Btrfs: drop WARN_ON from btrfs_add_leaf_ref
[linux-2.6-block.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/gfp.h>
20#include <linux/slab.h>
d6bfde87 21#include <linux/blkdev.h>
f421950f
CM
22#include <linux/writeback.h>
23#include <linux/pagevec.h>
dc17ff8f
CM
24#include "ctree.h"
25#include "transaction.h"
26#include "btrfs_inode.h"
e6dcd2dc 27#include "extent_io.h"
dc17ff8f 28
dc17ff8f 29
e6dcd2dc 30static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 31{
e6dcd2dc
CM
32 if (entry->file_offset + entry->len < entry->file_offset)
33 return (u64)-1;
34 return entry->file_offset + entry->len;
dc17ff8f
CM
35}
36
e6dcd2dc
CM
37static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
38 struct rb_node *node)
dc17ff8f
CM
39{
40 struct rb_node ** p = &root->rb_node;
41 struct rb_node * parent = NULL;
e6dcd2dc 42 struct btrfs_ordered_extent *entry;
dc17ff8f
CM
43
44 while(*p) {
45 parent = *p;
e6dcd2dc 46 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 47
e6dcd2dc 48 if (file_offset < entry->file_offset)
dc17ff8f 49 p = &(*p)->rb_left;
e6dcd2dc 50 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
51 p = &(*p)->rb_right;
52 else
53 return parent;
54 }
55
56 rb_link_node(node, parent, p);
57 rb_insert_color(node, root);
58 return NULL;
59}
60
e6dcd2dc
CM
61static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
62 struct rb_node **prev_ret)
dc17ff8f
CM
63{
64 struct rb_node * n = root->rb_node;
65 struct rb_node *prev = NULL;
e6dcd2dc
CM
66 struct rb_node *test;
67 struct btrfs_ordered_extent *entry;
68 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f
CM
69
70 while(n) {
e6dcd2dc 71 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
72 prev = n;
73 prev_entry = entry;
dc17ff8f 74
e6dcd2dc 75 if (file_offset < entry->file_offset)
dc17ff8f 76 n = n->rb_left;
e6dcd2dc 77 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
78 n = n->rb_right;
79 else
80 return n;
81 }
82 if (!prev_ret)
83 return NULL;
84
e6dcd2dc
CM
85 while(prev && file_offset >= entry_end(prev_entry)) {
86 test = rb_next(prev);
87 if (!test)
88 break;
89 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
90 rb_node);
91 if (file_offset < entry_end(prev_entry))
92 break;
93
94 prev = test;
95 }
96 if (prev)
97 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
98 rb_node);
99 while(prev && file_offset < entry_end(prev_entry)) {
100 test = rb_prev(prev);
101 if (!test)
102 break;
103 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
104 rb_node);
105 prev = test;
dc17ff8f
CM
106 }
107 *prev_ret = prev;
108 return NULL;
109}
110
e6dcd2dc
CM
111static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
112{
113 if (file_offset < entry->file_offset ||
114 entry->file_offset + entry->len <= file_offset)
115 return 0;
116 return 1;
117}
118
119static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
120 u64 file_offset)
dc17ff8f 121{
e6dcd2dc 122 struct rb_root *root = &tree->tree;
dc17ff8f
CM
123 struct rb_node *prev;
124 struct rb_node *ret;
e6dcd2dc
CM
125 struct btrfs_ordered_extent *entry;
126
127 if (tree->last) {
128 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
129 rb_node);
130 if (offset_in_entry(entry, file_offset))
131 return tree->last;
132 }
133 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 134 if (!ret)
e6dcd2dc
CM
135 ret = prev;
136 if (ret)
137 tree->last = ret;
dc17ff8f
CM
138 return ret;
139}
140
eb84ae03
CM
141/* allocate and add a new ordered_extent into the per-inode tree.
142 * file_offset is the logical offset in the file
143 *
144 * start is the disk block number of an extent already reserved in the
145 * extent allocation tree
146 *
147 * len is the length of the extent
148 *
149 * This also sets the EXTENT_ORDERED bit on the range in the inode.
