btrfs: add missing options displayed in mount output
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
593060d7 26#include <asm/div64.h>
4b4e25f2 27#include "compat.h"
0b86a832
CM
28#include "ctree.h"
29#include "extent_map.h"
30#include "disk-io.h"
31#include "transaction.h"
32#include "print-tree.h"
33#include "volumes.h"
8b712842 34#include "async-thread.h"
0b86a832 35
2b82032c
YZ
36static int init_first_rw_device(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct btrfs_device *device);
39static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
40
8a4b83cc
CM
41static DEFINE_MUTEX(uuid_mutex);
42static LIST_HEAD(fs_uuids);
43
7d9eb12c
CM
44static void lock_chunks(struct btrfs_root *root)
45{
7d9eb12c
CM
46 mutex_lock(&root->fs_info->chunk_mutex);
47}
48
49static void unlock_chunks(struct btrfs_root *root)
50{
7d9eb12c
CM
51 mutex_unlock(&root->fs_info->chunk_mutex);
52}
53
e4404d6e
YZ
54static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
55{
56 struct btrfs_device *device;
57 WARN_ON(fs_devices->opened);
58 while (!list_empty(&fs_devices->devices)) {
59 device = list_entry(fs_devices->devices.next,
60 struct btrfs_device, dev_list);
61 list_del(&device->dev_list);
62 kfree(device->name);
63 kfree(device);
64 }
65 kfree(fs_devices);
66}
67
8a4b83cc
CM
68int btrfs_cleanup_fs_uuids(void)
69{
70 struct btrfs_fs_devices *fs_devices;
8a4b83cc 71
2b82032c
YZ
72 while (!list_empty(&fs_uuids)) {
73 fs_devices = list_entry(fs_uuids.next,
74 struct btrfs_fs_devices, list);
75 list_del(&fs_devices->list);
e4404d6e 76 free_fs_devices(fs_devices);
8a4b83cc
CM
77 }
78 return 0;
79}
80
a1b32a59
CM
81static noinline struct btrfs_device *__find_device(struct list_head *head,
82 u64 devid, u8 *uuid)
8a4b83cc
CM
83{
84 struct btrfs_device *dev;
8a4b83cc 85
c6e30871 86 list_for_each_entry(dev, head, dev_list) {
a443755f 87 if (dev->devid == devid &&
8f18cf13 88 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 89 return dev;
a443755f 90 }
8a4b83cc
CM
91 }
92 return NULL;
93}
94
a1b32a59 95static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 96{
8a4b83cc
CM
97 struct btrfs_fs_devices *fs_devices;
98
c6e30871 99 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
100 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
101 return fs_devices;
102 }
103 return NULL;
104}
105
ffbd517d
CM
106static void requeue_list(struct btrfs_pending_bios *pending_bios,
107 struct bio *head, struct bio *tail)
108{
109
110 struct bio *old_head;
111
112 old_head = pending_bios->head;
113 pending_bios->head = head;
114 if (pending_bios->tail)
115 tail->bi_next = old_head;
116 else
117 pending_bios->tail = tail;
118}
119
8b712842
CM
120/*
121 * we try to collect pending bios for a device so we don't get a large
122 * number of procs sending bios down to the same device. This greatly
123 * improves the schedulers ability to collect and merge the bios.
124 *
125 * But, it also turns into a long list of bios to process and that is sure
126 * to eventually make the worker thread block. The solution here is to
127 * make some progress and then put this work struct back at the end of
128 * the list if the block device is congested. This way, multiple devices
129 * can make progress from a single worker thread.
130 */
d397712b 131static noinline int run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
132{
133 struct bio *pending;
134 struct backing_dev_info *bdi;
b64a2851 135 struct btrfs_fs_info *fs_info;
ffbd517d 136 struct btrfs_pending_bios *pending_bios;
8b712842
CM
137 struct bio *tail;
138 struct bio *cur;
139 int again = 0;
ffbd517d 140 unsigned long num_run;
d644d8a1 141 unsigned long batch_run = 0;
b64a2851 142 unsigned long limit;
b765ead5 143 unsigned long last_waited = 0;
d84275c9 144 int force_reg = 0;
211588ad
CM
145 struct blk_plug plug;
146
147 /*
148 * this function runs all the bios we've collected for
149 * a particular device. We don't want to wander off to
150 * another device without first sending all of these down.
151 * So, setup a plug here and finish it off before we return
152 */
153 blk_start_plug(&plug);
8b712842 154
bedf762b 155 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
156 fs_info = device->dev_root->fs_info;
157 limit = btrfs_async_submit_limit(fs_info);
158 limit = limit * 2 / 3;
159
8b712842
CM
160loop:
161 spin_lock(&device->io_lock);
162
a6837051 163loop_lock:
d84275c9 164 num_run = 0;
ffbd517d 165
8b712842
CM
166 /* take all the bios off the list at once and process them
167 * later on (without the lock held). But, remember the
168 * tail and other pointers so the bios can be properly reinserted
169 * into the list if we hit congestion
170 */
d84275c9 171 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 172 pending_bios = &device->pending_sync_bios;
d84275c9
CM
173 force_reg = 1;
174 } else {
ffbd517d 175 pending_bios = &device->pending_bios;
d84275c9
CM
176 force_reg = 0;
177 }
ffbd517d
CM
178
179 pending = pending_bios->head;
180 tail = pending_bios->tail;
8b712842 181 WARN_ON(pending && !tail);
8b712842
CM
182
183 /*
184 * if pending was null this time around, no bios need processing
185 * at all and we can stop. Otherwise it'll loop back up again
186 * and do an additional check so no bios are missed.
187 *
188 * device->running_pending is used to synchronize with the
189 * schedule_bio code.
190 */
ffbd517d
CM
191 if (device->pending_sync_bios.head == NULL &&
192 device->pending_bios.head == NULL) {
8b712842
CM
193 again = 0;
194 device->running_pending = 0;
ffbd517d
CM
195 } else {
196 again = 1;
197 device->running_pending = 1;
8b712842 198 }
ffbd517d
CM
199
200 pending_bios->head = NULL;
201 pending_bios->tail = NULL;
202
8b712842
CM
203 spin_unlock(&device->io_lock);
204
d397712b 205 while (pending) {
ffbd517d
CM
206
207 rmb();
d84275c9
CM
208 /* we want to work on both lists, but do more bios on the
209 * sync list than the regular list
210 */
211 if ((num_run > 32 &&
212 pending_bios != &device->pending_sync_bios &&
213 device->pending_sync_bios.head) ||
214 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
215 device->pending_bios.head)) {
ffbd517d
CM
216 spin_lock(&device->io_lock);
217 requeue_list(pending_bios, pending, tail);
218 goto loop_lock;
219 }
220
8b712842
CM
221 cur = pending;
222 pending = pending->bi_next;
223 cur->bi_next = NULL;
b64a2851
CM
224 atomic_dec(&fs_info->nr_async_bios);
225
226 if (atomic_read(&fs_info->nr_async_bios) < limit &&
227 waitqueue_active(&fs_info->async_submit_wait))
228 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
229
230 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 231
5ff7ba3a
CM
232 submit_bio(cur->bi_rw, cur);
233 num_run++;
234 batch_run++;
7eaceacc 235 if (need_resched())
ffbd517d 236 cond_resched();
8b712842
CM
237
238 /*
239 * we made progress, there is more work to do and the bdi
240 * is now congested. Back off and let other work structs
241 * run instead
242 */
57fd5a5f 243 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 244 fs_info->fs_devices->open_devices > 1) {
b765ead5 245 struct io_context *ioc;
8b712842 246
b765ead5
CM
247 ioc = current->io_context;
248
249 /*
250 * the main goal here is that we don't want to
251 * block if we're going to be able to submit
252 * more requests without blocking.
253 *
254 * This code does two great things, it pokes into
255 * the elevator code from a filesystem _and_
256 * it makes assumptions about how batching works.
257 */
258 if (ioc && ioc->nr_batch_requests > 0 &&
259 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
260 (last_waited == 0 ||
261 ioc->last_waited == last_waited)) {
262 /*
263 * we want to go through our batch of
264 * requests and stop. So, we copy out
265 * the ioc->last_waited time and test
266 * against it before looping
267 */
268 last_waited = ioc->last_waited;
7eaceacc 269 if (need_resched())
ffbd517d 270 cond_resched();
b765ead5
CM
271 continue;
272 }
8b712842 273 spin_lock(&device->io_lock);
ffbd517d 274 requeue_list(pending_bios, pending, tail);
a6837051 275 device->running_pending = 1;
8b712842
CM
276
277 spin_unlock(&device->io_lock);
278 btrfs_requeue_work(&device->work);
279 goto done;
280 }
281 }
ffbd517d 282
51684082
CM
283 cond_resched();
284 if (again)
285 goto loop;
286
287 spin_lock(&device->io_lock);
288 if (device->pending_bios.head || device->pending_sync_bios.head)
289 goto loop_lock;
290 spin_unlock(&device->io_lock);
291
8b712842 292done:
211588ad 293 blk_finish_plug(&plug);
8b712842
CM
294 return 0;
295}
296
b2950863 297static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
298{
299 struct btrfs_device *device;
300
301 device = container_of(work, struct btrfs_device, work);
302 run_scheduled_bios(device);
303}
304
a1b32a59 305static noinline int device_list_add(const char *path,
8a4b83cc
CM
306 struct btrfs_super_block *disk_super,
307 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
308{
309 struct btrfs_device *device;
310 struct btrfs_fs_devices *fs_devices;
311 u64 found_transid = btrfs_super_generation(disk_super);
3a0524dc 312 char *name;
8a4b83cc
CM
313
314 fs_devices = find_fsid(disk_super->fsid);
315 if (!fs_devices) {
515dc322 316 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
317 if (!fs_devices)
318 return -ENOMEM;
319 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 320 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
321 list_add(&fs_devices->list, &fs_uuids);
322 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
323 fs_devices->latest_devid = devid;
324 fs_devices->latest_trans = found_transid;
e5e9a520 325 mutex_init(&fs_devices->device_list_mutex);
8a4b83cc
CM
326 device = NULL;
327 } else {
a443755f
CM
328 device = __find_device(&fs_devices->devices, devid,
329 disk_super->dev_item.uuid);
8a4b83cc
CM
330 }
331 if (!device) {
2b82032c
YZ
332 if (fs_devices->opened)
333 return -EBUSY;
334
8a4b83cc
CM
335 device = kzalloc(sizeof(*device), GFP_NOFS);
336 if (!device) {
337 /* we can safely leave the fs_devices entry around */
338 return -ENOMEM;
339 }
340 device->devid = devid;
8b712842 341 device->work.func = pending_bios_fn;
a443755f
CM
342 memcpy(device->uuid, disk_super->dev_item.uuid,
343 BTRFS_UUID_SIZE);
b248a415 344 spin_lock_init(&device->io_lock);
8a4b83cc
CM
345 device->name = kstrdup(path, GFP_NOFS);
346 if (!device->name) {
347 kfree(device);
348 return -ENOMEM;
349 }
2b82032c 350 INIT_LIST_HEAD(&device->dev_alloc_list);
e5e9a520
CM
351
352 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 353 list_add_rcu(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
354 mutex_unlock(&fs_devices->device_list_mutex);
355
2b82032c 356 device->fs_devices = fs_devices;
8a4b83cc 357 fs_devices->num_devices++;
cd02dca5 358 } else if (!device->name || strcmp(device->name, path)) {
3a0524dc
TH
359 name = kstrdup(path, GFP_NOFS);
360 if (!name)
361 return -ENOMEM;
362 kfree(device->name);
363 device->name = name;
cd02dca5
CM
364 if (device->missing) {
365 fs_devices->missing_devices--;
366 device->missing = 0;
367 }
8a4b83cc
CM
368 }
369
370 if (found_transid > fs_devices->latest_trans) {
371 fs_devices->latest_devid = devid;
372 fs_devices->latest_trans = found_transid;
373 }
8a4b83cc
CM
374 *fs_devices_ret = fs_devices;
375 return 0;
376}
377
e4404d6e
YZ
378static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
379{
380 struct btrfs_fs_devices *fs_devices;
381 struct btrfs_device *device;
382 struct btrfs_device *orig_dev;
383
384 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
385 if (!fs_devices)
386 return ERR_PTR(-ENOMEM);
387
388 INIT_LIST_HEAD(&fs_devices->devices);
389 INIT_LIST_HEAD(&fs_devices->alloc_list);
390 INIT_LIST_HEAD(&fs_devices->list);
e5e9a520 391 mutex_init(&fs_devices->device_list_mutex);
e4404d6e
YZ
392 fs_devices->latest_devid = orig->latest_devid;
393 fs_devices->latest_trans = orig->latest_trans;
394 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
395
46224705 396 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e
YZ
397 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
398 device = kzalloc(sizeof(*device), GFP_NOFS);
399 if (!device)
400 goto error;
401
402 device->name = kstrdup(orig_dev->name, GFP_NOFS);
fd2696f3
JL
403 if (!device->name) {
404 kfree(device);
e4404d6e 405 goto error;
fd2696f3 406 }
e4404d6e
YZ
407
408 device->devid = orig_dev->devid;
409 device->work.func = pending_bios_fn;
410 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
e4404d6e
YZ
411 spin_lock_init(&device->io_lock);
412 INIT_LIST_HEAD(&device->dev_list);
413 INIT_LIST_HEAD(&device->dev_alloc_list);
414
415 list_add(&device->dev_list, &fs_devices->devices);
416 device->fs_devices = fs_devices;
417 fs_devices->num_devices++;
418 }
419 return fs_devices;
420error:
421 free_fs_devices(fs_devices);
422 return ERR_PTR(-ENOMEM);
423}
424
dfe25020
CM
425int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
426{
c6e30871 427 struct btrfs_device *device, *next;
dfe25020
CM
428
429 mutex_lock(&uuid_mutex);
430again:
46224705 431 /* This is the initialized path, it is safe to release the devices. */
c6e30871 432 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2b82032c
YZ
433 if (device->in_fs_metadata)
434 continue;
435
436 if (device->bdev) {
d4d77629 437 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
438 device->bdev = NULL;
439 fs_devices->open_devices--;
440 }
441 if (device->writeable) {
442 list_del_init(&device->dev_alloc_list);
