Btrfs: add a flags field to btrfs_transaction
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
111const u64 const btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
2b82032c
YZ
121static int init_first_rw_device(struct btrfs_trans_handle *trans,
122 struct btrfs_root *root,
123 struct btrfs_device *device);
124static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 125static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 126static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 127static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 128
67a2c45e 129DEFINE_MUTEX(uuid_mutex);
8a4b83cc 130static LIST_HEAD(fs_uuids);
c73eccf7
AJ
131struct list_head *btrfs_get_fs_uuids(void)
132{
133 return &fs_uuids;
134}
8a4b83cc 135
2208a378
ID
136static struct btrfs_fs_devices *__alloc_fs_devices(void)
137{
138 struct btrfs_fs_devices *fs_devs;
139
140 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
141 if (!fs_devs)
142 return ERR_PTR(-ENOMEM);
143
144 mutex_init(&fs_devs->device_list_mutex);
145
146 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 147 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
148 INIT_LIST_HEAD(&fs_devs->alloc_list);
149 INIT_LIST_HEAD(&fs_devs->list);
150
151 return fs_devs;
152}
153
154/**
155 * alloc_fs_devices - allocate struct btrfs_fs_devices
156 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
157 * generated.
158 *
159 * Return: a pointer to a new &struct btrfs_fs_devices on success;
160 * ERR_PTR() on error. Returned struct is not linked onto any lists and
161 * can be destroyed with kfree() right away.
162 */
163static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164{
165 struct btrfs_fs_devices *fs_devs;
166
167 fs_devs = __alloc_fs_devices();
168 if (IS_ERR(fs_devs))
169 return fs_devs;
170
171 if (fsid)
172 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
173 else
174 generate_random_uuid(fs_devs->fsid);
175
176 return fs_devs;
177}
178
e4404d6e
YZ
179static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
180{
181 struct btrfs_device *device;
182 WARN_ON(fs_devices->opened);
183 while (!list_empty(&fs_devices->devices)) {
184 device = list_entry(fs_devices->devices.next,
185 struct btrfs_device, dev_list);
186 list_del(&device->dev_list);
606686ee 187 rcu_string_free(device->name);
e4404d6e
YZ
188 kfree(device);
189 }
190 kfree(fs_devices);
191}
192
b8b8ff59
LC
193static void btrfs_kobject_uevent(struct block_device *bdev,
194 enum kobject_action action)
195{
196 int ret;
197
198 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
199 if (ret)
efe120a0 200 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
201 action,
202 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
203 &disk_to_dev(bdev->bd_disk)->kobj);
204}
205
143bede5 206void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
207{
208 struct btrfs_fs_devices *fs_devices;
8a4b83cc 209
2b82032c
YZ
210 while (!list_empty(&fs_uuids)) {
211 fs_devices = list_entry(fs_uuids.next,
212 struct btrfs_fs_devices, list);
213 list_del(&fs_devices->list);
e4404d6e 214 free_fs_devices(fs_devices);
8a4b83cc 215 }
8a4b83cc
CM
216}
217
12bd2fc0
ID
218static struct btrfs_device *__alloc_device(void)
219{
220 struct btrfs_device *dev;
221
222 dev = kzalloc(sizeof(*dev), GFP_NOFS);
223 if (!dev)
224 return ERR_PTR(-ENOMEM);
225
226 INIT_LIST_HEAD(&dev->dev_list);
227 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 228 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
229
230 spin_lock_init(&dev->io_lock);
231
232 spin_lock_init(&dev->reada_lock);
233 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 234 atomic_set(&dev->dev_stats_ccnt, 0);
12bd2fc0
ID
235 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
236 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
237
238 return dev;
239}
240
a1b32a59
CM
241static noinline struct btrfs_device *__find_device(struct list_head *head,
242 u64 devid, u8 *uuid)
8a4b83cc
CM
243{
244 struct btrfs_device *dev;
8a4b83cc 245
c6e30871 246 list_for_each_entry(dev, head, dev_list) {
a443755f 247 if (dev->devid == devid &&
8f18cf13 248 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 249 return dev;
a443755f 250 }
8a4b83cc
CM
251 }
252 return NULL;
253}
254
a1b32a59 255static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 256{
8a4b83cc
CM
257 struct btrfs_fs_devices *fs_devices;
258
c6e30871 259 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
260 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
261 return fs_devices;
262 }
263 return NULL;
264}
265
beaf8ab3
SB
266static int
267btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
268 int flush, struct block_device **bdev,
269 struct buffer_head **bh)
270{
271 int ret;
272
273 *bdev = blkdev_get_by_path(device_path, flags, holder);
274
275 if (IS_ERR(*bdev)) {
276 ret = PTR_ERR(*bdev);
beaf8ab3
SB
277 goto error;
278 }
279
280 if (flush)
281 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
282 ret = set_blocksize(*bdev, 4096);
283 if (ret) {
284 blkdev_put(*bdev, flags);
285 goto error;
286 }
287 invalidate_bdev(*bdev);
288 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
289 if (IS_ERR(*bh)) {
290 ret = PTR_ERR(*bh);
beaf8ab3
SB
291 blkdev_put(*bdev, flags);
292 goto error;
293 }
294
295 return 0;
296
297error:
298 *bdev = NULL;
299 *bh = NULL;
300 return ret;
301}
302
ffbd517d
CM
303static void requeue_list(struct btrfs_pending_bios *pending_bios,
304 struct bio *head, struct bio *tail)
305{
306
307 struct bio *old_head;
308
309 old_head = pending_bios->head;
310 pending_bios->head = head;
311 if (pending_bios->tail)
312 tail->bi_next = old_head;
313 else
314 pending_bios->tail = tail;
315}
316
8b712842
CM
317/*
318 * we try to collect pending bios for a device so we don't get a large
319 * number of procs sending bios down to the same device. This greatly
320 * improves the schedulers ability to collect and merge the bios.
321 *
322 * But, it also turns into a long list of bios to process and that is sure
323 * to eventually make the worker thread block. The solution here is to
324 * make some progress and then put this work struct back at the end of
325 * the list if the block device is congested. This way, multiple devices
326 * can make progress from a single worker thread.
327 */
143bede5 328static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
329{
330 struct bio *pending;
331 struct backing_dev_info *bdi;
b64a2851 332 struct btrfs_fs_info *fs_info;
ffbd517d 333 struct btrfs_pending_bios *pending_bios;
8b712842
CM
334 struct bio *tail;
335 struct bio *cur;
336 int again = 0;
ffbd517d 337 unsigned long num_run;
d644d8a1 338 unsigned long batch_run = 0;
b64a2851 339 unsigned long limit;
b765ead5 340 unsigned long last_waited = 0;
d84275c9 341 int force_reg = 0;
0e588859 342 int sync_pending = 0;
211588ad
CM
343 struct blk_plug plug;
344
345 /*
346 * this function runs all the bios we've collected for
347 * a particular device. We don't want to wander off to
348 * another device without first sending all of these down.
349 * So, setup a plug here and finish it off before we return
350 */
351 blk_start_plug(&plug);
8b712842 352
bedf762b 353 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
354 fs_info = device->dev_root->fs_info;
355 limit = btrfs_async_submit_limit(fs_info);
356 limit = limit * 2 / 3;
357
8b712842
CM
358loop:
359 spin_lock(&device->io_lock);
360
a6837051 361loop_lock:
d84275c9 362 num_run = 0;
ffbd517d 363
8b712842
CM
364 /* take all the bios off the list at once and process them
365 * later on (without the lock held). But, remember the
366 * tail and other pointers so the bios can be properly reinserted
367 * into the list if we hit congestion
368 */
d84275c9 369 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 370 pending_bios = &device->pending_sync_bios;
d84275c9
CM
371 force_reg = 1;
372 } else {
ffbd517d 373 pending_bios = &device->pending_bios;
d84275c9
CM
374 force_reg = 0;
375 }
ffbd517d
CM
376
377 pending = pending_bios->head;
378 tail = pending_bios->tail;
8b712842 379 WARN_ON(pending && !tail);
8b712842
CM
380
381 /*
382 * if pending was null this time around, no bios need processing
383 * at all and we can stop. Otherwise it'll loop back up again
384 * and do an additional check so no bios are missed.
385 *
386 * device->running_pending is used to synchronize with the
387 * schedule_bio code.
388 */
ffbd517d
CM
389 if (device->pending_sync_bios.head == NULL &&
390 device->pending_bios.head == NULL) {
8b712842
CM
391 again = 0;
392 device->running_pending = 0;
ffbd517d
CM
393 } else {
394 again = 1;
395 device->running_pending = 1;
8b712842 396 }
ffbd517d
CM
397
398 pending_bios->head = NULL;
399 pending_bios->tail = NULL;
400
8b712842
CM
401 spin_unlock(&device->io_lock);
402
d397712b 403 while (pending) {
ffbd517d
CM
404
405 rmb();
d84275c9
CM
406 /* we want to work on both lists, but do more bios on the
407 * sync list than the regular list
408 */
409 if ((num_run > 32 &&
410 pending_bios != &device->pending_sync_bios &&
411 device->pending_sync_bios.head) ||
412 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
413 device->pending_bios.head)) {
ffbd517d
CM
414 spin_lock(&device->io_lock);
415 requeue_list(pending_bios, pending, tail);
416 goto loop_lock;
417 }
418
8b712842
CM
419 cur = pending;
420 pending = pending->bi_next;
421 cur->bi_next = NULL;
b64a2851 422
ee863954
DS
423 /*
424 * atomic_dec_return implies a barrier for waitqueue_active
425 */
66657b31 426 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
427 waitqueue_active(&fs_info->async_submit_wait))
428 wake_up(&fs_info->async_submit_wait);
492bb6de 429
dac56212 430 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 431
2ab1ba68
CM
432 /*
433 * if we're doing the sync list, record that our
434 * plug has some sync requests on it
435 *
436 * If we're doing the regular list and there are
437 * sync requests sitting around, unplug before
438 * we add more
439 */
440 if (pending_bios == &device->pending_sync_bios) {
441 sync_pending = 1;
442 } else if (sync_pending) {
443 blk_finish_plug(&plug);
444 blk_start_plug(&plug);
445 sync_pending = 0;
446 }
447
21adbd5c 448 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
449 num_run++;
450 batch_run++;
853d8ec4
DS
451
452 cond_resched();
8b712842
CM
453
454 /*
455 * we made progress, there is more work to do and the bdi
456 * is now congested. Back off and let other work structs
457 * run instead
458 */
57fd5a5f 459 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 460 fs_info->fs_devices->open_devices > 1) {
b765ead5 461 struct io_context *ioc;
8b712842 462
b765ead5
CM
463 ioc = current->io_context;
464
465 /*
466 * the main goal here is that we don't want to
467 * block if we're going to be able to submit
468 * more requests without blocking.
469 *
470 * This code does two great things, it pokes into
471 * the elevator code from a filesystem _and_
472 * it makes assumptions about how batching works.
473 */
474 if (ioc && ioc->nr_batch_requests > 0 &&
475 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
476 (last_waited == 0 ||
477 ioc->last_waited == last_waited)) {
478 /*
479 * we want to go through our batch of
480 * requests and stop. So, we copy out
481 * the ioc->last_waited time and test
482 * against it before looping
483 */
484 last_waited = ioc->last_waited;
853d8ec4 485 cond_resched();
b765ead5
CM
486 continue;
487 }
8b712842 488 spin_lock(&device->io_lock);
ffbd517d 489 requeue_list(pending_bios, pending, tail);
a6837051 490 device->running_pending = 1;
8b712842
CM
491
492 spin_unlock(&device->io_lock);
a8c93d4e
QW
493 btrfs_queue_work(fs_info->submit_workers,
494 &device->work);
8b712842
CM
495 goto done;
496 }
d85c8a6f
CM
497 /* unplug every 64 requests just for good measure */
498 if (batch_run % 64 == 0) {
499 blk_finish_plug(&plug);
500 blk_start_plug(&plug);
501 sync_pending = 0;
502 }
8b712842 503 }
ffbd517d 504
51684082
CM
505 cond_resched();
506 if (again)
507 goto loop;
508
509 spin_lock(&device->io_lock);
510 if (device->pending_bios.head || device->pending_sync_bios.head)
511 goto loop_lock;
512 spin_unlock(&device->io_lock);
513
8b712842 514done:
211588ad 515 blk_finish_plug(&plug);
8b712842
CM
516}
517
b2950863 518static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
519{
520 struct btrfs_device *device;
521
522 device = container_of(work, struct btrfs_device, work);
523 run_scheduled_bios(device);
524}
525
4fde46f0
AJ
526
527void btrfs_free_stale_device(struct btrfs_device *cur_dev)
528{
529 struct btrfs_fs_devices *fs_devs;
530 struct btrfs_device *dev;
531
532 if (!cur_dev->name)
533 return;
534
535 list_for_each_entry(fs_devs, &fs_uuids, list) {
536 int del = 1;
537
538 if (fs_devs->opened)
539 continue;
540 if (fs_devs->seeding)
541 continue;
542
543 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
544
545 if (dev == cur_dev)
546 continue;
547 if (!dev->name)
548 continue;
549
550 /*
551 * Todo: This won't be enough. What if the same device
552 * comes back (with new uuid and) with its mapper path?
553 * But for now, this does help as mostly an admin will
554 * either use mapper or non mapper path throughout.
555 */
556 rcu_read_lock();
557 del = strcmp(rcu_str_deref(dev->name),
558 rcu_str_deref(cur_dev->name));
559 rcu_read_unlock();
560 if (!del)
561 break;
562 }
563
564 if (!del) {
565 /* delete the stale device */
566 if (fs_devs->num_devices == 1) {
567 btrfs_sysfs_remove_fsid(fs_devs);
568 list_del(&fs_devs->list);
569 free_fs_devices(fs_devs);
570 } else {
571 fs_devs->num_devices--;
572 list_del(&dev->dev_list);
573 rcu_string_free(dev->name);
574 kfree(dev);
575 }
576 break;
577 }
578 }
579}
580
60999ca4
DS
581/*
582 * Add new device to list of registered devices
583 *
584 * Returns:
585 * 1 - first time device is seen
586 * 0 - device already known
587 * < 0 - error
588 */
a1b32a59 589static noinline int device_list_add(const char *path,
8a4b83cc
CM
590 struct btrfs_super_block *disk_super,
591 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
592{
593 struct btrfs_device *device;
594 struct btrfs_fs_devices *fs_devices;
606686ee 595 struct rcu_string *name;
60999ca4 596 int ret = 0;
8a4b83cc
CM
597 u64 found_transid = btrfs_super_generation(disk_super);
598
599 fs_devices = find_fsid(disk_super->fsid);
600 if (!fs_devices) {
2208a378
ID
601 fs_devices = alloc_fs_devices(disk_super->fsid);
602 if (IS_ERR(fs_devices))
603 return PTR_ERR(fs_devices);
604
8a4b83cc 605 list_add(&fs_devices->list, &fs_uuids);
2208a378 606
8a4b83cc
CM
607 device = NULL;
608 } else {
a443755f
CM
609 device = __find_device(&fs_devices->devices, devid,
610 disk_super->dev_item.uuid);
8a4b83cc 611 }
443f24fe 612
8a4b83cc 613 if (!device) {
2b82032c
YZ
614 if (fs_devices->opened)
615 return -EBUSY;
616
12bd2fc0
ID
617 device = btrfs_alloc_device(NULL, &devid,
618 disk_super->dev_item.uuid);
619 if (IS_ERR(device)) {
8a4b83cc 620 /* we can safely leave the fs_devices entry around */
12bd2fc0 621 return PTR_ERR(device);
8a4b83cc 622 }
606686ee
JB
623
624 name = rcu_string_strdup(path, GFP_NOFS);
625 if (!name) {
8a4b83cc
CM
626 kfree(device);
627 return -ENOMEM;
628 }
606686ee 629 rcu_assign_pointer(device->name, name);
90519d66 630
e5e9a520 631 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 632 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 633 fs_devices->num_devices++;
e5e9a520
CM
634 mutex_unlock(&fs_devices->device_list_mutex);
635
60999ca4 636 ret = 1;
2b82032c 637 device->fs_devices = fs_devices;
606686ee 638 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
639 /*
640 * When FS is already mounted.
641 * 1. If you are here and if the device->name is NULL that
642 * means this device was missing at time of FS mount.
643 * 2. If you are here and if the device->name is different
644 * from 'path' that means either
645 * a. The same device disappeared and reappeared with
646 * different name. or
647 * b. The missing-disk-which-was-replaced, has
648 * reappeared now.
649 *
650 * We must allow 1 and 2a above. But 2b would be a spurious
651 * and unintentional.
652 *
653 * Further in case of 1 and 2a above, the disk at 'path'
654 * would have missed some transaction when it was away and
655 * in case of 2a the stale bdev has to be updated as well.
656 * 2b must not be allowed at all time.
657 */
658
659 /*
0f23ae74
CM
660 * For now, we do allow update to btrfs_fs_device through the
661 * btrfs dev scan cli after FS has been mounted. We're still
662 * tracking a problem where systems fail mount by subvolume id
663 * when we reject replacement on a mounted FS.
b96de000 664 */
0f23ae74 665 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
666 /*
667 * That is if the FS is _not_ mounted and if you
668 * are here, that means there is more than one
669 * disk with same uuid and devid.We keep the one
670 * with larger generation number or the last-in if
671 * generation are equal.
672 */
0f23ae74 673 return -EEXIST;
77bdae4d 674 }
b96de000 675
606686ee 676 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
677 if (!name)
678 return -ENOMEM;
606686ee
JB
679 rcu_string_free(device->name);
680 rcu_assign_pointer(device->name, name);
cd02dca5
CM
681 if (device->missing) {
682 fs_devices->missing_devices--;
683 device->missing = 0;
684 }
8a4b83cc
CM
685 }
686
77bdae4d
AJ
687 /*
688 * Unmount does not free the btrfs_device struct but would zero
689 * generation along with most of the other members. So just update
690 * it back. We need it to pick the disk with largest generation
691 * (as above).
692 */
693 if (!fs_devices->opened)
694 device->generation = found_transid;
695
4fde46f0
AJ
696 /*
697 * if there is new btrfs on an already registered device,
698 * then remove the stale device entry.
699 */
700 btrfs_free_stale_device(device);
701
8a4b83cc 702 *fs_devices_ret = fs_devices;
60999ca4
DS
703
704 return ret;
8a4b83cc
CM
705}
706
e4404d6e
YZ
707static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
708{
709 struct btrfs_fs_devices *fs_devices;
710 struct btrfs_device *device;
711 struct btrfs_device *orig_dev;
712
2208a378
ID
713 fs_devices = alloc_fs_devices(orig->fsid);
714 if (IS_ERR(fs_devices))
715 return fs_devices;
e4404d6e 716
adbbb863 717 mutex_lock(&orig->device_list_mutex);
02db0844 718 fs_devices->total_devices = orig->total_devices;
e4404d6e 719
46224705 720 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 721 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
722 struct rcu_string *name;
723
12bd2fc0
ID
724 device = btrfs_alloc_device(NULL, &orig_dev->devid,
725 orig_dev->uuid);
726 if (IS_ERR(device))
e4404d6e
YZ
727 goto error;
728
606686ee
JB
729 /*
730 * This is ok to do without rcu read locked because we hold the
731 * uuid mutex so nothing we touch in here is going to disappear.
732 */
e755f780
AJ
733 if (orig_dev->name) {
734 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
735 if (!name) {
736 kfree(device);
737 goto error;
738 }
739 rcu_assign_pointer(device->name, name);
fd2696f3 740 }
e4404d6e 741
e4404d6e
YZ
742 list_add(&device->dev_list, &fs_devices->devices);
743 device->fs_devices = fs_devices;
744 fs_devices->num_devices++;
745 }
adbbb863 746 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
747 return fs_devices;
748error:
adbbb863 749 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
750 free_fs_devices(fs_devices);
751 return ERR_PTR(-ENOMEM);
752}
753
9eaed21e 754void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 755{
c6e30871 756 struct btrfs_device *device, *next;
443f24fe 757 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 758
dfe25020
CM
759 mutex_lock(&uuid_mutex);
760again:
46224705 761 /* This is the initialized path, it is safe to release the devices. */
c6e30871 762 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 763 if (device->in_fs_metadata) {
63a212ab 764 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
765 (!latest_dev ||
766 device->generation > latest_dev->generation)) {
767 latest_dev = device;
a6b0d5c8 768 }
2b82032c 769 continue;
a6b0d5c8 770 }
2b82032c 771
8dabb742
SB
772 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
773 /*
774 * In the first step, keep the device which has
775 * the correct fsid and the devid that is used
776 * for the dev_replace procedure.
777 * In the second step, the dev_replace state is
778 * read from the device tree and it is known
779 * whether the procedure is really active or
780 * not, which means whether this device is
781 * used or whether it should be removed.
782 */
783 if (step == 0 || device->is_tgtdev_for_dev_replace) {
784 continue;
785 }
786 }
2b82032c 787 if (device->bdev) {
d4d77629 788 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
789 device->bdev = NULL;
790 fs_devices->open_devices--;
791 }
792 if (device->writeable) {
793 list_del_init(&device->dev_alloc_list);
794 device->writeable = 0;
8dabb742
SB
795 if (!device->is_tgtdev_for_dev_replace)
796 fs_devices->rw_devices--;
2b82032c 797 }
e4404d6e
YZ
798 list_del_init(&device->dev_list);
799 fs_devices->num_devices--;
606686ee 800 rcu_string_free(device->name);
e4404d6e 801 kfree(device);
dfe25020 802 }
2b82032c
YZ
803
804 if (fs_devices->seed) {
805 fs_devices = fs_devices->seed;
2b82032c
YZ
806 goto again;
807 }
808
443f24fe 809 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 810
dfe25020 811 mutex_unlock(&uuid_mutex);
dfe25020 812}
a0af469b 813
1f78160c
XG
814static void __free_device(struct work_struct *work)
815{
816 struct btrfs_device *device;
817
818 device = container_of(work, struct btrfs_device, rcu_work);
819
820 if (device->bdev)
821 blkdev_put(device->bdev, device->mode);
822
606686ee 823 rcu_string_free(device->name);
1f78160c
XG
824 kfree(device);
825}
826
827static void free_device(struct rcu_head *head)
828{
829 struct btrfs_device *device;
830
831 device = container_of(head, struct btrfs_device, rcu);
832
833 INIT_WORK(&device->rcu_work, __free_device);
834 schedule_work(&device->rcu_work);
835}
836
2b82032c 837static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 838{
2037a093 839 struct btrfs_device *device, *tmp;
e4404d6e 840
2b82032c
YZ
841 if (--fs_devices->opened > 0)
842 return 0;
8a4b83cc 843
c9513edb 844 mutex_lock(&fs_devices->device_list_mutex);
2037a093 845 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
f190aa47 846 btrfs_close_one_device(device);
8a4b83cc 847 }
c9513edb
XG
848 mutex_unlock(&fs_devices->device_list_mutex);
849
e4404d6e
YZ
850 WARN_ON(fs_devices->open_devices);
851 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
852 fs_devices->opened = 0;
853 fs_devices->seeding = 0;
2b82032c 854
8a4b83cc
CM
855 return 0;
856}
857
2b82032c
YZ
858int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
859{
e4404d6e 860 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
861 int ret;
862
863 mutex_lock(&uuid_mutex);
864 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
865 if (!fs_devices->opened) {
866 seed_devices = fs_devices->seed;
867 fs_devices->seed = NULL;
868 }
2b82032c 869 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
870
871 while (seed_devices) {
872 fs_devices = seed_devices;
873 seed_devices = fs_devices->seed;
874 __btrfs_close_devices(fs_devices);
875 free_fs_devices(fs_devices);
876 }
bc178622
ES
877 /*
878 * Wait for rcu kworkers under __btrfs_close_devices
879 * to finish all blkdev_puts so device is really
880 * free when umount is done.
881 */
882 rcu_barrier();
2b82032c
YZ
883 return ret;
884}
885
e4404d6e
YZ
886static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
887 fmode_t flags, void *holder)
8a4b83cc 888{
d5e2003c 889 struct request_queue *q;
8a4b83cc
CM
890 struct block_device *bdev;
891 struct list_head *head = &fs_devices->devices;
8a4b83cc 892 struct btrfs_device *device;
443f24fe 893 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
894 struct buffer_head *bh;
895 struct btrfs_super_block *disk_super;
a0af469b 896 u64 devid;
2b82032c 897 int seeding = 1;
a0af469b 898 int ret = 0;
8a4b83cc 899
d4d77629
TH
900 flags |= FMODE_EXCL;
901
c6e30871 902 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
903 if (device->bdev)
904 continue;
dfe25020
CM
905 if (!device->name)
906 continue;
907
f63e0cca
ES
908 /* Just open everything we can; ignore failures here */
909 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
910 &bdev, &bh))
beaf8ab3 911 continue;
a0af469b
CM
912
913 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 914 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
915 if (devid != device->devid)
916 goto error_brelse;
917
2b82032c
YZ
918 if (memcmp(device->uuid, disk_super->dev_item.uuid,
919 BTRFS_UUID_SIZE))
920 goto error_brelse;
921
922 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
923 if (!latest_dev ||
924 device->generation > latest_dev->generation)
925 latest_dev = device;
a0af469b 926
2b82032c
YZ
927 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
928 device->writeable = 0;
929 } else {
930 device->writeable = !bdev_read_only(bdev);
931 seeding = 0;
932 }
933
d5e2003c 934 q = bdev_get_queue(bdev);
90180da4 935 if (blk_queue_discard(q))
d5e2003c 936 device->can_discard = 1;
d5e2003c 937
8a4b83cc 938 device->bdev = bdev;
dfe25020 939 device->in_fs_metadata = 0;
15916de8
CM
940 device->mode = flags;
941
c289811c
CM
942 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
943 fs_devices->rotating = 1;
944
a0af469b 945 fs_devices->open_devices++;
55e50e45
ID
946 if (device->writeable &&
947 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
948 fs_devices->rw_devices++;
949 list_add(&device->dev_alloc_list,
950 &fs_devices->alloc_list);
951 }
4f6c9328 952 brelse(bh);
a0af469b 953 continue;
a061fc8d 954
a0af469b
CM
955error_brelse:
956 brelse(bh);
d4d77629 957 blkdev_put(bdev, flags);
a0af469b 958 continue;
8a4b83cc 959 }
a0af469b 960 if (fs_devices->open_devices == 0) {
20bcd649 961 ret = -EINVAL;
a0af469b
CM
962 goto out;
963 }
2b82032c
YZ
964 fs_devices->seeding = seeding;
965 fs_devices->opened = 1;
443f24fe 966 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 967 fs_devices->total_rw_bytes = 0;
a0af469b 968out:
2b82032c
YZ
969 return ret;
970}
971
972int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 973 fmode_t flags, void *holder)
2b82032c
YZ
974{
975 int ret;
976
977 mutex_lock(&uuid_mutex);
978 if (fs_devices->opened) {
e4404d6e
YZ
979 fs_devices->opened++;
980 ret = 0;
2b82032c 981 } else {
15916de8 982 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 983 }
8a4b83cc 984 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
985 return ret;
986}
987
6f60cbd3
DS
988/*
989 * Look for a btrfs signature on a device. This may be called out of the mount path
990 * and we are not allowed to call set_blocksize during the scan. The superblock
991 * is read via pagecache
992 */
97288f2c 993int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
994 struct btrfs_fs_devices **fs_devices_ret)
995{
996 struct btrfs_super_block *disk_super;
997 struct block_device *bdev;
6f60cbd3
DS
998 struct page *page;
999 void *p;
1000 int ret = -EINVAL;
8a4b83cc 1001 u64 devid;
f2984462 1002 u64 transid;
02db0844 1003 u64 total_devices;
6f60cbd3
DS
1004 u64 bytenr;
1005 pgoff_t index;
8a4b83cc 1006
6f60cbd3
DS
1007 /*
1008 * we would like to check all the supers, but that would make
1009 * a btrfs mount succeed after a mkfs from a different FS.
