Btrfs: improve check_node to avoid reading corrupted nodes
[linux-2.6-block.git] / fs / btrfs / send.c
CommitLineData
31db9f7c
AB
1/*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/bsearch.h>
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/sort.h>
23#include <linux/mount.h>
24#include <linux/xattr.h>
25#include <linux/posix_acl_xattr.h>
26#include <linux/radix-tree.h>
a1857ebe 27#include <linux/vmalloc.h>
ed84885d 28#include <linux/string.h>
31db9f7c
AB
29
30#include "send.h"
31#include "backref.h"
0b947aff 32#include "hash.h"
31db9f7c
AB
33#include "locking.h"
34#include "disk-io.h"
35#include "btrfs_inode.h"
36#include "transaction.h"
ebb8765b 37#include "compression.h"
31db9f7c
AB
38
39static int g_verbose = 0;
40
41#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
42
43/*
44 * A fs_path is a helper to dynamically build path names with unknown size.
45 * It reallocates the internal buffer on demand.
46 * It allows fast adding of path elements on the right side (normal path) and
47 * fast adding to the left side (reversed path). A reversed path can also be
48 * unreversed if needed.
49 */
50struct fs_path {
51 union {
52 struct {
53 char *start;
54 char *end;
31db9f7c
AB
55
56 char *buf;
1f5a7ff9
DS
57 unsigned short buf_len:15;
58 unsigned short reversed:1;
31db9f7c
AB
59 char inline_buf[];
60 };
ace01050
DS
61 /*
62 * Average path length does not exceed 200 bytes, we'll have
63 * better packing in the slab and higher chance to satisfy
64 * a allocation later during send.
65 */
66 char pad[256];
31db9f7c
AB
67 };
68};
69#define FS_PATH_INLINE_SIZE \
70 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
71
72
73/* reused for each extent */
74struct clone_root {
75 struct btrfs_root *root;
76 u64 ino;
77 u64 offset;
78
79 u64 found_refs;
80};
81
82#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
83#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
84
85struct send_ctx {
86 struct file *send_filp;
87 loff_t send_off;
88 char *send_buf;
89 u32 send_size;
90 u32 send_max_size;
91 u64 total_send_size;
92 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
cb95e7bf 93 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
31db9f7c 94
31db9f7c
AB
95 struct btrfs_root *send_root;
96 struct btrfs_root *parent_root;
97 struct clone_root *clone_roots;
98 int clone_roots_cnt;
99
100 /* current state of the compare_tree call */
101 struct btrfs_path *left_path;
102 struct btrfs_path *right_path;
103 struct btrfs_key *cmp_key;
104
105 /*
106 * infos of the currently processed inode. In case of deleted inodes,
107 * these are the values from the deleted inode.
108 */
109 u64 cur_ino;
110 u64 cur_inode_gen;
111 int cur_inode_new;
112 int cur_inode_new_gen;
113 int cur_inode_deleted;
31db9f7c
AB
114 u64 cur_inode_size;
115 u64 cur_inode_mode;
644d1940 116 u64 cur_inode_rdev;
16e7549f 117 u64 cur_inode_last_extent;
31db9f7c
AB
118
119 u64 send_progress;
120
121 struct list_head new_refs;
122 struct list_head deleted_refs;
123
124 struct radix_tree_root name_cache;
125 struct list_head name_cache_list;
126 int name_cache_size;
127
2131bcd3
LB
128 struct file_ra_state ra;
129
31db9f7c 130 char *read_buf;
9f03740a
FDBM
131
132 /*
133 * We process inodes by their increasing order, so if before an
134 * incremental send we reverse the parent/child relationship of
135 * directories such that a directory with a lower inode number was
136 * the parent of a directory with a higher inode number, and the one
137 * becoming the new parent got renamed too, we can't rename/move the
138 * directory with lower inode number when we finish processing it - we
139 * must process the directory with higher inode number first, then
140 * rename/move it and then rename/move the directory with lower inode
141 * number. Example follows.
142 *
143 * Tree state when the first send was performed:
144 *
145 * .
146 * |-- a (ino 257)
147 * |-- b (ino 258)
148 * |
149 * |
150 * |-- c (ino 259)
151 * | |-- d (ino 260)
152 * |
153 * |-- c2 (ino 261)
154 *
155 * Tree state when the second (incremental) send is performed:
156 *
157 * .
158 * |-- a (ino 257)
159 * |-- b (ino 258)
160 * |-- c2 (ino 261)
161 * |-- d2 (ino 260)
162 * |-- cc (ino 259)
163 *
164 * The sequence of steps that lead to the second state was:
165 *
166 * mv /a/b/c/d /a/b/c2/d2
167 * mv /a/b/c /a/b/c2/d2/cc
168 *
169 * "c" has lower inode number, but we can't move it (2nd mv operation)
170 * before we move "d", which has higher inode number.
171 *
172 * So we just memorize which move/rename operations must be performed
173 * later when their respective parent is processed and moved/renamed.
174 */
175
176 /* Indexed by parent directory inode number. */
177 struct rb_root pending_dir_moves;
178
179 /*
180 * Reverse index, indexed by the inode number of a directory that
181 * is waiting for the move/rename of its immediate parent before its
182 * own move/rename can be performed.
183 */
184 struct rb_root waiting_dir_moves;
9dc44214
FM
185
186 /*
187 * A directory that is going to be rm'ed might have a child directory
188 * which is in the pending directory moves index above. In this case,
189 * the directory can only be removed after the move/rename of its child
190 * is performed. Example:
191 *
192 * Parent snapshot:
193 *
194 * . (ino 256)
195 * |-- a/ (ino 257)
196 * |-- b/ (ino 258)
197 * |-- c/ (ino 259)
198 * | |-- x/ (ino 260)
199 * |
200 * |-- y/ (ino 261)
201 *
202 * Send snapshot:
203 *
204 * . (ino 256)
205 * |-- a/ (ino 257)
206 * |-- b/ (ino 258)
207 * |-- YY/ (ino 261)
208 * |-- x/ (ino 260)
209 *
210 * Sequence of steps that lead to the send snapshot:
211 * rm -f /a/b/c/foo.txt
212 * mv /a/b/y /a/b/YY
213 * mv /a/b/c/x /a/b/YY
214 * rmdir /a/b/c
215 *
216 * When the child is processed, its move/rename is delayed until its
217 * parent is processed (as explained above), but all other operations
218 * like update utimes, chown, chgrp, etc, are performed and the paths
219 * that it uses for those operations must use the orphanized name of
220 * its parent (the directory we're going to rm later), so we need to
221 * memorize that name.
222 *
223 * Indexed by the inode number of the directory to be deleted.
224 */
225 struct rb_root orphan_dirs;
9f03740a
FDBM
226};
227
228struct pending_dir_move {
229 struct rb_node node;
230 struct list_head list;
231 u64 parent_ino;
232 u64 ino;
233 u64 gen;
234 struct list_head update_refs;
235};
236
237struct waiting_dir_move {
238 struct rb_node node;
239 u64 ino;
9dc44214
FM
240 /*
241 * There might be some directory that could not be removed because it
242 * was waiting for this directory inode to be moved first. Therefore
243 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
244 */
245 u64 rmdir_ino;
8b191a68 246 bool orphanized;
9dc44214
FM
247};
248
249struct orphan_dir_info {
250 struct rb_node node;
251 u64 ino;
252 u64 gen;
31db9f7c
AB
253};
254
255struct name_cache_entry {
256 struct list_head list;
7e0926fe
AB
257 /*
258 * radix_tree has only 32bit entries but we need to handle 64bit inums.
259 * We use the lower 32bit of the 64bit inum to store it in the tree. If
260 * more then one inum would fall into the same entry, we use radix_list
261 * to store the additional entries. radix_list is also used to store
262 * entries where two entries have the same inum but different
263 * generations.
264 */
265 struct list_head radix_list;
31db9f7c
AB
266 u64 ino;
267 u64 gen;
268 u64 parent_ino;
269 u64 parent_gen;
270 int ret;
271 int need_later_update;
272 int name_len;
273 char name[];
274};
275
95155585
FM
276static void inconsistent_snapshot_error(struct send_ctx *sctx,
277 enum btrfs_compare_tree_result result,
278 const char *what)
279{
280 const char *result_string;
281
282 switch (result) {
283 case BTRFS_COMPARE_TREE_NEW:
284 result_string = "new";
285 break;
286 case BTRFS_COMPARE_TREE_DELETED:
287 result_string = "deleted";
288 break;
289 case BTRFS_COMPARE_TREE_CHANGED:
290 result_string = "updated";
291 break;
292 case BTRFS_COMPARE_TREE_SAME:
293 ASSERT(0);
294 result_string = "unchanged";
295 break;
296 default:
297 ASSERT(0);
298 result_string = "unexpected";
299 }
300
301 btrfs_err(sctx->send_root->fs_info,
302 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
303 result_string, what, sctx->cmp_key->objectid,
304 sctx->send_root->root_key.objectid,
305 (sctx->parent_root ?
306 sctx->parent_root->root_key.objectid : 0));
307}
308
9f03740a
FDBM
309static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
310
9dc44214
FM
311static struct waiting_dir_move *
312get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
313
314static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
315
16e7549f
JB
316static int need_send_hole(struct send_ctx *sctx)
317{
318 return (sctx->parent_root && !sctx->cur_inode_new &&
319 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
320 S_ISREG(sctx->cur_inode_mode));
321}
322
31db9f7c
AB
323static void fs_path_reset(struct fs_path *p)
324{
325 if (p->reversed) {
326 p->start = p->buf + p->buf_len - 1;
327 p->end = p->start;
328 *p->start = 0;
329 } else {
330 p->start = p->buf;
331 p->end = p->start;
332 *p->start = 0;
333 }
334}
335
924794c9 336static struct fs_path *fs_path_alloc(void)
31db9f7c
AB
337{
338 struct fs_path *p;
339
e780b0d1 340 p = kmalloc(sizeof(*p), GFP_KERNEL);
31db9f7c
AB
341 if (!p)
342 return NULL;
343 p->reversed = 0;
31db9f7c
AB
344 p->buf = p->inline_buf;
345 p->buf_len = FS_PATH_INLINE_SIZE;
346 fs_path_reset(p);
347 return p;
348}
349
924794c9 350static struct fs_path *fs_path_alloc_reversed(void)
31db9f7c
AB
351{
352 struct fs_path *p;
353
924794c9 354 p = fs_path_alloc();
31db9f7c
AB
355 if (!p)
356 return NULL;
357 p->reversed = 1;
358 fs_path_reset(p);
359 return p;
360}
361
924794c9 362static void fs_path_free(struct fs_path *p)
31db9f7c
AB
363{
364 if (!p)
365 return;
ace01050
DS
366 if (p->buf != p->inline_buf)
367 kfree(p->buf);
31db9f7c
AB
368 kfree(p);
369}
370
371static int fs_path_len(struct fs_path *p)
372{
373 return p->end - p->start;
374}
375
376static int fs_path_ensure_buf(struct fs_path *p, int len)
377{
378 char *tmp_buf;
379 int path_len;
380 int old_buf_len;
381
382 len++;
383
384 if (p->buf_len >= len)
385 return 0;
386
cfd4a535
CM
387 if (len > PATH_MAX) {
388 WARN_ON(1);
389 return -ENOMEM;
390 }
391
1b2782c8
DS
392 path_len = p->end - p->start;
393 old_buf_len = p->buf_len;
394
ace01050
DS
395 /*
396 * First time the inline_buf does not suffice
397 */
01a9a8a9 398 if (p->buf == p->inline_buf) {
e780b0d1 399 tmp_buf = kmalloc(len, GFP_KERNEL);
01a9a8a9
FM
400 if (tmp_buf)
401 memcpy(tmp_buf, p->buf, old_buf_len);
402 } else {
e780b0d1 403 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
01a9a8a9 404 }
9c9ca00b
DS
405 if (!tmp_buf)
406 return -ENOMEM;
407 p->buf = tmp_buf;
408 /*
409 * The real size of the buffer is bigger, this will let the fast path
410 * happen most of the time
411 */
412 p->buf_len = ksize(p->buf);
ace01050 413
31db9f7c
AB
414 if (p->reversed) {
415 tmp_buf = p->buf + old_buf_len - path_len - 1;
416 p->end = p->buf + p->buf_len - 1;
417 p->start = p->end - path_len;
418 memmove(p->start, tmp_buf, path_len + 1);
419 } else {
420 p->start = p->buf;
421 p->end = p->start + path_len;
422 }
423 return 0;
424}
425
b23ab57d
DS
426static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
427 char **prepared)
31db9f7c
AB
428{
429 int ret;
430 int new_len;
431
432 new_len = p->end - p->start + name_len;
433 if (p->start != p->end)
434 new_len++;
435 ret = fs_path_ensure_buf(p, new_len);
436 if (ret < 0)
437 goto out;
438
439 if (p->reversed) {
440 if (p->start != p->end)
441 *--p->start = '/';
442 p->start -= name_len;
b23ab57d 443 *prepared = p->start;
31db9f7c
AB
444 } else {
445 if (p->start != p->end)
446 *p->end++ = '/';
b23ab57d 447 *prepared = p->end;
31db9f7c
AB
448 p->end += name_len;
449 *p->end = 0;
450 }
451
452out:
453 return ret;
454}
455
456static int fs_path_add(struct fs_path *p, const char *name, int name_len)
457{
458 int ret;
b23ab57d 459 char *prepared;
31db9f7c 460
b23ab57d 461 ret = fs_path_prepare_for_add(p, name_len, &prepared);
31db9f7c
AB
462 if (ret < 0)
463 goto out;
b23ab57d 464 memcpy(prepared, name, name_len);
31db9f7c
AB
465
466out:
467 return ret;
468}
469
470static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
471{
472 int ret;
b23ab57d 473 char *prepared;
31db9f7c 474
b23ab57d 475 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
31db9f7c
AB
476 if (ret < 0)
477 goto out;
b23ab57d 478 memcpy(prepared, p2->start, p2->end - p2->start);
31db9f7c
AB
479
480out:
481 return ret;
482}
483
484static int fs_path_add_from_extent_buffer(struct fs_path *p,
485 struct extent_buffer *eb,
486 unsigned long off, int len)
487{
488 int ret;
b23ab57d 489 char *prepared;
31db9f7c 490
b23ab57d 491 ret = fs_path_prepare_for_add(p, len, &prepared);
31db9f7c
AB
492 if (ret < 0)
493 goto out;
494
b23ab57d 495 read_extent_buffer(eb, prepared, off, len);
31db9f7c
AB
496
497out:
498 return ret;
499}
500
31db9f7c
AB
501static int fs_path_copy(struct fs_path *p, struct fs_path *from)
502{
503 int ret;
504
505 p->reversed = from->reversed;
506 fs_path_reset(p);
507
508 ret = fs_path_add_path(p, from);
509
510 return ret;
511}
512
513
514static void fs_path_unreverse(struct fs_path *p)
515{
516 char *tmp;
517 int len;
518
519 if (!p->reversed)
520 return;
521
522 tmp = p->start;
523 len = p->end - p->start;
524 p->start = p->buf;
525 p->end = p->start + len;
526 memmove(p->start, tmp, len + 1);
527 p->reversed = 0;
528}
529
530static struct btrfs_path *alloc_path_for_send(void)
531{
532 struct btrfs_path *path;
533
534 path = btrfs_alloc_path();
535 if (!path)
536 return NULL;
537 path->search_commit_root = 1;
538 path->skip_locking = 1;
3f8a18cc 539 path->need_commit_sem = 1;
31db9f7c
AB
540 return path;
541}
542
48a3b636 543static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
31db9f7c
AB
544{
545 int ret;
546 mm_segment_t old_fs;
547 u32 pos = 0;
548
549 old_fs = get_fs();
550 set_fs(KERNEL_DS);
551
552 while (pos < len) {
d447d0da
FF
553 ret = vfs_write(filp, (__force const char __user *)buf + pos,
554 len - pos, off);
31db9f7c
AB
555 /* TODO handle that correctly */
556 /*if (ret == -ERESTARTSYS) {
557 continue;
558 }*/
559 if (ret < 0)
560 goto out;
561 if (ret == 0) {
562 ret = -EIO;
563 goto out;
564 }
565 pos += ret;
566 }
567
568 ret = 0;
569
570out:
571 set_fs(old_fs);
572 return ret;
573}
574
575static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
576{
577 struct btrfs_tlv_header *hdr;
578 int total_len = sizeof(*hdr) + len;
579 int left = sctx->send_max_size - sctx->send_size;
580
581 if (unlikely(left < total_len))
582 return -EOVERFLOW;
583
584 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
585 hdr->tlv_type = cpu_to_le16(attr);
586 hdr->tlv_len = cpu_to_le16(len);
587 memcpy(hdr + 1, data, len);
588 sctx->send_size += total_len;
589
590 return 0;
591}
592
95bc79d5
DS
593#define TLV_PUT_DEFINE_INT(bits) \
594 static int tlv_put_u##bits(struct send_ctx *sctx, \
595 u##bits attr, u##bits value) \
596 { \
597 __le##bits __tmp = cpu_to_le##bits(value); \
598 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
599 }
31db9f7c 600
95bc79d5 601TLV_PUT_DEFINE_INT(64)
31db9f7c
AB
602
603static int tlv_put_string(struct send_ctx *sctx, u16 attr,
604 const char *str, int len)
605{
606 if (len == -1)
607 len = strlen(str);
608 return tlv_put(sctx, attr, str, len);
609}
610
611static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
612 const u8 *uuid)
613{
614 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
615}
616
31db9f7c
AB
617static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
618 struct extent_buffer *eb,
619 struct btrfs_timespec *ts)
620{
621 struct btrfs_timespec bts;
622 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
623 return tlv_put(sctx, attr, &bts, sizeof(bts));
624}
625
626
627#define TLV_PUT(sctx, attrtype, attrlen, data) \
628 do { \
629 ret = tlv_put(sctx, attrtype, attrlen, data); \
630 if (ret < 0) \
631 goto tlv_put_failure; \
632 } while (0)
633
634#define TLV_PUT_INT(sctx, attrtype, bits, value) \
635 do { \
636 ret = tlv_put_u##bits(sctx, attrtype, value); \
637 if (ret < 0) \
638 goto tlv_put_failure; \
639 } while (0)
640
641#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
642#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
643#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
644#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
645#define TLV_PUT_STRING(sctx, attrtype, str, len) \
646 do { \
647 ret = tlv_put_string(sctx, attrtype, str, len); \
648 if (ret < 0) \
649 goto tlv_put_failure; \
650 } while (0)
651#define TLV_PUT_PATH(sctx, attrtype, p) \
652 do { \
653 ret = tlv_put_string(sctx, attrtype, p->start, \
654 p->end - p->start); \
655 if (ret < 0) \
656 goto tlv_put_failure; \
657 } while(0)
658#define TLV_PUT_UUID(sctx, attrtype, uuid) \
659 do { \
660 ret = tlv_put_uuid(sctx, attrtype, uuid); \
661 if (ret < 0) \
662 goto tlv_put_failure; \
663 } while (0)
31db9f7c
AB
664#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
665 do { \
666 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
667 if (ret < 0) \
668 goto tlv_put_failure; \
669 } while (0)
670
671static int send_header(struct send_ctx *sctx)
672{
673 struct btrfs_stream_header hdr;
674
675 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
676 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
677
1bcea355
AJ
678 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
679 &sctx->send_off);
31db9f7c
AB
680}
681
682/*
683 * For each command/item we want to send to userspace, we call this function.
684 */
685static int begin_cmd(struct send_ctx *sctx, int cmd)
686{
687 struct btrfs_cmd_header *hdr;
688
fae7f21c 689 if (WARN_ON(!sctx->send_buf))
31db9f7c 690 return -EINVAL;
31db9f7c
AB
691
692 BUG_ON(sctx->send_size);
693
694 sctx->send_size += sizeof(*hdr);
695 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
696 hdr->cmd = cpu_to_le16(cmd);
697
698 return 0;
699}
700
701static int send_cmd(struct send_ctx *sctx)
702{
703 int ret;
704 struct btrfs_cmd_header *hdr;
705 u32 crc;
706
707 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
708 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
709 hdr->crc = 0;
710
0b947aff 711 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
31db9f7c
AB
712 hdr->crc = cpu_to_le32(crc);
713
1bcea355
AJ
714 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
715 &sctx->send_off);
31db9f7c
AB
716
717 sctx->total_send_size += sctx->send_size;
718 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
719 sctx->send_size = 0;
720
721 return ret;
722}
723
724/*
725 * Sends a move instruction to user space
726 */
727static int send_rename(struct send_ctx *sctx,
728 struct fs_path *from, struct fs_path *to)
729{
730 int ret;
731
732verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
733
734 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
735 if (ret < 0)
736 goto out;
737
738 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
739 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
740
741 ret = send_cmd(sctx);
742
743tlv_put_failure:
744out:
745 return ret;
746}
747
748/*
749 * Sends a link instruction to user space
750 */
751static int send_link(struct send_ctx *sctx,
752 struct fs_path *path, struct fs_path *lnk)
753{
754 int ret;
755
756verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
757
758 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
759 if (ret < 0)
760 goto out;
761
762 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
763 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
764
765 ret = send_cmd(sctx);
766
767tlv_put_failure:
768out:
769 return ret;
770}
771
772/*
773 * Sends an unlink instruction to user space
774 */
775static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
776{
777 int ret;
778
779verbose_printk("btrfs: send_unlink %s\n", path->start);
780
781 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
782 if (ret < 0)
783 goto out;
784
785 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
786
787 ret = send_cmd(sctx);
788
789tlv_put_failure:
790out:
791 return ret;
792}
793
794/*
795 * Sends a rmdir instruction to user space
796 */
797static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
798{
799 int ret;
800
801verbose_printk("btrfs: send_rmdir %s\n", path->start);
802
803 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
804 if (ret < 0)
805 goto out;
806
807 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
808
809 ret = send_cmd(sctx);
810
811tlv_put_failure:
812out:
813 return ret;
814}
815
816/*
817 * Helper function to retrieve some fields from an inode item.
818 */
3f8a18cc
JB
819static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
820 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
821 u64 *gid, u64 *rdev)
31db9f7c
AB
822{
823 int ret;
824 struct btrfs_inode_item *ii;
825 struct btrfs_key key;
31db9f7c
AB
826
827 key.objectid = ino;
828 key.type = BTRFS_INODE_ITEM_KEY;
829 key.offset = 0;
830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
31db9f7c 831 if (ret) {
3f8a18cc
JB
832 if (ret > 0)
833 ret = -ENOENT;
834 return ret;
31db9f7c
AB
835 }
836
837 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
838 struct btrfs_inode_item);
839 if (size)
840 *size = btrfs_inode_size(path->nodes[0], ii);
841 if (gen)
842 *gen = btrfs_inode_generation(path->nodes[0], ii);
843 if (mode)
844 *mode = btrfs_inode_mode(path->nodes[0], ii);
845 if (uid)
846 *uid = btrfs_inode_uid(path->nodes[0], ii);
847 if (gid)
848 *gid = btrfs_inode_gid(path->nodes[0], ii);
85a7b33b
AB
849 if (rdev)
850 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
31db9f7c 851
3f8a18cc
JB
852 return ret;
853}
854
855static int get_inode_info(struct btrfs_root *root,
856 u64 ino, u64 *size, u64 *gen,
857 u64 *mode, u64 *uid, u64 *gid,
858 u64 *rdev)
859{
860 struct btrfs_path *path;
861 int ret;
862
863 path = alloc_path_for_send();
864 if (!path)
865 return -ENOMEM;
866 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
867 rdev);
31db9f7c
AB
868 btrfs_free_path(path);
869 return ret;
870}
871
872typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
873 struct fs_path *p,
874 void *ctx);
875
876/*
96b5bd77
JS
877 * Helper function to iterate the entries in ONE btrfs_inode_ref or
878 * btrfs_inode_extref.
31db9f7c
AB
879 * The iterate callback may return a non zero value to stop iteration. This can
880 * be a negative value for error codes or 1 to simply stop it.
881 *
96b5bd77 882 * path must point to the INODE_REF or INODE_EXTREF when called.
