Btrfs: validate target profiles only if we are going to use them
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
59641015 26#include <linux/kthread.h>
593060d7 27#include <asm/div64.h>
4b4e25f2 28#include "compat.h"
0b86a832
CM
29#include "ctree.h"
30#include "extent_map.h"
31#include "disk-io.h"
32#include "transaction.h"
33#include "print-tree.h"
34#include "volumes.h"
8b712842 35#include "async-thread.h"
21adbd5c 36#include "check-integrity.h"
0b86a832 37
2b82032c
YZ
38static int init_first_rw_device(struct btrfs_trans_handle *trans,
39 struct btrfs_root *root,
40 struct btrfs_device *device);
41static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
42
8a4b83cc
CM
43static DEFINE_MUTEX(uuid_mutex);
44static LIST_HEAD(fs_uuids);
45
7d9eb12c
CM
46static void lock_chunks(struct btrfs_root *root)
47{
7d9eb12c
CM
48 mutex_lock(&root->fs_info->chunk_mutex);
49}
50
51static void unlock_chunks(struct btrfs_root *root)
52{
7d9eb12c
CM
53 mutex_unlock(&root->fs_info->chunk_mutex);
54}
55
e4404d6e
YZ
56static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
57{
58 struct btrfs_device *device;
59 WARN_ON(fs_devices->opened);
60 while (!list_empty(&fs_devices->devices)) {
61 device = list_entry(fs_devices->devices.next,
62 struct btrfs_device, dev_list);
63 list_del(&device->dev_list);
64 kfree(device->name);
65 kfree(device);
66 }
67 kfree(fs_devices);
68}
69
8a4b83cc
CM
70int btrfs_cleanup_fs_uuids(void)
71{
72 struct btrfs_fs_devices *fs_devices;
8a4b83cc 73
2b82032c
YZ
74 while (!list_empty(&fs_uuids)) {
75 fs_devices = list_entry(fs_uuids.next,
76 struct btrfs_fs_devices, list);
77 list_del(&fs_devices->list);
e4404d6e 78 free_fs_devices(fs_devices);
8a4b83cc
CM
79 }
80 return 0;
81}
82
a1b32a59
CM
83static noinline struct btrfs_device *__find_device(struct list_head *head,
84 u64 devid, u8 *uuid)
8a4b83cc
CM
85{
86 struct btrfs_device *dev;
8a4b83cc 87
c6e30871 88 list_for_each_entry(dev, head, dev_list) {
a443755f 89 if (dev->devid == devid &&
8f18cf13 90 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 91 return dev;
a443755f 92 }
8a4b83cc
CM
93 }
94 return NULL;
95}
96
a1b32a59 97static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 98{
8a4b83cc
CM
99 struct btrfs_fs_devices *fs_devices;
100
c6e30871 101 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
102 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
103 return fs_devices;
104 }
105 return NULL;
106}
107
ffbd517d
CM
108static void requeue_list(struct btrfs_pending_bios *pending_bios,
109 struct bio *head, struct bio *tail)
110{
111
112 struct bio *old_head;
113
114 old_head = pending_bios->head;
115 pending_bios->head = head;
116 if (pending_bios->tail)
117 tail->bi_next = old_head;
118 else
119 pending_bios->tail = tail;
120}
121
8b712842
CM
122/*
123 * we try to collect pending bios for a device so we don't get a large
124 * number of procs sending bios down to the same device. This greatly
125 * improves the schedulers ability to collect and merge the bios.
126 *
127 * But, it also turns into a long list of bios to process and that is sure
128 * to eventually make the worker thread block. The solution here is to
129 * make some progress and then put this work struct back at the end of
130 * the list if the block device is congested. This way, multiple devices
131 * can make progress from a single worker thread.
132 */
d397712b 133static noinline int run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
134{
135 struct bio *pending;
136 struct backing_dev_info *bdi;
b64a2851 137 struct btrfs_fs_info *fs_info;
ffbd517d 138 struct btrfs_pending_bios *pending_bios;
8b712842
CM
139 struct bio *tail;
140 struct bio *cur;
141 int again = 0;
ffbd517d 142 unsigned long num_run;
d644d8a1 143 unsigned long batch_run = 0;
b64a2851 144 unsigned long limit;
b765ead5 145 unsigned long last_waited = 0;
d84275c9 146 int force_reg = 0;
0e588859 147 int sync_pending = 0;
211588ad
CM
148 struct blk_plug plug;
149
150 /*
151 * this function runs all the bios we've collected for
152 * a particular device. We don't want to wander off to
153 * another device without first sending all of these down.
154 * So, setup a plug here and finish it off before we return
155 */
156 blk_start_plug(&plug);
8b712842 157
bedf762b 158 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
159 fs_info = device->dev_root->fs_info;
160 limit = btrfs_async_submit_limit(fs_info);
161 limit = limit * 2 / 3;
162
8b712842
CM
163loop:
164 spin_lock(&device->io_lock);
165
a6837051 166loop_lock:
d84275c9 167 num_run = 0;
ffbd517d 168
8b712842
CM
169 /* take all the bios off the list at once and process them
170 * later on (without the lock held). But, remember the
171 * tail and other pointers so the bios can be properly reinserted
172 * into the list if we hit congestion
173 */
d84275c9 174 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 175 pending_bios = &device->pending_sync_bios;
d84275c9
CM
176 force_reg = 1;
177 } else {
ffbd517d 178 pending_bios = &device->pending_bios;
d84275c9
CM
179 force_reg = 0;
180 }
ffbd517d
CM
181
182 pending = pending_bios->head;
183 tail = pending_bios->tail;
8b712842 184 WARN_ON(pending && !tail);
8b712842
CM
185
186 /*
187 * if pending was null this time around, no bios need processing
188 * at all and we can stop. Otherwise it'll loop back up again
189 * and do an additional check so no bios are missed.
190 *
191 * device->running_pending is used to synchronize with the
192 * schedule_bio code.
193 */
ffbd517d
CM
194 if (device->pending_sync_bios.head == NULL &&
195 device->pending_bios.head == NULL) {
8b712842
CM
196 again = 0;
197 device->running_pending = 0;
ffbd517d
CM
198 } else {
199 again = 1;
200 device->running_pending = 1;
8b712842 201 }
ffbd517d
CM
202
203 pending_bios->head = NULL;
204 pending_bios->tail = NULL;
205
8b712842
CM
206 spin_unlock(&device->io_lock);
207
d397712b 208 while (pending) {
ffbd517d
CM
209
210 rmb();
d84275c9
CM
211 /* we want to work on both lists, but do more bios on the
212 * sync list than the regular list
213 */
214 if ((num_run > 32 &&
215 pending_bios != &device->pending_sync_bios &&
216 device->pending_sync_bios.head) ||
217 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
218 device->pending_bios.head)) {
ffbd517d
CM
219 spin_lock(&device->io_lock);
220 requeue_list(pending_bios, pending, tail);
221 goto loop_lock;
222 }
223
8b712842
CM
224 cur = pending;
225 pending = pending->bi_next;
226 cur->bi_next = NULL;
b64a2851
CM
227 atomic_dec(&fs_info->nr_async_bios);
228
229 if (atomic_read(&fs_info->nr_async_bios) < limit &&
230 waitqueue_active(&fs_info->async_submit_wait))
231 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
232
233 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 234
2ab1ba68
CM
235 /*
236 * if we're doing the sync list, record that our
237 * plug has some sync requests on it
238 *
239 * If we're doing the regular list and there are
240 * sync requests sitting around, unplug before
241 * we add more
242 */
243 if (pending_bios == &device->pending_sync_bios) {
244 sync_pending = 1;
245 } else if (sync_pending) {
246 blk_finish_plug(&plug);
247 blk_start_plug(&plug);
248 sync_pending = 0;
249 }
250
21adbd5c 251 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
252 num_run++;
253 batch_run++;
7eaceacc 254 if (need_resched())
ffbd517d 255 cond_resched();
8b712842
CM
256
257 /*
258 * we made progress, there is more work to do and the bdi
259 * is now congested. Back off and let other work structs
260 * run instead
261 */
57fd5a5f 262 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 263 fs_info->fs_devices->open_devices > 1) {
b765ead5 264 struct io_context *ioc;
8b712842 265
b765ead5
CM
266 ioc = current->io_context;
267
268 /*
269 * the main goal here is that we don't want to
270 * block if we're going to be able to submit
271 * more requests without blocking.
272 *
273 * This code does two great things, it pokes into
274 * the elevator code from a filesystem _and_
275 * it makes assumptions about how batching works.
276 */
277 if (ioc && ioc->nr_batch_requests > 0 &&
278 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
279 (last_waited == 0 ||
280 ioc->last_waited == last_waited)) {
281 /*
282 * we want to go through our batch of
283 * requests and stop. So, we copy out
284 * the ioc->last_waited time and test
285 * against it before looping
286 */
287 last_waited = ioc->last_waited;
7eaceacc 288 if (need_resched())
ffbd517d 289 cond_resched();
b765ead5
CM
290 continue;
291 }
8b712842 292 spin_lock(&device->io_lock);
ffbd517d 293 requeue_list(pending_bios, pending, tail);
a6837051 294 device->running_pending = 1;
8b712842
CM
295
296 spin_unlock(&device->io_lock);
297 btrfs_requeue_work(&device->work);
298 goto done;
299 }
d85c8a6f
CM
300 /* unplug every 64 requests just for good measure */
301 if (batch_run % 64 == 0) {
302 blk_finish_plug(&plug);
303 blk_start_plug(&plug);
304 sync_pending = 0;
305 }
8b712842 306 }
ffbd517d 307
51684082
CM
308 cond_resched();
309 if (again)
310 goto loop;
311
312 spin_lock(&device->io_lock);
313 if (device->pending_bios.head || device->pending_sync_bios.head)
314 goto loop_lock;
315 spin_unlock(&device->io_lock);
316
8b712842 317done:
211588ad 318 blk_finish_plug(&plug);
8b712842
CM
319 return 0;
320}
321
b2950863 322static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
323{
324 struct btrfs_device *device;
325
326 device = container_of(work, struct btrfs_device, work);
327 run_scheduled_bios(device);
328}
329
a1b32a59 330static noinline int device_list_add(const char *path,
8a4b83cc
CM
331 struct btrfs_super_block *disk_super,
332 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
333{
334 struct btrfs_device *device;
335 struct btrfs_fs_devices *fs_devices;
336 u64 found_transid = btrfs_super_generation(disk_super);
3a0524dc 337 char *name;
8a4b83cc
CM
338
339 fs_devices = find_fsid(disk_super->fsid);
340 if (!fs_devices) {
515dc322 341 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
342 if (!fs_devices)
343 return -ENOMEM;
344 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 345 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
346 list_add(&fs_devices->list, &fs_uuids);
347 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
348 fs_devices->latest_devid = devid;
349 fs_devices->latest_trans = found_transid;
e5e9a520 350 mutex_init(&fs_devices->device_list_mutex);
8a4b83cc
CM
351 device = NULL;
352 } else {
a443755f
CM
353 device = __find_device(&fs_devices->devices, devid,
354 disk_super->dev_item.uuid);
8a4b83cc
CM
355 }
356 if (!device) {
2b82032c
YZ
357 if (fs_devices->opened)
358 return -EBUSY;
359
8a4b83cc
CM
360 device = kzalloc(sizeof(*device), GFP_NOFS);
361 if (!device) {
362 /* we can safely leave the fs_devices entry around */
363 return -ENOMEM;
364 }
365 device->devid = devid;
8b712842 366 device->work.func = pending_bios_fn;
a443755f
CM
367 memcpy(device->uuid, disk_super->dev_item.uuid,
368 BTRFS_UUID_SIZE);
b248a415 369 spin_lock_init(&device->io_lock);
8a4b83cc
CM
370 device->name = kstrdup(path, GFP_NOFS);
371 if (!device->name) {
372 kfree(device);
373 return -ENOMEM;
374 }
2b82032c 375 INIT_LIST_HEAD(&device->dev_alloc_list);
e5e9a520 376
90519d66
AJ
377 /* init readahead state */
378 spin_lock_init(&device->reada_lock);
379 device->reada_curr_zone = NULL;
380 atomic_set(&device->reada_in_flight, 0);
381 device->reada_next = 0;
382 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
383 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
384
e5e9a520 385 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 386 list_add_rcu(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
387 mutex_unlock(&fs_devices->device_list_mutex);
388
2b82032c 389 device->fs_devices = fs_devices;
8a4b83cc 390 fs_devices->num_devices++;
cd02dca5 391 } else if (!device->name || strcmp(device->name, path)) {
3a0524dc
TH
392 name = kstrdup(path, GFP_NOFS);
393 if (!name)
394 return -ENOMEM;
395 kfree(device->name);
396 device->name = name;
cd02dca5
CM
397 if (device->missing) {
398 fs_devices->missing_devices--;
399 device->missing = 0;
400 }
8a4b83cc
CM
401 }
402
403 if (found_transid > fs_devices->latest_trans) {
404 fs_devices->latest_devid = devid;
405 fs_devices->latest_trans = found_transid;
406 }
8a4b83cc
CM
407 *fs_devices_ret = fs_devices;
408 return 0;
409}
410
e4404d6e
YZ
411static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
412{
413 struct btrfs_fs_devices *fs_devices;
414 struct btrfs_device *device;
415 struct btrfs_device *orig_dev;
416
417 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
418 if (!fs_devices)
419 return ERR_PTR(-ENOMEM);
420
421 INIT_LIST_HEAD(&fs_devices->devices);
422 INIT_LIST_HEAD(&fs_devices->alloc_list);
423 INIT_LIST_HEAD(&fs_devices->list);
e5e9a520 424 mutex_init(&fs_devices->device_list_mutex);
e4404d6e
YZ
425 fs_devices->latest_devid = orig->latest_devid;
426 fs_devices->latest_trans = orig->latest_trans;
427 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
428
46224705 429 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e
YZ
430 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
431 device = kzalloc(sizeof(*device), GFP_NOFS);
432 if (!device)
433 goto error;
434
435 device->name = kstrdup(orig_dev->name, GFP_NOFS);
fd2696f3
JL
436 if (!device->name) {
437 kfree(device);
e4404d6e 438 goto error;
fd2696f3 439 }
e4404d6e
YZ
440
441 device->devid = orig_dev->devid;
442 device->work.func = pending_bios_fn;
443 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
e4404d6e
YZ
444 spin_lock_init(&device->io_lock);
445 INIT_LIST_HEAD(&device->dev_list);
446 INIT_LIST_HEAD(&device->dev_alloc_list);
447
448 list_add(&device->dev_list, &fs_devices->devices);
449 device->fs_devices = fs_devices;
450 fs_devices->num_devices++;
451 }
452 return fs_devices;
453error:
454 free_fs_devices(fs_devices);
455 return ERR_PTR(-ENOMEM);
456}
457
dfe25020
CM
458int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
459{
c6e30871 460 struct btrfs_device *device, *next;
dfe25020 461
a6b0d5c8
CM
462 struct block_device *latest_bdev = NULL;
463 u64 latest_devid = 0;
464 u64 latest_transid = 0;
465
dfe25020
CM
466 mutex_lock(&uuid_mutex);
467again:
46224705 468 /* This is the initialized path, it is safe to release the devices. */
c6e30871 469 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8
CM
470 if (device->in_fs_metadata) {
471 if (!latest_transid ||
472 device->generation > latest_transid) {
473 latest_devid = device->devid;
474 latest_transid = device->generation;
475 latest_bdev = device->bdev;
476 }
2b82032c 477 continue;
a6b0d5c8 478 }
2b82032c
YZ
479
480 if (device->bdev) {
d4d77629 481 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
482 device->bdev = NULL;
483 fs_devices->open_devices--;
484 }
485 if (device->writeable) {
486 list_del_init(&device->dev_alloc_list);
487 device->writeable = 0;
488 fs_devices->rw_devices--;
489 }
e4404d6e
YZ
490 list_del_init(&device->dev_list);
491 fs_devices->num_devices--;
492 kfree(device->name);
493 kfree(device);
dfe25020 494 }
2b82032c
YZ
495
496 if (fs_devices->seed) {
497 fs_devices = fs_devices->seed;
2b82032c
YZ
498 goto again;
499 }
500
a6b0d5c8
CM
501 fs_devices->latest_bdev = latest_bdev;
502 fs_devices->latest_devid = latest_devid;
503 fs_devices->latest_trans = latest_transid;
504
dfe25020
CM
505 mutex_unlock(&uuid_mutex);
506 return 0;
507}
a0af469b 508
1f78160c
XG
509static void __free_device(struct work_struct *work)
510{
511 struct btrfs_device *device;
512
513 device = container_of(work, struct btrfs_device, rcu_work);
514
515 if (device->bdev)
516 blkdev_put(device->bdev, device->mode);
517
518 kfree(device->name);
519 kfree(device);
520}
521
522static void free_device(struct rcu_head *head)
523{
524 struct btrfs_device *device;
525
526 device = container_of(head, struct btrfs_device, rcu);
527
528 INIT_WORK(&device->rcu_work, __free_device);
529 schedule_work(&device->rcu_work);
530}
531
2b82032c 532static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 533{
8a4b83cc 534 struct btrfs_device *device;
e4404d6e 535
2b82032c
YZ
536 if (--fs_devices->opened > 0)
537 return 0;
8a4b83cc 538
c9513edb 539 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 540 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c
XG
541 struct btrfs_device *new_device;
542
543 if (device->bdev)
a0af469b 544 fs_devices->open_devices--;
1f78160c 545
2b82032c
YZ
546 if (device->writeable) {
547 list_del_init(&device->dev_alloc_list);
548 fs_devices->rw_devices--;
549 }
550
d5e2003c
JB
551 if (device->can_discard)
552 fs_devices->num_can_discard--;
553
1f78160c
XG
554 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
555 BUG_ON(!new_device);
556 memcpy(new_device, device, sizeof(*new_device));
557 new_device->name = kstrdup(device->name, GFP_NOFS);
5f3f302a 558 BUG_ON(device->name && !new_device->name);
1f78160c
XG
559 new_device->bdev = NULL;
560 new_device->writeable = 0;
561 new_device->in_fs_metadata = 0;
d5e2003c 562 new_device->can_discard = 0;
1f78160c
XG
563 list_replace_rcu(&device->dev_list, &new_device->dev_list);
564
565 call_rcu(&device->rcu, free_device);
8a4b83cc 566 }
c9513edb
XG
567 mutex_unlock(&fs_devices->device_list_mutex);
568
e4404d6e
YZ
569 WARN_ON(fs_devices->open_devices);
570 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
571 fs_devices->opened = 0;
572 fs_devices->seeding = 0;
2b82032c 573
8a4b83cc
CM
574 return 0;
575}
576
2b82032c
YZ
577int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
578{
e4404d6e 579 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
580 int ret;
581
582 mutex_lock(&uuid_mutex);
583 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
584 if (!fs_devices->opened) {
585 seed_devices = fs_devices->seed;
586 fs_devices->seed = NULL;
587 }
2b82032c 588 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
589
590 while (seed_devices) {
591 fs_devices = seed_devices;
592 seed_devices = fs_devices->seed;
593 __btrfs_close_devices(fs_devices);
594 free_fs_devices(fs_devices);
595 }
2b82032c
YZ
596 return ret;
597}
598
e4404d6e
YZ
599static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
600 fmode_t flags, void *holder)
8a4b83cc 601{
d5e2003c 602 struct request_queue *q;
8a4b83cc
CM
603 struct block_device *bdev;
604 struct list_head *head = &fs_devices->devices;
8a4b83cc 605 struct btrfs_device *device;
a0af469b
CM
606 struct block_device *latest_bdev = NULL;
607 struct buffer_head *bh;
608 struct btrfs_super_block *disk_super;
609 u64 latest_devid = 0;
610 u64 latest_transid = 0;
a0af469b 611 u64 devid;
2b82032c 612 int seeding = 1;
a0af469b 613 int ret = 0;
8a4b83cc 614
d4d77629
TH
615 flags |= FMODE_EXCL;
616
c6e30871 617 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
618 if (device->bdev)
619 continue;
dfe25020
CM
620 if (!device->name)
621 continue;
622
d4d77629 623 bdev = blkdev_get_by_path(device->name, flags, holder);
8a4b83cc 624 if (IS_ERR(bdev)) {
d397712b 625 printk(KERN_INFO "open %s failed\n", device->name);
a0af469b 626 goto error;
8a4b83cc 627 }
a061fc8d 628 set_blocksize(bdev, 4096);
a0af469b 629
a512bbf8 630 bh = btrfs_read_dev_super(bdev);
20bcd649 631 if (!bh)
a0af469b
CM
632 goto error_close;
633
634 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 635 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
636 if (devid != device->devid)
637 goto error_brelse;
638
2b82032c
YZ
639 if (memcmp(device->uuid, disk_super->dev_item.uuid,
640 BTRFS_UUID_SIZE))
641 goto error_brelse;
642
643 device->generation = btrfs_super_generation(disk_super);
644 if (!latest_transid || device->generation > latest_transid) {
a0af469b 645 latest_devid = devid;
2b82032c 646 latest_transid = device->generation;
a0af469b
CM
647 latest_bdev = bdev;
648 }
649
2b82032c
YZ
650 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
651 device->writeable = 0;
652 } else {
653 device->writeable = !bdev_read_only(bdev);
654 seeding = 0;
655 }
656
d5e2003c
JB
657 q = bdev_get_queue(bdev);
