Merge tag 'perf-tools-for-v6.10-1-2024-05-21' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
ab3c5c18 9#include <linux/sched/mm.h>
d3c2fdcf 10#include <linux/writeback.h>
5f39d397 11#include <linux/pagemap.h>
5f2cc086 12#include <linux/blkdev.h>
8ea05e3a 13#include <linux/uuid.h>
e55958c8 14#include <linux/timekeeping.h>
602cbe91 15#include "misc.h"
79154b1b
CM
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
925baedd 19#include "locking.h"
e02119d5 20#include "tree-log.h"
733f4fbb 21#include "volumes.h"
8dabb742 22#include "dev-replace.h"
fcebe456 23#include "qgroup.h"
aac0023c 24#include "block-group.h"
9c343784 25#include "space-info.h"
c7f13d42 26#include "fs.h"
07e81dc9 27#include "accessors.h"
a0231804 28#include "extent-tree.h"
45c40c8f 29#include "root-tree.h"
f2b39277 30#include "dir-item.h"
c7a03b52 31#include "uuid-tree.h"
7572dec8 32#include "ioctl.h"
67707479 33#include "relocation.h"
2fc6822c 34#include "scrub.h"
79154b1b 35
956504a3
JB
36static struct kmem_cache *btrfs_trans_handle_cachep;
37
61c047b5
QW
38/*
39 * Transaction states and transitions
40 *
41 * No running transaction (fs tree blocks are not modified)
42 * |
43 * | To next stage:
44 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
45 * V
46 * Transaction N [[TRANS_STATE_RUNNING]]
47 * |
48 * | New trans handles can be attached to transaction N by calling all
49 * | start_transaction() variants.
50 * |
51 * | To next stage:
52 * | Call btrfs_commit_transaction() on any trans handle attached to
53 * | transaction N
54 * V
77d20c68
JB
55 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
56 * |
57 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
58 * | the race and the rest will wait for the winner to commit the transaction.
59 * |
60 * | The winner will wait for previous running transaction to completely finish
61 * | if there is one.
61c047b5 62 * |
77d20c68 63 * Transaction N [[TRANS_STATE_COMMIT_START]]
61c047b5 64 * |
77d20c68 65 * | Then one of the following happens:
61c047b5
QW
66 * | - Wait for all other trans handle holders to release.
67 * | The btrfs_commit_transaction() caller will do the commit work.
68 * | - Wait for current transaction to be committed by others.
69 * | Other btrfs_commit_transaction() caller will do the commit work.
70 * |
71 * | At this stage, only btrfs_join_transaction*() variants can attach
72 * | to this running transaction.
73 * | All other variants will wait for current one to finish and attach to
74 * | transaction N+1.
75 * |
76 * | To next stage:
77 * | Caller is chosen to commit transaction N, and all other trans handle
78 * | haven been released.
79 * V
80 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81 * |
82 * | The heavy lifting transaction work is started.
83 * | From running delayed refs (modifying extent tree) to creating pending
84 * | snapshots, running qgroups.
85 * | In short, modify supporting trees to reflect modifications of subvolume
86 * | trees.
87 * |
88 * | At this stage, all start_transaction() calls will wait for this
89 * | transaction to finish and attach to transaction N+1.
90 * |
91 * | To next stage:
92 * | Until all supporting trees are updated.
93 * V
94 * Transaction N [[TRANS_STATE_UNBLOCKED]]
95 * | Transaction N+1
96 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
97 * | need to write them back to disk and update |
98 * | super blocks. |
99 * | |
100 * | At this stage, new transaction is allowed to |
101 * | start. |
102 * | All new start_transaction() calls will be |
103 * | attached to transid N+1. |
104 * | |
105 * | To next stage: |
106 * | Until all tree blocks are super blocks are |
107 * | written to block devices |
108 * V |
109 * Transaction N [[TRANS_STATE_COMPLETED]] V
110 * All tree blocks and super blocks are written. Transaction N+1
111 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
112 * data structures will be cleaned up. | Life goes on
113 */
e8c9f186 114static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 115 [TRANS_STATE_RUNNING] = 0U,
77d20c68 116 [TRANS_STATE_COMMIT_PREP] = 0U,
bcf3a3e7
NB
117 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
118 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 119 __TRANS_ATTACH |
a6d155d2
FM
120 __TRANS_JOIN |
121 __TRANS_JOIN_NOSTART),
bcf3a3e7 122 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
123 __TRANS_ATTACH |
124 __TRANS_JOIN |
a6d155d2
FM
125 __TRANS_JOIN_NOLOCK |
126 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
127 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
128 __TRANS_ATTACH |
129 __TRANS_JOIN |
130 __TRANS_JOIN_NOLOCK |
131 __TRANS_JOIN_NOSTART),
bcf3a3e7 132 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
133 __TRANS_ATTACH |
134 __TRANS_JOIN |
a6d155d2
FM
135 __TRANS_JOIN_NOLOCK |
136 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
137};
138
724e2315 139void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 140{
9b64f57d
ER
141 WARN_ON(refcount_read(&transaction->use_count) == 0);
142 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 143 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
144 WARN_ON(!RB_EMPTY_ROOT(
145 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
146 WARN_ON(!RB_EMPTY_ROOT(
147 &transaction->delayed_refs.dirty_extent_root));
1262133b 148 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
149 btrfs_err(transaction->fs_info,
150 "pending csums is %llu",
151 transaction->delayed_refs.pending_csums);
7785a663
FM
152 /*
153 * If any block groups are found in ->deleted_bgs then it's
154 * because the transaction was aborted and a commit did not
155 * happen (things failed before writing the new superblock
156 * and calling btrfs_finish_extent_commit()), so we can not
157 * discard the physical locations of the block groups.
158 */
159 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 160 struct btrfs_block_group *cache;
7785a663
FM
161
162 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 163 struct btrfs_block_group,
7785a663
FM
164 bg_list);
165 list_del_init(&cache->bg_list);
6b7304af 166 btrfs_unfreeze_block_group(cache);
7785a663
FM
167 btrfs_put_block_group(cache);
168 }
bbbf7243 169 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 170 kfree(transaction);
78fae27e 171 }
79154b1b
CM
172}
173
889bfa39 174static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 175{
889bfa39 176 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 177 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8
JB
178 struct btrfs_root *root, *tmp;
179
dfba78dc
FM
180 /*
181 * At this point no one can be using this transaction to modify any tree
182 * and no one can start another transaction to modify any tree either.
183 */
184 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
185
9e351cc8 186 down_write(&fs_info->commit_root_sem);
d96b3424
FM
187
188 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
189 fs_info->last_reloc_trans = trans->transid;
190
889bfa39 191 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
192 dirty_list) {
193 list_del_init(&root->dirty_list);
194 free_extent_buffer(root->commit_root);
195 root->commit_root = btrfs_root_node(root);
41e7acd3 196 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 197 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 198 }
2b9dbef2
JB
199
200 /* We can free old roots now. */
889bfa39
JB
201 spin_lock(&cur_trans->dropped_roots_lock);
202 while (!list_empty(&cur_trans->dropped_roots)) {
203 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
204 struct btrfs_root, root_list);
205 list_del_init(&root->root_list);
889bfa39
JB
206 spin_unlock(&cur_trans->dropped_roots_lock);
207 btrfs_free_log(trans, root);
2b9dbef2 208 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 209 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 210 }
889bfa39 211 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62 212
9e351cc8 213 up_write(&fs_info->commit_root_sem);
817d52f8
JB
214}
215
0860adfd
MX
216static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
217 unsigned int type)
218{
219 if (type & TRANS_EXTWRITERS)
220 atomic_inc(&trans->num_extwriters);
221}
222
223static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
224 unsigned int type)
225{
226 if (type & TRANS_EXTWRITERS)
227 atomic_dec(&trans->num_extwriters);
228}
229
230static inline void extwriter_counter_init(struct btrfs_transaction *trans,
231 unsigned int type)
232{
233 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
234}
235
236static inline int extwriter_counter_read(struct btrfs_transaction *trans)
237{
238 return atomic_read(&trans->num_extwriters);
178260b2
MX
239}
240
fb6dea26 241/*
79bd3712
FM
242 * To be called after doing the chunk btree updates right after allocating a new
243 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
244 * chunk after all chunk btree updates and after finishing the second phase of
245 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
246 * group had its chunk item insertion delayed to the second phase.
fb6dea26
JB
247 */
248void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
249{
250 struct btrfs_fs_info *fs_info = trans->fs_info;
251
252 if (!trans->chunk_bytes_reserved)
253 return;
254
fb6dea26 255 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 256 trans->chunk_bytes_reserved, NULL);
fb6dea26
JB
257 trans->chunk_bytes_reserved = 0;
258}
259
d352ac68
CM
260/*
261 * either allocate a new transaction or hop into the existing one
262 */
2ff7e61e
JM
263static noinline int join_transaction(struct btrfs_fs_info *fs_info,
264 unsigned int type)
79154b1b
CM
265{
266 struct btrfs_transaction *cur_trans;
a4abeea4 267
19ae4e81 268 spin_lock(&fs_info->trans_lock);
d43317dc 269loop:
49b25e05 270 /* The file system has been taken offline. No new transactions. */
84961539 271 if (BTRFS_FS_ERROR(fs_info)) {
19ae4e81 272 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
273 return -EROFS;
274 }
275
19ae4e81 276 cur_trans = fs_info->running_transaction;
a4abeea4 277 if (cur_trans) {
bf31f87f 278 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 279 spin_unlock(&fs_info->trans_lock);
49b25e05 280 return cur_trans->aborted;
871383be 281 }
4a9d8bde 282 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
283 spin_unlock(&fs_info->trans_lock);
284 return -EBUSY;
285 }
9b64f57d 286 refcount_inc(&cur_trans->use_count);
13c5a93e 287 atomic_inc(&cur_trans->num_writers);
0860adfd 288 extwriter_counter_inc(cur_trans, type);
19ae4e81 289 spin_unlock(&fs_info->trans_lock);
e1489b4f 290 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 291 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
a4abeea4 292 return 0;
79154b1b 293 }
19ae4e81 294 spin_unlock(&fs_info->trans_lock);
a4abeea4 295
354aa0fb 296 /*
4490e803
FM
297 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
298 * current transaction, and commit it. If there is no transaction, just
299 * return ENOENT.
354aa0fb 300 */
4490e803 301 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
354aa0fb
MX
302 return -ENOENT;
303
4a9d8bde
MX
304 /*
305 * JOIN_NOLOCK only happens during the transaction commit, so
306 * it is impossible that ->running_transaction is NULL
307 */
308 BUG_ON(type == TRANS_JOIN_NOLOCK);
309
4b5faeac 310 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
311 if (!cur_trans)
312 return -ENOMEM;
d43317dc 313
e1489b4f 314 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 315 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
e1489b4f 316
19ae4e81
JS
317 spin_lock(&fs_info->trans_lock);
318 if (fs_info->running_transaction) {
d43317dc
CM
319 /*
320 * someone started a transaction after we unlocked. Make sure
4a9d8bde 321 * to redo the checks above
d43317dc 322 */
5a9ba670 323 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 324 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 325 kfree(cur_trans);
d43317dc 326 goto loop;
84961539 327 } else if (BTRFS_FS_ERROR(fs_info)) {
e4b50e14 328 spin_unlock(&fs_info->trans_lock);
5a9ba670 329 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 330 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 331 kfree(cur_trans);
7b8b92af 332 return -EROFS;
79154b1b 333 }
d43317dc 334
ab8d0fc4 335 cur_trans->fs_info = fs_info;
48778179
FM
336 atomic_set(&cur_trans->pending_ordered, 0);
337 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 338 atomic_set(&cur_trans->num_writers, 1);
0860adfd 339 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
340 init_waitqueue_head(&cur_trans->writer_wait);
341 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 342 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
343 /*
344 * One for this trans handle, one so it will live on until we
345 * commit the transaction.