443 device->writeable = 0;
444 fs_devices->rw_devices--;
445 }
e4404d6e
YZ
446 list_del_init(&device->dev_list);
447 fs_devices->num_devices--;
448 kfree(device->name);
449 kfree(device);
dfe25020 450 }
2b82032c
YZ
451
452 if (fs_devices->seed) {
453 fs_devices = fs_devices->seed;
2b82032c
YZ
454 goto again;
455 }
456
dfe25020
CM
457 mutex_unlock(&uuid_mutex);
458 return 0;
459}
a0af469b 460
1f78160c
XG
461static void __free_device(struct work_struct *work)
462{
463 struct btrfs_device *device;
464
465 device = container_of(work, struct btrfs_device, rcu_work);
466
467 if (device->bdev)
468 blkdev_put(device->bdev, device->mode);
469
470 kfree(device->name);
471 kfree(device);
472}
473
474static void free_device(struct rcu_head *head)
475{
476 struct btrfs_device *device;
477
478 device = container_of(head, struct btrfs_device, rcu);
479
480 INIT_WORK(&device->rcu_work, __free_device);
481 schedule_work(&device->rcu_work);
482}
483
2b82032c 484static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 485{
8a4b83cc 486 struct btrfs_device *device;
e4404d6e 487
2b82032c
YZ
488 if (--fs_devices->opened > 0)
489 return 0;
8a4b83cc 490
c9513edb 491 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 492 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c
XG
493 struct btrfs_device *new_device;
494
495 if (device->bdev)
a0af469b 496 fs_devices->open_devices--;
1f78160c 497
2b82032c
YZ
498 if (device->writeable) {
499 list_del_init(&device->dev_alloc_list);
500 fs_devices->rw_devices--;
501 }
502
1f78160c
XG
503 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
504 BUG_ON(!new_device);
505 memcpy(new_device, device, sizeof(*new_device));
506 new_device->name = kstrdup(device->name, GFP_NOFS);
5f3f302a 507 BUG_ON(device->name && !new_device->name);
1f78160c
XG
508 new_device->bdev = NULL;
509 new_device->writeable = 0;
510 new_device->in_fs_metadata = 0;
511 list_replace_rcu(&device->dev_list, &new_device->dev_list);
512
513 call_rcu(&device->rcu, free_device);
8a4b83cc 514 }
c9513edb
XG
515 mutex_unlock(&fs_devices->device_list_mutex);
516
e4404d6e
YZ
517 WARN_ON(fs_devices->open_devices);
518 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
519 fs_devices->opened = 0;
520 fs_devices->seeding = 0;
2b82032c 521
8a4b83cc
CM
522 return 0;
523}
524
2b82032c
YZ
525int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
526{
e4404d6e 527 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
528 int ret;
529
530 mutex_lock(&uuid_mutex);
531 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
532 if (!fs_devices->opened) {
533 seed_devices = fs_devices->seed;
534 fs_devices->seed = NULL;
535 }
2b82032c 536 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
537
538 while (seed_devices) {
539 fs_devices = seed_devices;
540 seed_devices = fs_devices->seed;
541 __btrfs_close_devices(fs_devices);
542 free_fs_devices(fs_devices);
543 }
2b82032c
YZ
544 return ret;
545}
546
e4404d6e
YZ
547static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
548 fmode_t flags, void *holder)
8a4b83cc
CM
549{
550 struct block_device *bdev;
551 struct list_head *head = &fs_devices->devices;
8a4b83cc 552 struct btrfs_device *device;
a0af469b
CM
553 struct block_device *latest_bdev = NULL;
554 struct buffer_head *bh;
555 struct btrfs_super_block *disk_super;
556 u64 latest_devid = 0;
557 u64 latest_transid = 0;
a0af469b 558 u64 devid;
2b82032c 559 int seeding = 1;
a0af469b 560 int ret = 0;
8a4b83cc 561
d4d77629
TH
562 flags |= FMODE_EXCL;
563
c6e30871 564 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
565 if (device->bdev)
566 continue;
dfe25020
CM
567 if (!device->name)
568 continue;
569
d4d77629 570 bdev = blkdev_get_by_path(device->name, flags, holder);
8a4b83cc 571 if (IS_ERR(bdev)) {
d397712b 572 printk(KERN_INFO "open %s failed\n", device->name);
a0af469b 573 goto error;
8a4b83cc 574 }
a061fc8d 575 set_blocksize(bdev, 4096);
a0af469b 576
a512bbf8 577 bh = btrfs_read_dev_super(bdev);
20b45077
DY
578 if (!bh) {
579 ret = -EINVAL;
a0af469b 580 goto error_close;
20b45077 581 }
a0af469b
CM
582
583 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 584 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
585 if (devid != device->devid)
586 goto error_brelse;
587
2b82032c
YZ
588 if (memcmp(device->uuid, disk_super->dev_item.uuid,
589 BTRFS_UUID_SIZE))
590 goto error_brelse;
591
592 device->generation = btrfs_super_generation(disk_super);
593 if (!latest_transid || device->generation > latest_transid) {
a0af469b 594 latest_devid = devid;
2b82032c 595 latest_transid = device->generation;
a0af469b
CM
596 latest_bdev = bdev;
597 }
598
2b82032c
YZ
599 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
600 device->writeable = 0;
601 } else {
602 device->writeable = !bdev_read_only(bdev);
603 seeding = 0;
604 }
605
8a4b83cc 606 device->bdev = bdev;
dfe25020 607 device->in_fs_metadata = 0;
15916de8
CM
608 device->mode = flags;
609
c289811c
CM
610 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
611 fs_devices->rotating = 1;
612
a0af469b 613 fs_devices->open_devices++;
2b82032c
YZ
614 if (device->writeable) {
615 fs_devices->rw_devices++;
616 list_add(&device->dev_alloc_list,
617 &fs_devices->alloc_list);
618 }
4f6c9328 619 brelse(bh);
a0af469b 620 continue;
a061fc8d 621
a0af469b
CM
622error_brelse:
623 brelse(bh);
624error_close:
d4d77629 625 blkdev_put(bdev, flags);
a0af469b
CM
626error:
627 continue;
8a4b83cc 628 }
a0af469b
CM
629 if (fs_devices->open_devices == 0) {
630 ret = -EIO;
631 goto out;
632 }
2b82032c
YZ
633 fs_devices->seeding = seeding;
634 fs_devices->opened = 1;
a0af469b
CM
635 fs_devices->latest_bdev = latest_bdev;
636 fs_devices->latest_devid = latest_devid;
637 fs_devices->latest_trans = latest_transid;
2b82032c 638 fs_devices->total_rw_bytes = 0;
a0af469b 639out:
2b82032c
YZ
640 return ret;
641}
642
643int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 644 fmode_t flags, void *holder)
2b82032c
YZ
645{
646 int ret;
647
648 mutex_lock(&uuid_mutex);
649 if (fs_devices->opened) {
e4404d6e
YZ
650 fs_devices->opened++;
651 ret = 0;
2b82032c 652 } else {
15916de8 653 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 654 }
8a4b83cc 655 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
656 return ret;
657}
658
97288f2c 659int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
660 struct btrfs_fs_devices **fs_devices_ret)
661{
662 struct btrfs_super_block *disk_super;
663 struct block_device *bdev;
664 struct buffer_head *bh;
665 int ret;
666 u64 devid;
f2984462 667 u64 transid;
8a4b83cc
CM
668
669 mutex_lock(&uuid_mutex);
670
d4d77629
TH
671 flags |= FMODE_EXCL;
672 bdev = blkdev_get_by_path(path, flags, holder);
8a4b83cc
CM
673
674 if (IS_ERR(bdev)) {
8a4b83cc
CM
675 ret = PTR_ERR(bdev);
676 goto error;
677 }
678
679 ret = set_blocksize(bdev, 4096);
680 if (ret)
681 goto error_close;
a512bbf8 682 bh = btrfs_read_dev_super(bdev);
8a4b83cc 683 if (!bh) {
20b45077 684 ret = -EINVAL;
8a4b83cc
CM
685 goto error_close;
686 }
687 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 688 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 689 transid = btrfs_super_generation(disk_super);
7ae9c09d 690 if (disk_super->label[0])
d397712b 691 printk(KERN_INFO "device label %s ", disk_super->label);
22b63a29
ID
692 else
693 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
119e10cf 694 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 695 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc
CM
696 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
697
8a4b83cc
CM
698 brelse(bh);
699error_close:
d4d77629 700 blkdev_put(bdev, flags);
8a4b83cc
CM
701error:
702 mutex_unlock(&uuid_mutex);
703 return ret;
704}
0b86a832 705
6d07bcec
MX
706/* helper to account the used device space in the range */
707int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
708 u64 end, u64 *length)
709{
710 struct btrfs_key key;
711 struct btrfs_root *root = device->dev_root;
712 struct btrfs_dev_extent *dev_extent;
713 struct btrfs_path *path;
714 u64 extent_end;
715 int ret;
716 int slot;
717 struct extent_buffer *l;
718
719 *length = 0;
720
721 if (start >= device->total_bytes)
722 return 0;
723
724 path = btrfs_alloc_path();
725 if (!path)
726 return -ENOMEM;
727 path->reada = 2;
728
729 key.objectid = device->devid;
730 key.offset = start;
731 key.type = BTRFS_DEV_EXTENT_KEY;
732
733 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
734 if (ret < 0)
735 goto out;
736 if (ret > 0) {
737 ret = btrfs_previous_item(root, path, key.objectid, key.type);
738 if (ret < 0)
739 goto out;
740 }
741
742 while (1) {
743 l = path->nodes[0];
744 slot = path->slots[0];
745 if (slot >= btrfs_header_nritems(l)) {
746 ret = btrfs_next_leaf(root, path);
747 if (ret == 0)
748 continue;
749 if (ret < 0)
750 goto out;
751
752 break;
753 }
754 btrfs_item_key_to_cpu(l, &key, slot);
755
756 if (key.objectid < device->devid)
757 goto next;
758
759 if (key.objectid > device->devid)
760 break;
761
762 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
763 goto next;
764
765 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
766 extent_end = key.offset + btrfs_dev_extent_length(l,
767 dev_extent);
768 if (key.offset <= start && extent_end > end) {
769 *length = end - start + 1;
770 break;
771 } else if (key.offset <= start && extent_end > start)
772 *length += extent_end - start;
773 else if (key.offset > start && extent_end <= end)
774 *length += extent_end - key.offset;
775 else if (key.offset > start && key.offset <= end) {
776 *length += end - key.offset + 1;
777 break;
778 } else if (key.offset > end)
779 break;
780
781next:
782 path->slots[0]++;
783 }
784 ret = 0;
785out:
786 btrfs_free_path(path);
787 return ret;
788}
789
0b86a832 790/*
7bfc837d
MX
791 * find_free_dev_extent - find free space in the specified device
792 * @trans: transaction handler
793 * @device: the device which we search the free space in
794 * @num_bytes: the size of the free space that we need
795 * @start: store the start of the free space.
796 * @len: the size of the free space. that we find, or the size of the max
797 * free space if we don't find suitable free space
798 *
0b86a832
CM
799 * this uses a pretty simple search, the expectation is that it is
800 * called very infrequently and that a given device has a small number
801 * of extents
7bfc837d
MX
802 *
803 * @start is used to store the start of the free space if we find. But if we
804 * don't find suitable free space, it will be used to store the start position
805 * of the max free space.
806 *
807 * @len is used to store the size of the free space that we find.
808 * But if we don't find suitable free space, it is used to store the size of
809 * the max free space.
0b86a832 810 */
ba1bf481
JB
811int find_free_dev_extent(struct btrfs_trans_handle *trans,
812 struct btrfs_device *device, u64 num_bytes,
7bfc837d 813 u64 *start, u64 *len)
0b86a832
CM
814{
815 struct btrfs_key key;
816 struct btrfs_root *root = device->dev_root;
7bfc837d 817 struct btrfs_dev_extent *dev_extent;
2b82032c 818 struct btrfs_path *path;
7bfc837d
MX
819 u64 hole_size;
820 u64 max_hole_start;
821 u64 max_hole_size;
822 u64 extent_end;
823 u64 search_start;
0b86a832
CM
824 u64 search_end = device->total_bytes;
825 int ret;
7bfc837d 826 int slot;
0b86a832
CM
827 struct extent_buffer *l;
828
0b86a832
CM
829 /* FIXME use last free of some kind */
830
8a4b83cc
CM
831 /* we don't want to overwrite the superblock on the drive,
832 * so we make sure to start at an offset of at least 1MB
833 */
a9c9bf68 834 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 835
7bfc837d
MX
836 max_hole_start = search_start;
837 max_hole_size = 0;
838
839 if (search_start >= search_end) {
840 ret = -ENOSPC;
841 goto error;
842 }
843
844 path = btrfs_alloc_path();
845 if (!path) {
846 ret = -ENOMEM;
847 goto error;
848 }
849 path->reada = 2;
850
0b86a832
CM
851 key.objectid = device->devid;
852 key.offset = search_start;
853 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 854
0b86a832
CM
855 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
856 if (ret < 0)
7bfc837d 857 goto out;
1fcbac58
YZ
858 if (ret > 0) {
859 ret = btrfs_previous_item(root, path, key.objectid, key.type);
860 if (ret < 0)
7bfc837d 861 goto out;
1fcbac58 862 }
7bfc837d 863
0b86a832
CM
864 while (1) {
865 l = path->nodes[0];
866 slot = path->slots[0];
867 if (slot >= btrfs_header_nritems(l)) {
868 ret = btrfs_next_leaf(root, path);
869 if (ret == 0)
870 continue;
871 if (ret < 0)
7bfc837d
MX
872 goto out;
873
874 break;
0b86a832
CM
875 }
876 btrfs_item_key_to_cpu(l, &key, slot);
877
878 if (key.objectid < device->devid)
879 goto next;
880
881 if (key.objectid > device->devid)
7bfc837d 882 break;
0b86a832 883
7bfc837d
MX
884 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
885 goto next;
9779b72f 886
7bfc837d
MX
887 if (key.offset > search_start) {
888 hole_size = key.offset - search_start;
9779b72f 889
7bfc837d
MX
890 if (hole_size > max_hole_size) {
891 max_hole_start = search_start;
892 max_hole_size = hole_size;
893 }
9779b72f 894
7bfc837d
MX
895 /*
896 * If this free space is greater than which we need,
897 * it must be the max free space that we have found
898 * until now, so max_hole_start must point to the start
899 * of this free space and the length of this free space
900 * is stored in max_hole_size. Thus, we return
901 * max_hole_start and max_hole_size and go back to the
902 * caller.
