Btrfs: Cleanup and comment ordered-data.c
[linux-2.6-block.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/gfp.h>
20#include <linux/slab.h>
d6bfde87 21#include <linux/blkdev.h>
dc17ff8f
CM
22#include "ctree.h"
23#include "transaction.h"
24#include "btrfs_inode.h"
e6dcd2dc 25#include "extent_io.h"
dc17ff8f 26
dc17ff8f 27
e6dcd2dc 28static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 29{
e6dcd2dc
CM
30 if (entry->file_offset + entry->len < entry->file_offset)
31 return (u64)-1;
32 return entry->file_offset + entry->len;
dc17ff8f
CM
33}
34
e6dcd2dc
CM
35static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
36 struct rb_node *node)
dc17ff8f
CM
37{
38 struct rb_node ** p = &root->rb_node;
39 struct rb_node * parent = NULL;
e6dcd2dc 40 struct btrfs_ordered_extent *entry;
dc17ff8f
CM
41
42 while(*p) {
43 parent = *p;
e6dcd2dc 44 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 45
e6dcd2dc 46 if (file_offset < entry->file_offset)
dc17ff8f 47 p = &(*p)->rb_left;
e6dcd2dc 48 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
49 p = &(*p)->rb_right;
50 else
51 return parent;
52 }
53
54 rb_link_node(node, parent, p);
55 rb_insert_color(node, root);
56 return NULL;
57}
58
e6dcd2dc
CM
59static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
60 struct rb_node **prev_ret)
dc17ff8f
CM
61{
62 struct rb_node * n = root->rb_node;
63 struct rb_node *prev = NULL;
e6dcd2dc
CM
64 struct rb_node *test;
65 struct btrfs_ordered_extent *entry;
66 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f
CM
67
68 while(n) {
e6dcd2dc 69 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
70 prev = n;
71 prev_entry = entry;
dc17ff8f 72
e6dcd2dc 73 if (file_offset < entry->file_offset)
dc17ff8f 74 n = n->rb_left;
e6dcd2dc 75 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
76 n = n->rb_right;
77 else
78 return n;
79 }
80 if (!prev_ret)
81 return NULL;
82
e6dcd2dc
CM
83 while(prev && file_offset >= entry_end(prev_entry)) {
84 test = rb_next(prev);
85 if (!test)
86 break;
87 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
88 rb_node);
89 if (file_offset < entry_end(prev_entry))
90 break;
91
92 prev = test;
93 }
94 if (prev)
95 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
96 rb_node);
97 while(prev && file_offset < entry_end(prev_entry)) {
98 test = rb_prev(prev);
99 if (!test)
100 break;
101 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
102 rb_node);
103 prev = test;
dc17ff8f
CM
104 }
105 *prev_ret = prev;
106 return NULL;
107}
108
e6dcd2dc
CM
109static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
110{
111 if (file_offset < entry->file_offset ||
112 entry->file_offset + entry->len <= file_offset)
113 return 0;
114 return 1;
115}
116
117static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
118 u64 file_offset)
dc17ff8f 119{
e6dcd2dc 120 struct rb_root *root = &tree->tree;
dc17ff8f
CM
121 struct rb_node *prev;
122 struct rb_node *ret;
e6dcd2dc
CM
123 struct btrfs_ordered_extent *entry;
124
125 if (tree->last) {
126 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
127 rb_node);
128 if (offset_in_entry(entry, file_offset))
129 return tree->last;
130 }
131 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 132 if (!ret)
e6dcd2dc
CM
133 ret = prev;
134 if (ret)
135 tree->last = ret;
dc17ff8f
CM
136 return ret;
137}
138
eb84ae03
CM
139/* allocate and add a new ordered_extent into the per-inode tree.
140 * file_offset is the logical offset in the file
141 *
142 * start is the disk block number of an extent already reserved in the
143 * extent allocation tree
144 *
145 * len is the length of the extent
146 *
147 * This also sets the EXTENT_ORDERED bit on the range in the inode.
148 *
149 * The tree is given a single reference on the ordered extent that was
150 * inserted.
