Btrfs: fix invalid extent maps due to hole punching
[linux-2.6-block.git] / fs / btrfs / send.c
CommitLineData
31db9f7c
AB
1/*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/bsearch.h>
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/sort.h>
23#include <linux/mount.h>
24#include <linux/xattr.h>
25#include <linux/posix_acl_xattr.h>
26#include <linux/radix-tree.h>
a1857ebe 27#include <linux/vmalloc.h>
ed84885d 28#include <linux/string.h>
31db9f7c
AB
29
30#include "send.h"
31#include "backref.h"
0b947aff 32#include "hash.h"
31db9f7c
AB
33#include "locking.h"
34#include "disk-io.h"
35#include "btrfs_inode.h"
36#include "transaction.h"
ebb8765b 37#include "compression.h"
31db9f7c 38
31db9f7c
AB
39/*
40 * A fs_path is a helper to dynamically build path names with unknown size.
41 * It reallocates the internal buffer on demand.
42 * It allows fast adding of path elements on the right side (normal path) and
43 * fast adding to the left side (reversed path). A reversed path can also be
44 * unreversed if needed.
45 */
46struct fs_path {
47 union {
48 struct {
49 char *start;
50 char *end;
31db9f7c
AB
51
52 char *buf;
1f5a7ff9
DS
53 unsigned short buf_len:15;
54 unsigned short reversed:1;
31db9f7c
AB
55 char inline_buf[];
56 };
ace01050
DS
57 /*
58 * Average path length does not exceed 200 bytes, we'll have
59 * better packing in the slab and higher chance to satisfy
60 * a allocation later during send.
61 */
62 char pad[256];
31db9f7c
AB
63 };
64};
65#define FS_PATH_INLINE_SIZE \
66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
67
68
69/* reused for each extent */
70struct clone_root {
71 struct btrfs_root *root;
72 u64 ino;
73 u64 offset;
74
75 u64 found_refs;
76};
77
78#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
80
81struct send_ctx {
82 struct file *send_filp;
83 loff_t send_off;
84 char *send_buf;
85 u32 send_size;
86 u32 send_max_size;
87 u64 total_send_size;
88 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
cb95e7bf 89 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
31db9f7c 90
31db9f7c
AB
91 struct btrfs_root *send_root;
92 struct btrfs_root *parent_root;
93 struct clone_root *clone_roots;
94 int clone_roots_cnt;
95
96 /* current state of the compare_tree call */
97 struct btrfs_path *left_path;
98 struct btrfs_path *right_path;
99 struct btrfs_key *cmp_key;
100
101 /*
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
104 */
105 u64 cur_ino;
106 u64 cur_inode_gen;
107 int cur_inode_new;
108 int cur_inode_new_gen;
109 int cur_inode_deleted;
31db9f7c
AB
110 u64 cur_inode_size;
111 u64 cur_inode_mode;
644d1940 112 u64 cur_inode_rdev;
16e7549f 113 u64 cur_inode_last_extent;
31db9f7c
AB
114
115 u64 send_progress;
116
117 struct list_head new_refs;
118 struct list_head deleted_refs;
119
120 struct radix_tree_root name_cache;
121 struct list_head name_cache_list;
122 int name_cache_size;
123
2131bcd3
LB
124 struct file_ra_state ra;
125
31db9f7c 126 char *read_buf;
9f03740a
FDBM
127
128 /*
129 * We process inodes by their increasing order, so if before an
130 * incremental send we reverse the parent/child relationship of
131 * directories such that a directory with a lower inode number was
132 * the parent of a directory with a higher inode number, and the one
133 * becoming the new parent got renamed too, we can't rename/move the
134 * directory with lower inode number when we finish processing it - we
135 * must process the directory with higher inode number first, then
136 * rename/move it and then rename/move the directory with lower inode
137 * number. Example follows.
138 *
139 * Tree state when the first send was performed:
140 *
141 * .
142 * |-- a (ino 257)
143 * |-- b (ino 258)
144 * |
145 * |
146 * |-- c (ino 259)
147 * | |-- d (ino 260)
148 * |
149 * |-- c2 (ino 261)
150 *
151 * Tree state when the second (incremental) send is performed:
152 *
153 * .
154 * |-- a (ino 257)
155 * |-- b (ino 258)
156 * |-- c2 (ino 261)
157 * |-- d2 (ino 260)
158 * |-- cc (ino 259)
159 *
160 * The sequence of steps that lead to the second state was:
161 *
162 * mv /a/b/c/d /a/b/c2/d2
163 * mv /a/b/c /a/b/c2/d2/cc
164 *
165 * "c" has lower inode number, but we can't move it (2nd mv operation)
166 * before we move "d", which has higher inode number.
167 *
168 * So we just memorize which move/rename operations must be performed
169 * later when their respective parent is processed and moved/renamed.
170 */
171
172 /* Indexed by parent directory inode number. */
173 struct rb_root pending_dir_moves;
174
175 /*
176 * Reverse index, indexed by the inode number of a directory that
177 * is waiting for the move/rename of its immediate parent before its
178 * own move/rename can be performed.
179 */
180 struct rb_root waiting_dir_moves;
9dc44214
FM
181
182 /*
183 * A directory that is going to be rm'ed might have a child directory
184 * which is in the pending directory moves index above. In this case,
185 * the directory can only be removed after the move/rename of its child
186 * is performed. Example:
187 *
188 * Parent snapshot:
189 *
190 * . (ino 256)
191 * |-- a/ (ino 257)
192 * |-- b/ (ino 258)
193 * |-- c/ (ino 259)
194 * | |-- x/ (ino 260)
195 * |
196 * |-- y/ (ino 261)
197 *
198 * Send snapshot:
199 *
200 * . (ino 256)
201 * |-- a/ (ino 257)
202 * |-- b/ (ino 258)
203 * |-- YY/ (ino 261)
204 * |-- x/ (ino 260)
205 *
206 * Sequence of steps that lead to the send snapshot:
207 * rm -f /a/b/c/foo.txt
208 * mv /a/b/y /a/b/YY
209 * mv /a/b/c/x /a/b/YY
210 * rmdir /a/b/c
211 *
212 * When the child is processed, its move/rename is delayed until its
213 * parent is processed (as explained above), but all other operations
214 * like update utimes, chown, chgrp, etc, are performed and the paths
215 * that it uses for those operations must use the orphanized name of
216 * its parent (the directory we're going to rm later), so we need to
217 * memorize that name.
218 *
219 * Indexed by the inode number of the directory to be deleted.
220 */
221 struct rb_root orphan_dirs;
9f03740a
FDBM
222};
223
224struct pending_dir_move {
225 struct rb_node node;
226 struct list_head list;
227 u64 parent_ino;
228 u64 ino;
229 u64 gen;
230 struct list_head update_refs;
231};
232
233struct waiting_dir_move {
234 struct rb_node node;
235 u64 ino;
9dc44214
FM
236 /*
237 * There might be some directory that could not be removed because it
238 * was waiting for this directory inode to be moved first. Therefore
239 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
240 */
241 u64 rmdir_ino;
8b191a68 242 bool orphanized;
9dc44214
FM
243};
244
245struct orphan_dir_info {
246 struct rb_node node;
247 u64 ino;
248 u64 gen;
31db9f7c
AB
249};
250
251struct name_cache_entry {
252 struct list_head list;
7e0926fe
AB
253 /*
254 * radix_tree has only 32bit entries but we need to handle 64bit inums.
255 * We use the lower 32bit of the 64bit inum to store it in the tree. If
256 * more then one inum would fall into the same entry, we use radix_list
257 * to store the additional entries. radix_list is also used to store
258 * entries where two entries have the same inum but different
259 * generations.
260 */
261 struct list_head radix_list;
31db9f7c
AB
262 u64 ino;
263 u64 gen;
264 u64 parent_ino;
265 u64 parent_gen;
266 int ret;
267 int need_later_update;
268 int name_len;
269 char name[];
270};
271
95155585
FM
272static void inconsistent_snapshot_error(struct send_ctx *sctx,
273 enum btrfs_compare_tree_result result,
274 const char *what)
275{
276 const char *result_string;
277
278 switch (result) {
279 case BTRFS_COMPARE_TREE_NEW:
280 result_string = "new";
281 break;
282 case BTRFS_COMPARE_TREE_DELETED:
283 result_string = "deleted";
284 break;
285 case BTRFS_COMPARE_TREE_CHANGED:
286 result_string = "updated";
287 break;
288 case BTRFS_COMPARE_TREE_SAME:
289 ASSERT(0);
290 result_string = "unchanged";
291 break;
292 default:
293 ASSERT(0);
294 result_string = "unexpected";
295 }
296
297 btrfs_err(sctx->send_root->fs_info,
298 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
299 result_string, what, sctx->cmp_key->objectid,
300 sctx->send_root->root_key.objectid,
301 (sctx->parent_root ?
302 sctx->parent_root->root_key.objectid : 0));
303}
304
9f03740a
FDBM
305static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
306
9dc44214
FM
307static struct waiting_dir_move *
308get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
309
310static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
311
16e7549f
JB
312static int need_send_hole(struct send_ctx *sctx)
313{
314 return (sctx->parent_root && !sctx->cur_inode_new &&
315 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
316 S_ISREG(sctx->cur_inode_mode));
317}
318
31db9f7c
AB
319static void fs_path_reset(struct fs_path *p)
320{
321 if (p->reversed) {
322 p->start = p->buf + p->buf_len - 1;
323 p->end = p->start;
324 *p->start = 0;
325 } else {
326 p->start = p->buf;
327 p->end = p->start;
328 *p->start = 0;
329 }
330}
331
924794c9 332static struct fs_path *fs_path_alloc(void)
31db9f7c
AB
333{
334 struct fs_path *p;
335
e780b0d1 336 p = kmalloc(sizeof(*p), GFP_KERNEL);
31db9f7c
AB
337 if (!p)
338 return NULL;
339 p->reversed = 0;
31db9f7c
AB
340 p->buf = p->inline_buf;
341 p->buf_len = FS_PATH_INLINE_SIZE;
342 fs_path_reset(p);
343 return p;
344}
345
924794c9 346static struct fs_path *fs_path_alloc_reversed(void)
31db9f7c
AB
347{
348 struct fs_path *p;
349
924794c9 350 p = fs_path_alloc();
31db9f7c
AB
351 if (!p)
352 return NULL;
353 p->reversed = 1;
354 fs_path_reset(p);
355 return p;
356}
357
924794c9 358static void fs_path_free(struct fs_path *p)
31db9f7c
AB
359{
360 if (!p)
361 return;
ace01050
DS
362 if (p->buf != p->inline_buf)
363 kfree(p->buf);
31db9f7c
AB
364 kfree(p);
365}
366
367static int fs_path_len(struct fs_path *p)
368{
369 return p->end - p->start;
370}
371
372static int fs_path_ensure_buf(struct fs_path *p, int len)
373{
374 char *tmp_buf;
375 int path_len;
376 int old_buf_len;
377
378 len++;
379
380 if (p->buf_len >= len)
381 return 0;
382
cfd4a535
CM
383 if (len > PATH_MAX) {
384 WARN_ON(1);
385 return -ENOMEM;
386 }
387
1b2782c8
DS
388 path_len = p->end - p->start;
389 old_buf_len = p->buf_len;
390
ace01050
DS
391 /*
392 * First time the inline_buf does not suffice
393 */
01a9a8a9 394 if (p->buf == p->inline_buf) {
e780b0d1 395 tmp_buf = kmalloc(len, GFP_KERNEL);
01a9a8a9
FM
396 if (tmp_buf)
397 memcpy(tmp_buf, p->buf, old_buf_len);
398 } else {
e780b0d1 399 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
01a9a8a9 400 }
9c9ca00b
DS
401 if (!tmp_buf)
402 return -ENOMEM;
403 p->buf = tmp_buf;
404 /*
405 * The real size of the buffer is bigger, this will let the fast path
406 * happen most of the time
407 */
408 p->buf_len = ksize(p->buf);
ace01050 409
31db9f7c
AB
410 if (p->reversed) {
411 tmp_buf = p->buf + old_buf_len - path_len - 1;
412 p->end = p->buf + p->buf_len - 1;
413 p->start = p->end - path_len;
414 memmove(p->start, tmp_buf, path_len + 1);
415 } else {
416 p->start = p->buf;
417 p->end = p->start + path_len;
418 }
419 return 0;
420}
421
b23ab57d
DS
422static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
423 char **prepared)
31db9f7c
AB
424{
425 int ret;
426 int new_len;
427
428 new_len = p->end - p->start + name_len;
429 if (p->start != p->end)
430 new_len++;
431 ret = fs_path_ensure_buf(p, new_len);
432 if (ret < 0)
433 goto out;
434
435 if (p->reversed) {
436 if (p->start != p->end)
437 *--p->start = '/';
438 p->start -= name_len;
b23ab57d 439 *prepared = p->start;
31db9f7c
AB
440 } else {
441 if (p->start != p->end)
442 *p->end++ = '/';
b23ab57d 443 *prepared = p->end;
31db9f7c
AB
444 p->end += name_len;
445 *p->end = 0;
446 }
447
448out:
449 return ret;
450}
451
452static int fs_path_add(struct fs_path *p, const char *name, int name_len)
453{
454 int ret;
b23ab57d 455 char *prepared;
31db9f7c 456
b23ab57d 457 ret = fs_path_prepare_for_add(p, name_len, &prepared);
31db9f7c
AB
458 if (ret < 0)
459 goto out;
b23ab57d 460 memcpy(prepared, name, name_len);
31db9f7c
AB
461
462out:
463 return ret;
464}
465
466static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
467{
468 int ret;
b23ab57d 469 char *prepared;
31db9f7c 470
b23ab57d 471 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
31db9f7c
AB
472 if (ret < 0)
473 goto out;
b23ab57d 474 memcpy(prepared, p2->start, p2->end - p2->start);
31db9f7c
AB
475
476out:
477 return ret;
478}
479
480static int fs_path_add_from_extent_buffer(struct fs_path *p,
481 struct extent_buffer *eb,
482 unsigned long off, int len)
483{
484 int ret;
b23ab57d 485 char *prepared;
31db9f7c 486
b23ab57d 487 ret = fs_path_prepare_for_add(p, len, &prepared);
31db9f7c
AB
488 if (ret < 0)
489 goto out;
490
b23ab57d 491 read_extent_buffer(eb, prepared, off, len);
31db9f7c
AB
492
493out:
494 return ret;
495}
496
31db9f7c
AB
497static int fs_path_copy(struct fs_path *p, struct fs_path *from)
498{
499 int ret;
500
501 p->reversed = from->reversed;
502 fs_path_reset(p);
503
504 ret = fs_path_add_path(p, from);
505
506 return ret;
507}
508
509
510static void fs_path_unreverse(struct fs_path *p)
511{
512 char *tmp;
513 int len;
514
515 if (!p->reversed)
516 return;
517
518 tmp = p->start;
519 len = p->end - p->start;
520 p->start = p->buf;
521 p->end = p->start + len;
522 memmove(p->start, tmp, len + 1);
523 p->reversed = 0;
524}
525
526static struct btrfs_path *alloc_path_for_send(void)
527{
528 struct btrfs_path *path;
529
530 path = btrfs_alloc_path();
531 if (!path)
532 return NULL;
533 path->search_commit_root = 1;
534 path->skip_locking = 1;
3f8a18cc 535 path->need_commit_sem = 1;
31db9f7c
AB
536 return path;
537}
538
48a3b636 539static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
31db9f7c
AB
540{
541 int ret;
542 mm_segment_t old_fs;
543 u32 pos = 0;
544
545 old_fs = get_fs();
546 set_fs(KERNEL_DS);
547
548 while (pos < len) {
d447d0da
FF
549 ret = vfs_write(filp, (__force const char __user *)buf + pos,
550 len - pos, off);
31db9f7c
AB
551 /* TODO handle that correctly */
552 /*if (ret == -ERESTARTSYS) {
553 continue;
554 }*/
555 if (ret < 0)
556 goto out;
557 if (ret == 0) {
558 ret = -EIO;
559 goto out;
560 }
561 pos += ret;
562 }
563
564 ret = 0;
565
566out:
567 set_fs(old_fs);
568 return ret;
569}
570
571static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
572{
573 struct btrfs_tlv_header *hdr;
574 int total_len = sizeof(*hdr) + len;
575 int left = sctx->send_max_size - sctx->send_size;
576
577 if (unlikely(left < total_len))
578 return -EOVERFLOW;
579
580 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
581 hdr->tlv_type = cpu_to_le16(attr);
582 hdr->tlv_len = cpu_to_le16(len);
583 memcpy(hdr + 1, data, len);
584 sctx->send_size += total_len;
585
586 return 0;
587}
588
95bc79d5
DS
589#define TLV_PUT_DEFINE_INT(bits) \
590 static int tlv_put_u##bits(struct send_ctx *sctx, \
591 u##bits attr, u##bits value) \
592 { \
593 __le##bits __tmp = cpu_to_le##bits(value); \
594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
595 }
31db9f7c 596
95bc79d5 597TLV_PUT_DEFINE_INT(64)
31db9f7c
AB
598
599static int tlv_put_string(struct send_ctx *sctx, u16 attr,
600 const char *str, int len)
601{
602 if (len == -1)
603 len = strlen(str);
604 return tlv_put(sctx, attr, str, len);
605}
606
607static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
608 const u8 *uuid)
609{
610 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
611}
612
31db9f7c
AB
613static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
614 struct extent_buffer *eb,
615 struct btrfs_timespec *ts)
616{
617 struct btrfs_timespec bts;
618 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
619 return tlv_put(sctx, attr, &bts, sizeof(bts));
620}
621
622
623#define TLV_PUT(sctx, attrtype, attrlen, data) \
624 do { \
625 ret = tlv_put(sctx, attrtype, attrlen, data); \
626 if (ret < 0) \
627 goto tlv_put_failure; \
628 } while (0)
629
630#define TLV_PUT_INT(sctx, attrtype, bits, value) \
631 do { \
632 ret = tlv_put_u##bits(sctx, attrtype, value); \
633 if (ret < 0) \
634 goto tlv_put_failure; \
635 } while (0)
636
637#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641#define TLV_PUT_STRING(sctx, attrtype, str, len) \
642 do { \
643 ret = tlv_put_string(sctx, attrtype, str, len); \
644 if (ret < 0) \
645 goto tlv_put_failure; \
646 } while (0)
647#define TLV_PUT_PATH(sctx, attrtype, p) \
648 do { \
649 ret = tlv_put_string(sctx, attrtype, p->start, \
650 p->end - p->start); \
651 if (ret < 0) \
652 goto tlv_put_failure; \
653 } while(0)
654#define TLV_PUT_UUID(sctx, attrtype, uuid) \
655 do { \
656 ret = tlv_put_uuid(sctx, attrtype, uuid); \
657 if (ret < 0) \
658 goto tlv_put_failure; \
659 } while (0)
31db9f7c
AB
660#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
661 do { \
662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
663 if (ret < 0) \
664 goto tlv_put_failure; \
665 } while (0)
666
667static int send_header(struct send_ctx *sctx)
668{
669 struct btrfs_stream_header hdr;
670
671 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
672 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
673
1bcea355
AJ
674 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
675 &sctx->send_off);
31db9f7c
AB
676}
677
678/*
679 * For each command/item we want to send to userspace, we call this function.
680 */
681static int begin_cmd(struct send_ctx *sctx, int cmd)
682{
683 struct btrfs_cmd_header *hdr;
684
fae7f21c 685 if (WARN_ON(!sctx->send_buf))
31db9f7c 686 return -EINVAL;
31db9f7c
AB
687
688 BUG_ON(sctx->send_size);
689
690 sctx->send_size += sizeof(*hdr);
691 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
692 hdr->cmd = cpu_to_le16(cmd);
693
694 return 0;
695}
696
697static int send_cmd(struct send_ctx *sctx)
698{
699 int ret;
700 struct btrfs_cmd_header *hdr;
701 u32 crc;
702
703 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
704 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
705 hdr->crc = 0;
706
0b947aff 707 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
31db9f7c
AB
708 hdr->crc = cpu_to_le32(crc);
709
1bcea355
AJ
710 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
711 &sctx->send_off);
31db9f7c
AB
712
713 sctx->total_send_size += sctx->send_size;
714 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
715 sctx->send_size = 0;
716
717 return ret;
718}
719
720/*
721 * Sends a move instruction to user space
722 */
723static int send_rename(struct send_ctx *sctx,
724 struct fs_path *from, struct fs_path *to)
725{
04ab956e 726 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
727 int ret;
728
04ab956e 729 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
31db9f7c
AB
730
731 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
732 if (ret < 0)
733 goto out;
734
735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
736 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
737
738 ret = send_cmd(sctx);
739
740tlv_put_failure:
741out:
742 return ret;
743}
744
745/*
746 * Sends a link instruction to user space
747 */
748static int send_link(struct send_ctx *sctx,
749 struct fs_path *path, struct fs_path *lnk)
750{
04ab956e 751 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
752 int ret;
753
04ab956e 754 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
31db9f7c
AB
755
756 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
757 if (ret < 0)
758 goto out;
759
760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
761 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
762
763 ret = send_cmd(sctx);
764
765tlv_put_failure:
766out:
767 return ret;
768}
769
770/*
771 * Sends an unlink instruction to user space
772 */
773static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
774{
04ab956e 775 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
776 int ret;
777
04ab956e 778 btrfs_debug(fs_info, "send_unlink %s", path->start);
31db9f7c
AB
779
780 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
781 if (ret < 0)
782 goto out;
783
784 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
785
786 ret = send_cmd(sctx);
787
788tlv_put_failure:
789out:
790 return ret;
791}
792
793/*
794 * Sends a rmdir instruction to user space
795 */
796static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
797{
04ab956e 798 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
799 int ret;
800
04ab956e 801 btrfs_debug(fs_info, "send_rmdir %s", path->start);
31db9f7c
AB
802
803 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
804 if (ret < 0)
805 goto out;
806
807 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
808
809 ret = send_cmd(sctx);
810
811tlv_put_failure:
812out:
813 return ret;
814}
815
816/*
817 * Helper function to retrieve some fields from an inode item.
818 */
3f8a18cc
JB
819static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
820 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
821 u64 *gid, u64 *rdev)
31db9f7c
AB
822{
823 int ret;
824 struct btrfs_inode_item *ii;
825 struct btrfs_key key;
31db9f7c
AB
826
827 key.objectid = ino;
828 key.type = BTRFS_INODE_ITEM_KEY;
829 key.offset = 0;
830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
31db9f7c 831 if (ret) {
3f8a18cc
JB
832 if (ret > 0)
833 ret = -ENOENT;
834 return ret;
31db9f7c
AB
835 }
836
837 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
838 struct btrfs_inode_item);
839 if (size)
840 *size = btrfs_inode_size(path->nodes[0], ii);
841 if (gen)
842 *gen = btrfs_inode_generation(path->nodes[0], ii);
843 if (mode)
844 *mode = btrfs_inode_mode(path->nodes[0], ii);
845 if (uid)
846 *uid = btrfs_inode_uid(path->nodes[0], ii);
847 if (gid)
848 *gid = btrfs_inode_gid(path->nodes[0], ii);
85a7b33b
AB
849 if (rdev)
850 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
31db9f7c 851
3f8a18cc
JB
852 return ret;
853}
854
855static int get_inode_info(struct btrfs_root *root,
856 u64 ino, u64 *size, u64 *gen,
857 u64 *mode, u64 *uid, u64 *gid,
858 u64 *rdev)
859{
860 struct btrfs_path *path;
861 int ret;
862
863 path = alloc_path_for_send();
864 if (!path)
865 return -ENOMEM;
866 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
867 rdev);
31db9f7c
AB
868 btrfs_free_path(path);
869 return ret;
870}
871
872typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
873 struct fs_path *p,
874 void *ctx);
875
876/*
96b5bd77
JS
877 * Helper function to iterate the entries in ONE btrfs_inode_ref or
878 * btrfs_inode_extref.
31db9f7c
AB
879 * The iterate callback may return a non zero value to stop iteration. This can
880 * be a negative value for error codes or 1 to simply stop it.
881 *
96b5bd77 882 * path must point to the INODE_REF or INODE_EXTREF when called.