1010 * So, we need to add a special mount option to scan for
1011 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1012 */
1013 bytenr = btrfs_sb_offset(0);
d4d77629 1014 flags |= FMODE_EXCL;
10f6327b 1015 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1016
1017 bdev = blkdev_get_by_path(path, flags, holder);
1018
1019 if (IS_ERR(bdev)) {
1020 ret = PTR_ERR(bdev);
beaf8ab3 1021 goto error;
6f60cbd3
DS
1022 }
1023
1024 /* make sure our super fits in the device */
1025 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
1026 goto error_bdev_put;
1027
1028 /* make sure our super fits in the page */
1029 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
1030 goto error_bdev_put;
1031
1032 /* make sure our super doesn't straddle pages on disk */
1033 index = bytenr >> PAGE_CACHE_SHIFT;
1034 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
1035 goto error_bdev_put;
1036
1037 /* pull in the page with our super */
1038 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1039 index, GFP_NOFS);
1040
1041 if (IS_ERR_OR_NULL(page))
1042 goto error_bdev_put;
1043
1044 p = kmap(page);
1045
1046 /* align our pointer to the offset of the super block */
1047 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
1048
1049 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 1050 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
1051 goto error_unmap;
1052
a343832f 1053 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1054 transid = btrfs_super_generation(disk_super);
02db0844 1055 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1056
8a4b83cc 1057 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1058 if (ret > 0) {
1059 if (disk_super->label[0]) {
1060 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1061 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1062 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1063 } else {
1064 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1065 }
1066
1067 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1068 ret = 0;
1069 }
02db0844
JB
1070 if (!ret && fs_devices_ret)
1071 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
1072
1073error_unmap:
1074 kunmap(page);
1075 page_cache_release(page);
1076
1077error_bdev_put:
d4d77629 1078 blkdev_put(bdev, flags);
8a4b83cc 1079error:
beaf8ab3 1080 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1081 return ret;
1082}
0b86a832 1083
6d07bcec
MX
1084/* helper to account the used device space in the range */
1085int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1086 u64 end, u64 *length)
1087{
1088 struct btrfs_key key;
1089 struct btrfs_root *root = device->dev_root;
1090 struct btrfs_dev_extent *dev_extent;
1091 struct btrfs_path *path;
1092 u64 extent_end;
1093 int ret;
1094 int slot;
1095 struct extent_buffer *l;
1096
1097 *length = 0;
1098
63a212ab 1099 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1100 return 0;
1101
1102 path = btrfs_alloc_path();
1103 if (!path)
1104 return -ENOMEM;
1105 path->reada = 2;
1106
1107 key.objectid = device->devid;
1108 key.offset = start;
1109 key.type = BTRFS_DEV_EXTENT_KEY;
1110
1111 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1112 if (ret < 0)
1113 goto out;
1114 if (ret > 0) {
1115 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1116 if (ret < 0)
1117 goto out;
1118 }
1119
1120 while (1) {
1121 l = path->nodes[0];
1122 slot = path->slots[0];
1123 if (slot >= btrfs_header_nritems(l)) {
1124 ret = btrfs_next_leaf(root, path);
1125 if (ret == 0)
1126 continue;
1127 if (ret < 0)
1128 goto out;
1129
1130 break;
1131 }
1132 btrfs_item_key_to_cpu(l, &key, slot);
1133
1134 if (key.objectid < device->devid)
1135 goto next;
1136
1137 if (key.objectid > device->devid)
1138 break;
1139
962a298f 1140 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1141 goto next;
1142
1143 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1144 extent_end = key.offset + btrfs_dev_extent_length(l,
1145 dev_extent);
1146 if (key.offset <= start && extent_end > end) {
1147 *length = end - start + 1;
1148 break;
1149 } else if (key.offset <= start && extent_end > start)
1150 *length += extent_end - start;
1151 else if (key.offset > start && extent_end <= end)
1152 *length += extent_end - key.offset;
1153 else if (key.offset > start && key.offset <= end) {
1154 *length += end - key.offset + 1;
1155 break;
1156 } else if (key.offset > end)
1157 break;
1158
1159next:
1160 path->slots[0]++;
1161 }
1162 ret = 0;
1163out:
1164 btrfs_free_path(path);
1165 return ret;
1166}
1167
499f377f 1168static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1169 struct btrfs_device *device,
1170 u64 *start, u64 len)
1171{
499f377f 1172 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
6df9a95e 1173 struct extent_map *em;
499f377f 1174 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1175 int ret = 0;
1b984508 1176 u64 physical_start = *start;
6df9a95e 1177
499f377f
JM
1178 if (transaction)
1179 search_list = &transaction->pending_chunks;
04216820
FM
1180again:
1181 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1182 struct map_lookup *map;
1183 int i;
1184
1185 map = (struct map_lookup *)em->bdev;
1186 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1187 u64 end;
1188
6df9a95e
JB
1189 if (map->stripes[i].dev != device)
1190 continue;
1b984508 1191 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1192 map->stripes[i].physical + em->orig_block_len <=
1b984508 1193 physical_start)
6df9a95e 1194 continue;
c152b63e
FM
1195 /*
1196 * Make sure that while processing the pinned list we do
1197 * not override our *start with a lower value, because
1198 * we can have pinned chunks that fall within this
1199 * device hole and that have lower physical addresses
1200 * than the pending chunks we processed before. If we
1201 * do not take this special care we can end up getting
1202 * 2 pending chunks that start at the same physical
1203 * device offsets because the end offset of a pinned
1204 * chunk can be equal to the start offset of some
1205 * pending chunk.
1206 */
1207 end = map->stripes[i].physical + em->orig_block_len;
1208 if (end > *start) {
1209 *start = end;
1210 ret = 1;
1211 }
6df9a95e
JB
1212 }
1213 }
499f377f
JM
1214 if (search_list != &fs_info->pinned_chunks) {
1215 search_list = &fs_info->pinned_chunks;
04216820
FM
1216 goto again;
1217 }
6df9a95e
JB
1218
1219 return ret;
1220}
1221
1222
0b86a832 1223/*
499f377f
JM
1224 * find_free_dev_extent_start - find free space in the specified device
1225 * @device: the device which we search the free space in
1226 * @num_bytes: the size of the free space that we need
1227 * @search_start: the position from which to begin the search
1228 * @start: store the start of the free space.
1229 * @len: the size of the free space. that we find, or the size
1230 * of the max free space if we don't find suitable free space
7bfc837d 1231 *
0b86a832
CM
1232 * this uses a pretty simple search, the expectation is that it is
1233 * called very infrequently and that a given device has a small number
1234 * of extents
7bfc837d
MX
1235 *
1236 * @start is used to store the start of the free space if we find. But if we
1237 * don't find suitable free space, it will be used to store the start position
1238 * of the max free space.
1239 *
1240 * @len is used to store the size of the free space that we find.
1241 * But if we don't find suitable free space, it is used to store the size of
1242 * the max free space.
0b86a832 1243 */
499f377f
JM
1244int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1245 struct btrfs_device *device, u64 num_bytes,
1246 u64 search_start, u64 *start, u64 *len)
0b86a832
CM
1247{
1248 struct btrfs_key key;
1249 struct btrfs_root *root = device->dev_root;
7bfc837d 1250 struct btrfs_dev_extent *dev_extent;
2b82032c 1251 struct btrfs_path *path;
7bfc837d
MX
1252 u64 hole_size;
1253 u64 max_hole_start;
1254 u64 max_hole_size;
1255 u64 extent_end;
0b86a832
CM
1256 u64 search_end = device->total_bytes;
1257 int ret;
7bfc837d 1258 int slot;
0b86a832
CM
1259 struct extent_buffer *l;
1260
6df9a95e
JB
1261 path = btrfs_alloc_path();
1262 if (!path)
1263 return -ENOMEM;
f2ab7618 1264
7bfc837d
MX
1265 max_hole_start = search_start;
1266 max_hole_size = 0;
1267
f2ab7618 1268again:
63a212ab 1269 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1270 ret = -ENOSPC;
6df9a95e 1271 goto out;
7bfc837d
MX
1272 }
1273
7bfc837d 1274 path->reada = 2;
6df9a95e
JB
1275 path->search_commit_root = 1;
1276 path->skip_locking = 1;
7bfc837d 1277
0b86a832
CM
1278 key.objectid = device->devid;
1279 key.offset = search_start;
1280 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1281
125ccb0a 1282 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1283 if (ret < 0)
7bfc837d 1284 goto out;
1fcbac58
YZ
1285 if (ret > 0) {
1286 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1287 if (ret < 0)
7bfc837d 1288 goto out;
1fcbac58 1289 }
7bfc837d 1290
0b86a832
CM
1291 while (1) {
1292 l = path->nodes[0];
1293 slot = path->slots[0];
1294 if (slot >= btrfs_header_nritems(l)) {
1295 ret = btrfs_next_leaf(root, path);
1296 if (ret == 0)
1297 continue;
1298 if (ret < 0)
7bfc837d
MX
1299 goto out;
1300
1301 break;
0b86a832
CM
1302 }
1303 btrfs_item_key_to_cpu(l, &key, slot);
1304
1305 if (key.objectid < device->devid)
1306 goto next;
1307
1308 if (key.objectid > device->devid)
7bfc837d 1309 break;
0b86a832 1310
962a298f 1311 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1312 goto next;
9779b72f 1313
7bfc837d
MX
1314 if (key.offset > search_start) {
1315 hole_size = key.offset - search_start;
9779b72f 1316
6df9a95e
JB
1317 /*
1318 * Have to check before we set max_hole_start, otherwise
1319 * we could end up sending back this offset anyway.
1320 */
499f377f 1321 if (contains_pending_extent(transaction, device,
6df9a95e 1322 &search_start,
1b984508
FL
1323 hole_size)) {
1324 if (key.offset >= search_start) {
1325 hole_size = key.offset - search_start;
1326 } else {
1327 WARN_ON_ONCE(1);
1328 hole_size = 0;
1329 }
1330 }
6df9a95e 1331
7bfc837d
MX
1332 if (hole_size > max_hole_size) {
1333 max_hole_start = search_start;
1334 max_hole_size = hole_size;
1335 }
9779b72f 1336
7bfc837d
MX
1337 /*
1338 * If this free space is greater than which we need,
1339 * it must be the max free space that we have found
1340 * until now, so max_hole_start must point to the start
1341 * of this free space and the length of this free space
1342 * is stored in max_hole_size. Thus, we return
1343 * max_hole_start and max_hole_size and go back to the
1344 * caller.
1345 */
1346 if (hole_size >= num_bytes) {
1347 ret = 0;
1348 goto out;
0b86a832
CM
1349 }
1350 }
0b86a832 1351
0b86a832 1352 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1353 extent_end = key.offset + btrfs_dev_extent_length(l,
1354 dev_extent);
1355 if (extent_end > search_start)
1356 search_start = extent_end;
0b86a832
CM
1357next:
1358 path->slots[0]++;
1359 cond_resched();
1360 }
0b86a832 1361
38c01b96 1362 /*
1363 * At this point, search_start should be the end of
1364 * allocated dev extents, and when shrinking the device,
1365 * search_end may be smaller than search_start.
1366 */
f2ab7618 1367 if (search_end > search_start) {
38c01b96 1368 hole_size = search_end - search_start;
1369
499f377f 1370 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1371 hole_size)) {
1372 btrfs_release_path(path);
1373 goto again;
1374 }
0b86a832 1375
f2ab7618
ZL
1376 if (hole_size > max_hole_size) {
1377 max_hole_start = search_start;
1378 max_hole_size = hole_size;
1379 }
6df9a95e
JB
1380 }
1381
7bfc837d 1382 /* See above. */
f2ab7618 1383 if (max_hole_size < num_bytes)
7bfc837d
MX
1384 ret = -ENOSPC;
1385 else
1386 ret = 0;
1387
1388out:
2b82032c 1389 btrfs_free_path(path);
7bfc837d 1390 *start = max_hole_start;
b2117a39 1391 if (len)
7bfc837d 1392 *len = max_hole_size;
0b86a832
CM
1393 return ret;
1394}
1395
499f377f
JM
1396int find_free_dev_extent(struct btrfs_trans_handle *trans,
1397 struct btrfs_device *device, u64 num_bytes,
1398 u64 *start, u64 *len)
1399{
1400 struct btrfs_root *root = device->dev_root;
1401 u64 search_start;
1402
1403 /* FIXME use last free of some kind */
1404
1405 /*
1406 * we don't want to overwrite the superblock on the drive,
1407 * so we make sure to start at an offset of at least 1MB
1408 */
1409 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1410 return find_free_dev_extent_start(trans->transaction, device,
1411 num_bytes, search_start, start, len);
1412}
1413
b2950863 1414static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1415 struct btrfs_device *device,
2196d6e8 1416 u64 start, u64 *dev_extent_len)
8f18cf13
CM
1417{
1418 int ret;
1419 struct btrfs_path *path;
1420 struct btrfs_root *root = device->dev_root;
1421 struct btrfs_key key;
a061fc8d
CM
1422 struct btrfs_key found_key;
1423 struct extent_buffer *leaf = NULL;
1424 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1425
1426 path = btrfs_alloc_path();
1427 if (!path)
1428 return -ENOMEM;
1429
1430 key.objectid = device->devid;
1431 key.offset = start;
1432 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1433again:
8f18cf13 1434 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1435 if (ret > 0) {
1436 ret = btrfs_previous_item(root, path, key.objectid,
1437 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1438 if (ret)
1439 goto out;
a061fc8d
CM
1440 leaf = path->nodes[0];
1441 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1442 extent = btrfs_item_ptr(leaf, path->slots[0],
1443 struct btrfs_dev_extent);
1444 BUG_ON(found_key.offset > start || found_key.offset +
1445 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1446 key = found_key;
1447 btrfs_release_path(path);
1448 goto again;
a061fc8d
CM
1449 } else if (ret == 0) {
1450 leaf = path->nodes[0];
1451 extent = btrfs_item_ptr(leaf, path->slots[0],
1452 struct btrfs_dev_extent);
79787eaa 1453 } else {
a4553fef 1454 btrfs_std_error(root->fs_info, ret, "Slot search failed");
79787eaa 1455 goto out;
a061fc8d 1456 }
8f18cf13 1457
2196d6e8
MX
1458 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1459
8f18cf13 1460 ret = btrfs_del_item(trans, root, path);
79787eaa 1461 if (ret) {
a4553fef 1462 btrfs_std_error(root->fs_info, ret,
79787eaa 1463 "Failed to remove dev extent item");
13212b54 1464 } else {
3204d33c 1465 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1466 }
b0b802d7 1467out:
8f18cf13
CM
1468 btrfs_free_path(path);
1469 return ret;
1470}
1471
48a3b636
ES
1472static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1473 struct btrfs_device *device,
1474 u64 chunk_tree, u64 chunk_objectid,
1475 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1476{
1477 int ret;
1478 struct btrfs_path *path;
1479 struct btrfs_root *root = device->dev_root;
1480 struct btrfs_dev_extent *extent;
1481 struct extent_buffer *leaf;
1482 struct btrfs_key key;
1483
dfe25020 1484 WARN_ON(!device->in_fs_metadata);
63a212ab 1485 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1486 path = btrfs_alloc_path();
1487 if (!path)
1488 return -ENOMEM;
1489
0b86a832 1490 key.objectid = device->devid;
2b82032c 1491 key.offset = start;
0b86a832
CM
1492 key.type = BTRFS_DEV_EXTENT_KEY;
1493 ret = btrfs_insert_empty_item(trans, root, path, &key,
1494 sizeof(*extent));
2cdcecbc
MF
1495 if (ret)
1496 goto out;
0b86a832
CM
1497
1498 leaf = path->nodes[0];
1499 extent = btrfs_item_ptr(leaf, path->slots[0],
1500 struct btrfs_dev_extent);
e17cade2
CM
1501 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1502 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1503 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1504
1505 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1506 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1507
0b86a832
CM
1508 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1509 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1510out:
0b86a832
CM
1511 btrfs_free_path(path);
1512 return ret;
1513}
1514
6df9a95e 1515static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1516{
6df9a95e
JB
1517 struct extent_map_tree *em_tree;
1518 struct extent_map *em;
1519 struct rb_node *n;
1520 u64 ret = 0;
0b86a832 1521
6df9a95e
JB
1522 em_tree = &fs_info->mapping_tree.map_tree;
1523 read_lock(&em_tree->lock);
1524 n = rb_last(&em_tree->map);
1525 if (n) {
1526 em = rb_entry(n, struct extent_map, rb_node);
1527 ret = em->start + em->len;
0b86a832 1528 }
6df9a95e
JB
1529 read_unlock(&em_tree->lock);
1530
0b86a832
CM
1531 return ret;
1532}
1533
53f10659
ID
1534static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1535 u64 *devid_ret)
0b86a832
CM
1536{
1537 int ret;
1538 struct btrfs_key key;
1539 struct btrfs_key found_key;
2b82032c
YZ
1540 struct btrfs_path *path;
1541
2b82032c
YZ
1542 path = btrfs_alloc_path();
1543 if (!path)
1544 return -ENOMEM;
0b86a832
CM
1545
1546 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1547 key.type = BTRFS_DEV_ITEM_KEY;
1548 key.offset = (u64)-1;
1549
53f10659 1550 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1551 if (ret < 0)
1552 goto error;
1553
79787eaa 1554 BUG_ON(ret == 0); /* Corruption */
0b86a832 1555
53f10659
ID
1556 ret = btrfs_previous_item(fs_info->chunk_root, path,
1557 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1558 BTRFS_DEV_ITEM_KEY);
1559 if (ret) {
53f10659 1560 *devid_ret = 1;
0b86a832
CM
1561 } else {
1562 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1563 path->slots[0]);
53f10659 1564 *devid_ret = found_key.offset + 1;
0b86a832
CM
1565 }
1566 ret = 0;
1567error:
2b82032c 1568 btrfs_free_path(path);
0b86a832
CM
1569 return ret;
1570}
1571
1572/*
1573 * the device information is stored in the chunk root
1574 * the btrfs_device struct should be fully filled in
1575 */
48a3b636
ES
1576static int btrfs_add_device(struct btrfs_trans_handle *trans,
1577 struct btrfs_root *root,
1578 struct btrfs_device *device)
0b86a832
CM
1579{
1580 int ret;
1581 struct btrfs_path *path;
1582 struct btrfs_dev_item *dev_item;
1583 struct extent_buffer *leaf;
1584 struct btrfs_key key;
1585 unsigned long ptr;
0b86a832
CM
1586
1587 root = root->fs_info->chunk_root;
1588
1589 path = btrfs_alloc_path();
1590 if (!path)
1591 return -ENOMEM;
1592
0b86a832
CM
1593 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1594 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1595 key.offset = device->devid;
0b86a832
CM
1596
1597 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1598 sizeof(*dev_item));
0b86a832
CM
1599 if (ret)
1600 goto out;
1601
1602 leaf = path->nodes[0];
1603 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1604
1605 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1606 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1607 btrfs_set_device_type(leaf, dev_item, device->type);
1608 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1609 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1610 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1611 btrfs_set_device_total_bytes(leaf, dev_item,
1612 btrfs_device_get_disk_total_bytes(device));
1613 btrfs_set_device_bytes_used(leaf, dev_item,
1614 btrfs_device_get_bytes_used(device));
e17cade2
CM
1615 btrfs_set_device_group(leaf, dev_item, 0);
1616 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1617 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1618 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1619
410ba3a2 1620 ptr = btrfs_device_uuid(dev_item);
e17cade2 1621 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1622 ptr = btrfs_device_fsid(dev_item);
2b82032c 1623 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1624 btrfs_mark_buffer_dirty(leaf);
0b86a832 1625
2b82032c 1626 ret = 0;
0b86a832
CM
1627out:
1628 btrfs_free_path(path);
1629 return ret;
1630}
8f18cf13 1631
5a1972bd
QW
1632/*
1633 * Function to update ctime/mtime for a given device path.
1634 * Mainly used for ctime/mtime based probe like libblkid.
1635 */
1636static void update_dev_time(char *path_name)
1637{
1638 struct file *filp;
1639
1640 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1641 if (IS_ERR(filp))
5a1972bd
QW
1642 return;
1643 file_update_time(filp);
1644 filp_close(filp, NULL);
1645 return;
1646}
1647
a061fc8d
CM
1648static int btrfs_rm_dev_item(struct btrfs_root *root,
1649 struct btrfs_device *device)
1650{
1651 int ret;
1652 struct btrfs_path *path;
a061fc8d 1653 struct btrfs_key key;
a061fc8d
CM
1654 struct btrfs_trans_handle *trans;
1655
1656 root = root->fs_info->chunk_root;
1657
1658 path = btrfs_alloc_path();
1659 if (!path)
1660 return -ENOMEM;
1661
a22285a6 1662 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1663 if (IS_ERR(trans)) {
1664 btrfs_free_path(path);
1665 return PTR_ERR(trans);
1666 }
a061fc8d
CM
1667 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1668 key.type = BTRFS_DEV_ITEM_KEY;
1669 key.offset = device->devid;
1670
1671 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1672 if (ret < 0)
1673 goto out;
1674
1675 if (ret > 0) {
1676 ret = -ENOENT;
1677 goto out;
1678 }
1679
1680 ret = btrfs_del_item(trans, root, path);
1681 if (ret)
1682 goto out;
a061fc8d
CM
1683out:
1684 btrfs_free_path(path);
1685 btrfs_commit_transaction(trans, root);
1686 return ret;
1687}
1688
1689int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1690{
1691 struct btrfs_device *device;
2b82032c 1692 struct btrfs_device *next_device;
a061fc8d 1693 struct block_device *bdev;
dfe25020 1694 struct buffer_head *bh = NULL;
a061fc8d 1695 struct btrfs_super_block *disk_super;
1f78160c 1696 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1697 u64 all_avail;
1698 u64 devid;
2b82032c
YZ
1699 u64 num_devices;
1700 u8 *dev_uuid;
de98ced9 1701 unsigned seq;
a061fc8d 1702 int ret = 0;
1f78160c 1703 bool clear_super = false;
a061fc8d 1704
a061fc8d
CM
1705 mutex_lock(&uuid_mutex);
1706
de98ced9
MX
1707 do {
1708 seq = read_seqbegin(&root->fs_info->profiles_lock);
1709
1710 all_avail = root->fs_info->avail_data_alloc_bits |
1711 root->fs_info->avail_system_alloc_bits |
1712 root->fs_info->avail_metadata_alloc_bits;
1713 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1714
8dabb742
SB
1715 num_devices = root->fs_info->fs_devices->num_devices;
1716 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1717 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1718 WARN_ON(num_devices < 1);
1719 num_devices--;
1720 }
1721 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1722
1723 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1724 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1725 goto out;
1726 }
1727
8dabb742 1728 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1729 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1730 goto out;
1731 }
1732
53b381b3
DW
1733 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1734 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1735 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1736 goto out;
1737 }
1738 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1739 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1740 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1741 goto out;
1742 }
1743
dfe25020 1744 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1745 struct list_head *devices;
1746 struct btrfs_device *tmp;
a061fc8d 1747
dfe25020
CM
1748 device = NULL;
1749 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1750 /*
1751 * It is safe to read the devices since the volume_mutex
1752 * is held.
1753 */
c6e30871 1754 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1755 if (tmp->in_fs_metadata &&
1756 !tmp->is_tgtdev_for_dev_replace &&
1757 !tmp->bdev) {
dfe25020
CM
1758 device = tmp;
1759 break;
1760 }
1761 }
1762 bdev = NULL;
1763 bh = NULL;
1764 disk_super = NULL;
1765 if (!device) {
183860f6 1766 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1767 goto out;
1768 }
dfe25020 1769 } else {
beaf8ab3 1770 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1771 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1772 root->fs_info->bdev_holder, 0,
1773 &bdev, &bh);
1774 if (ret)
dfe25020 1775 goto out;
dfe25020 1776 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1777 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1778 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1779 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1780 disk_super->fsid);
dfe25020
CM
1781 if (!device) {
1782 ret = -ENOENT;
1783 goto error_brelse;
1784 }
2b82032c 1785 }
dfe25020 1786
63a212ab 1787 if (device->is_tgtdev_for_dev_replace) {
183860f6 1788 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1789 goto error_brelse;
1790 }
1791
2b82032c 1792 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1793 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1794 goto error_brelse;
1795 }
1796
1797 if (device->writeable) {
0c1daee0 1798 lock_chunks(root);
2b82032c 1799 list_del_init(&device->dev_alloc_list);
c3929c36 1800 device->fs_devices->rw_devices--;
0c1daee0 1801 unlock_chunks(root);
1f78160c 1802 clear_super = true;
dfe25020 1803 }
a061fc8d 1804
d7901554 1805 mutex_unlock(&uuid_mutex);
a061fc8d 1806 ret = btrfs_shrink_device(device, 0);
d7901554 1807 mutex_lock(&uuid_mutex);
a061fc8d 1808 if (ret)
9b3517e9 1809 goto error_undo;
a061fc8d 1810
63a212ab
SB
1811 /*
1812 * TODO: the superblock still includes this device in its num_devices
1813 * counter although write_all_supers() is not locked out. This
1814 * could give a filesystem state which requires a degraded mount.