150 *
151 * The tree is given a single reference on the ordered extent that was
152 * inserted.
153 */
e6dcd2dc 154int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
7ea394f1 155 u64 start, u64 len, int nocow)
dc17ff8f 156{
dc17ff8f 157 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
158 struct rb_node *node;
159 struct btrfs_ordered_extent *entry;
dc17ff8f 160
e6dcd2dc
CM
161 tree = &BTRFS_I(inode)->ordered_tree;
162 entry = kzalloc(sizeof(*entry), GFP_NOFS);
dc17ff8f
CM
163 if (!entry)
164 return -ENOMEM;
165
e6dcd2dc
CM
166 mutex_lock(&tree->mutex);
167 entry->file_offset = file_offset;
168 entry->start = start;
169 entry->len = len;
3eaa2885 170 entry->inode = inode;
7ea394f1
YZ
171 if (nocow)
172 set_bit(BTRFS_ORDERED_NOCOW, &entry->flags);
3eaa2885 173
e6dcd2dc
CM
174 /* one ref for the tree */
175 atomic_set(&entry->refs, 1);
176 init_waitqueue_head(&entry->wait);
177 INIT_LIST_HEAD(&entry->list);
3eaa2885 178 INIT_LIST_HEAD(&entry->root_extent_list);
dc17ff8f 179
e6dcd2dc
CM
180 node = tree_insert(&tree->tree, file_offset,
181 &entry->rb_node);
182 if (node) {
3eaa2885
CM
183 printk("warning dup entry from add_ordered_extent\n");
184 BUG();
e6dcd2dc
CM
185 }
186 set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
187 entry_end(entry) - 1, GFP_NOFS);
1b1e2135 188
3eaa2885
CM
189 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
190 list_add_tail(&entry->root_extent_list,
191 &BTRFS_I(inode)->root->fs_info->ordered_extents);
192 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
193
e6dcd2dc
CM
194 mutex_unlock(&tree->mutex);
195 BUG_ON(node);
dc17ff8f
CM
196 return 0;
197}
198
eb84ae03
CM
199/*
200 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
201 * when an ordered extent is finished. If the list covers more than one
202 * ordered extent, it is split across multiples.
eb84ae03 203 */
3edf7d33
CM
204int btrfs_add_ordered_sum(struct inode *inode,
205 struct btrfs_ordered_extent *entry,
206 struct btrfs_ordered_sum *sum)
dc17ff8f 207{
e6dcd2dc 208 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 209
e6dcd2dc
CM
210 tree = &BTRFS_I(inode)->ordered_tree;
211 mutex_lock(&tree->mutex);
e6dcd2dc
CM
212 list_add_tail(&sum->list, &entry->list);
213 mutex_unlock(&tree->mutex);
214 return 0;
dc17ff8f
CM
215}
216
eb84ae03
CM
217/*
218 * this is used to account for finished IO across a given range
219 * of the file. The IO should not span ordered extents. If
220 * a given ordered_extent is completely done, 1 is returned, otherwise
221 * 0.
222 *
223 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
224 * to make sure this function only returns 1 once for a given ordered extent.