31db9f7c 883 */
924794c9 884static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
885 struct btrfs_key *found_key, int resolve,
886 iterate_inode_ref_t iterate, void *ctx)
887{
96b5bd77 888 struct extent_buffer *eb = path->nodes[0];
31db9f7c
AB
889 struct btrfs_item *item;
890 struct btrfs_inode_ref *iref;
96b5bd77 891 struct btrfs_inode_extref *extref;
31db9f7c
AB
892 struct btrfs_path *tmp_path;
893 struct fs_path *p;
96b5bd77 894 u32 cur = 0;
31db9f7c 895 u32 total;
96b5bd77 896 int slot = path->slots[0];
31db9f7c
AB
897 u32 name_len;
898 char *start;
899 int ret = 0;
96b5bd77 900 int num = 0;
31db9f7c 901 int index;
96b5bd77
JS
902 u64 dir;
903 unsigned long name_off;
904 unsigned long elem_size;
905 unsigned long ptr;
31db9f7c 906
924794c9 907 p = fs_path_alloc_reversed();
31db9f7c
AB
908 if (!p)
909 return -ENOMEM;
910
911 tmp_path = alloc_path_for_send();
912 if (!tmp_path) {
924794c9 913 fs_path_free(p);
31db9f7c
AB
914 return -ENOMEM;
915 }
916
31db9f7c 917
96b5bd77
JS
918 if (found_key->type == BTRFS_INODE_REF_KEY) {
919 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
920 struct btrfs_inode_ref);
dd3cc16b 921 item = btrfs_item_nr(slot);
96b5bd77
JS
922 total = btrfs_item_size(eb, item);
923 elem_size = sizeof(*iref);
924 } else {
925 ptr = btrfs_item_ptr_offset(eb, slot);
926 total = btrfs_item_size_nr(eb, slot);
927 elem_size = sizeof(*extref);
928 }
929
31db9f7c
AB
930 while (cur < total) {
931 fs_path_reset(p);
932
96b5bd77
JS
933 if (found_key->type == BTRFS_INODE_REF_KEY) {
934 iref = (struct btrfs_inode_ref *)(ptr + cur);
935 name_len = btrfs_inode_ref_name_len(eb, iref);
936 name_off = (unsigned long)(iref + 1);
937 index = btrfs_inode_ref_index(eb, iref);
938 dir = found_key->offset;
939 } else {
940 extref = (struct btrfs_inode_extref *)(ptr + cur);
941 name_len = btrfs_inode_extref_name_len(eb, extref);
942 name_off = (unsigned long)&extref->name;
943 index = btrfs_inode_extref_index(eb, extref);
944 dir = btrfs_inode_extref_parent(eb, extref);
945 }
946
31db9f7c 947 if (resolve) {
96b5bd77
JS
948 start = btrfs_ref_to_path(root, tmp_path, name_len,
949 name_off, eb, dir,
950 p->buf, p->buf_len);
31db9f7c
AB
951 if (IS_ERR(start)) {
952 ret = PTR_ERR(start);
953 goto out;
954 }
955 if (start < p->buf) {
956 /* overflow , try again with larger buffer */
957 ret = fs_path_ensure_buf(p,
958 p->buf_len + p->buf - start);
959 if (ret < 0)
960 goto out;
96b5bd77
JS
961 start = btrfs_ref_to_path(root, tmp_path,
962 name_len, name_off,
963 eb, dir,
964 p->buf, p->buf_len);
31db9f7c
AB
965 if (IS_ERR(start)) {
966 ret = PTR_ERR(start);
967 goto out;
968 }
969 BUG_ON(start < p->buf);
970 }
971 p->start = start;
972 } else {
96b5bd77
JS
973 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
974 name_len);
31db9f7c
AB
975 if (ret < 0)
976 goto out;
977 }
978
96b5bd77
JS
979 cur += elem_size + name_len;
980 ret = iterate(num, dir, index, p, ctx);
31db9f7c
AB
981 if (ret)
982 goto out;
31db9f7c
AB
983 num++;
984 }
985
986out:
987 btrfs_free_path(tmp_path);
924794c9 988 fs_path_free(p);
31db9f7c
AB
989 return ret;
990}
991
992typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
993 const char *name, int name_len,
994 const char *data, int data_len,
995 u8 type, void *ctx);
996
997/*
998 * Helper function to iterate the entries in ONE btrfs_dir_item.
999 * The iterate callback may return a non zero value to stop iteration. This can
1000 * be a negative value for error codes or 1 to simply stop it.
1001 *
1002 * path must point to the dir item when called.
1003 */
924794c9 1004static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
1005 struct btrfs_key *found_key,
1006 iterate_dir_item_t iterate, void *ctx)
1007{
1008 int ret = 0;
1009 struct extent_buffer *eb;
1010 struct btrfs_item *item;
1011 struct btrfs_dir_item *di;
31db9f7c
AB
1012 struct btrfs_key di_key;
1013 char *buf = NULL;
7e3ae33e 1014 int buf_len;
31db9f7c
AB
1015 u32 name_len;
1016 u32 data_len;
1017 u32 cur;
1018 u32 len;
1019 u32 total;
1020 int slot;
1021 int num;
1022 u8 type;
1023
4395e0c4
FM
1024 /*
1025 * Start with a small buffer (1 page). If later we end up needing more
1026 * space, which can happen for xattrs on a fs with a leaf size greater
1027 * then the page size, attempt to increase the buffer. Typically xattr
1028 * values are small.
1029 */
1030 buf_len = PATH_MAX;
e780b0d1 1031 buf = kmalloc(buf_len, GFP_KERNEL);
31db9f7c
AB
1032 if (!buf) {
1033 ret = -ENOMEM;
1034 goto out;
1035 }
1036
31db9f7c
AB
1037 eb = path->nodes[0];
1038 slot = path->slots[0];
dd3cc16b 1039 item = btrfs_item_nr(slot);
31db9f7c
AB
1040 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1041 cur = 0;
1042 len = 0;
1043 total = btrfs_item_size(eb, item);
1044
1045 num = 0;
1046 while (cur < total) {
1047 name_len = btrfs_dir_name_len(eb, di);
1048 data_len = btrfs_dir_data_len(eb, di);
1049 type = btrfs_dir_type(eb, di);
1050 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1051
7e3ae33e
FM
1052 if (type == BTRFS_FT_XATTR) {
1053 if (name_len > XATTR_NAME_MAX) {
1054 ret = -ENAMETOOLONG;
1055 goto out;
1056 }
da17066c
JM
1057 if (name_len + data_len >
1058 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
7e3ae33e
FM
1059 ret = -E2BIG;
1060 goto out;
1061 }
1062 } else {
1063 /*
1064 * Path too long
1065 */
4395e0c4 1066 if (name_len + data_len > PATH_MAX) {
7e3ae33e
FM
1067 ret = -ENAMETOOLONG;
1068 goto out;
1069 }
31db9f7c
AB
1070 }
1071
4395e0c4
FM
1072 if (name_len + data_len > buf_len) {
1073 buf_len = name_len + data_len;
1074 if (is_vmalloc_addr(buf)) {
1075 vfree(buf);
1076 buf = NULL;
1077 } else {
1078 char *tmp = krealloc(buf, buf_len,
e780b0d1 1079 GFP_KERNEL | __GFP_NOWARN);
4395e0c4
FM
1080
1081 if (!tmp)
1082 kfree(buf);
1083 buf = tmp;
1084 }
1085 if (!buf) {
f11f7441 1086 buf = kvmalloc(buf_len, GFP_KERNEL);
4395e0c4
FM
1087 if (!buf) {
1088 ret = -ENOMEM;
1089 goto out;
1090 }
1091 }
1092 }
1093
31db9f7c
AB
1094 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1095 name_len + data_len);
1096
1097 len = sizeof(*di) + name_len + data_len;
1098 di = (struct btrfs_dir_item *)((char *)di + len);
1099 cur += len;
1100
1101 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1102 data_len, type, ctx);
1103 if (ret < 0)
1104 goto out;
1105 if (ret) {
1106 ret = 0;
1107 goto out;
1108 }
1109
1110 num++;
1111 }
1112
1113out:
4395e0c4 1114 kvfree(buf);
31db9f7c
AB
1115 return ret;
1116}
1117
1118static int __copy_first_ref(int num, u64 dir, int index,
1119 struct fs_path *p, void *ctx)
1120{
1121 int ret;
1122 struct fs_path *pt = ctx;
1123
1124 ret = fs_path_copy(pt, p);
1125 if (ret < 0)
1126 return ret;
1127
1128 /* we want the first only */
1129 return 1;
1130}
1131
1132/*
1133 * Retrieve the first path of an inode. If an inode has more then one
1134 * ref/hardlink, this is ignored.
1135 */
924794c9 1136static int get_inode_path(struct btrfs_root *root,
31db9f7c
AB
1137 u64 ino, struct fs_path *path)
1138{
1139 int ret;
1140 struct btrfs_key key, found_key;
1141 struct btrfs_path *p;
1142
1143 p = alloc_path_for_send();
1144 if (!p)
1145 return -ENOMEM;
1146
1147 fs_path_reset(path);
1148
1149 key.objectid = ino;
1150 key.type = BTRFS_INODE_REF_KEY;
1151 key.offset = 0;
1152
1153 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1154 if (ret < 0)
1155 goto out;
1156 if (ret) {
1157 ret = 1;
1158 goto out;
1159 }
1160 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1161 if (found_key.objectid != ino ||
96b5bd77
JS
1162 (found_key.type != BTRFS_INODE_REF_KEY &&
1163 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1164 ret = -ENOENT;
1165 goto out;
1166 }
1167
924794c9
TI
1168 ret = iterate_inode_ref(root, p, &found_key, 1,
1169 __copy_first_ref, path);
31db9f7c
AB
1170 if (ret < 0)
1171 goto out;
1172 ret = 0;
1173
1174out:
1175 btrfs_free_path(p);
1176 return ret;
1177}
1178
1179struct backref_ctx {
1180 struct send_ctx *sctx;
1181
3f8a18cc 1182 struct btrfs_path *path;
31db9f7c
AB
1183 /* number of total found references */
1184 u64 found;
1185
1186 /*
1187 * used for clones found in send_root. clones found behind cur_objectid
1188 * and cur_offset are not considered as allowed clones.
1189 */
1190 u64 cur_objectid;
1191 u64 cur_offset;
1192
1193 /* may be truncated in case it's the last extent in a file */
1194 u64 extent_len;
1195
619d8c4e
FM
1196 /* data offset in the file extent item */
1197 u64 data_offset;
1198
31db9f7c 1199 /* Just to check for bugs in backref resolving */
ee849c04 1200 int found_itself;
31db9f7c
AB
1201};
1202
1203static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1204{
995e01b7 1205 u64 root = (u64)(uintptr_t)key;
31db9f7c
AB
1206 struct clone_root *cr = (struct clone_root *)elt;
1207
1208 if (root < cr->root->objectid)
1209 return -1;
1210 if (root > cr->root->objectid)
1211 return 1;
1212 return 0;
1213}
1214
1215static int __clone_root_cmp_sort(const void *e1, const void *e2)
1216{
1217 struct clone_root *cr1 = (struct clone_root *)e1;
1218 struct clone_root *cr2 = (struct clone_root *)e2;
1219
1220 if (cr1->root->objectid < cr2->root->objectid)
1221 return -1;
1222 if (cr1->root->objectid > cr2->root->objectid)
1223 return 1;
1224 return 0;
1225}
1226
1227/*
1228 * Called for every backref that is found for the current extent.
766702ef 1229 * Results are collected in sctx->clone_roots->ino/offset/found_refs
31db9f7c
AB
1230 */
1231static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1232{
1233 struct backref_ctx *bctx = ctx_;
1234 struct clone_root *found;
1235 int ret;
1236 u64 i_size;
1237
1238 /* First check if the root is in the list of accepted clone sources */
995e01b7 1239 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
31db9f7c
AB
1240 bctx->sctx->clone_roots_cnt,
1241 sizeof(struct clone_root),
1242 __clone_root_cmp_bsearch);
1243 if (!found)
1244 return 0;
1245
1246 if (found->root == bctx->sctx->send_root &&
1247 ino == bctx->cur_objectid &&
1248 offset == bctx->cur_offset) {
ee849c04 1249 bctx->found_itself = 1;
31db9f7c
AB
1250 }
1251
1252 /*
766702ef 1253 * There are inodes that have extents that lie behind its i_size. Don't
31db9f7c
AB
1254 * accept clones from these extents.
1255 */
3f8a18cc
JB
1256 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1257 NULL, NULL, NULL);
1258 btrfs_release_path(bctx->path);
31db9f7c
AB
1259 if (ret < 0)
1260 return ret;
1261
619d8c4e 1262 if (offset + bctx->data_offset + bctx->extent_len > i_size)
31db9f7c
AB
1263 return 0;
1264
1265 /*
1266 * Make sure we don't consider clones from send_root that are
1267 * behind the current inode/offset.
1268 */
1269 if (found->root == bctx->sctx->send_root) {
1270 /*
1271 * TODO for the moment we don't accept clones from the inode
1272 * that is currently send. We may change this when
1273 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1274 * file.
1275 */
1276 if (ino >= bctx->cur_objectid)
1277 return 0;
e938c8ad
AB
1278#if 0
1279 if (ino > bctx->cur_objectid)
1280 return 0;
1281 if (offset + bctx->extent_len > bctx->cur_offset)
31db9f7c 1282 return 0;
e938c8ad 1283#endif
31db9f7c
AB
1284 }
1285
1286 bctx->found++;
1287 found->found_refs++;
1288 if (ino < found->ino) {
1289 found->ino = ino;
1290 found->offset = offset;
1291 } else if (found->ino == ino) {
1292 /*
1293 * same extent found more then once in the same file.
1294 */
1295 if (found->offset > offset + bctx->extent_len)
1296 found->offset = offset;
1297 }
1298
1299 return 0;
1300}
1301
1302/*
766702ef
AB
1303 * Given an inode, offset and extent item, it finds a good clone for a clone
1304 * instruction. Returns -ENOENT when none could be found. The function makes
1305 * sure that the returned clone is usable at the point where sending is at the
1306 * moment. This means, that no clones are accepted which lie behind the current
1307 * inode+offset.
1308 *
31db9f7c
AB
1309 * path must point to the extent item when called.
1310 */
1311static int find_extent_clone(struct send_ctx *sctx,
1312 struct btrfs_path *path,
1313 u64 ino, u64 data_offset,
1314 u64 ino_size,
1315 struct clone_root **found)
1316{
04ab956e 1317 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
1318 int ret;
1319 int extent_type;
1320 u64 logical;
74dd17fb 1321 u64 disk_byte;
31db9f7c
AB
1322 u64 num_bytes;
1323 u64 extent_item_pos;
69917e43 1324 u64 flags = 0;
31db9f7c
AB
1325 struct btrfs_file_extent_item *fi;
1326 struct extent_buffer *eb = path->nodes[0];
35075bb0 1327 struct backref_ctx *backref_ctx = NULL;
31db9f7c
AB
1328 struct clone_root *cur_clone_root;
1329 struct btrfs_key found_key;
1330 struct btrfs_path *tmp_path;
74dd17fb 1331 int compressed;
31db9f7c
AB
1332 u32 i;
1333
1334 tmp_path = alloc_path_for_send();
1335 if (!tmp_path)
1336 return -ENOMEM;
1337
3f8a18cc
JB
1338 /* We only use this path under the commit sem */
1339 tmp_path->need_commit_sem = 0;
1340
e780b0d1 1341 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
35075bb0
AB
1342 if (!backref_ctx) {
1343 ret = -ENOMEM;
1344 goto out;
1345 }
1346
3f8a18cc
JB
1347 backref_ctx->path = tmp_path;
1348
31db9f7c
AB
1349 if (data_offset >= ino_size) {
1350 /*
1351 * There may be extents that lie behind the file's size.
1352 * I at least had this in combination with snapshotting while
1353 * writing large files.
1354 */
1355 ret = 0;
1356 goto out;
1357 }
1358
1359 fi = btrfs_item_ptr(eb, path->slots[0],
1360 struct btrfs_file_extent_item);
1361 extent_type = btrfs_file_extent_type(eb, fi);
1362 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1363 ret = -ENOENT;
1364 goto out;
1365 }
74dd17fb 1366 compressed = btrfs_file_extent_compression(eb, fi);
31db9f7c
AB
1367
1368 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
74dd17fb
CM
1369 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1370 if (disk_byte == 0) {
31db9f7c
AB
1371 ret = -ENOENT;
1372 goto out;
1373 }
74dd17fb 1374 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
31db9f7c 1375
04ab956e
JM
1376 down_read(&fs_info->commit_root_sem);
1377 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
69917e43 1378 &found_key, &flags);
04ab956e 1379 up_read(&fs_info->commit_root_sem);
31db9f7c
AB
1380 btrfs_release_path(tmp_path);
1381
1382 if (ret < 0)
1383 goto out;
69917e43 1384 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
31db9f7c
AB
1385 ret = -EIO;
1386 goto out;
1387 }
1388
1389 /*
1390 * Setup the clone roots.
1391 */
1392 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1393 cur_clone_root = sctx->clone_roots + i;
1394 cur_clone_root->ino = (u64)-1;
1395 cur_clone_root->offset = 0;
1396 cur_clone_root->found_refs = 0;
1397 }
1398
35075bb0
AB
1399 backref_ctx->sctx = sctx;
1400 backref_ctx->found = 0;
1401 backref_ctx->cur_objectid = ino;
1402 backref_ctx->cur_offset = data_offset;
1403 backref_ctx->found_itself = 0;
1404 backref_ctx->extent_len = num_bytes;
619d8c4e
FM
1405 /*
1406 * For non-compressed extents iterate_extent_inodes() gives us extent
1407 * offsets that already take into account the data offset, but not for
1408 * compressed extents, since the offset is logical and not relative to
1409 * the physical extent locations. We must take this into account to
1410 * avoid sending clone offsets that go beyond the source file's size,
1411 * which would result in the clone ioctl failing with -EINVAL on the
1412 * receiving end.
1413 */
1414 if (compressed == BTRFS_COMPRESS_NONE)
1415 backref_ctx->data_offset = 0;
1416 else
1417 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
31db9f7c
AB
1418
1419 /*
1420 * The last extent of a file may be too large due to page alignment.
1421 * We need to adjust extent_len in this case so that the checks in
1422 * __iterate_backrefs work.
1423 */
1424 if (data_offset + num_bytes >= ino_size)
35075bb0 1425 backref_ctx->extent_len = ino_size - data_offset;
31db9f7c
AB
1426
1427 /*
1428 * Now collect all backrefs.
1429 */
74dd17fb
CM
1430 if (compressed == BTRFS_COMPRESS_NONE)
1431 extent_item_pos = logical - found_key.objectid;
1432 else
1433 extent_item_pos = 0;
0b246afa
JM
1434 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1435 extent_item_pos, 1, __iterate_backrefs,
1436 backref_ctx);
74dd17fb 1437
31db9f7c
AB
1438 if (ret < 0)
1439 goto out;
1440
35075bb0 1441 if (!backref_ctx->found_itself) {
31db9f7c
AB
1442 /* found a bug in backref code? */
1443 ret = -EIO;
04ab956e 1444 btrfs_err(fs_info,
5d163e0e 1445 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
04ab956e 1446 ino, data_offset, disk_byte, found_key.objectid);
31db9f7c
AB
1447 goto out;
1448 }
1449
04ab956e
JM
1450 btrfs_debug(fs_info,
1451 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1452 data_offset, ino, num_bytes, logical);
31db9f7c 1453
35075bb0 1454 if (!backref_ctx->found)
04ab956e 1455 btrfs_debug(fs_info, "no clones found");
31db9f7c
AB
1456
1457 cur_clone_root = NULL;
1458 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1459 if (sctx->clone_roots[i].found_refs) {
1460 if (!cur_clone_root)
1461 cur_clone_root = sctx->clone_roots + i;
1462 else if (sctx->clone_roots[i].root == sctx->send_root)
1463 /* prefer clones from send_root over others */
1464 cur_clone_root = sctx->clone_roots + i;
31db9f7c
AB
1465 }
1466
1467 }
1468
1469 if (cur_clone_root) {
1470 *found = cur_clone_root;
1471 ret = 0;
1472 } else {
1473 ret = -ENOENT;
1474 }
1475
1476out:
1477 btrfs_free_path(tmp_path);
35075bb0 1478 kfree(backref_ctx);
31db9f7c
AB
1479 return ret;
1480}
1481
924794c9 1482static int read_symlink(struct btrfs_root *root,
31db9f7c
AB
1483 u64 ino,
1484 struct fs_path *dest)
1485{
1486 int ret;
1487 struct btrfs_path *path;
1488 struct btrfs_key key;
1489 struct btrfs_file_extent_item *ei;
1490 u8 type;
1491 u8 compression;
1492 unsigned long off;
1493 int len;
1494
1495 path = alloc_path_for_send();
1496 if (!path)
1497 return -ENOMEM;
1498
1499 key.objectid = ino;
1500 key.type = BTRFS_EXTENT_DATA_KEY;
1501 key.offset = 0;
1502 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1503 if (ret < 0)
1504 goto out;
a879719b
FM
1505 if (ret) {
1506 /*
1507 * An empty symlink inode. Can happen in rare error paths when
1508 * creating a symlink (transaction committed before the inode
1509 * eviction handler removed the symlink inode items and a crash
1510 * happened in between or the subvol was snapshoted in between).
1511 * Print an informative message to dmesg/syslog so that the user
1512 * can delete the symlink.
1513 */
1514 btrfs_err(root->fs_info,
1515 "Found empty symlink inode %llu at root %llu",
1516 ino, root->root_key.objectid);
1517 ret = -EIO;
1518 goto out;
1519 }
31db9f7c
AB
1520
1521 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1522 struct btrfs_file_extent_item);
1523 type = btrfs_file_extent_type(path->nodes[0], ei);
1524 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1525 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1526 BUG_ON(compression);
1527
1528 off = btrfs_file_extent_inline_start(ei);
514ac8ad 1529 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
31db9f7c
AB
1530
1531 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
31db9f7c
AB
1532
1533out:
1534 btrfs_free_path(path);
1535 return ret;
1536}
1537
1538/*
1539 * Helper function to generate a file name that is unique in the root of
1540 * send_root and parent_root. This is used to generate names for orphan inodes.
1541 */
1542static int gen_unique_name(struct send_ctx *sctx,
1543 u64 ino, u64 gen,
1544 struct fs_path *dest)
1545{
1546 int ret = 0;
1547 struct btrfs_path *path;
1548 struct btrfs_dir_item *di;
1549 char tmp[64];
1550 int len;
1551 u64 idx = 0;
1552
1553 path = alloc_path_for_send();
1554 if (!path)
1555 return -ENOMEM;
1556
1557 while (1) {
f74b86d8 1558 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
31db9f7c 1559 ino, gen, idx);
64792f25 1560 ASSERT(len < sizeof(tmp));
31db9f7c
AB
1561
1562 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1563 path, BTRFS_FIRST_FREE_OBJECTID,
1564 tmp, strlen(tmp), 0);
1565 btrfs_release_path(path);
1566 if (IS_ERR(di)) {
1567 ret = PTR_ERR(di);
1568 goto out;
1569 }
1570 if (di) {
1571 /* not unique, try again */
1572 idx++;
1573 continue;
1574 }
1575
1576 if (!sctx->parent_root) {
1577 /* unique */
1578 ret = 0;
1579 break;
1580 }
1581
1582 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1583 path, BTRFS_FIRST_FREE_OBJECTID,
1584 tmp, strlen(tmp), 0);
1585 btrfs_release_path(path);
1586 if (IS_ERR(di)) {
1587 ret = PTR_ERR(di);
1588 goto out;
1589 }
1590 if (di) {
1591 /* not unique, try again */
1592 idx++;
1593 continue;
1594 }
1595 /* unique */
1596 break;
1597 }
1598
1599 ret = fs_path_add(dest, tmp, strlen(tmp));
1600
1601out:
1602 btrfs_free_path(path);
1603 return ret;
1604}
1605
1606enum inode_state {
1607 inode_state_no_change,
1608 inode_state_will_create,
1609 inode_state_did_create,
1610 inode_state_will_delete,
1611 inode_state_did_delete,
1612};
1613
1614static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1615{
1616 int ret;
1617 int left_ret;
1618 int right_ret;
1619 u64 left_gen;
1620 u64 right_gen;
1621
1622 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
85a7b33b 1623 NULL, NULL);
31db9f7c
AB
1624 if (ret < 0 && ret != -ENOENT)
1625 goto out;
1626 left_ret = ret;
1627
1628 if (!sctx->parent_root) {
1629 right_ret = -ENOENT;
1630 } else {
1631 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
85a7b33b 1632 NULL, NULL, NULL, NULL);
31db9f7c
AB
1633 if (ret < 0 && ret != -ENOENT)
1634 goto out;
1635 right_ret = ret;
1636 }
1637
1638 if (!left_ret && !right_ret) {
e938c8ad 1639 if (left_gen == gen && right_gen == gen) {
31db9f7c 1640 ret = inode_state_no_change;
e938c8ad 1641 } else if (left_gen == gen) {
31db9f7c
AB
1642 if (ino < sctx->send_progress)
1643 ret = inode_state_did_create;
1644 else
1645 ret = inode_state_will_create;
1646 } else if (right_gen == gen) {
1647 if (ino < sctx->send_progress)
1648 ret = inode_state_did_delete;
1649 else
1650 ret = inode_state_will_delete;
1651 } else {
1652 ret = -ENOENT;
1653 }
1654 } else if (!left_ret) {
1655 if (left_gen == gen) {
1656 if (ino < sctx->send_progress)
1657 ret = inode_state_did_create;
1658 else
1659 ret = inode_state_will_create;
1660 } else {
1661 ret = -ENOENT;
1662 }
1663 } else if (!right_ret) {
1664 if (right_gen == gen) {
1665 if (ino < sctx->send_progress)
1666 ret = inode_state_did_delete;
1667 else
1668 ret = inode_state_will_delete;
1669 } else {
1670 ret = -ENOENT;
1671 }
1672 } else {
1673 ret = -ENOENT;
1674 }
1675
1676out:
1677 return ret;
1678}
1679
1680static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1681{
1682 int ret;
1683
4dd9920d
RK
1684 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1685 return 1;
1686
31db9f7c
AB
1687 ret = get_cur_inode_state(sctx, ino, gen);
1688 if (ret < 0)
1689 goto out;
1690
1691 if (ret == inode_state_no_change ||
1692 ret == inode_state_did_create ||
1693 ret == inode_state_will_delete)
1694 ret = 1;
1695 else
1696 ret = 0;
1697
1698out:
1699 return ret;
1700}
1701
1702/*
1703 * Helper function to lookup a dir item in a dir.
1704 */
1705static int lookup_dir_item_inode(struct btrfs_root *root,
1706 u64 dir, const char *name, int name_len,
1707 u64 *found_inode,
1708 u8 *found_type)
1709{
1710 int ret = 0;
1711 struct btrfs_dir_item *di;
1712 struct btrfs_key key;
1713 struct btrfs_path *path;
1714
1715 path = alloc_path_for_send();
1716 if (!path)
1717 return -ENOMEM;
1718
1719 di = btrfs_lookup_dir_item(NULL, root, path,
1720 dir, name, name_len, 0);
1721 if (!di) {
1722 ret = -ENOENT;
1723 goto out;
1724 }
1725 if (IS_ERR(di)) {
1726 ret = PTR_ERR(di);
1727 goto out;
1728 }
1729 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1af56070
FM
1730 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1731 ret = -ENOENT;
1732 goto out;
1733 }
31db9f7c
AB
1734 *found_inode = key.objectid;
1735 *found_type = btrfs_dir_type(path->nodes[0], di);
1736
1737out:
1738 btrfs_free_path(path);
1739 return ret;
1740}
1741
766702ef
AB
1742/*
1743 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1744 * generation of the parent dir and the name of the dir entry.
