Btrfs: fix double increment of path->slots[0] in btrfs_next_leaf
[linux-2.6-block.git] / fs / btrfs / relocation.c
CommitLineData
5d4f98a2
YZ
1/*
2 * Copyright (C) 2009 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/pagemap.h>
21#include <linux/writeback.h>
22#include <linux/blkdev.h>
23#include <linux/rbtree.h>
24#include "ctree.h"
25#include "disk-io.h"
26#include "transaction.h"
27#include "volumes.h"
28#include "locking.h"
29#include "btrfs_inode.h"
30#include "async-thread.h"
31
32/*
33 * backref_node, mapping_node and tree_block start with this
34 */
35struct tree_entry {
36 struct rb_node rb_node;
37 u64 bytenr;
38};
39
40/*
41 * present a tree block in the backref cache
42 */
43struct backref_node {
44 struct rb_node rb_node;
45 u64 bytenr;
46 /* objectid tree block owner */
47 u64 owner;
48 /* list of upper level blocks reference this block */
49 struct list_head upper;
50 /* list of child blocks in the cache */
51 struct list_head lower;
52 /* NULL if this node is not tree root */
53 struct btrfs_root *root;
54 /* extent buffer got by COW the block */
55 struct extent_buffer *eb;
56 /* level of tree block */
57 unsigned int level:8;
58 /* 1 if the block is root of old snapshot */
59 unsigned int old_root:1;
60 /* 1 if no child blocks in the cache */
61 unsigned int lowest:1;
62 /* is the extent buffer locked */
63 unsigned int locked:1;
64 /* has the block been processed */
65 unsigned int processed:1;
66 /* have backrefs of this block been checked */
67 unsigned int checked:1;
68};
69
70/*
71 * present a block pointer in the backref cache
72 */
73struct backref_edge {
74 struct list_head list[2];
75 struct backref_node *node[2];
76 u64 blockptr;
77};
78
79#define LOWER 0
80#define UPPER 1
81
82struct backref_cache {
83 /* red black tree of all backref nodes in the cache */
84 struct rb_root rb_root;
85 /* list of backref nodes with no child block in the cache */
86 struct list_head pending[BTRFS_MAX_LEVEL];
87 spinlock_t lock;
88};
89
90/*
91 * map address of tree root to tree
92 */
93struct mapping_node {
94 struct rb_node rb_node;
95 u64 bytenr;
96 void *data;
97};
98
99struct mapping_tree {
100 struct rb_root rb_root;
101 spinlock_t lock;
102};
103
104/*
105 * present a tree block to process
106 */
107struct tree_block {
108 struct rb_node rb_node;
109 u64 bytenr;
110 struct btrfs_key key;
111 unsigned int level:8;
112 unsigned int key_ready:1;
113};
114
115/* inode vector */
116#define INODEVEC_SIZE 16
117
118struct inodevec {
119 struct list_head list;
120 struct inode *inode[INODEVEC_SIZE];
121 int nr;
122};
123
124struct reloc_control {
125 /* block group to relocate */
126 struct btrfs_block_group_cache *block_group;
127 /* extent tree */
128 struct btrfs_root *extent_root;
129 /* inode for moving data */
130 struct inode *data_inode;
131 struct btrfs_workers workers;
132 /* tree blocks have been processed */
133 struct extent_io_tree processed_blocks;
134 /* map start of tree root to corresponding reloc tree */
135 struct mapping_tree reloc_root_tree;
136 /* list of reloc trees */
137 struct list_head reloc_roots;
138 u64 search_start;
139 u64 extents_found;
140 u64 extents_skipped;
141 int stage;
142 int create_reloc_root;
143 unsigned int found_file_extent:1;
144 unsigned int found_old_snapshot:1;
145};
146
147/* stages of data relocation */
148#define MOVE_DATA_EXTENTS 0
149#define UPDATE_DATA_PTRS 1
150
151/*
152 * merge reloc tree to corresponding fs tree in worker threads
153 */
154struct async_merge {
155 struct btrfs_work work;
156 struct reloc_control *rc;
157 struct btrfs_root *root;
158 struct completion *done;
159 atomic_t *num_pending;
160};
161
162static void mapping_tree_init(struct mapping_tree *tree)
163{
164 tree->rb_root.rb_node = NULL;
165 spin_lock_init(&tree->lock);
166}
167
168static void backref_cache_init(struct backref_cache *cache)
169{
170 int i;
171 cache->rb_root.rb_node = NULL;
172 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
173 INIT_LIST_HEAD(&cache->pending[i]);
174 spin_lock_init(&cache->lock);
175}
176
177static void backref_node_init(struct backref_node *node)
178{
179 memset(node, 0, sizeof(*node));
180 INIT_LIST_HEAD(&node->upper);
181 INIT_LIST_HEAD(&node->lower);
182 RB_CLEAR_NODE(&node->rb_node);
183}
184
185static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
186 struct rb_node *node)
187{
188 struct rb_node **p = &root->rb_node;
189 struct rb_node *parent = NULL;
190 struct tree_entry *entry;
191
192 while (*p) {
193 parent = *p;
194 entry = rb_entry(parent, struct tree_entry, rb_node);
195
196 if (bytenr < entry->bytenr)
197 p = &(*p)->rb_left;
198 else if (bytenr > entry->bytenr)
199 p = &(*p)->rb_right;
200 else
201 return parent;
202 }
203
204 rb_link_node(node, parent, p);
205 rb_insert_color(node, root);
206 return NULL;
207}
208
209static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
210{
211 struct rb_node *n = root->rb_node;
212 struct tree_entry *entry;
213
214 while (n) {
215 entry = rb_entry(n, struct tree_entry, rb_node);
216
217 if (bytenr < entry->bytenr)
218 n = n->rb_left;
219 else if (bytenr > entry->bytenr)
220 n = n->rb_right;
221 else
222 return n;
223 }
224 return NULL;
225}
226
227/*
228 * walk up backref nodes until reach node presents tree root
229 */
230static struct backref_node *walk_up_backref(struct backref_node *node,
231 struct backref_edge *edges[],
232 int *index)
233{
234 struct backref_edge *edge;
235 int idx = *index;
236
237 while (!list_empty(&node->upper)) {
238 edge = list_entry(node->upper.next,
239 struct backref_edge, list[LOWER]);
240 edges[idx++] = edge;
241 node = edge->node[UPPER];
242 }
243 *index = idx;
244 return node;
245}
246
247/*
248 * walk down backref nodes to find start of next reference path
249 */
250static struct backref_node *walk_down_backref(struct backref_edge *edges[],
251 int *index)
252{
253 struct backref_edge *edge;
254 struct backref_node *lower;
255 int idx = *index;
256
257 while (idx > 0) {
258 edge = edges[idx - 1];
259 lower = edge->node[LOWER];
260 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
261 idx--;
262 continue;
263 }
264 edge = list_entry(edge->list[LOWER].next,
265 struct backref_edge, list[LOWER]);
266 edges[idx - 1] = edge;
267 *index = idx;
268 return edge->node[UPPER];
269 }
270 *index = 0;
271 return NULL;
272}
273
274static void drop_node_buffer(struct backref_node *node)
275{
276 if (node->eb) {
277 if (node->locked) {
278 btrfs_tree_unlock(node->eb);
279 node->locked = 0;
280 }
281 free_extent_buffer(node->eb);
282 node->eb = NULL;
283 }
284}
285
286static void drop_backref_node(struct backref_cache *tree,
287 struct backref_node *node)
288{
289 BUG_ON(!node->lowest);
290 BUG_ON(!list_empty(&node->upper));
291
292 drop_node_buffer(node);
293 list_del(&node->lower);
294
295 rb_erase(&node->rb_node, &tree->rb_root);
296 kfree(node);
297}
298
299/*
300 * remove a backref node from the backref cache
301 */
302static void remove_backref_node(struct backref_cache *cache,
303 struct backref_node *node)
304{
305 struct backref_node *upper;
306 struct backref_edge *edge;
307
308 if (!node)
309 return;
310
311 BUG_ON(!node->lowest);
312 while (!list_empty(&node->upper)) {
313 edge = list_entry(node->upper.next, struct backref_edge,
314 list[LOWER]);
315 upper = edge->node[UPPER];
316 list_del(&edge->list[LOWER]);
317 list_del(&edge->list[UPPER]);
318 kfree(edge);
319 /*
320 * add the node to pending list if no other
321 * child block cached.
322 */
323 if (list_empty(&upper->lower)) {
324 list_add_tail(&upper->lower,
325 &cache->pending[upper->level]);
326 upper->lowest = 1;
327 }
328 }
329 drop_backref_node(cache, node);
330}
331
332/*
333 * find reloc tree by address of tree root
334 */
335static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
336 u64 bytenr)
337{
338 struct rb_node *rb_node;
339 struct mapping_node *node;
340 struct btrfs_root *root = NULL;
341
342 spin_lock(&rc->reloc_root_tree.lock);
343 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
344 if (rb_node) {
345 node = rb_entry(rb_node, struct mapping_node, rb_node);
346 root = (struct btrfs_root *)node->data;
347 }
348 spin_unlock(&rc->reloc_root_tree.lock);
349 return root;
350}
351
352static int is_cowonly_root(u64 root_objectid)
353{
354 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
355 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
356 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
357 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
358 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
359 root_objectid == BTRFS_CSUM_TREE_OBJECTID)
360 return 1;
361 return 0;
362}
363
364static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
365 u64 root_objectid)
366{
367 struct btrfs_key key;
368
369 key.objectid = root_objectid;
370 key.type = BTRFS_ROOT_ITEM_KEY;
371 if (is_cowonly_root(root_objectid))
372 key.offset = 0;
373 else
374 key.offset = (u64)-1;
375
376 return btrfs_read_fs_root_no_name(fs_info, &key);
377}
378
379#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
380static noinline_for_stack
381struct btrfs_root *find_tree_root(struct reloc_control *rc,
382 struct extent_buffer *leaf,
383 struct btrfs_extent_ref_v0 *ref0)
384{
385 struct btrfs_root *root;
386 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
387 u64 generation = btrfs_ref_generation_v0(leaf, ref0);
388
389 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
390
391 root = read_fs_root(rc->extent_root->fs_info, root_objectid);
392 BUG_ON(IS_ERR(root));
393
394 if (root->ref_cows &&
395 generation != btrfs_root_generation(&root->root_item))
396 return NULL;
397
398 return root;
399}
400#endif
401
402static noinline_for_stack
403int find_inline_backref(struct extent_buffer *leaf, int slot,
404 unsigned long *ptr, unsigned long *end)
405{
406 struct btrfs_extent_item *ei;
407 struct btrfs_tree_block_info *bi;
408 u32 item_size;
409
410 item_size = btrfs_item_size_nr(leaf, slot);
411#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
412 if (item_size < sizeof(*ei)) {
413 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
414 return 1;
415 }
416#endif
417 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
418 WARN_ON(!(btrfs_extent_flags(leaf, ei) &
419 BTRFS_EXTENT_FLAG_TREE_BLOCK));
420
421 if (item_size <= sizeof(*ei) + sizeof(*bi)) {
422 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
423 return 1;
424 }
425
426 bi = (struct btrfs_tree_block_info *)(ei + 1);
427 *ptr = (unsigned long)(bi + 1);
428 *end = (unsigned long)ei + item_size;
429 return 0;
430}
431
432/*
433 * build backref tree for a given tree block. root of the backref tree
434 * corresponds the tree block, leaves of the backref tree correspond
435 * roots of b-trees that reference the tree block.
436 *
437 * the basic idea of this function is check backrefs of a given block
438 * to find upper level blocks that refernece the block, and then check
439 * bakcrefs of these upper level blocks recursively. the recursion stop
440 * when tree root is reached or backrefs for the block is cached.
441 *
442 * NOTE: if we find backrefs for a block are cached, we know backrefs
443 * for all upper level blocks that directly/indirectly reference the
444 * block are also cached.
