Btrfs: Fix oops for defrag with compression turned on
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
dc89e982 53#include "free-space-cache.h"
39279cc3
CM
54
55struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58};
59
6e1d5dcc
AD
60static const struct inode_operations btrfs_dir_inode_operations;
61static const struct inode_operations btrfs_symlink_inode_operations;
62static const struct inode_operations btrfs_dir_ro_inode_operations;
63static const struct inode_operations btrfs_special_inode_operations;
64static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
65static const struct address_space_operations btrfs_aops;
66static const struct address_space_operations btrfs_symlink_aops;
828c0950 67static const struct file_operations btrfs_dir_file_operations;
d1310b2e 68static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
69
70static struct kmem_cache *btrfs_inode_cachep;
71struct kmem_cache *btrfs_trans_handle_cachep;
72struct kmem_cache *btrfs_transaction_cachep;
39279cc3 73struct kmem_cache *btrfs_path_cachep;
dc89e982 74struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
75
76#define S_SHIFT 12
77static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85};
86
a41ad394
JB
87static int btrfs_setsize(struct inode *inode, loff_t newsize);
88static int btrfs_truncate(struct inode *inode);
c8b97818 89static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
90static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, int *page_started,
93 unsigned long *nr_written, int unlock);
7b128766 94
f34f57a3
YZ
95static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96 struct inode *inode, struct inode *dir)
0279b4cd
JO
97{
98 int err;
99
f34f57a3 100 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 101 if (!err)
f34f57a3 102 err = btrfs_xattr_security_init(trans, inode, dir);
0279b4cd
JO
103 return err;
104}
105
c8b97818
CM
106/*
107 * this does all the hard work for inserting an inline extent into
108 * the btree. The caller should have done a btrfs_drop_extents so that
109 * no overlapping inline items exist in the btree
110 */
d397712b 111static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
112 struct btrfs_root *root, struct inode *inode,
113 u64 start, size_t size, size_t compressed_size,
fe3f566c 114 int compress_type,
c8b97818
CM
115 struct page **compressed_pages)
116{
117 struct btrfs_key key;
118 struct btrfs_path *path;
119 struct extent_buffer *leaf;
120 struct page *page = NULL;
121 char *kaddr;
122 unsigned long ptr;
123 struct btrfs_file_extent_item *ei;
124 int err = 0;
125 int ret;
126 size_t cur_size = size;
127 size_t datasize;
128 unsigned long offset;
c8b97818 129
fe3f566c 130 if (compressed_size && compressed_pages)
c8b97818 131 cur_size = compressed_size;
c8b97818 132
d397712b
CM
133 path = btrfs_alloc_path();
134 if (!path)
c8b97818
CM
135 return -ENOMEM;
136
b9473439 137 path->leave_spinning = 1;
c8b97818
CM
138 btrfs_set_trans_block_group(trans, inode);
139
140 key.objectid = inode->i_ino;
141 key.offset = start;
142 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
143 datasize = btrfs_file_extent_calc_inline_size(cur_size);
144
145 inode_add_bytes(inode, size);
146 ret = btrfs_insert_empty_item(trans, root, path, &key,
147 datasize);
148 BUG_ON(ret);
149 if (ret) {
150 err = ret;
c8b97818
CM
151 goto fail;
152 }
153 leaf = path->nodes[0];
154 ei = btrfs_item_ptr(leaf, path->slots[0],
155 struct btrfs_file_extent_item);
156 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
157 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
158 btrfs_set_file_extent_encryption(leaf, ei, 0);
159 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
160 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
161 ptr = btrfs_file_extent_inline_start(ei);
162
261507a0 163 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
164 struct page *cpage;
165 int i = 0;
d397712b 166 while (compressed_size > 0) {
c8b97818 167 cpage = compressed_pages[i];
5b050f04 168 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
169 PAGE_CACHE_SIZE);
170
b9473439 171 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 172 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 173 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
174
175 i++;
176 ptr += cur_size;
177 compressed_size -= cur_size;
178 }
179 btrfs_set_file_extent_compression(leaf, ei,
261507a0 180 compress_type);
c8b97818
CM
181 } else {
182 page = find_get_page(inode->i_mapping,
183 start >> PAGE_CACHE_SHIFT);
184 btrfs_set_file_extent_compression(leaf, ei, 0);
185 kaddr = kmap_atomic(page, KM_USER0);
186 offset = start & (PAGE_CACHE_SIZE - 1);
187 write_extent_buffer(leaf, kaddr + offset, ptr, size);
188 kunmap_atomic(kaddr, KM_USER0);
189 page_cache_release(page);
190 }
191 btrfs_mark_buffer_dirty(leaf);
192 btrfs_free_path(path);
193
c2167754
YZ
194 /*
195 * we're an inline extent, so nobody can
196 * extend the file past i_size without locking
197 * a page we already have locked.
198 *
199 * We must do any isize and inode updates
200 * before we unlock the pages. Otherwise we
201 * could end up racing with unlink.
202 */
c8b97818
CM
203 BTRFS_I(inode)->disk_i_size = inode->i_size;
204 btrfs_update_inode(trans, root, inode);
c2167754 205
c8b97818
CM
206 return 0;
207fail:
208 btrfs_free_path(path);
209 return err;
210}
211
212
213/*
214 * conditionally insert an inline extent into the file. This
215 * does the checks required to make sure the data is small enough
216 * to fit as an inline extent.
217 */
7f366cfe 218static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
219 struct btrfs_root *root,
220 struct inode *inode, u64 start, u64 end,
fe3f566c 221 size_t compressed_size, int compress_type,
c8b97818
CM
222 struct page **compressed_pages)
223{
224 u64 isize = i_size_read(inode);
225 u64 actual_end = min(end + 1, isize);
226 u64 inline_len = actual_end - start;
227 u64 aligned_end = (end + root->sectorsize - 1) &
228 ~((u64)root->sectorsize - 1);
229 u64 hint_byte;
230 u64 data_len = inline_len;
231 int ret;
232
233 if (compressed_size)
234 data_len = compressed_size;
235
236 if (start > 0 ||
70b99e69 237 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
238 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
239 (!compressed_size &&
240 (actual_end & (root->sectorsize - 1)) == 0) ||
241 end + 1 < isize ||
242 data_len > root->fs_info->max_inline) {
243 return 1;
244 }
245
920bbbfb 246 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 247 &hint_byte, 1);
c8b97818
CM
248 BUG_ON(ret);
249
250 if (isize > actual_end)
251 inline_len = min_t(u64, isize, actual_end);
252 ret = insert_inline_extent(trans, root, inode, start,
253 inline_len, compressed_size,
fe3f566c 254 compress_type, compressed_pages);
c8b97818 255 BUG_ON(ret);
0ca1f7ce 256 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 257 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
258 return 0;
259}
260
771ed689
CM
261struct async_extent {
262 u64 start;
263 u64 ram_size;
264 u64 compressed_size;
265 struct page **pages;
266 unsigned long nr_pages;
261507a0 267 int compress_type;
771ed689
CM
268 struct list_head list;
269};
270
271struct async_cow {
272 struct inode *inode;
273 struct btrfs_root *root;
274 struct page *locked_page;
275 u64 start;
276 u64 end;
277 struct list_head extents;
278 struct btrfs_work work;
279};
280
281static noinline int add_async_extent(struct async_cow *cow,
282 u64 start, u64 ram_size,
283 u64 compressed_size,
284 struct page **pages,
261507a0
LZ
285 unsigned long nr_pages,
286 int compress_type)
771ed689
CM
287{
288 struct async_extent *async_extent;
289
290 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 291 BUG_ON(!async_extent);
771ed689
CM
292 async_extent->start = start;
293 async_extent->ram_size = ram_size;
294 async_extent->compressed_size = compressed_size;
295 async_extent->pages = pages;
296 async_extent->nr_pages = nr_pages;
261507a0 297 async_extent->compress_type = compress_type;
771ed689
CM
298 list_add_tail(&async_extent->list, &cow->extents);
299 return 0;
300}
301
d352ac68 302/*
771ed689
CM
303 * we create compressed extents in two phases. The first
304 * phase compresses a range of pages that have already been
305 * locked (both pages and state bits are locked).
c8b97818 306 *
771ed689
CM
307 * This is done inside an ordered work queue, and the compression
308 * is spread across many cpus. The actual IO submission is step
309 * two, and the ordered work queue takes care of making sure that
310 * happens in the same order things were put onto the queue by
311 * writepages and friends.
c8b97818 312 *
771ed689
CM
313 * If this code finds it can't get good compression, it puts an
314 * entry onto the work queue to write the uncompressed bytes. This
315 * makes sure that both compressed inodes and uncompressed inodes
316 * are written in the same order that pdflush sent them down.
d352ac68 317 */
771ed689
CM
318static noinline int compress_file_range(struct inode *inode,
319 struct page *locked_page,
320 u64 start, u64 end,
321 struct async_cow *async_cow,
322 int *num_added)
b888db2b
CM
323{
324 struct btrfs_root *root = BTRFS_I(inode)->root;
325 struct btrfs_trans_handle *trans;
db94535d 326 u64 num_bytes;
db94535d 327 u64 blocksize = root->sectorsize;
c8b97818 328 u64 actual_end;
42dc7bab 329 u64 isize = i_size_read(inode);
e6dcd2dc 330 int ret = 0;
c8b97818
CM
331 struct page **pages = NULL;
332 unsigned long nr_pages;
333 unsigned long nr_pages_ret = 0;
334 unsigned long total_compressed = 0;
335 unsigned long total_in = 0;
336 unsigned long max_compressed = 128 * 1024;
771ed689 337 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
338 int i;
339 int will_compress;
261507a0 340 int compress_type = root->fs_info->compress_type;
b888db2b 341
42dc7bab 342 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
343again:
344 will_compress = 0;
345 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
346 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 347
f03d9301
CM
348 /*
349 * we don't want to send crud past the end of i_size through
350 * compression, that's just a waste of CPU time. So, if the
351 * end of the file is before the start of our current
352 * requested range of bytes, we bail out to the uncompressed
353 * cleanup code that can deal with all of this.
354 *
355 * It isn't really the fastest way to fix things, but this is a
356 * very uncommon corner.
357 */
358 if (actual_end <= start)
359 goto cleanup_and_bail_uncompressed;
360
c8b97818
CM
361 total_compressed = actual_end - start;
362
363 /* we want to make sure that amount of ram required to uncompress
364 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
365 * of a compressed extent to 128k. This is a crucial number
366 * because it also controls how easily we can spread reads across
367 * cpus for decompression.
368 *
369 * We also want to make sure the amount of IO required to do
370 * a random read is reasonably small, so we limit the size of
371 * a compressed extent to 128k.
c8b97818
CM
372 */
373 total_compressed = min(total_compressed, max_uncompressed);
db94535d 374 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 375 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
376 total_in = 0;
377 ret = 0;
db94535d 378
771ed689
CM
379 /*
380 * we do compression for mount -o compress and when the
381 * inode has not been flagged as nocompress. This flag can
382 * change at any time if we discover bad compression ratios.
c8b97818 383 */
6cbff00f 384 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 385 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
386 (BTRFS_I(inode)->force_compress) ||
387 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 388 WARN_ON(pages);
cfbc246e 389 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
dac97e51 390 BUG_ON(!pages);
c8b97818 391
261507a0
LZ
392 if (BTRFS_I(inode)->force_compress)
393 compress_type = BTRFS_I(inode)->force_compress;
394
395 ret = btrfs_compress_pages(compress_type,
396 inode->i_mapping, start,
397 total_compressed, pages,
398 nr_pages, &nr_pages_ret,
399 &total_in,
400 &total_compressed,
401 max_compressed);
c8b97818
CM
402
403 if (!ret) {
404 unsigned long offset = total_compressed &
405 (PAGE_CACHE_SIZE - 1);
406 struct page *page = pages[nr_pages_ret - 1];
407 char *kaddr;
408
409 /* zero the tail end of the last page, we might be
410 * sending it down to disk
411 */
412 if (offset) {
413 kaddr = kmap_atomic(page, KM_USER0);
414 memset(kaddr + offset, 0,
415 PAGE_CACHE_SIZE - offset);
416 kunmap_atomic(kaddr, KM_USER0);
417 }
418 will_compress = 1;
419 }
420 }
421 if (start == 0) {
771ed689 422 trans = btrfs_join_transaction(root, 1);
3612b495 423 BUG_ON(IS_ERR(trans));
771ed689 424 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 425 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 426
c8b97818 427 /* lets try to make an inline extent */
771ed689 428 if (ret || total_in < (actual_end - start)) {
c8b97818 429 /* we didn't compress the entire range, try
771ed689 430 * to make an uncompressed inline extent.
c8b97818
CM
431 */
432 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 433 start, end, 0, 0, NULL);
c8b97818 434 } else {
771ed689 435 /* try making a compressed inline extent */
c8b97818
CM
436 ret = cow_file_range_inline(trans, root, inode,
437 start, end,
fe3f566c
LZ
438 total_compressed,
439 compress_type, pages);
c8b97818
CM
440 }
441 if (ret == 0) {
771ed689
CM
442 /*
443 * inline extent creation worked, we don't need
444 * to create any more async work items. Unlock
445 * and free up our temp pages.
446 */
c8b97818 447 extent_clear_unlock_delalloc(inode,
a791e35e
CM
448 &BTRFS_I(inode)->io_tree,
449 start, end, NULL,
450 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 451 EXTENT_CLEAR_DELALLOC |
a791e35e 452 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
453
454 btrfs_end_transaction(trans, root);
c8b97818
CM
455 goto free_pages_out;
456 }
c2167754 457 btrfs_end_transaction(trans, root);
c8b97818
CM
458 }
459
460 if (will_compress) {
461 /*
462 * we aren't doing an inline extent round the compressed size
463 * up to a block size boundary so the allocator does sane
464 * things
465 */
466 total_compressed = (total_compressed + blocksize - 1) &
467 ~(blocksize - 1);
468
469 /*
470 * one last check to make sure the compression is really a
471 * win, compare the page count read with the blocks on disk
472 */
473 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
474 ~(PAGE_CACHE_SIZE - 1);
475 if (total_compressed >= total_in) {
476 will_compress = 0;
477 } else {
c8b97818
CM
478 num_bytes = total_in;
479 }
480 }
481 if (!will_compress && pages) {
482 /*
483 * the compression code ran but failed to make things smaller,
484 * free any pages it allocated and our page pointer array
485 */
486 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 487 WARN_ON(pages[i]->mapping);
c8b97818
CM
488 page_cache_release(pages[i]);
489 }
490 kfree(pages);
491 pages = NULL;
492 total_compressed = 0;
493 nr_pages_ret = 0;
494
495 /* flag the file so we don't compress in the future */
1e701a32
CM
496 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
497 !(BTRFS_I(inode)->force_compress)) {
a555f810 498 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 499 }
c8b97818 500 }
771ed689
CM
501 if (will_compress) {
502 *num_added += 1;
c8b97818 503
771ed689
CM
504 /* the async work queues will take care of doing actual
505 * allocation on disk for these compressed pages,
506 * and will submit them to the elevator.
507 */
508 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
509 total_compressed, pages, nr_pages_ret,
510 compress_type);
179e29e4 511
24ae6365 512 if (start + num_bytes < end) {
771ed689
CM
513 start += num_bytes;
514 pages = NULL;
515 cond_resched();
516 goto again;
517 }
518 } else {
f03d9301 519cleanup_and_bail_uncompressed:
771ed689
CM
520 /*
521 * No compression, but we still need to write the pages in
522 * the file we've been given so far. redirty the locked
523 * page if it corresponds to our extent and set things up
524 * for the async work queue to run cow_file_range to do
525 * the normal delalloc dance
526 */
527 if (page_offset(locked_page) >= start &&
528 page_offset(locked_page) <= end) {
529 __set_page_dirty_nobuffers(locked_page);
530 /* unlocked later on in the async handlers */
531 }
261507a0
LZ
532 add_async_extent(async_cow, start, end - start + 1,
533 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
534 *num_added += 1;
535 }
3b951516 536
771ed689
CM
537out:
538 return 0;
539
540free_pages_out:
541 for (i = 0; i < nr_pages_ret; i++) {
542 WARN_ON(pages[i]->mapping);
543 page_cache_release(pages[i]);
544 }
d397712b 545 kfree(pages);
771ed689
CM
546
547 goto out;
548}
549
550/*
551 * phase two of compressed writeback. This is the ordered portion
552 * of the code, which only gets called in the order the work was
553 * queued. We walk all the async extents created by compress_file_range
554 * and send them down to the disk.
555 */
556static noinline int submit_compressed_extents(struct inode *inode,
557 struct async_cow *async_cow)
558{
559 struct async_extent *async_extent;
560 u64 alloc_hint = 0;
561 struct btrfs_trans_handle *trans;
562 struct btrfs_key ins;
563 struct extent_map *em;
564 struct btrfs_root *root = BTRFS_I(inode)->root;
565 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
566 struct extent_io_tree *io_tree;
f5a84ee3 567 int ret = 0;
771ed689
CM
568
569 if (list_empty(&async_cow->extents))
570 return 0;
571
771ed689 572
d397712b 573 while (!list_empty(&async_cow->extents)) {
771ed689
CM
574 async_extent = list_entry(async_cow->extents.next,
575 struct async_extent, list);
576 list_del(&async_extent->list);
c8b97818 577
771ed689
CM
578 io_tree = &BTRFS_I(inode)->io_tree;
579
f5a84ee3 580retry:
771ed689
CM
581 /* did the compression code fall back to uncompressed IO? */
582 if (!async_extent->pages) {
583 int page_started = 0;
584 unsigned long nr_written = 0;
585
586 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
587 async_extent->start +
588 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
589
590 /* allocate blocks */
f5a84ee3
JB
591 ret = cow_file_range(inode, async_cow->locked_page,
592 async_extent->start,
593 async_extent->start +
594 async_extent->ram_size - 1,
595 &page_started, &nr_written, 0);
771ed689
CM
596
597 /*
598 * if page_started, cow_file_range inserted an
599 * inline extent and took care of all the unlocking
600 * and IO for us. Otherwise, we need to submit
601 * all those pages down to the drive.