903 */
904 if (hole_size >= num_bytes) {
905 ret = 0;
906 goto out;
0b86a832
CM
907 }
908 }
0b86a832 909
0b86a832 910 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
911 extent_end = key.offset + btrfs_dev_extent_length(l,
912 dev_extent);
913 if (extent_end > search_start)
914 search_start = extent_end;
0b86a832
CM
915next:
916 path->slots[0]++;
917 cond_resched();
918 }
0b86a832 919
7bfc837d
MX
920 hole_size = search_end- search_start;
921 if (hole_size > max_hole_size) {
922 max_hole_start = search_start;
923 max_hole_size = hole_size;
0b86a832 924 }
0b86a832 925
7bfc837d
MX
926 /* See above. */
927 if (hole_size < num_bytes)
928 ret = -ENOSPC;
929 else
930 ret = 0;
931
932out:
2b82032c 933 btrfs_free_path(path);
7bfc837d
MX
934error:
935 *start = max_hole_start;
b2117a39 936 if (len)
7bfc837d 937 *len = max_hole_size;
0b86a832
CM
938 return ret;
939}
940
b2950863 941static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
942 struct btrfs_device *device,
943 u64 start)
944{
945 int ret;
946 struct btrfs_path *path;
947 struct btrfs_root *root = device->dev_root;
948 struct btrfs_key key;
a061fc8d
CM
949 struct btrfs_key found_key;
950 struct extent_buffer *leaf = NULL;
951 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
952
953 path = btrfs_alloc_path();
954 if (!path)
955 return -ENOMEM;
956
957 key.objectid = device->devid;
958 key.offset = start;
959 key.type = BTRFS_DEV_EXTENT_KEY;
960
961 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
962 if (ret > 0) {
963 ret = btrfs_previous_item(root, path, key.objectid,
964 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
965 if (ret)
966 goto out;
a061fc8d
CM
967 leaf = path->nodes[0];
968 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
969 extent = btrfs_item_ptr(leaf, path->slots[0],
970 struct btrfs_dev_extent);
971 BUG_ON(found_key.offset > start || found_key.offset +
972 btrfs_dev_extent_length(leaf, extent) < start);
a061fc8d
CM
973 } else if (ret == 0) {
974 leaf = path->nodes[0];
975 extent = btrfs_item_ptr(leaf, path->slots[0],
976 struct btrfs_dev_extent);
977 }
8f18cf13
CM
978 BUG_ON(ret);
979
dfe25020
CM
980 if (device->bytes_used > 0)
981 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
8f18cf13 982 ret = btrfs_del_item(trans, root, path);
8f18cf13 983
b0b802d7 984out:
8f18cf13
CM
985 btrfs_free_path(path);
986 return ret;
987}
988
2b82032c 989int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 990 struct btrfs_device *device,
e17cade2 991 u64 chunk_tree, u64 chunk_objectid,
2b82032c 992 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
993{
994 int ret;
995 struct btrfs_path *path;
996 struct btrfs_root *root = device->dev_root;
997 struct btrfs_dev_extent *extent;
998 struct extent_buffer *leaf;
999 struct btrfs_key key;
1000
dfe25020 1001 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
1002 path = btrfs_alloc_path();
1003 if (!path)
1004 return -ENOMEM;
1005
0b86a832 1006 key.objectid = device->devid;
2b82032c 1007 key.offset = start;
0b86a832
CM
1008 key.type = BTRFS_DEV_EXTENT_KEY;
1009 ret = btrfs_insert_empty_item(trans, root, path, &key,
1010 sizeof(*extent));
1011 BUG_ON(ret);
1012
1013 leaf = path->nodes[0];
1014 extent = btrfs_item_ptr(leaf, path->slots[0],
1015 struct btrfs_dev_extent);
e17cade2
CM
1016 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1017 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1018 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1019
1020 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1021 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1022 BTRFS_UUID_SIZE);
1023
0b86a832
CM
1024 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1025 btrfs_mark_buffer_dirty(leaf);
0b86a832
CM
1026 btrfs_free_path(path);
1027 return ret;
1028}
1029
a1b32a59
CM
1030static noinline int find_next_chunk(struct btrfs_root *root,
1031 u64 objectid, u64 *offset)
0b86a832
CM
1032{
1033 struct btrfs_path *path;
1034 int ret;
1035 struct btrfs_key key;
e17cade2 1036 struct btrfs_chunk *chunk;
0b86a832
CM
1037 struct btrfs_key found_key;
1038
1039 path = btrfs_alloc_path();
1040 BUG_ON(!path);
1041
e17cade2 1042 key.objectid = objectid;
0b86a832
CM
1043 key.offset = (u64)-1;
1044 key.type = BTRFS_CHUNK_ITEM_KEY;
1045
1046 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1047 if (ret < 0)
1048 goto error;
1049
1050 BUG_ON(ret == 0);
1051
1052 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1053 if (ret) {
e17cade2 1054 *offset = 0;
0b86a832
CM
1055 } else {
1056 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1057 path->slots[0]);
e17cade2
CM
1058 if (found_key.objectid != objectid)
1059 *offset = 0;
1060 else {
1061 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1062 struct btrfs_chunk);
1063 *offset = found_key.offset +
1064 btrfs_chunk_length(path->nodes[0], chunk);
1065 }
0b86a832
CM
1066 }
1067 ret = 0;
1068error:
1069 btrfs_free_path(path);
1070 return ret;
1071}
1072
2b82032c 1073static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
1074{
1075 int ret;
1076 struct btrfs_key key;
1077 struct btrfs_key found_key;
2b82032c
YZ
1078 struct btrfs_path *path;
1079
1080 root = root->fs_info->chunk_root;
1081
1082 path = btrfs_alloc_path();
1083 if (!path)
1084 return -ENOMEM;
0b86a832
CM
1085
1086 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1087 key.type = BTRFS_DEV_ITEM_KEY;
1088 key.offset = (u64)-1;
1089
1090 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1091 if (ret < 0)
1092 goto error;
1093
1094 BUG_ON(ret == 0);
1095
1096 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1097 BTRFS_DEV_ITEM_KEY);
1098 if (ret) {
1099 *objectid = 1;
1100 } else {
1101 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1102 path->slots[0]);
1103 *objectid = found_key.offset + 1;
1104 }
1105 ret = 0;
1106error:
2b82032c 1107 btrfs_free_path(path);
0b86a832
CM
1108 return ret;
1109}
1110
1111/*
1112 * the device information is stored in the chunk root
1113 * the btrfs_device struct should be fully filled in
1114 */
1115int btrfs_add_device(struct btrfs_trans_handle *trans,
1116 struct btrfs_root *root,
1117 struct btrfs_device *device)
1118{
1119 int ret;
1120 struct btrfs_path *path;
1121 struct btrfs_dev_item *dev_item;
1122 struct extent_buffer *leaf;
1123 struct btrfs_key key;
1124 unsigned long ptr;
0b86a832
CM
1125
1126 root = root->fs_info->chunk_root;
1127
1128 path = btrfs_alloc_path();
1129 if (!path)
1130 return -ENOMEM;
1131
0b86a832
CM
1132 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1133 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1134 key.offset = device->devid;
0b86a832
CM
1135
1136 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1137 sizeof(*dev_item));
0b86a832
CM
1138 if (ret)
1139 goto out;
1140
1141 leaf = path->nodes[0];
1142 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1143
1144 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1145 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1146 btrfs_set_device_type(leaf, dev_item, device->type);
1147 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1148 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1149 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1150 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1151 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1152 btrfs_set_device_group(leaf, dev_item, 0);
1153 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1154 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1155 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1156
0b86a832 1157 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1158 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1159 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1160 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1161 btrfs_mark_buffer_dirty(leaf);
0b86a832 1162
2b82032c 1163 ret = 0;
0b86a832
CM
1164out:
1165 btrfs_free_path(path);
1166 return ret;
1167}
8f18cf13 1168
a061fc8d
CM
1169static int btrfs_rm_dev_item(struct btrfs_root *root,
1170 struct btrfs_device *device)
1171{
1172 int ret;
1173 struct btrfs_path *path;
a061fc8d 1174 struct btrfs_key key;
a061fc8d
CM
1175 struct btrfs_trans_handle *trans;
1176
1177 root = root->fs_info->chunk_root;
1178
1179 path = btrfs_alloc_path();
1180 if (!path)
1181 return -ENOMEM;
1182
a22285a6 1183 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1184 if (IS_ERR(trans)) {
1185 btrfs_free_path(path);
1186 return PTR_ERR(trans);
1187 }
a061fc8d
CM
1188 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1189 key.type = BTRFS_DEV_ITEM_KEY;
1190 key.offset = device->devid;
7d9eb12c 1191 lock_chunks(root);
a061fc8d
CM
1192
1193 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1194 if (ret < 0)
1195 goto out;
1196
1197 if (ret > 0) {
1198 ret = -ENOENT;
1199 goto out;
1200 }
1201
1202 ret = btrfs_del_item(trans, root, path);
1203 if (ret)
1204 goto out;
a061fc8d
CM
1205out:
1206 btrfs_free_path(path);
7d9eb12c 1207 unlock_chunks(root);
a061fc8d
CM
1208 btrfs_commit_transaction(trans, root);
1209 return ret;
1210}
1211
1212int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1213{
1214 struct btrfs_device *device;
2b82032c 1215 struct btrfs_device *next_device;
a061fc8d 1216 struct block_device *bdev;
dfe25020 1217 struct buffer_head *bh = NULL;
a061fc8d 1218 struct btrfs_super_block *disk_super;
1f78160c 1219 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1220 u64 all_avail;
1221 u64 devid;
2b82032c
YZ
1222 u64 num_devices;
1223 u8 *dev_uuid;
a061fc8d 1224 int ret = 0;
1f78160c 1225 bool clear_super = false;
a061fc8d 1226
a061fc8d 1227 mutex_lock(&uuid_mutex);
7d9eb12c 1228 mutex_lock(&root->fs_info->volume_mutex);
a061fc8d
CM
1229
1230 all_avail = root->fs_info->avail_data_alloc_bits |
1231 root->fs_info->avail_system_alloc_bits |
1232 root->fs_info->avail_metadata_alloc_bits;
1233
1234 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
035fe03a 1235 root->fs_info->fs_devices->num_devices <= 4) {
d397712b
CM
1236 printk(KERN_ERR "btrfs: unable to go below four devices "
1237 "on raid10\n");
a061fc8d
CM
1238 ret = -EINVAL;
1239 goto out;
1240 }
1241
1242 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
035fe03a 1243 root->fs_info->fs_devices->num_devices <= 2) {
d397712b
CM
1244 printk(KERN_ERR "btrfs: unable to go below two "
1245 "devices on raid1\n");
a061fc8d
CM
1246 ret = -EINVAL;
1247 goto out;
1248 }
1249
dfe25020 1250 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1251 struct list_head *devices;
1252 struct btrfs_device *tmp;
a061fc8d 1253
dfe25020
CM
1254 device = NULL;
1255 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1256 /*
1257 * It is safe to read the devices since the volume_mutex
1258 * is held.
1259 */
c6e30871 1260 list_for_each_entry(tmp, devices, dev_list) {
dfe25020
CM
1261 if (tmp->in_fs_metadata && !tmp->bdev) {
1262 device = tmp;
1263 break;
1264 }
1265 }
1266 bdev = NULL;
1267 bh = NULL;
1268 disk_super = NULL;
1269 if (!device) {
d397712b
CM
1270 printk(KERN_ERR "btrfs: no missing devices found to "
1271 "remove\n");
dfe25020
CM
1272 goto out;
1273 }
dfe25020 1274 } else {
d4d77629
TH
1275 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1276 root->fs_info->bdev_holder);
dfe25020
CM
1277 if (IS_ERR(bdev)) {
1278 ret = PTR_ERR(bdev);
1279 goto out;
1280 }
a061fc8d 1281
2b82032c 1282 set_blocksize(bdev, 4096);
a512bbf8 1283 bh = btrfs_read_dev_super(bdev);
dfe25020 1284 if (!bh) {
20b45077 1285 ret = -EINVAL;
dfe25020
CM
1286 goto error_close;
1287 }
1288 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1289 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c
YZ
1290 dev_uuid = disk_super->dev_item.uuid;
1291 device = btrfs_find_device(root, devid, dev_uuid,
1292 disk_super->fsid);
dfe25020
CM
1293 if (!device) {
1294 ret = -ENOENT;
1295 goto error_brelse;
1296 }
2b82032c 1297 }
dfe25020 1298
2b82032c 1299 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1300 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1301 "device\n");
2b82032c
YZ
1302 ret = -EINVAL;
1303 goto error_brelse;
1304 }
1305
1306 if (device->writeable) {
0c1daee0 1307 lock_chunks(root);
2b82032c 1308 list_del_init(&device->dev_alloc_list);
0c1daee0 1309 unlock_chunks(root);
2b82032c 1310 root->fs_info->fs_devices->rw_devices--;
1f78160c 1311 clear_super = true;
dfe25020 1312 }
a061fc8d
CM
1313
1314 ret = btrfs_shrink_device(device, 0);
1315 if (ret)
9b3517e9 1316 goto error_undo;
a061fc8d 1317
a061fc8d
CM
1318 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1319 if (ret)
9b3517e9 1320 goto error_undo;
a061fc8d 1321
2b82032c 1322 device->in_fs_metadata = 0;
a2de733c 1323 btrfs_scrub_cancel_dev(root, device);
e5e9a520
CM
1324
1325 /*
1326 * the device list mutex makes sure that we don't change
1327 * the device list while someone else is writing out all
1328 * the device supers.
1329 */
1f78160c
XG
1330
1331 cur_devices = device->fs_devices;
e5e9a520 1332 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1333 list_del_rcu(&device->dev_list);
e5e9a520 1334
e4404d6e 1335 device->fs_devices->num_devices--;
2b82032c 1336
cd02dca5
CM
1337 if (device->missing)
1338 root->fs_info->fs_devices->missing_devices--;
1339
2b82032c
YZ
1340 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1341 struct btrfs_device, dev_list);
1342 if (device->bdev == root->fs_info->sb->s_bdev)
1343 root->fs_info->sb->s_bdev = next_device->bdev;
1344 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1345 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1346
1f78160c 1347 if (device->bdev)
e4404d6e 1348 device->fs_devices->open_devices--;
1f78160c
XG
1349
1350 call_rcu(&device->rcu, free_device);
1351 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1352
2b82032c
YZ
1353 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1354 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1355
1f78160c 1356 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1357 struct btrfs_fs_devices *fs_devices;
1358 fs_devices = root->fs_info->fs_devices;
1359 while (fs_devices) {
1f78160c 1360 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1361 break;
1362 fs_devices = fs_devices->seed;
2b82032c 1363 }
1f78160c
XG
1364 fs_devices->seed = cur_devices->seed;
1365 cur_devices->seed = NULL;
0c1daee0 1366 lock_chunks(root);
1f78160c 1367 __btrfs_close_devices(cur_devices);
0c1daee0 1368 unlock_chunks(root);
1f78160c 1369 free_fs_devices(cur_devices);
2b82032c
YZ
1370 }
1371
1372 /*
1373 * at this point, the device is zero sized. We want to
1374 * remove it from the devices list and zero out the old super
1375 */
1f78160c 1376 if (clear_super) {
dfe25020
CM
1377 /* make sure this device isn't detected as part of
1378 * the FS anymore
1379 */
1380 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1381 set_buffer_dirty(bh);
1382 sync_dirty_buffer(bh);
dfe25020 1383 }
a061fc8d 1384
a061fc8d 1385 ret = 0;
a061fc8d
CM
1386
1387error_brelse:
1388 brelse(bh);
1389error_close:
dfe25020 1390 if (bdev)
e525fd89 1391 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d 1392out:
7d9eb12c 1393 mutex_unlock(&root->fs_info->volume_mutex);
a061fc8d 1394 mutex_unlock(&uuid_mutex);
a061fc8d 1395 return ret;
9b3517e9
ID
1396error_undo:
1397 if (device->writeable) {
0c1daee0 1398 lock_chunks(root);
9b3517e9
ID
1399 list_add(&device->dev_alloc_list,
1400 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1401 unlock_chunks(root);
9b3517e9
ID
1402 root->fs_info->fs_devices->rw_devices++;
1403 }
1404 goto error_brelse;
a061fc8d
CM
1405}
1406
2b82032c
YZ
1407/*
1408 * does all the dirty work required for changing file system's UUID.
1409 */
1410static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1411 struct btrfs_root *root)
1412{
1413 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1414 struct btrfs_fs_devices *old_devices;
e4404d6e 1415 struct btrfs_fs_devices *seed_devices;
2b82032c
YZ
1416 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1417 struct btrfs_device *device;
1418 u64 super_flags;
1419
1420 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1421 if (!fs_devices->seeding)
2b82032c
YZ
1422 return -EINVAL;
1423
e4404d6e
YZ
1424 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1425 if (!seed_devices)
2b82032c
YZ
1426 return -ENOMEM;
1427
e4404d6e
YZ
1428 old_devices = clone_fs_devices(fs_devices);
1429 if (IS_ERR(old_devices)) {
1430 kfree(seed_devices);
1431 return PTR_ERR(old_devices);
2b82032c 1432 }
e4404d6e 1433
2b82032c
YZ
1434 list_add(&old_devices->list, &fs_uuids);
1435
e4404d6e
YZ
1436 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1437 seed_devices->opened = 1;
1438 INIT_LIST_HEAD(&seed_devices->devices);
1439 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1440 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1441
1442 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1443 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1444 synchronize_rcu);
c9513edb
XG
1445 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1446
e4404d6e
YZ
1447 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1448 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1449 device->fs_devices = seed_devices;
1450 }
1451
2b82032c
YZ
1452 fs_devices->seeding = 0;
1453 fs_devices->num_devices = 0;
1454 fs_devices->open_devices = 0;
e4404d6e 1455 fs_devices->seed = seed_devices;
2b82032c
YZ
1456
1457 generate_random_uuid(fs_devices->fsid);
1458 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1459 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1460 super_flags = btrfs_super_flags(disk_super) &
1461 ~BTRFS_SUPER_FLAG_SEEDING;
1462 btrfs_set_super_flags(disk_super, super_flags);
1463
1464 return 0;
1465}
1466
1467/*
1468 * strore the expected generation for seed devices in device items.