445 */
446static struct backref_node *build_backref_tree(struct reloc_control *rc,
447 struct backref_cache *cache,
448 struct btrfs_key *node_key,
449 int level, u64 bytenr)
450{
451 struct btrfs_path *path1;
452 struct btrfs_path *path2;
453 struct extent_buffer *eb;
454 struct btrfs_root *root;
455 struct backref_node *cur;
456 struct backref_node *upper;
457 struct backref_node *lower;
458 struct backref_node *node = NULL;
459 struct backref_node *exist = NULL;
460 struct backref_edge *edge;
461 struct rb_node *rb_node;
462 struct btrfs_key key;
463 unsigned long end;
464 unsigned long ptr;
465 LIST_HEAD(list);
466 int ret;
467 int err = 0;
468
469 path1 = btrfs_alloc_path();
470 path2 = btrfs_alloc_path();
471 if (!path1 || !path2) {
472 err = -ENOMEM;
473 goto out;
474 }
475
476 node = kmalloc(sizeof(*node), GFP_NOFS);
477 if (!node) {
478 err = -ENOMEM;
479 goto out;
480 }
481
482 backref_node_init(node);
483 node->bytenr = bytenr;
484 node->owner = 0;
485 node->level = level;
486 node->lowest = 1;
487 cur = node;
488again:
489 end = 0;
490 ptr = 0;
491 key.objectid = cur->bytenr;
492 key.type = BTRFS_EXTENT_ITEM_KEY;
493 key.offset = (u64)-1;
494
495 path1->search_commit_root = 1;
496 path1->skip_locking = 1;
497 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
498 0, 0);
499 if (ret < 0) {
500 err = ret;
501 goto out;
502 }
503 BUG_ON(!ret || !path1->slots[0]);
504
505 path1->slots[0]--;
506
507 WARN_ON(cur->checked);
508 if (!list_empty(&cur->upper)) {
509 /*
510 * the backref was added previously when processsing
511 * backref of type BTRFS_TREE_BLOCK_REF_KEY
512 */
513 BUG_ON(!list_is_singular(&cur->upper));
514 edge = list_entry(cur->upper.next, struct backref_edge,
515 list[LOWER]);
516 BUG_ON(!list_empty(&edge->list[UPPER]));
517 exist = edge->node[UPPER];
518 /*
519 * add the upper level block to pending list if we need
520 * check its backrefs
521 */
522 if (!exist->checked)
523 list_add_tail(&edge->list[UPPER], &list);
524 } else {
525 exist = NULL;
526 }
527
528 while (1) {
529 cond_resched();
530 eb = path1->nodes[0];
531
532 if (ptr >= end) {
533 if (path1->slots[0] >= btrfs_header_nritems(eb)) {
534 ret = btrfs_next_leaf(rc->extent_root, path1);
535 if (ret < 0) {
536 err = ret;
537 goto out;
538 }
539 if (ret > 0)
540 break;
541 eb = path1->nodes[0];
542 }
543
544 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
545 if (key.objectid != cur->bytenr) {
546 WARN_ON(exist);
547 break;
548 }
549
550 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
551 ret = find_inline_backref(eb, path1->slots[0],
552 &ptr, &end);
553 if (ret)
554 goto next;
555 }
556 }
557
558 if (ptr < end) {
559 /* update key for inline back ref */
560 struct btrfs_extent_inline_ref *iref;
561 iref = (struct btrfs_extent_inline_ref *)ptr;
562 key.type = btrfs_extent_inline_ref_type(eb, iref);
563 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
564 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
565 key.type != BTRFS_SHARED_BLOCK_REF_KEY);
566 }
567
568 if (exist &&
569 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
570 exist->owner == key.offset) ||
571 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
572 exist->bytenr == key.offset))) {
573 exist = NULL;
574 goto next;
575 }
576
577#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
578 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
579 key.type == BTRFS_EXTENT_REF_V0_KEY) {
580 if (key.objectid == key.offset &&
581 key.type == BTRFS_EXTENT_REF_V0_KEY) {
582 struct btrfs_extent_ref_v0 *ref0;
583 ref0 = btrfs_item_ptr(eb, path1->slots[0],
584 struct btrfs_extent_ref_v0);
585 root = find_tree_root(rc, eb, ref0);
586 if (root)
587 cur->root = root;
588 else
589 cur->old_root = 1;
590 break;
591 }
592#else
593 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
594 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
595#endif
596 if (key.objectid == key.offset) {
597 /*
598 * only root blocks of reloc trees use
599 * backref of this type.
600 */
601 root = find_reloc_root(rc, cur->bytenr);
602 BUG_ON(!root);
603 cur->root = root;
604 break;
605 }
606
607 edge = kzalloc(sizeof(*edge), GFP_NOFS);
608 if (!edge) {
609 err = -ENOMEM;
610 goto out;
611 }
612 rb_node = tree_search(&cache->rb_root, key.offset);
613 if (!rb_node) {
614 upper = kmalloc(sizeof(*upper), GFP_NOFS);
615 if (!upper) {
616 kfree(edge);
617 err = -ENOMEM;
618 goto out;
619 }
620 backref_node_init(upper);
621 upper->bytenr = key.offset;
622 upper->owner = 0;
623 upper->level = cur->level + 1;
624 /*
625 * backrefs for the upper level block isn't
626 * cached, add the block to pending list
627 */
628 list_add_tail(&edge->list[UPPER], &list);
629 } else {
630 upper = rb_entry(rb_node, struct backref_node,
631 rb_node);
632 INIT_LIST_HEAD(&edge->list[UPPER]);
633 }
634 list_add(&edge->list[LOWER], &cur->upper);
635 edge->node[UPPER] = upper;
636 edge->node[LOWER] = cur;
637
638 goto next;
639 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
640 goto next;
641 }
642
643 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
644 root = read_fs_root(rc->extent_root->fs_info, key.offset);
645 if (IS_ERR(root)) {
646 err = PTR_ERR(root);
647 goto out;
648 }
649
650 if (btrfs_root_level(&root->root_item) == cur->level) {
651 /* tree root */
652 BUG_ON(btrfs_root_bytenr(&root->root_item) !=
653 cur->bytenr);
654 cur->root = root;
655 break;
656 }
657
658 level = cur->level + 1;
659
660 /*
661 * searching the tree to find upper level blocks
662 * reference the block.
663 */
664 path2->search_commit_root = 1;
665 path2->skip_locking = 1;
666 path2->lowest_level = level;
667 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
668 path2->lowest_level = 0;
669 if (ret < 0) {
670 err = ret;
671 goto out;
672 }
673
674 eb = path2->nodes[level];
675 WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
676 cur->bytenr);
677
678 lower = cur;
679 for (; level < BTRFS_MAX_LEVEL; level++) {
680 if (!path2->nodes[level]) {
681 BUG_ON(btrfs_root_bytenr(&root->root_item) !=
682 lower->bytenr);
683 lower->root = root;
684 break;
685 }
686
687 edge = kzalloc(sizeof(*edge), GFP_NOFS);
688 if (!edge) {
689 err = -ENOMEM;
690 goto out;
691 }
692
693 eb = path2->nodes[level];
694 rb_node = tree_search(&cache->rb_root, eb->start);
695 if (!rb_node) {
696 upper = kmalloc(sizeof(*upper), GFP_NOFS);
697 if (!upper) {
698 kfree(edge);
699 err = -ENOMEM;
700 goto out;
701 }
702 backref_node_init(upper);
703 upper->bytenr = eb->start;
704 upper->owner = btrfs_header_owner(eb);
705 upper->level = lower->level + 1;
706
707 /*
708 * if we know the block isn't shared
709 * we can void checking its backrefs.
710 */
711 if (btrfs_block_can_be_shared(root, eb))
712 upper->checked = 0;
713 else
714 upper->checked = 1;
715
716 /*
717 * add the block to pending list if we
718 * need check its backrefs. only block
719 * at 'cur->level + 1' is added to the
720 * tail of pending list. this guarantees
721 * we check backrefs from lower level
722 * blocks to upper level blocks.
723 */
724 if (!upper->checked &&
725 level == cur->level + 1) {
726 list_add_tail(&edge->list[UPPER],
727 &list);
728 } else
729 INIT_LIST_HEAD(&edge->list[UPPER]);
730 } else {
731 upper = rb_entry(rb_node, struct backref_node,
732 rb_node);
733 BUG_ON(!upper->checked);
734 INIT_LIST_HEAD(&edge->list[UPPER]);
735 }
736 list_add_tail(&edge->list[LOWER], &lower->upper);
737 edge->node[UPPER] = upper;
738 edge->node[LOWER] = lower;
739
740 if (rb_node)
741 break;
742 lower = upper;
743 upper = NULL;
744 }
745 btrfs_release_path(root, path2);
746next:
747 if (ptr < end) {
748 ptr += btrfs_extent_inline_ref_size(key.type);
749 if (ptr >= end) {
750 WARN_ON(ptr > end);
751 ptr = 0;
752 end = 0;
753 }
754 }
755 if (ptr >= end)
756 path1->slots[0]++;
757 }
758 btrfs_release_path(rc->extent_root, path1);
759
760 cur->checked = 1;
761 WARN_ON(exist);
762
763 /* the pending list isn't empty, take the first block to process */
764 if (!list_empty(&list)) {
765 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
766 list_del_init(&edge->list[UPPER]);
767 cur = edge->node[UPPER];
768 goto again;
769 }
770
771 /*
772 * everything goes well, connect backref nodes and insert backref nodes
773 * into the cache.
774 */
775 BUG_ON(!node->checked);
776 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
777 BUG_ON(rb_node);
778
779 list_for_each_entry(edge, &node->upper, list[LOWER])
780 list_add_tail(&edge->list[UPPER], &list);
781
782 while (!list_empty(&list)) {
783 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
784 list_del_init(&edge->list[UPPER]);
785 upper = edge->node[UPPER];
786
787 if (!RB_EMPTY_NODE(&upper->rb_node)) {
788 if (upper->lowest) {
789 list_del_init(&upper->lower);
790 upper->lowest = 0;
791 }
792
793 list_add_tail(&edge->list[UPPER], &upper->lower);
794 continue;
795 }
796
797 BUG_ON(!upper->checked);
798 rb_node = tree_insert(&cache->rb_root, upper->bytenr,
799 &upper->rb_node);
800 BUG_ON(rb_node);
801
802 list_add_tail(&edge->list[UPPER], &upper->lower);
803
804 list_for_each_entry(edge, &upper->upper, list[LOWER])
805 list_add_tail(&edge->list[UPPER], &list);
806 }
807out:
808 btrfs_free_path(path1);
809 btrfs_free_path(path2);
810 if (err) {
811 INIT_LIST_HEAD(&list);
812 upper = node;
813 while (upper) {
814 if (RB_EMPTY_NODE(&upper->rb_node)) {
815 list_splice_tail(&upper->upper, &list);
816 kfree(upper);
817 }
818
819 if (list_empty(&list))
820 break;
821
822 edge = list_entry(list.next, struct backref_edge,
823 list[LOWER]);
824 upper = edge->node[UPPER];
825 kfree(edge);
826 }
827 return ERR_PTR(err);
828 }
829 return node;
830}
831
832/*
833 * helper to add 'address of tree root -> reloc tree' mapping
834 */
835static int __add_reloc_root(struct btrfs_root *root)
836{
837 struct rb_node *rb_node;
838 struct mapping_node *node;
839 struct reloc_control *rc = root->fs_info->reloc_ctl;
840
841 node = kmalloc(sizeof(*node), GFP_NOFS);
842 BUG_ON(!node);
843
844 node->bytenr = root->node->start;
845 node->data = root;
846
847 spin_lock(&rc->reloc_root_tree.lock);
848 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
849 node->bytenr, &node->rb_node);
850 spin_unlock(&rc->reloc_root_tree.lock);
851 BUG_ON(rb_node);
852
853 list_add_tail(&root->root_list, &rc->reloc_roots);
854 return 0;
855}
856
857/*
858 * helper to update/delete the 'address of tree root -> reloc tree'
859 * mapping
860 */
861static int __update_reloc_root(struct btrfs_root *root, int del)
862{
863 struct rb_node *rb_node;
864 struct mapping_node *node = NULL;
865 struct reloc_control *rc = root->fs_info->reloc_ctl;
866
867 spin_lock(&rc->reloc_root_tree.lock);
868 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
869 root->commit_root->start);
870 if (rb_node) {
871 node = rb_entry(rb_node, struct mapping_node, rb_node);
872 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
873 }
874 spin_unlock(&rc->reloc_root_tree.lock);
875
876 BUG_ON((struct btrfs_root *)node->data != root);
877
878 if (!del) {
879 spin_lock(&rc->reloc_root_tree.lock);
880 node->bytenr = root->node->start;
881 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
882 node->bytenr, &node->rb_node);
883 spin_unlock(&rc->reloc_root_tree.lock);
884 BUG_ON(rb_node);
885 } else {
886 list_del_init(&root->root_list);
887 kfree(node);
888 }
889 return 0;
890}
891
892/*
893 * create reloc tree for a given fs tree. reloc tree is just a
894 * snapshot of the fs tree with special root objectid.