1815 */
a061fc8d
CM
1816 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1817 if (ret)
9b3517e9 1818 goto error_undo;
a061fc8d 1819
2b82032c 1820 device->in_fs_metadata = 0;
aa1b8cd4 1821 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1822
1823 /*
1824 * the device list mutex makes sure that we don't change
1825 * the device list while someone else is writing out all
d7306801
FDBM
1826 * the device supers. Whoever is writing all supers, should
1827 * lock the device list mutex before getting the number of
1828 * devices in the super block (super_copy). Conversely,
1829 * whoever updates the number of devices in the super block
1830 * (super_copy) should hold the device list mutex.
e5e9a520 1831 */
1f78160c
XG
1832
1833 cur_devices = device->fs_devices;
e5e9a520 1834 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1835 list_del_rcu(&device->dev_list);
e5e9a520 1836
e4404d6e 1837 device->fs_devices->num_devices--;
02db0844 1838 device->fs_devices->total_devices--;
2b82032c 1839
cd02dca5 1840 if (device->missing)
3a7d55c8 1841 device->fs_devices->missing_devices--;
cd02dca5 1842
2b82032c
YZ
1843 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1844 struct btrfs_device, dev_list);
1845 if (device->bdev == root->fs_info->sb->s_bdev)
1846 root->fs_info->sb->s_bdev = next_device->bdev;
1847 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1848 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1849
0bfaa9c5 1850 if (device->bdev) {
e4404d6e 1851 device->fs_devices->open_devices--;
0bfaa9c5 1852 /* remove sysfs entry */
32576040 1853 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
0bfaa9c5 1854 }
99994cde 1855
1f78160c 1856 call_rcu(&device->rcu, free_device);
e4404d6e 1857
6c41761f
DS
1858 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1859 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1860 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1861
1f78160c 1862 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1863 struct btrfs_fs_devices *fs_devices;
1864 fs_devices = root->fs_info->fs_devices;
1865 while (fs_devices) {
8321cf25
RS
1866 if (fs_devices->seed == cur_devices) {
1867 fs_devices->seed = cur_devices->seed;
e4404d6e 1868 break;
8321cf25 1869 }
e4404d6e 1870 fs_devices = fs_devices->seed;
2b82032c 1871 }
1f78160c 1872 cur_devices->seed = NULL;
1f78160c 1873 __btrfs_close_devices(cur_devices);
1f78160c 1874 free_fs_devices(cur_devices);
2b82032c
YZ
1875 }
1876
5af3e8cc
SB
1877 root->fs_info->num_tolerated_disk_barrier_failures =
1878 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1879
2b82032c
YZ
1880 /*
1881 * at this point, the device is zero sized. We want to
1882 * remove it from the devices list and zero out the old super
1883 */
aa1b8cd4 1884 if (clear_super && disk_super) {
4d90d28b
AJ
1885 u64 bytenr;
1886 int i;
1887
dfe25020
CM
1888 /* make sure this device isn't detected as part of
1889 * the FS anymore
1890 */
1891 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1892 set_buffer_dirty(bh);
1893 sync_dirty_buffer(bh);
4d90d28b
AJ
1894
1895 /* clear the mirror copies of super block on the disk
1896 * being removed, 0th copy is been taken care above and
1897 * the below would take of the rest
1898 */
1899 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1900 bytenr = btrfs_sb_offset(i);
1901 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1902 i_size_read(bdev->bd_inode))
1903 break;
1904
1905 brelse(bh);
1906 bh = __bread(bdev, bytenr / 4096,
1907 BTRFS_SUPER_INFO_SIZE);
1908 if (!bh)
1909 continue;
1910
1911 disk_super = (struct btrfs_super_block *)bh->b_data;
1912
1913 if (btrfs_super_bytenr(disk_super) != bytenr ||
1914 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1915 continue;
1916 }
1917 memset(&disk_super->magic, 0,
1918 sizeof(disk_super->magic));
1919 set_buffer_dirty(bh);
1920 sync_dirty_buffer(bh);
1921 }
dfe25020 1922 }
a061fc8d 1923
a061fc8d 1924 ret = 0;
a061fc8d 1925
5a1972bd
QW
1926 if (bdev) {
1927 /* Notify udev that device has changed */
3c911608 1928 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1929
5a1972bd
QW
1930 /* Update ctime/mtime for device path for libblkid */
1931 update_dev_time(device_path);
1932 }
1933
a061fc8d
CM
1934error_brelse:
1935 brelse(bh);
dfe25020 1936 if (bdev)
e525fd89 1937 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1938out:
1939 mutex_unlock(&uuid_mutex);
a061fc8d 1940 return ret;
9b3517e9
ID
1941error_undo:
1942 if (device->writeable) {
0c1daee0 1943 lock_chunks(root);
9b3517e9
ID
1944 list_add(&device->dev_alloc_list,
1945 &root->fs_info->fs_devices->alloc_list);
c3929c36 1946 device->fs_devices->rw_devices++;
0c1daee0 1947 unlock_chunks(root);
9b3517e9
ID
1948 }
1949 goto error_brelse;
a061fc8d
CM
1950}
1951
084b6e7c
QW
1952void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1953 struct btrfs_device *srcdev)
e93c89c1 1954{
d51908ce
AJ
1955 struct btrfs_fs_devices *fs_devices;
1956
e93c89c1 1957 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1958
25e8e911
AJ
1959 /*
1960 * in case of fs with no seed, srcdev->fs_devices will point
1961 * to fs_devices of fs_info. However when the dev being replaced is
1962 * a seed dev it will point to the seed's local fs_devices. In short
1963 * srcdev will have its correct fs_devices in both the cases.
1964 */
1965 fs_devices = srcdev->fs_devices;
d51908ce 1966
e93c89c1
SB
1967 list_del_rcu(&srcdev->dev_list);
1968 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 1969 fs_devices->num_devices--;
82372bc8 1970 if (srcdev->missing)
d51908ce 1971 fs_devices->missing_devices--;
e93c89c1 1972
82372bc8
MX
1973 if (srcdev->writeable) {
1974 fs_devices->rw_devices--;
1975 /* zero out the old super if it is writable */
12b1c263
AJ
1976 btrfs_scratch_superblocks(srcdev->bdev,
1977 rcu_str_deref(srcdev->name));
1357272f
ID
1978 }
1979
82372bc8 1980 if (srcdev->bdev)
d51908ce 1981 fs_devices->open_devices--;
084b6e7c
QW
1982}
1983
1984void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1985 struct btrfs_device *srcdev)
1986{
1987 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1
SB
1988
1989 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
1990
1991 /*
1992 * unless fs_devices is seed fs, num_devices shouldn't go
1993 * zero
1994 */
1995 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1996
1997 /* if this is no devs we rather delete the fs_devices */
1998 if (!fs_devices->num_devices) {
1999 struct btrfs_fs_devices *tmp_fs_devices;
2000
2001 tmp_fs_devices = fs_info->fs_devices;
2002 while (tmp_fs_devices) {
2003 if (tmp_fs_devices->seed == fs_devices) {
2004 tmp_fs_devices->seed = fs_devices->seed;
2005 break;
2006 }
2007 tmp_fs_devices = tmp_fs_devices->seed;
2008 }
2009 fs_devices->seed = NULL;
8bef8401
AJ
2010 __btrfs_close_devices(fs_devices);
2011 free_fs_devices(fs_devices);
94d5f0c2 2012 }
e93c89c1
SB
2013}
2014
2015void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2016 struct btrfs_device *tgtdev)
2017{
2018 struct btrfs_device *next_device;
2019
67a2c45e 2020 mutex_lock(&uuid_mutex);
e93c89c1
SB
2021 WARN_ON(!tgtdev);
2022 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2023
32576040 2024 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2025
e93c89c1 2026 if (tgtdev->bdev) {
12b1c263
AJ
2027 btrfs_scratch_superblocks(tgtdev->bdev,
2028 rcu_str_deref(tgtdev->name));
e93c89c1
SB
2029 fs_info->fs_devices->open_devices--;
2030 }
2031 fs_info->fs_devices->num_devices--;
e93c89c1
SB
2032
2033 next_device = list_entry(fs_info->fs_devices->devices.next,
2034 struct btrfs_device, dev_list);
2035 if (tgtdev->bdev == fs_info->sb->s_bdev)
2036 fs_info->sb->s_bdev = next_device->bdev;
2037 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
2038 fs_info->fs_devices->latest_bdev = next_device->bdev;
2039 list_del_rcu(&tgtdev->dev_list);
2040
2041 call_rcu(&tgtdev->rcu, free_device);
2042
2043 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2044 mutex_unlock(&uuid_mutex);
e93c89c1
SB
2045}
2046
48a3b636
ES
2047static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2048 struct btrfs_device **device)
7ba15b7d
SB
2049{
2050 int ret = 0;
2051 struct btrfs_super_block *disk_super;
2052 u64 devid;
2053 u8 *dev_uuid;
2054 struct block_device *bdev;
2055 struct buffer_head *bh;
2056
2057 *device = NULL;
2058 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2059 root->fs_info->bdev_holder, 0, &bdev, &bh);
2060 if (ret)
2061 return ret;
2062 disk_super = (struct btrfs_super_block *)bh->b_data;
2063 devid = btrfs_stack_device_id(&disk_super->dev_item);
2064 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 2065 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
2066 disk_super->fsid);
2067 brelse(bh);
2068 if (!*device)
2069 ret = -ENOENT;
2070 blkdev_put(bdev, FMODE_READ);
2071 return ret;
2072}
2073
2074int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2075 char *device_path,
2076 struct btrfs_device **device)
2077{
2078 *device = NULL;
2079 if (strcmp(device_path, "missing") == 0) {
2080 struct list_head *devices;
2081 struct btrfs_device *tmp;
2082
2083 devices = &root->fs_info->fs_devices->devices;
2084 /*
2085 * It is safe to read the devices since the volume_mutex
2086 * is held by the caller.
2087 */
2088 list_for_each_entry(tmp, devices, dev_list) {
2089 if (tmp->in_fs_metadata && !tmp->bdev) {
2090 *device = tmp;
2091 break;
2092 }
2093 }
2094
d74a6259
AJ
2095 if (!*device)
2096 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2097
2098 return 0;
2099 } else {
2100 return btrfs_find_device_by_path(root, device_path, device);
2101 }
2102}
2103
2b82032c
YZ
2104/*
2105 * does all the dirty work required for changing file system's UUID.
2106 */
125ccb0a 2107static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
2108{
2109 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2110 struct btrfs_fs_devices *old_devices;
e4404d6e 2111 struct btrfs_fs_devices *seed_devices;
6c41761f 2112 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
2113 struct btrfs_device *device;
2114 u64 super_flags;
2115
2116 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2117 if (!fs_devices->seeding)
2b82032c
YZ
2118 return -EINVAL;
2119
2208a378
ID
2120 seed_devices = __alloc_fs_devices();
2121 if (IS_ERR(seed_devices))
2122 return PTR_ERR(seed_devices);
2b82032c 2123
e4404d6e
YZ
2124 old_devices = clone_fs_devices(fs_devices);
2125 if (IS_ERR(old_devices)) {
2126 kfree(seed_devices);
2127 return PTR_ERR(old_devices);
2b82032c 2128 }
e4404d6e 2129
2b82032c
YZ
2130 list_add(&old_devices->list, &fs_uuids);
2131
e4404d6e
YZ
2132 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2133 seed_devices->opened = 1;
2134 INIT_LIST_HEAD(&seed_devices->devices);
2135 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2136 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
2137
2138 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2139 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2140 synchronize_rcu);
2196d6e8
MX
2141 list_for_each_entry(device, &seed_devices->devices, dev_list)
2142 device->fs_devices = seed_devices;
c9513edb 2143
2196d6e8 2144 lock_chunks(root);
e4404d6e 2145 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2196d6e8 2146 unlock_chunks(root);
e4404d6e 2147
2b82032c
YZ
2148 fs_devices->seeding = 0;
2149 fs_devices->num_devices = 0;
2150 fs_devices->open_devices = 0;
69611ac8 2151 fs_devices->missing_devices = 0;
69611ac8 2152 fs_devices->rotating = 0;
e4404d6e 2153 fs_devices->seed = seed_devices;
2b82032c
YZ
2154
2155 generate_random_uuid(fs_devices->fsid);
2156 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2157 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
2158 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2159
2b82032c
YZ
2160 super_flags = btrfs_super_flags(disk_super) &
2161 ~BTRFS_SUPER_FLAG_SEEDING;
2162 btrfs_set_super_flags(disk_super, super_flags);
2163
2164 return 0;
2165}
2166
2167/*
2168 * strore the expected generation for seed devices in device items.
2169 */
2170static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2171 struct btrfs_root *root)
2172{
2173 struct btrfs_path *path;
2174 struct extent_buffer *leaf;
2175 struct btrfs_dev_item *dev_item;
2176 struct btrfs_device *device;
2177 struct btrfs_key key;
2178 u8 fs_uuid[BTRFS_UUID_SIZE];
2179 u8 dev_uuid[BTRFS_UUID_SIZE];
2180 u64 devid;
2181 int ret;
2182
2183 path = btrfs_alloc_path();
2184 if (!path)
2185 return -ENOMEM;
2186
2187 root = root->fs_info->chunk_root;
2188 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2189 key.offset = 0;
2190 key.type = BTRFS_DEV_ITEM_KEY;
2191
2192 while (1) {
2193 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2194 if (ret < 0)
2195 goto error;
2196
2197 leaf = path->nodes[0];
2198next_slot:
2199 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2200 ret = btrfs_next_leaf(root, path);
2201 if (ret > 0)
2202 break;
2203 if (ret < 0)
2204 goto error;
2205 leaf = path->nodes[0];
2206 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2207 btrfs_release_path(path);
2b82032c
YZ
2208 continue;
2209 }
2210
2211 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2212 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2213 key.type != BTRFS_DEV_ITEM_KEY)
2214 break;
2215
2216 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2217 struct btrfs_dev_item);
2218 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2219 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2220 BTRFS_UUID_SIZE);
1473b24e 2221 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2222 BTRFS_UUID_SIZE);
aa1b8cd4
SB
2223 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2224 fs_uuid);
79787eaa 2225 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2226
2227 if (device->fs_devices->seeding) {
2228 btrfs_set_device_generation(leaf, dev_item,
2229 device->generation);
2230 btrfs_mark_buffer_dirty(leaf);
2231 }
2232
2233 path->slots[0]++;
2234 goto next_slot;
2235 }
2236 ret = 0;
2237error:
2238 btrfs_free_path(path);
2239 return ret;
2240}
2241
788f20eb
CM
2242int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2243{
d5e2003c 2244 struct request_queue *q;
788f20eb
CM
2245 struct btrfs_trans_handle *trans;
2246 struct btrfs_device *device;
2247 struct block_device *bdev;
788f20eb 2248 struct list_head *devices;
2b82032c 2249 struct super_block *sb = root->fs_info->sb;
606686ee 2250 struct rcu_string *name;
3c1dbdf5 2251 u64 tmp;
2b82032c 2252 int seeding_dev = 0;
788f20eb
CM
2253 int ret = 0;
2254
2b82032c 2255 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 2256 return -EROFS;
788f20eb 2257
a5d16333 2258 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 2259 root->fs_info->bdev_holder);
7f59203a
JB
2260 if (IS_ERR(bdev))
2261 return PTR_ERR(bdev);
a2135011 2262
2b82032c
YZ
2263 if (root->fs_info->fs_devices->seeding) {
2264 seeding_dev = 1;
2265 down_write(&sb->s_umount);
2266 mutex_lock(&uuid_mutex);
2267 }
2268
8c8bee1d 2269 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2270
788f20eb 2271 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2272
2273 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2274 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2275 if (device->bdev == bdev) {
2276 ret = -EEXIST;
d25628bd
LB
2277 mutex_unlock(
2278 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2279 goto error;
788f20eb
CM
2280 }
2281 }
d25628bd 2282 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2283
12bd2fc0
ID
2284 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2285 if (IS_ERR(device)) {
788f20eb 2286 /* we can safely leave the fs_devices entry around */
12bd2fc0 2287 ret = PTR_ERR(device);
2b82032c 2288 goto error;
788f20eb
CM
2289 }
2290
606686ee
JB
2291 name = rcu_string_strdup(device_path, GFP_NOFS);
2292 if (!name) {
788f20eb 2293 kfree(device);
2b82032c
YZ
2294 ret = -ENOMEM;
2295 goto error;
788f20eb 2296 }
606686ee 2297 rcu_assign_pointer(device->name, name);
2b82032c 2298
a22285a6 2299 trans = btrfs_start_transaction(root, 0);
98d5dc13 2300 if (IS_ERR(trans)) {
606686ee 2301 rcu_string_free(device->name);
98d5dc13
TI
2302 kfree(device);
2303 ret = PTR_ERR(trans);
2304 goto error;
2305 }
2306
d5e2003c
JB
2307 q = bdev_get_queue(bdev);
2308 if (blk_queue_discard(q))
2309 device->can_discard = 1;
2b82032c 2310 device->writeable = 1;
2b82032c 2311 device->generation = trans->transid;
788f20eb
CM
2312 device->io_width = root->sectorsize;
2313 device->io_align = root->sectorsize;
2314 device->sector_size = root->sectorsize;
2315 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2316 device->disk_total_bytes = device->total_bytes;
935e5cc9 2317 device->commit_total_bytes = device->total_bytes;
788f20eb
CM
2318 device->dev_root = root->fs_info->dev_root;
2319 device->bdev = bdev;
dfe25020 2320 device->in_fs_metadata = 1;
63a212ab 2321 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2322 device->mode = FMODE_EXCL;
27087f37 2323 device->dev_stats_valid = 1;
2b82032c 2324 set_blocksize(device->bdev, 4096);
788f20eb 2325
2b82032c
YZ
2326 if (seeding_dev) {
2327 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2328 ret = btrfs_prepare_sprout(root);
79787eaa 2329 BUG_ON(ret); /* -ENOMEM */
2b82032c 2330 }
788f20eb 2331
2b82032c 2332 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2333
e5e9a520 2334 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2196d6e8 2335 lock_chunks(root);
1f78160c 2336 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2337 list_add(&device->dev_alloc_list,
2338 &root->fs_info->fs_devices->alloc_list);
2339 root->fs_info->fs_devices->num_devices++;
2340 root->fs_info->fs_devices->open_devices++;
2341 root->fs_info->fs_devices->rw_devices++;
02db0844 2342 root->fs_info->fs_devices->total_devices++;
2b82032c 2343 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2344
2bf64758
JB
2345 spin_lock(&root->fs_info->free_chunk_lock);
2346 root->fs_info->free_chunk_space += device->total_bytes;
2347 spin_unlock(&root->fs_info->free_chunk_lock);
2348
c289811c
CM
2349 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2350 root->fs_info->fs_devices->rotating = 1;
2351
3c1dbdf5 2352 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
6c41761f 2353 btrfs_set_super_total_bytes(root->fs_info->super_copy,
3c1dbdf5 2354 tmp + device->total_bytes);
788f20eb 2355
3c1dbdf5 2356 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
6c41761f 2357 btrfs_set_super_num_devices(root->fs_info->super_copy,
3c1dbdf5 2358 tmp + 1);
0d39376a
AJ
2359
2360 /* add sysfs device entry */
e3bd6973 2361 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
0d39376a 2362
2196d6e8
MX
2363 /*
2364 * we've got more storage, clear any full flags on the space
2365 * infos
2366 */
2367 btrfs_clear_space_info_full(root->fs_info);
2368
2369 unlock_chunks(root);
e5e9a520 2370 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2371
2b82032c 2372 if (seeding_dev) {
2196d6e8 2373 lock_chunks(root);
2b82032c 2374 ret = init_first_rw_device(trans, root, device);
2196d6e8 2375 unlock_chunks(root);
005d6427
DS
2376 if (ret) {
2377 btrfs_abort_transaction(trans, root, ret);
79787eaa 2378 goto error_trans;
005d6427 2379 }
2196d6e8
MX
2380 }
2381
2382 ret = btrfs_add_device(trans, root, device);
2383 if (ret) {
2384 btrfs_abort_transaction(trans, root, ret);
2385 goto error_trans;
2386 }
2387
2388 if (seeding_dev) {
2389 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2390
2b82032c 2391 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2392 if (ret) {
2393 btrfs_abort_transaction(trans, root, ret);
79787eaa 2394 goto error_trans;
005d6427 2395 }
b2373f25
AJ
2396
2397 /* Sprouting would change fsid of the mounted root,
2398 * so rename the fsid on the sysfs
2399 */
2400 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2401 root->fs_info->fsid);
c1b7e474 2402 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2e7910d6 2403 fsid_buf))
f14d104d
DS
2404 btrfs_warn(root->fs_info,
2405 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2406 }
2407
5af3e8cc
SB
2408 root->fs_info->num_tolerated_disk_barrier_failures =
2409 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2410 ret = btrfs_commit_transaction(trans, root);
a2135011 2411
2b82032c
YZ
2412 if (seeding_dev) {
2413 mutex_unlock(&uuid_mutex);
2414 up_write(&sb->s_umount);
788f20eb 2415
79787eaa
JM
2416 if (ret) /* transaction commit */
2417 return ret;
2418
2b82032c 2419 ret = btrfs_relocate_sys_chunks(root);
79787eaa 2420 if (ret < 0)
a4553fef 2421 btrfs_std_error(root->fs_info, ret,
79787eaa
JM
2422 "Failed to relocate sys chunks after "
2423 "device initialization. This can be fixed "
2424 "using the \"btrfs balance\" command.");
671415b7
MX
2425 trans = btrfs_attach_transaction(root);
2426 if (IS_ERR(trans)) {
2427 if (PTR_ERR(trans) == -ENOENT)
2428 return 0;
2429 return PTR_ERR(trans);
2430 }
2431 ret = btrfs_commit_transaction(trans, root);
2b82032c 2432 }
c9e9f97b 2433
5a1972bd
QW
2434 /* Update ctime/mtime for libblkid */
2435 update_dev_time(device_path);
2b82032c 2436 return ret;
79787eaa
JM
2437
2438error_trans:
79787eaa 2439 btrfs_end_transaction(trans, root);
606686ee 2440 rcu_string_free(device->name);
32576040 2441 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
79787eaa 2442 kfree(device);
2b82032c 2443error:
e525fd89 2444 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2445 if (seeding_dev) {
2446 mutex_unlock(&uuid_mutex);
2447 up_write(&sb->s_umount);
2448 }
c9e9f97b 2449 return ret;
788f20eb
CM
2450}
2451
e93c89c1 2452int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
1c43366d 2453 struct btrfs_device *srcdev,
e93c89c1
SB
2454 struct btrfs_device **device_out)
2455{
2456 struct request_queue *q;
2457 struct btrfs_device *device;
2458 struct block_device *bdev;
2459 struct btrfs_fs_info *fs_info = root->fs_info;
2460 struct list_head *devices;
2461 struct rcu_string *name;
12bd2fc0 2462 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2463 int ret = 0;
2464
2465 *device_out = NULL;
1c43366d
MX
2466 if (fs_info->fs_devices->seeding) {
2467 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2468 return -EINVAL;
1c43366d 2469 }
e93c89c1
SB
2470
2471 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2472 fs_info->bdev_holder);
1c43366d
MX
2473 if (IS_ERR(bdev)) {
2474 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2475 return PTR_ERR(bdev);
1c43366d 2476 }
e93c89c1
SB
2477
2478 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2479
2480 devices = &fs_info->fs_devices->devices;
2481 list_for_each_entry(device, devices, dev_list) {
2482 if (device->bdev == bdev) {
1c43366d 2483 btrfs_err(fs_info, "target device is in the filesystem!");
e93c89c1
SB
2484 ret = -EEXIST;
2485 goto error;
2486 }
2487 }
2488
1c43366d 2489
7cc8e58d
MX
2490 if (i_size_read(bdev->bd_inode) <
2491 btrfs_device_get_total_bytes(srcdev)) {
1c43366d
MX
2492 btrfs_err(fs_info, "target device is smaller than source device!");
2493 ret = -EINVAL;
2494 goto error;
2495 }
2496
2497
12bd2fc0
ID
2498 device = btrfs_alloc_device(NULL, &devid, NULL);
2499 if (IS_ERR(device)) {
2500 ret = PTR_ERR(device);
e93c89c1
SB
2501 goto error;
2502 }
2503
2504 name = rcu_string_strdup(device_path, GFP_NOFS);
2505 if (!name) {
2506 kfree(device);
2507 ret = -ENOMEM;
2508 goto error;
2509 }
2510 rcu_assign_pointer(device->name, name);
2511
2512 q = bdev_get_queue(bdev);
2513 if (blk_queue_discard(q))
2514 device->can_discard = 1;
2515 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2516 device->writeable = 1;
e93c89c1
SB
2517 device->generation = 0;
2518 device->io_width = root->sectorsize;
2519 device->io_align = root->sectorsize;
2520 device->sector_size = root->sectorsize;
7cc8e58d
MX
2521 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2522 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2523 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2524 ASSERT(list_empty(&srcdev->resized_list));
2525 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2526 device->commit_bytes_used = device->bytes_used;
e93c89c1
SB
2527 device->dev_root = fs_info->dev_root;
2528 device->bdev = bdev;
2529 device->in_fs_metadata = 1;
2530 device->is_tgtdev_for_dev_replace = 1;
2531 device->mode = FMODE_EXCL;
27087f37 2532 device->dev_stats_valid = 1;
e93c89c1
SB
2533 set_blocksize(device->bdev, 4096);
2534 device->fs_devices = fs_info->fs_devices;
2535 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2536 fs_info->fs_devices->num_devices++;
2537 fs_info->fs_devices->open_devices++;
e93c89c1
SB
2538 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2539
2540 *device_out = device;
2541 return ret;
2542
2543error:
2544 blkdev_put(bdev, FMODE_EXCL);
2545 return ret;
2546}
2547
2548void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2549 struct btrfs_device *tgtdev)
2550{
2551 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2552 tgtdev->io_width = fs_info->dev_root->sectorsize;
2553 tgtdev->io_align = fs_info->dev_root->sectorsize;
2554 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2555 tgtdev->dev_root = fs_info->dev_root;
2556 tgtdev->in_fs_metadata = 1;
2557}
2558
d397712b
CM
2559static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2560 struct btrfs_device *device)
0b86a832
CM
2561{
2562 int ret;
2563 struct btrfs_path *path;
2564 struct btrfs_root *root;
2565 struct btrfs_dev_item *dev_item;
2566 struct extent_buffer *leaf;
2567 struct btrfs_key key;
2568
2569 root = device->dev_root->fs_info->chunk_root;
2570
2571 path = btrfs_alloc_path();
2572 if (!path)
2573 return -ENOMEM;
2574
2575 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2576 key.type = BTRFS_DEV_ITEM_KEY;
2577 key.offset = device->devid;
2578
2579 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2580 if (ret < 0)
2581 goto out;
2582
2583 if (ret > 0) {
2584 ret = -ENOENT;
2585 goto out;
2586 }
2587
2588 leaf = path->nodes[0];
2589 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2590
2591 btrfs_set_device_id(leaf, dev_item, device->devid);
2592 btrfs_set_device_type(leaf, dev_item, device->type);
2593 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2594 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2595 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2596 btrfs_set_device_total_bytes(leaf, dev_item,
2597 btrfs_device_get_disk_total_bytes(device));
2598 btrfs_set_device_bytes_used(leaf, dev_item,
2599 btrfs_device_get_bytes_used(device));
0b86a832
CM
2600 btrfs_mark_buffer_dirty(leaf);
2601
2602out:
2603 btrfs_free_path(path);
2604 return ret;
2605}
2606
2196d6e8 2607int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2608 struct btrfs_device *device, u64 new_size)
2609{
2610 struct btrfs_super_block *super_copy =
6c41761f 2611 device->dev_root->fs_info->super_copy;
935e5cc9 2612 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2613 u64 old_total;
2614 u64 diff;
8f18cf13 2615
2b82032c
YZ
2616 if (!device->writeable)
2617 return -EACCES;
2196d6e8
MX
2618
2619 lock_chunks(device->dev_root);
2620 old_total = btrfs_super_total_bytes(super_copy);
2621 diff = new_size - device->total_bytes;
2622
63a212ab 2623 if (new_size <= device->total_bytes ||
2196d6e8
MX
2624 device->is_tgtdev_for_dev_replace) {
2625 unlock_chunks(device->dev_root);
2b82032c 2626 return -EINVAL;
2196d6e8 2627 }
2b82032c 2628
935e5cc9 2629 fs_devices = device->dev_root->fs_info->fs_devices;
2b82032c 2630
8f18cf13 2631 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2632 device->fs_devices->total_rw_bytes += diff;
2633
7cc8e58d
MX
2634 btrfs_device_set_total_bytes(device, new_size);
2635 btrfs_device_set_disk_total_bytes(device, new_size);
4184ea7f 2636 btrfs_clear_space_info_full(device->dev_root->fs_info);
935e5cc9
MX
2637 if (list_empty(&device->resized_list))
2638 list_add_tail(&device->resized_list,
2639 &fs_devices->resized_devices);
2196d6e8 2640 unlock_chunks(device->dev_root);
4184ea7f 2641
8f18cf13
CM
2642 return btrfs_update_device(trans, device);
2643}
2644
2645static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
a688a04a 2646 struct btrfs_root *root, u64 chunk_objectid,
8f18cf13
CM
2647 u64 chunk_offset)
2648{
2649 int ret;
2650 struct btrfs_path *path;
2651 struct btrfs_key key;
2652
2653 root = root->fs_info->chunk_root;
2654 path = btrfs_alloc_path();
2655 if (!path)
2656 return -ENOMEM;
2657
2658 key.objectid = chunk_objectid;
2659 key.offset = chunk_offset;
2660 key.type = BTRFS_CHUNK_ITEM_KEY;
2661
2662 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2663 if (ret < 0)
2664 goto out;
2665 else if (ret > 0) { /* Logic error or corruption */
a4553fef 2666 btrfs_std_error(root->fs_info, -ENOENT,
79787eaa
JM
2667 "Failed lookup while freeing chunk.");
2668 ret = -ENOENT;
2669 goto out;
2670 }
8f18cf13
CM
2671
2672 ret = btrfs_del_item(trans, root, path);
79787eaa 2673 if (ret < 0)
a4553fef 2674 btrfs_std_error(root->fs_info, ret,
79787eaa
JM
2675 "Failed to delete chunk item.");
2676out:
8f18cf13 2677 btrfs_free_path(path);
65a246c5 2678 return ret;
8f18cf13
CM
2679}
2680
b2950863 2681static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2682 chunk_offset)
2683{
6c41761f 2684 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2685 struct btrfs_disk_key *disk_key;
2686 struct btrfs_chunk *chunk;
2687 u8 *ptr;
2688 int ret = 0;
2689 u32 num_stripes;
2690 u32 array_size;
2691 u32 len = 0;
2692 u32 cur;
2693 struct btrfs_key key;
2694
2196d6e8 2695 lock_chunks(root);
8f18cf13
CM
2696 array_size = btrfs_super_sys_array_size(super_copy);
2697
2698 ptr = super_copy->sys_chunk_array;
2699 cur = 0;
2700
2701 while (cur < array_size) {
2702 disk_key = (struct btrfs_disk_key *)ptr;
2703 btrfs_disk_key_to_cpu(&key, disk_key);
2704
2705 len = sizeof(*disk_key);
2706
2707 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2708 chunk = (struct btrfs_chunk *)(ptr + len);
2709 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2710 len += btrfs_chunk_item_size(num_stripes);
2711 } else {
2712 ret = -EIO;
2713 break;
2714 }
2715 if (key.objectid == chunk_objectid &&
2716 key.offset == chunk_offset) {
2717 memmove(ptr, ptr + len, array_size - (cur + len));
2718 array_size -= len;
2719 btrfs_set_super_sys_array_size(super_copy, array_size);
2720 } else {
2721 ptr += len;
2722 cur += len;
2723 }
2724 }
2196d6e8 2725 unlock_chunks(root);
8f18cf13
CM
2726 return ret;
2727}
2728
47ab2a6c
JB
2729int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2730 struct btrfs_root *root, u64 chunk_offset)
8f18cf13
CM
2731{
2732 struct extent_map_tree *em_tree;
8f18cf13 2733 struct extent_map *em;
47ab2a6c 2734 struct btrfs_root *extent_root = root->fs_info->extent_root;
8f18cf13 2735 struct map_lookup *map;
2196d6e8 2736 u64 dev_extent_len = 0;
47ab2a6c 2737 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2738 int i, ret = 0;
8f18cf13 2739
47ab2a6c 2740 /* Just in case */
8f18cf13 2741 root = root->fs_info->chunk_root;
8f18cf13
CM
2742 em_tree = &root->fs_info->mapping_tree.map_tree;
2743
890871be 2744 read_lock(&em_tree->lock);
8f18cf13 2745 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2746 read_unlock(&em_tree->lock);
8f18cf13 2747
47ab2a6c
JB
2748 if (!em || em->start > chunk_offset ||
2749 em->start + em->len < chunk_offset) {
2750 /*
2751 * This is a logic error, but we don't want to just rely on the
2752 * user having built with ASSERT enabled, so if ASSERT doens't
2753 * do anything we still error out.