602 */
f5a84ee3 603 if (!page_started && !ret)
771ed689
CM
604 extent_write_locked_range(io_tree,
605 inode, async_extent->start,
d397712b 606 async_extent->start +
771ed689
CM
607 async_extent->ram_size - 1,
608 btrfs_get_extent,
609 WB_SYNC_ALL);
610 kfree(async_extent);
611 cond_resched();
612 continue;
613 }
614
615 lock_extent(io_tree, async_extent->start,
616 async_extent->start + async_extent->ram_size - 1,
617 GFP_NOFS);
771ed689 618
c2167754 619 trans = btrfs_join_transaction(root, 1);
3612b495 620 BUG_ON(IS_ERR(trans));
771ed689
CM
621 ret = btrfs_reserve_extent(trans, root,
622 async_extent->compressed_size,
623 async_extent->compressed_size,
624 0, alloc_hint,
625 (u64)-1, &ins, 1);
c2167754
YZ
626 btrfs_end_transaction(trans, root);
627
f5a84ee3
JB
628 if (ret) {
629 int i;
630 for (i = 0; i < async_extent->nr_pages; i++) {
631 WARN_ON(async_extent->pages[i]->mapping);
632 page_cache_release(async_extent->pages[i]);
633 }
634 kfree(async_extent->pages);
635 async_extent->nr_pages = 0;
636 async_extent->pages = NULL;
637 unlock_extent(io_tree, async_extent->start,
638 async_extent->start +
639 async_extent->ram_size - 1, GFP_NOFS);
640 goto retry;
641 }
642
c2167754
YZ
643 /*
644 * here we're doing allocation and writeback of the
645 * compressed pages
646 */
647 btrfs_drop_extent_cache(inode, async_extent->start,
648 async_extent->start +
649 async_extent->ram_size - 1, 0);
650
771ed689 651 em = alloc_extent_map(GFP_NOFS);
c26a9203 652 BUG_ON(!em);
771ed689
CM
653 em->start = async_extent->start;
654 em->len = async_extent->ram_size;
445a6944 655 em->orig_start = em->start;
c8b97818 656
771ed689
CM
657 em->block_start = ins.objectid;
658 em->block_len = ins.offset;
659 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 660 em->compress_type = async_extent->compress_type;
771ed689
CM
661 set_bit(EXTENT_FLAG_PINNED, &em->flags);
662 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
663
d397712b 664 while (1) {
890871be 665 write_lock(&em_tree->lock);
771ed689 666 ret = add_extent_mapping(em_tree, em);
890871be 667 write_unlock(&em_tree->lock);
771ed689
CM
668 if (ret != -EEXIST) {
669 free_extent_map(em);
670 break;
671 }
672 btrfs_drop_extent_cache(inode, async_extent->start,
673 async_extent->start +
674 async_extent->ram_size - 1, 0);
675 }
676
261507a0
LZ
677 ret = btrfs_add_ordered_extent_compress(inode,
678 async_extent->start,
679 ins.objectid,
680 async_extent->ram_size,
681 ins.offset,
682 BTRFS_ORDERED_COMPRESSED,
683 async_extent->compress_type);
771ed689
CM
684 BUG_ON(ret);
685
771ed689
CM
686 /*
687 * clear dirty, set writeback and unlock the pages.
688 */
689 extent_clear_unlock_delalloc(inode,
a791e35e
CM
690 &BTRFS_I(inode)->io_tree,
691 async_extent->start,
692 async_extent->start +
693 async_extent->ram_size - 1,
694 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
695 EXTENT_CLEAR_UNLOCK |
a3429ab7 696 EXTENT_CLEAR_DELALLOC |
a791e35e 697 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
698
699 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
700 async_extent->start,
701 async_extent->ram_size,
702 ins.objectid,
703 ins.offset, async_extent->pages,
704 async_extent->nr_pages);
771ed689
CM
705
706 BUG_ON(ret);
771ed689
CM
707 alloc_hint = ins.objectid + ins.offset;
708 kfree(async_extent);
709 cond_resched();
710 }
711
771ed689
CM
712 return 0;
713}
714
4b46fce2
JB
715static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
716 u64 num_bytes)
717{
718 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
719 struct extent_map *em;
720 u64 alloc_hint = 0;
721
722 read_lock(&em_tree->lock);
723 em = search_extent_mapping(em_tree, start, num_bytes);
724 if (em) {
725 /*
726 * if block start isn't an actual block number then find the
727 * first block in this inode and use that as a hint. If that
728 * block is also bogus then just don't worry about it.
729 */
730 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
731 free_extent_map(em);
732 em = search_extent_mapping(em_tree, 0, 0);
733 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
734 alloc_hint = em->block_start;
735 if (em)
736 free_extent_map(em);
737 } else {
738 alloc_hint = em->block_start;
739 free_extent_map(em);
740 }
741 }
742 read_unlock(&em_tree->lock);
743
744 return alloc_hint;
745}
746
771ed689
CM
747/*
748 * when extent_io.c finds a delayed allocation range in the file,
749 * the call backs end up in this code. The basic idea is to
750 * allocate extents on disk for the range, and create ordered data structs
751 * in ram to track those extents.
752 *
753 * locked_page is the page that writepage had locked already. We use
754 * it to make sure we don't do extra locks or unlocks.
755 *
756 * *page_started is set to one if we unlock locked_page and do everything
757 * required to start IO on it. It may be clean and already done with
758 * IO when we return.
759 */
760static noinline int cow_file_range(struct inode *inode,
761 struct page *locked_page,
762 u64 start, u64 end, int *page_started,
763 unsigned long *nr_written,
764 int unlock)
765{
766 struct btrfs_root *root = BTRFS_I(inode)->root;
767 struct btrfs_trans_handle *trans;
768 u64 alloc_hint = 0;
769 u64 num_bytes;
770 unsigned long ram_size;
771 u64 disk_num_bytes;
772 u64 cur_alloc_size;
773 u64 blocksize = root->sectorsize;
771ed689
CM
774 struct btrfs_key ins;
775 struct extent_map *em;
776 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
777 int ret = 0;
778
0cb59c99 779 BUG_ON(root == root->fs_info->tree_root);
771ed689 780 trans = btrfs_join_transaction(root, 1);
3612b495 781 BUG_ON(IS_ERR(trans));
771ed689 782 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 783 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 784
771ed689
CM
785 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
786 num_bytes = max(blocksize, num_bytes);
787 disk_num_bytes = num_bytes;
788 ret = 0;
789
790 if (start == 0) {
791 /* lets try to make an inline extent */
792 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 793 start, end, 0, 0, NULL);
771ed689
CM
794 if (ret == 0) {
795 extent_clear_unlock_delalloc(inode,
a791e35e
CM
796 &BTRFS_I(inode)->io_tree,
797 start, end, NULL,
798 EXTENT_CLEAR_UNLOCK_PAGE |
799 EXTENT_CLEAR_UNLOCK |
800 EXTENT_CLEAR_DELALLOC |
801 EXTENT_CLEAR_DIRTY |
802 EXTENT_SET_WRITEBACK |
803 EXTENT_END_WRITEBACK);
c2167754 804
771ed689
CM
805 *nr_written = *nr_written +
806 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
807 *page_started = 1;
808 ret = 0;
809 goto out;
810 }
811 }
812
813 BUG_ON(disk_num_bytes >
814 btrfs_super_total_bytes(&root->fs_info->super_copy));
815
4b46fce2 816 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
817 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
818
d397712b 819 while (disk_num_bytes > 0) {
a791e35e
CM
820 unsigned long op;
821
287a0ab9 822 cur_alloc_size = disk_num_bytes;
e6dcd2dc 823 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 824 root->sectorsize, 0, alloc_hint,
e6dcd2dc 825 (u64)-1, &ins, 1);
d397712b
CM
826 BUG_ON(ret);
827
e6dcd2dc 828 em = alloc_extent_map(GFP_NOFS);
c26a9203 829 BUG_ON(!em);
e6dcd2dc 830 em->start = start;
445a6944 831 em->orig_start = em->start;
771ed689
CM
832 ram_size = ins.offset;
833 em->len = ins.offset;
c8b97818 834
e6dcd2dc 835 em->block_start = ins.objectid;
c8b97818 836 em->block_len = ins.offset;
e6dcd2dc 837 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 838 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 839
d397712b 840 while (1) {
890871be 841 write_lock(&em_tree->lock);
e6dcd2dc 842 ret = add_extent_mapping(em_tree, em);
890871be 843 write_unlock(&em_tree->lock);
e6dcd2dc
CM
844 if (ret != -EEXIST) {
845 free_extent_map(em);
846 break;
847 }
848 btrfs_drop_extent_cache(inode, start,
c8b97818 849 start + ram_size - 1, 0);
e6dcd2dc
CM
850 }
851
98d20f67 852 cur_alloc_size = ins.offset;
e6dcd2dc 853 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 854 ram_size, cur_alloc_size, 0);
e6dcd2dc 855 BUG_ON(ret);
c8b97818 856
17d217fe
YZ
857 if (root->root_key.objectid ==
858 BTRFS_DATA_RELOC_TREE_OBJECTID) {
859 ret = btrfs_reloc_clone_csums(inode, start,
860 cur_alloc_size);
861 BUG_ON(ret);
862 }
863
d397712b 864 if (disk_num_bytes < cur_alloc_size)
3b951516 865 break;
d397712b 866
c8b97818
CM
867 /* we're not doing compressed IO, don't unlock the first
868 * page (which the caller expects to stay locked), don't
869 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
870 *
871 * Do set the Private2 bit so we know this page was properly
872 * setup for writepage
c8b97818 873 */
a791e35e
CM
874 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
875 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
876 EXTENT_SET_PRIVATE2;
877
c8b97818
CM
878 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
879 start, start + ram_size - 1,
a791e35e 880 locked_page, op);
c8b97818 881 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
882 num_bytes -= cur_alloc_size;
883 alloc_hint = ins.objectid + ins.offset;
884 start += cur_alloc_size;
b888db2b 885 }
b888db2b 886out:
771ed689 887 ret = 0;
b888db2b 888 btrfs_end_transaction(trans, root);
c8b97818 889
be20aa9d 890 return ret;
771ed689 891}
c8b97818 892
771ed689
CM
893/*
894 * work queue call back to started compression on a file and pages
895 */
896static noinline void async_cow_start(struct btrfs_work *work)
897{
898 struct async_cow *async_cow;
899 int num_added = 0;
900 async_cow = container_of(work, struct async_cow, work);
901
902 compress_file_range(async_cow->inode, async_cow->locked_page,
903 async_cow->start, async_cow->end, async_cow,
904 &num_added);
905 if (num_added == 0)
906 async_cow->inode = NULL;
907}
908
909/*
910 * work queue call back to submit previously compressed pages
911 */
912static noinline void async_cow_submit(struct btrfs_work *work)
913{
914 struct async_cow *async_cow;
915 struct btrfs_root *root;
916 unsigned long nr_pages;
917
918 async_cow = container_of(work, struct async_cow, work);
919
920 root = async_cow->root;
921 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
922 PAGE_CACHE_SHIFT;
923
924 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
925
926 if (atomic_read(&root->fs_info->async_delalloc_pages) <
927 5 * 1042 * 1024 &&
928 waitqueue_active(&root->fs_info->async_submit_wait))
929 wake_up(&root->fs_info->async_submit_wait);
930
d397712b 931 if (async_cow->inode)
771ed689 932 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 933}
c8b97818 934
771ed689
CM
935static noinline void async_cow_free(struct btrfs_work *work)
936{
937 struct async_cow *async_cow;
938 async_cow = container_of(work, struct async_cow, work);
939 kfree(async_cow);
940}
941
942static int cow_file_range_async(struct inode *inode, struct page *locked_page,
943 u64 start, u64 end, int *page_started,
944 unsigned long *nr_written)
945{
946 struct async_cow *async_cow;
947 struct btrfs_root *root = BTRFS_I(inode)->root;
948 unsigned long nr_pages;
949 u64 cur_end;
950 int limit = 10 * 1024 * 1042;
951
a3429ab7
CM
952 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
953 1, 0, NULL, GFP_NOFS);
d397712b 954 while (start < end) {
771ed689
CM
955 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
956 async_cow->inode = inode;
957 async_cow->root = root;
958 async_cow->locked_page = locked_page;
959 async_cow->start = start;
960
6cbff00f 961 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
962 cur_end = end;
963 else
964 cur_end = min(end, start + 512 * 1024 - 1);
965
966 async_cow->end = cur_end;
967 INIT_LIST_HEAD(&async_cow->extents);
968
969 async_cow->work.func = async_cow_start;
970 async_cow->work.ordered_func = async_cow_submit;
971 async_cow->work.ordered_free = async_cow_free;
972 async_cow->work.flags = 0;
973
771ed689
CM
974 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
975 PAGE_CACHE_SHIFT;
976 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
977
978 btrfs_queue_worker(&root->fs_info->delalloc_workers,
979 &async_cow->work);
980
981 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
982 wait_event(root->fs_info->async_submit_wait,
983 (atomic_read(&root->fs_info->async_delalloc_pages) <
984 limit));
985 }
986
d397712b 987 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
988 atomic_read(&root->fs_info->async_delalloc_pages)) {
989 wait_event(root->fs_info->async_submit_wait,
990 (atomic_read(&root->fs_info->async_delalloc_pages) ==
991 0));
992 }
993
994 *nr_written += nr_pages;
995 start = cur_end + 1;
996 }
997 *page_started = 1;
998 return 0;
be20aa9d
CM
999}
1000
d397712b 1001static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1002 u64 bytenr, u64 num_bytes)
1003{
1004 int ret;
1005 struct btrfs_ordered_sum *sums;
1006 LIST_HEAD(list);
1007
07d400a6
YZ
1008 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1009 bytenr + num_bytes - 1, &list);
17d217fe
YZ
1010 if (ret == 0 && list_empty(&list))
1011 return 0;
1012
1013 while (!list_empty(&list)) {
1014 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1015 list_del(&sums->list);
1016 kfree(sums);
1017 }
1018 return 1;
1019}
1020
d352ac68
CM
1021/*
1022 * when nowcow writeback call back. This checks for snapshots or COW copies
1023 * of the extents that exist in the file, and COWs the file as required.
1024 *
1025 * If no cow copies or snapshots exist, we write directly to the existing
1026 * blocks on disk
1027 */
7f366cfe
CM
1028static noinline int run_delalloc_nocow(struct inode *inode,
1029 struct page *locked_page,
771ed689
CM
1030 u64 start, u64 end, int *page_started, int force,
1031 unsigned long *nr_written)
be20aa9d 1032{
be20aa9d 1033 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1034 struct btrfs_trans_handle *trans;
be20aa9d 1035 struct extent_buffer *leaf;
be20aa9d 1036 struct btrfs_path *path;
80ff3856 1037 struct btrfs_file_extent_item *fi;
be20aa9d 1038 struct btrfs_key found_key;
80ff3856
YZ
1039 u64 cow_start;
1040 u64 cur_offset;
1041 u64 extent_end;
5d4f98a2 1042 u64 extent_offset;
80ff3856
YZ
1043 u64 disk_bytenr;
1044 u64 num_bytes;
1045 int extent_type;
1046 int ret;
d899e052 1047 int type;
80ff3856
YZ
1048 int nocow;
1049 int check_prev = 1;
0cb59c99 1050 bool nolock = false;
be20aa9d
CM
1051
1052 path = btrfs_alloc_path();
1053 BUG_ON(!path);
0cb59c99
JB
1054 if (root == root->fs_info->tree_root) {
1055 nolock = true;
1056 trans = btrfs_join_transaction_nolock(root, 1);
1057 } else {
1058 trans = btrfs_join_transaction(root, 1);
1059 }
3612b495 1060 BUG_ON(IS_ERR(trans));
be20aa9d 1061
80ff3856
YZ
1062 cow_start = (u64)-1;
1063 cur_offset = start;
1064 while (1) {
1065 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1066 cur_offset, 0);
1067 BUG_ON(ret < 0);
1068 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1069 leaf = path->nodes[0];
1070 btrfs_item_key_to_cpu(leaf, &found_key,
1071 path->slots[0] - 1);
1072 if (found_key.objectid == inode->i_ino &&
1073 found_key.type == BTRFS_EXTENT_DATA_KEY)
1074 path->slots[0]--;
1075 }
1076 check_prev = 0;
1077next_slot:
1078 leaf = path->nodes[0];
1079 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1080 ret = btrfs_next_leaf(root, path);
1081 if (ret < 0)
1082 BUG_ON(1);
1083 if (ret > 0)
1084 break;
1085 leaf = path->nodes[0];
1086 }
be20aa9d 1087
80ff3856
YZ
1088 nocow = 0;
1089 disk_bytenr = 0;
17d217fe 1090 num_bytes = 0;
80ff3856
YZ
1091 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1092
1093 if (found_key.objectid > inode->i_ino ||
1094 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1095 found_key.offset > end)
1096 break;
1097
1098 if (found_key.offset > cur_offset) {
1099 extent_end = found_key.offset;
e9061e21 1100 extent_type = 0;
80ff3856
YZ
1101 goto out_check;
1102 }
1103
1104 fi = btrfs_item_ptr(leaf, path->slots[0],
1105 struct btrfs_file_extent_item);
1106 extent_type = btrfs_file_extent_type(leaf, fi);
1107
d899e052
YZ
1108 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1109 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1110 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1111 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1112 extent_end = found_key.offset +
1113 btrfs_file_extent_num_bytes(leaf, fi);
1114 if (extent_end <= start) {
1115 path->slots[0]++;
1116 goto next_slot;
1117 }
17d217fe
YZ
1118 if (disk_bytenr == 0)
1119 goto out_check;
80ff3856
YZ
1120 if (btrfs_file_extent_compression(leaf, fi) ||
1121 btrfs_file_extent_encryption(leaf, fi) ||
1122 btrfs_file_extent_other_encoding(leaf, fi))
1123 goto out_check;
d899e052
YZ
1124 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1125 goto out_check;
d2fb3437 1126 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1127 goto out_check;
17d217fe 1128 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1129 found_key.offset -
1130 extent_offset, disk_bytenr))
17d217fe 1131 goto out_check;
5d4f98a2 1132 disk_bytenr += extent_offset;
17d217fe
YZ
1133 disk_bytenr += cur_offset - found_key.offset;
1134 num_bytes = min(end + 1, extent_end) - cur_offset;
1135 /*
1136 * force cow if csum exists in the range.
