_inc(dev, index);
6195 btrfs_dev_stat_print_on_error(dev);
6196}
6197
48a3b636 6198static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6199{
733f4fbb
SB
6200 if (!dev->dev_stats_valid)
6201 return;
606686ee 6202 printk_ratelimited_in_rcu(KERN_ERR
442a4f63 6203 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6204 rcu_str_deref(dev->name),
442a4f63
SB
6205 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6206 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6207 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6208 btrfs_dev_stat_read(dev,
6209 BTRFS_DEV_STAT_CORRUPTION_ERRS),
6210 btrfs_dev_stat_read(dev,
6211 BTRFS_DEV_STAT_GENERATION_ERRS));
6212}
c11d2c23 6213
733f4fbb
SB
6214static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6215{
a98cdb85
SB
6216 int i;
6217
6218 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6219 if (btrfs_dev_stat_read(dev, i) != 0)
6220 break;
6221 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6222 return; /* all values == 0, suppress message */
6223
606686ee
JB
6224 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6225 rcu_str_deref(dev->name),
733f4fbb
SB
6226 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6227 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6228 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6229 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6230 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6231}
6232
c11d2c23 6233int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6234 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6235{
6236 struct btrfs_device *dev;
6237 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6238 int i;
6239
6240 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6241 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6242 mutex_unlock(&fs_devices->device_list_mutex);
6243
6244 if (!dev) {
6245 printk(KERN_WARNING
6246 "btrfs: get dev_stats failed, device not found\n");
6247 return -ENODEV;
733f4fbb
SB
6248 } else if (!dev->dev_stats_valid) {
6249 printk(KERN_WARNING
6250 "btrfs: get dev_stats failed, not yet valid\n");
6251 return -ENODEV;
b27f7c0c 6252 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6253 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6254 if (stats->nr_items > i)
6255 stats->values[i] =
6256 btrfs_dev_stat_read_and_reset(dev, i);
6257 else
6258 btrfs_dev_stat_reset(dev, i);
6259 }
6260 } else {
6261 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6262 if (stats->nr_items > i)
6263 stats->values[i] = btrfs_dev_stat_read(dev, i);
6264 }
6265 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6266 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6267 return 0;
6268}
a8a6dab7
SB
6269
6270int btrfs_scratch_superblock(struct btrfs_device *device)
6271{
6272 struct buffer_head *bh;
6273 struct btrfs_super_block *disk_super;
6274
6275 bh = btrfs_read_dev_super(device->bdev);
6276 if (!bh)
6277 return -EINVAL;
6278 disk_super = (struct btrfs_super_block *)bh->b_data;
6279
6280 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6281 set_buffer_dirty(bh);
6282 sync_dirty_buffer(bh);
6283 brelse(bh);
6284
6285 return 0;
6286}