1469 */
1470static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root)
1472{
1473 struct btrfs_path *path;
1474 struct extent_buffer *leaf;
1475 struct btrfs_dev_item *dev_item;
1476 struct btrfs_device *device;
1477 struct btrfs_key key;
1478 u8 fs_uuid[BTRFS_UUID_SIZE];
1479 u8 dev_uuid[BTRFS_UUID_SIZE];
1480 u64 devid;
1481 int ret;
1482
1483 path = btrfs_alloc_path();
1484 if (!path)
1485 return -ENOMEM;
1486
1487 root = root->fs_info->chunk_root;
1488 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1489 key.offset = 0;
1490 key.type = BTRFS_DEV_ITEM_KEY;
1491
1492 while (1) {
1493 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1494 if (ret < 0)
1495 goto error;
1496
1497 leaf = path->nodes[0];
1498next_slot:
1499 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1500 ret = btrfs_next_leaf(root, path);
1501 if (ret > 0)
1502 break;
1503 if (ret < 0)
1504 goto error;
1505 leaf = path->nodes[0];
1506 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1507 btrfs_release_path(path);
2b82032c
YZ
1508 continue;
1509 }
1510
1511 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1512 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1513 key.type != BTRFS_DEV_ITEM_KEY)
1514 break;
1515
1516 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1517 struct btrfs_dev_item);
1518 devid = btrfs_device_id(leaf, dev_item);
1519 read_extent_buffer(leaf, dev_uuid,
1520 (unsigned long)btrfs_device_uuid(dev_item),
1521 BTRFS_UUID_SIZE);
1522 read_extent_buffer(leaf, fs_uuid,
1523 (unsigned long)btrfs_device_fsid(dev_item),
1524 BTRFS_UUID_SIZE);
1525 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1526 BUG_ON(!device);
1527
1528 if (device->fs_devices->seeding) {
1529 btrfs_set_device_generation(leaf, dev_item,
1530 device->generation);
1531 btrfs_mark_buffer_dirty(leaf);
1532 }
1533
1534 path->slots[0]++;
1535 goto next_slot;
1536 }
1537 ret = 0;
1538error:
1539 btrfs_free_path(path);
1540 return ret;
1541}
1542
788f20eb
CM
1543int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1544{
1545 struct btrfs_trans_handle *trans;
1546 struct btrfs_device *device;
1547 struct block_device *bdev;
788f20eb 1548 struct list_head *devices;
2b82032c 1549 struct super_block *sb = root->fs_info->sb;
788f20eb 1550 u64 total_bytes;
2b82032c 1551 int seeding_dev = 0;
788f20eb
CM
1552 int ret = 0;
1553
2b82032c
YZ
1554 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1555 return -EINVAL;
788f20eb 1556
d4d77629
TH
1557 bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
1558 root->fs_info->bdev_holder);
7f59203a
JB
1559 if (IS_ERR(bdev))
1560 return PTR_ERR(bdev);
a2135011 1561
2b82032c
YZ
1562 if (root->fs_info->fs_devices->seeding) {
1563 seeding_dev = 1;
1564 down_write(&sb->s_umount);
1565 mutex_lock(&uuid_mutex);
1566 }
1567
8c8bee1d 1568 filemap_write_and_wait(bdev->bd_inode->i_mapping);
7d9eb12c 1569 mutex_lock(&root->fs_info->volume_mutex);
a2135011 1570
788f20eb 1571 devices = &root->fs_info->fs_devices->devices;
e5e9a520
CM
1572 /*
1573 * we have the volume lock, so we don't need the extra
1574 * device list mutex while reading the list here.
1575 */
c6e30871 1576 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1577 if (device->bdev == bdev) {
1578 ret = -EEXIST;
2b82032c 1579 goto error;
788f20eb
CM
1580 }
1581 }
1582
1583 device = kzalloc(sizeof(*device), GFP_NOFS);
1584 if (!device) {
1585 /* we can safely leave the fs_devices entry around */
1586 ret = -ENOMEM;
2b82032c 1587 goto error;
788f20eb
CM
1588 }
1589
788f20eb
CM
1590 device->name = kstrdup(device_path, GFP_NOFS);
1591 if (!device->name) {
1592 kfree(device);
2b82032c
YZ
1593 ret = -ENOMEM;
1594 goto error;
788f20eb 1595 }
2b82032c
YZ
1596
1597 ret = find_next_devid(root, &device->devid);
1598 if (ret) {
67100f25 1599 kfree(device->name);
2b82032c
YZ
1600 kfree(device);
1601 goto error;
1602 }
1603
a22285a6 1604 trans = btrfs_start_transaction(root, 0);
98d5dc13 1605 if (IS_ERR(trans)) {
67100f25 1606 kfree(device->name);
98d5dc13
TI
1607 kfree(device);
1608 ret = PTR_ERR(trans);
1609 goto error;
1610 }
1611
2b82032c
YZ
1612 lock_chunks(root);
1613
2b82032c
YZ
1614 device->writeable = 1;
1615 device->work.func = pending_bios_fn;
1616 generate_random_uuid(device->uuid);
1617 spin_lock_init(&device->io_lock);
1618 device->generation = trans->transid;
788f20eb
CM
1619 device->io_width = root->sectorsize;
1620 device->io_align = root->sectorsize;
1621 device->sector_size = root->sectorsize;
1622 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1623 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1624 device->dev_root = root->fs_info->dev_root;
1625 device->bdev = bdev;
dfe25020 1626 device->in_fs_metadata = 1;
fb01aa85 1627 device->mode = FMODE_EXCL;
2b82032c 1628 set_blocksize(device->bdev, 4096);
788f20eb 1629
2b82032c
YZ
1630 if (seeding_dev) {
1631 sb->s_flags &= ~MS_RDONLY;
1632 ret = btrfs_prepare_sprout(trans, root);
1633 BUG_ON(ret);
1634 }
788f20eb 1635
2b82032c 1636 device->fs_devices = root->fs_info->fs_devices;
e5e9a520
CM
1637
1638 /*
1639 * we don't want write_supers to jump in here with our device
1640 * half setup
1641 */
1642 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1643 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
1644 list_add(&device->dev_alloc_list,
1645 &root->fs_info->fs_devices->alloc_list);
1646 root->fs_info->fs_devices->num_devices++;
1647 root->fs_info->fs_devices->open_devices++;
1648 root->fs_info->fs_devices->rw_devices++;
1649 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1650
c289811c
CM
1651 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1652 root->fs_info->fs_devices->rotating = 1;
1653
788f20eb
CM
1654 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1655 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1656 total_bytes + device->total_bytes);
1657
1658 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1659 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1660 total_bytes + 1);
e5e9a520 1661 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1662
2b82032c
YZ
1663 if (seeding_dev) {
1664 ret = init_first_rw_device(trans, root, device);
1665 BUG_ON(ret);
1666 ret = btrfs_finish_sprout(trans, root);
1667 BUG_ON(ret);
1668 } else {
1669 ret = btrfs_add_device(trans, root, device);
1670 }
1671
913d952e
CM
1672 /*
1673 * we've got more storage, clear any full flags on the space
1674 * infos
1675 */
1676 btrfs_clear_space_info_full(root->fs_info);
1677
7d9eb12c 1678 unlock_chunks(root);
2b82032c 1679 btrfs_commit_transaction(trans, root);
a2135011 1680
2b82032c
YZ
1681 if (seeding_dev) {
1682 mutex_unlock(&uuid_mutex);
1683 up_write(&sb->s_umount);
788f20eb 1684
2b82032c
YZ
1685 ret = btrfs_relocate_sys_chunks(root);
1686 BUG_ON(ret);
1687 }
1688out:
1689 mutex_unlock(&root->fs_info->volume_mutex);
1690 return ret;
1691error:
e525fd89 1692 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
1693 if (seeding_dev) {
1694 mutex_unlock(&uuid_mutex);
1695 up_write(&sb->s_umount);
1696 }
788f20eb
CM
1697 goto out;
1698}
1699
d397712b
CM
1700static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1701 struct btrfs_device *device)
0b86a832
CM
1702{
1703 int ret;
1704 struct btrfs_path *path;
1705 struct btrfs_root *root;
1706 struct btrfs_dev_item *dev_item;
1707 struct extent_buffer *leaf;
1708 struct btrfs_key key;
1709
1710 root = device->dev_root->fs_info->chunk_root;
1711
1712 path = btrfs_alloc_path();
1713 if (!path)
1714 return -ENOMEM;
1715
1716 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1717 key.type = BTRFS_DEV_ITEM_KEY;
1718 key.offset = device->devid;
1719
1720 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1721 if (ret < 0)
1722 goto out;
1723
1724 if (ret > 0) {
1725 ret = -ENOENT;
1726 goto out;
1727 }
1728
1729 leaf = path->nodes[0];
1730 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1731
1732 btrfs_set_device_id(leaf, dev_item, device->devid);
1733 btrfs_set_device_type(leaf, dev_item, device->type);
1734 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1735 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1736 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 1737 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
1738 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1739 btrfs_mark_buffer_dirty(leaf);
1740
1741out:
1742 btrfs_free_path(path);
1743 return ret;
1744}
1745
7d9eb12c 1746static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1747 struct btrfs_device *device, u64 new_size)
1748{
1749 struct btrfs_super_block *super_copy =
1750 &device->dev_root->fs_info->super_copy;
1751 u64 old_total = btrfs_super_total_bytes(super_copy);
1752 u64 diff = new_size - device->total_bytes;
1753
2b82032c
YZ
1754 if (!device->writeable)
1755 return -EACCES;
1756 if (new_size <= device->total_bytes)
1757 return -EINVAL;
1758
8f18cf13 1759 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1760 device->fs_devices->total_rw_bytes += diff;
1761
1762 device->total_bytes = new_size;
9779b72f 1763 device->disk_total_bytes = new_size;
4184ea7f
CM
1764 btrfs_clear_space_info_full(device->dev_root->fs_info);
1765
8f18cf13
CM
1766 return btrfs_update_device(trans, device);
1767}
1768
7d9eb12c
CM
1769int btrfs_grow_device(struct btrfs_trans_handle *trans,
1770 struct btrfs_device *device, u64 new_size)
1771{
1772 int ret;
1773 lock_chunks(device->dev_root);
1774 ret = __btrfs_grow_device(trans, device, new_size);
1775 unlock_chunks(device->dev_root);
1776 return ret;
1777}
1778
8f18cf13
CM
1779static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1780 struct btrfs_root *root,
1781 u64 chunk_tree, u64 chunk_objectid,
1782 u64 chunk_offset)
1783{
1784 int ret;
1785 struct btrfs_path *path;
1786 struct btrfs_key key;
1787
1788 root = root->fs_info->chunk_root;
1789 path = btrfs_alloc_path();
1790 if (!path)
1791 return -ENOMEM;
1792
1793 key.objectid = chunk_objectid;
1794 key.offset = chunk_offset;
1795 key.type = BTRFS_CHUNK_ITEM_KEY;
1796
1797 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1798 BUG_ON(ret);
1799
1800 ret = btrfs_del_item(trans, root, path);
8f18cf13
CM
1801
1802 btrfs_free_path(path);
65a246c5 1803 return ret;
8f18cf13
CM
1804}
1805
b2950863 1806static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
1807 chunk_offset)
1808{
1809 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1810 struct btrfs_disk_key *disk_key;
1811 struct btrfs_chunk *chunk;
1812 u8 *ptr;
1813 int ret = 0;
1814 u32 num_stripes;
1815 u32 array_size;
1816 u32 len = 0;
1817 u32 cur;
1818 struct btrfs_key key;
1819
1820 array_size = btrfs_super_sys_array_size(super_copy);
1821
1822 ptr = super_copy->sys_chunk_array;
1823 cur = 0;
1824
1825 while (cur < array_size) {
1826 disk_key = (struct btrfs_disk_key *)ptr;
1827 btrfs_disk_key_to_cpu(&key, disk_key);
1828
1829 len = sizeof(*disk_key);
1830
1831 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1832 chunk = (struct btrfs_chunk *)(ptr + len);
1833 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1834 len += btrfs_chunk_item_size(num_stripes);
1835 } else {
1836 ret = -EIO;
1837 break;
1838 }
1839 if (key.objectid == chunk_objectid &&
1840 key.offset == chunk_offset) {
1841 memmove(ptr, ptr + len, array_size - (cur + len));
1842 array_size -= len;
1843 btrfs_set_super_sys_array_size(super_copy, array_size);
1844 } else {
1845 ptr += len;
1846 cur += len;
1847 }
1848 }
1849 return ret;
1850}
1851
b2950863 1852static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
1853 u64 chunk_tree, u64 chunk_objectid,
1854 u64 chunk_offset)
1855{
1856 struct extent_map_tree *em_tree;
1857 struct btrfs_root *extent_root;
1858 struct btrfs_trans_handle *trans;
1859 struct extent_map *em;
1860 struct map_lookup *map;
1861 int ret;
1862 int i;
1863
1864 root = root->fs_info->chunk_root;
1865 extent_root = root->fs_info->extent_root;
1866 em_tree = &root->fs_info->mapping_tree.map_tree;
1867
ba1bf481
JB
1868 ret = btrfs_can_relocate(extent_root, chunk_offset);
1869 if (ret)
1870 return -ENOSPC;
1871
8f18cf13 1872 /* step one, relocate all the extents inside this chunk */
1a40e23b 1873 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
1874 if (ret)
1875 return ret;
8f18cf13 1876
a22285a6 1877 trans = btrfs_start_transaction(root, 0);
98d5dc13 1878 BUG_ON(IS_ERR(trans));
8f18cf13 1879
7d9eb12c
CM
1880 lock_chunks(root);
1881
8f18cf13
CM
1882 /*
1883 * step two, delete the device extents and the
1884 * chunk tree entries
1885 */
890871be 1886 read_lock(&em_tree->lock);
8f18cf13 1887 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 1888 read_unlock(&em_tree->lock);
8f18cf13 1889
a061fc8d
CM
1890 BUG_ON(em->start > chunk_offset ||
1891 em->start + em->len < chunk_offset);
8f18cf13
CM
1892 map = (struct map_lookup *)em->bdev;
1893
1894 for (i = 0; i < map->num_stripes; i++) {
1895 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1896 map->stripes[i].physical);
1897 BUG_ON(ret);
a061fc8d 1898
dfe25020
CM
1899 if (map->stripes[i].dev) {
1900 ret = btrfs_update_device(trans, map->stripes[i].dev);
1901 BUG_ON(ret);
1902 }
8f18cf13
CM
1903 }
1904 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1905 chunk_offset);
1906
1907 BUG_ON(ret);
1908
1abe9b8a 1909 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
1910
8f18cf13
CM
1911 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1912 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1913 BUG_ON(ret);
8f18cf13
CM
1914 }
1915
2b82032c
YZ
1916 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1917 BUG_ON(ret);
1918
890871be 1919 write_lock(&em_tree->lock);
2b82032c 1920 remove_extent_mapping(em_tree, em);
890871be 1921 write_unlock(&em_tree->lock);
2b82032c
YZ
1922
1923 kfree(map);
1924 em->bdev = NULL;
1925
1926 /* once for the tree */
1927 free_extent_map(em);
1928 /* once for us */
1929 free_extent_map(em);
1930