346 */
9b64f57d 347 refcount_set(&cur_trans->use_count, 2);
3204d33c 348 cur_trans->flags = 0;
afd48513 349 cur_trans->start_time = ktime_get_seconds();
a4abeea4 350
a099d0fd
AM
351 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
352
5c9d028b 353 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 354 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 355 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
356
357 /*
358 * although the tree mod log is per file system and not per transaction,
359 * the log must never go across transaction boundaries.
360 */
361 smp_mb();
31b1a2bd 362 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 363 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 364 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 365 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 366 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 367
a4abeea4
JB
368 spin_lock_init(&cur_trans->delayed_refs.lock);
369
370 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 371 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 372 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 373 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 374 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 375 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 376 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 377 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 378 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 379 spin_lock_init(&cur_trans->dropped_roots_lock);
19ae4e81 380 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 381 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
35da5a7e 382 IO_TREE_TRANS_DIRTY_PAGES);
fe119a6e 383 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
35da5a7e 384 IO_TREE_FS_PINNED_EXTENTS);
4a4f8fe2 385 btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
19ae4e81
JS
386 cur_trans->transid = fs_info->generation;
387 fs_info->running_transaction = cur_trans;
49b25e05 388 cur_trans->aborted = 0;
19ae4e81 389 spin_unlock(&fs_info->trans_lock);
15ee9bc7 390
79154b1b
CM
391 return 0;
392}
393
d352ac68 394/*
92a7cc42
QW
395 * This does all the record keeping required to make sure that a shareable root
396 * is properly recorded in a given transaction. This is required to make sure
397 * the old root from before we joined the transaction is deleted when the
398 * transaction commits.
d352ac68 399 */
7585717f 400static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
401 struct btrfs_root *root,
402 int force)
6702ed49 403{
0b246afa 404 struct btrfs_fs_info *fs_info = root->fs_info;
03a7e111 405 int ret = 0;
0b246afa 406
92a7cc42 407 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 408 root->last_trans < trans->transid) || force) {
4d31778a 409 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 410
7585717f 411 /*
27cdeb70 412 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
413 * we have the reloc mutex held now, so there
414 * is only one writer in this function
415 */
27cdeb70 416 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 417
27cdeb70 418 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
419 * they find our root->last_trans update
420 */
421 smp_wmb();
422
fc7cbcd4 423 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 424 if (root->last_trans == trans->transid && !force) {
fc7cbcd4 425 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
426 return 0;
427 }
fc7cbcd4 428 radix_tree_tag_set(&fs_info->fs_roots_radix,
e094f480 429 (unsigned long)btrfs_root_id(root),
fc7cbcd4
DS
430 BTRFS_ROOT_TRANS_TAG);
431 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
432 root->last_trans = trans->transid;
433
434 /* this is pretty tricky. We don't want to
435 * take the relocation lock in btrfs_record_root_in_trans
436 * unless we're really doing the first setup for this root in
437 * this transaction.
438 *
439 * Normally we'd use root->last_trans as a flag to decide
440 * if we want to take the expensive mutex.
441 *
442 * But, we have to set root->last_trans before we
443 * init the relocation root, otherwise, we trip over warnings
444 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 445 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
446 * fixing up the reloc trees and everyone must wait.
447 *
448 * When this is zero, they can trust root->last_trans and fly
449 * through btrfs_record_root_in_trans without having to take the
450 * lock. smp_wmb() makes sure that all the writes above are
451 * done before we pop in the zero below
452 */
03a7e111 453 ret = btrfs_init_reloc_root(trans, root);
c7548af6 454 smp_mb__before_atomic();
27cdeb70 455 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2 456 }
03a7e111 457 return ret;
5d4f98a2 458}
bcc63abb 459
7585717f 460
2b9dbef2
JB
461void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
462 struct btrfs_root *root)
463{
0b246afa 464 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
465 struct btrfs_transaction *cur_trans = trans->transaction;
466
467 /* Add ourselves to the transaction dropped list */
468 spin_lock(&cur_trans->dropped_roots_lock);
469 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
470 spin_unlock(&cur_trans->dropped_roots_lock);
471
472 /* Make sure we don't try to update the root at commit time */
fc7cbcd4
DS
473 spin_lock(&fs_info->fs_roots_radix_lock);
474 radix_tree_tag_clear(&fs_info->fs_roots_radix,
e094f480 475 (unsigned long)btrfs_root_id(root),
fc7cbcd4
DS
476 BTRFS_ROOT_TRANS_TAG);
477 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
478}
479
7585717f
CM
480int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
481 struct btrfs_root *root)
482{
0b246afa 483 struct btrfs_fs_info *fs_info = root->fs_info;
1409e6cc 484 int ret;
0b246afa 485
92a7cc42 486 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
487 return 0;
488
489 /*
27cdeb70 490 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
491 * and barriers
492 */
493 smp_rmb();
494 if (root->last_trans == trans->transid &&
27cdeb70 495 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
496 return 0;
497
0b246afa 498 mutex_lock(&fs_info->reloc_mutex);
1409e6cc 499 ret = record_root_in_trans(trans, root, 0);
0b246afa 500 mutex_unlock(&fs_info->reloc_mutex);
7585717f 501
1409e6cc 502 return ret;
7585717f
CM
503}
504
4a9d8bde
MX
505static inline int is_transaction_blocked(struct btrfs_transaction *trans)
506{
3296bf56 507 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 508 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 509 !TRANS_ABORTED(trans));
4a9d8bde
MX
510}
511
d352ac68
CM
512/* wait for commit against the current transaction to become unblocked
513 * when this is done, it is safe to start a new transaction, but the current
514 * transaction might not be fully on disk.
515 */
2ff7e61e 516static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 517{
f9295749 518 struct btrfs_transaction *cur_trans;
79154b1b 519
0b246afa
JM
520 spin_lock(&fs_info->trans_lock);
521 cur_trans = fs_info->running_transaction;
4a9d8bde 522 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 523 refcount_inc(&cur_trans->use_count);
0b246afa 524 spin_unlock(&fs_info->trans_lock);
72d63ed6 525
3e738c53 526 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
0b246afa 527 wait_event(fs_info->transaction_wait,
501407aa 528 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 529 TRANS_ABORTED(cur_trans));
724e2315 530 btrfs_put_transaction(cur_trans);
a4abeea4 531 } else {
0b246afa 532 spin_unlock(&fs_info->trans_lock);
f9295749 533 }
37d1aeee
CM
534}
535
2ff7e61e 536static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 537{
0b246afa 538 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
539 return 0;
540
92e2f7e3 541 if (type == TRANS_START)
a22285a6 542 return 1;
a4abeea4 543
a22285a6
YZ
544 return 0;
545}
546
20dd2cbf
MX
547static inline bool need_reserve_reloc_root(struct btrfs_root *root)
548{
0b246afa
JM
549 struct btrfs_fs_info *fs_info = root->fs_info;
550
551 if (!fs_info->reloc_ctl ||
92a7cc42 552 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
e094f480 553 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
20dd2cbf
MX
554 root->reloc_root)
555 return false;
556
557 return true;
558}
559
28270e25
FM
560static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
561 enum btrfs_reserve_flush_enum flush,
562 u64 num_bytes,
563 u64 *delayed_refs_bytes)
564{
28270e25 565 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
2f6397e4 566 u64 bytes = num_bytes + *delayed_refs_bytes;
28270e25
FM
567 int ret;
568
28270e25
FM
569 /*
570 * We want to reserve all the bytes we may need all at once, so we only
571 * do 1 enospc flushing cycle per transaction start.
572 */
573 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
28270e25
FM
574
575 /*
576 * If we are an emergency flush, which can steal from the global block
577 * reserve, then attempt to not reserve space for the delayed refs, as
578 * we will consume space for them from the global block reserve.
579 */
2f6397e4 580 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
28270e25
FM
581 bytes -= *delayed_refs_bytes;
582 *delayed_refs_bytes = 0;
583 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
584 }
585
586 return ret;
587}
588
08e007d2 589static struct btrfs_trans_handle *
5aed1dd8 590start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
591 unsigned int type, enum btrfs_reserve_flush_enum flush,
592 bool enforce_qgroups)
37d1aeee 593{
0b246afa 594 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 595 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
28270e25 596 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
a22285a6
YZ
597 struct btrfs_trans_handle *h;
598 struct btrfs_transaction *cur_trans;
b5009945 599 u64 num_bytes = 0;
c5567237 600 u64 qgroup_reserved = 0;
28270e25 601 u64 delayed_refs_bytes = 0;
20dd2cbf 602 bool reloc_reserved = false;
9c343784 603 bool do_chunk_alloc = false;
20dd2cbf 604 int ret;
acce952b 605
84961539 606 if (BTRFS_FS_ERROR(fs_info))
acce952b 607 return ERR_PTR(-EROFS);
2a1eb461 608
46c4e71e 609 if (current->journal_info) {
0860adfd 610 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 611 h = current->journal_info;
b50fff81
DS
612 refcount_inc(&h->use_count);
613 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
614 h->orig_rsv = h->block_rsv;
615 h->block_rsv = NULL;
616 goto got_it;
617 }
b5009945
JB
618
619 /*
620 * Do the reservation before we join the transaction so we can do all
621 * the appropriate flushing if need be.
622 */
003d7c59 623 if (num_items && root != fs_info->chunk_root) {
0b246afa 624 qgroup_reserved = num_items * fs_info->nodesize;
a6496849
BB
625 /*
626 * Use prealloc for now, as there might be a currently running
627 * transaction that could free this reserved space prematurely
628 * by committing.
629 */
630 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
631 enforce_qgroups, false);
7174109c
QW
632 if (ret)
633 return ERR_PTR(ret);
c5567237 634
28270e25 635 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
ba2c4d4e 636 /*
28270e25
FM
637 * If we plan to insert/update/delete "num_items" from a btree,
638 * we will also generate delayed refs for extent buffers in the
639 * respective btree paths, so reserve space for the delayed refs
640 * that will be generated by the caller as it modifies btrees.
641 * Try to reserve them to avoid excessive use of the global
642 * block reserve.
ba2c4d4e 643 */
28270e25 644 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
ba2c4d4e 645
20dd2cbf
MX
646 /*
647 * Do the reservation for the relocation root creation
648 */
ee39b432 649 if (need_reserve_reloc_root(root)) {
0b246afa 650 num_bytes += fs_info->nodesize;
20dd2cbf
MX
651 reloc_reserved = true;
652 }
653
28270e25
FM
654 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
655 &delayed_refs_bytes);
ba2c4d4e
JB
656 if (ret)
657 goto reserve_fail;
9c343784 658
28270e25
FM
659 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
660
661 if (trans_rsv->space_info->force_alloc)
9c343784 662 do_chunk_alloc = true;
ba2c4d4e 663 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
748f553c 664 !btrfs_block_rsv_full(delayed_refs_rsv)) {
ba2c4d4e
JB
665 /*
666 * Some people call with btrfs_start_transaction(root, 0)
667 * because they can be throttled, but have some other mechanism
668 * for reserving space. We still want these guys to refill the
669 * delayed block_rsv so just add 1 items worth of reservation
670 * here.