895 */
896int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
897 struct btrfs_root *root)
898{
899 struct btrfs_root *reloc_root;
900 struct extent_buffer *eb;
901 struct btrfs_root_item *root_item;
902 struct btrfs_key root_key;
903 int ret;
904
905 if (root->reloc_root) {
906 reloc_root = root->reloc_root;
907 reloc_root->last_trans = trans->transid;
908 return 0;
909 }
910
911 if (!root->fs_info->reloc_ctl ||
912 !root->fs_info->reloc_ctl->create_reloc_root ||
913 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
914 return 0;
915
916 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
917 BUG_ON(!root_item);
918
919 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
920 root_key.type = BTRFS_ROOT_ITEM_KEY;
921 root_key.offset = root->root_key.objectid;
922
923 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
924 BTRFS_TREE_RELOC_OBJECTID);
925 BUG_ON(ret);
926
927 btrfs_set_root_last_snapshot(&root->root_item, trans->transid - 1);
928 memcpy(root_item, &root->root_item, sizeof(*root_item));
929 btrfs_set_root_refs(root_item, 1);
930 btrfs_set_root_bytenr(root_item, eb->start);
931 btrfs_set_root_level(root_item, btrfs_header_level(eb));
932 btrfs_set_root_generation(root_item, trans->transid);
933 memset(&root_item->drop_progress, 0, sizeof(struct btrfs_disk_key));
934 root_item->drop_level = 0;
935
936 btrfs_tree_unlock(eb);
937 free_extent_buffer(eb);
938
939 ret = btrfs_insert_root(trans, root->fs_info->tree_root,
940 &root_key, root_item);
941 BUG_ON(ret);
942 kfree(root_item);
943
944 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
945 &root_key);
946 BUG_ON(IS_ERR(reloc_root));
947 reloc_root->last_trans = trans->transid;
948
949 __add_reloc_root(reloc_root);
950 root->reloc_root = reloc_root;
951 return 0;
952}
953
954/*
955 * update root item of reloc tree
956 */
957int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
958 struct btrfs_root *root)
959{
960 struct btrfs_root *reloc_root;
961 struct btrfs_root_item *root_item;
962 int del = 0;
963 int ret;
964
965 if (!root->reloc_root)
966 return 0;
967
968 reloc_root = root->reloc_root;
969 root_item = &reloc_root->root_item;
970
971 if (btrfs_root_refs(root_item) == 0) {
972 root->reloc_root = NULL;
973 del = 1;
974 }
975
976 __update_reloc_root(reloc_root, del);
977
978 if (reloc_root->commit_root != reloc_root->node) {
979 btrfs_set_root_node(root_item, reloc_root->node);
980 free_extent_buffer(reloc_root->commit_root);
981 reloc_root->commit_root = btrfs_root_node(reloc_root);
982 }
983
984 ret = btrfs_update_root(trans, root->fs_info->tree_root,
985 &reloc_root->root_key, root_item);
986 BUG_ON(ret);
987 return 0;
988}
989
990/*
991 * helper to find first cached inode with inode number >= objectid
992 * in a subvolume
993 */
994static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
995{
996 struct rb_node *node;
997 struct rb_node *prev;
998 struct btrfs_inode *entry;
999 struct inode *inode;
1000
1001 spin_lock(&root->inode_lock);
1002again:
1003 node = root->inode_tree.rb_node;
1004 prev = NULL;
1005 while (node) {
1006 prev = node;
1007 entry = rb_entry(node, struct btrfs_inode, rb_node);
1008
1009 if (objectid < entry->vfs_inode.i_ino)
1010 node = node->rb_left;
1011 else if (objectid > entry->vfs_inode.i_ino)
1012 node = node->rb_right;
1013 else
1014 break;
1015 }
1016 if (!node) {
1017 while (prev) {
1018 entry = rb_entry(prev, struct btrfs_inode, rb_node);
1019 if (objectid <= entry->vfs_inode.i_ino) {
1020 node = prev;
1021 break;
1022 }
1023 prev = rb_next(prev);
1024 }
1025 }
1026 while (node) {
1027 entry = rb_entry(node, struct btrfs_inode, rb_node);
1028 inode = igrab(&entry->vfs_inode);
1029 if (inode) {
1030 spin_unlock(&root->inode_lock);
1031 return inode;
1032 }
1033
1034 objectid = entry->vfs_inode.i_ino + 1;
1035 if (cond_resched_lock(&root->inode_lock))
1036 goto again;
1037
1038 node = rb_next(node);
1039 }
1040 spin_unlock(&root->inode_lock);
1041 return NULL;
1042}
1043
1044static int in_block_group(u64 bytenr,
1045 struct btrfs_block_group_cache *block_group)
1046{
1047 if (bytenr >= block_group->key.objectid &&
1048 bytenr < block_group->key.objectid + block_group->key.offset)
1049 return 1;
1050 return 0;
1051}
1052
1053/*
1054 * get new location of data
1055 */
1056static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1057 u64 bytenr, u64 num_bytes)
1058{
1059 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1060 struct btrfs_path *path;
1061 struct btrfs_file_extent_item *fi;
1062 struct extent_buffer *leaf;
1063 int ret;
1064
1065 path = btrfs_alloc_path();
1066 if (!path)
1067 return -ENOMEM;
1068
1069 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1070 ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
1071 bytenr, 0);
1072 if (ret < 0)
1073 goto out;
1074 if (ret > 0) {
1075 ret = -ENOENT;
1076 goto out;
1077 }
1078
1079 leaf = path->nodes[0];
1080 fi = btrfs_item_ptr(leaf, path->slots[0],
1081 struct btrfs_file_extent_item);
1082
1083 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1084 btrfs_file_extent_compression(leaf, fi) ||
1085 btrfs_file_extent_encryption(leaf, fi) ||
1086 btrfs_file_extent_other_encoding(leaf, fi));
1087
1088 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1089 ret = 1;
1090 goto out;
1091 }
1092
1093 if (new_bytenr)
1094 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1095 ret = 0;
1096out:
1097 btrfs_free_path(path);
1098 return ret;
1099}
1100
1101/*
1102 * update file extent items in the tree leaf to point to
1103 * the new locations.
1104 */
1105static int replace_file_extents(struct btrfs_trans_handle *trans,
1106 struct reloc_control *rc,
1107 struct btrfs_root *root,
1108 struct extent_buffer *leaf,
1109 struct list_head *inode_list)
1110{
1111 struct btrfs_key key;
1112 struct btrfs_file_extent_item *fi;
1113 struct inode *inode = NULL;
1114 struct inodevec *ivec = NULL;
1115 u64 parent;
1116 u64 bytenr;
1117 u64 new_bytenr;
1118 u64 num_bytes;
1119 u64 end;
1120 u32 nritems;
1121 u32 i;
1122 int ret;
1123 int first = 1;
1124 int dirty = 0;
1125
1126 if (rc->stage != UPDATE_DATA_PTRS)
1127 return 0;
1128
1129 /* reloc trees always use full backref */
1130 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1131 parent = leaf->start;
1132 else
1133 parent = 0;
1134
1135 nritems = btrfs_header_nritems(leaf);
1136 for (i = 0; i < nritems; i++) {
1137 cond_resched();
1138 btrfs_item_key_to_cpu(leaf, &key, i);
1139 if (key.type != BTRFS_EXTENT_DATA_KEY)
1140 continue;
1141 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1142 if (btrfs_file_extent_type(leaf, fi) ==
1143 BTRFS_FILE_EXTENT_INLINE)
1144 continue;
1145 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1146 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1147 if (bytenr == 0)
1148 continue;
1149 if (!in_block_group(bytenr, rc->block_group))
1150 continue;
1151
1152 /*
1153 * if we are modifying block in fs tree, wait for readpage
1154 * to complete and drop the extent cache
1155 */
1156 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1157 if (!ivec || ivec->nr == INODEVEC_SIZE) {
1158 ivec = kmalloc(sizeof(*ivec), GFP_NOFS);
1159 BUG_ON(!ivec);
1160 ivec->nr = 0;
1161 list_add_tail(&ivec->list, inode_list);
1162 }
1163 if (first) {
1164 inode = find_next_inode(root, key.objectid);
1165 if (inode)
1166 ivec->inode[ivec->nr++] = inode;
1167 first = 0;
1168 } else if (inode && inode->i_ino < key.objectid) {
1169 inode = find_next_inode(root, key.objectid);
1170 if (inode)
1171 ivec->inode[ivec->nr++] = inode;
1172 }
1173 if (inode && inode->i_ino == key.objectid) {
1174 end = key.offset +
1175 btrfs_file_extent_num_bytes(leaf, fi);
1176 WARN_ON(!IS_ALIGNED(key.offset,
1177 root->sectorsize));
1178 WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1179 end--;
1180 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1181 key.offset, end,
1182 GFP_NOFS);
1183 if (!ret)
1184 continue;
1185
1186 btrfs_drop_extent_cache(inode, key.offset, end,
1187 1);
1188 unlock_extent(&BTRFS_I(inode)->io_tree,
1189 key.offset, end, GFP_NOFS);
1190 }
1191 }
1192
1193 ret = get_new_location(rc->data_inode, &new_bytenr,
1194 bytenr, num_bytes);
1195 if (ret > 0)
1196 continue;
1197 BUG_ON(ret < 0);
1198
1199 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1200 dirty = 1;
1201
1202 key.offset -= btrfs_file_extent_offset(leaf, fi);
1203 ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1204 num_bytes, parent,
1205 btrfs_header_owner(leaf),
1206 key.objectid, key.offset);
1207 BUG_ON(ret);
1208
1209 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1210 parent, btrfs_header_owner(leaf),
1211 key.objectid, key.offset);
1212 BUG_ON(ret);
1213 }
1214 if (dirty)
1215 btrfs_mark_buffer_dirty(leaf);
1216 return 0;
1217}
1218
1219static noinline_for_stack
1220int memcmp_node_keys(struct extent_buffer *eb, int slot,
1221 struct btrfs_path *path, int level)
1222{
1223 struct btrfs_disk_key key1;
1224 struct btrfs_disk_key key2;
1225 btrfs_node_key(eb, &key1, slot);
1226 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1227 return memcmp(&key1, &key2, sizeof(key1));
1228}
1229
1230/*
1231 * try to replace tree blocks in fs tree with the new blocks
1232 * in reloc tree. tree blocks haven't been modified since the
1233 * reloc tree was create can be replaced.
1234 *
1235 * if a block was replaced, level of the block + 1 is returned.
1236 * if no block got replaced, 0 is returned. if there are other
1237 * errors, a negative error number is returned.
1238 */
1239static int replace_path(struct btrfs_trans_handle *trans,
1240 struct btrfs_root *dest, struct btrfs_root *src,
1241 struct btrfs_path *path, struct btrfs_key *next_key,
1242 struct extent_buffer **leaf,
1243 int lowest_level, int max_level)
1244{
1245 struct extent_buffer *eb;
1246 struct extent_buffer *parent;
1247 struct btrfs_key key;
1248 u64 old_bytenr;
1249 u64 new_bytenr;
1250 u64 old_ptr_gen;
1251 u64 new_ptr_gen;
1252 u64 last_snapshot;
1253 u32 blocksize;
1254 int level;
1255 int ret;
1256 int slot;
1257
1258 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1259 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1260 BUG_ON(lowest_level > 1 && leaf);
1261
1262 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1263
1264 slot = path->slots[lowest_level];
1265 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1266
1267 eb = btrfs_lock_root_node(dest);
1268 btrfs_set_lock_blocking(eb);
1269 level = btrfs_header_level(eb);
1270
1271 if (level < lowest_level) {
1272 btrfs_tree_unlock(eb);
1273 free_extent_buffer(eb);
1274 return 0;
1275 }
1276
1277 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1278 BUG_ON(ret);
1279 btrfs_set_lock_blocking(eb);
1280
1281 if (next_key) {
1282 next_key->objectid = (u64)-1;
1283 next_key->type = (u8)-1;
1284 next_key->offset = (u64)-1;
1285 }
1286
1287 parent = eb;
1288 while (1) {
1289 level = btrfs_header_level(parent);
1290 BUG_ON(level < lowest_level);
1291
1292 ret = btrfs_bin_search(parent, &key, level, &slot);
1293 if (ret && slot > 0)
1294 slot--;
1295
1296 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1297 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1298
1299 old_bytenr = btrfs_node_blockptr(parent, slot);
1300 blocksize = btrfs_level_size(dest, level - 1);
1301 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1302
1303 if (level <= max_level) {
1304 eb = path->nodes[level];
1305 new_bytenr = btrfs_node_blockptr(eb,
1306 path->slots[level]);
1307 new_ptr_gen = btrfs_node_ptr_generation(eb,
1308 path->slots[level]);
1309 } else {
1310 new_bytenr = 0;
1311 new_ptr_gen = 0;
1312 }
1313
1314 if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1315 WARN_ON(1);
1316 ret = level;
1317 break;
1318 }
1319
1320 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1321 memcmp_node_keys(parent, slot, path, level)) {
1322 if (level <= lowest_level && !leaf) {
1323 ret = 0;
1324 break;
1325 }
1326
1327 eb = read_tree_block(dest, old_bytenr, blocksize,
1328 old_ptr_gen);
1329 btrfs_tree_lock(eb);
1330 ret = btrfs_cow_block(trans, dest, eb, parent,
1331 slot, &eb);
1332 BUG_ON(ret);
1333 btrfs_set_lock_blocking(eb);
1334
1335 if (level <= lowest_level) {
1336 *leaf = eb;
1337 ret = 0;
1338 break;
1339 }
1340
1341 btrfs_tree_unlock(parent);
1342 free_extent_buffer(parent);
1343
1344 parent = eb;
1345 continue;
1346 }
1347
1348 btrfs_node_key_to_cpu(path->nodes[level], &key,
1349 path->slots[level]);
1350 btrfs_release_path(src, path);
1351
1352 path->lowest_level = level;
1353 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1354 path->lowest_level = 0;
1355 BUG_ON(ret);
1356
1357 /*
1358 * swap blocks in fs tree and reloc tree.
