Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski...
[linux-2.6-block.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
2b82032c
YZ
121static int init_first_rw_device(struct btrfs_trans_handle *trans,
122 struct btrfs_root *root,
123 struct btrfs_device *device);
124static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 125static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 126static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 127static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
87ad58c5 128static void btrfs_close_one_device(struct btrfs_device *device);
2b82032c 129
67a2c45e 130DEFINE_MUTEX(uuid_mutex);
8a4b83cc 131static LIST_HEAD(fs_uuids);
c73eccf7
AJ
132struct list_head *btrfs_get_fs_uuids(void)
133{
134 return &fs_uuids;
135}
8a4b83cc 136
2208a378
ID
137static struct btrfs_fs_devices *__alloc_fs_devices(void)
138{
139 struct btrfs_fs_devices *fs_devs;
140
78f2c9e6 141 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
142 if (!fs_devs)
143 return ERR_PTR(-ENOMEM);
144
145 mutex_init(&fs_devs->device_list_mutex);
146
147 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 148 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
149 INIT_LIST_HEAD(&fs_devs->alloc_list);
150 INIT_LIST_HEAD(&fs_devs->list);
151
152 return fs_devs;
153}
154
155/**
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
158 * generated.
159 *
160 * Return: a pointer to a new &struct btrfs_fs_devices on success;
161 * ERR_PTR() on error. Returned struct is not linked onto any lists and
162 * can be destroyed with kfree() right away.
163 */
164static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
165{
166 struct btrfs_fs_devices *fs_devs;
167
168 fs_devs = __alloc_fs_devices();
169 if (IS_ERR(fs_devs))
170 return fs_devs;
171
172 if (fsid)
173 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
174 else
175 generate_random_uuid(fs_devs->fsid);
176
177 return fs_devs;
178}
179
e4404d6e
YZ
180static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
181{
182 struct btrfs_device *device;
183 WARN_ON(fs_devices->opened);
184 while (!list_empty(&fs_devices->devices)) {
185 device = list_entry(fs_devices->devices.next,
186 struct btrfs_device, dev_list);
187 list_del(&device->dev_list);
606686ee 188 rcu_string_free(device->name);
e4404d6e
YZ
189 kfree(device);
190 }
191 kfree(fs_devices);
192}
193
b8b8ff59
LC
194static void btrfs_kobject_uevent(struct block_device *bdev,
195 enum kobject_action action)
196{
197 int ret;
198
199 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
200 if (ret)
efe120a0 201 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
202 action,
203 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
204 &disk_to_dev(bdev->bd_disk)->kobj);
205}
206
143bede5 207void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
208{
209 struct btrfs_fs_devices *fs_devices;
8a4b83cc 210
2b82032c
YZ
211 while (!list_empty(&fs_uuids)) {
212 fs_devices = list_entry(fs_uuids.next,
213 struct btrfs_fs_devices, list);
214 list_del(&fs_devices->list);
e4404d6e 215 free_fs_devices(fs_devices);
8a4b83cc 216 }
8a4b83cc
CM
217}
218
12bd2fc0
ID
219static struct btrfs_device *__alloc_device(void)
220{
221 struct btrfs_device *dev;
222
78f2c9e6 223 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
224 if (!dev)
225 return ERR_PTR(-ENOMEM);
226
227 INIT_LIST_HEAD(&dev->dev_list);
228 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 229 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
230
231 spin_lock_init(&dev->io_lock);
232
233 spin_lock_init(&dev->reada_lock);
234 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 235 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 236 btrfs_device_data_ordered_init(dev);
d0164adc
MG
237 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
238 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
239
240 return dev;
241}
242
a1b32a59
CM
243static noinline struct btrfs_device *__find_device(struct list_head *head,
244 u64 devid, u8 *uuid)
8a4b83cc
CM
245{
246 struct btrfs_device *dev;
8a4b83cc 247
c6e30871 248 list_for_each_entry(dev, head, dev_list) {
a443755f 249 if (dev->devid == devid &&
8f18cf13 250 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 251 return dev;
a443755f 252 }
8a4b83cc
CM
253 }
254 return NULL;
255}
256
a1b32a59 257static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 258{
8a4b83cc
CM
259 struct btrfs_fs_devices *fs_devices;
260
c6e30871 261 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
262 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
263 return fs_devices;
264 }
265 return NULL;
266}
267
beaf8ab3
SB
268static int
269btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
270 int flush, struct block_device **bdev,
271 struct buffer_head **bh)
272{
273 int ret;
274
275 *bdev = blkdev_get_by_path(device_path, flags, holder);
276
277 if (IS_ERR(*bdev)) {
278 ret = PTR_ERR(*bdev);
beaf8ab3
SB
279 goto error;
280 }
281
282 if (flush)
283 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
284 ret = set_blocksize(*bdev, 4096);
285 if (ret) {
286 blkdev_put(*bdev, flags);
287 goto error;
288 }
289 invalidate_bdev(*bdev);
290 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
291 if (IS_ERR(*bh)) {
292 ret = PTR_ERR(*bh);
beaf8ab3
SB
293 blkdev_put(*bdev, flags);
294 goto error;
295 }
296
297 return 0;
298
299error:
300 *bdev = NULL;
301 *bh = NULL;
302 return ret;
303}
304
ffbd517d
CM
305static void requeue_list(struct btrfs_pending_bios *pending_bios,
306 struct bio *head, struct bio *tail)
307{
308
309 struct bio *old_head;
310
311 old_head = pending_bios->head;
312 pending_bios->head = head;
313 if (pending_bios->tail)
314 tail->bi_next = old_head;
315 else
316 pending_bios->tail = tail;
317}
318
8b712842
CM
319/*
320 * we try to collect pending bios for a device so we don't get a large
321 * number of procs sending bios down to the same device. This greatly
322 * improves the schedulers ability to collect and merge the bios.
323 *
324 * But, it also turns into a long list of bios to process and that is sure
325 * to eventually make the worker thread block. The solution here is to
326 * make some progress and then put this work struct back at the end of
327 * the list if the block device is congested. This way, multiple devices
328 * can make progress from a single worker thread.
329 */
143bede5 330static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
331{
332 struct bio *pending;
333 struct backing_dev_info *bdi;
b64a2851 334 struct btrfs_fs_info *fs_info;
ffbd517d 335 struct btrfs_pending_bios *pending_bios;
8b712842
CM
336 struct bio *tail;
337 struct bio *cur;
338 int again = 0;
ffbd517d 339 unsigned long num_run;
d644d8a1 340 unsigned long batch_run = 0;
b64a2851 341 unsigned long limit;
b765ead5 342 unsigned long last_waited = 0;
d84275c9 343 int force_reg = 0;
0e588859 344 int sync_pending = 0;
211588ad
CM
345 struct blk_plug plug;
346
347 /*
348 * this function runs all the bios we've collected for
349 * a particular device. We don't want to wander off to
350 * another device without first sending all of these down.
351 * So, setup a plug here and finish it off before we return
352 */
353 blk_start_plug(&plug);
8b712842 354
bedf762b 355 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
356 fs_info = device->dev_root->fs_info;
357 limit = btrfs_async_submit_limit(fs_info);
358 limit = limit * 2 / 3;
359
8b712842
CM
360loop:
361 spin_lock(&device->io_lock);
362
a6837051 363loop_lock:
d84275c9 364 num_run = 0;
ffbd517d 365
8b712842
CM
366 /* take all the bios off the list at once and process them
367 * later on (without the lock held). But, remember the
368 * tail and other pointers so the bios can be properly reinserted
369 * into the list if we hit congestion
370 */
d84275c9 371 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 372 pending_bios = &device->pending_sync_bios;
d84275c9
CM
373 force_reg = 1;
374 } else {
ffbd517d 375 pending_bios = &device->pending_bios;
d84275c9
CM
376 force_reg = 0;
377 }
ffbd517d
CM
378
379 pending = pending_bios->head;
380 tail = pending_bios->tail;
8b712842 381 WARN_ON(pending && !tail);
8b712842
CM
382
383 /*
384 * if pending was null this time around, no bios need processing
385 * at all and we can stop. Otherwise it'll loop back up again
386 * and do an additional check so no bios are missed.
387 *
388 * device->running_pending is used to synchronize with the
389 * schedule_bio code.
390 */
ffbd517d
CM
391 if (device->pending_sync_bios.head == NULL &&
392 device->pending_bios.head == NULL) {
8b712842
CM
393 again = 0;
394 device->running_pending = 0;
ffbd517d
CM
395 } else {
396 again = 1;
397 device->running_pending = 1;
8b712842 398 }
ffbd517d
CM
399
400 pending_bios->head = NULL;
401 pending_bios->tail = NULL;
402
8b712842
CM
403 spin_unlock(&device->io_lock);
404
d397712b 405 while (pending) {
ffbd517d
CM
406
407 rmb();
d84275c9
CM
408 /* we want to work on both lists, but do more bios on the
409 * sync list than the regular list
410 */
411 if ((num_run > 32 &&
412 pending_bios != &device->pending_sync_bios &&
413 device->pending_sync_bios.head) ||
414 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
415 device->pending_bios.head)) {
ffbd517d
CM
416 spin_lock(&device->io_lock);
417 requeue_list(pending_bios, pending, tail);
418 goto loop_lock;
419 }
420
8b712842
CM
421 cur = pending;
422 pending = pending->bi_next;
423 cur->bi_next = NULL;
b64a2851 424
ee863954
DS
425 /*
426 * atomic_dec_return implies a barrier for waitqueue_active
427 */
66657b31 428 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
429 waitqueue_active(&fs_info->async_submit_wait))
430 wake_up(&fs_info->async_submit_wait);
492bb6de 431
dac56212 432 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 433
2ab1ba68
CM
434 /*
435 * if we're doing the sync list, record that our
436 * plug has some sync requests on it
437 *
438 * If we're doing the regular list and there are
439 * sync requests sitting around, unplug before
440 * we add more
441 */
442 if (pending_bios == &device->pending_sync_bios) {
443 sync_pending = 1;
444 } else if (sync_pending) {
445 blk_finish_plug(&plug);
446 blk_start_plug(&plug);
447 sync_pending = 0;
448 }
449
21adbd5c 450 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
451 num_run++;
452 batch_run++;
853d8ec4
DS
453
454 cond_resched();
8b712842
CM
455
456 /*
457 * we made progress, there is more work to do and the bdi
458 * is now congested. Back off and let other work structs
459 * run instead
460 */
57fd5a5f 461 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 462 fs_info->fs_devices->open_devices > 1) {
b765ead5 463 struct io_context *ioc;
8b712842 464
b765ead5
CM
465 ioc = current->io_context;
466
467 /*
468 * the main goal here is that we don't want to
469 * block if we're going to be able to submit
470 * more requests without blocking.
471 *
472 * This code does two great things, it pokes into
473 * the elevator code from a filesystem _and_
474 * it makes assumptions about how batching works.
475 */
476 if (ioc && ioc->nr_batch_requests > 0 &&
477 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
478 (last_waited == 0 ||
479 ioc->last_waited == last_waited)) {
480 /*
481 * we want to go through our batch of
482 * requests and stop. So, we copy out
483 * the ioc->last_waited time and test
484 * against it before looping
485 */
486 last_waited = ioc->last_waited;
853d8ec4 487 cond_resched();
b765ead5
CM
488 continue;
489 }
8b712842 490 spin_lock(&device->io_lock);
ffbd517d 491 requeue_list(pending_bios, pending, tail);
a6837051 492 device->running_pending = 1;
8b712842
CM
493
494 spin_unlock(&device->io_lock);
a8c93d4e
QW
495 btrfs_queue_work(fs_info->submit_workers,
496 &device->work);
8b712842
CM
497 goto done;
498 }
d85c8a6f
CM
499 /* unplug every 64 requests just for good measure */
500 if (batch_run % 64 == 0) {
501 blk_finish_plug(&plug);
502 blk_start_plug(&plug);
503 sync_pending = 0;
504 }
8b712842 505 }
ffbd517d 506
51684082
CM
507 cond_resched();
508 if (again)
509 goto loop;
510
511 spin_lock(&device->io_lock);
512 if (device->pending_bios.head || device->pending_sync_bios.head)
513 goto loop_lock;
514 spin_unlock(&device->io_lock);
515
8b712842 516done:
211588ad 517 blk_finish_plug(&plug);
8b712842
CM
518}
519
b2950863 520static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
521{
522 struct btrfs_device *device;
523
524 device = container_of(work, struct btrfs_device, work);
525 run_scheduled_bios(device);
526}
527
4fde46f0
AJ
528
529void btrfs_free_stale_device(struct btrfs_device *cur_dev)
530{
531 struct btrfs_fs_devices *fs_devs;
532 struct btrfs_device *dev;
533
534 if (!cur_dev->name)
535 return;
536
537 list_for_each_entry(fs_devs, &fs_uuids, list) {
538 int del = 1;
539
540 if (fs_devs->opened)
541 continue;
542 if (fs_devs->seeding)
543 continue;
544
545 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
546
547 if (dev == cur_dev)
548 continue;
549 if (!dev->name)
550 continue;
551
552 /*
553 * Todo: This won't be enough. What if the same device
554 * comes back (with new uuid and) with its mapper path?
555 * But for now, this does help as mostly an admin will
556 * either use mapper or non mapper path throughout.
557 */
558 rcu_read_lock();
559 del = strcmp(rcu_str_deref(dev->name),
560 rcu_str_deref(cur_dev->name));
561 rcu_read_unlock();
562 if (!del)
563 break;
564 }
565
566 if (!del) {
567 /* delete the stale device */
568 if (fs_devs->num_devices == 1) {
569 btrfs_sysfs_remove_fsid(fs_devs);
570 list_del(&fs_devs->list);
571 free_fs_devices(fs_devs);
572 } else {
573 fs_devs->num_devices--;
574 list_del(&dev->dev_list);
575 rcu_string_free(dev->name);
576 kfree(dev);
577 }
578 break;
579 }
580 }
581}
582
60999ca4
DS
583/*
584 * Add new device to list of registered devices
585 *
586 * Returns:
587 * 1 - first time device is seen
588 * 0 - device already known
589 * < 0 - error
590 */
a1b32a59 591static noinline int device_list_add(const char *path,
8a4b83cc
CM
592 struct btrfs_super_block *disk_super,
593 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
594{
595 struct btrfs_device *device;
596 struct btrfs_fs_devices *fs_devices;
606686ee 597 struct rcu_string *name;
60999ca4 598 int ret = 0;
8a4b83cc
CM
599 u64 found_transid = btrfs_super_generation(disk_super);
600
601 fs_devices = find_fsid(disk_super->fsid);
602 if (!fs_devices) {
2208a378
ID
603 fs_devices = alloc_fs_devices(disk_super->fsid);
604 if (IS_ERR(fs_devices))
605 return PTR_ERR(fs_devices);
606
8a4b83cc 607 list_add(&fs_devices->list, &fs_uuids);
2208a378 608
8a4b83cc
CM
609 device = NULL;
610 } else {
a443755f
CM
611 device = __find_device(&fs_devices->devices, devid,
612 disk_super->dev_item.uuid);
8a4b83cc 613 }
443f24fe 614
8a4b83cc 615 if (!device) {
2b82032c
YZ
616 if (fs_devices->opened)
617 return -EBUSY;
618
12bd2fc0
ID
619 device = btrfs_alloc_device(NULL, &devid,
620 disk_super->dev_item.uuid);
621 if (IS_ERR(device)) {
8a4b83cc 622 /* we can safely leave the fs_devices entry around */
12bd2fc0 623 return PTR_ERR(device);
8a4b83cc 624 }
606686ee
JB
625
626 name = rcu_string_strdup(path, GFP_NOFS);
627 if (!name) {
8a4b83cc
CM
628 kfree(device);
629 return -ENOMEM;
630 }
606686ee 631 rcu_assign_pointer(device->name, name);
90519d66 632
e5e9a520 633 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 634 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 635 fs_devices->num_devices++;
e5e9a520
CM
636 mutex_unlock(&fs_devices->device_list_mutex);
637
60999ca4 638 ret = 1;
2b82032c 639 device->fs_devices = fs_devices;
606686ee 640 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
641 /*
642 * When FS is already mounted.
643 * 1. If you are here and if the device->name is NULL that
644 * means this device was missing at time of FS mount.
645 * 2. If you are here and if the device->name is different
646 * from 'path' that means either
647 * a. The same device disappeared and reappeared with
648 * different name. or
649 * b. The missing-disk-which-was-replaced, has
650 * reappeared now.
651 *
652 * We must allow 1 and 2a above. But 2b would be a spurious
653 * and unintentional.
654 *
655 * Further in case of 1 and 2a above, the disk at 'path'
656 * would have missed some transaction when it was away and
657 * in case of 2a the stale bdev has to be updated as well.
658 * 2b must not be allowed at all time.
659 */
660
661 /*
0f23ae74
CM
662 * For now, we do allow update to btrfs_fs_device through the
663 * btrfs dev scan cli after FS has been mounted. We're still
664 * tracking a problem where systems fail mount by subvolume id
665 * when we reject replacement on a mounted FS.
b96de000 666 */
0f23ae74 667 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
668 /*
669 * That is if the FS is _not_ mounted and if you
670 * are here, that means there is more than one
671 * disk with same uuid and devid.We keep the one
672 * with larger generation number or the last-in if
673 * generation are equal.
674 */
0f23ae74 675 return -EEXIST;
77bdae4d 676 }
b96de000 677
606686ee 678 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
679 if (!name)
680 return -ENOMEM;
606686ee
JB
681 rcu_string_free(device->name);
682 rcu_assign_pointer(device->name, name);
cd02dca5
CM
683 if (device->missing) {
684 fs_devices->missing_devices--;
685 device->missing = 0;
686 }
8a4b83cc
CM
687 }
688
77bdae4d
AJ
689 /*
690 * Unmount does not free the btrfs_device struct but would zero
691 * generation along with most of the other members. So just update
692 * it back. We need it to pick the disk with largest generation
693 * (as above).
694 */
695 if (!fs_devices->opened)
696 device->generation = found_transid;
697
4fde46f0
AJ
698 /*
699 * if there is new btrfs on an already registered device,
700 * then remove the stale device entry.
701 */
702 btrfs_free_stale_device(device);
703
8a4b83cc 704 *fs_devices_ret = fs_devices;
60999ca4
DS
705
706 return ret;
8a4b83cc
CM
707}
708
e4404d6e
YZ
709static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
710{
711 struct btrfs_fs_devices *fs_devices;
712 struct btrfs_device *device;
713 struct btrfs_device *orig_dev;
714
2208a378
ID
715 fs_devices = alloc_fs_devices(orig->fsid);
716 if (IS_ERR(fs_devices))
717 return fs_devices;
e4404d6e 718
adbbb863 719 mutex_lock(&orig->device_list_mutex);
02db0844 720 fs_devices->total_devices = orig->total_devices;
e4404d6e 721
46224705 722 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 723 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
724 struct rcu_string *name;
725
12bd2fc0
ID
726 device = btrfs_alloc_device(NULL, &orig_dev->devid,
727 orig_dev->uuid);
728 if (IS_ERR(device))
e4404d6e
YZ
729 goto error;
730
606686ee
JB
731 /*
732 * This is ok to do without rcu read locked because we hold the
733 * uuid mutex so nothing we touch in here is going to disappear.
734 */
e755f780 735 if (orig_dev->name) {
78f2c9e6
DS
736 name = rcu_string_strdup(orig_dev->name->str,
737 GFP_KERNEL);
e755f780
AJ
738 if (!name) {
739 kfree(device);
740 goto error;
741 }
742 rcu_assign_pointer(device->name, name);
fd2696f3 743 }
e4404d6e 744
e4404d6e
YZ
745 list_add(&device->dev_list, &fs_devices->devices);
746 device->fs_devices = fs_devices;
747 fs_devices->num_devices++;
748 }
adbbb863 749 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
750 return fs_devices;
751error:
adbbb863 752 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
753 free_fs_devices(fs_devices);
754 return ERR_PTR(-ENOMEM);
755}
756
9eaed21e 757void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 758{
c6e30871 759 struct btrfs_device *device, *next;
443f24fe 760 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 761
dfe25020
CM
762 mutex_lock(&uuid_mutex);
763again:
46224705 764 /* This is the initialized path, it is safe to release the devices. */
c6e30871 765 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 766 if (device->in_fs_metadata) {
63a212ab 767 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
768 (!latest_dev ||
769 device->generation > latest_dev->generation)) {
770 latest_dev = device;
a6b0d5c8 771 }
2b82032c 772 continue;
a6b0d5c8 773 }
2b82032c 774
8dabb742
SB
775 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
776 /*
777 * In the first step, keep the device which has
778 * the correct fsid and the devid that is used
779 * for the dev_replace procedure.
780 * In the second step, the dev_replace state is
781 * read from the device tree and it is known
782 * whether the procedure is really active or
783 * not, which means whether this device is
784 * used or whether it should be removed.
785 */
786 if (step == 0 || device->is_tgtdev_for_dev_replace) {
787 continue;
788 }
789 }
2b82032c 790 if (device->bdev) {
d4d77629 791 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
792 device->bdev = NULL;
793 fs_devices->open_devices--;
794 }
795 if (device->writeable) {
796 list_del_init(&device->dev_alloc_list);
797 device->writeable = 0;
8dabb742
SB
798 if (!device->is_tgtdev_for_dev_replace)
799 fs_devices->rw_devices--;
2b82032c 800 }
e4404d6e
YZ
801 list_del_init(&device->dev_list);
802 fs_devices->num_devices--;
606686ee 803 rcu_string_free(device->name);
e4404d6e 804 kfree(device);
dfe25020 805 }
2b82032c
YZ
806
807 if (fs_devices->seed) {
808 fs_devices = fs_devices->seed;
2b82032c
YZ
809 goto again;
810 }
811
443f24fe 812 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 813
dfe25020 814 mutex_unlock(&uuid_mutex);
dfe25020 815}
a0af469b 816
1f78160c
XG
817static void __free_device(struct work_struct *work)
818{
819 struct btrfs_device *device;
820
821 device = container_of(work, struct btrfs_device, rcu_work);
822
823 if (device->bdev)
824 blkdev_put(device->bdev, device->mode);
825
606686ee 826 rcu_string_free(device->name);
1f78160c
XG
827 kfree(device);
828}
829
830static void free_device(struct rcu_head *head)
831{
832 struct btrfs_device *device;
833
834 device = container_of(head, struct btrfs_device, rcu);
835
836 INIT_WORK(&device->rcu_work, __free_device);
837 schedule_work(&device->rcu_work);
838}
839
2b82032c 840static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 841{
2037a093 842 struct btrfs_device *device, *tmp;
e4404d6e 843
2b82032c
YZ
844 if (--fs_devices->opened > 0)
845 return 0;
8a4b83cc 846
c9513edb 847 mutex_lock(&fs_devices->device_list_mutex);
2037a093 848 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
f190aa47 849 btrfs_close_one_device(device);
8a4b83cc 850 }
c9513edb
XG
851 mutex_unlock(&fs_devices->device_list_mutex);
852
e4404d6e
YZ
853 WARN_ON(fs_devices->open_devices);
854 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
855 fs_devices->opened = 0;
856 fs_devices->seeding = 0;
2b82032c 857
8a4b83cc
CM
858 return 0;
859}
860
2b82032c
YZ
861int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
862{
e4404d6e 863 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
864 int ret;
865
866 mutex_lock(&uuid_mutex);
867 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
868 if (!fs_devices->opened) {
869 seed_devices = fs_devices->seed;
870 fs_devices->seed = NULL;
871 }
2b82032c 872 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
873
874 while (seed_devices) {
875 fs_devices = seed_devices;
876 seed_devices = fs_devices->seed;
877 __btrfs_close_devices(fs_devices);
878 free_fs_devices(fs_devices);
879 }
bc178622
ES
880 /*
881 * Wait for rcu kworkers under __btrfs_close_devices
882 * to finish all blkdev_puts so device is really
883 * free when umount is done.
884 */
885 rcu_barrier();
2b82032c
YZ
886 return ret;
887}
888
e4404d6e
YZ
889static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
890 fmode_t flags, void *holder)
8a4b83cc 891{
d5e2003c 892 struct request_queue *q;
8a4b83cc
CM
893 struct block_device *bdev;
894 struct list_head *head = &fs_devices->devices;
8a4b83cc 895 struct btrfs_device *device;
443f24fe 896 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
897 struct buffer_head *bh;
898 struct btrfs_super_block *disk_super;
a0af469b 899 u64 devid;
2b82032c 900 int seeding = 1;
a0af469b 901 int ret = 0;
8a4b83cc 902
d4d77629
TH
903 flags |= FMODE_EXCL;
904
c6e30871 905 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
906 if (device->bdev)
907 continue;
dfe25020
CM
908 if (!device->name)
909 continue;
910
f63e0cca
ES
911 /* Just open everything we can; ignore failures here */
912 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
913 &bdev, &bh))
beaf8ab3 914 continue;
a0af469b
CM
915
916 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 917 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
918 if (devid != device->devid)
919 goto error_brelse;
920
2b82032c
YZ
921 if (memcmp(device->uuid, disk_super->dev_item.uuid,
922 BTRFS_UUID_SIZE))
923 goto error_brelse;
924
925 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
926 if (!latest_dev ||
927 device->generation > latest_dev->generation)
928 latest_dev = device;
a0af469b 929
2b82032c
YZ
930 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
931 device->writeable = 0;
932 } else {
933 device->writeable = !bdev_read_only(bdev);
934 seeding = 0;
935 }
936
d5e2003c 937 q = bdev_get_queue(bdev);
90180da4 938 if (blk_queue_discard(q))
d5e2003c 939 device->can_discard = 1;
d5e2003c 940
8a4b83cc 941 device->bdev = bdev;
dfe25020 942 device->in_fs_metadata = 0;
15916de8
CM
943 device->mode = flags;
944
c289811c
CM
945 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
946 fs_devices->rotating = 1;
947
a0af469b 948 fs_devices->open_devices++;
55e50e45
ID
949 if (device->writeable &&
950 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
951 fs_devices->rw_devices++;
952 list_add(&device->dev_alloc_list,
953 &fs_devices->alloc_list);
954 }
4f6c9328 955 brelse(bh);
a0af469b 956 continue;
a061fc8d 957
a0af469b
CM
958error_brelse:
959 brelse(bh);
d4d77629 960 blkdev_put(bdev, flags);
a0af469b 961 continue;
8a4b83cc 962 }
a0af469b 963 if (fs_devices->open_devices == 0) {
20bcd649 964 ret = -EINVAL;
a0af469b
CM
965 goto out;
966 }
2b82032c
YZ
967 fs_devices->seeding = seeding;
968 fs_devices->opened = 1;
443f24fe 969 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 970 fs_devices->total_rw_bytes = 0;
a0af469b 971out:
2b82032c
YZ
972 return ret;
973}
974
975int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 976 fmode_t flags, void *holder)
2b82032c
YZ
977{
978 int ret;
979
980 mutex_lock(&uuid_mutex);
981 if (fs_devices->opened) {
e4404d6e
YZ
982 fs_devices->opened++;
983 ret = 0;
2b82032c 984 } else {
15916de8 985 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 986 }
8a4b83cc 987 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
988 return ret;
989}
990
6f60cbd3
DS
991/*
992 * Look for a btrfs signature on a device. This may be called out of the mount path
993 * and we are not allowed to call set_blocksize during the scan. The superblock
994 * is read via pagecache
995 */
97288f2c 996int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
997 struct btrfs_fs_devices **fs_devices_ret)
998{
999 struct btrfs_super_block *disk_super;
1000 struct block_device *bdev;
6f60cbd3
DS
1001 struct page *page;
1002 void *p;
1003 int ret = -EINVAL;
8a4b83cc 1004 u64 devid;
f2984462 1005 u64 transid;
02db0844 1006 u64 total_devices;
6f60cbd3
DS
1007 u64 bytenr;
1008 pgoff_t index;
8a4b83cc 1009
6f60cbd3
DS
1010 /*
1011 * we would like to check all the supers, but that would make
1012 * a btrfs mount succeed after a mkfs from a different FS.