31db9f7c 883 */
924794c9 884static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
885 struct btrfs_key *found_key, int resolve,
886 iterate_inode_ref_t iterate, void *ctx)
887{
96b5bd77 888 struct extent_buffer *eb = path->nodes[0];
31db9f7c
AB
889 struct btrfs_item *item;
890 struct btrfs_inode_ref *iref;
96b5bd77 891 struct btrfs_inode_extref *extref;
31db9f7c
AB
892 struct btrfs_path *tmp_path;
893 struct fs_path *p;
96b5bd77 894 u32 cur = 0;
31db9f7c 895 u32 total;
96b5bd77 896 int slot = path->slots[0];
31db9f7c
AB
897 u32 name_len;
898 char *start;
899 int ret = 0;
96b5bd77 900 int num = 0;
31db9f7c 901 int index;
96b5bd77
JS
902 u64 dir;
903 unsigned long name_off;
904 unsigned long elem_size;
905 unsigned long ptr;
31db9f7c 906
924794c9 907 p = fs_path_alloc_reversed();
31db9f7c
AB
908 if (!p)
909 return -ENOMEM;
910
911 tmp_path = alloc_path_for_send();
912 if (!tmp_path) {
924794c9 913 fs_path_free(p);
31db9f7c
AB
914 return -ENOMEM;
915 }
916
31db9f7c 917
96b5bd77
JS
918 if (found_key->type == BTRFS_INODE_REF_KEY) {
919 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
920 struct btrfs_inode_ref);
dd3cc16b 921 item = btrfs_item_nr(slot);
96b5bd77
JS
922 total = btrfs_item_size(eb, item);
923 elem_size = sizeof(*iref);
924 } else {
925 ptr = btrfs_item_ptr_offset(eb, slot);
926 total = btrfs_item_size_nr(eb, slot);
927 elem_size = sizeof(*extref);
928 }
929
31db9f7c
AB
930 while (cur < total) {
931 fs_path_reset(p);
932
96b5bd77
JS
933 if (found_key->type == BTRFS_INODE_REF_KEY) {
934 iref = (struct btrfs_inode_ref *)(ptr + cur);
935 name_len = btrfs_inode_ref_name_len(eb, iref);
936 name_off = (unsigned long)(iref + 1);
937 index = btrfs_inode_ref_index(eb, iref);
938 dir = found_key->offset;
939 } else {
940 extref = (struct btrfs_inode_extref *)(ptr + cur);
941 name_len = btrfs_inode_extref_name_len(eb, extref);
942 name_off = (unsigned long)&extref->name;
943 index = btrfs_inode_extref_index(eb, extref);
944 dir = btrfs_inode_extref_parent(eb, extref);
945 }
946
31db9f7c 947 if (resolve) {
96b5bd77
JS
948 start = btrfs_ref_to_path(root, tmp_path, name_len,
949 name_off, eb, dir,
950 p->buf, p->buf_len);
31db9f7c
AB
951 if (IS_ERR(start)) {
952 ret = PTR_ERR(start);
953 goto out;
954 }
955 if (start < p->buf) {
956 /* overflow , try again with larger buffer */
957 ret = fs_path_ensure_buf(p,
958 p->buf_len + p->buf - start);
959 if (ret < 0)
960 goto out;
96b5bd77
JS
961 start = btrfs_ref_to_path(root, tmp_path,
962 name_len, name_off,
963 eb, dir,
964 p->buf, p->buf_len);
31db9f7c
AB
965 if (IS_ERR(start)) {
966 ret = PTR_ERR(start);
967 goto out;
968 }
969 BUG_ON(start < p->buf);
970 }
971 p->start = start;
972 } else {
96b5bd77
JS
973 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
974 name_len);
31db9f7c
AB
975 if (ret < 0)
976 goto out;
977 }
978
96b5bd77
JS
979 cur += elem_size + name_len;
980 ret = iterate(num, dir, index, p, ctx);
31db9f7c
AB
981 if (ret)
982 goto out;
31db9f7c
AB
983 num++;
984 }
985
986out:
987 btrfs_free_path(tmp_path);
924794c9 988 fs_path_free(p);
31db9f7c
AB
989 return ret;
990}
991
992typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
993 const char *name, int name_len,
994 const char *data, int data_len,
995 u8 type, void *ctx);
996
997/*
998 * Helper function to iterate the entries in ONE btrfs_dir_item.
999 * The iterate callback may return a non zero value to stop iteration. This can
1000 * be a negative value for error codes or 1 to simply stop it.
1001 *
1002 * path must point to the dir item when called.
1003 */
924794c9 1004static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
1005 struct btrfs_key *found_key,
1006 iterate_dir_item_t iterate, void *ctx)
1007{
1008 int ret = 0;
1009 struct extent_buffer *eb;
1010 struct btrfs_item *item;
1011 struct btrfs_dir_item *di;
31db9f7c
AB
1012 struct btrfs_key di_key;
1013 char *buf = NULL;
7e3ae33e 1014 int buf_len;
31db9f7c
AB
1015 u32 name_len;
1016 u32 data_len;
1017 u32 cur;
1018 u32 len;
1019 u32 total;
1020 int slot;
1021 int num;
1022 u8 type;
1023
4395e0c4
FM
1024 /*
1025 * Start with a small buffer (1 page). If later we end up needing more
1026 * space, which can happen for xattrs on a fs with a leaf size greater
1027 * then the page size, attempt to increase the buffer. Typically xattr
1028 * values are small.
1029 */
1030 buf_len = PATH_MAX;
e780b0d1 1031 buf = kmalloc(buf_len, GFP_KERNEL);
31db9f7c
AB
1032 if (!buf) {
1033 ret = -ENOMEM;
1034 goto out;
1035 }
1036
31db9f7c
AB
1037 eb = path->nodes[0];
1038 slot = path->slots[0];
dd3cc16b 1039 item = btrfs_item_nr(slot);
31db9f7c
AB
1040 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1041 cur = 0;
1042 len = 0;
1043 total = btrfs_item_size(eb, item);
1044
1045 num = 0;
1046 while (cur < total) {
1047 name_len = btrfs_dir_name_len(eb, di);
1048 data_len = btrfs_dir_data_len(eb, di);
1049 type = btrfs_dir_type(eb, di);
1050 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1051
7e3ae33e
FM
1052 if (type == BTRFS_FT_XATTR) {
1053 if (name_len > XATTR_NAME_MAX) {
1054 ret = -ENAMETOOLONG;
1055 goto out;
1056 }
4395e0c4 1057 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
7e3ae33e
FM
1058 ret = -E2BIG;
1059 goto out;
1060 }
1061 } else {
1062 /*
1063 * Path too long
1064 */
4395e0c4 1065 if (name_len + data_len > PATH_MAX) {
7e3ae33e
FM
1066 ret = -ENAMETOOLONG;
1067 goto out;
1068 }
31db9f7c
AB
1069 }
1070
4395e0c4
FM
1071 if (name_len + data_len > buf_len) {
1072 buf_len = name_len + data_len;
1073 if (is_vmalloc_addr(buf)) {
1074 vfree(buf);
1075 buf = NULL;
1076 } else {
1077 char *tmp = krealloc(buf, buf_len,
e780b0d1 1078 GFP_KERNEL | __GFP_NOWARN);
4395e0c4
FM
1079
1080 if (!tmp)
1081 kfree(buf);
1082 buf = tmp;
1083 }
1084 if (!buf) {
1085 buf = vmalloc(buf_len);
1086 if (!buf) {
1087 ret = -ENOMEM;
1088 goto out;
1089 }
1090 }
1091 }
1092
31db9f7c
AB
1093 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1094 name_len + data_len);
1095
1096 len = sizeof(*di) + name_len + data_len;
1097 di = (struct btrfs_dir_item *)((char *)di + len);
1098 cur += len;
1099
1100 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1101 data_len, type, ctx);
1102 if (ret < 0)
1103 goto out;
1104 if (ret) {
1105 ret = 0;
1106 goto out;
1107 }
1108
1109 num++;
1110 }
1111
1112out:
4395e0c4 1113 kvfree(buf);
31db9f7c
AB
1114 return ret;
1115}
1116
1117static int __copy_first_ref(int num, u64 dir, int index,
1118 struct fs_path *p, void *ctx)
1119{
1120 int ret;
1121 struct fs_path *pt = ctx;
1122
1123 ret = fs_path_copy(pt, p);
1124 if (ret < 0)
1125 return ret;
1126
1127 /* we want the first only */
1128 return 1;
1129}
1130
1131/*
1132 * Retrieve the first path of an inode. If an inode has more then one
1133 * ref/hardlink, this is ignored.
1134 */
924794c9 1135static int get_inode_path(struct btrfs_root *root,
31db9f7c
AB
1136 u64 ino, struct fs_path *path)
1137{
1138 int ret;
1139 struct btrfs_key key, found_key;
1140 struct btrfs_path *p;
1141
1142 p = alloc_path_for_send();
1143 if (!p)
1144 return -ENOMEM;
1145
1146 fs_path_reset(path);
1147
1148 key.objectid = ino;
1149 key.type = BTRFS_INODE_REF_KEY;
1150 key.offset = 0;
1151
1152 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1153 if (ret < 0)
1154 goto out;
1155 if (ret) {
1156 ret = 1;
1157 goto out;
1158 }
1159 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1160 if (found_key.objectid != ino ||
96b5bd77
JS
1161 (found_key.type != BTRFS_INODE_REF_KEY &&
1162 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1163 ret = -ENOENT;
1164 goto out;
1165 }
1166
924794c9
TI
1167 ret = iterate_inode_ref(root, p, &found_key, 1,
1168 __copy_first_ref, path);
31db9f7c
AB
1169 if (ret < 0)
1170 goto out;
1171 ret = 0;
1172
1173out:
1174 btrfs_free_path(p);
1175 return ret;
1176}
1177
1178struct backref_ctx {
1179 struct send_ctx *sctx;
1180
3f8a18cc 1181 struct btrfs_path *path;
31db9f7c
AB
1182 /* number of total found references */
1183 u64 found;
1184
1185 /*
1186 * used for clones found in send_root. clones found behind cur_objectid
1187 * and cur_offset are not considered as allowed clones.
1188 */
1189 u64 cur_objectid;
1190 u64 cur_offset;
1191
1192 /* may be truncated in case it's the last extent in a file */
1193 u64 extent_len;
1194
619d8c4e
FM
1195 /* data offset in the file extent item */
1196 u64 data_offset;
1197
31db9f7c 1198 /* Just to check for bugs in backref resolving */
ee849c04 1199 int found_itself;
31db9f7c
AB
1200};
1201
1202static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1203{
995e01b7 1204 u64 root = (u64)(uintptr_t)key;
31db9f7c
AB
1205 struct clone_root *cr = (struct clone_root *)elt;
1206
1207 if (root < cr->root->objectid)
1208 return -1;
1209 if (root > cr->root->objectid)
1210 return 1;
1211 return 0;
1212}
1213
1214static int __clone_root_cmp_sort(const void *e1, const void *e2)
1215{
1216 struct clone_root *cr1 = (struct clone_root *)e1;
1217 struct clone_root *cr2 = (struct clone_root *)e2;
1218
1219 if (cr1->root->objectid < cr2->root->objectid)
1220 return -1;
1221 if (cr1->root->objectid > cr2->root->objectid)
1222 return 1;
1223 return 0;
1224}
1225
1226/*
1227 * Called for every backref that is found for the current extent.
766702ef 1228 * Results are collected in sctx->clone_roots->ino/offset/found_refs
31db9f7c
AB
1229 */
1230static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1231{
1232 struct backref_ctx *bctx = ctx_;
1233 struct clone_root *found;
1234 int ret;
1235 u64 i_size;
1236
1237 /* First check if the root is in the list of accepted clone sources */
995e01b7 1238 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
31db9f7c
AB
1239 bctx->sctx->clone_roots_cnt,
1240 sizeof(struct clone_root),
1241 __clone_root_cmp_bsearch);
1242 if (!found)
1243 return 0;
1244
1245 if (found->root == bctx->sctx->send_root &&
1246 ino == bctx->cur_objectid &&
1247 offset == bctx->cur_offset) {
ee849c04 1248 bctx->found_itself = 1;
31db9f7c
AB
1249 }
1250
1251 /*
766702ef 1252 * There are inodes that have extents that lie behind its i_size. Don't
31db9f7c
AB
1253 * accept clones from these extents.
1254 */
3f8a18cc
JB
1255 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1256 NULL, NULL, NULL);
1257 btrfs_release_path(bctx->path);
31db9f7c
AB
1258 if (ret < 0)
1259 return ret;
1260
619d8c4e 1261 if (offset + bctx->data_offset + bctx->extent_len > i_size)
31db9f7c
AB
1262 return 0;
1263
1264 /*
1265 * Make sure we don't consider clones from send_root that are
1266 * behind the current inode/offset.
1267 */
1268 if (found->root == bctx->sctx->send_root) {
1269 /*
1270 * TODO for the moment we don't accept clones from the inode
1271 * that is currently send. We may change this when
1272 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1273 * file.
1274 */
1275 if (ino >= bctx->cur_objectid)
1276 return 0;
e938c8ad
AB
1277#if 0
1278 if (ino > bctx->cur_objectid)
1279 return 0;
1280 if (offset + bctx->extent_len > bctx->cur_offset)
31db9f7c 1281 return 0;
e938c8ad 1282#endif
31db9f7c
AB
1283 }
1284
1285 bctx->found++;
1286 found->found_refs++;
1287 if (ino < found->ino) {
1288 found->ino = ino;
1289 found->offset = offset;
1290 } else if (found->ino == ino) {
1291 /*
1292 * same extent found more then once in the same file.
1293 */
1294 if (found->offset > offset + bctx->extent_len)
1295 found->offset = offset;
1296 }
1297
1298 return 0;
1299}
1300
1301/*
766702ef
AB
1302 * Given an inode, offset and extent item, it finds a good clone for a clone
1303 * instruction. Returns -ENOENT when none could be found. The function makes
1304 * sure that the returned clone is usable at the point where sending is at the
1305 * moment. This means, that no clones are accepted which lie behind the current
1306 * inode+offset.
1307 *
31db9f7c
AB
1308 * path must point to the extent item when called.
1309 */
1310static int find_extent_clone(struct send_ctx *sctx,
1311 struct btrfs_path *path,
1312 u64 ino, u64 data_offset,
1313 u64 ino_size,
1314 struct clone_root **found)
1315{
1316 int ret;
1317 int extent_type;
1318 u64 logical;
74dd17fb 1319 u64 disk_byte;
31db9f7c
AB
1320 u64 num_bytes;
1321 u64 extent_item_pos;
69917e43 1322 u64 flags = 0;
31db9f7c
AB
1323 struct btrfs_file_extent_item *fi;
1324 struct extent_buffer *eb = path->nodes[0];
35075bb0 1325 struct backref_ctx *backref_ctx = NULL;
31db9f7c
AB
1326 struct clone_root *cur_clone_root;
1327 struct btrfs_key found_key;
1328 struct btrfs_path *tmp_path;
74dd17fb 1329 int compressed;
31db9f7c
AB
1330 u32 i;
1331
1332 tmp_path = alloc_path_for_send();
1333 if (!tmp_path)
1334 return -ENOMEM;
1335
3f8a18cc
JB
1336 /* We only use this path under the commit sem */
1337 tmp_path->need_commit_sem = 0;
1338
e780b0d1 1339 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
35075bb0
AB
1340 if (!backref_ctx) {
1341 ret = -ENOMEM;
1342 goto out;
1343 }
1344
3f8a18cc
JB
1345 backref_ctx->path = tmp_path;
1346
31db9f7c
AB
1347 if (data_offset >= ino_size) {
1348 /*
1349 * There may be extents that lie behind the file's size.
1350 * I at least had this in combination with snapshotting while
1351 * writing large files.
1352 */
1353 ret = 0;
1354 goto out;
1355 }
1356
1357 fi = btrfs_item_ptr(eb, path->slots[0],
1358 struct btrfs_file_extent_item);
1359 extent_type = btrfs_file_extent_type(eb, fi);
1360 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1361 ret = -ENOENT;
1362 goto out;
1363 }
74dd17fb 1364 compressed = btrfs_file_extent_compression(eb, fi);
31db9f7c
AB
1365
1366 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
74dd17fb
CM
1367 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1368 if (disk_byte == 0) {
31db9f7c
AB
1369 ret = -ENOENT;
1370 goto out;
1371 }
74dd17fb 1372 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
31db9f7c 1373
9e351cc8 1374 down_read(&sctx->send_root->fs_info->commit_root_sem);
69917e43
LB
1375 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1376 &found_key, &flags);
9e351cc8 1377 up_read(&sctx->send_root->fs_info->commit_root_sem);
31db9f7c
AB
1378 btrfs_release_path(tmp_path);
1379
1380 if (ret < 0)
1381 goto out;
69917e43 1382 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
31db9f7c
AB
1383 ret = -EIO;
1384 goto out;
1385 }
1386
1387 /*
1388 * Setup the clone roots.
1389 */
1390 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1391 cur_clone_root = sctx->clone_roots + i;
1392 cur_clone_root->ino = (u64)-1;
1393 cur_clone_root->offset = 0;
1394 cur_clone_root->found_refs = 0;
1395 }
1396
35075bb0
AB
1397 backref_ctx->sctx = sctx;
1398 backref_ctx->found = 0;
1399 backref_ctx->cur_objectid = ino;
1400 backref_ctx->cur_offset = data_offset;
1401 backref_ctx->found_itself = 0;
1402 backref_ctx->extent_len = num_bytes;
619d8c4e
FM
1403 /*
1404 * For non-compressed extents iterate_extent_inodes() gives us extent
1405 * offsets that already take into account the data offset, but not for
1406 * compressed extents, since the offset is logical and not relative to
1407 * the physical extent locations. We must take this into account to
1408 * avoid sending clone offsets that go beyond the source file's size,
1409 * which would result in the clone ioctl failing with -EINVAL on the
1410 * receiving end.
1411 */
1412 if (compressed == BTRFS_COMPRESS_NONE)
1413 backref_ctx->data_offset = 0;
1414 else
1415 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
31db9f7c
AB
1416
1417 /*
1418 * The last extent of a file may be too large due to page alignment.
1419 * We need to adjust extent_len in this case so that the checks in
1420 * __iterate_backrefs work.
1421 */
1422 if (data_offset + num_bytes >= ino_size)
35075bb0 1423 backref_ctx->extent_len = ino_size - data_offset;
31db9f7c
AB
1424
1425 /*
1426 * Now collect all backrefs.
1427 */
74dd17fb
CM
1428 if (compressed == BTRFS_COMPRESS_NONE)
1429 extent_item_pos = logical - found_key.objectid;
1430 else
1431 extent_item_pos = 0;
31db9f7c
AB
1432 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1433 found_key.objectid, extent_item_pos, 1,
35075bb0 1434 __iterate_backrefs, backref_ctx);
74dd17fb 1435
31db9f7c
AB
1436 if (ret < 0)
1437 goto out;
1438
35075bb0 1439 if (!backref_ctx->found_itself) {
31db9f7c
AB
1440 /* found a bug in backref code? */
1441 ret = -EIO;
efe120a0 1442 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
31db9f7c 1443 "send_root. inode=%llu, offset=%llu, "
351fd353 1444 "disk_byte=%llu found extent=%llu",
74dd17fb 1445 ino, data_offset, disk_byte, found_key.objectid);
31db9f7c
AB
1446 goto out;
1447 }
1448
1449verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1450 "ino=%llu, "
1451 "num_bytes=%llu, logical=%llu\n",
1452 data_offset, ino, num_bytes, logical);
1453
35075bb0 1454 if (!backref_ctx->found)
31db9f7c
AB
1455 verbose_printk("btrfs: no clones found\n");
1456
1457 cur_clone_root = NULL;
1458 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1459 if (sctx->clone_roots[i].found_refs) {
1460 if (!cur_clone_root)
1461 cur_clone_root = sctx->clone_roots + i;
1462 else if (sctx->clone_roots[i].root == sctx->send_root)
1463 /* prefer clones from send_root over others */
1464 cur_clone_root = sctx->clone_roots + i;
31db9f7c
AB
1465 }
1466
1467 }
1468
1469 if (cur_clone_root) {
1470 *found = cur_clone_root;
1471 ret = 0;
1472 } else {
1473 ret = -ENOENT;
1474 }
1475
1476out:
1477 btrfs_free_path(tmp_path);
35075bb0 1478 kfree(backref_ctx);
31db9f7c
AB
1479 return ret;
1480}
1481
924794c9 1482static int read_symlink(struct btrfs_root *root,
31db9f7c
AB
1483 u64 ino,
1484 struct fs_path *dest)
1485{
1486 int ret;
1487 struct btrfs_path *path;
1488 struct btrfs_key key;
1489 struct btrfs_file_extent_item *ei;
1490 u8 type;
1491 u8 compression;
1492 unsigned long off;
1493 int len;
1494
1495 path = alloc_path_for_send();
1496 if (!path)
1497 return -ENOMEM;
1498
1499 key.objectid = ino;
1500 key.type = BTRFS_EXTENT_DATA_KEY;
1501 key.offset = 0;
1502 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1503 if (ret < 0)
1504 goto out;
a879719b
FM
1505 if (ret) {
1506 /*
1507 * An empty symlink inode. Can happen in rare error paths when
1508 * creating a symlink (transaction committed before the inode
1509 * eviction handler removed the symlink inode items and a crash
1510 * happened in between or the subvol was snapshoted in between).
1511 * Print an informative message to dmesg/syslog so that the user
1512 * can delete the symlink.
1513 */
1514 btrfs_err(root->fs_info,
1515 "Found empty symlink inode %llu at root %llu",
1516 ino, root->root_key.objectid);
1517 ret = -EIO;
1518 goto out;
1519 }
31db9f7c
AB
1520
1521 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1522 struct btrfs_file_extent_item);
1523 type = btrfs_file_extent_type(path->nodes[0], ei);
1524 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1525 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1526 BUG_ON(compression);
1527
1528 off = btrfs_file_extent_inline_start(ei);
514ac8ad 1529 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
31db9f7c
AB
1530
1531 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
31db9f7c
AB
1532
1533out:
1534 btrfs_free_path(path);
1535 return ret;
1536}
1537
1538/*
1539 * Helper function to generate a file name that is unique in the root of
1540 * send_root and parent_root. This is used to generate names for orphan inodes.
1541 */
1542static int gen_unique_name(struct send_ctx *sctx,
1543 u64 ino, u64 gen,
1544 struct fs_path *dest)
1545{
1546 int ret = 0;
1547 struct btrfs_path *path;
1548 struct btrfs_dir_item *di;
1549 char tmp[64];
1550 int len;
1551 u64 idx = 0;
1552
1553 path = alloc_path_for_send();
1554 if (!path)
1555 return -ENOMEM;
1556
1557 while (1) {
f74b86d8 1558 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
31db9f7c 1559 ino, gen, idx);
64792f25 1560 ASSERT(len < sizeof(tmp));
31db9f7c
AB
1561
1562 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1563 path, BTRFS_FIRST_FREE_OBJECTID,
1564 tmp, strlen(tmp), 0);
1565 btrfs_release_path(path);
1566 if (IS_ERR(di)) {
1567 ret = PTR_ERR(di);
1568 goto out;
1569 }
1570 if (di) {
1571 /* not unique, try again */
1572 idx++;
1573 continue;
1574 }
1575
1576 if (!sctx->parent_root) {
1577 /* unique */
1578 ret = 0;
1579 break;
1580 }
1581
1582 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1583 path, BTRFS_FIRST_FREE_OBJECTID,
1584 tmp, strlen(tmp), 0);
1585 btrfs_release_path(path);
1586 if (IS_ERR(di)) {
1587 ret = PTR_ERR(di);
1588 goto out;
1589 }
1590 if (di) {
1591 /* not unique, try again */
1592 idx++;
1593 continue;
1594 }
1595 /* unique */
1596 break;
1597 }
1598
1599 ret = fs_path_add(dest, tmp, strlen(tmp));
1600
1601out:
1602 btrfs_free_path(path);
1603 return ret;
1604}
1605
1606enum inode_state {
1607 inode_state_no_change,
1608 inode_state_will_create,
1609 inode_state_did_create,
1610 inode_state_will_delete,
1611 inode_state_did_delete,
1612};
1613
1614static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1615{
1616 int ret;
1617 int left_ret;
1618 int right_ret;
1619 u64 left_gen;
1620 u64 right_gen;
1621
1622 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
85a7b33b 1623 NULL, NULL);
31db9f7c
AB
1624 if (ret < 0 && ret != -ENOENT)
1625 goto out;
1626 left_ret = ret;
1627
1628 if (!sctx->parent_root) {
1629 right_ret = -ENOENT;
1630 } else {
1631 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
85a7b33b 1632 NULL, NULL, NULL, NULL);
31db9f7c
AB
1633 if (ret < 0 && ret != -ENOENT)
1634 goto out;
1635 right_ret = ret;
1636 }
1637
1638 if (!left_ret && !right_ret) {
e938c8ad 1639 if (left_gen == gen && right_gen == gen) {
31db9f7c 1640 ret = inode_state_no_change;
e938c8ad 1641 } else if (left_gen == gen) {
31db9f7c
AB
1642 if (ino < sctx->send_progress)
1643 ret = inode_state_did_create;
1644 else
1645 ret = inode_state_will_create;
1646 } else if (right_gen == gen) {
1647 if (ino < sctx->send_progress)
1648 ret = inode_state_did_delete;
1649 else
1650 ret = inode_state_will_delete;
1651 } else {
1652 ret = -ENOENT;
1653 }
1654 } else if (!left_ret) {
1655 if (left_gen == gen) {
1656 if (ino < sctx->send_progress)
1657 ret = inode_state_did_create;
1658 else
1659 ret = inode_state_will_create;
1660 } else {
1661 ret = -ENOENT;
1662 }
1663 } else if (!right_ret) {
1664 if (right_gen == gen) {
1665 if (ino < sctx->send_progress)
1666 ret = inode_state_did_delete;
1667 else
1668 ret = inode_state_will_delete;
1669 } else {
1670 ret = -ENOENT;
1671 }
1672 } else {
1673 ret = -ENOENT;
1674 }
1675
1676out:
1677 return ret;
1678}
1679
1680static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1681{
1682 int ret;
1683
1684 ret = get_cur_inode_state(sctx, ino, gen);
1685 if (ret < 0)
1686 goto out;
1687
1688 if (ret == inode_state_no_change ||
1689 ret == inode_state_did_create ||
1690 ret == inode_state_will_delete)
1691 ret = 1;
1692 else
1693 ret = 0;
1694
1695out:
1696 return ret;
1697}
1698
1699/*
1700 * Helper function to lookup a dir item in a dir.