1137 * this ensure that csum for a given extent are
1138 * either valid or do not exist.
1139 */
1140 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1141 goto out_check;
80ff3856
YZ
1142 nocow = 1;
1143 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1144 extent_end = found_key.offset +
1145 btrfs_file_extent_inline_len(leaf, fi);
1146 extent_end = ALIGN(extent_end, root->sectorsize);
1147 } else {
1148 BUG_ON(1);
1149 }
1150out_check:
1151 if (extent_end <= start) {
1152 path->slots[0]++;
1153 goto next_slot;
1154 }
1155 if (!nocow) {
1156 if (cow_start == (u64)-1)
1157 cow_start = cur_offset;
1158 cur_offset = extent_end;
1159 if (cur_offset > end)
1160 break;
1161 path->slots[0]++;
1162 goto next_slot;
7ea394f1
YZ
1163 }
1164
1165 btrfs_release_path(root, path);
80ff3856
YZ
1166 if (cow_start != (u64)-1) {
1167 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1168 found_key.offset - 1, page_started,
1169 nr_written, 1);
80ff3856
YZ
1170 BUG_ON(ret);
1171 cow_start = (u64)-1;
7ea394f1 1172 }
80ff3856 1173
d899e052
YZ
1174 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1175 struct extent_map *em;
1176 struct extent_map_tree *em_tree;
1177 em_tree = &BTRFS_I(inode)->extent_tree;
1178 em = alloc_extent_map(GFP_NOFS);
c26a9203 1179 BUG_ON(!em);
d899e052 1180 em->start = cur_offset;
445a6944 1181 em->orig_start = em->start;
d899e052
YZ
1182 em->len = num_bytes;
1183 em->block_len = num_bytes;
1184 em->block_start = disk_bytenr;
1185 em->bdev = root->fs_info->fs_devices->latest_bdev;
1186 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1187 while (1) {
890871be 1188 write_lock(&em_tree->lock);
d899e052 1189 ret = add_extent_mapping(em_tree, em);
890871be 1190 write_unlock(&em_tree->lock);
d899e052
YZ
1191 if (ret != -EEXIST) {
1192 free_extent_map(em);
1193 break;
1194 }
1195 btrfs_drop_extent_cache(inode, em->start,
1196 em->start + em->len - 1, 0);
1197 }
1198 type = BTRFS_ORDERED_PREALLOC;
1199 } else {
1200 type = BTRFS_ORDERED_NOCOW;
1201 }
80ff3856
YZ
1202
1203 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1204 num_bytes, num_bytes, type);
1205 BUG_ON(ret);
771ed689 1206
efa56464
YZ
1207 if (root->root_key.objectid ==
1208 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1209 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1210 num_bytes);
1211 BUG_ON(ret);
1212 }
1213
d899e052 1214 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1215 cur_offset, cur_offset + num_bytes - 1,
1216 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1217 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1218 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1219 cur_offset = extent_end;
1220 if (cur_offset > end)
1221 break;
be20aa9d 1222 }
80ff3856
YZ
1223 btrfs_release_path(root, path);
1224
1225 if (cur_offset <= end && cow_start == (u64)-1)
1226 cow_start = cur_offset;
1227 if (cow_start != (u64)-1) {
1228 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1229 page_started, nr_written, 1);
80ff3856
YZ
1230 BUG_ON(ret);
1231 }
1232
0cb59c99
JB
1233 if (nolock) {
1234 ret = btrfs_end_transaction_nolock(trans, root);
1235 BUG_ON(ret);
1236 } else {
1237 ret = btrfs_end_transaction(trans, root);
1238 BUG_ON(ret);
1239 }
7ea394f1 1240 btrfs_free_path(path);
80ff3856 1241 return 0;
be20aa9d
CM
1242}
1243
d352ac68
CM
1244/*
1245 * extent_io.c call back to do delayed allocation processing
1246 */
c8b97818 1247static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1248 u64 start, u64 end, int *page_started,
1249 unsigned long *nr_written)
be20aa9d 1250{
be20aa9d 1251 int ret;
7f366cfe 1252 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1253
6cbff00f 1254 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1255 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1256 page_started, 1, nr_written);
6cbff00f 1257 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1258 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1259 page_started, 0, nr_written);
1e701a32 1260 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1261 !(BTRFS_I(inode)->force_compress) &&
1262 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1263 ret = cow_file_range(inode, locked_page, start, end,
1264 page_started, nr_written, 1);
be20aa9d 1265 else
771ed689 1266 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1267 page_started, nr_written);
b888db2b
CM
1268 return ret;
1269}
1270
9ed74f2d 1271static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1272 struct extent_state *orig, u64 split)
9ed74f2d 1273{
0ca1f7ce 1274 /* not delalloc, ignore it */
9ed74f2d
JB
1275 if (!(orig->state & EXTENT_DELALLOC))
1276 return 0;
1277
0ca1f7ce 1278 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1279 return 0;
1280}
1281
1282/*
1283 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1284 * extents so we can keep track of new extents that are just merged onto old
1285 * extents, such as when we are doing sequential writes, so we can properly
1286 * account for the metadata space we'll need.
1287 */
1288static int btrfs_merge_extent_hook(struct inode *inode,
1289 struct extent_state *new,
1290 struct extent_state *other)
1291{
9ed74f2d
JB
1292 /* not delalloc, ignore it */
1293 if (!(other->state & EXTENT_DELALLOC))
1294 return 0;
1295
0ca1f7ce 1296 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1297 return 0;
1298}
1299
d352ac68
CM
1300/*
1301 * extent_io.c set_bit_hook, used to track delayed allocation
1302 * bytes in this file, and to maintain the list of inodes that
1303 * have pending delalloc work to be done.
1304 */
0ca1f7ce
YZ
1305static int btrfs_set_bit_hook(struct inode *inode,
1306 struct extent_state *state, int *bits)
291d673e 1307{
9ed74f2d 1308
75eff68e
CM
1309 /*
1310 * set_bit and clear bit hooks normally require _irqsave/restore
1311 * but in this case, we are only testeing for the DELALLOC
1312 * bit, which is only set or cleared with irqs on
1313 */
0ca1f7ce 1314 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1315 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1316 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1317 int do_list = (root->root_key.objectid !=
1318 BTRFS_ROOT_TREE_OBJECTID);
9ed74f2d 1319
0ca1f7ce
YZ
1320 if (*bits & EXTENT_FIRST_DELALLOC)
1321 *bits &= ~EXTENT_FIRST_DELALLOC;
1322 else
1323 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1324
75eff68e 1325 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1326 BTRFS_I(inode)->delalloc_bytes += len;
1327 root->fs_info->delalloc_bytes += len;
0cb59c99 1328 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1329 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1330 &root->fs_info->delalloc_inodes);
1331 }
75eff68e 1332 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1333 }
1334 return 0;
1335}
1336
d352ac68
CM
1337/*
1338 * extent_io.c clear_bit_hook, see set_bit_hook for why
1339 */
9ed74f2d 1340static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1341 struct extent_state *state, int *bits)
291d673e 1342{
75eff68e
CM
1343 /*
1344 * set_bit and clear bit hooks normally require _irqsave/restore
1345 * but in this case, we are only testeing for the DELALLOC
1346 * bit, which is only set or cleared with irqs on
1347 */
0ca1f7ce 1348 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1349 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1350 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1351 int do_list = (root->root_key.objectid !=
1352 BTRFS_ROOT_TREE_OBJECTID);
bcbfce8a 1353
0ca1f7ce
YZ
1354 if (*bits & EXTENT_FIRST_DELALLOC)
1355 *bits &= ~EXTENT_FIRST_DELALLOC;
1356 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1357 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1358
1359 if (*bits & EXTENT_DO_ACCOUNTING)
1360 btrfs_delalloc_release_metadata(inode, len);
1361
0cb59c99
JB
1362 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1363 && do_list)
0ca1f7ce 1364 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1365
75eff68e 1366 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1367 root->fs_info->delalloc_bytes -= len;
1368 BTRFS_I(inode)->delalloc_bytes -= len;
1369
0cb59c99 1370 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1371 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1372 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1373 }
75eff68e 1374 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1375 }
1376 return 0;
1377}
1378
d352ac68
CM
1379/*
1380 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1381 * we don't create bios that span stripes or chunks
1382 */
239b14b3 1383int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1384 size_t size, struct bio *bio,
1385 unsigned long bio_flags)
239b14b3
CM
1386{
1387 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1388 struct btrfs_mapping_tree *map_tree;
a62b9401 1389 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1390 u64 length = 0;
1391 u64 map_length;
239b14b3
CM
1392 int ret;
1393
771ed689
CM
1394 if (bio_flags & EXTENT_BIO_COMPRESSED)
1395 return 0;
1396
f2d8d74d 1397 length = bio->bi_size;
239b14b3
CM
1398 map_tree = &root->fs_info->mapping_tree;
1399 map_length = length;
cea9e445 1400 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1401 &map_length, NULL, 0);
cea9e445 1402
d397712b 1403 if (map_length < length + size)
239b14b3 1404 return 1;
411fc6bc 1405 return ret;
239b14b3
CM
1406}
1407
d352ac68
CM
1408/*
1409 * in order to insert checksums into the metadata in large chunks,
1410 * we wait until bio submission time. All the pages in the bio are
1411 * checksummed and sums are attached onto the ordered extent record.
1412 *
1413 * At IO completion time the cums attached on the ordered extent record
1414 * are inserted into the btree
1415 */
d397712b
CM
1416static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1417 struct bio *bio, int mirror_num,
eaf25d93
CM
1418 unsigned long bio_flags,
1419 u64 bio_offset)
065631f6 1420{
065631f6 1421 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1422 int ret = 0;
e015640f 1423
d20f7043 1424 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1425 BUG_ON(ret);
4a69a410
CM
1426 return 0;
1427}
e015640f 1428
4a69a410
CM
1429/*
1430 * in order to insert checksums into the metadata in large chunks,
1431 * we wait until bio submission time. All the pages in the bio are
1432 * checksummed and sums are attached onto the ordered extent record.
1433 *
1434 * At IO completion time the cums attached on the ordered extent record
1435 * are inserted into the btree
1436 */
b2950863 1437static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1438 int mirror_num, unsigned long bio_flags,
1439 u64 bio_offset)
4a69a410
CM
1440{
1441 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1442 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1443}
1444
d352ac68 1445/*
cad321ad
CM
1446 * extent_io.c submission hook. This does the right thing for csum calculation
1447 * on write, or reading the csums from the tree before a read
d352ac68 1448 */
b2950863 1449static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1450 int mirror_num, unsigned long bio_flags,
1451 u64 bio_offset)
44b8bd7e
CM
1452{
1453 struct btrfs_root *root = BTRFS_I(inode)->root;
1454 int ret = 0;
19b9bdb0 1455 int skip_sum;
44b8bd7e 1456
6cbff00f 1457 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1458
0cb59c99
JB
1459 if (root == root->fs_info->tree_root)
1460 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1461 else
1462 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1463 BUG_ON(ret);
065631f6 1464
7b6d91da 1465 if (!(rw & REQ_WRITE)) {
d20f7043 1466 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1467 return btrfs_submit_compressed_read(inode, bio,
1468 mirror_num, bio_flags);
c2db1073
TI
1469 } else if (!skip_sum) {
1470 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1471 if (ret)
1472 return ret;
1473 }
4d1b5fb4 1474 goto mapit;
19b9bdb0 1475 } else if (!skip_sum) {
17d217fe
YZ
1476 /* csum items have already been cloned */
1477 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1478 goto mapit;
19b9bdb0
CM
1479 /* we're doing a write, do the async checksumming */
1480 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1481 inode, rw, bio, mirror_num,
eaf25d93
CM
1482 bio_flags, bio_offset,
1483 __btrfs_submit_bio_start,
4a69a410 1484 __btrfs_submit_bio_done);
19b9bdb0
CM
1485 }
1486
0b86a832 1487mapit:
8b712842 1488 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1489}
6885f308 1490
d352ac68
CM
1491/*
1492 * given a list of ordered sums record them in the inode. This happens
1493 * at IO completion time based on sums calculated at bio submission time.
1494 */
ba1da2f4 1495static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1496 struct inode *inode, u64 file_offset,
1497 struct list_head *list)
1498{
e6dcd2dc
CM
1499 struct btrfs_ordered_sum *sum;
1500
1501 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1502
1503 list_for_each_entry(sum, list, list) {
d20f7043
CM
1504 btrfs_csum_file_blocks(trans,
1505 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1506 }
1507 return 0;
1508}
1509
2ac55d41
JB
1510int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1511 struct extent_state **cached_state)
ea8c2819 1512{
d397712b 1513 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1514 WARN_ON(1);
ea8c2819 1515 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1516 cached_state, GFP_NOFS);
ea8c2819
CM
1517}
1518
d352ac68 1519/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1520struct btrfs_writepage_fixup {
1521 struct page *page;
1522 struct btrfs_work work;
1523};
1524
b2950863 1525static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1526{
1527 struct btrfs_writepage_fixup *fixup;
1528 struct btrfs_ordered_extent *ordered;
2ac55d41 1529 struct extent_state *cached_state = NULL;
247e743c
CM
1530 struct page *page;
1531 struct inode *inode;
1532 u64 page_start;
1533 u64 page_end;
1534
1535 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1536 page = fixup->page;
4a096752 1537again:
247e743c
CM
1538 lock_page(page);
1539 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1540 ClearPageChecked(page);
1541 goto out_page;
1542 }
1543
1544 inode = page->mapping->host;
1545 page_start = page_offset(page);
1546 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1547
2ac55d41
JB
1548 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1549 &cached_state, GFP_NOFS);
4a096752
CM
1550
1551 /* already ordered? We're done */
8b62b72b 1552 if (PagePrivate2(page))
247e743c 1553 goto out;
4a096752
CM
1554
1555 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1556 if (ordered) {
2ac55d41
JB
1557 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1558 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1559 unlock_page(page);
1560 btrfs_start_ordered_extent(inode, ordered, 1);
1561 goto again;
1562 }
247e743c 1563
0ca1f7ce 1564 BUG();
2ac55d41 1565 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1566 ClearPageChecked(page);
1567out:
2ac55d41
JB
1568 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1569 &cached_state, GFP_NOFS);
247e743c
CM
1570out_page:
1571 unlock_page(page);
1572 page_cache_release(page);
b897abec 1573 kfree(fixup);
247e743c
CM
1574}
1575
1576/*
1577 * There are a few paths in the higher layers of the kernel that directly
1578 * set the page dirty bit without asking the filesystem if it is a
1579 * good idea. This causes problems because we want to make sure COW
1580 * properly happens and the data=ordered rules are followed.
1581 *
c8b97818 1582 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1583 * hasn't been properly setup for IO. We kick off an async process
1584 * to fix it up. The async helper will wait for ordered extents, set
1585 * the delalloc bit and make it safe to write the page.
1586 */
b2950863 1587static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1588{
1589 struct inode *inode = page->mapping->host;
1590 struct btrfs_writepage_fixup *fixup;
1591 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1592
8b62b72b
CM
1593 /* this page is properly in the ordered list */
1594 if (TestClearPagePrivate2(page))
247e743c
CM
1595 return 0;
1596
1597 if (PageChecked(page))
1598 return -EAGAIN;
1599
1600 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1601 if (!fixup)
1602 return -EAGAIN;
f421950f 1603
247e743c
CM
1604 SetPageChecked(page);
1605 page_cache_get(page);
1606 fixup->work.func = btrfs_writepage_fixup_worker;
1607 fixup->page = page;
1608 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1609 return -EAGAIN;
1610}
1611
d899e052
YZ
1612static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1613 struct inode *inode, u64 file_pos,
1614 u64 disk_bytenr, u64 disk_num_bytes,
1615 u64 num_bytes, u64 ram_bytes,
1616 u8 compression, u8 encryption,
1617 u16 other_encoding, int extent_type)
1618{
1619 struct btrfs_root *root = BTRFS_I(inode)->root;
1620 struct btrfs_file_extent_item *fi;
1621 struct btrfs_path *path;
1622 struct extent_buffer *leaf;
1623 struct btrfs_key ins;
1624 u64 hint;
1625 int ret;
1626
1627 path = btrfs_alloc_path();
1628 BUG_ON(!path);
1629
b9473439 1630 path->leave_spinning = 1;
a1ed835e
CM
1631
1632 /*
1633 * we may be replacing one extent in the tree with another.