1359 */
1360 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1361 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1362 btrfs_mark_buffer_dirty(parent);
1363
1364 btrfs_set_node_blockptr(path->nodes[level],
1365 path->slots[level], old_bytenr);
1366 btrfs_set_node_ptr_generation(path->nodes[level],
1367 path->slots[level], old_ptr_gen);
1368 btrfs_mark_buffer_dirty(path->nodes[level]);
1369
1370 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1371 path->nodes[level]->start,
1372 src->root_key.objectid, level - 1, 0);
1373 BUG_ON(ret);
1374 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1375 0, dest->root_key.objectid, level - 1,
1376 0);
1377 BUG_ON(ret);
1378
1379 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1380 path->nodes[level]->start,
1381 src->root_key.objectid, level - 1, 0);
1382 BUG_ON(ret);
1383
1384 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1385 0, dest->root_key.objectid, level - 1,
1386 0);
1387 BUG_ON(ret);
1388
1389 btrfs_unlock_up_safe(path, 0);
1390
1391 ret = level;
1392 break;
1393 }
1394 btrfs_tree_unlock(parent);
1395 free_extent_buffer(parent);
1396 return ret;
1397}
1398
1399/*
1400 * helper to find next relocated block in reloc tree
1401 */
1402static noinline_for_stack
1403int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1404 int *level)
1405{
1406 struct extent_buffer *eb;
1407 int i;
1408 u64 last_snapshot;
1409 u32 nritems;
1410
1411 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1412
1413 for (i = 0; i < *level; i++) {
1414 free_extent_buffer(path->nodes[i]);
1415 path->nodes[i] = NULL;
1416 }
1417
1418 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1419 eb = path->nodes[i];
1420 nritems = btrfs_header_nritems(eb);
1421 while (path->slots[i] + 1 < nritems) {
1422 path->slots[i]++;
1423 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1424 last_snapshot)
1425 continue;
1426
1427 *level = i;
1428 return 0;
1429 }
1430 free_extent_buffer(path->nodes[i]);
1431 path->nodes[i] = NULL;
1432 }
1433 return 1;
1434}
1435
1436/*
1437 * walk down reloc tree to find relocated block of lowest level
1438 */
1439static noinline_for_stack
1440int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1441 int *level)
1442{
1443 struct extent_buffer *eb = NULL;
1444 int i;
1445 u64 bytenr;
1446 u64 ptr_gen = 0;
1447 u64 last_snapshot;
1448 u32 blocksize;
1449 u32 nritems;
1450
1451 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1452
1453 for (i = *level; i > 0; i--) {
1454 eb = path->nodes[i];
1455 nritems = btrfs_header_nritems(eb);
1456 while (path->slots[i] < nritems) {
1457 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1458 if (ptr_gen > last_snapshot)
1459 break;
1460 path->slots[i]++;
1461 }
1462 if (path->slots[i] >= nritems) {
1463 if (i == *level)
1464 break;
1465 *level = i + 1;
1466 return 0;
1467 }
1468 if (i == 1) {
1469 *level = i;
1470 return 0;
1471 }
1472
1473 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1474 blocksize = btrfs_level_size(root, i - 1);
1475 eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1476 BUG_ON(btrfs_header_level(eb) != i - 1);
1477 path->nodes[i - 1] = eb;
1478 path->slots[i - 1] = 0;
1479 }
1480 return 1;
1481}
1482
1483/*
1484 * invalidate extent cache for file extents whose key in range of
1485 * [min_key, max_key)
1486 */
1487static int invalidate_extent_cache(struct btrfs_root *root,
1488 struct btrfs_key *min_key,
1489 struct btrfs_key *max_key)
1490{
1491 struct inode *inode = NULL;
1492 u64 objectid;
1493 u64 start, end;
1494
1495 objectid = min_key->objectid;
1496 while (1) {
1497 cond_resched();
1498 iput(inode);
1499
1500 if (objectid > max_key->objectid)
1501 break;
1502
1503 inode = find_next_inode(root, objectid);
1504 if (!inode)
1505 break;
1506
1507 if (inode->i_ino > max_key->objectid) {
1508 iput(inode);
1509 break;
1510 }
1511
1512 objectid = inode->i_ino + 1;
1513 if (!S_ISREG(inode->i_mode))
1514 continue;
1515
1516 if (unlikely(min_key->objectid == inode->i_ino)) {
1517 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1518 continue;
1519 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1520 start = 0;
1521 else {
1522 start = min_key->offset;
1523 WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1524 }
1525 } else {
1526 start = 0;
1527 }
1528
1529 if (unlikely(max_key->objectid == inode->i_ino)) {
1530 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1531 continue;
1532 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1533 end = (u64)-1;
1534 } else {
1535 if (max_key->offset == 0)
1536 continue;
1537 end = max_key->offset;
1538 WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1539 end--;
1540 }
1541 } else {
1542 end = (u64)-1;
1543 }
1544
1545 /* the lock_extent waits for readpage to complete */
1546 lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1547 btrfs_drop_extent_cache(inode, start, end, 1);
1548 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1549 }
1550 return 0;
1551}
1552
1553static int find_next_key(struct btrfs_path *path, int level,
1554 struct btrfs_key *key)
1555
1556{
1557 while (level < BTRFS_MAX_LEVEL) {
1558 if (!path->nodes[level])
1559 break;
1560 if (path->slots[level] + 1 <
1561 btrfs_header_nritems(path->nodes[level])) {
1562 btrfs_node_key_to_cpu(path->nodes[level], key,
1563 path->slots[level] + 1);
1564 return 0;
1565 }
1566 level++;
1567 }
1568 return 1;
1569}
1570
1571/*
1572 * merge the relocated tree blocks in reloc tree with corresponding
1573 * fs tree.
1574 */
1575static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1576 struct btrfs_root *root)
1577{
1578 LIST_HEAD(inode_list);
1579 struct btrfs_key key;
1580 struct btrfs_key next_key;
1581 struct btrfs_trans_handle *trans;
1582 struct btrfs_root *reloc_root;
1583 struct btrfs_root_item *root_item;
1584 struct btrfs_path *path;
1585 struct extent_buffer *leaf = NULL;
1586 unsigned long nr;
1587 int level;
1588 int max_level;
1589 int replaced = 0;
1590 int ret;
1591 int err = 0;
1592
1593 path = btrfs_alloc_path();
1594 if (!path)
1595 return -ENOMEM;
1596
1597 reloc_root = root->reloc_root;
1598 root_item = &reloc_root->root_item;
1599
1600 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1601 level = btrfs_root_level(root_item);
1602 extent_buffer_get(reloc_root->node);
1603 path->nodes[level] = reloc_root->node;
1604 path->slots[level] = 0;
1605 } else {
1606 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1607
1608 level = root_item->drop_level;
1609 BUG_ON(level == 0);
1610 path->lowest_level = level;
1611 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1612 if (ret < 0) {
1613 btrfs_free_path(path);
1614 return ret;
1615 }
1616
1617 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1618 path->slots[level]);
1619 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1620
1621 btrfs_unlock_up_safe(path, 0);
1622 }
1623
1624 if (level == 0 && rc->stage == UPDATE_DATA_PTRS) {
1625 trans = btrfs_start_transaction(root, 1);
1626
1627 leaf = path->nodes[0];
1628 btrfs_item_key_to_cpu(leaf, &key, 0);
1629 btrfs_release_path(reloc_root, path);
1630
1631 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1632 if (ret < 0) {
1633 err = ret;
1634 goto out;
1635 }
1636
1637 leaf = path->nodes[0];
1638 btrfs_unlock_up_safe(path, 1);
1639 ret = replace_file_extents(trans, rc, root, leaf,
1640 &inode_list);
1641 if (ret < 0)
1642 err = ret;
1643 goto out;
1644 }
1645
1646 memset(&next_key, 0, sizeof(next_key));
1647
1648 while (1) {
1649 leaf = NULL;
1650 replaced = 0;
1651 trans = btrfs_start_transaction(root, 1);
1652 max_level = level;
1653
1654 ret = walk_down_reloc_tree(reloc_root, path, &level);
1655 if (ret < 0) {
1656 err = ret;
1657 goto out;
1658 }
1659 if (ret > 0)
1660 break;
1661
1662 if (!find_next_key(path, level, &key) &&
1663 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1664 ret = 0;
1665 } else if (level == 1 && rc->stage == UPDATE_DATA_PTRS) {
1666 ret = replace_path(trans, root, reloc_root,
1667 path, &next_key, &leaf,
1668 level, max_level);
1669 } else {
1670 ret = replace_path(trans, root, reloc_root,
1671 path, &next_key, NULL,
1672 level, max_level);
1673 }
1674 if (ret < 0) {
1675 err = ret;
1676 goto out;
1677 }
1678
1679 if (ret > 0) {
1680 level = ret;
1681 btrfs_node_key_to_cpu(path->nodes[level], &key,
1682 path->slots[level]);
1683 replaced = 1;
1684 } else if (leaf) {
1685 /*
1686 * no block got replaced, try replacing file extents
1687 */
1688 btrfs_item_key_to_cpu(leaf, &key, 0);
1689 ret = replace_file_extents(trans, rc, root, leaf,
1690 &inode_list);
1691 btrfs_tree_unlock(leaf);
1692 free_extent_buffer(leaf);
1693 BUG_ON(ret < 0);
1694 }
1695
1696 ret = walk_up_reloc_tree(reloc_root, path, &level);
1697 if (ret > 0)
1698 break;
1699
1700 BUG_ON(level == 0);
1701 /*
1702 * save the merging progress in the drop_progress.
1703 * this is OK since root refs == 1 in this case.
1704 */
1705 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1706 path->slots[level]);
1707 root_item->drop_level = level;
1708
1709 nr = trans->blocks_used;
1710 btrfs_end_transaction(trans, root);
1711
1712 btrfs_btree_balance_dirty(root, nr);
1713
1714 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1715 invalidate_extent_cache(root, &key, &next_key);
1716 }
1717
1718 /*
1719 * handle the case only one block in the fs tree need to be
1720 * relocated and the block is tree root.
1721 */
1722 leaf = btrfs_lock_root_node(root);
1723 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
1724 btrfs_tree_unlock(leaf);
1725 free_extent_buffer(leaf);
1726 if (ret < 0)
1727 err = ret;
1728out:
1729 btrfs_free_path(path);
1730
1731 if (err == 0) {
1732 memset(&root_item->drop_progress, 0,
1733 sizeof(root_item->drop_progress));
1734 root_item->drop_level = 0;
1735 btrfs_set_root_refs(root_item, 0);
1736 }
1737
1738 nr = trans->blocks_used;
1739 btrfs_end_transaction(trans, root);
1740
1741 btrfs_btree_balance_dirty(root, nr);
1742
1743 /*
1744 * put inodes while we aren't holding the tree locks
1745 */
1746 while (!list_empty(&inode_list)) {
1747 struct inodevec *ivec;
1748 ivec = list_entry(inode_list.next, struct inodevec, list);
1749 list_del(&ivec->list);
1750 while (ivec->nr > 0) {
1751 ivec->nr--;
1752 iput(ivec->inode[ivec->nr]);
1753 }
1754 kfree(ivec);
1755 }
1756
1757 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1758 invalidate_extent_cache(root, &key, &next_key);
1759
1760 return err;
1761}
1762
1763/*
1764 * callback for the work threads.
1765 * this function merges reloc tree with corresponding fs tree,
1766 * and then drops the reloc tree.
1767 */
1768static void merge_func(struct btrfs_work *work)
1769{
1770 struct btrfs_trans_handle *trans;
1771 struct btrfs_root *root;
1772 struct btrfs_root *reloc_root;
1773 struct async_merge *async;
1774
1775 async = container_of(work, struct async_merge, work);
1776 reloc_root = async->root;
1777
1778 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1779 root = read_fs_root(reloc_root->fs_info,
1780 reloc_root->root_key.offset);
1781 BUG_ON(IS_ERR(root));
1782 BUG_ON(root->reloc_root != reloc_root);
1783
1784 merge_reloc_root(async->rc, root);
1785
1786 trans = btrfs_start_transaction(root, 1);
1787 btrfs_update_reloc_root(trans, root);
1788 btrfs_end_transaction(trans, root);
1789 }
1790
2c47e605 1791 btrfs_drop_snapshot(reloc_root, 0);
5d4f98a2
YZ
1792
1793 if (atomic_dec_and_test(async->num_pending))
1794 complete(async->done);
1795
1796 kfree(async);
1797}
1798
1799static int merge_reloc_roots(struct reloc_control *rc)
1800{
1801 struct async_merge *async;
1802 struct btrfs_root *root;
1803 struct completion done;
1804 atomic_t num_pending;
1805
1806 init_completion(&done);
1807 atomic_set(&num_pending, 1);
1808
1809 while (!list_empty(&rc->reloc_roots)) {
1810 root = list_entry(rc->reloc_roots.next,
1811 struct btrfs_root, root_list);
1812 list_del_init(&root->root_list);
1813
1814 async = kmalloc(sizeof(*async), GFP_NOFS);
1815 BUG_ON(!async);
1816 async->work.func = merge_func;
1817 async->work.flags = 0;
1818 async->rc = rc;
1819 async->root = root;
1820 async->done = &done;
1821 async->num_pending = &num_pending;
1822 atomic_inc(&num_pending);
1823 btrfs_queue_worker(&rc->workers, &async->work);
1824 }
1825
1826 if (!atomic_dec_and_test(&num_pending))
1827 wait_for_completion(&done);
1828
1829 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1830 return 0;
1831}
1832
1833static void free_block_list(struct rb_root *blocks)
1834{
1835 struct tree_block *block;
1836 struct rb_node *rb_node;
1837 while ((rb_node = rb_first(blocks))) {
1838 block = rb_entry(rb_node, struct tree_block, rb_node);
1839 rb_erase(rb_node, blocks);
1840 kfree(block);
1841 }
1842}
1843
1844static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1845 struct btrfs_root *reloc_root)
1846{
1847 struct btrfs_root *root;
1848
1849 if (reloc_root->last_trans == trans->transid)
1850 return 0;
1851
1852 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
1853 BUG_ON(IS_ERR(root));
1854 BUG_ON(root->reloc_root != reloc_root);
1855
1856 return btrfs_record_root_in_trans(trans, root);
1857}
1858
1859/*
1860 * select one tree from trees that references the block.
1861 * for blocks in refernce counted trees, we preper reloc tree.
1862 * if no reloc tree found and reloc_only is true, NULL is returned.
1863 */
1864static struct btrfs_root *__select_one_root(struct btrfs_trans_handle *trans,
1865 struct backref_node *node,
1866 struct backref_edge *edges[],
1867 int *nr, int reloc_only)
1868{
1869 struct backref_node *next;
1870 struct btrfs_root *root;
1871 int index;
1872 int loop = 0;
1873again:
1874 index = 0;
1875 next = node;
1876 while (1) {
1877 cond_resched();
1878 next = walk_up_backref(next, edges, &index);
1879 root = next->root;
1880 if (!root) {
1881 BUG_ON(!node->old_root);
1882 goto skip;
1883 }
1884
1885 /* no other choice for non-refernce counted tree */
1886 if (!root->ref_cows) {
1887 BUG_ON(reloc_only);
1888 break;
1889 }
1890
1891 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1892 record_reloc_root_in_trans(trans, root);
1893 break;
1894 }
1895
1896 if (loop) {
1897 btrfs_record_root_in_trans(trans, root);
1898 break;
1899 }
1900
1901 if (reloc_only || next != node) {
1902 if (!root->reloc_root)
1903 btrfs_record_root_in_trans(trans, root);
1904 root = root->reloc_root;
1905 /*
1906 * if the reloc tree was created in current
1907 * transation, there is no node in backref tree
1908 * corresponds to the root of the reloc tree.