1013 * So, we need to add a special mount option to scan for
1014 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1015 */
1016 bytenr = btrfs_sb_offset(0);
d4d77629 1017 flags |= FMODE_EXCL;
10f6327b 1018 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1019
1020 bdev = blkdev_get_by_path(path, flags, holder);
1021
1022 if (IS_ERR(bdev)) {
1023 ret = PTR_ERR(bdev);
beaf8ab3 1024 goto error;
6f60cbd3
DS
1025 }
1026
1027 /* make sure our super fits in the device */
09cbfeaf 1028 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
6f60cbd3
DS
1029 goto error_bdev_put;
1030
1031 /* make sure our super fits in the page */
09cbfeaf 1032 if (sizeof(*disk_super) > PAGE_SIZE)
6f60cbd3
DS
1033 goto error_bdev_put;
1034
1035 /* make sure our super doesn't straddle pages on disk */
09cbfeaf
KS
1036 index = bytenr >> PAGE_SHIFT;
1037 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
6f60cbd3
DS
1038 goto error_bdev_put;
1039
1040 /* pull in the page with our super */
1041 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1042 index, GFP_NOFS);
1043
1044 if (IS_ERR_OR_NULL(page))
1045 goto error_bdev_put;
1046
1047 p = kmap(page);
1048
1049 /* align our pointer to the offset of the super block */
09cbfeaf 1050 disk_super = p + (bytenr & ~PAGE_MASK);
6f60cbd3
DS
1051
1052 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 1053 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
1054 goto error_unmap;
1055
a343832f 1056 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1057 transid = btrfs_super_generation(disk_super);
02db0844 1058 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1059
8a4b83cc 1060 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1061 if (ret > 0) {
1062 if (disk_super->label[0]) {
1063 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1064 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1065 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1066 } else {
1067 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1068 }
1069
1070 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1071 ret = 0;
1072 }
02db0844
JB
1073 if (!ret && fs_devices_ret)
1074 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
1075
1076error_unmap:
1077 kunmap(page);
09cbfeaf 1078 put_page(page);
6f60cbd3
DS
1079
1080error_bdev_put:
d4d77629 1081 blkdev_put(bdev, flags);
8a4b83cc 1082error:
beaf8ab3 1083 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1084 return ret;
1085}
0b86a832 1086
6d07bcec
MX
1087/* helper to account the used device space in the range */
1088int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1089 u64 end, u64 *length)
1090{
1091 struct btrfs_key key;
1092 struct btrfs_root *root = device->dev_root;
1093 struct btrfs_dev_extent *dev_extent;
1094 struct btrfs_path *path;
1095 u64 extent_end;
1096 int ret;
1097 int slot;
1098 struct extent_buffer *l;
1099
1100 *length = 0;
1101
63a212ab 1102 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1103 return 0;
1104
1105 path = btrfs_alloc_path();
1106 if (!path)
1107 return -ENOMEM;
e4058b54 1108 path->reada = READA_FORWARD;
6d07bcec
MX
1109
1110 key.objectid = device->devid;
1111 key.offset = start;
1112 key.type = BTRFS_DEV_EXTENT_KEY;
1113
1114 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1115 if (ret < 0)
1116 goto out;
1117 if (ret > 0) {
1118 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1119 if (ret < 0)
1120 goto out;
1121 }
1122
1123 while (1) {
1124 l = path->nodes[0];
1125 slot = path->slots[0];
1126 if (slot >= btrfs_header_nritems(l)) {
1127 ret = btrfs_next_leaf(root, path);
1128 if (ret == 0)
1129 continue;
1130 if (ret < 0)
1131 goto out;
1132
1133 break;
1134 }
1135 btrfs_item_key_to_cpu(l, &key, slot);
1136
1137 if (key.objectid < device->devid)
1138 goto next;
1139
1140 if (key.objectid > device->devid)
1141 break;
1142
962a298f 1143 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1144 goto next;
1145
1146 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1147 extent_end = key.offset + btrfs_dev_extent_length(l,
1148 dev_extent);
1149 if (key.offset <= start && extent_end > end) {
1150 *length = end - start + 1;
1151 break;
1152 } else if (key.offset <= start && extent_end > start)
1153 *length += extent_end - start;
1154 else if (key.offset > start && extent_end <= end)
1155 *length += extent_end - key.offset;
1156 else if (key.offset > start && key.offset <= end) {
1157 *length += end - key.offset + 1;
1158 break;
1159 } else if (key.offset > end)
1160 break;
1161
1162next:
1163 path->slots[0]++;
1164 }
1165 ret = 0;
1166out:
1167 btrfs_free_path(path);
1168 return ret;
1169}
1170
499f377f 1171static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1172 struct btrfs_device *device,
1173 u64 *start, u64 len)
1174{
499f377f 1175 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
6df9a95e 1176 struct extent_map *em;
499f377f 1177 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1178 int ret = 0;
1b984508 1179 u64 physical_start = *start;
6df9a95e 1180
499f377f
JM
1181 if (transaction)
1182 search_list = &transaction->pending_chunks;
04216820
FM
1183again:
1184 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1185 struct map_lookup *map;
1186 int i;
1187
95617d69 1188 map = em->map_lookup;
6df9a95e 1189 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1190 u64 end;
1191
6df9a95e
JB
1192 if (map->stripes[i].dev != device)
1193 continue;
1b984508 1194 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1195 map->stripes[i].physical + em->orig_block_len <=
1b984508 1196 physical_start)
6df9a95e 1197 continue;
c152b63e
FM
1198 /*
1199 * Make sure that while processing the pinned list we do
1200 * not override our *start with a lower value, because
1201 * we can have pinned chunks that fall within this
1202 * device hole and that have lower physical addresses
1203 * than the pending chunks we processed before. If we
1204 * do not take this special care we can end up getting
1205 * 2 pending chunks that start at the same physical
1206 * device offsets because the end offset of a pinned
1207 * chunk can be equal to the start offset of some
1208 * pending chunk.
1209 */
1210 end = map->stripes[i].physical + em->orig_block_len;
1211 if (end > *start) {
1212 *start = end;
1213 ret = 1;
1214 }
6df9a95e
JB
1215 }
1216 }
499f377f
JM
1217 if (search_list != &fs_info->pinned_chunks) {
1218 search_list = &fs_info->pinned_chunks;
04216820
FM
1219 goto again;
1220 }
6df9a95e
JB
1221
1222 return ret;
1223}
1224
1225
0b86a832 1226/*
499f377f
JM
1227 * find_free_dev_extent_start - find free space in the specified device
1228 * @device: the device which we search the free space in
1229 * @num_bytes: the size of the free space that we need
1230 * @search_start: the position from which to begin the search
1231 * @start: store the start of the free space.
1232 * @len: the size of the free space. that we find, or the size
1233 * of the max free space if we don't find suitable free space
7bfc837d 1234 *
0b86a832
CM
1235 * this uses a pretty simple search, the expectation is that it is
1236 * called very infrequently and that a given device has a small number
1237 * of extents
7bfc837d
MX
1238 *
1239 * @start is used to store the start of the free space if we find. But if we
1240 * don't find suitable free space, it will be used to store the start position
1241 * of the max free space.
1242 *
1243 * @len is used to store the size of the free space that we find.
1244 * But if we don't find suitable free space, it is used to store the size of
1245 * the max free space.
0b86a832 1246 */
499f377f
JM
1247int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1248 struct btrfs_device *device, u64 num_bytes,
1249 u64 search_start, u64 *start, u64 *len)
0b86a832
CM
1250{
1251 struct btrfs_key key;
1252 struct btrfs_root *root = device->dev_root;
7bfc837d 1253 struct btrfs_dev_extent *dev_extent;
2b82032c 1254 struct btrfs_path *path;
7bfc837d
MX
1255 u64 hole_size;
1256 u64 max_hole_start;
1257 u64 max_hole_size;
1258 u64 extent_end;
0b86a832
CM
1259 u64 search_end = device->total_bytes;
1260 int ret;
7bfc837d 1261 int slot;
0b86a832 1262 struct extent_buffer *l;
8cdc7c5b
FM
1263 u64 min_search_start;
1264
1265 /*
1266 * We don't want to overwrite the superblock on the drive nor any area
1267 * used by the boot loader (grub for example), so we make sure to start
1268 * at an offset of at least 1MB.
1269 */
1270 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1271 search_start = max(search_start, min_search_start);
0b86a832 1272
6df9a95e
JB
1273 path = btrfs_alloc_path();
1274 if (!path)
1275 return -ENOMEM;
f2ab7618 1276
7bfc837d
MX
1277 max_hole_start = search_start;
1278 max_hole_size = 0;
1279
f2ab7618 1280again:
63a212ab 1281 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1282 ret = -ENOSPC;
6df9a95e 1283 goto out;
7bfc837d
MX
1284 }
1285
e4058b54 1286 path->reada = READA_FORWARD;
6df9a95e
JB
1287 path->search_commit_root = 1;
1288 path->skip_locking = 1;
7bfc837d 1289
0b86a832
CM
1290 key.objectid = device->devid;
1291 key.offset = search_start;
1292 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1293
125ccb0a 1294 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1295 if (ret < 0)
7bfc837d 1296 goto out;
1fcbac58
YZ
1297 if (ret > 0) {
1298 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1299 if (ret < 0)
7bfc837d 1300 goto out;
1fcbac58 1301 }
7bfc837d 1302
0b86a832
CM
1303 while (1) {
1304 l = path->nodes[0];
1305 slot = path->slots[0];
1306 if (slot >= btrfs_header_nritems(l)) {
1307 ret = btrfs_next_leaf(root, path);
1308 if (ret == 0)
1309 continue;
1310 if (ret < 0)
7bfc837d
MX
1311 goto out;
1312
1313 break;
0b86a832
CM
1314 }
1315 btrfs_item_key_to_cpu(l, &key, slot);
1316
1317 if (key.objectid < device->devid)
1318 goto next;
1319
1320 if (key.objectid > device->devid)
7bfc837d 1321 break;
0b86a832 1322
962a298f 1323 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1324 goto next;
9779b72f 1325
7bfc837d
MX
1326 if (key.offset > search_start) {
1327 hole_size = key.offset - search_start;
9779b72f 1328
6df9a95e
JB
1329 /*
1330 * Have to check before we set max_hole_start, otherwise
1331 * we could end up sending back this offset anyway.
1332 */
499f377f 1333 if (contains_pending_extent(transaction, device,
6df9a95e 1334 &search_start,
1b984508
FL
1335 hole_size)) {
1336 if (key.offset >= search_start) {
1337 hole_size = key.offset - search_start;
1338 } else {
1339 WARN_ON_ONCE(1);
1340 hole_size = 0;
1341 }
1342 }
6df9a95e 1343
7bfc837d
MX
1344 if (hole_size > max_hole_size) {
1345 max_hole_start = search_start;
1346 max_hole_size = hole_size;
1347 }
9779b72f 1348
7bfc837d
MX
1349 /*
1350 * If this free space is greater than which we need,
1351 * it must be the max free space that we have found
1352 * until now, so max_hole_start must point to the start
1353 * of this free space and the length of this free space
1354 * is stored in max_hole_size. Thus, we return
1355 * max_hole_start and max_hole_size and go back to the
1356 * caller.
1357 */
1358 if (hole_size >= num_bytes) {
1359 ret = 0;
1360 goto out;
0b86a832
CM
1361 }
1362 }
0b86a832 1363
0b86a832 1364 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1365 extent_end = key.offset + btrfs_dev_extent_length(l,
1366 dev_extent);
1367 if (extent_end > search_start)
1368 search_start = extent_end;
0b86a832
CM
1369next:
1370 path->slots[0]++;
1371 cond_resched();
1372 }
0b86a832 1373
38c01b96 1374 /*
1375 * At this point, search_start should be the end of
1376 * allocated dev extents, and when shrinking the device,
1377 * search_end may be smaller than search_start.
1378 */
f2ab7618 1379 if (search_end > search_start) {
38c01b96 1380 hole_size = search_end - search_start;
1381
499f377f 1382 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1383 hole_size)) {
1384 btrfs_release_path(path);
1385 goto again;
1386 }
0b86a832 1387
f2ab7618
ZL
1388 if (hole_size > max_hole_size) {
1389 max_hole_start = search_start;
1390 max_hole_size = hole_size;
1391 }
6df9a95e
JB
1392 }
1393
7bfc837d 1394 /* See above. */
f2ab7618 1395 if (max_hole_size < num_bytes)
7bfc837d
MX
1396 ret = -ENOSPC;
1397 else
1398 ret = 0;
1399
1400out:
2b82032c 1401 btrfs_free_path(path);
7bfc837d 1402 *start = max_hole_start;
b2117a39 1403 if (len)
7bfc837d 1404 *len = max_hole_size;
0b86a832
CM
1405 return ret;
1406}
1407
499f377f
JM
1408int find_free_dev_extent(struct btrfs_trans_handle *trans,
1409 struct btrfs_device *device, u64 num_bytes,
1410 u64 *start, u64 *len)
1411{
499f377f 1412 /* FIXME use last free of some kind */
499f377f 1413 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1414 num_bytes, 0, start, len);
499f377f
JM
1415}
1416
b2950863 1417static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1418 struct btrfs_device *device,
2196d6e8 1419 u64 start, u64 *dev_extent_len)
8f18cf13
CM
1420{
1421 int ret;
1422 struct btrfs_path *path;
1423 struct btrfs_root *root = device->dev_root;
1424 struct btrfs_key key;
a061fc8d
CM
1425 struct btrfs_key found_key;
1426 struct extent_buffer *leaf = NULL;
1427 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1428
1429 path = btrfs_alloc_path();
1430 if (!path)
1431 return -ENOMEM;
1432
1433 key.objectid = device->devid;
1434 key.offset = start;
1435 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1436again:
8f18cf13 1437 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1438 if (ret > 0) {
1439 ret = btrfs_previous_item(root, path, key.objectid,
1440 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1441 if (ret)
1442 goto out;
a061fc8d
CM
1443 leaf = path->nodes[0];
1444 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1445 extent = btrfs_item_ptr(leaf, path->slots[0],
1446 struct btrfs_dev_extent);
1447 BUG_ON(found_key.offset > start || found_key.offset +
1448 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1449 key = found_key;
1450 btrfs_release_path(path);
1451 goto again;
a061fc8d
CM
1452 } else if (ret == 0) {
1453 leaf = path->nodes[0];
1454 extent = btrfs_item_ptr(leaf, path->slots[0],
1455 struct btrfs_dev_extent);
79787eaa 1456 } else {
a4553fef 1457 btrfs_std_error(root->fs_info, ret, "Slot search failed");
79787eaa 1458 goto out;
a061fc8d 1459 }
8f18cf13 1460
2196d6e8
MX
1461 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1462
8f18cf13 1463 ret = btrfs_del_item(trans, root, path);
79787eaa 1464 if (ret) {
a4553fef 1465 btrfs_std_error(root->fs_info, ret,
79787eaa 1466 "Failed to remove dev extent item");
13212b54 1467 } else {
3204d33c 1468 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1469 }
b0b802d7 1470out:
8f18cf13
CM
1471 btrfs_free_path(path);
1472 return ret;
1473}
1474
48a3b636
ES
1475static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1476 struct btrfs_device *device,
1477 u64 chunk_tree, u64 chunk_objectid,
1478 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1479{
1480 int ret;
1481 struct btrfs_path *path;
1482 struct btrfs_root *root = device->dev_root;
1483 struct btrfs_dev_extent *extent;
1484 struct extent_buffer *leaf;
1485 struct btrfs_key key;
1486
dfe25020 1487 WARN_ON(!device->in_fs_metadata);
63a212ab 1488 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1489 path = btrfs_alloc_path();
1490 if (!path)
1491 return -ENOMEM;
1492
0b86a832 1493 key.objectid = device->devid;
2b82032c 1494 key.offset = start;
0b86a832
CM
1495 key.type = BTRFS_DEV_EXTENT_KEY;
1496 ret = btrfs_insert_empty_item(trans, root, path, &key,
1497 sizeof(*extent));
2cdcecbc
MF
1498 if (ret)
1499 goto out;
0b86a832
CM
1500
1501 leaf = path->nodes[0];
1502 extent = btrfs_item_ptr(leaf, path->slots[0],
1503 struct btrfs_dev_extent);
e17cade2
CM
1504 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1505 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1506 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1507
1508 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1509 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1510
0b86a832
CM
1511 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1512 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1513out:
0b86a832
CM
1514 btrfs_free_path(path);
1515 return ret;
1516}
1517
6df9a95e 1518static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1519{
6df9a95e
JB
1520 struct extent_map_tree *em_tree;
1521 struct extent_map *em;
1522 struct rb_node *n;
1523 u64 ret = 0;
0b86a832 1524
6df9a95e
JB
1525 em_tree = &fs_info->mapping_tree.map_tree;
1526 read_lock(&em_tree->lock);
1527 n = rb_last(&em_tree->map);
1528 if (n) {
1529 em = rb_entry(n, struct extent_map, rb_node);
1530 ret = em->start + em->len;
0b86a832 1531 }
6df9a95e
JB
1532 read_unlock(&em_tree->lock);
1533
0b86a832
CM
1534 return ret;
1535}
1536
53f10659
ID
1537static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1538 u64 *devid_ret)
0b86a832
CM
1539{
1540 int ret;
1541 struct btrfs_key key;
1542 struct btrfs_key found_key;
2b82032c
YZ
1543 struct btrfs_path *path;
1544
2b82032c
YZ
1545 path = btrfs_alloc_path();
1546 if (!path)
1547 return -ENOMEM;
0b86a832
CM
1548
1549 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1550 key.type = BTRFS_DEV_ITEM_KEY;
1551 key.offset = (u64)-1;
1552
53f10659 1553 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1554 if (ret < 0)
1555 goto error;
1556
79787eaa 1557 BUG_ON(ret == 0); /* Corruption */
0b86a832 1558
53f10659
ID
1559 ret = btrfs_previous_item(fs_info->chunk_root, path,
1560 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1561 BTRFS_DEV_ITEM_KEY);
1562 if (ret) {
53f10659 1563 *devid_ret = 1;
0b86a832
CM
1564 } else {
1565 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1566 path->slots[0]);
53f10659 1567 *devid_ret = found_key.offset + 1;
0b86a832
CM
1568 }
1569 ret = 0;
1570error:
2b82032c 1571 btrfs_free_path(path);
0b86a832
CM
1572 return ret;
1573}
1574
1575/*
1576 * the device information is stored in the chunk root
1577 * the btrfs_device struct should be fully filled in
1578 */
48a3b636
ES
1579static int btrfs_add_device(struct btrfs_trans_handle *trans,
1580 struct btrfs_root *root,
1581 struct btrfs_device *device)
0b86a832
CM
1582{
1583 int ret;
1584 struct btrfs_path *path;
1585 struct btrfs_dev_item *dev_item;
1586 struct extent_buffer *leaf;
1587 struct btrfs_key key;
1588 unsigned long ptr;
0b86a832
CM
1589
1590 root = root->fs_info->chunk_root;
1591
1592 path = btrfs_alloc_path();
1593 if (!path)
1594 return -ENOMEM;
1595
0b86a832
CM
1596 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1597 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1598 key.offset = device->devid;
0b86a832
CM
1599
1600 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1601 sizeof(*dev_item));
0b86a832
CM
1602 if (ret)
1603 goto out;
1604
1605 leaf = path->nodes[0];
1606 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1607
1608 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1609 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1610 btrfs_set_device_type(leaf, dev_item, device->type);
1611 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1612 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1613 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1614 btrfs_set_device_total_bytes(leaf, dev_item,
1615 btrfs_device_get_disk_total_bytes(device));
1616 btrfs_set_device_bytes_used(leaf, dev_item,
1617 btrfs_device_get_bytes_used(device));
e17cade2
CM
1618 btrfs_set_device_group(leaf, dev_item, 0);
1619 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1620 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1621 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1622
410ba3a2 1623 ptr = btrfs_device_uuid(dev_item);
e17cade2 1624 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1625 ptr = btrfs_device_fsid(dev_item);
2b82032c 1626 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1627 btrfs_mark_buffer_dirty(leaf);
0b86a832 1628
2b82032c 1629 ret = 0;
0b86a832
CM
1630out:
1631 btrfs_free_path(path);
1632 return ret;
1633}
8f18cf13 1634
5a1972bd
QW
1635/*
1636 * Function to update ctime/mtime for a given device path.
1637 * Mainly used for ctime/mtime based probe like libblkid.
1638 */
1639static void update_dev_time(char *path_name)
1640{
1641 struct file *filp;
1642
1643 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1644 if (IS_ERR(filp))
5a1972bd
QW
1645 return;
1646 file_update_time(filp);
1647 filp_close(filp, NULL);
5a1972bd
QW
1648}
1649
a061fc8d
CM
1650static int btrfs_rm_dev_item(struct btrfs_root *root,
1651 struct btrfs_device *device)
1652{
1653 int ret;
1654 struct btrfs_path *path;
a061fc8d 1655 struct btrfs_key key;
a061fc8d
CM
1656 struct btrfs_trans_handle *trans;
1657
1658 root = root->fs_info->chunk_root;
1659
1660 path = btrfs_alloc_path();
1661 if (!path)
1662 return -ENOMEM;
1663
a22285a6 1664 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1665 if (IS_ERR(trans)) {
1666 btrfs_free_path(path);
1667 return PTR_ERR(trans);
1668 }
a061fc8d
CM
1669 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1670 key.type = BTRFS_DEV_ITEM_KEY;
1671 key.offset = device->devid;
1672
1673 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1674 if (ret < 0)
1675 goto out;
1676
1677 if (ret > 0) {
1678 ret = -ENOENT;
1679 goto out;
1680 }
1681
1682 ret = btrfs_del_item(trans, root, path);
1683 if (ret)
1684 goto out;
a061fc8d
CM
1685out:
1686 btrfs_free_path(path);
1687 btrfs_commit_transaction(trans, root);
1688 return ret;
1689}
1690
1691int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1692{
1693 struct btrfs_device *device;
2b82032c 1694 struct btrfs_device *next_device;
a061fc8d 1695 struct block_device *bdev;
dfe25020 1696 struct buffer_head *bh = NULL;
a061fc8d 1697 struct btrfs_super_block *disk_super;
1f78160c 1698 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1699 u64 all_avail;
1700 u64 devid;
2b82032c
YZ
1701 u64 num_devices;
1702 u8 *dev_uuid;
de98ced9 1703 unsigned seq;
a061fc8d 1704 int ret = 0;
1f78160c 1705 bool clear_super = false;
a061fc8d 1706
a061fc8d
CM
1707 mutex_lock(&uuid_mutex);
1708
de98ced9
MX
1709 do {
1710 seq = read_seqbegin(&root->fs_info->profiles_lock);
1711
1712 all_avail = root->fs_info->avail_data_alloc_bits |
1713 root->fs_info->avail_system_alloc_bits |
1714 root->fs_info->avail_metadata_alloc_bits;
1715 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1716
8dabb742 1717 num_devices = root->fs_info->fs_devices->num_devices;
73beece9 1718 btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
8dabb742
SB
1719 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1720 WARN_ON(num_devices < 1);
1721 num_devices--;
1722 }
73beece9 1723 btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
8dabb742
SB
1724
1725 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1726 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1727 goto out;
1728 }
1729
8dabb742 1730 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1731 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1732 goto out;
1733 }
1734
53b381b3
DW
1735 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1736 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1737 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1738 goto out;
1739 }
1740 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1741 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1742 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1743 goto out;
1744 }
1745
dfe25020 1746 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1747 struct list_head *devices;
1748 struct btrfs_device *tmp;
a061fc8d 1749
dfe25020
CM
1750 device = NULL;
1751 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1752 /*
1753 * It is safe to read the devices since the volume_mutex
1754 * is held.
1755 */
c6e30871 1756 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1757 if (tmp->in_fs_metadata &&
1758 !tmp->is_tgtdev_for_dev_replace &&
1759 !tmp->bdev) {
dfe25020
CM
1760 device = tmp;
1761 break;
1762 }
1763 }
1764 bdev = NULL;
1765 bh = NULL;
1766 disk_super = NULL;
1767 if (!device) {
183860f6 1768 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1769 goto out;
1770 }
dfe25020 1771 } else {
beaf8ab3 1772 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1773 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1774 root->fs_info->bdev_holder, 0,
1775 &bdev, &bh);
1776 if (ret)
dfe25020 1777 goto out;
dfe25020 1778 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1779 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1780 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1781 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1782 disk_super->fsid);
dfe25020
CM
1783 if (!device) {
1784 ret = -ENOENT;
1785 goto error_brelse;
1786 }
2b82032c 1787 }
dfe25020 1788
63a212ab 1789 if (device->is_tgtdev_for_dev_replace) {
183860f6 1790 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1791 goto error_brelse;
1792 }
1793
2b82032c 1794 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1795 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1796 goto error_brelse;
1797 }
1798
1799 if (device->writeable) {
0c1daee0 1800 lock_chunks(root);
2b82032c 1801 list_del_init(&device->dev_alloc_list);
c3929c36 1802 device->fs_devices->rw_devices--;
0c1daee0 1803 unlock_chunks(root);
1f78160c 1804 clear_super = true;
dfe25020 1805 }
a061fc8d 1806
d7901554 1807 mutex_unlock(&uuid_mutex);
a061fc8d 1808 ret = btrfs_shrink_device(device, 0);
d7901554 1809 mutex_lock(&uuid_mutex);
a061fc8d 1810 if (ret)
9b3517e9 1811 goto error_undo;
a061fc8d 1812
63a212ab
SB
1813 /*
1814 * TODO: the superblock still includes this device in its num_devices
1815 * counter although write_all_supers() is not locked out. This
1816 * could give a filesystem state which requires a degraded mount.