1701 */
1702static int lookup_dir_item_inode(struct btrfs_root *root,
1703 u64 dir, const char *name, int name_len,
1704 u64 *found_inode,
1705 u8 *found_type)
1706{
1707 int ret = 0;
1708 struct btrfs_dir_item *di;
1709 struct btrfs_key key;
1710 struct btrfs_path *path;
1711
1712 path = alloc_path_for_send();
1713 if (!path)
1714 return -ENOMEM;
1715
1716 di = btrfs_lookup_dir_item(NULL, root, path,
1717 dir, name, name_len, 0);
1718 if (!di) {
1719 ret = -ENOENT;
1720 goto out;
1721 }
1722 if (IS_ERR(di)) {
1723 ret = PTR_ERR(di);
1724 goto out;
1725 }
1726 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1af56070
FM
1727 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1728 ret = -ENOENT;
1729 goto out;
1730 }
31db9f7c
AB
1731 *found_inode = key.objectid;
1732 *found_type = btrfs_dir_type(path->nodes[0], di);
1733
1734out:
1735 btrfs_free_path(path);
1736 return ret;
1737}
1738
766702ef
AB
1739/*
1740 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1741 * generation of the parent dir and the name of the dir entry.
1742 */
924794c9 1743static int get_first_ref(struct btrfs_root *root, u64 ino,
31db9f7c
AB
1744 u64 *dir, u64 *dir_gen, struct fs_path *name)
1745{
1746 int ret;
1747 struct btrfs_key key;
1748 struct btrfs_key found_key;
1749 struct btrfs_path *path;
31db9f7c 1750 int len;
96b5bd77 1751 u64 parent_dir;
31db9f7c
AB
1752
1753 path = alloc_path_for_send();
1754 if (!path)
1755 return -ENOMEM;
1756
1757 key.objectid = ino;
1758 key.type = BTRFS_INODE_REF_KEY;
1759 key.offset = 0;
1760
1761 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1762 if (ret < 0)
1763 goto out;
1764 if (!ret)
1765 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1766 path->slots[0]);
96b5bd77
JS
1767 if (ret || found_key.objectid != ino ||
1768 (found_key.type != BTRFS_INODE_REF_KEY &&
1769 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1770 ret = -ENOENT;
1771 goto out;
1772 }
1773
51a60253 1774 if (found_key.type == BTRFS_INODE_REF_KEY) {
96b5bd77
JS
1775 struct btrfs_inode_ref *iref;
1776 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1777 struct btrfs_inode_ref);
1778 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1779 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1780 (unsigned long)(iref + 1),
1781 len);
1782 parent_dir = found_key.offset;
1783 } else {
1784 struct btrfs_inode_extref *extref;
1785 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1786 struct btrfs_inode_extref);
1787 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1788 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1789 (unsigned long)&extref->name, len);
1790 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1791 }
31db9f7c
AB
1792 if (ret < 0)
1793 goto out;
1794 btrfs_release_path(path);
1795
b46ab97b
FM
1796 if (dir_gen) {
1797 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1798 NULL, NULL, NULL);
1799 if (ret < 0)
1800 goto out;
1801 }
31db9f7c 1802
96b5bd77 1803 *dir = parent_dir;
31db9f7c
AB
1804
1805out:
1806 btrfs_free_path(path);
1807 return ret;
1808}
1809
924794c9 1810static int is_first_ref(struct btrfs_root *root,
31db9f7c
AB
1811 u64 ino, u64 dir,
1812 const char *name, int name_len)
1813{
1814 int ret;
1815 struct fs_path *tmp_name;
1816 u64 tmp_dir;
31db9f7c 1817
924794c9 1818 tmp_name = fs_path_alloc();
31db9f7c
AB
1819 if (!tmp_name)
1820 return -ENOMEM;
1821
b46ab97b 1822 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
31db9f7c
AB
1823 if (ret < 0)
1824 goto out;
1825
b9291aff 1826 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
31db9f7c
AB
1827 ret = 0;
1828 goto out;
1829 }
1830
e938c8ad 1831 ret = !memcmp(tmp_name->start, name, name_len);
31db9f7c
AB
1832
1833out:
924794c9 1834 fs_path_free(tmp_name);
31db9f7c
AB
1835 return ret;
1836}
1837
766702ef
AB
1838/*
1839 * Used by process_recorded_refs to determine if a new ref would overwrite an
1840 * already existing ref. In case it detects an overwrite, it returns the
1841 * inode/gen in who_ino/who_gen.
1842 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1843 * to make sure later references to the overwritten inode are possible.
1844 * Orphanizing is however only required for the first ref of an inode.
1845 * process_recorded_refs does an additional is_first_ref check to see if
1846 * orphanizing is really required.
1847 */
31db9f7c
AB
1848static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1849 const char *name, int name_len,
1850 u64 *who_ino, u64 *who_gen)
1851{
1852 int ret = 0;
ebdad913 1853 u64 gen;
31db9f7c
AB
1854 u64 other_inode = 0;
1855 u8 other_type = 0;
1856
1857 if (!sctx->parent_root)
1858 goto out;
1859
1860 ret = is_inode_existent(sctx, dir, dir_gen);
1861 if (ret <= 0)
1862 goto out;
1863
ebdad913
JB
1864 /*
1865 * If we have a parent root we need to verify that the parent dir was
01327610 1866 * not deleted and then re-created, if it was then we have no overwrite
ebdad913
JB
1867 * and we can just unlink this entry.
1868 */
1869 if (sctx->parent_root) {
1870 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1871 NULL, NULL, NULL);
1872 if (ret < 0 && ret != -ENOENT)
1873 goto out;
1874 if (ret) {
1875 ret = 0;
1876 goto out;
1877 }
1878 if (gen != dir_gen)
1879 goto out;
1880 }
1881
31db9f7c
AB
1882 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1883 &other_inode, &other_type);
1884 if (ret < 0 && ret != -ENOENT)
1885 goto out;
1886 if (ret) {
1887 ret = 0;
1888 goto out;
1889 }
1890
766702ef
AB
1891 /*
1892 * Check if the overwritten ref was already processed. If yes, the ref
1893 * was already unlinked/moved, so we can safely assume that we will not
1894 * overwrite anything at this point in time.
1895 */
801bec36
RK
1896 if (other_inode > sctx->send_progress ||
1897 is_waiting_for_move(sctx, other_inode)) {
31db9f7c 1898 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
85a7b33b 1899 who_gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
1900 if (ret < 0)
1901 goto out;
1902
1903 ret = 1;
1904 *who_ino = other_inode;
1905 } else {
1906 ret = 0;
1907 }
1908
1909out:
1910 return ret;
1911}
1912
766702ef
AB
1913/*
1914 * Checks if the ref was overwritten by an already processed inode. This is
1915 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1916 * thus the orphan name needs be used.
1917 * process_recorded_refs also uses it to avoid unlinking of refs that were
1918 * overwritten.
1919 */
31db9f7c
AB
1920static int did_overwrite_ref(struct send_ctx *sctx,
1921 u64 dir, u64 dir_gen,
1922 u64 ino, u64 ino_gen,
1923 const char *name, int name_len)
1924{
1925 int ret = 0;
1926 u64 gen;
1927 u64 ow_inode;
1928 u8 other_type;
1929
1930 if (!sctx->parent_root)
1931 goto out;
1932
1933 ret = is_inode_existent(sctx, dir, dir_gen);
1934 if (ret <= 0)
1935 goto out;
1936
1937 /* check if the ref was overwritten by another ref */
1938 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1939 &ow_inode, &other_type);
1940 if (ret < 0 && ret != -ENOENT)
1941 goto out;
1942 if (ret) {
1943 /* was never and will never be overwritten */
1944 ret = 0;
1945 goto out;
1946 }
1947
1948 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
85a7b33b 1949 NULL, NULL);
31db9f7c
AB
1950 if (ret < 0)
1951 goto out;
1952
1953 if (ow_inode == ino && gen == ino_gen) {
1954 ret = 0;
1955 goto out;
1956 }
1957
8b191a68
FM
1958 /*
1959 * We know that it is or will be overwritten. Check this now.
1960 * The current inode being processed might have been the one that caused
b786f16a
FM
1961 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1962 * the current inode being processed.
8b191a68 1963 */
b786f16a
FM
1964 if ((ow_inode < sctx->send_progress) ||
1965 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1966 gen == sctx->cur_inode_gen))
31db9f7c
AB
1967 ret = 1;
1968 else
1969 ret = 0;
1970
1971out:
1972 return ret;
1973}
1974
766702ef
AB
1975/*
1976 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1977 * that got overwritten. This is used by process_recorded_refs to determine
1978 * if it has to use the path as returned by get_cur_path or the orphan name.
1979 */
31db9f7c
AB
1980static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1981{
1982 int ret = 0;
1983 struct fs_path *name = NULL;
1984 u64 dir;
1985 u64 dir_gen;
1986
1987 if (!sctx->parent_root)
1988 goto out;
1989
924794c9 1990 name = fs_path_alloc();
31db9f7c
AB
1991 if (!name)
1992 return -ENOMEM;
1993
924794c9 1994 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
31db9f7c
AB
1995 if (ret < 0)
1996 goto out;
1997
1998 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1999 name->start, fs_path_len(name));
31db9f7c
AB
2000
2001out:
924794c9 2002 fs_path_free(name);
31db9f7c
AB
2003 return ret;
2004}
2005
766702ef
AB
2006/*
2007 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2008 * so we need to do some special handling in case we have clashes. This function
2009 * takes care of this with the help of name_cache_entry::radix_list.
5dc67d0b 2010 * In case of error, nce is kfreed.
766702ef 2011 */
31db9f7c
AB
2012static int name_cache_insert(struct send_ctx *sctx,
2013 struct name_cache_entry *nce)
2014{
2015 int ret = 0;
7e0926fe
AB
2016 struct list_head *nce_head;
2017
2018 nce_head = radix_tree_lookup(&sctx->name_cache,
2019 (unsigned long)nce->ino);
2020 if (!nce_head) {
e780b0d1 2021 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
cfa7a9cc
TI
2022 if (!nce_head) {
2023 kfree(nce);
31db9f7c 2024 return -ENOMEM;
cfa7a9cc 2025 }
7e0926fe 2026 INIT_LIST_HEAD(nce_head);
31db9f7c 2027
7e0926fe 2028 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
5dc67d0b
AB
2029 if (ret < 0) {
2030 kfree(nce_head);
2031 kfree(nce);
31db9f7c 2032 return ret;
5dc67d0b 2033 }
31db9f7c 2034 }
7e0926fe 2035 list_add_tail(&nce->radix_list, nce_head);
31db9f7c
AB
2036 list_add_tail(&nce->list, &sctx->name_cache_list);
2037 sctx->name_cache_size++;
2038
2039 return ret;
2040}
2041
2042static void name_cache_delete(struct send_ctx *sctx,
2043 struct name_cache_entry *nce)
2044{
7e0926fe 2045 struct list_head *nce_head;
31db9f7c 2046
7e0926fe
AB
2047 nce_head = radix_tree_lookup(&sctx->name_cache,
2048 (unsigned long)nce->ino);
57fb8910
DS
2049 if (!nce_head) {
2050 btrfs_err(sctx->send_root->fs_info,
2051 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2052 nce->ino, sctx->name_cache_size);
2053 }
31db9f7c 2054
7e0926fe 2055 list_del(&nce->radix_list);
31db9f7c 2056 list_del(&nce->list);
31db9f7c 2057 sctx->name_cache_size--;
7e0926fe 2058
57fb8910
DS
2059 /*
2060 * We may not get to the final release of nce_head if the lookup fails
2061 */
2062 if (nce_head && list_empty(nce_head)) {
7e0926fe
AB
2063 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2064 kfree(nce_head);
2065 }
31db9f7c
AB
2066}
2067
2068static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2069 u64 ino, u64 gen)
2070{
7e0926fe
AB
2071 struct list_head *nce_head;
2072 struct name_cache_entry *cur;
31db9f7c 2073
7e0926fe
AB
2074 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2075 if (!nce_head)
31db9f7c
AB
2076 return NULL;
2077
7e0926fe
AB
2078 list_for_each_entry(cur, nce_head, radix_list) {
2079 if (cur->ino == ino && cur->gen == gen)
2080 return cur;
2081 }
31db9f7c
AB
2082 return NULL;
2083}
2084
766702ef
AB
2085/*
2086 * Removes the entry from the list and adds it back to the end. This marks the
2087 * entry as recently used so that name_cache_clean_unused does not remove it.
2088 */
31db9f7c
AB
2089static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2090{
2091 list_del(&nce->list);
2092 list_add_tail(&nce->list, &sctx->name_cache_list);
2093}
2094
766702ef
AB
2095/*
2096 * Remove some entries from the beginning of name_cache_list.
2097 */
31db9f7c
AB
2098static void name_cache_clean_unused(struct send_ctx *sctx)
2099{
2100 struct name_cache_entry *nce;
2101
2102 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2103 return;
2104
2105 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2106 nce = list_entry(sctx->name_cache_list.next,
2107 struct name_cache_entry, list);
2108 name_cache_delete(sctx, nce);
2109 kfree(nce);
2110 }
2111}
2112
2113static void name_cache_free(struct send_ctx *sctx)
2114{
2115 struct name_cache_entry *nce;
31db9f7c 2116
e938c8ad
AB
2117 while (!list_empty(&sctx->name_cache_list)) {
2118 nce = list_entry(sctx->name_cache_list.next,
2119 struct name_cache_entry, list);
31db9f7c 2120 name_cache_delete(sctx, nce);
17589bd9 2121 kfree(nce);
31db9f7c
AB
2122 }
2123}
2124
766702ef
AB
2125/*
2126 * Used by get_cur_path for each ref up to the root.
2127 * Returns 0 if it succeeded.
2128 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2129 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2130 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2131 * Returns <0 in case of error.
2132 */
31db9f7c
AB
2133static int __get_cur_name_and_parent(struct send_ctx *sctx,
2134 u64 ino, u64 gen,
2135 u64 *parent_ino,
2136 u64 *parent_gen,
2137 struct fs_path *dest)
2138{
2139 int ret;
2140 int nce_ret;
31db9f7c
AB
2141 struct name_cache_entry *nce = NULL;
2142
766702ef
AB
2143 /*
2144 * First check if we already did a call to this function with the same
2145 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2146 * return the cached result.
2147 */
31db9f7c
AB
2148 nce = name_cache_search(sctx, ino, gen);
2149 if (nce) {
2150 if (ino < sctx->send_progress && nce->need_later_update) {
2151 name_cache_delete(sctx, nce);
2152 kfree(nce);
2153 nce = NULL;
2154 } else {
2155 name_cache_used(sctx, nce);
2156 *parent_ino = nce->parent_ino;
2157 *parent_gen = nce->parent_gen;
2158 ret = fs_path_add(dest, nce->name, nce->name_len);
2159 if (ret < 0)
2160 goto out;
2161 ret = nce->ret;
2162 goto out;
2163 }
2164 }
2165
766702ef
AB
2166 /*
2167 * If the inode is not existent yet, add the orphan name and return 1.
2168 * This should only happen for the parent dir that we determine in
2169 * __record_new_ref
2170 */
31db9f7c
AB
2171 ret = is_inode_existent(sctx, ino, gen);
2172 if (ret < 0)
2173 goto out;
2174
2175 if (!ret) {
2176 ret = gen_unique_name(sctx, ino, gen, dest);
2177 if (ret < 0)
2178 goto out;
2179 ret = 1;
2180 goto out_cache;
2181 }
2182
766702ef
AB
2183 /*
2184 * Depending on whether the inode was already processed or not, use
2185 * send_root or parent_root for ref lookup.
2186 */
bf0d1f44 2187 if (ino < sctx->send_progress)
924794c9
TI
2188 ret = get_first_ref(sctx->send_root, ino,
2189 parent_ino, parent_gen, dest);
31db9f7c 2190 else
924794c9
TI
2191 ret = get_first_ref(sctx->parent_root, ino,
2192 parent_ino, parent_gen, dest);
31db9f7c
AB
2193 if (ret < 0)
2194 goto out;
2195
766702ef
AB
2196 /*
2197 * Check if the ref was overwritten by an inode's ref that was processed
2198 * earlier. If yes, treat as orphan and return 1.
2199 */
31db9f7c
AB
2200 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2201 dest->start, dest->end - dest->start);
2202 if (ret < 0)
2203 goto out;
2204 if (ret) {
2205 fs_path_reset(dest);
2206 ret = gen_unique_name(sctx, ino, gen, dest);
2207 if (ret < 0)
2208 goto out;
2209 ret = 1;
2210 }
2211
2212out_cache:
766702ef
AB
2213 /*
2214 * Store the result of the lookup in the name cache.
2215 */
e780b0d1 2216 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
31db9f7c
AB
2217 if (!nce) {
2218 ret = -ENOMEM;
2219 goto out;
2220 }
2221
2222 nce->ino = ino;
2223 nce->gen = gen;
2224 nce->parent_ino = *parent_ino;
2225 nce->parent_gen = *parent_gen;
2226 nce->name_len = fs_path_len(dest);
2227 nce->ret = ret;
2228 strcpy(nce->name, dest->start);
31db9f7c
AB
2229
2230 if (ino < sctx->send_progress)
2231 nce->need_later_update = 0;
2232 else
2233 nce->need_later_update = 1;
2234
2235 nce_ret = name_cache_insert(sctx, nce);
2236 if (nce_ret < 0)
2237 ret = nce_ret;
2238 name_cache_clean_unused(sctx);
2239
2240out:
31db9f7c
AB
2241 return ret;
2242}
2243
2244/*
2245 * Magic happens here. This function returns the first ref to an inode as it
2246 * would look like while receiving the stream at this point in time.
2247 * We walk the path up to the root. For every inode in between, we check if it
2248 * was already processed/sent. If yes, we continue with the parent as found
2249 * in send_root. If not, we continue with the parent as found in parent_root.
2250 * If we encounter an inode that was deleted at this point in time, we use the
2251 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2252 * that were not created yet and overwritten inodes/refs.
2253 *
2254 * When do we have have orphan inodes:
2255 * 1. When an inode is freshly created and thus no valid refs are available yet
2256 * 2. When a directory lost all it's refs (deleted) but still has dir items
2257 * inside which were not processed yet (pending for move/delete). If anyone
2258 * tried to get the path to the dir items, it would get a path inside that
2259 * orphan directory.
2260 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2261 * of an unprocessed inode. If in that case the first ref would be
2262 * overwritten, the overwritten inode gets "orphanized". Later when we
2263 * process this overwritten inode, it is restored at a new place by moving
2264 * the orphan inode.
2265 *
2266 * sctx->send_progress tells this function at which point in time receiving
2267 * would be.
2268 */
2269static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2270 struct fs_path *dest)
2271{
2272 int ret = 0;
2273 struct fs_path *name = NULL;
2274 u64 parent_inode = 0;
2275 u64 parent_gen = 0;
2276 int stop = 0;
2277
924794c9 2278 name = fs_path_alloc();
31db9f7c
AB
2279 if (!name) {
2280 ret = -ENOMEM;
2281 goto out;
2282 }
2283
2284 dest->reversed = 1;
2285 fs_path_reset(dest);
2286
2287 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
8b191a68
FM
2288 struct waiting_dir_move *wdm;
2289
31db9f7c
AB
2290 fs_path_reset(name);
2291
9dc44214
FM
2292 if (is_waiting_for_rm(sctx, ino)) {
2293 ret = gen_unique_name(sctx, ino, gen, name);
2294 if (ret < 0)
2295 goto out;
2296 ret = fs_path_add_path(dest, name);
2297 break;
2298 }
2299
8b191a68
FM
2300 wdm = get_waiting_dir_move(sctx, ino);
2301 if (wdm && wdm->orphanized) {
2302 ret = gen_unique_name(sctx, ino, gen, name);
2303 stop = 1;
2304 } else if (wdm) {
bf0d1f44
FM
2305 ret = get_first_ref(sctx->parent_root, ino,
2306 &parent_inode, &parent_gen, name);
2307 } else {
2308 ret = __get_cur_name_and_parent(sctx, ino, gen,
2309 &parent_inode,
2310 &parent_gen, name);
2311 if (ret)
2312 stop = 1;
2313 }
2314
31db9f7c
AB
2315 if (ret < 0)
2316 goto out;
9f03740a 2317
31db9f7c
AB
2318 ret = fs_path_add_path(dest, name);
2319 if (ret < 0)
2320 goto out;
2321
2322 ino = parent_inode;
2323 gen = parent_gen;
2324 }
2325
2326out:
924794c9 2327 fs_path_free(name);
31db9f7c
AB
2328 if (!ret)
2329 fs_path_unreverse(dest);
2330 return ret;
2331}
2332
31db9f7c
AB
2333/*
2334 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2335 */
2336static int send_subvol_begin(struct send_ctx *sctx)
2337{
2338 int ret;
2339 struct btrfs_root *send_root = sctx->send_root;
2340 struct btrfs_root *parent_root = sctx->parent_root;
2341 struct btrfs_path *path;
2342 struct btrfs_key key;
2343 struct btrfs_root_ref *ref;
2344 struct extent_buffer *leaf;
2345 char *name = NULL;
2346 int namelen;
2347
ffcfaf81 2348 path = btrfs_alloc_path();
31db9f7c
AB
2349 if (!path)
2350 return -ENOMEM;
2351
e780b0d1 2352 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
31db9f7c
AB
2353 if (!name) {
2354 btrfs_free_path(path);
2355 return -ENOMEM;
2356 }
2357
2358 key.objectid = send_root->objectid;
2359 key.type = BTRFS_ROOT_BACKREF_KEY;
2360 key.offset = 0;
2361
2362 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2363 &key, path, 1, 0);
2364 if (ret < 0)
2365 goto out;
2366 if (ret) {
2367 ret = -ENOENT;
2368 goto out;
2369 }
2370
2371 leaf = path->nodes[0];
2372 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2373 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2374 key.objectid != send_root->objectid) {
2375 ret = -ENOENT;
2376 goto out;
2377 }
2378 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2379 namelen = btrfs_root_ref_name_len(leaf, ref);
2380 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2381 btrfs_release_path(path);
2382
31db9f7c
AB
2383 if (parent_root) {
2384 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2385 if (ret < 0)
2386 goto out;
2387 } else {
2388 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2389 if (ret < 0)
2390 goto out;
2391 }
2392
2393 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
b96b1db0
RR
2394
2395 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2396 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2397 sctx->send_root->root_item.received_uuid);
2398 else
2399 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2400 sctx->send_root->root_item.uuid);
2401
31db9f7c 2402 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
5a0f4e2c 2403 le64_to_cpu(sctx->send_root->root_item.ctransid));
31db9f7c 2404 if (parent_root) {
37b8d27d
JB
2405 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2406 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2407 parent_root->root_item.received_uuid);
2408 else
2409 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2410 parent_root->root_item.uuid);
31db9f7c 2411 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 2412 le64_to_cpu(sctx->parent_root->root_item.ctransid));
31db9f7c
AB
2413 }
2414
2415 ret = send_cmd(sctx);
2416
2417tlv_put_failure:
2418out:
2419 btrfs_free_path(path);
2420 kfree(name);
2421 return ret;
2422}
2423
2424static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2425{
2426 int ret = 0;
2427 struct fs_path *p;
2428
2429verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2430
924794c9 2431 p = fs_path_alloc();
31db9f7c
AB
2432 if (!p)
2433 return -ENOMEM;
2434
2435 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2436 if (ret < 0)
2437 goto out;
2438
2439 ret = get_cur_path(sctx, ino, gen, p);
2440 if (ret < 0)
2441 goto out;
2442 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2443 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2444
2445 ret = send_cmd(sctx);
2446
2447tlv_put_failure:
2448out:
924794c9 2449 fs_path_free(p);
31db9f7c
AB
2450 return ret;
2451}
2452
2453static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2454{
2455 int ret = 0;
2456 struct fs_path *p;
2457
2458verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2459
924794c9 2460 p = fs_path_alloc();
31db9f7c
AB
2461 if (!p)
2462 return -ENOMEM;
2463
2464 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2465 if (ret < 0)
2466 goto out;
2467
2468 ret = get_cur_path(sctx, ino, gen, p);
2469 if (ret < 0)
2470 goto out;
2471 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2472 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2473
2474 ret = send_cmd(sctx);
2475
2476tlv_put_failure:
2477out:
924794c9 2478 fs_path_free(p);
31db9f7c
AB
2479 return ret;
2480}
2481
2482static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2483{
2484 int ret = 0;
2485 struct fs_path *p;
2486
2487verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2488
924794c9 2489 p = fs_path_alloc();
31db9f7c
AB
2490 if (!p)
2491 return -ENOMEM;
2492
2493 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2494 if (ret < 0)
2495 goto out;
2496
2497 ret = get_cur_path(sctx, ino, gen, p);
2498 if (ret < 0)
2499 goto out;
2500 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2501 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2502 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2503
2504 ret = send_cmd(sctx);
2505
2506tlv_put_failure:
2507out:
924794c9 2508 fs_path_free(p);
31db9f7c
AB
2509 return ret;
2510}
2511
2512static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2513{
2514 int ret = 0;
2515 struct fs_path *p = NULL;
2516 struct btrfs_inode_item *ii;
2517 struct btrfs_path *path = NULL;
2518 struct extent_buffer *eb;
2519 struct btrfs_key key;
2520 int slot;
2521
2522verbose_printk("btrfs: send_utimes %llu\n", ino);
2523
924794c9 2524 p = fs_path_alloc();
31db9f7c
AB
2525 if (!p)
2526 return -ENOMEM;
2527
2528 path = alloc_path_for_send();
2529 if (!path) {
2530 ret = -ENOMEM;
2531 goto out;
2532 }
2533
2534 key.objectid = ino;
2535 key.type = BTRFS_INODE_ITEM_KEY;
2536 key.offset = 0;
2537 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
15b253ea
FM
2538 if (ret > 0)
2539 ret = -ENOENT;
31db9f7c
AB
2540 if (ret < 0)
2541 goto out;
2542
2543 eb = path->nodes[0];
2544 slot = path->slots[0];
2545 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2546
2547 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2548 if (ret < 0)
2549 goto out;
2550
2551 ret = get_cur_path(sctx, ino, gen, p);
2552 if (ret < 0)
2553 goto out;
2554 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
a937b979
DS
2555 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2556 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2557 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
766702ef 2558 /* TODO Add otime support when the otime patches get into upstream */
31db9f7c
AB
2559
2560 ret = send_cmd(sctx);
2561
2562tlv_put_failure:
2563out:
924794c9 2564 fs_path_free(p);
31db9f7c
AB
2565 btrfs_free_path(path);
2566 return ret;
2567}
2568
2569/*
2570 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2571 * a valid path yet because we did not process the refs yet. So, the inode
2572 * is created as orphan.