1745 */
924794c9 1746static int get_first_ref(struct btrfs_root *root, u64 ino,
31db9f7c
AB
1747 u64 *dir, u64 *dir_gen, struct fs_path *name)
1748{
1749 int ret;
1750 struct btrfs_key key;
1751 struct btrfs_key found_key;
1752 struct btrfs_path *path;
31db9f7c 1753 int len;
96b5bd77 1754 u64 parent_dir;
31db9f7c
AB
1755
1756 path = alloc_path_for_send();
1757 if (!path)
1758 return -ENOMEM;
1759
1760 key.objectid = ino;
1761 key.type = BTRFS_INODE_REF_KEY;
1762 key.offset = 0;
1763
1764 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1765 if (ret < 0)
1766 goto out;
1767 if (!ret)
1768 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1769 path->slots[0]);
96b5bd77
JS
1770 if (ret || found_key.objectid != ino ||
1771 (found_key.type != BTRFS_INODE_REF_KEY &&
1772 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1773 ret = -ENOENT;
1774 goto out;
1775 }
1776
51a60253 1777 if (found_key.type == BTRFS_INODE_REF_KEY) {
96b5bd77
JS
1778 struct btrfs_inode_ref *iref;
1779 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1780 struct btrfs_inode_ref);
1781 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1782 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1783 (unsigned long)(iref + 1),
1784 len);
1785 parent_dir = found_key.offset;
1786 } else {
1787 struct btrfs_inode_extref *extref;
1788 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1789 struct btrfs_inode_extref);
1790 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1791 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1792 (unsigned long)&extref->name, len);
1793 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1794 }
31db9f7c
AB
1795 if (ret < 0)
1796 goto out;
1797 btrfs_release_path(path);
1798
b46ab97b
FM
1799 if (dir_gen) {
1800 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1801 NULL, NULL, NULL);
1802 if (ret < 0)
1803 goto out;
1804 }
31db9f7c 1805
96b5bd77 1806 *dir = parent_dir;
31db9f7c
AB
1807
1808out:
1809 btrfs_free_path(path);
1810 return ret;
1811}
1812
924794c9 1813static int is_first_ref(struct btrfs_root *root,
31db9f7c
AB
1814 u64 ino, u64 dir,
1815 const char *name, int name_len)
1816{
1817 int ret;
1818 struct fs_path *tmp_name;
1819 u64 tmp_dir;
31db9f7c 1820
924794c9 1821 tmp_name = fs_path_alloc();
31db9f7c
AB
1822 if (!tmp_name)
1823 return -ENOMEM;
1824
b46ab97b 1825 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
31db9f7c
AB
1826 if (ret < 0)
1827 goto out;
1828
b9291aff 1829 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
31db9f7c
AB
1830 ret = 0;
1831 goto out;
1832 }
1833
e938c8ad 1834 ret = !memcmp(tmp_name->start, name, name_len);
31db9f7c
AB
1835
1836out:
924794c9 1837 fs_path_free(tmp_name);
31db9f7c
AB
1838 return ret;
1839}
1840
766702ef
AB
1841/*
1842 * Used by process_recorded_refs to determine if a new ref would overwrite an
1843 * already existing ref. In case it detects an overwrite, it returns the
1844 * inode/gen in who_ino/who_gen.
1845 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1846 * to make sure later references to the overwritten inode are possible.
1847 * Orphanizing is however only required for the first ref of an inode.
1848 * process_recorded_refs does an additional is_first_ref check to see if
1849 * orphanizing is really required.
1850 */
31db9f7c
AB
1851static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1852 const char *name, int name_len,
1853 u64 *who_ino, u64 *who_gen)
1854{
1855 int ret = 0;
ebdad913 1856 u64 gen;
31db9f7c
AB
1857 u64 other_inode = 0;
1858 u8 other_type = 0;
1859
1860 if (!sctx->parent_root)
1861 goto out;
1862
1863 ret = is_inode_existent(sctx, dir, dir_gen);
1864 if (ret <= 0)
1865 goto out;
1866
ebdad913
JB
1867 /*
1868 * If we have a parent root we need to verify that the parent dir was
01327610 1869 * not deleted and then re-created, if it was then we have no overwrite
ebdad913
JB
1870 * and we can just unlink this entry.
1871 */
4dd9920d 1872 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
ebdad913
JB
1873 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1874 NULL, NULL, NULL);
1875 if (ret < 0 && ret != -ENOENT)
1876 goto out;
1877 if (ret) {
1878 ret = 0;
1879 goto out;
1880 }
1881 if (gen != dir_gen)
1882 goto out;
1883 }
1884
31db9f7c
AB
1885 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1886 &other_inode, &other_type);
1887 if (ret < 0 && ret != -ENOENT)
1888 goto out;
1889 if (ret) {
1890 ret = 0;
1891 goto out;
1892 }
1893
766702ef
AB
1894 /*
1895 * Check if the overwritten ref was already processed. If yes, the ref
1896 * was already unlinked/moved, so we can safely assume that we will not
1897 * overwrite anything at this point in time.
1898 */
801bec36
RK
1899 if (other_inode > sctx->send_progress ||
1900 is_waiting_for_move(sctx, other_inode)) {
31db9f7c 1901 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
85a7b33b 1902 who_gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
1903 if (ret < 0)
1904 goto out;
1905
1906 ret = 1;
1907 *who_ino = other_inode;
1908 } else {
1909 ret = 0;
1910 }
1911
1912out:
1913 return ret;
1914}
1915
766702ef
AB
1916/*
1917 * Checks if the ref was overwritten by an already processed inode. This is
1918 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1919 * thus the orphan name needs be used.
1920 * process_recorded_refs also uses it to avoid unlinking of refs that were
1921 * overwritten.
1922 */
31db9f7c
AB
1923static int did_overwrite_ref(struct send_ctx *sctx,
1924 u64 dir, u64 dir_gen,
1925 u64 ino, u64 ino_gen,
1926 const char *name, int name_len)
1927{
1928 int ret = 0;
1929 u64 gen;
1930 u64 ow_inode;
1931 u8 other_type;
1932
1933 if (!sctx->parent_root)
1934 goto out;
1935
1936 ret = is_inode_existent(sctx, dir, dir_gen);
1937 if (ret <= 0)
1938 goto out;
1939
01914101
RK
1940 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1941 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1942 NULL, NULL, NULL);
1943 if (ret < 0 && ret != -ENOENT)
1944 goto out;
1945 if (ret) {
1946 ret = 0;
1947 goto out;
1948 }
1949 if (gen != dir_gen)
1950 goto out;
1951 }
1952
31db9f7c
AB
1953 /* check if the ref was overwritten by another ref */
1954 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1955 &ow_inode, &other_type);
1956 if (ret < 0 && ret != -ENOENT)
1957 goto out;
1958 if (ret) {
1959 /* was never and will never be overwritten */
1960 ret = 0;
1961 goto out;
1962 }
1963
1964 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
85a7b33b 1965 NULL, NULL);
31db9f7c
AB
1966 if (ret < 0)
1967 goto out;
1968
1969 if (ow_inode == ino && gen == ino_gen) {
1970 ret = 0;
1971 goto out;
1972 }
1973
8b191a68
FM
1974 /*
1975 * We know that it is or will be overwritten. Check this now.
1976 * The current inode being processed might have been the one that caused
b786f16a
FM
1977 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1978 * the current inode being processed.
8b191a68 1979 */
b786f16a
FM
1980 if ((ow_inode < sctx->send_progress) ||
1981 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1982 gen == sctx->cur_inode_gen))
31db9f7c
AB
1983 ret = 1;
1984 else
1985 ret = 0;
1986
1987out:
1988 return ret;
1989}
1990
766702ef
AB
1991/*
1992 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1993 * that got overwritten. This is used by process_recorded_refs to determine
1994 * if it has to use the path as returned by get_cur_path or the orphan name.
1995 */
31db9f7c
AB
1996static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1997{
1998 int ret = 0;
1999 struct fs_path *name = NULL;
2000 u64 dir;
2001 u64 dir_gen;
2002
2003 if (!sctx->parent_root)
2004 goto out;
2005
924794c9 2006 name = fs_path_alloc();
31db9f7c
AB
2007 if (!name)
2008 return -ENOMEM;
2009
924794c9 2010 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
31db9f7c
AB
2011 if (ret < 0)
2012 goto out;
2013
2014 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2015 name->start, fs_path_len(name));
31db9f7c
AB
2016
2017out:
924794c9 2018 fs_path_free(name);
31db9f7c
AB
2019 return ret;
2020}
2021
766702ef
AB
2022/*
2023 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2024 * so we need to do some special handling in case we have clashes. This function
2025 * takes care of this with the help of name_cache_entry::radix_list.
5dc67d0b 2026 * In case of error, nce is kfreed.
766702ef 2027 */
31db9f7c
AB
2028static int name_cache_insert(struct send_ctx *sctx,
2029 struct name_cache_entry *nce)
2030{
2031 int ret = 0;
7e0926fe
AB
2032 struct list_head *nce_head;
2033
2034 nce_head = radix_tree_lookup(&sctx->name_cache,
2035 (unsigned long)nce->ino);
2036 if (!nce_head) {
e780b0d1 2037 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
cfa7a9cc
TI
2038 if (!nce_head) {
2039 kfree(nce);
31db9f7c 2040 return -ENOMEM;
cfa7a9cc 2041 }
7e0926fe 2042 INIT_LIST_HEAD(nce_head);
31db9f7c 2043
7e0926fe 2044 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
5dc67d0b
AB
2045 if (ret < 0) {
2046 kfree(nce_head);
2047 kfree(nce);
31db9f7c 2048 return ret;
5dc67d0b 2049 }
31db9f7c 2050 }
7e0926fe 2051 list_add_tail(&nce->radix_list, nce_head);
31db9f7c
AB
2052 list_add_tail(&nce->list, &sctx->name_cache_list);
2053 sctx->name_cache_size++;
2054
2055 return ret;
2056}
2057
2058static void name_cache_delete(struct send_ctx *sctx,
2059 struct name_cache_entry *nce)
2060{
7e0926fe 2061 struct list_head *nce_head;
31db9f7c 2062
7e0926fe
AB
2063 nce_head = radix_tree_lookup(&sctx->name_cache,
2064 (unsigned long)nce->ino);
57fb8910
DS
2065 if (!nce_head) {
2066 btrfs_err(sctx->send_root->fs_info,
2067 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2068 nce->ino, sctx->name_cache_size);
2069 }
31db9f7c 2070
7e0926fe 2071 list_del(&nce->radix_list);
31db9f7c 2072 list_del(&nce->list);
31db9f7c 2073 sctx->name_cache_size--;
7e0926fe 2074
57fb8910
DS
2075 /*
2076 * We may not get to the final release of nce_head if the lookup fails
2077 */
2078 if (nce_head && list_empty(nce_head)) {
7e0926fe
AB
2079 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2080 kfree(nce_head);
2081 }
31db9f7c
AB
2082}
2083
2084static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2085 u64 ino, u64 gen)
2086{
7e0926fe
AB
2087 struct list_head *nce_head;
2088 struct name_cache_entry *cur;
31db9f7c 2089
7e0926fe
AB
2090 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2091 if (!nce_head)
31db9f7c
AB
2092 return NULL;
2093
7e0926fe
AB
2094 list_for_each_entry(cur, nce_head, radix_list) {
2095 if (cur->ino == ino && cur->gen == gen)
2096 return cur;
2097 }
31db9f7c
AB
2098 return NULL;
2099}
2100
766702ef
AB
2101/*
2102 * Removes the entry from the list and adds it back to the end. This marks the
2103 * entry as recently used so that name_cache_clean_unused does not remove it.
2104 */
31db9f7c
AB
2105static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2106{
2107 list_del(&nce->list);
2108 list_add_tail(&nce->list, &sctx->name_cache_list);
2109}
2110
766702ef
AB
2111/*
2112 * Remove some entries from the beginning of name_cache_list.
2113 */
31db9f7c
AB
2114static void name_cache_clean_unused(struct send_ctx *sctx)
2115{
2116 struct name_cache_entry *nce;
2117
2118 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2119 return;
2120
2121 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2122 nce = list_entry(sctx->name_cache_list.next,
2123 struct name_cache_entry, list);
2124 name_cache_delete(sctx, nce);
2125 kfree(nce);
2126 }
2127}
2128
2129static void name_cache_free(struct send_ctx *sctx)
2130{
2131 struct name_cache_entry *nce;
31db9f7c 2132
e938c8ad
AB
2133 while (!list_empty(&sctx->name_cache_list)) {
2134 nce = list_entry(sctx->name_cache_list.next,
2135 struct name_cache_entry, list);
31db9f7c 2136 name_cache_delete(sctx, nce);
17589bd9 2137 kfree(nce);
31db9f7c
AB
2138 }
2139}
2140
766702ef
AB
2141/*
2142 * Used by get_cur_path for each ref up to the root.
2143 * Returns 0 if it succeeded.
2144 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2145 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2146 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2147 * Returns <0 in case of error.
2148 */
31db9f7c
AB
2149static int __get_cur_name_and_parent(struct send_ctx *sctx,
2150 u64 ino, u64 gen,
2151 u64 *parent_ino,
2152 u64 *parent_gen,
2153 struct fs_path *dest)
2154{
2155 int ret;
2156 int nce_ret;
31db9f7c
AB
2157 struct name_cache_entry *nce = NULL;
2158
766702ef
AB
2159 /*
2160 * First check if we already did a call to this function with the same
2161 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2162 * return the cached result.
2163 */
31db9f7c
AB
2164 nce = name_cache_search(sctx, ino, gen);
2165 if (nce) {
2166 if (ino < sctx->send_progress && nce->need_later_update) {
2167 name_cache_delete(sctx, nce);
2168 kfree(nce);
2169 nce = NULL;
2170 } else {
2171 name_cache_used(sctx, nce);
2172 *parent_ino = nce->parent_ino;
2173 *parent_gen = nce->parent_gen;
2174 ret = fs_path_add(dest, nce->name, nce->name_len);
2175 if (ret < 0)
2176 goto out;
2177 ret = nce->ret;
2178 goto out;
2179 }
2180 }
2181
766702ef
AB
2182 /*
2183 * If the inode is not existent yet, add the orphan name and return 1.
2184 * This should only happen for the parent dir that we determine in
2185 * __record_new_ref
2186 */
31db9f7c
AB
2187 ret = is_inode_existent(sctx, ino, gen);
2188 if (ret < 0)
2189 goto out;
2190
2191 if (!ret) {
2192 ret = gen_unique_name(sctx, ino, gen, dest);
2193 if (ret < 0)
2194 goto out;
2195 ret = 1;
2196 goto out_cache;
2197 }
2198
766702ef
AB
2199 /*
2200 * Depending on whether the inode was already processed or not, use
2201 * send_root or parent_root for ref lookup.
2202 */
bf0d1f44 2203 if (ino < sctx->send_progress)
924794c9
TI
2204 ret = get_first_ref(sctx->send_root, ino,
2205 parent_ino, parent_gen, dest);
31db9f7c 2206 else
924794c9
TI
2207 ret = get_first_ref(sctx->parent_root, ino,
2208 parent_ino, parent_gen, dest);
31db9f7c
AB
2209 if (ret < 0)
2210 goto out;
2211
766702ef
AB
2212 /*
2213 * Check if the ref was overwritten by an inode's ref that was processed
2214 * earlier. If yes, treat as orphan and return 1.
2215 */
31db9f7c
AB
2216 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2217 dest->start, dest->end - dest->start);
2218 if (ret < 0)
2219 goto out;
2220 if (ret) {
2221 fs_path_reset(dest);
2222 ret = gen_unique_name(sctx, ino, gen, dest);
2223 if (ret < 0)
2224 goto out;
2225 ret = 1;
2226 }
2227
2228out_cache:
766702ef
AB
2229 /*
2230 * Store the result of the lookup in the name cache.
2231 */
e780b0d1 2232 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
31db9f7c
AB
2233 if (!nce) {
2234 ret = -ENOMEM;
2235 goto out;
2236 }
2237
2238 nce->ino = ino;
2239 nce->gen = gen;
2240 nce->parent_ino = *parent_ino;
2241 nce->parent_gen = *parent_gen;
2242 nce->name_len = fs_path_len(dest);
2243 nce->ret = ret;
2244 strcpy(nce->name, dest->start);
31db9f7c
AB
2245
2246 if (ino < sctx->send_progress)
2247 nce->need_later_update = 0;
2248 else
2249 nce->need_later_update = 1;
2250
2251 nce_ret = name_cache_insert(sctx, nce);
2252 if (nce_ret < 0)
2253 ret = nce_ret;
2254 name_cache_clean_unused(sctx);
2255
2256out:
31db9f7c
AB
2257 return ret;
2258}
2259
2260/*
2261 * Magic happens here. This function returns the first ref to an inode as it
2262 * would look like while receiving the stream at this point in time.
2263 * We walk the path up to the root. For every inode in between, we check if it
2264 * was already processed/sent. If yes, we continue with the parent as found
2265 * in send_root. If not, we continue with the parent as found in parent_root.
2266 * If we encounter an inode that was deleted at this point in time, we use the
2267 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2268 * that were not created yet and overwritten inodes/refs.
2269 *
2270 * When do we have have orphan inodes:
2271 * 1. When an inode is freshly created and thus no valid refs are available yet
2272 * 2. When a directory lost all it's refs (deleted) but still has dir items
2273 * inside which were not processed yet (pending for move/delete). If anyone
2274 * tried to get the path to the dir items, it would get a path inside that
2275 * orphan directory.
2276 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2277 * of an unprocessed inode. If in that case the first ref would be
2278 * overwritten, the overwritten inode gets "orphanized". Later when we
2279 * process this overwritten inode, it is restored at a new place by moving
2280 * the orphan inode.
2281 *
2282 * sctx->send_progress tells this function at which point in time receiving
2283 * would be.
2284 */
2285static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2286 struct fs_path *dest)
2287{
2288 int ret = 0;
2289 struct fs_path *name = NULL;
2290 u64 parent_inode = 0;
2291 u64 parent_gen = 0;
2292 int stop = 0;
2293
924794c9 2294 name = fs_path_alloc();
31db9f7c
AB
2295 if (!name) {
2296 ret = -ENOMEM;
2297 goto out;
2298 }
2299
2300 dest->reversed = 1;
2301 fs_path_reset(dest);
2302
2303 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
8b191a68
FM
2304 struct waiting_dir_move *wdm;
2305
31db9f7c
AB
2306 fs_path_reset(name);
2307
9dc44214
FM
2308 if (is_waiting_for_rm(sctx, ino)) {
2309 ret = gen_unique_name(sctx, ino, gen, name);
2310 if (ret < 0)
2311 goto out;
2312 ret = fs_path_add_path(dest, name);
2313 break;
2314 }
2315
8b191a68
FM
2316 wdm = get_waiting_dir_move(sctx, ino);
2317 if (wdm && wdm->orphanized) {
2318 ret = gen_unique_name(sctx, ino, gen, name);
2319 stop = 1;
2320 } else if (wdm) {
bf0d1f44
FM
2321 ret = get_first_ref(sctx->parent_root, ino,
2322 &parent_inode, &parent_gen, name);
2323 } else {
2324 ret = __get_cur_name_and_parent(sctx, ino, gen,
2325 &parent_inode,
2326 &parent_gen, name);
2327 if (ret)
2328 stop = 1;
2329 }
2330
31db9f7c
AB
2331 if (ret < 0)
2332 goto out;
9f03740a 2333
31db9f7c
AB
2334 ret = fs_path_add_path(dest, name);
2335 if (ret < 0)
2336 goto out;
2337
2338 ino = parent_inode;
2339 gen = parent_gen;
2340 }
2341
2342out:
924794c9 2343 fs_path_free(name);
31db9f7c
AB
2344 if (!ret)
2345 fs_path_unreverse(dest);
2346 return ret;
2347}
2348
31db9f7c
AB
2349/*
2350 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2351 */
2352static int send_subvol_begin(struct send_ctx *sctx)
2353{
2354 int ret;
2355 struct btrfs_root *send_root = sctx->send_root;
2356 struct btrfs_root *parent_root = sctx->parent_root;
2357 struct btrfs_path *path;
2358 struct btrfs_key key;
2359 struct btrfs_root_ref *ref;
2360 struct extent_buffer *leaf;
2361 char *name = NULL;
2362 int namelen;
2363
ffcfaf81 2364 path = btrfs_alloc_path();
31db9f7c
AB
2365 if (!path)
2366 return -ENOMEM;
2367
e780b0d1 2368 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
31db9f7c
AB
2369 if (!name) {
2370 btrfs_free_path(path);
2371 return -ENOMEM;
2372 }
2373
2374 key.objectid = send_root->objectid;
2375 key.type = BTRFS_ROOT_BACKREF_KEY;
2376 key.offset = 0;
2377
2378 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2379 &key, path, 1, 0);
2380 if (ret < 0)
2381 goto out;
2382 if (ret) {
2383 ret = -ENOENT;
2384 goto out;
2385 }
2386
2387 leaf = path->nodes[0];
2388 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2389 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2390 key.objectid != send_root->objectid) {
2391 ret = -ENOENT;
2392 goto out;
2393 }
2394 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2395 namelen = btrfs_root_ref_name_len(leaf, ref);
2396 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2397 btrfs_release_path(path);
2398
31db9f7c
AB
2399 if (parent_root) {
2400 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2401 if (ret < 0)
2402 goto out;
2403 } else {
2404 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2405 if (ret < 0)
2406 goto out;
2407 }
2408
2409 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
b96b1db0
RR
2410
2411 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2412 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2413 sctx->send_root->root_item.received_uuid);
2414 else
2415 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2416 sctx->send_root->root_item.uuid);
2417
31db9f7c 2418 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
5a0f4e2c 2419 le64_to_cpu(sctx->send_root->root_item.ctransid));
31db9f7c 2420 if (parent_root) {
37b8d27d
JB
2421 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2422 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2423 parent_root->root_item.received_uuid);
2424 else
2425 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2426 parent_root->root_item.uuid);
31db9f7c 2427 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 2428 le64_to_cpu(sctx->parent_root->root_item.ctransid));
31db9f7c
AB
2429 }
2430
2431 ret = send_cmd(sctx);
2432
2433tlv_put_failure:
2434out:
2435 btrfs_free_path(path);
2436 kfree(name);
2437 return ret;
2438}
2439
2440static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2441{
04ab956e 2442 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2443 int ret = 0;
2444 struct fs_path *p;
2445
04ab956e 2446 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
31db9f7c 2447
924794c9 2448 p = fs_path_alloc();
31db9f7c
AB
2449 if (!p)
2450 return -ENOMEM;
2451
2452 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2453 if (ret < 0)
2454 goto out;
2455
2456 ret = get_cur_path(sctx, ino, gen, p);
2457 if (ret < 0)
2458 goto out;
2459 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2460 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2461
2462 ret = send_cmd(sctx);
2463
2464tlv_put_failure:
2465out:
924794c9 2466 fs_path_free(p);
31db9f7c
AB
2467 return ret;
2468}
2469
2470static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2471{
04ab956e 2472 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2473 int ret = 0;
2474 struct fs_path *p;
2475
04ab956e 2476 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
31db9f7c 2477
924794c9 2478 p = fs_path_alloc();
31db9f7c
AB
2479 if (!p)
2480 return -ENOMEM;
2481
2482 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2483 if (ret < 0)
2484 goto out;
2485
2486 ret = get_cur_path(sctx, ino, gen, p);
2487 if (ret < 0)
2488 goto out;
2489 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2490 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2491
2492 ret = send_cmd(sctx);
2493
2494tlv_put_failure:
2495out:
924794c9 2496 fs_path_free(p);
31db9f7c
AB
2497 return ret;
2498}
2499
2500static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2501{
04ab956e 2502 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2503 int ret = 0;
2504 struct fs_path *p;
2505
04ab956e
JM
2506 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2507 ino, uid, gid);
31db9f7c 2508
924794c9 2509 p = fs_path_alloc();
31db9f7c
AB
2510 if (!p)
2511 return -ENOMEM;
2512
2513 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2514 if (ret < 0)
2515 goto out;
2516
2517 ret = get_cur_path(sctx, ino, gen, p);
2518 if (ret < 0)
2519 goto out;
2520 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2521 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2522 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2523
2524 ret = send_cmd(sctx);
2525
2526tlv_put_failure:
2527out:
924794c9 2528 fs_path_free(p);
31db9f7c
AB
2529 return ret;
2530}
2531
2532static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2533{
04ab956e 2534 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2535 int ret = 0;
2536 struct fs_path *p = NULL;
2537 struct btrfs_inode_item *ii;
2538 struct btrfs_path *path = NULL;
2539 struct extent_buffer *eb;
2540 struct btrfs_key key;
2541 int slot;
2542
04ab956e 2543 btrfs_debug(fs_info, "send_utimes %llu", ino);
31db9f7c 2544
924794c9 2545 p = fs_path_alloc();
31db9f7c
AB
2546 if (!p)
2547 return -ENOMEM;
2548
2549 path = alloc_path_for_send();
2550 if (!path) {
2551 ret = -ENOMEM;
2552 goto out;
2553 }
2554
2555 key.objectid = ino;
2556 key.type = BTRFS_INODE_ITEM_KEY;
2557 key.offset = 0;
2558 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
15b253ea
FM
2559 if (ret > 0)
2560 ret = -ENOENT;
31db9f7c
AB
2561 if (ret < 0)
2562 goto out;
2563
2564 eb = path->nodes[0];
2565 slot = path->slots[0];
2566 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2567
2568 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2569 if (ret < 0)
2570 goto out;
2571
2572 ret = get_cur_path(sctx, ino, gen, p);
2573 if (ret < 0)
2574 goto out;
2575 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
a937b979
DS
2576 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2577 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2578 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
766702ef 2579 /* TODO Add otime support when the otime patches get into upstream */
31db9f7c
AB
2580
2581 ret = send_cmd(sctx);
2582
2583tlv_put_failure:
2584out:
924794c9 2585 fs_path_free(p);
31db9f7c
AB
2586 btrfs_free_path(path);
2587 return ret;
2588}
2589
2590/*
2591 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2592 * a valid path yet because we did not process the refs yet. So, the inode
2593 * is created as orphan.