1817 */
a061fc8d
CM
1818 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1819 if (ret)
9b3517e9 1820 goto error_undo;
a061fc8d 1821
2b82032c 1822 device->in_fs_metadata = 0;
aa1b8cd4 1823 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1824
1825 /*
1826 * the device list mutex makes sure that we don't change
1827 * the device list while someone else is writing out all
d7306801
FDBM
1828 * the device supers. Whoever is writing all supers, should
1829 * lock the device list mutex before getting the number of
1830 * devices in the super block (super_copy). Conversely,
1831 * whoever updates the number of devices in the super block
1832 * (super_copy) should hold the device list mutex.
e5e9a520 1833 */
1f78160c
XG
1834
1835 cur_devices = device->fs_devices;
e5e9a520 1836 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1837 list_del_rcu(&device->dev_list);
e5e9a520 1838
e4404d6e 1839 device->fs_devices->num_devices--;
02db0844 1840 device->fs_devices->total_devices--;
2b82032c 1841
cd02dca5 1842 if (device->missing)
3a7d55c8 1843 device->fs_devices->missing_devices--;
cd02dca5 1844
2b82032c
YZ
1845 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1846 struct btrfs_device, dev_list);
1847 if (device->bdev == root->fs_info->sb->s_bdev)
1848 root->fs_info->sb->s_bdev = next_device->bdev;
1849 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1850 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1851
0bfaa9c5 1852 if (device->bdev) {
e4404d6e 1853 device->fs_devices->open_devices--;
0bfaa9c5 1854 /* remove sysfs entry */
32576040 1855 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
0bfaa9c5 1856 }
99994cde 1857
1f78160c 1858 call_rcu(&device->rcu, free_device);
e4404d6e 1859
6c41761f
DS
1860 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1861 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1862 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1863
1f78160c 1864 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1865 struct btrfs_fs_devices *fs_devices;
1866 fs_devices = root->fs_info->fs_devices;
1867 while (fs_devices) {
8321cf25
RS
1868 if (fs_devices->seed == cur_devices) {
1869 fs_devices->seed = cur_devices->seed;
e4404d6e 1870 break;
8321cf25 1871 }
e4404d6e 1872 fs_devices = fs_devices->seed;
2b82032c 1873 }
1f78160c 1874 cur_devices->seed = NULL;
1f78160c 1875 __btrfs_close_devices(cur_devices);
1f78160c 1876 free_fs_devices(cur_devices);
2b82032c
YZ
1877 }
1878
5af3e8cc
SB
1879 root->fs_info->num_tolerated_disk_barrier_failures =
1880 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1881
2b82032c
YZ
1882 /*
1883 * at this point, the device is zero sized. We want to
1884 * remove it from the devices list and zero out the old super
1885 */
aa1b8cd4 1886 if (clear_super && disk_super) {
4d90d28b
AJ
1887 u64 bytenr;
1888 int i;
1889
dfe25020
CM
1890 /* make sure this device isn't detected as part of
1891 * the FS anymore
1892 */
1893 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1894 set_buffer_dirty(bh);
1895 sync_dirty_buffer(bh);
4d90d28b
AJ
1896
1897 /* clear the mirror copies of super block on the disk
1898 * being removed, 0th copy is been taken care above and
1899 * the below would take of the rest
1900 */
1901 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1902 bytenr = btrfs_sb_offset(i);
1903 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1904 i_size_read(bdev->bd_inode))
1905 break;
1906
1907 brelse(bh);
1908 bh = __bread(bdev, bytenr / 4096,
1909 BTRFS_SUPER_INFO_SIZE);
1910 if (!bh)
1911 continue;
1912
1913 disk_super = (struct btrfs_super_block *)bh->b_data;
1914
1915 if (btrfs_super_bytenr(disk_super) != bytenr ||
1916 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1917 continue;
1918 }
1919 memset(&disk_super->magic, 0,
1920 sizeof(disk_super->magic));
1921 set_buffer_dirty(bh);
1922 sync_dirty_buffer(bh);
1923 }
dfe25020 1924 }
a061fc8d 1925
a061fc8d 1926 ret = 0;
a061fc8d 1927
5a1972bd
QW
1928 if (bdev) {
1929 /* Notify udev that device has changed */
3c911608 1930 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1931
5a1972bd
QW
1932 /* Update ctime/mtime for device path for libblkid */
1933 update_dev_time(device_path);
1934 }
1935
a061fc8d
CM
1936error_brelse:
1937 brelse(bh);
dfe25020 1938 if (bdev)
e525fd89 1939 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1940out:
1941 mutex_unlock(&uuid_mutex);
a061fc8d 1942 return ret;
9b3517e9
ID
1943error_undo:
1944 if (device->writeable) {
0c1daee0 1945 lock_chunks(root);
9b3517e9
ID
1946 list_add(&device->dev_alloc_list,
1947 &root->fs_info->fs_devices->alloc_list);
c3929c36 1948 device->fs_devices->rw_devices++;
0c1daee0 1949 unlock_chunks(root);
9b3517e9
ID
1950 }
1951 goto error_brelse;
a061fc8d
CM
1952}
1953
084b6e7c
QW
1954void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1955 struct btrfs_device *srcdev)
e93c89c1 1956{
d51908ce
AJ
1957 struct btrfs_fs_devices *fs_devices;
1958
e93c89c1 1959 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1960
25e8e911
AJ
1961 /*
1962 * in case of fs with no seed, srcdev->fs_devices will point
1963 * to fs_devices of fs_info. However when the dev being replaced is
1964 * a seed dev it will point to the seed's local fs_devices. In short
1965 * srcdev will have its correct fs_devices in both the cases.
1966 */
1967 fs_devices = srcdev->fs_devices;
d51908ce 1968
e93c89c1
SB
1969 list_del_rcu(&srcdev->dev_list);
1970 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 1971 fs_devices->num_devices--;
82372bc8 1972 if (srcdev->missing)
d51908ce 1973 fs_devices->missing_devices--;
e93c89c1 1974
82372bc8
MX
1975 if (srcdev->writeable) {
1976 fs_devices->rw_devices--;
1977 /* zero out the old super if it is writable */
31388ab2 1978 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1357272f
ID
1979 }
1980
82372bc8 1981 if (srcdev->bdev)
d51908ce 1982 fs_devices->open_devices--;
084b6e7c
QW
1983}
1984
1985void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1986 struct btrfs_device *srcdev)
1987{
1988 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1
SB
1989
1990 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
1991
1992 /*
1993 * unless fs_devices is seed fs, num_devices shouldn't go
1994 * zero
1995 */
1996 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1997
1998 /* if this is no devs we rather delete the fs_devices */
1999 if (!fs_devices->num_devices) {
2000 struct btrfs_fs_devices *tmp_fs_devices;
2001
2002 tmp_fs_devices = fs_info->fs_devices;
2003 while (tmp_fs_devices) {
2004 if (tmp_fs_devices->seed == fs_devices) {
2005 tmp_fs_devices->seed = fs_devices->seed;
2006 break;
2007 }
2008 tmp_fs_devices = tmp_fs_devices->seed;
2009 }
2010 fs_devices->seed = NULL;
8bef8401
AJ
2011 __btrfs_close_devices(fs_devices);
2012 free_fs_devices(fs_devices);
94d5f0c2 2013 }
e93c89c1
SB
2014}
2015
2016void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2017 struct btrfs_device *tgtdev)
2018{
2019 struct btrfs_device *next_device;
2020
67a2c45e 2021 mutex_lock(&uuid_mutex);
e93c89c1
SB
2022 WARN_ON(!tgtdev);
2023 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2024
32576040 2025 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2026
e93c89c1 2027 if (tgtdev->bdev) {
31388ab2 2028 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
e93c89c1
SB
2029 fs_info->fs_devices->open_devices--;
2030 }
2031 fs_info->fs_devices->num_devices--;
e93c89c1
SB
2032
2033 next_device = list_entry(fs_info->fs_devices->devices.next,
2034 struct btrfs_device, dev_list);
2035 if (tgtdev->bdev == fs_info->sb->s_bdev)
2036 fs_info->sb->s_bdev = next_device->bdev;
2037 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
2038 fs_info->fs_devices->latest_bdev = next_device->bdev;
2039 list_del_rcu(&tgtdev->dev_list);
2040
2041 call_rcu(&tgtdev->rcu, free_device);
2042
2043 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2044 mutex_unlock(&uuid_mutex);
e93c89c1
SB
2045}
2046
48a3b636
ES
2047static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2048 struct btrfs_device **device)
7ba15b7d
SB
2049{
2050 int ret = 0;
2051 struct btrfs_super_block *disk_super;
2052 u64 devid;
2053 u8 *dev_uuid;
2054 struct block_device *bdev;
2055 struct buffer_head *bh;
2056
2057 *device = NULL;
2058 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2059 root->fs_info->bdev_holder, 0, &bdev, &bh);
2060 if (ret)
2061 return ret;
2062 disk_super = (struct btrfs_super_block *)bh->b_data;
2063 devid = btrfs_stack_device_id(&disk_super->dev_item);
2064 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 2065 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
2066 disk_super->fsid);
2067 brelse(bh);
2068 if (!*device)
2069 ret = -ENOENT;
2070 blkdev_put(bdev, FMODE_READ);
2071 return ret;
2072}
2073
2074int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2075 char *device_path,
2076 struct btrfs_device **device)
2077{
2078 *device = NULL;
2079 if (strcmp(device_path, "missing") == 0) {
2080 struct list_head *devices;
2081 struct btrfs_device *tmp;
2082
2083 devices = &root->fs_info->fs_devices->devices;
2084 /*
2085 * It is safe to read the devices since the volume_mutex
2086 * is held by the caller.
2087 */
2088 list_for_each_entry(tmp, devices, dev_list) {
2089 if (tmp->in_fs_metadata && !tmp->bdev) {
2090 *device = tmp;
2091 break;
2092 }
2093 }
2094
d74a6259
AJ
2095 if (!*device)
2096 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2097
2098 return 0;
2099 } else {
2100 return btrfs_find_device_by_path(root, device_path, device);
2101 }
2102}
2103
2b82032c
YZ
2104/*
2105 * does all the dirty work required for changing file system's UUID.
2106 */
125ccb0a 2107static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
2108{
2109 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2110 struct btrfs_fs_devices *old_devices;
e4404d6e 2111 struct btrfs_fs_devices *seed_devices;
6c41761f 2112 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
2113 struct btrfs_device *device;
2114 u64 super_flags;
2115
2116 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2117 if (!fs_devices->seeding)
2b82032c
YZ
2118 return -EINVAL;
2119
2208a378
ID
2120 seed_devices = __alloc_fs_devices();
2121 if (IS_ERR(seed_devices))
2122 return PTR_ERR(seed_devices);
2b82032c 2123
e4404d6e
YZ
2124 old_devices = clone_fs_devices(fs_devices);
2125 if (IS_ERR(old_devices)) {
2126 kfree(seed_devices);
2127 return PTR_ERR(old_devices);
2b82032c 2128 }
e4404d6e 2129
2b82032c
YZ
2130 list_add(&old_devices->list, &fs_uuids);
2131
e4404d6e
YZ
2132 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2133 seed_devices->opened = 1;
2134 INIT_LIST_HEAD(&seed_devices->devices);
2135 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2136 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
2137
2138 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2139 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2140 synchronize_rcu);
2196d6e8
MX
2141 list_for_each_entry(device, &seed_devices->devices, dev_list)
2142 device->fs_devices = seed_devices;
c9513edb 2143
2196d6e8 2144 lock_chunks(root);
e4404d6e 2145 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2196d6e8 2146 unlock_chunks(root);
e4404d6e 2147
2b82032c
YZ
2148 fs_devices->seeding = 0;
2149 fs_devices->num_devices = 0;
2150 fs_devices->open_devices = 0;
69611ac8 2151 fs_devices->missing_devices = 0;
69611ac8 2152 fs_devices->rotating = 0;
e4404d6e 2153 fs_devices->seed = seed_devices;
2b82032c
YZ
2154
2155 generate_random_uuid(fs_devices->fsid);
2156 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2157 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
2158 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2159
2b82032c
YZ
2160 super_flags = btrfs_super_flags(disk_super) &
2161 ~BTRFS_SUPER_FLAG_SEEDING;
2162 btrfs_set_super_flags(disk_super, super_flags);
2163
2164 return 0;
2165}
2166
2167/*
2168 * strore the expected generation for seed devices in device items.
2169 */
2170static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2171 struct btrfs_root *root)
2172{
2173 struct btrfs_path *path;
2174 struct extent_buffer *leaf;
2175 struct btrfs_dev_item *dev_item;
2176 struct btrfs_device *device;
2177 struct btrfs_key key;
2178 u8 fs_uuid[BTRFS_UUID_SIZE];
2179 u8 dev_uuid[BTRFS_UUID_SIZE];
2180 u64 devid;
2181 int ret;
2182
2183 path = btrfs_alloc_path();
2184 if (!path)
2185 return -ENOMEM;
2186
2187 root = root->fs_info->chunk_root;
2188 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2189 key.offset = 0;
2190 key.type = BTRFS_DEV_ITEM_KEY;
2191
2192 while (1) {
2193 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2194 if (ret < 0)
2195 goto error;
2196
2197 leaf = path->nodes[0];
2198next_slot:
2199 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2200 ret = btrfs_next_leaf(root, path);
2201 if (ret > 0)
2202 break;
2203 if (ret < 0)
2204 goto error;
2205 leaf = path->nodes[0];
2206 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2207 btrfs_release_path(path);
2b82032c
YZ
2208 continue;
2209 }
2210
2211 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2212 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2213 key.type != BTRFS_DEV_ITEM_KEY)
2214 break;
2215
2216 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2217 struct btrfs_dev_item);
2218 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2219 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2220 BTRFS_UUID_SIZE);
1473b24e 2221 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2222 BTRFS_UUID_SIZE);
aa1b8cd4
SB
2223 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2224 fs_uuid);
79787eaa 2225 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2226
2227 if (device->fs_devices->seeding) {
2228 btrfs_set_device_generation(leaf, dev_item,
2229 device->generation);
2230 btrfs_mark_buffer_dirty(leaf);
2231 }
2232
2233 path->slots[0]++;
2234 goto next_slot;
2235 }
2236 ret = 0;
2237error:
2238 btrfs_free_path(path);
2239 return ret;
2240}
2241
788f20eb
CM
2242int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2243{
d5e2003c 2244 struct request_queue *q;
788f20eb
CM
2245 struct btrfs_trans_handle *trans;
2246 struct btrfs_device *device;
2247 struct block_device *bdev;
788f20eb 2248 struct list_head *devices;
2b82032c 2249 struct super_block *sb = root->fs_info->sb;
606686ee 2250 struct rcu_string *name;
3c1dbdf5 2251 u64 tmp;
2b82032c 2252 int seeding_dev = 0;
788f20eb
CM
2253 int ret = 0;
2254
2b82032c 2255 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 2256 return -EROFS;
788f20eb 2257
a5d16333 2258 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 2259 root->fs_info->bdev_holder);
7f59203a
JB
2260 if (IS_ERR(bdev))
2261 return PTR_ERR(bdev);
a2135011 2262
2b82032c
YZ
2263 if (root->fs_info->fs_devices->seeding) {
2264 seeding_dev = 1;
2265 down_write(&sb->s_umount);
2266 mutex_lock(&uuid_mutex);
2267 }
2268
8c8bee1d 2269 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2270
788f20eb 2271 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2272
2273 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2274 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2275 if (device->bdev == bdev) {
2276 ret = -EEXIST;
d25628bd
LB
2277 mutex_unlock(
2278 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2279 goto error;
788f20eb
CM
2280 }
2281 }
d25628bd 2282 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2283
12bd2fc0
ID
2284 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2285 if (IS_ERR(device)) {
788f20eb 2286 /* we can safely leave the fs_devices entry around */
12bd2fc0 2287 ret = PTR_ERR(device);
2b82032c 2288 goto error;
788f20eb
CM
2289 }
2290
78f2c9e6 2291 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2292 if (!name) {
788f20eb 2293 kfree(device);
2b82032c
YZ
2294 ret = -ENOMEM;
2295 goto error;
788f20eb 2296 }
606686ee 2297 rcu_assign_pointer(device->name, name);
2b82032c 2298
a22285a6 2299 trans = btrfs_start_transaction(root, 0);
98d5dc13 2300 if (IS_ERR(trans)) {
606686ee 2301 rcu_string_free(device->name);
98d5dc13
TI
2302 kfree(device);
2303 ret = PTR_ERR(trans);
2304 goto error;
2305 }
2306
d5e2003c
JB
2307 q = bdev_get_queue(bdev);
2308 if (blk_queue_discard(q))
2309 device->can_discard = 1;
2b82032c 2310 device->writeable = 1;
2b82032c 2311 device->generation = trans->transid;
788f20eb
CM
2312 device->io_width = root->sectorsize;
2313 device->io_align = root->sectorsize;
2314 device->sector_size = root->sectorsize;
2315 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2316 device->disk_total_bytes = device->total_bytes;
935e5cc9 2317 device->commit_total_bytes = device->total_bytes;
788f20eb
CM
2318 device->dev_root = root->fs_info->dev_root;
2319 device->bdev = bdev;
dfe25020 2320 device->in_fs_metadata = 1;
63a212ab 2321 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2322 device->mode = FMODE_EXCL;
27087f37 2323 device->dev_stats_valid = 1;
2b82032c 2324 set_blocksize(device->bdev, 4096);
788f20eb 2325
2b82032c
YZ
2326 if (seeding_dev) {
2327 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2328 ret = btrfs_prepare_sprout(root);
79787eaa 2329 BUG_ON(ret); /* -ENOMEM */
2b82032c 2330 }
788f20eb 2331
2b82032c 2332 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2333
e5e9a520 2334 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2196d6e8 2335 lock_chunks(root);
1f78160c 2336 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2337 list_add(&device->dev_alloc_list,
2338 &root->fs_info->fs_devices->alloc_list);
2339 root->fs_info->fs_devices->num_devices++;
2340 root->fs_info->fs_devices->open_devices++;
2341 root->fs_info->fs_devices->rw_devices++;
02db0844 2342 root->fs_info->fs_devices->total_devices++;
2b82032c 2343 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2344
2bf64758
JB
2345 spin_lock(&root->fs_info->free_chunk_lock);
2346 root->fs_info->free_chunk_space += device->total_bytes;
2347 spin_unlock(&root->fs_info->free_chunk_lock);
2348
c289811c
CM
2349 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2350 root->fs_info->fs_devices->rotating = 1;
2351
3c1dbdf5 2352 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
6c41761f 2353 btrfs_set_super_total_bytes(root->fs_info->super_copy,
3c1dbdf5 2354 tmp + device->total_bytes);
788f20eb 2355
3c1dbdf5 2356 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
6c41761f 2357 btrfs_set_super_num_devices(root->fs_info->super_copy,
3c1dbdf5 2358 tmp + 1);
0d39376a
AJ
2359
2360 /* add sysfs device entry */
e3bd6973 2361 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
0d39376a 2362
2196d6e8
MX
2363 /*
2364 * we've got more storage, clear any full flags on the space
2365 * infos
2366 */
2367 btrfs_clear_space_info_full(root->fs_info);
2368
2369 unlock_chunks(root);
e5e9a520 2370 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2371
2b82032c 2372 if (seeding_dev) {
2196d6e8 2373 lock_chunks(root);
2b82032c 2374 ret = init_first_rw_device(trans, root, device);
2196d6e8 2375 unlock_chunks(root);
005d6427
DS
2376 if (ret) {
2377 btrfs_abort_transaction(trans, root, ret);
79787eaa 2378 goto error_trans;
005d6427 2379 }
2196d6e8
MX
2380 }
2381
2382 ret = btrfs_add_device(trans, root, device);
2383 if (ret) {
2384 btrfs_abort_transaction(trans, root, ret);
2385 goto error_trans;
2386 }
2387
2388 if (seeding_dev) {
2389 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2390
2b82032c 2391 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2392 if (ret) {
2393 btrfs_abort_transaction(trans, root, ret);
79787eaa 2394 goto error_trans;
005d6427 2395 }
b2373f25
AJ
2396
2397 /* Sprouting would change fsid of the mounted root,
2398 * so rename the fsid on the sysfs
2399 */
2400 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2401 root->fs_info->fsid);
c1b7e474 2402 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2e7910d6 2403 fsid_buf))
f14d104d
DS
2404 btrfs_warn(root->fs_info,
2405 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2406 }
2407
5af3e8cc
SB
2408 root->fs_info->num_tolerated_disk_barrier_failures =
2409 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2410 ret = btrfs_commit_transaction(trans, root);
a2135011 2411
2b82032c
YZ
2412 if (seeding_dev) {
2413 mutex_unlock(&uuid_mutex);
2414 up_write(&sb->s_umount);
788f20eb 2415
79787eaa
JM
2416 if (ret) /* transaction commit */
2417 return ret;
2418
2b82032c 2419 ret = btrfs_relocate_sys_chunks(root);
79787eaa 2420 if (ret < 0)
a4553fef 2421 btrfs_std_error(root->fs_info, ret,
79787eaa
JM
2422 "Failed to relocate sys chunks after "
2423 "device initialization. This can be fixed "
2424 "using the \"btrfs balance\" command.");
671415b7
MX
2425 trans = btrfs_attach_transaction(root);
2426 if (IS_ERR(trans)) {
2427 if (PTR_ERR(trans) == -ENOENT)
2428 return 0;
2429 return PTR_ERR(trans);
2430 }
2431 ret = btrfs_commit_transaction(trans, root);
2b82032c 2432 }
c9e9f97b 2433
5a1972bd
QW
2434 /* Update ctime/mtime for libblkid */
2435 update_dev_time(device_path);
2b82032c 2436 return ret;
79787eaa
JM
2437
2438error_trans:
79787eaa 2439 btrfs_end_transaction(trans, root);
606686ee 2440 rcu_string_free(device->name);
32576040 2441 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
79787eaa 2442 kfree(device);
2b82032c 2443error:
e525fd89 2444 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2445 if (seeding_dev) {
2446 mutex_unlock(&uuid_mutex);
2447 up_write(&sb->s_umount);
2448 }
c9e9f97b 2449 return ret;
788f20eb
CM
2450}
2451
e93c89c1 2452int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
1c43366d 2453 struct btrfs_device *srcdev,
e93c89c1
SB
2454 struct btrfs_device **device_out)
2455{
2456 struct request_queue *q;
2457 struct btrfs_device *device;
2458 struct block_device *bdev;
2459 struct btrfs_fs_info *fs_info = root->fs_info;
2460 struct list_head *devices;
2461 struct rcu_string *name;
12bd2fc0 2462 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2463 int ret = 0;
2464
2465 *device_out = NULL;
1c43366d
MX
2466 if (fs_info->fs_devices->seeding) {
2467 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2468 return -EINVAL;
1c43366d 2469 }
e93c89c1
SB
2470
2471 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2472 fs_info->bdev_holder);
1c43366d
MX
2473 if (IS_ERR(bdev)) {
2474 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2475 return PTR_ERR(bdev);
1c43366d 2476 }
e93c89c1
SB
2477
2478 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2479
2480 devices = &fs_info->fs_devices->devices;
2481 list_for_each_entry(device, devices, dev_list) {
2482 if (device->bdev == bdev) {
1c43366d 2483 btrfs_err(fs_info, "target device is in the filesystem!");
e93c89c1
SB
2484 ret = -EEXIST;
2485 goto error;
2486 }
2487 }
2488
1c43366d 2489
7cc8e58d
MX
2490 if (i_size_read(bdev->bd_inode) <
2491 btrfs_device_get_total_bytes(srcdev)) {
1c43366d
MX
2492 btrfs_err(fs_info, "target device is smaller than source device!");
2493 ret = -EINVAL;
2494 goto error;
2495 }
2496
2497
12bd2fc0
ID
2498 device = btrfs_alloc_device(NULL, &devid, NULL);
2499 if (IS_ERR(device)) {
2500 ret = PTR_ERR(device);
e93c89c1
SB
2501 goto error;
2502 }
2503
2504 name = rcu_string_strdup(device_path, GFP_NOFS);
2505 if (!name) {
2506 kfree(device);
2507 ret = -ENOMEM;
2508 goto error;
2509 }
2510 rcu_assign_pointer(device->name, name);
2511
2512 q = bdev_get_queue(bdev);
2513 if (blk_queue_discard(q))
2514 device->can_discard = 1;
2515 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2516 device->writeable = 1;
e93c89c1
SB
2517 device->generation = 0;
2518 device->io_width = root->sectorsize;
2519 device->io_align = root->sectorsize;
2520 device->sector_size = root->sectorsize;
7cc8e58d
MX
2521 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2522 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2523 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2524 ASSERT(list_empty(&srcdev->resized_list));
2525 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2526 device->commit_bytes_used = device->bytes_used;
e93c89c1
SB
2527 device->dev_root = fs_info->dev_root;
2528 device->bdev = bdev;
2529 device->in_fs_metadata = 1;
2530 device->is_tgtdev_for_dev_replace = 1;
2531 device->mode = FMODE_EXCL;
27087f37 2532 device->dev_stats_valid = 1;
e93c89c1
SB
2533 set_blocksize(device->bdev, 4096);
2534 device->fs_devices = fs_info->fs_devices;
2535 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2536 fs_info->fs_devices->num_devices++;
2537 fs_info->fs_devices->open_devices++;
e93c89c1
SB
2538 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2539
2540 *device_out = device;
2541 return ret;
2542
2543error:
2544 blkdev_put(bdev, FMODE_EXCL);
2545 return ret;
2546}
2547
2548void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2549 struct btrfs_device *tgtdev)
2550{
2551 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2552 tgtdev->io_width = fs_info->dev_root->sectorsize;
2553 tgtdev->io_align = fs_info->dev_root->sectorsize;
2554 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2555 tgtdev->dev_root = fs_info->dev_root;
2556 tgtdev->in_fs_metadata = 1;
2557}
2558
d397712b
CM
2559static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2560 struct btrfs_device *device)
0b86a832
CM
2561{
2562 int ret;
2563 struct btrfs_path *path;
2564 struct btrfs_root *root;
2565 struct btrfs_dev_item *dev_item;
2566 struct extent_buffer *leaf;
2567 struct btrfs_key key;
2568
2569 root = device->dev_root->fs_info->chunk_root;
2570
2571 path = btrfs_alloc_path();
2572 if (!path)
2573 return -ENOMEM;
2574
2575 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2576 key.type = BTRFS_DEV_ITEM_KEY;
2577 key.offset = device->devid;
2578
2579 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2580 if (ret < 0)
2581 goto out;
2582
2583 if (ret > 0) {
2584 ret = -ENOENT;
2585 goto out;
2586 }
2587
2588 leaf = path->nodes[0];
2589 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2590
2591 btrfs_set_device_id(leaf, dev_item, device->devid);
2592 btrfs_set_device_type(leaf, dev_item, device->type);
2593 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2594 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2595 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2596 btrfs_set_device_total_bytes(leaf, dev_item,
2597 btrfs_device_get_disk_total_bytes(device));
2598 btrfs_set_device_bytes_used(leaf, dev_item,
2599 btrfs_device_get_bytes_used(device));
0b86a832
CM
2600 btrfs_mark_buffer_dirty(leaf);
2601
2602out:
2603 btrfs_free_path(path);
2604 return ret;
2605}
2606
2196d6e8 2607int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2608 struct btrfs_device *device, u64 new_size)
2609{
2610 struct btrfs_super_block *super_copy =
6c41761f 2611 device->dev_root->fs_info->super_copy;
935e5cc9 2612 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2613 u64 old_total;
2614 u64 diff;
8f18cf13 2615
2b82032c
YZ
2616 if (!device->writeable)
2617 return -EACCES;
2196d6e8
MX
2618
2619 lock_chunks(device->dev_root);
2620 old_total = btrfs_super_total_bytes(super_copy);
2621 diff = new_size - device->total_bytes;
2622
63a212ab 2623 if (new_size <= device->total_bytes ||
2196d6e8
MX
2624 device->is_tgtdev_for_dev_replace) {
2625 unlock_chunks(device->dev_root);
2b82032c 2626 return -EINVAL;
2196d6e8 2627 }
2b82032c 2628
935e5cc9 2629 fs_devices = device->dev_root->fs_info->fs_devices;
2b82032c 2630
8f18cf13 2631 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2632 device->fs_devices->total_rw_bytes += diff;
2633
7cc8e58d
MX
2634 btrfs_device_set_total_bytes(device, new_size);
2635 btrfs_device_set_disk_total_bytes(device, new_size);
4184ea7f 2636 btrfs_clear_space_info_full(device->dev_root->fs_info);
935e5cc9
MX
2637 if (list_empty(&device->resized_list))
2638 list_add_tail(&device->resized_list,
2639 &fs_devices->resized_devices);
2196d6e8 2640 unlock_chunks(device->dev_root);
4184ea7f 2641
8f18cf13
CM
2642 return btrfs_update_device(trans, device);
2643}
2644
2645static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
a688a04a 2646 struct btrfs_root *root, u64 chunk_objectid,
8f18cf13
CM
2647 u64 chunk_offset)
2648{
2649 int ret;
2650 struct btrfs_path *path;
2651 struct btrfs_key key;
2652
2653 root = root->fs_info->chunk_root;
2654 path = btrfs_alloc_path();
2655 if (!path)
2656 return -ENOMEM;
2657
2658 key.objectid = chunk_objectid;
2659 key.offset = chunk_offset;
2660 key.type = BTRFS_CHUNK_ITEM_KEY;
2661
2662 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2663 if (ret < 0)
2664 goto out;
2665 else if (ret > 0) { /* Logic error or corruption */
a4553fef 2666 btrfs_std_error(root->fs_info, -ENOENT,
79787eaa
JM
2667 "Failed lookup while freeing chunk.");
2668 ret = -ENOENT;
2669 goto out;
2670 }
8f18cf13
CM
2671
2672 ret = btrfs_del_item(trans, root, path);
79787eaa 2673 if (ret < 0)
a4553fef 2674 btrfs_std_error(root->fs_info, ret,
79787eaa
JM
2675 "Failed to delete chunk item.");
2676out:
8f18cf13 2677 btrfs_free_path(path);
65a246c5 2678 return ret;
8f18cf13
CM
2679}
2680
b2950863 2681static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2682 chunk_offset)
2683{
6c41761f 2684 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2685 struct btrfs_disk_key *disk_key;
2686 struct btrfs_chunk *chunk;
2687 u8 *ptr;
2688 int ret = 0;
2689 u32 num_stripes;
2690 u32 array_size;
2691 u32 len = 0;
2692 u32 cur;
2693 struct btrfs_key key;
2694
2196d6e8 2695 lock_chunks(root);
8f18cf13
CM
2696 array_size = btrfs_super_sys_array_size(super_copy);
2697
2698 ptr = super_copy->sys_chunk_array;
2699 cur = 0;
2700
2701 while (cur < array_size) {
2702 disk_key = (struct btrfs_disk_key *)ptr;
2703 btrfs_disk_key_to_cpu(&key, disk_key);
2704
2705 len = sizeof(*disk_key);
2706
2707 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2708 chunk = (struct btrfs_chunk *)(ptr + len);
2709 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2710 len += btrfs_chunk_item_size(num_stripes);
2711 } else {
2712 ret = -EIO;
2713 break;
2714 }
2715 if (key.objectid == chunk_objectid &&
2716 key.offset == chunk_offset) {
2717 memmove(ptr, ptr + len, array_size - (cur + len));
2718 array_size -= len;
2719 btrfs_set_super_sys_array_size(super_copy, array_size);
2720 } else {
2721 ptr += len;
2722 cur += len;
2723 }
2724 }
2196d6e8 2725 unlock_chunks(root);
8f18cf13
CM
2726 return ret;
2727}
2728
47ab2a6c
JB
2729int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2730 struct btrfs_root *root, u64 chunk_offset)
8f18cf13
CM
2731{
2732 struct extent_map_tree *em_tree;
8f18cf13 2733 struct extent_map *em;
47ab2a6c 2734 struct btrfs_root *extent_root = root->fs_info->extent_root;
8f18cf13 2735 struct map_lookup *map;
2196d6e8 2736 u64 dev_extent_len = 0;
47ab2a6c 2737 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2738 int i, ret = 0;
8f18cf13 2739
47ab2a6c 2740 /* Just in case */
8f18cf13 2741 root = root->fs_info->chunk_root;
8f18cf13
CM
2742 em_tree = &root->fs_info->mapping_tree.map_tree;
2743
890871be 2744 read_lock(&em_tree->lock);
8f18cf13 2745 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2746 read_unlock(&em_tree->lock);
8f18cf13 2747
47ab2a6c
JB
2748 if (!em || em->start > chunk_offset ||
2749 em->start + em->len < chunk_offset) {
2750 /*
2751 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2752 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2753 * do anything we still error out.