2573 */
1f4692da 2574static int send_create_inode(struct send_ctx *sctx, u64 ino)
31db9f7c
AB
2575{
2576 int ret = 0;
31db9f7c 2577 struct fs_path *p;
31db9f7c 2578 int cmd;
1f4692da 2579 u64 gen;
31db9f7c 2580 u64 mode;
1f4692da 2581 u64 rdev;
31db9f7c 2582
1f4692da 2583verbose_printk("btrfs: send_create_inode %llu\n", ino);
31db9f7c 2584
924794c9 2585 p = fs_path_alloc();
31db9f7c
AB
2586 if (!p)
2587 return -ENOMEM;
2588
644d1940
LB
2589 if (ino != sctx->cur_ino) {
2590 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2591 NULL, NULL, &rdev);
2592 if (ret < 0)
2593 goto out;
2594 } else {
2595 gen = sctx->cur_inode_gen;
2596 mode = sctx->cur_inode_mode;
2597 rdev = sctx->cur_inode_rdev;
2598 }
31db9f7c 2599
e938c8ad 2600 if (S_ISREG(mode)) {
31db9f7c 2601 cmd = BTRFS_SEND_C_MKFILE;
e938c8ad 2602 } else if (S_ISDIR(mode)) {
31db9f7c 2603 cmd = BTRFS_SEND_C_MKDIR;
e938c8ad 2604 } else if (S_ISLNK(mode)) {
31db9f7c 2605 cmd = BTRFS_SEND_C_SYMLINK;
e938c8ad 2606 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
31db9f7c 2607 cmd = BTRFS_SEND_C_MKNOD;
e938c8ad 2608 } else if (S_ISFIFO(mode)) {
31db9f7c 2609 cmd = BTRFS_SEND_C_MKFIFO;
e938c8ad 2610 } else if (S_ISSOCK(mode)) {
31db9f7c 2611 cmd = BTRFS_SEND_C_MKSOCK;
e938c8ad 2612 } else {
f14d104d 2613 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
31db9f7c
AB
2614 (int)(mode & S_IFMT));
2615 ret = -ENOTSUPP;
2616 goto out;
2617 }
2618
2619 ret = begin_cmd(sctx, cmd);
2620 if (ret < 0)
2621 goto out;
2622
1f4692da 2623 ret = gen_unique_name(sctx, ino, gen, p);
31db9f7c
AB
2624 if (ret < 0)
2625 goto out;
2626
2627 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
1f4692da 2628 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
31db9f7c
AB
2629
2630 if (S_ISLNK(mode)) {
2631 fs_path_reset(p);
924794c9 2632 ret = read_symlink(sctx->send_root, ino, p);
31db9f7c
AB
2633 if (ret < 0)
2634 goto out;
2635 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2636 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2637 S_ISFIFO(mode) || S_ISSOCK(mode)) {
d79e5043
AJ
2638 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2639 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
31db9f7c
AB
2640 }
2641
2642 ret = send_cmd(sctx);
2643 if (ret < 0)
2644 goto out;
2645
2646
2647tlv_put_failure:
2648out:
924794c9 2649 fs_path_free(p);
31db9f7c
AB
2650 return ret;
2651}
2652
1f4692da
AB
2653/*
2654 * We need some special handling for inodes that get processed before the parent
2655 * directory got created. See process_recorded_refs for details.
2656 * This function does the check if we already created the dir out of order.
2657 */
2658static int did_create_dir(struct send_ctx *sctx, u64 dir)
2659{
2660 int ret = 0;
2661 struct btrfs_path *path = NULL;
2662 struct btrfs_key key;
2663 struct btrfs_key found_key;
2664 struct btrfs_key di_key;
2665 struct extent_buffer *eb;
2666 struct btrfs_dir_item *di;
2667 int slot;
2668
2669 path = alloc_path_for_send();
2670 if (!path) {
2671 ret = -ENOMEM;
2672 goto out;
2673 }
2674
2675 key.objectid = dir;
2676 key.type = BTRFS_DIR_INDEX_KEY;
2677 key.offset = 0;
dff6d0ad
FDBM
2678 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2679 if (ret < 0)
2680 goto out;
2681
1f4692da 2682 while (1) {
dff6d0ad
FDBM
2683 eb = path->nodes[0];
2684 slot = path->slots[0];
2685 if (slot >= btrfs_header_nritems(eb)) {
2686 ret = btrfs_next_leaf(sctx->send_root, path);
2687 if (ret < 0) {
2688 goto out;
2689 } else if (ret > 0) {
2690 ret = 0;
2691 break;
2692 }
2693 continue;
1f4692da 2694 }
dff6d0ad
FDBM
2695
2696 btrfs_item_key_to_cpu(eb, &found_key, slot);
2697 if (found_key.objectid != key.objectid ||
1f4692da
AB
2698 found_key.type != key.type) {
2699 ret = 0;
2700 goto out;
2701 }
2702
2703 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2704 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2705
a0525414
JB
2706 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2707 di_key.objectid < sctx->send_progress) {
1f4692da
AB
2708 ret = 1;
2709 goto out;
2710 }
2711
dff6d0ad 2712 path->slots[0]++;
1f4692da
AB
2713 }
2714
2715out:
2716 btrfs_free_path(path);
2717 return ret;
2718}
2719
2720/*
2721 * Only creates the inode if it is:
2722 * 1. Not a directory
2723 * 2. Or a directory which was not created already due to out of order
2724 * directories. See did_create_dir and process_recorded_refs for details.
2725 */
2726static int send_create_inode_if_needed(struct send_ctx *sctx)
2727{
2728 int ret;
2729
2730 if (S_ISDIR(sctx->cur_inode_mode)) {
2731 ret = did_create_dir(sctx, sctx->cur_ino);
2732 if (ret < 0)
2733 goto out;
2734 if (ret) {
2735 ret = 0;
2736 goto out;
2737 }
2738 }
2739
2740 ret = send_create_inode(sctx, sctx->cur_ino);
2741 if (ret < 0)
2742 goto out;
2743
2744out:
2745 return ret;
2746}
2747
31db9f7c
AB
2748struct recorded_ref {
2749 struct list_head list;
2750 char *dir_path;
2751 char *name;
2752 struct fs_path *full_path;
2753 u64 dir;
2754 u64 dir_gen;
2755 int dir_path_len;
2756 int name_len;
2757};
2758
2759/*
2760 * We need to process new refs before deleted refs, but compare_tree gives us
2761 * everything mixed. So we first record all refs and later process them.
2762 * This function is a helper to record one ref.
2763 */
a4d96d62 2764static int __record_ref(struct list_head *head, u64 dir,
31db9f7c
AB
2765 u64 dir_gen, struct fs_path *path)
2766{
2767 struct recorded_ref *ref;
31db9f7c 2768
e780b0d1 2769 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
31db9f7c
AB
2770 if (!ref)
2771 return -ENOMEM;
2772
2773 ref->dir = dir;
2774 ref->dir_gen = dir_gen;
2775 ref->full_path = path;
2776
ed84885d
AS
2777 ref->name = (char *)kbasename(ref->full_path->start);
2778 ref->name_len = ref->full_path->end - ref->name;
2779 ref->dir_path = ref->full_path->start;
2780 if (ref->name == ref->full_path->start)
31db9f7c 2781 ref->dir_path_len = 0;
ed84885d 2782 else
31db9f7c
AB
2783 ref->dir_path_len = ref->full_path->end -
2784 ref->full_path->start - 1 - ref->name_len;
31db9f7c
AB
2785
2786 list_add_tail(&ref->list, head);
2787 return 0;
2788}
2789
ba5e8f2e
JB
2790static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2791{
2792 struct recorded_ref *new;
2793
e780b0d1 2794 new = kmalloc(sizeof(*ref), GFP_KERNEL);
ba5e8f2e
JB
2795 if (!new)
2796 return -ENOMEM;
2797
2798 new->dir = ref->dir;
2799 new->dir_gen = ref->dir_gen;
2800 new->full_path = NULL;
2801 INIT_LIST_HEAD(&new->list);
2802 list_add_tail(&new->list, list);
2803 return 0;
2804}
2805
924794c9 2806static void __free_recorded_refs(struct list_head *head)
31db9f7c
AB
2807{
2808 struct recorded_ref *cur;
31db9f7c 2809
e938c8ad
AB
2810 while (!list_empty(head)) {
2811 cur = list_entry(head->next, struct recorded_ref, list);
924794c9 2812 fs_path_free(cur->full_path);
e938c8ad 2813 list_del(&cur->list);
31db9f7c
AB
2814 kfree(cur);
2815 }
31db9f7c
AB
2816}
2817
2818static void free_recorded_refs(struct send_ctx *sctx)
2819{
924794c9
TI
2820 __free_recorded_refs(&sctx->new_refs);
2821 __free_recorded_refs(&sctx->deleted_refs);
31db9f7c
AB
2822}
2823
2824/*
766702ef 2825 * Renames/moves a file/dir to its orphan name. Used when the first
31db9f7c
AB
2826 * ref of an unprocessed inode gets overwritten and for all non empty
2827 * directories.
2828 */
2829static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2830 struct fs_path *path)
2831{
2832 int ret;
2833 struct fs_path *orphan;
2834
924794c9 2835 orphan = fs_path_alloc();
31db9f7c
AB
2836 if (!orphan)
2837 return -ENOMEM;
2838
2839 ret = gen_unique_name(sctx, ino, gen, orphan);
2840 if (ret < 0)
2841 goto out;
2842
2843 ret = send_rename(sctx, path, orphan);
2844
2845out:
924794c9 2846 fs_path_free(orphan);
31db9f7c
AB
2847 return ret;
2848}
2849
9dc44214
FM
2850static struct orphan_dir_info *
2851add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2852{
2853 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2854 struct rb_node *parent = NULL;
2855 struct orphan_dir_info *entry, *odi;
2856
e780b0d1 2857 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
9dc44214
FM
2858 if (!odi)
2859 return ERR_PTR(-ENOMEM);
2860 odi->ino = dir_ino;
2861 odi->gen = 0;
2862
2863 while (*p) {
2864 parent = *p;
2865 entry = rb_entry(parent, struct orphan_dir_info, node);
2866 if (dir_ino < entry->ino) {
2867 p = &(*p)->rb_left;
2868 } else if (dir_ino > entry->ino) {
2869 p = &(*p)->rb_right;
2870 } else {
2871 kfree(odi);
2872 return entry;
2873 }
2874 }
2875
2876 rb_link_node(&odi->node, parent, p);
2877 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2878 return odi;
2879}
2880
2881static struct orphan_dir_info *
2882get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2883{
2884 struct rb_node *n = sctx->orphan_dirs.rb_node;
2885 struct orphan_dir_info *entry;
2886
2887 while (n) {
2888 entry = rb_entry(n, struct orphan_dir_info, node);
2889 if (dir_ino < entry->ino)
2890 n = n->rb_left;
2891 else if (dir_ino > entry->ino)
2892 n = n->rb_right;
2893 else
2894 return entry;
2895 }
2896 return NULL;
2897}
2898
2899static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2900{
2901 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2902
2903 return odi != NULL;
2904}
2905
2906static void free_orphan_dir_info(struct send_ctx *sctx,
2907 struct orphan_dir_info *odi)
2908{
2909 if (!odi)
2910 return;
2911 rb_erase(&odi->node, &sctx->orphan_dirs);
2912 kfree(odi);
2913}
2914
31db9f7c
AB
2915/*
2916 * Returns 1 if a directory can be removed at this point in time.
2917 * We check this by iterating all dir items and checking if the inode behind
2918 * the dir item was already processed.
2919 */
9dc44214
FM
2920static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2921 u64 send_progress)
31db9f7c
AB
2922{
2923 int ret = 0;
2924 struct btrfs_root *root = sctx->parent_root;
2925 struct btrfs_path *path;
2926 struct btrfs_key key;
2927 struct btrfs_key found_key;
2928 struct btrfs_key loc;
2929 struct btrfs_dir_item *di;
2930
6d85ed05
AB
2931 /*
2932 * Don't try to rmdir the top/root subvolume dir.
2933 */
2934 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2935 return 0;
2936
31db9f7c
AB
2937 path = alloc_path_for_send();
2938 if (!path)
2939 return -ENOMEM;
2940
2941 key.objectid = dir;
2942 key.type = BTRFS_DIR_INDEX_KEY;
2943 key.offset = 0;
dff6d0ad
FDBM
2944 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2945 if (ret < 0)
2946 goto out;
31db9f7c
AB
2947
2948 while (1) {
9dc44214
FM
2949 struct waiting_dir_move *dm;
2950
dff6d0ad
FDBM
2951 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2952 ret = btrfs_next_leaf(root, path);
2953 if (ret < 0)
2954 goto out;
2955 else if (ret > 0)
2956 break;
2957 continue;
31db9f7c 2958 }
dff6d0ad
FDBM
2959 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2960 path->slots[0]);
2961 if (found_key.objectid != key.objectid ||
2962 found_key.type != key.type)
31db9f7c 2963 break;
31db9f7c
AB
2964
2965 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2966 struct btrfs_dir_item);
2967 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2968
9dc44214
FM
2969 dm = get_waiting_dir_move(sctx, loc.objectid);
2970 if (dm) {
2971 struct orphan_dir_info *odi;
2972
2973 odi = add_orphan_dir_info(sctx, dir);
2974 if (IS_ERR(odi)) {
2975 ret = PTR_ERR(odi);
2976 goto out;
2977 }
2978 odi->gen = dir_gen;
2979 dm->rmdir_ino = dir;
2980 ret = 0;
2981 goto out;
2982 }
2983
31db9f7c 2984 if (loc.objectid > send_progress) {
443f9d26
RK
2985 struct orphan_dir_info *odi;
2986
2987 odi = get_orphan_dir_info(sctx, dir);
2988 free_orphan_dir_info(sctx, odi);
31db9f7c
AB
2989 ret = 0;
2990 goto out;
2991 }
2992
dff6d0ad 2993 path->slots[0]++;
31db9f7c
AB
2994 }
2995
2996 ret = 1;
2997
2998out:
2999 btrfs_free_path(path);
3000 return ret;
3001}
3002
9f03740a
FDBM
3003static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3004{
9dc44214 3005 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
9f03740a 3006
9dc44214 3007 return entry != NULL;
9f03740a
FDBM
3008}
3009
8b191a68 3010static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
9f03740a
FDBM
3011{
3012 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3013 struct rb_node *parent = NULL;
3014 struct waiting_dir_move *entry, *dm;
3015
e780b0d1 3016 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
9f03740a
FDBM
3017 if (!dm)
3018 return -ENOMEM;
3019 dm->ino = ino;
9dc44214 3020 dm->rmdir_ino = 0;
8b191a68 3021 dm->orphanized = orphanized;
9f03740a
FDBM
3022
3023 while (*p) {
3024 parent = *p;
3025 entry = rb_entry(parent, struct waiting_dir_move, node);
3026 if (ino < entry->ino) {
3027 p = &(*p)->rb_left;
3028 } else if (ino > entry->ino) {
3029 p = &(*p)->rb_right;
3030 } else {
3031 kfree(dm);
3032 return -EEXIST;
3033 }
3034 }
3035
3036 rb_link_node(&dm->node, parent, p);
3037 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3038 return 0;
3039}
3040
9dc44214
FM
3041static struct waiting_dir_move *
3042get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
9f03740a
FDBM
3043{
3044 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3045 struct waiting_dir_move *entry;
3046
3047 while (n) {
3048 entry = rb_entry(n, struct waiting_dir_move, node);
9dc44214 3049 if (ino < entry->ino)
9f03740a 3050 n = n->rb_left;
9dc44214 3051 else if (ino > entry->ino)
9f03740a 3052 n = n->rb_right;
9dc44214
FM
3053 else
3054 return entry;
9f03740a 3055 }
9dc44214
FM
3056 return NULL;
3057}
3058
3059static void free_waiting_dir_move(struct send_ctx *sctx,
3060 struct waiting_dir_move *dm)
3061{
3062 if (!dm)
3063 return;
3064 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3065 kfree(dm);
9f03740a
FDBM
3066}
3067
bfa7e1f8
FM
3068static int add_pending_dir_move(struct send_ctx *sctx,
3069 u64 ino,
3070 u64 ino_gen,
f959492f
FM
3071 u64 parent_ino,
3072 struct list_head *new_refs,
84471e24
FM
3073 struct list_head *deleted_refs,
3074 const bool is_orphan)
9f03740a
FDBM
3075{
3076 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3077 struct rb_node *parent = NULL;
73b802f4 3078 struct pending_dir_move *entry = NULL, *pm;
9f03740a
FDBM
3079 struct recorded_ref *cur;
3080 int exists = 0;
3081 int ret;
3082
e780b0d1 3083 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
9f03740a
FDBM
3084 if (!pm)
3085 return -ENOMEM;
3086 pm->parent_ino = parent_ino;
bfa7e1f8
FM
3087 pm->ino = ino;
3088 pm->gen = ino_gen;
9f03740a
FDBM
3089 INIT_LIST_HEAD(&pm->list);
3090 INIT_LIST_HEAD(&pm->update_refs);
3091 RB_CLEAR_NODE(&pm->node);
3092
3093 while (*p) {
3094 parent = *p;
3095 entry = rb_entry(parent, struct pending_dir_move, node);
3096 if (parent_ino < entry->parent_ino) {
3097 p = &(*p)->rb_left;
3098 } else if (parent_ino > entry->parent_ino) {
3099 p = &(*p)->rb_right;
3100 } else {
3101 exists = 1;
3102 break;
3103 }
3104 }
3105
f959492f 3106 list_for_each_entry(cur, deleted_refs, list) {
9f03740a
FDBM
3107 ret = dup_ref(cur, &pm->update_refs);
3108 if (ret < 0)
3109 goto out;
3110 }
f959492f 3111 list_for_each_entry(cur, new_refs, list) {
9f03740a
FDBM
3112 ret = dup_ref(cur, &pm->update_refs);
3113 if (ret < 0)
3114 goto out;
3115 }
3116
8b191a68 3117 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
9f03740a
FDBM
3118 if (ret)
3119 goto out;
3120
3121 if (exists) {
3122 list_add_tail(&pm->list, &entry->list);
3123 } else {
3124 rb_link_node(&pm->node, parent, p);
3125 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3126 }
3127 ret = 0;
3128out:
3129 if (ret) {
3130 __free_recorded_refs(&pm->update_refs);
3131 kfree(pm);
3132 }
3133 return ret;
3134}
3135
3136static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3137 u64 parent_ino)
3138{
3139 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3140 struct pending_dir_move *entry;
3141
3142 while (n) {
3143 entry = rb_entry(n, struct pending_dir_move, node);
3144 if (parent_ino < entry->parent_ino)
3145 n = n->rb_left;
3146 else if (parent_ino > entry->parent_ino)
3147 n = n->rb_right;
3148 else
3149 return entry;
3150 }
3151 return NULL;
3152}
3153
801bec36
RK
3154static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3155 u64 ino, u64 gen, u64 *ancestor_ino)
3156{
3157 int ret = 0;
3158 u64 parent_inode = 0;
3159 u64 parent_gen = 0;
3160 u64 start_ino = ino;
3161
3162 *ancestor_ino = 0;
3163 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3164 fs_path_reset(name);
3165
3166 if (is_waiting_for_rm(sctx, ino))
3167 break;
3168 if (is_waiting_for_move(sctx, ino)) {
3169 if (*ancestor_ino == 0)
3170 *ancestor_ino = ino;
3171 ret = get_first_ref(sctx->parent_root, ino,
3172 &parent_inode, &parent_gen, name);
3173 } else {
3174 ret = __get_cur_name_and_parent(sctx, ino, gen,
3175 &parent_inode,
3176 &parent_gen, name);
3177 if (ret > 0) {
3178 ret = 0;
3179 break;
3180 }
3181 }
3182 if (ret < 0)
3183 break;
3184 if (parent_inode == start_ino) {
3185 ret = 1;
3186 if (*ancestor_ino == 0)
3187 *ancestor_ino = ino;
3188 break;
3189 }
3190 ino = parent_inode;
3191 gen = parent_gen;
3192 }
3193 return ret;
3194}
3195
9f03740a
FDBM
3196static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3197{
3198 struct fs_path *from_path = NULL;
3199 struct fs_path *to_path = NULL;
2b863a13 3200 struct fs_path *name = NULL;
9f03740a
FDBM
3201 u64 orig_progress = sctx->send_progress;
3202 struct recorded_ref *cur;
2b863a13 3203 u64 parent_ino, parent_gen;
9dc44214
FM
3204 struct waiting_dir_move *dm = NULL;
3205 u64 rmdir_ino = 0;
801bec36
RK
3206 u64 ancestor;
3207 bool is_orphan;
9f03740a
FDBM
3208 int ret;
3209
2b863a13 3210 name = fs_path_alloc();
9f03740a 3211 from_path = fs_path_alloc();
2b863a13
FM
3212 if (!name || !from_path) {
3213 ret = -ENOMEM;
3214 goto out;
3215 }
9f03740a 3216
9dc44214
FM
3217 dm = get_waiting_dir_move(sctx, pm->ino);
3218 ASSERT(dm);
3219 rmdir_ino = dm->rmdir_ino;
801bec36 3220 is_orphan = dm->orphanized;
9dc44214 3221 free_waiting_dir_move(sctx, dm);
2b863a13 3222
801bec36 3223 if (is_orphan) {
84471e24
FM
3224 ret = gen_unique_name(sctx, pm->ino,
3225 pm->gen, from_path);
3226 } else {
3227 ret = get_first_ref(sctx->parent_root, pm->ino,
3228 &parent_ino, &parent_gen, name);
3229 if (ret < 0)
3230 goto out;
3231 ret = get_cur_path(sctx, parent_ino, parent_gen,
3232 from_path);
3233 if (ret < 0)
3234 goto out;
3235 ret = fs_path_add_path(from_path, name);
3236 }
c992ec94
FM
3237 if (ret < 0)
3238 goto out;
2b863a13 3239
f959492f 3240 sctx->send_progress = sctx->cur_ino + 1;
801bec36 3241 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
7969e77a
FM
3242 if (ret < 0)
3243 goto out;
801bec36
RK
3244 if (ret) {
3245 LIST_HEAD(deleted_refs);
3246 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3247 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3248 &pm->update_refs, &deleted_refs,
3249 is_orphan);
3250 if (ret < 0)
3251 goto out;
3252 if (rmdir_ino) {
3253 dm = get_waiting_dir_move(sctx, pm->ino);
3254 ASSERT(dm);
3255 dm->rmdir_ino = rmdir_ino;
3256 }
3257 goto out;
3258 }
c992ec94
FM
3259 fs_path_reset(name);
3260 to_path = name;
2b863a13 3261 name = NULL;
9f03740a
FDBM
3262 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3263 if (ret < 0)
3264 goto out;
3265
3266 ret = send_rename(sctx, from_path, to_path);
3267 if (ret < 0)
3268 goto out;
3269
9dc44214
FM
3270 if (rmdir_ino) {
3271 struct orphan_dir_info *odi;
3272
3273 odi = get_orphan_dir_info(sctx, rmdir_ino);
3274 if (!odi) {
3275 /* already deleted */
3276 goto finish;
3277 }
99ea42dd 3278 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
9dc44214
FM
3279 if (ret < 0)
3280 goto out;
3281 if (!ret)
3282 goto finish;
3283
3284 name = fs_path_alloc();
3285 if (!name) {
3286 ret = -ENOMEM;
3287 goto out;
3288 }
3289 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3290 if (ret < 0)
3291 goto out;
3292 ret = send_rmdir(sctx, name);
3293 if (ret < 0)
3294 goto out;
3295 free_orphan_dir_info(sctx, odi);
3296 }
3297
3298finish:
9f03740a
FDBM
3299 ret = send_utimes(sctx, pm->ino, pm->gen);
3300 if (ret < 0)
3301 goto out;
3302
3303 /*
3304 * After rename/move, need to update the utimes of both new parent(s)
3305 * and old parent(s).