2754 */
2755 ASSERT(0);
2756 if (em)
2757 free_extent_map(em);
2758 return -EINVAL;
2759 }
8f18cf13 2760 map = (struct map_lookup *)em->bdev;
39c2d7fa 2761 lock_chunks(root->fs_info->chunk_root);
4617ea3a 2762 check_system_chunk(trans, extent_root, map->type);
39c2d7fa 2763 unlock_chunks(root->fs_info->chunk_root);
8f18cf13
CM
2764
2765 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2766 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2767 ret = btrfs_free_dev_extent(trans, device,
2768 map->stripes[i].physical,
2769 &dev_extent_len);
47ab2a6c
JB
2770 if (ret) {
2771 btrfs_abort_transaction(trans, root, ret);
2772 goto out;
2773 }
a061fc8d 2774
2196d6e8
MX
2775 if (device->bytes_used > 0) {
2776 lock_chunks(root);
2777 btrfs_device_set_bytes_used(device,
2778 device->bytes_used - dev_extent_len);
2779 spin_lock(&root->fs_info->free_chunk_lock);
2780 root->fs_info->free_chunk_space += dev_extent_len;
2781 spin_unlock(&root->fs_info->free_chunk_lock);
2782 btrfs_clear_space_info_full(root->fs_info);
2783 unlock_chunks(root);
2784 }
a061fc8d 2785
dfe25020
CM
2786 if (map->stripes[i].dev) {
2787 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c
JB
2788 if (ret) {
2789 btrfs_abort_transaction(trans, root, ret);
2790 goto out;
2791 }
dfe25020 2792 }
8f18cf13 2793 }
a688a04a 2794 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2795 if (ret) {
2796 btrfs_abort_transaction(trans, root, ret);
2797 goto out;
2798 }
8f18cf13 2799
1abe9b8a 2800 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2801
8f18cf13
CM
2802 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2803 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2804 if (ret) {
2805 btrfs_abort_transaction(trans, root, ret);
2806 goto out;
2807 }
8f18cf13
CM
2808 }
2809
04216820 2810 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
47ab2a6c
JB
2811 if (ret) {
2812 btrfs_abort_transaction(trans, extent_root, ret);
2813 goto out;
2814 }
2b82032c 2815
47ab2a6c 2816out:
2b82032c
YZ
2817 /* once for us */
2818 free_extent_map(em);
47ab2a6c
JB
2819 return ret;
2820}
2b82032c 2821
dc2ee4e2 2822static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
47ab2a6c
JB
2823{
2824 struct btrfs_root *extent_root;
2825 struct btrfs_trans_handle *trans;
2826 int ret;
2b82032c 2827
47ab2a6c
JB
2828 root = root->fs_info->chunk_root;
2829 extent_root = root->fs_info->extent_root;
2830
67c5e7d4
FM
2831 /*
2832 * Prevent races with automatic removal of unused block groups.
2833 * After we relocate and before we remove the chunk with offset
2834 * chunk_offset, automatic removal of the block group can kick in,
2835 * resulting in a failure when calling btrfs_remove_chunk() below.
2836 *
2837 * Make sure to acquire this mutex before doing a tree search (dev
2838 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2839 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2840 * we release the path used to search the chunk/dev tree and before
2841 * the current task acquires this mutex and calls us.
2842 */
2843 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2844
47ab2a6c
JB
2845 ret = btrfs_can_relocate(extent_root, chunk_offset);
2846 if (ret)
2847 return -ENOSPC;
2848
2849 /* step one, relocate all the extents inside this chunk */
55e3a601 2850 btrfs_scrub_pause(root);
47ab2a6c 2851 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
55e3a601 2852 btrfs_scrub_continue(root);
47ab2a6c
JB
2853 if (ret)
2854 return ret;
2855
2856 trans = btrfs_start_transaction(root, 0);
2857 if (IS_ERR(trans)) {
2858 ret = PTR_ERR(trans);
a4553fef 2859 btrfs_std_error(root->fs_info, ret, NULL);
47ab2a6c
JB
2860 return ret;
2861 }
2862
2863 /*
2864 * step two, delete the device extents and the
2865 * chunk tree entries
2866 */
2867 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2b82032c 2868 btrfs_end_transaction(trans, root);
47ab2a6c 2869 return ret;
2b82032c
YZ
2870}
2871
2872static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2873{
2874 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2875 struct btrfs_path *path;
2876 struct extent_buffer *leaf;
2877 struct btrfs_chunk *chunk;
2878 struct btrfs_key key;
2879 struct btrfs_key found_key;
2b82032c 2880 u64 chunk_type;
ba1bf481
JB
2881 bool retried = false;
2882 int failed = 0;
2b82032c
YZ
2883 int ret;
2884
2885 path = btrfs_alloc_path();
2886 if (!path)
2887 return -ENOMEM;
2888
ba1bf481 2889again:
2b82032c
YZ
2890 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2891 key.offset = (u64)-1;
2892 key.type = BTRFS_CHUNK_ITEM_KEY;
2893
2894 while (1) {
67c5e7d4 2895 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2896 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
2897 if (ret < 0) {
2898 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2899 goto error;
67c5e7d4 2900 }
79787eaa 2901 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2902
2903 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2904 key.type);
67c5e7d4
FM
2905 if (ret)
2906 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2907 if (ret < 0)
2908 goto error;
2909 if (ret > 0)
2910 break;
1a40e23b 2911
2b82032c
YZ
2912 leaf = path->nodes[0];
2913 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2914
2b82032c
YZ
2915 chunk = btrfs_item_ptr(leaf, path->slots[0],
2916 struct btrfs_chunk);
2917 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2918 btrfs_release_path(path);
8f18cf13 2919
2b82032c 2920 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
a688a04a 2921 ret = btrfs_relocate_chunk(chunk_root,
2b82032c 2922 found_key.offset);
ba1bf481
JB
2923 if (ret == -ENOSPC)
2924 failed++;
14586651
HS
2925 else
2926 BUG_ON(ret);
2b82032c 2927 }
67c5e7d4 2928 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 2929
2b82032c
YZ
2930 if (found_key.offset == 0)
2931 break;
2932 key.offset = found_key.offset - 1;
2933 }
2934 ret = 0;
ba1bf481
JB
2935 if (failed && !retried) {
2936 failed = 0;
2937 retried = true;
2938 goto again;
fae7f21c 2939 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2940 ret = -ENOSPC;
2941 }
2b82032c
YZ
2942error:
2943 btrfs_free_path(path);
2944 return ret;
8f18cf13
CM
2945}
2946
0940ebf6
ID
2947static int insert_balance_item(struct btrfs_root *root,
2948 struct btrfs_balance_control *bctl)
2949{
2950 struct btrfs_trans_handle *trans;
2951 struct btrfs_balance_item *item;
2952 struct btrfs_disk_balance_args disk_bargs;
2953 struct btrfs_path *path;
2954 struct extent_buffer *leaf;
2955 struct btrfs_key key;
2956 int ret, err;
2957
2958 path = btrfs_alloc_path();
2959 if (!path)
2960 return -ENOMEM;
2961
2962 trans = btrfs_start_transaction(root, 0);
2963 if (IS_ERR(trans)) {
2964 btrfs_free_path(path);
2965 return PTR_ERR(trans);
2966 }
2967
2968 key.objectid = BTRFS_BALANCE_OBJECTID;
2969 key.type = BTRFS_BALANCE_ITEM_KEY;
2970 key.offset = 0;
2971
2972 ret = btrfs_insert_empty_item(trans, root, path, &key,
2973 sizeof(*item));
2974 if (ret)
2975 goto out;
2976
2977 leaf = path->nodes[0];
2978 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2979
2980 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2981
2982 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2983 btrfs_set_balance_data(leaf, item, &disk_bargs);
2984 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2985 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2986 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2987 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2988
2989 btrfs_set_balance_flags(leaf, item, bctl->flags);
2990
2991 btrfs_mark_buffer_dirty(leaf);
2992out:
2993 btrfs_free_path(path);
2994 err = btrfs_commit_transaction(trans, root);
2995 if (err && !ret)
2996 ret = err;
2997 return ret;
2998}
2999
3000static int del_balance_item(struct btrfs_root *root)
3001{
3002 struct btrfs_trans_handle *trans;
3003 struct btrfs_path *path;
3004 struct btrfs_key key;
3005 int ret, err;
3006
3007 path = btrfs_alloc_path();
3008 if (!path)
3009 return -ENOMEM;
3010
3011 trans = btrfs_start_transaction(root, 0);
3012 if (IS_ERR(trans)) {
3013 btrfs_free_path(path);
3014 return PTR_ERR(trans);
3015 }
3016
3017 key.objectid = BTRFS_BALANCE_OBJECTID;
3018 key.type = BTRFS_BALANCE_ITEM_KEY;
3019 key.offset = 0;
3020
3021 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3022 if (ret < 0)
3023 goto out;
3024 if (ret > 0) {
3025 ret = -ENOENT;
3026 goto out;
3027 }
3028
3029 ret = btrfs_del_item(trans, root, path);
3030out:
3031 btrfs_free_path(path);
3032 err = btrfs_commit_transaction(trans, root);
3033 if (err && !ret)
3034 ret = err;
3035 return ret;
3036}
3037
59641015
ID
3038/*
3039 * This is a heuristic used to reduce the number of chunks balanced on
3040 * resume after balance was interrupted.
3041 */
3042static void update_balance_args(struct btrfs_balance_control *bctl)
3043{
3044 /*
3045 * Turn on soft mode for chunk types that were being converted.
3046 */
3047 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3048 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3049 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3050 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3051 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3052 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3053
3054 /*
3055 * Turn on usage filter if is not already used. The idea is
3056 * that chunks that we have already balanced should be
3057 * reasonably full. Don't do it for chunks that are being
3058 * converted - that will keep us from relocating unconverted
3059 * (albeit full) chunks.
3060 */
3061 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3062 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3063 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3064 bctl->data.usage = 90;
3065 }
3066 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3067 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3068 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3069 bctl->sys.usage = 90;
3070 }
3071 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3072 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3073 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3074 bctl->meta.usage = 90;
3075 }
3076}
3077
c9e9f97b
ID
3078/*
3079 * Should be called with both balance and volume mutexes held to
3080 * serialize other volume operations (add_dev/rm_dev/resize) with
3081 * restriper. Same goes for unset_balance_control.
3082 */
3083static void set_balance_control(struct btrfs_balance_control *bctl)
3084{
3085 struct btrfs_fs_info *fs_info = bctl->fs_info;
3086
3087 BUG_ON(fs_info->balance_ctl);
3088
3089 spin_lock(&fs_info->balance_lock);
3090 fs_info->balance_ctl = bctl;
3091 spin_unlock(&fs_info->balance_lock);
3092}
3093
3094static void unset_balance_control(struct btrfs_fs_info *fs_info)
3095{
3096 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3097
3098 BUG_ON(!fs_info->balance_ctl);
3099
3100 spin_lock(&fs_info->balance_lock);
3101 fs_info->balance_ctl = NULL;
3102 spin_unlock(&fs_info->balance_lock);
3103
3104 kfree(bctl);
3105}
3106
ed25e9b2
ID
3107/*
3108 * Balance filters. Return 1 if chunk should be filtered out
3109 * (should not be balanced).
3110 */
899c81ea 3111static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3112 struct btrfs_balance_args *bargs)
3113{
899c81ea
ID
3114 chunk_type = chunk_to_extended(chunk_type) &
3115 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3116
899c81ea 3117 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3118 return 0;
3119
3120 return 1;
3121}
3122
5ce5b3c0
ID
3123static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3124 struct btrfs_balance_args *bargs)
3125{
3126 struct btrfs_block_group_cache *cache;
3127 u64 chunk_used, user_thresh;
3128 int ret = 1;
3129
3130 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3131 chunk_used = btrfs_block_group_used(&cache->item);
3132
a105bb88 3133 if (bargs->usage == 0)
3e39cea6 3134 user_thresh = 1;
a105bb88
ID
3135 else if (bargs->usage > 100)
3136 user_thresh = cache->key.offset;
3137 else
3138 user_thresh = div_factor_fine(cache->key.offset,
3139 bargs->usage);
3140
5ce5b3c0
ID
3141 if (chunk_used < user_thresh)
3142 ret = 0;
3143
3144 btrfs_put_block_group(cache);
3145 return ret;
3146}
3147
409d404b
ID
3148static int chunk_devid_filter(struct extent_buffer *leaf,
3149 struct btrfs_chunk *chunk,
3150 struct btrfs_balance_args *bargs)
3151{
3152 struct btrfs_stripe *stripe;
3153 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3154 int i;
3155
3156 for (i = 0; i < num_stripes; i++) {
3157 stripe = btrfs_stripe_nr(chunk, i);
3158 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3159 return 0;
3160 }
3161
3162 return 1;
3163}
3164
94e60d5a
ID
3165/* [pstart, pend) */
3166static int chunk_drange_filter(struct extent_buffer *leaf,
3167 struct btrfs_chunk *chunk,
3168 u64 chunk_offset,
3169 struct btrfs_balance_args *bargs)
3170{
3171 struct btrfs_stripe *stripe;
3172 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3173 u64 stripe_offset;
3174 u64 stripe_length;
3175 int factor;
3176 int i;
3177
3178 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3179 return 0;
3180
3181 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3182 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3183 factor = num_stripes / 2;
3184 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3185 factor = num_stripes - 1;
3186 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3187 factor = num_stripes - 2;
3188 } else {
3189 factor = num_stripes;
3190 }
94e60d5a
ID
3191
3192 for (i = 0; i < num_stripes; i++) {
3193 stripe = btrfs_stripe_nr(chunk, i);
3194 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3195 continue;
3196
3197 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3198 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3199 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3200
3201 if (stripe_offset < bargs->pend &&
3202 stripe_offset + stripe_length > bargs->pstart)
3203 return 0;
3204 }
3205
3206 return 1;
3207}
3208
ea67176a
ID
3209/* [vstart, vend) */
3210static int chunk_vrange_filter(struct extent_buffer *leaf,
3211 struct btrfs_chunk *chunk,
3212 u64 chunk_offset,
3213 struct btrfs_balance_args *bargs)
3214{
3215 if (chunk_offset < bargs->vend &&
3216 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3217 /* at least part of the chunk is inside this vrange */
3218 return 0;
3219
3220 return 1;
3221}
3222
899c81ea 3223static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3224 struct btrfs_balance_args *bargs)
3225{
3226 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3227 return 0;
3228
899c81ea
ID
3229 chunk_type = chunk_to_extended(chunk_type) &
3230 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3231
899c81ea 3232 if (bargs->target == chunk_type)
cfa4c961
ID
3233 return 1;
3234
3235 return 0;
3236}
3237
f43ffb60
ID
3238static int should_balance_chunk(struct btrfs_root *root,
3239 struct extent_buffer *leaf,
3240 struct btrfs_chunk *chunk, u64 chunk_offset)
3241{
3242 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3243 struct btrfs_balance_args *bargs = NULL;
3244 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3245
3246 /* type filter */
3247 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3248 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3249 return 0;
3250 }
3251
3252 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3253 bargs = &bctl->data;
3254 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3255 bargs = &bctl->sys;
3256 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3257 bargs = &bctl->meta;
3258
ed25e9b2
ID
3259 /* profiles filter */
3260 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3261 chunk_profiles_filter(chunk_type, bargs)) {
3262 return 0;
5ce5b3c0
ID
3263 }
3264
3265 /* usage filter */
3266 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3267 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3268 return 0;
409d404b
ID
3269 }
3270
3271 /* devid filter */
3272 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3273 chunk_devid_filter(leaf, chunk, bargs)) {
3274 return 0;
94e60d5a
ID
3275 }
3276
3277 /* drange filter, makes sense only with devid filter */
3278 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3279 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3280 return 0;
ea67176a
ID
3281 }
3282
3283 /* vrange filter */
3284 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3285 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3286 return 0;
ed25e9b2
ID
3287 }
3288
cfa4c961
ID
3289 /* soft profile changing mode */
3290 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3291 chunk_soft_convert_filter(chunk_type, bargs)) {
3292 return 0;
3293 }
3294
7d824b6f
DS
3295 /*
3296 * limited by count, must be the last filter
3297 */
3298 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3299 if (bargs->limit == 0)
3300 return 0;
3301 else
3302 bargs->limit--;
3303 }
3304
f43ffb60
ID
3305 return 1;
3306}
3307
c9e9f97b 3308static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3309{
19a39dce 3310 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3311 struct btrfs_root *chunk_root = fs_info->chunk_root;
3312 struct btrfs_root *dev_root = fs_info->dev_root;
3313 struct list_head *devices;
ec44a35c
CM
3314 struct btrfs_device *device;
3315 u64 old_size;
3316 u64 size_to_free;
f43ffb60 3317 struct btrfs_chunk *chunk;
ec44a35c
CM
3318 struct btrfs_path *path;
3319 struct btrfs_key key;
ec44a35c 3320 struct btrfs_key found_key;
c9e9f97b 3321 struct btrfs_trans_handle *trans;
f43ffb60
ID
3322 struct extent_buffer *leaf;
3323 int slot;
c9e9f97b
ID
3324 int ret;
3325 int enospc_errors = 0;
19a39dce 3326 bool counting = true;
7d824b6f
DS
3327 u64 limit_data = bctl->data.limit;
3328 u64 limit_meta = bctl->meta.limit;
3329 u64 limit_sys = bctl->sys.limit;
ec44a35c 3330
ec44a35c 3331 /* step one make some room on all the devices */
c9e9f97b 3332 devices = &fs_info->fs_devices->devices;
c6e30871 3333 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3334 old_size = btrfs_device_get_total_bytes(device);
ec44a35c
CM
3335 size_to_free = div_factor(old_size, 1);
3336 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 3337 if (!device->writeable ||
7cc8e58d
MX
3338 btrfs_device_get_total_bytes(device) -
3339 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3340 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3341 continue;
3342
3343 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3344 if (ret == -ENOSPC)
3345 break;
ec44a35c
CM
3346 BUG_ON(ret);
3347
a22285a6 3348 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 3349 BUG_ON(IS_ERR(trans));
ec44a35c
CM
3350
3351 ret = btrfs_grow_device(trans, device, old_size);
3352 BUG_ON(ret);
3353
3354 btrfs_end_transaction(trans, dev_root);
3355 }
3356
3357 /* step two, relocate all the chunks */
3358 path = btrfs_alloc_path();
17e9f796
MF
3359 if (!path) {
3360 ret = -ENOMEM;
3361 goto error;
3362 }
19a39dce
ID
3363
3364 /* zero out stat counters */
3365 spin_lock(&fs_info->balance_lock);
3366 memset(&bctl->stat, 0, sizeof(bctl->stat));
3367 spin_unlock(&fs_info->balance_lock);
3368again:
7d824b6f
DS
3369 if (!counting) {
3370 bctl->data.limit = limit_data;
3371 bctl->meta.limit = limit_meta;
3372 bctl->sys.limit = limit_sys;
3373 }
ec44a35c
CM
3374 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3375 key.offset = (u64)-1;
3376 key.type = BTRFS_CHUNK_ITEM_KEY;
3377
d397712b 3378 while (1) {
19a39dce 3379 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3380 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3381 ret = -ECANCELED;
3382 goto error;
3383 }
3384
67c5e7d4 3385 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3386 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3387 if (ret < 0) {
3388 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3389 goto error;
67c5e7d4 3390 }
ec44a35c
CM
3391
3392 /*
3393 * this shouldn't happen, it means the last relocate
3394 * failed
3395 */
3396 if (ret == 0)
c9e9f97b 3397 BUG(); /* FIXME break ? */
ec44a35c
CM
3398
3399 ret = btrfs_previous_item(chunk_root, path, 0,
3400 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3401 if (ret) {
67c5e7d4 3402 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3403 ret = 0;
ec44a35c 3404 break;
c9e9f97b 3405 }
7d9eb12c 3406
f43ffb60
ID
3407 leaf = path->nodes[0];
3408 slot = path->slots[0];
3409 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3410
67c5e7d4
FM
3411 if (found_key.objectid != key.objectid) {
3412 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3413 break;
67c5e7d4 3414 }
7d9eb12c 3415
f43ffb60
ID
3416 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3417
19a39dce
ID
3418 if (!counting) {
3419 spin_lock(&fs_info->balance_lock);
3420 bctl->stat.considered++;
3421 spin_unlock(&fs_info->balance_lock);
3422 }
3423
f43ffb60
ID
3424 ret = should_balance_chunk(chunk_root, leaf, chunk,
3425 found_key.offset);
b3b4aa74 3426 btrfs_release_path(path);
67c5e7d4
FM
3427 if (!ret) {
3428 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3429 goto loop;
67c5e7d4 3430 }
f43ffb60 3431
19a39dce 3432 if (counting) {
67c5e7d4 3433 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3434 spin_lock(&fs_info->balance_lock);
3435 bctl->stat.expected++;
3436 spin_unlock(&fs_info->balance_lock);
3437 goto loop;
3438 }
3439
ec44a35c 3440 ret = btrfs_relocate_chunk(chunk_root,
ec44a35c 3441 found_key.offset);
67c5e7d4 3442 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3443 if (ret && ret != -ENOSPC)
3444 goto error;
19a39dce 3445 if (ret == -ENOSPC) {
c9e9f97b 3446 enospc_errors++;
19a39dce
ID
3447 } else {
3448 spin_lock(&fs_info->balance_lock);
3449 bctl->stat.completed++;
3450 spin_unlock(&fs_info->balance_lock);
3451 }
f43ffb60 3452loop:
795a3321
ID
3453 if (found_key.offset == 0)
3454 break;
ba1bf481 3455 key.offset = found_key.offset - 1;
ec44a35c 3456 }
c9e9f97b 3457
19a39dce
ID
3458 if (counting) {
3459 btrfs_release_path(path);
3460 counting = false;
3461 goto again;
3462 }
ec44a35c
CM
3463error:
3464 btrfs_free_path(path);
c9e9f97b 3465 if (enospc_errors) {
efe120a0 3466 btrfs_info(fs_info, "%d enospc errors during balance",
c9e9f97b
ID
3467 enospc_errors);
3468 if (!ret)
3469 ret = -ENOSPC;
3470 }
3471
ec44a35c
CM
3472 return ret;
3473}
3474
0c460c0d
ID
3475/**
3476 * alloc_profile_is_valid - see if a given profile is valid and reduced
3477 * @flags: profile to validate
3478 * @extended: if true @flags is treated as an extended profile
3479 */
3480static int alloc_profile_is_valid(u64 flags, int extended)
3481{
3482 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3483 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3484
3485 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3486
3487 /* 1) check that all other bits are zeroed */
3488 if (flags & ~mask)
3489 return 0;
3490
3491 /* 2) see if profile is reduced */
3492 if (flags == 0)
3493 return !extended; /* "0" is valid for usual profiles */
3494
3495 /* true if exactly one bit set */
3496 return (flags & (flags - 1)) == 0;
3497}
3498
837d5b6e
ID
3499static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3500{
a7e99c69
ID
3501 /* cancel requested || normal exit path */
3502 return atomic_read(&fs_info->balance_cancel_req) ||
3503 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3504 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3505}
3506
c9e9f97b
ID
3507static void __cancel_balance(struct btrfs_fs_info *fs_info)
3508{
0940ebf6
ID
3509 int ret;
3510
c9e9f97b 3511 unset_balance_control(fs_info);
0940ebf6 3512 ret = del_balance_item(fs_info->tree_root);
0f788c58 3513 if (ret)
a4553fef 3514 btrfs_std_error(fs_info, ret, NULL);
ed0fb78f
ID
3515
3516 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3517}
3518
bdcd3c97
AM
3519/* Non-zero return value signifies invalidity */
3520static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3521 u64 allowed)
3522{
3523 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3524 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3525 (bctl_arg->target & ~allowed)));
3526}
3527
c9e9f97b
ID
3528/*
3529 * Should be called with both balance and volume mutexes held
3530 */
3531int btrfs_balance(struct btrfs_balance_control *bctl,
3532 struct btrfs_ioctl_balance_args *bargs)
3533{
3534 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3535 u64 allowed;
e4837f8f 3536 int mixed = 0;
c9e9f97b 3537 int ret;
8dabb742 3538 u64 num_devices;
de98ced9 3539 unsigned seq;
c9e9f97b 3540
837d5b6e 3541 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3542 atomic_read(&fs_info->balance_pause_req) ||
3543 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3544 ret = -EINVAL;
3545 goto out;
3546 }
3547
e4837f8f
ID
3548 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3549 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3550 mixed = 1;
3551
f43ffb60
ID
3552 /*
3553 * In case of mixed groups both data and meta should be picked,
3554 * and identical options should be given for both of them.