2754 */
2755 ASSERT(0);
2756 if (em)
2757 free_extent_map(em);
2758 return -EINVAL;
2759 }
95617d69 2760 map = em->map_lookup;
39c2d7fa 2761 lock_chunks(root->fs_info->chunk_root);
4617ea3a 2762 check_system_chunk(trans, extent_root, map->type);
39c2d7fa 2763 unlock_chunks(root->fs_info->chunk_root);
8f18cf13
CM
2764
2765 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2766 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2767 ret = btrfs_free_dev_extent(trans, device,
2768 map->stripes[i].physical,
2769 &dev_extent_len);
47ab2a6c
JB
2770 if (ret) {
2771 btrfs_abort_transaction(trans, root, ret);
2772 goto out;
2773 }
a061fc8d 2774
2196d6e8
MX
2775 if (device->bytes_used > 0) {
2776 lock_chunks(root);
2777 btrfs_device_set_bytes_used(device,
2778 device->bytes_used - dev_extent_len);
2779 spin_lock(&root->fs_info->free_chunk_lock);
2780 root->fs_info->free_chunk_space += dev_extent_len;
2781 spin_unlock(&root->fs_info->free_chunk_lock);
2782 btrfs_clear_space_info_full(root->fs_info);
2783 unlock_chunks(root);
2784 }
a061fc8d 2785
dfe25020
CM
2786 if (map->stripes[i].dev) {
2787 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c
JB
2788 if (ret) {
2789 btrfs_abort_transaction(trans, root, ret);
2790 goto out;
2791 }
dfe25020 2792 }
8f18cf13 2793 }
a688a04a 2794 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2795 if (ret) {
2796 btrfs_abort_transaction(trans, root, ret);
2797 goto out;
2798 }
8f18cf13 2799
1abe9b8a 2800 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2801
8f18cf13
CM
2802 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2803 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2804 if (ret) {
2805 btrfs_abort_transaction(trans, root, ret);
2806 goto out;
2807 }
8f18cf13
CM
2808 }
2809
04216820 2810 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
47ab2a6c
JB
2811 if (ret) {
2812 btrfs_abort_transaction(trans, extent_root, ret);
2813 goto out;
2814 }
2b82032c 2815
47ab2a6c 2816out:
2b82032c
YZ
2817 /* once for us */
2818 free_extent_map(em);
47ab2a6c
JB
2819 return ret;
2820}
2b82032c 2821
dc2ee4e2 2822static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
47ab2a6c
JB
2823{
2824 struct btrfs_root *extent_root;
2825 struct btrfs_trans_handle *trans;
2826 int ret;
2b82032c 2827
47ab2a6c
JB
2828 root = root->fs_info->chunk_root;
2829 extent_root = root->fs_info->extent_root;
2830
67c5e7d4
FM
2831 /*
2832 * Prevent races with automatic removal of unused block groups.
2833 * After we relocate and before we remove the chunk with offset
2834 * chunk_offset, automatic removal of the block group can kick in,
2835 * resulting in a failure when calling btrfs_remove_chunk() below.
2836 *
2837 * Make sure to acquire this mutex before doing a tree search (dev
2838 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2839 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2840 * we release the path used to search the chunk/dev tree and before
2841 * the current task acquires this mutex and calls us.
2842 */
2843 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2844
47ab2a6c
JB
2845 ret = btrfs_can_relocate(extent_root, chunk_offset);
2846 if (ret)
2847 return -ENOSPC;
2848
2849 /* step one, relocate all the extents inside this chunk */
55e3a601 2850 btrfs_scrub_pause(root);
47ab2a6c 2851 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
55e3a601 2852 btrfs_scrub_continue(root);
47ab2a6c
JB
2853 if (ret)
2854 return ret;
2855
7fd01182
FM
2856 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2857 chunk_offset);
47ab2a6c
JB
2858 if (IS_ERR(trans)) {
2859 ret = PTR_ERR(trans);
a4553fef 2860 btrfs_std_error(root->fs_info, ret, NULL);
47ab2a6c
JB
2861 return ret;
2862 }
2863
2864 /*
2865 * step two, delete the device extents and the
2866 * chunk tree entries
2867 */
2868 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2b82032c 2869 btrfs_end_transaction(trans, root);
47ab2a6c 2870 return ret;
2b82032c
YZ
2871}
2872
2873static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2874{
2875 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2876 struct btrfs_path *path;
2877 struct extent_buffer *leaf;
2878 struct btrfs_chunk *chunk;
2879 struct btrfs_key key;
2880 struct btrfs_key found_key;
2b82032c 2881 u64 chunk_type;
ba1bf481
JB
2882 bool retried = false;
2883 int failed = 0;
2b82032c
YZ
2884 int ret;
2885
2886 path = btrfs_alloc_path();
2887 if (!path)
2888 return -ENOMEM;
2889
ba1bf481 2890again:
2b82032c
YZ
2891 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2892 key.offset = (u64)-1;
2893 key.type = BTRFS_CHUNK_ITEM_KEY;
2894
2895 while (1) {
67c5e7d4 2896 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2897 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
2898 if (ret < 0) {
2899 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2900 goto error;
67c5e7d4 2901 }
79787eaa 2902 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2903
2904 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2905 key.type);
67c5e7d4
FM
2906 if (ret)
2907 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2908 if (ret < 0)
2909 goto error;
2910 if (ret > 0)
2911 break;
1a40e23b 2912
2b82032c
YZ
2913 leaf = path->nodes[0];
2914 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2915
2b82032c
YZ
2916 chunk = btrfs_item_ptr(leaf, path->slots[0],
2917 struct btrfs_chunk);
2918 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2919 btrfs_release_path(path);
8f18cf13 2920
2b82032c 2921 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
a688a04a 2922 ret = btrfs_relocate_chunk(chunk_root,
2b82032c 2923 found_key.offset);
ba1bf481
JB
2924 if (ret == -ENOSPC)
2925 failed++;
14586651
HS
2926 else
2927 BUG_ON(ret);
2b82032c 2928 }
67c5e7d4 2929 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 2930
2b82032c
YZ
2931 if (found_key.offset == 0)
2932 break;
2933 key.offset = found_key.offset - 1;
2934 }
2935 ret = 0;
ba1bf481
JB
2936 if (failed && !retried) {
2937 failed = 0;
2938 retried = true;
2939 goto again;
fae7f21c 2940 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2941 ret = -ENOSPC;
2942 }
2b82032c
YZ
2943error:
2944 btrfs_free_path(path);
2945 return ret;
8f18cf13
CM
2946}
2947
0940ebf6
ID
2948static int insert_balance_item(struct btrfs_root *root,
2949 struct btrfs_balance_control *bctl)
2950{
2951 struct btrfs_trans_handle *trans;
2952 struct btrfs_balance_item *item;
2953 struct btrfs_disk_balance_args disk_bargs;
2954 struct btrfs_path *path;
2955 struct extent_buffer *leaf;
2956 struct btrfs_key key;
2957 int ret, err;
2958
2959 path = btrfs_alloc_path();
2960 if (!path)
2961 return -ENOMEM;
2962
2963 trans = btrfs_start_transaction(root, 0);
2964 if (IS_ERR(trans)) {
2965 btrfs_free_path(path);
2966 return PTR_ERR(trans);
2967 }
2968
2969 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 2970 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
2971 key.offset = 0;
2972
2973 ret = btrfs_insert_empty_item(trans, root, path, &key,
2974 sizeof(*item));
2975 if (ret)
2976 goto out;
2977
2978 leaf = path->nodes[0];
2979 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2980
2981 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2982
2983 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2984 btrfs_set_balance_data(leaf, item, &disk_bargs);
2985 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2986 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2987 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2988 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2989
2990 btrfs_set_balance_flags(leaf, item, bctl->flags);
2991
2992 btrfs_mark_buffer_dirty(leaf);
2993out:
2994 btrfs_free_path(path);
2995 err = btrfs_commit_transaction(trans, root);
2996 if (err && !ret)
2997 ret = err;
2998 return ret;
2999}
3000
3001static int del_balance_item(struct btrfs_root *root)
3002{
3003 struct btrfs_trans_handle *trans;
3004 struct btrfs_path *path;
3005 struct btrfs_key key;
3006 int ret, err;
3007
3008 path = btrfs_alloc_path();
3009 if (!path)
3010 return -ENOMEM;
3011
3012 trans = btrfs_start_transaction(root, 0);
3013 if (IS_ERR(trans)) {
3014 btrfs_free_path(path);
3015 return PTR_ERR(trans);
3016 }
3017
3018 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3019 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3020 key.offset = 0;
3021
3022 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3023 if (ret < 0)
3024 goto out;
3025 if (ret > 0) {
3026 ret = -ENOENT;
3027 goto out;
3028 }
3029
3030 ret = btrfs_del_item(trans, root, path);
3031out:
3032 btrfs_free_path(path);
3033 err = btrfs_commit_transaction(trans, root);
3034 if (err && !ret)
3035 ret = err;
3036 return ret;
3037}
3038
59641015
ID
3039/*
3040 * This is a heuristic used to reduce the number of chunks balanced on
3041 * resume after balance was interrupted.
3042 */
3043static void update_balance_args(struct btrfs_balance_control *bctl)
3044{
3045 /*
3046 * Turn on soft mode for chunk types that were being converted.
3047 */
3048 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3049 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3050 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3051 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3052 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3053 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3054
3055 /*
3056 * Turn on usage filter if is not already used. The idea is
3057 * that chunks that we have already balanced should be
3058 * reasonably full. Don't do it for chunks that are being
3059 * converted - that will keep us from relocating unconverted
3060 * (albeit full) chunks.
3061 */
3062 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3063 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3064 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3065 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3066 bctl->data.usage = 90;
3067 }
3068 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3069 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3070 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3071 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3072 bctl->sys.usage = 90;
3073 }
3074 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3075 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3076 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3077 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3078 bctl->meta.usage = 90;
3079 }
3080}
3081
c9e9f97b
ID
3082/*
3083 * Should be called with both balance and volume mutexes held to
3084 * serialize other volume operations (add_dev/rm_dev/resize) with
3085 * restriper. Same goes for unset_balance_control.
3086 */
3087static void set_balance_control(struct btrfs_balance_control *bctl)
3088{
3089 struct btrfs_fs_info *fs_info = bctl->fs_info;
3090
3091 BUG_ON(fs_info->balance_ctl);
3092
3093 spin_lock(&fs_info->balance_lock);
3094 fs_info->balance_ctl = bctl;
3095 spin_unlock(&fs_info->balance_lock);
3096}
3097
3098static void unset_balance_control(struct btrfs_fs_info *fs_info)
3099{
3100 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3101
3102 BUG_ON(!fs_info->balance_ctl);
3103
3104 spin_lock(&fs_info->balance_lock);
3105 fs_info->balance_ctl = NULL;
3106 spin_unlock(&fs_info->balance_lock);
3107
3108 kfree(bctl);
3109}
3110
ed25e9b2
ID
3111/*
3112 * Balance filters. Return 1 if chunk should be filtered out
3113 * (should not be balanced).
3114 */
899c81ea 3115static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3116 struct btrfs_balance_args *bargs)
3117{
899c81ea
ID
3118 chunk_type = chunk_to_extended(chunk_type) &
3119 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3120
899c81ea 3121 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3122 return 0;
3123
3124 return 1;
3125}
3126
dba72cb3 3127static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3128 struct btrfs_balance_args *bargs)
bc309467
DS
3129{
3130 struct btrfs_block_group_cache *cache;
3131 u64 chunk_used;
3132 u64 user_thresh_min;
3133 u64 user_thresh_max;
3134 int ret = 1;
3135
3136 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3137 chunk_used = btrfs_block_group_used(&cache->item);
3138
3139 if (bargs->usage_min == 0)
3140 user_thresh_min = 0;
3141 else
3142 user_thresh_min = div_factor_fine(cache->key.offset,
3143 bargs->usage_min);
3144
3145 if (bargs->usage_max == 0)
3146 user_thresh_max = 1;
3147 else if (bargs->usage_max > 100)
3148 user_thresh_max = cache->key.offset;
3149 else
3150 user_thresh_max = div_factor_fine(cache->key.offset,
3151 bargs->usage_max);
3152
3153 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3154 ret = 0;
3155
3156 btrfs_put_block_group(cache);
3157 return ret;
3158}
3159
dba72cb3 3160static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3161 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3162{
3163 struct btrfs_block_group_cache *cache;
3164 u64 chunk_used, user_thresh;
3165 int ret = 1;
3166
3167 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3168 chunk_used = btrfs_block_group_used(&cache->item);
3169
bc309467 3170 if (bargs->usage_min == 0)
3e39cea6 3171 user_thresh = 1;
a105bb88
ID
3172 else if (bargs->usage > 100)
3173 user_thresh = cache->key.offset;
3174 else
3175 user_thresh = div_factor_fine(cache->key.offset,
3176 bargs->usage);
3177
5ce5b3c0
ID
3178 if (chunk_used < user_thresh)
3179 ret = 0;
3180
3181 btrfs_put_block_group(cache);
3182 return ret;
3183}
3184
409d404b
ID
3185static int chunk_devid_filter(struct extent_buffer *leaf,
3186 struct btrfs_chunk *chunk,
3187 struct btrfs_balance_args *bargs)
3188{
3189 struct btrfs_stripe *stripe;
3190 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3191 int i;
3192
3193 for (i = 0; i < num_stripes; i++) {
3194 stripe = btrfs_stripe_nr(chunk, i);
3195 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3196 return 0;
3197 }
3198
3199 return 1;
3200}
3201
94e60d5a
ID
3202/* [pstart, pend) */
3203static int chunk_drange_filter(struct extent_buffer *leaf,
3204 struct btrfs_chunk *chunk,
3205 u64 chunk_offset,
3206 struct btrfs_balance_args *bargs)
3207{
3208 struct btrfs_stripe *stripe;
3209 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3210 u64 stripe_offset;
3211 u64 stripe_length;
3212 int factor;
3213 int i;
3214
3215 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3216 return 0;
3217
3218 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3219 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3220 factor = num_stripes / 2;
3221 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3222 factor = num_stripes - 1;
3223 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3224 factor = num_stripes - 2;
3225 } else {
3226 factor = num_stripes;
3227 }
94e60d5a
ID
3228
3229 for (i = 0; i < num_stripes; i++) {
3230 stripe = btrfs_stripe_nr(chunk, i);
3231 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3232 continue;
3233
3234 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3235 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3236 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3237
3238 if (stripe_offset < bargs->pend &&
3239 stripe_offset + stripe_length > bargs->pstart)
3240 return 0;
3241 }
3242
3243 return 1;
3244}
3245
ea67176a
ID
3246/* [vstart, vend) */
3247static int chunk_vrange_filter(struct extent_buffer *leaf,
3248 struct btrfs_chunk *chunk,
3249 u64 chunk_offset,
3250 struct btrfs_balance_args *bargs)
3251{
3252 if (chunk_offset < bargs->vend &&
3253 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3254 /* at least part of the chunk is inside this vrange */
3255 return 0;
3256
3257 return 1;
3258}
3259
dee32d0a
GAP
3260static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3261 struct btrfs_chunk *chunk,
3262 struct btrfs_balance_args *bargs)
3263{
3264 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3265
3266 if (bargs->stripes_min <= num_stripes
3267 && num_stripes <= bargs->stripes_max)
3268 return 0;
3269
3270 return 1;
3271}
3272
899c81ea 3273static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3274 struct btrfs_balance_args *bargs)
3275{
3276 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3277 return 0;
3278
899c81ea
ID
3279 chunk_type = chunk_to_extended(chunk_type) &
3280 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3281
899c81ea 3282 if (bargs->target == chunk_type)
cfa4c961
ID
3283 return 1;
3284
3285 return 0;
3286}
3287
f43ffb60
ID
3288static int should_balance_chunk(struct btrfs_root *root,
3289 struct extent_buffer *leaf,
3290 struct btrfs_chunk *chunk, u64 chunk_offset)
3291{
3292 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3293 struct btrfs_balance_args *bargs = NULL;
3294 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3295
3296 /* type filter */
3297 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3298 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3299 return 0;
3300 }
3301
3302 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3303 bargs = &bctl->data;
3304 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3305 bargs = &bctl->sys;
3306 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3307 bargs = &bctl->meta;
3308
ed25e9b2
ID
3309 /* profiles filter */
3310 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3311 chunk_profiles_filter(chunk_type, bargs)) {
3312 return 0;
5ce5b3c0
ID
3313 }
3314
3315 /* usage filter */
3316 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3317 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3318 return 0;
bc309467
DS
3319 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3320 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3321 return 0;
409d404b
ID
3322 }
3323
3324 /* devid filter */
3325 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3326 chunk_devid_filter(leaf, chunk, bargs)) {
3327 return 0;
94e60d5a
ID
3328 }
3329
3330 /* drange filter, makes sense only with devid filter */
3331 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3332 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3333 return 0;
ea67176a
ID
3334 }
3335
3336 /* vrange filter */
3337 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3338 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3339 return 0;
ed25e9b2
ID
3340 }
3341
dee32d0a
GAP
3342 /* stripes filter */
3343 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3344 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3345 return 0;
3346 }
3347
cfa4c961
ID
3348 /* soft profile changing mode */
3349 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3350 chunk_soft_convert_filter(chunk_type, bargs)) {
3351 return 0;
3352 }
3353
7d824b6f
DS
3354 /*
3355 * limited by count, must be the last filter
3356 */
3357 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3358 if (bargs->limit == 0)
3359 return 0;
3360 else
3361 bargs->limit--;
12907fc7
DS
3362 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3363 /*
3364 * Same logic as the 'limit' filter; the minimum cannot be
3365 * determined here because we do not have the global informatoin
3366 * about the count of all chunks that satisfy the filters.
3367 */
3368 if (bargs->limit_max == 0)
3369 return 0;
3370 else
3371 bargs->limit_max--;
7d824b6f
DS
3372 }
3373
f43ffb60
ID
3374 return 1;
3375}
3376
c9e9f97b 3377static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3378{
19a39dce 3379 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3380 struct btrfs_root *chunk_root = fs_info->chunk_root;
3381 struct btrfs_root *dev_root = fs_info->dev_root;
3382 struct list_head *devices;
ec44a35c
CM
3383 struct btrfs_device *device;
3384 u64 old_size;
3385 u64 size_to_free;
12907fc7 3386 u64 chunk_type;
f43ffb60 3387 struct btrfs_chunk *chunk;
ec44a35c
CM
3388 struct btrfs_path *path;
3389 struct btrfs_key key;
ec44a35c 3390 struct btrfs_key found_key;
c9e9f97b 3391 struct btrfs_trans_handle *trans;
f43ffb60
ID
3392 struct extent_buffer *leaf;
3393 int slot;
c9e9f97b
ID
3394 int ret;
3395 int enospc_errors = 0;
19a39dce 3396 bool counting = true;
12907fc7 3397 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3398 u64 limit_data = bctl->data.limit;
3399 u64 limit_meta = bctl->meta.limit;
3400 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3401 u32 count_data = 0;
3402 u32 count_meta = 0;
3403 u32 count_sys = 0;
2c9fe835 3404 int chunk_reserved = 0;
ec44a35c 3405
ec44a35c 3406 /* step one make some room on all the devices */
c9e9f97b 3407 devices = &fs_info->fs_devices->devices;
c6e30871 3408 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3409 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3410 size_to_free = div_factor(old_size, 1);
ee22184b 3411 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3412 if (!device->writeable ||
7cc8e58d
MX
3413 btrfs_device_get_total_bytes(device) -
3414 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3415 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3416 continue;
3417
3418 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3419 if (ret == -ENOSPC)
3420 break;
ec44a35c
CM
3421 BUG_ON(ret);
3422
a22285a6 3423 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 3424 BUG_ON(IS_ERR(trans));
ec44a35c
CM
3425
3426 ret = btrfs_grow_device(trans, device, old_size);
3427 BUG_ON(ret);
3428
3429 btrfs_end_transaction(trans, dev_root);
3430 }
3431
3432 /* step two, relocate all the chunks */
3433 path = btrfs_alloc_path();
17e9f796
MF
3434 if (!path) {
3435 ret = -ENOMEM;
3436 goto error;
3437 }
19a39dce
ID
3438
3439 /* zero out stat counters */
3440 spin_lock(&fs_info->balance_lock);
3441 memset(&bctl->stat, 0, sizeof(bctl->stat));
3442 spin_unlock(&fs_info->balance_lock);
3443again:
7d824b6f 3444 if (!counting) {
12907fc7
DS
3445 /*
3446 * The single value limit and min/max limits use the same bytes
3447 * in the
3448 */
7d824b6f
DS
3449 bctl->data.limit = limit_data;
3450 bctl->meta.limit = limit_meta;
3451 bctl->sys.limit = limit_sys;
3452 }
ec44a35c
CM
3453 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3454 key.offset = (u64)-1;
3455 key.type = BTRFS_CHUNK_ITEM_KEY;
3456
d397712b 3457 while (1) {
19a39dce 3458 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3459 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3460 ret = -ECANCELED;
3461 goto error;
3462 }
3463
67c5e7d4 3464 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3465 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3466 if (ret < 0) {
3467 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3468 goto error;
67c5e7d4 3469 }
ec44a35c
CM
3470
3471 /*
3472 * this shouldn't happen, it means the last relocate
3473 * failed
3474 */
3475 if (ret == 0)
c9e9f97b 3476 BUG(); /* FIXME break ? */
ec44a35c
CM
3477
3478 ret = btrfs_previous_item(chunk_root, path, 0,
3479 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3480 if (ret) {
67c5e7d4 3481 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3482 ret = 0;
ec44a35c 3483 break;
c9e9f97b 3484 }
7d9eb12c 3485
f43ffb60
ID
3486 leaf = path->nodes[0];
3487 slot = path->slots[0];
3488 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3489
67c5e7d4
FM
3490 if (found_key.objectid != key.objectid) {
3491 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3492 break;
67c5e7d4 3493 }
7d9eb12c 3494
f43ffb60 3495 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3496 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3497
19a39dce
ID
3498 if (!counting) {
3499 spin_lock(&fs_info->balance_lock);
3500 bctl->stat.considered++;
3501 spin_unlock(&fs_info->balance_lock);
3502 }
3503
f43ffb60
ID
3504 ret = should_balance_chunk(chunk_root, leaf, chunk,
3505 found_key.offset);
2c9fe835 3506
b3b4aa74 3507 btrfs_release_path(path);
67c5e7d4
FM
3508 if (!ret) {
3509 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3510 goto loop;
67c5e7d4 3511 }
f43ffb60 3512
19a39dce 3513 if (counting) {
67c5e7d4 3514 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3515 spin_lock(&fs_info->balance_lock);
3516 bctl->stat.expected++;
3517 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3518
3519 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3520 count_data++;
3521 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3522 count_sys++;
3523 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3524 count_meta++;
3525
3526 goto loop;
3527 }
3528
3529 /*
3530 * Apply limit_min filter, no need to check if the LIMITS
3531 * filter is used, limit_min is 0 by default
3532 */
3533 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3534 count_data < bctl->data.limit_min)
3535 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3536 count_meta < bctl->meta.limit_min)
3537 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3538 count_sys < bctl->sys.limit_min)) {
3539 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3540 goto loop;
3541 }
3542
2c9fe835
ZL
3543 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
3544 trans = btrfs_start_transaction(chunk_root, 0);
3545 if (IS_ERR(trans)) {
3546 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3547 ret = PTR_ERR(trans);
3548 goto error;
3549 }
3550
3551 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3552 BTRFS_BLOCK_GROUP_DATA);
8a7d656f 3553 btrfs_end_transaction(trans, chunk_root);
2c9fe835
ZL
3554 if (ret < 0) {
3555 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3556 goto error;
3557 }
2c9fe835
ZL
3558 chunk_reserved = 1;
3559 }
3560
ec44a35c 3561 ret = btrfs_relocate_chunk(chunk_root,
ec44a35c 3562 found_key.offset);
67c5e7d4 3563 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3564 if (ret && ret != -ENOSPC)
3565 goto error;
19a39dce 3566 if (ret == -ENOSPC) {
c9e9f97b 3567 enospc_errors++;
19a39dce
ID
3568 } else {
3569 spin_lock(&fs_info->balance_lock);
3570 bctl->stat.completed++;
3571 spin_unlock(&fs_info->balance_lock);
3572 }
f43ffb60 3573loop:
795a3321
ID
3574 if (found_key.offset == 0)
3575 break;
ba1bf481 3576 key.offset = found_key.offset - 1;
ec44a35c 3577 }
c9e9f97b 3578
19a39dce
ID
3579 if (counting) {
3580 btrfs_release_path(path);
3581 counting = false;
3582 goto again;
3583 }
ec44a35c
CM
3584error:
3585 btrfs_free_path(path);
c9e9f97b 3586 if (enospc_errors) {
efe120a0 3587 btrfs_info(fs_info, "%d enospc errors during balance",
c9e9f97b
ID
3588 enospc_errors);
3589 if (!ret)
3590 ret = -ENOSPC;
3591 }
3592
ec44a35c
CM
3593 return ret;
3594}
3595
0c460c0d
ID
3596/**
3597 * alloc_profile_is_valid - see if a given profile is valid and reduced
3598 * @flags: profile to validate
3599 * @extended: if true @flags is treated as an extended profile
3600 */
3601static int alloc_profile_is_valid(u64 flags, int extended)
3602{
3603 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3604 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3605
3606 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3607
3608 /* 1) check that all other bits are zeroed */
3609 if (flags & ~mask)
3610 return 0;
3611
3612 /* 2) see if profile is reduced */
3613 if (flags == 0)
3614 return !extended; /* "0" is valid for usual profiles */
3615
3616 /* true if exactly one bit set */
3617 return (flags & (flags - 1)) == 0;
3618}
3619
837d5b6e
ID
3620static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3621{
a7e99c69
ID
3622 /* cancel requested || normal exit path */
3623 return atomic_read(&fs_info->balance_cancel_req) ||
3624 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3625 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3626}
3627
c9e9f97b
ID
3628static void __cancel_balance(struct btrfs_fs_info *fs_info)
3629{
0940ebf6
ID
3630 int ret;
3631
c9e9f97b 3632 unset_balance_control(fs_info);
0940ebf6 3633 ret = del_balance_item(fs_info->tree_root);
0f788c58 3634 if (ret)
a4553fef 3635 btrfs_std_error(fs_info, ret, NULL);
ed0fb78f
ID
3636
3637 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3638}
3639
bdcd3c97
AM
3640/* Non-zero return value signifies invalidity */
3641static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3642 u64 allowed)
3643{
3644 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3645 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3646 (bctl_arg->target & ~allowed)));
3647}
3648
c9e9f97b
ID
3649/*
3650 * Should be called with both balance and volume mutexes held
3651 */
3652int btrfs_balance(struct btrfs_balance_control *bctl,
3653 struct btrfs_ioctl_balance_args *bargs)
3654{
3655 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3656 u64 allowed;
e4837f8f 3657 int mixed = 0;
c9e9f97b 3658 int ret;
8dabb742 3659 u64 num_devices;
de98ced9 3660 unsigned seq;
c9e9f97b 3661
837d5b6e 3662 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3663 atomic_read(&fs_info->balance_pause_req) ||
3664 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3665 ret = -EINVAL;
3666 goto out;
3667 }
3668
e4837f8f
ID
3669 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3670 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3671 mixed = 1;
3672
f43ffb60
ID
3673 /*
3674 * In case of mixed groups both data and meta should be picked,
3675 * and identical options should be given for both of them.