658 if (blk_queue_discard(q)) {
659 device->can_discard = 1;
660 fs_devices->num_can_discard++;
661 }
662
8a4b83cc 663 device->bdev = bdev;
dfe25020 664 device->in_fs_metadata = 0;
15916de8
CM
665 device->mode = flags;
666
c289811c
CM
667 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
668 fs_devices->rotating = 1;
669
a0af469b 670 fs_devices->open_devices++;
2b82032c
YZ
671 if (device->writeable) {
672 fs_devices->rw_devices++;
673 list_add(&device->dev_alloc_list,
674 &fs_devices->alloc_list);
675 }
4f6c9328 676 brelse(bh);
a0af469b 677 continue;
a061fc8d 678
a0af469b
CM
679error_brelse:
680 brelse(bh);
681error_close:
d4d77629 682 blkdev_put(bdev, flags);
a0af469b
CM
683error:
684 continue;
8a4b83cc 685 }
a0af469b 686 if (fs_devices->open_devices == 0) {
20bcd649 687 ret = -EINVAL;
a0af469b
CM
688 goto out;
689 }
2b82032c
YZ
690 fs_devices->seeding = seeding;
691 fs_devices->opened = 1;
a0af469b
CM
692 fs_devices->latest_bdev = latest_bdev;
693 fs_devices->latest_devid = latest_devid;
694 fs_devices->latest_trans = latest_transid;
2b82032c 695 fs_devices->total_rw_bytes = 0;
a0af469b 696out:
2b82032c
YZ
697 return ret;
698}
699
700int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 701 fmode_t flags, void *holder)
2b82032c
YZ
702{
703 int ret;
704
705 mutex_lock(&uuid_mutex);
706 if (fs_devices->opened) {
e4404d6e
YZ
707 fs_devices->opened++;
708 ret = 0;
2b82032c 709 } else {
15916de8 710 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 711 }
8a4b83cc 712 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
713 return ret;
714}
715
97288f2c 716int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
717 struct btrfs_fs_devices **fs_devices_ret)
718{
719 struct btrfs_super_block *disk_super;
720 struct block_device *bdev;
721 struct buffer_head *bh;
722 int ret;
723 u64 devid;
f2984462 724 u64 transid;
8a4b83cc 725
d4d77629
TH
726 flags |= FMODE_EXCL;
727 bdev = blkdev_get_by_path(path, flags, holder);
8a4b83cc
CM
728
729 if (IS_ERR(bdev)) {
8a4b83cc
CM
730 ret = PTR_ERR(bdev);
731 goto error;
732 }
733
10f6327b 734 mutex_lock(&uuid_mutex);
8a4b83cc
CM
735 ret = set_blocksize(bdev, 4096);
736 if (ret)
737 goto error_close;
a512bbf8 738 bh = btrfs_read_dev_super(bdev);
8a4b83cc 739 if (!bh) {
20b45077 740 ret = -EINVAL;
8a4b83cc
CM
741 goto error_close;
742 }
743 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 744 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 745 transid = btrfs_super_generation(disk_super);
7ae9c09d 746 if (disk_super->label[0])
d397712b 747 printk(KERN_INFO "device label %s ", disk_super->label);
22b63a29
ID
748 else
749 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
119e10cf 750 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 751 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc
CM
752 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
753
8a4b83cc
CM
754 brelse(bh);
755error_close:
10f6327b 756 mutex_unlock(&uuid_mutex);
d4d77629 757 blkdev_put(bdev, flags);
8a4b83cc 758error:
8a4b83cc
CM
759 return ret;
760}
0b86a832 761
6d07bcec
MX
762/* helper to account the used device space in the range */
763int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
764 u64 end, u64 *length)
765{
766 struct btrfs_key key;
767 struct btrfs_root *root = device->dev_root;
768 struct btrfs_dev_extent *dev_extent;
769 struct btrfs_path *path;
770 u64 extent_end;
771 int ret;
772 int slot;
773 struct extent_buffer *l;
774
775 *length = 0;
776
777 if (start >= device->total_bytes)
778 return 0;
779
780 path = btrfs_alloc_path();
781 if (!path)
782 return -ENOMEM;
783 path->reada = 2;
784
785 key.objectid = device->devid;
786 key.offset = start;
787 key.type = BTRFS_DEV_EXTENT_KEY;
788
789 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
790 if (ret < 0)
791 goto out;
792 if (ret > 0) {
793 ret = btrfs_previous_item(root, path, key.objectid, key.type);
794 if (ret < 0)
795 goto out;
796 }
797
798 while (1) {
799 l = path->nodes[0];
800 slot = path->slots[0];
801 if (slot >= btrfs_header_nritems(l)) {
802 ret = btrfs_next_leaf(root, path);
803 if (ret == 0)
804 continue;
805 if (ret < 0)
806 goto out;
807
808 break;
809 }
810 btrfs_item_key_to_cpu(l, &key, slot);
811
812 if (key.objectid < device->devid)
813 goto next;
814
815 if (key.objectid > device->devid)
816 break;
817
818 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
819 goto next;
820
821 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
822 extent_end = key.offset + btrfs_dev_extent_length(l,
823 dev_extent);
824 if (key.offset <= start && extent_end > end) {
825 *length = end - start + 1;
826 break;
827 } else if (key.offset <= start && extent_end > start)
828 *length += extent_end - start;
829 else if (key.offset > start && extent_end <= end)
830 *length += extent_end - key.offset;
831 else if (key.offset > start && key.offset <= end) {
832 *length += end - key.offset + 1;
833 break;
834 } else if (key.offset > end)
835 break;
836
837next:
838 path->slots[0]++;
839 }
840 ret = 0;
841out:
842 btrfs_free_path(path);
843 return ret;
844}
845
0b86a832 846/*
7bfc837d 847 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
848 * @device: the device which we search the free space in
849 * @num_bytes: the size of the free space that we need
850 * @start: store the start of the free space.
851 * @len: the size of the free space. that we find, or the size of the max
852 * free space if we don't find suitable free space
853 *
0b86a832
CM
854 * this uses a pretty simple search, the expectation is that it is
855 * called very infrequently and that a given device has a small number
856 * of extents
7bfc837d
MX
857 *
858 * @start is used to store the start of the free space if we find. But if we
859 * don't find suitable free space, it will be used to store the start position
860 * of the max free space.
861 *
862 * @len is used to store the size of the free space that we find.
863 * But if we don't find suitable free space, it is used to store the size of
864 * the max free space.
0b86a832 865 */
125ccb0a 866int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
7bfc837d 867 u64 *start, u64 *len)
0b86a832
CM
868{
869 struct btrfs_key key;
870 struct btrfs_root *root = device->dev_root;
7bfc837d 871 struct btrfs_dev_extent *dev_extent;
2b82032c 872 struct btrfs_path *path;
7bfc837d
MX
873 u64 hole_size;
874 u64 max_hole_start;
875 u64 max_hole_size;
876 u64 extent_end;
877 u64 search_start;
0b86a832
CM
878 u64 search_end = device->total_bytes;
879 int ret;
7bfc837d 880 int slot;
0b86a832
CM
881 struct extent_buffer *l;
882
0b86a832
CM
883 /* FIXME use last free of some kind */
884
8a4b83cc
CM
885 /* we don't want to overwrite the superblock on the drive,
886 * so we make sure to start at an offset of at least 1MB
887 */
a9c9bf68 888 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 889
7bfc837d
MX
890 max_hole_start = search_start;
891 max_hole_size = 0;
38c01b96 892 hole_size = 0;
7bfc837d
MX
893
894 if (search_start >= search_end) {
895 ret = -ENOSPC;
896 goto error;
897 }
898
899 path = btrfs_alloc_path();
900 if (!path) {
901 ret = -ENOMEM;
902 goto error;
903 }
904 path->reada = 2;
905
0b86a832
CM
906 key.objectid = device->devid;
907 key.offset = search_start;
908 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 909
125ccb0a 910 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 911 if (ret < 0)
7bfc837d 912 goto out;
1fcbac58
YZ
913 if (ret > 0) {
914 ret = btrfs_previous_item(root, path, key.objectid, key.type);
915 if (ret < 0)
7bfc837d 916 goto out;
1fcbac58 917 }
7bfc837d 918
0b86a832
CM
919 while (1) {
920 l = path->nodes[0];
921 slot = path->slots[0];
922 if (slot >= btrfs_header_nritems(l)) {
923 ret = btrfs_next_leaf(root, path);
924 if (ret == 0)
925 continue;
926 if (ret < 0)
7bfc837d
MX
927 goto out;
928
929 break;
0b86a832
CM
930 }
931 btrfs_item_key_to_cpu(l, &key, slot);
932
933 if (key.objectid < device->devid)
934 goto next;
935
936 if (key.objectid > device->devid)
7bfc837d 937 break;
0b86a832 938
7bfc837d
MX
939 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
940 goto next;
9779b72f 941
7bfc837d
MX
942 if (key.offset > search_start) {
943 hole_size = key.offset - search_start;
9779b72f 944
7bfc837d
MX
945 if (hole_size > max_hole_size) {
946 max_hole_start = search_start;
947 max_hole_size = hole_size;
948 }
9779b72f 949
7bfc837d
MX
950 /*
951 * If this free space is greater than which we need,
952 * it must be the max free space that we have found
953 * until now, so max_hole_start must point to the start
954 * of this free space and the length of this free space
955 * is stored in max_hole_size. Thus, we return
956 * max_hole_start and max_hole_size and go back to the
957 * caller.
958 */
959 if (hole_size >= num_bytes) {
960 ret = 0;
961 goto out;
0b86a832
CM
962 }
963 }
0b86a832 964
0b86a832 965 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
966 extent_end = key.offset + btrfs_dev_extent_length(l,
967 dev_extent);
968 if (extent_end > search_start)
969 search_start = extent_end;
0b86a832
CM
970next:
971 path->slots[0]++;
972 cond_resched();
973 }
0b86a832 974
38c01b96 975 /*
976 * At this point, search_start should be the end of
977 * allocated dev extents, and when shrinking the device,
978 * search_end may be smaller than search_start.
979 */
980 if (search_end > search_start)
981 hole_size = search_end - search_start;
982
7bfc837d
MX
983 if (hole_size > max_hole_size) {
984 max_hole_start = search_start;
985 max_hole_size = hole_size;
0b86a832 986 }
0b86a832 987
7bfc837d
MX
988 /* See above. */
989 if (hole_size < num_bytes)
990 ret = -ENOSPC;
991 else
992 ret = 0;
993
994out:
2b82032c 995 btrfs_free_path(path);
7bfc837d
MX
996error:
997 *start = max_hole_start;
b2117a39 998 if (len)
7bfc837d 999 *len = max_hole_size;
0b86a832
CM
1000 return ret;
1001}
1002
b2950863 1003static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1004 struct btrfs_device *device,
1005 u64 start)
1006{
1007 int ret;
1008 struct btrfs_path *path;
1009 struct btrfs_root *root = device->dev_root;
1010 struct btrfs_key key;
a061fc8d
CM
1011 struct btrfs_key found_key;
1012 struct extent_buffer *leaf = NULL;
1013 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1014
1015 path = btrfs_alloc_path();
1016 if (!path)
1017 return -ENOMEM;
1018
1019 key.objectid = device->devid;
1020 key.offset = start;
1021 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1022again:
8f18cf13 1023 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1024 if (ret > 0) {
1025 ret = btrfs_previous_item(root, path, key.objectid,
1026 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1027 if (ret)
1028 goto out;
a061fc8d
CM
1029 leaf = path->nodes[0];
1030 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1031 extent = btrfs_item_ptr(leaf, path->slots[0],
1032 struct btrfs_dev_extent);
1033 BUG_ON(found_key.offset > start || found_key.offset +
1034 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1035 key = found_key;
1036 btrfs_release_path(path);
1037 goto again;
a061fc8d
CM
1038 } else if (ret == 0) {
1039 leaf = path->nodes[0];
1040 extent = btrfs_item_ptr(leaf, path->slots[0],
1041 struct btrfs_dev_extent);
1042 }
8f18cf13
CM
1043 BUG_ON(ret);
1044
2bf64758
JB
1045 if (device->bytes_used > 0) {
1046 u64 len = btrfs_dev_extent_length(leaf, extent);
1047 device->bytes_used -= len;
1048 spin_lock(&root->fs_info->free_chunk_lock);
1049 root->fs_info->free_chunk_space += len;
1050 spin_unlock(&root->fs_info->free_chunk_lock);
1051 }
8f18cf13 1052 ret = btrfs_del_item(trans, root, path);
8f18cf13 1053
b0b802d7 1054out:
8f18cf13
CM
1055 btrfs_free_path(path);
1056 return ret;
1057}
1058
2b82032c 1059int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 1060 struct btrfs_device *device,
e17cade2 1061 u64 chunk_tree, u64 chunk_objectid,
2b82032c 1062 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1063{
1064 int ret;
1065 struct btrfs_path *path;
1066 struct btrfs_root *root = device->dev_root;
1067 struct btrfs_dev_extent *extent;
1068 struct extent_buffer *leaf;
1069 struct btrfs_key key;
1070
dfe25020 1071 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
1072 path = btrfs_alloc_path();
1073 if (!path)
1074 return -ENOMEM;
1075
0b86a832 1076 key.objectid = device->devid;
2b82032c 1077 key.offset = start;
0b86a832
CM
1078 key.type = BTRFS_DEV_EXTENT_KEY;
1079 ret = btrfs_insert_empty_item(trans, root, path, &key,
1080 sizeof(*extent));
1081 BUG_ON(ret);
1082
1083 leaf = path->nodes[0];
1084 extent = btrfs_item_ptr(leaf, path->slots[0],
1085 struct btrfs_dev_extent);
e17cade2
CM
1086 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1087 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1088 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1089
1090 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1091 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1092 BTRFS_UUID_SIZE);
1093
0b86a832
CM
1094 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1095 btrfs_mark_buffer_dirty(leaf);
0b86a832
CM
1096 btrfs_free_path(path);
1097 return ret;
1098}
1099
a1b32a59
CM
1100static noinline int find_next_chunk(struct btrfs_root *root,
1101 u64 objectid, u64 *offset)
0b86a832
CM
1102{
1103 struct btrfs_path *path;
1104 int ret;
1105 struct btrfs_key key;
e17cade2 1106 struct btrfs_chunk *chunk;
0b86a832
CM
1107 struct btrfs_key found_key;
1108
1109 path = btrfs_alloc_path();
92b8e897
MF
1110 if (!path)
1111 return -ENOMEM;
0b86a832 1112
e17cade2 1113 key.objectid = objectid;
0b86a832
CM
1114 key.offset = (u64)-1;
1115 key.type = BTRFS_CHUNK_ITEM_KEY;
1116
1117 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1118 if (ret < 0)
1119 goto error;
1120
1121 BUG_ON(ret == 0);
1122
1123 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1124 if (ret) {
e17cade2 1125 *offset = 0;
0b86a832
CM
1126 } else {
1127 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1128 path->slots[0]);
e17cade2
CM
1129 if (found_key.objectid != objectid)
1130 *offset = 0;
1131 else {
1132 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1133 struct btrfs_chunk);
1134 *offset = found_key.offset +
1135 btrfs_chunk_length(path->nodes[0], chunk);
1136 }
0b86a832
CM
1137 }
1138 ret = 0;
1139error:
1140 btrfs_free_path(path);
1141 return ret;
1142}
1143
2b82032c 1144static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
1145{
1146 int ret;
1147 struct btrfs_key key;
1148 struct btrfs_key found_key;
2b82032c
YZ
1149 struct btrfs_path *path;
1150
1151 root = root->fs_info->chunk_root;
1152
1153 path = btrfs_alloc_path();
1154 if (!path)
1155 return -ENOMEM;
0b86a832
CM
1156
1157 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1158 key.type = BTRFS_DEV_ITEM_KEY;
1159 key.offset = (u64)-1;
1160
1161 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1162 if (ret < 0)
1163 goto error;
1164
1165 BUG_ON(ret == 0);
1166
1167 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1168 BTRFS_DEV_ITEM_KEY);
1169 if (ret) {
1170 *objectid = 1;
1171 } else {
1172 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1173 path->slots[0]);
1174 *objectid = found_key.offset + 1;
1175 }
1176 ret = 0;
1177error:
2b82032c 1178 btrfs_free_path(path);
0b86a832
CM
1179 return ret;
1180}
1181
1182/*
1183 * the device information is stored in the chunk root
1184 * the btrfs_device struct should be fully filled in
1185 */
1186int btrfs_add_device(struct btrfs_trans_handle *trans,
1187 struct btrfs_root *root,
1188 struct btrfs_device *device)
1189{
1190 int ret;
1191 struct btrfs_path *path;
1192 struct btrfs_dev_item *dev_item;
1193 struct extent_buffer *leaf;
1194 struct btrfs_key key;
1195 unsigned long ptr;
0b86a832
CM
1196
1197 root = root->fs_info->chunk_root;
1198
1199 path = btrfs_alloc_path();
1200 if (!path)
1201 return -ENOMEM;
1202
0b86a832
CM
1203 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1204 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1205 key.offset = device->devid;
0b86a832
CM
1206
1207 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1208 sizeof(*dev_item));
0b86a832
CM
1209 if (ret)
1210 goto out;
1211
1212 leaf = path->nodes[0];
1213 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1214
1215 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1216 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1217 btrfs_set_device_type(leaf, dev_item, device->type);
1218 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1219 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1220 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1221 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1222 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1223 btrfs_set_device_group(leaf, dev_item, 0);
1224 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1225 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1226 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1227
0b86a832 1228 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1229 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1230 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1231 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1232 btrfs_mark_buffer_dirty(leaf);
0b86a832 1233
2b82032c 1234 ret = 0;
0b86a832
CM
1235out:
1236 btrfs_free_path(path);
1237 return ret;
1238}
8f18cf13 1239
a061fc8d
CM
1240static int btrfs_rm_dev_item(struct btrfs_root *root,
1241 struct btrfs_device *device)
1242{
1243 int ret;
1244 struct btrfs_path *path;
a061fc8d 1245 struct btrfs_key key;
a061fc8d
CM
1246 struct btrfs_trans_handle *trans;
1247
1248 root = root->fs_info->chunk_root;
1249
1250 path = btrfs_alloc_path();
1251 if (!path)
1252 return -ENOMEM;
1253
a22285a6 1254 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1255 if (IS_ERR(trans)) {
1256 btrfs_free_path(path);
1257 return PTR_ERR(trans);
1258 }
a061fc8d
CM
1259 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1260 key.type = BTRFS_DEV_ITEM_KEY;
1261 key.offset = device->devid;
7d9eb12c 1262 lock_chunks(root);
a061fc8d
CM
1263
1264 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1265 if (ret < 0)
1266 goto out;
1267
1268 if (ret > 0) {
1269 ret = -ENOENT;
1270 goto out;
1271 }
1272
1273 ret = btrfs_del_item(trans, root, path);
1274 if (ret)
1275 goto out;
a061fc8d
CM
1276out:
1277 btrfs_free_path(path);
7d9eb12c 1278 unlock_chunks(root);
a061fc8d
CM
1279 btrfs_commit_transaction(trans, root);
1280 return ret;
1281}
1282
1283int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1284{
1285 struct btrfs_device *device;
2b82032c 1286 struct btrfs_device *next_device;
a061fc8d 1287 struct block_device *bdev;
dfe25020 1288 struct buffer_head *bh = NULL;
a061fc8d 1289 struct btrfs_super_block *disk_super;
1f78160c 1290 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1291 u64 all_avail;
1292 u64 devid;
2b82032c
YZ
1293 u64 num_devices;
1294 u8 *dev_uuid;
a061fc8d 1295 int ret = 0;
1f78160c 1296 bool clear_super = false;
a061fc8d 1297
a061fc8d
CM
1298 mutex_lock(&uuid_mutex);
1299
1300 all_avail = root->fs_info->avail_data_alloc_bits |
1301 root->fs_info->avail_system_alloc_bits |
1302 root->fs_info->avail_metadata_alloc_bits;
1303
1304 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
035fe03a 1305 root->fs_info->fs_devices->num_devices <= 4) {
d397712b
CM
1306 printk(KERN_ERR "btrfs: unable to go below four devices "
1307 "on raid10\n");
a061fc8d
CM
1308 ret = -EINVAL;
1309 goto out;
1310 }
1311
1312 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
035fe03a 1313 root->fs_info->fs_devices->num_devices <= 2) {
d397712b
CM
1314 printk(KERN_ERR "btrfs: unable to go below two "
1315 "devices on raid1\n");
a061fc8d
CM
1316 ret = -EINVAL;
1317 goto out;
1318 }
1319
dfe25020 1320 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1321 struct list_head *devices;
1322 struct btrfs_device *tmp;
a061fc8d 1323
dfe25020
CM
1324 device = NULL;
1325 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1326 /*
1327 * It is safe to read the devices since the volume_mutex
1328 * is held.