2594 */
1f4692da 2595static int send_create_inode(struct send_ctx *sctx, u64 ino)
31db9f7c 2596{
04ab956e 2597 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c 2598 int ret = 0;
31db9f7c 2599 struct fs_path *p;
31db9f7c 2600 int cmd;
1f4692da 2601 u64 gen;
31db9f7c 2602 u64 mode;
1f4692da 2603 u64 rdev;
31db9f7c 2604
04ab956e 2605 btrfs_debug(fs_info, "send_create_inode %llu", ino);
31db9f7c 2606
924794c9 2607 p = fs_path_alloc();
31db9f7c
AB
2608 if (!p)
2609 return -ENOMEM;
2610
644d1940
LB
2611 if (ino != sctx->cur_ino) {
2612 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2613 NULL, NULL, &rdev);
2614 if (ret < 0)
2615 goto out;
2616 } else {
2617 gen = sctx->cur_inode_gen;
2618 mode = sctx->cur_inode_mode;
2619 rdev = sctx->cur_inode_rdev;
2620 }
31db9f7c 2621
e938c8ad 2622 if (S_ISREG(mode)) {
31db9f7c 2623 cmd = BTRFS_SEND_C_MKFILE;
e938c8ad 2624 } else if (S_ISDIR(mode)) {
31db9f7c 2625 cmd = BTRFS_SEND_C_MKDIR;
e938c8ad 2626 } else if (S_ISLNK(mode)) {
31db9f7c 2627 cmd = BTRFS_SEND_C_SYMLINK;
e938c8ad 2628 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
31db9f7c 2629 cmd = BTRFS_SEND_C_MKNOD;
e938c8ad 2630 } else if (S_ISFIFO(mode)) {
31db9f7c 2631 cmd = BTRFS_SEND_C_MKFIFO;
e938c8ad 2632 } else if (S_ISSOCK(mode)) {
31db9f7c 2633 cmd = BTRFS_SEND_C_MKSOCK;
e938c8ad 2634 } else {
f14d104d 2635 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
31db9f7c
AB
2636 (int)(mode & S_IFMT));
2637 ret = -ENOTSUPP;
2638 goto out;
2639 }
2640
2641 ret = begin_cmd(sctx, cmd);
2642 if (ret < 0)
2643 goto out;
2644
1f4692da 2645 ret = gen_unique_name(sctx, ino, gen, p);
31db9f7c
AB
2646 if (ret < 0)
2647 goto out;
2648
2649 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
1f4692da 2650 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
31db9f7c
AB
2651
2652 if (S_ISLNK(mode)) {
2653 fs_path_reset(p);
924794c9 2654 ret = read_symlink(sctx->send_root, ino, p);
31db9f7c
AB
2655 if (ret < 0)
2656 goto out;
2657 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2658 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2659 S_ISFIFO(mode) || S_ISSOCK(mode)) {
d79e5043
AJ
2660 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2661 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
31db9f7c
AB
2662 }
2663
2664 ret = send_cmd(sctx);
2665 if (ret < 0)
2666 goto out;
2667
2668
2669tlv_put_failure:
2670out:
924794c9 2671 fs_path_free(p);
31db9f7c
AB
2672 return ret;
2673}
2674
1f4692da
AB
2675/*
2676 * We need some special handling for inodes that get processed before the parent
2677 * directory got created. See process_recorded_refs for details.
2678 * This function does the check if we already created the dir out of order.
2679 */
2680static int did_create_dir(struct send_ctx *sctx, u64 dir)
2681{
2682 int ret = 0;
2683 struct btrfs_path *path = NULL;
2684 struct btrfs_key key;
2685 struct btrfs_key found_key;
2686 struct btrfs_key di_key;
2687 struct extent_buffer *eb;
2688 struct btrfs_dir_item *di;
2689 int slot;
2690
2691 path = alloc_path_for_send();
2692 if (!path) {
2693 ret = -ENOMEM;
2694 goto out;
2695 }
2696
2697 key.objectid = dir;
2698 key.type = BTRFS_DIR_INDEX_KEY;
2699 key.offset = 0;
dff6d0ad
FDBM
2700 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2701 if (ret < 0)
2702 goto out;
2703
1f4692da 2704 while (1) {
dff6d0ad
FDBM
2705 eb = path->nodes[0];
2706 slot = path->slots[0];
2707 if (slot >= btrfs_header_nritems(eb)) {
2708 ret = btrfs_next_leaf(sctx->send_root, path);
2709 if (ret < 0) {
2710 goto out;
2711 } else if (ret > 0) {
2712 ret = 0;
2713 break;
2714 }
2715 continue;
1f4692da 2716 }
dff6d0ad
FDBM
2717
2718 btrfs_item_key_to_cpu(eb, &found_key, slot);
2719 if (found_key.objectid != key.objectid ||
1f4692da
AB
2720 found_key.type != key.type) {
2721 ret = 0;
2722 goto out;
2723 }
2724
2725 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2726 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2727
a0525414
JB
2728 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2729 di_key.objectid < sctx->send_progress) {
1f4692da
AB
2730 ret = 1;
2731 goto out;
2732 }
2733
dff6d0ad 2734 path->slots[0]++;
1f4692da
AB
2735 }
2736
2737out:
2738 btrfs_free_path(path);
2739 return ret;
2740}
2741
2742/*
2743 * Only creates the inode if it is:
2744 * 1. Not a directory
2745 * 2. Or a directory which was not created already due to out of order
2746 * directories. See did_create_dir and process_recorded_refs for details.
2747 */
2748static int send_create_inode_if_needed(struct send_ctx *sctx)
2749{
2750 int ret;
2751
2752 if (S_ISDIR(sctx->cur_inode_mode)) {
2753 ret = did_create_dir(sctx, sctx->cur_ino);
2754 if (ret < 0)
2755 goto out;
2756 if (ret) {
2757 ret = 0;
2758 goto out;
2759 }
2760 }
2761
2762 ret = send_create_inode(sctx, sctx->cur_ino);
2763 if (ret < 0)
2764 goto out;
2765
2766out:
2767 return ret;
2768}
2769
31db9f7c
AB
2770struct recorded_ref {
2771 struct list_head list;
31db9f7c
AB
2772 char *name;
2773 struct fs_path *full_path;
2774 u64 dir;
2775 u64 dir_gen;
31db9f7c
AB
2776 int name_len;
2777};
2778
2779/*
2780 * We need to process new refs before deleted refs, but compare_tree gives us
2781 * everything mixed. So we first record all refs and later process them.
2782 * This function is a helper to record one ref.
2783 */
a4d96d62 2784static int __record_ref(struct list_head *head, u64 dir,
31db9f7c
AB
2785 u64 dir_gen, struct fs_path *path)
2786{
2787 struct recorded_ref *ref;
31db9f7c 2788
e780b0d1 2789 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
31db9f7c
AB
2790 if (!ref)
2791 return -ENOMEM;
2792
2793 ref->dir = dir;
2794 ref->dir_gen = dir_gen;
2795 ref->full_path = path;
2796
ed84885d
AS
2797 ref->name = (char *)kbasename(ref->full_path->start);
2798 ref->name_len = ref->full_path->end - ref->name;
31db9f7c
AB
2799
2800 list_add_tail(&ref->list, head);
2801 return 0;
2802}
2803
ba5e8f2e
JB
2804static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2805{
2806 struct recorded_ref *new;
2807
e780b0d1 2808 new = kmalloc(sizeof(*ref), GFP_KERNEL);
ba5e8f2e
JB
2809 if (!new)
2810 return -ENOMEM;
2811
2812 new->dir = ref->dir;
2813 new->dir_gen = ref->dir_gen;
2814 new->full_path = NULL;
2815 INIT_LIST_HEAD(&new->list);
2816 list_add_tail(&new->list, list);
2817 return 0;
2818}
2819
924794c9 2820static void __free_recorded_refs(struct list_head *head)
31db9f7c
AB
2821{
2822 struct recorded_ref *cur;
31db9f7c 2823
e938c8ad
AB
2824 while (!list_empty(head)) {
2825 cur = list_entry(head->next, struct recorded_ref, list);
924794c9 2826 fs_path_free(cur->full_path);
e938c8ad 2827 list_del(&cur->list);
31db9f7c
AB
2828 kfree(cur);
2829 }
31db9f7c
AB
2830}
2831
2832static void free_recorded_refs(struct send_ctx *sctx)
2833{
924794c9
TI
2834 __free_recorded_refs(&sctx->new_refs);
2835 __free_recorded_refs(&sctx->deleted_refs);
31db9f7c
AB
2836}
2837
2838/*
766702ef 2839 * Renames/moves a file/dir to its orphan name. Used when the first
31db9f7c
AB
2840 * ref of an unprocessed inode gets overwritten and for all non empty
2841 * directories.
2842 */
2843static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2844 struct fs_path *path)
2845{
2846 int ret;
2847 struct fs_path *orphan;
2848
924794c9 2849 orphan = fs_path_alloc();
31db9f7c
AB
2850 if (!orphan)
2851 return -ENOMEM;
2852
2853 ret = gen_unique_name(sctx, ino, gen, orphan);
2854 if (ret < 0)
2855 goto out;
2856
2857 ret = send_rename(sctx, path, orphan);
2858
2859out:
924794c9 2860 fs_path_free(orphan);
31db9f7c
AB
2861 return ret;
2862}
2863
9dc44214
FM
2864static struct orphan_dir_info *
2865add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2866{
2867 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2868 struct rb_node *parent = NULL;
2869 struct orphan_dir_info *entry, *odi;
2870
e780b0d1 2871 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
9dc44214
FM
2872 if (!odi)
2873 return ERR_PTR(-ENOMEM);
2874 odi->ino = dir_ino;
2875 odi->gen = 0;
2876
2877 while (*p) {
2878 parent = *p;
2879 entry = rb_entry(parent, struct orphan_dir_info, node);
2880 if (dir_ino < entry->ino) {
2881 p = &(*p)->rb_left;
2882 } else if (dir_ino > entry->ino) {
2883 p = &(*p)->rb_right;
2884 } else {
2885 kfree(odi);
2886 return entry;
2887 }
2888 }
2889
2890 rb_link_node(&odi->node, parent, p);
2891 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2892 return odi;
2893}
2894
2895static struct orphan_dir_info *
2896get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2897{
2898 struct rb_node *n = sctx->orphan_dirs.rb_node;
2899 struct orphan_dir_info *entry;
2900
2901 while (n) {
2902 entry = rb_entry(n, struct orphan_dir_info, node);
2903 if (dir_ino < entry->ino)
2904 n = n->rb_left;
2905 else if (dir_ino > entry->ino)
2906 n = n->rb_right;
2907 else
2908 return entry;
2909 }
2910 return NULL;
2911}
2912
2913static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2914{
2915 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2916
2917 return odi != NULL;
2918}
2919
2920static void free_orphan_dir_info(struct send_ctx *sctx,
2921 struct orphan_dir_info *odi)
2922{
2923 if (!odi)
2924 return;
2925 rb_erase(&odi->node, &sctx->orphan_dirs);
2926 kfree(odi);
2927}
2928
31db9f7c
AB
2929/*
2930 * Returns 1 if a directory can be removed at this point in time.
2931 * We check this by iterating all dir items and checking if the inode behind
2932 * the dir item was already processed.
2933 */
9dc44214
FM
2934static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2935 u64 send_progress)
31db9f7c
AB
2936{
2937 int ret = 0;
2938 struct btrfs_root *root = sctx->parent_root;
2939 struct btrfs_path *path;
2940 struct btrfs_key key;
2941 struct btrfs_key found_key;
2942 struct btrfs_key loc;
2943 struct btrfs_dir_item *di;
2944
6d85ed05
AB
2945 /*
2946 * Don't try to rmdir the top/root subvolume dir.
2947 */
2948 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2949 return 0;
2950
31db9f7c
AB
2951 path = alloc_path_for_send();
2952 if (!path)
2953 return -ENOMEM;
2954
2955 key.objectid = dir;
2956 key.type = BTRFS_DIR_INDEX_KEY;
2957 key.offset = 0;
dff6d0ad
FDBM
2958 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2959 if (ret < 0)
2960 goto out;
31db9f7c
AB
2961
2962 while (1) {
9dc44214
FM
2963 struct waiting_dir_move *dm;
2964
dff6d0ad
FDBM
2965 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2966 ret = btrfs_next_leaf(root, path);
2967 if (ret < 0)
2968 goto out;
2969 else if (ret > 0)
2970 break;
2971 continue;
31db9f7c 2972 }
dff6d0ad
FDBM
2973 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2974 path->slots[0]);
2975 if (found_key.objectid != key.objectid ||
2976 found_key.type != key.type)
31db9f7c 2977 break;
31db9f7c
AB
2978
2979 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2980 struct btrfs_dir_item);
2981 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2982
9dc44214
FM
2983 dm = get_waiting_dir_move(sctx, loc.objectid);
2984 if (dm) {
2985 struct orphan_dir_info *odi;
2986
2987 odi = add_orphan_dir_info(sctx, dir);
2988 if (IS_ERR(odi)) {
2989 ret = PTR_ERR(odi);
2990 goto out;
2991 }
2992 odi->gen = dir_gen;
2993 dm->rmdir_ino = dir;
2994 ret = 0;
2995 goto out;
2996 }
2997
31db9f7c 2998 if (loc.objectid > send_progress) {
443f9d26
RK
2999 struct orphan_dir_info *odi;
3000
3001 odi = get_orphan_dir_info(sctx, dir);
3002 free_orphan_dir_info(sctx, odi);
31db9f7c
AB
3003 ret = 0;
3004 goto out;
3005 }
3006
dff6d0ad 3007 path->slots[0]++;
31db9f7c
AB
3008 }
3009
3010 ret = 1;
3011
3012out:
3013 btrfs_free_path(path);
3014 return ret;
3015}
3016
9f03740a
FDBM
3017static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3018{
9dc44214 3019 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
9f03740a 3020
9dc44214 3021 return entry != NULL;
9f03740a
FDBM
3022}
3023
8b191a68 3024static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
9f03740a
FDBM
3025{
3026 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3027 struct rb_node *parent = NULL;
3028 struct waiting_dir_move *entry, *dm;
3029
e780b0d1 3030 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
9f03740a
FDBM
3031 if (!dm)
3032 return -ENOMEM;
3033 dm->ino = ino;
9dc44214 3034 dm->rmdir_ino = 0;
8b191a68 3035 dm->orphanized = orphanized;
9f03740a
FDBM
3036
3037 while (*p) {
3038 parent = *p;
3039 entry = rb_entry(parent, struct waiting_dir_move, node);
3040 if (ino < entry->ino) {
3041 p = &(*p)->rb_left;
3042 } else if (ino > entry->ino) {
3043 p = &(*p)->rb_right;
3044 } else {
3045 kfree(dm);
3046 return -EEXIST;
3047 }
3048 }
3049
3050 rb_link_node(&dm->node, parent, p);
3051 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3052 return 0;
3053}
3054
9dc44214
FM
3055static struct waiting_dir_move *
3056get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
9f03740a
FDBM
3057{
3058 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3059 struct waiting_dir_move *entry;
3060
3061 while (n) {
3062 entry = rb_entry(n, struct waiting_dir_move, node);
9dc44214 3063 if (ino < entry->ino)
9f03740a 3064 n = n->rb_left;
9dc44214 3065 else if (ino > entry->ino)
9f03740a 3066 n = n->rb_right;
9dc44214
FM
3067 else
3068 return entry;
9f03740a 3069 }
9dc44214
FM
3070 return NULL;
3071}
3072
3073static void free_waiting_dir_move(struct send_ctx *sctx,
3074 struct waiting_dir_move *dm)
3075{
3076 if (!dm)
3077 return;
3078 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3079 kfree(dm);
9f03740a
FDBM
3080}
3081
bfa7e1f8
FM
3082static int add_pending_dir_move(struct send_ctx *sctx,
3083 u64 ino,
3084 u64 ino_gen,
f959492f
FM
3085 u64 parent_ino,
3086 struct list_head *new_refs,
84471e24
FM
3087 struct list_head *deleted_refs,
3088 const bool is_orphan)
9f03740a
FDBM
3089{
3090 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3091 struct rb_node *parent = NULL;
73b802f4 3092 struct pending_dir_move *entry = NULL, *pm;
9f03740a
FDBM
3093 struct recorded_ref *cur;
3094 int exists = 0;
3095 int ret;
3096
e780b0d1 3097 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
9f03740a
FDBM
3098 if (!pm)
3099 return -ENOMEM;
3100 pm->parent_ino = parent_ino;
bfa7e1f8
FM
3101 pm->ino = ino;
3102 pm->gen = ino_gen;
9f03740a
FDBM
3103 INIT_LIST_HEAD(&pm->list);
3104 INIT_LIST_HEAD(&pm->update_refs);
3105 RB_CLEAR_NODE(&pm->node);
3106
3107 while (*p) {
3108 parent = *p;
3109 entry = rb_entry(parent, struct pending_dir_move, node);
3110 if (parent_ino < entry->parent_ino) {
3111 p = &(*p)->rb_left;
3112 } else if (parent_ino > entry->parent_ino) {
3113 p = &(*p)->rb_right;
3114 } else {
3115 exists = 1;
3116 break;
3117 }
3118 }
3119
f959492f 3120 list_for_each_entry(cur, deleted_refs, list) {
9f03740a
FDBM
3121 ret = dup_ref(cur, &pm->update_refs);
3122 if (ret < 0)
3123 goto out;
3124 }
f959492f 3125 list_for_each_entry(cur, new_refs, list) {
9f03740a
FDBM
3126 ret = dup_ref(cur, &pm->update_refs);
3127 if (ret < 0)
3128 goto out;
3129 }
3130
8b191a68 3131 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
9f03740a
FDBM
3132 if (ret)
3133 goto out;
3134
3135 if (exists) {
3136 list_add_tail(&pm->list, &entry->list);
3137 } else {
3138 rb_link_node(&pm->node, parent, p);
3139 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3140 }
3141 ret = 0;
3142out:
3143 if (ret) {
3144 __free_recorded_refs(&pm->update_refs);
3145 kfree(pm);
3146 }
3147 return ret;
3148}
3149
3150static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3151 u64 parent_ino)
3152{
3153 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3154 struct pending_dir_move *entry;
3155
3156 while (n) {
3157 entry = rb_entry(n, struct pending_dir_move, node);
3158 if (parent_ino < entry->parent_ino)
3159 n = n->rb_left;
3160 else if (parent_ino > entry->parent_ino)
3161 n = n->rb_right;
3162 else
3163 return entry;
3164 }
3165 return NULL;
3166}
3167
801bec36
RK
3168static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3169 u64 ino, u64 gen, u64 *ancestor_ino)
3170{
3171 int ret = 0;
3172 u64 parent_inode = 0;
3173 u64 parent_gen = 0;
3174 u64 start_ino = ino;
3175
3176 *ancestor_ino = 0;
3177 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3178 fs_path_reset(name);
3179
3180 if (is_waiting_for_rm(sctx, ino))
3181 break;
3182 if (is_waiting_for_move(sctx, ino)) {
3183 if (*ancestor_ino == 0)
3184 *ancestor_ino = ino;
3185 ret = get_first_ref(sctx->parent_root, ino,
3186 &parent_inode, &parent_gen, name);
3187 } else {
3188 ret = __get_cur_name_and_parent(sctx, ino, gen,
3189 &parent_inode,
3190 &parent_gen, name);
3191 if (ret > 0) {
3192 ret = 0;
3193 break;
3194 }
3195 }
3196 if (ret < 0)
3197 break;
3198 if (parent_inode == start_ino) {
3199 ret = 1;
3200 if (*ancestor_ino == 0)
3201 *ancestor_ino = ino;
3202 break;
3203 }
3204 ino = parent_inode;
3205 gen = parent_gen;
3206 }
3207 return ret;
3208}
3209
9f03740a
FDBM
3210static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3211{
3212 struct fs_path *from_path = NULL;
3213 struct fs_path *to_path = NULL;
2b863a13 3214 struct fs_path *name = NULL;
9f03740a
FDBM
3215 u64 orig_progress = sctx->send_progress;
3216 struct recorded_ref *cur;
2b863a13 3217 u64 parent_ino, parent_gen;
9dc44214
FM
3218 struct waiting_dir_move *dm = NULL;
3219 u64 rmdir_ino = 0;
801bec36
RK
3220 u64 ancestor;
3221 bool is_orphan;
9f03740a
FDBM
3222 int ret;
3223
2b863a13 3224 name = fs_path_alloc();
9f03740a 3225 from_path = fs_path_alloc();
2b863a13
FM
3226 if (!name || !from_path) {
3227 ret = -ENOMEM;
3228 goto out;
3229 }
9f03740a 3230
9dc44214
FM
3231 dm = get_waiting_dir_move(sctx, pm->ino);
3232 ASSERT(dm);
3233 rmdir_ino = dm->rmdir_ino;
801bec36 3234 is_orphan = dm->orphanized;
9dc44214 3235 free_waiting_dir_move(sctx, dm);
2b863a13 3236
801bec36 3237 if (is_orphan) {
84471e24
FM
3238 ret = gen_unique_name(sctx, pm->ino,
3239 pm->gen, from_path);
3240 } else {
3241 ret = get_first_ref(sctx->parent_root, pm->ino,
3242 &parent_ino, &parent_gen, name);
3243 if (ret < 0)
3244 goto out;
3245 ret = get_cur_path(sctx, parent_ino, parent_gen,
3246 from_path);
3247 if (ret < 0)
3248 goto out;
3249 ret = fs_path_add_path(from_path, name);
3250 }
c992ec94
FM
3251 if (ret < 0)
3252 goto out;
2b863a13 3253
f959492f 3254 sctx->send_progress = sctx->cur_ino + 1;
801bec36 3255 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
7969e77a
FM
3256 if (ret < 0)
3257 goto out;
801bec36
RK
3258 if (ret) {
3259 LIST_HEAD(deleted_refs);
3260 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3261 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3262 &pm->update_refs, &deleted_refs,
3263 is_orphan);
3264 if (ret < 0)
3265 goto out;
3266 if (rmdir_ino) {
3267 dm = get_waiting_dir_move(sctx, pm->ino);
3268 ASSERT(dm);
3269 dm->rmdir_ino = rmdir_ino;
3270 }
3271 goto out;
3272 }
c992ec94
FM
3273 fs_path_reset(name);
3274 to_path = name;
2b863a13 3275 name = NULL;
9f03740a
FDBM
3276 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3277 if (ret < 0)
3278 goto out;
3279
3280 ret = send_rename(sctx, from_path, to_path);
3281 if (ret < 0)
3282 goto out;
3283
9dc44214
FM
3284 if (rmdir_ino) {
3285 struct orphan_dir_info *odi;
3286
3287 odi = get_orphan_dir_info(sctx, rmdir_ino);
3288 if (!odi) {
3289 /* already deleted */
3290 goto finish;
3291 }
99ea42dd 3292 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
9dc44214
FM
3293 if (ret < 0)
3294 goto out;
3295 if (!ret)
3296 goto finish;
3297
3298 name = fs_path_alloc();
3299 if (!name) {
3300 ret = -ENOMEM;
3301 goto out;
3302 }
3303 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3304 if (ret < 0)
3305 goto out;
3306 ret = send_rmdir(sctx, name);
3307 if (ret < 0)
3308 goto out;
3309 free_orphan_dir_info(sctx, odi);
3310 }
3311
3312finish:
9f03740a
FDBM
3313 ret = send_utimes(sctx, pm->ino, pm->gen);
3314 if (ret < 0)
3315 goto out;
3316
3317 /*
3318 * After rename/move, need to update the utimes of both new parent(s)
3319 * and old parent(s).
3320 */
3321 list_for_each_entry(cur, &pm->update_refs, list) {
764433a1
RK
3322 /*
3323 * The parent inode might have been deleted in the send snapshot
3324 */
3325 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3326 NULL, NULL, NULL, NULL, NULL);
3327 if (ret == -ENOENT) {
3328 ret = 0;
9dc44214 3329 continue;
764433a1
RK
3330 }
3331 if (ret < 0)
3332 goto out;
3333
9f03740a
FDBM
3334 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3335 if (ret < 0)
3336 goto out;
3337 }
3338
3339out:
2b863a13 3340 fs_path_free(name);
9f03740a
FDBM
3341 fs_path_free(from_path);
3342 fs_path_free(to_path);
3343 sctx->send_progress = orig_progress;
3344
3345 return ret;
3346}
3347
3348static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3349{
3350 if (!list_empty(&m->list))
3351 list_del(&m->list);
3352 if (!RB_EMPTY_NODE(&m->node))
3353 rb_erase(&m->node, &sctx->pending_dir_moves);
3354 __free_recorded_refs(&m->update_refs);
3355 kfree(m);
3356}
3357
3358static void tail_append_pending_moves(struct pending_dir_move *moves,
3359 struct list_head *stack)
3360{
3361 if (list_empty(&moves->list)) {
3362 list_add_tail(&moves->list, stack);
3363 } else {
3364 LIST_HEAD(list);
3365 list_splice_init(&moves->list, &list);
3366 list_add_tail(&moves->list, stack);
3367 list_splice_tail(&list, stack);
3368 }
3369}
3370
3371static int apply_children_dir_moves(struct send_ctx *sctx)
3372{
3373 struct pending_dir_move *pm;
3374 struct list_head stack;
3375 u64 parent_ino = sctx->cur_ino;
3376 int ret = 0;
3377
3378 pm = get_pending_dir_moves(sctx, parent_ino);
3379 if (!pm)
3380 return 0;
3381
3382 INIT_LIST_HEAD(&stack);
3383 tail_append_pending_moves(pm, &stack);
3384
3385 while (!list_empty(&stack)) {
3386 pm = list_first_entry(&stack, struct pending_dir_move, list);
3387 parent_ino = pm->ino;
3388 ret = apply_dir_move(sctx, pm);
3389 free_pending_move(sctx, pm);
3390 if (ret)
3391 goto out;
3392 pm = get_pending_dir_moves(sctx, parent_ino);
3393 if (pm)
3394 tail_append_pending_moves(pm, &stack);
3395 }
3396 return 0;
3397
3398out:
3399 while (!list_empty(&stack)) {
3400 pm = list_first_entry(&stack, struct pending_dir_move, list);
3401 free_pending_move(sctx, pm);
3402 }
3403 return ret;
3404}
3405
84471e24
FM
3406/*
3407 * We might need to delay a directory rename even when no ancestor directory
3408 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3409 * renamed. This happens when we rename a directory to the old name (the name
3410 * in the parent root) of some other unrelated directory that got its rename
3411 * delayed due to some ancestor with higher number that got renamed.