1634 * The new extent is pinned in the extent map, and we don't want
1635 * to drop it from the cache until it is completely in the btree.
1636 *
1637 * So, tell btrfs_drop_extents to leave this extent in the cache.
1638 * the caller is expected to unpin it and allow it to be merged
1639 * with the others.
1640 */
920bbbfb
YZ
1641 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1642 &hint, 0);
d899e052
YZ
1643 BUG_ON(ret);
1644
1645 ins.objectid = inode->i_ino;
1646 ins.offset = file_pos;
1647 ins.type = BTRFS_EXTENT_DATA_KEY;
1648 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1649 BUG_ON(ret);
1650 leaf = path->nodes[0];
1651 fi = btrfs_item_ptr(leaf, path->slots[0],
1652 struct btrfs_file_extent_item);
1653 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1654 btrfs_set_file_extent_type(leaf, fi, extent_type);
1655 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1656 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1657 btrfs_set_file_extent_offset(leaf, fi, 0);
1658 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1659 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1660 btrfs_set_file_extent_compression(leaf, fi, compression);
1661 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1662 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1663
1664 btrfs_unlock_up_safe(path, 1);
1665 btrfs_set_lock_blocking(leaf);
1666
d899e052
YZ
1667 btrfs_mark_buffer_dirty(leaf);
1668
1669 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1670
1671 ins.objectid = disk_bytenr;
1672 ins.offset = disk_num_bytes;
1673 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1674 ret = btrfs_alloc_reserved_file_extent(trans, root,
1675 root->root_key.objectid,
1676 inode->i_ino, file_pos, &ins);
d899e052 1677 BUG_ON(ret);
d899e052 1678 btrfs_free_path(path);
b9473439 1679
d899e052
YZ
1680 return 0;
1681}
1682
5d13a98f
CM
1683/*
1684 * helper function for btrfs_finish_ordered_io, this
1685 * just reads in some of the csum leaves to prime them into ram
1686 * before we start the transaction. It limits the amount of btree
1687 * reads required while inside the transaction.
1688 */
d352ac68
CM
1689/* as ordered data IO finishes, this gets called so we can finish
1690 * an ordered extent if the range of bytes in the file it covers are
1691 * fully written.
1692 */
211f90e6 1693static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1694{
e6dcd2dc 1695 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1696 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1697 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1698 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1699 struct extent_state *cached_state = NULL;
261507a0 1700 int compress_type = 0;
e6dcd2dc 1701 int ret;
0cb59c99 1702 bool nolock = false;
e6dcd2dc 1703
5a1a3df1
JB
1704 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1705 end - start + 1);
ba1da2f4 1706 if (!ret)
e6dcd2dc 1707 return 0;
e6dcd2dc 1708 BUG_ON(!ordered_extent);
efd049fb 1709
0cb59c99
JB
1710 nolock = (root == root->fs_info->tree_root);
1711
c2167754
YZ
1712 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1713 BUG_ON(!list_empty(&ordered_extent->list));
1714 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1715 if (!ret) {
0cb59c99
JB
1716 if (nolock)
1717 trans = btrfs_join_transaction_nolock(root, 1);
1718 else
1719 trans = btrfs_join_transaction(root, 1);
3612b495 1720 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1721 btrfs_set_trans_block_group(trans, inode);
1722 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1723 ret = btrfs_update_inode(trans, root, inode);
1724 BUG_ON(ret);
c2167754
YZ
1725 }
1726 goto out;
1727 }
e6dcd2dc 1728
2ac55d41
JB
1729 lock_extent_bits(io_tree, ordered_extent->file_offset,
1730 ordered_extent->file_offset + ordered_extent->len - 1,
1731 0, &cached_state, GFP_NOFS);
e6dcd2dc 1732
0cb59c99
JB
1733 if (nolock)
1734 trans = btrfs_join_transaction_nolock(root, 1);
1735 else
1736 trans = btrfs_join_transaction(root, 1);
3612b495 1737 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1738 btrfs_set_trans_block_group(trans, inode);
1739 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1740
c8b97818 1741 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1742 compress_type = ordered_extent->compress_type;
d899e052 1743 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1744 BUG_ON(compress_type);
920bbbfb 1745 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1746 ordered_extent->file_offset,
1747 ordered_extent->file_offset +
1748 ordered_extent->len);
1749 BUG_ON(ret);
1750 } else {
0af3d00b 1751 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1752 ret = insert_reserved_file_extent(trans, inode,
1753 ordered_extent->file_offset,
1754 ordered_extent->start,
1755 ordered_extent->disk_len,
1756 ordered_extent->len,
1757 ordered_extent->len,
261507a0 1758 compress_type, 0, 0,
d899e052 1759 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1760 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1761 ordered_extent->file_offset,
1762 ordered_extent->len);
d899e052
YZ
1763 BUG_ON(ret);
1764 }
2ac55d41
JB
1765 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1766 ordered_extent->file_offset +
1767 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1768
e6dcd2dc
CM
1769 add_pending_csums(trans, inode, ordered_extent->file_offset,
1770 &ordered_extent->list);
1771
c2167754
YZ
1772 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1773 ret = btrfs_update_inode(trans, root, inode);
1774 BUG_ON(ret);
c2167754 1775out:
0cb59c99
JB
1776 if (nolock) {
1777 if (trans)
1778 btrfs_end_transaction_nolock(trans, root);
1779 } else {
1780 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1781 if (trans)
1782 btrfs_end_transaction(trans, root);
1783 }
1784
e6dcd2dc
CM
1785 /* once for us */
1786 btrfs_put_ordered_extent(ordered_extent);
1787 /* once for the tree */
1788 btrfs_put_ordered_extent(ordered_extent);
1789
e6dcd2dc
CM
1790 return 0;
1791}
1792
b2950863 1793static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1794 struct extent_state *state, int uptodate)
1795{
1abe9b8a 1796 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1797
8b62b72b 1798 ClearPagePrivate2(page);
211f90e6
CM
1799 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1800}
1801
d352ac68
CM
1802/*
1803 * When IO fails, either with EIO or csum verification fails, we
1804 * try other mirrors that might have a good copy of the data. This
1805 * io_failure_record is used to record state as we go through all the
1806 * mirrors. If another mirror has good data, the page is set up to date
1807 * and things continue. If a good mirror can't be found, the original
1808 * bio end_io callback is called to indicate things have failed.
1809 */
7e38326f
CM
1810struct io_failure_record {
1811 struct page *page;
1812 u64 start;
1813 u64 len;
1814 u64 logical;
d20f7043 1815 unsigned long bio_flags;
7e38326f
CM
1816 int last_mirror;
1817};
1818
b2950863 1819static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1820 struct page *page, u64 start, u64 end,
1821 struct extent_state *state)
7e38326f
CM
1822{
1823 struct io_failure_record *failrec = NULL;
1824 u64 private;
1825 struct extent_map *em;
1826 struct inode *inode = page->mapping->host;
1827 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1828 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1829 struct bio *bio;
1830 int num_copies;
1831 int ret;
1259ab75 1832 int rw;
7e38326f
CM
1833 u64 logical;
1834
1835 ret = get_state_private(failure_tree, start, &private);
1836 if (ret) {
7e38326f
CM
1837 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1838 if (!failrec)
1839 return -ENOMEM;
1840 failrec->start = start;
1841 failrec->len = end - start + 1;
1842 failrec->last_mirror = 0;
d20f7043 1843 failrec->bio_flags = 0;
7e38326f 1844
890871be 1845 read_lock(&em_tree->lock);
3b951516
CM
1846 em = lookup_extent_mapping(em_tree, start, failrec->len);
1847 if (em->start > start || em->start + em->len < start) {
1848 free_extent_map(em);
1849 em = NULL;
1850 }
890871be 1851 read_unlock(&em_tree->lock);
7e38326f
CM
1852
1853 if (!em || IS_ERR(em)) {
1854 kfree(failrec);
1855 return -EIO;
1856 }
1857 logical = start - em->start;
1858 logical = em->block_start + logical;
d20f7043
CM
1859 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1860 logical = em->block_start;
1861 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1862 extent_set_compress_type(&failrec->bio_flags,
1863 em->compress_type);
d20f7043 1864 }
7e38326f
CM
1865 failrec->logical = logical;
1866 free_extent_map(em);
1867 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1868 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1869 set_state_private(failure_tree, start,
1870 (u64)(unsigned long)failrec);
7e38326f 1871 } else {
587f7704 1872 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1873 }
1874 num_copies = btrfs_num_copies(
1875 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1876 failrec->logical, failrec->len);
1877 failrec->last_mirror++;
1878 if (!state) {
cad321ad 1879 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1880 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1881 failrec->start,
1882 EXTENT_LOCKED);
1883 if (state && state->start != failrec->start)
1884 state = NULL;
cad321ad 1885 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1886 }
1887 if (!state || failrec->last_mirror > num_copies) {
1888 set_state_private(failure_tree, failrec->start, 0);
1889 clear_extent_bits(failure_tree, failrec->start,
1890 failrec->start + failrec->len - 1,
1891 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1892 kfree(failrec);
1893 return -EIO;
1894 }
1895 bio = bio_alloc(GFP_NOFS, 1);
1896 bio->bi_private = state;
1897 bio->bi_end_io = failed_bio->bi_end_io;
1898 bio->bi_sector = failrec->logical >> 9;
1899 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1900 bio->bi_size = 0;
d20f7043 1901
7e38326f 1902 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1903 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1904 rw = WRITE;
1905 else
1906 rw = READ;
1907
c2db1073 1908 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1909 failrec->last_mirror,
eaf25d93 1910 failrec->bio_flags, 0);
c2db1073 1911 return ret;
1259ab75
CM
1912}
1913
d352ac68
CM
1914/*
1915 * each time an IO finishes, we do a fast check in the IO failure tree
1916 * to see if we need to process or clean up an io_failure_record
1917 */
b2950863 1918static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1919{
1920 u64 private;
1921 u64 private_failure;
1922 struct io_failure_record *failure;
1923 int ret;
1924
1925 private = 0;
1926 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1927 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1928 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1929 start, &private_failure);
1930 if (ret == 0) {
1931 failure = (struct io_failure_record *)(unsigned long)
1932 private_failure;
1933 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1934 failure->start, 0);
1935 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1936 failure->start,
1937 failure->start + failure->len - 1,
1938 EXTENT_DIRTY | EXTENT_LOCKED,
1939 GFP_NOFS);
1940 kfree(failure);
1941 }
1942 }
7e38326f
CM
1943 return 0;
1944}
1945
d352ac68
CM
1946/*
1947 * when reads are done, we need to check csums to verify the data is correct
1948 * if there's a match, we allow the bio to finish. If not, we go through
1949 * the io_failure_record routines to find good copies
1950 */
b2950863 1951static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1952 struct extent_state *state)
07157aac 1953{
35ebb934 1954 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1955 struct inode *inode = page->mapping->host;
d1310b2e 1956 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1957 char *kaddr;
aadfeb6e 1958 u64 private = ~(u32)0;
07157aac 1959 int ret;
ff79f819
CM
1960 struct btrfs_root *root = BTRFS_I(inode)->root;
1961 u32 csum = ~(u32)0;
d1310b2e 1962
d20f7043
CM
1963 if (PageChecked(page)) {
1964 ClearPageChecked(page);
1965 goto good;
1966 }
6cbff00f
CH
1967
1968 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1969 return 0;
1970
1971 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1972 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1973 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1974 GFP_NOFS);
b6cda9bc 1975 return 0;
17d217fe 1976 }
d20f7043 1977
c2e639f0 1978 if (state && state->start == start) {
70dec807
CM
1979 private = state->private;
1980 ret = 0;
1981 } else {
1982 ret = get_state_private(io_tree, start, &private);
1983 }
9ab86c8e 1984 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1985 if (ret)
07157aac 1986 goto zeroit;
d397712b 1987
ff79f819
CM
1988 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1989 btrfs_csum_final(csum, (char *)&csum);
d397712b 1990 if (csum != private)
07157aac 1991 goto zeroit;
d397712b 1992
9ab86c8e 1993 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1994good:
7e38326f
CM
1995 /* if the io failure tree for this inode is non-empty,
1996 * check to see if we've recovered from a failed IO
1997 */
1259ab75 1998 btrfs_clean_io_failures(inode, start);
07157aac
CM
1999 return 0;
2000
2001zeroit:
193f284d
CM
2002 if (printk_ratelimit()) {
2003 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2004 "private %llu\n", page->mapping->host->i_ino,
2005 (unsigned long long)start, csum,
2006 (unsigned long long)private);
2007 }
db94535d
CM
2008 memset(kaddr + offset, 1, end - start + 1);
2009 flush_dcache_page(page);
9ab86c8e 2010 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2011 if (private == 0)
2012 return 0;
7e38326f 2013 return -EIO;
07157aac 2014}
b888db2b 2015
24bbcf04
YZ
2016struct delayed_iput {
2017 struct list_head list;
2018 struct inode *inode;
2019};
2020
2021void btrfs_add_delayed_iput(struct inode *inode)
2022{
2023 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2024 struct delayed_iput *delayed;
2025
2026 if (atomic_add_unless(&inode->i_count, -1, 1))
2027 return;
2028
2029 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2030 delayed->inode = inode;
2031
2032 spin_lock(&fs_info->delayed_iput_lock);
2033 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2034 spin_unlock(&fs_info->delayed_iput_lock);
2035}
2036
2037void btrfs_run_delayed_iputs(struct btrfs_root *root)
2038{
2039 LIST_HEAD(list);
2040 struct btrfs_fs_info *fs_info = root->fs_info;
2041 struct delayed_iput *delayed;
2042 int empty;
2043
2044 spin_lock(&fs_info->delayed_iput_lock);
2045 empty = list_empty(&fs_info->delayed_iputs);
2046 spin_unlock(&fs_info->delayed_iput_lock);
2047 if (empty)
2048 return;
2049
2050 down_read(&root->fs_info->cleanup_work_sem);
2051 spin_lock(&fs_info->delayed_iput_lock);
2052 list_splice_init(&fs_info->delayed_iputs, &list);
2053 spin_unlock(&fs_info->delayed_iput_lock);
2054
2055 while (!list_empty(&list)) {
2056 delayed = list_entry(list.next, struct delayed_iput, list);
2057 list_del(&delayed->list);
2058 iput(delayed->inode);
2059 kfree(delayed);
2060 }
2061 up_read(&root->fs_info->cleanup_work_sem);
2062}
2063
d68fc57b
YZ
2064/*
2065 * calculate extra metadata reservation when snapshotting a subvolume
2066 * contains orphan files.
2067 */
2068void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2069 struct btrfs_pending_snapshot *pending,
2070 u64 *bytes_to_reserve)
2071{
2072 struct btrfs_root *root;
2073 struct btrfs_block_rsv *block_rsv;
2074 u64 num_bytes;
2075 int index;
2076
2077 root = pending->root;
2078 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2079 return;
2080
2081 block_rsv = root->orphan_block_rsv;
2082
2083 /* orphan block reservation for the snapshot */
2084 num_bytes = block_rsv->size;
2085
2086 /*
2087 * after the snapshot is created, COWing tree blocks may use more
2088 * space than it frees. So we should make sure there is enough
2089 * reserved space.
2090 */
2091 index = trans->transid & 0x1;
2092 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2093 num_bytes += block_rsv->size -
2094 (block_rsv->reserved + block_rsv->freed[index]);
2095 }
2096
2097 *bytes_to_reserve += num_bytes;
2098}
2099
2100void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2101 struct btrfs_pending_snapshot *pending)
2102{
2103 struct btrfs_root *root = pending->root;
2104 struct btrfs_root *snap = pending->snap;
2105 struct btrfs_block_rsv *block_rsv;
2106 u64 num_bytes;
2107 int index;
2108 int ret;
2109
2110 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2111 return;
2112
2113 /* refill source subvolume's orphan block reservation */
2114 block_rsv = root->orphan_block_rsv;
2115 index = trans->transid & 0x1;
2116 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2117 num_bytes = block_rsv->size -
2118 (block_rsv->reserved + block_rsv->freed[index]);
2119 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2120 root->orphan_block_rsv,
2121 num_bytes);
2122 BUG_ON(ret);
2123 }
2124
2125 /* setup orphan block reservation for the snapshot */
2126 block_rsv = btrfs_alloc_block_rsv(snap);
2127 BUG_ON(!block_rsv);
2128
2129 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2130 snap->orphan_block_rsv = block_rsv;
2131
2132 num_bytes = root->orphan_block_rsv->size;
2133 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2134 block_rsv, num_bytes);
2135 BUG_ON(ret);
2136
2137#if 0
2138 /* insert orphan item for the snapshot */
2139 WARN_ON(!root->orphan_item_inserted);
2140 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2141 snap->root_key.objectid);
2142 BUG_ON(ret);
2143 snap->orphan_item_inserted = 1;
2144#endif
2145}
2146
2147enum btrfs_orphan_cleanup_state {
2148 ORPHAN_CLEANUP_STARTED = 1,
2149 ORPHAN_CLEANUP_DONE = 2,
2150};
2151
2152/*
2153 * This is called in transaction commmit time. If there are no orphan
2154 * files in the subvolume, it removes orphan item and frees block_rsv
2155 * structure.
2156 */
2157void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2158 struct btrfs_root *root)
2159{
2160 int ret;
2161
2162 if (!list_empty(&root->orphan_list) ||
2163 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2164 return;
2165
2166 if (root->orphan_item_inserted &&
2167 btrfs_root_refs(&root->root_item) > 0) {
2168 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2169 root->root_key.objectid);
2170 BUG_ON(ret);
2171 root->orphan_item_inserted = 0;
2172 }
2173
2174 if (root->orphan_block_rsv) {
2175 WARN_ON(root->orphan_block_rsv->size > 0);
2176 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2177 root->orphan_block_rsv = NULL;
2178 }
2179}
2180
7b128766
JB
2181/*
2182 * This creates an orphan entry for the given inode in case something goes
2183 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2184 *
2185 * NOTE: caller of this function should reserve 5 units of metadata for
2186 * this function.