1329 */
c6e30871 1330 list_for_each_entry(tmp, devices, dev_list) {
dfe25020
CM
1331 if (tmp->in_fs_metadata && !tmp->bdev) {
1332 device = tmp;
1333 break;
1334 }
1335 }
1336 bdev = NULL;
1337 bh = NULL;
1338 disk_super = NULL;
1339 if (!device) {
d397712b
CM
1340 printk(KERN_ERR "btrfs: no missing devices found to "
1341 "remove\n");
dfe25020
CM
1342 goto out;
1343 }
dfe25020 1344 } else {
d4d77629
TH
1345 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1346 root->fs_info->bdev_holder);
dfe25020
CM
1347 if (IS_ERR(bdev)) {
1348 ret = PTR_ERR(bdev);
1349 goto out;
1350 }
a061fc8d 1351
2b82032c 1352 set_blocksize(bdev, 4096);
a512bbf8 1353 bh = btrfs_read_dev_super(bdev);
dfe25020 1354 if (!bh) {
20b45077 1355 ret = -EINVAL;
dfe25020
CM
1356 goto error_close;
1357 }
1358 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1359 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c
YZ
1360 dev_uuid = disk_super->dev_item.uuid;
1361 device = btrfs_find_device(root, devid, dev_uuid,
1362 disk_super->fsid);
dfe25020
CM
1363 if (!device) {
1364 ret = -ENOENT;
1365 goto error_brelse;
1366 }
2b82032c 1367 }
dfe25020 1368
2b82032c 1369 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1370 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1371 "device\n");
2b82032c
YZ
1372 ret = -EINVAL;
1373 goto error_brelse;
1374 }
1375
1376 if (device->writeable) {
0c1daee0 1377 lock_chunks(root);
2b82032c 1378 list_del_init(&device->dev_alloc_list);
0c1daee0 1379 unlock_chunks(root);
2b82032c 1380 root->fs_info->fs_devices->rw_devices--;
1f78160c 1381 clear_super = true;
dfe25020 1382 }
a061fc8d
CM
1383
1384 ret = btrfs_shrink_device(device, 0);
1385 if (ret)
9b3517e9 1386 goto error_undo;
a061fc8d 1387
a061fc8d
CM
1388 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1389 if (ret)
9b3517e9 1390 goto error_undo;
a061fc8d 1391
2bf64758
JB
1392 spin_lock(&root->fs_info->free_chunk_lock);
1393 root->fs_info->free_chunk_space = device->total_bytes -
1394 device->bytes_used;
1395 spin_unlock(&root->fs_info->free_chunk_lock);
1396
2b82032c 1397 device->in_fs_metadata = 0;
a2de733c 1398 btrfs_scrub_cancel_dev(root, device);
e5e9a520
CM
1399
1400 /*
1401 * the device list mutex makes sure that we don't change
1402 * the device list while someone else is writing out all
1403 * the device supers.
1404 */
1f78160c
XG
1405
1406 cur_devices = device->fs_devices;
e5e9a520 1407 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1408 list_del_rcu(&device->dev_list);
e5e9a520 1409
e4404d6e 1410 device->fs_devices->num_devices--;
2b82032c 1411
cd02dca5
CM
1412 if (device->missing)
1413 root->fs_info->fs_devices->missing_devices--;
1414
2b82032c
YZ
1415 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1416 struct btrfs_device, dev_list);
1417 if (device->bdev == root->fs_info->sb->s_bdev)
1418 root->fs_info->sb->s_bdev = next_device->bdev;
1419 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1420 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1421
1f78160c 1422 if (device->bdev)
e4404d6e 1423 device->fs_devices->open_devices--;
1f78160c
XG
1424
1425 call_rcu(&device->rcu, free_device);
1426 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1427
6c41761f
DS
1428 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1429 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
2b82032c 1430
1f78160c 1431 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1432 struct btrfs_fs_devices *fs_devices;
1433 fs_devices = root->fs_info->fs_devices;
1434 while (fs_devices) {
1f78160c 1435 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1436 break;
1437 fs_devices = fs_devices->seed;
2b82032c 1438 }
1f78160c
XG
1439 fs_devices->seed = cur_devices->seed;
1440 cur_devices->seed = NULL;
0c1daee0 1441 lock_chunks(root);
1f78160c 1442 __btrfs_close_devices(cur_devices);
0c1daee0 1443 unlock_chunks(root);
1f78160c 1444 free_fs_devices(cur_devices);
2b82032c
YZ
1445 }
1446
1447 /*
1448 * at this point, the device is zero sized. We want to
1449 * remove it from the devices list and zero out the old super
1450 */
1f78160c 1451 if (clear_super) {
dfe25020
CM
1452 /* make sure this device isn't detected as part of
1453 * the FS anymore
1454 */
1455 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1456 set_buffer_dirty(bh);
1457 sync_dirty_buffer(bh);
dfe25020 1458 }
a061fc8d 1459
a061fc8d 1460 ret = 0;
a061fc8d
CM
1461
1462error_brelse:
1463 brelse(bh);
1464error_close:
dfe25020 1465 if (bdev)
e525fd89 1466 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1467out:
1468 mutex_unlock(&uuid_mutex);
a061fc8d 1469 return ret;
9b3517e9
ID
1470error_undo:
1471 if (device->writeable) {
0c1daee0 1472 lock_chunks(root);
9b3517e9
ID
1473 list_add(&device->dev_alloc_list,
1474 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1475 unlock_chunks(root);
9b3517e9
ID
1476 root->fs_info->fs_devices->rw_devices++;
1477 }
1478 goto error_brelse;
a061fc8d
CM
1479}
1480
2b82032c
YZ
1481/*
1482 * does all the dirty work required for changing file system's UUID.
1483 */
125ccb0a 1484static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1485{
1486 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1487 struct btrfs_fs_devices *old_devices;
e4404d6e 1488 struct btrfs_fs_devices *seed_devices;
6c41761f 1489 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1490 struct btrfs_device *device;
1491 u64 super_flags;
1492
1493 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1494 if (!fs_devices->seeding)
2b82032c
YZ
1495 return -EINVAL;
1496
e4404d6e
YZ
1497 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1498 if (!seed_devices)
2b82032c
YZ
1499 return -ENOMEM;
1500
e4404d6e
YZ
1501 old_devices = clone_fs_devices(fs_devices);
1502 if (IS_ERR(old_devices)) {
1503 kfree(seed_devices);
1504 return PTR_ERR(old_devices);
2b82032c 1505 }
e4404d6e 1506
2b82032c
YZ
1507 list_add(&old_devices->list, &fs_uuids);
1508
e4404d6e
YZ
1509 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1510 seed_devices->opened = 1;
1511 INIT_LIST_HEAD(&seed_devices->devices);
1512 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1513 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1514
1515 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1516 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1517 synchronize_rcu);
c9513edb
XG
1518 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1519
e4404d6e
YZ
1520 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1521 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1522 device->fs_devices = seed_devices;
1523 }
1524
2b82032c
YZ
1525 fs_devices->seeding = 0;
1526 fs_devices->num_devices = 0;
1527 fs_devices->open_devices = 0;
e4404d6e 1528 fs_devices->seed = seed_devices;
2b82032c
YZ
1529
1530 generate_random_uuid(fs_devices->fsid);
1531 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1532 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1533 super_flags = btrfs_super_flags(disk_super) &
1534 ~BTRFS_SUPER_FLAG_SEEDING;
1535 btrfs_set_super_flags(disk_super, super_flags);
1536
1537 return 0;
1538}
1539
1540/*
1541 * strore the expected generation for seed devices in device items.
1542 */
1543static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1544 struct btrfs_root *root)
1545{
1546 struct btrfs_path *path;
1547 struct extent_buffer *leaf;
1548 struct btrfs_dev_item *dev_item;
1549 struct btrfs_device *device;
1550 struct btrfs_key key;
1551 u8 fs_uuid[BTRFS_UUID_SIZE];
1552 u8 dev_uuid[BTRFS_UUID_SIZE];
1553 u64 devid;
1554 int ret;
1555
1556 path = btrfs_alloc_path();
1557 if (!path)
1558 return -ENOMEM;
1559
1560 root = root->fs_info->chunk_root;
1561 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1562 key.offset = 0;
1563 key.type = BTRFS_DEV_ITEM_KEY;
1564
1565 while (1) {
1566 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1567 if (ret < 0)
1568 goto error;
1569
1570 leaf = path->nodes[0];
1571next_slot:
1572 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1573 ret = btrfs_next_leaf(root, path);
1574 if (ret > 0)
1575 break;
1576 if (ret < 0)
1577 goto error;
1578 leaf = path->nodes[0];
1579 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1580 btrfs_release_path(path);
2b82032c
YZ
1581 continue;
1582 }
1583
1584 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1585 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1586 key.type != BTRFS_DEV_ITEM_KEY)
1587 break;
1588
1589 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1590 struct btrfs_dev_item);
1591 devid = btrfs_device_id(leaf, dev_item);
1592 read_extent_buffer(leaf, dev_uuid,
1593 (unsigned long)btrfs_device_uuid(dev_item),
1594 BTRFS_UUID_SIZE);
1595 read_extent_buffer(leaf, fs_uuid,
1596 (unsigned long)btrfs_device_fsid(dev_item),
1597 BTRFS_UUID_SIZE);
1598 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1599 BUG_ON(!device);
1600
1601 if (device->fs_devices->seeding) {
1602 btrfs_set_device_generation(leaf, dev_item,
1603 device->generation);
1604 btrfs_mark_buffer_dirty(leaf);
1605 }
1606
1607 path->slots[0]++;
1608 goto next_slot;
1609 }
1610 ret = 0;
1611error:
1612 btrfs_free_path(path);
1613 return ret;
1614}
1615
788f20eb
CM
1616int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1617{
d5e2003c 1618 struct request_queue *q;
788f20eb
CM
1619 struct btrfs_trans_handle *trans;
1620 struct btrfs_device *device;
1621 struct block_device *bdev;
788f20eb 1622 struct list_head *devices;
2b82032c 1623 struct super_block *sb = root->fs_info->sb;
788f20eb 1624 u64 total_bytes;
2b82032c 1625 int seeding_dev = 0;
788f20eb
CM
1626 int ret = 0;
1627
2b82032c
YZ
1628 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1629 return -EINVAL;
788f20eb 1630
a5d16333 1631 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1632 root->fs_info->bdev_holder);
7f59203a
JB
1633 if (IS_ERR(bdev))
1634 return PTR_ERR(bdev);
a2135011 1635
2b82032c
YZ
1636 if (root->fs_info->fs_devices->seeding) {
1637 seeding_dev = 1;
1638 down_write(&sb->s_umount);
1639 mutex_lock(&uuid_mutex);
1640 }
1641
8c8bee1d 1642 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 1643
788f20eb 1644 devices = &root->fs_info->fs_devices->devices;
e5e9a520
CM
1645 /*
1646 * we have the volume lock, so we don't need the extra
1647 * device list mutex while reading the list here.