3676 */
e4837f8f
ID
3677 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3678 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3679 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3680 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3681 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
efe120a0
FH
3682 btrfs_err(fs_info, "with mixed groups data and "
3683 "metadata balance options must be the same");
f43ffb60
ID
3684 ret = -EINVAL;
3685 goto out;
3686 }
3687 }
3688
8dabb742 3689 num_devices = fs_info->fs_devices->num_devices;
73beece9 3690 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3691 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3692 BUG_ON(num_devices < 1);
3693 num_devices--;
3694 }
73beece9 3695 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
e4d8ec0f 3696 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3697 if (num_devices == 1)
e4d8ec0f 3698 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3699 else if (num_devices > 1)
e4d8ec0f 3700 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3701 if (num_devices > 2)
3702 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3703 if (num_devices > 3)
3704 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3705 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3706 if (validate_convert_profile(&bctl->data, allowed)) {
efe120a0
FH
3707 btrfs_err(fs_info, "unable to start balance with target "
3708 "data profile %llu",
c1c9ff7c 3709 bctl->data.target);
e4d8ec0f
ID
3710 ret = -EINVAL;
3711 goto out;
3712 }
bdcd3c97 3713 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0
FH
3714 btrfs_err(fs_info,
3715 "unable to start balance with target metadata profile %llu",
c1c9ff7c 3716 bctl->meta.target);
e4d8ec0f
ID
3717 ret = -EINVAL;
3718 goto out;
3719 }
bdcd3c97 3720 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0
FH
3721 btrfs_err(fs_info,
3722 "unable to start balance with target system profile %llu",
c1c9ff7c 3723 bctl->sys.target);
e4d8ec0f
ID
3724 ret = -EINVAL;
3725 goto out;
3726 }
3727
e4d8ec0f
ID
3728 /* allow to reduce meta or sys integrity only if force set */
3729 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3730 BTRFS_BLOCK_GROUP_RAID10 |
3731 BTRFS_BLOCK_GROUP_RAID5 |
3732 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3733 do {
3734 seq = read_seqbegin(&fs_info->profiles_lock);
3735
3736 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3737 (fs_info->avail_system_alloc_bits & allowed) &&
3738 !(bctl->sys.target & allowed)) ||
3739 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3740 (fs_info->avail_metadata_alloc_bits & allowed) &&
3741 !(bctl->meta.target & allowed))) {
3742 if (bctl->flags & BTRFS_BALANCE_FORCE) {
efe120a0 3743 btrfs_info(fs_info, "force reducing metadata integrity");
de98ced9 3744 } else {
efe120a0
FH
3745 btrfs_err(fs_info, "balance will reduce metadata "
3746 "integrity, use force if you want this");
de98ced9
MX
3747 ret = -EINVAL;
3748 goto out;
3749 }
e4d8ec0f 3750 }
de98ced9 3751 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3752
ee592d07
ST
3753 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3754 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3755 btrfs_warn(fs_info,
fedc0045 3756 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
ee592d07
ST
3757 bctl->meta.target, bctl->data.target);
3758 }
3759
5af3e8cc 3760 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
943c6e99
ZL
3761 fs_info->num_tolerated_disk_barrier_failures = min(
3762 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3763 btrfs_get_num_tolerated_disk_barrier_failures(
3764 bctl->sys.target));
5af3e8cc
SB
3765 }
3766
0940ebf6 3767 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3768 if (ret && ret != -EEXIST)
0940ebf6
ID
3769 goto out;
3770
59641015
ID
3771 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3772 BUG_ON(ret == -EEXIST);
3773 set_balance_control(bctl);
3774 } else {
3775 BUG_ON(ret != -EEXIST);
3776 spin_lock(&fs_info->balance_lock);
3777 update_balance_args(bctl);
3778 spin_unlock(&fs_info->balance_lock);
3779 }
c9e9f97b 3780
837d5b6e 3781 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3782 mutex_unlock(&fs_info->balance_mutex);
3783
3784 ret = __btrfs_balance(fs_info);
3785
3786 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3787 atomic_dec(&fs_info->balance_running);
c9e9f97b 3788
bf023ecf
ID
3789 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3790 fs_info->num_tolerated_disk_barrier_failures =
3791 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3792 }
3793
c9e9f97b
ID
3794 if (bargs) {
3795 memset(bargs, 0, sizeof(*bargs));
19a39dce 3796 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3797 }
3798
3a01aa7a
ID
3799 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3800 balance_need_close(fs_info)) {
3801 __cancel_balance(fs_info);
3802 }
3803
837d5b6e 3804 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3805
3806 return ret;
3807out:
59641015
ID
3808 if (bctl->flags & BTRFS_BALANCE_RESUME)
3809 __cancel_balance(fs_info);
ed0fb78f 3810 else {
59641015 3811 kfree(bctl);
ed0fb78f
ID
3812 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3813 }
59641015
ID
3814 return ret;
3815}
3816
3817static int balance_kthread(void *data)
3818{
2b6ba629 3819 struct btrfs_fs_info *fs_info = data;
9555c6c1 3820 int ret = 0;
59641015
ID
3821
3822 mutex_lock(&fs_info->volume_mutex);
3823 mutex_lock(&fs_info->balance_mutex);
3824
2b6ba629 3825 if (fs_info->balance_ctl) {
efe120a0 3826 btrfs_info(fs_info, "continuing balance");
2b6ba629 3827 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3828 }
59641015
ID
3829
3830 mutex_unlock(&fs_info->balance_mutex);
3831 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3832
59641015
ID
3833 return ret;
3834}
3835
2b6ba629
ID
3836int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3837{
3838 struct task_struct *tsk;
3839
3840 spin_lock(&fs_info->balance_lock);
3841 if (!fs_info->balance_ctl) {
3842 spin_unlock(&fs_info->balance_lock);
3843 return 0;
3844 }
3845 spin_unlock(&fs_info->balance_lock);
3846
3847 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
efe120a0 3848 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3849 return 0;
3850 }
3851
3852 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3853 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3854}
3855
68310a5e 3856int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3857{
59641015
ID
3858 struct btrfs_balance_control *bctl;
3859 struct btrfs_balance_item *item;
3860 struct btrfs_disk_balance_args disk_bargs;
3861 struct btrfs_path *path;
3862 struct extent_buffer *leaf;
3863 struct btrfs_key key;
3864 int ret;
3865
3866 path = btrfs_alloc_path();
3867 if (!path)
3868 return -ENOMEM;
3869
59641015 3870 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3871 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
3872 key.offset = 0;
3873
68310a5e 3874 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3875 if (ret < 0)
68310a5e 3876 goto out;
59641015
ID
3877 if (ret > 0) { /* ret = -ENOENT; */
3878 ret = 0;
68310a5e
ID
3879 goto out;
3880 }
3881
3882 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3883 if (!bctl) {
3884 ret = -ENOMEM;
3885 goto out;
59641015
ID
3886 }
3887
3888 leaf = path->nodes[0];
3889 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3890
68310a5e
ID
3891 bctl->fs_info = fs_info;
3892 bctl->flags = btrfs_balance_flags(leaf, item);
3893 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3894
3895 btrfs_balance_data(leaf, item, &disk_bargs);
3896 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3897 btrfs_balance_meta(leaf, item, &disk_bargs);
3898 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3899 btrfs_balance_sys(leaf, item, &disk_bargs);
3900 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3901
ed0fb78f
ID
3902 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3903
68310a5e
ID
3904 mutex_lock(&fs_info->volume_mutex);
3905 mutex_lock(&fs_info->balance_mutex);
59641015 3906
68310a5e
ID
3907 set_balance_control(bctl);
3908
3909 mutex_unlock(&fs_info->balance_mutex);
3910 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3911out:
3912 btrfs_free_path(path);
ec44a35c
CM
3913 return ret;
3914}
3915
837d5b6e
ID
3916int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3917{
3918 int ret = 0;
3919
3920 mutex_lock(&fs_info->balance_mutex);
3921 if (!fs_info->balance_ctl) {
3922 mutex_unlock(&fs_info->balance_mutex);
3923 return -ENOTCONN;
3924 }
3925
3926 if (atomic_read(&fs_info->balance_running)) {
3927 atomic_inc(&fs_info->balance_pause_req);
3928 mutex_unlock(&fs_info->balance_mutex);
3929
3930 wait_event(fs_info->balance_wait_q,
3931 atomic_read(&fs_info->balance_running) == 0);
3932
3933 mutex_lock(&fs_info->balance_mutex);
3934 /* we are good with balance_ctl ripped off from under us */
3935 BUG_ON(atomic_read(&fs_info->balance_running));
3936 atomic_dec(&fs_info->balance_pause_req);
3937 } else {
3938 ret = -ENOTCONN;
3939 }
3940
3941 mutex_unlock(&fs_info->balance_mutex);
3942 return ret;
3943}
3944
a7e99c69
ID
3945int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3946{
e649e587
ID
3947 if (fs_info->sb->s_flags & MS_RDONLY)
3948 return -EROFS;
3949
a7e99c69
ID
3950 mutex_lock(&fs_info->balance_mutex);
3951 if (!fs_info->balance_ctl) {
3952 mutex_unlock(&fs_info->balance_mutex);
3953 return -ENOTCONN;
3954 }
3955
3956 atomic_inc(&fs_info->balance_cancel_req);
3957 /*
3958 * if we are running just wait and return, balance item is
3959 * deleted in btrfs_balance in this case
3960 */
3961 if (atomic_read(&fs_info->balance_running)) {
3962 mutex_unlock(&fs_info->balance_mutex);
3963 wait_event(fs_info->balance_wait_q,
3964 atomic_read(&fs_info->balance_running) == 0);
3965 mutex_lock(&fs_info->balance_mutex);
3966 } else {
3967 /* __cancel_balance needs volume_mutex */
3968 mutex_unlock(&fs_info->balance_mutex);
3969 mutex_lock(&fs_info->volume_mutex);
3970 mutex_lock(&fs_info->balance_mutex);
3971
3972 if (fs_info->balance_ctl)
3973 __cancel_balance(fs_info);
3974
3975 mutex_unlock(&fs_info->volume_mutex);
3976 }
3977
3978 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3979 atomic_dec(&fs_info->balance_cancel_req);
3980 mutex_unlock(&fs_info->balance_mutex);
3981 return 0;
3982}
3983
803b2f54
SB
3984static int btrfs_uuid_scan_kthread(void *data)
3985{
3986 struct btrfs_fs_info *fs_info = data;
3987 struct btrfs_root *root = fs_info->tree_root;
3988 struct btrfs_key key;
3989 struct btrfs_key max_key;
3990 struct btrfs_path *path = NULL;
3991 int ret = 0;
3992 struct extent_buffer *eb;
3993 int slot;
3994 struct btrfs_root_item root_item;
3995 u32 item_size;
f45388f3 3996 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
3997
3998 path = btrfs_alloc_path();
3999 if (!path) {
4000 ret = -ENOMEM;
4001 goto out;
4002 }
4003
4004 key.objectid = 0;
4005 key.type = BTRFS_ROOT_ITEM_KEY;
4006 key.offset = 0;
4007
4008 max_key.objectid = (u64)-1;
4009 max_key.type = BTRFS_ROOT_ITEM_KEY;
4010 max_key.offset = (u64)-1;
4011
803b2f54 4012 while (1) {
6174d3cb 4013 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
4014 if (ret) {
4015 if (ret > 0)
4016 ret = 0;
4017 break;
4018 }
4019
4020 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4021 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4022 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4023 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4024 goto skip;
4025
4026 eb = path->nodes[0];
4027 slot = path->slots[0];
4028 item_size = btrfs_item_size_nr(eb, slot);
4029 if (item_size < sizeof(root_item))
4030 goto skip;
4031
803b2f54
SB
4032 read_extent_buffer(eb, &root_item,
4033 btrfs_item_ptr_offset(eb, slot),
4034 (int)sizeof(root_item));
4035 if (btrfs_root_refs(&root_item) == 0)
4036 goto skip;
f45388f3
FDBM
4037
4038 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4039 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4040 if (trans)
4041 goto update_tree;
4042
4043 btrfs_release_path(path);
803b2f54
SB
4044 /*
4045 * 1 - subvol uuid item
4046 * 1 - received_subvol uuid item
4047 */
4048 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4049 if (IS_ERR(trans)) {
4050 ret = PTR_ERR(trans);
4051 break;
4052 }
f45388f3
FDBM
4053 continue;
4054 } else {
4055 goto skip;
4056 }
4057update_tree:
4058 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
4059 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4060 root_item.uuid,
4061 BTRFS_UUID_KEY_SUBVOL,
4062 key.objectid);
4063 if (ret < 0) {
efe120a0 4064 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4065 ret);
803b2f54
SB
4066 break;
4067 }
4068 }
4069
4070 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
4071 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4072 root_item.received_uuid,
4073 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4074 key.objectid);
4075 if (ret < 0) {
efe120a0 4076 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4077 ret);
803b2f54
SB
4078 break;
4079 }
4080 }
4081
f45388f3 4082skip:
803b2f54
SB
4083 if (trans) {
4084 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 4085 trans = NULL;
803b2f54
SB
4086 if (ret)
4087 break;
4088 }
4089
803b2f54
SB
4090 btrfs_release_path(path);
4091 if (key.offset < (u64)-1) {
4092 key.offset++;
4093 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4094 key.offset = 0;
4095 key.type = BTRFS_ROOT_ITEM_KEY;
4096 } else if (key.objectid < (u64)-1) {
4097 key.offset = 0;
4098 key.type = BTRFS_ROOT_ITEM_KEY;
4099 key.objectid++;
4100 } else {
4101 break;
4102 }
4103 cond_resched();
4104 }
4105
4106out:
4107 btrfs_free_path(path);
f45388f3
FDBM
4108 if (trans && !IS_ERR(trans))
4109 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 4110 if (ret)
efe120a0 4111 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175
SB
4112 else
4113 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
4114 up(&fs_info->uuid_tree_rescan_sem);
4115 return 0;
4116}
4117
70f80175
SB
4118/*
4119 * Callback for btrfs_uuid_tree_iterate().
4120 * returns:
4121 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4122 * < 0 if an error occurred.
70f80175
SB
4123 * > 0 if the check failed, which means the caller shall remove the entry.
4124 */
4125static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4126 u8 *uuid, u8 type, u64 subid)
4127{
4128 struct btrfs_key key;
4129 int ret = 0;
4130 struct btrfs_root *subvol_root;
4131
4132 if (type != BTRFS_UUID_KEY_SUBVOL &&
4133 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4134 goto out;
4135
4136 key.objectid = subid;
4137 key.type = BTRFS_ROOT_ITEM_KEY;
4138 key.offset = (u64)-1;
4139 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4140 if (IS_ERR(subvol_root)) {
4141 ret = PTR_ERR(subvol_root);
4142 if (ret == -ENOENT)
4143 ret = 1;
4144 goto out;
4145 }
4146
4147 switch (type) {
4148 case BTRFS_UUID_KEY_SUBVOL:
4149 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4150 ret = 1;
4151 break;
4152 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4153 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4154 BTRFS_UUID_SIZE))
4155 ret = 1;
4156 break;
4157 }
4158
4159out:
4160 return ret;
4161}
4162
4163static int btrfs_uuid_rescan_kthread(void *data)
4164{
4165 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4166 int ret;
4167
4168 /*
4169 * 1st step is to iterate through the existing UUID tree and
4170 * to delete all entries that contain outdated data.
4171 * 2nd step is to add all missing entries to the UUID tree.
4172 */
4173 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4174 if (ret < 0) {
efe120a0 4175 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4176 up(&fs_info->uuid_tree_rescan_sem);
4177 return ret;
4178 }
4179 return btrfs_uuid_scan_kthread(data);
4180}
4181
f7a81ea4
SB
4182int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4183{
4184 struct btrfs_trans_handle *trans;
4185 struct btrfs_root *tree_root = fs_info->tree_root;
4186 struct btrfs_root *uuid_root;
803b2f54
SB
4187 struct task_struct *task;
4188 int ret;
f7a81ea4
SB
4189
4190 /*
4191 * 1 - root node
4192 * 1 - root item
4193 */
4194 trans = btrfs_start_transaction(tree_root, 2);
4195 if (IS_ERR(trans))
4196 return PTR_ERR(trans);
4197
4198 uuid_root = btrfs_create_tree(trans, fs_info,
4199 BTRFS_UUID_TREE_OBJECTID);
4200 if (IS_ERR(uuid_root)) {
6d13f549
DS
4201 ret = PTR_ERR(uuid_root);
4202 btrfs_abort_transaction(trans, tree_root, ret);
4203 return ret;
f7a81ea4
SB
4204 }
4205
4206 fs_info->uuid_root = uuid_root;
4207
803b2f54
SB
4208 ret = btrfs_commit_transaction(trans, tree_root);
4209 if (ret)
4210 return ret;
4211
4212 down(&fs_info->uuid_tree_rescan_sem);
4213 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4214 if (IS_ERR(task)) {
70f80175 4215 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4216 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4217 up(&fs_info->uuid_tree_rescan_sem);
4218 return PTR_ERR(task);
4219 }
4220
4221 return 0;
f7a81ea4 4222}
803b2f54 4223
70f80175
SB
4224int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4225{
4226 struct task_struct *task;
4227
4228 down(&fs_info->uuid_tree_rescan_sem);
4229 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4230 if (IS_ERR(task)) {
4231 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4232 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4233 up(&fs_info->uuid_tree_rescan_sem);
4234 return PTR_ERR(task);
4235 }
4236
4237 return 0;
4238}
4239
8f18cf13
CM
4240/*
4241 * shrinking a device means finding all of the device extents past
4242 * the new size, and then following the back refs to the chunks.
4243 * The chunk relocation code actually frees the device extent
4244 */
4245int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4246{
4247 struct btrfs_trans_handle *trans;
4248 struct btrfs_root *root = device->dev_root;
4249 struct btrfs_dev_extent *dev_extent = NULL;
4250 struct btrfs_path *path;
4251 u64 length;
8f18cf13
CM
4252 u64 chunk_offset;
4253 int ret;
4254 int slot;
ba1bf481
JB
4255 int failed = 0;
4256 bool retried = false;
53e489bc 4257 bool checked_pending_chunks = false;
8f18cf13
CM
4258 struct extent_buffer *l;
4259 struct btrfs_key key;
6c41761f 4260 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 4261 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
4262 u64 old_size = btrfs_device_get_total_bytes(device);
4263 u64 diff = old_size - new_size;
8f18cf13 4264
63a212ab
SB
4265 if (device->is_tgtdev_for_dev_replace)
4266 return -EINVAL;
4267
8f18cf13
CM
4268 path = btrfs_alloc_path();
4269 if (!path)
4270 return -ENOMEM;
4271
e4058b54 4272 path->reada = READA_FORWARD;
8f18cf13 4273
7d9eb12c
CM
4274 lock_chunks(root);
4275
7cc8e58d 4276 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4277 if (device->writeable) {
2b82032c 4278 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
4279 spin_lock(&root->fs_info->free_chunk_lock);
4280 root->fs_info->free_chunk_space -= diff;
4281 spin_unlock(&root->fs_info->free_chunk_lock);
4282 }
7d9eb12c 4283 unlock_chunks(root);
8f18cf13 4284
ba1bf481 4285again:
8f18cf13
CM
4286 key.objectid = device->devid;
4287 key.offset = (u64)-1;
4288 key.type = BTRFS_DEV_EXTENT_KEY;
4289
213e64da 4290 do {
67c5e7d4 4291 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4292 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4
FM
4293 if (ret < 0) {
4294 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4295 goto done;
67c5e7d4 4296 }
8f18cf13
CM
4297
4298 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4
FM
4299 if (ret)
4300 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4301 if (ret < 0)
4302 goto done;
4303 if (ret) {
4304 ret = 0;
b3b4aa74 4305 btrfs_release_path(path);
bf1fb512 4306 break;
8f18cf13
CM
4307 }
4308
4309 l = path->nodes[0];
4310 slot = path->slots[0];
4311 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4312
ba1bf481 4313 if (key.objectid != device->devid) {
67c5e7d4 4314 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4315 btrfs_release_path(path);
bf1fb512 4316 break;
ba1bf481 4317 }
8f18cf13
CM
4318
4319 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4320 length = btrfs_dev_extent_length(l, dev_extent);
4321
ba1bf481 4322 if (key.offset + length <= new_size) {
67c5e7d4 4323 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4324 btrfs_release_path(path);
d6397bae 4325 break;
ba1bf481 4326 }
8f18cf13 4327
8f18cf13 4328 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4329 btrfs_release_path(path);
8f18cf13 4330
dc2ee4e2 4331 ret = btrfs_relocate_chunk(root, chunk_offset);
67c5e7d4 4332 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
ba1bf481 4333 if (ret && ret != -ENOSPC)
8f18cf13 4334 goto done;
ba1bf481
JB
4335 if (ret == -ENOSPC)
4336 failed++;
213e64da 4337 } while (key.offset-- > 0);
ba1bf481
JB
4338
4339 if (failed && !retried) {
4340 failed = 0;
4341 retried = true;
4342 goto again;
4343 } else if (failed && retried) {
4344 ret = -ENOSPC;
ba1bf481 4345 goto done;
8f18cf13
CM
4346 }
4347
d6397bae 4348 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4349 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4350 if (IS_ERR(trans)) {
4351 ret = PTR_ERR(trans);
4352 goto done;
4353 }
4354
d6397bae 4355 lock_chunks(root);
53e489bc
FM
4356
4357 /*
4358 * We checked in the above loop all device extents that were already in
4359 * the device tree. However before we have updated the device's
4360 * total_bytes to the new size, we might have had chunk allocations that
4361 * have not complete yet (new block groups attached to transaction
4362 * handles), and therefore their device extents were not yet in the
4363 * device tree and we missed them in the loop above. So if we have any
4364 * pending chunk using a device extent that overlaps the device range
4365 * that we can not use anymore, commit the current transaction and
4366 * repeat the search on the device tree - this way we guarantee we will
4367 * not have chunks using device extents that end beyond 'new_size'.
4368 */
4369 if (!checked_pending_chunks) {
4370 u64 start = new_size;
4371 u64 len = old_size - new_size;
4372
499f377f
JM
4373 if (contains_pending_extent(trans->transaction, device,
4374 &start, len)) {
53e489bc
FM
4375 unlock_chunks(root);
4376 checked_pending_chunks = true;
4377 failed = 0;
4378 retried = false;
4379 ret = btrfs_commit_transaction(trans, root);
4380 if (ret)
4381 goto done;
4382 goto again;
4383 }
4384 }
4385
7cc8e58d 4386 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4387 if (list_empty(&device->resized_list))
4388 list_add_tail(&device->resized_list,
4389 &root->fs_info->fs_devices->resized_devices);
d6397bae 4390
d6397bae
CB
4391 WARN_ON(diff > old_total);
4392 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4393 unlock_chunks(root);
2196d6e8
MX
4394
4395 /* Now btrfs_update_device() will change the on-disk size. */
4396 ret = btrfs_update_device(trans, device);
d6397bae 4397 btrfs_end_transaction(trans, root);
8f18cf13
CM
4398done:
4399 btrfs_free_path(path);
53e489bc
FM
4400 if (ret) {
4401 lock_chunks(root);
4402 btrfs_device_set_total_bytes(device, old_size);
4403 if (device->writeable)
4404 device->fs_devices->total_rw_bytes += diff;
4405 spin_lock(&root->fs_info->free_chunk_lock);
4406 root->fs_info->free_chunk_space += diff;
4407 spin_unlock(&root->fs_info->free_chunk_lock);
4408 unlock_chunks(root);
4409 }
8f18cf13
CM
4410 return ret;
4411}
4412
125ccb0a 4413static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
4414 struct btrfs_key *key,
4415 struct btrfs_chunk *chunk, int item_size)
4416{
6c41761f 4417 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
4418 struct btrfs_disk_key disk_key;
4419 u32 array_size;
4420 u8 *ptr;
4421
fe48a5c0 4422 lock_chunks(root);
0b86a832 4423 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4424 if (array_size + item_size + sizeof(disk_key)
fe48a5c0
MX
4425 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4426 unlock_chunks(root);
0b86a832 4427 return -EFBIG;
fe48a5c0 4428 }
0b86a832
CM
4429
4430 ptr = super_copy->sys_chunk_array + array_size;
4431 btrfs_cpu_key_to_disk(&disk_key, key);
4432 memcpy(ptr, &disk_key, sizeof(disk_key));
4433 ptr += sizeof(disk_key);
4434 memcpy(ptr, chunk, item_size);
4435 item_size += sizeof(disk_key);
4436 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0
MX
4437 unlock_chunks(root);
4438
0b86a832
CM
4439 return 0;
4440}
4441
73c5de00
AJ
4442/*
4443 * sort the devices in descending order by max_avail, total_avail
4444 */
4445static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4446{
73c5de00
AJ
4447 const struct btrfs_device_info *di_a = a;
4448 const struct btrfs_device_info *di_b = b;
9b3f68b9 4449
73c5de00 4450 if (di_a->max_avail > di_b->max_avail)
b2117a39 4451 return -1;
73c5de00 4452 if (di_a->max_avail < di_b->max_avail)
b2117a39 4453 return 1;
73c5de00
AJ
4454 if (di_a->total_avail > di_b->total_avail)
4455 return -1;
4456 if (di_a->total_avail < di_b->total_avail)
4457 return 1;
4458 return 0;
b2117a39 4459}
0b86a832 4460
53b381b3
DW
4461static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4462{
4463 /* TODO allow them to set a preferred stripe size */
ee22184b 4464 return SZ_64K;
53b381b3
DW
4465}
4466
4467static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4468{
ffe2d203 4469 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4470 return;
4471
ceda0864 4472 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4473}
4474
23f8f9b7
GH
4475#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4476 - sizeof(struct btrfs_item) \
4477 - sizeof(struct btrfs_chunk)) \
4478 / sizeof(struct btrfs_stripe) + 1)
4479
4480#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4481 - 2 * sizeof(struct btrfs_disk_key) \
4482 - 2 * sizeof(struct btrfs_chunk)) \
4483 / sizeof(struct btrfs_stripe) + 1)
4484
73c5de00 4485static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4486 struct btrfs_root *extent_root, u64 start,
4487 u64 type)
b2117a39 4488{
73c5de00
AJ
4489 struct btrfs_fs_info *info = extent_root->fs_info;
4490 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4491 struct list_head *cur;
4492 struct map_lookup *map = NULL;
4493 struct extent_map_tree *em_tree;
4494 struct extent_map *em;
4495 struct btrfs_device_info *devices_info = NULL;
4496 u64 total_avail;
4497 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4498 int data_stripes; /* number of stripes that count for
4499 block group size */
73c5de00
AJ
4500 int sub_stripes; /* sub_stripes info for map */
4501 int dev_stripes; /* stripes per dev */
4502 int devs_max; /* max devs to use */
4503 int devs_min; /* min devs needed */
4504 int devs_increment; /* ndevs has to be a multiple of this */
4505 int ncopies; /* how many copies to data has */
4506 int ret;
4507 u64 max_stripe_size;
4508 u64 max_chunk_size;
4509 u64 stripe_size;
4510 u64 num_bytes;
53b381b3 4511 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4512 int ndevs;
4513 int i;
4514 int j;
31e50229 4515 int index;
593060d7 4516
0c460c0d 4517 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4518
73c5de00
AJ
4519 if (list_empty(&fs_devices->alloc_list))
4520 return -ENOSPC;
b2117a39 4521
31e50229 4522 index = __get_raid_index(type);
73c5de00 4523
31e50229
LB
4524 sub_stripes = btrfs_raid_array[index].sub_stripes;
4525 dev_stripes = btrfs_raid_array[index].dev_stripes;
4526 devs_max = btrfs_raid_array[index].devs_max;
4527 devs_min = btrfs_raid_array[index].devs_min;
4528 devs_increment = btrfs_raid_array[index].devs_increment;
4529 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4530
9b3f68b9 4531 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4532 max_stripe_size = SZ_1G;
73c5de00 4533 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4534 if (!devs_max)
4535 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4536 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4537 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4538 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4539 max_stripe_size = SZ_1G;
1100373f 4540 else
ee22184b 4541 max_stripe_size = SZ_256M;
73c5de00 4542 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4543 if (!devs_max)
4544 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4545 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4546 max_stripe_size = SZ_32M;
73c5de00 4547 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4548 if (!devs_max)
4549 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4550 } else {
351fd353 4551 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4552 type);
4553 BUG_ON(1);
9b3f68b9
CM
4554 }
4555
2b82032c
YZ
4556 /* we don't want a chunk larger than 10% of writeable space */
4557 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4558 max_chunk_size);
9b3f68b9 4559
31e818fe 4560 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4561 GFP_NOFS);
4562 if (!devices_info)
4563 return -ENOMEM;
0cad8a11 4564
73c5de00 4565 cur = fs_devices->alloc_list.next;
9b3f68b9 4566
9f680ce0 4567 /*
73c5de00
AJ
4568 * in the first pass through the devices list, we gather information
4569 * about the available holes on each device.