671 */
672 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 673 if (ret)
843fcf35 674 goto reserve_fail;
b5009945 675 }
a22285a6 676again:
f2f767e7 677 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
678 if (!h) {
679 ret = -ENOMEM;
680 goto alloc_fail;
681 }
37d1aeee 682
98114659
JB
683 /*
684 * If we are JOIN_NOLOCK we're already committing a transaction and
685 * waiting on this guy, so we don't need to do the sb_start_intwrite
686 * because we're already holding a ref. We need this because we could
687 * have raced in and did an fsync() on a file which can kick a commit
688 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
689 *
690 * If we are ATTACH, it means we just want to catch the current
691 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 692 */
0860adfd 693 if (type & __TRANS_FREEZABLE)
0b246afa 694 sb_start_intwrite(fs_info->sb);
b2b5ef5c 695
2ff7e61e
JM
696 if (may_wait_transaction(fs_info, type))
697 wait_current_trans(fs_info);
a22285a6 698
a4abeea4 699 do {
2ff7e61e 700 ret = join_transaction(fs_info, type);
178260b2 701 if (ret == -EBUSY) {
2ff7e61e 702 wait_current_trans(fs_info);
a6d155d2
FM
703 if (unlikely(type == TRANS_ATTACH ||
704 type == TRANS_JOIN_NOSTART))
178260b2
MX
705 ret = -ENOENT;
706 }
a4abeea4
JB
707 } while (ret == -EBUSY);
708
a43f7f82 709 if (ret < 0)
843fcf35 710 goto join_fail;
0f7d52f4 711
0b246afa 712 cur_trans = fs_info->running_transaction;
a22285a6
YZ
713
714 h->transid = cur_trans->transid;
715 h->transaction = cur_trans;
b50fff81 716 refcount_set(&h->use_count, 1);
64b63580 717 h->fs_info = root->fs_info;
7174109c 718
a698d075 719 h->type = type;
ea658bad 720 INIT_LIST_HEAD(&h->new_bgs);
28270e25 721 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
b7ec40d7 722
a22285a6 723 smp_mb();
3296bf56 724 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 725 may_wait_transaction(fs_info, type)) {
abdd2e80 726 current->journal_info = h;
3a45bb20 727 btrfs_commit_transaction(h);
a22285a6
YZ
728 goto again;
729 }
730
b5009945 731 if (num_bytes) {
0b246afa 732 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 733 h->transid, num_bytes, 1);
28270e25 734 h->block_rsv = trans_rsv;
b5009945 735 h->bytes_reserved = num_bytes;
28270e25
FM
736 if (delayed_refs_bytes > 0) {
737 trace_btrfs_space_reservation(fs_info,
738 "local_delayed_refs_rsv",
739 h->transid,
740 delayed_refs_bytes, 1);
741 h->delayed_refs_bytes_reserved = delayed_refs_bytes;
742 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
743 delayed_refs_bytes = 0;
744 }
20dd2cbf 745 h->reloc_reserved = reloc_reserved;
a22285a6 746 }
9ed74f2d 747
2a1eb461 748got_it:
bcf3a3e7 749 if (!current->journal_info)
a22285a6 750 current->journal_info = h;
fcc99734 751
9c343784
JB
752 /*
753 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
754 * ALLOC_FORCE the first run through, and then we won't allocate for
755 * anybody else who races in later. We don't care about the return
756 * value here.
757 */
758 if (do_chunk_alloc && num_bytes) {
759 u64 flags = h->block_rsv->space_info->flags;
760
761 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
762 CHUNK_ALLOC_NO_FORCE);
763 }
764
fcc99734
QW
765 /*
766 * btrfs_record_root_in_trans() needs to alloc new extents, and may
767 * call btrfs_join_transaction() while we're also starting a
768 * transaction.
769 *
770 * Thus it need to be called after current->journal_info initialized,
771 * or we can deadlock.
772 */
68075ea8
JB
773 ret = btrfs_record_root_in_trans(h, root);
774 if (ret) {
775 /*
776 * The transaction handle is fully initialized and linked with
777 * other structures so it needs to be ended in case of errors,
778 * not just freed.
779 */
780 btrfs_end_transaction(h);
211de933 781 goto reserve_fail;
68075ea8 782 }
211de933
BB
783 /*
784 * Now that we have found a transaction to be a part of, convert the
785 * qgroup reservation from prealloc to pertrans. A different transaction
786 * can't race in and free our pertrans out from under us.
787 */
788 if (qgroup_reserved)
789 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
fcc99734 790
79154b1b 791 return h;
843fcf35
MX
792
793join_fail:
0860adfd 794 if (type & __TRANS_FREEZABLE)
0b246afa 795 sb_end_intwrite(fs_info->sb);
843fcf35
MX
796 kmem_cache_free(btrfs_trans_handle_cachep, h);
797alloc_fail:
798 if (num_bytes)
28270e25
FM
799 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
800 if (delayed_refs_bytes)
801 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
802 delayed_refs_bytes);
843fcf35 803reserve_fail:
a6496849 804 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
843fcf35 805 return ERR_PTR(ret);
79154b1b
CM
806}
807
f9295749 808struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 809 unsigned int num_items)
f9295749 810{
08e007d2 811 return start_transaction(root, num_items, TRANS_START,
003d7c59 812 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 813}
003d7c59 814
8eab77ff
FM
815struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
816 struct btrfs_root *root,
7f9fe614 817 unsigned int num_items)
8eab77ff 818{
7f9fe614
JB
819 return start_transaction(root, num_items, TRANS_START,
820 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 821}
8407aa46 822
7a7eaa40 823struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 824{
003d7c59
JM
825 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
826 true);
f9295749
CM
827}
828
8d510121 829struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 830{
575a75d6 831 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 832 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
833}
834
a6d155d2
FM
835/*
836 * Similar to regular join but it never starts a transaction when none is
19288951
FM
837 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
838 * This is similar to btrfs_attach_transaction() but it allows the join to
839 * happen if the transaction commit already started but it's not yet in the
840 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
a6d155d2
FM
841 */
842struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
843{
844 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
845 BTRFS_RESERVE_NO_FLUSH, true);
846}
847
d4edf39b 848/*
9580503b 849 * Catch the running transaction.
d4edf39b
MX
850 *
851 * It is used when we want to commit the current the transaction, but
852 * don't want to start a new one.
853 *
854 * Note: If this function return -ENOENT, it just means there is no
855 * running transaction. But it is possible that the inactive transaction
856 * is still in the memory, not fully on disk. If you hope there is no
857 * inactive transaction in the fs when -ENOENT is returned, you should
858 * invoke
859 * btrfs_attach_transaction_barrier()
860 */
354aa0fb 861struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 862{
575a75d6 863 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 864 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
865}
866
d4edf39b 867/*
9580503b 868 * Catch the running transaction.
d4edf39b 869 *
52042d8e 870 * It is similar to the above function, the difference is this one
d4edf39b
MX
871 * will wait for all the inactive transactions until they fully
872 * complete.
873 */
874struct btrfs_trans_handle *
875btrfs_attach_transaction_barrier(struct btrfs_root *root)
876{
877 struct btrfs_trans_handle *trans;
878
575a75d6 879 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 880 BTRFS_RESERVE_NO_FLUSH, true);
b28ff3a7
FM
881 if (trans == ERR_PTR(-ENOENT)) {
882 int ret;
883
884 ret = btrfs_wait_for_commit(root->fs_info, 0);
885 if (ret)
886 return ERR_PTR(ret);
887 }
d4edf39b
MX
888
889 return trans;
890}
891
d0c2f4fa
FM
892/* Wait for a transaction commit to reach at least the given state. */
893static noinline void wait_for_commit(struct btrfs_transaction *commit,
894 const enum btrfs_trans_state min_state)
89ce8a63 895{
5fd76bf3
OS
896 struct btrfs_fs_info *fs_info = commit->fs_info;
897 u64 transid = commit->transid;
898 bool put = false;
899
3e738c53
IA
900 /*
901 * At the moment this function is called with min_state either being
902 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
903 */
904 if (min_state == TRANS_STATE_COMPLETED)
905 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
906 else
907 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
908
5fd76bf3
OS
909 while (1) {
910 wait_event(commit->commit_wait, commit->state >= min_state);
911 if (put)
912 btrfs_put_transaction(commit);
913
914 if (min_state < TRANS_STATE_COMPLETED)
915 break;
916
917 /*
918 * A transaction isn't really completed until all of the
919 * previous transactions are completed, but with fsync we can
920 * end up with SUPER_COMMITTED transactions before a COMPLETED
921 * transaction. Wait for those.