1648 */
c6e30871 1649 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1650 if (device->bdev == bdev) {
1651 ret = -EEXIST;
2b82032c 1652 goto error;
788f20eb
CM
1653 }
1654 }
1655
1656 device = kzalloc(sizeof(*device), GFP_NOFS);
1657 if (!device) {
1658 /* we can safely leave the fs_devices entry around */
1659 ret = -ENOMEM;
2b82032c 1660 goto error;
788f20eb
CM
1661 }
1662
788f20eb
CM
1663 device->name = kstrdup(device_path, GFP_NOFS);
1664 if (!device->name) {
1665 kfree(device);
2b82032c
YZ
1666 ret = -ENOMEM;
1667 goto error;
788f20eb 1668 }
2b82032c
YZ
1669
1670 ret = find_next_devid(root, &device->devid);
1671 if (ret) {
67100f25 1672 kfree(device->name);
2b82032c
YZ
1673 kfree(device);
1674 goto error;
1675 }
1676
a22285a6 1677 trans = btrfs_start_transaction(root, 0);
98d5dc13 1678 if (IS_ERR(trans)) {
67100f25 1679 kfree(device->name);
98d5dc13
TI
1680 kfree(device);
1681 ret = PTR_ERR(trans);
1682 goto error;
1683 }
1684
2b82032c
YZ
1685 lock_chunks(root);
1686
d5e2003c
JB
1687 q = bdev_get_queue(bdev);
1688 if (blk_queue_discard(q))
1689 device->can_discard = 1;
2b82032c
YZ
1690 device->writeable = 1;
1691 device->work.func = pending_bios_fn;
1692 generate_random_uuid(device->uuid);
1693 spin_lock_init(&device->io_lock);
1694 device->generation = trans->transid;
788f20eb
CM
1695 device->io_width = root->sectorsize;
1696 device->io_align = root->sectorsize;
1697 device->sector_size = root->sectorsize;
1698 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1699 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1700 device->dev_root = root->fs_info->dev_root;
1701 device->bdev = bdev;
dfe25020 1702 device->in_fs_metadata = 1;
fb01aa85 1703 device->mode = FMODE_EXCL;
2b82032c 1704 set_blocksize(device->bdev, 4096);
788f20eb 1705
2b82032c
YZ
1706 if (seeding_dev) {
1707 sb->s_flags &= ~MS_RDONLY;
125ccb0a 1708 ret = btrfs_prepare_sprout(root);
2b82032c
YZ
1709 BUG_ON(ret);
1710 }
788f20eb 1711
2b82032c 1712 device->fs_devices = root->fs_info->fs_devices;
e5e9a520
CM
1713
1714 /*
1715 * we don't want write_supers to jump in here with our device
1716 * half setup
1717 */
1718 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1719 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
1720 list_add(&device->dev_alloc_list,
1721 &root->fs_info->fs_devices->alloc_list);
1722 root->fs_info->fs_devices->num_devices++;
1723 root->fs_info->fs_devices->open_devices++;
1724 root->fs_info->fs_devices->rw_devices++;
d5e2003c
JB
1725 if (device->can_discard)
1726 root->fs_info->fs_devices->num_can_discard++;
2b82032c 1727 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1728
2bf64758
JB
1729 spin_lock(&root->fs_info->free_chunk_lock);
1730 root->fs_info->free_chunk_space += device->total_bytes;
1731 spin_unlock(&root->fs_info->free_chunk_lock);
1732
c289811c
CM
1733 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1734 root->fs_info->fs_devices->rotating = 1;
1735
6c41761f
DS
1736 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1737 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
1738 total_bytes + device->total_bytes);
1739
6c41761f
DS
1740 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1741 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 1742 total_bytes + 1);
e5e9a520 1743 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1744
2b82032c
YZ
1745 if (seeding_dev) {
1746 ret = init_first_rw_device(trans, root, device);
1747 BUG_ON(ret);
1748 ret = btrfs_finish_sprout(trans, root);
1749 BUG_ON(ret);
1750 } else {
1751 ret = btrfs_add_device(trans, root, device);
1752 }
1753
913d952e
CM
1754 /*
1755 * we've got more storage, clear any full flags on the space
1756 * infos
1757 */
1758 btrfs_clear_space_info_full(root->fs_info);
1759
7d9eb12c 1760 unlock_chunks(root);
2b82032c 1761 btrfs_commit_transaction(trans, root);
a2135011 1762
2b82032c
YZ
1763 if (seeding_dev) {
1764 mutex_unlock(&uuid_mutex);
1765 up_write(&sb->s_umount);
788f20eb 1766
2b82032c
YZ
1767 ret = btrfs_relocate_sys_chunks(root);
1768 BUG_ON(ret);
1769 }
c9e9f97b 1770
2b82032c
YZ
1771 return ret;
1772error:
e525fd89 1773 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
1774 if (seeding_dev) {
1775 mutex_unlock(&uuid_mutex);
1776 up_write(&sb->s_umount);
1777 }
c9e9f97b 1778 return ret;
788f20eb
CM
1779}
1780
d397712b
CM
1781static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1782 struct btrfs_device *device)
0b86a832
CM
1783{
1784 int ret;
1785 struct btrfs_path *path;
1786 struct btrfs_root *root;
1787 struct btrfs_dev_item *dev_item;
1788 struct extent_buffer *leaf;
1789 struct btrfs_key key;
1790
1791 root = device->dev_root->fs_info->chunk_root;
1792
1793 path = btrfs_alloc_path();
1794 if (!path)
1795 return -ENOMEM;
1796
1797 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1798 key.type = BTRFS_DEV_ITEM_KEY;
1799 key.offset = device->devid;
1800
1801 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1802 if (ret < 0)
1803 goto out;
1804
1805 if (ret > 0) {
1806 ret = -ENOENT;
1807 goto out;
1808 }
1809
1810 leaf = path->nodes[0];
1811 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1812
1813 btrfs_set_device_id(leaf, dev_item, device->devid);
1814 btrfs_set_device_type(leaf, dev_item, device->type);
1815 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1816 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1817 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 1818 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
1819 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1820 btrfs_mark_buffer_dirty(leaf);
1821
1822out:
1823 btrfs_free_path(path);
1824 return ret;
1825}
1826
7d9eb12c 1827static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1828 struct btrfs_device *device, u64 new_size)
1829{
1830 struct btrfs_super_block *super_copy =
6c41761f 1831 device->dev_root->fs_info->super_copy;
8f18cf13
CM
1832 u64 old_total = btrfs_super_total_bytes(super_copy);
1833 u64 diff = new_size - device->total_bytes;
1834
2b82032c
YZ
1835 if (!device->writeable)
1836 return -EACCES;
1837 if (new_size <= device->total_bytes)
1838 return -EINVAL;
1839
8f18cf13 1840 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1841 device->fs_devices->total_rw_bytes += diff;
1842
1843 device->total_bytes = new_size;
9779b72f 1844 device->disk_total_bytes = new_size;
4184ea7f
CM
1845 btrfs_clear_space_info_full(device->dev_root->fs_info);
1846
8f18cf13
CM
1847 return btrfs_update_device(trans, device);
1848}
1849
7d9eb12c
CM
1850int btrfs_grow_device(struct btrfs_trans_handle *trans,
1851 struct btrfs_device *device, u64 new_size)
1852{
1853 int ret;
1854 lock_chunks(device->dev_root);
1855 ret = __btrfs_grow_device(trans, device, new_size);
1856 unlock_chunks(device->dev_root);
1857 return ret;
1858}
1859
8f18cf13
CM
1860static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1861 struct btrfs_root *root,
1862 u64 chunk_tree, u64 chunk_objectid,
1863 u64 chunk_offset)
1864{
1865 int ret;
1866 struct btrfs_path *path;
1867 struct btrfs_key key;
1868
1869 root = root->fs_info->chunk_root;
1870 path = btrfs_alloc_path();
1871 if (!path)
1872 return -ENOMEM;
1873
1874 key.objectid = chunk_objectid;
1875 key.offset = chunk_offset;
1876 key.type = BTRFS_CHUNK_ITEM_KEY;
1877
1878 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1879 BUG_ON(ret);
1880
1881 ret = btrfs_del_item(trans, root, path);
8f18cf13
CM
1882
1883 btrfs_free_path(path);
65a246c5 1884 return ret;
8f18cf13
CM
1885}
1886
b2950863 1887static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
1888 chunk_offset)
1889{
6c41761f 1890 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
1891 struct btrfs_disk_key *disk_key;
1892 struct btrfs_chunk *chunk;
1893 u8 *ptr;
1894 int ret = 0;
1895 u32 num_stripes;
1896 u32 array_size;
1897 u32 len = 0;
1898 u32 cur;
1899 struct btrfs_key key;
1900
1901 array_size = btrfs_super_sys_array_size(super_copy);
1902
1903 ptr = super_copy->sys_chunk_array;
1904 cur = 0;
1905
1906 while (cur < array_size) {
1907 disk_key = (struct btrfs_disk_key *)ptr;
1908 btrfs_disk_key_to_cpu(&key, disk_key);
1909
1910 len = sizeof(*disk_key);
1911
1912 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1913 chunk = (struct btrfs_chunk *)(ptr + len);
1914 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1915 len += btrfs_chunk_item_size(num_stripes);
1916 } else {
1917 ret = -EIO;
1918 break;
1919 }
1920 if (key.objectid == chunk_objectid &&
1921 key.offset == chunk_offset) {
1922 memmove(ptr, ptr + len, array_size - (cur + len));
1923 array_size -= len;
1924 btrfs_set_super_sys_array_size(super_copy, array_size);
1925 } else {
1926 ptr += len;
1927 cur += len;
1928 }
1929 }
1930 return ret;
1931}
1932
b2950863 1933static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
1934 u64 chunk_tree, u64 chunk_objectid,
1935 u64 chunk_offset)
1936{
1937 struct extent_map_tree *em_tree;
1938 struct btrfs_root *extent_root;
1939 struct btrfs_trans_handle *trans;
1940 struct extent_map *em;
1941 struct map_lookup *map;
1942 int ret;
1943 int i;
1944
1945 root = root->fs_info->chunk_root;
1946 extent_root = root->fs_info->extent_root;
1947 em_tree = &root->fs_info->mapping_tree.map_tree;
1948
ba1bf481
JB
1949 ret = btrfs_can_relocate(extent_root, chunk_offset);
1950 if (ret)
1951 return -ENOSPC;
1952
8f18cf13 1953 /* step one, relocate all the extents inside this chunk */
1a40e23b 1954 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
1955 if (ret)
1956 return ret;
8f18cf13 1957
a22285a6 1958 trans = btrfs_start_transaction(root, 0);
98d5dc13 1959 BUG_ON(IS_ERR(trans));
8f18cf13 1960
7d9eb12c
CM
1961 lock_chunks(root);
1962
8f18cf13
CM
1963 /*
1964 * step two, delete the device extents and the
1965 * chunk tree entries
1966 */
890871be 1967 read_lock(&em_tree->lock);
8f18cf13 1968 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 1969 read_unlock(&em_tree->lock);
8f18cf13 1970
285190d9 1971 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 1972 em->start + em->len < chunk_offset);
8f18cf13
CM
1973 map = (struct map_lookup *)em->bdev;
1974
1975 for (i = 0; i < map->num_stripes; i++) {
1976 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1977 map->stripes[i].physical);
1978 BUG_ON(ret);
a061fc8d 1979
dfe25020
CM
1980 if (map->stripes[i].dev) {
1981 ret = btrfs_update_device(trans, map->stripes[i].dev);
1982 BUG_ON(ret);
1983 }
8f18cf13
CM
1984 }
1985 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1986 chunk_offset);
1987
1988 BUG_ON(ret);
1989
1abe9b8a 1990 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
1991
8f18cf13
CM
1992 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1993 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1994 BUG_ON(ret);
8f18cf13
CM
1995 }
1996
2b82032c
YZ
1997 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1998 BUG_ON(ret);
1999
890871be 2000 write_lock(&em_tree->lock);
2b82032c 2001 remove_extent_mapping(em_tree, em);
890871be 2002 write_unlock(&em_tree->lock);
2b82032c
YZ
2003
2004 kfree(map);
2005 em->bdev = NULL;
2006
2007 /* once for the tree */
2008 free_extent_map(em);
2009 /* once for us */
2010 free_extent_map(em);
2011
2012 unlock_chunks(root);
2013 btrfs_end_transaction(trans, root);
2014 return 0;
2015}
2016
2017static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2018{
2019 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2020 struct btrfs_path *path;
2021 struct extent_buffer *leaf;
2022 struct btrfs_chunk *chunk;
2023 struct btrfs_key key;
2024 struct btrfs_key found_key;
2025 u64 chunk_tree = chunk_root->root_key.objectid;
2026 u64 chunk_type;
ba1bf481
JB
2027 bool retried = false;
2028 int failed = 0;
2b82032c
YZ
2029 int ret;
2030
2031 path = btrfs_alloc_path();
2032 if (!path)
2033 return -ENOMEM;
2034
ba1bf481 2035again:
2b82032c
YZ
2036 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2037 key.offset = (u64)-1;
2038 key.type = BTRFS_CHUNK_ITEM_KEY;
2039
2040 while (1) {
2041 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2042 if (ret < 0)
2043 goto error;
2044 BUG_ON(ret == 0);
2045
2046 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2047 key.type);
2048 if (ret < 0)
2049 goto error;
2050 if (ret > 0)
2051 break;
1a40e23b 2052
2b82032c
YZ
2053 leaf = path->nodes[0];
2054 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2055
2b82032c
YZ
2056 chunk = btrfs_item_ptr(leaf, path->slots[0],
2057 struct btrfs_chunk);
2058 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2059 btrfs_release_path(path);
8f18cf13 2060
2b82032c
YZ
2061 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2062 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2063 found_key.objectid,
2064 found_key.offset);
ba1bf481
JB
2065 if (ret == -ENOSPC)
2066 failed++;
2067 else if (ret)
2068 BUG();
2b82032c 2069 }
8f18cf13 2070
2b82032c
YZ
2071 if (found_key.offset == 0)
2072 break;
2073 key.offset = found_key.offset - 1;
2074 }
2075 ret = 0;
ba1bf481
JB
2076 if (failed && !retried) {
2077 failed = 0;
2078 retried = true;
2079 goto again;
2080 } else if (failed && retried) {
2081 WARN_ON(1);
2082 ret = -ENOSPC;
2083 }
2b82032c
YZ
2084error:
2085 btrfs_free_path(path);
2086 return ret;
8f18cf13
CM
2087}
2088
0940ebf6
ID
2089static int insert_balance_item(struct btrfs_root *root,
2090 struct btrfs_balance_control *bctl)
2091{
2092 struct btrfs_trans_handle *trans;
2093 struct btrfs_balance_item *item;
2094 struct btrfs_disk_balance_args disk_bargs;
2095 struct btrfs_path *path;
2096 struct extent_buffer *leaf;
2097 struct btrfs_key key;
2098 int ret, err;
2099
2100 path = btrfs_alloc_path();
2101 if (!path)
2102 return -ENOMEM;
2103
2104 trans = btrfs_start_transaction(root, 0);
2105 if (IS_ERR(trans)) {
2106 btrfs_free_path(path);
2107 return PTR_ERR(trans);
2108 }
2109
2110 key.objectid = BTRFS_BALANCE_OBJECTID;
2111 key.type = BTRFS_BALANCE_ITEM_KEY;
2112 key.offset = 0;
2113
2114 ret = btrfs_insert_empty_item(trans, root, path, &key,
2115 sizeof(*item));
2116 if (ret)
2117 goto out;
2118
2119 leaf = path->nodes[0];
2120 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2121
2122 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2123
2124 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2125 btrfs_set_balance_data(leaf, item, &disk_bargs);
2126 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2127 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2128 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2129 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2130
2131 btrfs_set_balance_flags(leaf, item, bctl->flags);
2132
2133 btrfs_mark_buffer_dirty(leaf);
2134out:
2135 btrfs_free_path(path);
2136 err = btrfs_commit_transaction(trans, root);
2137 if (err && !ret)
2138 ret = err;
2139 return ret;
2140}
2141
2142static int del_balance_item(struct btrfs_root *root)
2143{
2144 struct btrfs_trans_handle *trans;
2145 struct btrfs_path *path;
2146 struct btrfs_key key;
2147 int ret, err;
2148
2149 path = btrfs_alloc_path();
2150 if (!path)
2151 return -ENOMEM;
2152
2153 trans = btrfs_start_transaction(root, 0);
2154 if (IS_ERR(trans)) {
2155 btrfs_free_path(path);
2156 return PTR_ERR(trans);
2157 }
2158
2159 key.objectid = BTRFS_BALANCE_OBJECTID;
2160 key.type = BTRFS_BALANCE_ITEM_KEY;
2161 key.offset = 0;
2162
2163 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2164 if (ret < 0)
2165 goto out;
2166 if (ret > 0) {
2167 ret = -ENOENT;
2168 goto out;
2169 }
2170
2171 ret = btrfs_del_item(trans, root, path);
2172out:
2173 btrfs_free_path(path);
2174 err = btrfs_commit_transaction(trans, root);
2175 if (err && !ret)
2176 ret = err;
2177 return ret;
2178}
2179
59641015
ID
2180/*
2181 * This is a heuristic used to reduce the number of chunks balanced on
2182 * resume after balance was interrupted.
2183 */
2184static void update_balance_args(struct btrfs_balance_control *bctl)
2185{
2186 /*
2187 * Turn on soft mode for chunk types that were being converted.
2188 */
2189 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2190 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2191 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2192 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2193 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2194 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2195
2196 /*
2197 * Turn on usage filter if is not already used. The idea is
2198 * that chunks that we have already balanced should be
2199 * reasonably full. Don't do it for chunks that are being
2200 * converted - that will keep us from relocating unconverted
2201 * (albeit full) chunks.
2202 */
2203 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2204 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2205 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2206 bctl->data.usage = 90;
2207 }
2208 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2209 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2210 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2211 bctl->sys.usage = 90;
2212 }
2213 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2214 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2215 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2216 bctl->meta.usage = 90;
2217 }
2218}
2219
c9e9f97b
ID
2220/*
2221 * Should be called with both balance and volume mutexes held to
2222 * serialize other volume operations (add_dev/rm_dev/resize) with
2223 * restriper. Same goes for unset_balance_control.
2224 */
2225static void set_balance_control(struct btrfs_balance_control *bctl)
2226{
2227 struct btrfs_fs_info *fs_info = bctl->fs_info;
2228
2229 BUG_ON(fs_info->balance_ctl);
2230
2231 spin_lock(&fs_info->balance_lock);
2232 fs_info->balance_ctl = bctl;
2233 spin_unlock(&fs_info->balance_lock);
2234}
2235
2236static void unset_balance_control(struct btrfs_fs_info *fs_info)
2237{
2238 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2239
2240 BUG_ON(!fs_info->balance_ctl);
2241
2242 spin_lock(&fs_info->balance_lock);
2243 fs_info->balance_ctl = NULL;
2244 spin_unlock(&fs_info->balance_lock);
2245
2246 kfree(bctl);
2247}
2248
ed25e9b2
ID
2249/*
2250 * Balance filters. Return 1 if chunk should be filtered out
2251 * (should not be balanced).