3555 */
e4837f8f
ID
3556 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3557 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3558 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3559 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3560 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
efe120a0
FH
3561 btrfs_err(fs_info, "with mixed groups data and "
3562 "metadata balance options must be the same");
f43ffb60
ID
3563 ret = -EINVAL;
3564 goto out;
3565 }
3566 }
3567
8dabb742
SB
3568 num_devices = fs_info->fs_devices->num_devices;
3569 btrfs_dev_replace_lock(&fs_info->dev_replace);
3570 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3571 BUG_ON(num_devices < 1);
3572 num_devices--;
3573 }
3574 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3575 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3576 if (num_devices == 1)
e4d8ec0f 3577 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3578 else if (num_devices > 1)
e4d8ec0f 3579 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3580 if (num_devices > 2)
3581 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3582 if (num_devices > 3)
3583 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3584 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3585 if (validate_convert_profile(&bctl->data, allowed)) {
efe120a0
FH
3586 btrfs_err(fs_info, "unable to start balance with target "
3587 "data profile %llu",
c1c9ff7c 3588 bctl->data.target);
e4d8ec0f
ID
3589 ret = -EINVAL;
3590 goto out;
3591 }
bdcd3c97 3592 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0
FH
3593 btrfs_err(fs_info,
3594 "unable to start balance with target metadata profile %llu",
c1c9ff7c 3595 bctl->meta.target);
e4d8ec0f
ID
3596 ret = -EINVAL;
3597 goto out;
3598 }
bdcd3c97 3599 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0
FH
3600 btrfs_err(fs_info,
3601 "unable to start balance with target system profile %llu",
c1c9ff7c 3602 bctl->sys.target);
e4d8ec0f
ID
3603 ret = -EINVAL;
3604 goto out;
3605 }
3606
e4837f8f
ID
3607 /* allow dup'ed data chunks only in mixed mode */
3608 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3609 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
efe120a0 3610 btrfs_err(fs_info, "dup for data is not allowed");
e4d8ec0f
ID
3611 ret = -EINVAL;
3612 goto out;
3613 }
3614
3615 /* allow to reduce meta or sys integrity only if force set */
3616 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3617 BTRFS_BLOCK_GROUP_RAID10 |
3618 BTRFS_BLOCK_GROUP_RAID5 |
3619 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3620 do {
3621 seq = read_seqbegin(&fs_info->profiles_lock);
3622
3623 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3624 (fs_info->avail_system_alloc_bits & allowed) &&
3625 !(bctl->sys.target & allowed)) ||
3626 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3627 (fs_info->avail_metadata_alloc_bits & allowed) &&
3628 !(bctl->meta.target & allowed))) {
3629 if (bctl->flags & BTRFS_BALANCE_FORCE) {
efe120a0 3630 btrfs_info(fs_info, "force reducing metadata integrity");
de98ced9 3631 } else {
efe120a0
FH
3632 btrfs_err(fs_info, "balance will reduce metadata "
3633 "integrity, use force if you want this");
de98ced9
MX
3634 ret = -EINVAL;
3635 goto out;
3636 }
e4d8ec0f 3637 }
de98ced9 3638 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3639
5af3e8cc 3640 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
943c6e99
ZL
3641 fs_info->num_tolerated_disk_barrier_failures = min(
3642 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3643 btrfs_get_num_tolerated_disk_barrier_failures(
3644 bctl->sys.target));
5af3e8cc
SB
3645 }
3646
0940ebf6 3647 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3648 if (ret && ret != -EEXIST)
0940ebf6
ID
3649 goto out;
3650
59641015
ID
3651 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3652 BUG_ON(ret == -EEXIST);
3653 set_balance_control(bctl);
3654 } else {
3655 BUG_ON(ret != -EEXIST);
3656 spin_lock(&fs_info->balance_lock);
3657 update_balance_args(bctl);
3658 spin_unlock(&fs_info->balance_lock);
3659 }
c9e9f97b 3660
837d5b6e 3661 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3662 mutex_unlock(&fs_info->balance_mutex);
3663
3664 ret = __btrfs_balance(fs_info);
3665
3666 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3667 atomic_dec(&fs_info->balance_running);
c9e9f97b 3668
bf023ecf
ID
3669 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3670 fs_info->num_tolerated_disk_barrier_failures =
3671 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3672 }
3673
c9e9f97b
ID
3674 if (bargs) {
3675 memset(bargs, 0, sizeof(*bargs));
19a39dce 3676 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3677 }
3678
3a01aa7a
ID
3679 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3680 balance_need_close(fs_info)) {
3681 __cancel_balance(fs_info);
3682 }
3683
837d5b6e 3684 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3685
3686 return ret;
3687out:
59641015
ID
3688 if (bctl->flags & BTRFS_BALANCE_RESUME)
3689 __cancel_balance(fs_info);
ed0fb78f 3690 else {
59641015 3691 kfree(bctl);
ed0fb78f
ID
3692 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3693 }
59641015
ID
3694 return ret;
3695}
3696
3697static int balance_kthread(void *data)
3698{
2b6ba629 3699 struct btrfs_fs_info *fs_info = data;
9555c6c1 3700 int ret = 0;
59641015
ID
3701
3702 mutex_lock(&fs_info->volume_mutex);
3703 mutex_lock(&fs_info->balance_mutex);
3704
2b6ba629 3705 if (fs_info->balance_ctl) {
efe120a0 3706 btrfs_info(fs_info, "continuing balance");
2b6ba629 3707 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3708 }
59641015
ID
3709
3710 mutex_unlock(&fs_info->balance_mutex);
3711 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3712
59641015
ID
3713 return ret;
3714}
3715
2b6ba629
ID
3716int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3717{
3718 struct task_struct *tsk;
3719
3720 spin_lock(&fs_info->balance_lock);
3721 if (!fs_info->balance_ctl) {
3722 spin_unlock(&fs_info->balance_lock);
3723 return 0;
3724 }
3725 spin_unlock(&fs_info->balance_lock);
3726
3727 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
efe120a0 3728 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3729 return 0;
3730 }
3731
3732 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3733 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3734}
3735
68310a5e 3736int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3737{
59641015
ID
3738 struct btrfs_balance_control *bctl;
3739 struct btrfs_balance_item *item;
3740 struct btrfs_disk_balance_args disk_bargs;
3741 struct btrfs_path *path;
3742 struct extent_buffer *leaf;
3743 struct btrfs_key key;
3744 int ret;
3745
3746 path = btrfs_alloc_path();
3747 if (!path)
3748 return -ENOMEM;
3749
59641015
ID
3750 key.objectid = BTRFS_BALANCE_OBJECTID;
3751 key.type = BTRFS_BALANCE_ITEM_KEY;
3752 key.offset = 0;
3753
68310a5e 3754 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3755 if (ret < 0)
68310a5e 3756 goto out;
59641015
ID
3757 if (ret > 0) { /* ret = -ENOENT; */
3758 ret = 0;
68310a5e
ID
3759 goto out;
3760 }
3761
3762 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3763 if (!bctl) {
3764 ret = -ENOMEM;
3765 goto out;
59641015
ID
3766 }
3767
3768 leaf = path->nodes[0];
3769 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3770
68310a5e
ID
3771 bctl->fs_info = fs_info;
3772 bctl->flags = btrfs_balance_flags(leaf, item);
3773 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3774
3775 btrfs_balance_data(leaf, item, &disk_bargs);
3776 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3777 btrfs_balance_meta(leaf, item, &disk_bargs);
3778 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3779 btrfs_balance_sys(leaf, item, &disk_bargs);
3780 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3781
ed0fb78f
ID
3782 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3783
68310a5e
ID
3784 mutex_lock(&fs_info->volume_mutex);
3785 mutex_lock(&fs_info->balance_mutex);
59641015 3786
68310a5e
ID
3787 set_balance_control(bctl);
3788
3789 mutex_unlock(&fs_info->balance_mutex);
3790 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3791out:
3792 btrfs_free_path(path);
ec44a35c
CM
3793 return ret;
3794}
3795
837d5b6e
ID
3796int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3797{
3798 int ret = 0;
3799
3800 mutex_lock(&fs_info->balance_mutex);
3801 if (!fs_info->balance_ctl) {
3802 mutex_unlock(&fs_info->balance_mutex);
3803 return -ENOTCONN;
3804 }
3805
3806 if (atomic_read(&fs_info->balance_running)) {
3807 atomic_inc(&fs_info->balance_pause_req);
3808 mutex_unlock(&fs_info->balance_mutex);
3809
3810 wait_event(fs_info->balance_wait_q,
3811 atomic_read(&fs_info->balance_running) == 0);
3812
3813 mutex_lock(&fs_info->balance_mutex);
3814 /* we are good with balance_ctl ripped off from under us */
3815 BUG_ON(atomic_read(&fs_info->balance_running));
3816 atomic_dec(&fs_info->balance_pause_req);
3817 } else {
3818 ret = -ENOTCONN;
3819 }
3820
3821 mutex_unlock(&fs_info->balance_mutex);
3822 return ret;
3823}
3824
a7e99c69
ID
3825int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3826{
e649e587
ID
3827 if (fs_info->sb->s_flags & MS_RDONLY)
3828 return -EROFS;
3829
a7e99c69
ID
3830 mutex_lock(&fs_info->balance_mutex);
3831 if (!fs_info->balance_ctl) {
3832 mutex_unlock(&fs_info->balance_mutex);
3833 return -ENOTCONN;
3834 }
3835
3836 atomic_inc(&fs_info->balance_cancel_req);
3837 /*
3838 * if we are running just wait and return, balance item is
3839 * deleted in btrfs_balance in this case
3840 */
3841 if (atomic_read(&fs_info->balance_running)) {
3842 mutex_unlock(&fs_info->balance_mutex);
3843 wait_event(fs_info->balance_wait_q,
3844 atomic_read(&fs_info->balance_running) == 0);
3845 mutex_lock(&fs_info->balance_mutex);
3846 } else {
3847 /* __cancel_balance needs volume_mutex */
3848 mutex_unlock(&fs_info->balance_mutex);
3849 mutex_lock(&fs_info->volume_mutex);
3850 mutex_lock(&fs_info->balance_mutex);
3851
3852 if (fs_info->balance_ctl)
3853 __cancel_balance(fs_info);
3854
3855 mutex_unlock(&fs_info->volume_mutex);
3856 }
3857
3858 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3859 atomic_dec(&fs_info->balance_cancel_req);
3860 mutex_unlock(&fs_info->balance_mutex);
3861 return 0;
3862}
3863
803b2f54
SB
3864static int btrfs_uuid_scan_kthread(void *data)
3865{
3866 struct btrfs_fs_info *fs_info = data;
3867 struct btrfs_root *root = fs_info->tree_root;
3868 struct btrfs_key key;
3869 struct btrfs_key max_key;
3870 struct btrfs_path *path = NULL;
3871 int ret = 0;
3872 struct extent_buffer *eb;
3873 int slot;
3874 struct btrfs_root_item root_item;
3875 u32 item_size;
f45388f3 3876 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
3877
3878 path = btrfs_alloc_path();
3879 if (!path) {
3880 ret = -ENOMEM;
3881 goto out;
3882 }
3883
3884 key.objectid = 0;
3885 key.type = BTRFS_ROOT_ITEM_KEY;
3886 key.offset = 0;
3887
3888 max_key.objectid = (u64)-1;
3889 max_key.type = BTRFS_ROOT_ITEM_KEY;
3890 max_key.offset = (u64)-1;
3891
803b2f54 3892 while (1) {
6174d3cb 3893 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
3894 if (ret) {
3895 if (ret > 0)
3896 ret = 0;
3897 break;
3898 }
3899
3900 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3901 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3902 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3903 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3904 goto skip;
3905
3906 eb = path->nodes[0];
3907 slot = path->slots[0];
3908 item_size = btrfs_item_size_nr(eb, slot);
3909 if (item_size < sizeof(root_item))
3910 goto skip;
3911
803b2f54
SB
3912 read_extent_buffer(eb, &root_item,
3913 btrfs_item_ptr_offset(eb, slot),
3914 (int)sizeof(root_item));
3915 if (btrfs_root_refs(&root_item) == 0)
3916 goto skip;
f45388f3
FDBM
3917
3918 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3919 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3920 if (trans)
3921 goto update_tree;
3922
3923 btrfs_release_path(path);
803b2f54
SB
3924 /*
3925 * 1 - subvol uuid item
3926 * 1 - received_subvol uuid item
3927 */
3928 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3929 if (IS_ERR(trans)) {
3930 ret = PTR_ERR(trans);
3931 break;
3932 }
f45388f3
FDBM
3933 continue;
3934 } else {
3935 goto skip;
3936 }
3937update_tree:
3938 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
3939 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3940 root_item.uuid,
3941 BTRFS_UUID_KEY_SUBVOL,
3942 key.objectid);
3943 if (ret < 0) {
efe120a0 3944 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3945 ret);
803b2f54
SB
3946 break;
3947 }
3948 }
3949
3950 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
3951 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3952 root_item.received_uuid,
3953 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3954 key.objectid);
3955 if (ret < 0) {
efe120a0 3956 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3957 ret);
803b2f54
SB
3958 break;
3959 }
3960 }
3961
f45388f3 3962skip:
803b2f54
SB
3963 if (trans) {
3964 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 3965 trans = NULL;
803b2f54
SB
3966 if (ret)
3967 break;
3968 }
3969
803b2f54
SB
3970 btrfs_release_path(path);
3971 if (key.offset < (u64)-1) {
3972 key.offset++;
3973 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3974 key.offset = 0;
3975 key.type = BTRFS_ROOT_ITEM_KEY;
3976 } else if (key.objectid < (u64)-1) {
3977 key.offset = 0;
3978 key.type = BTRFS_ROOT_ITEM_KEY;
3979 key.objectid++;
3980 } else {
3981 break;
3982 }
3983 cond_resched();
3984 }
3985
3986out:
3987 btrfs_free_path(path);
f45388f3
FDBM
3988 if (trans && !IS_ERR(trans))
3989 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 3990 if (ret)
efe120a0 3991 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175
SB
3992 else
3993 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
3994 up(&fs_info->uuid_tree_rescan_sem);
3995 return 0;
3996}
3997
70f80175
SB
3998/*
3999 * Callback for btrfs_uuid_tree_iterate().
4000 * returns:
4001 * 0 check succeeded, the entry is not outdated.
4002 * < 0 if an error occured.
4003 * > 0 if the check failed, which means the caller shall remove the entry.
4004 */
4005static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4006 u8 *uuid, u8 type, u64 subid)
4007{
4008 struct btrfs_key key;
4009 int ret = 0;
4010 struct btrfs_root *subvol_root;
4011
4012 if (type != BTRFS_UUID_KEY_SUBVOL &&
4013 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4014 goto out;
4015
4016 key.objectid = subid;
4017 key.type = BTRFS_ROOT_ITEM_KEY;
4018 key.offset = (u64)-1;
4019 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4020 if (IS_ERR(subvol_root)) {
4021 ret = PTR_ERR(subvol_root);
4022 if (ret == -ENOENT)
4023 ret = 1;
4024 goto out;
4025 }
4026
4027 switch (type) {
4028 case BTRFS_UUID_KEY_SUBVOL:
4029 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4030 ret = 1;
4031 break;
4032 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4033 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4034 BTRFS_UUID_SIZE))
4035 ret = 1;
4036 break;
4037 }
4038
4039out:
4040 return ret;
4041}
4042
4043static int btrfs_uuid_rescan_kthread(void *data)
4044{
4045 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4046 int ret;
4047
4048 /*
4049 * 1st step is to iterate through the existing UUID tree and
4050 * to delete all entries that contain outdated data.
4051 * 2nd step is to add all missing entries to the UUID tree.
4052 */
4053 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4054 if (ret < 0) {
efe120a0 4055 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4056 up(&fs_info->uuid_tree_rescan_sem);
4057 return ret;
4058 }
4059 return btrfs_uuid_scan_kthread(data);
4060}
4061
f7a81ea4
SB
4062int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4063{
4064 struct btrfs_trans_handle *trans;
4065 struct btrfs_root *tree_root = fs_info->tree_root;
4066 struct btrfs_root *uuid_root;
803b2f54
SB
4067 struct task_struct *task;
4068 int ret;
f7a81ea4
SB
4069
4070 /*
4071 * 1 - root node
4072 * 1 - root item
4073 */
4074 trans = btrfs_start_transaction(tree_root, 2);
4075 if (IS_ERR(trans))
4076 return PTR_ERR(trans);
4077
4078 uuid_root = btrfs_create_tree(trans, fs_info,
4079 BTRFS_UUID_TREE_OBJECTID);
4080 if (IS_ERR(uuid_root)) {
6d13f549
DS
4081 ret = PTR_ERR(uuid_root);
4082 btrfs_abort_transaction(trans, tree_root, ret);
4083 return ret;
f7a81ea4
SB
4084 }
4085
4086 fs_info->uuid_root = uuid_root;
4087
803b2f54
SB
4088 ret = btrfs_commit_transaction(trans, tree_root);
4089 if (ret)
4090 return ret;
4091
4092 down(&fs_info->uuid_tree_rescan_sem);
4093 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4094 if (IS_ERR(task)) {
70f80175 4095 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4096 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4097 up(&fs_info->uuid_tree_rescan_sem);
4098 return PTR_ERR(task);
4099 }
4100
4101 return 0;
f7a81ea4 4102}
803b2f54 4103
70f80175
SB
4104int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4105{
4106 struct task_struct *task;
4107
4108 down(&fs_info->uuid_tree_rescan_sem);
4109 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4110 if (IS_ERR(task)) {
4111 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4112 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4113 up(&fs_info->uuid_tree_rescan_sem);
4114 return PTR_ERR(task);
4115 }
4116
4117 return 0;
4118}
4119
8f18cf13
CM
4120/*
4121 * shrinking a device means finding all of the device extents past
4122 * the new size, and then following the back refs to the chunks.
4123 * The chunk relocation code actually frees the device extent
4124 */
4125int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4126{
4127 struct btrfs_trans_handle *trans;
4128 struct btrfs_root *root = device->dev_root;
4129 struct btrfs_dev_extent *dev_extent = NULL;
4130 struct btrfs_path *path;
4131 u64 length;
8f18cf13
CM
4132 u64 chunk_offset;
4133 int ret;
4134 int slot;
ba1bf481
JB
4135 int failed = 0;
4136 bool retried = false;
53e489bc 4137 bool checked_pending_chunks = false;
8f18cf13
CM
4138 struct extent_buffer *l;
4139 struct btrfs_key key;
6c41761f 4140 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 4141 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
4142 u64 old_size = btrfs_device_get_total_bytes(device);
4143 u64 diff = old_size - new_size;
8f18cf13 4144
63a212ab
SB
4145 if (device->is_tgtdev_for_dev_replace)
4146 return -EINVAL;
4147
8f18cf13
CM
4148 path = btrfs_alloc_path();
4149 if (!path)
4150 return -ENOMEM;
4151
8f18cf13
CM
4152 path->reada = 2;
4153
7d9eb12c
CM
4154 lock_chunks(root);
4155
7cc8e58d 4156 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4157 if (device->writeable) {
2b82032c 4158 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
4159 spin_lock(&root->fs_info->free_chunk_lock);
4160 root->fs_info->free_chunk_space -= diff;
4161 spin_unlock(&root->fs_info->free_chunk_lock);
4162 }
7d9eb12c 4163 unlock_chunks(root);
8f18cf13 4164
ba1bf481 4165again:
8f18cf13
CM
4166 key.objectid = device->devid;
4167 key.offset = (u64)-1;
4168 key.type = BTRFS_DEV_EXTENT_KEY;
4169
213e64da 4170 do {
67c5e7d4 4171 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4172 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4
FM
4173 if (ret < 0) {
4174 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4175 goto done;
67c5e7d4 4176 }
8f18cf13
CM
4177
4178 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4
FM
4179 if (ret)
4180 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4181 if (ret < 0)
4182 goto done;
4183 if (ret) {
4184 ret = 0;
b3b4aa74 4185 btrfs_release_path(path);
bf1fb512 4186 break;
8f18cf13
CM
4187 }
4188
4189 l = path->nodes[0];
4190 slot = path->slots[0];
4191 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4192
ba1bf481 4193 if (key.objectid != device->devid) {
67c5e7d4 4194 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4195 btrfs_release_path(path);
bf1fb512 4196 break;
ba1bf481 4197 }
8f18cf13
CM
4198
4199 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4200 length = btrfs_dev_extent_length(l, dev_extent);
4201
ba1bf481 4202 if (key.offset + length <= new_size) {
67c5e7d4 4203 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4204 btrfs_release_path(path);
d6397bae 4205 break;
ba1bf481 4206 }
8f18cf13 4207
8f18cf13 4208 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4209 btrfs_release_path(path);
8f18cf13 4210
dc2ee4e2 4211 ret = btrfs_relocate_chunk(root, chunk_offset);
67c5e7d4 4212 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
ba1bf481 4213 if (ret && ret != -ENOSPC)
8f18cf13 4214 goto done;
ba1bf481
JB
4215 if (ret == -ENOSPC)
4216 failed++;
213e64da 4217 } while (key.offset-- > 0);
ba1bf481
JB
4218
4219 if (failed && !retried) {
4220 failed = 0;
4221 retried = true;
4222 goto again;
4223 } else if (failed && retried) {
4224 ret = -ENOSPC;
ba1bf481 4225 goto done;
8f18cf13
CM
4226 }
4227
d6397bae 4228 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4229 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4230 if (IS_ERR(trans)) {
4231 ret = PTR_ERR(trans);
4232 goto done;
4233 }
4234
d6397bae 4235 lock_chunks(root);
53e489bc
FM
4236
4237 /*
4238 * We checked in the above loop all device extents that were already in
4239 * the device tree. However before we have updated the device's
4240 * total_bytes to the new size, we might have had chunk allocations that
4241 * have not complete yet (new block groups attached to transaction
4242 * handles), and therefore their device extents were not yet in the
4243 * device tree and we missed them in the loop above. So if we have any
4244 * pending chunk using a device extent that overlaps the device range
4245 * that we can not use anymore, commit the current transaction and
4246 * repeat the search on the device tree - this way we guarantee we will
4247 * not have chunks using device extents that end beyond 'new_size'.
4248 */
4249 if (!checked_pending_chunks) {
4250 u64 start = new_size;
4251 u64 len = old_size - new_size;
4252
499f377f
JM
4253 if (contains_pending_extent(trans->transaction, device,
4254 &start, len)) {
53e489bc
FM
4255 unlock_chunks(root);
4256 checked_pending_chunks = true;
4257 failed = 0;
4258 retried = false;
4259 ret = btrfs_commit_transaction(trans, root);
4260 if (ret)
4261 goto done;
4262 goto again;
4263 }
4264 }
4265
7cc8e58d 4266 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4267 if (list_empty(&device->resized_list))
4268 list_add_tail(&device->resized_list,
4269 &root->fs_info->fs_devices->resized_devices);
d6397bae 4270
d6397bae
CB
4271 WARN_ON(diff > old_total);
4272 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4273 unlock_chunks(root);
2196d6e8
MX
4274
4275 /* Now btrfs_update_device() will change the on-disk size. */
4276 ret = btrfs_update_device(trans, device);
d6397bae 4277 btrfs_end_transaction(trans, root);
8f18cf13
CM
4278done:
4279 btrfs_free_path(path);
53e489bc
FM
4280 if (ret) {
4281 lock_chunks(root);
4282 btrfs_device_set_total_bytes(device, old_size);
4283 if (device->writeable)
4284 device->fs_devices->total_rw_bytes += diff;
4285 spin_lock(&root->fs_info->free_chunk_lock);
4286 root->fs_info->free_chunk_space += diff;
4287 spin_unlock(&root->fs_info->free_chunk_lock);
4288 unlock_chunks(root);
4289 }
8f18cf13
CM
4290 return ret;
4291}
4292
125ccb0a 4293static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
4294 struct btrfs_key *key,
4295 struct btrfs_chunk *chunk, int item_size)
4296{
6c41761f 4297 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
4298 struct btrfs_disk_key disk_key;
4299 u32 array_size;
4300 u8 *ptr;
4301
fe48a5c0 4302 lock_chunks(root);
0b86a832 4303 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4304 if (array_size + item_size + sizeof(disk_key)
fe48a5c0
MX
4305 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4306 unlock_chunks(root);
0b86a832 4307 return -EFBIG;
fe48a5c0 4308 }
0b86a832
CM
4309
4310 ptr = super_copy->sys_chunk_array + array_size;
4311 btrfs_cpu_key_to_disk(&disk_key, key);
4312 memcpy(ptr, &disk_key, sizeof(disk_key));
4313 ptr += sizeof(disk_key);
4314 memcpy(ptr, chunk, item_size);
4315 item_size += sizeof(disk_key);
4316 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0
MX
4317 unlock_chunks(root);
4318
0b86a832
CM
4319 return 0;
4320}
4321
73c5de00
AJ
4322/*
4323 * sort the devices in descending order by max_avail, total_avail
4324 */
4325static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4326{
73c5de00
AJ
4327 const struct btrfs_device_info *di_a = a;
4328 const struct btrfs_device_info *di_b = b;
9b3f68b9 4329
73c5de00 4330 if (di_a->max_avail > di_b->max_avail)
b2117a39 4331 return -1;
73c5de00 4332 if (di_a->max_avail < di_b->max_avail)
b2117a39 4333 return 1;
73c5de00
AJ
4334 if (di_a->total_avail > di_b->total_avail)
4335 return -1;
4336 if (di_a->total_avail < di_b->total_avail)
4337 return 1;
4338 return 0;
b2117a39 4339}
0b86a832 4340
53b381b3
DW
4341static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4342{
4343 /* TODO allow them to set a preferred stripe size */
4344 return 64 * 1024;
4345}
4346
4347static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4348{
ffe2d203 4349 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4350 return;
4351
ceda0864 4352 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4353}
4354
23f8f9b7
GH
4355#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4356 - sizeof(struct btrfs_item) \
4357 - sizeof(struct btrfs_chunk)) \
4358 / sizeof(struct btrfs_stripe) + 1)
4359
4360#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4361 - 2 * sizeof(struct btrfs_disk_key) \
4362 - 2 * sizeof(struct btrfs_chunk)) \
4363 / sizeof(struct btrfs_stripe) + 1)
4364
73c5de00 4365static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4366 struct btrfs_root *extent_root, u64 start,
4367 u64 type)
b2117a39 4368{
73c5de00
AJ
4369 struct btrfs_fs_info *info = extent_root->fs_info;
4370 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4371 struct list_head *cur;
4372 struct map_lookup *map = NULL;
4373 struct extent_map_tree *em_tree;
4374 struct extent_map *em;
4375 struct btrfs_device_info *devices_info = NULL;
4376 u64 total_avail;
4377 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4378 int data_stripes; /* number of stripes that count for
4379 block group size */
73c5de00
AJ
4380 int sub_stripes; /* sub_stripes info for map */
4381 int dev_stripes; /* stripes per dev */
4382 int devs_max; /* max devs to use */
4383 int devs_min; /* min devs needed */
4384 int devs_increment; /* ndevs has to be a multiple of this */
4385 int ncopies; /* how many copies to data has */
4386 int ret;
4387 u64 max_stripe_size;
4388 u64 max_chunk_size;
4389 u64 stripe_size;
4390 u64 num_bytes;
53b381b3 4391 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4392 int ndevs;
4393 int i;
4394 int j;
31e50229 4395 int index;
593060d7 4396
0c460c0d 4397 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4398
73c5de00
AJ
4399 if (list_empty(&fs_devices->alloc_list))
4400 return -ENOSPC;
b2117a39 4401
31e50229 4402 index = __get_raid_index(type);
73c5de00 4403
31e50229
LB
4404 sub_stripes = btrfs_raid_array[index].sub_stripes;
4405 dev_stripes = btrfs_raid_array[index].dev_stripes;
4406 devs_max = btrfs_raid_array[index].devs_max;
4407 devs_min = btrfs_raid_array[index].devs_min;
4408 devs_increment = btrfs_raid_array[index].devs_increment;
4409 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4410
9b3f68b9 4411 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4412 max_stripe_size = 1024 * 1024 * 1024;
4413 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4414 if (!devs_max)
4415 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4416 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4417 /* for larger filesystems, use larger metadata chunks */
4418 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4419 max_stripe_size = 1024 * 1024 * 1024;
4420 else
4421 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4422 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4423 if (!devs_max)
4424 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4425 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4426 max_stripe_size = 32 * 1024 * 1024;
73c5de00 4427 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4428 if (!devs_max)
4429 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4430 } else {
351fd353 4431 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4432 type);
4433 BUG_ON(1);
9b3f68b9
CM
4434 }
4435
2b82032c
YZ
4436 /* we don't want a chunk larger than 10% of writeable space */
4437 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4438 max_chunk_size);
9b3f68b9 4439
31e818fe 4440 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4441 GFP_NOFS);
4442 if (!devices_info)
4443 return -ENOMEM;
0cad8a11 4444
73c5de00 4445 cur = fs_devices->alloc_list.next;
9b3f68b9 4446
9f680ce0 4447 /*
73c5de00
AJ
4448 * in the first pass through the devices list, we gather information
4449 * about the available holes on each device.
