Btrfs: Use a mutex in the extent buffer for tree block locking
[linux-2.6-block.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/gfp.h>
20#include <linux/slab.h>
d6bfde87 21#include <linux/blkdev.h>
dc17ff8f
CM
22#include "ctree.h"
23#include "transaction.h"
24#include "btrfs_inode.h"
e6dcd2dc 25#include "extent_io.h"
dc17ff8f 26
dc17ff8f 27
e6dcd2dc 28static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 29{
e6dcd2dc
CM
30 if (entry->file_offset + entry->len < entry->file_offset)
31 return (u64)-1;
32 return entry->file_offset + entry->len;
dc17ff8f
CM
33}
34
e6dcd2dc
CM
35static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
36 struct rb_node *node)
dc17ff8f
CM
37{
38 struct rb_node ** p = &root->rb_node;
39 struct rb_node * parent = NULL;
e6dcd2dc 40 struct btrfs_ordered_extent *entry;
dc17ff8f
CM
41
42 while(*p) {
43 parent = *p;
e6dcd2dc 44 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 45
e6dcd2dc 46 if (file_offset < entry->file_offset)
dc17ff8f 47 p = &(*p)->rb_left;
e6dcd2dc 48 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
49 p = &(*p)->rb_right;
50 else
51 return parent;
52 }
53
54 rb_link_node(node, parent, p);
55 rb_insert_color(node, root);
56 return NULL;
57}
58
e6dcd2dc
CM
59static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
60 struct rb_node **prev_ret)
dc17ff8f
CM
61{
62 struct rb_node * n = root->rb_node;
63 struct rb_node *prev = NULL;
e6dcd2dc
CM
64 struct rb_node *test;
65 struct btrfs_ordered_extent *entry;
66 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f
CM
67
68 while(n) {
e6dcd2dc 69 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
70 prev = n;
71 prev_entry = entry;
dc17ff8f 72
e6dcd2dc 73 if (file_offset < entry->file_offset)
dc17ff8f 74 n = n->rb_left;
e6dcd2dc 75 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
76 n = n->rb_right;
77 else
78 return n;
79 }
80 if (!prev_ret)
81 return NULL;
82
e6dcd2dc
CM
83 while(prev && file_offset >= entry_end(prev_entry)) {
84 test = rb_next(prev);
85 if (!test)
86 break;
87 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
88 rb_node);
89 if (file_offset < entry_end(prev_entry))
90 break;
91
92 prev = test;
93 }
94 if (prev)
95 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
96 rb_node);
97 while(prev && file_offset < entry_end(prev_entry)) {
98 test = rb_prev(prev);
99 if (!test)
100 break;
101 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
102 rb_node);
103 prev = test;
dc17ff8f
CM
104 }
105 *prev_ret = prev;
106 return NULL;
107}
108
e6dcd2dc
CM
109static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
110{
111 if (file_offset < entry->file_offset ||
112 entry->file_offset + entry->len <= file_offset)
113 return 0;
114 return 1;
115}
116
117static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
118 u64 file_offset)
dc17ff8f 119{
e6dcd2dc 120 struct rb_root *root = &tree->tree;
dc17ff8f
CM
121 struct rb_node *prev;
122 struct rb_node *ret;
e6dcd2dc
CM
123 struct btrfs_ordered_extent *entry;
124
125 if (tree->last) {
126 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
127 rb_node);
128 if (offset_in_entry(entry, file_offset))
129 return tree->last;
130 }
131 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 132 if (!ret)
e6dcd2dc
CM
133 ret = prev;
134 if (ret)
135 tree->last = ret;
dc17ff8f
CM
136 return ret;
137}
138
eb84ae03
CM
139/* allocate and add a new ordered_extent into the per-inode tree.
140 * file_offset is the logical offset in the file
141 *
142 * start is the disk block number of an extent already reserved in the
143 * extent allocation tree
144 *
145 * len is the length of the extent
146 *
147 * This also sets the EXTENT_ORDERED bit on the range in the inode.
148 *
149 * The tree is given a single reference on the ordered extent that was
150 * inserted.