3306 */
3307 list_for_each_entry(cur, &pm->update_refs, list) {
764433a1
RK
3308 /*
3309 * The parent inode might have been deleted in the send snapshot
3310 */
3311 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3312 NULL, NULL, NULL, NULL, NULL);
3313 if (ret == -ENOENT) {
3314 ret = 0;
9dc44214 3315 continue;
764433a1
RK
3316 }
3317 if (ret < 0)
3318 goto out;
3319
9f03740a
FDBM
3320 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3321 if (ret < 0)
3322 goto out;
3323 }
3324
3325out:
2b863a13 3326 fs_path_free(name);
9f03740a
FDBM
3327 fs_path_free(from_path);
3328 fs_path_free(to_path);
3329 sctx->send_progress = orig_progress;
3330
3331 return ret;
3332}
3333
3334static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3335{
3336 if (!list_empty(&m->list))
3337 list_del(&m->list);
3338 if (!RB_EMPTY_NODE(&m->node))
3339 rb_erase(&m->node, &sctx->pending_dir_moves);
3340 __free_recorded_refs(&m->update_refs);
3341 kfree(m);
3342}
3343
3344static void tail_append_pending_moves(struct pending_dir_move *moves,
3345 struct list_head *stack)
3346{
3347 if (list_empty(&moves->list)) {
3348 list_add_tail(&moves->list, stack);
3349 } else {
3350 LIST_HEAD(list);
3351 list_splice_init(&moves->list, &list);
3352 list_add_tail(&moves->list, stack);
3353 list_splice_tail(&list, stack);
3354 }
3355}
3356
3357static int apply_children_dir_moves(struct send_ctx *sctx)
3358{
3359 struct pending_dir_move *pm;
3360 struct list_head stack;
3361 u64 parent_ino = sctx->cur_ino;
3362 int ret = 0;
3363
3364 pm = get_pending_dir_moves(sctx, parent_ino);
3365 if (!pm)
3366 return 0;
3367
3368 INIT_LIST_HEAD(&stack);
3369 tail_append_pending_moves(pm, &stack);
3370
3371 while (!list_empty(&stack)) {
3372 pm = list_first_entry(&stack, struct pending_dir_move, list);
3373 parent_ino = pm->ino;
3374 ret = apply_dir_move(sctx, pm);
3375 free_pending_move(sctx, pm);
3376 if (ret)
3377 goto out;
3378 pm = get_pending_dir_moves(sctx, parent_ino);
3379 if (pm)
3380 tail_append_pending_moves(pm, &stack);
3381 }
3382 return 0;
3383
3384out:
3385 while (!list_empty(&stack)) {
3386 pm = list_first_entry(&stack, struct pending_dir_move, list);
3387 free_pending_move(sctx, pm);
3388 }
3389 return ret;
3390}
3391
84471e24
FM
3392/*
3393 * We might need to delay a directory rename even when no ancestor directory
3394 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3395 * renamed. This happens when we rename a directory to the old name (the name
3396 * in the parent root) of some other unrelated directory that got its rename
3397 * delayed due to some ancestor with higher number that got renamed.
3398 *
3399 * Example:
3400 *
3401 * Parent snapshot:
3402 * . (ino 256)
3403 * |---- a/ (ino 257)
3404 * | |---- file (ino 260)
3405 * |
3406 * |---- b/ (ino 258)
3407 * |---- c/ (ino 259)
3408 *
3409 * Send snapshot:
3410 * . (ino 256)
3411 * |---- a/ (ino 258)
3412 * |---- x/ (ino 259)
3413 * |---- y/ (ino 257)
3414 * |----- file (ino 260)
3415 *
3416 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3417 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3418 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3419 * must issue is:
3420 *
3421 * 1 - rename 259 from 'c' to 'x'
3422 * 2 - rename 257 from 'a' to 'x/y'
3423 * 3 - rename 258 from 'b' to 'a'
3424 *
3425 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3426 * be done right away and < 0 on error.
3427 */
3428static int wait_for_dest_dir_move(struct send_ctx *sctx,
3429 struct recorded_ref *parent_ref,
3430 const bool is_orphan)
3431{
3432 struct btrfs_path *path;
3433 struct btrfs_key key;
3434 struct btrfs_key di_key;
3435 struct btrfs_dir_item *di;
3436 u64 left_gen;
3437 u64 right_gen;
3438 int ret = 0;
801bec36 3439 struct waiting_dir_move *wdm;
84471e24
FM
3440
3441 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3442 return 0;
3443
3444 path = alloc_path_for_send();
3445 if (!path)
3446 return -ENOMEM;
3447
3448 key.objectid = parent_ref->dir;
3449 key.type = BTRFS_DIR_ITEM_KEY;
3450 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3451
3452 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3453 if (ret < 0) {
3454 goto out;
3455 } else if (ret > 0) {
3456 ret = 0;
3457 goto out;
3458 }
3459
3460 di = btrfs_match_dir_item_name(sctx->parent_root, path,
3461 parent_ref->name, parent_ref->name_len);
3462 if (!di) {
3463 ret = 0;
3464 goto out;
3465 }
3466 /*
3467 * di_key.objectid has the number of the inode that has a dentry in the
3468 * parent directory with the same name that sctx->cur_ino is being
3469 * renamed to. We need to check if that inode is in the send root as
3470 * well and if it is currently marked as an inode with a pending rename,
3471 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3472 * that it happens after that other inode is renamed.
3473 */
3474 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3475 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3476 ret = 0;
3477 goto out;
3478 }
3479
3480 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3481 &left_gen, NULL, NULL, NULL, NULL);
3482 if (ret < 0)
3483 goto out;
3484 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3485 &right_gen, NULL, NULL, NULL, NULL);
3486 if (ret < 0) {
3487 if (ret == -ENOENT)
3488 ret = 0;
3489 goto out;
3490 }
3491
3492 /* Different inode, no need to delay the rename of sctx->cur_ino */
3493 if (right_gen != left_gen) {
3494 ret = 0;
3495 goto out;
3496 }
3497
801bec36
RK
3498 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3499 if (wdm && !wdm->orphanized) {
84471e24
FM
3500 ret = add_pending_dir_move(sctx,
3501 sctx->cur_ino,
3502 sctx->cur_inode_gen,
3503 di_key.objectid,
3504 &sctx->new_refs,
3505 &sctx->deleted_refs,
3506 is_orphan);
3507 if (!ret)
3508 ret = 1;
3509 }
3510out:
3511 btrfs_free_path(path);
3512 return ret;
3513}
3514
80aa6027
FM
3515/*
3516 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3517 * Return 1 if true, 0 if false and < 0 on error.
3518 */
3519static int is_ancestor(struct btrfs_root *root,
3520 const u64 ino1,
3521 const u64 ino1_gen,
3522 const u64 ino2,
3523 struct fs_path *fs_path)
3524{
3525 u64 ino = ino2;
3526
3527 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3528 int ret;
3529 u64 parent;
3530 u64 parent_gen;
3531
3532 fs_path_reset(fs_path);
3533 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3534 if (ret < 0) {
3535 if (ret == -ENOENT && ino == ino2)
3536 ret = 0;
3537 return ret;
3538 }
3539 if (parent == ino1)
3540 return parent_gen == ino1_gen ? 1 : 0;
3541 ino = parent;
3542 }
3543 return 0;
3544}
3545
9f03740a 3546static int wait_for_parent_move(struct send_ctx *sctx,
8b191a68
FM
3547 struct recorded_ref *parent_ref,
3548 const bool is_orphan)
9f03740a 3549{
f959492f 3550 int ret = 0;
9f03740a
FDBM
3551 u64 ino = parent_ref->dir;
3552 u64 parent_ino_before, parent_ino_after;
9f03740a
FDBM
3553 struct fs_path *path_before = NULL;
3554 struct fs_path *path_after = NULL;
3555 int len1, len2;
9f03740a
FDBM
3556
3557 path_after = fs_path_alloc();
f959492f
FM
3558 path_before = fs_path_alloc();
3559 if (!path_after || !path_before) {
9f03740a
FDBM
3560 ret = -ENOMEM;
3561 goto out;
3562 }
3563
bfa7e1f8 3564 /*
f959492f
FM
3565 * Our current directory inode may not yet be renamed/moved because some
3566 * ancestor (immediate or not) has to be renamed/moved first. So find if
3567 * such ancestor exists and make sure our own rename/move happens after
80aa6027
FM
3568 * that ancestor is processed to avoid path build infinite loops (done
3569 * at get_cur_path()).
bfa7e1f8 3570 */
f959492f
FM
3571 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3572 if (is_waiting_for_move(sctx, ino)) {
80aa6027
FM
3573 /*
3574 * If the current inode is an ancestor of ino in the
3575 * parent root, we need to delay the rename of the
3576 * current inode, otherwise don't delayed the rename
3577 * because we can end up with a circular dependency
3578 * of renames, resulting in some directories never
3579 * getting the respective rename operations issued in
3580 * the send stream or getting into infinite path build
3581 * loops.
3582 */
3583 ret = is_ancestor(sctx->parent_root,
3584 sctx->cur_ino, sctx->cur_inode_gen,
3585 ino, path_before);
4122ea64
FM
3586 if (ret)
3587 break;
f959492f 3588 }
bfa7e1f8
FM
3589
3590 fs_path_reset(path_before);
3591 fs_path_reset(path_after);
3592
3593 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
f959492f 3594 NULL, path_after);
bfa7e1f8
FM
3595 if (ret < 0)
3596 goto out;
3597 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3598 NULL, path_before);
f959492f 3599 if (ret < 0 && ret != -ENOENT) {
bfa7e1f8 3600 goto out;
f959492f 3601 } else if (ret == -ENOENT) {
bf8e8ca6 3602 ret = 0;
f959492f 3603 break;
bfa7e1f8
FM
3604 }
3605
3606 len1 = fs_path_len(path_before);
3607 len2 = fs_path_len(path_after);
f959492f
FM
3608 if (ino > sctx->cur_ino &&
3609 (parent_ino_before != parent_ino_after || len1 != len2 ||
3610 memcmp(path_before->start, path_after->start, len1))) {
bfa7e1f8 3611 ret = 1;
f959492f 3612 break;
bfa7e1f8 3613 }
bfa7e1f8 3614 ino = parent_ino_after;
bfa7e1f8
FM
3615 }
3616
9f03740a
FDBM
3617out:
3618 fs_path_free(path_before);
3619 fs_path_free(path_after);
3620
f959492f
FM
3621 if (ret == 1) {
3622 ret = add_pending_dir_move(sctx,
3623 sctx->cur_ino,
3624 sctx->cur_inode_gen,
3625 ino,
3626 &sctx->new_refs,
84471e24 3627 &sctx->deleted_refs,
8b191a68 3628 is_orphan);
f959492f
FM
3629 if (!ret)
3630 ret = 1;
3631 }
3632
9f03740a
FDBM
3633 return ret;
3634}
3635
31db9f7c
AB
3636/*
3637 * This does all the move/link/unlink/rmdir magic.
3638 */
9f03740a 3639static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
31db9f7c
AB
3640{
3641 int ret = 0;
3642 struct recorded_ref *cur;
1f4692da 3643 struct recorded_ref *cur2;
ba5e8f2e 3644 struct list_head check_dirs;
31db9f7c 3645 struct fs_path *valid_path = NULL;
b24baf69 3646 u64 ow_inode = 0;
31db9f7c
AB
3647 u64 ow_gen;
3648 int did_overwrite = 0;
3649 int is_orphan = 0;
29d6d30f 3650 u64 last_dir_ino_rm = 0;
84471e24 3651 bool can_rename = true;
31db9f7c
AB
3652
3653verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3654
6d85ed05
AB
3655 /*
3656 * This should never happen as the root dir always has the same ref
3657 * which is always '..'
3658 */
3659 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
ba5e8f2e 3660 INIT_LIST_HEAD(&check_dirs);
6d85ed05 3661
924794c9 3662 valid_path = fs_path_alloc();
31db9f7c
AB
3663 if (!valid_path) {
3664 ret = -ENOMEM;
3665 goto out;
3666 }
3667
31db9f7c
AB
3668 /*
3669 * First, check if the first ref of the current inode was overwritten
3670 * before. If yes, we know that the current inode was already orphanized
3671 * and thus use the orphan name. If not, we can use get_cur_path to
3672 * get the path of the first ref as it would like while receiving at
3673 * this point in time.
3674 * New inodes are always orphan at the beginning, so force to use the
3675 * orphan name in this case.
3676 * The first ref is stored in valid_path and will be updated if it
3677 * gets moved around.
3678 */
3679 if (!sctx->cur_inode_new) {
3680 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3681 sctx->cur_inode_gen);
3682 if (ret < 0)
3683 goto out;
3684 if (ret)
3685 did_overwrite = 1;
3686 }
3687 if (sctx->cur_inode_new || did_overwrite) {
3688 ret = gen_unique_name(sctx, sctx->cur_ino,
3689 sctx->cur_inode_gen, valid_path);
3690 if (ret < 0)
3691 goto out;
3692 is_orphan = 1;
3693 } else {
3694 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3695 valid_path);
3696 if (ret < 0)
3697 goto out;
3698 }
3699
3700 list_for_each_entry(cur, &sctx->new_refs, list) {
1f4692da
AB
3701 /*
3702 * We may have refs where the parent directory does not exist
3703 * yet. This happens if the parent directories inum is higher
3704 * the the current inum. To handle this case, we create the
3705 * parent directory out of order. But we need to check if this
3706 * did already happen before due to other refs in the same dir.
3707 */
3708 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3709 if (ret < 0)
3710 goto out;
3711 if (ret == inode_state_will_create) {
3712 ret = 0;
3713 /*
3714 * First check if any of the current inodes refs did
3715 * already create the dir.
3716 */
3717 list_for_each_entry(cur2, &sctx->new_refs, list) {
3718 if (cur == cur2)
3719 break;
3720 if (cur2->dir == cur->dir) {
3721 ret = 1;
3722 break;
3723 }
3724 }
3725
3726 /*
3727 * If that did not happen, check if a previous inode
3728 * did already create the dir.
3729 */
3730 if (!ret)
3731 ret = did_create_dir(sctx, cur->dir);
3732 if (ret < 0)
3733 goto out;
3734 if (!ret) {
3735 ret = send_create_inode(sctx, cur->dir);
3736 if (ret < 0)
3737 goto out;
3738 }
3739 }
3740
31db9f7c
AB
3741 /*
3742 * Check if this new ref would overwrite the first ref of
3743 * another unprocessed inode. If yes, orphanize the
3744 * overwritten inode. If we find an overwritten ref that is
3745 * not the first ref, simply unlink it.
3746 */
3747 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3748 cur->name, cur->name_len,
3749 &ow_inode, &ow_gen);
3750 if (ret < 0)
3751 goto out;
3752 if (ret) {
924794c9
TI
3753 ret = is_first_ref(sctx->parent_root,
3754 ow_inode, cur->dir, cur->name,
3755 cur->name_len);
31db9f7c
AB
3756 if (ret < 0)
3757 goto out;
3758 if (ret) {
8996a48c 3759 struct name_cache_entry *nce;
801bec36 3760 struct waiting_dir_move *wdm;
8996a48c 3761
31db9f7c
AB
3762 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3763 cur->full_path);
3764 if (ret < 0)
3765 goto out;
801bec36
RK
3766
3767 /*
3768 * If ow_inode has its rename operation delayed
3769 * make sure that its orphanized name is used in
3770 * the source path when performing its rename
3771 * operation.
3772 */
3773 if (is_waiting_for_move(sctx, ow_inode)) {
3774 wdm = get_waiting_dir_move(sctx,
3775 ow_inode);
3776 ASSERT(wdm);
3777 wdm->orphanized = true;
3778 }
3779
8996a48c
FM
3780 /*
3781 * Make sure we clear our orphanized inode's
3782 * name from the name cache. This is because the
3783 * inode ow_inode might be an ancestor of some
3784 * other inode that will be orphanized as well
3785 * later and has an inode number greater than
3786 * sctx->send_progress. We need to prevent
3787 * future name lookups from using the old name
3788 * and get instead the orphan name.
3789 */
3790 nce = name_cache_search(sctx, ow_inode, ow_gen);
3791 if (nce) {
3792 name_cache_delete(sctx, nce);
3793 kfree(nce);
3794 }
801bec36
RK
3795
3796 /*
3797 * ow_inode might currently be an ancestor of
3798 * cur_ino, therefore compute valid_path (the
3799 * current path of cur_ino) again because it
3800 * might contain the pre-orphanization name of
3801 * ow_inode, which is no longer valid.
3802 */
3803 fs_path_reset(valid_path);
3804 ret = get_cur_path(sctx, sctx->cur_ino,
3805 sctx->cur_inode_gen, valid_path);
3806 if (ret < 0)
3807 goto out;
31db9f7c
AB
3808 } else {
3809 ret = send_unlink(sctx, cur->full_path);
3810 if (ret < 0)
3811 goto out;
3812 }
3813 }
3814
84471e24
FM
3815 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3816 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3817 if (ret < 0)
3818 goto out;
3819 if (ret == 1) {
3820 can_rename = false;
3821 *pending_move = 1;
3822 }
3823 }
3824
8b191a68
FM
3825 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3826 can_rename) {
3827 ret = wait_for_parent_move(sctx, cur, is_orphan);
3828 if (ret < 0)
3829 goto out;
3830 if (ret == 1) {
3831 can_rename = false;
3832 *pending_move = 1;
3833 }
3834 }
3835
31db9f7c
AB
3836 /*
3837 * link/move the ref to the new place. If we have an orphan
3838 * inode, move it and update valid_path. If not, link or move
3839 * it depending on the inode mode.
3840 */
84471e24 3841 if (is_orphan && can_rename) {
31db9f7c
AB
3842 ret = send_rename(sctx, valid_path, cur->full_path);
3843 if (ret < 0)
3844 goto out;
3845 is_orphan = 0;
3846 ret = fs_path_copy(valid_path, cur->full_path);
3847 if (ret < 0)
3848 goto out;
84471e24 3849 } else if (can_rename) {
31db9f7c
AB
3850 if (S_ISDIR(sctx->cur_inode_mode)) {
3851 /*
3852 * Dirs can't be linked, so move it. For moved
3853 * dirs, we always have one new and one deleted
3854 * ref. The deleted ref is ignored later.
3855 */
8b191a68
FM
3856 ret = send_rename(sctx, valid_path,
3857 cur->full_path);
3858 if (!ret)
3859 ret = fs_path_copy(valid_path,
3860 cur->full_path);
31db9f7c
AB
3861 if (ret < 0)
3862 goto out;
3863 } else {
3864 ret = send_link(sctx, cur->full_path,
3865 valid_path);
3866 if (ret < 0)
3867 goto out;
3868 }
3869 }
ba5e8f2e 3870 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3871 if (ret < 0)
3872 goto out;
3873 }
3874
3875 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3876 /*
3877 * Check if we can already rmdir the directory. If not,
3878 * orphanize it. For every dir item inside that gets deleted
3879 * later, we do this check again and rmdir it then if possible.
3880 * See the use of check_dirs for more details.
3881 */
9dc44214
FM
3882 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3883 sctx->cur_ino);
31db9f7c
AB
3884 if (ret < 0)
3885 goto out;
3886 if (ret) {
3887 ret = send_rmdir(sctx, valid_path);
3888 if (ret < 0)
3889 goto out;
3890 } else if (!is_orphan) {
3891 ret = orphanize_inode(sctx, sctx->cur_ino,
3892 sctx->cur_inode_gen, valid_path);
3893 if (ret < 0)
3894 goto out;
3895 is_orphan = 1;
3896 }
3897
3898 list_for_each_entry(cur, &sctx->deleted_refs, list) {
ba5e8f2e 3899 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3900 if (ret < 0)
3901 goto out;
3902 }
ccf1626b
AB
3903 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3904 !list_empty(&sctx->deleted_refs)) {
3905 /*
3906 * We have a moved dir. Add the old parent to check_dirs
3907 */
3908 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3909 list);
ba5e8f2e 3910 ret = dup_ref(cur, &check_dirs);
ccf1626b
AB
3911 if (ret < 0)
3912 goto out;
31db9f7c
AB
3913 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3914 /*
3915 * We have a non dir inode. Go through all deleted refs and
3916 * unlink them if they were not already overwritten by other
3917 * inodes.
3918 */
3919 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3920 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3921 sctx->cur_ino, sctx->cur_inode_gen,
3922 cur->name, cur->name_len);
3923 if (ret < 0)
3924 goto out;
3925 if (!ret) {
1f4692da
AB
3926 ret = send_unlink(sctx, cur->full_path);
3927 if (ret < 0)
3928 goto out;
31db9f7c 3929 }
ba5e8f2e 3930 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3931 if (ret < 0)
3932 goto out;
3933 }
31db9f7c
AB
3934 /*
3935 * If the inode is still orphan, unlink the orphan. This may
3936 * happen when a previous inode did overwrite the first ref
3937 * of this inode and no new refs were added for the current
766702ef
AB
3938 * inode. Unlinking does not mean that the inode is deleted in
3939 * all cases. There may still be links to this inode in other
3940 * places.
31db9f7c 3941 */
1f4692da 3942 if (is_orphan) {
31db9f7c
AB
3943 ret = send_unlink(sctx, valid_path);
3944 if (ret < 0)
3945 goto out;
3946 }
3947 }
3948
3949 /*
3950 * We did collect all parent dirs where cur_inode was once located. We
3951 * now go through all these dirs and check if they are pending for
3952 * deletion and if it's finally possible to perform the rmdir now.
3953 * We also update the inode stats of the parent dirs here.
3954 */
ba5e8f2e 3955 list_for_each_entry(cur, &check_dirs, list) {
766702ef
AB
3956 /*
3957 * In case we had refs into dirs that were not processed yet,
3958 * we don't need to do the utime and rmdir logic for these dirs.
3959 * The dir will be processed later.
3960 */
ba5e8f2e 3961 if (cur->dir > sctx->cur_ino)
31db9f7c
AB
3962 continue;
3963
ba5e8f2e 3964 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
3965 if (ret < 0)
3966 goto out;
3967
3968 if (ret == inode_state_did_create ||
3969 ret == inode_state_no_change) {
3970 /* TODO delayed utimes */
ba5e8f2e 3971 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
3972 if (ret < 0)
3973 goto out;
29d6d30f
FM
3974 } else if (ret == inode_state_did_delete &&
3975 cur->dir != last_dir_ino_rm) {
9dc44214
FM
3976 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3977 sctx->cur_ino);
31db9f7c
AB
3978 if (ret < 0)
3979 goto out;
3980 if (ret) {
ba5e8f2e
JB
3981 ret = get_cur_path(sctx, cur->dir,
3982 cur->dir_gen, valid_path);
31db9f7c
AB
3983 if (ret < 0)
3984 goto out;
3985 ret = send_rmdir(sctx, valid_path);
3986 if (ret < 0)
3987 goto out;
29d6d30f 3988 last_dir_ino_rm = cur->dir;
31db9f7c
AB
3989 }
3990 }
3991 }
3992
31db9f7c
AB
3993 ret = 0;
3994
3995out:
ba5e8f2e 3996 __free_recorded_refs(&check_dirs);
31db9f7c 3997 free_recorded_refs(sctx);
924794c9 3998 fs_path_free(valid_path);
31db9f7c
AB
3999 return ret;
4000}
4001
a4d96d62
LB
4002static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
4003 struct fs_path *name, void *ctx, struct list_head *refs)
31db9f7c
AB
4004{
4005 int ret = 0;
4006 struct send_ctx *sctx = ctx;
4007 struct fs_path *p;
4008 u64 gen;
4009
924794c9 4010 p = fs_path_alloc();
31db9f7c
AB
4011 if (!p)
4012 return -ENOMEM;
4013
a4d96d62 4014 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
85a7b33b 4015 NULL, NULL);
31db9f7c
AB
4016 if (ret < 0)
4017 goto out;
4018
31db9f7c
AB
4019 ret = get_cur_path(sctx, dir, gen, p);
4020 if (ret < 0)
4021 goto out;
4022 ret = fs_path_add_path(p, name);
4023 if (ret < 0)
4024 goto out;
4025
a4d96d62 4026 ret = __record_ref(refs, dir, gen, p);
31db9f7c
AB
4027
4028out:
4029 if (ret)
924794c9 4030 fs_path_free(p);
31db9f7c
AB
4031 return ret;
4032}
4033
a4d96d62
LB
4034static int __record_new_ref(int num, u64 dir, int index,
4035 struct fs_path *name,
4036 void *ctx)
4037{
4038 struct send_ctx *sctx = ctx;
4039 return record_ref(sctx->send_root, num, dir, index, name,
4040 ctx, &sctx->new_refs);
4041}
4042
4043
31db9f7c
AB
4044static int __record_deleted_ref(int num, u64 dir, int index,
4045 struct fs_path *name,
4046 void *ctx)
4047{
31db9f7c 4048 struct send_ctx *sctx = ctx;
a4d96d62
LB
4049 return record_ref(sctx->parent_root, num, dir, index, name,
4050 ctx, &sctx->deleted_refs);
31db9f7c
AB
4051}
4052
4053static int record_new_ref(struct send_ctx *sctx)
4054{
4055 int ret;
4056
924794c9
TI
4057 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4058 sctx->cmp_key, 0, __record_new_ref, sctx);
31db9f7c
AB
4059 if (ret < 0)
4060 goto out;
4061 ret = 0;
4062
4063out:
4064 return ret;
4065}
4066
4067static int record_deleted_ref(struct send_ctx *sctx)
4068{
4069 int ret;
4070
924794c9
TI
4071 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4072 sctx->cmp_key, 0, __record_deleted_ref, sctx);
31db9f7c
AB
4073 if (ret < 0)
4074 goto out;
4075 ret = 0;
4076
4077out:
4078 return ret;
4079}
4080
4081struct find_ref_ctx {
4082 u64 dir;
ba5e8f2e
JB
4083 u64 dir_gen;
4084 struct btrfs_root *root;
31db9f7c
AB
4085 struct fs_path *name;
4086 int found_idx;
4087};
4088
4089static int __find_iref(int num, u64 dir, int index,
4090 struct fs_path *name,
4091 void *ctx_)
4092{
4093 struct find_ref_ctx *ctx = ctx_;
ba5e8f2e
JB
4094 u64 dir_gen;
4095 int ret;
31db9f7c
AB
4096
4097 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4098 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
ba5e8f2e
JB
4099 /*
4100 * To avoid doing extra lookups we'll only do this if everything
4101 * else matches.