3412 *
3413 * Example:
3414 *
3415 * Parent snapshot:
3416 * . (ino 256)
3417 * |---- a/ (ino 257)
3418 * | |---- file (ino 260)
3419 * |
3420 * |---- b/ (ino 258)
3421 * |---- c/ (ino 259)
3422 *
3423 * Send snapshot:
3424 * . (ino 256)
3425 * |---- a/ (ino 258)
3426 * |---- x/ (ino 259)
3427 * |---- y/ (ino 257)
3428 * |----- file (ino 260)
3429 *
3430 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3431 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3432 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3433 * must issue is:
3434 *
3435 * 1 - rename 259 from 'c' to 'x'
3436 * 2 - rename 257 from 'a' to 'x/y'
3437 * 3 - rename 258 from 'b' to 'a'
3438 *
3439 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3440 * be done right away and < 0 on error.
3441 */
3442static int wait_for_dest_dir_move(struct send_ctx *sctx,
3443 struct recorded_ref *parent_ref,
3444 const bool is_orphan)
3445{
2ff7e61e 3446 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
84471e24
FM
3447 struct btrfs_path *path;
3448 struct btrfs_key key;
3449 struct btrfs_key di_key;
3450 struct btrfs_dir_item *di;
3451 u64 left_gen;
3452 u64 right_gen;
3453 int ret = 0;
801bec36 3454 struct waiting_dir_move *wdm;
84471e24
FM
3455
3456 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3457 return 0;
3458
3459 path = alloc_path_for_send();
3460 if (!path)
3461 return -ENOMEM;
3462
3463 key.objectid = parent_ref->dir;
3464 key.type = BTRFS_DIR_ITEM_KEY;
3465 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3466
3467 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3468 if (ret < 0) {
3469 goto out;
3470 } else if (ret > 0) {
3471 ret = 0;
3472 goto out;
3473 }
3474
2ff7e61e
JM
3475 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3476 parent_ref->name_len);
84471e24
FM
3477 if (!di) {
3478 ret = 0;
3479 goto out;
3480 }
3481 /*
3482 * di_key.objectid has the number of the inode that has a dentry in the
3483 * parent directory with the same name that sctx->cur_ino is being
3484 * renamed to. We need to check if that inode is in the send root as
3485 * well and if it is currently marked as an inode with a pending rename,
3486 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3487 * that it happens after that other inode is renamed.
3488 */
3489 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3490 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3491 ret = 0;
3492 goto out;
3493 }
3494
3495 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3496 &left_gen, NULL, NULL, NULL, NULL);
3497 if (ret < 0)
3498 goto out;
3499 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3500 &right_gen, NULL, NULL, NULL, NULL);
3501 if (ret < 0) {
3502 if (ret == -ENOENT)
3503 ret = 0;
3504 goto out;
3505 }
3506
3507 /* Different inode, no need to delay the rename of sctx->cur_ino */
3508 if (right_gen != left_gen) {
3509 ret = 0;
3510 goto out;
3511 }
3512
801bec36
RK
3513 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3514 if (wdm && !wdm->orphanized) {
84471e24
FM
3515 ret = add_pending_dir_move(sctx,
3516 sctx->cur_ino,
3517 sctx->cur_inode_gen,
3518 di_key.objectid,
3519 &sctx->new_refs,
3520 &sctx->deleted_refs,
3521 is_orphan);
3522 if (!ret)
3523 ret = 1;
3524 }
3525out:
3526 btrfs_free_path(path);
3527 return ret;
3528}
3529
80aa6027
FM
3530/*
3531 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3532 * Return 1 if true, 0 if false and < 0 on error.
3533 */
3534static int is_ancestor(struct btrfs_root *root,
3535 const u64 ino1,
3536 const u64 ino1_gen,
3537 const u64 ino2,
3538 struct fs_path *fs_path)
3539{
3540 u64 ino = ino2;
3541
3542 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3543 int ret;
3544 u64 parent;
3545 u64 parent_gen;
3546
3547 fs_path_reset(fs_path);
3548 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3549 if (ret < 0) {
3550 if (ret == -ENOENT && ino == ino2)
3551 ret = 0;
3552 return ret;
3553 }
3554 if (parent == ino1)
3555 return parent_gen == ino1_gen ? 1 : 0;
3556 ino = parent;
3557 }
3558 return 0;
3559}
3560
9f03740a 3561static int wait_for_parent_move(struct send_ctx *sctx,
8b191a68
FM
3562 struct recorded_ref *parent_ref,
3563 const bool is_orphan)
9f03740a 3564{
f959492f 3565 int ret = 0;
9f03740a 3566 u64 ino = parent_ref->dir;
fe9c798d 3567 u64 ino_gen = parent_ref->dir_gen;
9f03740a 3568 u64 parent_ino_before, parent_ino_after;
9f03740a
FDBM
3569 struct fs_path *path_before = NULL;
3570 struct fs_path *path_after = NULL;
3571 int len1, len2;
9f03740a
FDBM
3572
3573 path_after = fs_path_alloc();
f959492f
FM
3574 path_before = fs_path_alloc();
3575 if (!path_after || !path_before) {
9f03740a
FDBM
3576 ret = -ENOMEM;
3577 goto out;
3578 }
3579
bfa7e1f8 3580 /*
f959492f
FM
3581 * Our current directory inode may not yet be renamed/moved because some
3582 * ancestor (immediate or not) has to be renamed/moved first. So find if
3583 * such ancestor exists and make sure our own rename/move happens after
80aa6027
FM
3584 * that ancestor is processed to avoid path build infinite loops (done
3585 * at get_cur_path()).
bfa7e1f8 3586 */
f959492f 3587 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
fe9c798d
FM
3588 u64 parent_ino_after_gen;
3589
f959492f 3590 if (is_waiting_for_move(sctx, ino)) {
80aa6027
FM
3591 /*
3592 * If the current inode is an ancestor of ino in the
3593 * parent root, we need to delay the rename of the
3594 * current inode, otherwise don't delayed the rename
3595 * because we can end up with a circular dependency
3596 * of renames, resulting in some directories never
3597 * getting the respective rename operations issued in
3598 * the send stream or getting into infinite path build
3599 * loops.
3600 */
3601 ret = is_ancestor(sctx->parent_root,
3602 sctx->cur_ino, sctx->cur_inode_gen,
3603 ino, path_before);
4122ea64
FM
3604 if (ret)
3605 break;
f959492f 3606 }
bfa7e1f8
FM
3607
3608 fs_path_reset(path_before);
3609 fs_path_reset(path_after);
3610
3611 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
fe9c798d 3612 &parent_ino_after_gen, path_after);
bfa7e1f8
FM
3613 if (ret < 0)
3614 goto out;
3615 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3616 NULL, path_before);
f959492f 3617 if (ret < 0 && ret != -ENOENT) {
bfa7e1f8 3618 goto out;
f959492f 3619 } else if (ret == -ENOENT) {
bf8e8ca6 3620 ret = 0;
f959492f 3621 break;
bfa7e1f8
FM
3622 }
3623
3624 len1 = fs_path_len(path_before);
3625 len2 = fs_path_len(path_after);
f959492f
FM
3626 if (ino > sctx->cur_ino &&
3627 (parent_ino_before != parent_ino_after || len1 != len2 ||
3628 memcmp(path_before->start, path_after->start, len1))) {
fe9c798d
FM
3629 u64 parent_ino_gen;
3630
3631 ret = get_inode_info(sctx->parent_root, ino, NULL,
3632 &parent_ino_gen, NULL, NULL, NULL,
3633 NULL);
3634 if (ret < 0)
3635 goto out;
3636 if (ino_gen == parent_ino_gen) {
3637 ret = 1;
3638 break;
3639 }
bfa7e1f8 3640 }
bfa7e1f8 3641 ino = parent_ino_after;
fe9c798d 3642 ino_gen = parent_ino_after_gen;
bfa7e1f8
FM
3643 }
3644
9f03740a
FDBM
3645out:
3646 fs_path_free(path_before);
3647 fs_path_free(path_after);
3648
f959492f
FM
3649 if (ret == 1) {
3650 ret = add_pending_dir_move(sctx,
3651 sctx->cur_ino,
3652 sctx->cur_inode_gen,
3653 ino,
3654 &sctx->new_refs,
84471e24 3655 &sctx->deleted_refs,
8b191a68 3656 is_orphan);
f959492f
FM
3657 if (!ret)
3658 ret = 1;
3659 }
3660
9f03740a
FDBM
3661 return ret;
3662}
3663
31db9f7c
AB
3664/*
3665 * This does all the move/link/unlink/rmdir magic.
3666 */
9f03740a 3667static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
31db9f7c 3668{
04ab956e 3669 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
3670 int ret = 0;
3671 struct recorded_ref *cur;
1f4692da 3672 struct recorded_ref *cur2;
ba5e8f2e 3673 struct list_head check_dirs;
31db9f7c 3674 struct fs_path *valid_path = NULL;
b24baf69 3675 u64 ow_inode = 0;
31db9f7c
AB
3676 u64 ow_gen;
3677 int did_overwrite = 0;
3678 int is_orphan = 0;
29d6d30f 3679 u64 last_dir_ino_rm = 0;
84471e24 3680 bool can_rename = true;
31db9f7c 3681
04ab956e 3682 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
31db9f7c 3683
6d85ed05
AB
3684 /*
3685 * This should never happen as the root dir always has the same ref
3686 * which is always '..'
3687 */
3688 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
ba5e8f2e 3689 INIT_LIST_HEAD(&check_dirs);
6d85ed05 3690
924794c9 3691 valid_path = fs_path_alloc();
31db9f7c
AB
3692 if (!valid_path) {
3693 ret = -ENOMEM;
3694 goto out;
3695 }
3696
31db9f7c
AB
3697 /*
3698 * First, check if the first ref of the current inode was overwritten
3699 * before. If yes, we know that the current inode was already orphanized
3700 * and thus use the orphan name. If not, we can use get_cur_path to
3701 * get the path of the first ref as it would like while receiving at
3702 * this point in time.
3703 * New inodes are always orphan at the beginning, so force to use the
3704 * orphan name in this case.
3705 * The first ref is stored in valid_path and will be updated if it
3706 * gets moved around.
3707 */
3708 if (!sctx->cur_inode_new) {
3709 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3710 sctx->cur_inode_gen);
3711 if (ret < 0)
3712 goto out;
3713 if (ret)
3714 did_overwrite = 1;
3715 }
3716 if (sctx->cur_inode_new || did_overwrite) {
3717 ret = gen_unique_name(sctx, sctx->cur_ino,
3718 sctx->cur_inode_gen, valid_path);
3719 if (ret < 0)
3720 goto out;
3721 is_orphan = 1;
3722 } else {
3723 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3724 valid_path);
3725 if (ret < 0)
3726 goto out;
3727 }
3728
3729 list_for_each_entry(cur, &sctx->new_refs, list) {
1f4692da
AB
3730 /*
3731 * We may have refs where the parent directory does not exist
3732 * yet. This happens if the parent directories inum is higher
3733 * the the current inum. To handle this case, we create the
3734 * parent directory out of order. But we need to check if this
3735 * did already happen before due to other refs in the same dir.
3736 */
3737 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3738 if (ret < 0)
3739 goto out;
3740 if (ret == inode_state_will_create) {
3741 ret = 0;
3742 /*
3743 * First check if any of the current inodes refs did
3744 * already create the dir.
3745 */
3746 list_for_each_entry(cur2, &sctx->new_refs, list) {
3747 if (cur == cur2)
3748 break;
3749 if (cur2->dir == cur->dir) {
3750 ret = 1;
3751 break;
3752 }
3753 }
3754
3755 /*
3756 * If that did not happen, check if a previous inode
3757 * did already create the dir.
3758 */
3759 if (!ret)
3760 ret = did_create_dir(sctx, cur->dir);
3761 if (ret < 0)
3762 goto out;
3763 if (!ret) {
3764 ret = send_create_inode(sctx, cur->dir);
3765 if (ret < 0)
3766 goto out;
3767 }
3768 }
3769
31db9f7c
AB
3770 /*
3771 * Check if this new ref would overwrite the first ref of
3772 * another unprocessed inode. If yes, orphanize the
3773 * overwritten inode. If we find an overwritten ref that is
3774 * not the first ref, simply unlink it.
3775 */
3776 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3777 cur->name, cur->name_len,
3778 &ow_inode, &ow_gen);
3779 if (ret < 0)
3780 goto out;
3781 if (ret) {
924794c9
TI
3782 ret = is_first_ref(sctx->parent_root,
3783 ow_inode, cur->dir, cur->name,
3784 cur->name_len);
31db9f7c
AB
3785 if (ret < 0)
3786 goto out;
3787 if (ret) {
8996a48c 3788 struct name_cache_entry *nce;
801bec36 3789 struct waiting_dir_move *wdm;
8996a48c 3790
31db9f7c
AB
3791 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3792 cur->full_path);
3793 if (ret < 0)
3794 goto out;
801bec36
RK
3795
3796 /*
3797 * If ow_inode has its rename operation delayed
3798 * make sure that its orphanized name is used in
3799 * the source path when performing its rename
3800 * operation.
3801 */
3802 if (is_waiting_for_move(sctx, ow_inode)) {
3803 wdm = get_waiting_dir_move(sctx,
3804 ow_inode);
3805 ASSERT(wdm);
3806 wdm->orphanized = true;
3807 }
3808
8996a48c
FM
3809 /*
3810 * Make sure we clear our orphanized inode's
3811 * name from the name cache. This is because the
3812 * inode ow_inode might be an ancestor of some
3813 * other inode that will be orphanized as well
3814 * later and has an inode number greater than
3815 * sctx->send_progress. We need to prevent
3816 * future name lookups from using the old name
3817 * and get instead the orphan name.
3818 */
3819 nce = name_cache_search(sctx, ow_inode, ow_gen);
3820 if (nce) {
3821 name_cache_delete(sctx, nce);
3822 kfree(nce);
3823 }
801bec36
RK
3824
3825 /*
3826 * ow_inode might currently be an ancestor of
3827 * cur_ino, therefore compute valid_path (the
3828 * current path of cur_ino) again because it
3829 * might contain the pre-orphanization name of
3830 * ow_inode, which is no longer valid.
3831 */
3832 fs_path_reset(valid_path);
3833 ret = get_cur_path(sctx, sctx->cur_ino,
3834 sctx->cur_inode_gen, valid_path);
3835 if (ret < 0)
3836 goto out;
31db9f7c
AB
3837 } else {
3838 ret = send_unlink(sctx, cur->full_path);
3839 if (ret < 0)
3840 goto out;
3841 }
3842 }
3843
84471e24
FM
3844 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3845 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3846 if (ret < 0)
3847 goto out;
3848 if (ret == 1) {
3849 can_rename = false;
3850 *pending_move = 1;
3851 }
3852 }
3853
8b191a68
FM
3854 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3855 can_rename) {
3856 ret = wait_for_parent_move(sctx, cur, is_orphan);
3857 if (ret < 0)
3858 goto out;
3859 if (ret == 1) {
3860 can_rename = false;
3861 *pending_move = 1;
3862 }
3863 }
3864
31db9f7c
AB
3865 /*
3866 * link/move the ref to the new place. If we have an orphan
3867 * inode, move it and update valid_path. If not, link or move
3868 * it depending on the inode mode.
3869 */
84471e24 3870 if (is_orphan && can_rename) {
31db9f7c
AB
3871 ret = send_rename(sctx, valid_path, cur->full_path);
3872 if (ret < 0)
3873 goto out;
3874 is_orphan = 0;
3875 ret = fs_path_copy(valid_path, cur->full_path);
3876 if (ret < 0)
3877 goto out;
84471e24 3878 } else if (can_rename) {
31db9f7c
AB
3879 if (S_ISDIR(sctx->cur_inode_mode)) {
3880 /*
3881 * Dirs can't be linked, so move it. For moved
3882 * dirs, we always have one new and one deleted
3883 * ref. The deleted ref is ignored later.
3884 */
8b191a68
FM
3885 ret = send_rename(sctx, valid_path,
3886 cur->full_path);
3887 if (!ret)
3888 ret = fs_path_copy(valid_path,
3889 cur->full_path);
31db9f7c
AB
3890 if (ret < 0)
3891 goto out;
3892 } else {
3893 ret = send_link(sctx, cur->full_path,
3894 valid_path);
3895 if (ret < 0)
3896 goto out;
3897 }
3898 }
ba5e8f2e 3899 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3900 if (ret < 0)
3901 goto out;
3902 }
3903
3904 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3905 /*
3906 * Check if we can already rmdir the directory. If not,
3907 * orphanize it. For every dir item inside that gets deleted
3908 * later, we do this check again and rmdir it then if possible.
3909 * See the use of check_dirs for more details.
3910 */
9dc44214
FM
3911 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3912 sctx->cur_ino);
31db9f7c
AB
3913 if (ret < 0)
3914 goto out;
3915 if (ret) {
3916 ret = send_rmdir(sctx, valid_path);
3917 if (ret < 0)
3918 goto out;
3919 } else if (!is_orphan) {
3920 ret = orphanize_inode(sctx, sctx->cur_ino,
3921 sctx->cur_inode_gen, valid_path);
3922 if (ret < 0)
3923 goto out;
3924 is_orphan = 1;
3925 }
3926
3927 list_for_each_entry(cur, &sctx->deleted_refs, list) {
ba5e8f2e 3928 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3929 if (ret < 0)
3930 goto out;
3931 }
ccf1626b
AB
3932 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3933 !list_empty(&sctx->deleted_refs)) {
3934 /*
3935 * We have a moved dir. Add the old parent to check_dirs
3936 */
3937 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3938 list);
ba5e8f2e 3939 ret = dup_ref(cur, &check_dirs);
ccf1626b
AB
3940 if (ret < 0)
3941 goto out;
31db9f7c
AB
3942 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3943 /*
3944 * We have a non dir inode. Go through all deleted refs and
3945 * unlink them if they were not already overwritten by other
3946 * inodes.
3947 */
3948 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3949 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3950 sctx->cur_ino, sctx->cur_inode_gen,
3951 cur->name, cur->name_len);
3952 if (ret < 0)
3953 goto out;
3954 if (!ret) {
1f4692da
AB
3955 ret = send_unlink(sctx, cur->full_path);
3956 if (ret < 0)
3957 goto out;
31db9f7c 3958 }
ba5e8f2e 3959 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3960 if (ret < 0)
3961 goto out;
3962 }
31db9f7c
AB
3963 /*
3964 * If the inode is still orphan, unlink the orphan. This may
3965 * happen when a previous inode did overwrite the first ref
3966 * of this inode and no new refs were added for the current
766702ef
AB
3967 * inode. Unlinking does not mean that the inode is deleted in
3968 * all cases. There may still be links to this inode in other
3969 * places.
31db9f7c 3970 */
1f4692da 3971 if (is_orphan) {
31db9f7c
AB
3972 ret = send_unlink(sctx, valid_path);
3973 if (ret < 0)
3974 goto out;
3975 }
3976 }
3977
3978 /*
3979 * We did collect all parent dirs where cur_inode was once located. We
3980 * now go through all these dirs and check if they are pending for
3981 * deletion and if it's finally possible to perform the rmdir now.
3982 * We also update the inode stats of the parent dirs here.
3983 */
ba5e8f2e 3984 list_for_each_entry(cur, &check_dirs, list) {
766702ef
AB
3985 /*
3986 * In case we had refs into dirs that were not processed yet,
3987 * we don't need to do the utime and rmdir logic for these dirs.
3988 * The dir will be processed later.
3989 */
ba5e8f2e 3990 if (cur->dir > sctx->cur_ino)
31db9f7c
AB
3991 continue;
3992
ba5e8f2e 3993 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
3994 if (ret < 0)
3995 goto out;
3996
3997 if (ret == inode_state_did_create ||
3998 ret == inode_state_no_change) {
3999 /* TODO delayed utimes */
ba5e8f2e 4000 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
4001 if (ret < 0)
4002 goto out;
29d6d30f
FM
4003 } else if (ret == inode_state_did_delete &&
4004 cur->dir != last_dir_ino_rm) {
9dc44214
FM
4005 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4006 sctx->cur_ino);
31db9f7c
AB
4007 if (ret < 0)
4008 goto out;
4009 if (ret) {
ba5e8f2e
JB
4010 ret = get_cur_path(sctx, cur->dir,
4011 cur->dir_gen, valid_path);
31db9f7c
AB
4012 if (ret < 0)
4013 goto out;
4014 ret = send_rmdir(sctx, valid_path);
4015 if (ret < 0)
4016 goto out;
29d6d30f 4017 last_dir_ino_rm = cur->dir;
31db9f7c
AB
4018 }
4019 }
4020 }
4021
31db9f7c
AB
4022 ret = 0;
4023
4024out:
ba5e8f2e 4025 __free_recorded_refs(&check_dirs);
31db9f7c 4026 free_recorded_refs(sctx);
924794c9 4027 fs_path_free(valid_path);
31db9f7c
AB
4028 return ret;
4029}
4030
a4d96d62
LB
4031static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
4032 struct fs_path *name, void *ctx, struct list_head *refs)
31db9f7c
AB
4033{
4034 int ret = 0;
4035 struct send_ctx *sctx = ctx;
4036 struct fs_path *p;
4037 u64 gen;
4038
924794c9 4039 p = fs_path_alloc();
31db9f7c
AB
4040 if (!p)
4041 return -ENOMEM;
4042
a4d96d62 4043 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
85a7b33b 4044 NULL, NULL);
31db9f7c
AB
4045 if (ret < 0)
4046 goto out;
4047
31db9f7c
AB
4048 ret = get_cur_path(sctx, dir, gen, p);
4049 if (ret < 0)
4050 goto out;
4051 ret = fs_path_add_path(p, name);
4052 if (ret < 0)
4053 goto out;
4054
a4d96d62 4055 ret = __record_ref(refs, dir, gen, p);
31db9f7c
AB
4056
4057out:
4058 if (ret)
924794c9 4059 fs_path_free(p);
31db9f7c
AB
4060 return ret;
4061}
4062
a4d96d62
LB
4063static int __record_new_ref(int num, u64 dir, int index,
4064 struct fs_path *name,
4065 void *ctx)
4066{
4067 struct send_ctx *sctx = ctx;
4068 return record_ref(sctx->send_root, num, dir, index, name,
4069 ctx, &sctx->new_refs);
4070}
4071
4072
31db9f7c
AB
4073static int __record_deleted_ref(int num, u64 dir, int index,
4074 struct fs_path *name,
4075 void *ctx)
4076{
31db9f7c 4077 struct send_ctx *sctx = ctx;
a4d96d62
LB
4078 return record_ref(sctx->parent_root, num, dir, index, name,
4079 ctx, &sctx->deleted_refs);
31db9f7c
AB
4080}
4081
4082static int record_new_ref(struct send_ctx *sctx)
4083{
4084 int ret;
4085
924794c9
TI
4086 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4087 sctx->cmp_key, 0, __record_new_ref, sctx);
31db9f7c
AB
4088 if (ret < 0)
4089 goto out;
4090 ret = 0;
4091
4092out:
4093 return ret;
4094}
4095
4096static int record_deleted_ref(struct send_ctx *sctx)
4097{
4098 int ret;
4099
924794c9
TI
4100 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4101 sctx->cmp_key, 0, __record_deleted_ref, sctx);
31db9f7c
AB
4102 if (ret < 0)
4103 goto out;
4104 ret = 0;
4105
4106out:
4107 return ret;
4108}
4109
4110struct find_ref_ctx {
4111 u64 dir;
ba5e8f2e
JB
4112 u64 dir_gen;
4113 struct btrfs_root *root;
31db9f7c
AB
4114 struct fs_path *name;
4115 int found_idx;
4116};
4117
4118static int __find_iref(int num, u64 dir, int index,
4119 struct fs_path *name,
4120 void *ctx_)
4121{
4122 struct find_ref_ctx *ctx = ctx_;
ba5e8f2e
JB
4123 u64 dir_gen;
4124 int ret;
31db9f7c
AB
4125
4126 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4127 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
ba5e8f2e
JB
4128 /*
4129 * To avoid doing extra lookups we'll only do this if everything
4130 * else matches.