225 */
e6dcd2dc
CM
226int btrfs_dec_test_ordered_pending(struct inode *inode,
227 u64 file_offset, u64 io_size)
dc17ff8f 228{
e6dcd2dc 229 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 230 struct rb_node *node;
e6dcd2dc
CM
231 struct btrfs_ordered_extent *entry;
232 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
233 int ret;
234
235 tree = &BTRFS_I(inode)->ordered_tree;
236 mutex_lock(&tree->mutex);
237 clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
238 GFP_NOFS);
239 node = tree_search(tree, file_offset);
dc17ff8f 240 if (!node) {
e6dcd2dc
CM
241 ret = 1;
242 goto out;
dc17ff8f
CM
243 }
244
e6dcd2dc
CM
245 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
246 if (!offset_in_entry(entry, file_offset)) {
247 ret = 1;
248 goto out;
dc17ff8f 249 }
e6dcd2dc
CM
250
251 ret = test_range_bit(io_tree, entry->file_offset,
252 entry->file_offset + entry->len - 1,
253 EXTENT_ORDERED, 0);
e6dcd2dc
CM
254 if (ret == 0)
255 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
256out:
257 mutex_unlock(&tree->mutex);
258 return ret == 0;
259}
dc17ff8f 260
eb84ae03
CM
261/*
262 * used to drop a reference on an ordered extent. This will free
263 * the extent if the last reference is dropped
264 */
e6dcd2dc
CM
265int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
266{
ba1da2f4
CM
267 struct list_head *cur;
268 struct btrfs_ordered_sum *sum;
269
270 if (atomic_dec_and_test(&entry->refs)) {
271 while(!list_empty(&entry->list)) {
272 cur = entry->list.next;
273 sum = list_entry(cur, struct btrfs_ordered_sum, list);
274 list_del(&sum->list);
275 kfree(sum);
276 }
e6dcd2dc 277 kfree(entry);
ba1da2f4 278 }
e6dcd2dc 279 return 0;
dc17ff8f 280}
cee36a03 281
eb84ae03
CM
282/*
283 * remove an ordered extent from the tree. No references are dropped
284 * but, anyone waiting on this extent is woken up.
285 */
e6dcd2dc
CM
286int btrfs_remove_ordered_extent(struct inode *inode,
287 struct btrfs_ordered_extent *entry)
cee36a03 288{
e6dcd2dc 289 struct btrfs_ordered_inode_tree *tree;
cee36a03 290 struct rb_node *node;
cee36a03 291
e6dcd2dc
CM
292 tree = &BTRFS_I(inode)->ordered_tree;
293 mutex_lock(&tree->mutex);
294 node = &entry->rb_node;
cee36a03 295 rb_erase(node, &tree->tree);
e6dcd2dc
CM
296 tree->last = NULL;
297 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
3eaa2885
CM
298
299 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
300 list_del_init(&entry->root_extent_list);
301 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
302
e6dcd2dc
CM
303 mutex_unlock(&tree->mutex);
304 wake_up(&entry->wait);
305 return 0;
cee36a03
CM
306}
307
7ea394f1 308int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only)
3eaa2885
CM
309{
310 struct list_head splice;
311 struct list_head *cur;
312 struct btrfs_ordered_extent *ordered;
313 struct inode *inode;
314
315 INIT_LIST_HEAD(&splice);
316
317 spin_lock(&root->fs_info->ordered_extent_lock);
318 list_splice_init(&root->fs_info->ordered_extents, &splice);
5b21f2ed 319 while (!list_empty(&splice)) {
3eaa2885
CM
320 cur = splice.next;
321 ordered = list_entry(cur, struct btrfs_ordered_extent,
322 root_extent_list);
7ea394f1
YZ
323 if (nocow_only &&
324 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5b21f2ed
ZY
325 list_move(&ordered->root_extent_list,
326 &root->fs_info->ordered_extents);
7ea394f1
YZ
327 cond_resched_lock(&root->fs_info->ordered_extent_lock);
328 continue;
329 }
330
3eaa2885
CM
331 list_del_init(&ordered->root_extent_list);
332 atomic_inc(&ordered->refs);
3eaa2885
CM
333
334 /*
5b21f2ed 335 * the inode may be getting freed (in sys_unlink path).
3eaa2885 336 */
5b21f2ed
ZY
337 inode = igrab(ordered->inode);
338
3eaa2885
CM
339 spin_unlock(&root->fs_info->ordered_extent_lock);
340
5b21f2ed
ZY
341 if (inode) {
342 btrfs_start_ordered_extent(inode, ordered, 1);
343 btrfs_put_ordered_extent(ordered);
344 iput(inode);
345 } else {
346 btrfs_put_ordered_extent(ordered);
347 }
3eaa2885
CM
348
349 spin_lock(&root->fs_info->ordered_extent_lock);
350 }
351 spin_unlock(&root->fs_info->ordered_extent_lock);
352 return 0;
353}
354
eb84ae03
CM
355/*
356 * Used to start IO or wait for a given ordered extent to finish.