7b128766
JB
2187 */
2188int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2189{
2190 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2191 struct btrfs_block_rsv *block_rsv = NULL;
2192 int reserve = 0;
2193 int insert = 0;
2194 int ret;
7b128766 2195
d68fc57b
YZ
2196 if (!root->orphan_block_rsv) {
2197 block_rsv = btrfs_alloc_block_rsv(root);
2198 BUG_ON(!block_rsv);
2199 }
7b128766 2200
d68fc57b
YZ
2201 spin_lock(&root->orphan_lock);
2202 if (!root->orphan_block_rsv) {
2203 root->orphan_block_rsv = block_rsv;
2204 } else if (block_rsv) {
2205 btrfs_free_block_rsv(root, block_rsv);
2206 block_rsv = NULL;
7b128766 2207 }
7b128766 2208
d68fc57b
YZ
2209 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2210 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2211#if 0
2212 /*
2213 * For proper ENOSPC handling, we should do orphan
2214 * cleanup when mounting. But this introduces backward
2215 * compatibility issue.
2216 */
2217 if (!xchg(&root->orphan_item_inserted, 1))
2218 insert = 2;
2219 else
2220 insert = 1;
2221#endif
2222 insert = 1;
2223 } else {
2224 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
7b128766
JB
2225 }
2226
d68fc57b
YZ
2227 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2228 BTRFS_I(inode)->orphan_meta_reserved = 1;
2229 reserve = 1;
2230 }
2231 spin_unlock(&root->orphan_lock);
7b128766 2232
d68fc57b
YZ
2233 if (block_rsv)
2234 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2235
d68fc57b
YZ
2236 /* grab metadata reservation from transaction handle */
2237 if (reserve) {
2238 ret = btrfs_orphan_reserve_metadata(trans, inode);
2239 BUG_ON(ret);
2240 }
7b128766 2241
d68fc57b
YZ
2242 /* insert an orphan item to track this unlinked/truncated file */
2243 if (insert >= 1) {
2244 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2245 BUG_ON(ret);
2246 }
2247
2248 /* insert an orphan item to track subvolume contains orphan files */
2249 if (insert >= 2) {
2250 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2251 root->root_key.objectid);
2252 BUG_ON(ret);
2253 }
2254 return 0;
7b128766
JB
2255}
2256
2257/*
2258 * We have done the truncate/delete so we can go ahead and remove the orphan
2259 * item for this particular inode.
2260 */
2261int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2262{
2263 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2264 int delete_item = 0;
2265 int release_rsv = 0;
7b128766
JB
2266 int ret = 0;
2267
d68fc57b
YZ
2268 spin_lock(&root->orphan_lock);
2269 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2270 list_del_init(&BTRFS_I(inode)->i_orphan);
2271 delete_item = 1;
7b128766
JB
2272 }
2273
d68fc57b
YZ
2274 if (BTRFS_I(inode)->orphan_meta_reserved) {
2275 BTRFS_I(inode)->orphan_meta_reserved = 0;
2276 release_rsv = 1;
7b128766 2277 }
d68fc57b 2278 spin_unlock(&root->orphan_lock);
7b128766 2279
d68fc57b
YZ
2280 if (trans && delete_item) {
2281 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2282 BUG_ON(ret);
2283 }
7b128766 2284
d68fc57b
YZ
2285 if (release_rsv)
2286 btrfs_orphan_release_metadata(inode);
7b128766 2287
d68fc57b 2288 return 0;
7b128766
JB
2289}
2290
2291/*
2292 * this cleans up any orphans that may be left on the list from the last use
2293 * of this root.
2294 */
66b4ffd1 2295int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2296{
2297 struct btrfs_path *path;
2298 struct extent_buffer *leaf;
7b128766
JB
2299 struct btrfs_key key, found_key;
2300 struct btrfs_trans_handle *trans;
2301 struct inode *inode;
2302 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2303
d68fc57b 2304 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2305 return 0;
c71bf099
YZ
2306
2307 path = btrfs_alloc_path();
66b4ffd1
JB
2308 if (!path) {
2309 ret = -ENOMEM;
2310 goto out;
2311 }
7b128766
JB
2312 path->reada = -1;
2313
2314 key.objectid = BTRFS_ORPHAN_OBJECTID;
2315 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2316 key.offset = (u64)-1;
2317
7b128766
JB
2318 while (1) {
2319 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2320 if (ret < 0)
2321 goto out;
7b128766
JB
2322
2323 /*
2324 * if ret == 0 means we found what we were searching for, which
2325 * is weird, but possible, so only screw with path if we didnt
2326 * find the key and see if we have stuff that matches
2327 */
2328 if (ret > 0) {
66b4ffd1 2329 ret = 0;
7b128766
JB
2330 if (path->slots[0] == 0)
2331 break;
2332 path->slots[0]--;
2333 }
2334
2335 /* pull out the item */
2336 leaf = path->nodes[0];
7b128766
JB
2337 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2338
2339 /* make sure the item matches what we want */
2340 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2341 break;
2342 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2343 break;
2344
2345 /* release the path since we're done with it */
2346 btrfs_release_path(root, path);
2347
2348 /*
2349 * this is where we are basically btrfs_lookup, without the
2350 * crossing root thing. we store the inode number in the
2351 * offset of the orphan item.
2352 */
5d4f98a2
YZ
2353 found_key.objectid = found_key.offset;
2354 found_key.type = BTRFS_INODE_ITEM_KEY;
2355 found_key.offset = 0;
73f73415 2356 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
66b4ffd1
JB
2357 if (IS_ERR(inode)) {
2358 ret = PTR_ERR(inode);
2359 goto out;
2360 }
7b128766 2361
7b128766
JB
2362 /*
2363 * add this inode to the orphan list so btrfs_orphan_del does
2364 * the proper thing when we hit it
2365 */
d68fc57b 2366 spin_lock(&root->orphan_lock);
7b128766 2367 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2368 spin_unlock(&root->orphan_lock);
7b128766
JB
2369
2370 /*
2371 * if this is a bad inode, means we actually succeeded in
2372 * removing the inode, but not the orphan record, which means
2373 * we need to manually delete the orphan since iput will just
2374 * do a destroy_inode
2375 */
2376 if (is_bad_inode(inode)) {
a22285a6 2377 trans = btrfs_start_transaction(root, 0);
66b4ffd1
JB
2378 if (IS_ERR(trans)) {
2379 ret = PTR_ERR(trans);
2380 goto out;
2381 }
7b128766 2382 btrfs_orphan_del(trans, inode);
5b21f2ed 2383 btrfs_end_transaction(trans, root);
7b128766
JB
2384 iput(inode);
2385 continue;
2386 }
2387
2388 /* if we have links, this was a truncate, lets do that */
2389 if (inode->i_nlink) {
a41ad394
JB
2390 if (!S_ISREG(inode->i_mode)) {
2391 WARN_ON(1);
2392 iput(inode);
2393 continue;
2394 }
7b128766 2395 nr_truncate++;
66b4ffd1 2396 ret = btrfs_truncate(inode);
7b128766
JB
2397 } else {
2398 nr_unlink++;
2399 }
2400
2401 /* this will do delete_inode and everything for us */
2402 iput(inode);
66b4ffd1
JB
2403 if (ret)
2404 goto out;
7b128766 2405 }
d68fc57b
YZ
2406 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2407
2408 if (root->orphan_block_rsv)
2409 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2410 (u64)-1);
2411
2412 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2413 trans = btrfs_join_transaction(root, 1);
66b4ffd1
JB
2414 if (!IS_ERR(trans))
2415 btrfs_end_transaction(trans, root);
d68fc57b 2416 }
7b128766
JB
2417
2418 if (nr_unlink)
2419 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2420 if (nr_truncate)
2421 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2422
2423out:
2424 if (ret)
2425 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2426 btrfs_free_path(path);
2427 return ret;
7b128766
JB
2428}
2429
46a53cca
CM
2430/*
2431 * very simple check to peek ahead in the leaf looking for xattrs. If we
2432 * don't find any xattrs, we know there can't be any acls.
2433 *
2434 * slot is the slot the inode is in, objectid is the objectid of the inode
2435 */
2436static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2437 int slot, u64 objectid)
2438{
2439 u32 nritems = btrfs_header_nritems(leaf);
2440 struct btrfs_key found_key;
2441 int scanned = 0;
2442
2443 slot++;
2444 while (slot < nritems) {
2445 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2446
2447 /* we found a different objectid, there must not be acls */
2448 if (found_key.objectid != objectid)
2449 return 0;
2450
2451 /* we found an xattr, assume we've got an acl */
2452 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2453 return 1;
2454
2455 /*
2456 * we found a key greater than an xattr key, there can't
2457 * be any acls later on
2458 */
2459 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2460 return 0;
2461
2462 slot++;
2463 scanned++;
2464
2465 /*
2466 * it goes inode, inode backrefs, xattrs, extents,
2467 * so if there are a ton of hard links to an inode there can
2468 * be a lot of backrefs. Don't waste time searching too hard,
2469 * this is just an optimization
2470 */
2471 if (scanned >= 8)
2472 break;
2473 }
2474 /* we hit the end of the leaf before we found an xattr or
2475 * something larger than an xattr. We have to assume the inode
2476 * has acls
2477 */
2478 return 1;
2479}
2480
d352ac68
CM
2481/*
2482 * read an inode from the btree into the in-memory inode
2483 */
5d4f98a2 2484static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2485{
2486 struct btrfs_path *path;
5f39d397 2487 struct extent_buffer *leaf;
39279cc3 2488 struct btrfs_inode_item *inode_item;
0b86a832 2489 struct btrfs_timespec *tspec;
39279cc3
CM
2490 struct btrfs_root *root = BTRFS_I(inode)->root;
2491 struct btrfs_key location;
46a53cca 2492 int maybe_acls;
39279cc3 2493 u64 alloc_group_block;
618e21d5 2494 u32 rdev;
39279cc3
CM
2495 int ret;
2496
2497 path = btrfs_alloc_path();
2498 BUG_ON(!path);
39279cc3 2499 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2500
39279cc3 2501 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2502 if (ret)
39279cc3 2503 goto make_bad;
39279cc3 2504
5f39d397
CM
2505 leaf = path->nodes[0];
2506 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2507 struct btrfs_inode_item);
2508
2509 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2510 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2511 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2512 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2513 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2514
2515 tspec = btrfs_inode_atime(inode_item);
2516 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2517 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2518
2519 tspec = btrfs_inode_mtime(inode_item);
2520 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2521 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2522
2523 tspec = btrfs_inode_ctime(inode_item);
2524 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2525 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2526
a76a3cd4 2527 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2528 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2529 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2530 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2531 inode->i_rdev = 0;
5f39d397
CM
2532 rdev = btrfs_inode_rdev(leaf, inode_item);
2533
aec7477b 2534 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2535 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2536
5f39d397 2537 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1561deda
MX
2538 if (location.objectid == BTRFS_FREE_SPACE_OBJECTID)
2539 inode->i_mapping->flags &= ~__GFP_FS;
b4ce94de 2540
46a53cca
CM
2541 /*
2542 * try to precache a NULL acl entry for files that don't have
2543 * any xattrs or acls
2544 */
2545 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2546 if (!maybe_acls)
2547 cache_no_acl(inode);
46a53cca 2548
d2fb3437
YZ
2549 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2550 alloc_group_block, 0);
39279cc3
CM
2551 btrfs_free_path(path);
2552 inode_item = NULL;
2553
39279cc3 2554 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2555 case S_IFREG:
2556 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2557 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2558 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2559 inode->i_fop = &btrfs_file_operations;
2560 inode->i_op = &btrfs_file_inode_operations;
2561 break;
2562 case S_IFDIR:
2563 inode->i_fop = &btrfs_dir_file_operations;
2564 if (root == root->fs_info->tree_root)
2565 inode->i_op = &btrfs_dir_ro_inode_operations;
2566 else
2567 inode->i_op = &btrfs_dir_inode_operations;
2568 break;
2569 case S_IFLNK:
2570 inode->i_op = &btrfs_symlink_inode_operations;
2571 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2572 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2573 break;
618e21d5 2574 default:
0279b4cd 2575 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2576 init_special_inode(inode, inode->i_mode, rdev);
2577 break;
39279cc3 2578 }
6cbff00f
CH
2579
2580 btrfs_update_iflags(inode);
39279cc3
CM
2581 return;
2582
2583make_bad:
39279cc3 2584 btrfs_free_path(path);
39279cc3
CM
2585 make_bad_inode(inode);
2586}
2587
d352ac68
CM
2588/*
2589 * given a leaf and an inode, copy the inode fields into the leaf
2590 */
e02119d5
CM
2591static void fill_inode_item(struct btrfs_trans_handle *trans,
2592 struct extent_buffer *leaf,
5f39d397 2593 struct btrfs_inode_item *item,
39279cc3
CM
2594 struct inode *inode)
2595{
5f39d397
CM
2596 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2597 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2598 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2599 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2600 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2601
2602 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2603 inode->i_atime.tv_sec);
2604 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2605 inode->i_atime.tv_nsec);
2606
2607 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2608 inode->i_mtime.tv_sec);
2609 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2610 inode->i_mtime.tv_nsec);
2611
2612 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2613 inode->i_ctime.tv_sec);
2614 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2615 inode->i_ctime.tv_nsec);
2616
a76a3cd4 2617 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2618 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2619 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2620 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2621 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2622 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2623 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2624}
2625
d352ac68
CM
2626/*
2627 * copy everything in the in-memory inode into the btree.
2628 */
d397712b
CM
2629noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2630 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2631{
2632 struct btrfs_inode_item *inode_item;
2633 struct btrfs_path *path;
5f39d397 2634 struct extent_buffer *leaf;
39279cc3
CM
2635 int ret;
2636
2637 path = btrfs_alloc_path();
2638 BUG_ON(!path);
b9473439 2639 path->leave_spinning = 1;
39279cc3
CM
2640 ret = btrfs_lookup_inode(trans, root, path,
2641 &BTRFS_I(inode)->location, 1);
2642 if (ret) {
2643 if (ret > 0)
2644 ret = -ENOENT;
2645 goto failed;
2646 }
2647
b4ce94de 2648 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2649 leaf = path->nodes[0];
2650 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2651 struct btrfs_inode_item);
2652
e02119d5 2653 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2654 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2655 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2656 ret = 0;
2657failed:
39279cc3
CM
2658 btrfs_free_path(path);
2659 return ret;
2660}
2661
2662
d352ac68
CM
2663/*
2664 * unlink helper that gets used here in inode.c and in the tree logging
2665 * recovery code. It remove a link in a directory with a given name, and
2666 * also drops the back refs in the inode to the directory
2667 */
92986796
AV
2668static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2669 struct btrfs_root *root,
2670 struct inode *dir, struct inode *inode,
2671 const char *name, int name_len)
39279cc3
CM
2672{
2673 struct btrfs_path *path;
39279cc3 2674 int ret = 0;
5f39d397 2675 struct extent_buffer *leaf;
39279cc3 2676 struct btrfs_dir_item *di;
5f39d397 2677 struct btrfs_key key;
aec7477b 2678 u64 index;
39279cc3
CM
2679
2680 path = btrfs_alloc_path();
54aa1f4d
CM
2681 if (!path) {
2682 ret = -ENOMEM;
554233a6 2683 goto out;
54aa1f4d
CM
2684 }
2685
b9473439 2686 path->leave_spinning = 1;
39279cc3
CM
2687 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2688 name, name_len, -1);
2689 if (IS_ERR(di)) {
2690 ret = PTR_ERR(di);
2691 goto err;
2692 }
2693 if (!di) {
2694 ret = -ENOENT;
2695 goto err;
2696 }
5f39d397
CM
2697 leaf = path->nodes[0];
2698 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2699 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2700 if (ret)
2701 goto err;
39279cc3
CM
2702 btrfs_release_path(root, path);
2703
aec7477b 2704 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2705 inode->i_ino,
2706 dir->i_ino, &index);
aec7477b 2707 if (ret) {
d397712b 2708 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2709 "inode %lu parent %lu\n", name_len, name,
e02119d5 2710 inode->i_ino, dir->i_ino);
aec7477b
JB
2711 goto err;
2712 }
2713
39279cc3 2714 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2715 index, name, name_len, -1);
39279cc3
CM
2716 if (IS_ERR(di)) {
2717 ret = PTR_ERR(di);
2718 goto err;
2719 }
2720 if (!di) {
2721 ret = -ENOENT;
2722 goto err;
2723 }
2724 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2725 btrfs_release_path(root, path);
39279cc3 2726
e02119d5
CM
2727 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2728 inode, dir->i_ino);
49eb7e46 2729 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2730
2731 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2732 dir, index);
6418c961
CM
2733 if (ret == -ENOENT)
2734 ret = 0;
39279cc3
CM
2735err:
2736 btrfs_free_path(path);
e02119d5
CM
2737 if (ret)
2738 goto out;
2739
2740 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2741 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2742 btrfs_update_inode(trans, root, dir);
e02119d5 2743out:
39279cc3
CM
2744 return ret;
2745}
2746
92986796
AV
2747int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2748 struct btrfs_root *root,
2749 struct inode *dir, struct inode *inode,
2750 const char *name, int name_len)
2751{
2752 int ret;
2753 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2754 if (!ret) {
2755 btrfs_drop_nlink(inode);
2756 ret = btrfs_update_inode(trans, root, inode);
2757 }
2758 return ret;
2759}
2760
2761
a22285a6
YZ
2762/* helper to check if there is any shared block in the path */
2763static int check_path_shared(struct btrfs_root *root,
2764 struct btrfs_path *path)
39279cc3 2765{
a22285a6
YZ
2766 struct extent_buffer *eb;
2767 int level;
0e4dcbef 2768 u64 refs = 1;
5df6a9f6 2769
a22285a6 2770 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2771 int ret;
2772
a22285a6
YZ
2773 if (!path->nodes[level])
2774 break;
2775 eb = path->nodes[level];
2776 if (!btrfs_block_can_be_shared(root, eb))
2777 continue;
2778 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2779 &refs, NULL);
2780 if (refs > 1)
2781 return 1;
5df6a9f6 2782 }
dedefd72 2783 return 0;
39279cc3
CM
2784}
2785
a22285a6
YZ
2786/*
2787 * helper to start transaction for unlink and rmdir.