4131 */
4132 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4133 NULL, NULL, NULL);
4134 if (ret)
4135 return ret;
4136 if (dir_gen != ctx->dir_gen)
4137 return 0;
31db9f7c
AB
4138 ctx->found_idx = num;
4139 return 1;
4140 }
4141 return 0;
4142}
4143
924794c9 4144static int find_iref(struct btrfs_root *root,
31db9f7c
AB
4145 struct btrfs_path *path,
4146 struct btrfs_key *key,
ba5e8f2e 4147 u64 dir, u64 dir_gen, struct fs_path *name)
31db9f7c
AB
4148{
4149 int ret;
4150 struct find_ref_ctx ctx;
4151
4152 ctx.dir = dir;
4153 ctx.name = name;
ba5e8f2e 4154 ctx.dir_gen = dir_gen;
31db9f7c 4155 ctx.found_idx = -1;
ba5e8f2e 4156 ctx.root = root;
31db9f7c 4157
924794c9 4158 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
31db9f7c
AB
4159 if (ret < 0)
4160 return ret;
4161
4162 if (ctx.found_idx == -1)
4163 return -ENOENT;
4164
4165 return ctx.found_idx;
4166}
4167
4168static int __record_changed_new_ref(int num, u64 dir, int index,
4169 struct fs_path *name,
4170 void *ctx)
4171{
ba5e8f2e 4172 u64 dir_gen;
31db9f7c
AB
4173 int ret;
4174 struct send_ctx *sctx = ctx;
4175
ba5e8f2e
JB
4176 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4177 NULL, NULL, NULL);
4178 if (ret)
4179 return ret;
4180
924794c9 4181 ret = find_iref(sctx->parent_root, sctx->right_path,
ba5e8f2e 4182 sctx->cmp_key, dir, dir_gen, name);
31db9f7c
AB
4183 if (ret == -ENOENT)
4184 ret = __record_new_ref(num, dir, index, name, sctx);
4185 else if (ret > 0)
4186 ret = 0;
4187
4188 return ret;
4189}
4190
4191static int __record_changed_deleted_ref(int num, u64 dir, int index,
4192 struct fs_path *name,
4193 void *ctx)
4194{
ba5e8f2e 4195 u64 dir_gen;
31db9f7c
AB
4196 int ret;
4197 struct send_ctx *sctx = ctx;
4198
ba5e8f2e
JB
4199 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4200 NULL, NULL, NULL);
4201 if (ret)
4202 return ret;
4203
924794c9 4204 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
ba5e8f2e 4205 dir, dir_gen, name);
31db9f7c
AB
4206 if (ret == -ENOENT)
4207 ret = __record_deleted_ref(num, dir, index, name, sctx);
4208 else if (ret > 0)
4209 ret = 0;
4210
4211 return ret;
4212}
4213
4214static int record_changed_ref(struct send_ctx *sctx)
4215{
4216 int ret = 0;
4217
924794c9 4218 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
31db9f7c
AB
4219 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4220 if (ret < 0)
4221 goto out;
924794c9 4222 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
31db9f7c
AB
4223 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4224 if (ret < 0)
4225 goto out;
4226 ret = 0;
4227
4228out:
4229 return ret;
4230}
4231
4232/*
4233 * Record and process all refs at once. Needed when an inode changes the
4234 * generation number, which means that it was deleted and recreated.
4235 */
4236static int process_all_refs(struct send_ctx *sctx,
4237 enum btrfs_compare_tree_result cmd)
4238{
4239 int ret;
4240 struct btrfs_root *root;
4241 struct btrfs_path *path;
4242 struct btrfs_key key;
4243 struct btrfs_key found_key;
4244 struct extent_buffer *eb;
4245 int slot;
4246 iterate_inode_ref_t cb;
9f03740a 4247 int pending_move = 0;
31db9f7c
AB
4248
4249 path = alloc_path_for_send();
4250 if (!path)
4251 return -ENOMEM;
4252
4253 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4254 root = sctx->send_root;
4255 cb = __record_new_ref;
4256 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4257 root = sctx->parent_root;
4258 cb = __record_deleted_ref;
4259 } else {
4d1a63b2
DS
4260 btrfs_err(sctx->send_root->fs_info,
4261 "Wrong command %d in process_all_refs", cmd);
4262 ret = -EINVAL;
4263 goto out;
31db9f7c
AB
4264 }
4265
4266 key.objectid = sctx->cmp_key->objectid;
4267 key.type = BTRFS_INODE_REF_KEY;
4268 key.offset = 0;
dff6d0ad
FDBM
4269 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4270 if (ret < 0)
4271 goto out;
31db9f7c 4272
dff6d0ad 4273 while (1) {
31db9f7c
AB
4274 eb = path->nodes[0];
4275 slot = path->slots[0];
dff6d0ad
FDBM
4276 if (slot >= btrfs_header_nritems(eb)) {
4277 ret = btrfs_next_leaf(root, path);
4278 if (ret < 0)
4279 goto out;
4280 else if (ret > 0)
4281 break;
4282 continue;
4283 }
4284
31db9f7c
AB
4285 btrfs_item_key_to_cpu(eb, &found_key, slot);
4286
4287 if (found_key.objectid != key.objectid ||
96b5bd77
JS
4288 (found_key.type != BTRFS_INODE_REF_KEY &&
4289 found_key.type != BTRFS_INODE_EXTREF_KEY))
31db9f7c 4290 break;
31db9f7c 4291
924794c9 4292 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
31db9f7c
AB
4293 if (ret < 0)
4294 goto out;
4295
dff6d0ad 4296 path->slots[0]++;
31db9f7c 4297 }
e938c8ad 4298 btrfs_release_path(path);
31db9f7c 4299
3dc09ec8
JB
4300 /*
4301 * We don't actually care about pending_move as we are simply
4302 * re-creating this inode and will be rename'ing it into place once we
4303 * rename the parent directory.
4304 */
9f03740a 4305 ret = process_recorded_refs(sctx, &pending_move);
31db9f7c
AB
4306out:
4307 btrfs_free_path(path);
4308 return ret;
4309}
4310
4311static int send_set_xattr(struct send_ctx *sctx,
4312 struct fs_path *path,
4313 const char *name, int name_len,
4314 const char *data, int data_len)
4315{
4316 int ret = 0;
4317
4318 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4319 if (ret < 0)
4320 goto out;
4321
4322 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4323 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4324 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4325
4326 ret = send_cmd(sctx);
4327
4328tlv_put_failure:
4329out:
4330 return ret;
4331}
4332
4333static int send_remove_xattr(struct send_ctx *sctx,
4334 struct fs_path *path,
4335 const char *name, int name_len)
4336{
4337 int ret = 0;
4338
4339 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4340 if (ret < 0)
4341 goto out;
4342
4343 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4344 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4345
4346 ret = send_cmd(sctx);
4347
4348tlv_put_failure:
4349out:
4350 return ret;
4351}
4352
4353static int __process_new_xattr(int num, struct btrfs_key *di_key,
4354 const char *name, int name_len,
4355 const char *data, int data_len,
4356 u8 type, void *ctx)
4357{
4358 int ret;
4359 struct send_ctx *sctx = ctx;
4360 struct fs_path *p;
2211d5ba 4361 struct posix_acl_xattr_header dummy_acl;
31db9f7c 4362
924794c9 4363 p = fs_path_alloc();
31db9f7c
AB
4364 if (!p)
4365 return -ENOMEM;
4366
4367 /*
01327610 4368 * This hack is needed because empty acls are stored as zero byte
31db9f7c 4369 * data in xattrs. Problem with that is, that receiving these zero byte
01327610 4370 * acls will fail later. To fix this, we send a dummy acl list that
31db9f7c
AB
4371 * only contains the version number and no entries.
4372 */
4373 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4374 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4375 if (data_len == 0) {
4376 dummy_acl.a_version =
4377 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4378 data = (char *)&dummy_acl;
4379 data_len = sizeof(dummy_acl);
4380 }
4381 }
4382
4383 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4384 if (ret < 0)
4385 goto out;
4386
4387 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4388
4389out:
924794c9 4390 fs_path_free(p);
31db9f7c
AB
4391 return ret;
4392}
4393
4394static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4395 const char *name, int name_len,
4396 const char *data, int data_len,
4397 u8 type, void *ctx)
4398{
4399 int ret;
4400 struct send_ctx *sctx = ctx;
4401 struct fs_path *p;
4402
924794c9 4403 p = fs_path_alloc();
31db9f7c
AB
4404 if (!p)
4405 return -ENOMEM;
4406
4407 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4408 if (ret < 0)
4409 goto out;
4410
4411 ret = send_remove_xattr(sctx, p, name, name_len);
4412
4413out:
924794c9 4414 fs_path_free(p);
31db9f7c
AB
4415 return ret;
4416}
4417
4418static int process_new_xattr(struct send_ctx *sctx)
4419{
4420 int ret = 0;
4421
924794c9
TI
4422 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4423 sctx->cmp_key, __process_new_xattr, sctx);
31db9f7c
AB
4424
4425 return ret;
4426}
4427
4428static int process_deleted_xattr(struct send_ctx *sctx)
4429{
e2c89907
MY
4430 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4431 sctx->cmp_key, __process_deleted_xattr, sctx);
31db9f7c
AB
4432}
4433
4434struct find_xattr_ctx {
4435 const char *name;
4436 int name_len;
4437 int found_idx;
4438 char *found_data;
4439 int found_data_len;
4440};
4441
4442static int __find_xattr(int num, struct btrfs_key *di_key,
4443 const char *name, int name_len,
4444 const char *data, int data_len,
4445 u8 type, void *vctx)
4446{
4447 struct find_xattr_ctx *ctx = vctx;
4448
4449 if (name_len == ctx->name_len &&
4450 strncmp(name, ctx->name, name_len) == 0) {
4451 ctx->found_idx = num;
4452 ctx->found_data_len = data_len;
e780b0d1 4453 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
31db9f7c
AB
4454 if (!ctx->found_data)
4455 return -ENOMEM;
31db9f7c
AB
4456 return 1;
4457 }
4458 return 0;
4459}
4460
924794c9 4461static int find_xattr(struct btrfs_root *root,
31db9f7c
AB
4462 struct btrfs_path *path,
4463 struct btrfs_key *key,
4464 const char *name, int name_len,
4465 char **data, int *data_len)
4466{
4467 int ret;
4468 struct find_xattr_ctx ctx;
4469
4470 ctx.name = name;
4471 ctx.name_len = name_len;
4472 ctx.found_idx = -1;
4473 ctx.found_data = NULL;
4474 ctx.found_data_len = 0;
4475
924794c9 4476 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
31db9f7c
AB
4477 if (ret < 0)
4478 return ret;
4479
4480 if (ctx.found_idx == -1)
4481 return -ENOENT;
4482 if (data) {
4483 *data = ctx.found_data;
4484 *data_len = ctx.found_data_len;
4485 } else {
4486 kfree(ctx.found_data);
4487 }
4488 return ctx.found_idx;
4489}
4490
4491
4492static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4493 const char *name, int name_len,
4494 const char *data, int data_len,
4495 u8 type, void *ctx)
4496{
4497 int ret;
4498 struct send_ctx *sctx = ctx;
4499 char *found_data = NULL;
4500 int found_data_len = 0;
31db9f7c 4501
924794c9
TI
4502 ret = find_xattr(sctx->parent_root, sctx->right_path,
4503 sctx->cmp_key, name, name_len, &found_data,
4504 &found_data_len);
31db9f7c
AB
4505 if (ret == -ENOENT) {
4506 ret = __process_new_xattr(num, di_key, name, name_len, data,
4507 data_len, type, ctx);
4508 } else if (ret >= 0) {
4509 if (data_len != found_data_len ||
4510 memcmp(data, found_data, data_len)) {
4511 ret = __process_new_xattr(num, di_key, name, name_len,
4512 data, data_len, type, ctx);
4513 } else {
4514 ret = 0;
4515 }
4516 }
4517
4518 kfree(found_data);
31db9f7c
AB
4519 return ret;
4520}
4521
4522static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4523 const char *name, int name_len,
4524 const char *data, int data_len,
4525 u8 type, void *ctx)
4526{
4527 int ret;
4528 struct send_ctx *sctx = ctx;
4529
924794c9
TI
4530 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4531 name, name_len, NULL, NULL);
31db9f7c
AB
4532 if (ret == -ENOENT)
4533 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4534 data_len, type, ctx);
4535 else if (ret >= 0)
4536 ret = 0;
4537
4538 return ret;
4539}
4540
4541static int process_changed_xattr(struct send_ctx *sctx)
4542{
4543 int ret = 0;
4544
924794c9 4545 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
31db9f7c
AB
4546 sctx->cmp_key, __process_changed_new_xattr, sctx);
4547 if (ret < 0)
4548 goto out;
924794c9 4549 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
31db9f7c
AB
4550 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4551
4552out:
4553 return ret;
4554}
4555
4556static int process_all_new_xattrs(struct send_ctx *sctx)
4557{
4558 int ret;
4559 struct btrfs_root *root;
4560 struct btrfs_path *path;
4561 struct btrfs_key key;
4562 struct btrfs_key found_key;
4563 struct extent_buffer *eb;
4564 int slot;
4565
4566 path = alloc_path_for_send();
4567 if (!path)
4568 return -ENOMEM;
4569
4570 root = sctx->send_root;
4571
4572 key.objectid = sctx->cmp_key->objectid;
4573 key.type = BTRFS_XATTR_ITEM_KEY;
4574 key.offset = 0;
dff6d0ad
FDBM
4575 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4576 if (ret < 0)
4577 goto out;
31db9f7c 4578
dff6d0ad 4579 while (1) {
31db9f7c
AB
4580 eb = path->nodes[0];
4581 slot = path->slots[0];
dff6d0ad
FDBM
4582 if (slot >= btrfs_header_nritems(eb)) {
4583 ret = btrfs_next_leaf(root, path);
4584 if (ret < 0) {
4585 goto out;
4586 } else if (ret > 0) {
4587 ret = 0;
4588 break;
4589 }
4590 continue;
4591 }
31db9f7c 4592
dff6d0ad 4593 btrfs_item_key_to_cpu(eb, &found_key, slot);
31db9f7c
AB
4594 if (found_key.objectid != key.objectid ||
4595 found_key.type != key.type) {
4596 ret = 0;
4597 goto out;
4598 }
4599
924794c9
TI
4600 ret = iterate_dir_item(root, path, &found_key,
4601 __process_new_xattr, sctx);
31db9f7c
AB
4602 if (ret < 0)
4603 goto out;
4604
dff6d0ad 4605 path->slots[0]++;
31db9f7c
AB
4606 }
4607
4608out:
4609 btrfs_free_path(path);
4610 return ret;
4611}
4612
ed259095
JB
4613static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4614{
4615 struct btrfs_root *root = sctx->send_root;
4616 struct btrfs_fs_info *fs_info = root->fs_info;
4617 struct inode *inode;
4618 struct page *page;
4619 char *addr;
4620 struct btrfs_key key;
09cbfeaf 4621 pgoff_t index = offset >> PAGE_SHIFT;
ed259095 4622 pgoff_t last_index;
09cbfeaf 4623 unsigned pg_offset = offset & ~PAGE_MASK;
ed259095
JB
4624 ssize_t ret = 0;
4625
4626 key.objectid = sctx->cur_ino;
4627 key.type = BTRFS_INODE_ITEM_KEY;
4628 key.offset = 0;
4629
4630 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4631 if (IS_ERR(inode))
4632 return PTR_ERR(inode);
4633
4634 if (offset + len > i_size_read(inode)) {
4635 if (offset > i_size_read(inode))
4636 len = 0;
4637 else
4638 len = offset - i_size_read(inode);
4639 }
4640 if (len == 0)
4641 goto out;
4642
09cbfeaf 4643 last_index = (offset + len - 1) >> PAGE_SHIFT;
2131bcd3
LB
4644
4645 /* initial readahead */
4646 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4647 file_ra_state_init(&sctx->ra, inode->i_mapping);
4648 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4649 last_index - index + 1);
4650
ed259095
JB
4651 while (index <= last_index) {
4652 unsigned cur_len = min_t(unsigned, len,
09cbfeaf 4653 PAGE_SIZE - pg_offset);
e780b0d1 4654 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
ed259095
JB
4655 if (!page) {
4656 ret = -ENOMEM;
4657 break;
4658 }
4659
4660 if (!PageUptodate(page)) {
4661 btrfs_readpage(NULL, page);
4662 lock_page(page);
4663 if (!PageUptodate(page)) {
4664 unlock_page(page);
09cbfeaf 4665 put_page(page);
ed259095
JB
4666 ret = -EIO;
4667 break;
4668 }
4669 }
4670
4671 addr = kmap(page);
4672 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4673 kunmap(page);
4674 unlock_page(page);
09cbfeaf 4675 put_page(page);
ed259095
JB
4676 index++;
4677 pg_offset = 0;
4678 len -= cur_len;
4679 ret += cur_len;
4680 }
4681out:
4682 iput(inode);
4683 return ret;
4684}
4685
31db9f7c
AB
4686/*
4687 * Read some bytes from the current inode/file and send a write command to
4688 * user space.
4689 */
4690static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4691{
04ab956e 4692 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
4693 int ret = 0;
4694 struct fs_path *p;
ed259095 4695 ssize_t num_read = 0;
31db9f7c 4696
924794c9 4697 p = fs_path_alloc();
31db9f7c
AB
4698 if (!p)
4699 return -ENOMEM;
4700
04ab956e 4701 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
31db9f7c 4702
ed259095
JB
4703 num_read = fill_read_buf(sctx, offset, len);
4704 if (num_read <= 0) {
4705 if (num_read < 0)
4706 ret = num_read;
31db9f7c 4707 goto out;
ed259095 4708 }
31db9f7c
AB
4709
4710 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4711 if (ret < 0)
4712 goto out;
4713
4714 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4715 if (ret < 0)
4716 goto out;
4717
4718 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4719 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
e938c8ad 4720 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
31db9f7c
AB
4721
4722 ret = send_cmd(sctx);
4723
4724tlv_put_failure:
4725out:
924794c9 4726 fs_path_free(p);
31db9f7c
AB
4727 if (ret < 0)
4728 return ret;
e938c8ad 4729 return num_read;
31db9f7c
AB
4730}
4731
4732/*
4733 * Send a clone command to user space.
4734 */
4735static int send_clone(struct send_ctx *sctx,
4736 u64 offset, u32 len,
4737 struct clone_root *clone_root)
4738{
4739 int ret = 0;
31db9f7c
AB
4740 struct fs_path *p;
4741 u64 gen;
4742
04ab956e
JM
4743 btrfs_debug(sctx->send_root->fs_info,
4744 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4745 offset, len, clone_root->root->objectid, clone_root->ino,
4746 clone_root->offset);
31db9f7c 4747
924794c9 4748 p = fs_path_alloc();
31db9f7c
AB
4749 if (!p)
4750 return -ENOMEM;
4751
4752 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4753 if (ret < 0)
4754 goto out;
4755
4756 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4757 if (ret < 0)
4758 goto out;
4759
4760 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4761 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4762 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4763
e938c8ad 4764 if (clone_root->root == sctx->send_root) {
31db9f7c 4765 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
85a7b33b 4766 &gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
4767 if (ret < 0)
4768 goto out;
4769 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4770 } else {
924794c9 4771 ret = get_inode_path(clone_root->root, clone_root->ino, p);
31db9f7c
AB
4772 }
4773 if (ret < 0)
4774 goto out;
4775
37b8d27d
JB
4776 /*
4777 * If the parent we're using has a received_uuid set then use that as
4778 * our clone source as that is what we will look for when doing a
4779 * receive.
4780 *
4781 * This covers the case that we create a snapshot off of a received
4782 * subvolume and then use that as the parent and try to receive on a
4783 * different host.
4784 */
4785 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4786 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4787 clone_root->root->root_item.received_uuid);
4788 else
4789 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4790 clone_root->root->root_item.uuid);
31db9f7c 4791 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 4792 le64_to_cpu(clone_root->root->root_item.ctransid));
31db9f7c
AB
4793 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4794 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4795 clone_root->offset);
4796
4797 ret = send_cmd(sctx);
4798
4799tlv_put_failure:
4800out:
924794c9 4801 fs_path_free(p);
31db9f7c
AB
4802 return ret;
4803}
4804
cb95e7bf
MF
4805/*
4806 * Send an update extent command to user space.
4807 */
4808static int send_update_extent(struct send_ctx *sctx,
4809 u64 offset, u32 len)
4810{
4811 int ret = 0;
4812 struct fs_path *p;
4813
924794c9 4814 p = fs_path_alloc();
cb95e7bf
MF
4815 if (!p)
4816 return -ENOMEM;
4817
4818 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4819 if (ret < 0)
4820 goto out;
4821
4822 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4823 if (ret < 0)
4824 goto out;
4825
4826 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4827 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4828 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4829
4830 ret = send_cmd(sctx);
4831
4832tlv_put_failure:
4833out:
924794c9 4834 fs_path_free(p);
cb95e7bf
MF
4835 return ret;
4836}
4837
16e7549f
JB
4838static int send_hole(struct send_ctx *sctx, u64 end)
4839{
4840 struct fs_path *p = NULL;
4841 u64 offset = sctx->cur_inode_last_extent;
4842 u64 len;
4843 int ret = 0;
4844
4845 p = fs_path_alloc();
4846 if (!p)
4847 return -ENOMEM;
c715e155
FM
4848 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4849 if (ret < 0)
4850 goto tlv_put_failure;
16e7549f
JB
4851 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4852 while (offset < end) {
4853 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4854
4855 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
16e7549f
JB
4856 if (ret < 0)
4857 break;
4858 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4859 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4860 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4861 ret = send_cmd(sctx);
4862 if (ret < 0)
4863 break;
4864 offset += len;
4865 }
4866tlv_put_failure:
4867 fs_path_free(p);
4868 return ret;
4869}
4870
d906d49f
FM
4871static int send_extent_data(struct send_ctx *sctx,
4872 const u64 offset,
4873 const u64 len)
4874{
4875 u64 sent = 0;
4876
4877 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4878 return send_update_extent(sctx, offset, len);
4879
4880 while (sent < len) {
4881 u64 size = len - sent;
4882 int ret;
4883
4884 if (size > BTRFS_SEND_READ_SIZE)
4885 size = BTRFS_SEND_READ_SIZE;
4886 ret = send_write(sctx, offset + sent, size);
4887 if (ret < 0)
4888 return ret;
4889 if (!ret)
4890 break;
4891 sent += ret;
4892 }
4893 return 0;
4894}
4895
4896static int clone_range(struct send_ctx *sctx,
4897 struct clone_root *clone_root,
4898 const u64 disk_byte,
4899 u64 data_offset,
4900 u64 offset,
4901 u64 len)
4902{
4903 struct btrfs_path *path;
4904 struct btrfs_key key;
4905 int ret;
4906
4907 path = alloc_path_for_send();
4908 if (!path)
4909 return -ENOMEM;
4910
4911 /*
4912 * We can't send a clone operation for the entire range if we find
4913 * extent items in the respective range in the source file that
4914 * refer to different extents or if we find holes.
4915 * So check for that and do a mix of clone and regular write/copy
4916 * operations if needed.
4917 *
4918 * Example:
4919 *
4920 * mkfs.btrfs -f /dev/sda
4921 * mount /dev/sda /mnt
4922 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4923 * cp --reflink=always /mnt/foo /mnt/bar
4924 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4925 * btrfs subvolume snapshot -r /mnt /mnt/snap
4926 *
4927 * If when we send the snapshot and we are processing file bar (which
4928 * has a higher inode number than foo) we blindly send a clone operation
4929 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4930 * a file bar that matches the content of file foo - iow, doesn't match
4931 * the content from bar in the original filesystem.
4932 */
4933 key.objectid = clone_root->ino;
4934 key.type = BTRFS_EXTENT_DATA_KEY;
4935 key.offset = clone_root->offset;
4936 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4937 if (ret < 0)
4938 goto out;
4939 if (ret > 0 && path->slots[0] > 0) {
4940 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4941 if (key.objectid == clone_root->ino &&
4942 key.type == BTRFS_EXTENT_DATA_KEY)
4943 path->slots[0]--;
4944 }
4945
4946 while (true) {
4947 struct extent_buffer *leaf = path->nodes[0];
4948 int slot = path->slots[0];
4949 struct btrfs_file_extent_item *ei;
4950 u8 type;
4951 u64 ext_len;
4952 u64 clone_len;
4953
4954 if (slot >= btrfs_header_nritems(leaf)) {
4955 ret = btrfs_next_leaf(clone_root->root, path);
4956 if (ret < 0)
4957 goto out;
4958 else if (ret > 0)
4959 break;
4960 continue;
4961 }
4962
4963 btrfs_item_key_to_cpu(leaf, &key, slot);
4964
4965 /*
4966 * We might have an implicit trailing hole (NO_HOLES feature
4967 * enabled). We deal with it after leaving this loop.