151 */
e6dcd2dc
CM
152int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
153 u64 start, u64 len)
dc17ff8f 154{
dc17ff8f 155 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
156 struct rb_node *node;
157 struct btrfs_ordered_extent *entry;
dc17ff8f 158
e6dcd2dc
CM
159 tree = &BTRFS_I(inode)->ordered_tree;
160 entry = kzalloc(sizeof(*entry), GFP_NOFS);
dc17ff8f
CM
161 if (!entry)
162 return -ENOMEM;
163
e6dcd2dc
CM
164 mutex_lock(&tree->mutex);
165 entry->file_offset = file_offset;
166 entry->start = start;
167 entry->len = len;
e6dcd2dc
CM
168 /* one ref for the tree */
169 atomic_set(&entry->refs, 1);
170 init_waitqueue_head(&entry->wait);
171 INIT_LIST_HEAD(&entry->list);
dc17ff8f 172
e6dcd2dc
CM
173 node = tree_insert(&tree->tree, file_offset,
174 &entry->rb_node);
175 if (node) {
176 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
177 atomic_inc(&entry->refs);
178 }
179 set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
180 entry_end(entry) - 1, GFP_NOFS);
1b1e2135 181
e6dcd2dc
CM
182 mutex_unlock(&tree->mutex);
183 BUG_ON(node);
dc17ff8f
CM
184 return 0;
185}
186
eb84ae03
CM
187/*
188 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
189 * when an ordered extent is finished. If the list covers more than one
190 * ordered extent, it is split across multiples.
eb84ae03 191 */
3edf7d33
CM
192int btrfs_add_ordered_sum(struct inode *inode,
193 struct btrfs_ordered_extent *entry,
194 struct btrfs_ordered_sum *sum)
dc17ff8f 195{
e6dcd2dc 196 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 197
e6dcd2dc
CM
198 tree = &BTRFS_I(inode)->ordered_tree;
199 mutex_lock(&tree->mutex);
e6dcd2dc
CM
200 list_add_tail(&sum->list, &entry->list);
201 mutex_unlock(&tree->mutex);
202 return 0;
dc17ff8f
CM
203}
204
eb84ae03
CM
205/*
206 * this is used to account for finished IO across a given range
207 * of the file. The IO should not span ordered extents. If
208 * a given ordered_extent is completely done, 1 is returned, otherwise
209 * 0.
210 *
211 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
212 * to make sure this function only returns 1 once for a given ordered extent.
213 */
e6dcd2dc
CM
214int btrfs_dec_test_ordered_pending(struct inode *inode,
215 u64 file_offset, u64 io_size)
dc17ff8f 216{
e6dcd2dc 217 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 218 struct rb_node *node;
e6dcd2dc
CM
219 struct btrfs_ordered_extent *entry;
220 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
221 int ret;
222
223 tree = &BTRFS_I(inode)->ordered_tree;
224 mutex_lock(&tree->mutex);
225 clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
226 GFP_NOFS);
227 node = tree_search(tree, file_offset);
dc17ff8f 228 if (!node) {
e6dcd2dc
CM
229 ret = 1;
230 goto out;
dc17ff8f
CM
231 }
232
e6dcd2dc
CM
233 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
234 if (!offset_in_entry(entry, file_offset)) {
235 ret = 1;
236 goto out;
dc17ff8f 237 }
e6dcd2dc
CM
238
239 ret = test_range_bit(io_tree, entry->file_offset,
240 entry->file_offset + entry->len - 1,
241 EXTENT_ORDERED, 0);
e6dcd2dc
CM
242 if (ret == 0)
243 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
244out:
245 mutex_unlock(&tree->mutex);
246 return ret == 0;
247}
dc17ff8f 248
eb84ae03
CM
249/*
250 * used to drop a reference on an ordered extent. This will free
251 * the extent if the last reference is dropped
252 */
e6dcd2dc
CM
253int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
254{
ba1da2f4
CM
255 struct list_head *cur;
256 struct btrfs_ordered_sum *sum;
257
258 if (atomic_dec_and_test(&entry->refs)) {
259 while(!list_empty(&entry->list)) {
260 cur = entry->list.next;
261 sum = list_entry(cur, struct btrfs_ordered_sum, list);
262 list_del(&sum->list);
263 kfree(sum);
264 }
e6dcd2dc 265 kfree(entry);
ba1da2f4 266 }
e6dcd2dc 267 return 0;
dc17ff8f 268}
cee36a03 269
eb84ae03
CM
270/*
271 * remove an ordered extent from the tree. No references are dropped
272 * but, anyone waiting on this extent is woken up.
273 */
e6dcd2dc
CM
274int btrfs_remove_ordered_extent(struct inode *inode,
275 struct btrfs_ordered_extent *entry)
cee36a03 276{
e6dcd2dc 277 struct btrfs_ordered_inode_tree *tree;
cee36a03 278 struct rb_node *node;
cee36a03 279
e6dcd2dc
CM
280 tree = &BTRFS_I(inode)->ordered_tree;
281 mutex_lock(&tree->mutex);
282 node = &entry->rb_node;
cee36a03 283 rb_erase(node, &tree->tree);
e6dcd2dc
CM
284 tree->last = NULL;
285 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
286 mutex_unlock(&tree->mutex);
287 wake_up(&entry->wait);
288 return 0;
cee36a03
CM
289}
290
eb84ae03
CM
291/*
292 * Used to start IO or wait for a given ordered extent to finish.