4102 */
4103 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4104 NULL, NULL, NULL);
4105 if (ret)
4106 return ret;
4107 if (dir_gen != ctx->dir_gen)
4108 return 0;
31db9f7c
AB
4109 ctx->found_idx = num;
4110 return 1;
4111 }
4112 return 0;
4113}
4114
924794c9 4115static int find_iref(struct btrfs_root *root,
31db9f7c
AB
4116 struct btrfs_path *path,
4117 struct btrfs_key *key,
ba5e8f2e 4118 u64 dir, u64 dir_gen, struct fs_path *name)
31db9f7c
AB
4119{
4120 int ret;
4121 struct find_ref_ctx ctx;
4122
4123 ctx.dir = dir;
4124 ctx.name = name;
ba5e8f2e 4125 ctx.dir_gen = dir_gen;
31db9f7c 4126 ctx.found_idx = -1;
ba5e8f2e 4127 ctx.root = root;
31db9f7c 4128
924794c9 4129 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
31db9f7c
AB
4130 if (ret < 0)
4131 return ret;
4132
4133 if (ctx.found_idx == -1)
4134 return -ENOENT;
4135
4136 return ctx.found_idx;
4137}
4138
4139static int __record_changed_new_ref(int num, u64 dir, int index,
4140 struct fs_path *name,
4141 void *ctx)
4142{
ba5e8f2e 4143 u64 dir_gen;
31db9f7c
AB
4144 int ret;
4145 struct send_ctx *sctx = ctx;
4146
ba5e8f2e
JB
4147 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4148 NULL, NULL, NULL);
4149 if (ret)
4150 return ret;
4151
924794c9 4152 ret = find_iref(sctx->parent_root, sctx->right_path,
ba5e8f2e 4153 sctx->cmp_key, dir, dir_gen, name);
31db9f7c
AB
4154 if (ret == -ENOENT)
4155 ret = __record_new_ref(num, dir, index, name, sctx);
4156 else if (ret > 0)
4157 ret = 0;
4158
4159 return ret;
4160}
4161
4162static int __record_changed_deleted_ref(int num, u64 dir, int index,
4163 struct fs_path *name,
4164 void *ctx)
4165{
ba5e8f2e 4166 u64 dir_gen;
31db9f7c
AB
4167 int ret;
4168 struct send_ctx *sctx = ctx;
4169
ba5e8f2e
JB
4170 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4171 NULL, NULL, NULL);
4172 if (ret)
4173 return ret;
4174
924794c9 4175 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
ba5e8f2e 4176 dir, dir_gen, name);
31db9f7c
AB
4177 if (ret == -ENOENT)
4178 ret = __record_deleted_ref(num, dir, index, name, sctx);
4179 else if (ret > 0)
4180 ret = 0;
4181
4182 return ret;
4183}
4184
4185static int record_changed_ref(struct send_ctx *sctx)
4186{
4187 int ret = 0;
4188
924794c9 4189 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
31db9f7c
AB
4190 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4191 if (ret < 0)
4192 goto out;
924794c9 4193 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
31db9f7c
AB
4194 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4195 if (ret < 0)
4196 goto out;
4197 ret = 0;
4198
4199out:
4200 return ret;
4201}
4202
4203/*
4204 * Record and process all refs at once. Needed when an inode changes the
4205 * generation number, which means that it was deleted and recreated.
4206 */
4207static int process_all_refs(struct send_ctx *sctx,
4208 enum btrfs_compare_tree_result cmd)
4209{
4210 int ret;
4211 struct btrfs_root *root;
4212 struct btrfs_path *path;
4213 struct btrfs_key key;
4214 struct btrfs_key found_key;
4215 struct extent_buffer *eb;
4216 int slot;
4217 iterate_inode_ref_t cb;
9f03740a 4218 int pending_move = 0;
31db9f7c
AB
4219
4220 path = alloc_path_for_send();
4221 if (!path)
4222 return -ENOMEM;
4223
4224 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4225 root = sctx->send_root;
4226 cb = __record_new_ref;
4227 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4228 root = sctx->parent_root;
4229 cb = __record_deleted_ref;
4230 } else {
4d1a63b2
DS
4231 btrfs_err(sctx->send_root->fs_info,
4232 "Wrong command %d in process_all_refs", cmd);
4233 ret = -EINVAL;
4234 goto out;
31db9f7c
AB
4235 }
4236
4237 key.objectid = sctx->cmp_key->objectid;
4238 key.type = BTRFS_INODE_REF_KEY;
4239 key.offset = 0;
dff6d0ad
FDBM
4240 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4241 if (ret < 0)
4242 goto out;
31db9f7c 4243
dff6d0ad 4244 while (1) {
31db9f7c
AB
4245 eb = path->nodes[0];
4246 slot = path->slots[0];
dff6d0ad
FDBM
4247 if (slot >= btrfs_header_nritems(eb)) {
4248 ret = btrfs_next_leaf(root, path);
4249 if (ret < 0)
4250 goto out;
4251 else if (ret > 0)
4252 break;
4253 continue;
4254 }
4255
31db9f7c
AB
4256 btrfs_item_key_to_cpu(eb, &found_key, slot);
4257
4258 if (found_key.objectid != key.objectid ||
96b5bd77
JS
4259 (found_key.type != BTRFS_INODE_REF_KEY &&
4260 found_key.type != BTRFS_INODE_EXTREF_KEY))
31db9f7c 4261 break;
31db9f7c 4262
924794c9 4263 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
31db9f7c
AB
4264 if (ret < 0)
4265 goto out;
4266
dff6d0ad 4267 path->slots[0]++;
31db9f7c 4268 }
e938c8ad 4269 btrfs_release_path(path);
31db9f7c 4270
3dc09ec8
JB
4271 /*
4272 * We don't actually care about pending_move as we are simply
4273 * re-creating this inode and will be rename'ing it into place once we
4274 * rename the parent directory.
4275 */
9f03740a 4276 ret = process_recorded_refs(sctx, &pending_move);
31db9f7c
AB
4277out:
4278 btrfs_free_path(path);
4279 return ret;
4280}
4281
4282static int send_set_xattr(struct send_ctx *sctx,
4283 struct fs_path *path,
4284 const char *name, int name_len,
4285 const char *data, int data_len)
4286{
4287 int ret = 0;
4288
4289 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4290 if (ret < 0)
4291 goto out;
4292
4293 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4294 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4295 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4296
4297 ret = send_cmd(sctx);
4298
4299tlv_put_failure:
4300out:
4301 return ret;
4302}
4303
4304static int send_remove_xattr(struct send_ctx *sctx,
4305 struct fs_path *path,
4306 const char *name, int name_len)
4307{
4308 int ret = 0;
4309
4310 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4311 if (ret < 0)
4312 goto out;
4313
4314 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4315 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4316
4317 ret = send_cmd(sctx);
4318
4319tlv_put_failure:
4320out:
4321 return ret;
4322}
4323
4324static int __process_new_xattr(int num, struct btrfs_key *di_key,
4325 const char *name, int name_len,
4326 const char *data, int data_len,
4327 u8 type, void *ctx)
4328{
4329 int ret;
4330 struct send_ctx *sctx = ctx;
4331 struct fs_path *p;
4332 posix_acl_xattr_header dummy_acl;
4333
924794c9 4334 p = fs_path_alloc();
31db9f7c
AB
4335 if (!p)
4336 return -ENOMEM;
4337
4338 /*
01327610 4339 * This hack is needed because empty acls are stored as zero byte
31db9f7c 4340 * data in xattrs. Problem with that is, that receiving these zero byte
01327610 4341 * acls will fail later. To fix this, we send a dummy acl list that
31db9f7c
AB
4342 * only contains the version number and no entries.
4343 */
4344 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4345 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4346 if (data_len == 0) {
4347 dummy_acl.a_version =
4348 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4349 data = (char *)&dummy_acl;
4350 data_len = sizeof(dummy_acl);
4351 }
4352 }
4353
4354 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4355 if (ret < 0)
4356 goto out;
4357
4358 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4359
4360out:
924794c9 4361 fs_path_free(p);
31db9f7c
AB
4362 return ret;
4363}
4364
4365static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4366 const char *name, int name_len,
4367 const char *data, int data_len,
4368 u8 type, void *ctx)
4369{
4370 int ret;
4371 struct send_ctx *sctx = ctx;
4372 struct fs_path *p;
4373
924794c9 4374 p = fs_path_alloc();
31db9f7c
AB
4375 if (!p)
4376 return -ENOMEM;
4377
4378 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4379 if (ret < 0)
4380 goto out;
4381
4382 ret = send_remove_xattr(sctx, p, name, name_len);
4383
4384out:
924794c9 4385 fs_path_free(p);
31db9f7c
AB
4386 return ret;
4387}
4388
4389static int process_new_xattr(struct send_ctx *sctx)
4390{
4391 int ret = 0;
4392
924794c9
TI
4393 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4394 sctx->cmp_key, __process_new_xattr, sctx);
31db9f7c
AB
4395
4396 return ret;
4397}
4398
4399static int process_deleted_xattr(struct send_ctx *sctx)
4400{
4401 int ret;
4402
924794c9
TI
4403 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4404 sctx->cmp_key, __process_deleted_xattr, sctx);
31db9f7c
AB
4405
4406 return ret;
4407}
4408
4409struct find_xattr_ctx {
4410 const char *name;
4411 int name_len;
4412 int found_idx;
4413 char *found_data;
4414 int found_data_len;
4415};
4416
4417static int __find_xattr(int num, struct btrfs_key *di_key,
4418 const char *name, int name_len,
4419 const char *data, int data_len,
4420 u8 type, void *vctx)
4421{
4422 struct find_xattr_ctx *ctx = vctx;
4423
4424 if (name_len == ctx->name_len &&
4425 strncmp(name, ctx->name, name_len) == 0) {
4426 ctx->found_idx = num;
4427 ctx->found_data_len = data_len;
e780b0d1 4428 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
31db9f7c
AB
4429 if (!ctx->found_data)
4430 return -ENOMEM;
31db9f7c
AB
4431 return 1;
4432 }
4433 return 0;
4434}
4435
924794c9 4436static int find_xattr(struct btrfs_root *root,
31db9f7c
AB
4437 struct btrfs_path *path,
4438 struct btrfs_key *key,
4439 const char *name, int name_len,
4440 char **data, int *data_len)
4441{
4442 int ret;
4443 struct find_xattr_ctx ctx;
4444
4445 ctx.name = name;
4446 ctx.name_len = name_len;
4447 ctx.found_idx = -1;
4448 ctx.found_data = NULL;
4449 ctx.found_data_len = 0;
4450
924794c9 4451 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
31db9f7c
AB
4452 if (ret < 0)
4453 return ret;
4454
4455 if (ctx.found_idx == -1)
4456 return -ENOENT;
4457 if (data) {
4458 *data = ctx.found_data;
4459 *data_len = ctx.found_data_len;
4460 } else {
4461 kfree(ctx.found_data);
4462 }
4463 return ctx.found_idx;
4464}
4465
4466
4467static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4468 const char *name, int name_len,
4469 const char *data, int data_len,
4470 u8 type, void *ctx)
4471{
4472 int ret;
4473 struct send_ctx *sctx = ctx;
4474 char *found_data = NULL;
4475 int found_data_len = 0;
31db9f7c 4476
924794c9
TI
4477 ret = find_xattr(sctx->parent_root, sctx->right_path,
4478 sctx->cmp_key, name, name_len, &found_data,
4479 &found_data_len);
31db9f7c
AB
4480 if (ret == -ENOENT) {
4481 ret = __process_new_xattr(num, di_key, name, name_len, data,
4482 data_len, type, ctx);
4483 } else if (ret >= 0) {
4484 if (data_len != found_data_len ||
4485 memcmp(data, found_data, data_len)) {
4486 ret = __process_new_xattr(num, di_key, name, name_len,
4487 data, data_len, type, ctx);
4488 } else {
4489 ret = 0;
4490 }
4491 }
4492
4493 kfree(found_data);
31db9f7c
AB
4494 return ret;
4495}
4496
4497static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4498 const char *name, int name_len,
4499 const char *data, int data_len,
4500 u8 type, void *ctx)
4501{
4502 int ret;
4503 struct send_ctx *sctx = ctx;
4504
924794c9
TI
4505 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4506 name, name_len, NULL, NULL);
31db9f7c
AB
4507 if (ret == -ENOENT)
4508 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4509 data_len, type, ctx);
4510 else if (ret >= 0)
4511 ret = 0;
4512
4513 return ret;
4514}
4515
4516static int process_changed_xattr(struct send_ctx *sctx)
4517{
4518 int ret = 0;
4519
924794c9 4520 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
31db9f7c
AB
4521 sctx->cmp_key, __process_changed_new_xattr, sctx);
4522 if (ret < 0)
4523 goto out;
924794c9 4524 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
31db9f7c
AB
4525 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4526
4527out:
4528 return ret;
4529}
4530
4531static int process_all_new_xattrs(struct send_ctx *sctx)
4532{
4533 int ret;
4534 struct btrfs_root *root;
4535 struct btrfs_path *path;
4536 struct btrfs_key key;
4537 struct btrfs_key found_key;
4538 struct extent_buffer *eb;
4539 int slot;
4540
4541 path = alloc_path_for_send();
4542 if (!path)
4543 return -ENOMEM;
4544
4545 root = sctx->send_root;
4546
4547 key.objectid = sctx->cmp_key->objectid;
4548 key.type = BTRFS_XATTR_ITEM_KEY;
4549 key.offset = 0;
dff6d0ad
FDBM
4550 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4551 if (ret < 0)
4552 goto out;
31db9f7c 4553
dff6d0ad 4554 while (1) {
31db9f7c
AB
4555 eb = path->nodes[0];
4556 slot = path->slots[0];
dff6d0ad
FDBM
4557 if (slot >= btrfs_header_nritems(eb)) {
4558 ret = btrfs_next_leaf(root, path);
4559 if (ret < 0) {
4560 goto out;
4561 } else if (ret > 0) {
4562 ret = 0;
4563 break;
4564 }
4565 continue;
4566 }
31db9f7c 4567
dff6d0ad 4568 btrfs_item_key_to_cpu(eb, &found_key, slot);
31db9f7c
AB
4569 if (found_key.objectid != key.objectid ||
4570 found_key.type != key.type) {
4571 ret = 0;
4572 goto out;
4573 }
4574
924794c9
TI
4575 ret = iterate_dir_item(root, path, &found_key,
4576 __process_new_xattr, sctx);
31db9f7c
AB
4577 if (ret < 0)
4578 goto out;
4579
dff6d0ad 4580 path->slots[0]++;
31db9f7c
AB
4581 }
4582
4583out:
4584 btrfs_free_path(path);
4585 return ret;
4586}
4587
ed259095
JB
4588static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4589{
4590 struct btrfs_root *root = sctx->send_root;
4591 struct btrfs_fs_info *fs_info = root->fs_info;
4592 struct inode *inode;
4593 struct page *page;
4594 char *addr;
4595 struct btrfs_key key;
09cbfeaf 4596 pgoff_t index = offset >> PAGE_SHIFT;
ed259095 4597 pgoff_t last_index;
09cbfeaf 4598 unsigned pg_offset = offset & ~PAGE_MASK;
ed259095
JB
4599 ssize_t ret = 0;
4600
4601 key.objectid = sctx->cur_ino;
4602 key.type = BTRFS_INODE_ITEM_KEY;
4603 key.offset = 0;
4604
4605 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4606 if (IS_ERR(inode))
4607 return PTR_ERR(inode);
4608
4609 if (offset + len > i_size_read(inode)) {
4610 if (offset > i_size_read(inode))
4611 len = 0;
4612 else
4613 len = offset - i_size_read(inode);
4614 }
4615 if (len == 0)
4616 goto out;
4617
09cbfeaf 4618 last_index = (offset + len - 1) >> PAGE_SHIFT;
2131bcd3
LB
4619
4620 /* initial readahead */
4621 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4622 file_ra_state_init(&sctx->ra, inode->i_mapping);
4623 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4624 last_index - index + 1);
4625
ed259095
JB
4626 while (index <= last_index) {
4627 unsigned cur_len = min_t(unsigned, len,
09cbfeaf 4628 PAGE_SIZE - pg_offset);
e780b0d1 4629 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
ed259095
JB
4630 if (!page) {
4631 ret = -ENOMEM;
4632 break;
4633 }
4634
4635 if (!PageUptodate(page)) {
4636 btrfs_readpage(NULL, page);
4637 lock_page(page);
4638 if (!PageUptodate(page)) {
4639 unlock_page(page);
09cbfeaf 4640 put_page(page);
ed259095
JB
4641 ret = -EIO;
4642 break;
4643 }
4644 }
4645
4646 addr = kmap(page);
4647 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4648 kunmap(page);
4649 unlock_page(page);
09cbfeaf 4650 put_page(page);
ed259095
JB
4651 index++;
4652 pg_offset = 0;
4653 len -= cur_len;
4654 ret += cur_len;
4655 }
4656out:
4657 iput(inode);
4658 return ret;
4659}
4660
31db9f7c
AB
4661/*
4662 * Read some bytes from the current inode/file and send a write command to
4663 * user space.
4664 */
4665static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4666{
4667 int ret = 0;
4668 struct fs_path *p;
ed259095 4669 ssize_t num_read = 0;
31db9f7c 4670
924794c9 4671 p = fs_path_alloc();
31db9f7c
AB
4672 if (!p)
4673 return -ENOMEM;
4674
31db9f7c
AB
4675verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4676
ed259095
JB
4677 num_read = fill_read_buf(sctx, offset, len);
4678 if (num_read <= 0) {
4679 if (num_read < 0)
4680 ret = num_read;
31db9f7c 4681 goto out;
ed259095 4682 }
31db9f7c
AB
4683
4684 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4685 if (ret < 0)
4686 goto out;
4687
4688 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4689 if (ret < 0)
4690 goto out;
4691
4692 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4693 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
e938c8ad 4694 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
31db9f7c
AB
4695
4696 ret = send_cmd(sctx);
4697
4698tlv_put_failure:
4699out:
924794c9 4700 fs_path_free(p);
31db9f7c
AB
4701 if (ret < 0)
4702 return ret;
e938c8ad 4703 return num_read;
31db9f7c
AB
4704}
4705
4706/*
4707 * Send a clone command to user space.
4708 */
4709static int send_clone(struct send_ctx *sctx,
4710 u64 offset, u32 len,
4711 struct clone_root *clone_root)
4712{
4713 int ret = 0;
31db9f7c
AB
4714 struct fs_path *p;
4715 u64 gen;
4716
4717verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4718 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4719 clone_root->root->objectid, clone_root->ino,
4720 clone_root->offset);
4721
924794c9 4722 p = fs_path_alloc();
31db9f7c
AB
4723 if (!p)
4724 return -ENOMEM;
4725
4726 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4727 if (ret < 0)
4728 goto out;
4729
4730 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4731 if (ret < 0)
4732 goto out;
4733
4734 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4735 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4736 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4737
e938c8ad 4738 if (clone_root->root == sctx->send_root) {
31db9f7c 4739 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
85a7b33b 4740 &gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
4741 if (ret < 0)
4742 goto out;
4743 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4744 } else {
924794c9 4745 ret = get_inode_path(clone_root->root, clone_root->ino, p);
31db9f7c
AB
4746 }
4747 if (ret < 0)
4748 goto out;
4749
37b8d27d
JB
4750 /*
4751 * If the parent we're using has a received_uuid set then use that as
4752 * our clone source as that is what we will look for when doing a
4753 * receive.
4754 *
4755 * This covers the case that we create a snapshot off of a received
4756 * subvolume and then use that as the parent and try to receive on a
4757 * different host.
4758 */
4759 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4760 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4761 clone_root->root->root_item.received_uuid);
4762 else
4763 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4764 clone_root->root->root_item.uuid);
31db9f7c 4765 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 4766 le64_to_cpu(clone_root->root->root_item.ctransid));
31db9f7c
AB
4767 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4768 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4769 clone_root->offset);
4770
4771 ret = send_cmd(sctx);
4772
4773tlv_put_failure:
4774out:
924794c9 4775 fs_path_free(p);
31db9f7c
AB
4776 return ret;
4777}
4778
cb95e7bf
MF
4779/*
4780 * Send an update extent command to user space.
4781 */
4782static int send_update_extent(struct send_ctx *sctx,
4783 u64 offset, u32 len)
4784{
4785 int ret = 0;
4786 struct fs_path *p;
4787
924794c9 4788 p = fs_path_alloc();
cb95e7bf
MF
4789 if (!p)
4790 return -ENOMEM;
4791
4792 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4793 if (ret < 0)
4794 goto out;
4795
4796 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4797 if (ret < 0)
4798 goto out;
4799
4800 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4801 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4802 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4803
4804 ret = send_cmd(sctx);
4805
4806tlv_put_failure:
4807out:
924794c9 4808 fs_path_free(p);
cb95e7bf
MF
4809 return ret;
4810}
4811
16e7549f
JB
4812static int send_hole(struct send_ctx *sctx, u64 end)
4813{
4814 struct fs_path *p = NULL;
4815 u64 offset = sctx->cur_inode_last_extent;
4816 u64 len;
4817 int ret = 0;
4818
4819 p = fs_path_alloc();
4820 if (!p)
4821 return -ENOMEM;
c715e155
FM
4822 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4823 if (ret < 0)
4824 goto tlv_put_failure;
16e7549f
JB
4825 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4826 while (offset < end) {
4827 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4828
4829 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
16e7549f
JB
4830 if (ret < 0)
4831 break;
4832 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4833 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4834 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4835 ret = send_cmd(sctx);
4836 if (ret < 0)
4837 break;
4838 offset += len;
4839 }
4840tlv_put_failure:
4841 fs_path_free(p);
4842 return ret;
4843}
4844
d906d49f
FM
4845static int send_extent_data(struct send_ctx *sctx,
4846 const u64 offset,
4847 const u64 len)
4848{
4849 u64 sent = 0;
4850
4851 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4852 return send_update_extent(sctx, offset, len);
4853
4854 while (sent < len) {
4855 u64 size = len - sent;
4856 int ret;
4857
4858 if (size > BTRFS_SEND_READ_SIZE)
4859 size = BTRFS_SEND_READ_SIZE;
4860 ret = send_write(sctx, offset + sent, size);
4861 if (ret < 0)
4862 return ret;
4863 if (!ret)
4864 break;
4865 sent += ret;
4866 }
4867 return 0;
4868}
4869
4870static int clone_range(struct send_ctx *sctx,
4871 struct clone_root *clone_root,
4872 const u64 disk_byte,
4873 u64 data_offset,
4874 u64 offset,
4875 u64 len)
4876{
4877 struct btrfs_path *path;
4878 struct btrfs_key key;
4879 int ret;
4880
4881 path = alloc_path_for_send();
4882 if (!path)
4883 return -ENOMEM;
4884
4885 /*
4886 * We can't send a clone operation for the entire range if we find
4887 * extent items in the respective range in the source file that
4888 * refer to different extents or if we find holes.
4889 * So check for that and do a mix of clone and regular write/copy
4890 * operations if needed.
4891 *
4892 * Example:
4893 *
4894 * mkfs.btrfs -f /dev/sda
4895 * mount /dev/sda /mnt
4896 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4897 * cp --reflink=always /mnt/foo /mnt/bar
4898 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4899 * btrfs subvolume snapshot -r /mnt /mnt/snap
4900 *
4901 * If when we send the snapshot and we are processing file bar (which
4902 * has a higher inode number than foo) we blindly send a clone operation
4903 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4904 * a file bar that matches the content of file foo - iow, doesn't match
4905 * the content from bar in the original filesystem.