9f680ce0 4450 */
73c5de00
AJ
4451 ndevs = 0;
4452 while (cur != &fs_devices->alloc_list) {
4453 struct btrfs_device *device;
4454 u64 max_avail;
4455 u64 dev_offset;
b2117a39 4456
73c5de00 4457 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4458
73c5de00 4459 cur = cur->next;
b2117a39 4460
73c5de00 4461 if (!device->writeable) {
31b1a2bd 4462 WARN(1, KERN_ERR
efe120a0 4463 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4464 continue;
4465 }
b2117a39 4466
63a212ab
SB
4467 if (!device->in_fs_metadata ||
4468 device->is_tgtdev_for_dev_replace)
73c5de00 4469 continue;
b2117a39 4470
73c5de00
AJ
4471 if (device->total_bytes > device->bytes_used)
4472 total_avail = device->total_bytes - device->bytes_used;
4473 else
4474 total_avail = 0;
38c01b96 4475
4476 /* If there is no space on this device, skip it. */
4477 if (total_avail == 0)
4478 continue;
b2117a39 4479
6df9a95e 4480 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4481 max_stripe_size * dev_stripes,
4482 &dev_offset, &max_avail);
4483 if (ret && ret != -ENOSPC)
4484 goto error;
b2117a39 4485
73c5de00
AJ
4486 if (ret == 0)
4487 max_avail = max_stripe_size * dev_stripes;
b2117a39 4488
73c5de00
AJ
4489 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4490 continue;
b2117a39 4491
063d006f
ES
4492 if (ndevs == fs_devices->rw_devices) {
4493 WARN(1, "%s: found more than %llu devices\n",
4494 __func__, fs_devices->rw_devices);
4495 break;
4496 }
73c5de00
AJ
4497 devices_info[ndevs].dev_offset = dev_offset;
4498 devices_info[ndevs].max_avail = max_avail;
4499 devices_info[ndevs].total_avail = total_avail;
4500 devices_info[ndevs].dev = device;
4501 ++ndevs;
4502 }
b2117a39 4503
73c5de00
AJ
4504 /*
4505 * now sort the devices by hole size / available space
4506 */
4507 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4508 btrfs_cmp_device_info, NULL);
b2117a39 4509
73c5de00
AJ
4510 /* round down to number of usable stripes */
4511 ndevs -= ndevs % devs_increment;
b2117a39 4512
73c5de00
AJ
4513 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4514 ret = -ENOSPC;
4515 goto error;
b2117a39 4516 }
9f680ce0 4517
73c5de00
AJ
4518 if (devs_max && ndevs > devs_max)
4519 ndevs = devs_max;
4520 /*
4521 * the primary goal is to maximize the number of stripes, so use as many
4522 * devices as possible, even if the stripes are not maximum sized.
4523 */
4524 stripe_size = devices_info[ndevs-1].max_avail;
4525 num_stripes = ndevs * dev_stripes;
b2117a39 4526
53b381b3
DW
4527 /*
4528 * this will have to be fixed for RAID1 and RAID10 over
4529 * more drives
4530 */
4531 data_stripes = num_stripes / ncopies;
4532
53b381b3
DW
4533 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4534 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4535 btrfs_super_stripesize(info->super_copy));
4536 data_stripes = num_stripes - 1;
4537 }
4538 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4539 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4540 btrfs_super_stripesize(info->super_copy));
4541 data_stripes = num_stripes - 2;
4542 }
86db2578
CM
4543
4544 /*
4545 * Use the number of data stripes to figure out how big this chunk
4546 * is really going to be in terms of logical address space,
4547 * and compare that answer with the max chunk size
4548 */
4549 if (stripe_size * data_stripes > max_chunk_size) {
4550 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4551
4552 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4553
4554 /* bump the answer up to a 16MB boundary */
4555 stripe_size = (stripe_size + mask) & ~mask;
4556
4557 /* but don't go higher than the limits we found
4558 * while searching for free extents
4559 */
4560 if (stripe_size > devices_info[ndevs-1].max_avail)
4561 stripe_size = devices_info[ndevs-1].max_avail;
4562 }
4563
b8b93add 4564 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4565
4566 /* align to BTRFS_STRIPE_LEN */
b8b93add 4567 stripe_size = div_u64(stripe_size, raid_stripe_len);
53b381b3 4568 stripe_size *= raid_stripe_len;
b2117a39
MX
4569
4570 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4571 if (!map) {
4572 ret = -ENOMEM;
4573 goto error;
4574 }
4575 map->num_stripes = num_stripes;
9b3f68b9 4576
73c5de00
AJ
4577 for (i = 0; i < ndevs; ++i) {
4578 for (j = 0; j < dev_stripes; ++j) {
4579 int s = i * dev_stripes + j;
4580 map->stripes[s].dev = devices_info[i].dev;
4581 map->stripes[s].physical = devices_info[i].dev_offset +
4582 j * stripe_size;
6324fbf3 4583 }
6324fbf3 4584 }
2b82032c 4585 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4586 map->stripe_len = raid_stripe_len;
4587 map->io_align = raid_stripe_len;
4588 map->io_width = raid_stripe_len;
2b82032c 4589 map->type = type;
2b82032c 4590 map->sub_stripes = sub_stripes;
0b86a832 4591
53b381b3 4592 num_bytes = stripe_size * data_stripes;
0b86a832 4593
73c5de00 4594 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4595
172ddd60 4596 em = alloc_extent_map();
2b82032c 4597 if (!em) {
298a8f9c 4598 kfree(map);
b2117a39
MX
4599 ret = -ENOMEM;
4600 goto error;
593060d7 4601 }
298a8f9c 4602 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
2b82032c
YZ
4603 em->bdev = (struct block_device *)map;
4604 em->start = start;
73c5de00 4605 em->len = num_bytes;
2b82032c
YZ
4606 em->block_start = 0;
4607 em->block_len = em->len;
6df9a95e 4608 em->orig_block_len = stripe_size;
593060d7 4609
2b82032c 4610 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4611 write_lock(&em_tree->lock);
09a2a8f9 4612 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4613 if (!ret) {
4614 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4615 atomic_inc(&em->refs);
4616 }
890871be 4617 write_unlock(&em_tree->lock);
0f5d42b2
JB
4618 if (ret) {
4619 free_extent_map(em);
1dd4602f 4620 goto error;
0f5d42b2 4621 }
0b86a832 4622
04487488
JB
4623 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4624 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4625 start, num_bytes);
6df9a95e
JB
4626 if (ret)
4627 goto error_del_extent;
2b82032c 4628
7cc8e58d
MX
4629 for (i = 0; i < map->num_stripes; i++) {
4630 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4631 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4632 }
43530c46 4633
1c116187
MX
4634 spin_lock(&extent_root->fs_info->free_chunk_lock);
4635 extent_root->fs_info->free_chunk_space -= (stripe_size *
4636 map->num_stripes);
4637 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4638
0f5d42b2 4639 free_extent_map(em);
53b381b3
DW
4640 check_raid56_incompat_flag(extent_root->fs_info, type);
4641
b2117a39 4642 kfree(devices_info);
2b82032c 4643 return 0;
b2117a39 4644
6df9a95e 4645error_del_extent:
0f5d42b2
JB
4646 write_lock(&em_tree->lock);
4647 remove_extent_mapping(em_tree, em);
4648 write_unlock(&em_tree->lock);
4649
4650 /* One for our allocation */
4651 free_extent_map(em);
4652 /* One for the tree reference */
4653 free_extent_map(em);
495e64f4
FM
4654 /* One for the pending_chunks list reference */
4655 free_extent_map(em);
b2117a39 4656error:
b2117a39
MX
4657 kfree(devices_info);
4658 return ret;
2b82032c
YZ
4659}
4660
6df9a95e 4661int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4662 struct btrfs_root *extent_root,
6df9a95e 4663 u64 chunk_offset, u64 chunk_size)
2b82032c 4664{
2b82032c
YZ
4665 struct btrfs_key key;
4666 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4667 struct btrfs_device *device;
4668 struct btrfs_chunk *chunk;
4669 struct btrfs_stripe *stripe;
6df9a95e
JB
4670 struct extent_map_tree *em_tree;
4671 struct extent_map *em;
4672 struct map_lookup *map;
4673 size_t item_size;
4674 u64 dev_offset;
4675 u64 stripe_size;
4676 int i = 0;
2b82032c
YZ
4677 int ret;
4678
6df9a95e
JB
4679 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4680 read_lock(&em_tree->lock);
4681 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4682 read_unlock(&em_tree->lock);
4683
4684 if (!em) {
4685 btrfs_crit(extent_root->fs_info, "unable to find logical "
4686 "%Lu len %Lu", chunk_offset, chunk_size);
4687 return -EINVAL;
4688 }
4689
4690 if (em->start != chunk_offset || em->len != chunk_size) {
4691 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
351fd353 4692 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
6df9a95e
JB
4693 chunk_size, em->start, em->len);
4694 free_extent_map(em);
4695 return -EINVAL;
4696 }
4697
4698 map = (struct map_lookup *)em->bdev;
4699 item_size = btrfs_chunk_item_size(map->num_stripes);
4700 stripe_size = em->orig_block_len;
4701
2b82032c 4702 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4703 if (!chunk) {
4704 ret = -ENOMEM;
4705 goto out;
4706 }
4707
4708 for (i = 0; i < map->num_stripes; i++) {
4709 device = map->stripes[i].dev;
4710 dev_offset = map->stripes[i].physical;
2b82032c 4711
0b86a832 4712 ret = btrfs_update_device(trans, device);
3acd3953 4713 if (ret)
6df9a95e
JB
4714 goto out;
4715 ret = btrfs_alloc_dev_extent(trans, device,
4716 chunk_root->root_key.objectid,
4717 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4718 chunk_offset, dev_offset,
4719 stripe_size);
4720 if (ret)
4721 goto out;
2b82032c
YZ
4722 }
4723
2b82032c 4724 stripe = &chunk->stripe;
6df9a95e
JB
4725 for (i = 0; i < map->num_stripes; i++) {
4726 device = map->stripes[i].dev;
4727 dev_offset = map->stripes[i].physical;
0b86a832 4728
e17cade2
CM
4729 btrfs_set_stack_stripe_devid(stripe, device->devid);
4730 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4731 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4732 stripe++;
0b86a832
CM
4733 }
4734
2b82032c 4735 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4736 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4737 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4738 btrfs_set_stack_chunk_type(chunk, map->type);
4739 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4740 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4741 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4742 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4743 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4744
2b82032c
YZ
4745 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4746 key.type = BTRFS_CHUNK_ITEM_KEY;
4747 key.offset = chunk_offset;
0b86a832 4748
2b82032c 4749 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4750 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4751 /*
4752 * TODO: Cleanup of inserted chunk root in case of
4753 * failure.
4754 */
125ccb0a 4755 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4756 item_size);
8f18cf13 4757 }
1abe9b8a 4758
6df9a95e 4759out:
0b86a832 4760 kfree(chunk);
6df9a95e 4761 free_extent_map(em);
4ed1d16e 4762 return ret;
2b82032c 4763}
0b86a832 4764
2b82032c
YZ
4765/*
4766 * Chunk allocation falls into two parts. The first part does works
4767 * that make the new allocated chunk useable, but not do any operation
4768 * that modifies the chunk tree. The second part does the works that
4769 * require modifying the chunk tree. This division is important for the
4770 * bootstrap process of adding storage to a seed btrfs.
4771 */
4772int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4773 struct btrfs_root *extent_root, u64 type)
4774{
4775 u64 chunk_offset;
2b82032c 4776
a9629596 4777 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
6df9a95e
JB
4778 chunk_offset = find_next_chunk(extent_root->fs_info);
4779 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4780}
4781
d397712b 4782static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4783 struct btrfs_root *root,
4784 struct btrfs_device *device)
4785{
4786 u64 chunk_offset;
4787 u64 sys_chunk_offset;
2b82032c 4788 u64 alloc_profile;
2b82032c
YZ
4789 struct btrfs_fs_info *fs_info = root->fs_info;
4790 struct btrfs_root *extent_root = fs_info->extent_root;
4791 int ret;
4792
6df9a95e 4793 chunk_offset = find_next_chunk(fs_info);
de98ced9 4794 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4795 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4796 alloc_profile);
79787eaa
JM
4797 if (ret)
4798 return ret;
2b82032c 4799
6df9a95e 4800 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4801 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4802 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4803 alloc_profile);
79787eaa 4804 return ret;
2b82032c
YZ
4805}
4806
d20983b4
MX
4807static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4808{
4809 int max_errors;
4810
4811 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4812 BTRFS_BLOCK_GROUP_RAID10 |
4813 BTRFS_BLOCK_GROUP_RAID5 |
4814 BTRFS_BLOCK_GROUP_DUP)) {
4815 max_errors = 1;
4816 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4817 max_errors = 2;
4818 } else {
4819 max_errors = 0;
005d6427 4820 }
2b82032c 4821
d20983b4 4822 return max_errors;
2b82032c
YZ
4823}
4824
4825int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4826{
4827 struct extent_map *em;
4828 struct map_lookup *map;
4829 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4830 int readonly = 0;
d20983b4 4831 int miss_ndevs = 0;
2b82032c
YZ
4832 int i;
4833
890871be 4834 read_lock(&map_tree->map_tree.lock);
2b82032c 4835 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4836 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4837 if (!em)
4838 return 1;
4839
4840 map = (struct map_lookup *)em->bdev;
4841 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
4842 if (map->stripes[i].dev->missing) {
4843 miss_ndevs++;
4844 continue;
4845 }
4846
2b82032c
YZ
4847 if (!map->stripes[i].dev->writeable) {
4848 readonly = 1;
d20983b4 4849 goto end;
2b82032c
YZ
4850 }
4851 }
d20983b4
MX
4852
4853 /*
4854 * If the number of missing devices is larger than max errors,
4855 * we can not write the data into that chunk successfully, so
4856 * set it readonly.
4857 */
4858 if (miss_ndevs > btrfs_chunk_max_errors(map))
4859 readonly = 1;
4860end:
0b86a832 4861 free_extent_map(em);
2b82032c 4862 return readonly;
0b86a832
CM
4863}
4864
4865void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4866{
a8067e02 4867 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4868}
4869
4870void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4871{
4872 struct extent_map *em;
4873
d397712b 4874 while (1) {
890871be 4875 write_lock(&tree->map_tree.lock);
0b86a832
CM
4876 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4877 if (em)
4878 remove_extent_mapping(&tree->map_tree, em);
890871be 4879 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4880 if (!em)
4881 break;
0b86a832
CM
4882 /* once for us */
4883 free_extent_map(em);
4884 /* once for the tree */
4885 free_extent_map(em);
4886 }
4887}
4888
5d964051 4889int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4890{
5d964051 4891 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4892 struct extent_map *em;
4893 struct map_lookup *map;
4894 struct extent_map_tree *em_tree = &map_tree->map_tree;
4895 int ret;
4896
890871be 4897 read_lock(&em_tree->lock);
f188591e 4898 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4899 read_unlock(&em_tree->lock);
f188591e 4900
fb7669b5
JB
4901 /*
4902 * We could return errors for these cases, but that could get ugly and
4903 * we'd probably do the same thing which is just not do anything else
4904 * and exit, so return 1 so the callers don't try to use other copies.
4905 */
4906 if (!em) {
351fd353 4907 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
4908 logical+len);
4909 return 1;
4910 }
4911
4912 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4913 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
351fd353 4914 "%Lu-%Lu", logical, logical+len, em->start,
fb7669b5 4915 em->start + em->len);
7d3d1744 4916 free_extent_map(em);
fb7669b5
JB
4917 return 1;
4918 }
4919
f188591e
CM
4920 map = (struct map_lookup *)em->bdev;
4921 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4922 ret = map->num_stripes;
321aecc6
CM
4923 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4924 ret = map->sub_stripes;
53b381b3
DW
4925 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4926 ret = 2;
4927 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4928 ret = 3;
f188591e
CM
4929 else
4930 ret = 1;
4931 free_extent_map(em);
ad6d620e
SB
4932
4933 btrfs_dev_replace_lock(&fs_info->dev_replace);
4934 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4935 ret++;
4936 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4937
f188591e
CM
4938 return ret;
4939}
4940
53b381b3
DW
4941unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4942 struct btrfs_mapping_tree *map_tree,
4943 u64 logical)
4944{
4945 struct extent_map *em;
4946 struct map_lookup *map;
4947 struct extent_map_tree *em_tree = &map_tree->map_tree;
4948 unsigned long len = root->sectorsize;
4949
4950 read_lock(&em_tree->lock);
4951 em = lookup_extent_mapping(em_tree, logical, len);
4952 read_unlock(&em_tree->lock);
4953 BUG_ON(!em);
4954
4955 BUG_ON(em->start > logical || em->start + em->len < logical);
4956 map = (struct map_lookup *)em->bdev;
ffe2d203 4957 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 4958 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
4959 free_extent_map(em);
4960 return len;
4961}
4962
4963int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4964 u64 logical, u64 len, int mirror_num)
4965{
4966 struct extent_map *em;
4967 struct map_lookup *map;
4968 struct extent_map_tree *em_tree = &map_tree->map_tree;
4969 int ret = 0;
4970
4971 read_lock(&em_tree->lock);
4972 em = lookup_extent_mapping(em_tree, logical, len);
4973 read_unlock(&em_tree->lock);
4974 BUG_ON(!em);
4975
4976 BUG_ON(em->start > logical || em->start + em->len < logical);
4977 map = (struct map_lookup *)em->bdev;
ffe2d203 4978 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
4979 ret = 1;
4980 free_extent_map(em);
4981 return ret;
4982}
4983
30d9861f
SB
4984static int find_live_mirror(struct btrfs_fs_info *fs_info,
4985 struct map_lookup *map, int first, int num,
4986 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4987{
4988 int i;
30d9861f
SB
4989 int tolerance;
4990 struct btrfs_device *srcdev;
4991
4992 if (dev_replace_is_ongoing &&
4993 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4994 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4995 srcdev = fs_info->dev_replace.srcdev;
4996 else
4997 srcdev = NULL;
4998
4999 /*
5000 * try to avoid the drive that is the source drive for a
5001 * dev-replace procedure, only choose it if no other non-missing
5002 * mirror is available
5003 */
5004 for (tolerance = 0; tolerance < 2; tolerance++) {
5005 if (map->stripes[optimal].dev->bdev &&
5006 (tolerance || map->stripes[optimal].dev != srcdev))
5007 return optimal;
5008 for (i = first; i < first + num; i++) {
5009 if (map->stripes[i].dev->bdev &&
5010 (tolerance || map->stripes[i].dev != srcdev))
5011 return i;
5012 }
dfe25020 5013 }
30d9861f 5014
dfe25020
CM
5015 /* we couldn't find one that doesn't fail. Just return something
5016 * and the io error handling code will clean up eventually
5017 */
5018 return optimal;
5019}
5020
53b381b3
DW
5021static inline int parity_smaller(u64 a, u64 b)
5022{
5023 return a > b;
5024}
5025
5026/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5027static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5028{
5029 struct btrfs_bio_stripe s;
5030 int i;
5031 u64 l;
5032 int again = 1;
5033
5034 while (again) {
5035 again = 0;
cc7539ed 5036 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5037 if (parity_smaller(bbio->raid_map[i],
5038 bbio->raid_map[i+1])) {
53b381b3 5039 s = bbio->stripes[i];
8e5cfb55 5040 l = bbio->raid_map[i];
53b381b3 5041 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5042 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5043 bbio->stripes[i+1] = s;
8e5cfb55 5044 bbio->raid_map[i+1] = l;
2c8cdd6e 5045
53b381b3
DW
5046 again = 1;
5047 }
5048 }
5049 }
5050}
5051
6e9606d2
ZL
5052static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5053{
5054 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5055 /* the size of the btrfs_bio */
6e9606d2 5056 sizeof(struct btrfs_bio) +
e57cf21e 5057 /* plus the variable array for the stripes */
6e9606d2 5058 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5059 /* plus the variable array for the tgt dev */
6e9606d2 5060 sizeof(int) * (real_stripes) +
e57cf21e
CM
5061 /*
5062 * plus the raid_map, which includes both the tgt dev
5063 * and the stripes
5064 */
5065 sizeof(u64) * (total_stripes),
277fb5fc 5066 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5067
5068 atomic_set(&bbio->error, 0);
5069 atomic_set(&bbio->refs, 1);
5070
5071 return bbio;
5072}
5073
5074void btrfs_get_bbio(struct btrfs_bio *bbio)
5075{
5076 WARN_ON(!atomic_read(&bbio->refs));
5077 atomic_inc(&bbio->refs);
5078}
5079
5080void btrfs_put_bbio(struct btrfs_bio *bbio)
5081{
5082 if (!bbio)
5083 return;
5084 if (atomic_dec_and_test(&bbio->refs))
5085 kfree(bbio);
5086}
5087
3ec706c8 5088static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5089 u64 logical, u64 *length,
a1d3c478 5090 struct btrfs_bio **bbio_ret,
8e5cfb55 5091 int mirror_num, int need_raid_map)
0b86a832
CM
5092{
5093 struct extent_map *em;
5094 struct map_lookup *map;
3ec706c8 5095 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
5096 struct extent_map_tree *em_tree = &map_tree->map_tree;
5097 u64 offset;
593060d7 5098 u64 stripe_offset;
fce3bb9a 5099 u64 stripe_end_offset;
593060d7 5100 u64 stripe_nr;
fce3bb9a
LD
5101 u64 stripe_nr_orig;
5102 u64 stripe_nr_end;
53b381b3 5103 u64 stripe_len;
9d644a62 5104 u32 stripe_index;
cea9e445 5105 int i;
de11cc12 5106 int ret = 0;
f2d8d74d 5107 int num_stripes;
a236aed1 5108 int max_errors = 0;
2c8cdd6e 5109 int tgtdev_indexes = 0;
a1d3c478 5110 struct btrfs_bio *bbio = NULL;
472262f3
SB
5111 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5112 int dev_replace_is_ongoing = 0;
5113 int num_alloc_stripes;
ad6d620e
SB
5114 int patch_the_first_stripe_for_dev_replace = 0;
5115 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5116 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5117
890871be 5118 read_lock(&em_tree->lock);
0b86a832 5119 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 5120 read_unlock(&em_tree->lock);
f2d8d74d 5121
3b951516 5122 if (!em) {
c2cf52eb 5123 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 5124 logical, *length);
9bb91873
JB
5125 return -EINVAL;
5126 }
5127
5128 if (em->start > logical || em->start + em->len < logical) {
5129 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
351fd353 5130 "found %Lu-%Lu", logical, em->start,
9bb91873 5131 em->start + em->len);
7d3d1744 5132 free_extent_map(em);
9bb91873 5133 return -EINVAL;
3b951516 5134 }
0b86a832 5135
0b86a832
CM
5136 map = (struct map_lookup *)em->bdev;
5137 offset = logical - em->start;
593060d7 5138
53b381b3 5139 stripe_len = map->stripe_len;
593060d7
CM
5140 stripe_nr = offset;
5141 /*
5142 * stripe_nr counts the total number of stripes we have to stride
5143 * to get to this block
5144 */
47c5713f 5145 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5146
53b381b3 5147 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
5148 BUG_ON(offset < stripe_offset);
5149
5150 /* stripe_offset is the offset of this block in its stripe*/
5151 stripe_offset = offset - stripe_offset;
5152
53b381b3 5153 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5154 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5155 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5156 raid56_full_stripe_start = offset;
5157
5158 /* allow a write of a full stripe, but make sure we don't
5159 * allow straddling of stripes
5160 */
47c5713f
DS
5161 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5162 full_stripe_len);
53b381b3
DW
5163 raid56_full_stripe_start *= full_stripe_len;
5164 }
5165
5166 if (rw & REQ_DISCARD) {
5167 /* we don't discard raid56 yet */
ffe2d203 5168 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5169 ret = -EOPNOTSUPP;
5170 goto out;
5171 }
fce3bb9a 5172 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
5173 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5174 u64 max_len;
5175 /* For writes to RAID[56], allow a full stripeset across all disks.
5176 For other RAID types and for RAID[56] reads, just allow a single
5177 stripe (on a single disk). */
ffe2d203 5178 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
53b381b3
DW
5179 (rw & REQ_WRITE)) {
5180 max_len = stripe_len * nr_data_stripes(map) -
5181 (offset - raid56_full_stripe_start);
5182 } else {
5183 /* we limit the length of each bio to what fits in a stripe */
5184 max_len = stripe_len - stripe_offset;
5185 }
5186 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5187 } else {
5188 *length = em->len - offset;
5189 }
f2d8d74d 5190
53b381b3
DW
5191 /* This is for when we're called from btrfs_merge_bio_hook() and all
5192 it cares about is the length */
a1d3c478 5193 if (!bbio_ret)
cea9e445
CM
5194 goto out;
5195
472262f3
SB
5196 btrfs_dev_replace_lock(dev_replace);
5197 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5198 if (!dev_replace_is_ongoing)
5199 btrfs_dev_replace_unlock(dev_replace);
5200
ad6d620e
SB
5201 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5202 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5203 dev_replace->tgtdev != NULL) {
5204 /*
5205 * in dev-replace case, for repair case (that's the only
5206 * case where the mirror is selected explicitly when
5207 * calling btrfs_map_block), blocks left of the left cursor
5208 * can also be read from the target drive.
5209 * For REQ_GET_READ_MIRRORS, the target drive is added as
5210 * the last one to the array of stripes. For READ, it also
5211 * needs to be supported using the same mirror number.
5212 * If the requested block is not left of the left cursor,
5213 * EIO is returned. This can happen because btrfs_num_copies()
5214 * returns one more in the dev-replace case.