922 */
923
924 spin_lock(&fs_info->trans_lock);
925 commit = list_first_entry_or_null(&fs_info->trans_list,
926 struct btrfs_transaction,
927 list);
928 if (!commit || commit->transid > transid) {
929 spin_unlock(&fs_info->trans_lock);
930 break;
931 }
932 refcount_inc(&commit->use_count);
933 put = true;
934 spin_unlock(&fs_info->trans_lock);
935 }
89ce8a63
CM
936}
937
2ff7e61e 938int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
939{
940 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 941 int ret = 0;
46204592 942
46204592 943 if (transid) {
0124855f 944 if (transid <= btrfs_get_last_trans_committed(fs_info))
a4abeea4 945 goto out;
46204592
SW
946
947 /* find specified transaction */
0b246afa
JM
948 spin_lock(&fs_info->trans_lock);
949 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
950 if (t->transid == transid) {
951 cur_trans = t;
9b64f57d 952 refcount_inc(&cur_trans->use_count);
8cd2807f 953 ret = 0;
46204592
SW
954 break;
955 }
8cd2807f
MX
956 if (t->transid > transid) {
957 ret = 0;
46204592 958 break;
8cd2807f 959 }
46204592 960 }
0b246afa 961 spin_unlock(&fs_info->trans_lock);
42383020
SW
962
963 /*
964 * The specified transaction doesn't exist, or we
965 * raced with btrfs_commit_transaction
966 */
967 if (!cur_trans) {
0124855f 968 if (transid > btrfs_get_last_trans_committed(fs_info))
42383020 969 ret = -EINVAL;
8cd2807f 970 goto out;
42383020 971 }
46204592
SW
972 } else {
973 /* find newest transaction that is committing | committed */
0b246afa
JM
974 spin_lock(&fs_info->trans_lock);
975 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 976 list) {
4a9d8bde
MX
977 if (t->state >= TRANS_STATE_COMMIT_START) {
978 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 979 break;
46204592 980 cur_trans = t;
9b64f57d 981 refcount_inc(&cur_trans->use_count);
46204592
SW
982 break;
983 }
984 }
0b246afa 985 spin_unlock(&fs_info->trans_lock);
46204592 986 if (!cur_trans)
a4abeea4 987 goto out; /* nothing committing|committed */
46204592
SW
988 }
989
d0c2f4fa 990 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
bf7ecbe9 991 ret = cur_trans->aborted;
724e2315 992 btrfs_put_transaction(cur_trans);
a4abeea4 993out:
46204592
SW
994 return ret;
995}
996
2ff7e61e 997void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 998{
92e2f7e3 999 wait_current_trans(fs_info);
37d1aeee
CM
1000}
1001
a2633b6a 1002bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
1003{
1004 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 1005
3296bf56 1006 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 1007 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 1008 return true;
8929ecfa 1009
04fb3285
FM
1010 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1011 return true;
1012
1013 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
8929ecfa
YZ
1014}
1015
dc60c525
NB
1016static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1017
0e34693f 1018{
dc60c525
NB
1019 struct btrfs_fs_info *fs_info = trans->fs_info;
1020
0e34693f
NB
1021 if (!trans->block_rsv) {
1022 ASSERT(!trans->bytes_reserved);
28270e25 1023 ASSERT(!trans->delayed_refs_bytes_reserved);
0e34693f
NB
1024 return;
1025 }
1026
28270e25
FM
1027 if (!trans->bytes_reserved) {
1028 ASSERT(!trans->delayed_refs_bytes_reserved);
0e34693f 1029 return;
28270e25 1030 }
0e34693f
NB
1031
1032 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1033 trace_btrfs_space_reservation(fs_info, "transaction",
1034 trans->transid, trans->bytes_reserved, 0);
1035 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 1036 trans->bytes_reserved, NULL);
0e34693f 1037 trans->bytes_reserved = 0;
28270e25
FM
1038
1039 if (!trans->delayed_refs_bytes_reserved)
1040 return;
1041
1042 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1043 trans->transid,
1044 trans->delayed_refs_bytes_reserved, 0);
1045 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1046 trans->delayed_refs_bytes_reserved, NULL);
1047 trans->delayed_refs_bytes_reserved = 0;
0e34693f
NB
1048}
1049
89ce8a63 1050static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 1051 int throttle)
79154b1b 1052{
3a45bb20 1053 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 1054 struct btrfs_transaction *cur_trans = trans->transaction;
fdee5e55 1055 int ret = 0;
c3e69d58 1056
b50fff81
DS
1057 if (refcount_read(&trans->use_count) > 1) {
1058 refcount_dec(&trans->use_count);
2a1eb461
JB
1059 trans->block_rsv = trans->orig_rsv;
1060 return 0;
1061 }
1062
dc60c525 1063 btrfs_trans_release_metadata(trans);
4c13d758 1064 trans->block_rsv = NULL;
c5567237 1065
119e80df 1066 btrfs_create_pending_block_groups(trans);
ea658bad 1067
4fbcdf66
FM
1068 btrfs_trans_release_chunk_metadata(trans);
1069
0860adfd 1070 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1071 sb_end_intwrite(info->sb);
6df7881a 1072
8929ecfa 1073 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
1074 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1075 atomic_dec(&cur_trans->num_writers);
0860adfd 1076 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 1077
093258e6 1078 cond_wake_up(&cur_trans->writer_wait);
e1489b4f 1079
5a9ba670 1080 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
e1489b4f
IA
1081 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1082
724e2315 1083 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
1084
1085 if (current->journal_info == trans)
1086 current->journal_info = NULL;
ab78c84d 1087
24bbcf04 1088 if (throttle)
2ff7e61e 1089 btrfs_run_delayed_iputs(info);
24bbcf04 1090
84961539 1091 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
4e121c06 1092 wake_up_process(info->transaction_kthread);
fbabd4a3 1093 if (TRANS_ABORTED(trans))
fdee5e55 1094 ret = trans->aborted;
fbabd4a3 1095 else
fdee5e55 1096 ret = -EROFS;
4e121c06 1097 }
49b25e05 1098
4edc2ca3 1099 kmem_cache_free(btrfs_trans_handle_cachep, trans);
fdee5e55 1100 return ret;
79154b1b
CM
1101}
1102
3a45bb20 1103int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 1104{
3a45bb20 1105 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
1106}
1107
3a45bb20 1108int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1109{
3a45bb20 1110 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1111}
1112
d352ac68
CM
1113/*
1114 * when btree blocks are allocated, they have some corresponding bits set for
1115 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1116 * those extents are sent to disk but does not wait on them
d352ac68 1117 */
2ff7e61e 1118int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1119 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1120{
ce875311 1121 int ret = 0;
0b246afa 1122 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1123 struct extent_state *cached_state = NULL;
777e6bd7 1124 u64 start = 0;
5f39d397 1125 u64 end;
7c4452b9 1126
e5860f82
FM
1127 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1128 mark, &cached_state)) {
663dfbb0
FM
1129 bool wait_writeback = false;
1130
ce875311 1131 ret = convert_extent_bit(dirty_pages, start, end,
663dfbb0 1132 EXTENT_NEED_WAIT,
210aa277 1133 mark, &cached_state);
663dfbb0
FM
1134 /*
1135 * convert_extent_bit can return -ENOMEM, which is most of the
1136 * time a temporary error. So when it happens, ignore the error
1137 * and wait for writeback of this range to finish - because we
1138 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1139 * to __btrfs_wait_marked_extents() would not know that
1140 * writeback for this range started and therefore wouldn't
1141 * wait for it to finish - we don't want to commit a
1142 * superblock that points to btree nodes/leafs for which
1143 * writeback hasn't finished yet (and without errors).
663dfbb0 1144 * We cleanup any entries left in the io tree when committing
41e7acd3 1145 * the transaction (through extent_io_tree_release()).
663dfbb0 1146 */
ce875311
AJ
1147 if (ret == -ENOMEM) {
1148 ret = 0;
663dfbb0
FM
1149 wait_writeback = true;
1150 }
ce875311
AJ
1151 if (!ret)
1152 ret = filemap_fdatawrite_range(mapping, start, end);
1153 if (!ret && wait_writeback)
1154 ret = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1155 free_extent_state(cached_state);
ce875311 1156 if (ret)
9a7b68d3 1157 break;
663dfbb0 1158 cached_state = NULL;
1728366e
JB
1159 cond_resched();
1160 start = end + 1;
7c4452b9 1161 }
ce875311 1162 return ret;
690587d1
CM
1163}
1164
1165/*
1166 * when btree blocks are allocated, they have some corresponding bits set for
1167 * them in one of two extent_io trees. This is used to make sure all of
1168 * those extents are on disk for transaction or log commit. We wait
1169 * on all the pages and clear them from the dirty pages state tree
1170 */
bf89d38f
JM
1171static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1172 struct extent_io_tree *dirty_pages)
690587d1 1173{
0b246afa 1174 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1175 struct extent_state *cached_state = NULL;
690587d1
CM
1176 u64 start = 0;
1177 u64 end;
1e8a4237 1178 int ret = 0;
777e6bd7 1179
e5860f82
FM
1180 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1181 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1182 /*
1183 * Ignore -ENOMEM errors returned by clear_extent_bit().
1184 * When committing the transaction, we'll remove any entries
1185 * left in the io tree. For a log commit, we don't remove them
1186 * after committing the log because the tree can be accessed
1187 * concurrently - we do it only at transaction commit time when
41e7acd3 1188 * it's safe to do it (through extent_io_tree_release()).
663dfbb0 1189 */
1e8a4237 1190 ret = clear_extent_bit(dirty_pages, start, end,
bd015294 1191 EXTENT_NEED_WAIT, &cached_state);
1e8a4237
AJ
1192 if (ret == -ENOMEM)
1193 ret = 0;
1194 if (!ret)
1195 ret = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1196 free_extent_state(cached_state);
1e8a4237 1197 if (ret)
9a7b68d3 1198 break;
e38e2ed7 1199 cached_state = NULL;
1728366e
JB
1200 cond_resched();
1201 start = end + 1;
777e6bd7 1202 }
1e8a4237 1203 return ret;
bf89d38f 1204}
656f30db 1205
b9fae2eb 1206static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1207 struct extent_io_tree *dirty_pages)
1208{
1209 bool errors = false;
1210 int err;
656f30db 1211
bf89d38f
JM
1212 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1213 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1214 errors = true;
1215
1216 if (errors && !err)
1217 err = -EIO;
1218 return err;
1219}
656f30db 1220
bf89d38f
JM
1221int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1222{
1223 struct btrfs_fs_info *fs_info = log_root->fs_info;
1224 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1225 bool errors = false;
1226 int err;
656f30db 1227
e094f480 1228 ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID);
bf89d38f
JM
1229
1230 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1231 if ((mark & EXTENT_DIRTY) &&
1232 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1233 errors = true;
1234
1235 if ((mark & EXTENT_NEW) &&
1236 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1237 errors = true;
1238
1239 if (errors && !err)
1240 err = -EIO;
1241 return err;
79154b1b
CM
1242}
1243
690587d1 1244/*
c9b577c0
NB
1245 * When btree blocks are allocated the corresponding extents are marked dirty.
1246 * This function ensures such extents are persisted on disk for transaction or
1247 * log commit.
1248 *
1249 * @trans: transaction whose dirty pages we'd like to write
690587d1 1250 */
70458a58 1251static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1252{
1253 int ret;
1254 int ret2;
c9b577c0 1255 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1256 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1257 struct blk_plug plug;
690587d1 1258
c6adc9cc 1259 blk_start_plug(&plug);
c9b577c0 1260 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1261 blk_finish_plug(&plug);
bf89d38f 1262 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1263
41e7acd3 1264 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1265
bf0da8c1
CM
1266 if (ret)
1267 return ret;
c9b577c0 1268 else if (ret2)
bf0da8c1 1269 return ret2;
c9b577c0
NB
1270 else
1271 return 0;
d0c803c4
CM
1272}
1273
d352ac68
CM
1274/*
1275 * this is used to update the root pointer in the tree of tree roots.
1276 *
1277 * But, in the case of the extent allocation tree, updating the root
1278 * pointer may allocate blocks which may change the root of the extent
1279 * allocation tree.
1280 *
1281 * So, this loops and repeats and makes sure the cowonly root didn't
1282 * change while the root pointer was being updated in the metadata.
1283 */
0b86a832
CM
1284static int update_cowonly_root(struct btrfs_trans_handle *trans,
1285 struct btrfs_root *root)
79154b1b
CM
1286{
1287 int ret;
0b86a832 1288 u64 old_root_bytenr;
86b9f2ec 1289 u64 old_root_used;
0b246afa
JM
1290 struct btrfs_fs_info *fs_info = root->fs_info;
1291 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1292
86b9f2ec 1293 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1294
d397712b 1295 while (1) {
0b86a832 1296 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1297 if (old_root_bytenr == root->node->start &&
ea526d18 1298 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1299 break;
87ef2bb4 1300
5d4f98a2 1301 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1302 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1303 &root->root_key,
1304 &root->root_item);
49b25e05
JM
1305 if (ret)
1306 return ret;
56bec294 1307
86b9f2ec 1308 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1309 }
276e680d 1310
0b86a832
CM
1311 return 0;
1312}
1313
d352ac68
CM
1314/*
1315 * update all the cowonly tree roots on disk
49b25e05
JM
1316 *
1317 * The error handling in this function may not be obvious. Any of the
1318 * failures will cause the file system to go offline. We still need
1319 * to clean up the delayed refs.
d352ac68 1320 */
9386d8bc 1321static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1322{
9386d8bc 1323 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1324 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1325 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1326 struct list_head *next;
84234f3a 1327 struct extent_buffer *eb;
56bec294 1328 int ret;
84234f3a 1329
dfba78dc
FM
1330 /*
1331 * At this point no one can be using this transaction to modify any tree
1332 * and no one can start another transaction to modify any tree either.
1333 */
1334 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1335
84234f3a 1336 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1337 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1338 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1339 btrfs_tree_unlock(eb);
1340 free_extent_buffer(eb);
0b86a832 1341
49b25e05
JM
1342 if (ret)
1343 return ret;
87ef2bb4 1344
196c9d8d 1345 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1346 if (ret)
1347 return ret;
2b584c68 1348 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1349 if (ret)
1350 return ret;
280f8bd2 1351 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1352 if (ret)
1353 return ret;
546adb0d 1354
bbebb3e0 1355 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1356 if (ret)
1357 return ret;
1358
ea526d18 1359again:
d397712b 1360 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1361 struct btrfs_root *root;
0b86a832
CM
1362 next = fs_info->dirty_cowonly_roots.next;
1363 list_del_init(next);
1364 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1365 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1366
826582ca
JB
1367 list_add_tail(&root->dirty_list,
1368 &trans->transaction->switch_commits);
49b25e05
JM
1369 ret = update_cowonly_root(trans, root);
1370 if (ret)
1371 return ret;
79154b1b 1372 }
276e680d 1373
488bc2a2 1374 /* Now flush any delayed refs generated by updating all of the roots */
8a526c44 1375 ret = btrfs_run_delayed_refs(trans, U64_MAX);
488bc2a2
JB
1376 if (ret)
1377 return ret;
1378
1bbc621e 1379 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1380 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1381 if (ret)
1382 return ret;
488bc2a2
JB
1383
1384 /*
1385 * We're writing the dirty block groups, which could generate
1386 * delayed refs, which could generate more dirty block groups,
1387 * so we want to keep this flushing in this loop to make sure
1388 * everything gets run.