1931 unlock_chunks(root);
1932 btrfs_end_transaction(trans, root);
1933 return 0;
1934}
1935
1936static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1937{
1938 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1939 struct btrfs_path *path;
1940 struct extent_buffer *leaf;
1941 struct btrfs_chunk *chunk;
1942 struct btrfs_key key;
1943 struct btrfs_key found_key;
1944 u64 chunk_tree = chunk_root->root_key.objectid;
1945 u64 chunk_type;
ba1bf481
JB
1946 bool retried = false;
1947 int failed = 0;
2b82032c
YZ
1948 int ret;
1949
1950 path = btrfs_alloc_path();
1951 if (!path)
1952 return -ENOMEM;
1953
ba1bf481 1954again:
2b82032c
YZ
1955 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1956 key.offset = (u64)-1;
1957 key.type = BTRFS_CHUNK_ITEM_KEY;
1958
1959 while (1) {
1960 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1961 if (ret < 0)
1962 goto error;
1963 BUG_ON(ret == 0);
1964
1965 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1966 key.type);
1967 if (ret < 0)
1968 goto error;
1969 if (ret > 0)
1970 break;
1a40e23b 1971
2b82032c
YZ
1972 leaf = path->nodes[0];
1973 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 1974
2b82032c
YZ
1975 chunk = btrfs_item_ptr(leaf, path->slots[0],
1976 struct btrfs_chunk);
1977 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 1978 btrfs_release_path(path);
8f18cf13 1979
2b82032c
YZ
1980 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1981 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1982 found_key.objectid,
1983 found_key.offset);
ba1bf481
JB
1984 if (ret == -ENOSPC)
1985 failed++;
1986 else if (ret)
1987 BUG();
2b82032c 1988 }
8f18cf13 1989
2b82032c
YZ
1990 if (found_key.offset == 0)
1991 break;
1992 key.offset = found_key.offset - 1;
1993 }
1994 ret = 0;
ba1bf481
JB
1995 if (failed && !retried) {
1996 failed = 0;
1997 retried = true;
1998 goto again;
1999 } else if (failed && retried) {
2000 WARN_ON(1);
2001 ret = -ENOSPC;
2002 }
2b82032c
YZ
2003error:
2004 btrfs_free_path(path);
2005 return ret;
8f18cf13
CM
2006}
2007
ec44a35c
CM
2008static u64 div_factor(u64 num, int factor)
2009{
2010 if (factor == 10)
2011 return num;
2012 num *= factor;
2013 do_div(num, 10);
2014 return num;
2015}
2016
ec44a35c
CM
2017int btrfs_balance(struct btrfs_root *dev_root)
2018{
2019 int ret;
ec44a35c
CM
2020 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2021 struct btrfs_device *device;
2022 u64 old_size;
2023 u64 size_to_free;
2024 struct btrfs_path *path;
2025 struct btrfs_key key;
ec44a35c
CM
2026 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2027 struct btrfs_trans_handle *trans;
2028 struct btrfs_key found_key;
2029
2b82032c
YZ
2030 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2031 return -EROFS;
ec44a35c 2032
6f88a440
BH
2033 if (!capable(CAP_SYS_ADMIN))
2034 return -EPERM;
2035
7d9eb12c 2036 mutex_lock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
2037 dev_root = dev_root->fs_info->dev_root;
2038
ec44a35c 2039 /* step one make some room on all the devices */
c6e30871 2040 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2041 old_size = device->total_bytes;
2042 size_to_free = div_factor(old_size, 1);
2043 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
2044 if (!device->writeable ||
2045 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
2046 continue;
2047
2048 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2049 if (ret == -ENOSPC)
2050 break;
ec44a35c
CM
2051 BUG_ON(ret);
2052
a22285a6 2053 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2054 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2055
2056 ret = btrfs_grow_device(trans, device, old_size);
2057 BUG_ON(ret);
2058
2059 btrfs_end_transaction(trans, dev_root);
2060 }
2061
2062 /* step two, relocate all the chunks */
2063 path = btrfs_alloc_path();
2064 BUG_ON(!path);
2065
2066 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2067 key.offset = (u64)-1;
2068 key.type = BTRFS_CHUNK_ITEM_KEY;
2069
d397712b 2070 while (1) {
ec44a35c
CM
2071 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2072 if (ret < 0)
2073 goto error;
2074
2075 /*
2076 * this shouldn't happen, it means the last relocate
2077 * failed
2078 */
2079 if (ret == 0)
2080 break;
2081
2082 ret = btrfs_previous_item(chunk_root, path, 0,
2083 BTRFS_CHUNK_ITEM_KEY);
7d9eb12c 2084 if (ret)
ec44a35c 2085 break;
7d9eb12c 2086
ec44a35c
CM
2087 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2088 path->slots[0]);
2089 if (found_key.objectid != key.objectid)
2090 break;
7d9eb12c 2091
ec44a35c 2092 /* chunk zero is special */
ba1bf481 2093 if (found_key.offset == 0)
ec44a35c
CM
2094 break;
2095
b3b4aa74 2096 btrfs_release_path(path);
ec44a35c
CM
2097 ret = btrfs_relocate_chunk(chunk_root,
2098 chunk_root->root_key.objectid,
2099 found_key.objectid,
2100 found_key.offset);
ba1bf481
JB
2101 BUG_ON(ret && ret != -ENOSPC);
2102 key.offset = found_key.offset - 1;
ec44a35c
CM
2103 }
2104 ret = 0;
2105error:
2106 btrfs_free_path(path);
7d9eb12c 2107 mutex_unlock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
2108 return ret;
2109}
2110
8f18cf13
CM
2111/*
2112 * shrinking a device means finding all of the device extents past
2113 * the new size, and then following the back refs to the chunks.
2114 * The chunk relocation code actually frees the device extent
2115 */
2116int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2117{
2118 struct btrfs_trans_handle *trans;
2119 struct btrfs_root *root = device->dev_root;
2120 struct btrfs_dev_extent *dev_extent = NULL;
2121 struct btrfs_path *path;
2122 u64 length;
2123 u64 chunk_tree;
2124 u64 chunk_objectid;
2125 u64 chunk_offset;
2126 int ret;
2127 int slot;
ba1bf481
JB
2128 int failed = 0;
2129 bool retried = false;
8f18cf13
CM
2130 struct extent_buffer *l;
2131 struct btrfs_key key;
2132 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2133 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 2134 u64 old_size = device->total_bytes;
8f18cf13
CM
2135 u64 diff = device->total_bytes - new_size;
2136
2b82032c
YZ
2137 if (new_size >= device->total_bytes)
2138 return -EINVAL;
8f18cf13
CM
2139
2140 path = btrfs_alloc_path();
2141 if (!path)
2142 return -ENOMEM;
2143
8f18cf13
CM
2144 path->reada = 2;
2145
7d9eb12c
CM
2146 lock_chunks(root);
2147
8f18cf13 2148 device->total_bytes = new_size;
2b82032c
YZ
2149 if (device->writeable)
2150 device->fs_devices->total_rw_bytes -= diff;
7d9eb12c 2151 unlock_chunks(root);
8f18cf13 2152
ba1bf481 2153again:
8f18cf13
CM
2154 key.objectid = device->devid;
2155 key.offset = (u64)-1;
2156 key.type = BTRFS_DEV_EXTENT_KEY;
2157
2158 while (1) {
2159 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2160 if (ret < 0)
2161 goto done;
2162
2163 ret = btrfs_previous_item(root, path, 0, key.type);
2164 if (ret < 0)
2165 goto done;
2166 if (ret) {
2167 ret = 0;
b3b4aa74 2168 btrfs_release_path(path);
bf1fb512 2169 break;
8f18cf13
CM
2170 }
2171
2172 l = path->nodes[0];
2173 slot = path->slots[0];
2174 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2175
ba1bf481 2176 if (key.objectid != device->devid) {
b3b4aa74 2177 btrfs_release_path(path);
bf1fb512 2178 break;
ba1bf481 2179 }
8f18cf13
CM
2180
2181 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2182 length = btrfs_dev_extent_length(l, dev_extent);
2183
ba1bf481 2184 if (key.offset + length <= new_size) {
b3b4aa74 2185 btrfs_release_path(path);
d6397bae 2186 break;
ba1bf481 2187 }
8f18cf13
CM
2188
2189 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2190 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2191 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 2192 btrfs_release_path(path);
8f18cf13
CM
2193
2194 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2195 chunk_offset);
ba1bf481 2196 if (ret && ret != -ENOSPC)
8f18cf13 2197 goto done;
ba1bf481
JB
2198 if (ret == -ENOSPC)
2199 failed++;
2200 key.offset -= 1;
2201 }
2202
2203 if (failed && !retried) {
2204 failed = 0;
2205 retried = true;
2206 goto again;
2207 } else if (failed && retried) {
2208 ret = -ENOSPC;
2209 lock_chunks(root);
2210
2211 device->total_bytes = old_size;
2212 if (device->writeable)
2213 device->fs_devices->total_rw_bytes += diff;
2214 unlock_chunks(root);
2215 goto done;
8f18cf13
CM
2216 }
2217
d6397bae 2218 /* Shrinking succeeded, else we would be at "done". */
a22285a6 2219 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
2220 if (IS_ERR(trans)) {
2221 ret = PTR_ERR(trans);
2222 goto done;
2223 }
2224
d6397bae
CB
2225 lock_chunks(root);
2226
2227 device->disk_total_bytes = new_size;
2228 /* Now btrfs_update_device() will change the on-disk size. */
2229 ret = btrfs_update_device(trans, device);
2230 if (ret) {
2231 unlock_chunks(root);
2232 btrfs_end_transaction(trans, root);
2233 goto done;
2234 }
2235 WARN_ON(diff > old_total);
2236 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2237 unlock_chunks(root);
2238 btrfs_end_transaction(trans, root);
8f18cf13
CM
2239done:
2240 btrfs_free_path(path);
2241 return ret;
2242}
2243
b2950863 2244static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
0b86a832
CM
2245 struct btrfs_root *root,
2246 struct btrfs_key *key,
2247 struct btrfs_chunk *chunk, int item_size)
2248{
2249 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2250 struct btrfs_disk_key disk_key;
2251 u32 array_size;
2252 u8 *ptr;
2253
2254 array_size = btrfs_super_sys_array_size(super_copy);
2255 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2256 return -EFBIG;
2257
2258 ptr = super_copy->sys_chunk_array + array_size;
2259 btrfs_cpu_key_to_disk(&disk_key, key);
2260 memcpy(ptr, &disk_key, sizeof(disk_key));
2261 ptr += sizeof(disk_key);
2262 memcpy(ptr, chunk, item_size);
2263 item_size += sizeof(disk_key);
2264 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2265 return 0;
2266}
2267
73c5de00
AJ
2268/*
2269 * sort the devices in descending order by max_avail, total_avail
2270 */
2271static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 2272{
73c5de00
AJ
2273 const struct btrfs_device_info *di_a = a;
2274 const struct btrfs_device_info *di_b = b;
9b3f68b9 2275
73c5de00 2276 if (di_a->max_avail > di_b->max_avail)
b2117a39 2277 return -1;
73c5de00 2278 if (di_a->max_avail < di_b->max_avail)
b2117a39 2279 return 1;
73c5de00
AJ
2280 if (di_a->total_avail > di_b->total_avail)
2281 return -1;
2282 if (di_a->total_avail < di_b->total_avail)
2283 return 1;
2284 return 0;
b2117a39 2285}
0b86a832 2286
73c5de00
AJ
2287static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2288 struct btrfs_root *extent_root,
2289 struct map_lookup **map_ret,
2290 u64 *num_bytes_out, u64 *stripe_size_out,
2291 u64 start, u64 type)
b2117a39 2292{
73c5de00
AJ
2293 struct btrfs_fs_info *info = extent_root->fs_info;
2294 struct btrfs_fs_devices *fs_devices = info->fs_devices;
2295 struct list_head *cur;
2296 struct map_lookup *map = NULL;
2297 struct extent_map_tree *em_tree;
2298 struct extent_map *em;
2299 struct btrfs_device_info *devices_info = NULL;
2300 u64 total_avail;
2301 int num_stripes; /* total number of stripes to allocate */
2302 int sub_stripes; /* sub_stripes info for map */
2303 int dev_stripes; /* stripes per dev */
2304 int devs_max; /* max devs to use */
2305 int devs_min; /* min devs needed */
2306 int devs_increment; /* ndevs has to be a multiple of this */
2307 int ncopies; /* how many copies to data has */
2308 int ret;
2309 u64 max_stripe_size;
2310 u64 max_chunk_size;
2311 u64 stripe_size;
2312 u64 num_bytes;
2313 int ndevs;
2314 int i;
2315 int j;
593060d7 2316
73c5de00
AJ
2317 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2318 (type & BTRFS_BLOCK_GROUP_DUP)) {
2319 WARN_ON(1);
2320 type &= ~BTRFS_BLOCK_GROUP_DUP;
321aecc6 2321 }
9b3f68b9 2322
73c5de00
AJ
2323 if (list_empty(&fs_devices->alloc_list))
2324 return -ENOSPC;
b2117a39 2325
73c5de00
AJ
2326 sub_stripes = 1;
2327 dev_stripes = 1;
2328 devs_increment = 1;
2329 ncopies = 1;
2330 devs_max = 0; /* 0 == as many as possible */
2331 devs_min = 1;
2332
2333 /*
2334 * define the properties of each RAID type.
2335 * FIXME: move this to a global table and use it in all RAID
2336 * calculation code
2337 */
2338 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2339 dev_stripes = 2;
b2117a39 2340 ncopies = 2;
73c5de00
AJ
2341 devs_max = 1;
2342 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2343 devs_min = 2;
2344 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2345 devs_increment = 2;
b2117a39 2346 ncopies = 2;
73c5de00
AJ
2347 devs_max = 2;
2348 devs_min = 2;
2349 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2350 sub_stripes = 2;
2351 devs_increment = 2;
2352 ncopies = 2;
2353 devs_min = 4;
2354 } else {
2355 devs_max = 1;
2356 }
b2117a39 2357
9b3f68b9 2358 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
2359 max_stripe_size = 1024 * 1024 * 1024;
2360 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 2361 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
73c5de00
AJ
2362 max_stripe_size = 256 * 1024 * 1024;
2363 max_chunk_size = max_stripe_size;
a40a90a0 2364 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
73c5de00
AJ
2365 max_stripe_size = 8 * 1024 * 1024;
2366 max_chunk_size = 2 * max_stripe_size;
2367 } else {
2368 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
2369 type);
2370 BUG_ON(1);
9b3f68b9
CM
2371 }
2372
2b82032c
YZ
2373 /* we don't want a chunk larger than 10% of writeable space */
2374 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2375 max_chunk_size);
9b3f68b9 2376
73c5de00
AJ
2377 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2378 GFP_NOFS);
2379 if (!devices_info)
2380 return -ENOMEM;
0cad8a11 2381
73c5de00 2382 cur = fs_devices->alloc_list.next;
9b3f68b9 2383
9f680ce0 2384 /*
73c5de00
AJ
2385 * in the first pass through the devices list, we gather information
2386 * about the available holes on each device.