2788 *
2789 * unlink and rmdir are special in btrfs, they do not always free space.
2790 * so in enospc case, we should make sure they will free space before
2791 * allowing them to use the global metadata reservation.
2792 */
2793static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2794 struct dentry *dentry)
4df27c4d 2795{
39279cc3 2796 struct btrfs_trans_handle *trans;
a22285a6 2797 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2798 struct btrfs_path *path;
a22285a6 2799 struct btrfs_inode_ref *ref;
4df27c4d 2800 struct btrfs_dir_item *di;
7b128766 2801 struct inode *inode = dentry->d_inode;
4df27c4d 2802 u64 index;
a22285a6
YZ
2803 int check_link = 1;
2804 int err = -ENOSPC;
4df27c4d
YZ
2805 int ret;
2806
a22285a6
YZ
2807 trans = btrfs_start_transaction(root, 10);
2808 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2809 return trans;
4df27c4d 2810
a22285a6
YZ
2811 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2812 return ERR_PTR(-ENOSPC);
4df27c4d 2813
a22285a6
YZ
2814 /* check if there is someone else holds reference */
2815 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2816 return ERR_PTR(-ENOSPC);
4df27c4d 2817
a22285a6
YZ
2818 if (atomic_read(&inode->i_count) > 2)
2819 return ERR_PTR(-ENOSPC);
4df27c4d 2820
a22285a6
YZ
2821 if (xchg(&root->fs_info->enospc_unlink, 1))
2822 return ERR_PTR(-ENOSPC);
2823
2824 path = btrfs_alloc_path();
2825 if (!path) {
2826 root->fs_info->enospc_unlink = 0;
2827 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2828 }
2829
a22285a6 2830 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2831 if (IS_ERR(trans)) {
a22285a6
YZ
2832 btrfs_free_path(path);
2833 root->fs_info->enospc_unlink = 0;
2834 return trans;
2835 }
4df27c4d 2836
a22285a6
YZ
2837 path->skip_locking = 1;
2838 path->search_commit_root = 1;
4df27c4d 2839
a22285a6
YZ
2840 ret = btrfs_lookup_inode(trans, root, path,
2841 &BTRFS_I(dir)->location, 0);
2842 if (ret < 0) {
2843 err = ret;
2844 goto out;
2845 }
2846 if (ret == 0) {
2847 if (check_path_shared(root, path))
2848 goto out;
2849 } else {
2850 check_link = 0;
5df6a9f6 2851 }
a22285a6
YZ
2852 btrfs_release_path(root, path);
2853
2854 ret = btrfs_lookup_inode(trans, root, path,
2855 &BTRFS_I(inode)->location, 0);
2856 if (ret < 0) {
2857 err = ret;
2858 goto out;
2859 }
2860 if (ret == 0) {
2861 if (check_path_shared(root, path))
2862 goto out;
2863 } else {
2864 check_link = 0;
2865 }
2866 btrfs_release_path(root, path);
2867
2868 if (ret == 0 && S_ISREG(inode->i_mode)) {
2869 ret = btrfs_lookup_file_extent(trans, root, path,
2870 inode->i_ino, (u64)-1, 0);
2871 if (ret < 0) {
2872 err = ret;
2873 goto out;
2874 }
2875 BUG_ON(ret == 0);
2876 if (check_path_shared(root, path))
2877 goto out;
2878 btrfs_release_path(root, path);
2879 }
2880
2881 if (!check_link) {
2882 err = 0;
2883 goto out;
2884 }
2885
2886 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2887 dentry->d_name.name, dentry->d_name.len, 0);
2888 if (IS_ERR(di)) {
2889 err = PTR_ERR(di);
2890 goto out;
2891 }
2892 if (di) {
2893 if (check_path_shared(root, path))
2894 goto out;
2895 } else {
2896 err = 0;
2897 goto out;
2898 }
2899 btrfs_release_path(root, path);
2900
2901 ref = btrfs_lookup_inode_ref(trans, root, path,
2902 dentry->d_name.name, dentry->d_name.len,
2903 inode->i_ino, dir->i_ino, 0);
2904 if (IS_ERR(ref)) {
2905 err = PTR_ERR(ref);
2906 goto out;
2907 }
2908 BUG_ON(!ref);
2909 if (check_path_shared(root, path))
2910 goto out;
2911 index = btrfs_inode_ref_index(path->nodes[0], ref);
2912 btrfs_release_path(root, path);
2913
2914 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2915 dentry->d_name.name, dentry->d_name.len, 0);
2916 if (IS_ERR(di)) {
2917 err = PTR_ERR(di);
2918 goto out;
2919 }
2920 BUG_ON(ret == -ENOENT);
2921 if (check_path_shared(root, path))
2922 goto out;
2923
2924 err = 0;
2925out:
2926 btrfs_free_path(path);
2927 if (err) {
2928 btrfs_end_transaction(trans, root);
2929 root->fs_info->enospc_unlink = 0;
2930 return ERR_PTR(err);
2931 }
2932
2933 trans->block_rsv = &root->fs_info->global_block_rsv;
2934 return trans;
2935}
2936
2937static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2938 struct btrfs_root *root)
2939{
2940 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2941 BUG_ON(!root->fs_info->enospc_unlink);
2942 root->fs_info->enospc_unlink = 0;
2943 }
2944 btrfs_end_transaction_throttle(trans, root);
2945}
2946
2947static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2948{
2949 struct btrfs_root *root = BTRFS_I(dir)->root;
2950 struct btrfs_trans_handle *trans;
2951 struct inode *inode = dentry->d_inode;
2952 int ret;
2953 unsigned long nr = 0;
2954
2955 trans = __unlink_start_trans(dir, dentry);
2956 if (IS_ERR(trans))
2957 return PTR_ERR(trans);
5f39d397 2958
39279cc3 2959 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2960
2961 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2962
e02119d5
CM
2963 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2964 dentry->d_name.name, dentry->d_name.len);
a22285a6 2965 BUG_ON(ret);
7b128766 2966
a22285a6 2967 if (inode->i_nlink == 0) {
7b128766 2968 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
2969 BUG_ON(ret);
2970 }
7b128766 2971
d3c2fdcf 2972 nr = trans->blocks_used;
a22285a6 2973 __unlink_end_trans(trans, root);
d3c2fdcf 2974 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2975 return ret;
2976}
2977
4df27c4d
YZ
2978int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2979 struct btrfs_root *root,
2980 struct inode *dir, u64 objectid,
2981 const char *name, int name_len)
2982{
2983 struct btrfs_path *path;
2984 struct extent_buffer *leaf;
2985 struct btrfs_dir_item *di;
2986 struct btrfs_key key;
2987 u64 index;
2988 int ret;
2989
2990 path = btrfs_alloc_path();
2991 if (!path)
2992 return -ENOMEM;
2993
2994 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2995 name, name_len, -1);
2996 BUG_ON(!di || IS_ERR(di));
2997
2998 leaf = path->nodes[0];
2999 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3000 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3001 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3002 BUG_ON(ret);
3003 btrfs_release_path(root, path);
3004
3005 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3006 objectid, root->root_key.objectid,
3007 dir->i_ino, &index, name, name_len);
3008 if (ret < 0) {
3009 BUG_ON(ret != -ENOENT);
3010 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
3011 name, name_len);
3012 BUG_ON(!di || IS_ERR(di));
3013
3014 leaf = path->nodes[0];
3015 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3016 btrfs_release_path(root, path);
3017 index = key.offset;
3018 }
3019
3020 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3021 index, name, name_len, -1);
3022 BUG_ON(!di || IS_ERR(di));
3023
3024 leaf = path->nodes[0];
3025 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3026 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3027 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3028 BUG_ON(ret);
3029 btrfs_release_path(root, path);
3030
3031 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3032 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3033 ret = btrfs_update_inode(trans, root, dir);
3034 BUG_ON(ret);
4df27c4d
YZ
3035
3036 btrfs_free_path(path);
3037 return 0;
3038}
3039
39279cc3
CM
3040static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3041{
3042 struct inode *inode = dentry->d_inode;
1832a6d5 3043 int err = 0;
39279cc3 3044 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3045 struct btrfs_trans_handle *trans;
1832a6d5 3046 unsigned long nr = 0;
39279cc3 3047
3394e160 3048 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 3049 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3050 return -ENOTEMPTY;
3051
a22285a6
YZ
3052 trans = __unlink_start_trans(dir, dentry);
3053 if (IS_ERR(trans))
5df6a9f6 3054 return PTR_ERR(trans);
5df6a9f6 3055
39279cc3 3056 btrfs_set_trans_block_group(trans, dir);
39279cc3 3057
4df27c4d
YZ
3058 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3059 err = btrfs_unlink_subvol(trans, root, dir,
3060 BTRFS_I(inode)->location.objectid,
3061 dentry->d_name.name,
3062 dentry->d_name.len);
3063 goto out;
3064 }
3065
7b128766
JB
3066 err = btrfs_orphan_add(trans, inode);
3067 if (err)
4df27c4d 3068 goto out;
7b128766 3069
39279cc3 3070 /* now the directory is empty */
e02119d5
CM
3071 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3072 dentry->d_name.name, dentry->d_name.len);
d397712b 3073 if (!err)
dbe674a9 3074 btrfs_i_size_write(inode, 0);
4df27c4d 3075out:
d3c2fdcf 3076 nr = trans->blocks_used;
a22285a6 3077 __unlink_end_trans(trans, root);
d3c2fdcf 3078 btrfs_btree_balance_dirty(root, nr);
3954401f 3079
39279cc3
CM
3080 return err;
3081}
3082
d20f7043 3083#if 0
323ac95b
CM
3084/*
3085 * when truncating bytes in a file, it is possible to avoid reading
3086 * the leaves that contain only checksum items. This can be the
3087 * majority of the IO required to delete a large file, but it must
3088 * be done carefully.
3089 *
3090 * The keys in the level just above the leaves are checked to make sure
3091 * the lowest key in a given leaf is a csum key, and starts at an offset
3092 * after the new size.
3093 *
3094 * Then the key for the next leaf is checked to make sure it also has
3095 * a checksum item for the same file. If it does, we know our target leaf
3096 * contains only checksum items, and it can be safely freed without reading
3097 * it.
3098 *
3099 * This is just an optimization targeted at large files. It may do
3100 * nothing. It will return 0 unless things went badly.
3101 */
3102static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3103 struct btrfs_root *root,
3104 struct btrfs_path *path,
3105 struct inode *inode, u64 new_size)
3106{
3107 struct btrfs_key key;
3108 int ret;
3109 int nritems;
3110 struct btrfs_key found_key;
3111 struct btrfs_key other_key;
5b84e8d6
YZ
3112 struct btrfs_leaf_ref *ref;
3113 u64 leaf_gen;
3114 u64 leaf_start;
323ac95b
CM
3115
3116 path->lowest_level = 1;
3117 key.objectid = inode->i_ino;
3118 key.type = BTRFS_CSUM_ITEM_KEY;
3119 key.offset = new_size;
3120again:
3121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3122 if (ret < 0)
3123 goto out;
3124
3125 if (path->nodes[1] == NULL) {
3126 ret = 0;
3127 goto out;
3128 }
3129 ret = 0;
3130 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3131 nritems = btrfs_header_nritems(path->nodes[1]);
3132
3133 if (!nritems)
3134 goto out;
3135
3136 if (path->slots[1] >= nritems)
3137 goto next_node;
3138
3139 /* did we find a key greater than anything we want to delete? */
3140 if (found_key.objectid > inode->i_ino ||
3141 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3142 goto out;
3143
3144 /* we check the next key in the node to make sure the leave contains
3145 * only checksum items. This comparison doesn't work if our
3146 * leaf is the last one in the node
3147 */
3148 if (path->slots[1] + 1 >= nritems) {
3149next_node:
3150 /* search forward from the last key in the node, this
3151 * will bring us into the next node in the tree
3152 */
3153 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3154
3155 /* unlikely, but we inc below, so check to be safe */
3156 if (found_key.offset == (u64)-1)
3157 goto out;
3158
3159 /* search_forward needs a path with locks held, do the
3160 * search again for the original key. It is possible
3161 * this will race with a balance and return a path that
3162 * we could modify, but this drop is just an optimization
3163 * and is allowed to miss some leaves.
3164 */
3165 btrfs_release_path(root, path);
3166 found_key.offset++;
3167
3168 /* setup a max key for search_forward */
3169 other_key.offset = (u64)-1;
3170 other_key.type = key.type;
3171 other_key.objectid = key.objectid;
3172
3173 path->keep_locks = 1;
3174 ret = btrfs_search_forward(root, &found_key, &other_key,
3175 path, 0, 0);
3176 path->keep_locks = 0;
3177 if (ret || found_key.objectid != key.objectid ||
3178 found_key.type != key.type) {
3179 ret = 0;
3180 goto out;
3181 }
3182
3183 key.offset = found_key.offset;
3184 btrfs_release_path(root, path);
3185 cond_resched();
3186 goto again;
3187 }
3188
3189 /* we know there's one more slot after us in the tree,
3190 * read that key so we can verify it is also a checksum item
3191 */
3192 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3193
3194 if (found_key.objectid < inode->i_ino)
3195 goto next_key;
3196
3197 if (found_key.type != key.type || found_key.offset < new_size)
3198 goto next_key;
3199
3200 /*
3201 * if the key for the next leaf isn't a csum key from this objectid,
3202 * we can't be sure there aren't good items inside this leaf.
3203 * Bail out
3204 */
3205 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3206 goto out;
3207
5b84e8d6
YZ
3208 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3209 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
3210 /*
3211 * it is safe to delete this leaf, it contains only
3212 * csum items from this inode at an offset >= new_size
3213 */
5b84e8d6 3214 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
3215 BUG_ON(ret);
3216
5b84e8d6
YZ
3217 if (root->ref_cows && leaf_gen < trans->transid) {
3218 ref = btrfs_alloc_leaf_ref(root, 0);
3219 if (ref) {
3220 ref->root_gen = root->root_key.offset;
3221 ref->bytenr = leaf_start;
3222 ref->owner = 0;
3223 ref->generation = leaf_gen;
3224 ref->nritems = 0;
3225
bd56b302
CM
3226 btrfs_sort_leaf_ref(ref);
3227
5b84e8d6
YZ
3228 ret = btrfs_add_leaf_ref(root, ref, 0);
3229 WARN_ON(ret);
3230 btrfs_free_leaf_ref(root, ref);
3231 } else {
3232 WARN_ON(1);
3233 }
3234 }
323ac95b
CM
3235next_key:
3236 btrfs_release_path(root, path);
3237
3238 if (other_key.objectid == inode->i_ino &&
3239 other_key.type == key.type && other_key.offset > key.offset) {
3240 key.offset = other_key.offset;
3241 cond_resched();
3242 goto again;
3243 }
3244 ret = 0;
3245out:
3246 /* fixup any changes we've made to the path */
3247 path->lowest_level = 0;
3248 path->keep_locks = 0;
3249 btrfs_release_path(root, path);
3250 return ret;
3251}
3252
d20f7043
CM
3253#endif
3254
39279cc3
CM
3255/*
3256 * this can truncate away extent items, csum items and directory items.
3257 * It starts at a high offset and removes keys until it can't find
d352ac68 3258 * any higher than new_size
39279cc3
CM
3259 *
3260 * csum items that cross the new i_size are truncated to the new size
3261 * as well.