1389 */
8a526c44 1390 ret = btrfs_run_delayed_refs(trans, U64_MAX);
ea526d18
JB
1391 if (ret)
1392 return ret;
1393 }
1394
1395 if (!list_empty(&fs_info->dirty_cowonly_roots))
1396 goto again;
1397
9f6cbcbb
DS
1398 /* Update dev-replace pointer once everything is committed */
1399 fs_info->dev_replace.committed_cursor_left =
1400 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1401
79154b1b
CM
1402 return 0;
1403}
1404
b4be6aef
JB
1405/*
1406 * If we had a pending drop we need to see if there are any others left in our
1407 * dead roots list, and if not clear our bit and wake any waiters.
1408 */
1409void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1410{
1411 /*
1412 * We put the drop in progress roots at the front of the list, so if the
1413 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1414 * up.
1415 */
1416 spin_lock(&fs_info->trans_lock);
1417 if (!list_empty(&fs_info->dead_roots)) {
1418 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1419 struct btrfs_root,
1420 root_list);
1421 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1422 spin_unlock(&fs_info->trans_lock);
1423 return;
1424 }
1425 }
1426 spin_unlock(&fs_info->trans_lock);
1427
1428 btrfs_wake_unfinished_drop(fs_info);
1429}
1430
d352ac68
CM
1431/*
1432 * dead roots are old snapshots that need to be deleted. This allocates
1433 * a dirty root struct and adds it into the list of dead roots that need to
1434 * be deleted
1435 */
cfad392b 1436void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1437{
0b246afa
JM
1438 struct btrfs_fs_info *fs_info = root->fs_info;
1439
1440 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1441 if (list_empty(&root->root_list)) {
1442 btrfs_grab_root(root);
b4be6aef
JB
1443
1444 /* We want to process the partially complete drops first. */
1445 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1446 list_add(&root->root_list, &fs_info->dead_roots);
1447 else
1448 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1449 }
0b246afa 1450 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1451}
1452
d352ac68 1453/*
dfba78dc
FM
1454 * Update each subvolume root and its relocation root, if it exists, in the tree
1455 * of tree roots. Also free log roots if they exist.
d352ac68 1456 */
7e4443d9 1457static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1458{
7e4443d9 1459 struct btrfs_fs_info *fs_info = trans->fs_info;
fc7cbcd4
DS
1460 struct btrfs_root *gang[8];
1461 int i;
1462 int ret;
54aa1f4d 1463
dfba78dc
FM
1464 /*
1465 * At this point no one can be using this transaction to modify any tree
1466 * and no one can start another transaction to modify any tree either.
1467 */
1468 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1469
fc7cbcd4
DS
1470 spin_lock(&fs_info->fs_roots_radix_lock);
1471 while (1) {
1472 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1473 (void **)gang, 0,
1474 ARRAY_SIZE(gang),
1475 BTRFS_ROOT_TRANS_TAG);
1476 if (ret == 0)
1477 break;
1478 for (i = 0; i < ret; i++) {
1479 struct btrfs_root *root = gang[i];
1480 int ret2;
1481
1482 /*
1483 * At this point we can neither have tasks logging inodes
1484 * from a root nor trying to commit a log tree.
1485 */
1486 ASSERT(atomic_read(&root->log_writers) == 0);
1487 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1488 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1489
1490 radix_tree_tag_clear(&fs_info->fs_roots_radix,
e094f480 1491 (unsigned long)btrfs_root_id(root),
fc7cbcd4 1492 BTRFS_ROOT_TRANS_TAG);
6e68de0b 1493 btrfs_qgroup_free_meta_all_pertrans(root);
fc7cbcd4
DS
1494 spin_unlock(&fs_info->fs_roots_radix_lock);
1495
1496 btrfs_free_log(trans, root);
1497 ret2 = btrfs_update_reloc_root(trans, root);
1498 if (ret2)
1499 return ret2;
1500
1501 /* see comments in should_cow_block() */
1502 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1503 smp_mb__after_atomic();
1504
1505 if (root->commit_root != root->node) {
1506 list_add_tail(&root->dirty_list,
1507 &trans->transaction->switch_commits);
1508 btrfs_set_root_node(&root->root_item,
1509 root->node);
1510 }
48b36a60 1511
fc7cbcd4
DS
1512 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1513 &root->root_key,
1514 &root->root_item);
1515 if (ret2)
1516 return ret2;
1517 spin_lock(&fs_info->fs_roots_radix_lock);
0f7d52f4
CM
1518 }
1519 }
fc7cbcd4 1520 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1521 return 0;
0f7d52f4
CM
1522}
1523
6426c7ad
QW
1524/*
1525 * Do all special snapshot related qgroup dirty hack.
1526 *
1527 * Will do all needed qgroup inherit and dirty hack like switch commit
1528 * roots inside one transaction and write all btree into disk, to make
1529 * qgroup works.
1530 */
1531static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1532 struct btrfs_root *src,
1533 struct btrfs_root *parent,
1534 struct btrfs_qgroup_inherit *inherit,
1535 u64 dst_objectid)
1536{
1537 struct btrfs_fs_info *fs_info = src->fs_info;
1538 int ret;
1539
1540 /*
5343cd93
BB
1541 * Save some performance in the case that qgroups are not enabled. If
1542 * this check races with the ioctl, rescan will kick in anyway.
6426c7ad 1543 */
182940f4 1544 if (!btrfs_qgroup_full_accounting(fs_info))
6426c7ad 1545 return 0;
6426c7ad 1546
4d31778a 1547 /*
52042d8e 1548 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1549 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1550 * recorded root will never be updated again, causing an outdated root
1551 * item.
1552 */
1c442d22
JB
1553 ret = record_root_in_trans(trans, src, 1);
1554 if (ret)
1555 return ret;
4d31778a 1556
2a4d84c1
JB
1557 /*
1558 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1559 * src root, so we must run the delayed refs here.
1560 *
1561 * However this isn't particularly fool proof, because there's no
1562 * synchronization keeping us from changing the tree after this point
1563 * before we do the qgroup_inherit, or even from making changes while
1564 * we're doing the qgroup_inherit. But that's a problem for the future,
1565 * for now flush the delayed refs to narrow the race window where the
1566 * qgroup counters could end up wrong.
1567 */
8a526c44 1568 ret = btrfs_run_delayed_refs(trans, U64_MAX);
2a4d84c1
JB
1569 if (ret) {
1570 btrfs_abort_transaction(trans, ret);
44365827 1571 return ret;
2a4d84c1
JB
1572 }
1573
7e4443d9 1574 ret = commit_fs_roots(trans);
6426c7ad
QW
1575 if (ret)
1576 goto out;
460fb20a 1577 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1578 if (ret < 0)
1579 goto out;
1580
1581 /* Now qgroup are all updated, we can inherit it to new qgroups */
e094f480
JB
1582 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid,
1583 btrfs_root_id(parent), inherit);
6426c7ad
QW
1584 if (ret < 0)
1585 goto out;
1586
1587 /*
1588 * Now we do a simplified commit transaction, which will:
1589 * 1) commit all subvolume and extent tree
1590 * To ensure all subvolume and extent tree have a valid
1591 * commit_root to accounting later insert_dir_item()
1592 * 2) write all btree blocks onto disk
1593 * This is to make sure later btree modification will be cowed
1594 * Or commit_root can be populated and cause wrong qgroup numbers
1595 * In this simplified commit, we don't really care about other trees
1596 * like chunk and root tree, as they won't affect qgroup.
1597 * And we don't write super to avoid half committed status.
1598 */
9386d8bc 1599 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1600 if (ret)
1601 goto out;
889bfa39 1602 switch_commit_roots(trans);
70458a58 1603 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1604 if (ret)
f7af3934 1605 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1606 "Error while writing out transaction for qgroup");
1607
1608out:
6426c7ad
QW
1609 /*
1610 * Force parent root to be updated, as we recorded it before so its
1611 * last_trans == cur_transid.
1612 * Or it won't be committed again onto disk after later
1613 * insert_dir_item()
1614 */
1615 if (!ret)
1c442d22 1616 ret = record_root_in_trans(trans, parent, 1);
6426c7ad
QW
1617 return ret;
1618}
1619
d352ac68
CM
1620/*
1621 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1622 * transaction commit. This does the actual creation.
1623 *
1624 * Note:
1625 * If the error which may affect the commitment of the current transaction
1626 * happens, we should return the error number. If the error which just affect
1627 * the creation of the pending snapshots, just return 0.
d352ac68 1628 */
80b6794d 1629static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1630 struct btrfs_pending_snapshot *pending)
1631{
08d50ca3
NB
1632
1633 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1634 struct btrfs_key key;
80b6794d 1635 struct btrfs_root_item *new_root_item;
3063d29f
CM
1636 struct btrfs_root *tree_root = fs_info->tree_root;
1637 struct btrfs_root *root = pending->root;
6bdb72de 1638 struct btrfs_root *parent_root;
98c9942a 1639 struct btrfs_block_rsv *rsv;
ab3c5c18 1640 struct inode *parent_inode = pending->dir;
42874b3d
MX
1641 struct btrfs_path *path;
1642 struct btrfs_dir_item *dir_item;
3063d29f 1643 struct extent_buffer *tmp;
925baedd 1644 struct extent_buffer *old;
95582b00 1645 struct timespec64 cur_time;
aec8030a 1646 int ret = 0;
d68fc57b 1647 u64 to_reserve = 0;
6bdb72de 1648 u64 index = 0;
a22285a6 1649 u64 objectid;
b83cc969 1650 u64 root_flags;
ab3c5c18
STD
1651 unsigned int nofs_flags;
1652 struct fscrypt_name fname;
3063d29f 1653
8546b570
DS
1654 ASSERT(pending->path);
1655 path = pending->path;
42874b3d 1656
b0c0ea63
DS
1657 ASSERT(pending->root_item);
1658 new_root_item = pending->root_item;
a22285a6 1659
ab3c5c18
STD
1660 /*
1661 * We're inside a transaction and must make sure that any potential
1662 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1663 * filesystem.
1664 */
1665 nofs_flags = memalloc_nofs_save();
1666 pending->error = fscrypt_setup_filename(parent_inode,
1667 &pending->dentry->d_name, 0,
1668 &fname);
1669 memalloc_nofs_restore(nofs_flags);
1670 if (pending->error)
1671 goto free_pending;
ab3c5c18 1672
543068a2 1673 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1674 if (pending->error)
ab3c5c18 1675 goto free_fname;
3063d29f 1676
d6726335
QW
1677 /*
1678 * Make qgroup to skip current new snapshot's qgroupid, as it is
1679 * accounted by later btrfs_qgroup_inherit().