1909 */
1910 if (btrfs_root_last_snapshot(&root->root_item) ==
1911 trans->transid - 1)
1912 break;
1913 }
1914skip:
1915 root = NULL;
1916 next = walk_down_backref(edges, &index);
1917 if (!next || next->level <= node->level)
1918 break;
1919 }
1920
1921 if (!root && !loop && !reloc_only) {
1922 loop = 1;
1923 goto again;
1924 }
1925
1926 if (root)
1927 *nr = index;
1928 else
1929 *nr = 0;
1930
1931 return root;
1932}
1933
1934static noinline_for_stack
1935struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
1936 struct backref_node *node)
1937{
1938 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
1939 int nr;
1940 return __select_one_root(trans, node, edges, &nr, 0);
1941}
1942
1943static noinline_for_stack
1944struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
1945 struct backref_node *node,
1946 struct backref_edge *edges[], int *nr)
1947{
1948 return __select_one_root(trans, node, edges, nr, 1);
1949}
1950
1951static void grab_path_buffers(struct btrfs_path *path,
1952 struct backref_node *node,
1953 struct backref_edge *edges[], int nr)
1954{
1955 int i = 0;
1956 while (1) {
1957 drop_node_buffer(node);
1958 node->eb = path->nodes[node->level];
1959 BUG_ON(!node->eb);
1960 if (path->locks[node->level])
1961 node->locked = 1;
1962 path->nodes[node->level] = NULL;
1963 path->locks[node->level] = 0;
1964
1965 if (i >= nr)
1966 break;
1967
1968 edges[i]->blockptr = node->eb->start;
1969 node = edges[i]->node[UPPER];
1970 i++;
1971 }
1972}
1973
1974/*
1975 * relocate a block tree, and then update pointers in upper level
1976 * blocks that reference the block to point to the new location.
1977 *
1978 * if called by link_to_upper, the block has already been relocated.
1979 * in that case this function just updates pointers.
1980 */
1981static int do_relocation(struct btrfs_trans_handle *trans,
1982 struct backref_node *node,
1983 struct btrfs_key *key,
1984 struct btrfs_path *path, int lowest)
1985{
1986 struct backref_node *upper;
1987 struct backref_edge *edge;
1988 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
1989 struct btrfs_root *root;
1990 struct extent_buffer *eb;
1991 u32 blocksize;
1992 u64 bytenr;
1993 u64 generation;
1994 int nr;
1995 int slot;
1996 int ret;
1997 int err = 0;
1998
1999 BUG_ON(lowest && node->eb);
2000
2001 path->lowest_level = node->level + 1;
2002 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2003 cond_resched();
2004 if (node->eb && node->eb->start == edge->blockptr)
2005 continue;
2006
2007 upper = edge->node[UPPER];
2008 root = select_reloc_root(trans, upper, edges, &nr);
2009 if (!root)
2010 continue;
2011
2012 if (upper->eb && !upper->locked)
2013 drop_node_buffer(upper);
2014
2015 if (!upper->eb) {
2016 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2017 if (ret < 0) {
2018 err = ret;
2019 break;
2020 }
2021 BUG_ON(ret > 0);
2022
2023 slot = path->slots[upper->level];
2024
2025 btrfs_unlock_up_safe(path, upper->level + 1);
2026 grab_path_buffers(path, upper, edges, nr);
2027
2028 btrfs_release_path(NULL, path);
2029 } else {
2030 ret = btrfs_bin_search(upper->eb, key, upper->level,
2031 &slot);
2032 BUG_ON(ret);
2033 }
2034
2035 bytenr = btrfs_node_blockptr(upper->eb, slot);
2036 if (!lowest) {
2037 if (node->eb->start == bytenr) {
2038 btrfs_tree_unlock(upper->eb);
2039 upper->locked = 0;
2040 continue;
2041 }
2042 } else {
2043 BUG_ON(node->bytenr != bytenr);
2044 }
2045
2046 blocksize = btrfs_level_size(root, node->level);
2047 generation = btrfs_node_ptr_generation(upper->eb, slot);
2048 eb = read_tree_block(root, bytenr, blocksize, generation);
2049 btrfs_tree_lock(eb);
2050 btrfs_set_lock_blocking(eb);
2051
2052 if (!node->eb) {
2053 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2054 slot, &eb);
2055 if (ret < 0) {
2056 err = ret;
2057 break;
2058 }
2059 btrfs_set_lock_blocking(eb);
2060 node->eb = eb;
2061 node->locked = 1;
2062 } else {
2063 btrfs_set_node_blockptr(upper->eb, slot,
2064 node->eb->start);
2065 btrfs_set_node_ptr_generation(upper->eb, slot,
2066 trans->transid);
2067 btrfs_mark_buffer_dirty(upper->eb);
2068
2069 ret = btrfs_inc_extent_ref(trans, root,
2070 node->eb->start, blocksize,
2071 upper->eb->start,
2072 btrfs_header_owner(upper->eb),
2073 node->level, 0);
2074 BUG_ON(ret);
2075
2076 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2077 BUG_ON(ret);
5d4f98a2
YZ
2078 }
2079 if (!lowest) {
2080 btrfs_tree_unlock(upper->eb);
2081 upper->locked = 0;
2082 }
2083 }
2084 path->lowest_level = 0;
2085 return err;
2086}
2087
2088static int link_to_upper(struct btrfs_trans_handle *trans,
2089 struct backref_node *node,
2090 struct btrfs_path *path)
2091{
2092 struct btrfs_key key;
2093 if (!node->eb || list_empty(&node->upper))
2094 return 0;
2095
2096 btrfs_node_key_to_cpu(node->eb, &key, 0);
2097 return do_relocation(trans, node, &key, path, 0);
2098}
2099
2100static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2101 struct backref_cache *cache,
2102 struct btrfs_path *path)
2103{
2104 struct backref_node *node;
2105 int level;
2106 int ret;
2107 int err = 0;
2108
2109 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2110 while (!list_empty(&cache->pending[level])) {
2111 node = list_entry(cache->pending[level].next,
2112 struct backref_node, lower);
2113 BUG_ON(node->level != level);
2114
2115 ret = link_to_upper(trans, node, path);
2116 if (ret < 0)
2117 err = ret;
2118 /*
2119 * this remove the node from the pending list and
2120 * may add some other nodes to the level + 1
2121 * pending list
2122 */
2123 remove_backref_node(cache, node);
2124 }
2125 }
2126 BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
2127 return err;
2128}
2129
2130static void mark_block_processed(struct reloc_control *rc,
2131 struct backref_node *node)
2132{
2133 u32 blocksize;
2134 if (node->level == 0 ||
2135 in_block_group(node->bytenr, rc->block_group)) {
2136 blocksize = btrfs_level_size(rc->extent_root, node->level);
2137 set_extent_bits(&rc->processed_blocks, node->bytenr,
2138 node->bytenr + blocksize - 1, EXTENT_DIRTY,
2139 GFP_NOFS);
2140 }
2141 node->processed = 1;
2142}
2143
2144/*
2145 * mark a block and all blocks directly/indirectly reference the block
2146 * as processed.
2147 */
2148static void update_processed_blocks(struct reloc_control *rc,
2149 struct backref_node *node)
2150{
2151 struct backref_node *next = node;
2152 struct backref_edge *edge;
2153 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2154 int index = 0;
2155
2156 while (next) {
2157 cond_resched();
2158 while (1) {
2159 if (next->processed)
2160 break;
2161
2162 mark_block_processed(rc, next);
2163
2164 if (list_empty(&next->upper))
2165 break;
2166
2167 edge = list_entry(next->upper.next,
2168 struct backref_edge, list[LOWER]);
2169 edges[index++] = edge;
2170 next = edge->node[UPPER];
2171 }
2172 next = walk_down_backref(edges, &index);
2173 }
2174}
2175
2176static int tree_block_processed(u64 bytenr, u32 blocksize,
2177 struct reloc_control *rc)
2178{
2179 if (test_range_bit(&rc->processed_blocks, bytenr,
2180 bytenr + blocksize - 1, EXTENT_DIRTY, 1))
2181 return 1;
2182 return 0;
2183}
2184
2185/*
2186 * check if there are any file extent pointers in the leaf point to
2187 * data require processing
2188 */
2189static int check_file_extents(struct reloc_control *rc,
2190 u64 bytenr, u32 blocksize, u64 ptr_gen)
2191{
2192 struct btrfs_key found_key;
2193 struct btrfs_file_extent_item *fi;
2194 struct extent_buffer *leaf;
2195 u32 nritems;
2196 int i;
2197 int ret = 0;
2198
2199 leaf = read_tree_block(rc->extent_root, bytenr, blocksize, ptr_gen);
2200
2201 nritems = btrfs_header_nritems(leaf);
2202 for (i = 0; i < nritems; i++) {
2203 cond_resched();
2204 btrfs_item_key_to_cpu(leaf, &found_key, i);
2205 if (found_key.type != BTRFS_EXTENT_DATA_KEY)
2206 continue;
2207 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
2208 if (btrfs_file_extent_type(leaf, fi) ==
2209 BTRFS_FILE_EXTENT_INLINE)
2210 continue;
2211 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
2212 if (bytenr == 0)
2213 continue;
2214 if (in_block_group(bytenr, rc->block_group)) {
2215 ret = 1;
2216 break;
2217 }
2218 }
2219 free_extent_buffer(leaf);
2220 return ret;
2221}
2222
2223/*
2224 * scan child blocks of a given block to find blocks require processing
2225 */
2226static int add_child_blocks(struct btrfs_trans_handle *trans,
2227 struct reloc_control *rc,
2228 struct backref_node *node,
2229 struct rb_root *blocks)
2230{
2231 struct tree_block *block;
2232 struct rb_node *rb_node;
2233 u64 bytenr;
2234 u64 ptr_gen;
2235 u32 blocksize;
2236 u32 nritems;
2237 int i;
2238 int err = 0;
2239
2240 nritems = btrfs_header_nritems(node->eb);
2241 blocksize = btrfs_level_size(rc->extent_root, node->level - 1);
2242 for (i = 0; i < nritems; i++) {
2243 cond_resched();
2244 bytenr = btrfs_node_blockptr(node->eb, i);
2245 ptr_gen = btrfs_node_ptr_generation(node->eb, i);
2246 if (ptr_gen == trans->transid)
2247 continue;
2248 if (!in_block_group(bytenr, rc->block_group) &&
2249 (node->level > 1 || rc->stage == MOVE_DATA_EXTENTS))
2250 continue;
2251 if (tree_block_processed(bytenr, blocksize, rc))
2252 continue;
2253
2254 readahead_tree_block(rc->extent_root,
2255 bytenr, blocksize, ptr_gen);
2256 }
2257
2258 for (i = 0; i < nritems; i++) {
2259 cond_resched();
2260 bytenr = btrfs_node_blockptr(node->eb, i);
2261 ptr_gen = btrfs_node_ptr_generation(node->eb, i);
2262 if (ptr_gen == trans->transid)
2263 continue;
2264 if (!in_block_group(bytenr, rc->block_group) &&
2265 (node->level > 1 || rc->stage == MOVE_DATA_EXTENTS))
2266 continue;
2267 if (tree_block_processed(bytenr, blocksize, rc))
2268 continue;
2269 if (!in_block_group(bytenr, rc->block_group) &&
2270 !check_file_extents(rc, bytenr, blocksize, ptr_gen))
2271 continue;
2272
2273 block = kmalloc(sizeof(*block), GFP_NOFS);
2274 if (!block) {
2275 err = -ENOMEM;
2276 break;
2277 }
2278 block->bytenr = bytenr;
2279 btrfs_node_key_to_cpu(node->eb, &block->key, i);
2280 block->level = node->level - 1;
2281 block->key_ready = 1;
2282 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
2283 BUG_ON(rb_node);
2284 }
2285 if (err)
2286 free_block_list(blocks);
2287 return err;
2288}
2289
2290/*
2291 * find adjacent blocks require processing
2292 */
2293static noinline_for_stack
2294int add_adjacent_blocks(struct btrfs_trans_handle *trans,
2295 struct reloc_control *rc,
2296 struct backref_cache *cache,
2297 struct rb_root *blocks, int level,
2298 struct backref_node **upper)
2299{
2300 struct backref_node *node;
2301 int ret = 0;
2302
2303 WARN_ON(!list_empty(&cache->pending[level]));
2304
2305 if (list_empty(&cache->pending[level + 1]))
2306 return 1;
2307
2308 node = list_entry(cache->pending[level + 1].next,
2309 struct backref_node, lower);
2310 if (node->eb)
2311 ret = add_child_blocks(trans, rc, node, blocks);
2312
2313 *upper = node;
2314 return ret;
2315}
2316
2317static int get_tree_block_key(struct reloc_control *rc,
2318 struct tree_block *block)
2319{
2320 struct extent_buffer *eb;
2321
2322 BUG_ON(block->key_ready);
2323 eb = read_tree_block(rc->extent_root, block->bytenr,
2324 block->key.objectid, block->key.offset);
2325 WARN_ON(btrfs_header_level(eb) != block->level);
2326 if (block->level == 0)
2327 btrfs_item_key_to_cpu(eb, &block->key, 0);
2328 else
2329 btrfs_node_key_to_cpu(eb, &block->key, 0);
2330 free_extent_buffer(eb);
2331 block->key_ready = 1;
2332 return 0;
2333}
2334
2335static int reada_tree_block(struct reloc_control *rc,
2336 struct tree_block *block)
2337{
2338 BUG_ON(block->key_ready);
2339 readahead_tree_block(rc->extent_root, block->bytenr,
2340 block->key.objectid, block->key.offset);
2341 return 0;
2342}
2343
2344/*
2345 * helper function to relocate a tree block
2346 */
2347static int relocate_tree_block(struct btrfs_trans_handle *trans,
2348 struct reloc_control *rc,
2349 struct backref_node *node,
2350 struct btrfs_key *key,
2351 struct btrfs_path *path)
2352{
2353 struct btrfs_root *root;
2354 int ret;
2355
2356 root = select_one_root(trans, node);
2357 if (unlikely(!root)) {
2358 rc->found_old_snapshot = 1;
2359 update_processed_blocks(rc, node);
2360 return 0;
2361 }
2362
2363 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2364 ret = do_relocation(trans, node, key, path, 1);
2365 if (ret < 0)
2366 goto out;
2367 if (node->level == 0 && rc->stage == UPDATE_DATA_PTRS) {
2368 ret = replace_file_extents(trans, rc, root,
2369 node->eb, NULL);
2370 if (ret < 0)
2371 goto out;
2372 }
2373 drop_node_buffer(node);
2374 } else if (!root->ref_cows) {
2375 path->lowest_level = node->level;
2376 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2377 btrfs_release_path(root, path);
2378 if (ret < 0)
2379 goto out;
2380 } else if (root != node->root) {
2381 WARN_ON(node->level > 0 || rc->stage != UPDATE_DATA_PTRS);
2382 }
2383
2384 update_processed_blocks(rc, node);
2385 ret = 0;
2386out:
2387 drop_node_buffer(node);
2388 return ret;
2389}
2390
2391/*
2392 * relocate a list of blocks
2393 */
2394static noinline_for_stack
2395int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2396 struct reloc_control *rc, struct rb_root *blocks)
2397{
2398 struct backref_cache *cache;
2399 struct backref_node *node;
2400 struct btrfs_path *path;
2401 struct tree_block *block;
2402 struct rb_node *rb_node;
2403 int level = -1;
2404 int ret;
2405 int err = 0;
2406
2407 path = btrfs_alloc_path();
2408 if (!path)
2409 return -ENOMEM;
2410
2411 cache = kmalloc(sizeof(*cache), GFP_NOFS);
2412 if (!cache) {
2413 btrfs_free_path(path);
2414 return -ENOMEM;
2415 }
2416
2417 backref_cache_init(cache);
2418
2419 rb_node = rb_first(blocks);
2420 while (rb_node) {
2421 block = rb_entry(rb_node, struct tree_block, rb_node);
2422 if (level == -1)
2423 level = block->level;
2424 else
2425 BUG_ON(level != block->level);
2426 if (!block->key_ready)
2427 reada_tree_block(rc, block);
2428 rb_node = rb_next(rb_node);
2429 }
2430
2431 rb_node = rb_first(blocks);
2432 while (rb_node) {
2433 block = rb_entry(rb_node, struct tree_block, rb_node);
2434 if (!block->key_ready)
2435 get_tree_block_key(rc, block);
2436 rb_node = rb_next(rb_node);
2437 }
2438
2439 rb_node = rb_first(blocks);
2440 while (rb_node) {
2441 block = rb_entry(rb_node, struct tree_block, rb_node);
2442
2443 node = build_backref_tree(rc, cache, &block->key,
2444 block->level, block->bytenr);
2445 if (IS_ERR(node)) {
2446 err = PTR_ERR(node);
2447 goto out;
2448 }
2449
2450 ret = relocate_tree_block(trans, rc, node, &block->key,
2451 path);
2452 if (ret < 0) {
2453 err = ret;
2454 goto out;
2455 }
2456 remove_backref_node(cache, node);
2457 rb_node = rb_next(rb_node);
2458 }
2459
2460 if (level > 0)
2461 goto out;
2462
2463 free_block_list(blocks);
2464
2465 /*
2466 * now backrefs of some upper level tree blocks have been cached,
2467 * try relocating blocks referenced by these upper level blocks.