7b128766
JB
3262 *
3263 * min_type is the minimum key type to truncate down to. If set to 0, this
3264 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3265 */
8082510e
YZ
3266int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3267 struct btrfs_root *root,
3268 struct inode *inode,
3269 u64 new_size, u32 min_type)
39279cc3 3270{
39279cc3 3271 struct btrfs_path *path;
5f39d397 3272 struct extent_buffer *leaf;
39279cc3 3273 struct btrfs_file_extent_item *fi;
8082510e
YZ
3274 struct btrfs_key key;
3275 struct btrfs_key found_key;
39279cc3 3276 u64 extent_start = 0;
db94535d 3277 u64 extent_num_bytes = 0;
5d4f98a2 3278 u64 extent_offset = 0;
39279cc3 3279 u64 item_end = 0;
8082510e
YZ
3280 u64 mask = root->sectorsize - 1;
3281 u32 found_type = (u8)-1;
39279cc3
CM
3282 int found_extent;
3283 int del_item;
85e21bac
CM
3284 int pending_del_nr = 0;
3285 int pending_del_slot = 0;
179e29e4 3286 int extent_type = -1;
771ed689 3287 int encoding;
8082510e
YZ
3288 int ret;
3289 int err = 0;
3290
3291 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3292
0af3d00b 3293 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3294 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3295
39279cc3
CM
3296 path = btrfs_alloc_path();
3297 BUG_ON(!path);
33c17ad5 3298 path->reada = -1;
5f39d397 3299
39279cc3
CM
3300 key.objectid = inode->i_ino;
3301 key.offset = (u64)-1;
5f39d397
CM
3302 key.type = (u8)-1;
3303
85e21bac 3304search_again:
b9473439 3305 path->leave_spinning = 1;
85e21bac 3306 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3307 if (ret < 0) {
3308 err = ret;
3309 goto out;
3310 }
d397712b 3311
85e21bac 3312 if (ret > 0) {
e02119d5
CM
3313 /* there are no items in the tree for us to truncate, we're
3314 * done
3315 */
8082510e
YZ
3316 if (path->slots[0] == 0)
3317 goto out;
85e21bac
CM
3318 path->slots[0]--;
3319 }
3320
d397712b 3321 while (1) {
39279cc3 3322 fi = NULL;
5f39d397
CM
3323 leaf = path->nodes[0];
3324 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3325 found_type = btrfs_key_type(&found_key);
771ed689 3326 encoding = 0;
39279cc3 3327
5f39d397 3328 if (found_key.objectid != inode->i_ino)
39279cc3 3329 break;
5f39d397 3330
85e21bac 3331 if (found_type < min_type)
39279cc3
CM
3332 break;
3333
5f39d397 3334 item_end = found_key.offset;
39279cc3 3335 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3336 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3337 struct btrfs_file_extent_item);
179e29e4 3338 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3339 encoding = btrfs_file_extent_compression(leaf, fi);
3340 encoding |= btrfs_file_extent_encryption(leaf, fi);
3341 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3342
179e29e4 3343 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3344 item_end +=
db94535d 3345 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3346 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3347 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3348 fi);
39279cc3 3349 }
008630c1 3350 item_end--;
39279cc3 3351 }
8082510e
YZ
3352 if (found_type > min_type) {
3353 del_item = 1;
3354 } else {
3355 if (item_end < new_size)
b888db2b 3356 break;
8082510e
YZ
3357 if (found_key.offset >= new_size)
3358 del_item = 1;
3359 else
3360 del_item = 0;
39279cc3 3361 }
39279cc3 3362 found_extent = 0;
39279cc3 3363 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3364 if (found_type != BTRFS_EXTENT_DATA_KEY)
3365 goto delete;
3366
3367 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3368 u64 num_dec;
db94535d 3369 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3370 if (!del_item && !encoding) {
db94535d
CM
3371 u64 orig_num_bytes =
3372 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3373 extent_num_bytes = new_size -
5f39d397 3374 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3375 extent_num_bytes = extent_num_bytes &
3376 ~((u64)root->sectorsize - 1);
db94535d
CM
3377 btrfs_set_file_extent_num_bytes(leaf, fi,
3378 extent_num_bytes);
3379 num_dec = (orig_num_bytes -
9069218d 3380 extent_num_bytes);
e02119d5 3381 if (root->ref_cows && extent_start != 0)
a76a3cd4 3382 inode_sub_bytes(inode, num_dec);
5f39d397 3383 btrfs_mark_buffer_dirty(leaf);
39279cc3 3384 } else {
db94535d
CM
3385 extent_num_bytes =
3386 btrfs_file_extent_disk_num_bytes(leaf,
3387 fi);
5d4f98a2
YZ
3388 extent_offset = found_key.offset -
3389 btrfs_file_extent_offset(leaf, fi);
3390
39279cc3 3391 /* FIXME blocksize != 4096 */
9069218d 3392 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3393 if (extent_start != 0) {
3394 found_extent = 1;
e02119d5 3395 if (root->ref_cows)
a76a3cd4 3396 inode_sub_bytes(inode, num_dec);
e02119d5 3397 }
39279cc3 3398 }
9069218d 3399 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3400 /*
3401 * we can't truncate inline items that have had
3402 * special encodings
3403 */
3404 if (!del_item &&
3405 btrfs_file_extent_compression(leaf, fi) == 0 &&
3406 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3407 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3408 u32 size = new_size - found_key.offset;
3409
3410 if (root->ref_cows) {
a76a3cd4
YZ
3411 inode_sub_bytes(inode, item_end + 1 -
3412 new_size);
e02119d5
CM
3413 }
3414 size =
3415 btrfs_file_extent_calc_inline_size(size);
9069218d 3416 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3417 size, 1);
9069218d 3418 BUG_ON(ret);
e02119d5 3419 } else if (root->ref_cows) {
a76a3cd4
YZ
3420 inode_sub_bytes(inode, item_end + 1 -
3421 found_key.offset);
9069218d 3422 }
39279cc3 3423 }
179e29e4 3424delete:
39279cc3 3425 if (del_item) {
85e21bac
CM
3426 if (!pending_del_nr) {
3427 /* no pending yet, add ourselves */
3428 pending_del_slot = path->slots[0];
3429 pending_del_nr = 1;
3430 } else if (pending_del_nr &&
3431 path->slots[0] + 1 == pending_del_slot) {
3432 /* hop on the pending chunk */
3433 pending_del_nr++;
3434 pending_del_slot = path->slots[0];
3435 } else {
d397712b 3436 BUG();
85e21bac 3437 }
39279cc3
CM
3438 } else {
3439 break;
3440 }
0af3d00b
JB
3441 if (found_extent && (root->ref_cows ||
3442 root == root->fs_info->tree_root)) {
b9473439 3443 btrfs_set_path_blocking(path);
39279cc3 3444 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3445 extent_num_bytes, 0,
3446 btrfs_header_owner(leaf),
3447 inode->i_ino, extent_offset);
39279cc3
CM
3448 BUG_ON(ret);
3449 }
85e21bac 3450
8082510e
YZ
3451 if (found_type == BTRFS_INODE_ITEM_KEY)
3452 break;
3453
3454 if (path->slots[0] == 0 ||
3455 path->slots[0] != pending_del_slot) {
3456 if (root->ref_cows) {
3457 err = -EAGAIN;
3458 goto out;
3459 }
3460 if (pending_del_nr) {
3461 ret = btrfs_del_items(trans, root, path,
3462 pending_del_slot,
3463 pending_del_nr);
3464 BUG_ON(ret);
3465 pending_del_nr = 0;
3466 }
85e21bac
CM
3467 btrfs_release_path(root, path);
3468 goto search_again;
8082510e
YZ
3469 } else {
3470 path->slots[0]--;
85e21bac 3471 }
39279cc3 3472 }
8082510e 3473out:
85e21bac
CM
3474 if (pending_del_nr) {
3475 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3476 pending_del_nr);
d68fc57b 3477 BUG_ON(ret);
85e21bac 3478 }
39279cc3 3479 btrfs_free_path(path);
8082510e 3480 return err;
39279cc3
CM
3481}
3482
3483/*
3484 * taken from block_truncate_page, but does cow as it zeros out
3485 * any bytes left in the last page in the file.
3486 */
3487static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3488{
3489 struct inode *inode = mapping->host;
db94535d 3490 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3491 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3492 struct btrfs_ordered_extent *ordered;
2ac55d41 3493 struct extent_state *cached_state = NULL;
e6dcd2dc 3494 char *kaddr;
db94535d 3495 u32 blocksize = root->sectorsize;
39279cc3
CM
3496 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3497 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3498 struct page *page;
39279cc3 3499 int ret = 0;
a52d9a80 3500 u64 page_start;
e6dcd2dc 3501 u64 page_end;
39279cc3
CM
3502
3503 if ((offset & (blocksize - 1)) == 0)
3504 goto out;
0ca1f7ce 3505 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3506 if (ret)
3507 goto out;
39279cc3
CM
3508
3509 ret = -ENOMEM;
211c17f5 3510again:
39279cc3 3511 page = grab_cache_page(mapping, index);
5d5e103a 3512 if (!page) {
0ca1f7ce 3513 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3514 goto out;
5d5e103a 3515 }
e6dcd2dc
CM
3516
3517 page_start = page_offset(page);
3518 page_end = page_start + PAGE_CACHE_SIZE - 1;
3519
39279cc3 3520 if (!PageUptodate(page)) {
9ebefb18 3521 ret = btrfs_readpage(NULL, page);
39279cc3 3522 lock_page(page);
211c17f5
CM
3523 if (page->mapping != mapping) {
3524 unlock_page(page);
3525 page_cache_release(page);
3526 goto again;
3527 }
39279cc3
CM
3528 if (!PageUptodate(page)) {
3529 ret = -EIO;
89642229 3530 goto out_unlock;
39279cc3
CM
3531 }
3532 }
211c17f5 3533 wait_on_page_writeback(page);
e6dcd2dc 3534
2ac55d41
JB
3535 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3536 GFP_NOFS);
e6dcd2dc
CM
3537 set_page_extent_mapped(page);
3538
3539 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3540 if (ordered) {
2ac55d41
JB
3541 unlock_extent_cached(io_tree, page_start, page_end,
3542 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3543 unlock_page(page);
3544 page_cache_release(page);
eb84ae03 3545 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3546 btrfs_put_ordered_extent(ordered);
3547 goto again;
3548 }
3549
2ac55d41 3550 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3551 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3552 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3553
2ac55d41
JB
3554 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3555 &cached_state);
9ed74f2d 3556 if (ret) {
2ac55d41
JB
3557 unlock_extent_cached(io_tree, page_start, page_end,
3558 &cached_state, GFP_NOFS);
9ed74f2d
JB
3559 goto out_unlock;
3560 }
3561
e6dcd2dc
CM
3562 ret = 0;
3563 if (offset != PAGE_CACHE_SIZE) {
3564 kaddr = kmap(page);
3565 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3566 flush_dcache_page(page);
3567 kunmap(page);
3568 }
247e743c 3569 ClearPageChecked(page);
e6dcd2dc 3570 set_page_dirty(page);
2ac55d41
JB
3571 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3572 GFP_NOFS);
39279cc3 3573
89642229 3574out_unlock:
5d5e103a 3575 if (ret)
0ca1f7ce 3576 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3577 unlock_page(page);
3578 page_cache_release(page);
3579out:
3580 return ret;
3581}
3582
695a0d0d
JB
3583/*
3584 * This function puts in dummy file extents for the area we're creating a hole
3585 * for. So if we are truncating this file to a larger size we need to insert
3586 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3587 * the range between oldsize and size
3588 */
a41ad394 3589int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3590{
9036c102
YZ
3591 struct btrfs_trans_handle *trans;
3592 struct btrfs_root *root = BTRFS_I(inode)->root;
3593 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3594 struct extent_map *em = NULL;
2ac55d41 3595 struct extent_state *cached_state = NULL;
9036c102 3596 u64 mask = root->sectorsize - 1;
a41ad394 3597 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3598 u64 block_end = (size + mask) & ~mask;
3599 u64 last_byte;
3600 u64 cur_offset;
3601 u64 hole_size;
9ed74f2d 3602 int err = 0;
39279cc3 3603
9036c102
YZ
3604 if (size <= hole_start)
3605 return 0;
3606
9036c102
YZ
3607 while (1) {
3608 struct btrfs_ordered_extent *ordered;
3609 btrfs_wait_ordered_range(inode, hole_start,
3610 block_end - hole_start);
2ac55d41
JB
3611 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3612 &cached_state, GFP_NOFS);
9036c102
YZ
3613 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3614 if (!ordered)
3615 break;
2ac55d41
JB
3616 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3617 &cached_state, GFP_NOFS);
9036c102
YZ
3618 btrfs_put_ordered_extent(ordered);
3619 }
39279cc3 3620
9036c102
YZ
3621 cur_offset = hole_start;
3622 while (1) {
3623 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3624 block_end - cur_offset, 0);
3625 BUG_ON(IS_ERR(em) || !em);
3626 last_byte = min(extent_map_end(em), block_end);
3627 last_byte = (last_byte + mask) & ~mask;
8082510e 3628 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3629 u64 hint_byte = 0;
9036c102 3630 hole_size = last_byte - cur_offset;
9ed74f2d 3631
a22285a6
YZ
3632 trans = btrfs_start_transaction(root, 2);
3633 if (IS_ERR(trans)) {
3634 err = PTR_ERR(trans);
9ed74f2d 3635 break;
a22285a6 3636 }
8082510e
YZ
3637 btrfs_set_trans_block_group(trans, inode);
3638
3639 err = btrfs_drop_extents(trans, inode, cur_offset,
3640 cur_offset + hole_size,
3641 &hint_byte, 1);
3893e33b
JB
3642 if (err)
3643 break;
8082510e 3644
9036c102
YZ
3645 err = btrfs_insert_file_extent(trans, root,
3646 inode->i_ino, cur_offset, 0,
3647 0, hole_size, 0, hole_size,
3648 0, 0, 0);
3893e33b
JB
3649 if (err)
3650 break;
8082510e 3651
9036c102
YZ
3652 btrfs_drop_extent_cache(inode, hole_start,
3653 last_byte - 1, 0);
8082510e
YZ
3654
3655 btrfs_end_transaction(trans, root);
9036c102
YZ
3656 }
3657 free_extent_map(em);
a22285a6 3658 em = NULL;
9036c102 3659 cur_offset = last_byte;
8082510e 3660 if (cur_offset >= block_end)
9036c102
YZ
3661 break;
3662 }
1832a6d5 3663
a22285a6 3664 free_extent_map(em);
2ac55d41
JB
3665 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3666 GFP_NOFS);
9036c102
YZ
3667 return err;
3668}
39279cc3 3669
a41ad394 3670static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3671{
a41ad394 3672 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3673 int ret;
3674
a41ad394 3675 if (newsize == oldsize)
8082510e
YZ
3676 return 0;
3677
a41ad394
JB
3678 if (newsize > oldsize) {
3679 i_size_write(inode, newsize);
3680 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3681 truncate_pagecache(inode, oldsize, newsize);
3682 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3683 if (ret) {
a41ad394 3684 btrfs_setsize(inode, oldsize);
8082510e
YZ
3685 return ret;
3686 }
3687
930f028a 3688 mark_inode_dirty(inode);
a41ad394 3689 } else {
8082510e 3690
a41ad394
JB
3691 /*
3692 * We're truncating a file that used to have good data down to
3693 * zero. Make sure it gets into the ordered flush list so that
3694 * any new writes get down to disk quickly.
3695 */
3696 if (newsize == 0)
3697 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3698
a41ad394
JB
3699 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3700 truncate_setsize(inode, newsize);
3701 ret = btrfs_truncate(inode);
3702 }
8082510e 3703
a41ad394 3704 return ret;
8082510e
YZ
3705}
3706
9036c102
YZ
3707static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3708{
3709 struct inode *inode = dentry->d_inode;
b83cc969 3710 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3711 int err;
39279cc3 3712
b83cc969
LZ
3713 if (btrfs_root_readonly(root))
3714 return -EROFS;
3715
9036c102
YZ
3716 err = inode_change_ok(inode, attr);
3717 if (err)
3718 return err;
2bf5a725 3719
5a3f23d5 3720 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3721 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3722 if (err)
3723 return err;
39279cc3 3724 }
9036c102 3725
1025774c
CH
3726 if (attr->ia_valid) {
3727 setattr_copy(inode, attr);
3728 mark_inode_dirty(inode);
3729
3730 if (attr->ia_valid & ATTR_MODE)
3731 err = btrfs_acl_chmod(inode);
3732 }
33268eaf 3733
39279cc3
CM
3734 return err;
3735}
61295eb8 3736
bd555975 3737void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3738{
3739 struct btrfs_trans_handle *trans;
3740 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3741 unsigned long nr;
39279cc3
CM
3742 int ret;
3743
1abe9b8a 3744 trace_btrfs_inode_evict(inode);
3745
39279cc3 3746 truncate_inode_pages(&inode->i_data, 0);
0af3d00b
JB
3747 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3748 root == root->fs_info->tree_root))
bd555975
AV
3749 goto no_delete;
3750
39279cc3 3751 if (is_bad_inode(inode)) {
7b128766 3752 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3753 goto no_delete;
3754 }
bd555975 3755 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3756 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3757
c71bf099
YZ
3758 if (root->fs_info->log_root_recovering) {
3759 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3760 goto no_delete;
3761 }
3762
76dda93c
YZ
3763 if (inode->i_nlink > 0) {
3764 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3765 goto no_delete;
3766 }
3767
dbe674a9 3768 btrfs_i_size_write(inode, 0);
5f39d397 3769
8082510e 3770 while (1) {
d68fc57b
YZ
3771 trans = btrfs_start_transaction(root, 0);
3772 BUG_ON(IS_ERR(trans));
8082510e 3773 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3774 trans->block_rsv = root->orphan_block_rsv;
3775
3776 ret = btrfs_block_rsv_check(trans, root,
3777 root->orphan_block_rsv, 0, 5);
3778 if (ret) {
3779 BUG_ON(ret != -EAGAIN);
3780 ret = btrfs_commit_transaction(trans, root);
3781 BUG_ON(ret);
3782 continue;
3783 }
7b128766 3784
d68fc57b 3785 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3786 if (ret != -EAGAIN)
3787 break;
85e21bac 3788
8082510e
YZ
3789 nr = trans->blocks_used;
3790 btrfs_end_transaction(trans, root);
3791 trans = NULL;
3792 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3793
8082510e 3794 }
5f39d397 3795
8082510e
YZ
3796 if (ret == 0) {
3797 ret = btrfs_orphan_del(trans, inode);
3798 BUG_ON(ret);
3799 }
54aa1f4d 3800
d3c2fdcf 3801 nr = trans->blocks_used;
54aa1f4d 3802 btrfs_end_transaction(trans, root);
d3c2fdcf 3803 btrfs_btree_balance_dirty(root, nr);
39279cc3 3804no_delete:
bd555975 3805 end_writeback(inode);
8082510e 3806 return;
39279cc3
CM
3807}
3808
3809/*
3810 * this returns the key found in the dir entry in the location pointer.