1680 */
1681 btrfs_set_skip_qgroup(trans, objectid);
1682
147d256e 1683 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1684
1685 if (to_reserve > 0) {
9270501c 1686 pending->error = btrfs_block_rsv_add(fs_info,
aec8030a
MX
1687 &pending->block_rsv,
1688 to_reserve,
1689 BTRFS_RESERVE_NO_FLUSH);
1690 if (pending->error)
d6726335 1691 goto clear_skip_qgroup;
d68fc57b
YZ
1692 }
1693
3063d29f 1694 key.objectid = objectid;
a22285a6
YZ
1695 key.offset = (u64)-1;
1696 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1697
6fa9700e 1698 rsv = trans->block_rsv;
a22285a6 1699 trans->block_rsv = &pending->block_rsv;
2382c5cc 1700 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1701 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1702 trans->transid,
1703 trans->bytes_reserved, 1);
a22285a6 1704 parent_root = BTRFS_I(parent_inode)->root;
f0118cb6
JB
1705 ret = record_root_in_trans(trans, parent_root, 0);
1706 if (ret)
1707 goto fail;
c2050a45 1708 cur_time = current_time(parent_inode);
04b285f3 1709
3063d29f
CM
1710 /*
1711 * insert the directory item
1712 */
877574e2 1713 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
df9f2782
FM
1714 if (ret) {
1715 btrfs_abort_transaction(trans, ret);
1716 goto fail;
1717 }
42874b3d
MX
1718
1719 /* check if there is a file/dir which has the same name. */
1720 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1721 btrfs_ino(BTRFS_I(parent_inode)),
6db75318 1722 &fname.disk_name, 0);
42874b3d 1723 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1724 pending->error = -EEXIST;
aec8030a 1725 goto dir_item_existed;
42874b3d
MX
1726 } else if (IS_ERR(dir_item)) {
1727 ret = PTR_ERR(dir_item);
66642832 1728 btrfs_abort_transaction(trans, ret);
8732d44f 1729 goto fail;
79787eaa 1730 }
42874b3d 1731 btrfs_release_path(path);
52c26179 1732
6ed05643 1733 ret = btrfs_create_qgroup(trans, objectid);
8049ba5d 1734 if (ret && ret != -EEXIST) {
6ed05643
BB
1735 btrfs_abort_transaction(trans, ret);
1736 goto fail;
1737 }
1738
e999376f
CM
1739 /*
1740 * pull in the delayed directory update
1741 * and the delayed inode item
1742 * otherwise we corrupt the FS during
1743 * snapshot
1744 */
e5c304e6 1745 ret = btrfs_run_delayed_items(trans);
8732d44f 1746 if (ret) { /* Transaction aborted */
66642832 1747 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1748 goto fail;
1749 }
e999376f 1750
f0118cb6
JB
1751 ret = record_root_in_trans(trans, root, 0);
1752 if (ret) {
1753 btrfs_abort_transaction(trans, ret);
1754 goto fail;
1755 }
6bdb72de
SW
1756 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1757 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1758 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1759
b83cc969
LZ
1760 root_flags = btrfs_root_flags(new_root_item);
1761 if (pending->readonly)
1762 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1763 else
1764 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1765 btrfs_set_root_flags(new_root_item, root_flags);
1766
8ea05e3a
AB
1767 btrfs_set_root_generation_v2(new_root_item,
1768 trans->transid);
807fc790 1769 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1770 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1771 BTRFS_UUID_SIZE);
70023da2
SB
1772 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1773 memset(new_root_item->received_uuid, 0,
1774 sizeof(new_root_item->received_uuid));
1775 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1776 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1777 btrfs_set_root_stransid(new_root_item, 0);
1778 btrfs_set_root_rtransid(new_root_item, 0);
1779 }
3cae210f
QW
1780 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1781 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1782 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1783
6bdb72de 1784 old = btrfs_lock_root_node(root);
9631e4cc
JB
1785 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1786 BTRFS_NESTING_COW);
79787eaa
JM
1787 if (ret) {
1788 btrfs_tree_unlock(old);
1789 free_extent_buffer(old);
66642832 1790 btrfs_abort_transaction(trans, ret);
8732d44f 1791 goto fail;
79787eaa 1792 }
49b25e05 1793
49b25e05 1794 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1795 /* clean up in any case */
6bdb72de
SW
1796 btrfs_tree_unlock(old);
1797 free_extent_buffer(old);
8732d44f 1798 if (ret) {
66642832 1799 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1800 goto fail;
1801 }
f1ebcc74 1802 /* see comments in should_cow_block() */
27cdeb70 1803 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1804 smp_wmb();
1805
6bdb72de 1806 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1807 /* record when the snapshot was created in key.offset */
1808 key.offset = trans->transid;
1809 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1810 btrfs_tree_unlock(tmp);
1811 free_extent_buffer(tmp);
8732d44f 1812 if (ret) {
66642832 1813 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1814 goto fail;
1815 }
6bdb72de 1816
a22285a6
YZ
1817 /*
1818 * insert root back/forward references
1819 */
6025c19f 1820 ret = btrfs_add_root_ref(trans, objectid,
e094f480 1821 btrfs_root_id(parent_root),
4a0cc7ca 1822 btrfs_ino(BTRFS_I(parent_inode)), index,
6db75318 1823 &fname.disk_name);
8732d44f 1824 if (ret) {
66642832 1825 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1826 goto fail;
1827 }
0660b5af 1828
a22285a6 1829 key.offset = (u64)-1;
e2b54eaf 1830 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
79787eaa
JM
1831 if (IS_ERR(pending->snap)) {
1832 ret = PTR_ERR(pending->snap);
2d892ccd 1833 pending->snap = NULL;
66642832 1834 btrfs_abort_transaction(trans, ret);
8732d44f 1835 goto fail;
79787eaa 1836 }
d68fc57b 1837
49b25e05 1838 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1839 if (ret) {
66642832 1840 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1841 goto fail;
1842 }
361048f5 1843
6426c7ad
QW
1844 /*
1845 * Do special qgroup accounting for snapshot, as we do some qgroup
1846 * snapshot hack to do fast snapshot.
1847 * To co-operate with that hack, we do hack again.
1848 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1849 */
5343cd93
BB
1850 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1851 ret = qgroup_account_snapshot(trans, root, parent_root,
1852 pending->inherit, objectid);
1853 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
e094f480
JB
1854 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid,
1855 btrfs_root_id(parent_root), pending->inherit);
6426c7ad
QW
1856 if (ret < 0)
1857 goto fail;
1858
6db75318
STD
1859 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1860 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1861 index);
8732d44f 1862 if (ret) {
66642832 1863 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1864 goto fail;
1865 }
42874b3d 1866
6ef06d27 1867 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
6db75318 1868 fname.disk_name.len * 2);
b1c38a13
JL
1869 inode_set_mtime_to_ts(parent_inode,
1870 inode_set_ctime_current(parent_inode));
0a5d0dc5 1871 ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
dd5f9615 1872 if (ret) {
66642832 1873 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1874 goto fail;
1875 }
807fc790
AS
1876 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1877 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1878 objectid);
dd5f9615 1879 if (ret) {
66642832 1880 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1881 goto fail;
1882 }
1883 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1884 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1885 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1886 objectid);
1887 if (ret && ret != -EEXIST) {
66642832 1888 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1889 goto fail;
1890 }
1891 }
d6726335 1892
3063d29f 1893fail:
aec8030a
MX
1894 pending->error = ret;
1895dir_item_existed:
98c9942a 1896 trans->block_rsv = rsv;
2382c5cc 1897 trans->bytes_reserved = 0;
d6726335
QW
1898clear_skip_qgroup:
1899 btrfs_clear_skip_qgroup(trans);
ab3c5c18
STD
1900free_fname:
1901 fscrypt_free_filename(&fname);
1902free_pending:
6fa9700e 1903 kfree(new_root_item);
b0c0ea63 1904 pending->root_item = NULL;
42874b3d 1905 btrfs_free_path(path);
8546b570
DS
1906 pending->path = NULL;
1907
49b25e05 1908 return ret;
3063d29f
CM
1909}
1910
d352ac68
CM
1911/*
1912 * create all the snapshots we've scheduled for creation
1913 */
08d50ca3 1914static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1915{
aec8030a 1916 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1917 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1918 int ret = 0;
3de4586c 1919
aec8030a
MX
1920 list_for_each_entry_safe(pending, next, head, list) {
1921 list_del(&pending->list);
08d50ca3 1922 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1923 if (ret)
1924 break;
1925 }
1926 return ret;
3de4586c
CM
1927}
1928
2ff7e61e 1929static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1930{
1931 struct btrfs_root_item *root_item;
1932 struct btrfs_super_block *super;
1933
0b246afa 1934 super = fs_info->super_copy;
5d4f98a2 1935
0b246afa 1936 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1937 super->chunk_root = root_item->bytenr;
1938 super->chunk_root_generation = root_item->generation;
1939 super->chunk_root_level = root_item->level;
5d4f98a2 1940
0b246afa 1941 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1942 super->root = root_item->bytenr;
1943 super->generation = root_item->generation;
1944 super->root_level = root_item->level;
0b246afa 1945 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1946 super->cache_generation = root_item->generation;
94846229
BB
1947 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1948 super->cache_generation = 0;
0b246afa 1949 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1950 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1951}
1952
8929ecfa
YZ
1953int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1954{
4a9d8bde 1955 struct btrfs_transaction *trans;
8929ecfa 1956 int ret = 0;
4a9d8bde 1957
a4abeea4 1958 spin_lock(&info->trans_lock);
4a9d8bde
MX
1959 trans = info->running_transaction;
1960 if (trans)
1961 ret = is_transaction_blocked(trans);
a4abeea4 1962 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1963 return ret;
1964}
1965
fdfbf020 1966void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
bb9c12c9 1967{
3a45bb20 1968 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1969 struct btrfs_transaction *cur_trans;
1970
fdfbf020
JB
1971 /* Kick the transaction kthread. */
1972 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1973 wake_up_process(fs_info->transaction_kthread);
bb9c12c9
SW
1974
1975 /* take transaction reference */
bb9c12c9 1976 cur_trans = trans->transaction;
9b64f57d 1977 refcount_inc(&cur_trans->use_count);
bb9c12c9 1978
3a45bb20 1979 btrfs_end_transaction(trans);
6fc4e354 1980
ae5d29d4
DS
1981 /*
1982 * Wait for the current transaction commit to start and block
1983 * subsequent transaction joins
1984 */
77d20c68 1985 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
ae5d29d4
DS
1986 wait_event(fs_info->transaction_blocked_wait,
1987 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1988 TRANS_ABORTED(cur_trans));
724e2315 1989 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1990}
1991
97cb39bb 1992static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1993{
97cb39bb 1994 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1995 struct btrfs_transaction *cur_trans = trans->transaction;
1996
b50fff81 1997 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1998
66642832 1999 btrfs_abort_transaction(trans, err);
7b8b92af 2000
0b246afa 2001 spin_lock(&fs_info->trans_lock);
66b6135b 2002
25d8c284
MX
2003 /*
2004 * If the transaction is removed from the list, it means this
2005 * transaction has been committed successfully, so it is impossible
2006 * to call the cleanup function.
2007 */
2008 BUG_ON(list_empty(&cur_trans->list));
66b6135b 2009
0b246afa 2010 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 2011 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2012 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
2013
2014 /*
2015 * The thread has already released the lockdep map as reader
2016 * already in btrfs_commit_transaction().
2017 */
2018 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
f094ac32
LB
2019 wait_event(cur_trans->writer_wait,
2020 atomic_read(&cur_trans->num_writers) == 1);
2021
0b246afa 2022 spin_lock(&fs_info->trans_lock);
d7096fc3 2023 }
061dde82
FM
2024
2025 /*
2026 * Now that we know no one else is still using the transaction we can
2027 * remove the transaction from the list of transactions. This avoids
2028 * the transaction kthread from cleaning up the transaction while some
2029 * other task is still using it, which could result in a use-after-free
2030 * on things like log trees, as it forces the transaction kthread to
2031 * wait for this transaction to be cleaned up by us.