293 *
294 * If wait is one, this effectively waits on page writeback for all the pages
295 * in the extent, and it waits on the io completion code to insert
296 * metadata into the btree corresponding to the extent
297 */
298void btrfs_start_ordered_extent(struct inode *inode,
299 struct btrfs_ordered_extent *entry,
300 int wait)
e6dcd2dc
CM
301{
302 u64 start = entry->file_offset;
303 u64 end = start + entry->len - 1;
e1b81e67 304
eb84ae03
CM
305 /*
306 * pages in the range can be dirty, clean or writeback. We
307 * start IO on any dirty ones so the wait doesn't stall waiting
308 * for pdflush to find them
309 */
e6dcd2dc
CM
310#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,22)
311 do_sync_file_range(file, start, end, SYNC_FILE_RANGE_WRITE);
312#else
313 do_sync_mapping_range(inode->i_mapping, start, end,
314 SYNC_FILE_RANGE_WRITE);
315#endif
316 if (wait)
317 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
318 &entry->flags));
319}
cee36a03 320
eb84ae03
CM
321/*
322 * Used to wait on ordered extents across a large range of bytes.
323 */
e6dcd2dc
CM
324void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
325{
326 u64 end;
e5a2217e
CM
327 u64 orig_end;
328 u64 wait_end;
e6dcd2dc 329 struct btrfs_ordered_extent *ordered;
e5a2217e
CM
330 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
331
332 if (start + len < start) {
333 wait_end = (inode->i_size + mask) & ~mask;
334 orig_end = (u64)-1;
335 } else {
336 orig_end = start + len - 1;
337 wait_end = orig_end;
338 }
4a096752 339again:
e5a2217e
CM
340 /* start IO across the range first to instantiate any delalloc
341 * extents
342 */
343#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,22)
344 do_sync_file_range(file, start, wait_end, SYNC_FILE_RANGE_WRITE);
345#else
346 do_sync_mapping_range(inode->i_mapping, start, wait_end,
347 SYNC_FILE_RANGE_WRITE);
348#endif
349 end = orig_end;
350 wait_on_extent_writeback(&BTRFS_I(inode)->io_tree, start, orig_end);
351
e6dcd2dc
CM
352 while(1) {
353 ordered = btrfs_lookup_first_ordered_extent(inode, end);
354 if (!ordered) {
355 break;
356 }
e5a2217e 357 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
358 btrfs_put_ordered_extent(ordered);
359 break;
360 }
361 if (ordered->file_offset + ordered->len < start) {
362 btrfs_put_ordered_extent(ordered);
363 break;
364 }
e5a2217e 365 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
366 end = ordered->file_offset;
367 btrfs_put_ordered_extent(ordered);
e5a2217e 368 if (end == 0 || end == start)
e6dcd2dc
CM
369 break;
370 end--;
371 }
4a096752
CM
372 if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
373 EXTENT_ORDERED | EXTENT_DELALLOC, 0)) {
374 printk("inode %lu still ordered or delalloc after wait "
375 "%llu %llu\n", inode->i_ino,
376 (unsigned long long)start,
377 (unsigned long long)orig_end);
378 goto again;
379 }
cee36a03
CM
380}
381
eb84ae03
CM
382/*
383 * find an ordered extent corresponding to file_offset. return NULL if
384 * nothing is found, otherwise take a reference on the extent and return it
385 */
e6dcd2dc
CM
386struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
387 u64 file_offset)
388{
389 struct btrfs_ordered_inode_tree *tree;
390 struct rb_node *node;
391 struct btrfs_ordered_extent *entry = NULL;
392
393 tree = &BTRFS_I(inode)->ordered_tree;
394 mutex_lock(&tree->mutex);
395 node = tree_search(tree, file_offset);
396 if (!node)
397 goto out;
398
399 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
400 if (!offset_in_entry(entry, file_offset))
401 entry = NULL;
402 if (entry)
403 atomic_inc(&entry->refs);
404out:
405 mutex_unlock(&tree->mutex);
406 return entry;
407}
408
eb84ae03
CM
409/*
410 * lookup and return any extent before 'file_offset'. NULL is returned
411 * if none is found
412 */
e6dcd2dc
CM
413struct btrfs_ordered_extent *
414btrfs_lookup_first_ordered_extent(struct inode * inode, u64 file_offset)
415{
416 struct btrfs_ordered_inode_tree *tree;
417 struct rb_node *node;
418 struct btrfs_ordered_extent *entry = NULL;
419
420 tree = &BTRFS_I(inode)->ordered_tree;
421 mutex_lock(&tree->mutex);
422 node = tree_search(tree, file_offset);
423 if (!node)
424 goto out;
425
426 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
427 atomic_inc(&entry->refs);
428out:
429 mutex_unlock(&tree->mutex);
430 return entry;
81d7ed29 431}
dbe674a9 432
eb84ae03
CM
433/*
434 * After an extent is done, call this to conditionally update the on disk
435 * i_size. i_size is updated to cover any fully written part of the file.