4906 */
4907 key.objectid = clone_root->ino;
4908 key.type = BTRFS_EXTENT_DATA_KEY;
4909 key.offset = clone_root->offset;
4910 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4911 if (ret < 0)
4912 goto out;
4913 if (ret > 0 && path->slots[0] > 0) {
4914 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4915 if (key.objectid == clone_root->ino &&
4916 key.type == BTRFS_EXTENT_DATA_KEY)
4917 path->slots[0]--;
4918 }
4919
4920 while (true) {
4921 struct extent_buffer *leaf = path->nodes[0];
4922 int slot = path->slots[0];
4923 struct btrfs_file_extent_item *ei;
4924 u8 type;
4925 u64 ext_len;
4926 u64 clone_len;
4927
4928 if (slot >= btrfs_header_nritems(leaf)) {
4929 ret = btrfs_next_leaf(clone_root->root, path);
4930 if (ret < 0)
4931 goto out;
4932 else if (ret > 0)
4933 break;
4934 continue;
4935 }
4936
4937 btrfs_item_key_to_cpu(leaf, &key, slot);
4938
4939 /*
4940 * We might have an implicit trailing hole (NO_HOLES feature
4941 * enabled). We deal with it after leaving this loop.
4942 */
4943 if (key.objectid != clone_root->ino ||
4944 key.type != BTRFS_EXTENT_DATA_KEY)
4945 break;
4946
4947 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4948 type = btrfs_file_extent_type(leaf, ei);
4949 if (type == BTRFS_FILE_EXTENT_INLINE) {
4950 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
09cbfeaf 4951 ext_len = PAGE_ALIGN(ext_len);
d906d49f
FM
4952 } else {
4953 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4954 }
4955
4956 if (key.offset + ext_len <= clone_root->offset)
4957 goto next;
4958
4959 if (key.offset > clone_root->offset) {
4960 /* Implicit hole, NO_HOLES feature enabled. */
4961 u64 hole_len = key.offset - clone_root->offset;
4962
4963 if (hole_len > len)
4964 hole_len = len;
4965 ret = send_extent_data(sctx, offset, hole_len);
4966 if (ret < 0)
4967 goto out;
4968
4969 len -= hole_len;
4970 if (len == 0)
4971 break;
4972 offset += hole_len;
4973 clone_root->offset += hole_len;
4974 data_offset += hole_len;
4975 }
4976
4977 if (key.offset >= clone_root->offset + len)
4978 break;
4979
4980 clone_len = min_t(u64, ext_len, len);
4981
4982 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4983 btrfs_file_extent_offset(leaf, ei) == data_offset)
4984 ret = send_clone(sctx, offset, clone_len, clone_root);
4985 else
4986 ret = send_extent_data(sctx, offset, clone_len);
4987
4988 if (ret < 0)
4989 goto out;
4990
4991 len -= clone_len;
4992 if (len == 0)
4993 break;
4994 offset += clone_len;
4995 clone_root->offset += clone_len;
4996 data_offset += clone_len;
4997next:
4998 path->slots[0]++;
4999 }
5000
5001 if (len > 0)
5002 ret = send_extent_data(sctx, offset, len);
5003 else
5004 ret = 0;
5005out:
5006 btrfs_free_path(path);
5007 return ret;
5008}
5009
31db9f7c
AB
5010static int send_write_or_clone(struct send_ctx *sctx,
5011 struct btrfs_path *path,
5012 struct btrfs_key *key,
5013 struct clone_root *clone_root)
5014{
5015 int ret = 0;
5016 struct btrfs_file_extent_item *ei;
5017 u64 offset = key->offset;
31db9f7c 5018 u64 len;
31db9f7c 5019 u8 type;
28e5dd8f 5020 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
31db9f7c
AB
5021
5022 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5023 struct btrfs_file_extent_item);
5024 type = btrfs_file_extent_type(path->nodes[0], ei);
74dd17fb 5025 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
5026 len = btrfs_file_extent_inline_len(path->nodes[0],
5027 path->slots[0], ei);
74dd17fb
CM
5028 /*
5029 * it is possible the inline item won't cover the whole page,
5030 * but there may be items after this page. Make
5031 * sure to send the whole thing
5032 */
09cbfeaf 5033 len = PAGE_ALIGN(len);
74dd17fb 5034 } else {
31db9f7c 5035 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
74dd17fb 5036 }
31db9f7c
AB
5037
5038 if (offset + len > sctx->cur_inode_size)
5039 len = sctx->cur_inode_size - offset;
5040 if (len == 0) {
5041 ret = 0;
5042 goto out;
5043 }
5044
28e5dd8f 5045 if (clone_root && IS_ALIGNED(offset + len, bs)) {
d906d49f
FM
5046 u64 disk_byte;
5047 u64 data_offset;
5048
5049 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5050 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5051 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5052 offset, len);
cb95e7bf 5053 } else {
d906d49f 5054 ret = send_extent_data(sctx, offset, len);
31db9f7c 5055 }
31db9f7c
AB
5056out:
5057 return ret;
5058}
5059
5060static int is_extent_unchanged(struct send_ctx *sctx,
5061 struct btrfs_path *left_path,
5062 struct btrfs_key *ekey)
5063{
5064 int ret = 0;
5065 struct btrfs_key key;
5066 struct btrfs_path *path = NULL;
5067 struct extent_buffer *eb;
5068 int slot;
5069 struct btrfs_key found_key;
5070 struct btrfs_file_extent_item *ei;
5071 u64 left_disknr;
5072 u64 right_disknr;
5073 u64 left_offset;
5074 u64 right_offset;
5075 u64 left_offset_fixed;
5076 u64 left_len;
5077 u64 right_len;
74dd17fb
CM
5078 u64 left_gen;
5079 u64 right_gen;
31db9f7c
AB
5080 u8 left_type;
5081 u8 right_type;
5082
5083 path = alloc_path_for_send();
5084 if (!path)
5085 return -ENOMEM;
5086
5087 eb = left_path->nodes[0];
5088 slot = left_path->slots[0];
31db9f7c
AB
5089 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5090 left_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
5091
5092 if (left_type != BTRFS_FILE_EXTENT_REG) {
5093 ret = 0;
5094 goto out;
5095 }
74dd17fb
CM
5096 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5097 left_len = btrfs_file_extent_num_bytes(eb, ei);
5098 left_offset = btrfs_file_extent_offset(eb, ei);
5099 left_gen = btrfs_file_extent_generation(eb, ei);
31db9f7c
AB
5100
5101 /*
5102 * Following comments will refer to these graphics. L is the left
5103 * extents which we are checking at the moment. 1-8 are the right
5104 * extents that we iterate.
5105 *
5106 * |-----L-----|
5107 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5108 *
5109 * |-----L-----|
5110 * |--1--|-2b-|...(same as above)
5111 *
5112 * Alternative situation. Happens on files where extents got split.
5113 * |-----L-----|
5114 * |-----------7-----------|-6-|
5115 *
5116 * Alternative situation. Happens on files which got larger.
5117 * |-----L-----|
5118 * |-8-|
5119 * Nothing follows after 8.
5120 */
5121
5122 key.objectid = ekey->objectid;
5123 key.type = BTRFS_EXTENT_DATA_KEY;
5124 key.offset = ekey->offset;
5125 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5126 if (ret < 0)
5127 goto out;
5128 if (ret) {
5129 ret = 0;
5130 goto out;
5131 }
5132
5133 /*
5134 * Handle special case where the right side has no extents at all.
5135 */
5136 eb = path->nodes[0];
5137 slot = path->slots[0];
5138 btrfs_item_key_to_cpu(eb, &found_key, slot);
5139 if (found_key.objectid != key.objectid ||
5140 found_key.type != key.type) {
57cfd462
JB
5141 /* If we're a hole then just pretend nothing changed */
5142 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
5143 goto out;
5144 }
5145
5146 /*
5147 * We're now on 2a, 2b or 7.
5148 */
5149 key = found_key;
5150 while (key.offset < ekey->offset + left_len) {
5151 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5152 right_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
5153 if (right_type != BTRFS_FILE_EXTENT_REG) {
5154 ret = 0;
5155 goto out;
5156 }
5157
007d31f7
JB
5158 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5159 right_len = btrfs_file_extent_num_bytes(eb, ei);
5160 right_offset = btrfs_file_extent_offset(eb, ei);
5161 right_gen = btrfs_file_extent_generation(eb, ei);
5162
31db9f7c
AB
5163 /*
5164 * Are we at extent 8? If yes, we know the extent is changed.
5165 * This may only happen on the first iteration.
5166 */
d8347fa4 5167 if (found_key.offset + right_len <= ekey->offset) {
57cfd462
JB
5168 /* If we're a hole just pretend nothing changed */
5169 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
5170 goto out;
5171 }
5172
5173 left_offset_fixed = left_offset;
5174 if (key.offset < ekey->offset) {
5175 /* Fix the right offset for 2a and 7. */
5176 right_offset += ekey->offset - key.offset;
5177 } else {
5178 /* Fix the left offset for all behind 2a and 2b */
5179 left_offset_fixed += key.offset - ekey->offset;
5180 }
5181
5182 /*
5183 * Check if we have the same extent.
5184 */
3954096d 5185 if (left_disknr != right_disknr ||
74dd17fb
CM
5186 left_offset_fixed != right_offset ||
5187 left_gen != right_gen) {
31db9f7c
AB
5188 ret = 0;
5189 goto out;
5190 }
5191
5192 /*
5193 * Go to the next extent.
5194 */
5195 ret = btrfs_next_item(sctx->parent_root, path);
5196 if (ret < 0)
5197 goto out;
5198 if (!ret) {
5199 eb = path->nodes[0];
5200 slot = path->slots[0];
5201 btrfs_item_key_to_cpu(eb, &found_key, slot);
5202 }
5203 if (ret || found_key.objectid != key.objectid ||
5204 found_key.type != key.type) {
5205 key.offset += right_len;
5206 break;
adaa4b8e
JS
5207 }
5208 if (found_key.offset != key.offset + right_len) {
5209 ret = 0;
5210 goto out;
31db9f7c
AB
5211 }
5212 key = found_key;
5213 }
5214
5215 /*
5216 * We're now behind the left extent (treat as unchanged) or at the end
5217 * of the right side (treat as changed).
5218 */
5219 if (key.offset >= ekey->offset + left_len)
5220 ret = 1;
5221 else
5222 ret = 0;
5223
5224
5225out:
5226 btrfs_free_path(path);
5227 return ret;
5228}
5229
16e7549f
JB
5230static int get_last_extent(struct send_ctx *sctx, u64 offset)
5231{
5232 struct btrfs_path *path;
5233 struct btrfs_root *root = sctx->send_root;
5234 struct btrfs_file_extent_item *fi;
5235 struct btrfs_key key;
5236 u64 extent_end;
5237 u8 type;
5238 int ret;
5239
5240 path = alloc_path_for_send();
5241 if (!path)
5242 return -ENOMEM;
5243
5244 sctx->cur_inode_last_extent = 0;
5245
5246 key.objectid = sctx->cur_ino;
5247 key.type = BTRFS_EXTENT_DATA_KEY;
5248 key.offset = offset;
5249 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5250 if (ret < 0)
5251 goto out;
5252 ret = 0;
5253 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5254 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5255 goto out;
5256
5257 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5258 struct btrfs_file_extent_item);
5259 type = btrfs_file_extent_type(path->nodes[0], fi);
5260 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
5261 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5262 path->slots[0], fi);
16e7549f
JB
5263 extent_end = ALIGN(key.offset + size,
5264 sctx->send_root->sectorsize);
5265 } else {
5266 extent_end = key.offset +
5267 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5268 }
5269 sctx->cur_inode_last_extent = extent_end;
5270out:
5271 btrfs_free_path(path);
5272 return ret;
5273}
5274
5275static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5276 struct btrfs_key *key)
5277{
5278 struct btrfs_file_extent_item *fi;
5279 u64 extent_end;
5280 u8 type;
5281 int ret = 0;
5282
5283 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5284 return 0;
5285
5286 if (sctx->cur_inode_last_extent == (u64)-1) {
5287 ret = get_last_extent(sctx, key->offset - 1);
5288 if (ret)
5289 return ret;
5290 }
5291
5292 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5293 struct btrfs_file_extent_item);
5294 type = btrfs_file_extent_type(path->nodes[0], fi);
5295 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
5296 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5297 path->slots[0], fi);
16e7549f
JB
5298 extent_end = ALIGN(key->offset + size,
5299 sctx->send_root->sectorsize);
5300 } else {
5301 extent_end = key->offset +
5302 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5303 }
bf54f412
FDBM
5304
5305 if (path->slots[0] == 0 &&
5306 sctx->cur_inode_last_extent < key->offset) {
5307 /*
5308 * We might have skipped entire leafs that contained only
5309 * file extent items for our current inode. These leafs have
5310 * a generation number smaller (older) than the one in the
5311 * current leaf and the leaf our last extent came from, and
5312 * are located between these 2 leafs.
5313 */
5314 ret = get_last_extent(sctx, key->offset - 1);
5315 if (ret)
5316 return ret;
5317 }
5318
16e7549f
JB
5319 if (sctx->cur_inode_last_extent < key->offset)
5320 ret = send_hole(sctx, key->offset);
5321 sctx->cur_inode_last_extent = extent_end;
5322 return ret;
5323}
5324
31db9f7c
AB
5325static int process_extent(struct send_ctx *sctx,
5326 struct btrfs_path *path,
5327 struct btrfs_key *key)
5328{
31db9f7c 5329 struct clone_root *found_clone = NULL;
57cfd462 5330 int ret = 0;
31db9f7c
AB
5331
5332 if (S_ISLNK(sctx->cur_inode_mode))
5333 return 0;
5334
5335 if (sctx->parent_root && !sctx->cur_inode_new) {
5336 ret = is_extent_unchanged(sctx, path, key);
5337 if (ret < 0)
5338 goto out;
5339 if (ret) {
5340 ret = 0;
16e7549f 5341 goto out_hole;
31db9f7c 5342 }
57cfd462
JB
5343 } else {
5344 struct btrfs_file_extent_item *ei;
5345 u8 type;
5346
5347 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5348 struct btrfs_file_extent_item);
5349 type = btrfs_file_extent_type(path->nodes[0], ei);
5350 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5351 type == BTRFS_FILE_EXTENT_REG) {
5352 /*
5353 * The send spec does not have a prealloc command yet,
5354 * so just leave a hole for prealloc'ed extents until
5355 * we have enough commands queued up to justify rev'ing
5356 * the send spec.
5357 */
5358 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5359 ret = 0;
5360 goto out;
5361 }
5362
5363 /* Have a hole, just skip it. */
5364 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5365 ret = 0;
5366 goto out;
5367 }
5368 }
31db9f7c
AB
5369 }
5370
5371 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5372 sctx->cur_inode_size, &found_clone);
5373 if (ret != -ENOENT && ret < 0)
5374 goto out;
5375
5376 ret = send_write_or_clone(sctx, path, key, found_clone);
16e7549f
JB
5377 if (ret)
5378 goto out;
5379out_hole:
5380 ret = maybe_send_hole(sctx, path, key);
31db9f7c
AB
5381out:
5382 return ret;
5383}
5384
5385static int process_all_extents(struct send_ctx *sctx)
5386{
5387 int ret;
5388 struct btrfs_root *root;
5389 struct btrfs_path *path;
5390 struct btrfs_key key;
5391 struct btrfs_key found_key;
5392 struct extent_buffer *eb;
5393 int slot;
5394
5395 root = sctx->send_root;
5396 path = alloc_path_for_send();
5397 if (!path)
5398 return -ENOMEM;
5399
5400 key.objectid = sctx->cmp_key->objectid;
5401 key.type = BTRFS_EXTENT_DATA_KEY;
5402 key.offset = 0;
7fdd29d0
FDBM
5403 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5404 if (ret < 0)
5405 goto out;
31db9f7c 5406
7fdd29d0 5407 while (1) {
31db9f7c
AB
5408 eb = path->nodes[0];
5409 slot = path->slots[0];
7fdd29d0
FDBM
5410
5411 if (slot >= btrfs_header_nritems(eb)) {
5412 ret = btrfs_next_leaf(root, path);
5413 if (ret < 0) {
5414 goto out;
5415 } else if (ret > 0) {
5416 ret = 0;
5417 break;
5418 }
5419 continue;
5420 }
5421
31db9f7c
AB
5422 btrfs_item_key_to_cpu(eb, &found_key, slot);
5423
5424 if (found_key.objectid != key.objectid ||
5425 found_key.type != key.type) {
5426 ret = 0;
5427 goto out;
5428 }
5429
5430 ret = process_extent(sctx, path, &found_key);
5431 if (ret < 0)
5432 goto out;
5433
7fdd29d0 5434 path->slots[0]++;
31db9f7c
AB
5435 }
5436
5437out:
5438 btrfs_free_path(path);
5439 return ret;
5440}
5441
9f03740a
FDBM
5442static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5443 int *pending_move,
5444 int *refs_processed)
31db9f7c
AB
5445{
5446 int ret = 0;
5447
5448 if (sctx->cur_ino == 0)
5449 goto out;
5450 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
96b5bd77 5451 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
5452 goto out;
5453 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5454 goto out;
5455
9f03740a 5456 ret = process_recorded_refs(sctx, pending_move);
e479d9bb
AB
5457 if (ret < 0)
5458 goto out;
5459
9f03740a 5460 *refs_processed = 1;
31db9f7c
AB
5461out:
5462 return ret;
5463}
5464
5465static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5466{
5467 int ret = 0;
5468 u64 left_mode;
5469 u64 left_uid;
5470 u64 left_gid;
5471 u64 right_mode;
5472 u64 right_uid;
5473 u64 right_gid;
5474 int need_chmod = 0;
5475 int need_chown = 0;
9f03740a
FDBM
5476 int pending_move = 0;
5477 int refs_processed = 0;
31db9f7c 5478
9f03740a
FDBM
5479 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5480 &refs_processed);
31db9f7c
AB
5481 if (ret < 0)
5482 goto out;
5483
9f03740a
FDBM
5484 /*
5485 * We have processed the refs and thus need to advance send_progress.
5486 * Now, calls to get_cur_xxx will take the updated refs of the current
5487 * inode into account.
5488 *
5489 * On the other hand, if our current inode is a directory and couldn't
5490 * be moved/renamed because its parent was renamed/moved too and it has
5491 * a higher inode number, we can only move/rename our current inode
5492 * after we moved/renamed its parent. Therefore in this case operate on
5493 * the old path (pre move/rename) of our current inode, and the
5494 * move/rename will be performed later.
5495 */
5496 if (refs_processed && !pending_move)
5497 sctx->send_progress = sctx->cur_ino + 1;
5498
31db9f7c
AB
5499 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5500 goto out;
5501 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5502 goto out;
5503
5504 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
85a7b33b 5505 &left_mode, &left_uid, &left_gid, NULL);
31db9f7c
AB
5506 if (ret < 0)
5507 goto out;
5508
e2d044fe
AL
5509 if (!sctx->parent_root || sctx->cur_inode_new) {
5510 need_chown = 1;
5511 if (!S_ISLNK(sctx->cur_inode_mode))
31db9f7c 5512 need_chmod = 1;
e2d044fe
AL
5513 } else {
5514 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5515 NULL, NULL, &right_mode, &right_uid,
5516 &right_gid, NULL);
5517 if (ret < 0)
5518 goto out;
31db9f7c 5519
e2d044fe
AL
5520 if (left_uid != right_uid || left_gid != right_gid)
5521 need_chown = 1;
5522 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5523 need_chmod = 1;
31db9f7c
AB
5524 }
5525
5526 if (S_ISREG(sctx->cur_inode_mode)) {
16e7549f 5527 if (need_send_hole(sctx)) {
766b5e5a
FM
5528 if (sctx->cur_inode_last_extent == (u64)-1 ||
5529 sctx->cur_inode_last_extent <
5530 sctx->cur_inode_size) {
16e7549f
JB
5531 ret = get_last_extent(sctx, (u64)-1);
5532 if (ret)
5533 goto out;
5534 }
5535 if (sctx->cur_inode_last_extent <
5536 sctx->cur_inode_size) {
5537 ret = send_hole(sctx, sctx->cur_inode_size);
5538 if (ret)
5539 goto out;
5540 }
5541 }
31db9f7c
AB
5542 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5543 sctx->cur_inode_size);
5544 if (ret < 0)
5545 goto out;
5546 }
5547
5548 if (need_chown) {
5549 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5550 left_uid, left_gid);
5551 if (ret < 0)
5552 goto out;
5553 }
5554 if (need_chmod) {
5555 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5556 left_mode);
5557 if (ret < 0)
5558 goto out;
5559 }
5560
5561 /*
9f03740a
FDBM
5562 * If other directory inodes depended on our current directory
5563 * inode's move/rename, now do their move/rename operations.
31db9f7c 5564 */
9f03740a
FDBM
5565 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5566 ret = apply_children_dir_moves(sctx);
5567 if (ret)
5568 goto out;
fcbd2154
FM
5569 /*
5570 * Need to send that every time, no matter if it actually
5571 * changed between the two trees as we have done changes to
5572 * the inode before. If our inode is a directory and it's
5573 * waiting to be moved/renamed, we will send its utimes when
5574 * it's moved/renamed, therefore we don't need to do it here.
5575 */
5576 sctx->send_progress = sctx->cur_ino + 1;
5577 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5578 if (ret < 0)
5579 goto out;
9f03740a
FDBM
5580 }
5581
31db9f7c
AB
5582out:
5583 return ret;
5584}
5585
5586static int changed_inode(struct send_ctx *sctx,
5587 enum btrfs_compare_tree_result result)
5588{
5589 int ret = 0;
5590 struct btrfs_key *key = sctx->cmp_key;
5591 struct btrfs_inode_item *left_ii = NULL;
5592 struct btrfs_inode_item *right_ii = NULL;
5593 u64 left_gen = 0;
5594 u64 right_gen = 0;
5595
31db9f7c
AB
5596 sctx->cur_ino = key->objectid;
5597 sctx->cur_inode_new_gen = 0;
16e7549f 5598 sctx->cur_inode_last_extent = (u64)-1;
e479d9bb
AB
5599
5600 /*
5601 * Set send_progress to current inode. This will tell all get_cur_xxx
5602 * functions that the current inode's refs are not updated yet. Later,
5603 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5604 */
31db9f7c
AB
5605 sctx->send_progress = sctx->cur_ino;
5606
5607 if (result == BTRFS_COMPARE_TREE_NEW ||
5608 result == BTRFS_COMPARE_TREE_CHANGED) {
5609 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5610 sctx->left_path->slots[0],
5611 struct btrfs_inode_item);
5612 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5613 left_ii);
5614 } else {
5615 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5616 sctx->right_path->slots[0],
5617 struct btrfs_inode_item);
5618 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5619 right_ii);
5620 }
5621 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5622 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5623 sctx->right_path->slots[0],
5624 struct btrfs_inode_item);
5625
5626 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5627 right_ii);
6d85ed05
AB
5628
5629 /*
5630 * The cur_ino = root dir case is special here. We can't treat
5631 * the inode as deleted+reused because it would generate a
5632 * stream that tries to delete/mkdir the root dir.
5633 */
5634 if (left_gen != right_gen &&
5635 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
31db9f7c
AB
5636 sctx->cur_inode_new_gen = 1;
5637 }
5638
5639 if (result == BTRFS_COMPARE_TREE_NEW) {
5640 sctx->cur_inode_gen = left_gen;
5641 sctx->cur_inode_new = 1;
5642 sctx->cur_inode_deleted = 0;
5643 sctx->cur_inode_size = btrfs_inode_size(
5644 sctx->left_path->nodes[0], left_ii);
5645 sctx->cur_inode_mode = btrfs_inode_mode(
5646 sctx->left_path->nodes[0], left_ii);
644d1940
LB
5647 sctx->cur_inode_rdev = btrfs_inode_rdev(
5648 sctx->left_path->nodes[0], left_ii);
31db9f7c 5649 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
1f4692da 5650 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
5651 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5652 sctx->cur_inode_gen = right_gen;
5653 sctx->cur_inode_new = 0;
5654 sctx->cur_inode_deleted = 1;
5655 sctx->cur_inode_size = btrfs_inode_size(
5656 sctx->right_path->nodes[0], right_ii);
5657 sctx->cur_inode_mode = btrfs_inode_mode(
5658 sctx->right_path->nodes[0], right_ii);
5659 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
766702ef
AB
5660 /*
5661 * We need to do some special handling in case the inode was
5662 * reported as changed with a changed generation number. This
5663 * means that the original inode was deleted and new inode
5664 * reused the same inum. So we have to treat the old inode as
5665 * deleted and the new one as new.
5666 */
31db9f7c 5667 if (sctx->cur_inode_new_gen) {
766702ef
AB
5668 /*
5669 * First, process the inode as if it was deleted.