2468 */
2469 while (1) {
2470 struct backref_node *upper = NULL;
2471 if (trans->transaction->in_commit ||
2472 trans->transaction->delayed_refs.flushing)
2473 break;
2474
2475 ret = add_adjacent_blocks(trans, rc, cache, blocks, level,
2476 &upper);
2477 if (ret < 0)
2478 err = ret;
2479 if (ret != 0)
2480 break;
2481
2482 rb_node = rb_first(blocks);
2483 while (rb_node) {
2484 block = rb_entry(rb_node, struct tree_block, rb_node);
2485 if (trans->transaction->in_commit ||
2486 trans->transaction->delayed_refs.flushing)
2487 goto out;
2488 BUG_ON(!block->key_ready);
2489 node = build_backref_tree(rc, cache, &block->key,
2490 level, block->bytenr);
2491 if (IS_ERR(node)) {
2492 err = PTR_ERR(node);
2493 goto out;
2494 }
2495
2496 ret = relocate_tree_block(trans, rc, node,
2497 &block->key, path);
2498 if (ret < 0) {
2499 err = ret;
2500 goto out;
2501 }
2502 remove_backref_node(cache, node);
2503 rb_node = rb_next(rb_node);
2504 }
2505 free_block_list(blocks);
2506
2507 if (upper) {
2508 ret = link_to_upper(trans, upper, path);
2509 if (ret < 0) {
2510 err = ret;
2511 break;
2512 }
2513 remove_backref_node(cache, upper);
2514 }
2515 }
2516out:
2517 free_block_list(blocks);
2518
2519 ret = finish_pending_nodes(trans, cache, path);
2520 if (ret < 0)
2521 err = ret;
2522
2523 kfree(cache);
2524 btrfs_free_path(path);
2525 return err;
2526}
2527
2528static noinline_for_stack
2529int relocate_inode_pages(struct inode *inode, u64 start, u64 len)
2530{
2531 u64 page_start;
2532 u64 page_end;
2533 unsigned long i;
2534 unsigned long first_index;
2535 unsigned long last_index;
2536 unsigned int total_read = 0;
2537 unsigned int total_dirty = 0;
2538 struct page *page;
2539 struct file_ra_state *ra;
2540 struct btrfs_ordered_extent *ordered;
2541 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2542 int ret = 0;
2543
2544 ra = kzalloc(sizeof(*ra), GFP_NOFS);
2545 if (!ra)
2546 return -ENOMEM;
2547
2548 mutex_lock(&inode->i_mutex);
2549 first_index = start >> PAGE_CACHE_SHIFT;
2550 last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
2551
2552 /* make sure the dirty trick played by the caller work */
2553 ret = invalidate_inode_pages2_range(inode->i_mapping,
2554 first_index, last_index);
2555 if (ret)
2556 goto out_unlock;
2557
2558 file_ra_state_init(ra, inode->i_mapping);
2559
2560 for (i = first_index ; i <= last_index; i++) {
2561 if (total_read % ra->ra_pages == 0) {
2562 btrfs_force_ra(inode->i_mapping, ra, NULL, i,
2563 min(last_index, ra->ra_pages + i - 1));
2564 }
2565 total_read++;
2566again:
2567 if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
2568 BUG_ON(1);
2569 page = grab_cache_page(inode->i_mapping, i);
2570 if (!page) {
2571 ret = -ENOMEM;
2572 goto out_unlock;
2573 }
2574 if (!PageUptodate(page)) {
2575 btrfs_readpage(NULL, page);
2576 lock_page(page);
2577 if (!PageUptodate(page)) {
2578 unlock_page(page);
2579 page_cache_release(page);
2580 ret = -EIO;
2581 goto out_unlock;
2582 }
2583 }
2584 wait_on_page_writeback(page);
2585
2586 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2587 page_end = page_start + PAGE_CACHE_SIZE - 1;
2588 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2589
2590 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2591 if (ordered) {
2592 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2593 unlock_page(page);
2594 page_cache_release(page);
2595 btrfs_start_ordered_extent(inode, ordered, 1);
2596 btrfs_put_ordered_extent(ordered);
2597 goto again;
2598 }
2599 set_page_extent_mapped(page);
2600
2601 if (i == first_index)
2602 set_extent_bits(io_tree, page_start, page_end,
2603 EXTENT_BOUNDARY, GFP_NOFS);
2604 btrfs_set_extent_delalloc(inode, page_start, page_end);
2605
2606 set_page_dirty(page);
2607 total_dirty++;
2608
2609 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2610 unlock_page(page);
2611 page_cache_release(page);
2612 }
2613out_unlock:
2614 mutex_unlock(&inode->i_mutex);
2615 kfree(ra);
2616 balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
2617 return ret;
2618}
2619
2620static noinline_for_stack
2621int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key)
2622{
2623 struct btrfs_root *root = BTRFS_I(inode)->root;
2624 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2625 struct extent_map *em;
2626 u64 start = extent_key->objectid - BTRFS_I(inode)->index_cnt;
2627 u64 end = start + extent_key->offset - 1;
2628
2629 em = alloc_extent_map(GFP_NOFS);
2630 em->start = start;
2631 em->len = extent_key->offset;
2632 em->block_len = extent_key->offset;
2633 em->block_start = extent_key->objectid;
2634 em->bdev = root->fs_info->fs_devices->latest_bdev;
2635 set_bit(EXTENT_FLAG_PINNED, &em->flags);
2636
2637 /* setup extent map to cheat btrfs_readpage */
2638 lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2639 while (1) {
2640 int ret;
2641 spin_lock(&em_tree->lock);
2642 ret = add_extent_mapping(em_tree, em);
2643 spin_unlock(&em_tree->lock);
2644 if (ret != -EEXIST) {
2645 free_extent_map(em);
2646 break;
2647 }
2648 btrfs_drop_extent_cache(inode, start, end, 0);
2649 }
2650 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2651
2652 return relocate_inode_pages(inode, start, extent_key->offset);
2653}
2654
2655#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2656static int get_ref_objectid_v0(struct reloc_control *rc,
2657 struct btrfs_path *path,
2658 struct btrfs_key *extent_key,
2659 u64 *ref_objectid, int *path_change)
2660{
2661 struct btrfs_key key;
2662 struct extent_buffer *leaf;
2663 struct btrfs_extent_ref_v0 *ref0;
2664 int ret;
2665 int slot;
2666
2667 leaf = path->nodes[0];
2668 slot = path->slots[0];
2669 while (1) {
2670 if (slot >= btrfs_header_nritems(leaf)) {
2671 ret = btrfs_next_leaf(rc->extent_root, path);
2672 if (ret < 0)
2673 return ret;
2674 BUG_ON(ret > 0);
2675 leaf = path->nodes[0];
2676 slot = path->slots[0];
2677 if (path_change)
2678 *path_change = 1;
2679 }
2680 btrfs_item_key_to_cpu(leaf, &key, slot);
2681 if (key.objectid != extent_key->objectid)
2682 return -ENOENT;
2683
2684 if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
2685 slot++;
2686 continue;
2687 }
2688 ref0 = btrfs_item_ptr(leaf, slot,
2689 struct btrfs_extent_ref_v0);
2690 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
2691 break;
2692 }
2693 return 0;
2694}
2695#endif
2696
2697/*
2698 * helper to add a tree block to the list.