151 */
e6dcd2dc
CM
152int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
153 u64 start, u64 len)
dc17ff8f 154{
dc17ff8f 155 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
156 struct rb_node *node;
157 struct btrfs_ordered_extent *entry;
dc17ff8f 158
e6dcd2dc
CM
159 tree = &BTRFS_I(inode)->ordered_tree;
160 entry = kzalloc(sizeof(*entry), GFP_NOFS);
dc17ff8f
CM
161 if (!entry)
162 return -ENOMEM;
163
e6dcd2dc
CM
164 mutex_lock(&tree->mutex);
165 entry->file_offset = file_offset;
166 entry->start = start;
167 entry->len = len;
e6dcd2dc
CM
168 /* one ref for the tree */
169 atomic_set(&entry->refs, 1);
170 init_waitqueue_head(&entry->wait);
171 INIT_LIST_HEAD(&entry->list);
dc17ff8f 172
e6dcd2dc
CM
173 node = tree_insert(&tree->tree, file_offset,
174 &entry->rb_node);
175 if (node) {
176 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
177 atomic_inc(&entry->refs);
178 }
179 set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
180 entry_end(entry) - 1, GFP_NOFS);
1b1e2135 181
e6dcd2dc
CM
182 mutex_unlock(&tree->mutex);
183 BUG_ON(node);
dc17ff8f
CM
184 return 0;
185}
186
eb84ae03
CM
187/*
188 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
189 * when an ordered extent is finished.
190 */
e6dcd2dc 191int btrfs_add_ordered_sum(struct inode *inode, struct btrfs_ordered_sum *sum)
dc17ff8f 192{
e6dcd2dc 193 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 194 struct rb_node *node;
e6dcd2dc 195 struct btrfs_ordered_extent *entry;
dc17ff8f 196
e6dcd2dc
CM
197 tree = &BTRFS_I(inode)->ordered_tree;
198 mutex_lock(&tree->mutex);
199 node = tree_search(tree, sum->file_offset);
e6dcd2dc 200 BUG_ON(!node);
dc17ff8f 201
e6dcd2dc 202 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
eb84ae03 203 BUG_ON(!offset_in_entry(entry, sum->file_offset));
dc17ff8f 204
e6dcd2dc
CM
205 list_add_tail(&sum->list, &entry->list);
206 mutex_unlock(&tree->mutex);
207 return 0;
dc17ff8f
CM
208}
209
eb84ae03
CM
210/*
211 * this is used to account for finished IO across a given range
212 * of the file. The IO should not span ordered extents. If
213 * a given ordered_extent is completely done, 1 is returned, otherwise
214 * 0.
215 *
216 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
217 * to make sure this function only returns 1 once for a given ordered extent.
218 */
e6dcd2dc
CM
219int btrfs_dec_test_ordered_pending(struct inode *inode,
220 u64 file_offset, u64 io_size)
dc17ff8f 221{
e6dcd2dc 222 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 223 struct rb_node *node;
e6dcd2dc
CM
224 struct btrfs_ordered_extent *entry;
225 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
226 int ret;
227
228 tree = &BTRFS_I(inode)->ordered_tree;
229 mutex_lock(&tree->mutex);
230 clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
231 GFP_NOFS);
232 node = tree_search(tree, file_offset);
dc17ff8f 233 if (!node) {
e6dcd2dc
CM
234 ret = 1;
235 goto out;
dc17ff8f
CM
236 }
237
e6dcd2dc
CM
238 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
239 if (!offset_in_entry(entry, file_offset)) {
240 ret = 1;
241 goto out;
dc17ff8f 242 }
e6dcd2dc
CM
243
244 ret = test_range_bit(io_tree, entry->file_offset,
245 entry->file_offset + entry->len - 1,
246 EXTENT_ORDERED, 0);
e6dcd2dc
CM
247 if (ret == 0)
248 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
249out:
250 mutex_unlock(&tree->mutex);
251 return ret == 0;
252}
dc17ff8f 253
eb84ae03
CM
254/*
255 * used to drop a reference on an ordered extent. This will free
256 * the extent if the last reference is dropped
257 */
e6dcd2dc
CM
258int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
259{
ba1da2f4
CM
260 struct list_head *cur;
261 struct btrfs_ordered_sum *sum;
262
263 if (atomic_dec_and_test(&entry->refs)) {
264 while(!list_empty(&entry->list)) {
265 cur = entry->list.next;
266 sum = list_entry(cur, struct btrfs_ordered_sum, list);
267 list_del(&sum->list);
268 kfree(sum);
269 }
e6dcd2dc 270 kfree(entry);
ba1da2f4 271 }
e6dcd2dc 272 return 0;
dc17ff8f 273}
cee36a03 274
eb84ae03
CM
275/*
276 * remove an ordered extent from the tree. No references are dropped
277 * but, anyone waiting on this extent is woken up.