357 *
358 * If wait is one, this effectively waits on page writeback for all the pages
359 * in the extent, and it waits on the io completion code to insert
360 * metadata into the btree corresponding to the extent
361 */
362void btrfs_start_ordered_extent(struct inode *inode,
363 struct btrfs_ordered_extent *entry,
364 int wait)
e6dcd2dc
CM
365{
366 u64 start = entry->file_offset;
367 u64 end = start + entry->len - 1;
e1b81e67 368
eb84ae03
CM
369 /*
370 * pages in the range can be dirty, clean or writeback. We
371 * start IO on any dirty ones so the wait doesn't stall waiting
372 * for pdflush to find them
373 */
f421950f 374 btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_NONE);
e6dcd2dc
CM
375 if (wait)
376 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
377 &entry->flags));
378}
cee36a03 379
eb84ae03
CM
380/*
381 * Used to wait on ordered extents across a large range of bytes.
382 */
e6dcd2dc
CM
383void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
384{
385 u64 end;
e5a2217e
CM
386 u64 orig_end;
387 u64 wait_end;
e6dcd2dc 388 struct btrfs_ordered_extent *ordered;
e5a2217e
CM
389
390 if (start + len < start) {
f421950f 391 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
392 } else {
393 orig_end = start + len - 1;
f421950f
CM
394 if (orig_end > INT_LIMIT(loff_t))
395 orig_end = INT_LIMIT(loff_t);
e5a2217e 396 }
f421950f 397 wait_end = orig_end;
4a096752 398again:
e5a2217e
CM
399 /* start IO across the range first to instantiate any delalloc
400 * extents
401 */
f421950f
CM
402 btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE);
403
404 btrfs_wait_on_page_writeback_range(inode->i_mapping,
405 start >> PAGE_CACHE_SHIFT,
406 orig_end >> PAGE_CACHE_SHIFT);
e5a2217e 407
f421950f 408 end = orig_end;
e6dcd2dc
CM
409 while(1) {
410 ordered = btrfs_lookup_first_ordered_extent(inode, end);
411 if (!ordered) {
412 break;
413 }
e5a2217e 414 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
415 btrfs_put_ordered_extent(ordered);
416 break;
417 }
418 if (ordered->file_offset + ordered->len < start) {
419 btrfs_put_ordered_extent(ordered);
420 break;
421 }
e5a2217e 422 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
423 end = ordered->file_offset;
424 btrfs_put_ordered_extent(ordered);
e5a2217e 425 if (end == 0 || end == start)
e6dcd2dc
CM
426 break;
427 end--;
428 }
4a096752
CM
429 if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
430 EXTENT_ORDERED | EXTENT_DELALLOC, 0)) {
431 printk("inode %lu still ordered or delalloc after wait "
432 "%llu %llu\n", inode->i_ino,
433 (unsigned long long)start,
434 (unsigned long long)orig_end);
435 goto again;
436 }
cee36a03
CM
437}
438
eb84ae03
CM
439/*
440 * find an ordered extent corresponding to file_offset. return NULL if
441 * nothing is found, otherwise take a reference on the extent and return it
442 */
e6dcd2dc
CM
443struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
444 u64 file_offset)
445{
446 struct btrfs_ordered_inode_tree *tree;
447 struct rb_node *node;
448 struct btrfs_ordered_extent *entry = NULL;
449
450 tree = &BTRFS_I(inode)->ordered_tree;
451 mutex_lock(&tree->mutex);
452 node = tree_search(tree, file_offset);
453 if (!node)
454 goto out;
455
456 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
457 if (!offset_in_entry(entry, file_offset))
458 entry = NULL;
459 if (entry)
460 atomic_inc(&entry->refs);
461out:
462 mutex_unlock(&tree->mutex);
463 return entry;
464}
465
eb84ae03
CM
466/*
467 * lookup and return any extent before 'file_offset'. NULL is returned
468 * if none is found
469 */
e6dcd2dc
CM
470struct btrfs_ordered_extent *
471btrfs_lookup_first_ordered_extent(struct inode * inode, u64 file_offset)
472{
473 struct btrfs_ordered_inode_tree *tree;
474 struct rb_node *node;
475 struct btrfs_ordered_extent *entry = NULL;
476
477 tree = &BTRFS_I(inode)->ordered_tree;
478 mutex_lock(&tree->mutex);
479 node = tree_search(tree, file_offset);
480 if (!node)
481 goto out;
482
483 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
484 atomic_inc(&entry->refs);
485out:
486 mutex_unlock(&tree->mutex);
487 return entry;
81d7ed29 488}
dbe674a9 489
eb84ae03
CM
490/*
491 * After an extent is done, call this to conditionally update the on disk
492 * i_size. i_size is updated to cover any fully written part of the file.