2699 * the major work is getting the generation and level of the block
2700 */
2701static int add_tree_block(struct reloc_control *rc,
2702 struct btrfs_key *extent_key,
2703 struct btrfs_path *path,
2704 struct rb_root *blocks)
2705{
2706 struct extent_buffer *eb;
2707 struct btrfs_extent_item *ei;
2708 struct btrfs_tree_block_info *bi;
2709 struct tree_block *block;
2710 struct rb_node *rb_node;
2711 u32 item_size;
2712 int level = -1;
2713 int generation;
2714
2715 eb = path->nodes[0];
2716 item_size = btrfs_item_size_nr(eb, path->slots[0]);
2717
2718 if (item_size >= sizeof(*ei) + sizeof(*bi)) {
2719 ei = btrfs_item_ptr(eb, path->slots[0],
2720 struct btrfs_extent_item);
2721 bi = (struct btrfs_tree_block_info *)(ei + 1);
2722 generation = btrfs_extent_generation(eb, ei);
2723 level = btrfs_tree_block_level(eb, bi);
2724 } else {
2725#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2726 u64 ref_owner;
2727 int ret;
2728
2729 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2730 ret = get_ref_objectid_v0(rc, path, extent_key,
2731 &ref_owner, NULL);
2732 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
2733 level = (int)ref_owner;
2734 /* FIXME: get real generation */
2735 generation = 0;
2736#else
2737 BUG();
2738#endif
2739 }
2740
2741 btrfs_release_path(rc->extent_root, path);
2742
2743 BUG_ON(level == -1);
2744
2745 block = kmalloc(sizeof(*block), GFP_NOFS);
2746 if (!block)
2747 return -ENOMEM;
2748
2749 block->bytenr = extent_key->objectid;
2750 block->key.objectid = extent_key->offset;
2751 block->key.offset = generation;
2752 block->level = level;
2753 block->key_ready = 0;
2754
2755 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
2756 BUG_ON(rb_node);
2757
2758 return 0;
2759}
2760
2761/*
2762 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2763 */
2764static int __add_tree_block(struct reloc_control *rc,
2765 u64 bytenr, u32 blocksize,
2766 struct rb_root *blocks)
2767{
2768 struct btrfs_path *path;
2769 struct btrfs_key key;
2770 int ret;
2771
2772 if (tree_block_processed(bytenr, blocksize, rc))
2773 return 0;
2774
2775 if (tree_search(blocks, bytenr))
2776 return 0;
2777
2778 path = btrfs_alloc_path();
2779 if (!path)
2780 return -ENOMEM;
2781
2782 key.objectid = bytenr;
2783 key.type = BTRFS_EXTENT_ITEM_KEY;
2784 key.offset = blocksize;
2785
2786 path->search_commit_root = 1;
2787 path->skip_locking = 1;
2788 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2789 if (ret < 0)
2790 goto out;
2791 BUG_ON(ret);
2792
2793 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2794 ret = add_tree_block(rc, &key, path, blocks);
2795out:
2796 btrfs_free_path(path);
2797 return ret;
2798}
2799
2800/*
2801 * helper to check if the block use full backrefs for pointers in it
2802 */
2803static int block_use_full_backref(struct reloc_control *rc,
2804 struct extent_buffer *eb)
2805{
2806 struct btrfs_path *path;
2807 struct btrfs_extent_item *ei;
2808 struct btrfs_key key;
2809 u64 flags;
2810 int ret;
2811
2812 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
2813 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
2814 return 1;
2815
2816 path = btrfs_alloc_path();
2817 BUG_ON(!path);
2818
2819 key.objectid = eb->start;
2820 key.type = BTRFS_EXTENT_ITEM_KEY;
2821 key.offset = eb->len;
2822
2823 path->search_commit_root = 1;
2824 path->skip_locking = 1;
2825 ret = btrfs_search_slot(NULL, rc->extent_root,
2826 &key, path, 0, 0);
2827 BUG_ON(ret);
2828
2829 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2830 struct btrfs_extent_item);
2831 flags = btrfs_extent_flags(path->nodes[0], ei);
2832 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2833 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
2834 ret = 1;
2835 else
2836 ret = 0;
2837 btrfs_free_path(path);
2838 return ret;
2839}
2840
2841/*
2842 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
2843 * this function scans fs tree to find blocks reference the data extent
2844 */
2845static int find_data_references(struct reloc_control *rc,
2846 struct btrfs_key *extent_key,
2847 struct extent_buffer *leaf,
2848 struct btrfs_extent_data_ref *ref,
2849 struct rb_root *blocks)
2850{
2851 struct btrfs_path *path;
2852 struct tree_block *block;
2853 struct btrfs_root *root;
2854 struct btrfs_file_extent_item *fi;
2855 struct rb_node *rb_node;
2856 struct btrfs_key key;
2857 u64 ref_root;
2858 u64 ref_objectid;
2859 u64 ref_offset;
2860 u32 ref_count;
2861 u32 nritems;
2862 int err = 0;
2863 int added = 0;
2864 int counted;
2865 int ret;
2866
2867 path = btrfs_alloc_path();
2868 if (!path)
2869 return -ENOMEM;
2870
2871 ref_root = btrfs_extent_data_ref_root(leaf, ref);
2872 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
2873 ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
2874 ref_count = btrfs_extent_data_ref_count(leaf, ref);
2875
2876 root = read_fs_root(rc->extent_root->fs_info, ref_root);
2877 if (IS_ERR(root)) {
2878 err = PTR_ERR(root);
2879 goto out;
2880 }
2881
2882 key.objectid = ref_objectid;
2883 key.offset = ref_offset;
2884 key.type = BTRFS_EXTENT_DATA_KEY;
2885
2886 path->search_commit_root = 1;
2887 path->skip_locking = 1;
2888 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2889 if (ret < 0) {
2890 err = ret;
2891 goto out;
2892 }
2893
2894 leaf = path->nodes[0];
2895 nritems = btrfs_header_nritems(leaf);
2896 /*
2897 * the references in tree blocks that use full backrefs
2898 * are not counted in
2899 */
2900 if (block_use_full_backref(rc, leaf))
2901 counted = 0;
2902 else
2903 counted = 1;
2904 rb_node = tree_search(blocks, leaf->start);
2905 if (rb_node) {
2906 if (counted)
2907 added = 1;
2908 else
2909 path->slots[0] = nritems;
2910 }
2911
2912 while (ref_count > 0) {
2913 while (path->slots[0] >= nritems) {
2914 ret = btrfs_next_leaf(root, path);
2915 if (ret < 0) {
2916 err = ret;
2917 goto out;
2918 }
2919 if (ret > 0) {
2920 WARN_ON(1);
2921 goto out;
2922 }
2923
2924 leaf = path->nodes[0];
2925 nritems = btrfs_header_nritems(leaf);
2926 added = 0;
2927
2928 if (block_use_full_backref(rc, leaf))
2929 counted = 0;
2930 else
2931 counted = 1;
2932 rb_node = tree_search(blocks, leaf->start);
2933 if (rb_node) {
2934 if (counted)
2935 added = 1;
2936 else
2937 path->slots[0] = nritems;
2938 }
2939 }
2940
2941 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2942 if (key.objectid != ref_objectid ||
2943 key.type != BTRFS_EXTENT_DATA_KEY) {
2944 WARN_ON(1);
2945 break;
2946 }
2947
2948 fi = btrfs_item_ptr(leaf, path->slots[0],
2949 struct btrfs_file_extent_item);
2950
2951 if (btrfs_file_extent_type(leaf, fi) ==
2952 BTRFS_FILE_EXTENT_INLINE)
2953 goto next;
2954
2955 if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
2956 extent_key->objectid)
2957 goto next;
2958
2959 key.offset -= btrfs_file_extent_offset(leaf, fi);
2960 if (key.offset != ref_offset)
2961 goto next;
2962
2963 if (counted)
2964 ref_count--;
2965 if (added)
2966 goto next;
2967
2968 if (!tree_block_processed(leaf->start, leaf->len, rc)) {
2969 block = kmalloc(sizeof(*block), GFP_NOFS);
2970 if (!block) {
2971 err = -ENOMEM;
2972 break;
2973 }
2974 block->bytenr = leaf->start;
2975 btrfs_item_key_to_cpu(leaf, &block->key, 0);
2976 block->level = 0;
2977 block->key_ready = 1;
2978 rb_node = tree_insert(blocks, block->bytenr,
2979 &block->rb_node);
2980 BUG_ON(rb_node);
2981 }
2982 if (counted)
2983 added = 1;
2984 else
2985 path->slots[0] = nritems;
2986next:
2987 path->slots[0]++;
2988
2989 }
2990out:
2991 btrfs_free_path(path);
2992 return err;
2993}
2994
2995/*
2996 * hepler to find all tree blocks that reference a given data extent
2997 */
2998static noinline_for_stack
2999int add_data_references(struct reloc_control *rc,
3000 struct btrfs_key *extent_key,
3001 struct btrfs_path *path,
3002 struct rb_root *blocks)
3003{
3004 struct btrfs_key key;
3005 struct extent_buffer *eb;
3006 struct btrfs_extent_data_ref *dref;
3007 struct btrfs_extent_inline_ref *iref;
3008 unsigned long ptr;
3009 unsigned long end;
3010 u32 blocksize;
3011 int ret;
3012 int err = 0;
3013
3014 ret = get_new_location(rc->data_inode, NULL, extent_key->objectid,
3015 extent_key->offset);
3016 BUG_ON(ret < 0);
3017 if (ret > 0) {
3018 /* the relocated data is fragmented */
3019 rc->extents_skipped++;
3020 btrfs_release_path(rc->extent_root, path);
3021 return 0;
3022 }
3023
3024 blocksize = btrfs_level_size(rc->extent_root, 0);
3025
3026 eb = path->nodes[0];
3027 ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3028 end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3029#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3030 if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3031 ptr = end;
3032 else
3033#endif
3034 ptr += sizeof(struct btrfs_extent_item);
3035
3036 while (ptr < end) {
3037 iref = (struct btrfs_extent_inline_ref *)ptr;
3038 key.type = btrfs_extent_inline_ref_type(eb, iref);
3039 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3040 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3041 ret = __add_tree_block(rc, key.offset, blocksize,
3042 blocks);
3043 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3044 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3045 ret = find_data_references(rc, extent_key,
3046 eb, dref, blocks);
3047 } else {
3048 BUG();
3049 }
3050 ptr += btrfs_extent_inline_ref_size(key.type);
3051 }
3052 WARN_ON(ptr > end);
3053
3054 while (1) {
3055 cond_resched();
3056 eb = path->nodes[0];
3057 if (path->slots[0] >= btrfs_header_nritems(eb)) {
3058 ret = btrfs_next_leaf(rc->extent_root, path);
3059 if (ret < 0) {
3060 err = ret;
3061 break;
3062 }
3063 if (ret > 0)
3064 break;
3065 eb = path->nodes[0];
3066 }
3067
3068 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3069 if (key.objectid != extent_key->objectid)
3070 break;
3071
3072#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3073 if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3074 key.type == BTRFS_EXTENT_REF_V0_KEY) {
3075#else
3076 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3077 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3078#endif
3079 ret = __add_tree_block(rc, key.offset, blocksize,
3080 blocks);
3081 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3082 dref = btrfs_item_ptr(eb, path->slots[0],
3083 struct btrfs_extent_data_ref);
3084 ret = find_data_references(rc, extent_key,
3085 eb, dref, blocks);
3086 } else {
3087 ret = 0;
3088 }
3089 if (ret) {
3090 err = ret;
3091 break;
3092 }
3093 path->slots[0]++;
3094 }
3095 btrfs_release_path(rc->extent_root, path);
3096 if (err)
3097 free_block_list(blocks);
3098 return err;
3099}
3100
3101/*
3102 * hepler to find next unprocessed extent
3103 */
3104static noinline_for_stack
3105int find_next_extent(struct btrfs_trans_handle *trans,
3106 struct reloc_control *rc, struct btrfs_path *path)
3107{
3108 struct btrfs_key key;
3109 struct extent_buffer *leaf;
3110 u64 start, end, last;
3111 int ret;
3112
3113 last = rc->block_group->key.objectid + rc->block_group->key.offset;
3114 while (1) {
3115 cond_resched();
3116 if (rc->search_start >= last) {
3117 ret = 1;
3118 break;
3119 }
3120
3121 key.objectid = rc->search_start;
3122 key.type = BTRFS_EXTENT_ITEM_KEY;
3123 key.offset = 0;
3124
3125 path->search_commit_root = 1;
3126 path->skip_locking = 1;
3127 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3128 0, 0);
3129 if (ret < 0)
3130 break;
3131next:
3132 leaf = path->nodes[0];
3133 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3134 ret = btrfs_next_leaf(rc->extent_root, path);
3135 if (ret != 0)
3136 break;
3137 leaf = path->nodes[0];
3138 }
3139
3140 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3141 if (key.objectid >= last) {
3142 ret = 1;
3143 break;
3144 }
3145
3146 if (key.type != BTRFS_EXTENT_ITEM_KEY ||
3147 key.objectid + key.offset <= rc->search_start) {
3148 path->slots[0]++;
3149 goto next;
3150 }
3151
3152 ret = find_first_extent_bit(&rc->processed_blocks,
3153 key.objectid, &start, &end,
3154 EXTENT_DIRTY);
3155
3156 if (ret == 0 && start <= key.objectid) {
3157 btrfs_release_path(rc->extent_root, path);
3158 rc->search_start = end + 1;
3159 } else {
3160 rc->search_start = key.objectid + key.offset;
3161 return 0;
3162 }
3163 }
3164 btrfs_release_path(rc->extent_root, path);
3165 return ret;
3166}
3167
3168static void set_reloc_control(struct reloc_control *rc)
3169{
3170 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3171 mutex_lock(&fs_info->trans_mutex);
3172 fs_info->reloc_ctl = rc;
3173 mutex_unlock(&fs_info->trans_mutex);
3174}
3175
3176static void unset_reloc_control(struct reloc_control *rc)
3177{
3178 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3179 mutex_lock(&fs_info->trans_mutex);
3180 fs_info->reloc_ctl = NULL;
3181 mutex_unlock(&fs_info->trans_mutex);
3182}
3183
3184static int check_extent_flags(u64 flags)
3185{
3186 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3187 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3188 return 1;
3189 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3190 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3191 return 1;
3192 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3193 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3194 return 1;
3195 return 0;
3196}
3197
3198static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3199{
3200 struct rb_root blocks = RB_ROOT;
3201 struct btrfs_key key;
3202 struct btrfs_trans_handle *trans = NULL;
3203 struct btrfs_path *path;
3204 struct btrfs_extent_item *ei;
3205 unsigned long nr;
3206 u64 flags;
3207 u32 item_size;
3208 int ret;
3209 int err = 0;
3210
3211 path = btrfs_alloc_path();
3212 if (!path)
3213 return -ENOMEM;
3214
3215 rc->search_start = rc->block_group->key.objectid;
3216 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3217 GFP_NOFS);
3218
3219 rc->create_reloc_root = 1;
3220 set_reloc_control(rc);
3221
3222 trans = btrfs_start_transaction(rc->extent_root, 1);
3223 btrfs_commit_transaction(trans, rc->extent_root);
3224
3225 while (1) {
3226 trans = btrfs_start_transaction(rc->extent_root, 1);
3227
3228 ret = find_next_extent(trans, rc, path);
3229 if (ret < 0)
3230 err = ret;
3231 if (ret != 0)
3232 break;
3233
3234 rc->extents_found++;
3235
3236 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3237 struct btrfs_extent_item);
3238 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3239 item_size = btrfs_item_size_nr(path->nodes[0],
3240 path->slots[0]);
3241 if (item_size >= sizeof(*ei)) {
3242 flags = btrfs_extent_flags(path->nodes[0], ei);
3243 ret = check_extent_flags(flags);
3244 BUG_ON(ret);
3245
3246 } else {
3247#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3248 u64 ref_owner;
3249 int path_change = 0;
3250
3251 BUG_ON(item_size !=
3252 sizeof(struct btrfs_extent_item_v0));
3253 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3254 &path_change);
3255 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3256 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3257 else
3258 flags = BTRFS_EXTENT_FLAG_DATA;
3259
3260 if (path_change) {
3261 btrfs_release_path(rc->extent_root, path);
3262
3263 path->search_commit_root = 1;
3264 path->skip_locking = 1;
3265 ret = btrfs_search_slot(NULL, rc->extent_root,
3266 &key, path, 0, 0);
3267 if (ret < 0) {
3268 err = ret;
3269 break;
3270 }
3271 BUG_ON(ret > 0);
3272 }
3273#else
3274 BUG();
3275#endif
3276 }
3277
3278 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3279 ret = add_tree_block(rc, &key, path, &blocks);
3280 } else if (rc->stage == UPDATE_DATA_PTRS &&
3281 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3282 ret = add_data_references(rc, &key, path, &blocks);
3283 } else {
3284 btrfs_release_path(rc->extent_root, path);
3285 ret = 0;
3286 }
3287 if (ret < 0) {
3288 err = 0;
3289 break;
3290 }
3291
3292 if (!RB_EMPTY_ROOT(&blocks)) {
3293 ret = relocate_tree_blocks(trans, rc, &blocks);
3294 if (ret < 0) {
3295 err = ret;
3296 break;
3297 }
3298 }
3299
3300 nr = trans->blocks_used;
3301 btrfs_end_transaction_throttle(trans, rc->extent_root);
3302 trans = NULL;
3303 btrfs_btree_balance_dirty(rc->extent_root, nr);
3304
3305 if (rc->stage == MOVE_DATA_EXTENTS &&
3306 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3307 rc->found_file_extent = 1;
3308 ret = relocate_data_extent(rc->data_inode, &key);
3309 if (ret < 0) {
3310 err = ret;
3311 break;
3312 }
3313 }
3314 }
3315 btrfs_free_path(path);
3316
3317 if (trans) {
3318 nr = trans->blocks_used;
3319 btrfs_end_transaction(trans, rc->extent_root);
3320 btrfs_btree_balance_dirty(rc->extent_root, nr);
3321 }
3322
3323 rc->create_reloc_root = 0;
3324 smp_mb();
3325
3326 if (rc->extents_found > 0) {
3327 trans = btrfs_start_transaction(rc->extent_root, 1);
3328 btrfs_commit_transaction(trans, rc->extent_root);
3329 }
3330
3331 merge_reloc_roots(rc);
3332
3333 unset_reloc_control(rc);
3334
3335 /* get rid of pinned extents */
3336 trans = btrfs_start_transaction(rc->extent_root, 1);
3337 btrfs_commit_transaction(trans, rc->extent_root);
3338
3339 return err;
3340}
3341
3342static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3343 struct btrfs_root *root,
3344 u64 objectid, u64 size)
3345{
3346 struct btrfs_path *path;
3347 struct btrfs_inode_item *item;
3348 struct extent_buffer *leaf;
3349 int ret;
3350
3351 path = btrfs_alloc_path();
3352 if (!path)
3353 return -ENOMEM;
3354
3355 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3356 if (ret)
3357 goto out;
3358
3359 leaf = path->nodes[0];
3360 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3361 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3362 btrfs_set_inode_generation(leaf, item, 1);
3363 btrfs_set_inode_size(leaf, item, size);
3364 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3365 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS);
3366 btrfs_mark_buffer_dirty(leaf);
3367 btrfs_release_path(root, path);
3368out:
3369 btrfs_free_path(path);
3370 return ret;
3371}
3372
3373/*
3374 * helper to create inode for data relocation.