278 */
e6dcd2dc
CM
279int btrfs_remove_ordered_extent(struct inode *inode,
280 struct btrfs_ordered_extent *entry)
cee36a03 281{
e6dcd2dc 282 struct btrfs_ordered_inode_tree *tree;
cee36a03 283 struct rb_node *node;
cee36a03 284
e6dcd2dc
CM
285 tree = &BTRFS_I(inode)->ordered_tree;
286 mutex_lock(&tree->mutex);
287 node = &entry->rb_node;
cee36a03 288 rb_erase(node, &tree->tree);
e6dcd2dc
CM
289 tree->last = NULL;
290 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
291 mutex_unlock(&tree->mutex);
292 wake_up(&entry->wait);
293 return 0;
cee36a03
CM
294}
295
eb84ae03
CM
296/*
297 * Used to start IO or wait for a given ordered extent to finish.
298 *
299 * If wait is one, this effectively waits on page writeback for all the pages
300 * in the extent, and it waits on the io completion code to insert
301 * metadata into the btree corresponding to the extent
302 */
303void btrfs_start_ordered_extent(struct inode *inode,
304 struct btrfs_ordered_extent *entry,
305 int wait)
e6dcd2dc
CM
306{
307 u64 start = entry->file_offset;
308 u64 end = start + entry->len - 1;
e1b81e67 309
eb84ae03
CM
310 /*
311 * pages in the range can be dirty, clean or writeback. We
312 * start IO on any dirty ones so the wait doesn't stall waiting
313 * for pdflush to find them
314 */
e6dcd2dc
CM
315#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,22)
316 do_sync_file_range(file, start, end, SYNC_FILE_RANGE_WRITE);
317#else
318 do_sync_mapping_range(inode->i_mapping, start, end,
319 SYNC_FILE_RANGE_WRITE);
320#endif
321 if (wait)
322 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
323 &entry->flags));
324}
cee36a03 325
eb84ae03
CM
326/*
327 * Used to wait on ordered extents across a large range of bytes.
328 */
e6dcd2dc
CM
329void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
330{
331 u64 end;
332 struct btrfs_ordered_extent *ordered;
333 int found;
334 int should_wait = 0;
335
336again:
337 if (start + len < start)
338 end = (u64)-1;
339 else
340 end = start + len - 1;
341 found = 0;
342 while(1) {
343 ordered = btrfs_lookup_first_ordered_extent(inode, end);
344 if (!ordered) {
345 break;
346 }
347 if (ordered->file_offset >= start + len) {
348 btrfs_put_ordered_extent(ordered);
349 break;
350 }
351 if (ordered->file_offset + ordered->len < start) {
352 btrfs_put_ordered_extent(ordered);
353 break;
354 }
355 btrfs_start_ordered_extent(inode, ordered, should_wait);
356 found++;
357 end = ordered->file_offset;
358 btrfs_put_ordered_extent(ordered);
359 if (end == 0)
360 break;
361 end--;
362 }
363 if (should_wait && found) {
364 should_wait = 0;
365 goto again;
cee36a03 366 }
cee36a03
CM
367}
368
e6dcd2dc 369
eb84ae03
CM
370/*
371 * find an ordered extent corresponding to file_offset. return NULL if
372 * nothing is found, otherwise take a reference on the extent and return it
373 */
e6dcd2dc
CM
374struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
375 u64 file_offset)
376{
377 struct btrfs_ordered_inode_tree *tree;
378 struct rb_node *node;
379 struct btrfs_ordered_extent *entry = NULL;
380
381 tree = &BTRFS_I(inode)->ordered_tree;
382 mutex_lock(&tree->mutex);
383 node = tree_search(tree, file_offset);
384 if (!node)
385 goto out;
386
387 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
388 if (!offset_in_entry(entry, file_offset))
389 entry = NULL;
390 if (entry)
391 atomic_inc(&entry->refs);
392out:
393 mutex_unlock(&tree->mutex);
394 return entry;
395}
396
eb84ae03
CM
397/*
398 * lookup and return any extent before 'file_offset'. NULL is returned
399 * if none is found
400 */
e6dcd2dc
CM
401struct btrfs_ordered_extent *
402btrfs_lookup_first_ordered_extent(struct inode * inode, u64 file_offset)
403{
404 struct btrfs_ordered_inode_tree *tree;
405 struct rb_node *node;
406 struct btrfs_ordered_extent *entry = NULL;
407
408 tree = &BTRFS_I(inode)->ordered_tree;
409 mutex_lock(&tree->mutex);
410 node = tree_search(tree, file_offset);
411 if (!node)
412 goto out;
413
414 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
415 atomic_inc(&entry->refs);
416out:
417 mutex_unlock(&tree->mutex);
418 return entry;
81d7ed29 419}
dbe674a9 420
eb84ae03
CM
421/*
422 * After an extent is done, call this to conditionally update the on disk
423 * i_size. i_size is updated to cover any fully written part of the file.