9f680ce0 2387 */
73c5de00
AJ
2388 ndevs = 0;
2389 while (cur != &fs_devices->alloc_list) {
2390 struct btrfs_device *device;
2391 u64 max_avail;
2392 u64 dev_offset;
b2117a39 2393
73c5de00 2394 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 2395
73c5de00 2396 cur = cur->next;
b2117a39 2397
73c5de00
AJ
2398 if (!device->writeable) {
2399 printk(KERN_ERR
2400 "btrfs: read-only device in alloc_list\n");
2401 WARN_ON(1);
2402 continue;
2403 }
b2117a39 2404
73c5de00
AJ
2405 if (!device->in_fs_metadata)
2406 continue;
b2117a39 2407
73c5de00
AJ
2408 if (device->total_bytes > device->bytes_used)
2409 total_avail = device->total_bytes - device->bytes_used;
2410 else
2411 total_avail = 0;
2412 /* avail is off by max(alloc_start, 1MB), but that is the same
2413 * for all devices, so it doesn't hurt the sorting later on
b2117a39 2414 */
b2117a39 2415
73c5de00
AJ
2416 ret = find_free_dev_extent(trans, device,
2417 max_stripe_size * dev_stripes,
2418 &dev_offset, &max_avail);
2419 if (ret && ret != -ENOSPC)
2420 goto error;
b2117a39 2421
73c5de00
AJ
2422 if (ret == 0)
2423 max_avail = max_stripe_size * dev_stripes;
b2117a39 2424
73c5de00
AJ
2425 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
2426 continue;
b2117a39 2427
73c5de00
AJ
2428 devices_info[ndevs].dev_offset = dev_offset;
2429 devices_info[ndevs].max_avail = max_avail;
2430 devices_info[ndevs].total_avail = total_avail;
2431 devices_info[ndevs].dev = device;
2432 ++ndevs;
2433 }
b2117a39 2434
73c5de00
AJ
2435 /*
2436 * now sort the devices by hole size / available space
2437 */
2438 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
2439 btrfs_cmp_device_info, NULL);
b2117a39 2440
73c5de00
AJ
2441 /* round down to number of usable stripes */
2442 ndevs -= ndevs % devs_increment;
b2117a39 2443
73c5de00
AJ
2444 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
2445 ret = -ENOSPC;
2446 goto error;
b2117a39 2447 }
9f680ce0 2448
73c5de00
AJ
2449 if (devs_max && ndevs > devs_max)
2450 ndevs = devs_max;
2451 /*
2452 * the primary goal is to maximize the number of stripes, so use as many
2453 * devices as possible, even if the stripes are not maximum sized.
2454 */
2455 stripe_size = devices_info[ndevs-1].max_avail;
2456 num_stripes = ndevs * dev_stripes;
b2117a39 2457
73c5de00
AJ
2458 if (stripe_size * num_stripes > max_chunk_size * ncopies) {
2459 stripe_size = max_chunk_size * ncopies;
2460 do_div(stripe_size, num_stripes);
b2117a39 2461 }
b2117a39 2462
73c5de00
AJ
2463 do_div(stripe_size, dev_stripes);
2464 do_div(stripe_size, BTRFS_STRIPE_LEN);
2465 stripe_size *= BTRFS_STRIPE_LEN;
b2117a39
MX
2466
2467 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2468 if (!map) {
2469 ret = -ENOMEM;
2470 goto error;
2471 }
2472 map->num_stripes = num_stripes;
9b3f68b9 2473
73c5de00
AJ
2474 for (i = 0; i < ndevs; ++i) {
2475 for (j = 0; j < dev_stripes; ++j) {
2476 int s = i * dev_stripes + j;
2477 map->stripes[s].dev = devices_info[i].dev;
2478 map->stripes[s].physical = devices_info[i].dev_offset +
2479 j * stripe_size;
6324fbf3 2480 }
6324fbf3 2481 }
2b82032c 2482 map->sector_size = extent_root->sectorsize;
b2117a39
MX
2483 map->stripe_len = BTRFS_STRIPE_LEN;
2484 map->io_align = BTRFS_STRIPE_LEN;
2485 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 2486 map->type = type;
2b82032c 2487 map->sub_stripes = sub_stripes;
0b86a832 2488
2b82032c 2489 *map_ret = map;
73c5de00 2490 num_bytes = stripe_size * (num_stripes / ncopies);
0b86a832 2491
73c5de00
AJ
2492 *stripe_size_out = stripe_size;
2493 *num_bytes_out = num_bytes;
0b86a832 2494
73c5de00 2495 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 2496
172ddd60 2497 em = alloc_extent_map();
2b82032c 2498 if (!em) {
b2117a39
MX
2499 ret = -ENOMEM;
2500 goto error;
593060d7 2501 }
2b82032c
YZ
2502 em->bdev = (struct block_device *)map;
2503 em->start = start;
73c5de00 2504 em->len = num_bytes;
2b82032c
YZ
2505 em->block_start = 0;
2506 em->block_len = em->len;
593060d7 2507
2b82032c 2508 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 2509 write_lock(&em_tree->lock);
2b82032c 2510 ret = add_extent_mapping(em_tree, em);
890871be 2511 write_unlock(&em_tree->lock);
2b82032c
YZ
2512 BUG_ON(ret);
2513 free_extent_map(em);
0b86a832 2514
2b82032c
YZ
2515 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2516 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 2517 start, num_bytes);
2b82032c 2518 BUG_ON(ret);
611f0e00 2519
73c5de00
AJ
2520 for (i = 0; i < map->num_stripes; ++i) {
2521 struct btrfs_device *device;
2522 u64 dev_offset;
2523
2524 device = map->stripes[i].dev;
2525 dev_offset = map->stripes[i].physical;
0b86a832
CM
2526
2527 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
2528 info->chunk_root->root_key.objectid,
2529 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 2530 start, dev_offset, stripe_size);
0b86a832 2531 BUG_ON(ret);
2b82032c
YZ
2532 }
2533
b2117a39 2534 kfree(devices_info);
2b82032c 2535 return 0;
b2117a39
MX
2536
2537error:
2538 kfree(map);
2539 kfree(devices_info);
2540 return ret;
2b82032c
YZ
2541}
2542
2543static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2544 struct btrfs_root *extent_root,
2545 struct map_lookup *map, u64 chunk_offset,
2546 u64 chunk_size, u64 stripe_size)
2547{
2548 u64 dev_offset;
2549 struct btrfs_key key;
2550 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2551 struct btrfs_device *device;
2552 struct btrfs_chunk *chunk;
2553 struct btrfs_stripe *stripe;
2554 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2555 int index = 0;
2556 int ret;
2557
2558 chunk = kzalloc(item_size, GFP_NOFS);
2559 if (!chunk)
2560 return -ENOMEM;
2561
2562 index = 0;
2563 while (index < map->num_stripes) {
2564 device = map->stripes[index].dev;
2565 device->bytes_used += stripe_size;
0b86a832
CM
2566 ret = btrfs_update_device(trans, device);
2567 BUG_ON(ret);
2b82032c
YZ
2568 index++;
2569 }
2570
2571 index = 0;
2572 stripe = &chunk->stripe;
2573 while (index < map->num_stripes) {
2574 device = map->stripes[index].dev;
2575 dev_offset = map->stripes[index].physical;
0b86a832 2576
e17cade2
CM
2577 btrfs_set_stack_stripe_devid(stripe, device->devid);
2578 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2579 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 2580 stripe++;
0b86a832
CM
2581 index++;
2582 }
2583
2b82032c 2584 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 2585 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
2586 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2587 btrfs_set_stack_chunk_type(chunk, map->type);
2588 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2589 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2590 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 2591 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 2592 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 2593
2b82032c
YZ
2594 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2595 key.type = BTRFS_CHUNK_ITEM_KEY;
2596 key.offset = chunk_offset;
0b86a832 2597
2b82032c
YZ
2598 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2599 BUG_ON(ret);
0b86a832 2600
2b82032c
YZ
2601 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2602 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2603 item_size);
8f18cf13
CM
2604 BUG_ON(ret);
2605 }
1abe9b8a 2606
0b86a832 2607 kfree(chunk);
2b82032c
YZ
2608 return 0;
2609}
0b86a832 2610
2b82032c
YZ
2611/*
2612 * Chunk allocation falls into two parts. The first part does works
2613 * that make the new allocated chunk useable, but not do any operation
2614 * that modifies the chunk tree. The second part does the works that
2615 * require modifying the chunk tree. This division is important for the
2616 * bootstrap process of adding storage to a seed btrfs.
2617 */
2618int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2619 struct btrfs_root *extent_root, u64 type)
2620{
2621 u64 chunk_offset;
2622 u64 chunk_size;
2623 u64 stripe_size;
2624 struct map_lookup *map;
2625 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2626 int ret;
2627
2628 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2629 &chunk_offset);
2630 if (ret)
2631 return ret;
2632
2633 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2634 &stripe_size, chunk_offset, type);
2635 if (ret)
2636 return ret;
2637
2638 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2639 chunk_size, stripe_size);
2640 BUG_ON(ret);
2641 return 0;
2642}
2643
d397712b 2644static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
2645 struct btrfs_root *root,
2646 struct btrfs_device *device)
2647{
2648 u64 chunk_offset;
2649 u64 sys_chunk_offset;
2650 u64 chunk_size;
2651 u64 sys_chunk_size;
2652 u64 stripe_size;
2653 u64 sys_stripe_size;
2654 u64 alloc_profile;
2655 struct map_lookup *map;
2656 struct map_lookup *sys_map;
2657 struct btrfs_fs_info *fs_info = root->fs_info;
2658 struct btrfs_root *extent_root = fs_info->extent_root;
2659 int ret;
2660
2661 ret = find_next_chunk(fs_info->chunk_root,
2662 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2663 BUG_ON(ret);
2664
2665 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2666 (fs_info->metadata_alloc_profile &
2667 fs_info->avail_metadata_alloc_bits);
2668 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2669
2670 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2671 &stripe_size, chunk_offset, alloc_profile);
2672 BUG_ON(ret);
2673
2674 sys_chunk_offset = chunk_offset + chunk_size;
2675
2676 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2677 (fs_info->system_alloc_profile &
2678 fs_info->avail_system_alloc_bits);
2679 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2680
2681 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2682 &sys_chunk_size, &sys_stripe_size,
2683 sys_chunk_offset, alloc_profile);
2684 BUG_ON(ret);
2685
2686 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2687 BUG_ON(ret);
2688
2689 /*
2690 * Modifying chunk tree needs allocating new blocks from both
2691 * system block group and metadata block group. So we only can
2692 * do operations require modifying the chunk tree after both
2693 * block groups were created.