493 */
dbe674a9
CM
494int btrfs_ordered_update_i_size(struct inode *inode,
495 struct btrfs_ordered_extent *ordered)
496{
497 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
498 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
499 u64 disk_i_size;
500 u64 new_i_size;
501 u64 i_size_test;
502 struct rb_node *node;
503 struct btrfs_ordered_extent *test;
504
505 mutex_lock(&tree->mutex);
506 disk_i_size = BTRFS_I(inode)->disk_i_size;
507
508 /*
509 * if the disk i_size is already at the inode->i_size, or
510 * this ordered extent is inside the disk i_size, we're done
511 */
512 if (disk_i_size >= inode->i_size ||
513 ordered->file_offset + ordered->len <= disk_i_size) {
514 goto out;
515 }
516
517 /*
518 * we can't update the disk_isize if there are delalloc bytes
519 * between disk_i_size and this ordered extent
520 */
521 if (test_range_bit(io_tree, disk_i_size,
522 ordered->file_offset + ordered->len - 1,
523 EXTENT_DELALLOC, 0)) {
524 goto out;
525 }
526 /*
527 * walk backward from this ordered extent to disk_i_size.
528 * if we find an ordered extent then we can't update disk i_size
529 * yet
530 */
ba1da2f4 531 node = &ordered->rb_node;
dbe674a9 532 while(1) {
ba1da2f4 533 node = rb_prev(node);
dbe674a9
CM
534 if (!node)
535 break;
536 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
537 if (test->file_offset + test->len <= disk_i_size)
538 break;
539 if (test->file_offset >= inode->i_size)
540 break;
541 if (test->file_offset >= disk_i_size)
542 goto out;
543 }
544 new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
545
546 /*
547 * at this point, we know we can safely update i_size to at least
548 * the offset from this ordered extent. But, we need to
549 * walk forward and see if ios from higher up in the file have
550 * finished.
551 */
552 node = rb_next(&ordered->rb_node);
553 i_size_test = 0;
554 if (node) {
555 /*
556 * do we have an area where IO might have finished
557 * between our ordered extent and the next one.
558 */
559 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
560 if (test->file_offset > entry_end(ordered)) {
b48652c1 561 i_size_test = test->file_offset;
dbe674a9
CM
562 }
563 } else {
564 i_size_test = i_size_read(inode);
565 }
566
567 /*
568 * i_size_test is the end of a region after this ordered
569 * extent where there are no ordered extents. As long as there
570 * are no delalloc bytes in this area, it is safe to update
571 * disk_i_size to the end of the region.