4968 */
4969 if (key.objectid != clone_root->ino ||
4970 key.type != BTRFS_EXTENT_DATA_KEY)
4971 break;
4972
4973 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4974 type = btrfs_file_extent_type(leaf, ei);
4975 if (type == BTRFS_FILE_EXTENT_INLINE) {
4976 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
09cbfeaf 4977 ext_len = PAGE_ALIGN(ext_len);
d906d49f
FM
4978 } else {
4979 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4980 }
4981
4982 if (key.offset + ext_len <= clone_root->offset)
4983 goto next;
4984
4985 if (key.offset > clone_root->offset) {
4986 /* Implicit hole, NO_HOLES feature enabled. */
4987 u64 hole_len = key.offset - clone_root->offset;
4988
4989 if (hole_len > len)
4990 hole_len = len;
4991 ret = send_extent_data(sctx, offset, hole_len);
4992 if (ret < 0)
4993 goto out;
4994
4995 len -= hole_len;
4996 if (len == 0)
4997 break;
4998 offset += hole_len;
4999 clone_root->offset += hole_len;
5000 data_offset += hole_len;
5001 }
5002
5003 if (key.offset >= clone_root->offset + len)
5004 break;
5005
5006 clone_len = min_t(u64, ext_len, len);
5007
5008 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5009 btrfs_file_extent_offset(leaf, ei) == data_offset)
5010 ret = send_clone(sctx, offset, clone_len, clone_root);
5011 else
5012 ret = send_extent_data(sctx, offset, clone_len);
5013
5014 if (ret < 0)
5015 goto out;
5016
5017 len -= clone_len;
5018 if (len == 0)
5019 break;
5020 offset += clone_len;
5021 clone_root->offset += clone_len;
5022 data_offset += clone_len;
5023next:
5024 path->slots[0]++;
5025 }
5026
5027 if (len > 0)
5028 ret = send_extent_data(sctx, offset, len);
5029 else
5030 ret = 0;
5031out:
5032 btrfs_free_path(path);
5033 return ret;
5034}
5035
31db9f7c
AB
5036static int send_write_or_clone(struct send_ctx *sctx,
5037 struct btrfs_path *path,
5038 struct btrfs_key *key,
5039 struct clone_root *clone_root)
5040{
5041 int ret = 0;
5042 struct btrfs_file_extent_item *ei;
5043 u64 offset = key->offset;
31db9f7c 5044 u64 len;
31db9f7c 5045 u8 type;
28e5dd8f 5046 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
31db9f7c
AB
5047
5048 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5049 struct btrfs_file_extent_item);
5050 type = btrfs_file_extent_type(path->nodes[0], ei);
74dd17fb 5051 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
5052 len = btrfs_file_extent_inline_len(path->nodes[0],
5053 path->slots[0], ei);
74dd17fb
CM
5054 /*
5055 * it is possible the inline item won't cover the whole page,
5056 * but there may be items after this page. Make
5057 * sure to send the whole thing
5058 */
09cbfeaf 5059 len = PAGE_ALIGN(len);
74dd17fb 5060 } else {
31db9f7c 5061 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
74dd17fb 5062 }
31db9f7c
AB
5063
5064 if (offset + len > sctx->cur_inode_size)
5065 len = sctx->cur_inode_size - offset;
5066 if (len == 0) {
5067 ret = 0;
5068 goto out;
5069 }
5070
28e5dd8f 5071 if (clone_root && IS_ALIGNED(offset + len, bs)) {
d906d49f
FM
5072 u64 disk_byte;
5073 u64 data_offset;
5074
5075 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5076 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5077 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5078 offset, len);
cb95e7bf 5079 } else {
d906d49f 5080 ret = send_extent_data(sctx, offset, len);
31db9f7c 5081 }
31db9f7c
AB
5082out:
5083 return ret;
5084}
5085
5086static int is_extent_unchanged(struct send_ctx *sctx,
5087 struct btrfs_path *left_path,
5088 struct btrfs_key *ekey)
5089{
5090 int ret = 0;
5091 struct btrfs_key key;
5092 struct btrfs_path *path = NULL;
5093 struct extent_buffer *eb;
5094 int slot;
5095 struct btrfs_key found_key;
5096 struct btrfs_file_extent_item *ei;
5097 u64 left_disknr;
5098 u64 right_disknr;
5099 u64 left_offset;
5100 u64 right_offset;
5101 u64 left_offset_fixed;
5102 u64 left_len;
5103 u64 right_len;
74dd17fb
CM
5104 u64 left_gen;
5105 u64 right_gen;
31db9f7c
AB
5106 u8 left_type;
5107 u8 right_type;
5108
5109 path = alloc_path_for_send();
5110 if (!path)
5111 return -ENOMEM;
5112
5113 eb = left_path->nodes[0];
5114 slot = left_path->slots[0];
31db9f7c
AB
5115 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5116 left_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
5117
5118 if (left_type != BTRFS_FILE_EXTENT_REG) {
5119 ret = 0;
5120 goto out;
5121 }
74dd17fb
CM
5122 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5123 left_len = btrfs_file_extent_num_bytes(eb, ei);
5124 left_offset = btrfs_file_extent_offset(eb, ei);
5125 left_gen = btrfs_file_extent_generation(eb, ei);
31db9f7c
AB
5126
5127 /*
5128 * Following comments will refer to these graphics. L is the left
5129 * extents which we are checking at the moment. 1-8 are the right
5130 * extents that we iterate.
5131 *
5132 * |-----L-----|
5133 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5134 *
5135 * |-----L-----|
5136 * |--1--|-2b-|...(same as above)
5137 *
5138 * Alternative situation. Happens on files where extents got split.
5139 * |-----L-----|
5140 * |-----------7-----------|-6-|
5141 *
5142 * Alternative situation. Happens on files which got larger.
5143 * |-----L-----|
5144 * |-8-|
5145 * Nothing follows after 8.
5146 */
5147
5148 key.objectid = ekey->objectid;
5149 key.type = BTRFS_EXTENT_DATA_KEY;
5150 key.offset = ekey->offset;
5151 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5152 if (ret < 0)
5153 goto out;
5154 if (ret) {
5155 ret = 0;
5156 goto out;
5157 }
5158
5159 /*
5160 * Handle special case where the right side has no extents at all.
5161 */
5162 eb = path->nodes[0];
5163 slot = path->slots[0];
5164 btrfs_item_key_to_cpu(eb, &found_key, slot);
5165 if (found_key.objectid != key.objectid ||
5166 found_key.type != key.type) {
57cfd462
JB
5167 /* If we're a hole then just pretend nothing changed */
5168 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
5169 goto out;
5170 }
5171
5172 /*
5173 * We're now on 2a, 2b or 7.
5174 */
5175 key = found_key;
5176 while (key.offset < ekey->offset + left_len) {
5177 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5178 right_type = btrfs_file_extent_type(eb, ei);
e1cbfd7b
FM
5179 if (right_type != BTRFS_FILE_EXTENT_REG &&
5180 right_type != BTRFS_FILE_EXTENT_INLINE) {
31db9f7c
AB
5181 ret = 0;
5182 goto out;
5183 }
5184
007d31f7 5185 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
e1cbfd7b
FM
5186 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5187 right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5188 right_len = PAGE_ALIGN(right_len);
5189 } else {
5190 right_len = btrfs_file_extent_num_bytes(eb, ei);
5191 }
007d31f7
JB
5192 right_offset = btrfs_file_extent_offset(eb, ei);
5193 right_gen = btrfs_file_extent_generation(eb, ei);
5194
31db9f7c
AB
5195 /*
5196 * Are we at extent 8? If yes, we know the extent is changed.
5197 * This may only happen on the first iteration.
5198 */
d8347fa4 5199 if (found_key.offset + right_len <= ekey->offset) {
57cfd462
JB
5200 /* If we're a hole just pretend nothing changed */
5201 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
5202 goto out;
5203 }
5204
e1cbfd7b
FM
5205 /*
5206 * We just wanted to see if when we have an inline extent, what
5207 * follows it is a regular extent (wanted to check the above
5208 * condition for inline extents too). This should normally not
5209 * happen but it's possible for example when we have an inline
5210 * compressed extent representing data with a size matching
5211 * the page size (currently the same as sector size).
5212 */
5213 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5214 ret = 0;
5215 goto out;
5216 }
5217
31db9f7c
AB
5218 left_offset_fixed = left_offset;
5219 if (key.offset < ekey->offset) {
5220 /* Fix the right offset for 2a and 7. */
5221 right_offset += ekey->offset - key.offset;
5222 } else {
5223 /* Fix the left offset for all behind 2a and 2b */
5224 left_offset_fixed += key.offset - ekey->offset;
5225 }
5226
5227 /*
5228 * Check if we have the same extent.
5229 */
3954096d 5230 if (left_disknr != right_disknr ||
74dd17fb
CM
5231 left_offset_fixed != right_offset ||
5232 left_gen != right_gen) {
31db9f7c
AB
5233 ret = 0;
5234 goto out;
5235 }
5236
5237 /*
5238 * Go to the next extent.
5239 */
5240 ret = btrfs_next_item(sctx->parent_root, path);
5241 if (ret < 0)
5242 goto out;
5243 if (!ret) {
5244 eb = path->nodes[0];
5245 slot = path->slots[0];
5246 btrfs_item_key_to_cpu(eb, &found_key, slot);
5247 }
5248 if (ret || found_key.objectid != key.objectid ||
5249 found_key.type != key.type) {
5250 key.offset += right_len;
5251 break;
adaa4b8e
JS
5252 }
5253 if (found_key.offset != key.offset + right_len) {
5254 ret = 0;
5255 goto out;
31db9f7c
AB
5256 }
5257 key = found_key;
5258 }
5259
5260 /*
5261 * We're now behind the left extent (treat as unchanged) or at the end
5262 * of the right side (treat as changed).
5263 */
5264 if (key.offset >= ekey->offset + left_len)
5265 ret = 1;
5266 else
5267 ret = 0;
5268
5269
5270out:
5271 btrfs_free_path(path);
5272 return ret;
5273}
5274
16e7549f
JB
5275static int get_last_extent(struct send_ctx *sctx, u64 offset)
5276{
5277 struct btrfs_path *path;
5278 struct btrfs_root *root = sctx->send_root;
5279 struct btrfs_file_extent_item *fi;
5280 struct btrfs_key key;
5281 u64 extent_end;
5282 u8 type;
5283 int ret;
5284
5285 path = alloc_path_for_send();
5286 if (!path)
5287 return -ENOMEM;
5288
5289 sctx->cur_inode_last_extent = 0;
5290
5291 key.objectid = sctx->cur_ino;
5292 key.type = BTRFS_EXTENT_DATA_KEY;
5293 key.offset = offset;
5294 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5295 if (ret < 0)
5296 goto out;
5297 ret = 0;
5298 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5299 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5300 goto out;
5301
5302 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5303 struct btrfs_file_extent_item);
5304 type = btrfs_file_extent_type(path->nodes[0], fi);
5305 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
5306 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5307 path->slots[0], fi);
16e7549f 5308 extent_end = ALIGN(key.offset + size,
da17066c 5309 sctx->send_root->fs_info->sectorsize);
16e7549f
JB
5310 } else {
5311 extent_end = key.offset +
5312 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5313 }
5314 sctx->cur_inode_last_extent = extent_end;
5315out:
5316 btrfs_free_path(path);
5317 return ret;
5318}
5319
82bfb2e7
FM
5320static int range_is_hole_in_parent(struct send_ctx *sctx,
5321 const u64 start,
5322 const u64 end)
5323{
5324 struct btrfs_path *path;
5325 struct btrfs_key key;
5326 struct btrfs_root *root = sctx->parent_root;
5327 u64 search_start = start;
5328 int ret;
5329
5330 path = alloc_path_for_send();
5331 if (!path)
5332 return -ENOMEM;
5333
5334 key.objectid = sctx->cur_ino;
5335 key.type = BTRFS_EXTENT_DATA_KEY;
5336 key.offset = search_start;
5337 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5338 if (ret < 0)
5339 goto out;
5340 if (ret > 0 && path->slots[0] > 0)
5341 path->slots[0]--;
5342
5343 while (search_start < end) {
5344 struct extent_buffer *leaf = path->nodes[0];
5345 int slot = path->slots[0];
5346 struct btrfs_file_extent_item *fi;
5347 u64 extent_end;
5348
5349 if (slot >= btrfs_header_nritems(leaf)) {
5350 ret = btrfs_next_leaf(root, path);
5351 if (ret < 0)
5352 goto out;
5353 else if (ret > 0)
5354 break;
5355 continue;
5356 }
5357
5358 btrfs_item_key_to_cpu(leaf, &key, slot);
5359 if (key.objectid < sctx->cur_ino ||
5360 key.type < BTRFS_EXTENT_DATA_KEY)
5361 goto next;
5362 if (key.objectid > sctx->cur_ino ||
5363 key.type > BTRFS_EXTENT_DATA_KEY ||
5364 key.offset >= end)
5365 break;
5366
5367 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5368 if (btrfs_file_extent_type(leaf, fi) ==
5369 BTRFS_FILE_EXTENT_INLINE) {
5370 u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);
5371
5372 extent_end = ALIGN(key.offset + size,
5373 root->fs_info->sectorsize);
5374 } else {
5375 extent_end = key.offset +
5376 btrfs_file_extent_num_bytes(leaf, fi);
5377 }
5378 if (extent_end <= start)
5379 goto next;
5380 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5381 search_start = extent_end;
5382 goto next;
5383 }
5384 ret = 0;
5385 goto out;
5386next:
5387 path->slots[0]++;
5388 }
5389 ret = 1;
5390out:
5391 btrfs_free_path(path);
5392 return ret;
5393}
5394
16e7549f
JB
5395static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5396 struct btrfs_key *key)
5397{
5398 struct btrfs_file_extent_item *fi;
5399 u64 extent_end;
5400 u8 type;
5401 int ret = 0;
5402
5403 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5404 return 0;
5405
5406 if (sctx->cur_inode_last_extent == (u64)-1) {
5407 ret = get_last_extent(sctx, key->offset - 1);
5408 if (ret)
5409 return ret;
5410 }
5411
5412 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5413 struct btrfs_file_extent_item);
5414 type = btrfs_file_extent_type(path->nodes[0], fi);
5415 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
5416 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5417 path->slots[0], fi);
16e7549f 5418 extent_end = ALIGN(key->offset + size,
da17066c 5419 sctx->send_root->fs_info->sectorsize);
16e7549f
JB
5420 } else {
5421 extent_end = key->offset +
5422 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5423 }
bf54f412
FDBM
5424
5425 if (path->slots[0] == 0 &&
5426 sctx->cur_inode_last_extent < key->offset) {
5427 /*
5428 * We might have skipped entire leafs that contained only
5429 * file extent items for our current inode. These leafs have
5430 * a generation number smaller (older) than the one in the
5431 * current leaf and the leaf our last extent came from, and
5432 * are located between these 2 leafs.
5433 */
5434 ret = get_last_extent(sctx, key->offset - 1);
5435 if (ret)
5436 return ret;
5437 }
5438
82bfb2e7
FM
5439 if (sctx->cur_inode_last_extent < key->offset) {
5440 ret = range_is_hole_in_parent(sctx,
5441 sctx->cur_inode_last_extent,
5442 key->offset);
5443 if (ret < 0)
5444 return ret;
5445 else if (ret == 0)
5446 ret = send_hole(sctx, key->offset);
5447 else
5448 ret = 0;
5449 }
16e7549f
JB
5450 sctx->cur_inode_last_extent = extent_end;
5451 return ret;
5452}
5453
31db9f7c
AB
5454static int process_extent(struct send_ctx *sctx,
5455 struct btrfs_path *path,
5456 struct btrfs_key *key)
5457{
31db9f7c 5458 struct clone_root *found_clone = NULL;
57cfd462 5459 int ret = 0;
31db9f7c
AB
5460
5461 if (S_ISLNK(sctx->cur_inode_mode))
5462 return 0;
5463
5464 if (sctx->parent_root && !sctx->cur_inode_new) {
5465 ret = is_extent_unchanged(sctx, path, key);
5466 if (ret < 0)
5467 goto out;
5468 if (ret) {
5469 ret = 0;
16e7549f 5470 goto out_hole;
31db9f7c 5471 }
57cfd462
JB
5472 } else {
5473 struct btrfs_file_extent_item *ei;
5474 u8 type;
5475
5476 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5477 struct btrfs_file_extent_item);
5478 type = btrfs_file_extent_type(path->nodes[0], ei);
5479 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5480 type == BTRFS_FILE_EXTENT_REG) {
5481 /*
5482 * The send spec does not have a prealloc command yet,
5483 * so just leave a hole for prealloc'ed extents until
5484 * we have enough commands queued up to justify rev'ing
5485 * the send spec.
5486 */
5487 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5488 ret = 0;
5489 goto out;
5490 }
5491
5492 /* Have a hole, just skip it. */
5493 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5494 ret = 0;
5495 goto out;
5496 }
5497 }
31db9f7c
AB
5498 }
5499
5500 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5501 sctx->cur_inode_size, &found_clone);
5502 if (ret != -ENOENT && ret < 0)
5503 goto out;
5504
5505 ret = send_write_or_clone(sctx, path, key, found_clone);
16e7549f
JB
5506 if (ret)
5507 goto out;
5508out_hole:
5509 ret = maybe_send_hole(sctx, path, key);
31db9f7c
AB
5510out:
5511 return ret;
5512}
5513
5514static int process_all_extents(struct send_ctx *sctx)
5515{
5516 int ret;
5517 struct btrfs_root *root;
5518 struct btrfs_path *path;
5519 struct btrfs_key key;
5520 struct btrfs_key found_key;
5521 struct extent_buffer *eb;
5522 int slot;
5523
5524 root = sctx->send_root;
5525 path = alloc_path_for_send();
5526 if (!path)
5527 return -ENOMEM;
5528
5529 key.objectid = sctx->cmp_key->objectid;
5530 key.type = BTRFS_EXTENT_DATA_KEY;
5531 key.offset = 0;
7fdd29d0
FDBM
5532 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5533 if (ret < 0)
5534 goto out;
31db9f7c 5535
7fdd29d0 5536 while (1) {
31db9f7c
AB
5537 eb = path->nodes[0];
5538 slot = path->slots[0];
7fdd29d0
FDBM
5539
5540 if (slot >= btrfs_header_nritems(eb)) {
5541 ret = btrfs_next_leaf(root, path);
5542 if (ret < 0) {
5543 goto out;
5544 } else if (ret > 0) {
5545 ret = 0;
5546 break;
5547 }
5548 continue;
5549 }
5550
31db9f7c
AB
5551 btrfs_item_key_to_cpu(eb, &found_key, slot);
5552
5553 if (found_key.objectid != key.objectid ||
5554 found_key.type != key.type) {
5555 ret = 0;
5556 goto out;
5557 }
5558
5559 ret = process_extent(sctx, path, &found_key);
5560 if (ret < 0)
5561 goto out;
5562
7fdd29d0 5563 path->slots[0]++;
31db9f7c
AB
5564 }
5565
5566out:
5567 btrfs_free_path(path);
5568 return ret;
5569}
5570
9f03740a
FDBM
5571static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5572 int *pending_move,
5573 int *refs_processed)
31db9f7c
AB
5574{
5575 int ret = 0;
5576
5577 if (sctx->cur_ino == 0)
5578 goto out;
5579 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
96b5bd77 5580 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
5581 goto out;
5582 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5583 goto out;
5584
9f03740a 5585 ret = process_recorded_refs(sctx, pending_move);
e479d9bb
AB
5586 if (ret < 0)
5587 goto out;
5588
9f03740a 5589 *refs_processed = 1;
31db9f7c
AB
5590out:
5591 return ret;
5592}
5593
5594static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5595{
5596 int ret = 0;
5597 u64 left_mode;
5598 u64 left_uid;
5599 u64 left_gid;
5600 u64 right_mode;
5601 u64 right_uid;
5602 u64 right_gid;
5603 int need_chmod = 0;
5604 int need_chown = 0;
9f03740a
FDBM
5605 int pending_move = 0;
5606 int refs_processed = 0;
31db9f7c 5607
9f03740a
FDBM
5608 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5609 &refs_processed);
31db9f7c
AB
5610 if (ret < 0)
5611 goto out;
5612
9f03740a
FDBM
5613 /*
5614 * We have processed the refs and thus need to advance send_progress.
5615 * Now, calls to get_cur_xxx will take the updated refs of the current
5616 * inode into account.
5617 *
5618 * On the other hand, if our current inode is a directory and couldn't
5619 * be moved/renamed because its parent was renamed/moved too and it has
5620 * a higher inode number, we can only move/rename our current inode
5621 * after we moved/renamed its parent. Therefore in this case operate on
5622 * the old path (pre move/rename) of our current inode, and the
5623 * move/rename will be performed later.
5624 */
5625 if (refs_processed && !pending_move)
5626 sctx->send_progress = sctx->cur_ino + 1;
5627
31db9f7c
AB
5628 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5629 goto out;
5630 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5631 goto out;
5632
5633 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
85a7b33b 5634 &left_mode, &left_uid, &left_gid, NULL);
31db9f7c
AB
5635 if (ret < 0)
5636 goto out;
5637
e2d044fe
AL
5638 if (!sctx->parent_root || sctx->cur_inode_new) {
5639 need_chown = 1;
5640 if (!S_ISLNK(sctx->cur_inode_mode))
31db9f7c 5641 need_chmod = 1;
e2d044fe
AL
5642 } else {
5643 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5644 NULL, NULL, &right_mode, &right_uid,
5645 &right_gid, NULL);
5646 if (ret < 0)
5647 goto out;
31db9f7c 5648
e2d044fe
AL
5649 if (left_uid != right_uid || left_gid != right_gid)
5650 need_chown = 1;
5651 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5652 need_chmod = 1;
31db9f7c
AB
5653 }
5654
5655 if (S_ISREG(sctx->cur_inode_mode)) {
16e7549f 5656 if (need_send_hole(sctx)) {
766b5e5a
FM
5657 if (sctx->cur_inode_last_extent == (u64)-1 ||
5658 sctx->cur_inode_last_extent <
5659 sctx->cur_inode_size) {
16e7549f
JB
5660 ret = get_last_extent(sctx, (u64)-1);
5661 if (ret)
5662 goto out;
5663 }
5664 if (sctx->cur_inode_last_extent <
5665 sctx->cur_inode_size) {
5666 ret = send_hole(sctx, sctx->cur_inode_size);
5667 if (ret)
5668 goto out;
5669 }
5670 }
31db9f7c
AB
5671 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5672 sctx->cur_inode_size);
5673 if (ret < 0)
5674 goto out;
5675 }
5676
5677 if (need_chown) {
5678 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5679 left_uid, left_gid);
5680 if (ret < 0)
5681 goto out;
5682 }
5683 if (need_chmod) {
5684 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5685 left_mode);
5686 if (ret < 0)
5687 goto out;
5688 }
5689
5690 /*
9f03740a
FDBM
5691 * If other directory inodes depended on our current directory
5692 * inode's move/rename, now do their move/rename operations.
31db9f7c 5693 */
9f03740a
FDBM
5694 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5695 ret = apply_children_dir_moves(sctx);
5696 if (ret)
5697 goto out;
fcbd2154
FM
5698 /*
5699 * Need to send that every time, no matter if it actually
5700 * changed between the two trees as we have done changes to
5701 * the inode before. If our inode is a directory and it's
5702 * waiting to be moved/renamed, we will send its utimes when
5703 * it's moved/renamed, therefore we don't need to do it here.
5704 */
5705 sctx->send_progress = sctx->cur_ino + 1;
5706 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5707 if (ret < 0)
5708 goto out;
9f03740a
FDBM
5709 }
5710
31db9f7c
AB
5711out:
5712 return ret;
5713}
5714
5715static int changed_inode(struct send_ctx *sctx,
5716 enum btrfs_compare_tree_result result)
5717{
5718 int ret = 0;
5719 struct btrfs_key *key = sctx->cmp_key;
5720 struct btrfs_inode_item *left_ii = NULL;
5721 struct btrfs_inode_item *right_ii = NULL;
5722 u64 left_gen = 0;
5723 u64 right_gen = 0;
5724
31db9f7c
AB
5725 sctx->cur_ino = key->objectid;
5726 sctx->cur_inode_new_gen = 0;
16e7549f 5727 sctx->cur_inode_last_extent = (u64)-1;
e479d9bb
AB
5728
5729 /*
5730 * Set send_progress to current inode. This will tell all get_cur_xxx
5731 * functions that the current inode's refs are not updated yet. Later,
5732 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5733 */
31db9f7c
AB
5734 sctx->send_progress = sctx->cur_ino;
5735
5736 if (result == BTRFS_COMPARE_TREE_NEW ||
5737 result == BTRFS_COMPARE_TREE_CHANGED) {
5738 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5739 sctx->left_path->slots[0],
5740 struct btrfs_inode_item);
5741 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5742 left_ii);
5743 } else {
5744 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5745 sctx->right_path->slots[0],
5746 struct btrfs_inode_item);
5747 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5748 right_ii);
5749 }
5750 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5751 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5752 sctx->right_path->slots[0],
5753 struct btrfs_inode_item);
5754
5755 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5756 right_ii);
6d85ed05
AB
5757
5758 /*
5759 * The cur_ino = root dir case is special here. We can't treat
5760 * the inode as deleted+reused because it would generate a
5761 * stream that tries to delete/mkdir the root dir.
5762 */
5763 if (left_gen != right_gen &&
5764 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
31db9f7c
AB
5765 sctx->cur_inode_new_gen = 1;
5766 }
5767
5768 if (result == BTRFS_COMPARE_TREE_NEW) {
5769 sctx->cur_inode_gen = left_gen;
5770 sctx->cur_inode_new = 1;
5771 sctx->cur_inode_deleted = 0;
5772 sctx->cur_inode_size = btrfs_inode_size(
5773 sctx->left_path->nodes[0], left_ii);
5774 sctx->cur_inode_mode = btrfs_inode_mode(
5775 sctx->left_path->nodes[0], left_ii);
644d1940
LB
5776 sctx->cur_inode_rdev = btrfs_inode_rdev(
5777 sctx->left_path->nodes[0], left_ii);
31db9f7c 5778 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
1f4692da 5779 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
5780 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5781 sctx->cur_inode_gen = right_gen;
5782 sctx->cur_inode_new = 0;
5783 sctx->cur_inode_deleted = 1;
5784 sctx->cur_inode_size = btrfs_inode_size(
5785 sctx->right_path->nodes[0], right_ii);
5786 sctx->cur_inode_mode = btrfs_inode_mode(
5787 sctx->right_path->nodes[0], right_ii);
5788 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
766702ef
AB
5789 /*
5790 * We need to do some special handling in case the inode was
5791 * reported as changed with a changed generation number. This
5792 * means that the original inode was deleted and new inode
5793 * reused the same inum. So we have to treat the old inode as
5794 * deleted and the new one as new.
5795 */
31db9f7c 5796 if (sctx->cur_inode_new_gen) {
766702ef
AB
5797 /*
5798 * First, process the inode as if it was deleted.
5799 */
31db9f7c
AB
5800 sctx->cur_inode_gen = right_gen;
5801 sctx->cur_inode_new = 0;
5802 sctx->cur_inode_deleted = 1;
5803 sctx->cur_inode_size = btrfs_inode_size(
5804 sctx->right_path->nodes[0], right_ii);
5805 sctx->cur_inode_mode = btrfs_inode_mode(
5806 sctx->right_path->nodes[0], right_ii);
5807 ret = process_all_refs(sctx,
5808 BTRFS_COMPARE_TREE_DELETED);
5809 if (ret < 0)
5810 goto out;
5811
766702ef
AB
5812 /*
5813 * Now process the inode as if it was new.
5814 */
31db9f7c
AB
5815 sctx->cur_inode_gen = left_gen;
5816 sctx->cur_inode_new = 1;
5817 sctx->cur_inode_deleted = 0;
5818 sctx->cur_inode_size = btrfs_inode_size(
5819 sctx->left_path->nodes[0], left_ii);
5820 sctx->cur_inode_mode = btrfs_inode_mode(
5821 sctx->left_path->nodes[0], left_ii);
644d1940
LB
5822 sctx->cur_inode_rdev = btrfs_inode_rdev(
5823 sctx->left_path->nodes[0], left_ii);
1f4692da 5824 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
5825 if (ret < 0)
5826 goto out;
5827
5828 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5829 if (ret < 0)
5830 goto out;
e479d9bb
AB
5831 /*
5832 * Advance send_progress now as we did not get into
5833 * process_recorded_refs_if_needed in the new_gen case.