2694 */
2695 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2696 chunk_size, stripe_size);
2697 BUG_ON(ret);
2698
2699 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2700 sys_chunk_offset, sys_chunk_size,
2701 sys_stripe_size);
b248a415 2702 BUG_ON(ret);
2b82032c
YZ
2703 return 0;
2704}
2705
2706int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2707{
2708 struct extent_map *em;
2709 struct map_lookup *map;
2710 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2711 int readonly = 0;
2712 int i;
2713
890871be 2714 read_lock(&map_tree->map_tree.lock);
2b82032c 2715 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 2716 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
2717 if (!em)
2718 return 1;
2719
f48b9075
JB
2720 if (btrfs_test_opt(root, DEGRADED)) {
2721 free_extent_map(em);
2722 return 0;
2723 }
2724
2b82032c
YZ
2725 map = (struct map_lookup *)em->bdev;
2726 for (i = 0; i < map->num_stripes; i++) {
2727 if (!map->stripes[i].dev->writeable) {
2728 readonly = 1;
2729 break;
2730 }
2731 }
0b86a832 2732 free_extent_map(em);
2b82032c 2733 return readonly;
0b86a832
CM
2734}
2735
2736void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2737{
a8067e02 2738 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
2739}
2740
2741void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2742{
2743 struct extent_map *em;
2744
d397712b 2745 while (1) {
890871be 2746 write_lock(&tree->map_tree.lock);
0b86a832
CM
2747 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2748 if (em)
2749 remove_extent_mapping(&tree->map_tree, em);
890871be 2750 write_unlock(&tree->map_tree.lock);
0b86a832
CM
2751 if (!em)
2752 break;
2753 kfree(em->bdev);
2754 /* once for us */
2755 free_extent_map(em);
2756 /* once for the tree */
2757 free_extent_map(em);
2758 }
2759}
2760
f188591e
CM
2761int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2762{
2763 struct extent_map *em;
2764 struct map_lookup *map;
2765 struct extent_map_tree *em_tree = &map_tree->map_tree;
2766 int ret;
2767
890871be 2768 read_lock(&em_tree->lock);
f188591e 2769 em = lookup_extent_mapping(em_tree, logical, len);
890871be 2770 read_unlock(&em_tree->lock);
f188591e
CM
2771 BUG_ON(!em);
2772
2773 BUG_ON(em->start > logical || em->start + em->len < logical);
2774 map = (struct map_lookup *)em->bdev;
2775 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2776 ret = map->num_stripes;
321aecc6
CM
2777 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2778 ret = map->sub_stripes;
f188591e
CM
2779 else
2780 ret = 1;
2781 free_extent_map(em);
f188591e
CM
2782 return ret;
2783}
2784
dfe25020
CM
2785static int find_live_mirror(struct map_lookup *map, int first, int num,
2786 int optimal)
2787{
2788 int i;
2789 if (map->stripes[optimal].dev->bdev)
2790 return optimal;
2791 for (i = first; i < first + num; i++) {
2792 if (map->stripes[i].dev->bdev)
2793 return i;
2794 }
2795 /* we couldn't find one that doesn't fail. Just return something
2796 * and the io error handling code will clean up eventually
2797 */
2798 return optimal;
2799}
2800
f2d8d74d
CM
2801static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2802 u64 logical, u64 *length,
2803 struct btrfs_multi_bio **multi_ret,
7eaceacc 2804 int mirror_num)
0b86a832
CM
2805{
2806 struct extent_map *em;
2807 struct map_lookup *map;
2808 struct extent_map_tree *em_tree = &map_tree->map_tree;
2809 u64 offset;
593060d7 2810 u64 stripe_offset;
fce3bb9a 2811 u64 stripe_end_offset;
593060d7 2812 u64 stripe_nr;
fce3bb9a
LD
2813 u64 stripe_nr_orig;
2814 u64 stripe_nr_end;
cea9e445 2815 int stripes_allocated = 8;
321aecc6 2816 int stripes_required = 1;
593060d7 2817 int stripe_index;
cea9e445 2818 int i;
f2d8d74d 2819 int num_stripes;
a236aed1 2820 int max_errors = 0;
cea9e445 2821 struct btrfs_multi_bio *multi = NULL;
0b86a832 2822
fce3bb9a 2823 if (multi_ret && !(rw & (REQ_WRITE | REQ_DISCARD)))
cea9e445 2824 stripes_allocated = 1;
cea9e445
CM
2825again:
2826 if (multi_ret) {
2827 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2828 GFP_NOFS);
2829 if (!multi)
2830 return -ENOMEM;
a236aed1
CM
2831
2832 atomic_set(&multi->error, 0);
cea9e445 2833 }
0b86a832 2834
890871be 2835 read_lock(&em_tree->lock);
0b86a832 2836 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 2837 read_unlock(&em_tree->lock);
f2d8d74d 2838
3b951516 2839 if (!em) {
d397712b
CM
2840 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2841 (unsigned long long)logical,
2842 (unsigned long long)*length);
f2d8d74d 2843 BUG();
3b951516 2844 }
0b86a832
CM
2845
2846 BUG_ON(em->start > logical || em->start + em->len < logical);
2847 map = (struct map_lookup *)em->bdev;
2848 offset = logical - em->start;
593060d7 2849
f188591e
CM
2850 if (mirror_num > map->num_stripes)
2851 mirror_num = 0;
2852
cea9e445 2853 /* if our multi bio struct is too small, back off and try again */
7b6d91da 2854 if (rw & REQ_WRITE) {
321aecc6
CM
2855 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2856 BTRFS_BLOCK_GROUP_DUP)) {
2857 stripes_required = map->num_stripes;
a236aed1 2858 max_errors = 1;
321aecc6
CM
2859 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2860 stripes_required = map->sub_stripes;
a236aed1 2861 max_errors = 1;
321aecc6
CM
2862 }
2863 }
fce3bb9a
LD
2864 if (rw & REQ_DISCARD) {
2865 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2866 BTRFS_BLOCK_GROUP_RAID1 |
2867 BTRFS_BLOCK_GROUP_DUP |
2868 BTRFS_BLOCK_GROUP_RAID10)) {
2869 stripes_required = map->num_stripes;
2870 }
2871 }
2872 if (multi_ret && (rw & (REQ_WRITE | REQ_DISCARD)) &&
321aecc6 2873 stripes_allocated < stripes_required) {
cea9e445 2874 stripes_allocated = map->num_stripes;
cea9e445
CM
2875 free_extent_map(em);
2876 kfree(multi);
2877 goto again;
2878 }
593060d7
CM
2879 stripe_nr = offset;
2880 /*
2881 * stripe_nr counts the total number of stripes we have to stride
2882 * to get to this block
2883 */
2884 do_div(stripe_nr, map->stripe_len);
2885
2886 stripe_offset = stripe_nr * map->stripe_len;
2887 BUG_ON(offset < stripe_offset);
2888
2889 /* stripe_offset is the offset of this block in its stripe*/
2890 stripe_offset = offset - stripe_offset;
2891
fce3bb9a
LD
2892 if (rw & REQ_DISCARD)
2893 *length = min_t(u64, em->len - offset, *length);
2894 else if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2895 BTRFS_BLOCK_GROUP_RAID1 |
2896 BTRFS_BLOCK_GROUP_RAID10 |
2897 BTRFS_BLOCK_GROUP_DUP)) {
cea9e445
CM
2898 /* we limit the length of each bio to what fits in a stripe */
2899 *length = min_t(u64, em->len - offset,
fce3bb9a 2900 map->stripe_len - stripe_offset);
cea9e445
CM
2901 } else {
2902 *length = em->len - offset;
2903 }
f2d8d74d 2904
7eaceacc 2905 if (!multi_ret)
cea9e445
CM
2906 goto out;
2907
f2d8d74d 2908 num_stripes = 1;
cea9e445 2909 stripe_index = 0;
fce3bb9a
LD
2910 stripe_nr_orig = stripe_nr;
2911 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
2912 (~(map->stripe_len - 1));
2913 do_div(stripe_nr_end, map->stripe_len);
2914 stripe_end_offset = stripe_nr_end * map->stripe_len -
2915 (offset + *length);
2916 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2917 if (rw & REQ_DISCARD)
2918 num_stripes = min_t(u64, map->num_stripes,
2919 stripe_nr_end - stripe_nr_orig);
2920 stripe_index = do_div(stripe_nr, map->num_stripes);
2921 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
212a17ab 2922 if (rw & (REQ_WRITE | REQ_DISCARD))
f2d8d74d 2923 num_stripes = map->num_stripes;
2fff734f 2924 else if (mirror_num)
f188591e 2925 stripe_index = mirror_num - 1;
dfe25020
CM
2926 else {
2927 stripe_index = find_live_mirror(map, 0,
2928 map->num_stripes,
2929 current->pid % map->num_stripes);
2930 }
2fff734f 2931
611f0e00 2932 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
fce3bb9a 2933 if (rw & (REQ_WRITE | REQ_DISCARD))
f2d8d74d 2934 num_stripes = map->num_stripes;
f188591e
CM
2935 else if (mirror_num)
2936 stripe_index = mirror_num - 1;
2fff734f 2937
321aecc6
CM
2938 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2939 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
2940
2941 stripe_index = do_div(stripe_nr, factor);
2942 stripe_index *= map->sub_stripes;
2943
7eaceacc 2944 if (rw & REQ_WRITE)
f2d8d74d 2945 num_stripes = map->sub_stripes;
fce3bb9a
LD
2946 else if (rw & REQ_DISCARD)
2947 num_stripes = min_t(u64, map->sub_stripes *
2948 (stripe_nr_end - stripe_nr_orig),
2949 map->num_stripes);
321aecc6
CM
2950 else if (mirror_num)
2951 stripe_index += mirror_num - 1;
dfe25020
CM
2952 else {
2953 stripe_index = find_live_mirror(map, stripe_index,
2954 map->sub_stripes, stripe_index +
2955 current->pid % map->sub_stripes);
2956 }
8790d502
CM
2957 } else {
2958 /*
2959 * after this do_div call, stripe_nr is the number of stripes
2960 * on this device we have to walk to find the data, and
2961 * stripe_index is the number of our device in the stripe array
2962 */
2963 stripe_index = do_div(stripe_nr, map->num_stripes);
2964 }
593060d7 2965 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 2966
fce3bb9a
LD
2967 if (rw & REQ_DISCARD) {
2968 for (i = 0; i < num_stripes; i++) {
f2d8d74d
CM
2969 multi->stripes[i].physical =
2970 map->stripes[stripe_index].physical +
2971 stripe_offset + stripe_nr * map->stripe_len;
2972 multi->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a
LD
2973
2974 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2975 u64 stripes;
d9d04879 2976 u32 last_stripe = 0;
fce3bb9a
LD
2977 int j;
2978
d9d04879
CM
2979 div_u64_rem(stripe_nr_end - 1,
2980 map->num_stripes,
2981 &last_stripe);
2982
fce3bb9a 2983 for (j = 0; j < map->num_stripes; j++) {
d9d04879
CM
2984 u32 test;
2985
2986 div_u64_rem(stripe_nr_end - 1 - j,
2987 map->num_stripes, &test);
2988 if (test == stripe_index)
fce3bb9a
LD
2989 break;
2990 }
2991 stripes = stripe_nr_end - 1 - j;
2992 do_div(stripes, map->num_stripes);
2993 multi->stripes[i].length = map->stripe_len *
2994 (stripes - stripe_nr + 1);
2995
2996 if (i == 0) {
2997 multi->stripes[i].length -=
2998 stripe_offset;
2999 stripe_offset = 0;
3000 }
3001 if (stripe_index == last_stripe)
3002 multi->stripes[i].length -=
3003 stripe_end_offset;
3004 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3005 u64 stripes;
3006 int j;
3007 int factor = map->num_stripes /
3008 map->sub_stripes;
d9d04879
CM
3009 u32 last_stripe = 0;
3010
3011 div_u64_rem(stripe_nr_end - 1,
3012 factor, &last_stripe);
fce3bb9a
LD
3013 last_stripe *= map->sub_stripes;
3014
3015 for (j = 0; j < factor; j++) {
d9d04879
CM
3016 u32 test;
3017
3018 div_u64_rem(stripe_nr_end - 1 - j,
3019 factor, &test);
3020
3021 if (test ==
fce3bb9a
LD
3022 stripe_index / map->sub_stripes)
3023 break;
3024 }
3025 stripes = stripe_nr_end - 1 - j;
3026 do_div(stripes, factor);
3027 multi->stripes[i].length = map->stripe_len *
3028 (stripes - stripe_nr + 1);
3029
3030 if (i < map->sub_stripes) {
3031 multi->stripes[i].length -=
3032 stripe_offset;
3033 if (i == map->sub_stripes - 1)
3034 stripe_offset = 0;
3035 }
3036 if (stripe_index >= last_stripe &&
3037 stripe_index <= (last_stripe +
3038 map->sub_stripes - 1)) {
3039 multi->stripes[i].length -=
3040 stripe_end_offset;
3041 }
3042 } else
3043 multi->stripes[i].length = *length;
3044
3045 stripe_index++;
3046 if (stripe_index == map->num_stripes) {
3047 /* This could only happen for RAID0/10 */
3048 stripe_index = 0;
3049 stripe_nr++;
3050 }
3051 }
3052 } else {
3053 for (i = 0; i < num_stripes; i++) {
212a17ab
LT
3054 multi->stripes[i].physical =
3055 map->stripes[stripe_index].physical +
3056 stripe_offset +
3057 stripe_nr * map->stripe_len;
3058 multi->stripes[i].dev =
3059 map->stripes[stripe_index].dev;
fce3bb9a 3060 stripe_index++;
f2d8d74d 3061 }
593060d7 3062 }
f2d8d74d
CM
3063 if (multi_ret) {
3064 *multi_ret = multi;
3065 multi->num_stripes = num_stripes;
a236aed1 3066 multi->max_errors = max_errors;
f2d8d74d 3067 }
cea9e445 3068out:
0b86a832 3069 free_extent_map(em);
0b86a832
CM
3070 return 0;
3071}
3072
f2d8d74d
CM
3073int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3074 u64 logical, u64 *length,
3075 struct btrfs_multi_bio **multi_ret, int mirror_num)
3076{
3077 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
7eaceacc 3078 mirror_num);
f2d8d74d
CM
3079}
3080
a512bbf8
YZ
3081int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3082 u64 chunk_start, u64 physical, u64 devid,
3083 u64 **logical, int *naddrs, int *stripe_len)
3084{
3085 struct extent_map_tree *em_tree = &map_tree->map_tree;
3086 struct extent_map *em;
3087 struct map_lookup *map;
3088 u64 *buf;
3089 u64 bytenr;
3090 u64 length;
3091 u64 stripe_nr;
3092 int i, j, nr = 0;
3093
890871be 3094 read_lock(&em_tree->lock);
a512bbf8 3095 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 3096 read_unlock(&em_tree->lock);
a512bbf8
YZ
3097
3098 BUG_ON(!em || em->start != chunk_start);
3099 map = (struct map_lookup *)em->bdev;
3100
3101 length = em->len;
3102 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3103 do_div(length, map->num_stripes / map->sub_stripes);
3104 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3105 do_div(length, map->num_stripes);
3106
3107 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3108 BUG_ON(!buf);
3109
3110 for (i = 0; i < map->num_stripes; i++) {
3111 if (devid && map->stripes[i].dev->devid != devid)
3112 continue;
3113 if (map->stripes[i].physical > physical ||
3114 map->stripes[i].physical + length <= physical)
3115 continue;
3116
3117 stripe_nr = physical - map->stripes[i].physical;
3118 do_div(stripe_nr, map->stripe_len);
3119
3120 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3121 stripe_nr = stripe_nr * map->num_stripes + i;
3122 do_div(stripe_nr, map->sub_stripes);
3123 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3124 stripe_nr = stripe_nr * map->num_stripes + i;
3125 }
3126 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 3127 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
3128 for (j = 0; j < nr; j++) {
3129 if (buf[j] == bytenr)
3130 break;
3131 }
934d375b
CM
3132 if (j == nr) {
3133 WARN_ON(nr >= map->num_stripes);
a512bbf8 3134 buf[nr++] = bytenr;
934d375b 3135 }
a512bbf8
YZ
3136 }
3137
a512bbf8
YZ
3138 *logical = buf;
3139 *naddrs = nr;
3140 *stripe_len = map->stripe_len;
3141
3142 free_extent_map(em);
3143 return 0;
f2d8d74d
CM
3144}
3145
8790d502 3146static void end_bio_multi_stripe(struct bio *bio, int err)
8790d502 3147{
cea9e445 3148 struct btrfs_multi_bio *multi = bio->bi_private;
7d2b4daa 3149 int is_orig_bio = 0;
8790d502 3150
8790d502 3151 if (err)
a236aed1 3152 atomic_inc(&multi->error);
8790d502 3153
7d2b4daa
CM
3154 if (bio == multi->orig_bio)
3155 is_orig_bio = 1;
3156
cea9e445 3157 if (atomic_dec_and_test(&multi->stripes_pending)) {
7d2b4daa
CM
3158 if (!is_orig_bio) {
3159 bio_put(bio);
3160 bio = multi->orig_bio;
3161 }
8790d502
CM
3162 bio->bi_private = multi->private;
3163 bio->bi_end_io = multi->end_io;
a236aed1
CM
3164 /* only send an error to the higher layers if it is
3165 * beyond the tolerance of the multi-bio
3166 */
1259ab75 3167 if (atomic_read(&multi->error) > multi->max_errors) {
a236aed1 3168 err = -EIO;
1259ab75
CM
3169 } else if (err) {
3170 /*
3171 * this bio is actually up to date, we didn't
3172 * go over the max number of errors
3173 */
3174 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 3175 err = 0;
1259ab75 3176 }
8790d502
CM
3177 kfree(multi);
3178
3179 bio_endio(bio, err);
7d2b4daa 3180 } else if (!is_orig_bio) {
8790d502
CM
3181 bio_put(bio);
3182 }
8790d502
CM
3183}
3184
8b712842
CM
3185struct async_sched {
3186 struct bio *bio;
3187 int rw;
3188 struct btrfs_fs_info *info;
3189 struct btrfs_work work;
3190};
3191
3192/*
3193 * see run_scheduled_bios for a description of why bios are collected for
3194 * async submit.
3195 *
3196 * This will add one bio to the pending list for a device and make sure
3197 * the work struct is scheduled.