436 */
dbe674a9
CM
437int btrfs_ordered_update_i_size(struct inode *inode,
438 struct btrfs_ordered_extent *ordered)
439{
440 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
441 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
442 u64 disk_i_size;
443 u64 new_i_size;
444 u64 i_size_test;
445 struct rb_node *node;
446 struct btrfs_ordered_extent *test;
447
448 mutex_lock(&tree->mutex);
449 disk_i_size = BTRFS_I(inode)->disk_i_size;
450
451 /*
452 * if the disk i_size is already at the inode->i_size, or
453 * this ordered extent is inside the disk i_size, we're done
454 */
455 if (disk_i_size >= inode->i_size ||
456 ordered->file_offset + ordered->len <= disk_i_size) {
457 goto out;
458 }
459
460 /*
461 * we can't update the disk_isize if there are delalloc bytes
462 * between disk_i_size and this ordered extent
463 */
464 if (test_range_bit(io_tree, disk_i_size,
465 ordered->file_offset + ordered->len - 1,
466 EXTENT_DELALLOC, 0)) {
467 goto out;
468 }
469 /*
470 * walk backward from this ordered extent to disk_i_size.
471 * if we find an ordered extent then we can't update disk i_size
472 * yet
473 */
ba1da2f4 474 node = &ordered->rb_node;
dbe674a9 475 while(1) {
ba1da2f4 476 node = rb_prev(node);
dbe674a9
CM
477 if (!node)
478 break;
479 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
480 if (test->file_offset + test->len <= disk_i_size)
481 break;
482 if (test->file_offset >= inode->i_size)
483 break;
484 if (test->file_offset >= disk_i_size)
485 goto out;
486 }
487 new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
488
489 /*
490 * at this point, we know we can safely update i_size to at least
491 * the offset from this ordered extent. But, we need to
492 * walk forward and see if ios from higher up in the file have
493 * finished.
494 */
495 node = rb_next(&ordered->rb_node);
496 i_size_test = 0;
497 if (node) {
498 /*
499 * do we have an area where IO might have finished
500 * between our ordered extent and the next one.
501 */
502 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
503 if (test->file_offset > entry_end(ordered)) {
504 i_size_test = test->file_offset - 1;
505 }
506 } else {
507 i_size_test = i_size_read(inode);
508 }
509
510 /*
511 * i_size_test is the end of a region after this ordered
512 * extent where there are no ordered extents. As long as there
513 * are no delalloc bytes in this area, it is safe to update
514 * disk_i_size to the end of the region.
515 */
516 if (i_size_test > entry_end(ordered) &&
517 !test_range_bit(io_tree, entry_end(ordered), i_size_test,
518 EXTENT_DELALLOC, 0)) {
519 new_i_size = min_t(u64, i_size_test, i_size_read(inode));
520 }
521 BTRFS_I(inode)->disk_i_size = new_i_size;
522out:
523 mutex_unlock(&tree->mutex);
524 return 0;
525}
ba1da2f4 526
eb84ae03
CM
527/*
528 * search the ordered extents for one corresponding to 'offset' and
529 * try to find a checksum. This is used because we allow pages to
530 * be reclaimed before their checksum is actually put into the btree
531 */
ba1da2f4
CM
532int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u32 *sum)
533{
534 struct btrfs_ordered_sum *ordered_sum;
535 struct btrfs_sector_sum *sector_sums;
536 struct btrfs_ordered_extent *ordered;
537 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
538 struct list_head *cur;
3edf7d33
CM
539 unsigned long num_sectors;
540 unsigned long i;
541 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
ba1da2f4 542 int ret = 1;
ba1da2f4
CM
543
544 ordered = btrfs_lookup_ordered_extent(inode, offset);
545 if (!ordered)
546 return 1;
547
548 mutex_lock(&tree->mutex);
549 list_for_each_prev(cur, &ordered->list) {
550 ordered_sum = list_entry(cur, struct btrfs_ordered_sum, list);
3edf7d33
CM
551 if (offset >= ordered_sum->file_offset) {
552 num_sectors = ordered_sum->len / sectorsize;
ba1da2f4 553 sector_sums = &ordered_sum->sums;
3edf7d33
CM
554 for (i = 0; i < num_sectors; i++) {
555 if (sector_sums[i].offset == offset) {
3edf7d33
CM
556 *sum = sector_sums[i].sum;
557 ret = 0;
558 goto out;
559 }
560 }
ba1da2f4
CM
561 }
562 }
563out:
564 mutex_unlock(&tree->mutex);
565 return ret;
566}
567