5834 */
5835 sctx->send_progress = sctx->cur_ino + 1;
766702ef
AB
5836
5837 /*
5838 * Now process all extents and xattrs of the inode as if
5839 * they were all new.
5840 */
31db9f7c
AB
5841 ret = process_all_extents(sctx);
5842 if (ret < 0)
5843 goto out;
5844 ret = process_all_new_xattrs(sctx);
5845 if (ret < 0)
5846 goto out;
5847 } else {
5848 sctx->cur_inode_gen = left_gen;
5849 sctx->cur_inode_new = 0;
5850 sctx->cur_inode_new_gen = 0;
5851 sctx->cur_inode_deleted = 0;
5852 sctx->cur_inode_size = btrfs_inode_size(
5853 sctx->left_path->nodes[0], left_ii);
5854 sctx->cur_inode_mode = btrfs_inode_mode(
5855 sctx->left_path->nodes[0], left_ii);
5856 }
5857 }
5858
5859out:
5860 return ret;
5861}
5862
766702ef
AB
5863/*
5864 * We have to process new refs before deleted refs, but compare_trees gives us
5865 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5866 * first and later process them in process_recorded_refs.
5867 * For the cur_inode_new_gen case, we skip recording completely because
5868 * changed_inode did already initiate processing of refs. The reason for this is
5869 * that in this case, compare_tree actually compares the refs of 2 different
5870 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5871 * refs of the right tree as deleted and all refs of the left tree as new.
5872 */
31db9f7c
AB
5873static int changed_ref(struct send_ctx *sctx,
5874 enum btrfs_compare_tree_result result)
5875{
5876 int ret = 0;
5877
95155585
FM
5878 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5879 inconsistent_snapshot_error(sctx, result, "reference");
5880 return -EIO;
5881 }
31db9f7c
AB
5882
5883 if (!sctx->cur_inode_new_gen &&
5884 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5885 if (result == BTRFS_COMPARE_TREE_NEW)
5886 ret = record_new_ref(sctx);
5887 else if (result == BTRFS_COMPARE_TREE_DELETED)
5888 ret = record_deleted_ref(sctx);
5889 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5890 ret = record_changed_ref(sctx);
5891 }
5892
5893 return ret;
5894}
5895
766702ef
AB
5896/*
5897 * Process new/deleted/changed xattrs. We skip processing in the
5898 * cur_inode_new_gen case because changed_inode did already initiate processing
5899 * of xattrs. The reason is the same as in changed_ref
5900 */
31db9f7c
AB
5901static int changed_xattr(struct send_ctx *sctx,
5902 enum btrfs_compare_tree_result result)
5903{
5904 int ret = 0;
5905
95155585
FM
5906 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5907 inconsistent_snapshot_error(sctx, result, "xattr");
5908 return -EIO;
5909 }
31db9f7c
AB
5910
5911 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5912 if (result == BTRFS_COMPARE_TREE_NEW)
5913 ret = process_new_xattr(sctx);
5914 else if (result == BTRFS_COMPARE_TREE_DELETED)
5915 ret = process_deleted_xattr(sctx);
5916 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5917 ret = process_changed_xattr(sctx);
5918 }
5919
5920 return ret;
5921}
5922
766702ef
AB
5923/*
5924 * Process new/deleted/changed extents. We skip processing in the
5925 * cur_inode_new_gen case because changed_inode did already initiate processing
5926 * of extents. The reason is the same as in changed_ref
5927 */
31db9f7c
AB
5928static int changed_extent(struct send_ctx *sctx,
5929 enum btrfs_compare_tree_result result)
5930{
5931 int ret = 0;
5932
95155585 5933 if (sctx->cur_ino != sctx->cmp_key->objectid) {
d5e84fd8
FM
5934
5935 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5936 struct extent_buffer *leaf_l;
5937 struct extent_buffer *leaf_r;
5938 struct btrfs_file_extent_item *ei_l;
5939 struct btrfs_file_extent_item *ei_r;
5940
5941 leaf_l = sctx->left_path->nodes[0];
5942 leaf_r = sctx->right_path->nodes[0];
5943 ei_l = btrfs_item_ptr(leaf_l,
5944 sctx->left_path->slots[0],
5945 struct btrfs_file_extent_item);
5946 ei_r = btrfs_item_ptr(leaf_r,
5947 sctx->right_path->slots[0],
5948 struct btrfs_file_extent_item);
5949
5950 /*
5951 * We may have found an extent item that has changed
5952 * only its disk_bytenr field and the corresponding
5953 * inode item was not updated. This case happens due to
5954 * very specific timings during relocation when a leaf
5955 * that contains file extent items is COWed while
5956 * relocation is ongoing and its in the stage where it
5957 * updates data pointers. So when this happens we can
5958 * safely ignore it since we know it's the same extent,
5959 * but just at different logical and physical locations
5960 * (when an extent is fully replaced with a new one, we
5961 * know the generation number must have changed too,
5962 * since snapshot creation implies committing the current
5963 * transaction, and the inode item must have been updated
5964 * as well).
5965 * This replacement of the disk_bytenr happens at
5966 * relocation.c:replace_file_extents() through
5967 * relocation.c:btrfs_reloc_cow_block().
5968 */
5969 if (btrfs_file_extent_generation(leaf_l, ei_l) ==
5970 btrfs_file_extent_generation(leaf_r, ei_r) &&
5971 btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
5972 btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
5973 btrfs_file_extent_compression(leaf_l, ei_l) ==
5974 btrfs_file_extent_compression(leaf_r, ei_r) &&
5975 btrfs_file_extent_encryption(leaf_l, ei_l) ==
5976 btrfs_file_extent_encryption(leaf_r, ei_r) &&
5977 btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
5978 btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
5979 btrfs_file_extent_type(leaf_l, ei_l) ==
5980 btrfs_file_extent_type(leaf_r, ei_r) &&
5981 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
5982 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
5983 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
5984 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
5985 btrfs_file_extent_offset(leaf_l, ei_l) ==
5986 btrfs_file_extent_offset(leaf_r, ei_r) &&
5987 btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
5988 btrfs_file_extent_num_bytes(leaf_r, ei_r))
5989 return 0;
5990 }
5991
95155585
FM
5992 inconsistent_snapshot_error(sctx, result, "extent");
5993 return -EIO;
5994 }
31db9f7c
AB
5995
5996 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5997 if (result != BTRFS_COMPARE_TREE_DELETED)
5998 ret = process_extent(sctx, sctx->left_path,
5999 sctx->cmp_key);
6000 }
6001
6002 return ret;
6003}
6004
ba5e8f2e
JB
6005static int dir_changed(struct send_ctx *sctx, u64 dir)
6006{
6007 u64 orig_gen, new_gen;
6008 int ret;
6009
6010 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6011 NULL, NULL);
6012 if (ret)
6013 return ret;
6014
6015 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6016 NULL, NULL, NULL);
6017 if (ret)
6018 return ret;
6019
6020 return (orig_gen != new_gen) ? 1 : 0;
6021}
6022
6023static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6024 struct btrfs_key *key)
6025{
6026 struct btrfs_inode_extref *extref;
6027 struct extent_buffer *leaf;
6028 u64 dirid = 0, last_dirid = 0;
6029 unsigned long ptr;
6030 u32 item_size;
6031 u32 cur_offset = 0;
6032 int ref_name_len;
6033 int ret = 0;
6034
6035 /* Easy case, just check this one dirid */
6036 if (key->type == BTRFS_INODE_REF_KEY) {
6037 dirid = key->offset;
6038
6039 ret = dir_changed(sctx, dirid);
6040 goto out;
6041 }
6042
6043 leaf = path->nodes[0];
6044 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6045 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6046 while (cur_offset < item_size) {
6047 extref = (struct btrfs_inode_extref *)(ptr +
6048 cur_offset);
6049 dirid = btrfs_inode_extref_parent(leaf, extref);
6050 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6051 cur_offset += ref_name_len + sizeof(*extref);
6052 if (dirid == last_dirid)
6053 continue;
6054 ret = dir_changed(sctx, dirid);
6055 if (ret)
6056 break;
6057 last_dirid = dirid;
6058 }
6059out:
6060 return ret;
6061}
6062
766702ef
AB
6063/*
6064 * Updates compare related fields in sctx and simply forwards to the actual
6065 * changed_xxx functions.
6066 */
31db9f7c
AB
6067static int changed_cb(struct btrfs_root *left_root,
6068 struct btrfs_root *right_root,
6069 struct btrfs_path *left_path,
6070 struct btrfs_path *right_path,
6071 struct btrfs_key *key,
6072 enum btrfs_compare_tree_result result,
6073 void *ctx)
6074{
6075 int ret = 0;
6076 struct send_ctx *sctx = ctx;
6077
ba5e8f2e 6078 if (result == BTRFS_COMPARE_TREE_SAME) {
16e7549f
JB
6079 if (key->type == BTRFS_INODE_REF_KEY ||
6080 key->type == BTRFS_INODE_EXTREF_KEY) {
6081 ret = compare_refs(sctx, left_path, key);
6082 if (!ret)
6083 return 0;
6084 if (ret < 0)
6085 return ret;
6086 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6087 return maybe_send_hole(sctx, left_path, key);
6088 } else {
ba5e8f2e 6089 return 0;
16e7549f 6090 }
ba5e8f2e
JB
6091 result = BTRFS_COMPARE_TREE_CHANGED;
6092 ret = 0;
6093 }
6094
31db9f7c
AB
6095 sctx->left_path = left_path;
6096 sctx->right_path = right_path;
6097 sctx->cmp_key = key;
6098
6099 ret = finish_inode_if_needed(sctx, 0);
6100 if (ret < 0)
6101 goto out;
6102
2981e225
AB
6103 /* Ignore non-FS objects */
6104 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6105 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6106 goto out;
6107
31db9f7c
AB
6108 if (key->type == BTRFS_INODE_ITEM_KEY)
6109 ret = changed_inode(sctx, result);
96b5bd77
JS
6110 else if (key->type == BTRFS_INODE_REF_KEY ||
6111 key->type == BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
6112 ret = changed_ref(sctx, result);
6113 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6114 ret = changed_xattr(sctx, result);
6115 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6116 ret = changed_extent(sctx, result);
6117
6118out:
6119 return ret;
6120}
6121
6122static int full_send_tree(struct send_ctx *sctx)
6123{
6124 int ret;
31db9f7c
AB
6125 struct btrfs_root *send_root = sctx->send_root;
6126 struct btrfs_key key;
6127 struct btrfs_key found_key;
6128 struct btrfs_path *path;
6129 struct extent_buffer *eb;
6130 int slot;
31db9f7c
AB
6131
6132 path = alloc_path_for_send();
6133 if (!path)
6134 return -ENOMEM;
6135
31db9f7c
AB
6136 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6137 key.type = BTRFS_INODE_ITEM_KEY;
6138 key.offset = 0;
6139
31db9f7c
AB
6140 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6141 if (ret < 0)
6142 goto out;
6143 if (ret)
6144 goto out_finish;
6145
6146 while (1) {
31db9f7c
AB
6147 eb = path->nodes[0];
6148 slot = path->slots[0];
6149 btrfs_item_key_to_cpu(eb, &found_key, slot);
6150
6151 ret = changed_cb(send_root, NULL, path, NULL,
6152 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
6153 if (ret < 0)
6154 goto out;
6155
6156 key.objectid = found_key.objectid;
6157 key.type = found_key.type;
6158 key.offset = found_key.offset + 1;
6159
6160 ret = btrfs_next_item(send_root, path);
6161 if (ret < 0)
6162 goto out;
6163 if (ret) {
6164 ret = 0;
6165 break;
6166 }
6167 }
6168
6169out_finish:
6170 ret = finish_inode_if_needed(sctx, 1);
6171
6172out:
6173 btrfs_free_path(path);
31db9f7c
AB
6174 return ret;
6175}
6176
6177static int send_subvol(struct send_ctx *sctx)
6178{
6179 int ret;
6180
c2c71324
SB
6181 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6182 ret = send_header(sctx);
6183 if (ret < 0)
6184 goto out;
6185 }
31db9f7c
AB
6186
6187 ret = send_subvol_begin(sctx);
6188 if (ret < 0)
6189 goto out;
6190
6191 if (sctx->parent_root) {
6192 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6193 changed_cb, sctx);
6194 if (ret < 0)
6195 goto out;
6196 ret = finish_inode_if_needed(sctx, 1);
6197 if (ret < 0)
6198 goto out;
6199 } else {
6200 ret = full_send_tree(sctx);
6201 if (ret < 0)
6202 goto out;
6203 }
6204
6205out:
31db9f7c
AB
6206 free_recorded_refs(sctx);
6207 return ret;
6208}
6209
e5fa8f86
FM
6210/*
6211 * If orphan cleanup did remove any orphans from a root, it means the tree
6212 * was modified and therefore the commit root is not the same as the current
6213 * root anymore. This is a problem, because send uses the commit root and
6214 * therefore can see inode items that don't exist in the current root anymore,
6215 * and for example make calls to btrfs_iget, which will do tree lookups based
6216 * on the current root and not on the commit root. Those lookups will fail,
6217 * returning a -ESTALE error, and making send fail with that error. So make
6218 * sure a send does not see any orphans we have just removed, and that it will
6219 * see the same inodes regardless of whether a transaction commit happened
6220 * before it started (meaning that the commit root will be the same as the
6221 * current root) or not.
6222 */
6223static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6224{
6225 int i;
6226 struct btrfs_trans_handle *trans = NULL;
6227
6228again:
6229 if (sctx->parent_root &&
6230 sctx->parent_root->node != sctx->parent_root->commit_root)
6231 goto commit_trans;
6232
6233 for (i = 0; i < sctx->clone_roots_cnt; i++)
6234 if (sctx->clone_roots[i].root->node !=
6235 sctx->clone_roots[i].root->commit_root)
6236 goto commit_trans;
6237
6238 if (trans)
3a45bb20 6239 return btrfs_end_transaction(trans);
e5fa8f86
FM
6240
6241 return 0;
6242
6243commit_trans:
6244 /* Use any root, all fs roots will get their commit roots updated. */
6245 if (!trans) {
6246 trans = btrfs_join_transaction(sctx->send_root);
6247 if (IS_ERR(trans))
6248 return PTR_ERR(trans);
6249 goto again;
6250 }
6251
3a45bb20 6252 return btrfs_commit_transaction(trans);
e5fa8f86
FM
6253}
6254
66ef7d65
DS
6255static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6256{
6257 spin_lock(&root->root_item_lock);
6258 root->send_in_progress--;
6259 /*
6260 * Not much left to do, we don't know why it's unbalanced and
6261 * can't blindly reset it to 0.
6262 */
6263 if (root->send_in_progress < 0)
6264 btrfs_err(root->fs_info,
0b246afa
JM
6265 "send_in_progres unbalanced %d root %llu",
6266 root->send_in_progress, root->root_key.objectid);
66ef7d65
DS
6267 spin_unlock(&root->root_item_lock);
6268}
6269
31db9f7c
AB
6270long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6271{
6272 int ret = 0;
0b246afa
JM
6273 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6274 struct btrfs_fs_info *fs_info = send_root->fs_info;
31db9f7c 6275 struct btrfs_root *clone_root;
31db9f7c
AB
6276 struct btrfs_ioctl_send_args *arg = NULL;
6277 struct btrfs_key key;
31db9f7c
AB
6278 struct send_ctx *sctx = NULL;
6279 u32 i;
6280 u64 *clone_sources_tmp = NULL;
2c686537 6281 int clone_sources_to_rollback = 0;
e55d1153 6282 unsigned alloc_size;
896c14f9 6283 int sort_clone_roots = 0;
18f687d5 6284 int index;
31db9f7c
AB
6285
6286 if (!capable(CAP_SYS_ADMIN))
6287 return -EPERM;
6288
2c686537
DS
6289 /*
6290 * The subvolume must remain read-only during send, protect against
521e0546 6291 * making it RW. This also protects against deletion.
2c686537
DS
6292 */
6293 spin_lock(&send_root->root_item_lock);
6294 send_root->send_in_progress++;
6295 spin_unlock(&send_root->root_item_lock);
6296
139f807a
JB
6297 /*
6298 * This is done when we lookup the root, it should already be complete
6299 * by the time we get here.
6300 */
6301 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6302
2c686537
DS
6303 /*
6304 * Userspace tools do the checks and warn the user if it's
6305 * not RO.
6306 */
6307 if (!btrfs_root_readonly(send_root)) {
6308 ret = -EPERM;
6309 goto out;
6310 }
6311
31db9f7c
AB
6312 arg = memdup_user(arg_, sizeof(*arg));
6313 if (IS_ERR(arg)) {
6314 ret = PTR_ERR(arg);
6315 arg = NULL;
6316 goto out;
6317 }
6318
457ae726
DC
6319 /*
6320 * Check that we don't overflow at later allocations, we request
6321 * clone_sources_count + 1 items, and compare to unsigned long inside
6322 * access_ok.
6323 */
f5ecec3c 6324 if (arg->clone_sources_count >
457ae726 6325 ULONG_MAX / sizeof(struct clone_root) - 1) {
f5ecec3c
DC
6326 ret = -EINVAL;
6327 goto out;
6328 }
6329
31db9f7c 6330 if (!access_ok(VERIFY_READ, arg->clone_sources,
700ff4f0
DC
6331 sizeof(*arg->clone_sources) *
6332 arg->clone_sources_count)) {
31db9f7c
AB
6333 ret = -EFAULT;
6334 goto out;
6335 }
6336
c2c71324 6337 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
cb95e7bf
MF
6338 ret = -EINVAL;
6339 goto out;
6340 }
6341
e780b0d1 6342 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
31db9f7c
AB
6343 if (!sctx) {
6344 ret = -ENOMEM;
6345 goto out;
6346 }
6347
6348 INIT_LIST_HEAD(&sctx->new_refs);
6349 INIT_LIST_HEAD(&sctx->deleted_refs);
e780b0d1 6350 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
31db9f7c
AB
6351 INIT_LIST_HEAD(&sctx->name_cache_list);
6352
cb95e7bf
MF
6353 sctx->flags = arg->flags;
6354
31db9f7c 6355 sctx->send_filp = fget(arg->send_fd);
ecc7ada7
TI
6356 if (!sctx->send_filp) {
6357 ret = -EBADF;
31db9f7c
AB
6358 goto out;
6359 }
6360
31db9f7c 6361 sctx->send_root = send_root;
521e0546
DS
6362 /*
6363 * Unlikely but possible, if the subvolume is marked for deletion but
6364 * is slow to remove the directory entry, send can still be started
6365 */
6366 if (btrfs_root_dead(sctx->send_root)) {
6367 ret = -EPERM;
6368 goto out;
6369 }
6370
31db9f7c
AB
6371 sctx->clone_roots_cnt = arg->clone_sources_count;
6372
6373 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
752ade68 6374 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
31db9f7c 6375 if (!sctx->send_buf) {
752ade68
MH
6376 ret = -ENOMEM;
6377 goto out;
31db9f7c
AB
6378 }
6379
752ade68 6380 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
31db9f7c 6381 if (!sctx->read_buf) {
752ade68
MH
6382 ret = -ENOMEM;
6383 goto out;
31db9f7c
AB
6384 }
6385
9f03740a
FDBM
6386 sctx->pending_dir_moves = RB_ROOT;
6387 sctx->waiting_dir_moves = RB_ROOT;
9dc44214 6388 sctx->orphan_dirs = RB_ROOT;
9f03740a 6389
e55d1153
DS
6390 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6391
818e010b 6392 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
31db9f7c 6393 if (!sctx->clone_roots) {
818e010b
DS
6394 ret = -ENOMEM;
6395 goto out;
31db9f7c
AB
6396 }
6397
e55d1153
DS
6398 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6399
31db9f7c 6400 if (arg->clone_sources_count) {
752ade68 6401 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
31db9f7c 6402 if (!clone_sources_tmp) {
752ade68
MH
6403 ret = -ENOMEM;
6404 goto out;
31db9f7c
AB
6405 }
6406
6407 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
e55d1153 6408 alloc_size);
31db9f7c
AB
6409 if (ret) {
6410 ret = -EFAULT;
6411 goto out;
6412 }
6413
6414 for (i = 0; i < arg->clone_sources_count; i++) {
6415 key.objectid = clone_sources_tmp[i];
6416 key.type = BTRFS_ROOT_ITEM_KEY;
6417 key.offset = (u64)-1;
18f687d5
WS
6418
6419 index = srcu_read_lock(&fs_info->subvol_srcu);
6420
31db9f7c 6421 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
31db9f7c 6422 if (IS_ERR(clone_root)) {
18f687d5 6423 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
6424 ret = PTR_ERR(clone_root);
6425 goto out;
6426 }
2c686537 6427 spin_lock(&clone_root->root_item_lock);
5cc2b17e
FM
6428 if (!btrfs_root_readonly(clone_root) ||
6429 btrfs_root_dead(clone_root)) {
2c686537 6430 spin_unlock(&clone_root->root_item_lock);
18f687d5 6431 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
6432 ret = -EPERM;
6433 goto out;
6434 }
2f1f465a 6435 clone_root->send_in_progress++;
2c686537 6436 spin_unlock(&clone_root->root_item_lock);
18f687d5
WS
6437 srcu_read_unlock(&fs_info->subvol_srcu, index);
6438
31db9f7c 6439 sctx->clone_roots[i].root = clone_root;
2f1f465a 6440 clone_sources_to_rollback = i + 1;
31db9f7c 6441 }
2f91306a 6442 kvfree(clone_sources_tmp);
31db9f7c
AB
6443 clone_sources_tmp = NULL;
6444 }
6445
6446 if (arg->parent_root) {
6447 key.objectid = arg->parent_root;
6448 key.type = BTRFS_ROOT_ITEM_KEY;
6449 key.offset = (u64)-1;
18f687d5
WS
6450
6451 index = srcu_read_lock(&fs_info->subvol_srcu);
6452
31db9f7c 6453 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
b1b19596 6454 if (IS_ERR(sctx->parent_root)) {
18f687d5 6455 srcu_read_unlock(&fs_info->subvol_srcu, index);
b1b19596 6456 ret = PTR_ERR(sctx->parent_root);
31db9f7c
AB
6457 goto out;
6458 }
18f687d5 6459
2c686537
DS
6460 spin_lock(&sctx->parent_root->root_item_lock);
6461 sctx->parent_root->send_in_progress++;
521e0546
DS
6462 if (!btrfs_root_readonly(sctx->parent_root) ||
6463 btrfs_root_dead(sctx->parent_root)) {
2c686537 6464 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5 6465 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
6466 ret = -EPERM;
6467 goto out;
6468 }
6469 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5
WS
6470
6471 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
6472 }
6473
6474 /*
6475 * Clones from send_root are allowed, but only if the clone source
6476 * is behind the current send position. This is checked while searching
6477 * for possible clone sources.
6478 */
6479 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6480
6481 /* We do a bsearch later */
6482 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6483 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6484 NULL);
896c14f9 6485 sort_clone_roots = 1;
31db9f7c 6486
e5fa8f86
FM
6487 ret = ensure_commit_roots_uptodate(sctx);
6488 if (ret)
6489 goto out;
6490
2755a0de 6491 current->journal_info = BTRFS_SEND_TRANS_STUB;
31db9f7c 6492 ret = send_subvol(sctx);
a26e8c9f 6493 current->journal_info = NULL;
31db9f7c
AB
6494 if (ret < 0)
6495 goto out;
6496
c2c71324
SB
6497 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6498 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6499 if (ret < 0)
6500 goto out;
6501 ret = send_cmd(sctx);
6502 if (ret < 0)
6503 goto out;
6504 }
31db9f7c
AB
6505
6506out:
9f03740a
FDBM
6507 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6508 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6509 struct rb_node *n;
6510 struct pending_dir_move *pm;
6511
6512 n = rb_first(&sctx->pending_dir_moves);
6513 pm = rb_entry(n, struct pending_dir_move, node);
6514 while (!list_empty(&pm->list)) {
6515 struct pending_dir_move *pm2;
6516
6517 pm2 = list_first_entry(&pm->list,
6518 struct pending_dir_move, list);
6519 free_pending_move(sctx, pm2);
6520 }
6521 free_pending_move(sctx, pm);
6522 }
6523
6524 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6525 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6526 struct rb_node *n;
6527 struct waiting_dir_move *dm;
6528
6529 n = rb_first(&sctx->waiting_dir_moves);
6530 dm = rb_entry(n, struct waiting_dir_move, node);
6531 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6532 kfree(dm);
6533 }
6534
9dc44214
FM
6535 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6536 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6537 struct rb_node *n;
6538 struct orphan_dir_info *odi;
6539
6540 n = rb_first(&sctx->orphan_dirs);
6541 odi = rb_entry(n, struct orphan_dir_info, node);
6542 free_orphan_dir_info(sctx, odi);
6543 }
6544
896c14f9
WS
6545 if (sort_clone_roots) {
6546 for (i = 0; i < sctx->clone_roots_cnt; i++)
6547 btrfs_root_dec_send_in_progress(
6548 sctx->clone_roots[i].root);
6549 } else {
6550 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6551 btrfs_root_dec_send_in_progress(
6552 sctx->clone_roots[i].root);
6553
6554 btrfs_root_dec_send_in_progress(send_root);
6555 }
66ef7d65
DS
6556 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6557 btrfs_root_dec_send_in_progress(sctx->parent_root);
2c686537 6558
31db9f7c 6559 kfree(arg);
2f91306a 6560 kvfree(clone_sources_tmp);
31db9f7c
AB
6561
6562 if (sctx) {
6563 if (sctx->send_filp)
6564 fput(sctx->send_filp);
6565
c03d01f3 6566 kvfree(sctx->clone_roots);
6ff48ce0 6567 kvfree(sctx->send_buf);
eb5b75fe 6568 kvfree(sctx->read_buf);
31db9f7c
AB
6569
6570 name_cache_free(sctx);
6571
6572 kfree(sctx);
6573 }
6574
6575 return ret;
6576}