2252 */
899c81ea 2253static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2254 struct btrfs_balance_args *bargs)
2255{
899c81ea
ID
2256 chunk_type = chunk_to_extended(chunk_type) &
2257 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2258
899c81ea 2259 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2260 return 0;
2261
2262 return 1;
2263}
2264
5ce5b3c0
ID
2265static u64 div_factor_fine(u64 num, int factor)
2266{
2267 if (factor <= 0)
2268 return 0;
2269 if (factor >= 100)
2270 return num;
2271
2272 num *= factor;
2273 do_div(num, 100);
2274 return num;
2275}
2276
2277static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2278 struct btrfs_balance_args *bargs)
2279{
2280 struct btrfs_block_group_cache *cache;
2281 u64 chunk_used, user_thresh;
2282 int ret = 1;
2283
2284 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2285 chunk_used = btrfs_block_group_used(&cache->item);
2286
2287 user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2288 if (chunk_used < user_thresh)
2289 ret = 0;
2290
2291 btrfs_put_block_group(cache);
2292 return ret;
2293}
2294
409d404b
ID
2295static int chunk_devid_filter(struct extent_buffer *leaf,
2296 struct btrfs_chunk *chunk,
2297 struct btrfs_balance_args *bargs)
2298{
2299 struct btrfs_stripe *stripe;
2300 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2301 int i;
2302
2303 for (i = 0; i < num_stripes; i++) {
2304 stripe = btrfs_stripe_nr(chunk, i);
2305 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2306 return 0;
2307 }
2308
2309 return 1;
2310}
2311
94e60d5a
ID
2312/* [pstart, pend) */
2313static int chunk_drange_filter(struct extent_buffer *leaf,
2314 struct btrfs_chunk *chunk,
2315 u64 chunk_offset,
2316 struct btrfs_balance_args *bargs)
2317{
2318 struct btrfs_stripe *stripe;
2319 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2320 u64 stripe_offset;
2321 u64 stripe_length;
2322 int factor;
2323 int i;
2324
2325 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2326 return 0;
2327
2328 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2329 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2330 factor = 2;
2331 else
2332 factor = 1;
2333 factor = num_stripes / factor;
2334
2335 for (i = 0; i < num_stripes; i++) {
2336 stripe = btrfs_stripe_nr(chunk, i);
2337 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2338 continue;
2339
2340 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2341 stripe_length = btrfs_chunk_length(leaf, chunk);
2342 do_div(stripe_length, factor);
2343
2344 if (stripe_offset < bargs->pend &&
2345 stripe_offset + stripe_length > bargs->pstart)
2346 return 0;
2347 }
2348
2349 return 1;
2350}
2351
ea67176a
ID
2352/* [vstart, vend) */
2353static int chunk_vrange_filter(struct extent_buffer *leaf,
2354 struct btrfs_chunk *chunk,
2355 u64 chunk_offset,
2356 struct btrfs_balance_args *bargs)
2357{
2358 if (chunk_offset < bargs->vend &&
2359 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2360 /* at least part of the chunk is inside this vrange */
2361 return 0;
2362
2363 return 1;
2364}
2365
899c81ea 2366static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2367 struct btrfs_balance_args *bargs)
2368{
2369 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2370 return 0;
2371
899c81ea
ID
2372 chunk_type = chunk_to_extended(chunk_type) &
2373 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2374
899c81ea 2375 if (bargs->target == chunk_type)
cfa4c961
ID
2376 return 1;
2377
2378 return 0;
2379}
2380
f43ffb60
ID
2381static int should_balance_chunk(struct btrfs_root *root,
2382 struct extent_buffer *leaf,
2383 struct btrfs_chunk *chunk, u64 chunk_offset)
2384{
2385 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2386 struct btrfs_balance_args *bargs = NULL;
2387 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2388
2389 /* type filter */
2390 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2391 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2392 return 0;
2393 }
2394
2395 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2396 bargs = &bctl->data;
2397 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2398 bargs = &bctl->sys;
2399 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2400 bargs = &bctl->meta;
2401
ed25e9b2
ID
2402 /* profiles filter */
2403 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2404 chunk_profiles_filter(chunk_type, bargs)) {
2405 return 0;
5ce5b3c0
ID
2406 }
2407
2408 /* usage filter */
2409 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2410 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2411 return 0;
409d404b
ID
2412 }
2413
2414 /* devid filter */
2415 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2416 chunk_devid_filter(leaf, chunk, bargs)) {
2417 return 0;
94e60d5a
ID
2418 }
2419
2420 /* drange filter, makes sense only with devid filter */
2421 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2422 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2423 return 0;
ea67176a
ID
2424 }
2425
2426 /* vrange filter */
2427 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2428 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2429 return 0;
ed25e9b2
ID
2430 }
2431
cfa4c961
ID
2432 /* soft profile changing mode */
2433 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2434 chunk_soft_convert_filter(chunk_type, bargs)) {
2435 return 0;
2436 }
2437
f43ffb60
ID
2438 return 1;
2439}
2440
ec44a35c
CM
2441static u64 div_factor(u64 num, int factor)
2442{
2443 if (factor == 10)
2444 return num;
2445 num *= factor;
2446 do_div(num, 10);
2447 return num;
2448}
2449
c9e9f97b 2450static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2451{
19a39dce 2452 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2453 struct btrfs_root *chunk_root = fs_info->chunk_root;
2454 struct btrfs_root *dev_root = fs_info->dev_root;
2455 struct list_head *devices;
ec44a35c
CM
2456 struct btrfs_device *device;
2457 u64 old_size;
2458 u64 size_to_free;
f43ffb60 2459 struct btrfs_chunk *chunk;
ec44a35c
CM
2460 struct btrfs_path *path;
2461 struct btrfs_key key;
ec44a35c 2462 struct btrfs_key found_key;
c9e9f97b 2463 struct btrfs_trans_handle *trans;
f43ffb60
ID
2464 struct extent_buffer *leaf;
2465 int slot;
c9e9f97b
ID
2466 int ret;
2467 int enospc_errors = 0;
19a39dce 2468 bool counting = true;
ec44a35c 2469
ec44a35c 2470 /* step one make some room on all the devices */
c9e9f97b 2471 devices = &fs_info->fs_devices->devices;
c6e30871 2472 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2473 old_size = device->total_bytes;
2474 size_to_free = div_factor(old_size, 1);
2475 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
2476 if (!device->writeable ||
2477 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
2478 continue;
2479
2480 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2481 if (ret == -ENOSPC)
2482 break;
ec44a35c
CM
2483 BUG_ON(ret);
2484
a22285a6 2485 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2486 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2487
2488 ret = btrfs_grow_device(trans, device, old_size);
2489 BUG_ON(ret);
2490
2491 btrfs_end_transaction(trans, dev_root);
2492 }
2493
2494 /* step two, relocate all the chunks */
2495 path = btrfs_alloc_path();
17e9f796
MF
2496 if (!path) {
2497 ret = -ENOMEM;
2498 goto error;
2499 }
19a39dce
ID
2500
2501 /* zero out stat counters */
2502 spin_lock(&fs_info->balance_lock);
2503 memset(&bctl->stat, 0, sizeof(bctl->stat));
2504 spin_unlock(&fs_info->balance_lock);
2505again:
ec44a35c
CM
2506 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2507 key.offset = (u64)-1;
2508 key.type = BTRFS_CHUNK_ITEM_KEY;
2509
d397712b 2510 while (1) {
19a39dce 2511 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2512 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2513 ret = -ECANCELED;
2514 goto error;
2515 }
2516
ec44a35c
CM
2517 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2518 if (ret < 0)
2519 goto error;
2520
2521 /*
2522 * this shouldn't happen, it means the last relocate
2523 * failed
2524 */
2525 if (ret == 0)
c9e9f97b 2526 BUG(); /* FIXME break ? */
ec44a35c
CM
2527
2528 ret = btrfs_previous_item(chunk_root, path, 0,
2529 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
2530 if (ret) {
2531 ret = 0;
ec44a35c 2532 break;
c9e9f97b 2533 }
7d9eb12c 2534
f43ffb60
ID
2535 leaf = path->nodes[0];
2536 slot = path->slots[0];
2537 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 2538
ec44a35c
CM
2539 if (found_key.objectid != key.objectid)
2540 break;
7d9eb12c 2541
ec44a35c 2542 /* chunk zero is special */
ba1bf481 2543 if (found_key.offset == 0)
ec44a35c
CM
2544 break;
2545
f43ffb60
ID
2546 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2547
19a39dce
ID
2548 if (!counting) {
2549 spin_lock(&fs_info->balance_lock);
2550 bctl->stat.considered++;
2551 spin_unlock(&fs_info->balance_lock);
2552 }
2553
f43ffb60
ID
2554 ret = should_balance_chunk(chunk_root, leaf, chunk,
2555 found_key.offset);
b3b4aa74 2556 btrfs_release_path(path);
f43ffb60
ID
2557 if (!ret)
2558 goto loop;
2559
19a39dce
ID
2560 if (counting) {
2561 spin_lock(&fs_info->balance_lock);
2562 bctl->stat.expected++;
2563 spin_unlock(&fs_info->balance_lock);
2564 goto loop;
2565 }
2566
ec44a35c
CM
2567 ret = btrfs_relocate_chunk(chunk_root,
2568 chunk_root->root_key.objectid,
2569 found_key.objectid,
2570 found_key.offset);
508794eb
JB
2571 if (ret && ret != -ENOSPC)
2572 goto error;
19a39dce 2573 if (ret == -ENOSPC) {
c9e9f97b 2574 enospc_errors++;
19a39dce
ID
2575 } else {
2576 spin_lock(&fs_info->balance_lock);
2577 bctl->stat.completed++;
2578 spin_unlock(&fs_info->balance_lock);
2579 }
f43ffb60 2580loop:
ba1bf481 2581 key.offset = found_key.offset - 1;
ec44a35c 2582 }
c9e9f97b 2583
19a39dce
ID
2584 if (counting) {
2585 btrfs_release_path(path);
2586 counting = false;
2587 goto again;
2588 }
ec44a35c
CM
2589error:
2590 btrfs_free_path(path);
c9e9f97b
ID
2591 if (enospc_errors) {
2592 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2593 enospc_errors);
2594 if (!ret)
2595 ret = -ENOSPC;
2596 }
2597
ec44a35c
CM
2598 return ret;
2599}
2600
0c460c0d
ID
2601/**
2602 * alloc_profile_is_valid - see if a given profile is valid and reduced
2603 * @flags: profile to validate
2604 * @extended: if true @flags is treated as an extended profile
2605 */
2606static int alloc_profile_is_valid(u64 flags, int extended)
2607{
2608 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2609 BTRFS_BLOCK_GROUP_PROFILE_MASK);
2610
2611 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2612
2613 /* 1) check that all other bits are zeroed */
2614 if (flags & ~mask)
2615 return 0;
2616
2617 /* 2) see if profile is reduced */
2618 if (flags == 0)
2619 return !extended; /* "0" is valid for usual profiles */
2620
2621 /* true if exactly one bit set */
2622 return (flags & (flags - 1)) == 0;
2623}
2624
837d5b6e
ID
2625static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2626{
a7e99c69
ID
2627 /* cancel requested || normal exit path */
2628 return atomic_read(&fs_info->balance_cancel_req) ||
2629 (atomic_read(&fs_info->balance_pause_req) == 0 &&
2630 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
2631}
2632
c9e9f97b
ID
2633static void __cancel_balance(struct btrfs_fs_info *fs_info)
2634{
0940ebf6
ID
2635 int ret;
2636
c9e9f97b 2637 unset_balance_control(fs_info);
0940ebf6
ID
2638 ret = del_balance_item(fs_info->tree_root);
2639 BUG_ON(ret);
c9e9f97b
ID
2640}
2641
19a39dce 2642void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
c9e9f97b
ID
2643 struct btrfs_ioctl_balance_args *bargs);
2644
2645/*
2646 * Should be called with both balance and volume mutexes held
2647 */
2648int btrfs_balance(struct btrfs_balance_control *bctl,
2649 struct btrfs_ioctl_balance_args *bargs)
2650{
2651 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 2652 u64 allowed;
c9e9f97b
ID
2653 int ret;
2654
837d5b6e 2655 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
2656 atomic_read(&fs_info->balance_pause_req) ||
2657 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
2658 ret = -EINVAL;
2659 goto out;
2660 }
2661
f43ffb60
ID
2662 /*
2663 * In case of mixed groups both data and meta should be picked,
2664 * and identical options should be given for both of them.
2665 */
2666 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2667 if ((allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2668 (bctl->flags & (BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA))) {
2669 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2670 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2671 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2672 printk(KERN_ERR "btrfs: with mixed groups data and "
2673 "metadata balance options must be the same\n");
2674 ret = -EINVAL;
2675 goto out;
2676 }
2677 }
2678
e4d8ec0f
ID
2679 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2680 if (fs_info->fs_devices->num_devices == 1)
2681 allowed |= BTRFS_BLOCK_GROUP_DUP;
2682 else if (fs_info->fs_devices->num_devices < 4)
2683 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2684 else
2685 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2686 BTRFS_BLOCK_GROUP_RAID10);
2687
6728b198
ID
2688 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2689 (!alloc_profile_is_valid(bctl->data.target, 1) ||
2690 (bctl->data.target & ~allowed))) {
e4d8ec0f
ID
2691 printk(KERN_ERR "btrfs: unable to start balance with target "
2692 "data profile %llu\n",
2693 (unsigned long long)bctl->data.target);
2694 ret = -EINVAL;
2695 goto out;
2696 }
6728b198
ID
2697 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2698 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
2699 (bctl->meta.target & ~allowed))) {
e4d8ec0f
ID
2700 printk(KERN_ERR "btrfs: unable to start balance with target "
2701 "metadata profile %llu\n",
2702 (unsigned long long)bctl->meta.target);
2703 ret = -EINVAL;
2704 goto out;
2705 }
6728b198
ID
2706 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2707 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
2708 (bctl->sys.target & ~allowed))) {
e4d8ec0f
ID
2709 printk(KERN_ERR "btrfs: unable to start balance with target "
2710 "system profile %llu\n",
2711 (unsigned long long)bctl->sys.target);
2712 ret = -EINVAL;
2713 goto out;
2714 }
2715
6728b198
ID
2716 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2717 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
e4d8ec0f
ID
2718 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2719 ret = -EINVAL;
2720 goto out;
2721 }
2722
2723 /* allow to reduce meta or sys integrity only if force set */
2724 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2725 BTRFS_BLOCK_GROUP_RAID10;
2726 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2727 (fs_info->avail_system_alloc_bits & allowed) &&
2728 !(bctl->sys.target & allowed)) ||
2729 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2730 (fs_info->avail_metadata_alloc_bits & allowed) &&
2731 !(bctl->meta.target & allowed))) {
2732 if (bctl->flags & BTRFS_BALANCE_FORCE) {
2733 printk(KERN_INFO "btrfs: force reducing metadata "
2734 "integrity\n");
2735 } else {
2736 printk(KERN_ERR "btrfs: balance will reduce metadata "
2737 "integrity, use force if you want this\n");
2738 ret = -EINVAL;
2739 goto out;
2740 }
2741 }
2742
0940ebf6 2743 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 2744 if (ret && ret != -EEXIST)
0940ebf6
ID
2745 goto out;
2746
59641015
ID
2747 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2748 BUG_ON(ret == -EEXIST);
2749 set_balance_control(bctl);
2750 } else {
2751 BUG_ON(ret != -EEXIST);
2752 spin_lock(&fs_info->balance_lock);
2753 update_balance_args(bctl);
2754 spin_unlock(&fs_info->balance_lock);
2755 }
c9e9f97b 2756
837d5b6e 2757 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
2758 mutex_unlock(&fs_info->balance_mutex);
2759
2760 ret = __btrfs_balance(fs_info);
2761
2762 mutex_lock(&fs_info->balance_mutex);
837d5b6e 2763 atomic_dec(&fs_info->balance_running);
c9e9f97b
ID
2764
2765 if (bargs) {
2766 memset(bargs, 0, sizeof(*bargs));
19a39dce 2767 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
2768 }
2769
837d5b6e
ID
2770 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2771 balance_need_close(fs_info)) {
2772 __cancel_balance(fs_info);
2773 }
2774
2775 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
2776
2777 return ret;
2778out:
59641015
ID
2779 if (bctl->flags & BTRFS_BALANCE_RESUME)
2780 __cancel_balance(fs_info);
2781 else
2782 kfree(bctl);
2783 return ret;
2784}
2785
2786static int balance_kthread(void *data)
2787{
2788 struct btrfs_balance_control *bctl =
2789 (struct btrfs_balance_control *)data;
2790 struct btrfs_fs_info *fs_info = bctl->fs_info;
9555c6c1 2791 int ret = 0;
59641015
ID
2792
2793 mutex_lock(&fs_info->volume_mutex);
2794 mutex_lock(&fs_info->balance_mutex);
2795
2796 set_balance_control(bctl);
2797
9555c6c1
ID
2798 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2799 printk(KERN_INFO "btrfs: force skipping balance\n");
2800 } else {
2801 printk(KERN_INFO "btrfs: continuing balance\n");
2802 ret = btrfs_balance(bctl, NULL);
2803 }
59641015
ID
2804
2805 mutex_unlock(&fs_info->balance_mutex);
2806 mutex_unlock(&fs_info->volume_mutex);
2807 return ret;
2808}
2809
2810int btrfs_recover_balance(struct btrfs_root *tree_root)
2811{
2812 struct task_struct *tsk;
2813 struct btrfs_balance_control *bctl;
2814 struct btrfs_balance_item *item;
2815 struct btrfs_disk_balance_args disk_bargs;
2816 struct btrfs_path *path;
2817 struct extent_buffer *leaf;
2818 struct btrfs_key key;
2819 int ret;
2820
2821 path = btrfs_alloc_path();
2822 if (!path)
2823 return -ENOMEM;
2824
2825 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2826 if (!bctl) {
2827 ret = -ENOMEM;
2828 goto out;
2829 }
2830
2831 key.objectid = BTRFS_BALANCE_OBJECTID;
2832 key.type = BTRFS_BALANCE_ITEM_KEY;
2833 key.offset = 0;
2834
2835 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2836 if (ret < 0)
2837 goto out_bctl;
2838 if (ret > 0) { /* ret = -ENOENT; */
2839 ret = 0;
2840 goto out_bctl;
2841 }
2842
2843 leaf = path->nodes[0];
2844 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2845
2846 bctl->fs_info = tree_root->fs_info;
2847 bctl->flags = btrfs_balance_flags(leaf, item) | BTRFS_BALANCE_RESUME;
2848
2849 btrfs_balance_data(leaf, item, &disk_bargs);
2850 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2851 btrfs_balance_meta(leaf, item, &disk_bargs);
2852 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2853 btrfs_balance_sys(leaf, item, &disk_bargs);
2854 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2855
2856 tsk = kthread_run(balance_kthread, bctl, "btrfs-balance");
2857 if (IS_ERR(tsk))
2858 ret = PTR_ERR(tsk);
2859 else
2860 goto out;
2861
2862out_bctl:
c9e9f97b 2863 kfree(bctl);
59641015
ID
2864out:
2865 btrfs_free_path(path);
ec44a35c
CM
2866 return ret;
2867}
2868
837d5b6e
ID
2869int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2870{
2871 int ret = 0;
2872
2873 mutex_lock(&fs_info->balance_mutex);
2874 if (!fs_info->balance_ctl) {
2875 mutex_unlock(&fs_info->balance_mutex);
2876 return -ENOTCONN;
2877 }
2878
2879 if (atomic_read(&fs_info->balance_running)) {
2880 atomic_inc(&fs_info->balance_pause_req);
2881 mutex_unlock(&fs_info->balance_mutex);
2882
2883 wait_event(fs_info->balance_wait_q,
2884 atomic_read(&fs_info->balance_running) == 0);
2885
2886 mutex_lock(&fs_info->balance_mutex);
2887 /* we are good with balance_ctl ripped off from under us */
2888 BUG_ON(atomic_read(&fs_info->balance_running));
2889 atomic_dec(&fs_info->balance_pause_req);
2890 } else {
2891 ret = -ENOTCONN;
2892 }
2893
2894 mutex_unlock(&fs_info->balance_mutex);
2895 return ret;
2896}
2897
a7e99c69
ID
2898int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
2899{
2900 mutex_lock(&fs_info->balance_mutex);
2901 if (!fs_info->balance_ctl) {
2902 mutex_unlock(&fs_info->balance_mutex);
2903 return -ENOTCONN;
2904 }
2905
2906 atomic_inc(&fs_info->balance_cancel_req);
2907 /*
2908 * if we are running just wait and return, balance item is
2909 * deleted in btrfs_balance in this case
2910 */
2911 if (atomic_read(&fs_info->balance_running)) {
2912 mutex_unlock(&fs_info->balance_mutex);
2913 wait_event(fs_info->balance_wait_q,
2914 atomic_read(&fs_info->balance_running) == 0);
2915 mutex_lock(&fs_info->balance_mutex);
2916 } else {
2917 /* __cancel_balance needs volume_mutex */
2918 mutex_unlock(&fs_info->balance_mutex);
2919 mutex_lock(&fs_info->volume_mutex);
2920 mutex_lock(&fs_info->balance_mutex);
2921
2922 if (fs_info->balance_ctl)
2923 __cancel_balance(fs_info);
2924
2925 mutex_unlock(&fs_info->volume_mutex);
2926 }
2927
2928 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
2929 atomic_dec(&fs_info->balance_cancel_req);
2930 mutex_unlock(&fs_info->balance_mutex);
2931 return 0;
2932}
2933
8f18cf13
CM
2934/*
2935 * shrinking a device means finding all of the device extents past
2936 * the new size, and then following the back refs to the chunks.