5215 */
5216 u64 tmp_length = *length;
5217 struct btrfs_bio *tmp_bbio = NULL;
5218 int tmp_num_stripes;
5219 u64 srcdev_devid = dev_replace->srcdev->devid;
5220 int index_srcdev = 0;
5221 int found = 0;
5222 u64 physical_of_found = 0;
5223
5224 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
8e5cfb55 5225 logical, &tmp_length, &tmp_bbio, 0, 0);
ad6d620e
SB
5226 if (ret) {
5227 WARN_ON(tmp_bbio != NULL);
5228 goto out;
5229 }
5230
5231 tmp_num_stripes = tmp_bbio->num_stripes;
5232 if (mirror_num > tmp_num_stripes) {
5233 /*
5234 * REQ_GET_READ_MIRRORS does not contain this
5235 * mirror, that means that the requested area
5236 * is not left of the left cursor
5237 */
5238 ret = -EIO;
6e9606d2 5239 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5240 goto out;
5241 }
5242
5243 /*
5244 * process the rest of the function using the mirror_num
5245 * of the source drive. Therefore look it up first.
5246 * At the end, patch the device pointer to the one of the
5247 * target drive.
5248 */
5249 for (i = 0; i < tmp_num_stripes; i++) {
5250 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5251 /*
5252 * In case of DUP, in order to keep it
5253 * simple, only add the mirror with the
5254 * lowest physical address
5255 */
5256 if (found &&
5257 physical_of_found <=
5258 tmp_bbio->stripes[i].physical)
5259 continue;
5260 index_srcdev = i;
5261 found = 1;
5262 physical_of_found =
5263 tmp_bbio->stripes[i].physical;
5264 }
5265 }
5266
5267 if (found) {
5268 mirror_num = index_srcdev + 1;
5269 patch_the_first_stripe_for_dev_replace = 1;
5270 physical_to_patch_in_first_stripe = physical_of_found;
5271 } else {
5272 WARN_ON(1);
5273 ret = -EIO;
6e9606d2 5274 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5275 goto out;
5276 }
5277
6e9606d2 5278 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5279 } else if (mirror_num > map->num_stripes) {
5280 mirror_num = 0;
5281 }
5282
f2d8d74d 5283 num_stripes = 1;
cea9e445 5284 stripe_index = 0;
fce3bb9a 5285 stripe_nr_orig = stripe_nr;
fda2832f 5286 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
b8b93add 5287 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
fce3bb9a
LD
5288 stripe_end_offset = stripe_nr_end * map->stripe_len -
5289 (offset + *length);
53b381b3 5290
fce3bb9a
LD
5291 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5292 if (rw & REQ_DISCARD)
5293 num_stripes = min_t(u64, map->num_stripes,
5294 stripe_nr_end - stripe_nr_orig);
47c5713f
DS
5295 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5296 &stripe_index);
28e1cc7d
MX
5297 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5298 mirror_num = 1;
fce3bb9a 5299 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 5300 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 5301 num_stripes = map->num_stripes;
2fff734f 5302 else if (mirror_num)
f188591e 5303 stripe_index = mirror_num - 1;
dfe25020 5304 else {
30d9861f 5305 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5306 map->num_stripes,
30d9861f
SB
5307 current->pid % map->num_stripes,
5308 dev_replace_is_ongoing);
a1d3c478 5309 mirror_num = stripe_index + 1;
dfe25020 5310 }
2fff734f 5311
611f0e00 5312 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 5313 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 5314 num_stripes = map->num_stripes;
a1d3c478 5315 } else if (mirror_num) {
f188591e 5316 stripe_index = mirror_num - 1;
a1d3c478
JS
5317 } else {
5318 mirror_num = 1;
5319 }
2fff734f 5320
321aecc6 5321 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5322 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5323
47c5713f 5324 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5325 stripe_index *= map->sub_stripes;
5326
29a8d9a0 5327 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 5328 num_stripes = map->sub_stripes;
fce3bb9a
LD
5329 else if (rw & REQ_DISCARD)
5330 num_stripes = min_t(u64, map->sub_stripes *
5331 (stripe_nr_end - stripe_nr_orig),
5332 map->num_stripes);
321aecc6
CM
5333 else if (mirror_num)
5334 stripe_index += mirror_num - 1;
dfe25020 5335 else {
3e74317a 5336 int old_stripe_index = stripe_index;
30d9861f
SB
5337 stripe_index = find_live_mirror(fs_info, map,
5338 stripe_index,
dfe25020 5339 map->sub_stripes, stripe_index +
30d9861f
SB
5340 current->pid % map->sub_stripes,
5341 dev_replace_is_ongoing);
3e74317a 5342 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5343 }
53b381b3 5344
ffe2d203 5345 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5346 if (need_raid_map &&
af8e2d1d
MX
5347 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5348 mirror_num > 1)) {
53b381b3 5349 /* push stripe_nr back to the start of the full stripe */
b8b93add
DS
5350 stripe_nr = div_u64(raid56_full_stripe_start,
5351 stripe_len * nr_data_stripes(map));
53b381b3
DW
5352
5353 /* RAID[56] write or recovery. Return all stripes */
5354 num_stripes = map->num_stripes;
5355 max_errors = nr_parity_stripes(map);
5356
53b381b3
DW
5357 *length = map->stripe_len;
5358 stripe_index = 0;
5359 stripe_offset = 0;
5360 } else {
5361 /*
5362 * Mirror #0 or #1 means the original data block.
5363 * Mirror #2 is RAID5 parity block.
5364 * Mirror #3 is RAID6 Q block.
5365 */
47c5713f
DS
5366 stripe_nr = div_u64_rem(stripe_nr,
5367 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5368 if (mirror_num > 1)
5369 stripe_index = nr_data_stripes(map) +
5370 mirror_num - 2;
5371
5372 /* We distribute the parity blocks across stripes */
47c5713f
DS
5373 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5374 &stripe_index);
28e1cc7d
MX
5375 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5376 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5377 mirror_num = 1;
53b381b3 5378 }
8790d502
CM
5379 } else {
5380 /*
47c5713f
DS
5381 * after this, stripe_nr is the number of stripes on this
5382 * device we have to walk to find the data, and stripe_index is
5383 * the number of our device in the stripe array
8790d502 5384 */
47c5713f
DS
5385 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5386 &stripe_index);
a1d3c478 5387 mirror_num = stripe_index + 1;
8790d502 5388 }
593060d7 5389 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 5390
472262f3 5391 num_alloc_stripes = num_stripes;
ad6d620e
SB
5392 if (dev_replace_is_ongoing) {
5393 if (rw & (REQ_WRITE | REQ_DISCARD))
5394 num_alloc_stripes <<= 1;
5395 if (rw & REQ_GET_READ_MIRRORS)
5396 num_alloc_stripes++;
2c8cdd6e 5397 tgtdev_indexes = num_stripes;
ad6d620e 5398 }
2c8cdd6e 5399
6e9606d2 5400 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5401 if (!bbio) {
5402 ret = -ENOMEM;
5403 goto out;
5404 }
2c8cdd6e
MX
5405 if (dev_replace_is_ongoing)
5406 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5407
8e5cfb55 5408 /* build raid_map */
ffe2d203 5409 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
8e5cfb55
ZL
5410 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5411 mirror_num > 1)) {
5412 u64 tmp;
9d644a62 5413 unsigned rot;
8e5cfb55
ZL
5414
5415 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5416 sizeof(struct btrfs_bio_stripe) *
5417 num_alloc_stripes +
5418 sizeof(int) * tgtdev_indexes);
5419
5420 /* Work out the disk rotation on this stripe-set */
47c5713f 5421 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5422
5423 /* Fill in the logical address of each stripe */
5424 tmp = stripe_nr * nr_data_stripes(map);
5425 for (i = 0; i < nr_data_stripes(map); i++)
5426 bbio->raid_map[(i+rot) % num_stripes] =
5427 em->start + (tmp + i) * map->stripe_len;
5428
5429 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5430 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5431 bbio->raid_map[(i+rot+1) % num_stripes] =
5432 RAID6_Q_STRIPE;
5433 }
5434
fce3bb9a 5435 if (rw & REQ_DISCARD) {
9d644a62
DS
5436 u32 factor = 0;
5437 u32 sub_stripes = 0;
ec9ef7a1
LZ
5438 u64 stripes_per_dev = 0;
5439 u32 remaining_stripes = 0;
b89203f7 5440 u32 last_stripe = 0;
ec9ef7a1
LZ
5441
5442 if (map->type &
5443 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5444 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5445 sub_stripes = 1;
5446 else
5447 sub_stripes = map->sub_stripes;
5448
5449 factor = map->num_stripes / sub_stripes;
5450 stripes_per_dev = div_u64_rem(stripe_nr_end -
5451 stripe_nr_orig,
5452 factor,
5453 &remaining_stripes);
b89203f7
LB
5454 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5455 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5456 }
5457
fce3bb9a 5458 for (i = 0; i < num_stripes; i++) {
a1d3c478 5459 bbio->stripes[i].physical =
f2d8d74d
CM
5460 map->stripes[stripe_index].physical +
5461 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5462 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5463
ec9ef7a1
LZ
5464 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5465 BTRFS_BLOCK_GROUP_RAID10)) {
5466 bbio->stripes[i].length = stripes_per_dev *
5467 map->stripe_len;
b89203f7 5468
ec9ef7a1
LZ
5469 if (i / sub_stripes < remaining_stripes)
5470 bbio->stripes[i].length +=
5471 map->stripe_len;
b89203f7
LB
5472
5473 /*
5474 * Special for the first stripe and
5475 * the last stripe:
5476 *
5477 * |-------|...|-------|
5478 * |----------|
5479 * off end_off
5480 */
ec9ef7a1 5481 if (i < sub_stripes)
a1d3c478 5482 bbio->stripes[i].length -=
fce3bb9a 5483 stripe_offset;
b89203f7
LB
5484
5485 if (stripe_index >= last_stripe &&
5486 stripe_index <= (last_stripe +
5487 sub_stripes - 1))
a1d3c478 5488 bbio->stripes[i].length -=
fce3bb9a 5489 stripe_end_offset;
b89203f7 5490
ec9ef7a1
LZ
5491 if (i == sub_stripes - 1)
5492 stripe_offset = 0;
fce3bb9a 5493 } else
a1d3c478 5494 bbio->stripes[i].length = *length;
fce3bb9a
LD
5495
5496 stripe_index++;
5497 if (stripe_index == map->num_stripes) {
5498 /* This could only happen for RAID0/10 */
5499 stripe_index = 0;
5500 stripe_nr++;
5501 }
5502 }
5503 } else {
5504 for (i = 0; i < num_stripes; i++) {
a1d3c478 5505 bbio->stripes[i].physical =
212a17ab
LT
5506 map->stripes[stripe_index].physical +
5507 stripe_offset +
5508 stripe_nr * map->stripe_len;
a1d3c478 5509 bbio->stripes[i].dev =
212a17ab 5510 map->stripes[stripe_index].dev;
fce3bb9a 5511 stripe_index++;
f2d8d74d 5512 }
593060d7 5513 }
de11cc12 5514
d20983b4
MX
5515 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5516 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5517
8e5cfb55
ZL
5518 if (bbio->raid_map)
5519 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5520
2c8cdd6e 5521 tgtdev_indexes = 0;
472262f3
SB
5522 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5523 dev_replace->tgtdev != NULL) {
5524 int index_where_to_add;
5525 u64 srcdev_devid = dev_replace->srcdev->devid;
5526
5527 /*
5528 * duplicate the write operations while the dev replace
5529 * procedure is running. Since the copying of the old disk
5530 * to the new disk takes place at run time while the
5531 * filesystem is mounted writable, the regular write
5532 * operations to the old disk have to be duplicated to go
5533 * to the new disk as well.
5534 * Note that device->missing is handled by the caller, and
5535 * that the write to the old disk is already set up in the
5536 * stripes array.
5537 */
5538 index_where_to_add = num_stripes;
5539 for (i = 0; i < num_stripes; i++) {
5540 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5541 /* write to new disk, too */
5542 struct btrfs_bio_stripe *new =
5543 bbio->stripes + index_where_to_add;
5544 struct btrfs_bio_stripe *old =
5545 bbio->stripes + i;
5546
5547 new->physical = old->physical;
5548 new->length = old->length;
5549 new->dev = dev_replace->tgtdev;
2c8cdd6e 5550 bbio->tgtdev_map[i] = index_where_to_add;
472262f3
SB
5551 index_where_to_add++;
5552 max_errors++;
2c8cdd6e 5553 tgtdev_indexes++;
472262f3
SB
5554 }
5555 }
5556 num_stripes = index_where_to_add;
ad6d620e
SB
5557 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5558 dev_replace->tgtdev != NULL) {
5559 u64 srcdev_devid = dev_replace->srcdev->devid;
5560 int index_srcdev = 0;
5561 int found = 0;
5562 u64 physical_of_found = 0;
5563
5564 /*
5565 * During the dev-replace procedure, the target drive can
5566 * also be used to read data in case it is needed to repair
5567 * a corrupt block elsewhere. This is possible if the
5568 * requested area is left of the left cursor. In this area,
5569 * the target drive is a full copy of the source drive.
5570 */
5571 for (i = 0; i < num_stripes; i++) {
5572 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5573 /*
5574 * In case of DUP, in order to keep it
5575 * simple, only add the mirror with the
5576 * lowest physical address
5577 */
5578 if (found &&
5579 physical_of_found <=
5580 bbio->stripes[i].physical)
5581 continue;
5582 index_srcdev = i;
5583 found = 1;
5584 physical_of_found = bbio->stripes[i].physical;
5585 }
5586 }
5587 if (found) {
258ece02 5588 if (physical_of_found + map->stripe_len <=
ad6d620e
SB
5589 dev_replace->cursor_left) {
5590 struct btrfs_bio_stripe *tgtdev_stripe =
5591 bbio->stripes + num_stripes;
5592
5593 tgtdev_stripe->physical = physical_of_found;
5594 tgtdev_stripe->length =
5595 bbio->stripes[index_srcdev].length;
5596 tgtdev_stripe->dev = dev_replace->tgtdev;
2c8cdd6e 5597 bbio->tgtdev_map[index_srcdev] = num_stripes;
ad6d620e 5598
2c8cdd6e 5599 tgtdev_indexes++;
ad6d620e
SB
5600 num_stripes++;
5601 }
5602 }
472262f3
SB
5603 }
5604
de11cc12 5605 *bbio_ret = bbio;
10f11900 5606 bbio->map_type = map->type;
de11cc12
LZ
5607 bbio->num_stripes = num_stripes;
5608 bbio->max_errors = max_errors;
5609 bbio->mirror_num = mirror_num;
2c8cdd6e 5610 bbio->num_tgtdevs = tgtdev_indexes;
ad6d620e
SB
5611
5612 /*
5613 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5614 * mirror_num == num_stripes + 1 && dev_replace target drive is
5615 * available as a mirror
5616 */
5617 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5618 WARN_ON(num_stripes > 1);
5619 bbio->stripes[0].dev = dev_replace->tgtdev;
5620 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5621 bbio->mirror_num = map->num_stripes + 1;
5622 }
cea9e445 5623out:
472262f3
SB
5624 if (dev_replace_is_ongoing)
5625 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5626 free_extent_map(em);
de11cc12 5627 return ret;
0b86a832
CM
5628}
5629
3ec706c8 5630int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5631 u64 logical, u64 *length,
a1d3c478 5632 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5633{
3ec706c8 5634 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5635 mirror_num, 0);
f2d8d74d
CM
5636}
5637
af8e2d1d
MX
5638/* For Scrub/replace */
5639int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5640 u64 logical, u64 *length,
5641 struct btrfs_bio **bbio_ret, int mirror_num,
8e5cfb55 5642 int need_raid_map)
af8e2d1d
MX
5643{
5644 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5645 mirror_num, need_raid_map);
af8e2d1d
MX
5646}
5647
a512bbf8
YZ
5648int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5649 u64 chunk_start, u64 physical, u64 devid,
5650 u64 **logical, int *naddrs, int *stripe_len)
5651{
5652 struct extent_map_tree *em_tree = &map_tree->map_tree;
5653 struct extent_map *em;
5654 struct map_lookup *map;
5655 u64 *buf;
5656 u64 bytenr;
5657 u64 length;
5658 u64 stripe_nr;
53b381b3 5659 u64 rmap_len;
a512bbf8
YZ
5660 int i, j, nr = 0;
5661
890871be 5662 read_lock(&em_tree->lock);
a512bbf8 5663 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5664 read_unlock(&em_tree->lock);
a512bbf8 5665
835d974f 5666 if (!em) {
efe120a0 5667 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
835d974f
JB
5668 chunk_start);
5669 return -EIO;
5670 }
5671
5672 if (em->start != chunk_start) {
efe120a0 5673 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
835d974f
JB
5674 em->start, chunk_start);
5675 free_extent_map(em);
5676 return -EIO;
5677 }
a512bbf8
YZ
5678 map = (struct map_lookup *)em->bdev;
5679
5680 length = em->len;
53b381b3
DW
5681 rmap_len = map->stripe_len;
5682
a512bbf8 5683 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5684 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5685 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5686 length = div_u64(length, map->num_stripes);
ffe2d203 5687 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5688 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5689 rmap_len = map->stripe_len * nr_data_stripes(map);
5690 }
a512bbf8 5691
31e818fe 5692 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5693 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5694
5695 for (i = 0; i < map->num_stripes; i++) {
5696 if (devid && map->stripes[i].dev->devid != devid)
5697 continue;
5698 if (map->stripes[i].physical > physical ||
5699 map->stripes[i].physical + length <= physical)
5700 continue;
5701
5702 stripe_nr = physical - map->stripes[i].physical;
b8b93add 5703 stripe_nr = div_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5704
5705 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5706 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5707 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5708 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5709 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5710 } /* else if RAID[56], multiply by nr_data_stripes().
5711 * Alternatively, just use rmap_len below instead of
5712 * map->stripe_len */
5713
5714 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5715 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5716 for (j = 0; j < nr; j++) {
5717 if (buf[j] == bytenr)
5718 break;
5719 }
934d375b
CM
5720 if (j == nr) {
5721 WARN_ON(nr >= map->num_stripes);
a512bbf8 5722 buf[nr++] = bytenr;
934d375b 5723 }
a512bbf8
YZ
5724 }
5725
a512bbf8
YZ
5726 *logical = buf;
5727 *naddrs = nr;
53b381b3 5728 *stripe_len = rmap_len;
a512bbf8
YZ
5729
5730 free_extent_map(em);
5731 return 0;
f2d8d74d
CM
5732}
5733
4246a0b6 5734static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 5735{
326e1dbb
MS
5736 bio->bi_private = bbio->private;
5737 bio->bi_end_io = bbio->end_io;
4246a0b6 5738 bio_endio(bio);
326e1dbb 5739
6e9606d2 5740 btrfs_put_bbio(bbio);
8408c716
MX
5741}
5742
4246a0b6 5743static void btrfs_end_bio(struct bio *bio)
8790d502 5744{
9be3395b 5745 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5746 int is_orig_bio = 0;
8790d502 5747
4246a0b6 5748 if (bio->bi_error) {
a1d3c478 5749 atomic_inc(&bbio->error);
4246a0b6 5750 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
442a4f63 5751 unsigned int stripe_index =
9be3395b 5752 btrfs_io_bio(bio)->stripe_index;
65f53338 5753 struct btrfs_device *dev;
442a4f63
SB
5754
5755 BUG_ON(stripe_index >= bbio->num_stripes);
5756 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5757 if (dev->bdev) {
5758 if (bio->bi_rw & WRITE)
5759 btrfs_dev_stat_inc(dev,
5760 BTRFS_DEV_STAT_WRITE_ERRS);
5761 else
5762 btrfs_dev_stat_inc(dev,
5763 BTRFS_DEV_STAT_READ_ERRS);
5764 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5765 btrfs_dev_stat_inc(dev,
5766 BTRFS_DEV_STAT_FLUSH_ERRS);
5767 btrfs_dev_stat_print_on_error(dev);
5768 }
442a4f63
SB
5769 }
5770 }
8790d502 5771
a1d3c478 5772 if (bio == bbio->orig_bio)
7d2b4daa
CM
5773 is_orig_bio = 1;
5774
c404e0dc
MX
5775 btrfs_bio_counter_dec(bbio->fs_info);
5776
a1d3c478 5777 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5778 if (!is_orig_bio) {
5779 bio_put(bio);
a1d3c478 5780 bio = bbio->orig_bio;
7d2b4daa 5781 }
c7b22bb1 5782
9be3395b 5783 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5784 /* only send an error to the higher layers if it is
53b381b3 5785 * beyond the tolerance of the btrfs bio
a236aed1 5786 */
a1d3c478 5787 if (atomic_read(&bbio->error) > bbio->max_errors) {
4246a0b6 5788 bio->bi_error = -EIO;
5dbc8fca 5789 } else {
1259ab75
CM
5790 /*
5791 * this bio is actually up to date, we didn't
5792 * go over the max number of errors
5793 */
4246a0b6 5794 bio->bi_error = 0;
1259ab75 5795 }
c55f1396 5796
4246a0b6 5797 btrfs_end_bbio(bbio, bio);
7d2b4daa 5798 } else if (!is_orig_bio) {
8790d502
CM
5799 bio_put(bio);
5800 }
8790d502
CM
5801}
5802
8b712842
CM
5803/*
5804 * see run_scheduled_bios for a description of why bios are collected for
5805 * async submit.
5806 *
5807 * This will add one bio to the pending list for a device and make sure
5808 * the work struct is scheduled.
5809 */
48a3b636
ES
5810static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5811 struct btrfs_device *device,
5812 int rw, struct bio *bio)
8b712842
CM
5813{
5814 int should_queue = 1;
ffbd517d 5815 struct btrfs_pending_bios *pending_bios;
8b712842 5816
53b381b3 5817 if (device->missing || !device->bdev) {
4246a0b6 5818 bio_io_error(bio);
53b381b3
DW
5819 return;
5820 }
5821
8b712842 5822 /* don't bother with additional async steps for reads, right now */
7b6d91da 5823 if (!(rw & REQ_WRITE)) {
492bb6de 5824 bio_get(bio);
21adbd5c 5825 btrfsic_submit_bio(rw, bio);
492bb6de 5826 bio_put(bio);
143bede5 5827 return;
8b712842
CM
5828 }
5829
5830 /*
0986fe9e 5831 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5832 * higher layers. Otherwise, the async bio makes it appear we have
5833 * made progress against dirty pages when we've really just put it
5834 * on a queue for later
5835 */
0986fe9e 5836 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5837 WARN_ON(bio->bi_next);
8b712842
CM
5838 bio->bi_next = NULL;
5839 bio->bi_rw |= rw;
5840
5841 spin_lock(&device->io_lock);
7b6d91da 5842 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5843 pending_bios = &device->pending_sync_bios;
5844 else
5845 pending_bios = &device->pending_bios;
8b712842 5846
ffbd517d
CM
5847 if (pending_bios->tail)
5848 pending_bios->tail->bi_next = bio;
8b712842 5849
ffbd517d
CM
5850 pending_bios->tail = bio;
5851 if (!pending_bios->head)
5852 pending_bios->head = bio;
8b712842
CM
5853 if (device->running_pending)
5854 should_queue = 0;
5855
5856 spin_unlock(&device->io_lock);
5857
5858 if (should_queue)
a8c93d4e
QW
5859 btrfs_queue_work(root->fs_info->submit_workers,
5860 &device->work);
8b712842
CM
5861}
5862
de1ee92a
JB
5863static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5864 struct bio *bio, u64 physical, int dev_nr,
5865 int rw, int async)
5866{
5867 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5868
5869 bio->bi_private = bbio;
9be3395b 5870 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 5871 bio->bi_end_io = btrfs_end_bio;
4f024f37 5872 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
5873#ifdef DEBUG
5874 {
5875 struct rcu_string *name;
5876
5877 rcu_read_lock();
5878 name = rcu_dereference(dev->name);
d1423248 5879 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a 5880 "(%s id %llu), size=%u\n", rw,
1b6e4469
FF
5881 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5882 name->str, dev->devid, bio->bi_iter.bi_size);
de1ee92a
JB
5883 rcu_read_unlock();
5884 }
5885#endif
5886 bio->bi_bdev = dev->bdev;
c404e0dc
MX
5887
5888 btrfs_bio_counter_inc_noblocked(root->fs_info);
5889
de1ee92a 5890 if (async)
53b381b3 5891 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5892 else
5893 btrfsic_submit_bio(rw, bio);
5894}
5895
de1ee92a
JB
5896static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5897{
5898 atomic_inc(&bbio->error);
5899 if (atomic_dec_and_test(&bbio->stripes_pending)) {
8408c716
MX
5900 /* Shoud be the original bio. */
5901 WARN_ON(bio != bbio->orig_bio);
5902
9be3395b 5903 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 5904 bio->bi_iter.bi_sector = logical >> 9;
4246a0b6
CH
5905 bio->bi_error = -EIO;
5906 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
5907 }
5908}
5909
f188591e 5910int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5911 int mirror_num, int async_submit)
0b86a832 5912{
0b86a832 5913 struct btrfs_device *dev;
8790d502 5914 struct bio *first_bio = bio;
4f024f37 5915 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
5916 u64 length = 0;
5917 u64 map_length;
0b86a832 5918 int ret;
08da757d
ZL
5919 int dev_nr;
5920 int total_devs;
a1d3c478 5921 struct btrfs_bio *bbio = NULL;
0b86a832 5922
4f024f37 5923 length = bio->bi_iter.bi_size;
0b86a832 5924 map_length = length;
cea9e445 5925
c404e0dc 5926 btrfs_bio_counter_inc_blocked(root->fs_info);
53b381b3 5927 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
8e5cfb55 5928 mirror_num, 1);
c404e0dc
MX
5929 if (ret) {
5930 btrfs_bio_counter_dec(root->fs_info);
79787eaa 5931 return ret;
c404e0dc 5932 }
cea9e445 5933
a1d3c478 5934 total_devs = bbio->num_stripes;
53b381b3
DW
5935 bbio->orig_bio = first_bio;
5936 bbio->private = first_bio->bi_private;
5937 bbio->end_io = first_bio->bi_end_io;
c404e0dc 5938 bbio->fs_info = root->fs_info;
53b381b3
DW
5939 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5940
8e5cfb55 5941 if (bbio->raid_map) {
53b381b3
DW
5942 /* In this case, map_length has been set to the length of
5943 a single stripe; not the whole write */
5944 if (rw & WRITE) {
8e5cfb55 5945 ret = raid56_parity_write(root, bio, bbio, map_length);
53b381b3 5946 } else {
8e5cfb55 5947 ret = raid56_parity_recover(root, bio, bbio, map_length,
4245215d 5948 mirror_num, 1);
53b381b3 5949 }
4245215d 5950
c404e0dc
MX
5951 btrfs_bio_counter_dec(root->fs_info);
5952 return ret;
53b381b3
DW
5953 }
5954
cea9e445 5955 if (map_length < length) {
c2cf52eb 5956 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 5957 logical, length, map_length);
cea9e445
CM
5958 BUG();
5959 }
a1d3c478 5960
08da757d 5961 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a
JB
5962 dev = bbio->stripes[dev_nr].dev;
5963 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5964 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
5965 continue;
5966 }
5967
a1d3c478 5968 if (dev_nr < total_devs - 1) {
9be3395b 5969 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 5970 BUG_ON(!bio); /* -ENOMEM */
326e1dbb 5971 } else
a1d3c478 5972 bio = first_bio;
de1ee92a
JB
5973
5974 submit_stripe_bio(root, bbio, bio,
5975 bbio->stripes[dev_nr].physical, dev_nr, rw,
5976 async_submit);
8790d502 5977 }
c404e0dc 5978 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
5979 return 0;
5980}
5981
aa1b8cd4 5982struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 5983 u8 *uuid, u8 *fsid)
0b86a832 5984{
2b82032c
YZ
5985 struct btrfs_device *device;
5986 struct btrfs_fs_devices *cur_devices;
5987
aa1b8cd4 5988 cur_devices = fs_info->fs_devices;
2b82032c
YZ
5989 while (cur_devices) {
5990 if (!fsid ||
5991 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5992 device = __find_device(&cur_devices->devices,
5993 devid, uuid);
5994 if (device)
5995 return device;
5996 }
5997 cur_devices = cur_devices->seed;
5998 }
5999 return NULL;
0b86a832
CM
6000}
6001
dfe25020 6002static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5f375835 6003 struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6004 u64 devid, u8 *dev_uuid)
6005{
6006 struct btrfs_device *device;
dfe25020 6007
12bd2fc0
ID
6008 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6009 if (IS_ERR(device))
7cbd8a83 6010 return NULL;
12bd2fc0
ID
6011
6012 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6013 device->fs_devices = fs_devices;
dfe25020 6014 fs_devices->num_devices++;
12bd2fc0
ID
6015
6016 device->missing = 1;
cd02dca5 6017 fs_devices->missing_devices++;
12bd2fc0 6018
dfe25020
CM
6019 return device;
6020}
6021
12bd2fc0
ID
6022/**
6023 * btrfs_alloc_device - allocate struct btrfs_device
6024 * @fs_info: used only for generating a new devid, can be NULL if
6025 * devid is provided (i.e. @devid != NULL).