9f680ce0 4570 */
73c5de00
AJ
4571 ndevs = 0;
4572 while (cur != &fs_devices->alloc_list) {
4573 struct btrfs_device *device;
4574 u64 max_avail;
4575 u64 dev_offset;
b2117a39 4576
73c5de00 4577 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4578
73c5de00 4579 cur = cur->next;
b2117a39 4580
73c5de00 4581 if (!device->writeable) {
31b1a2bd 4582 WARN(1, KERN_ERR
efe120a0 4583 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4584 continue;
4585 }
b2117a39 4586
63a212ab
SB
4587 if (!device->in_fs_metadata ||
4588 device->is_tgtdev_for_dev_replace)
73c5de00 4589 continue;
b2117a39 4590
73c5de00
AJ
4591 if (device->total_bytes > device->bytes_used)
4592 total_avail = device->total_bytes - device->bytes_used;
4593 else
4594 total_avail = 0;
38c01b96 4595
4596 /* If there is no space on this device, skip it. */
4597 if (total_avail == 0)
4598 continue;
b2117a39 4599
6df9a95e 4600 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4601 max_stripe_size * dev_stripes,
4602 &dev_offset, &max_avail);
4603 if (ret && ret != -ENOSPC)
4604 goto error;
b2117a39 4605
73c5de00
AJ
4606 if (ret == 0)
4607 max_avail = max_stripe_size * dev_stripes;
b2117a39 4608
73c5de00
AJ
4609 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4610 continue;
b2117a39 4611
063d006f
ES
4612 if (ndevs == fs_devices->rw_devices) {
4613 WARN(1, "%s: found more than %llu devices\n",
4614 __func__, fs_devices->rw_devices);
4615 break;
4616 }
73c5de00
AJ
4617 devices_info[ndevs].dev_offset = dev_offset;
4618 devices_info[ndevs].max_avail = max_avail;
4619 devices_info[ndevs].total_avail = total_avail;
4620 devices_info[ndevs].dev = device;
4621 ++ndevs;
4622 }
b2117a39 4623
73c5de00
AJ
4624 /*
4625 * now sort the devices by hole size / available space
4626 */
4627 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4628 btrfs_cmp_device_info, NULL);
b2117a39 4629
73c5de00
AJ
4630 /* round down to number of usable stripes */
4631 ndevs -= ndevs % devs_increment;
b2117a39 4632
73c5de00
AJ
4633 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4634 ret = -ENOSPC;
4635 goto error;
b2117a39 4636 }
9f680ce0 4637
73c5de00
AJ
4638 if (devs_max && ndevs > devs_max)
4639 ndevs = devs_max;
4640 /*
4641 * the primary goal is to maximize the number of stripes, so use as many
4642 * devices as possible, even if the stripes are not maximum sized.
4643 */
4644 stripe_size = devices_info[ndevs-1].max_avail;
4645 num_stripes = ndevs * dev_stripes;
b2117a39 4646
53b381b3
DW
4647 /*
4648 * this will have to be fixed for RAID1 and RAID10 over
4649 * more drives
4650 */
4651 data_stripes = num_stripes / ncopies;
4652
53b381b3
DW
4653 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4654 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4655 btrfs_super_stripesize(info->super_copy));
4656 data_stripes = num_stripes - 1;
4657 }
4658 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4659 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4660 btrfs_super_stripesize(info->super_copy));
4661 data_stripes = num_stripes - 2;
4662 }
86db2578
CM
4663
4664 /*
4665 * Use the number of data stripes to figure out how big this chunk
4666 * is really going to be in terms of logical address space,
4667 * and compare that answer with the max chunk size
4668 */
4669 if (stripe_size * data_stripes > max_chunk_size) {
4670 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4671
4672 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4673
4674 /* bump the answer up to a 16MB boundary */
4675 stripe_size = (stripe_size + mask) & ~mask;
4676
4677 /* but don't go higher than the limits we found
4678 * while searching for free extents
4679 */
4680 if (stripe_size > devices_info[ndevs-1].max_avail)
4681 stripe_size = devices_info[ndevs-1].max_avail;
4682 }
4683
b8b93add 4684 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4685
4686 /* align to BTRFS_STRIPE_LEN */
b8b93add 4687 stripe_size = div_u64(stripe_size, raid_stripe_len);
53b381b3 4688 stripe_size *= raid_stripe_len;
b2117a39
MX
4689
4690 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4691 if (!map) {
4692 ret = -ENOMEM;
4693 goto error;
4694 }
4695 map->num_stripes = num_stripes;
9b3f68b9 4696
73c5de00
AJ
4697 for (i = 0; i < ndevs; ++i) {
4698 for (j = 0; j < dev_stripes; ++j) {
4699 int s = i * dev_stripes + j;
4700 map->stripes[s].dev = devices_info[i].dev;
4701 map->stripes[s].physical = devices_info[i].dev_offset +
4702 j * stripe_size;
6324fbf3 4703 }
6324fbf3 4704 }
2b82032c 4705 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4706 map->stripe_len = raid_stripe_len;
4707 map->io_align = raid_stripe_len;
4708 map->io_width = raid_stripe_len;
2b82032c 4709 map->type = type;
2b82032c 4710 map->sub_stripes = sub_stripes;
0b86a832 4711
53b381b3 4712 num_bytes = stripe_size * data_stripes;
0b86a832 4713
73c5de00 4714 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4715
172ddd60 4716 em = alloc_extent_map();
2b82032c 4717 if (!em) {
298a8f9c 4718 kfree(map);
b2117a39
MX
4719 ret = -ENOMEM;
4720 goto error;
593060d7 4721 }
298a8f9c 4722 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4723 em->map_lookup = map;
2b82032c 4724 em->start = start;
73c5de00 4725 em->len = num_bytes;
2b82032c
YZ
4726 em->block_start = 0;
4727 em->block_len = em->len;
6df9a95e 4728 em->orig_block_len = stripe_size;
593060d7 4729
2b82032c 4730 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4731 write_lock(&em_tree->lock);
09a2a8f9 4732 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4733 if (!ret) {
4734 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4735 atomic_inc(&em->refs);
4736 }
890871be 4737 write_unlock(&em_tree->lock);
0f5d42b2
JB
4738 if (ret) {
4739 free_extent_map(em);
1dd4602f 4740 goto error;
0f5d42b2 4741 }
0b86a832 4742
04487488
JB
4743 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4744 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4745 start, num_bytes);
6df9a95e
JB
4746 if (ret)
4747 goto error_del_extent;
2b82032c 4748
7cc8e58d
MX
4749 for (i = 0; i < map->num_stripes; i++) {
4750 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4751 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4752 }
43530c46 4753
1c116187
MX
4754 spin_lock(&extent_root->fs_info->free_chunk_lock);
4755 extent_root->fs_info->free_chunk_space -= (stripe_size *
4756 map->num_stripes);
4757 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4758
0f5d42b2 4759 free_extent_map(em);
53b381b3
DW
4760 check_raid56_incompat_flag(extent_root->fs_info, type);
4761
b2117a39 4762 kfree(devices_info);
2b82032c 4763 return 0;
b2117a39 4764
6df9a95e 4765error_del_extent:
0f5d42b2
JB
4766 write_lock(&em_tree->lock);
4767 remove_extent_mapping(em_tree, em);
4768 write_unlock(&em_tree->lock);
4769
4770 /* One for our allocation */
4771 free_extent_map(em);
4772 /* One for the tree reference */
4773 free_extent_map(em);
495e64f4
FM
4774 /* One for the pending_chunks list reference */
4775 free_extent_map(em);
b2117a39 4776error:
b2117a39
MX
4777 kfree(devices_info);
4778 return ret;
2b82032c
YZ
4779}
4780
6df9a95e 4781int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4782 struct btrfs_root *extent_root,
6df9a95e 4783 u64 chunk_offset, u64 chunk_size)
2b82032c 4784{
2b82032c
YZ
4785 struct btrfs_key key;
4786 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4787 struct btrfs_device *device;
4788 struct btrfs_chunk *chunk;
4789 struct btrfs_stripe *stripe;
6df9a95e
JB
4790 struct extent_map_tree *em_tree;
4791 struct extent_map *em;
4792 struct map_lookup *map;
4793 size_t item_size;
4794 u64 dev_offset;
4795 u64 stripe_size;
4796 int i = 0;
140e639f 4797 int ret = 0;
2b82032c 4798
6df9a95e
JB
4799 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4800 read_lock(&em_tree->lock);
4801 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4802 read_unlock(&em_tree->lock);
4803
4804 if (!em) {
4805 btrfs_crit(extent_root->fs_info, "unable to find logical "
4806 "%Lu len %Lu", chunk_offset, chunk_size);
4807 return -EINVAL;
4808 }
4809
4810 if (em->start != chunk_offset || em->len != chunk_size) {
4811 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
351fd353 4812 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
6df9a95e
JB
4813 chunk_size, em->start, em->len);
4814 free_extent_map(em);
4815 return -EINVAL;
4816 }
4817
95617d69 4818 map = em->map_lookup;
6df9a95e
JB
4819 item_size = btrfs_chunk_item_size(map->num_stripes);
4820 stripe_size = em->orig_block_len;
4821
2b82032c 4822 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4823 if (!chunk) {
4824 ret = -ENOMEM;
4825 goto out;
4826 }
4827
50460e37
FM
4828 /*
4829 * Take the device list mutex to prevent races with the final phase of
4830 * a device replace operation that replaces the device object associated
4831 * with the map's stripes, because the device object's id can change
4832 * at any time during that final phase of the device replace operation
4833 * (dev-replace.c:btrfs_dev_replace_finishing()).
4834 */
4835 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4836 for (i = 0; i < map->num_stripes; i++) {
4837 device = map->stripes[i].dev;
4838 dev_offset = map->stripes[i].physical;
2b82032c 4839
0b86a832 4840 ret = btrfs_update_device(trans, device);
3acd3953 4841 if (ret)
50460e37 4842 break;
6df9a95e
JB
4843 ret = btrfs_alloc_dev_extent(trans, device,
4844 chunk_root->root_key.objectid,
4845 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4846 chunk_offset, dev_offset,
4847 stripe_size);
4848 if (ret)
50460e37
FM
4849 break;
4850 }
4851 if (ret) {
4852 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4853 goto out;
2b82032c
YZ
4854 }
4855
2b82032c 4856 stripe = &chunk->stripe;
6df9a95e
JB
4857 for (i = 0; i < map->num_stripes; i++) {
4858 device = map->stripes[i].dev;
4859 dev_offset = map->stripes[i].physical;
0b86a832 4860
e17cade2
CM
4861 btrfs_set_stack_stripe_devid(stripe, device->devid);
4862 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4863 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4864 stripe++;
0b86a832 4865 }
50460e37 4866 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
0b86a832 4867
2b82032c 4868 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4869 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4870 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4871 btrfs_set_stack_chunk_type(chunk, map->type);
4872 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4873 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4874 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4875 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4876 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4877
2b82032c
YZ
4878 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4879 key.type = BTRFS_CHUNK_ITEM_KEY;
4880 key.offset = chunk_offset;
0b86a832 4881
2b82032c 4882 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4883 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4884 /*
4885 * TODO: Cleanup of inserted chunk root in case of
4886 * failure.
4887 */
125ccb0a 4888 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4889 item_size);
8f18cf13 4890 }
1abe9b8a 4891
6df9a95e 4892out:
0b86a832 4893 kfree(chunk);
6df9a95e 4894 free_extent_map(em);
4ed1d16e 4895 return ret;
2b82032c 4896}
0b86a832 4897
2b82032c
YZ
4898/*
4899 * Chunk allocation falls into two parts. The first part does works
4900 * that make the new allocated chunk useable, but not do any operation
4901 * that modifies the chunk tree. The second part does the works that
4902 * require modifying the chunk tree. This division is important for the
4903 * bootstrap process of adding storage to a seed btrfs.
4904 */
4905int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4906 struct btrfs_root *extent_root, u64 type)
4907{
4908 u64 chunk_offset;
2b82032c 4909
a9629596 4910 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
6df9a95e
JB
4911 chunk_offset = find_next_chunk(extent_root->fs_info);
4912 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4913}
4914
d397712b 4915static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4916 struct btrfs_root *root,
4917 struct btrfs_device *device)
4918{
4919 u64 chunk_offset;
4920 u64 sys_chunk_offset;
2b82032c 4921 u64 alloc_profile;
2b82032c
YZ
4922 struct btrfs_fs_info *fs_info = root->fs_info;
4923 struct btrfs_root *extent_root = fs_info->extent_root;
4924 int ret;
4925
6df9a95e 4926 chunk_offset = find_next_chunk(fs_info);
de98ced9 4927 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4928 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4929 alloc_profile);
79787eaa
JM
4930 if (ret)
4931 return ret;
2b82032c 4932
6df9a95e 4933 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4934 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4935 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4936 alloc_profile);
79787eaa 4937 return ret;
2b82032c
YZ
4938}
4939
d20983b4
MX
4940static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4941{
4942 int max_errors;
4943
4944 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4945 BTRFS_BLOCK_GROUP_RAID10 |
4946 BTRFS_BLOCK_GROUP_RAID5 |
4947 BTRFS_BLOCK_GROUP_DUP)) {
4948 max_errors = 1;
4949 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4950 max_errors = 2;
4951 } else {
4952 max_errors = 0;
005d6427 4953 }
2b82032c 4954
d20983b4 4955 return max_errors;
2b82032c
YZ
4956}
4957
4958int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4959{
4960 struct extent_map *em;
4961 struct map_lookup *map;
4962 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4963 int readonly = 0;
d20983b4 4964 int miss_ndevs = 0;
2b82032c
YZ
4965 int i;
4966
890871be 4967 read_lock(&map_tree->map_tree.lock);
2b82032c 4968 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4969 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4970 if (!em)
4971 return 1;
4972
95617d69 4973 map = em->map_lookup;
2b82032c 4974 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
4975 if (map->stripes[i].dev->missing) {
4976 miss_ndevs++;
4977 continue;
4978 }
4979
2b82032c
YZ
4980 if (!map->stripes[i].dev->writeable) {
4981 readonly = 1;
d20983b4 4982 goto end;
2b82032c
YZ
4983 }
4984 }
d20983b4
MX
4985
4986 /*
4987 * If the number of missing devices is larger than max errors,
4988 * we can not write the data into that chunk successfully, so
4989 * set it readonly.
4990 */
4991 if (miss_ndevs > btrfs_chunk_max_errors(map))
4992 readonly = 1;
4993end:
0b86a832 4994 free_extent_map(em);
2b82032c 4995 return readonly;
0b86a832
CM
4996}
4997
4998void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4999{
a8067e02 5000 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
5001}
5002
5003void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5004{
5005 struct extent_map *em;
5006
d397712b 5007 while (1) {
890871be 5008 write_lock(&tree->map_tree.lock);
0b86a832
CM
5009 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5010 if (em)
5011 remove_extent_mapping(&tree->map_tree, em);
890871be 5012 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5013 if (!em)
5014 break;
0b86a832
CM
5015 /* once for us */
5016 free_extent_map(em);
5017 /* once for the tree */
5018 free_extent_map(em);
5019 }
5020}
5021
5d964051 5022int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 5023{
5d964051 5024 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
5025 struct extent_map *em;
5026 struct map_lookup *map;
5027 struct extent_map_tree *em_tree = &map_tree->map_tree;
5028 int ret;
5029
890871be 5030 read_lock(&em_tree->lock);
f188591e 5031 em = lookup_extent_mapping(em_tree, logical, len);
890871be 5032 read_unlock(&em_tree->lock);
f188591e 5033
fb7669b5
JB
5034 /*
5035 * We could return errors for these cases, but that could get ugly and
5036 * we'd probably do the same thing which is just not do anything else
5037 * and exit, so return 1 so the callers don't try to use other copies.
5038 */
5039 if (!em) {
351fd353 5040 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
5041 logical+len);
5042 return 1;
5043 }
5044
5045 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 5046 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
351fd353 5047 "%Lu-%Lu", logical, logical+len, em->start,
fb7669b5 5048 em->start + em->len);
7d3d1744 5049 free_extent_map(em);
fb7669b5
JB
5050 return 1;
5051 }
5052
95617d69 5053 map = em->map_lookup;
f188591e
CM
5054 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5055 ret = map->num_stripes;
321aecc6
CM
5056 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5057 ret = map->sub_stripes;
53b381b3
DW
5058 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5059 ret = 2;
5060 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5061 ret = 3;
f188591e
CM
5062 else
5063 ret = 1;
5064 free_extent_map(em);
ad6d620e 5065
73beece9 5066 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
ad6d620e
SB
5067 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5068 ret++;
73beece9 5069 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5070
f188591e
CM
5071 return ret;
5072}
5073
53b381b3
DW
5074unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5075 struct btrfs_mapping_tree *map_tree,
5076 u64 logical)
5077{
5078 struct extent_map *em;
5079 struct map_lookup *map;
5080 struct extent_map_tree *em_tree = &map_tree->map_tree;
5081 unsigned long len = root->sectorsize;
5082
5083 read_lock(&em_tree->lock);
5084 em = lookup_extent_mapping(em_tree, logical, len);
5085 read_unlock(&em_tree->lock);
5086 BUG_ON(!em);
5087
5088 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5089 map = em->map_lookup;
ffe2d203 5090 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 5091 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
5092 free_extent_map(em);
5093 return len;
5094}
5095
5096int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5097 u64 logical, u64 len, int mirror_num)
5098{
5099 struct extent_map *em;
5100 struct map_lookup *map;
5101 struct extent_map_tree *em_tree = &map_tree->map_tree;
5102 int ret = 0;
5103
5104 read_lock(&em_tree->lock);
5105 em = lookup_extent_mapping(em_tree, logical, len);
5106 read_unlock(&em_tree->lock);
5107 BUG_ON(!em);
5108
5109 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5110 map = em->map_lookup;
ffe2d203 5111 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
5112 ret = 1;
5113 free_extent_map(em);
5114 return ret;
5115}
5116
30d9861f
SB
5117static int find_live_mirror(struct btrfs_fs_info *fs_info,
5118 struct map_lookup *map, int first, int num,
5119 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5120{
5121 int i;
30d9861f
SB
5122 int tolerance;
5123 struct btrfs_device *srcdev;
5124
5125 if (dev_replace_is_ongoing &&
5126 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5127 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5128 srcdev = fs_info->dev_replace.srcdev;
5129 else
5130 srcdev = NULL;
5131
5132 /*
5133 * try to avoid the drive that is the source drive for a
5134 * dev-replace procedure, only choose it if no other non-missing
5135 * mirror is available
5136 */
5137 for (tolerance = 0; tolerance < 2; tolerance++) {
5138 if (map->stripes[optimal].dev->bdev &&
5139 (tolerance || map->stripes[optimal].dev != srcdev))
5140 return optimal;
5141 for (i = first; i < first + num; i++) {
5142 if (map->stripes[i].dev->bdev &&
5143 (tolerance || map->stripes[i].dev != srcdev))
5144 return i;
5145 }
dfe25020 5146 }
30d9861f 5147
dfe25020
CM
5148 /* we couldn't find one that doesn't fail. Just return something
5149 * and the io error handling code will clean up eventually
5150 */
5151 return optimal;
5152}
5153
53b381b3
DW
5154static inline int parity_smaller(u64 a, u64 b)
5155{
5156 return a > b;
5157}
5158
5159/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5160static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5161{
5162 struct btrfs_bio_stripe s;
5163 int i;
5164 u64 l;
5165 int again = 1;
5166
5167 while (again) {
5168 again = 0;
cc7539ed 5169 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5170 if (parity_smaller(bbio->raid_map[i],
5171 bbio->raid_map[i+1])) {
53b381b3 5172 s = bbio->stripes[i];
8e5cfb55 5173 l = bbio->raid_map[i];
53b381b3 5174 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5175 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5176 bbio->stripes[i+1] = s;
8e5cfb55 5177 bbio->raid_map[i+1] = l;
2c8cdd6e 5178
53b381b3
DW
5179 again = 1;
5180 }
5181 }
5182 }
5183}
5184
6e9606d2
ZL
5185static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5186{
5187 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5188 /* the size of the btrfs_bio */
6e9606d2 5189 sizeof(struct btrfs_bio) +
e57cf21e 5190 /* plus the variable array for the stripes */
6e9606d2 5191 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5192 /* plus the variable array for the tgt dev */
6e9606d2 5193 sizeof(int) * (real_stripes) +
e57cf21e
CM
5194 /*
5195 * plus the raid_map, which includes both the tgt dev
5196 * and the stripes
5197 */
5198 sizeof(u64) * (total_stripes),
277fb5fc 5199 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5200
5201 atomic_set(&bbio->error, 0);
5202 atomic_set(&bbio->refs, 1);
5203
5204 return bbio;
5205}
5206
5207void btrfs_get_bbio(struct btrfs_bio *bbio)
5208{
5209 WARN_ON(!atomic_read(&bbio->refs));
5210 atomic_inc(&bbio->refs);
5211}
5212
5213void btrfs_put_bbio(struct btrfs_bio *bbio)
5214{
5215 if (!bbio)
5216 return;
5217 if (atomic_dec_and_test(&bbio->refs))
5218 kfree(bbio);
5219}
5220
3ec706c8 5221static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5222 u64 logical, u64 *length,
a1d3c478 5223 struct btrfs_bio **bbio_ret,
8e5cfb55 5224 int mirror_num, int need_raid_map)
0b86a832
CM
5225{
5226 struct extent_map *em;
5227 struct map_lookup *map;
3ec706c8 5228 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
5229 struct extent_map_tree *em_tree = &map_tree->map_tree;
5230 u64 offset;
593060d7 5231 u64 stripe_offset;
fce3bb9a 5232 u64 stripe_end_offset;
593060d7 5233 u64 stripe_nr;
fce3bb9a
LD
5234 u64 stripe_nr_orig;
5235 u64 stripe_nr_end;
53b381b3 5236 u64 stripe_len;
9d644a62 5237 u32 stripe_index;
cea9e445 5238 int i;
de11cc12 5239 int ret = 0;
f2d8d74d 5240 int num_stripes;
a236aed1 5241 int max_errors = 0;
2c8cdd6e 5242 int tgtdev_indexes = 0;
a1d3c478 5243 struct btrfs_bio *bbio = NULL;
472262f3
SB
5244 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5245 int dev_replace_is_ongoing = 0;
5246 int num_alloc_stripes;
ad6d620e
SB
5247 int patch_the_first_stripe_for_dev_replace = 0;
5248 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5249 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5250
890871be 5251 read_lock(&em_tree->lock);
0b86a832 5252 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 5253 read_unlock(&em_tree->lock);
f2d8d74d 5254
3b951516 5255 if (!em) {
c2cf52eb 5256 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 5257 logical, *length);
9bb91873
JB
5258 return -EINVAL;
5259 }
5260
5261 if (em->start > logical || em->start + em->len < logical) {
5262 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
351fd353 5263 "found %Lu-%Lu", logical, em->start,
9bb91873 5264 em->start + em->len);
7d3d1744 5265 free_extent_map(em);
9bb91873 5266 return -EINVAL;
3b951516 5267 }
0b86a832 5268
95617d69 5269 map = em->map_lookup;
0b86a832 5270 offset = logical - em->start;
593060d7 5271
53b381b3 5272 stripe_len = map->stripe_len;
593060d7
CM
5273 stripe_nr = offset;
5274 /*
5275 * stripe_nr counts the total number of stripes we have to stride
5276 * to get to this block
5277 */
47c5713f 5278 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5279
53b381b3 5280 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
5281 BUG_ON(offset < stripe_offset);
5282
5283 /* stripe_offset is the offset of this block in its stripe*/
5284 stripe_offset = offset - stripe_offset;
5285
53b381b3 5286 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5287 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5288 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5289 raid56_full_stripe_start = offset;
5290
5291 /* allow a write of a full stripe, but make sure we don't
5292 * allow straddling of stripes
5293 */
47c5713f
DS
5294 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5295 full_stripe_len);
53b381b3
DW
5296 raid56_full_stripe_start *= full_stripe_len;
5297 }
5298
5299 if (rw & REQ_DISCARD) {
5300 /* we don't discard raid56 yet */
ffe2d203 5301 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5302 ret = -EOPNOTSUPP;
5303 goto out;
5304 }
fce3bb9a 5305 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
5306 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5307 u64 max_len;
5308 /* For writes to RAID[56], allow a full stripeset across all disks.
5309 For other RAID types and for RAID[56] reads, just allow a single
5310 stripe (on a single disk). */
ffe2d203 5311 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
53b381b3
DW
5312 (rw & REQ_WRITE)) {
5313 max_len = stripe_len * nr_data_stripes(map) -
5314 (offset - raid56_full_stripe_start);
5315 } else {
5316 /* we limit the length of each bio to what fits in a stripe */
5317 max_len = stripe_len - stripe_offset;
5318 }
5319 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5320 } else {
5321 *length = em->len - offset;
5322 }
f2d8d74d 5323
53b381b3
DW
5324 /* This is for when we're called from btrfs_merge_bio_hook() and all
5325 it cares about is the length */
a1d3c478 5326 if (!bbio_ret)
cea9e445
CM
5327 goto out;
5328
73beece9 5329 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5330 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5331 if (!dev_replace_is_ongoing)
73beece9
LB
5332 btrfs_dev_replace_unlock(dev_replace, 0);
5333 else
5334 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5335
ad6d620e
SB
5336 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5337 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5338 dev_replace->tgtdev != NULL) {
5339 /*
5340 * in dev-replace case, for repair case (that's the only
5341 * case where the mirror is selected explicitly when
5342 * calling btrfs_map_block), blocks left of the left cursor
5343 * can also be read from the target drive.
5344 * For REQ_GET_READ_MIRRORS, the target drive is added as
5345 * the last one to the array of stripes. For READ, it also
5346 * needs to be supported using the same mirror number.
5347 * If the requested block is not left of the left cursor,
5348 * EIO is returned. This can happen because btrfs_num_copies()
5349 * returns one more in the dev-replace case.