3375 * the inode is in data relocation tree and its link count is 0
3376 */
3377static struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3378 struct btrfs_block_group_cache *group)
3379{
3380 struct inode *inode = NULL;
3381 struct btrfs_trans_handle *trans;
3382 struct btrfs_root *root;
3383 struct btrfs_key key;
3384 unsigned long nr;
3385 u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
3386 int err = 0;
3387
3388 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
3389 if (IS_ERR(root))
3390 return ERR_CAST(root);
3391
3392 trans = btrfs_start_transaction(root, 1);
3393 BUG_ON(!trans);
3394
3395 err = btrfs_find_free_objectid(trans, root, objectid, &objectid);
3396 if (err)
3397 goto out;
3398
3399 err = __insert_orphan_inode(trans, root, objectid, group->key.offset);
3400 BUG_ON(err);
3401
3402 err = btrfs_insert_file_extent(trans, root, objectid, 0, 0, 0,
3403 group->key.offset, 0, group->key.offset,
3404 0, 0, 0);
3405 BUG_ON(err);
3406
3407 key.objectid = objectid;
3408 key.type = BTRFS_INODE_ITEM_KEY;
3409 key.offset = 0;
3410 inode = btrfs_iget(root->fs_info->sb, &key, root);
3411 BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
3412 BTRFS_I(inode)->index_cnt = group->key.objectid;
3413
3414 err = btrfs_orphan_add(trans, inode);
3415out:
3416 nr = trans->blocks_used;
3417 btrfs_end_transaction(trans, root);
3418
3419 btrfs_btree_balance_dirty(root, nr);
3420 if (err) {
3421 if (inode)
3422 iput(inode);
3423 inode = ERR_PTR(err);
3424 }
3425 return inode;
3426}
3427
3428/*
3429 * function to relocate all extents in a block group.
3430 */
3431int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
3432{
3433 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3434 struct reloc_control *rc;
3435 int ret;
3436 int err = 0;
3437
3438 rc = kzalloc(sizeof(*rc), GFP_NOFS);
3439 if (!rc)
3440 return -ENOMEM;
3441
3442 mapping_tree_init(&rc->reloc_root_tree);
3443 extent_io_tree_init(&rc->processed_blocks, NULL, GFP_NOFS);
3444 INIT_LIST_HEAD(&rc->reloc_roots);
3445
3446 rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
3447 BUG_ON(!rc->block_group);
3448
3449 btrfs_init_workers(&rc->workers, "relocate",
3450 fs_info->thread_pool_size);
3451
3452 rc->extent_root = extent_root;
3453 btrfs_prepare_block_group_relocation(extent_root, rc->block_group);
3454
3455 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3456 if (IS_ERR(rc->data_inode)) {
3457 err = PTR_ERR(rc->data_inode);
3458 rc->data_inode = NULL;
3459 goto out;
3460 }
3461
3462 printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
3463 (unsigned long long)rc->block_group->key.objectid,
3464 (unsigned long long)rc->block_group->flags);
3465
3466 btrfs_start_delalloc_inodes(fs_info->tree_root);
3467 btrfs_wait_ordered_extents(fs_info->tree_root, 0);
3468
3469 while (1) {
3470 mutex_lock(&fs_info->cleaner_mutex);
3471 btrfs_clean_old_snapshots(fs_info->tree_root);
3472 mutex_unlock(&fs_info->cleaner_mutex);
3473
3474 rc->extents_found = 0;
3475 rc->extents_skipped = 0;
3476
3477 ret = relocate_block_group(rc);
3478 if (ret < 0) {
3479 err = ret;
3480 break;
3481 }
3482
3483 if (rc->extents_found == 0)
3484 break;
3485
3486 printk(KERN_INFO "btrfs: found %llu extents\n",
3487 (unsigned long long)rc->extents_found);
3488
3489 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3490 btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
3491 invalidate_mapping_pages(rc->data_inode->i_mapping,
3492 0, -1);
3493 rc->stage = UPDATE_DATA_PTRS;
3494 } else if (rc->stage == UPDATE_DATA_PTRS &&
3495 rc->extents_skipped >= rc->extents_found) {
3496 iput(rc->data_inode);
3497 rc->data_inode = create_reloc_inode(fs_info,
3498 rc->block_group);
3499 if (IS_ERR(rc->data_inode)) {
3500 err = PTR_ERR(rc->data_inode);
3501 rc->data_inode = NULL;
3502 break;
3503 }
3504 rc->stage = MOVE_DATA_EXTENTS;
3505 rc->found_file_extent = 0;
3506 }
3507 }
3508
3509 filemap_fdatawrite_range(fs_info->btree_inode->i_mapping,
3510 rc->block_group->key.objectid,
3511 rc->block_group->key.objectid +
3512 rc->block_group->key.offset - 1);
3513
3514 WARN_ON(rc->block_group->pinned > 0);
3515 WARN_ON(rc->block_group->reserved > 0);
3516 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
3517out:
3518 iput(rc->data_inode);
3519 btrfs_stop_workers(&rc->workers);
3520 btrfs_put_block_group(rc->block_group);
3521 kfree(rc);
3522 return err;
3523}
3524
3525/*
3526 * recover relocation interrupted by system crash.
3527 *
3528 * this function resumes merging reloc trees with corresponding fs trees.
3529 * this is important for keeping the sharing of tree blocks
3530 */
3531int btrfs_recover_relocation(struct btrfs_root *root)
3532{
3533 LIST_HEAD(reloc_roots);
3534 struct btrfs_key key;
3535 struct btrfs_root *fs_root;
3536 struct btrfs_root *reloc_root;
3537 struct btrfs_path *path;
3538 struct extent_buffer *leaf;
3539 struct reloc_control *rc = NULL;
3540 struct btrfs_trans_handle *trans;
3541 int ret;
3542 int err = 0;
3543
3544 path = btrfs_alloc_path();
3545 if (!path)
3546 return -ENOMEM;
3547
3548 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3549 key.type = BTRFS_ROOT_ITEM_KEY;
3550 key.offset = (u64)-1;
3551
3552 while (1) {
3553 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
3554 path, 0, 0);
3555 if (ret < 0) {
3556 err = ret;
3557 goto out;
3558 }
3559 if (ret > 0) {
3560 if (path->slots[0] == 0)
3561 break;
3562 path->slots[0]--;
3563 }
3564 leaf = path->nodes[0];
3565 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3566 btrfs_release_path(root->fs_info->tree_root, path);
3567
3568 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3569 key.type != BTRFS_ROOT_ITEM_KEY)
3570 break;
3571
3572 reloc_root = btrfs_read_fs_root_no_radix(root, &key);
3573 if (IS_ERR(reloc_root)) {
3574 err = PTR_ERR(reloc_root);
3575 goto out;
3576 }
3577
3578 list_add(&reloc_root->root_list, &reloc_roots);
3579
3580 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3581 fs_root = read_fs_root(root->fs_info,
3582 reloc_root->root_key.offset);
3583 if (IS_ERR(fs_root)) {
3584 err = PTR_ERR(fs_root);
3585 goto out;
3586 }
3587 }
3588
3589 if (key.offset == 0)
3590 break;
3591
3592 key.offset--;
3593 }
3594 btrfs_release_path(root->fs_info->tree_root, path);
3595
3596 if (list_empty(&reloc_roots))
3597 goto out;
3598
3599 rc = kzalloc(sizeof(*rc), GFP_NOFS);
3600 if (!rc) {
3601 err = -ENOMEM;
3602 goto out;
3603 }
3604
3605 mapping_tree_init(&rc->reloc_root_tree);
3606 INIT_LIST_HEAD(&rc->reloc_roots);
3607 btrfs_init_workers(&rc->workers, "relocate",
3608 root->fs_info->thread_pool_size);
3609 rc->extent_root = root->fs_info->extent_root;
3610
3611 set_reloc_control(rc);
3612
3613 while (!list_empty(&reloc_roots)) {
3614 reloc_root = list_entry(reloc_roots.next,
3615 struct btrfs_root, root_list);
3616 list_del(&reloc_root->root_list);
3617
3618 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3619 list_add_tail(&reloc_root->root_list,
3620 &rc->reloc_roots);
3621 continue;
3622 }
3623
3624 fs_root = read_fs_root(root->fs_info,
3625 reloc_root->root_key.offset);
3626 BUG_ON(IS_ERR(fs_root));
3627
3628 __add_reloc_root(reloc_root);
3629 fs_root->reloc_root = reloc_root;
3630 }
3631
3632 trans = btrfs_start_transaction(rc->extent_root, 1);
3633 btrfs_commit_transaction(trans, rc->extent_root);
3634
3635 merge_reloc_roots(rc);
3636
3637 unset_reloc_control(rc);
3638
3639 trans = btrfs_start_transaction(rc->extent_root, 1);
3640 btrfs_commit_transaction(trans, rc->extent_root);
3641out:
3642 if (rc) {
3643 btrfs_stop_workers(&rc->workers);
3644 kfree(rc);
3645 }
3646 while (!list_empty(&reloc_roots)) {
3647 reloc_root = list_entry(reloc_roots.next,
3648 struct btrfs_root, root_list);
3649 list_del(&reloc_root->root_list);
3650 free_extent_buffer(reloc_root->node);
3651 free_extent_buffer(reloc_root->commit_root);
3652 kfree(reloc_root);
3653 }
3654 btrfs_free_path(path);
3655
3656 if (err == 0) {
3657 /* cleanup orphan inode in data relocation tree */
3658 fs_root = read_fs_root(root->fs_info,
3659 BTRFS_DATA_RELOC_TREE_OBJECTID);
3660 if (IS_ERR(fs_root))
3661 err = PTR_ERR(fs_root);
3662 }
3663 return err;
3664}
3665
3666/*
3667 * helper to add ordered checksum for data relocation.
3668 *
3669 * cloning checksum properly handles the nodatasum extents.
3670 * it also saves CPU time to re-calculate the checksum.
3671 */
3672int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
3673{
3674 struct btrfs_ordered_sum *sums;
3675 struct btrfs_sector_sum *sector_sum;
3676 struct btrfs_ordered_extent *ordered;
3677 struct btrfs_root *root = BTRFS_I(inode)->root;
3678 size_t offset;
3679 int ret;
3680 u64 disk_bytenr;
3681 LIST_HEAD(list);
3682
3683 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3684 BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
3685
3686 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
3687 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
3688 disk_bytenr + len - 1, &list);
3689
3690 while (!list_empty(&list)) {
3691 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3692 list_del_init(&sums->list);
3693
3694 sector_sum = sums->sums;
3695 sums->bytenr = ordered->start;
3696
3697 offset = 0;
3698 while (offset < sums->len) {
3699 sector_sum->bytenr += ordered->start - disk_bytenr;
3700 sector_sum++;
3701 offset += root->sectorsize;
3702 }
3703
3704 btrfs_add_ordered_sum(inode, ordered, sums);
3705 }
3706 btrfs_put_ordered_extent(ordered);
3707 return 0;
3708}