6026 * @devid: a pointer to devid for this device. If NULL a new devid
6027 * is generated.
6028 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6029 * is generated.
6030 *
6031 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6032 * on error. Returned struct is not linked onto any lists and can be
6033 * destroyed with kfree() right away.
6034 */
6035struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6036 const u64 *devid,
6037 const u8 *uuid)
6038{
6039 struct btrfs_device *dev;
6040 u64 tmp;
6041
fae7f21c 6042 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6043 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6044
6045 dev = __alloc_device();
6046 if (IS_ERR(dev))
6047 return dev;
6048
6049 if (devid)
6050 tmp = *devid;
6051 else {
6052 int ret;
6053
6054 ret = find_next_devid(fs_info, &tmp);
6055 if (ret) {
6056 kfree(dev);
6057 return ERR_PTR(ret);
6058 }
6059 }
6060 dev->devid = tmp;
6061
6062 if (uuid)
6063 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6064 else
6065 generate_random_uuid(dev->uuid);
6066
9e0af237
LB
6067 btrfs_init_work(&dev->work, btrfs_submit_helper,
6068 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6069
6070 return dev;
6071}
6072
0b86a832
CM
6073static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6074 struct extent_buffer *leaf,
6075 struct btrfs_chunk *chunk)
6076{
6077 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6078 struct map_lookup *map;
6079 struct extent_map *em;
6080 u64 logical;
6081 u64 length;
6082 u64 devid;
a443755f 6083 u8 uuid[BTRFS_UUID_SIZE];
593060d7 6084 int num_stripes;
0b86a832 6085 int ret;
593060d7 6086 int i;
0b86a832 6087
e17cade2
CM
6088 logical = key->offset;
6089 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 6090
890871be 6091 read_lock(&map_tree->map_tree.lock);
0b86a832 6092 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6093 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6094
6095 /* already mapped? */
6096 if (em && em->start <= logical && em->start + em->len > logical) {
6097 free_extent_map(em);
0b86a832
CM
6098 return 0;
6099 } else if (em) {
6100 free_extent_map(em);
6101 }
0b86a832 6102
172ddd60 6103 em = alloc_extent_map();
0b86a832
CM
6104 if (!em)
6105 return -ENOMEM;
593060d7
CM
6106 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6107 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6108 if (!map) {
6109 free_extent_map(em);
6110 return -ENOMEM;
6111 }
6112
298a8f9c 6113 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
0b86a832
CM
6114 em->bdev = (struct block_device *)map;
6115 em->start = logical;
6116 em->len = length;
70c8a91c 6117 em->orig_start = 0;
0b86a832 6118 em->block_start = 0;
c8b97818 6119 em->block_len = em->len;
0b86a832 6120
593060d7
CM
6121 map->num_stripes = num_stripes;
6122 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6123 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6124 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6125 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6126 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6127 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6128 for (i = 0; i < num_stripes; i++) {
6129 map->stripes[i].physical =
6130 btrfs_stripe_offset_nr(leaf, chunk, i);
6131 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6132 read_extent_buffer(leaf, uuid, (unsigned long)
6133 btrfs_stripe_dev_uuid_nr(chunk, i),
6134 BTRFS_UUID_SIZE);
aa1b8cd4
SB
6135 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6136 uuid, NULL);
dfe25020 6137 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
6138 free_extent_map(em);
6139 return -EIO;
6140 }
dfe25020
CM
6141 if (!map->stripes[i].dev) {
6142 map->stripes[i].dev =
5f375835
MX
6143 add_missing_dev(root, root->fs_info->fs_devices,
6144 devid, uuid);
dfe25020 6145 if (!map->stripes[i].dev) {
dfe25020
CM
6146 free_extent_map(em);
6147 return -EIO;
6148 }
816fcebe
AJ
6149 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6150 devid, uuid);
dfe25020
CM
6151 }
6152 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6153 }
6154
890871be 6155 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6156 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6157 write_unlock(&map_tree->map_tree.lock);
79787eaa 6158 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6159 free_extent_map(em);
6160
6161 return 0;
6162}
6163
143bede5 6164static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6165 struct btrfs_dev_item *dev_item,
6166 struct btrfs_device *device)
6167{
6168 unsigned long ptr;
0b86a832
CM
6169
6170 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6171 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6172 device->total_bytes = device->disk_total_bytes;
935e5cc9 6173 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6174 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6175 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6176 device->type = btrfs_device_type(leaf, dev_item);
6177 device->io_align = btrfs_device_io_align(leaf, dev_item);
6178 device->io_width = btrfs_device_io_width(leaf, dev_item);
6179 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6180 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6181 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6182
410ba3a2 6183 ptr = btrfs_device_uuid(dev_item);
e17cade2 6184 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6185}
6186
5f375835
MX
6187static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6188 u8 *fsid)
2b82032c
YZ
6189{
6190 struct btrfs_fs_devices *fs_devices;
6191 int ret;
6192
b367e47f 6193 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
6194
6195 fs_devices = root->fs_info->fs_devices->seed;
6196 while (fs_devices) {
5f375835
MX
6197 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6198 return fs_devices;
6199
2b82032c
YZ
6200 fs_devices = fs_devices->seed;
6201 }
6202
6203 fs_devices = find_fsid(fsid);
6204 if (!fs_devices) {
5f375835
MX
6205 if (!btrfs_test_opt(root, DEGRADED))
6206 return ERR_PTR(-ENOENT);
6207
6208 fs_devices = alloc_fs_devices(fsid);
6209 if (IS_ERR(fs_devices))
6210 return fs_devices;
6211
6212 fs_devices->seeding = 1;
6213 fs_devices->opened = 1;
6214 return fs_devices;
2b82032c 6215 }
e4404d6e
YZ
6216
6217 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6218 if (IS_ERR(fs_devices))
6219 return fs_devices;
2b82032c 6220
97288f2c 6221 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 6222 root->fs_info->bdev_holder);
48d28232
JL
6223 if (ret) {
6224 free_fs_devices(fs_devices);
5f375835 6225 fs_devices = ERR_PTR(ret);
2b82032c 6226 goto out;
48d28232 6227 }
2b82032c
YZ
6228
6229 if (!fs_devices->seeding) {
6230 __btrfs_close_devices(fs_devices);
e4404d6e 6231 free_fs_devices(fs_devices);
5f375835 6232 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6233 goto out;
6234 }
6235
6236 fs_devices->seed = root->fs_info->fs_devices->seed;
6237 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 6238out:
5f375835 6239 return fs_devices;
2b82032c
YZ
6240}
6241
0d81ba5d 6242static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
6243 struct extent_buffer *leaf,
6244 struct btrfs_dev_item *dev_item)
6245{
5f375835 6246 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
0b86a832
CM
6247 struct btrfs_device *device;
6248 u64 devid;
6249 int ret;
2b82032c 6250 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6251 u8 dev_uuid[BTRFS_UUID_SIZE];
6252
0b86a832 6253 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6254 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6255 BTRFS_UUID_SIZE);
1473b24e 6256 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6257 BTRFS_UUID_SIZE);
6258
6259 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5f375835
MX
6260 fs_devices = open_seed_devices(root, fs_uuid);
6261 if (IS_ERR(fs_devices))
6262 return PTR_ERR(fs_devices);
2b82032c
YZ
6263 }
6264
aa1b8cd4 6265 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5f375835 6266 if (!device) {
e4404d6e 6267 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
6268 return -EIO;
6269
5f375835
MX
6270 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6271 if (!device)
6272 return -ENOMEM;
33b97e43
AJ
6273 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6274 devid, dev_uuid);
5f375835
MX
6275 } else {
6276 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6277 return -EIO;
6278
6279 if(!device->bdev && !device->missing) {
cd02dca5
CM
6280 /*
6281 * this happens when a device that was properly setup
6282 * in the device info lists suddenly goes bad.
6283 * device->bdev is NULL, and so we have to set
6284 * device->missing to one here
6285 */
5f375835 6286 device->fs_devices->missing_devices++;
cd02dca5 6287 device->missing = 1;
2b82032c 6288 }
5f375835
MX
6289
6290 /* Move the device to its own fs_devices */
6291 if (device->fs_devices != fs_devices) {
6292 ASSERT(device->missing);
6293
6294 list_move(&device->dev_list, &fs_devices->devices);
6295 device->fs_devices->num_devices--;
6296 fs_devices->num_devices++;
6297
6298 device->fs_devices->missing_devices--;
6299 fs_devices->missing_devices++;
6300
6301 device->fs_devices = fs_devices;
6302 }
2b82032c
YZ
6303 }
6304
6305 if (device->fs_devices != root->fs_info->fs_devices) {
6306 BUG_ON(device->writeable);
6307 if (device->generation !=
6308 btrfs_device_generation(leaf, dev_item))
6309 return -EINVAL;
6324fbf3 6310 }
0b86a832
CM
6311
6312 fill_device_from_item(leaf, dev_item, device);
dfe25020 6313 device->in_fs_metadata = 1;
63a212ab 6314 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6315 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
6316 spin_lock(&root->fs_info->free_chunk_lock);
6317 root->fs_info->free_chunk_space += device->total_bytes -
6318 device->bytes_used;
6319 spin_unlock(&root->fs_info->free_chunk_lock);
6320 }
0b86a832 6321 ret = 0;
0b86a832
CM
6322 return ret;
6323}
6324
e4404d6e 6325int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 6326{
6c41761f 6327 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 6328 struct extent_buffer *sb;
0b86a832 6329 struct btrfs_disk_key *disk_key;
0b86a832 6330 struct btrfs_chunk *chunk;
1ffb22cf
DS
6331 u8 *array_ptr;
6332 unsigned long sb_array_offset;
84eed90f 6333 int ret = 0;
0b86a832
CM
6334 u32 num_stripes;
6335 u32 array_size;
6336 u32 len = 0;
1ffb22cf 6337 u32 cur_offset;
84eed90f 6338 struct btrfs_key key;
0b86a832 6339
a83fffb7
DS
6340 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6341 /*
6342 * This will create extent buffer of nodesize, superblock size is
6343 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6344 * overallocate but we can keep it as-is, only the first page is used.
6345 */
6346 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
a061fc8d
CM
6347 if (!sb)
6348 return -ENOMEM;
6349 btrfs_set_buffer_uptodate(sb);
85d4e461 6350 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
6351 /*
6352 * The sb extent buffer is artifical and just used to read the system array.
6353 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6354 * pages up-to-date when the page is larger: extent does not cover the
6355 * whole page and consequently check_page_uptodate does not find all
6356 * the page's extents up-to-date (the hole beyond sb),
6357 * write_extent_buffer then triggers a WARN_ON.
6358 *
6359 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6360 * but sb spans only this function. Add an explicit SetPageUptodate call
6361 * to silence the warning eg. on PowerPC 64.
6362 */
6363 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6364 SetPageUptodate(sb->pages[0]);
4008c04a 6365
a061fc8d 6366 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6367 array_size = btrfs_super_sys_array_size(super_copy);
6368
1ffb22cf
DS
6369 array_ptr = super_copy->sys_chunk_array;
6370 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6371 cur_offset = 0;
0b86a832 6372
1ffb22cf
DS
6373 while (cur_offset < array_size) {
6374 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6375 len = sizeof(*disk_key);
6376 if (cur_offset + len > array_size)
6377 goto out_short_read;
6378
0b86a832
CM
6379 btrfs_disk_key_to_cpu(&key, disk_key);
6380
1ffb22cf
DS
6381 array_ptr += len;
6382 sb_array_offset += len;
6383 cur_offset += len;
0b86a832 6384
0d81ba5d 6385 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6386 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6387 /*
6388 * At least one btrfs_chunk with one stripe must be
6389 * present, exact stripe count check comes afterwards
6390 */
6391 len = btrfs_chunk_item_size(1);
6392 if (cur_offset + len > array_size)
6393 goto out_short_read;
6394
6395 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6396 len = btrfs_chunk_item_size(num_stripes);
6397 if (cur_offset + len > array_size)
6398 goto out_short_read;
6399
0d81ba5d 6400 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6401 if (ret)
6402 break;
0b86a832 6403 } else {
84eed90f
CM
6404 ret = -EIO;
6405 break;
0b86a832 6406 }
1ffb22cf
DS
6407 array_ptr += len;
6408 sb_array_offset += len;
6409 cur_offset += len;
0b86a832 6410 }
a061fc8d 6411 free_extent_buffer(sb);
84eed90f 6412 return ret;
e3540eab
DS
6413
6414out_short_read:
6415 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6416 len, cur_offset);
6417 free_extent_buffer(sb);
6418 return -EIO;
0b86a832
CM
6419}
6420
6421int btrfs_read_chunk_tree(struct btrfs_root *root)
6422{
6423 struct btrfs_path *path;
6424 struct extent_buffer *leaf;
6425 struct btrfs_key key;
6426 struct btrfs_key found_key;
6427 int ret;
6428 int slot;
6429
6430 root = root->fs_info->chunk_root;
6431
6432 path = btrfs_alloc_path();
6433 if (!path)
6434 return -ENOMEM;
6435
b367e47f
LZ
6436 mutex_lock(&uuid_mutex);
6437 lock_chunks(root);
6438
395927a9
FDBM
6439 /*
6440 * Read all device items, and then all the chunk items. All
6441 * device items are found before any chunk item (their object id
6442 * is smaller than the lowest possible object id for a chunk
6443 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6444 */
6445 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6446 key.offset = 0;
6447 key.type = 0;
0b86a832 6448 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6449 if (ret < 0)
6450 goto error;
d397712b 6451 while (1) {
0b86a832
CM
6452 leaf = path->nodes[0];
6453 slot = path->slots[0];
6454 if (slot >= btrfs_header_nritems(leaf)) {
6455 ret = btrfs_next_leaf(root, path);
6456 if (ret == 0)
6457 continue;
6458 if (ret < 0)
6459 goto error;
6460 break;
6461 }
6462 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6463 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6464 struct btrfs_dev_item *dev_item;
6465 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6466 struct btrfs_dev_item);
395927a9
FDBM
6467 ret = read_one_dev(root, leaf, dev_item);
6468 if (ret)
6469 goto error;
0b86a832
CM
6470 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6471 struct btrfs_chunk *chunk;
6472 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6473 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6474 if (ret)
6475 goto error;
0b86a832
CM
6476 }
6477 path->slots[0]++;
6478 }
0b86a832
CM
6479 ret = 0;
6480error:
b367e47f
LZ
6481 unlock_chunks(root);
6482 mutex_unlock(&uuid_mutex);
6483
2b82032c 6484 btrfs_free_path(path);
0b86a832
CM
6485 return ret;
6486}
442a4f63 6487
cb517eab
MX
6488void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6489{
6490 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6491 struct btrfs_device *device;
6492
29cc83f6
LB
6493 while (fs_devices) {
6494 mutex_lock(&fs_devices->device_list_mutex);
6495 list_for_each_entry(device, &fs_devices->devices, dev_list)
6496 device->dev_root = fs_info->dev_root;
6497 mutex_unlock(&fs_devices->device_list_mutex);
6498
6499 fs_devices = fs_devices->seed;
6500 }
cb517eab
MX
6501}
6502
733f4fbb
SB
6503static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6504{
6505 int i;
6506
6507 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6508 btrfs_dev_stat_reset(dev, i);
6509}
6510
6511int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6512{
6513 struct btrfs_key key;
6514 struct btrfs_key found_key;
6515 struct btrfs_root *dev_root = fs_info->dev_root;
6516 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6517 struct extent_buffer *eb;
6518 int slot;
6519 int ret = 0;
6520 struct btrfs_device *device;
6521 struct btrfs_path *path = NULL;
6522 int i;
6523
6524 path = btrfs_alloc_path();
6525 if (!path) {
6526 ret = -ENOMEM;
6527 goto out;
6528 }
6529
6530 mutex_lock(&fs_devices->device_list_mutex);
6531 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6532 int item_size;
6533 struct btrfs_dev_stats_item *ptr;
6534
6535 key.objectid = 0;
6536 key.type = BTRFS_DEV_STATS_KEY;
6537 key.offset = device->devid;
6538 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6539 if (ret) {
733f4fbb
SB
6540 __btrfs_reset_dev_stats(device);
6541 device->dev_stats_valid = 1;
6542 btrfs_release_path(path);
6543 continue;
6544 }
6545 slot = path->slots[0];
6546 eb = path->nodes[0];
6547 btrfs_item_key_to_cpu(eb, &found_key, slot);
6548 item_size = btrfs_item_size_nr(eb, slot);
6549
6550 ptr = btrfs_item_ptr(eb, slot,
6551 struct btrfs_dev_stats_item);
6552
6553 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6554 if (item_size >= (1 + i) * sizeof(__le64))
6555 btrfs_dev_stat_set(device, i,
6556 btrfs_dev_stats_value(eb, ptr, i));
6557 else
6558 btrfs_dev_stat_reset(device, i);
6559 }
6560
6561 device->dev_stats_valid = 1;
6562 btrfs_dev_stat_print_on_load(device);
6563 btrfs_release_path(path);
6564 }
6565 mutex_unlock(&fs_devices->device_list_mutex);
6566
6567out:
6568 btrfs_free_path(path);
6569 return ret < 0 ? ret : 0;
6570}
6571
6572static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6573 struct btrfs_root *dev_root,
6574 struct btrfs_device *device)
6575{
6576 struct btrfs_path *path;
6577 struct btrfs_key key;
6578 struct extent_buffer *eb;
6579 struct btrfs_dev_stats_item *ptr;
6580 int ret;
6581 int i;
6582
6583 key.objectid = 0;
6584 key.type = BTRFS_DEV_STATS_KEY;
6585 key.offset = device->devid;
6586
6587 path = btrfs_alloc_path();
6588 BUG_ON(!path);
6589 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6590 if (ret < 0) {
ecaeb14b
DS
6591 btrfs_warn_in_rcu(dev_root->fs_info,
6592 "error %d while searching for dev_stats item for device %s",
606686ee 6593 ret, rcu_str_deref(device->name));
733f4fbb
SB
6594 goto out;
6595 }
6596
6597 if (ret == 0 &&
6598 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6599 /* need to delete old one and insert a new one */
6600 ret = btrfs_del_item(trans, dev_root, path);
6601 if (ret != 0) {
ecaeb14b
DS
6602 btrfs_warn_in_rcu(dev_root->fs_info,
6603 "delete too small dev_stats item for device %s failed %d",
606686ee 6604 rcu_str_deref(device->name), ret);
733f4fbb
SB
6605 goto out;
6606 }
6607 ret = 1;
6608 }
6609
6610 if (ret == 1) {
6611 /* need to insert a new item */
6612 btrfs_release_path(path);
6613 ret = btrfs_insert_empty_item(trans, dev_root, path,
6614 &key, sizeof(*ptr));
6615 if (ret < 0) {
ecaeb14b
DS
6616 btrfs_warn_in_rcu(dev_root->fs_info,
6617 "insert dev_stats item for device %s failed %d",
6618 rcu_str_deref(device->name), ret);
733f4fbb
SB
6619 goto out;
6620 }
6621 }
6622
6623 eb = path->nodes[0];
6624 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6625 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6626 btrfs_set_dev_stats_value(eb, ptr, i,
6627 btrfs_dev_stat_read(device, i));
6628 btrfs_mark_buffer_dirty(eb);
6629
6630out:
6631 btrfs_free_path(path);
6632 return ret;
6633}
6634
6635/*
6636 * called from commit_transaction. Writes all changed device stats to disk.
6637 */
6638int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6639 struct btrfs_fs_info *fs_info)
6640{
6641 struct btrfs_root *dev_root = fs_info->dev_root;
6642 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6643 struct btrfs_device *device;
addc3fa7 6644 int stats_cnt;
733f4fbb
SB
6645 int ret = 0;
6646
6647 mutex_lock(&fs_devices->device_list_mutex);
6648 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 6649 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
6650 continue;
6651
addc3fa7 6652 stats_cnt = atomic_read(&device->dev_stats_ccnt);
733f4fbb
SB
6653 ret = update_dev_stat_item(trans, dev_root, device);
6654 if (!ret)
addc3fa7 6655 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
6656 }
6657 mutex_unlock(&fs_devices->device_list_mutex);
6658
6659 return ret;
6660}
6661
442a4f63
SB
6662void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6663{
6664 btrfs_dev_stat_inc(dev, index);
6665 btrfs_dev_stat_print_on_error(dev);
6666}
6667
48a3b636 6668static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6669{
733f4fbb
SB
6670 if (!dev->dev_stats_valid)
6671 return;
b14af3b4
DS
6672 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6673 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 6674 rcu_str_deref(dev->name),
442a4f63
SB
6675 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6676 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6677 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
6678 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6679 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 6680}
c11d2c23 6681
733f4fbb
SB
6682static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6683{
a98cdb85
SB
6684 int i;
6685
6686 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6687 if (btrfs_dev_stat_read(dev, i) != 0)
6688 break;
6689 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6690 return; /* all values == 0, suppress message */
6691
ecaeb14b
DS
6692 btrfs_info_in_rcu(dev->dev_root->fs_info,
6693 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 6694 rcu_str_deref(dev->name),
733f4fbb
SB
6695 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6696 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6697 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6698 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6699 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6700}
6701
c11d2c23 6702int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6703 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6704{
6705 struct btrfs_device *dev;
6706 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6707 int i;
6708
6709 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6710 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6711 mutex_unlock(&fs_devices->device_list_mutex);
6712
6713 if (!dev) {
efe120a0 6714 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
c11d2c23 6715 return -ENODEV;
733f4fbb 6716 } else if (!dev->dev_stats_valid) {
efe120a0 6717 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
733f4fbb 6718 return -ENODEV;
b27f7c0c 6719 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6720 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6721 if (stats->nr_items > i)
6722 stats->values[i] =
6723 btrfs_dev_stat_read_and_reset(dev, i);
6724 else
6725 btrfs_dev_stat_reset(dev, i);
6726 }
6727 } else {
6728 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6729 if (stats->nr_items > i)
6730 stats->values[i] = btrfs_dev_stat_read(dev, i);
6731 }
6732 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6733 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6734 return 0;
6735}
a8a6dab7 6736
12b1c263 6737void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
a8a6dab7
SB
6738{
6739 struct buffer_head *bh;
6740 struct btrfs_super_block *disk_super;
12b1c263 6741 int copy_num;
a8a6dab7 6742
12b1c263
AJ
6743 if (!bdev)
6744 return;
a8a6dab7 6745
12b1c263
AJ
6746 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6747 copy_num++) {
a8a6dab7 6748
12b1c263
AJ
6749 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6750 continue;
6751
6752 disk_super = (struct btrfs_super_block *)bh->b_data;
6753
6754 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6755 set_buffer_dirty(bh);
6756 sync_dirty_buffer(bh);
6757 brelse(bh);
6758 }
6759
6760 /* Notify udev that device has changed */
6761 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6762
6763 /* Update ctime/mtime for device path for libblkid */
6764 update_dev_time(device_path);
a8a6dab7 6765}
935e5cc9
MX
6766
6767/*
6768 * Update the size of all devices, which is used for writing out the
6769 * super blocks.
6770 */
6771void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6772{
6773 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6774 struct btrfs_device *curr, *next;
6775
6776 if (list_empty(&fs_devices->resized_devices))
6777 return;
6778
6779 mutex_lock(&fs_devices->device_list_mutex);
6780 lock_chunks(fs_info->dev_root);
6781 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6782 resized_list) {
6783 list_del_init(&curr->resized_list);
6784 curr->commit_total_bytes = curr->disk_total_bytes;
6785 }
6786 unlock_chunks(fs_info->dev_root);
6787 mutex_unlock(&fs_devices->device_list_mutex);
6788}
ce7213c7
MX
6789
6790/* Must be invoked during the transaction commit */
6791void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6792 struct btrfs_transaction *transaction)
6793{
6794 struct extent_map *em;
6795 struct map_lookup *map;
6796 struct btrfs_device *dev;
6797 int i;
6798
6799 if (list_empty(&transaction->pending_chunks))
6800 return;
6801
6802 /* In order to kick the device replace finish process */
6803 lock_chunks(root);
6804 list_for_each_entry(em, &transaction->pending_chunks, list) {
6805 map = (struct map_lookup *)em->bdev;
6806
6807 for (i = 0; i < map->num_stripes; i++) {
6808 dev = map->stripes[i].dev;
6809 dev->commit_bytes_used = dev->bytes_used;
6810 }
6811 }
6812 unlock_chunks(root);
6813}
5a13f430
AJ
6814
6815void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6816{
6817 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6818 while (fs_devices) {
6819 fs_devices->fs_info = fs_info;
6820 fs_devices = fs_devices->seed;
6821 }
6822}
6823
6824void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6825{
6826 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6827 while (fs_devices) {
6828 fs_devices->fs_info = NULL;
6829 fs_devices = fs_devices->seed;
6830 }
6831}
f190aa47
AJ
6832
6833void btrfs_close_one_device(struct btrfs_device *device)
6834{
6835 struct btrfs_fs_devices *fs_devices = device->fs_devices;
6836 struct btrfs_device *new_device;
6837 struct rcu_string *name;
6838
6839 if (device->bdev)
6840 fs_devices->open_devices--;
6841
6842 if (device->writeable &&
6843 device->devid != BTRFS_DEV_REPLACE_DEVID) {
6844 list_del_init(&device->dev_alloc_list);
6845 fs_devices->rw_devices--;
6846 }
6847
6848 if (device->missing)
6849 fs_devices->missing_devices--;
6850
6851 new_device = btrfs_alloc_device(NULL, &device->devid,
6852 device->uuid);
6853 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
6854
6855 /* Safe because we are under uuid_mutex */
6856 if (device->name) {
6857 name = rcu_string_strdup(device->name->str, GFP_NOFS);
6858 BUG_ON(!name); /* -ENOMEM */
6859 rcu_assign_pointer(new_device->name, name);
6860 }
6861
6862 list_replace_rcu(&device->dev_list, &new_device->dev_list);
6863 new_device->fs_devices = device->fs_devices;
6864
6865 call_rcu(&device->rcu, free_device);
6866}