424 */
dbe674a9
CM
425int btrfs_ordered_update_i_size(struct inode *inode,
426 struct btrfs_ordered_extent *ordered)
427{
428 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
429 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
430 u64 disk_i_size;
431 u64 new_i_size;
432 u64 i_size_test;
433 struct rb_node *node;
434 struct btrfs_ordered_extent *test;
435
436 mutex_lock(&tree->mutex);
437 disk_i_size = BTRFS_I(inode)->disk_i_size;
438
439 /*
440 * if the disk i_size is already at the inode->i_size, or
441 * this ordered extent is inside the disk i_size, we're done
442 */
443 if (disk_i_size >= inode->i_size ||
444 ordered->file_offset + ordered->len <= disk_i_size) {
445 goto out;
446 }
447
448 /*
449 * we can't update the disk_isize if there are delalloc bytes
450 * between disk_i_size and this ordered extent
451 */
452 if (test_range_bit(io_tree, disk_i_size,
453 ordered->file_offset + ordered->len - 1,
454 EXTENT_DELALLOC, 0)) {
455 goto out;
456 }
457 /*
458 * walk backward from this ordered extent to disk_i_size.
459 * if we find an ordered extent then we can't update disk i_size
460 * yet
461 */
ba1da2f4 462 node = &ordered->rb_node;
dbe674a9 463 while(1) {
ba1da2f4 464 node = rb_prev(node);
dbe674a9
CM
465 if (!node)
466 break;
467 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
468 if (test->file_offset + test->len <= disk_i_size)
469 break;
470 if (test->file_offset >= inode->i_size)
471 break;
472 if (test->file_offset >= disk_i_size)
473 goto out;
474 }
475 new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
476
477 /*
478 * at this point, we know we can safely update i_size to at least
479 * the offset from this ordered extent. But, we need to
480 * walk forward and see if ios from higher up in the file have
481 * finished.
482 */
483 node = rb_next(&ordered->rb_node);
484 i_size_test = 0;
485 if (node) {
486 /*
487 * do we have an area where IO might have finished
488 * between our ordered extent and the next one.
489 */
490 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
491 if (test->file_offset > entry_end(ordered)) {
492 i_size_test = test->file_offset - 1;
493 }
494 } else {
495 i_size_test = i_size_read(inode);
496 }
497
498 /*
499 * i_size_test is the end of a region after this ordered
500 * extent where there are no ordered extents. As long as there
501 * are no delalloc bytes in this area, it is safe to update
502 * disk_i_size to the end of the region.
503 */
504 if (i_size_test > entry_end(ordered) &&
505 !test_range_bit(io_tree, entry_end(ordered), i_size_test,
506 EXTENT_DELALLOC, 0)) {
507 new_i_size = min_t(u64, i_size_test, i_size_read(inode));
508 }
509 BTRFS_I(inode)->disk_i_size = new_i_size;
510out:
511 mutex_unlock(&tree->mutex);
512 return 0;
513}
ba1da2f4 514
eb84ae03
CM
515/*
516 * search the ordered extents for one corresponding to 'offset' and
517 * try to find a checksum. This is used because we allow pages to
518 * be reclaimed before their checksum is actually put into the btree
519 */
ba1da2f4
CM
520int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u32 *sum)
521{
522 struct btrfs_ordered_sum *ordered_sum;
523 struct btrfs_sector_sum *sector_sums;
524 struct btrfs_ordered_extent *ordered;
525 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
526 struct list_head *cur;
527 int ret = 1;
528 int index;
529
530 ordered = btrfs_lookup_ordered_extent(inode, offset);
531 if (!ordered)
532 return 1;
533
534 mutex_lock(&tree->mutex);
535 list_for_each_prev(cur, &ordered->list) {
536 ordered_sum = list_entry(cur, struct btrfs_ordered_sum, list);
537 if (offset >= ordered_sum->file_offset &&
538 offset < ordered_sum->file_offset + ordered_sum->len) {
539 index = (offset - ordered_sum->file_offset) /
540 BTRFS_I(inode)->root->sectorsize;;
541 sector_sums = &ordered_sum->sums;
542 *sum = sector_sums[index].sum;
543 ret = 0;
544 goto out;
545 }
546 }
547out:
548 mutex_unlock(&tree->mutex);
549 return ret;
550}
551