5350 */
5351 u64 tmp_length = *length;
5352 struct btrfs_bio *tmp_bbio = NULL;
5353 int tmp_num_stripes;
5354 u64 srcdev_devid = dev_replace->srcdev->devid;
5355 int index_srcdev = 0;
5356 int found = 0;
5357 u64 physical_of_found = 0;
5358
5359 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
8e5cfb55 5360 logical, &tmp_length, &tmp_bbio, 0, 0);
ad6d620e
SB
5361 if (ret) {
5362 WARN_ON(tmp_bbio != NULL);
5363 goto out;
5364 }
5365
5366 tmp_num_stripes = tmp_bbio->num_stripes;
5367 if (mirror_num > tmp_num_stripes) {
5368 /*
5369 * REQ_GET_READ_MIRRORS does not contain this
5370 * mirror, that means that the requested area
5371 * is not left of the left cursor
5372 */
5373 ret = -EIO;
6e9606d2 5374 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5375 goto out;
5376 }
5377
5378 /*
5379 * process the rest of the function using the mirror_num
5380 * of the source drive. Therefore look it up first.
5381 * At the end, patch the device pointer to the one of the
5382 * target drive.
5383 */
5384 for (i = 0; i < tmp_num_stripes; i++) {
94a97dfe
ZL
5385 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5386 continue;
5387
5388 /*
5389 * In case of DUP, in order to keep it simple, only add
5390 * the mirror with the lowest physical address
5391 */
5392 if (found &&
5393 physical_of_found <= tmp_bbio->stripes[i].physical)
5394 continue;
5395
5396 index_srcdev = i;
5397 found = 1;
5398 physical_of_found = tmp_bbio->stripes[i].physical;
ad6d620e
SB
5399 }
5400
94a97dfe
ZL
5401 btrfs_put_bbio(tmp_bbio);
5402
5403 if (!found) {
ad6d620e
SB
5404 WARN_ON(1);
5405 ret = -EIO;
ad6d620e
SB
5406 goto out;
5407 }
5408
94a97dfe
ZL
5409 mirror_num = index_srcdev + 1;
5410 patch_the_first_stripe_for_dev_replace = 1;
5411 physical_to_patch_in_first_stripe = physical_of_found;
ad6d620e
SB
5412 } else if (mirror_num > map->num_stripes) {
5413 mirror_num = 0;
5414 }
5415
f2d8d74d 5416 num_stripes = 1;
cea9e445 5417 stripe_index = 0;
fce3bb9a 5418 stripe_nr_orig = stripe_nr;
fda2832f 5419 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
b8b93add 5420 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
fce3bb9a
LD
5421 stripe_end_offset = stripe_nr_end * map->stripe_len -
5422 (offset + *length);
53b381b3 5423
fce3bb9a
LD
5424 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5425 if (rw & REQ_DISCARD)
5426 num_stripes = min_t(u64, map->num_stripes,
5427 stripe_nr_end - stripe_nr_orig);
47c5713f
DS
5428 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5429 &stripe_index);
28e1cc7d
MX
5430 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5431 mirror_num = 1;
fce3bb9a 5432 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 5433 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 5434 num_stripes = map->num_stripes;
2fff734f 5435 else if (mirror_num)
f188591e 5436 stripe_index = mirror_num - 1;
dfe25020 5437 else {
30d9861f 5438 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5439 map->num_stripes,
30d9861f
SB
5440 current->pid % map->num_stripes,
5441 dev_replace_is_ongoing);
a1d3c478 5442 mirror_num = stripe_index + 1;
dfe25020 5443 }
2fff734f 5444
611f0e00 5445 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 5446 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 5447 num_stripes = map->num_stripes;
a1d3c478 5448 } else if (mirror_num) {
f188591e 5449 stripe_index = mirror_num - 1;
a1d3c478
JS
5450 } else {
5451 mirror_num = 1;
5452 }
2fff734f 5453
321aecc6 5454 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5455 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5456
47c5713f 5457 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5458 stripe_index *= map->sub_stripes;
5459
29a8d9a0 5460 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 5461 num_stripes = map->sub_stripes;
fce3bb9a
LD
5462 else if (rw & REQ_DISCARD)
5463 num_stripes = min_t(u64, map->sub_stripes *
5464 (stripe_nr_end - stripe_nr_orig),
5465 map->num_stripes);
321aecc6
CM
5466 else if (mirror_num)
5467 stripe_index += mirror_num - 1;
dfe25020 5468 else {
3e74317a 5469 int old_stripe_index = stripe_index;
30d9861f
SB
5470 stripe_index = find_live_mirror(fs_info, map,
5471 stripe_index,
dfe25020 5472 map->sub_stripes, stripe_index +
30d9861f
SB
5473 current->pid % map->sub_stripes,
5474 dev_replace_is_ongoing);
3e74317a 5475 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5476 }
53b381b3 5477
ffe2d203 5478 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5479 if (need_raid_map &&
af8e2d1d
MX
5480 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5481 mirror_num > 1)) {
53b381b3 5482 /* push stripe_nr back to the start of the full stripe */
b8b93add
DS
5483 stripe_nr = div_u64(raid56_full_stripe_start,
5484 stripe_len * nr_data_stripes(map));
53b381b3
DW
5485
5486 /* RAID[56] write or recovery. Return all stripes */
5487 num_stripes = map->num_stripes;
5488 max_errors = nr_parity_stripes(map);
5489
53b381b3
DW
5490 *length = map->stripe_len;
5491 stripe_index = 0;
5492 stripe_offset = 0;
5493 } else {
5494 /*
5495 * Mirror #0 or #1 means the original data block.
5496 * Mirror #2 is RAID5 parity block.
5497 * Mirror #3 is RAID6 Q block.
5498 */
47c5713f
DS
5499 stripe_nr = div_u64_rem(stripe_nr,
5500 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5501 if (mirror_num > 1)
5502 stripe_index = nr_data_stripes(map) +
5503 mirror_num - 2;
5504
5505 /* We distribute the parity blocks across stripes */
47c5713f
DS
5506 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5507 &stripe_index);
28e1cc7d
MX
5508 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5509 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5510 mirror_num = 1;
53b381b3 5511 }
8790d502
CM
5512 } else {
5513 /*
47c5713f
DS
5514 * after this, stripe_nr is the number of stripes on this
5515 * device we have to walk to find the data, and stripe_index is
5516 * the number of our device in the stripe array
8790d502 5517 */
47c5713f
DS
5518 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5519 &stripe_index);
a1d3c478 5520 mirror_num = stripe_index + 1;
8790d502 5521 }
593060d7 5522 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 5523
472262f3 5524 num_alloc_stripes = num_stripes;
ad6d620e
SB
5525 if (dev_replace_is_ongoing) {
5526 if (rw & (REQ_WRITE | REQ_DISCARD))
5527 num_alloc_stripes <<= 1;
5528 if (rw & REQ_GET_READ_MIRRORS)
5529 num_alloc_stripes++;
2c8cdd6e 5530 tgtdev_indexes = num_stripes;
ad6d620e 5531 }
2c8cdd6e 5532
6e9606d2 5533 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5534 if (!bbio) {
5535 ret = -ENOMEM;
5536 goto out;
5537 }
2c8cdd6e
MX
5538 if (dev_replace_is_ongoing)
5539 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5540
8e5cfb55 5541 /* build raid_map */
ffe2d203 5542 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
8e5cfb55
ZL
5543 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5544 mirror_num > 1)) {
5545 u64 tmp;
9d644a62 5546 unsigned rot;
8e5cfb55
ZL
5547
5548 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5549 sizeof(struct btrfs_bio_stripe) *
5550 num_alloc_stripes +
5551 sizeof(int) * tgtdev_indexes);
5552
5553 /* Work out the disk rotation on this stripe-set */
47c5713f 5554 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5555
5556 /* Fill in the logical address of each stripe */
5557 tmp = stripe_nr * nr_data_stripes(map);
5558 for (i = 0; i < nr_data_stripes(map); i++)
5559 bbio->raid_map[(i+rot) % num_stripes] =
5560 em->start + (tmp + i) * map->stripe_len;
5561
5562 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5563 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5564 bbio->raid_map[(i+rot+1) % num_stripes] =
5565 RAID6_Q_STRIPE;
5566 }
5567
fce3bb9a 5568 if (rw & REQ_DISCARD) {
9d644a62
DS
5569 u32 factor = 0;
5570 u32 sub_stripes = 0;
ec9ef7a1
LZ
5571 u64 stripes_per_dev = 0;
5572 u32 remaining_stripes = 0;
b89203f7 5573 u32 last_stripe = 0;
ec9ef7a1
LZ
5574
5575 if (map->type &
5576 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5577 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5578 sub_stripes = 1;
5579 else
5580 sub_stripes = map->sub_stripes;
5581
5582 factor = map->num_stripes / sub_stripes;
5583 stripes_per_dev = div_u64_rem(stripe_nr_end -
5584 stripe_nr_orig,
5585 factor,
5586 &remaining_stripes);
b89203f7
LB
5587 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5588 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5589 }
5590
fce3bb9a 5591 for (i = 0; i < num_stripes; i++) {
a1d3c478 5592 bbio->stripes[i].physical =
f2d8d74d
CM
5593 map->stripes[stripe_index].physical +
5594 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5595 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5596
ec9ef7a1
LZ
5597 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5598 BTRFS_BLOCK_GROUP_RAID10)) {
5599 bbio->stripes[i].length = stripes_per_dev *
5600 map->stripe_len;
b89203f7 5601
ec9ef7a1
LZ
5602 if (i / sub_stripes < remaining_stripes)
5603 bbio->stripes[i].length +=
5604 map->stripe_len;
b89203f7
LB
5605
5606 /*
5607 * Special for the first stripe and
5608 * the last stripe:
5609 *
5610 * |-------|...|-------|
5611 * |----------|
5612 * off end_off
5613 */
ec9ef7a1 5614 if (i < sub_stripes)
a1d3c478 5615 bbio->stripes[i].length -=
fce3bb9a 5616 stripe_offset;
b89203f7
LB
5617
5618 if (stripe_index >= last_stripe &&
5619 stripe_index <= (last_stripe +
5620 sub_stripes - 1))
a1d3c478 5621 bbio->stripes[i].length -=
fce3bb9a 5622 stripe_end_offset;
b89203f7 5623
ec9ef7a1
LZ
5624 if (i == sub_stripes - 1)
5625 stripe_offset = 0;
fce3bb9a 5626 } else
a1d3c478 5627 bbio->stripes[i].length = *length;
fce3bb9a
LD
5628
5629 stripe_index++;
5630 if (stripe_index == map->num_stripes) {
5631 /* This could only happen for RAID0/10 */
5632 stripe_index = 0;
5633 stripe_nr++;
5634 }
5635 }
5636 } else {
5637 for (i = 0; i < num_stripes; i++) {
a1d3c478 5638 bbio->stripes[i].physical =
212a17ab
LT
5639 map->stripes[stripe_index].physical +
5640 stripe_offset +
5641 stripe_nr * map->stripe_len;
a1d3c478 5642 bbio->stripes[i].dev =
212a17ab 5643 map->stripes[stripe_index].dev;
fce3bb9a 5644 stripe_index++;
f2d8d74d 5645 }
593060d7 5646 }
de11cc12 5647
d20983b4
MX
5648 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5649 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5650
8e5cfb55
ZL
5651 if (bbio->raid_map)
5652 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5653
2c8cdd6e 5654 tgtdev_indexes = 0;
472262f3
SB
5655 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5656 dev_replace->tgtdev != NULL) {
5657 int index_where_to_add;
5658 u64 srcdev_devid = dev_replace->srcdev->devid;
5659
5660 /*
5661 * duplicate the write operations while the dev replace
5662 * procedure is running. Since the copying of the old disk
5663 * to the new disk takes place at run time while the
5664 * filesystem is mounted writable, the regular write
5665 * operations to the old disk have to be duplicated to go
5666 * to the new disk as well.
5667 * Note that device->missing is handled by the caller, and
5668 * that the write to the old disk is already set up in the
5669 * stripes array.
5670 */
5671 index_where_to_add = num_stripes;
5672 for (i = 0; i < num_stripes; i++) {
5673 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5674 /* write to new disk, too */
5675 struct btrfs_bio_stripe *new =
5676 bbio->stripes + index_where_to_add;
5677 struct btrfs_bio_stripe *old =
5678 bbio->stripes + i;
5679
5680 new->physical = old->physical;
5681 new->length = old->length;
5682 new->dev = dev_replace->tgtdev;
2c8cdd6e 5683 bbio->tgtdev_map[i] = index_where_to_add;
472262f3
SB
5684 index_where_to_add++;
5685 max_errors++;
2c8cdd6e 5686 tgtdev_indexes++;
472262f3
SB
5687 }
5688 }
5689 num_stripes = index_where_to_add;
ad6d620e
SB
5690 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5691 dev_replace->tgtdev != NULL) {
5692 u64 srcdev_devid = dev_replace->srcdev->devid;
5693 int index_srcdev = 0;
5694 int found = 0;
5695 u64 physical_of_found = 0;
5696
5697 /*
5698 * During the dev-replace procedure, the target drive can
5699 * also be used to read data in case it is needed to repair
5700 * a corrupt block elsewhere. This is possible if the
5701 * requested area is left of the left cursor. In this area,
5702 * the target drive is a full copy of the source drive.
5703 */
5704 for (i = 0; i < num_stripes; i++) {
5705 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5706 /*
5707 * In case of DUP, in order to keep it
5708 * simple, only add the mirror with the
5709 * lowest physical address
5710 */
5711 if (found &&
5712 physical_of_found <=
5713 bbio->stripes[i].physical)
5714 continue;
5715 index_srcdev = i;
5716 found = 1;
5717 physical_of_found = bbio->stripes[i].physical;
5718 }
5719 }
5720 if (found) {
258ece02 5721 if (physical_of_found + map->stripe_len <=
ad6d620e
SB
5722 dev_replace->cursor_left) {
5723 struct btrfs_bio_stripe *tgtdev_stripe =
5724 bbio->stripes + num_stripes;
5725
5726 tgtdev_stripe->physical = physical_of_found;
5727 tgtdev_stripe->length =
5728 bbio->stripes[index_srcdev].length;
5729 tgtdev_stripe->dev = dev_replace->tgtdev;
2c8cdd6e 5730 bbio->tgtdev_map[index_srcdev] = num_stripes;
ad6d620e 5731
2c8cdd6e 5732 tgtdev_indexes++;
ad6d620e
SB
5733 num_stripes++;
5734 }
5735 }
472262f3
SB
5736 }
5737
de11cc12 5738 *bbio_ret = bbio;
10f11900 5739 bbio->map_type = map->type;
de11cc12
LZ
5740 bbio->num_stripes = num_stripes;
5741 bbio->max_errors = max_errors;
5742 bbio->mirror_num = mirror_num;
2c8cdd6e 5743 bbio->num_tgtdevs = tgtdev_indexes;
ad6d620e
SB
5744
5745 /*
5746 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5747 * mirror_num == num_stripes + 1 && dev_replace target drive is
5748 * available as a mirror
5749 */
5750 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5751 WARN_ON(num_stripes > 1);
5752 bbio->stripes[0].dev = dev_replace->tgtdev;
5753 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5754 bbio->mirror_num = map->num_stripes + 1;
5755 }
cea9e445 5756out:
73beece9
LB
5757 if (dev_replace_is_ongoing) {
5758 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5759 btrfs_dev_replace_unlock(dev_replace, 0);
5760 }
0b86a832 5761 free_extent_map(em);
de11cc12 5762 return ret;
0b86a832
CM
5763}
5764
3ec706c8 5765int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5766 u64 logical, u64 *length,
a1d3c478 5767 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5768{
3ec706c8 5769 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5770 mirror_num, 0);
f2d8d74d
CM
5771}
5772
af8e2d1d
MX
5773/* For Scrub/replace */
5774int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5775 u64 logical, u64 *length,
5776 struct btrfs_bio **bbio_ret, int mirror_num,
8e5cfb55 5777 int need_raid_map)
af8e2d1d
MX
5778{
5779 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5780 mirror_num, need_raid_map);
af8e2d1d
MX
5781}
5782
a512bbf8
YZ
5783int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5784 u64 chunk_start, u64 physical, u64 devid,
5785 u64 **logical, int *naddrs, int *stripe_len)
5786{
5787 struct extent_map_tree *em_tree = &map_tree->map_tree;
5788 struct extent_map *em;
5789 struct map_lookup *map;
5790 u64 *buf;
5791 u64 bytenr;
5792 u64 length;
5793 u64 stripe_nr;
53b381b3 5794 u64 rmap_len;
a512bbf8
YZ
5795 int i, j, nr = 0;
5796
890871be 5797 read_lock(&em_tree->lock);
a512bbf8 5798 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5799 read_unlock(&em_tree->lock);
a512bbf8 5800
835d974f 5801 if (!em) {
efe120a0 5802 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
835d974f
JB
5803 chunk_start);
5804 return -EIO;
5805 }
5806
5807 if (em->start != chunk_start) {
efe120a0 5808 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
835d974f
JB
5809 em->start, chunk_start);
5810 free_extent_map(em);
5811 return -EIO;
5812 }
95617d69 5813 map = em->map_lookup;
a512bbf8
YZ
5814
5815 length = em->len;
53b381b3
DW
5816 rmap_len = map->stripe_len;
5817
a512bbf8 5818 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5819 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5820 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5821 length = div_u64(length, map->num_stripes);
ffe2d203 5822 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5823 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5824 rmap_len = map->stripe_len * nr_data_stripes(map);
5825 }
a512bbf8 5826
31e818fe 5827 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5828 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5829
5830 for (i = 0; i < map->num_stripes; i++) {
5831 if (devid && map->stripes[i].dev->devid != devid)
5832 continue;
5833 if (map->stripes[i].physical > physical ||
5834 map->stripes[i].physical + length <= physical)
5835 continue;
5836
5837 stripe_nr = physical - map->stripes[i].physical;
b8b93add 5838 stripe_nr = div_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5839
5840 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5841 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5842 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5843 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5844 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5845 } /* else if RAID[56], multiply by nr_data_stripes().
5846 * Alternatively, just use rmap_len below instead of
5847 * map->stripe_len */
5848
5849 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5850 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5851 for (j = 0; j < nr; j++) {
5852 if (buf[j] == bytenr)
5853 break;
5854 }
934d375b
CM
5855 if (j == nr) {
5856 WARN_ON(nr >= map->num_stripes);
a512bbf8 5857 buf[nr++] = bytenr;
934d375b 5858 }
a512bbf8
YZ
5859 }
5860
a512bbf8
YZ
5861 *logical = buf;
5862 *naddrs = nr;
53b381b3 5863 *stripe_len = rmap_len;
a512bbf8
YZ
5864
5865 free_extent_map(em);
5866 return 0;
f2d8d74d
CM
5867}
5868
4246a0b6 5869static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 5870{
326e1dbb
MS
5871 bio->bi_private = bbio->private;
5872 bio->bi_end_io = bbio->end_io;
4246a0b6 5873 bio_endio(bio);
326e1dbb 5874
6e9606d2 5875 btrfs_put_bbio(bbio);
8408c716
MX
5876}
5877
4246a0b6 5878static void btrfs_end_bio(struct bio *bio)
8790d502 5879{
9be3395b 5880 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5881 int is_orig_bio = 0;
8790d502 5882
4246a0b6 5883 if (bio->bi_error) {
a1d3c478 5884 atomic_inc(&bbio->error);
4246a0b6 5885 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
442a4f63 5886 unsigned int stripe_index =
9be3395b 5887 btrfs_io_bio(bio)->stripe_index;
65f53338 5888 struct btrfs_device *dev;
442a4f63
SB
5889
5890 BUG_ON(stripe_index >= bbio->num_stripes);
5891 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5892 if (dev->bdev) {
5893 if (bio->bi_rw & WRITE)
5894 btrfs_dev_stat_inc(dev,
5895 BTRFS_DEV_STAT_WRITE_ERRS);
5896 else
5897 btrfs_dev_stat_inc(dev,
5898 BTRFS_DEV_STAT_READ_ERRS);
5899 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5900 btrfs_dev_stat_inc(dev,
5901 BTRFS_DEV_STAT_FLUSH_ERRS);
5902 btrfs_dev_stat_print_on_error(dev);
5903 }
442a4f63
SB
5904 }
5905 }
8790d502 5906
a1d3c478 5907 if (bio == bbio->orig_bio)
7d2b4daa
CM
5908 is_orig_bio = 1;
5909
c404e0dc
MX
5910 btrfs_bio_counter_dec(bbio->fs_info);
5911
a1d3c478 5912 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5913 if (!is_orig_bio) {
5914 bio_put(bio);
a1d3c478 5915 bio = bbio->orig_bio;
7d2b4daa 5916 }
c7b22bb1 5917
9be3395b 5918 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5919 /* only send an error to the higher layers if it is
53b381b3 5920 * beyond the tolerance of the btrfs bio
a236aed1 5921 */
a1d3c478 5922 if (atomic_read(&bbio->error) > bbio->max_errors) {
4246a0b6 5923 bio->bi_error = -EIO;
5dbc8fca 5924 } else {
1259ab75
CM
5925 /*
5926 * this bio is actually up to date, we didn't
5927 * go over the max number of errors
5928 */
4246a0b6 5929 bio->bi_error = 0;
1259ab75 5930 }
c55f1396 5931
4246a0b6 5932 btrfs_end_bbio(bbio, bio);
7d2b4daa 5933 } else if (!is_orig_bio) {
8790d502
CM
5934 bio_put(bio);
5935 }
8790d502
CM
5936}
5937
8b712842
CM
5938/*
5939 * see run_scheduled_bios for a description of why bios are collected for
5940 * async submit.
5941 *
5942 * This will add one bio to the pending list for a device and make sure
5943 * the work struct is scheduled.
5944 */
48a3b636
ES
5945static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5946 struct btrfs_device *device,
5947 int rw, struct bio *bio)
8b712842
CM
5948{
5949 int should_queue = 1;
ffbd517d 5950 struct btrfs_pending_bios *pending_bios;
8b712842 5951
53b381b3 5952 if (device->missing || !device->bdev) {
4246a0b6 5953 bio_io_error(bio);
53b381b3
DW
5954 return;
5955 }
5956
8b712842 5957 /* don't bother with additional async steps for reads, right now */
7b6d91da 5958 if (!(rw & REQ_WRITE)) {
492bb6de 5959 bio_get(bio);
21adbd5c 5960 btrfsic_submit_bio(rw, bio);
492bb6de 5961 bio_put(bio);
143bede5 5962 return;
8b712842
CM
5963 }
5964
5965 /*
0986fe9e 5966 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5967 * higher layers. Otherwise, the async bio makes it appear we have
5968 * made progress against dirty pages when we've really just put it
5969 * on a queue for later
5970 */
0986fe9e 5971 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5972 WARN_ON(bio->bi_next);
8b712842
CM
5973 bio->bi_next = NULL;
5974 bio->bi_rw |= rw;
5975
5976 spin_lock(&device->io_lock);
7b6d91da 5977 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5978 pending_bios = &device->pending_sync_bios;
5979 else
5980 pending_bios = &device->pending_bios;
8b712842 5981
ffbd517d
CM
5982 if (pending_bios->tail)
5983 pending_bios->tail->bi_next = bio;
8b712842 5984
ffbd517d
CM
5985 pending_bios->tail = bio;
5986 if (!pending_bios->head)
5987 pending_bios->head = bio;
8b712842
CM
5988 if (device->running_pending)
5989 should_queue = 0;
5990
5991 spin_unlock(&device->io_lock);
5992
5993 if (should_queue)
a8c93d4e
QW
5994 btrfs_queue_work(root->fs_info->submit_workers,
5995 &device->work);
8b712842
CM
5996}
5997
de1ee92a
JB
5998static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5999 struct bio *bio, u64 physical, int dev_nr,
6000 int rw, int async)
6001{
6002 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6003
6004 bio->bi_private = bbio;
9be3395b 6005 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6006 bio->bi_end_io = btrfs_end_bio;
4f024f37 6007 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
6008#ifdef DEBUG
6009 {
6010 struct rcu_string *name;
6011
6012 rcu_read_lock();
6013 name = rcu_dereference(dev->name);
d1423248 6014 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a 6015 "(%s id %llu), size=%u\n", rw,
1b6e4469
FF
6016 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6017 name->str, dev->devid, bio->bi_iter.bi_size);
de1ee92a
JB
6018 rcu_read_unlock();
6019 }
6020#endif
6021 bio->bi_bdev = dev->bdev;
c404e0dc
MX
6022
6023 btrfs_bio_counter_inc_noblocked(root->fs_info);
6024
de1ee92a 6025 if (async)
53b381b3 6026 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
6027 else
6028 btrfsic_submit_bio(rw, bio);
6029}
6030
de1ee92a
JB
6031static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6032{
6033 atomic_inc(&bbio->error);
6034 if (atomic_dec_and_test(&bbio->stripes_pending)) {
8408c716
MX
6035 /* Shoud be the original bio. */
6036 WARN_ON(bio != bbio->orig_bio);
6037
9be3395b 6038 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6039 bio->bi_iter.bi_sector = logical >> 9;
4246a0b6
CH
6040 bio->bi_error = -EIO;
6041 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6042 }
6043}
6044
f188591e 6045int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 6046 int mirror_num, int async_submit)
0b86a832 6047{
0b86a832 6048 struct btrfs_device *dev;
8790d502 6049 struct bio *first_bio = bio;
4f024f37 6050 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6051 u64 length = 0;
6052 u64 map_length;
0b86a832 6053 int ret;
08da757d
ZL
6054 int dev_nr;
6055 int total_devs;
a1d3c478 6056 struct btrfs_bio *bbio = NULL;
0b86a832 6057
4f024f37 6058 length = bio->bi_iter.bi_size;
0b86a832 6059 map_length = length;
cea9e445 6060
c404e0dc 6061 btrfs_bio_counter_inc_blocked(root->fs_info);
53b381b3 6062 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
8e5cfb55 6063 mirror_num, 1);
c404e0dc
MX
6064 if (ret) {
6065 btrfs_bio_counter_dec(root->fs_info);
79787eaa 6066 return ret;
c404e0dc 6067 }
cea9e445 6068
a1d3c478 6069 total_devs = bbio->num_stripes;
53b381b3
DW
6070 bbio->orig_bio = first_bio;
6071 bbio->private = first_bio->bi_private;
6072 bbio->end_io = first_bio->bi_end_io;
c404e0dc 6073 bbio->fs_info = root->fs_info;
53b381b3
DW
6074 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6075
ad1ba2a0
ZL
6076 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6077 ((rw & WRITE) || (mirror_num > 1))) {
53b381b3
DW
6078 /* In this case, map_length has been set to the length of
6079 a single stripe; not the whole write */
6080 if (rw & WRITE) {
8e5cfb55 6081 ret = raid56_parity_write(root, bio, bbio, map_length);
53b381b3 6082 } else {
8e5cfb55 6083 ret = raid56_parity_recover(root, bio, bbio, map_length,
4245215d 6084 mirror_num, 1);
53b381b3 6085 }
4245215d 6086
c404e0dc
MX
6087 btrfs_bio_counter_dec(root->fs_info);
6088 return ret;
53b381b3
DW
6089 }
6090
cea9e445 6091 if (map_length < length) {
c2cf52eb 6092 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 6093 logical, length, map_length);
cea9e445
CM
6094 BUG();
6095 }
a1d3c478 6096
08da757d 6097 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a
JB
6098 dev = bbio->stripes[dev_nr].dev;
6099 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6100 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6101 continue;
6102 }
6103
a1d3c478 6104 if (dev_nr < total_devs - 1) {
9be3395b 6105 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 6106 BUG_ON(!bio); /* -ENOMEM */
326e1dbb 6107 } else
a1d3c478 6108 bio = first_bio;
de1ee92a
JB
6109
6110 submit_stripe_bio(root, bbio, bio,
6111 bbio->stripes[dev_nr].physical, dev_nr, rw,
6112 async_submit);
8790d502 6113 }
c404e0dc 6114 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
6115 return 0;
6116}
6117
aa1b8cd4 6118struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6119 u8 *uuid, u8 *fsid)
0b86a832 6120{
2b82032c
YZ
6121 struct btrfs_device *device;
6122 struct btrfs_fs_devices *cur_devices;
6123
aa1b8cd4 6124 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6125 while (cur_devices) {
6126 if (!fsid ||
6127 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6128 device = __find_device(&cur_devices->devices,
6129 devid, uuid);
6130 if (device)
6131 return device;
6132 }
6133 cur_devices = cur_devices->seed;
6134 }
6135 return NULL;
0b86a832
CM
6136}
6137
dfe25020 6138static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5f375835 6139 struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6140 u64 devid, u8 *dev_uuid)
6141{
6142 struct btrfs_device *device;
dfe25020 6143
12bd2fc0
ID
6144 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6145 if (IS_ERR(device))
7cbd8a83 6146 return NULL;
12bd2fc0
ID
6147
6148 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6149 device->fs_devices = fs_devices;
dfe25020 6150 fs_devices->num_devices++;
12bd2fc0
ID
6151
6152 device->missing = 1;
cd02dca5 6153 fs_devices->missing_devices++;
12bd2fc0 6154
dfe25020
CM
6155 return device;
6156}
6157
12bd2fc0
ID
6158/**
6159 * btrfs_alloc_device - allocate struct btrfs_device
6160 * @fs_info: used only for generating a new devid, can be NULL if
6161 * devid is provided (i.e. @devid != NULL).