2032 */
2033 list_del_init(&cur_trans->list);
2034
0b246afa 2035 spin_unlock(&fs_info->trans_lock);
49b25e05 2036
2ff7e61e 2037 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 2038
0b246afa
JM
2039 spin_lock(&fs_info->trans_lock);
2040 if (cur_trans == fs_info->running_transaction)
2041 fs_info->running_transaction = NULL;
2042 spin_unlock(&fs_info->trans_lock);
4a9d8bde 2043
e0228285 2044 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2045 sb_end_intwrite(fs_info->sb);
724e2315
JB
2046 btrfs_put_transaction(cur_trans);
2047 btrfs_put_transaction(cur_trans);
49b25e05 2048
2e4e97ab 2049 trace_btrfs_transaction_commit(fs_info);
49b25e05 2050
49b25e05
JM
2051 if (current->journal_info == trans)
2052 current->journal_info = NULL;
2d82a40a
FM
2053
2054 /*
2055 * If relocation is running, we can't cancel scrub because that will
2056 * result in a deadlock. Before relocating a block group, relocation
2057 * pauses scrub, then starts and commits a transaction before unpausing
2058 * scrub. If the transaction commit is being done by the relocation
2059 * task or triggered by another task and the relocation task is waiting
2060 * for the commit, and we end up here due to an error in the commit
2061 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2062 * asking for scrub to stop while having it asked to be paused higher
2063 * above in relocation code.
2064 */
2065 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2066 btrfs_scrub_cancel(fs_info);
49b25e05
JM
2067
2068 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2069}
2070
c7cc64a9
DS
2071/*
2072 * Release reserved delayed ref space of all pending block groups of the
2073 * transaction and remove them from the list
2074 */
2075static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2076{
2077 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2078 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
2079
2080 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9ef17228 2081 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
c7cc64a9
DS
2082 list_del_init(&block_group->bg_list);
2083 }
2084}
2085
88090ad3 2086static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2087{
ce8ea7cc 2088 /*
a0f0cf83 2089 * We use try_to_writeback_inodes_sb() here because if we used
ce8ea7cc
JB
2090 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2091 * Currently are holding the fs freeze lock, if we do an async flush
2092 * we'll do btrfs_join_transaction() and deadlock because we need to
2093 * wait for the fs freeze lock. Using the direct flushing we benefit
2094 * from already being in a transaction and our join_transaction doesn't
2095 * have to re-take the fs freeze lock.
a0f0cf83
FM
2096 *
2097 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2098 * if it can read lock sb->s_umount. It will always be able to lock it,
2099 * except when the filesystem is being unmounted or being frozen, but in
2100 * those cases sync_filesystem() is called, which results in calling
2101 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2102 * Note that we don't call writeback_inodes_sb() directly, because it
2103 * will emit a warning if sb->s_umount is not locked.
ce8ea7cc 2104 */
88090ad3 2105 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
a0f0cf83 2106 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
2107 return 0;
2108}
2109
88090ad3 2110static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2111{
88090ad3 2112 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2113 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2114}
2115
28b21c55
FM
2116/*
2117 * Add a pending snapshot associated with the given transaction handle to the
2118 * respective handle. This must be called after the transaction commit started
2119 * and while holding fs_info->trans_lock.
2120 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2121 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2122 * returns an error.
2123 */
2124static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2125{
2126 struct btrfs_transaction *cur_trans = trans->transaction;
2127
2128 if (!trans->pending_snapshot)
2129 return;
2130
2131 lockdep_assert_held(&trans->fs_info->trans_lock);
77d20c68 2132 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
28b21c55
FM
2133
2134 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2135}
2136
e55958c8
IA
2137static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2138{
2139 fs_info->commit_stats.commit_count++;
2140 fs_info->commit_stats.last_commit_dur = interval;
2141 fs_info->commit_stats.max_commit_dur =
2142 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2143 fs_info->commit_stats.total_commit_dur += interval;
2144}
2145
3a45bb20 2146int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2147{
3a45bb20 2148 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2149 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2150 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2151 int ret;
e55958c8
IA
2152 ktime_t start_time;
2153 ktime_t interval;
79154b1b 2154
35b814f3 2155 ASSERT(refcount_read(&trans->use_count) == 1);
77d20c68 2156 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
35b814f3 2157
c52cc7b7
JB
2158 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2159
8d25a086 2160 /* Stop the commit early if ->aborted is set */
bf31f87f 2161 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2162 ret = cur_trans->aborted;
3e738c53 2163 goto lockdep_trans_commit_start_release;
25287e0a 2164 }
49b25e05 2165
f45c752b
JB
2166 btrfs_trans_release_metadata(trans);
2167 trans->block_rsv = NULL;
2168
56bec294 2169 /*
e19eb11f
JB
2170 * We only want one transaction commit doing the flushing so we do not
2171 * waste a bunch of time on lock contention on the extent root node.
56bec294 2172 */
e19eb11f
JB
2173 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2174 &cur_trans->delayed_refs.flags)) {
2175 /*
2176 * Make a pass through all the delayed refs we have so far.
2177 * Any running threads may add more while we are here.
2178 */
2179 ret = btrfs_run_delayed_refs(trans, 0);
3e738c53
IA
2180 if (ret)
2181 goto lockdep_trans_commit_start_release;
e19eb11f 2182 }
56bec294 2183
119e80df 2184 btrfs_create_pending_block_groups(trans);
ea658bad 2185
3204d33c 2186 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2187 int run_it = 0;
2188
2189 /* this mutex is also taken before trying to set
2190 * block groups readonly. We need to make sure
2191 * that nobody has set a block group readonly
2192 * after a extents from that block group have been
2193 * allocated for cache files. btrfs_set_block_group_ro
2194 * will wait for the transaction to commit if it
3204d33c 2195 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2196 *
3204d33c
JB
2197 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2198 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2199 * hurt to have more than one go through, but there's no
2200 * real advantage to it either.
2201 */
0b246afa 2202 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2203 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2204 &cur_trans->flags))
1bbc621e 2205 run_it = 1;
0b246afa 2206 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2207
f9cacae3 2208 if (run_it) {
21217054 2209 ret = btrfs_start_dirty_block_groups(trans);
3e738c53
IA
2210 if (ret)
2211 goto lockdep_trans_commit_start_release;
f9cacae3 2212 }
1bbc621e
CM
2213 }
2214
0b246afa 2215 spin_lock(&fs_info->trans_lock);
77d20c68 2216 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
d0c2f4fa
FM
2217 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2218
28b21c55
FM
2219 add_pending_snapshot(trans);
2220
0b246afa 2221 spin_unlock(&fs_info->trans_lock);
9b64f57d 2222 refcount_inc(&cur_trans->use_count);
ccd467d6 2223
d0c2f4fa
FM
2224 if (trans->in_fsync)
2225 want_state = TRANS_STATE_SUPER_COMMITTED;
3e738c53
IA
2226
2227 btrfs_trans_state_lockdep_release(fs_info,
77d20c68 2228 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
d0c2f4fa
FM
2229 ret = btrfs_end_transaction(trans);
2230 wait_for_commit(cur_trans, want_state);
15ee9bc7 2231
bf31f87f 2232 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2233 ret = cur_trans->aborted;
2234
724e2315 2235 btrfs_put_transaction(cur_trans);
15ee9bc7 2236
49b25e05 2237 return ret;
79154b1b 2238 }
4313b399 2239
77d20c68 2240 cur_trans->state = TRANS_STATE_COMMIT_PREP;
0b246afa 2241 wake_up(&fs_info->transaction_blocked_wait);
77d20c68 2242 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
bb9c12c9 2243
0b246afa 2244 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2245 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2246
2247 if (trans->in_fsync)
2248 want_state = TRANS_STATE_SUPER_COMMITTED;
2249
ccd467d6
CM
2250 prev_trans = list_entry(cur_trans->list.prev,
2251 struct btrfs_transaction, list);
d0c2f4fa 2252 if (prev_trans->state < want_state) {
9b64f57d 2253 refcount_inc(&prev_trans->use_count);
0b246afa 2254 spin_unlock(&fs_info->trans_lock);
ccd467d6 2255
d0c2f4fa
FM
2256 wait_for_commit(prev_trans, want_state);
2257
bf31f87f 2258 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2259
724e2315 2260 btrfs_put_transaction(prev_trans);
1f9b8c8f 2261 if (ret)
e1489b4f 2262 goto lockdep_release;
77d20c68 2263 spin_lock(&fs_info->trans_lock);
ccd467d6 2264 }
a4abeea4 2265 } else {
cb2d3dad
FM
2266 /*
2267 * The previous transaction was aborted and was already removed
2268 * from the list of transactions at fs_info->trans_list. So we
2269 * abort to prevent writing a new superblock that reflects a
2270 * corrupt state (pointing to trees with unwritten nodes/leafs).
2271 */
84961539 2272 if (BTRFS_FS_ERROR(fs_info)) {
77d20c68 2273 spin_unlock(&fs_info->trans_lock);
cb2d3dad 2274 ret = -EROFS;
e1489b4f 2275 goto lockdep_release;
cb2d3dad 2276 }
ccd467d6 2277 }
15ee9bc7 2278
77d20c68
JB
2279 cur_trans->state = TRANS_STATE_COMMIT_START;
2280 wake_up(&fs_info->transaction_blocked_wait);
2281 spin_unlock(&fs_info->trans_lock);
2282
e55958c8
IA
2283 /*
2284 * Get the time spent on the work done by the commit thread and not
2285 * the time spent waiting on a previous commit
2286 */
2287 start_time = ktime_get_ns();
2288
0860adfd
MX
2289 extwriter_counter_dec(cur_trans, trans->type);
2290
88090ad3 2291 ret = btrfs_start_delalloc_flush(fs_info);
82436617 2292 if (ret)
e1489b4f 2293 goto lockdep_release;
82436617 2294
e5c304e6 2295 ret = btrfs_run_delayed_items(trans);
581227d0 2296 if (ret)
e1489b4f 2297 goto lockdep_release;
15ee9bc7 2298
5a9ba670
IA
2299 /*
2300 * The thread has started/joined the transaction thus it holds the
2301 * lockdep map as a reader. It has to release it before acquiring the
2302 * lockdep map as a writer.
2303 */
2304 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2305 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
581227d0
MX
2306 wait_event(cur_trans->writer_wait,
2307 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2308
581227d0 2309 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2310 ret = btrfs_run_delayed_items(trans);
e1489b4f
IA
2311 if (ret) {
2312 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
ca469637 2313 goto cleanup_transaction;
e1489b4f 2314 }
ca469637 2315
88090ad3 2316 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2317
48778179
FM
2318 /*
2319 * Wait for all ordered extents started by a fast fsync that joined this
2320 * transaction. Otherwise if this transaction commits before the ordered
2321 * extents complete we lose logged data after a power failure.
2322 */
8b53779e 2323 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
48778179
FM
2324 wait_event(cur_trans->pending_wait,
2325 atomic_read(&cur_trans->pending_ordered) == 0);
2326
2ff7e61e 2327 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2328 /*
2329 * Ok now we need to make sure to block out any other joins while we
2330 * commit the transaction. We could have started a join before setting
4a9d8bde 2331 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2332 */
0b246afa 2333 spin_lock(&fs_info->trans_lock);
28b21c55 2334 add_pending_snapshot(trans);
4a9d8bde 2335 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2336 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
2337
2338 /*
2339 * The thread has started/joined the transaction thus it holds the
2340 * lockdep map as a reader. It has to release it before acquiring the
2341 * lockdep map as a writer.
2342 */
2343 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2344 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
ed0ca140
JB
2345 wait_event(cur_trans->writer_wait,
2346 atomic_read(&cur_trans->num_writers) == 1);
2347
3e738c53
IA
2348 /*
2349 * Make lockdep happy by acquiring the state locks after
2350 * btrfs_trans_num_writers is released. If we acquired the state locks
2351 * before releasing the btrfs_trans_num_writers lock then lockdep would
2352 * complain because we did not follow the reverse order unlocking rule.