2937 * The chunk relocation code actually frees the device extent
2938 */
2939int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2940{
2941 struct btrfs_trans_handle *trans;
2942 struct btrfs_root *root = device->dev_root;
2943 struct btrfs_dev_extent *dev_extent = NULL;
2944 struct btrfs_path *path;
2945 u64 length;
2946 u64 chunk_tree;
2947 u64 chunk_objectid;
2948 u64 chunk_offset;
2949 int ret;
2950 int slot;
ba1bf481
JB
2951 int failed = 0;
2952 bool retried = false;
8f18cf13
CM
2953 struct extent_buffer *l;
2954 struct btrfs_key key;
6c41761f 2955 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 2956 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 2957 u64 old_size = device->total_bytes;
8f18cf13
CM
2958 u64 diff = device->total_bytes - new_size;
2959
2b82032c
YZ
2960 if (new_size >= device->total_bytes)
2961 return -EINVAL;
8f18cf13
CM
2962
2963 path = btrfs_alloc_path();
2964 if (!path)
2965 return -ENOMEM;
2966
8f18cf13
CM
2967 path->reada = 2;
2968
7d9eb12c
CM
2969 lock_chunks(root);
2970
8f18cf13 2971 device->total_bytes = new_size;
2bf64758 2972 if (device->writeable) {
2b82032c 2973 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
2974 spin_lock(&root->fs_info->free_chunk_lock);
2975 root->fs_info->free_chunk_space -= diff;
2976 spin_unlock(&root->fs_info->free_chunk_lock);
2977 }
7d9eb12c 2978 unlock_chunks(root);
8f18cf13 2979
ba1bf481 2980again:
8f18cf13
CM
2981 key.objectid = device->devid;
2982 key.offset = (u64)-1;
2983 key.type = BTRFS_DEV_EXTENT_KEY;
2984
2985 while (1) {
2986 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2987 if (ret < 0)
2988 goto done;
2989
2990 ret = btrfs_previous_item(root, path, 0, key.type);
2991 if (ret < 0)
2992 goto done;
2993 if (ret) {
2994 ret = 0;
b3b4aa74 2995 btrfs_release_path(path);
bf1fb512 2996 break;
8f18cf13
CM
2997 }
2998
2999 l = path->nodes[0];
3000 slot = path->slots[0];
3001 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3002
ba1bf481 3003 if (key.objectid != device->devid) {
b3b4aa74 3004 btrfs_release_path(path);
bf1fb512 3005 break;
ba1bf481 3006 }
8f18cf13
CM
3007
3008 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3009 length = btrfs_dev_extent_length(l, dev_extent);
3010
ba1bf481 3011 if (key.offset + length <= new_size) {
b3b4aa74 3012 btrfs_release_path(path);
d6397bae 3013 break;
ba1bf481 3014 }
8f18cf13
CM
3015
3016 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3017 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3018 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3019 btrfs_release_path(path);
8f18cf13
CM
3020
3021 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3022 chunk_offset);
ba1bf481 3023 if (ret && ret != -ENOSPC)
8f18cf13 3024 goto done;
ba1bf481
JB
3025 if (ret == -ENOSPC)
3026 failed++;
3027 key.offset -= 1;
3028 }
3029
3030 if (failed && !retried) {
3031 failed = 0;
3032 retried = true;
3033 goto again;
3034 } else if (failed && retried) {
3035 ret = -ENOSPC;
3036 lock_chunks(root);
3037
3038 device->total_bytes = old_size;
3039 if (device->writeable)
3040 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3041 spin_lock(&root->fs_info->free_chunk_lock);
3042 root->fs_info->free_chunk_space += diff;
3043 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3044 unlock_chunks(root);
3045 goto done;
8f18cf13
CM
3046 }
3047
d6397bae 3048 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3049 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3050 if (IS_ERR(trans)) {
3051 ret = PTR_ERR(trans);
3052 goto done;
3053 }
3054
d6397bae
CB
3055 lock_chunks(root);
3056
3057 device->disk_total_bytes = new_size;
3058 /* Now btrfs_update_device() will change the on-disk size. */
3059 ret = btrfs_update_device(trans, device);
3060 if (ret) {
3061 unlock_chunks(root);
3062 btrfs_end_transaction(trans, root);
3063 goto done;
3064 }
3065 WARN_ON(diff > old_total);
3066 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3067 unlock_chunks(root);
3068 btrfs_end_transaction(trans, root);
8f18cf13
CM
3069done:
3070 btrfs_free_path(path);
3071 return ret;
3072}
3073
125ccb0a 3074static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3075 struct btrfs_key *key,
3076 struct btrfs_chunk *chunk, int item_size)
3077{
6c41761f 3078 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3079 struct btrfs_disk_key disk_key;
3080 u32 array_size;
3081 u8 *ptr;
3082
3083 array_size = btrfs_super_sys_array_size(super_copy);
3084 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3085 return -EFBIG;
3086
3087 ptr = super_copy->sys_chunk_array + array_size;
3088 btrfs_cpu_key_to_disk(&disk_key, key);
3089 memcpy(ptr, &disk_key, sizeof(disk_key));
3090 ptr += sizeof(disk_key);
3091 memcpy(ptr, chunk, item_size);
3092 item_size += sizeof(disk_key);
3093 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3094 return 0;
3095}
3096
73c5de00
AJ
3097/*
3098 * sort the devices in descending order by max_avail, total_avail
3099 */
3100static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3101{
73c5de00
AJ
3102 const struct btrfs_device_info *di_a = a;
3103 const struct btrfs_device_info *di_b = b;
9b3f68b9 3104
73c5de00 3105 if (di_a->max_avail > di_b->max_avail)
b2117a39 3106 return -1;
73c5de00 3107 if (di_a->max_avail < di_b->max_avail)
b2117a39 3108 return 1;
73c5de00
AJ
3109 if (di_a->total_avail > di_b->total_avail)
3110 return -1;
3111 if (di_a->total_avail < di_b->total_avail)
3112 return 1;
3113 return 0;
b2117a39 3114}
0b86a832 3115
73c5de00
AJ
3116static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3117 struct btrfs_root *extent_root,
3118 struct map_lookup **map_ret,
3119 u64 *num_bytes_out, u64 *stripe_size_out,
3120 u64 start, u64 type)
b2117a39 3121{
73c5de00
AJ
3122 struct btrfs_fs_info *info = extent_root->fs_info;
3123 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3124 struct list_head *cur;
3125 struct map_lookup *map = NULL;
3126 struct extent_map_tree *em_tree;
3127 struct extent_map *em;
3128 struct btrfs_device_info *devices_info = NULL;
3129 u64 total_avail;
3130 int num_stripes; /* total number of stripes to allocate */
3131 int sub_stripes; /* sub_stripes info for map */
3132 int dev_stripes; /* stripes per dev */
3133 int devs_max; /* max devs to use */
3134 int devs_min; /* min devs needed */
3135 int devs_increment; /* ndevs has to be a multiple of this */
3136 int ncopies; /* how many copies to data has */
3137 int ret;
3138 u64 max_stripe_size;
3139 u64 max_chunk_size;
3140 u64 stripe_size;
3141 u64 num_bytes;
3142 int ndevs;
3143 int i;
3144 int j;
593060d7 3145
0c460c0d 3146 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 3147
73c5de00
AJ
3148 if (list_empty(&fs_devices->alloc_list))
3149 return -ENOSPC;
b2117a39 3150
73c5de00
AJ
3151 sub_stripes = 1;
3152 dev_stripes = 1;
3153 devs_increment = 1;
3154 ncopies = 1;
3155 devs_max = 0; /* 0 == as many as possible */
3156 devs_min = 1;
3157
3158 /*
3159 * define the properties of each RAID type.
3160 * FIXME: move this to a global table and use it in all RAID
3161 * calculation code
3162 */
3163 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3164 dev_stripes = 2;
b2117a39 3165 ncopies = 2;
73c5de00
AJ
3166 devs_max = 1;
3167 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3168 devs_min = 2;
3169 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3170 devs_increment = 2;
b2117a39 3171 ncopies = 2;
73c5de00
AJ
3172 devs_max = 2;
3173 devs_min = 2;
3174 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3175 sub_stripes = 2;
3176 devs_increment = 2;
3177 ncopies = 2;
3178 devs_min = 4;
3179 } else {
3180 devs_max = 1;
3181 }
b2117a39 3182
9b3f68b9 3183 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
3184 max_stripe_size = 1024 * 1024 * 1024;
3185 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 3186 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
3187 /* for larger filesystems, use larger metadata chunks */
3188 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3189 max_stripe_size = 1024 * 1024 * 1024;
3190 else
3191 max_stripe_size = 256 * 1024 * 1024;
73c5de00 3192 max_chunk_size = max_stripe_size;
a40a90a0 3193 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 3194 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
3195 max_chunk_size = 2 * max_stripe_size;
3196 } else {
3197 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3198 type);
3199 BUG_ON(1);
9b3f68b9
CM
3200 }
3201
2b82032c
YZ
3202 /* we don't want a chunk larger than 10% of writeable space */
3203 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3204 max_chunk_size);
9b3f68b9 3205
73c5de00
AJ
3206 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3207 GFP_NOFS);
3208 if (!devices_info)
3209 return -ENOMEM;
0cad8a11 3210
73c5de00 3211 cur = fs_devices->alloc_list.next;
9b3f68b9 3212
9f680ce0 3213 /*
73c5de00
AJ
3214 * in the first pass through the devices list, we gather information
3215 * about the available holes on each device.
9f680ce0 3216 */
73c5de00
AJ
3217 ndevs = 0;
3218 while (cur != &fs_devices->alloc_list) {
3219 struct btrfs_device *device;
3220 u64 max_avail;
3221 u64 dev_offset;
b2117a39 3222
73c5de00 3223 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 3224
73c5de00 3225 cur = cur->next;
b2117a39 3226
73c5de00
AJ
3227 if (!device->writeable) {
3228 printk(KERN_ERR
3229 "btrfs: read-only device in alloc_list\n");
3230 WARN_ON(1);
3231 continue;
3232 }
b2117a39 3233
73c5de00
AJ
3234 if (!device->in_fs_metadata)
3235 continue;
b2117a39 3236
73c5de00
AJ
3237 if (device->total_bytes > device->bytes_used)
3238 total_avail = device->total_bytes - device->bytes_used;
3239 else
3240 total_avail = 0;
38c01b96 3241
3242 /* If there is no space on this device, skip it. */
3243 if (total_avail == 0)
3244 continue;
b2117a39 3245
125ccb0a 3246 ret = find_free_dev_extent(device,
73c5de00
AJ
3247 max_stripe_size * dev_stripes,
3248 &dev_offset, &max_avail);
3249 if (ret && ret != -ENOSPC)
3250 goto error;
b2117a39 3251
73c5de00
AJ
3252 if (ret == 0)
3253 max_avail = max_stripe_size * dev_stripes;
b2117a39 3254
73c5de00
AJ
3255 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3256 continue;
b2117a39 3257
73c5de00
AJ
3258 devices_info[ndevs].dev_offset = dev_offset;
3259 devices_info[ndevs].max_avail = max_avail;
3260 devices_info[ndevs].total_avail = total_avail;
3261 devices_info[ndevs].dev = device;
3262 ++ndevs;
3263 }
b2117a39 3264
73c5de00
AJ
3265 /*
3266 * now sort the devices by hole size / available space
3267 */
3268 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3269 btrfs_cmp_device_info, NULL);
b2117a39 3270
73c5de00
AJ
3271 /* round down to number of usable stripes */
3272 ndevs -= ndevs % devs_increment;
b2117a39 3273
73c5de00
AJ
3274 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3275 ret = -ENOSPC;
3276 goto error;
b2117a39 3277 }
9f680ce0 3278
73c5de00
AJ
3279 if (devs_max && ndevs > devs_max)
3280 ndevs = devs_max;
3281 /*
3282 * the primary goal is to maximize the number of stripes, so use as many
3283 * devices as possible, even if the stripes are not maximum sized.
3284 */
3285 stripe_size = devices_info[ndevs-1].max_avail;
3286 num_stripes = ndevs * dev_stripes;
b2117a39 3287
73c5de00
AJ
3288 if (stripe_size * num_stripes > max_chunk_size * ncopies) {
3289 stripe_size = max_chunk_size * ncopies;
3290 do_div(stripe_size, num_stripes);
b2117a39 3291 }
b2117a39 3292
73c5de00
AJ
3293 do_div(stripe_size, dev_stripes);
3294 do_div(stripe_size, BTRFS_STRIPE_LEN);
3295 stripe_size *= BTRFS_STRIPE_LEN;
b2117a39
MX
3296
3297 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3298 if (!map) {
3299 ret = -ENOMEM;
3300 goto error;
3301 }
3302 map->num_stripes = num_stripes;
9b3f68b9 3303
73c5de00
AJ
3304 for (i = 0; i < ndevs; ++i) {
3305 for (j = 0; j < dev_stripes; ++j) {
3306 int s = i * dev_stripes + j;
3307 map->stripes[s].dev = devices_info[i].dev;
3308 map->stripes[s].physical = devices_info[i].dev_offset +
3309 j * stripe_size;
6324fbf3 3310 }
6324fbf3 3311 }
2b82032c 3312 map->sector_size = extent_root->sectorsize;
b2117a39
MX
3313 map->stripe_len = BTRFS_STRIPE_LEN;
3314 map->io_align = BTRFS_STRIPE_LEN;
3315 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 3316 map->type = type;
2b82032c 3317 map->sub_stripes = sub_stripes;
0b86a832 3318
2b82032c 3319 *map_ret = map;
73c5de00 3320 num_bytes = stripe_size * (num_stripes / ncopies);
0b86a832 3321
73c5de00
AJ
3322 *stripe_size_out = stripe_size;
3323 *num_bytes_out = num_bytes;
0b86a832 3324
73c5de00 3325 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 3326
172ddd60 3327 em = alloc_extent_map();
2b82032c 3328 if (!em) {
b2117a39
MX
3329 ret = -ENOMEM;
3330 goto error;
593060d7 3331 }
2b82032c
YZ
3332 em->bdev = (struct block_device *)map;
3333 em->start = start;
73c5de00 3334 em->len = num_bytes;
2b82032c
YZ
3335 em->block_start = 0;
3336 em->block_len = em->len;
593060d7 3337
2b82032c 3338 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 3339 write_lock(&em_tree->lock);
2b82032c 3340 ret = add_extent_mapping(em_tree, em);
890871be 3341 write_unlock(&em_tree->lock);
2b82032c
YZ
3342 BUG_ON(ret);
3343 free_extent_map(em);
0b86a832 3344
2b82032c
YZ
3345 ret = btrfs_make_block_group(trans, extent_root, 0, type,
3346 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 3347 start, num_bytes);
2b82032c 3348 BUG_ON(ret);
611f0e00 3349
73c5de00
AJ
3350 for (i = 0; i < map->num_stripes; ++i) {
3351 struct btrfs_device *device;
3352 u64 dev_offset;
3353
3354 device = map->stripes[i].dev;
3355 dev_offset = map->stripes[i].physical;
0b86a832
CM
3356
3357 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
3358 info->chunk_root->root_key.objectid,
3359 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 3360 start, dev_offset, stripe_size);
0b86a832 3361 BUG_ON(ret);
2b82032c
YZ
3362 }
3363
b2117a39 3364 kfree(devices_info);
2b82032c 3365 return 0;
b2117a39
MX
3366
3367error:
3368 kfree(map);
3369 kfree(devices_info);
3370 return ret;
2b82032c
YZ
3371}
3372
3373static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3374 struct btrfs_root *extent_root,
3375 struct map_lookup *map, u64 chunk_offset,
3376 u64 chunk_size, u64 stripe_size)
3377{
3378 u64 dev_offset;
3379 struct btrfs_key key;
3380 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3381 struct btrfs_device *device;
3382 struct btrfs_chunk *chunk;
3383 struct btrfs_stripe *stripe;
3384 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3385 int index = 0;
3386 int ret;
3387
3388 chunk = kzalloc(item_size, GFP_NOFS);
3389 if (!chunk)
3390 return -ENOMEM;
3391
3392 index = 0;
3393 while (index < map->num_stripes) {
3394 device = map->stripes[index].dev;
3395 device->bytes_used += stripe_size;
0b86a832
CM
3396 ret = btrfs_update_device(trans, device);
3397 BUG_ON(ret);
2b82032c
YZ
3398 index++;
3399 }
3400
2bf64758
JB
3401 spin_lock(&extent_root->fs_info->free_chunk_lock);
3402 extent_root->fs_info->free_chunk_space -= (stripe_size *
3403 map->num_stripes);
3404 spin_unlock(&extent_root->fs_info->free_chunk_lock);
3405
2b82032c
YZ
3406 index = 0;
3407 stripe = &chunk->stripe;
3408 while (index < map->num_stripes) {
3409 device = map->stripes[index].dev;
3410 dev_offset = map->stripes[index].physical;
0b86a832 3411
e17cade2
CM
3412 btrfs_set_stack_stripe_devid(stripe, device->devid);
3413 btrfs_set_stack_stripe_offset(stripe, dev_offset);
3414 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 3415 stripe++;
0b86a832
CM
3416 index++;
3417 }
3418
2b82032c 3419 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 3420 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
3421 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3422 btrfs_set_stack_chunk_type(chunk, map->type);
3423 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3424 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3425 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 3426 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 3427 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 3428
2b82032c
YZ
3429 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3430 key.type = BTRFS_CHUNK_ITEM_KEY;
3431 key.offset = chunk_offset;
0b86a832 3432
2b82032c
YZ
3433 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
3434 BUG_ON(ret);
0b86a832 3435
2b82032c 3436 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
125ccb0a 3437 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 3438 item_size);
8f18cf13
CM
3439 BUG_ON(ret);
3440 }
1abe9b8a 3441
0b86a832 3442 kfree(chunk);
2b82032c
YZ
3443 return 0;
3444}
0b86a832 3445
2b82032c
YZ
3446/*
3447 * Chunk allocation falls into two parts. The first part does works
3448 * that make the new allocated chunk useable, but not do any operation
3449 * that modifies the chunk tree. The second part does the works that
3450 * require modifying the chunk tree. This division is important for the
3451 * bootstrap process of adding storage to a seed btrfs.