572 */
573 if (i_size_test > entry_end(ordered) &&
b48652c1 574 !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1,
dbe674a9
CM
575 EXTENT_DELALLOC, 0)) {
576 new_i_size = min_t(u64, i_size_test, i_size_read(inode));
577 }
578 BTRFS_I(inode)->disk_i_size = new_i_size;
579out:
580 mutex_unlock(&tree->mutex);
581 return 0;
582}
ba1da2f4 583
eb84ae03
CM
584/*
585 * search the ordered extents for one corresponding to 'offset' and
586 * try to find a checksum. This is used because we allow pages to
587 * be reclaimed before their checksum is actually put into the btree
588 */
ba1da2f4
CM
589int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u32 *sum)
590{
591 struct btrfs_ordered_sum *ordered_sum;
592 struct btrfs_sector_sum *sector_sums;
593 struct btrfs_ordered_extent *ordered;
594 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
595 struct list_head *cur;
3edf7d33
CM
596 unsigned long num_sectors;
597 unsigned long i;
598 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
ba1da2f4 599 int ret = 1;
ba1da2f4
CM
600
601 ordered = btrfs_lookup_ordered_extent(inode, offset);
602 if (!ordered)
603 return 1;
604
605 mutex_lock(&tree->mutex);
606 list_for_each_prev(cur, &ordered->list) {
607 ordered_sum = list_entry(cur, struct btrfs_ordered_sum, list);
3edf7d33
CM
608 if (offset >= ordered_sum->file_offset) {
609 num_sectors = ordered_sum->len / sectorsize;
ed98b56a 610 sector_sums = ordered_sum->sums;
3edf7d33
CM
611 for (i = 0; i < num_sectors; i++) {
612 if (sector_sums[i].offset == offset) {
3edf7d33
CM
613 *sum = sector_sums[i].sum;
614 ret = 0;
615 goto out;
616 }
617 }
ba1da2f4
CM
618 }
619 }
620out:
621 mutex_unlock(&tree->mutex);
89642229 622 btrfs_put_ordered_extent(ordered);
ba1da2f4
CM
623 return ret;
624}
625
f421950f
CM
626
627/**
628 * taken from mm/filemap.c because it isn't exported
629 *
630 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
631 * @mapping: address space structure to write
632 * @start: offset in bytes where the range starts
633 * @end: offset in bytes where the range ends (inclusive)
634 * @sync_mode: enable synchronous operation
635 *
636 * Start writeback against all of a mapping's dirty pages that lie
637 * within the byte offsets <start, end> inclusive.
638 *
639 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
640 * opposed to a regular memory cleansing writeback. The difference between
641 * these two operations is that if a dirty page/buffer is encountered, it must
642 * be waited upon, and not just skipped over.
643 */
644int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start,
645 loff_t end, int sync_mode)
646{
647 struct writeback_control wbc = {
648 .sync_mode = sync_mode,
649 .nr_to_write = mapping->nrpages * 2,
650 .range_start = start,
651 .range_end = end,
652 .for_writepages = 1,
653 };
654 return btrfs_writepages(mapping, &wbc);
655}
656
657/**
658 * taken from mm/filemap.c because it isn't exported
659 *
660 * wait_on_page_writeback_range - wait for writeback to complete
661 * @mapping: target address_space
662 * @start: beginning page index
663 * @end: ending page index
664 *
665 * Wait for writeback to complete against pages indexed by start->end
666 * inclusive
667 */
668int btrfs_wait_on_page_writeback_range(struct address_space *mapping,
669 pgoff_t start, pgoff_t end)
670{
671 struct pagevec pvec;
672 int nr_pages;
673 int ret = 0;
674 pgoff_t index;
675
676 if (end < start)
677 return 0;
678
679 pagevec_init(&pvec, 0);
680 index = start;
681 while ((index <= end) &&
682 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
683 PAGECACHE_TAG_WRITEBACK,
684 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
685 unsigned i;
686
687 for (i = 0; i < nr_pages; i++) {
688 struct page *page = pvec.pages[i];
689
690 /* until radix tree lookup accepts end_index */
691 if (page->index > end)
692 continue;
693
694 wait_on_page_writeback(page);
695 if (PageError(page))
696 ret = -EIO;
697 }
698 pagevec_release(&pvec);
699 cond_resched();
700 }
701
702 /* Check for outstanding write errors */
703 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
704 ret = -ENOSPC;
705 if (test_and_clear_bit(AS_EIO, &mapping->flags))
706 ret = -EIO;
707
708 return ret;
709}