2353 */
2354 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2355 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2356 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2357
fdfbf020
JB
2358 /*
2359 * We've started the commit, clear the flag in case we were triggered to
2360 * do an async commit but somebody else started before the transaction
2361 * kthread could do the work.
2362 */
2363 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2364
bf31f87f 2365 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2366 ret = cur_trans->aborted;
3e738c53 2367 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2368 goto scrub_continue;
2cba30f1 2369 }
7585717f
CM
2370 /*
2371 * the reloc mutex makes sure that we stop
2372 * the balancing code from coming in and moving
2373 * extents around in the middle of the commit
2374 */
0b246afa 2375 mutex_lock(&fs_info->reloc_mutex);
7585717f 2376
42874b3d
MX
2377 /*
2378 * We needn't worry about the delayed items because we will
2379 * deal with them in create_pending_snapshot(), which is the
2380 * core function of the snapshot creation.
2381 */
08d50ca3 2382 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2383 if (ret)
2384 goto unlock_reloc;
3063d29f 2385
42874b3d
MX
2386 /*
2387 * We insert the dir indexes of the snapshots and update the inode
2388 * of the snapshots' parents after the snapshot creation, so there
2389 * are some delayed items which are not dealt with. Now deal with
2390 * them.
2391 *
2392 * We needn't worry that this operation will corrupt the snapshots,
2393 * because all the tree which are snapshoted will be forced to COW
2394 * the nodes and leaves.
2395 */
e5c304e6 2396 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2397 if (ret)
2398 goto unlock_reloc;
16cdcec7 2399
8a526c44 2400 ret = btrfs_run_delayed_refs(trans, U64_MAX);
56e9f6ea
DS
2401 if (ret)
2402 goto unlock_reloc;
56bec294 2403
e999376f
CM
2404 /*
2405 * make sure none of the code above managed to slip in a
2406 * delayed item
2407 */
ccdf9b30 2408 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2409
2c90e5d6 2410 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2411
7e4443d9 2412 ret = commit_fs_roots(trans);
56e9f6ea 2413 if (ret)
dfba78dc 2414 goto unlock_reloc;
54aa1f4d 2415
5d4f98a2 2416 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2417 * safe to free the root of tree log roots
2418 */
0b246afa 2419 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2420
0ed4792a
QW
2421 /*
2422 * Since fs roots are all committed, we can get a quite accurate
2423 * new_roots. So let's do quota accounting.
2424 */
460fb20a 2425 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea 2426 if (ret < 0)
dfba78dc 2427 goto unlock_reloc;
0ed4792a 2428
9386d8bc 2429 ret = commit_cowonly_roots(trans);
56e9f6ea 2430 if (ret)
dfba78dc 2431 goto unlock_reloc;
54aa1f4d 2432
2cba30f1
MX
2433 /*
2434 * The tasks which save the space cache and inode cache may also
2435 * update ->aborted, check it.
2436 */
bf31f87f 2437 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2438 ret = cur_trans->aborted;
dfba78dc 2439 goto unlock_reloc;
2cba30f1
MX
2440 }
2441
0b246afa 2442 cur_trans = fs_info->running_transaction;
5d4f98a2 2443
0b246afa
JM
2444 btrfs_set_root_node(&fs_info->tree_root->root_item,
2445 fs_info->tree_root->node);
2446 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2447 &cur_trans->switch_commits);
5d4f98a2 2448
0b246afa
JM
2449 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2450 fs_info->chunk_root->node);
2451 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2452 &cur_trans->switch_commits);
2453
f7238e50
JB
2454 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2455 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2456 fs_info->block_group_root->node);
2457 list_add_tail(&fs_info->block_group_root->dirty_list,
2458 &cur_trans->switch_commits);
2459 }
2460
889bfa39 2461 switch_commit_roots(trans);
5d4f98a2 2462
ce93ec54 2463 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2464 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2465 update_super_roots(fs_info);
e02119d5 2466
0b246afa
JM
2467 btrfs_set_super_log_root(fs_info->super_copy, 0);
2468 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2469 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2470 sizeof(*fs_info->super_copy));
ccd467d6 2471
bbbf7243 2472 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2473
0b246afa
JM
2474 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2475 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2476
4fbcdf66
FM
2477 btrfs_trans_release_chunk_metadata(trans);
2478
dfba78dc
FM
2479 /*
2480 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2481 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2482 * make sure that before we commit our superblock, no other task can
2483 * start a new transaction and commit a log tree before we commit our
2484 * superblock. Anyone trying to commit a log tree locks this mutex before
2485 * writing its superblock.
2486 */
2487 mutex_lock(&fs_info->tree_log_mutex);
2488
0b246afa 2489 spin_lock(&fs_info->trans_lock);
4a9d8bde 2490 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2491 fs_info->running_transaction = NULL;
2492 spin_unlock(&fs_info->trans_lock);
2493 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2494
0b246afa 2495 wake_up(&fs_info->transaction_wait);
3e738c53 2496 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
e6dcd2dc 2497
b7625f46
QW
2498 /* If we have features changed, wake up the cleaner to update sysfs. */
2499 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2500 fs_info->cleaner_kthread)
2501 wake_up_process(fs_info->cleaner_kthread);
2502
70458a58 2503 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2504 if (ret) {
0b246afa
JM
2505 btrfs_handle_fs_error(fs_info, ret,
2506 "Error while writing out transaction");
2507 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2508 goto scrub_continue;
49b25e05
JM
2509 }
2510
eece6a9c 2511 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2512 /*
2513 * the super is written, we can safely allow the tree-loggers
2514 * to go about their business
2515 */
0b246afa 2516 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2517 if (ret)
2518 goto scrub_continue;
e02119d5 2519
d0c2f4fa
FM
2520 /*
2521 * We needn't acquire the lock here because there is no other task
2522 * which can change it.
2523 */
2524 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2525 wake_up(&cur_trans->commit_wait);
3e738c53 2526 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
d0c2f4fa 2527
5ead2dd0 2528 btrfs_finish_extent_commit(trans);
4313b399 2529
3204d33c 2530 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2531 btrfs_clear_space_info_full(fs_info);
13212b54 2532
0124855f 2533 btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
4a9d8bde
MX
2534 /*
2535 * We needn't acquire the lock here because there is no other task
2536 * which can change it.
2537 */
2538 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2539 wake_up(&cur_trans->commit_wait);
3e738c53 2540 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
3de4586c 2541
0b246afa 2542 spin_lock(&fs_info->trans_lock);
13c5a93e 2543 list_del_init(&cur_trans->list);
0b246afa 2544 spin_unlock(&fs_info->trans_lock);
a4abeea4 2545
724e2315
JB
2546 btrfs_put_transaction(cur_trans);
2547 btrfs_put_transaction(cur_trans);
58176a96 2548
0860adfd 2549 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2550 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2551
2e4e97ab 2552 trace_btrfs_transaction_commit(fs_info);
1abe9b8a 2553
e55958c8
IA
2554 interval = ktime_get_ns() - start_time;
2555
2ff7e61e 2556 btrfs_scrub_continue(fs_info);
a2de733c 2557
9ed74f2d
JB
2558 if (current->journal_info == trans)
2559 current->journal_info = NULL;
2560
2c90e5d6 2561 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2562
e55958c8
IA
2563 update_commit_stats(fs_info, interval);
2564
79154b1b 2565 return ret;
49b25e05 2566
56e9f6ea
DS
2567unlock_reloc:
2568 mutex_unlock(&fs_info->reloc_mutex);
3e738c53 2569 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2570scrub_continue:
3e738c53
IA
2571 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2572 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2ff7e61e 2573 btrfs_scrub_continue(fs_info);
49b25e05 2574cleanup_transaction:
dc60c525 2575 btrfs_trans_release_metadata(trans);
c7cc64a9 2576 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2577 btrfs_trans_release_chunk_metadata(trans);
0e721106 2578 trans->block_rsv = NULL;
0b246afa 2579 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2580 if (current->journal_info == trans)
2581 current->journal_info = NULL;
97cb39bb 2582 cleanup_transaction(trans, ret);
49b25e05
JM
2583
2584 return ret;
e1489b4f
IA
2585
2586lockdep_release:
5a9ba670 2587 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f
IA
2588 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2589 goto cleanup_transaction;
3e738c53
IA
2590
2591lockdep_trans_commit_start_release:
77d20c68 2592 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
3e738c53
IA
2593 btrfs_end_transaction(trans);
2594 return ret;
79154b1b
CM
2595}
2596
d352ac68 2597/*
9d1a2a3a
DS
2598 * return < 0 if error
2599 * 0 if there are no more dead_roots at the time of call
2600 * 1 there are more to be processed, call me again
2601 *
2602 * The return value indicates there are certainly more snapshots to delete, but
2603 * if there comes a new one during processing, it may return 0. We don't mind,
2604 * because btrfs_commit_super will poke cleaner thread and it will process it a
2605 * few seconds later.
d352ac68 2606 */
33c44184 2607int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
e9d0b13b 2608{
33c44184 2609 struct btrfs_root *root;
9d1a2a3a 2610 int ret;
5d4f98a2 2611
a4abeea4 2612 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2613 if (list_empty(&fs_info->dead_roots)) {
2614 spin_unlock(&fs_info->trans_lock);
2615 return 0;
2616 }
2617 root = list_first_entry(&fs_info->dead_roots,
2618 struct btrfs_root, root_list);
cfad392b 2619 list_del_init(&root->root_list);
a4abeea4 2620 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2621
e094f480 2622 btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root));
76dda93c 2623
9d1a2a3a 2624 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2625
9d1a2a3a
DS
2626 if (btrfs_header_backref_rev(root->node) <
2627 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2628 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2629 else
0078a9f9 2630 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2631
dc9492c1 2632 btrfs_put_root(root);
6596a928 2633 return (ret < 0) ? 0 : 1;
e9d0b13b 2634}
572d9ab7 2635
fccf0c84
JB
2636/*
2637 * We only mark the transaction aborted and then set the file system read-only.
2638 * This will prevent new transactions from starting or trying to join this
2639 * one.
2640 *
2641 * This means that error recovery at the call site is limited to freeing
2642 * any local memory allocations and passing the error code up without
2643 * further cleanup. The transaction should complete as it normally would
2644 * in the call path but will return -EIO.
2645 *
2646 * We'll complete the cleanup in btrfs_end_transaction and
2647 * btrfs_commit_transaction.
2648 */
2649void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2650 const char *function,
ed164802 2651 unsigned int line, int error, bool first_hit)
fccf0c84
JB
2652{
2653 struct btrfs_fs_info *fs_info = trans->fs_info;
2654
ed164802
DS
2655 WRITE_ONCE(trans->aborted, error);
2656 WRITE_ONCE(trans->transaction->aborted, error);
2657 if (first_hit && error == -ENOSPC)
fccf0c84
JB
2658 btrfs_dump_space_info_for_trans_abort(fs_info);
2659 /* Wake up anybody who may be waiting on this transaction */
2660 wake_up(&fs_info->transaction_wait);
2661 wake_up(&fs_info->transaction_blocked_wait);
ed164802 2662 __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
fccf0c84
JB
2663}
2664
956504a3
JB
2665int __init btrfs_transaction_init(void)
2666{
ef5a05c5 2667 btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
956504a3
JB
2668 if (!btrfs_trans_handle_cachep)
2669 return -ENOMEM;
2670 return 0;
2671}
2672
2673void __cold btrfs_transaction_exit(void)
2674{
2675 kmem_cache_destroy(btrfs_trans_handle_cachep);
2676}