5670 */
31db9f7c
AB
5671 sctx->cur_inode_gen = right_gen;
5672 sctx->cur_inode_new = 0;
5673 sctx->cur_inode_deleted = 1;
5674 sctx->cur_inode_size = btrfs_inode_size(
5675 sctx->right_path->nodes[0], right_ii);
5676 sctx->cur_inode_mode = btrfs_inode_mode(
5677 sctx->right_path->nodes[0], right_ii);
5678 ret = process_all_refs(sctx,
5679 BTRFS_COMPARE_TREE_DELETED);
5680 if (ret < 0)
5681 goto out;
5682
766702ef
AB
5683 /*
5684 * Now process the inode as if it was new.
5685 */
31db9f7c
AB
5686 sctx->cur_inode_gen = left_gen;
5687 sctx->cur_inode_new = 1;
5688 sctx->cur_inode_deleted = 0;
5689 sctx->cur_inode_size = btrfs_inode_size(
5690 sctx->left_path->nodes[0], left_ii);
5691 sctx->cur_inode_mode = btrfs_inode_mode(
5692 sctx->left_path->nodes[0], left_ii);
644d1940
LB
5693 sctx->cur_inode_rdev = btrfs_inode_rdev(
5694 sctx->left_path->nodes[0], left_ii);
1f4692da 5695 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
5696 if (ret < 0)
5697 goto out;
5698
5699 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5700 if (ret < 0)
5701 goto out;
e479d9bb
AB
5702 /*
5703 * Advance send_progress now as we did not get into
5704 * process_recorded_refs_if_needed in the new_gen case.
5705 */
5706 sctx->send_progress = sctx->cur_ino + 1;
766702ef
AB
5707
5708 /*
5709 * Now process all extents and xattrs of the inode as if
5710 * they were all new.
5711 */
31db9f7c
AB
5712 ret = process_all_extents(sctx);
5713 if (ret < 0)
5714 goto out;
5715 ret = process_all_new_xattrs(sctx);
5716 if (ret < 0)
5717 goto out;
5718 } else {
5719 sctx->cur_inode_gen = left_gen;
5720 sctx->cur_inode_new = 0;
5721 sctx->cur_inode_new_gen = 0;
5722 sctx->cur_inode_deleted = 0;
5723 sctx->cur_inode_size = btrfs_inode_size(
5724 sctx->left_path->nodes[0], left_ii);
5725 sctx->cur_inode_mode = btrfs_inode_mode(
5726 sctx->left_path->nodes[0], left_ii);
5727 }
5728 }
5729
5730out:
5731 return ret;
5732}
5733
766702ef
AB
5734/*
5735 * We have to process new refs before deleted refs, but compare_trees gives us
5736 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5737 * first and later process them in process_recorded_refs.
5738 * For the cur_inode_new_gen case, we skip recording completely because
5739 * changed_inode did already initiate processing of refs. The reason for this is
5740 * that in this case, compare_tree actually compares the refs of 2 different
5741 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5742 * refs of the right tree as deleted and all refs of the left tree as new.
5743 */
31db9f7c
AB
5744static int changed_ref(struct send_ctx *sctx,
5745 enum btrfs_compare_tree_result result)
5746{
5747 int ret = 0;
5748
95155585
FM
5749 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5750 inconsistent_snapshot_error(sctx, result, "reference");
5751 return -EIO;
5752 }
31db9f7c
AB
5753
5754 if (!sctx->cur_inode_new_gen &&
5755 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5756 if (result == BTRFS_COMPARE_TREE_NEW)
5757 ret = record_new_ref(sctx);
5758 else if (result == BTRFS_COMPARE_TREE_DELETED)
5759 ret = record_deleted_ref(sctx);
5760 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5761 ret = record_changed_ref(sctx);
5762 }
5763
5764 return ret;
5765}
5766
766702ef
AB
5767/*
5768 * Process new/deleted/changed xattrs. We skip processing in the
5769 * cur_inode_new_gen case because changed_inode did already initiate processing
5770 * of xattrs. The reason is the same as in changed_ref
5771 */
31db9f7c
AB
5772static int changed_xattr(struct send_ctx *sctx,
5773 enum btrfs_compare_tree_result result)
5774{
5775 int ret = 0;
5776
95155585
FM
5777 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5778 inconsistent_snapshot_error(sctx, result, "xattr");
5779 return -EIO;
5780 }
31db9f7c
AB
5781
5782 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5783 if (result == BTRFS_COMPARE_TREE_NEW)
5784 ret = process_new_xattr(sctx);
5785 else if (result == BTRFS_COMPARE_TREE_DELETED)
5786 ret = process_deleted_xattr(sctx);
5787 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5788 ret = process_changed_xattr(sctx);
5789 }
5790
5791 return ret;
5792}
5793
766702ef
AB
5794/*
5795 * Process new/deleted/changed extents. We skip processing in the
5796 * cur_inode_new_gen case because changed_inode did already initiate processing
5797 * of extents. The reason is the same as in changed_ref
5798 */
31db9f7c
AB
5799static int changed_extent(struct send_ctx *sctx,
5800 enum btrfs_compare_tree_result result)
5801{
5802 int ret = 0;
5803
95155585
FM
5804 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5805 inconsistent_snapshot_error(sctx, result, "extent");
5806 return -EIO;
5807 }
31db9f7c
AB
5808
5809 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5810 if (result != BTRFS_COMPARE_TREE_DELETED)
5811 ret = process_extent(sctx, sctx->left_path,
5812 sctx->cmp_key);
5813 }
5814
5815 return ret;
5816}
5817
ba5e8f2e
JB
5818static int dir_changed(struct send_ctx *sctx, u64 dir)
5819{
5820 u64 orig_gen, new_gen;
5821 int ret;
5822
5823 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5824 NULL, NULL);
5825 if (ret)
5826 return ret;
5827
5828 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5829 NULL, NULL, NULL);
5830 if (ret)
5831 return ret;
5832
5833 return (orig_gen != new_gen) ? 1 : 0;
5834}
5835
5836static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5837 struct btrfs_key *key)
5838{
5839 struct btrfs_inode_extref *extref;
5840 struct extent_buffer *leaf;
5841 u64 dirid = 0, last_dirid = 0;
5842 unsigned long ptr;
5843 u32 item_size;
5844 u32 cur_offset = 0;
5845 int ref_name_len;
5846 int ret = 0;
5847
5848 /* Easy case, just check this one dirid */
5849 if (key->type == BTRFS_INODE_REF_KEY) {
5850 dirid = key->offset;
5851
5852 ret = dir_changed(sctx, dirid);
5853 goto out;
5854 }
5855
5856 leaf = path->nodes[0];
5857 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5858 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5859 while (cur_offset < item_size) {
5860 extref = (struct btrfs_inode_extref *)(ptr +
5861 cur_offset);
5862 dirid = btrfs_inode_extref_parent(leaf, extref);
5863 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5864 cur_offset += ref_name_len + sizeof(*extref);
5865 if (dirid == last_dirid)
5866 continue;
5867 ret = dir_changed(sctx, dirid);
5868 if (ret)
5869 break;
5870 last_dirid = dirid;
5871 }
5872out:
5873 return ret;
5874}
5875
766702ef
AB
5876/*
5877 * Updates compare related fields in sctx and simply forwards to the actual
5878 * changed_xxx functions.
5879 */
31db9f7c
AB
5880static int changed_cb(struct btrfs_root *left_root,
5881 struct btrfs_root *right_root,
5882 struct btrfs_path *left_path,
5883 struct btrfs_path *right_path,
5884 struct btrfs_key *key,
5885 enum btrfs_compare_tree_result result,
5886 void *ctx)
5887{
5888 int ret = 0;
5889 struct send_ctx *sctx = ctx;
5890
ba5e8f2e 5891 if (result == BTRFS_COMPARE_TREE_SAME) {
16e7549f
JB
5892 if (key->type == BTRFS_INODE_REF_KEY ||
5893 key->type == BTRFS_INODE_EXTREF_KEY) {
5894 ret = compare_refs(sctx, left_path, key);
5895 if (!ret)
5896 return 0;
5897 if (ret < 0)
5898 return ret;
5899 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5900 return maybe_send_hole(sctx, left_path, key);
5901 } else {
ba5e8f2e 5902 return 0;
16e7549f 5903 }
ba5e8f2e
JB
5904 result = BTRFS_COMPARE_TREE_CHANGED;
5905 ret = 0;
5906 }
5907
31db9f7c
AB
5908 sctx->left_path = left_path;
5909 sctx->right_path = right_path;
5910 sctx->cmp_key = key;
5911
5912 ret = finish_inode_if_needed(sctx, 0);
5913 if (ret < 0)
5914 goto out;
5915
2981e225
AB
5916 /* Ignore non-FS objects */
5917 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5918 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5919 goto out;
5920
31db9f7c
AB
5921 if (key->type == BTRFS_INODE_ITEM_KEY)
5922 ret = changed_inode(sctx, result);
96b5bd77
JS
5923 else if (key->type == BTRFS_INODE_REF_KEY ||
5924 key->type == BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
5925 ret = changed_ref(sctx, result);
5926 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5927 ret = changed_xattr(sctx, result);
5928 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5929 ret = changed_extent(sctx, result);
5930
5931out:
5932 return ret;
5933}
5934
5935static int full_send_tree(struct send_ctx *sctx)
5936{
5937 int ret;
31db9f7c
AB
5938 struct btrfs_root *send_root = sctx->send_root;
5939 struct btrfs_key key;
5940 struct btrfs_key found_key;
5941 struct btrfs_path *path;
5942 struct extent_buffer *eb;
5943 int slot;
31db9f7c
AB
5944
5945 path = alloc_path_for_send();
5946 if (!path)
5947 return -ENOMEM;
5948
31db9f7c
AB
5949 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5950 key.type = BTRFS_INODE_ITEM_KEY;
5951 key.offset = 0;
5952
31db9f7c
AB
5953 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5954 if (ret < 0)
5955 goto out;
5956 if (ret)
5957 goto out_finish;
5958
5959 while (1) {
31db9f7c
AB
5960 eb = path->nodes[0];
5961 slot = path->slots[0];
5962 btrfs_item_key_to_cpu(eb, &found_key, slot);
5963
5964 ret = changed_cb(send_root, NULL, path, NULL,
5965 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5966 if (ret < 0)
5967 goto out;
5968
5969 key.objectid = found_key.objectid;
5970 key.type = found_key.type;
5971 key.offset = found_key.offset + 1;
5972
5973 ret = btrfs_next_item(send_root, path);
5974 if (ret < 0)
5975 goto out;
5976 if (ret) {
5977 ret = 0;
5978 break;
5979 }
5980 }
5981
5982out_finish:
5983 ret = finish_inode_if_needed(sctx, 1);
5984
5985out:
5986 btrfs_free_path(path);
31db9f7c
AB
5987 return ret;
5988}
5989
5990static int send_subvol(struct send_ctx *sctx)
5991{
5992 int ret;
5993
c2c71324
SB
5994 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5995 ret = send_header(sctx);
5996 if (ret < 0)
5997 goto out;
5998 }
31db9f7c
AB
5999
6000 ret = send_subvol_begin(sctx);
6001 if (ret < 0)
6002 goto out;
6003
6004 if (sctx->parent_root) {
6005 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6006 changed_cb, sctx);
6007 if (ret < 0)
6008 goto out;
6009 ret = finish_inode_if_needed(sctx, 1);
6010 if (ret < 0)
6011 goto out;
6012 } else {
6013 ret = full_send_tree(sctx);
6014 if (ret < 0)
6015 goto out;
6016 }
6017
6018out:
31db9f7c
AB
6019 free_recorded_refs(sctx);
6020 return ret;
6021}
6022
e5fa8f86
FM
6023/*
6024 * If orphan cleanup did remove any orphans from a root, it means the tree
6025 * was modified and therefore the commit root is not the same as the current
6026 * root anymore. This is a problem, because send uses the commit root and
6027 * therefore can see inode items that don't exist in the current root anymore,
6028 * and for example make calls to btrfs_iget, which will do tree lookups based
6029 * on the current root and not on the commit root. Those lookups will fail,
6030 * returning a -ESTALE error, and making send fail with that error. So make
6031 * sure a send does not see any orphans we have just removed, and that it will
6032 * see the same inodes regardless of whether a transaction commit happened
6033 * before it started (meaning that the commit root will be the same as the
6034 * current root) or not.
6035 */
6036static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6037{
6038 int i;
6039 struct btrfs_trans_handle *trans = NULL;
6040
6041again:
6042 if (sctx->parent_root &&
6043 sctx->parent_root->node != sctx->parent_root->commit_root)
6044 goto commit_trans;
6045
6046 for (i = 0; i < sctx->clone_roots_cnt; i++)
6047 if (sctx->clone_roots[i].root->node !=
6048 sctx->clone_roots[i].root->commit_root)
6049 goto commit_trans;
6050
6051 if (trans)
6052 return btrfs_end_transaction(trans, sctx->send_root);
6053
6054 return 0;
6055
6056commit_trans:
6057 /* Use any root, all fs roots will get their commit roots updated. */
6058 if (!trans) {
6059 trans = btrfs_join_transaction(sctx->send_root);
6060 if (IS_ERR(trans))
6061 return PTR_ERR(trans);
6062 goto again;
6063 }
6064
6065 return btrfs_commit_transaction(trans, sctx->send_root);
6066}
6067
66ef7d65
DS
6068static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6069{
6070 spin_lock(&root->root_item_lock);
6071 root->send_in_progress--;
6072 /*
6073 * Not much left to do, we don't know why it's unbalanced and
6074 * can't blindly reset it to 0.
6075 */
6076 if (root->send_in_progress < 0)
6077 btrfs_err(root->fs_info,
351fd353 6078 "send_in_progres unbalanced %d root %llu",
66ef7d65
DS
6079 root->send_in_progress, root->root_key.objectid);
6080 spin_unlock(&root->root_item_lock);
6081}
6082
31db9f7c
AB
6083long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6084{
6085 int ret = 0;
6086 struct btrfs_root *send_root;
6087 struct btrfs_root *clone_root;
6088 struct btrfs_fs_info *fs_info;
6089 struct btrfs_ioctl_send_args *arg = NULL;
6090 struct btrfs_key key;
31db9f7c
AB
6091 struct send_ctx *sctx = NULL;
6092 u32 i;
6093 u64 *clone_sources_tmp = NULL;
2c686537 6094 int clone_sources_to_rollback = 0;
e55d1153 6095 unsigned alloc_size;
896c14f9 6096 int sort_clone_roots = 0;
18f687d5 6097 int index;
31db9f7c
AB
6098
6099 if (!capable(CAP_SYS_ADMIN))
6100 return -EPERM;
6101
496ad9aa 6102 send_root = BTRFS_I(file_inode(mnt_file))->root;
31db9f7c
AB
6103 fs_info = send_root->fs_info;
6104
2c686537
DS
6105 /*
6106 * The subvolume must remain read-only during send, protect against
521e0546 6107 * making it RW. This also protects against deletion.
2c686537
DS
6108 */
6109 spin_lock(&send_root->root_item_lock);
6110 send_root->send_in_progress++;
6111 spin_unlock(&send_root->root_item_lock);
6112
139f807a
JB
6113 /*
6114 * This is done when we lookup the root, it should already be complete
6115 * by the time we get here.
6116 */
6117 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6118
2c686537
DS
6119 /*
6120 * Userspace tools do the checks and warn the user if it's
6121 * not RO.
6122 */
6123 if (!btrfs_root_readonly(send_root)) {
6124 ret = -EPERM;
6125 goto out;
6126 }
6127
31db9f7c
AB
6128 arg = memdup_user(arg_, sizeof(*arg));
6129 if (IS_ERR(arg)) {
6130 ret = PTR_ERR(arg);
6131 arg = NULL;
6132 goto out;
6133 }
6134
f5ecec3c
DC
6135 if (arg->clone_sources_count >
6136 ULLONG_MAX / sizeof(*arg->clone_sources)) {
6137 ret = -EINVAL;
6138 goto out;
6139 }
6140
31db9f7c 6141 if (!access_ok(VERIFY_READ, arg->clone_sources,
700ff4f0
DC
6142 sizeof(*arg->clone_sources) *
6143 arg->clone_sources_count)) {
31db9f7c
AB
6144 ret = -EFAULT;
6145 goto out;
6146 }
6147
c2c71324 6148 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
cb95e7bf
MF
6149 ret = -EINVAL;
6150 goto out;
6151 }
6152
e780b0d1 6153 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
31db9f7c
AB
6154 if (!sctx) {
6155 ret = -ENOMEM;
6156 goto out;
6157 }
6158
6159 INIT_LIST_HEAD(&sctx->new_refs);
6160 INIT_LIST_HEAD(&sctx->deleted_refs);
e780b0d1 6161 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
31db9f7c
AB
6162 INIT_LIST_HEAD(&sctx->name_cache_list);
6163
cb95e7bf
MF
6164 sctx->flags = arg->flags;
6165
31db9f7c 6166 sctx->send_filp = fget(arg->send_fd);
ecc7ada7
TI
6167 if (!sctx->send_filp) {
6168 ret = -EBADF;
31db9f7c
AB
6169 goto out;
6170 }
6171
31db9f7c 6172 sctx->send_root = send_root;
521e0546
DS
6173 /*
6174 * Unlikely but possible, if the subvolume is marked for deletion but
6175 * is slow to remove the directory entry, send can still be started
6176 */
6177 if (btrfs_root_dead(sctx->send_root)) {
6178 ret = -EPERM;
6179 goto out;
6180 }
6181
31db9f7c
AB
6182 sctx->clone_roots_cnt = arg->clone_sources_count;
6183
6184 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6ff48ce0 6185 sctx->send_buf = kmalloc(sctx->send_max_size, GFP_KERNEL | __GFP_NOWARN);
31db9f7c 6186 if (!sctx->send_buf) {
6ff48ce0
DS
6187 sctx->send_buf = vmalloc(sctx->send_max_size);
6188 if (!sctx->send_buf) {
6189 ret = -ENOMEM;
6190 goto out;
6191 }
31db9f7c
AB
6192 }
6193
eb5b75fe 6194 sctx->read_buf = kmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL | __GFP_NOWARN);
31db9f7c 6195 if (!sctx->read_buf) {
eb5b75fe
DS
6196 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6197 if (!sctx->read_buf) {
6198 ret = -ENOMEM;
6199 goto out;
6200 }
31db9f7c
AB
6201 }
6202
9f03740a
FDBM
6203 sctx->pending_dir_moves = RB_ROOT;
6204 sctx->waiting_dir_moves = RB_ROOT;
9dc44214 6205 sctx->orphan_dirs = RB_ROOT;
9f03740a 6206
e55d1153
DS
6207 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6208
c03d01f3 6209 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
31db9f7c 6210 if (!sctx->clone_roots) {
c03d01f3
DS
6211 sctx->clone_roots = vzalloc(alloc_size);
6212 if (!sctx->clone_roots) {
6213 ret = -ENOMEM;
6214 goto out;
6215 }
31db9f7c
AB
6216 }
6217
e55d1153
DS
6218 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6219
31db9f7c 6220 if (arg->clone_sources_count) {
2f91306a 6221 clone_sources_tmp = kmalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
31db9f7c 6222 if (!clone_sources_tmp) {
2f91306a
DS
6223 clone_sources_tmp = vmalloc(alloc_size);
6224 if (!clone_sources_tmp) {
6225 ret = -ENOMEM;
6226 goto out;
6227 }
31db9f7c
AB
6228 }
6229
6230 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
e55d1153 6231 alloc_size);
31db9f7c
AB
6232 if (ret) {
6233 ret = -EFAULT;
6234 goto out;
6235 }
6236
6237 for (i = 0; i < arg->clone_sources_count; i++) {
6238 key.objectid = clone_sources_tmp[i];
6239 key.type = BTRFS_ROOT_ITEM_KEY;
6240 key.offset = (u64)-1;
18f687d5
WS
6241
6242 index = srcu_read_lock(&fs_info->subvol_srcu);
6243
31db9f7c 6244 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
31db9f7c 6245 if (IS_ERR(clone_root)) {
18f687d5 6246 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
6247 ret = PTR_ERR(clone_root);
6248 goto out;
6249 }
2c686537 6250 spin_lock(&clone_root->root_item_lock);
5cc2b17e
FM
6251 if (!btrfs_root_readonly(clone_root) ||
6252 btrfs_root_dead(clone_root)) {
2c686537 6253 spin_unlock(&clone_root->root_item_lock);
18f687d5 6254 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
6255 ret = -EPERM;
6256 goto out;
6257 }
2f1f465a 6258 clone_root->send_in_progress++;
2c686537 6259 spin_unlock(&clone_root->root_item_lock);
18f687d5
WS
6260 srcu_read_unlock(&fs_info->subvol_srcu, index);
6261
31db9f7c 6262 sctx->clone_roots[i].root = clone_root;
2f1f465a 6263 clone_sources_to_rollback = i + 1;
31db9f7c 6264 }
2f91306a 6265 kvfree(clone_sources_tmp);
31db9f7c
AB
6266 clone_sources_tmp = NULL;
6267 }
6268
6269 if (arg->parent_root) {
6270 key.objectid = arg->parent_root;
6271 key.type = BTRFS_ROOT_ITEM_KEY;
6272 key.offset = (u64)-1;
18f687d5
WS
6273
6274 index = srcu_read_lock(&fs_info->subvol_srcu);
6275
31db9f7c 6276 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
b1b19596 6277 if (IS_ERR(sctx->parent_root)) {
18f687d5 6278 srcu_read_unlock(&fs_info->subvol_srcu, index);
b1b19596 6279 ret = PTR_ERR(sctx->parent_root);
31db9f7c
AB
6280 goto out;
6281 }
18f687d5 6282
2c686537
DS
6283 spin_lock(&sctx->parent_root->root_item_lock);
6284 sctx->parent_root->send_in_progress++;
521e0546
DS
6285 if (!btrfs_root_readonly(sctx->parent_root) ||
6286 btrfs_root_dead(sctx->parent_root)) {
2c686537 6287 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5 6288 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
6289 ret = -EPERM;
6290 goto out;
6291 }
6292 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5
WS
6293
6294 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
6295 }
6296
6297 /*
6298 * Clones from send_root are allowed, but only if the clone source
6299 * is behind the current send position. This is checked while searching
6300 * for possible clone sources.
6301 */
6302 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6303
6304 /* We do a bsearch later */
6305 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6306 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6307 NULL);
896c14f9 6308 sort_clone_roots = 1;
31db9f7c 6309
e5fa8f86
FM
6310 ret = ensure_commit_roots_uptodate(sctx);
6311 if (ret)
6312 goto out;
6313
2755a0de 6314 current->journal_info = BTRFS_SEND_TRANS_STUB;
31db9f7c 6315 ret = send_subvol(sctx);
a26e8c9f 6316 current->journal_info = NULL;
31db9f7c
AB
6317 if (ret < 0)
6318 goto out;
6319
c2c71324
SB
6320 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6321 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6322 if (ret < 0)
6323 goto out;
6324 ret = send_cmd(sctx);
6325 if (ret < 0)
6326 goto out;
6327 }
31db9f7c
AB
6328
6329out:
9f03740a
FDBM
6330 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6331 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6332 struct rb_node *n;
6333 struct pending_dir_move *pm;
6334
6335 n = rb_first(&sctx->pending_dir_moves);
6336 pm = rb_entry(n, struct pending_dir_move, node);
6337 while (!list_empty(&pm->list)) {
6338 struct pending_dir_move *pm2;
6339
6340 pm2 = list_first_entry(&pm->list,
6341 struct pending_dir_move, list);
6342 free_pending_move(sctx, pm2);
6343 }
6344 free_pending_move(sctx, pm);
6345 }
6346
6347 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6348 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6349 struct rb_node *n;
6350 struct waiting_dir_move *dm;
6351
6352 n = rb_first(&sctx->waiting_dir_moves);
6353 dm = rb_entry(n, struct waiting_dir_move, node);
6354 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6355 kfree(dm);
6356 }
6357
9dc44214
FM
6358 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6359 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6360 struct rb_node *n;
6361 struct orphan_dir_info *odi;
6362
6363 n = rb_first(&sctx->orphan_dirs);
6364 odi = rb_entry(n, struct orphan_dir_info, node);
6365 free_orphan_dir_info(sctx, odi);
6366 }
6367
896c14f9
WS
6368 if (sort_clone_roots) {
6369 for (i = 0; i < sctx->clone_roots_cnt; i++)
6370 btrfs_root_dec_send_in_progress(
6371 sctx->clone_roots[i].root);
6372 } else {
6373 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6374 btrfs_root_dec_send_in_progress(
6375 sctx->clone_roots[i].root);
6376
6377 btrfs_root_dec_send_in_progress(send_root);
6378 }
66ef7d65
DS
6379 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6380 btrfs_root_dec_send_in_progress(sctx->parent_root);
2c686537 6381
31db9f7c 6382 kfree(arg);
2f91306a 6383 kvfree(clone_sources_tmp);
31db9f7c
AB
6384
6385 if (sctx) {
6386 if (sctx->send_filp)
6387 fput(sctx->send_filp);
6388
c03d01f3 6389 kvfree(sctx->clone_roots);
6ff48ce0 6390 kvfree(sctx->send_buf);
eb5b75fe 6391 kvfree(sctx->read_buf);
31db9f7c
AB
6392
6393 name_cache_free(sctx);
6394
6395 kfree(sctx);
6396 }
6397
6398 return ret;
6399}