6162 * @devid: a pointer to devid for this device. If NULL a new devid
6163 * is generated.
6164 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6165 * is generated.
6166 *
6167 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6168 * on error. Returned struct is not linked onto any lists and can be
6169 * destroyed with kfree() right away.
6170 */
6171struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6172 const u64 *devid,
6173 const u8 *uuid)
6174{
6175 struct btrfs_device *dev;
6176 u64 tmp;
6177
fae7f21c 6178 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6179 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6180
6181 dev = __alloc_device();
6182 if (IS_ERR(dev))
6183 return dev;
6184
6185 if (devid)
6186 tmp = *devid;
6187 else {
6188 int ret;
6189
6190 ret = find_next_devid(fs_info, &tmp);
6191 if (ret) {
6192 kfree(dev);
6193 return ERR_PTR(ret);
6194 }
6195 }
6196 dev->devid = tmp;
6197
6198 if (uuid)
6199 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6200 else
6201 generate_random_uuid(dev->uuid);
6202
9e0af237
LB
6203 btrfs_init_work(&dev->work, btrfs_submit_helper,
6204 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6205
6206 return dev;
6207}
6208
0b86a832
CM
6209static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6210 struct extent_buffer *leaf,
6211 struct btrfs_chunk *chunk)
6212{
6213 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6214 struct map_lookup *map;
6215 struct extent_map *em;
6216 u64 logical;
6217 u64 length;
f04b772b 6218 u64 stripe_len;
0b86a832 6219 u64 devid;
a443755f 6220 u8 uuid[BTRFS_UUID_SIZE];
593060d7 6221 int num_stripes;
0b86a832 6222 int ret;
593060d7 6223 int i;
0b86a832 6224
e17cade2
CM
6225 logical = key->offset;
6226 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6227 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6228 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6229 /* Validation check */
6230 if (!num_stripes) {
6231 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6232 num_stripes);
6233 return -EIO;
6234 }
6235 if (!IS_ALIGNED(logical, root->sectorsize)) {
6236 btrfs_err(root->fs_info,
6237 "invalid chunk logical %llu", logical);
6238 return -EIO;
6239 }
6240 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6241 btrfs_err(root->fs_info,
6242 "invalid chunk length %llu", length);
6243 return -EIO;
6244 }
6245 if (!is_power_of_2(stripe_len)) {
6246 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6247 stripe_len);
6248 return -EIO;
6249 }
6250 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6251 btrfs_chunk_type(leaf, chunk)) {
6252 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6253 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6254 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6255 btrfs_chunk_type(leaf, chunk));
6256 return -EIO;
6257 }
a061fc8d 6258
890871be 6259 read_lock(&map_tree->map_tree.lock);
0b86a832 6260 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6261 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6262
6263 /* already mapped? */
6264 if (em && em->start <= logical && em->start + em->len > logical) {
6265 free_extent_map(em);
0b86a832
CM
6266 return 0;
6267 } else if (em) {
6268 free_extent_map(em);
6269 }
0b86a832 6270
172ddd60 6271 em = alloc_extent_map();
0b86a832
CM
6272 if (!em)
6273 return -ENOMEM;
593060d7 6274 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6275 if (!map) {
6276 free_extent_map(em);
6277 return -ENOMEM;
6278 }
6279
298a8f9c 6280 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6281 em->map_lookup = map;
0b86a832
CM
6282 em->start = logical;
6283 em->len = length;
70c8a91c 6284 em->orig_start = 0;
0b86a832 6285 em->block_start = 0;
c8b97818 6286 em->block_len = em->len;
0b86a832 6287
593060d7
CM
6288 map->num_stripes = num_stripes;
6289 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6290 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6291 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6292 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6293 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6294 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6295 for (i = 0; i < num_stripes; i++) {
6296 map->stripes[i].physical =
6297 btrfs_stripe_offset_nr(leaf, chunk, i);
6298 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6299 read_extent_buffer(leaf, uuid, (unsigned long)
6300 btrfs_stripe_dev_uuid_nr(chunk, i),
6301 BTRFS_UUID_SIZE);
aa1b8cd4
SB
6302 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6303 uuid, NULL);
dfe25020 6304 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
6305 free_extent_map(em);
6306 return -EIO;
6307 }
dfe25020
CM
6308 if (!map->stripes[i].dev) {
6309 map->stripes[i].dev =
5f375835
MX
6310 add_missing_dev(root, root->fs_info->fs_devices,
6311 devid, uuid);
dfe25020 6312 if (!map->stripes[i].dev) {
dfe25020
CM
6313 free_extent_map(em);
6314 return -EIO;
6315 }
816fcebe
AJ
6316 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6317 devid, uuid);
dfe25020
CM
6318 }
6319 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6320 }
6321
890871be 6322 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6323 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6324 write_unlock(&map_tree->map_tree.lock);
79787eaa 6325 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6326 free_extent_map(em);
6327
6328 return 0;
6329}
6330
143bede5 6331static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6332 struct btrfs_dev_item *dev_item,
6333 struct btrfs_device *device)
6334{
6335 unsigned long ptr;
0b86a832
CM
6336
6337 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6338 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6339 device->total_bytes = device->disk_total_bytes;
935e5cc9 6340 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6341 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6342 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6343 device->type = btrfs_device_type(leaf, dev_item);
6344 device->io_align = btrfs_device_io_align(leaf, dev_item);
6345 device->io_width = btrfs_device_io_width(leaf, dev_item);
6346 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6347 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6348 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6349
410ba3a2 6350 ptr = btrfs_device_uuid(dev_item);
e17cade2 6351 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6352}
6353
5f375835
MX
6354static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6355 u8 *fsid)
2b82032c
YZ
6356{
6357 struct btrfs_fs_devices *fs_devices;
6358 int ret;
6359
b367e47f 6360 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
6361
6362 fs_devices = root->fs_info->fs_devices->seed;
6363 while (fs_devices) {
5f375835
MX
6364 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6365 return fs_devices;
6366
2b82032c
YZ
6367 fs_devices = fs_devices->seed;
6368 }
6369
6370 fs_devices = find_fsid(fsid);
6371 if (!fs_devices) {
5f375835
MX
6372 if (!btrfs_test_opt(root, DEGRADED))
6373 return ERR_PTR(-ENOENT);
6374
6375 fs_devices = alloc_fs_devices(fsid);
6376 if (IS_ERR(fs_devices))
6377 return fs_devices;
6378
6379 fs_devices->seeding = 1;
6380 fs_devices->opened = 1;
6381 return fs_devices;
2b82032c 6382 }
e4404d6e
YZ
6383
6384 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6385 if (IS_ERR(fs_devices))
6386 return fs_devices;
2b82032c 6387
97288f2c 6388 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 6389 root->fs_info->bdev_holder);
48d28232
JL
6390 if (ret) {
6391 free_fs_devices(fs_devices);
5f375835 6392 fs_devices = ERR_PTR(ret);
2b82032c 6393 goto out;
48d28232 6394 }
2b82032c
YZ
6395
6396 if (!fs_devices->seeding) {
6397 __btrfs_close_devices(fs_devices);
e4404d6e 6398 free_fs_devices(fs_devices);
5f375835 6399 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6400 goto out;
6401 }
6402
6403 fs_devices->seed = root->fs_info->fs_devices->seed;
6404 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 6405out:
5f375835 6406 return fs_devices;
2b82032c
YZ
6407}
6408
0d81ba5d 6409static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
6410 struct extent_buffer *leaf,
6411 struct btrfs_dev_item *dev_item)
6412{
5f375835 6413 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
0b86a832
CM
6414 struct btrfs_device *device;
6415 u64 devid;
6416 int ret;
2b82032c 6417 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6418 u8 dev_uuid[BTRFS_UUID_SIZE];
6419
0b86a832 6420 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6421 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6422 BTRFS_UUID_SIZE);
1473b24e 6423 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6424 BTRFS_UUID_SIZE);
6425
6426 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5f375835
MX
6427 fs_devices = open_seed_devices(root, fs_uuid);
6428 if (IS_ERR(fs_devices))
6429 return PTR_ERR(fs_devices);
2b82032c
YZ
6430 }
6431
aa1b8cd4 6432 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5f375835 6433 if (!device) {
e4404d6e 6434 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
6435 return -EIO;
6436
5f375835
MX
6437 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6438 if (!device)
6439 return -ENOMEM;
33b97e43
AJ
6440 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6441 devid, dev_uuid);
5f375835
MX
6442 } else {
6443 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6444 return -EIO;
6445
6446 if(!device->bdev && !device->missing) {
cd02dca5
CM
6447 /*
6448 * this happens when a device that was properly setup
6449 * in the device info lists suddenly goes bad.
6450 * device->bdev is NULL, and so we have to set
6451 * device->missing to one here
6452 */
5f375835 6453 device->fs_devices->missing_devices++;
cd02dca5 6454 device->missing = 1;
2b82032c 6455 }
5f375835
MX
6456
6457 /* Move the device to its own fs_devices */
6458 if (device->fs_devices != fs_devices) {
6459 ASSERT(device->missing);
6460
6461 list_move(&device->dev_list, &fs_devices->devices);
6462 device->fs_devices->num_devices--;
6463 fs_devices->num_devices++;
6464
6465 device->fs_devices->missing_devices--;
6466 fs_devices->missing_devices++;
6467
6468 device->fs_devices = fs_devices;
6469 }
2b82032c
YZ
6470 }
6471
6472 if (device->fs_devices != root->fs_info->fs_devices) {
6473 BUG_ON(device->writeable);
6474 if (device->generation !=
6475 btrfs_device_generation(leaf, dev_item))
6476 return -EINVAL;
6324fbf3 6477 }
0b86a832
CM
6478
6479 fill_device_from_item(leaf, dev_item, device);
dfe25020 6480 device->in_fs_metadata = 1;
63a212ab 6481 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6482 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
6483 spin_lock(&root->fs_info->free_chunk_lock);
6484 root->fs_info->free_chunk_space += device->total_bytes -
6485 device->bytes_used;
6486 spin_unlock(&root->fs_info->free_chunk_lock);
6487 }
0b86a832 6488 ret = 0;
0b86a832
CM
6489 return ret;
6490}
6491
e4404d6e 6492int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 6493{
6c41761f 6494 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 6495 struct extent_buffer *sb;
0b86a832 6496 struct btrfs_disk_key *disk_key;
0b86a832 6497 struct btrfs_chunk *chunk;
1ffb22cf
DS
6498 u8 *array_ptr;
6499 unsigned long sb_array_offset;
84eed90f 6500 int ret = 0;
0b86a832
CM
6501 u32 num_stripes;
6502 u32 array_size;
6503 u32 len = 0;
1ffb22cf 6504 u32 cur_offset;
84eed90f 6505 struct btrfs_key key;
0b86a832 6506
a83fffb7
DS
6507 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6508 /*
6509 * This will create extent buffer of nodesize, superblock size is
6510 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6511 * overallocate but we can keep it as-is, only the first page is used.
6512 */
6513 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
a061fc8d
CM
6514 if (!sb)
6515 return -ENOMEM;
4db8c528 6516 set_extent_buffer_uptodate(sb);
85d4e461 6517 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
6518 /*
6519 * The sb extent buffer is artifical and just used to read the system array.
4db8c528 6520 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6521 * pages up-to-date when the page is larger: extent does not cover the
6522 * whole page and consequently check_page_uptodate does not find all
6523 * the page's extents up-to-date (the hole beyond sb),
6524 * write_extent_buffer then triggers a WARN_ON.
6525 *
6526 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6527 * but sb spans only this function. Add an explicit SetPageUptodate call
6528 * to silence the warning eg. on PowerPC 64.
6529 */
09cbfeaf 6530 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6531 SetPageUptodate(sb->pages[0]);
4008c04a 6532
a061fc8d 6533 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6534 array_size = btrfs_super_sys_array_size(super_copy);
6535
1ffb22cf
DS
6536 array_ptr = super_copy->sys_chunk_array;
6537 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6538 cur_offset = 0;
0b86a832 6539
1ffb22cf
DS
6540 while (cur_offset < array_size) {
6541 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6542 len = sizeof(*disk_key);
6543 if (cur_offset + len > array_size)
6544 goto out_short_read;
6545
0b86a832
CM
6546 btrfs_disk_key_to_cpu(&key, disk_key);
6547
1ffb22cf
DS
6548 array_ptr += len;
6549 sb_array_offset += len;
6550 cur_offset += len;
0b86a832 6551
0d81ba5d 6552 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6553 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6554 /*
6555 * At least one btrfs_chunk with one stripe must be
6556 * present, exact stripe count check comes afterwards
6557 */
6558 len = btrfs_chunk_item_size(1);
6559 if (cur_offset + len > array_size)
6560 goto out_short_read;
6561
6562 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7
DS
6563 if (!num_stripes) {
6564 printk(KERN_ERR
6565 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6566 num_stripes, cur_offset);
6567 ret = -EIO;
6568 break;
6569 }
6570
e3540eab
DS
6571 len = btrfs_chunk_item_size(num_stripes);
6572 if (cur_offset + len > array_size)
6573 goto out_short_read;
6574
0d81ba5d 6575 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6576 if (ret)
6577 break;
0b86a832 6578 } else {
93a3d467
DS
6579 printk(KERN_ERR
6580 "BTRFS: unexpected item type %u in sys_array at offset %u\n",
6581 (u32)key.type, cur_offset);
84eed90f
CM
6582 ret = -EIO;
6583 break;
0b86a832 6584 }
1ffb22cf
DS
6585 array_ptr += len;
6586 sb_array_offset += len;
6587 cur_offset += len;
0b86a832 6588 }
a061fc8d 6589 free_extent_buffer(sb);
84eed90f 6590 return ret;
e3540eab
DS
6591
6592out_short_read:
6593 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6594 len, cur_offset);
6595 free_extent_buffer(sb);
6596 return -EIO;
0b86a832
CM
6597}
6598
6599int btrfs_read_chunk_tree(struct btrfs_root *root)
6600{
6601 struct btrfs_path *path;
6602 struct extent_buffer *leaf;
6603 struct btrfs_key key;
6604 struct btrfs_key found_key;
6605 int ret;
6606 int slot;
6607
6608 root = root->fs_info->chunk_root;
6609
6610 path = btrfs_alloc_path();
6611 if (!path)
6612 return -ENOMEM;
6613
b367e47f
LZ
6614 mutex_lock(&uuid_mutex);
6615 lock_chunks(root);
6616
395927a9
FDBM
6617 /*
6618 * Read all device items, and then all the chunk items. All
6619 * device items are found before any chunk item (their object id
6620 * is smaller than the lowest possible object id for a chunk
6621 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6622 */
6623 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6624 key.offset = 0;
6625 key.type = 0;
0b86a832 6626 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6627 if (ret < 0)
6628 goto error;
d397712b 6629 while (1) {
0b86a832
CM
6630 leaf = path->nodes[0];
6631 slot = path->slots[0];
6632 if (slot >= btrfs_header_nritems(leaf)) {
6633 ret = btrfs_next_leaf(root, path);
6634 if (ret == 0)
6635 continue;
6636 if (ret < 0)
6637 goto error;
6638 break;
6639 }
6640 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6641 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6642 struct btrfs_dev_item *dev_item;
6643 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6644 struct btrfs_dev_item);
395927a9
FDBM
6645 ret = read_one_dev(root, leaf, dev_item);
6646 if (ret)
6647 goto error;
0b86a832
CM
6648 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6649 struct btrfs_chunk *chunk;
6650 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6651 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6652 if (ret)
6653 goto error;
0b86a832
CM
6654 }
6655 path->slots[0]++;
6656 }
0b86a832
CM
6657 ret = 0;
6658error:
b367e47f
LZ
6659 unlock_chunks(root);
6660 mutex_unlock(&uuid_mutex);
6661
2b82032c 6662 btrfs_free_path(path);
0b86a832
CM
6663 return ret;
6664}
442a4f63 6665
cb517eab
MX
6666void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6667{
6668 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6669 struct btrfs_device *device;
6670
29cc83f6
LB
6671 while (fs_devices) {
6672 mutex_lock(&fs_devices->device_list_mutex);
6673 list_for_each_entry(device, &fs_devices->devices, dev_list)
6674 device->dev_root = fs_info->dev_root;
6675 mutex_unlock(&fs_devices->device_list_mutex);
6676
6677 fs_devices = fs_devices->seed;
6678 }
cb517eab
MX
6679}
6680
733f4fbb
SB
6681static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6682{
6683 int i;
6684
6685 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6686 btrfs_dev_stat_reset(dev, i);
6687}
6688
6689int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6690{
6691 struct btrfs_key key;
6692 struct btrfs_key found_key;
6693 struct btrfs_root *dev_root = fs_info->dev_root;
6694 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6695 struct extent_buffer *eb;
6696 int slot;
6697 int ret = 0;
6698 struct btrfs_device *device;
6699 struct btrfs_path *path = NULL;
6700 int i;
6701
6702 path = btrfs_alloc_path();
6703 if (!path) {
6704 ret = -ENOMEM;
6705 goto out;
6706 }
6707
6708 mutex_lock(&fs_devices->device_list_mutex);
6709 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6710 int item_size;
6711 struct btrfs_dev_stats_item *ptr;
6712
242e2956
DS
6713 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6714 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6715 key.offset = device->devid;
6716 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6717 if (ret) {
733f4fbb
SB
6718 __btrfs_reset_dev_stats(device);
6719 device->dev_stats_valid = 1;
6720 btrfs_release_path(path);
6721 continue;
6722 }
6723 slot = path->slots[0];
6724 eb = path->nodes[0];
6725 btrfs_item_key_to_cpu(eb, &found_key, slot);
6726 item_size = btrfs_item_size_nr(eb, slot);
6727
6728 ptr = btrfs_item_ptr(eb, slot,
6729 struct btrfs_dev_stats_item);
6730
6731 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6732 if (item_size >= (1 + i) * sizeof(__le64))
6733 btrfs_dev_stat_set(device, i,
6734 btrfs_dev_stats_value(eb, ptr, i));
6735 else
6736 btrfs_dev_stat_reset(device, i);
6737 }
6738
6739 device->dev_stats_valid = 1;
6740 btrfs_dev_stat_print_on_load(device);
6741 btrfs_release_path(path);
6742 }
6743 mutex_unlock(&fs_devices->device_list_mutex);
6744
6745out:
6746 btrfs_free_path(path);
6747 return ret < 0 ? ret : 0;
6748}
6749
6750static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6751 struct btrfs_root *dev_root,
6752 struct btrfs_device *device)
6753{
6754 struct btrfs_path *path;
6755 struct btrfs_key key;
6756 struct extent_buffer *eb;
6757 struct btrfs_dev_stats_item *ptr;
6758 int ret;
6759 int i;
6760
242e2956
DS
6761 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6762 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6763 key.offset = device->devid;
6764
6765 path = btrfs_alloc_path();
6766 BUG_ON(!path);
6767 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6768 if (ret < 0) {
ecaeb14b
DS
6769 btrfs_warn_in_rcu(dev_root->fs_info,
6770 "error %d while searching for dev_stats item for device %s",
606686ee 6771 ret, rcu_str_deref(device->name));
733f4fbb
SB
6772 goto out;
6773 }
6774
6775 if (ret == 0 &&
6776 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6777 /* need to delete old one and insert a new one */
6778 ret = btrfs_del_item(trans, dev_root, path);
6779 if (ret != 0) {
ecaeb14b
DS
6780 btrfs_warn_in_rcu(dev_root->fs_info,
6781 "delete too small dev_stats item for device %s failed %d",
606686ee 6782 rcu_str_deref(device->name), ret);
733f4fbb
SB
6783 goto out;
6784 }
6785 ret = 1;
6786 }
6787
6788 if (ret == 1) {
6789 /* need to insert a new item */
6790 btrfs_release_path(path);
6791 ret = btrfs_insert_empty_item(trans, dev_root, path,
6792 &key, sizeof(*ptr));
6793 if (ret < 0) {
ecaeb14b
DS
6794 btrfs_warn_in_rcu(dev_root->fs_info,
6795 "insert dev_stats item for device %s failed %d",
6796 rcu_str_deref(device->name), ret);
733f4fbb
SB
6797 goto out;
6798 }
6799 }
6800
6801 eb = path->nodes[0];
6802 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6803 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6804 btrfs_set_dev_stats_value(eb, ptr, i,
6805 btrfs_dev_stat_read(device, i));
6806 btrfs_mark_buffer_dirty(eb);
6807
6808out:
6809 btrfs_free_path(path);
6810 return ret;
6811}
6812
6813/*
6814 * called from commit_transaction. Writes all changed device stats to disk.
6815 */
6816int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6817 struct btrfs_fs_info *fs_info)
6818{
6819 struct btrfs_root *dev_root = fs_info->dev_root;
6820 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6821 struct btrfs_device *device;
addc3fa7 6822 int stats_cnt;
733f4fbb
SB
6823 int ret = 0;
6824
6825 mutex_lock(&fs_devices->device_list_mutex);
6826 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 6827 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
6828 continue;
6829
addc3fa7 6830 stats_cnt = atomic_read(&device->dev_stats_ccnt);
733f4fbb
SB
6831 ret = update_dev_stat_item(trans, dev_root, device);
6832 if (!ret)
addc3fa7 6833 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
6834 }
6835 mutex_unlock(&fs_devices->device_list_mutex);
6836
6837 return ret;
6838}
6839
442a4f63
SB
6840void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6841{
6842 btrfs_dev_stat_inc(dev, index);
6843 btrfs_dev_stat_print_on_error(dev);
6844}
6845
48a3b636 6846static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6847{
733f4fbb
SB
6848 if (!dev->dev_stats_valid)
6849 return;
b14af3b4
DS
6850 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6851 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 6852 rcu_str_deref(dev->name),
442a4f63
SB
6853 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6854 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6855 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
6856 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6857 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 6858}
c11d2c23 6859
733f4fbb
SB
6860static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6861{
a98cdb85
SB
6862 int i;
6863
6864 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6865 if (btrfs_dev_stat_read(dev, i) != 0)
6866 break;
6867 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6868 return; /* all values == 0, suppress message */
6869
ecaeb14b
DS
6870 btrfs_info_in_rcu(dev->dev_root->fs_info,
6871 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 6872 rcu_str_deref(dev->name),
733f4fbb
SB
6873 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6874 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6875 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6876 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6877 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6878}
6879
c11d2c23 6880int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6881 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6882{
6883 struct btrfs_device *dev;
6884 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6885 int i;
6886
6887 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6888 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6889 mutex_unlock(&fs_devices->device_list_mutex);
6890
6891 if (!dev) {
efe120a0 6892 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
c11d2c23 6893 return -ENODEV;
733f4fbb 6894 } else if (!dev->dev_stats_valid) {
efe120a0 6895 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
733f4fbb 6896 return -ENODEV;
b27f7c0c 6897 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6898 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6899 if (stats->nr_items > i)
6900 stats->values[i] =
6901 btrfs_dev_stat_read_and_reset(dev, i);
6902 else
6903 btrfs_dev_stat_reset(dev, i);
6904 }
6905 } else {
6906 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6907 if (stats->nr_items > i)
6908 stats->values[i] = btrfs_dev_stat_read(dev, i);
6909 }
6910 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6911 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6912 return 0;
6913}
a8a6dab7 6914
12b1c263 6915void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
a8a6dab7
SB
6916{
6917 struct buffer_head *bh;
6918 struct btrfs_super_block *disk_super;
12b1c263 6919 int copy_num;
a8a6dab7 6920
12b1c263
AJ
6921 if (!bdev)
6922 return;
a8a6dab7 6923
12b1c263
AJ
6924 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6925 copy_num++) {
a8a6dab7 6926
12b1c263
AJ
6927 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6928 continue;
6929
6930 disk_super = (struct btrfs_super_block *)bh->b_data;
6931
6932 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6933 set_buffer_dirty(bh);
6934 sync_dirty_buffer(bh);
6935 brelse(bh);
6936 }
6937
6938 /* Notify udev that device has changed */
6939 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6940
6941 /* Update ctime/mtime for device path for libblkid */
6942 update_dev_time(device_path);
a8a6dab7 6943}
935e5cc9
MX
6944
6945/*
6946 * Update the size of all devices, which is used for writing out the
6947 * super blocks.
6948 */
6949void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6950{
6951 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6952 struct btrfs_device *curr, *next;
6953
6954 if (list_empty(&fs_devices->resized_devices))
6955 return;
6956
6957 mutex_lock(&fs_devices->device_list_mutex);
6958 lock_chunks(fs_info->dev_root);
6959 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6960 resized_list) {
6961 list_del_init(&curr->resized_list);
6962 curr->commit_total_bytes = curr->disk_total_bytes;
6963 }
6964 unlock_chunks(fs_info->dev_root);
6965 mutex_unlock(&fs_devices->device_list_mutex);
6966}
ce7213c7
MX
6967
6968/* Must be invoked during the transaction commit */
6969void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6970 struct btrfs_transaction *transaction)
6971{
6972 struct extent_map *em;
6973 struct map_lookup *map;
6974 struct btrfs_device *dev;
6975 int i;
6976
6977 if (list_empty(&transaction->pending_chunks))
6978 return;
6979
6980 /* In order to kick the device replace finish process */
6981 lock_chunks(root);
6982 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 6983 map = em->map_lookup;
ce7213c7
MX
6984
6985 for (i = 0; i < map->num_stripes; i++) {
6986 dev = map->stripes[i].dev;
6987 dev->commit_bytes_used = dev->bytes_used;
6988 }
6989 }
6990 unlock_chunks(root);
6991}
5a13f430
AJ
6992
6993void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6994{
6995 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6996 while (fs_devices) {
6997 fs_devices->fs_info = fs_info;
6998 fs_devices = fs_devices->seed;
6999 }
7000}
7001
7002void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7003{
7004 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7005 while (fs_devices) {
7006 fs_devices->fs_info = NULL;
7007 fs_devices = fs_devices->seed;
7008 }
7009}
f190aa47 7010
87ad58c5 7011static void btrfs_close_one_device(struct btrfs_device *device)
f190aa47
AJ
7012{
7013 struct btrfs_fs_devices *fs_devices = device->fs_devices;
7014 struct btrfs_device *new_device;
7015 struct rcu_string *name;
7016
7017 if (device->bdev)
7018 fs_devices->open_devices--;
7019
7020 if (device->writeable &&
7021 device->devid != BTRFS_DEV_REPLACE_DEVID) {
7022 list_del_init(&device->dev_alloc_list);
7023 fs_devices->rw_devices--;
7024 }
7025
7026 if (device->missing)
7027 fs_devices->missing_devices--;
7028
7029 new_device = btrfs_alloc_device(NULL, &device->devid,
7030 device->uuid);
7031 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
7032
7033 /* Safe because we are under uuid_mutex */
7034 if (device->name) {
7035 name = rcu_string_strdup(device->name->str, GFP_NOFS);
7036 BUG_ON(!name); /* -ENOMEM */
7037 rcu_assign_pointer(new_device->name, name);
7038 }
7039
7040 list_replace_rcu(&device->dev_list, &new_device->dev_list);
7041 new_device->fs_devices = device->fs_devices;
7042
7043 call_rcu(&device->rcu, free_device);
7044}