3198 */
d397712b 3199static noinline int schedule_bio(struct btrfs_root *root,
a1b32a59
CM
3200 struct btrfs_device *device,
3201 int rw, struct bio *bio)
8b712842
CM
3202{
3203 int should_queue = 1;
ffbd517d 3204 struct btrfs_pending_bios *pending_bios;
8b712842
CM
3205
3206 /* don't bother with additional async steps for reads, right now */
7b6d91da 3207 if (!(rw & REQ_WRITE)) {
492bb6de 3208 bio_get(bio);
8b712842 3209 submit_bio(rw, bio);
492bb6de 3210 bio_put(bio);
8b712842
CM
3211 return 0;
3212 }
3213
3214 /*
0986fe9e 3215 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
3216 * higher layers. Otherwise, the async bio makes it appear we have
3217 * made progress against dirty pages when we've really just put it
3218 * on a queue for later
3219 */
0986fe9e 3220 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 3221 WARN_ON(bio->bi_next);
8b712842
CM
3222 bio->bi_next = NULL;
3223 bio->bi_rw |= rw;
3224
3225 spin_lock(&device->io_lock);
7b6d91da 3226 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
3227 pending_bios = &device->pending_sync_bios;
3228 else
3229 pending_bios = &device->pending_bios;
8b712842 3230
ffbd517d
CM
3231 if (pending_bios->tail)
3232 pending_bios->tail->bi_next = bio;
8b712842 3233
ffbd517d
CM
3234 pending_bios->tail = bio;
3235 if (!pending_bios->head)
3236 pending_bios->head = bio;
8b712842
CM
3237 if (device->running_pending)
3238 should_queue = 0;
3239
3240 spin_unlock(&device->io_lock);
3241
3242 if (should_queue)
1cc127b5
CM
3243 btrfs_queue_worker(&root->fs_info->submit_workers,
3244 &device->work);
8b712842
CM
3245 return 0;
3246}
3247
f188591e 3248int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 3249 int mirror_num, int async_submit)
0b86a832
CM
3250{
3251 struct btrfs_mapping_tree *map_tree;
3252 struct btrfs_device *dev;
8790d502 3253 struct bio *first_bio = bio;
a62b9401 3254 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
3255 u64 length = 0;
3256 u64 map_length;
cea9e445 3257 struct btrfs_multi_bio *multi = NULL;
0b86a832 3258 int ret;
8790d502
CM
3259 int dev_nr = 0;
3260 int total_devs = 1;
0b86a832 3261
f2d8d74d 3262 length = bio->bi_size;
0b86a832
CM
3263 map_tree = &root->fs_info->mapping_tree;
3264 map_length = length;
cea9e445 3265
f188591e
CM
3266 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3267 mirror_num);
cea9e445
CM
3268 BUG_ON(ret);
3269
3270 total_devs = multi->num_stripes;
3271 if (map_length < length) {
d397712b
CM
3272 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3273 "len %llu\n", (unsigned long long)logical,
3274 (unsigned long long)length,
3275 (unsigned long long)map_length);
cea9e445
CM
3276 BUG();
3277 }
3278 multi->end_io = first_bio->bi_end_io;
3279 multi->private = first_bio->bi_private;
7d2b4daa 3280 multi->orig_bio = first_bio;
cea9e445
CM
3281 atomic_set(&multi->stripes_pending, multi->num_stripes);
3282
d397712b 3283 while (dev_nr < total_devs) {
8790d502 3284 if (total_devs > 1) {
8790d502
CM
3285 if (dev_nr < total_devs - 1) {
3286 bio = bio_clone(first_bio, GFP_NOFS);
3287 BUG_ON(!bio);
3288 } else {
3289 bio = first_bio;
3290 }
3291 bio->bi_private = multi;
3292 bio->bi_end_io = end_bio_multi_stripe;
3293 }
cea9e445
CM
3294 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3295 dev = multi->stripes[dev_nr].dev;
18e503d6 3296 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
dfe25020 3297 bio->bi_bdev = dev->bdev;
8b712842
CM
3298 if (async_submit)
3299 schedule_bio(root, dev, rw, bio);
3300 else
3301 submit_bio(rw, bio);
dfe25020
CM
3302 } else {
3303 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3304 bio->bi_sector = logical >> 9;
dfe25020 3305 bio_endio(bio, -EIO);
dfe25020 3306 }
8790d502
CM
3307 dev_nr++;
3308 }
cea9e445
CM
3309 if (total_devs == 1)
3310 kfree(multi);
0b86a832
CM
3311 return 0;
3312}
3313
a443755f 3314struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 3315 u8 *uuid, u8 *fsid)
0b86a832 3316{
2b82032c
YZ
3317 struct btrfs_device *device;
3318 struct btrfs_fs_devices *cur_devices;
3319
3320 cur_devices = root->fs_info->fs_devices;
3321 while (cur_devices) {
3322 if (!fsid ||
3323 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3324 device = __find_device(&cur_devices->devices,
3325 devid, uuid);
3326 if (device)
3327 return device;
3328 }
3329 cur_devices = cur_devices->seed;
3330 }
3331 return NULL;
0b86a832
CM
3332}
3333
dfe25020
CM
3334static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3335 u64 devid, u8 *dev_uuid)
3336{
3337 struct btrfs_device *device;
3338 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3339
3340 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 3341 if (!device)
3342 return NULL;
dfe25020
CM
3343 list_add(&device->dev_list,
3344 &fs_devices->devices);
dfe25020
CM
3345 device->dev_root = root->fs_info->dev_root;
3346 device->devid = devid;
8b712842 3347 device->work.func = pending_bios_fn;
e4404d6e 3348 device->fs_devices = fs_devices;
cd02dca5 3349 device->missing = 1;
dfe25020 3350 fs_devices->num_devices++;
cd02dca5 3351 fs_devices->missing_devices++;
dfe25020 3352 spin_lock_init(&device->io_lock);
d20f7043 3353 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
3354 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3355 return device;
3356}
3357
0b86a832
CM
3358static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3359 struct extent_buffer *leaf,
3360 struct btrfs_chunk *chunk)
3361{
3362 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3363 struct map_lookup *map;
3364 struct extent_map *em;
3365 u64 logical;
3366 u64 length;
3367 u64 devid;
a443755f 3368 u8 uuid[BTRFS_UUID_SIZE];
593060d7 3369 int num_stripes;
0b86a832 3370 int ret;
593060d7 3371 int i;
0b86a832 3372
e17cade2
CM
3373 logical = key->offset;
3374 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 3375
890871be 3376 read_lock(&map_tree->map_tree.lock);
0b86a832 3377 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 3378 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
3379
3380 /* already mapped? */
3381 if (em && em->start <= logical && em->start + em->len > logical) {
3382 free_extent_map(em);
0b86a832
CM
3383 return 0;
3384 } else if (em) {
3385 free_extent_map(em);
3386 }
0b86a832 3387
172ddd60 3388 em = alloc_extent_map();
0b86a832
CM
3389 if (!em)
3390 return -ENOMEM;
593060d7
CM
3391 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3392 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
3393 if (!map) {
3394 free_extent_map(em);
3395 return -ENOMEM;
3396 }
3397
3398 em->bdev = (struct block_device *)map;
3399 em->start = logical;
3400 em->len = length;
3401 em->block_start = 0;
c8b97818 3402 em->block_len = em->len;
0b86a832 3403
593060d7
CM
3404 map->num_stripes = num_stripes;
3405 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3406 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3407 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3408 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3409 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 3410 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
3411 for (i = 0; i < num_stripes; i++) {
3412 map->stripes[i].physical =
3413 btrfs_stripe_offset_nr(leaf, chunk, i);
3414 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
3415 read_extent_buffer(leaf, uuid, (unsigned long)
3416 btrfs_stripe_dev_uuid_nr(chunk, i),
3417 BTRFS_UUID_SIZE);
2b82032c
YZ
3418 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3419 NULL);
dfe25020 3420 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
3421 kfree(map);
3422 free_extent_map(em);
3423 return -EIO;
3424 }
dfe25020
CM
3425 if (!map->stripes[i].dev) {
3426 map->stripes[i].dev =
3427 add_missing_dev(root, devid, uuid);
3428 if (!map->stripes[i].dev) {
3429 kfree(map);
3430 free_extent_map(em);
3431 return -EIO;
3432 }
3433 }
3434 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
3435 }
3436
890871be 3437 write_lock(&map_tree->map_tree.lock);
0b86a832 3438 ret = add_extent_mapping(&map_tree->map_tree, em);
890871be 3439 write_unlock(&map_tree->map_tree.lock);
b248a415 3440 BUG_ON(ret);
0b86a832
CM
3441 free_extent_map(em);
3442
3443 return 0;
3444}
3445
3446static int fill_device_from_item(struct extent_buffer *leaf,
3447 struct btrfs_dev_item *dev_item,
3448 struct btrfs_device *device)
3449{
3450 unsigned long ptr;
0b86a832
CM
3451
3452 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
3453 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3454 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
3455 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3456 device->type = btrfs_device_type(leaf, dev_item);
3457 device->io_align = btrfs_device_io_align(leaf, dev_item);
3458 device->io_width = btrfs_device_io_width(leaf, dev_item);
3459 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
3460
3461 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 3462 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 3463
0b86a832
CM
3464 return 0;
3465}
3466
2b82032c
YZ
3467static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3468{
3469 struct btrfs_fs_devices *fs_devices;
3470 int ret;
3471
3472 mutex_lock(&uuid_mutex);
3473
3474 fs_devices = root->fs_info->fs_devices->seed;
3475 while (fs_devices) {
3476 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3477 ret = 0;
3478 goto out;
3479 }
3480 fs_devices = fs_devices->seed;
3481 }
3482
3483 fs_devices = find_fsid(fsid);
3484 if (!fs_devices) {
3485 ret = -ENOENT;
3486 goto out;
3487 }
e4404d6e
YZ
3488
3489 fs_devices = clone_fs_devices(fs_devices);
3490 if (IS_ERR(fs_devices)) {
3491 ret = PTR_ERR(fs_devices);
2b82032c
YZ
3492 goto out;
3493 }
3494
97288f2c 3495 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 3496 root->fs_info->bdev_holder);
2b82032c
YZ
3497 if (ret)
3498 goto out;
3499
3500 if (!fs_devices->seeding) {
3501 __btrfs_close_devices(fs_devices);
e4404d6e 3502 free_fs_devices(fs_devices);
2b82032c
YZ
3503 ret = -EINVAL;
3504 goto out;
3505 }
3506
3507 fs_devices->seed = root->fs_info->fs_devices->seed;
3508 root->fs_info->fs_devices->seed = fs_devices;
2b82032c
YZ
3509out:
3510 mutex_unlock(&uuid_mutex);
3511 return ret;
3512}
3513
0d81ba5d 3514static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
3515 struct extent_buffer *leaf,
3516 struct btrfs_dev_item *dev_item)
3517{
3518 struct btrfs_device *device;
3519 u64 devid;
3520 int ret;
2b82032c 3521 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
3522 u8 dev_uuid[BTRFS_UUID_SIZE];
3523
0b86a832 3524 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
3525 read_extent_buffer(leaf, dev_uuid,
3526 (unsigned long)btrfs_device_uuid(dev_item),
3527 BTRFS_UUID_SIZE);
2b82032c
YZ
3528 read_extent_buffer(leaf, fs_uuid,
3529 (unsigned long)btrfs_device_fsid(dev_item),
3530 BTRFS_UUID_SIZE);
3531
3532 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3533 ret = open_seed_devices(root, fs_uuid);
e4404d6e 3534 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 3535 return ret;
2b82032c
YZ
3536 }
3537
3538 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3539 if (!device || !device->bdev) {
e4404d6e 3540 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
3541 return -EIO;
3542
3543 if (!device) {
d397712b
CM
3544 printk(KERN_WARNING "warning devid %llu missing\n",
3545 (unsigned long long)devid);
2b82032c
YZ
3546 device = add_missing_dev(root, devid, dev_uuid);
3547 if (!device)
3548 return -ENOMEM;
cd02dca5
CM
3549 } else if (!device->missing) {
3550 /*
3551 * this happens when a device that was properly setup
3552 * in the device info lists suddenly goes bad.
3553 * device->bdev is NULL, and so we have to set
3554 * device->missing to one here
3555 */
3556 root->fs_info->fs_devices->missing_devices++;
3557 device->missing = 1;
2b82032c
YZ
3558 }
3559 }
3560
3561 if (device->fs_devices != root->fs_info->fs_devices) {
3562 BUG_ON(device->writeable);
3563 if (device->generation !=
3564 btrfs_device_generation(leaf, dev_item))
3565 return -EINVAL;
6324fbf3 3566 }
0b86a832
CM
3567
3568 fill_device_from_item(leaf, dev_item, device);
3569 device->dev_root = root->fs_info->dev_root;
dfe25020 3570 device->in_fs_metadata = 1;
2b82032c
YZ
3571 if (device->writeable)
3572 device->fs_devices->total_rw_bytes += device->total_bytes;
0b86a832 3573 ret = 0;
0b86a832
CM
3574 return ret;
3575}
3576
e4404d6e 3577int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832
CM
3578{
3579 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
a061fc8d 3580 struct extent_buffer *sb;
0b86a832 3581 struct btrfs_disk_key *disk_key;
0b86a832 3582 struct btrfs_chunk *chunk;
84eed90f
CM
3583 u8 *ptr;
3584 unsigned long sb_ptr;
3585 int ret = 0;
0b86a832
CM
3586 u32 num_stripes;
3587 u32 array_size;
3588 u32 len = 0;
0b86a832 3589 u32 cur;
84eed90f 3590 struct btrfs_key key;
0b86a832 3591
e4404d6e 3592 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
3593 BTRFS_SUPER_INFO_SIZE);
3594 if (!sb)
3595 return -ENOMEM;
3596 btrfs_set_buffer_uptodate(sb);
4008c04a
CM
3597 btrfs_set_buffer_lockdep_class(sb, 0);
3598
a061fc8d 3599 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
3600 array_size = btrfs_super_sys_array_size(super_copy);
3601
0b86a832
CM
3602 ptr = super_copy->sys_chunk_array;
3603 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3604 cur = 0;
3605
3606 while (cur < array_size) {
3607 disk_key = (struct btrfs_disk_key *)ptr;
3608 btrfs_disk_key_to_cpu(&key, disk_key);
3609
a061fc8d 3610 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
3611 sb_ptr += len;
3612 cur += len;
3613
0d81ba5d 3614 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 3615 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 3616 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
3617 if (ret)
3618 break;
0b86a832
CM
3619 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3620 len = btrfs_chunk_item_size(num_stripes);
3621 } else {
84eed90f
CM
3622 ret = -EIO;
3623 break;
0b86a832
CM
3624 }
3625 ptr += len;
3626 sb_ptr += len;
3627 cur += len;
3628 }
a061fc8d 3629 free_extent_buffer(sb);
84eed90f 3630 return ret;
0b86a832
CM
3631}
3632
3633int btrfs_read_chunk_tree(struct btrfs_root *root)
3634{
3635 struct btrfs_path *path;
3636 struct extent_buffer *leaf;
3637 struct btrfs_key key;
3638 struct btrfs_key found_key;
3639 int ret;
3640 int slot;
3641
3642 root = root->fs_info->chunk_root;
3643
3644 path = btrfs_alloc_path();
3645 if (!path)
3646 return -ENOMEM;
3647
3648 /* first we search for all of the device items, and then we
3649 * read in all of the chunk items. This way we can create chunk
3650 * mappings that reference all of the devices that are afound
3651 */
3652 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3653 key.offset = 0;
3654 key.type = 0;
3655again:
3656 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
3657 if (ret < 0)
3658 goto error;
d397712b 3659 while (1) {
0b86a832
CM
3660 leaf = path->nodes[0];
3661 slot = path->slots[0];
3662 if (slot >= btrfs_header_nritems(leaf)) {
3663 ret = btrfs_next_leaf(root, path);
3664 if (ret == 0)
3665 continue;
3666 if (ret < 0)
3667 goto error;
3668 break;
3669 }
3670 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3671 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3672 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3673 break;
3674 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3675 struct btrfs_dev_item *dev_item;
3676 dev_item = btrfs_item_ptr(leaf, slot,
3677 struct btrfs_dev_item);
0d81ba5d 3678 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
3679 if (ret)
3680 goto error;
0b86a832
CM
3681 }
3682 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3683 struct btrfs_chunk *chunk;
3684 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3685 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
3686 if (ret)
3687 goto error;
0b86a832
CM
3688 }
3689 path->slots[0]++;
3690 }
3691 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3692 key.objectid = 0;
b3b4aa74 3693 btrfs_release_path(path);
0b86a832
CM
3694 goto again;
3695 }
0b86a832
CM
3696 ret = 0;
3697error:
2b82032c 3698 btrfs_free_path(path);
0b86a832
CM
3699 return ret;
3700}