3452 */
3453int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3454 struct btrfs_root *extent_root, u64 type)
3455{
3456 u64 chunk_offset;
3457 u64 chunk_size;
3458 u64 stripe_size;
3459 struct map_lookup *map;
3460 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3461 int ret;
3462
3463 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3464 &chunk_offset);
3465 if (ret)
3466 return ret;
3467
3468 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3469 &stripe_size, chunk_offset, type);
3470 if (ret)
3471 return ret;
3472
3473 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3474 chunk_size, stripe_size);
3475 BUG_ON(ret);
3476 return 0;
3477}
3478
d397712b 3479static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
3480 struct btrfs_root *root,
3481 struct btrfs_device *device)
3482{
3483 u64 chunk_offset;
3484 u64 sys_chunk_offset;
3485 u64 chunk_size;
3486 u64 sys_chunk_size;
3487 u64 stripe_size;
3488 u64 sys_stripe_size;
3489 u64 alloc_profile;
3490 struct map_lookup *map;
3491 struct map_lookup *sys_map;
3492 struct btrfs_fs_info *fs_info = root->fs_info;
3493 struct btrfs_root *extent_root = fs_info->extent_root;
3494 int ret;
3495
3496 ret = find_next_chunk(fs_info->chunk_root,
3497 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
92b8e897
MF
3498 if (ret)
3499 return ret;
2b82032c
YZ
3500
3501 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
6fef8df1 3502 fs_info->avail_metadata_alloc_bits;
2b82032c
YZ
3503 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3504
3505 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3506 &stripe_size, chunk_offset, alloc_profile);
3507 BUG_ON(ret);
3508
3509 sys_chunk_offset = chunk_offset + chunk_size;
3510
3511 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
6fef8df1 3512 fs_info->avail_system_alloc_bits;
2b82032c
YZ
3513 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3514
3515 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3516 &sys_chunk_size, &sys_stripe_size,
3517 sys_chunk_offset, alloc_profile);
3518 BUG_ON(ret);
3519
3520 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
3521 BUG_ON(ret);
3522
3523 /*
3524 * Modifying chunk tree needs allocating new blocks from both
3525 * system block group and metadata block group. So we only can
3526 * do operations require modifying the chunk tree after both
3527 * block groups were created.
3528 */
3529 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3530 chunk_size, stripe_size);
3531 BUG_ON(ret);
3532
3533 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3534 sys_chunk_offset, sys_chunk_size,
3535 sys_stripe_size);
b248a415 3536 BUG_ON(ret);
2b82032c
YZ
3537 return 0;
3538}
3539
3540int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3541{
3542 struct extent_map *em;
3543 struct map_lookup *map;
3544 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3545 int readonly = 0;
3546 int i;
3547
890871be 3548 read_lock(&map_tree->map_tree.lock);
2b82032c 3549 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 3550 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
3551 if (!em)
3552 return 1;
3553
f48b9075
JB
3554 if (btrfs_test_opt(root, DEGRADED)) {
3555 free_extent_map(em);
3556 return 0;
3557 }
3558
2b82032c
YZ
3559 map = (struct map_lookup *)em->bdev;
3560 for (i = 0; i < map->num_stripes; i++) {
3561 if (!map->stripes[i].dev->writeable) {
3562 readonly = 1;
3563 break;
3564 }
3565 }
0b86a832 3566 free_extent_map(em);
2b82032c 3567 return readonly;
0b86a832
CM
3568}
3569
3570void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3571{
a8067e02 3572 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
3573}
3574
3575void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3576{
3577 struct extent_map *em;
3578
d397712b 3579 while (1) {
890871be 3580 write_lock(&tree->map_tree.lock);
0b86a832
CM
3581 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3582 if (em)
3583 remove_extent_mapping(&tree->map_tree, em);
890871be 3584 write_unlock(&tree->map_tree.lock);
0b86a832
CM
3585 if (!em)
3586 break;
3587 kfree(em->bdev);
3588 /* once for us */
3589 free_extent_map(em);
3590 /* once for the tree */
3591 free_extent_map(em);
3592 }
3593}
3594
f188591e
CM
3595int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3596{
3597 struct extent_map *em;
3598 struct map_lookup *map;
3599 struct extent_map_tree *em_tree = &map_tree->map_tree;
3600 int ret;
3601
890871be 3602 read_lock(&em_tree->lock);
f188591e 3603 em = lookup_extent_mapping(em_tree, logical, len);
890871be 3604 read_unlock(&em_tree->lock);
f188591e
CM
3605 BUG_ON(!em);
3606
3607 BUG_ON(em->start > logical || em->start + em->len < logical);
3608 map = (struct map_lookup *)em->bdev;
3609 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3610 ret = map->num_stripes;
321aecc6
CM
3611 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3612 ret = map->sub_stripes;
f188591e
CM
3613 else
3614 ret = 1;
3615 free_extent_map(em);
f188591e
CM
3616 return ret;
3617}
3618
dfe25020
CM
3619static int find_live_mirror(struct map_lookup *map, int first, int num,
3620 int optimal)
3621{
3622 int i;
3623 if (map->stripes[optimal].dev->bdev)
3624 return optimal;
3625 for (i = first; i < first + num; i++) {
3626 if (map->stripes[i].dev->bdev)
3627 return i;
3628 }
3629 /* we couldn't find one that doesn't fail. Just return something
3630 * and the io error handling code will clean up eventually
3631 */
3632 return optimal;
3633}
3634
f2d8d74d
CM
3635static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3636 u64 logical, u64 *length,
a1d3c478 3637 struct btrfs_bio **bbio_ret,
7eaceacc 3638 int mirror_num)
0b86a832
CM
3639{
3640 struct extent_map *em;
3641 struct map_lookup *map;
3642 struct extent_map_tree *em_tree = &map_tree->map_tree;
3643 u64 offset;
593060d7 3644 u64 stripe_offset;
fce3bb9a 3645 u64 stripe_end_offset;
593060d7 3646 u64 stripe_nr;
fce3bb9a
LD
3647 u64 stripe_nr_orig;
3648 u64 stripe_nr_end;
593060d7 3649 int stripe_index;
cea9e445 3650 int i;
de11cc12 3651 int ret = 0;
f2d8d74d 3652 int num_stripes;
a236aed1 3653 int max_errors = 0;
a1d3c478 3654 struct btrfs_bio *bbio = NULL;
0b86a832 3655
890871be 3656 read_lock(&em_tree->lock);
0b86a832 3657 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 3658 read_unlock(&em_tree->lock);
f2d8d74d 3659
3b951516 3660 if (!em) {
d397712b
CM
3661 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
3662 (unsigned long long)logical,
3663 (unsigned long long)*length);
f2d8d74d 3664 BUG();
3b951516 3665 }
0b86a832
CM
3666
3667 BUG_ON(em->start > logical || em->start + em->len < logical);
3668 map = (struct map_lookup *)em->bdev;
3669 offset = logical - em->start;
593060d7 3670
f188591e
CM
3671 if (mirror_num > map->num_stripes)
3672 mirror_num = 0;
3673
593060d7
CM
3674 stripe_nr = offset;
3675 /*
3676 * stripe_nr counts the total number of stripes we have to stride
3677 * to get to this block
3678 */
3679 do_div(stripe_nr, map->stripe_len);
3680
3681 stripe_offset = stripe_nr * map->stripe_len;
3682 BUG_ON(offset < stripe_offset);
3683
3684 /* stripe_offset is the offset of this block in its stripe*/
3685 stripe_offset = offset - stripe_offset;
3686
fce3bb9a
LD
3687 if (rw & REQ_DISCARD)
3688 *length = min_t(u64, em->len - offset, *length);
52ba6929 3689 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
cea9e445
CM
3690 /* we limit the length of each bio to what fits in a stripe */
3691 *length = min_t(u64, em->len - offset,
fce3bb9a 3692 map->stripe_len - stripe_offset);
cea9e445
CM
3693 } else {
3694 *length = em->len - offset;
3695 }
f2d8d74d 3696
a1d3c478 3697 if (!bbio_ret)
cea9e445
CM
3698 goto out;
3699
f2d8d74d 3700 num_stripes = 1;
cea9e445 3701 stripe_index = 0;
fce3bb9a
LD
3702 stripe_nr_orig = stripe_nr;
3703 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3704 (~(map->stripe_len - 1));
3705 do_div(stripe_nr_end, map->stripe_len);
3706 stripe_end_offset = stripe_nr_end * map->stripe_len -
3707 (offset + *length);
3708 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3709 if (rw & REQ_DISCARD)
3710 num_stripes = min_t(u64, map->num_stripes,
3711 stripe_nr_end - stripe_nr_orig);
3712 stripe_index = do_div(stripe_nr, map->num_stripes);
3713 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
212a17ab 3714 if (rw & (REQ_WRITE | REQ_DISCARD))
f2d8d74d 3715 num_stripes = map->num_stripes;
2fff734f 3716 else if (mirror_num)
f188591e 3717 stripe_index = mirror_num - 1;
dfe25020
CM
3718 else {
3719 stripe_index = find_live_mirror(map, 0,
3720 map->num_stripes,
3721 current->pid % map->num_stripes);
a1d3c478 3722 mirror_num = stripe_index + 1;
dfe25020 3723 }
2fff734f 3724
611f0e00 3725 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
a1d3c478 3726 if (rw & (REQ_WRITE | REQ_DISCARD)) {
f2d8d74d 3727 num_stripes = map->num_stripes;
a1d3c478 3728 } else if (mirror_num) {
f188591e 3729 stripe_index = mirror_num - 1;
a1d3c478
JS
3730 } else {
3731 mirror_num = 1;
3732 }
2fff734f 3733
321aecc6
CM
3734 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3735 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
3736
3737 stripe_index = do_div(stripe_nr, factor);
3738 stripe_index *= map->sub_stripes;
3739
7eaceacc 3740 if (rw & REQ_WRITE)
f2d8d74d 3741 num_stripes = map->sub_stripes;
fce3bb9a
LD
3742 else if (rw & REQ_DISCARD)
3743 num_stripes = min_t(u64, map->sub_stripes *
3744 (stripe_nr_end - stripe_nr_orig),
3745 map->num_stripes);
321aecc6
CM
3746 else if (mirror_num)
3747 stripe_index += mirror_num - 1;
dfe25020
CM
3748 else {
3749 stripe_index = find_live_mirror(map, stripe_index,
3750 map->sub_stripes, stripe_index +
3751 current->pid % map->sub_stripes);
a1d3c478 3752 mirror_num = stripe_index + 1;
dfe25020 3753 }
8790d502
CM
3754 } else {
3755 /*
3756 * after this do_div call, stripe_nr is the number of stripes
3757 * on this device we have to walk to find the data, and
3758 * stripe_index is the number of our device in the stripe array
3759 */
3760 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 3761 mirror_num = stripe_index + 1;
8790d502 3762 }
593060d7 3763 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 3764
de11cc12
LZ
3765 bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3766 if (!bbio) {
3767 ret = -ENOMEM;
3768 goto out;
3769 }
3770 atomic_set(&bbio->error, 0);
3771
fce3bb9a 3772 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
3773 int factor = 0;
3774 int sub_stripes = 0;
3775 u64 stripes_per_dev = 0;
3776 u32 remaining_stripes = 0;
3777
3778 if (map->type &
3779 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3780 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3781 sub_stripes = 1;
3782 else
3783 sub_stripes = map->sub_stripes;
3784
3785 factor = map->num_stripes / sub_stripes;
3786 stripes_per_dev = div_u64_rem(stripe_nr_end -
3787 stripe_nr_orig,
3788 factor,
3789 &remaining_stripes);
3790 }
3791
fce3bb9a 3792 for (i = 0; i < num_stripes; i++) {
a1d3c478 3793 bbio->stripes[i].physical =
f2d8d74d
CM
3794 map->stripes[stripe_index].physical +
3795 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 3796 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 3797
ec9ef7a1
LZ
3798 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3799 BTRFS_BLOCK_GROUP_RAID10)) {
3800 bbio->stripes[i].length = stripes_per_dev *
3801 map->stripe_len;
3802 if (i / sub_stripes < remaining_stripes)
3803 bbio->stripes[i].length +=
3804 map->stripe_len;
3805 if (i < sub_stripes)
a1d3c478 3806 bbio->stripes[i].length -=
fce3bb9a 3807 stripe_offset;
ec9ef7a1
LZ
3808 if ((i / sub_stripes + 1) %
3809 sub_stripes == remaining_stripes)
a1d3c478 3810 bbio->stripes[i].length -=
fce3bb9a 3811 stripe_end_offset;
ec9ef7a1
LZ
3812 if (i == sub_stripes - 1)
3813 stripe_offset = 0;
fce3bb9a 3814 } else
a1d3c478 3815 bbio->stripes[i].length = *length;
fce3bb9a
LD
3816
3817 stripe_index++;
3818 if (stripe_index == map->num_stripes) {
3819 /* This could only happen for RAID0/10 */
3820 stripe_index = 0;
3821 stripe_nr++;
3822 }
3823 }
3824 } else {
3825 for (i = 0; i < num_stripes; i++) {
a1d3c478 3826 bbio->stripes[i].physical =
212a17ab
LT
3827 map->stripes[stripe_index].physical +
3828 stripe_offset +
3829 stripe_nr * map->stripe_len;
a1d3c478 3830 bbio->stripes[i].dev =
212a17ab 3831 map->stripes[stripe_index].dev;
fce3bb9a 3832 stripe_index++;
f2d8d74d 3833 }
593060d7 3834 }
de11cc12
LZ
3835
3836 if (rw & REQ_WRITE) {
3837 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3838 BTRFS_BLOCK_GROUP_RAID10 |
3839 BTRFS_BLOCK_GROUP_DUP)) {
3840 max_errors = 1;
3841 }
f2d8d74d 3842 }
de11cc12
LZ
3843
3844 *bbio_ret = bbio;
3845 bbio->num_stripes = num_stripes;
3846 bbio->max_errors = max_errors;
3847 bbio->mirror_num = mirror_num;
cea9e445 3848out:
0b86a832 3849 free_extent_map(em);
de11cc12 3850 return ret;
0b86a832
CM
3851}
3852
f2d8d74d
CM
3853int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3854 u64 logical, u64 *length,
a1d3c478 3855 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 3856{
a1d3c478 3857 return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
7eaceacc 3858 mirror_num);
f2d8d74d
CM
3859}
3860
a512bbf8
YZ
3861int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3862 u64 chunk_start, u64 physical, u64 devid,
3863 u64 **logical, int *naddrs, int *stripe_len)
3864{
3865 struct extent_map_tree *em_tree = &map_tree->map_tree;
3866 struct extent_map *em;
3867 struct map_lookup *map;
3868 u64 *buf;
3869 u64 bytenr;
3870 u64 length;
3871 u64 stripe_nr;
3872 int i, j, nr = 0;
3873
890871be 3874 read_lock(&em_tree->lock);
a512bbf8 3875 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 3876 read_unlock(&em_tree->lock);
a512bbf8
YZ
3877
3878 BUG_ON(!em || em->start != chunk_start);
3879 map = (struct map_lookup *)em->bdev;
3880
3881 length = em->len;
3882 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3883 do_div(length, map->num_stripes / map->sub_stripes);
3884 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3885 do_div(length, map->num_stripes);
3886
3887 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3888 BUG_ON(!buf);
3889
3890 for (i = 0; i < map->num_stripes; i++) {
3891 if (devid && map->stripes[i].dev->devid != devid)
3892 continue;
3893 if (map->stripes[i].physical > physical ||
3894 map->stripes[i].physical + length <= physical)
3895 continue;
3896
3897 stripe_nr = physical - map->stripes[i].physical;
3898 do_div(stripe_nr, map->stripe_len);
3899
3900 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3901 stripe_nr = stripe_nr * map->num_stripes + i;
3902 do_div(stripe_nr, map->sub_stripes);
3903 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3904 stripe_nr = stripe_nr * map->num_stripes + i;
3905 }
3906 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 3907 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
3908 for (j = 0; j < nr; j++) {
3909 if (buf[j] == bytenr)
3910 break;
3911 }
934d375b
CM
3912 if (j == nr) {
3913 WARN_ON(nr >= map->num_stripes);
a512bbf8 3914 buf[nr++] = bytenr;
934d375b 3915 }
a512bbf8
YZ
3916 }
3917
a512bbf8
YZ
3918 *logical = buf;
3919 *naddrs = nr;
3920 *stripe_len = map->stripe_len;
3921
3922 free_extent_map(em);
3923 return 0;
f2d8d74d
CM
3924}
3925
a1d3c478 3926static void btrfs_end_bio(struct bio *bio, int err)
8790d502 3927{
a1d3c478 3928 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 3929 int is_orig_bio = 0;
8790d502 3930
8790d502 3931 if (err)
a1d3c478 3932 atomic_inc(&bbio->error);
8790d502 3933
a1d3c478 3934 if (bio == bbio->orig_bio)
7d2b4daa
CM
3935 is_orig_bio = 1;
3936
a1d3c478 3937 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
3938 if (!is_orig_bio) {
3939 bio_put(bio);
a1d3c478 3940 bio = bbio->orig_bio;
7d2b4daa 3941 }
a1d3c478
JS
3942 bio->bi_private = bbio->private;
3943 bio->bi_end_io = bbio->end_io;
2774b2ca
JS
3944 bio->bi_bdev = (struct block_device *)
3945 (unsigned long)bbio->mirror_num;
a236aed1
CM
3946 /* only send an error to the higher layers if it is
3947 * beyond the tolerance of the multi-bio
3948 */
a1d3c478 3949 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 3950 err = -EIO;
5dbc8fca 3951 } else {
1259ab75
CM
3952 /*
3953 * this bio is actually up to date, we didn't
3954 * go over the max number of errors
3955 */
3956 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 3957 err = 0;
1259ab75 3958 }
a1d3c478 3959 kfree(bbio);
8790d502
CM
3960
3961 bio_endio(bio, err);
7d2b4daa 3962 } else if (!is_orig_bio) {
8790d502
CM
3963 bio_put(bio);
3964 }
8790d502
CM
3965}
3966
8b712842
CM
3967struct async_sched {
3968 struct bio *bio;
3969 int rw;
3970 struct btrfs_fs_info *info;
3971 struct btrfs_work work;
3972};
3973
3974/*
3975 * see run_scheduled_bios for a description of why bios are collected for
3976 * async submit.
3977 *
3978 * This will add one bio to the pending list for a device and make sure
3979 * the work struct is scheduled.
3980 */
d397712b 3981static noinline int schedule_bio(struct btrfs_root *root,
a1b32a59
CM
3982 struct btrfs_device *device,
3983 int rw, struct bio *bio)
8b712842
CM
3984{
3985 int should_queue = 1;
ffbd517d 3986 struct btrfs_pending_bios *pending_bios;
8b712842
CM
3987
3988 /* don't bother with additional async steps for reads, right now */
7b6d91da 3989 if (!(rw & REQ_WRITE)) {
492bb6de 3990 bio_get(bio);
21adbd5c 3991 btrfsic_submit_bio(rw, bio);
492bb6de 3992 bio_put(bio);
8b712842
CM
3993 return 0;
3994 }
3995
3996 /*
0986fe9e 3997 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
3998 * higher layers. Otherwise, the async bio makes it appear we have
3999 * made progress against dirty pages when we've really just put it
4000 * on a queue for later
4001 */
0986fe9e 4002 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 4003 WARN_ON(bio->bi_next);
8b712842
CM
4004 bio->bi_next = NULL;
4005 bio->bi_rw |= rw;
4006
4007 spin_lock(&device->io_lock);
7b6d91da 4008 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
4009 pending_bios = &device->pending_sync_bios;
4010 else
4011 pending_bios = &device->pending_bios;
8b712842 4012
ffbd517d
CM
4013 if (pending_bios->tail)
4014 pending_bios->tail->bi_next = bio;
8b712842 4015
ffbd517d
CM
4016 pending_bios->tail = bio;
4017 if (!pending_bios->head)
4018 pending_bios->head = bio;
8b712842
CM
4019 if (device->running_pending)
4020 should_queue = 0;
4021
4022 spin_unlock(&device->io_lock);
4023
4024 if (should_queue)
1cc127b5
CM
4025 btrfs_queue_worker(&root->fs_info->submit_workers,
4026 &device->work);
8b712842
CM
4027 return 0;
4028}
4029
f188591e 4030int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 4031 int mirror_num, int async_submit)
0b86a832
CM
4032{
4033 struct btrfs_mapping_tree *map_tree;
4034 struct btrfs_device *dev;
8790d502 4035 struct bio *first_bio = bio;
a62b9401 4036 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
4037 u64 length = 0;
4038 u64 map_length;
0b86a832 4039 int ret;
8790d502
CM
4040 int dev_nr = 0;
4041 int total_devs = 1;
a1d3c478 4042 struct btrfs_bio *bbio = NULL;
0b86a832 4043
f2d8d74d 4044 length = bio->bi_size;
0b86a832
CM
4045 map_tree = &root->fs_info->mapping_tree;
4046 map_length = length;
cea9e445 4047
a1d3c478 4048 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
f188591e 4049 mirror_num);
cea9e445
CM
4050 BUG_ON(ret);
4051
a1d3c478 4052 total_devs = bbio->num_stripes;
cea9e445 4053 if (map_length < length) {
d397712b
CM
4054 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
4055 "len %llu\n", (unsigned long long)logical,
4056 (unsigned long long)length,
4057 (unsigned long long)map_length);
cea9e445
CM
4058 BUG();
4059 }
a1d3c478
JS
4060
4061 bbio->orig_bio = first_bio;
4062 bbio->private = first_bio->bi_private;
4063 bbio->end_io = first_bio->bi_end_io;
4064 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
cea9e445 4065
d397712b 4066 while (dev_nr < total_devs) {
a1d3c478
JS
4067 if (dev_nr < total_devs - 1) {
4068 bio = bio_clone(first_bio, GFP_NOFS);
4069 BUG_ON(!bio);
4070 } else {
4071 bio = first_bio;
8790d502 4072 }
a1d3c478
JS
4073 bio->bi_private = bbio;
4074 bio->bi_end_io = btrfs_end_bio;
4075 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4076 dev = bbio->stripes[dev_nr].dev;
18e503d6 4077 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
a1d3c478
JS
4078 pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4079 "(%s id %llu), size=%u\n", rw,
4080 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4081 dev->name, dev->devid, bio->bi_size);
dfe25020 4082 bio->bi_bdev = dev->bdev;
8b712842
CM
4083 if (async_submit)
4084 schedule_bio(root, dev, rw, bio);
4085 else
21adbd5c 4086 btrfsic_submit_bio(rw, bio);
dfe25020
CM
4087 } else {
4088 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4089 bio->bi_sector = logical >> 9;
dfe25020 4090 bio_endio(bio, -EIO);
dfe25020 4091 }
8790d502
CM
4092 dev_nr++;
4093 }
0b86a832
CM
4094 return 0;
4095}
4096
a443755f 4097struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 4098 u8 *uuid, u8 *fsid)
0b86a832 4099{
2b82032c
YZ
4100 struct btrfs_device *device;
4101 struct btrfs_fs_devices *cur_devices;
4102
4103 cur_devices = root->fs_info->fs_devices;
4104 while (cur_devices) {
4105 if (!fsid ||
4106 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4107 device = __find_device(&cur_devices->devices,
4108 devid, uuid);
4109 if (device)
4110 return device;
4111 }
4112 cur_devices = cur_devices->seed;
4113 }
4114 return NULL;
0b86a832
CM
4115}
4116
dfe25020
CM
4117static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4118 u64 devid, u8 *dev_uuid)
4119{
4120 struct btrfs_device *device;
4121 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4122
4123 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 4124 if (!device)
4125 return NULL;
dfe25020
CM
4126 list_add(&device->dev_list,
4127 &fs_devices->devices);
dfe25020
CM
4128 device->dev_root = root->fs_info->dev_root;
4129 device->devid = devid;
8b712842 4130 device->work.func = pending_bios_fn;
e4404d6e 4131 device->fs_devices = fs_devices;
cd02dca5 4132 device->missing = 1;
dfe25020 4133 fs_devices->num_devices++;
cd02dca5 4134 fs_devices->missing_devices++;
dfe25020 4135 spin_lock_init(&device->io_lock);
d20f7043 4136 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
4137 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4138 return device;
4139}
4140
0b86a832
CM
4141static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4142 struct extent_buffer *leaf,
4143 struct btrfs_chunk *chunk)
4144{
4145 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4146 struct map_lookup *map;
4147 struct extent_map *em;
4148 u64 logical;
4149 u64 length;
4150 u64 devid;
a443755f 4151 u8 uuid[BTRFS_UUID_SIZE];
593060d7 4152 int num_stripes;
0b86a832 4153 int ret;
593060d7 4154 int i;
0b86a832 4155
e17cade2
CM
4156 logical = key->offset;
4157 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 4158
890871be 4159 read_lock(&map_tree->map_tree.lock);
0b86a832 4160 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 4161 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
4162
4163 /* already mapped? */
4164 if (em && em->start <= logical && em->start + em->len > logical) {
4165 free_extent_map(em);
0b86a832
CM
4166 return 0;
4167 } else if (em) {
4168 free_extent_map(em);
4169 }
0b86a832 4170
172ddd60 4171 em = alloc_extent_map();
0b86a832
CM
4172 if (!em)
4173 return -ENOMEM;
593060d7
CM
4174 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4175 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
4176 if (!map) {
4177 free_extent_map(em);
4178 return -ENOMEM;
4179 }
4180
4181 em->bdev = (struct block_device *)map;
4182 em->start = logical;
4183 em->len = length;
4184 em->block_start = 0;
c8b97818 4185 em->block_len = em->len;
0b86a832 4186
593060d7
CM
4187 map->num_stripes = num_stripes;
4188 map->io_width = btrfs_chunk_io_width(leaf, chunk);
4189 map->io_align = btrfs_chunk_io_align(leaf, chunk);
4190 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4191 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4192 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 4193 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
4194 for (i = 0; i < num_stripes; i++) {
4195 map->stripes[i].physical =
4196 btrfs_stripe_offset_nr(leaf, chunk, i);
4197 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
4198 read_extent_buffer(leaf, uuid, (unsigned long)
4199 btrfs_stripe_dev_uuid_nr(chunk, i),
4200 BTRFS_UUID_SIZE);
2b82032c
YZ
4201 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4202 NULL);
dfe25020 4203 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
4204 kfree(map);
4205 free_extent_map(em);
4206 return -EIO;
4207 }
dfe25020
CM
4208 if (!map->stripes[i].dev) {
4209 map->stripes[i].dev =
4210 add_missing_dev(root, devid, uuid);
4211 if (!map->stripes[i].dev) {
4212 kfree(map);
4213 free_extent_map(em);
4214 return -EIO;
4215 }
4216 }
4217 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
4218 }
4219
890871be 4220 write_lock(&map_tree->map_tree.lock);
0b86a832 4221 ret = add_extent_mapping(&map_tree->map_tree, em);
890871be 4222 write_unlock(&map_tree->map_tree.lock);
b248a415 4223 BUG_ON(ret);
0b86a832
CM
4224 free_extent_map(em);
4225
4226 return 0;
4227}
4228
4229static int fill_device_from_item(struct extent_buffer *leaf,
4230 struct btrfs_dev_item *dev_item,
4231 struct btrfs_device *device)
4232{
4233 unsigned long ptr;
0b86a832
CM
4234
4235 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
4236 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4237 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
4238 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4239 device->type = btrfs_device_type(leaf, dev_item);
4240 device->io_align = btrfs_device_io_align(leaf, dev_item);
4241 device->io_width = btrfs_device_io_width(leaf, dev_item);
4242 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
4243
4244 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 4245 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 4246
0b86a832
CM
4247 return 0;
4248}
4249
2b82032c
YZ
4250static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4251{
4252 struct btrfs_fs_devices *fs_devices;
4253 int ret;
4254
b367e47f 4255 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
4256
4257 fs_devices = root->fs_info->fs_devices->seed;
4258 while (fs_devices) {
4259 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4260 ret = 0;
4261 goto out;
4262 }
4263 fs_devices = fs_devices->seed;
4264 }
4265
4266 fs_devices = find_fsid(fsid);
4267 if (!fs_devices) {
4268 ret = -ENOENT;
4269 goto out;
4270 }
e4404d6e
YZ
4271
4272 fs_devices = clone_fs_devices(fs_devices);
4273 if (IS_ERR(fs_devices)) {
4274 ret = PTR_ERR(fs_devices);
2b82032c
YZ
4275 goto out;
4276 }
4277
97288f2c 4278 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 4279 root->fs_info->bdev_holder);
2b82032c
YZ
4280 if (ret)
4281 goto out;
4282
4283 if (!fs_devices->seeding) {
4284 __btrfs_close_devices(fs_devices);
e4404d6e 4285 free_fs_devices(fs_devices);
2b82032c
YZ
4286 ret = -EINVAL;
4287 goto out;
4288 }
4289
4290 fs_devices->seed = root->fs_info->fs_devices->seed;
4291 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 4292out:
2b82032c
YZ
4293 return ret;
4294}
4295
0d81ba5d 4296static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
4297 struct extent_buffer *leaf,
4298 struct btrfs_dev_item *dev_item)
4299{
4300 struct btrfs_device *device;
4301 u64 devid;
4302 int ret;
2b82032c 4303 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
4304 u8 dev_uuid[BTRFS_UUID_SIZE];
4305
0b86a832 4306 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
4307 read_extent_buffer(leaf, dev_uuid,
4308 (unsigned long)btrfs_device_uuid(dev_item),
4309 BTRFS_UUID_SIZE);
2b82032c
YZ
4310 read_extent_buffer(leaf, fs_uuid,
4311 (unsigned long)btrfs_device_fsid(dev_item),
4312 BTRFS_UUID_SIZE);
4313
4314 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4315 ret = open_seed_devices(root, fs_uuid);
e4404d6e 4316 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 4317 return ret;
2b82032c
YZ
4318 }
4319
4320 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4321 if (!device || !device->bdev) {
e4404d6e 4322 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
4323 return -EIO;
4324
4325 if (!device) {
d397712b
CM
4326 printk(KERN_WARNING "warning devid %llu missing\n",
4327 (unsigned long long)devid);
2b82032c
YZ
4328 device = add_missing_dev(root, devid, dev_uuid);
4329 if (!device)
4330 return -ENOMEM;
cd02dca5
CM
4331 } else if (!device->missing) {
4332 /*
4333 * this happens when a device that was properly setup
4334 * in the device info lists suddenly goes bad.
4335 * device->bdev is NULL, and so we have to set
4336 * device->missing to one here
4337 */
4338 root->fs_info->fs_devices->missing_devices++;
4339 device->missing = 1;
2b82032c
YZ
4340 }
4341 }
4342
4343 if (device->fs_devices != root->fs_info->fs_devices) {
4344 BUG_ON(device->writeable);
4345 if (device->generation !=
4346 btrfs_device_generation(leaf, dev_item))
4347 return -EINVAL;
6324fbf3 4348 }
0b86a832
CM
4349
4350 fill_device_from_item(leaf, dev_item, device);
4351 device->dev_root = root->fs_info->dev_root;
dfe25020 4352 device->in_fs_metadata = 1;
2bf64758 4353 if (device->writeable) {
2b82032c 4354 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
4355 spin_lock(&root->fs_info->free_chunk_lock);
4356 root->fs_info->free_chunk_space += device->total_bytes -
4357 device->bytes_used;
4358 spin_unlock(&root->fs_info->free_chunk_lock);
4359 }
0b86a832 4360 ret = 0;
0b86a832
CM
4361 return ret;
4362}
4363
e4404d6e 4364int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 4365{
6c41761f 4366 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 4367 struct extent_buffer *sb;
0b86a832 4368 struct btrfs_disk_key *disk_key;
0b86a832 4369 struct btrfs_chunk *chunk;
84eed90f
CM
4370 u8 *ptr;
4371 unsigned long sb_ptr;
4372 int ret = 0;
0b86a832
CM
4373 u32 num_stripes;
4374 u32 array_size;
4375 u32 len = 0;
0b86a832 4376 u32 cur;
84eed90f 4377 struct btrfs_key key;
0b86a832 4378
e4404d6e 4379 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
4380 BTRFS_SUPER_INFO_SIZE);
4381 if (!sb)
4382 return -ENOMEM;
4383 btrfs_set_buffer_uptodate(sb);
85d4e461 4384 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
4385 /*
4386 * The sb extent buffer is artifical and just used to read the system array.
4387 * btrfs_set_buffer_uptodate() call does not properly mark all it's
4388 * pages up-to-date when the page is larger: extent does not cover the
4389 * whole page and consequently check_page_uptodate does not find all
4390 * the page's extents up-to-date (the hole beyond sb),
4391 * write_extent_buffer then triggers a WARN_ON.
4392 *
4393 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4394 * but sb spans only this function. Add an explicit SetPageUptodate call
4395 * to silence the warning eg. on PowerPC 64.
4396 */
4397 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 4398 SetPageUptodate(sb->pages[0]);
4008c04a 4399
a061fc8d 4400 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
4401 array_size = btrfs_super_sys_array_size(super_copy);
4402
0b86a832
CM
4403 ptr = super_copy->sys_chunk_array;
4404 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4405 cur = 0;
4406
4407 while (cur < array_size) {
4408 disk_key = (struct btrfs_disk_key *)ptr;
4409 btrfs_disk_key_to_cpu(&key, disk_key);
4410
a061fc8d 4411 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
4412 sb_ptr += len;
4413 cur += len;
4414
0d81ba5d 4415 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 4416 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 4417 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
4418 if (ret)
4419 break;
0b86a832
CM
4420 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4421 len = btrfs_chunk_item_size(num_stripes);
4422 } else {
84eed90f
CM
4423 ret = -EIO;
4424 break;
0b86a832
CM
4425 }
4426 ptr += len;
4427 sb_ptr += len;
4428 cur += len;
4429 }
a061fc8d 4430 free_extent_buffer(sb);
84eed90f 4431 return ret;
0b86a832
CM
4432}
4433
4434int btrfs_read_chunk_tree(struct btrfs_root *root)
4435{
4436 struct btrfs_path *path;
4437 struct extent_buffer *leaf;
4438 struct btrfs_key key;
4439 struct btrfs_key found_key;
4440 int ret;
4441 int slot;
4442
4443 root = root->fs_info->chunk_root;
4444
4445 path = btrfs_alloc_path();
4446 if (!path)
4447 return -ENOMEM;
4448
b367e47f
LZ
4449 mutex_lock(&uuid_mutex);
4450 lock_chunks(root);
4451
0b86a832
CM
4452 /* first we search for all of the device items, and then we
4453 * read in all of the chunk items. This way we can create chunk
4454 * mappings that reference all of the devices that are afound
4455 */
4456 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4457 key.offset = 0;
4458 key.type = 0;
4459again:
4460 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
4461 if (ret < 0)
4462 goto error;
d397712b 4463 while (1) {
0b86a832
CM
4464 leaf = path->nodes[0];
4465 slot = path->slots[0];
4466 if (slot >= btrfs_header_nritems(leaf)) {
4467 ret = btrfs_next_leaf(root, path);
4468 if (ret == 0)
4469 continue;
4470 if (ret < 0)
4471 goto error;
4472 break;
4473 }
4474 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4475 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4476 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4477 break;
4478 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4479 struct btrfs_dev_item *dev_item;
4480 dev_item = btrfs_item_ptr(leaf, slot,
4481 struct btrfs_dev_item);
0d81ba5d 4482 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
4483 if (ret)
4484 goto error;
0b86a832
CM
4485 }
4486 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4487 struct btrfs_chunk *chunk;
4488 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4489 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
4490 if (ret)
4491 goto error;
0b86a832
CM
4492 }
4493 path->slots[0]++;
4494 }
4495 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4496 key.objectid = 0;
b3b4aa74 4497 btrfs_release_path(path);
0b86a832
CM
4498 goto again;
4499 }
0b86a832
CM
4500 ret = 0;
4501error:
b367e47f
LZ
4502 unlock_chunks(root);
4503 mutex_unlock(&uuid_mutex);
4504
2b82032c 4505 btrfs_free_path(path);
0b86a832
CM
4506 return ret;
4507}