3811 * If no dir entries were found, location->objectid is 0.
3812 */
3813static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3814 struct btrfs_key *location)
3815{
3816 const char *name = dentry->d_name.name;
3817 int namelen = dentry->d_name.len;
3818 struct btrfs_dir_item *di;
3819 struct btrfs_path *path;
3820 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3821 int ret = 0;
39279cc3
CM
3822
3823 path = btrfs_alloc_path();
3824 BUG_ON(!path);
3954401f 3825
39279cc3
CM
3826 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3827 namelen, 0);
0d9f7f3e
Y
3828 if (IS_ERR(di))
3829 ret = PTR_ERR(di);
d397712b
CM
3830
3831 if (!di || IS_ERR(di))
3954401f 3832 goto out_err;
d397712b 3833
5f39d397 3834 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3835out:
39279cc3
CM
3836 btrfs_free_path(path);
3837 return ret;
3954401f
CM
3838out_err:
3839 location->objectid = 0;
3840 goto out;
39279cc3
CM
3841}
3842
3843/*
3844 * when we hit a tree root in a directory, the btrfs part of the inode
3845 * needs to be changed to reflect the root directory of the tree root. This
3846 * is kind of like crossing a mount point.
3847 */
3848static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3849 struct inode *dir,
3850 struct dentry *dentry,
3851 struct btrfs_key *location,
3852 struct btrfs_root **sub_root)
39279cc3 3853{
4df27c4d
YZ
3854 struct btrfs_path *path;
3855 struct btrfs_root *new_root;
3856 struct btrfs_root_ref *ref;
3857 struct extent_buffer *leaf;
3858 int ret;
3859 int err = 0;
39279cc3 3860
4df27c4d
YZ
3861 path = btrfs_alloc_path();
3862 if (!path) {
3863 err = -ENOMEM;
3864 goto out;
3865 }
39279cc3 3866
4df27c4d
YZ
3867 err = -ENOENT;
3868 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3869 BTRFS_I(dir)->root->root_key.objectid,
3870 location->objectid);
3871 if (ret) {
3872 if (ret < 0)
3873 err = ret;
3874 goto out;
3875 }
39279cc3 3876
4df27c4d
YZ
3877 leaf = path->nodes[0];
3878 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3879 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3880 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3881 goto out;
39279cc3 3882
4df27c4d
YZ
3883 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3884 (unsigned long)(ref + 1),
3885 dentry->d_name.len);
3886 if (ret)
3887 goto out;
3888
3889 btrfs_release_path(root->fs_info->tree_root, path);
3890
3891 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3892 if (IS_ERR(new_root)) {
3893 err = PTR_ERR(new_root);
3894 goto out;
3895 }
3896
3897 if (btrfs_root_refs(&new_root->root_item) == 0) {
3898 err = -ENOENT;
3899 goto out;
3900 }
3901
3902 *sub_root = new_root;
3903 location->objectid = btrfs_root_dirid(&new_root->root_item);
3904 location->type = BTRFS_INODE_ITEM_KEY;
3905 location->offset = 0;
3906 err = 0;
3907out:
3908 btrfs_free_path(path);
3909 return err;
39279cc3
CM
3910}
3911
5d4f98a2
YZ
3912static void inode_tree_add(struct inode *inode)
3913{
3914 struct btrfs_root *root = BTRFS_I(inode)->root;
3915 struct btrfs_inode *entry;
03e860bd
FNP
3916 struct rb_node **p;
3917 struct rb_node *parent;
03e860bd
FNP
3918again:
3919 p = &root->inode_tree.rb_node;
3920 parent = NULL;
5d4f98a2 3921
1d3382cb 3922 if (inode_unhashed(inode))
76dda93c
YZ
3923 return;
3924
5d4f98a2
YZ
3925 spin_lock(&root->inode_lock);
3926 while (*p) {
3927 parent = *p;
3928 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3929
3930 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3931 p = &parent->rb_left;
5d4f98a2 3932 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3933 p = &parent->rb_right;
5d4f98a2
YZ
3934 else {
3935 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3936 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3937 rb_erase(parent, &root->inode_tree);
3938 RB_CLEAR_NODE(parent);
3939 spin_unlock(&root->inode_lock);
3940 goto again;
5d4f98a2
YZ
3941 }
3942 }
3943 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3944 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3945 spin_unlock(&root->inode_lock);
3946}
3947
3948static void inode_tree_del(struct inode *inode)
3949{
3950 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3951 int empty = 0;
5d4f98a2 3952
03e860bd 3953 spin_lock(&root->inode_lock);
5d4f98a2 3954 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3955 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3956 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3957 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3958 }
03e860bd 3959 spin_unlock(&root->inode_lock);
76dda93c 3960
0af3d00b
JB
3961 /*
3962 * Free space cache has inodes in the tree root, but the tree root has a
3963 * root_refs of 0, so this could end up dropping the tree root as a
3964 * snapshot, so we need the extra !root->fs_info->tree_root check to
3965 * make sure we don't drop it.
3966 */
3967 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3968 root != root->fs_info->tree_root) {
76dda93c
YZ
3969 synchronize_srcu(&root->fs_info->subvol_srcu);
3970 spin_lock(&root->inode_lock);
3971 empty = RB_EMPTY_ROOT(&root->inode_tree);
3972 spin_unlock(&root->inode_lock);
3973 if (empty)
3974 btrfs_add_dead_root(root);
3975 }
3976}
3977
3978int btrfs_invalidate_inodes(struct btrfs_root *root)
3979{
3980 struct rb_node *node;
3981 struct rb_node *prev;
3982 struct btrfs_inode *entry;
3983 struct inode *inode;
3984 u64 objectid = 0;
3985
3986 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3987
3988 spin_lock(&root->inode_lock);
3989again:
3990 node = root->inode_tree.rb_node;
3991 prev = NULL;
3992 while (node) {
3993 prev = node;
3994 entry = rb_entry(node, struct btrfs_inode, rb_node);
3995
3996 if (objectid < entry->vfs_inode.i_ino)
3997 node = node->rb_left;
3998 else if (objectid > entry->vfs_inode.i_ino)
3999 node = node->rb_right;
4000 else
4001 break;
4002 }
4003 if (!node) {
4004 while (prev) {
4005 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4006 if (objectid <= entry->vfs_inode.i_ino) {
4007 node = prev;
4008 break;
4009 }
4010 prev = rb_next(prev);
4011 }
4012 }
4013 while (node) {
4014 entry = rb_entry(node, struct btrfs_inode, rb_node);
4015 objectid = entry->vfs_inode.i_ino + 1;
4016 inode = igrab(&entry->vfs_inode);
4017 if (inode) {
4018 spin_unlock(&root->inode_lock);
4019 if (atomic_read(&inode->i_count) > 1)
4020 d_prune_aliases(inode);
4021 /*
45321ac5 4022 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4023 * the inode cache when its usage count
4024 * hits zero.
4025 */
4026 iput(inode);
4027 cond_resched();
4028 spin_lock(&root->inode_lock);
4029 goto again;
4030 }
4031
4032 if (cond_resched_lock(&root->inode_lock))
4033 goto again;
4034
4035 node = rb_next(node);
4036 }
4037 spin_unlock(&root->inode_lock);
4038 return 0;
5d4f98a2
YZ
4039}
4040
e02119d5
CM
4041static int btrfs_init_locked_inode(struct inode *inode, void *p)
4042{
4043 struct btrfs_iget_args *args = p;
4044 inode->i_ino = args->ino;
e02119d5 4045 BTRFS_I(inode)->root = args->root;
6a63209f 4046 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
4047 return 0;
4048}
4049
4050static int btrfs_find_actor(struct inode *inode, void *opaque)
4051{
4052 struct btrfs_iget_args *args = opaque;
d397712b
CM
4053 return args->ino == inode->i_ino &&
4054 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4055}
4056
5d4f98a2
YZ
4057static struct inode *btrfs_iget_locked(struct super_block *s,
4058 u64 objectid,
4059 struct btrfs_root *root)
39279cc3
CM
4060{
4061 struct inode *inode;
4062 struct btrfs_iget_args args;
4063 args.ino = objectid;
4064 args.root = root;
4065
4066 inode = iget5_locked(s, objectid, btrfs_find_actor,
4067 btrfs_init_locked_inode,
4068 (void *)&args);
4069 return inode;
4070}
4071
1a54ef8c
BR
4072/* Get an inode object given its location and corresponding root.
4073 * Returns in *is_new if the inode was read from disk
4074 */
4075struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4076 struct btrfs_root *root, int *new)
1a54ef8c
BR
4077{
4078 struct inode *inode;
4079
4080 inode = btrfs_iget_locked(s, location->objectid, root);
4081 if (!inode)
5d4f98a2 4082 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4083
4084 if (inode->i_state & I_NEW) {
4085 BTRFS_I(inode)->root = root;
4086 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4087 btrfs_read_locked_inode(inode);
5d4f98a2 4088 inode_tree_add(inode);
1a54ef8c 4089 unlock_new_inode(inode);
73f73415
JB
4090 if (new)
4091 *new = 1;
1a54ef8c
BR
4092 }
4093
4094 return inode;
4095}
4096
4df27c4d
YZ
4097static struct inode *new_simple_dir(struct super_block *s,
4098 struct btrfs_key *key,
4099 struct btrfs_root *root)
4100{
4101 struct inode *inode = new_inode(s);
4102
4103 if (!inode)
4104 return ERR_PTR(-ENOMEM);
4105
4df27c4d
YZ
4106 BTRFS_I(inode)->root = root;
4107 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4108 BTRFS_I(inode)->dummy_inode = 1;
4109
4110 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4111 inode->i_op = &simple_dir_inode_operations;
4112 inode->i_fop = &simple_dir_operations;
4113 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4114 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4115
4116 return inode;
4117}
4118
3de4586c 4119struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4120{
d397712b 4121 struct inode *inode;
4df27c4d 4122 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4123 struct btrfs_root *sub_root = root;
4124 struct btrfs_key location;
76dda93c 4125 int index;
5d4f98a2 4126 int ret;
39279cc3
CM
4127
4128 if (dentry->d_name.len > BTRFS_NAME_LEN)
4129 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4130
39279cc3 4131 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4132
39279cc3
CM
4133 if (ret < 0)
4134 return ERR_PTR(ret);
5f39d397 4135
4df27c4d
YZ
4136 if (location.objectid == 0)
4137 return NULL;
4138
4139 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4140 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4141 return inode;
4142 }
4143
4144 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4145
76dda93c 4146 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4147 ret = fixup_tree_root_location(root, dir, dentry,
4148 &location, &sub_root);
4149 if (ret < 0) {
4150 if (ret != -ENOENT)
4151 inode = ERR_PTR(ret);
4152 else
4153 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4154 } else {
73f73415 4155 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4156 }
76dda93c
YZ
4157 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4158
34d19bad 4159 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4160 down_read(&root->fs_info->cleanup_work_sem);
4161 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4162 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4163 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4164 if (ret)
4165 inode = ERR_PTR(ret);
c71bf099
YZ
4166 }
4167
3de4586c
CM
4168 return inode;
4169}
4170
fe15ce44 4171static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4172{
4173 struct btrfs_root *root;
4174
efefb143
YZ
4175 if (!dentry->d_inode && !IS_ROOT(dentry))
4176 dentry = dentry->d_parent;
76dda93c 4177
efefb143
YZ
4178 if (dentry->d_inode) {
4179 root = BTRFS_I(dentry->d_inode)->root;
4180 if (btrfs_root_refs(&root->root_item) == 0)
4181 return 1;
4182 }
76dda93c
YZ
4183 return 0;
4184}
4185
3de4586c
CM
4186static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4187 struct nameidata *nd)
4188{
4189 struct inode *inode;
4190
3de4586c
CM
4191 inode = btrfs_lookup_dentry(dir, dentry);
4192 if (IS_ERR(inode))
4193 return ERR_CAST(inode);
7b128766 4194
39279cc3
CM
4195 return d_splice_alias(inode, dentry);
4196}
4197
39279cc3
CM
4198static unsigned char btrfs_filetype_table[] = {
4199 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4200};
4201
cbdf5a24
DW
4202static int btrfs_real_readdir(struct file *filp, void *dirent,
4203 filldir_t filldir)
39279cc3 4204{
6da6abae 4205 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4206 struct btrfs_root *root = BTRFS_I(inode)->root;
4207 struct btrfs_item *item;
4208 struct btrfs_dir_item *di;
4209 struct btrfs_key key;
5f39d397 4210 struct btrfs_key found_key;
39279cc3
CM
4211 struct btrfs_path *path;
4212 int ret;
4213 u32 nritems;
5f39d397 4214 struct extent_buffer *leaf;
39279cc3
CM
4215 int slot;
4216 int advance;
4217 unsigned char d_type;
4218 int over = 0;
4219 u32 di_cur;
4220 u32 di_total;
4221 u32 di_len;
4222 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4223 char tmp_name[32];
4224 char *name_ptr;
4225 int name_len;
39279cc3
CM
4226
4227 /* FIXME, use a real flag for deciding about the key type */
4228 if (root->fs_info->tree_root == root)
4229 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4230
3954401f
CM
4231 /* special case for "." */
4232 if (filp->f_pos == 0) {
4233 over = filldir(dirent, ".", 1,
4234 1, inode->i_ino,
4235 DT_DIR);
4236 if (over)
4237 return 0;
4238 filp->f_pos = 1;
4239 }
3954401f
CM
4240 /* special case for .., just use the back ref */
4241 if (filp->f_pos == 1) {
5ecc7e5d 4242 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4243 over = filldir(dirent, "..", 2,
5ecc7e5d 4244 2, pino, DT_DIR);
3954401f 4245 if (over)
49593bfa 4246 return 0;
3954401f
CM
4247 filp->f_pos = 2;
4248 }
49593bfa
DW
4249 path = btrfs_alloc_path();
4250 path->reada = 2;
4251
39279cc3
CM
4252 btrfs_set_key_type(&key, key_type);
4253 key.offset = filp->f_pos;
49593bfa 4254 key.objectid = inode->i_ino;
5f39d397 4255
39279cc3
CM
4256 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4257 if (ret < 0)
4258 goto err;
4259 advance = 0;
49593bfa
DW
4260
4261 while (1) {
5f39d397
CM
4262 leaf = path->nodes[0];
4263 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4264 slot = path->slots[0];
4265 if (advance || slot >= nritems) {
49593bfa 4266 if (slot >= nritems - 1) {
39279cc3
CM
4267 ret = btrfs_next_leaf(root, path);
4268 if (ret)
4269 break;
5f39d397
CM
4270 leaf = path->nodes[0];
4271 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4272 slot = path->slots[0];
4273 } else {
4274 slot++;
4275 path->slots[0]++;
4276 }
4277 }
3de4586c 4278
39279cc3 4279 advance = 1;
5f39d397
CM
4280 item = btrfs_item_nr(leaf, slot);
4281 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4282
4283 if (found_key.objectid != key.objectid)
39279cc3 4284 break;
5f39d397 4285 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4286 break;
5f39d397 4287 if (found_key.offset < filp->f_pos)
39279cc3 4288 continue;
5f39d397
CM
4289
4290 filp->f_pos = found_key.offset;
49593bfa 4291
39279cc3
CM
4292 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4293 di_cur = 0;
5f39d397 4294 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4295
4296 while (di_cur < di_total) {
5f39d397
CM
4297 struct btrfs_key location;
4298
22a94d44
JB
4299 if (verify_dir_item(root, leaf, di))
4300 break;
4301
5f39d397 4302 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4303 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4304 name_ptr = tmp_name;
4305 } else {
4306 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4307 if (!name_ptr) {
4308 ret = -ENOMEM;
4309 goto err;
4310 }
5f39d397
CM
4311 }
4312 read_extent_buffer(leaf, name_ptr,
4313 (unsigned long)(di + 1), name_len);
4314
4315 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4316 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4317
4318 /* is this a reference to our own snapshot? If so
4319 * skip it
4320 */
4321 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4322 location.objectid == root->root_key.objectid) {
4323 over = 0;
4324 goto skip;
4325 }
5f39d397 4326 over = filldir(dirent, name_ptr, name_len,
49593bfa 4327 found_key.offset, location.objectid,
39279cc3 4328 d_type);
5f39d397 4329
3de4586c 4330skip:
5f39d397
CM
4331 if (name_ptr != tmp_name)
4332 kfree(name_ptr);
4333
39279cc3
CM
4334 if (over)
4335 goto nopos;
5103e947 4336 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4337 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4338 di_cur += di_len;
4339 di = (struct btrfs_dir_item *)((char *)di + di_len);
4340 }
4341 }
49593bfa
DW
4342
4343 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4344 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4345 /*
4346 * 32-bit glibc will use getdents64, but then strtol -
4347 * so the last number we can serve is this.
4348 */
4349 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4350 else
4351 filp->f_pos++;
39279cc3
CM
4352nopos:
4353 ret = 0;
4354err:
39279cc3 4355 btrfs_free_path(path);
39279cc3
CM
4356 return ret;
4357}
4358
a9185b41 4359int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4360{
4361 struct btrfs_root *root = BTRFS_I(inode)->root;
4362 struct btrfs_trans_handle *trans;
4363 int ret = 0;
0af3d00b 4364 bool nolock = false;
39279cc3 4365
8929ecfa 4366 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4367 return 0;
4368
0af3d00b
JB
4369 smp_mb();
4370 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4371
a9185b41 4372 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b
JB
4373 if (nolock)
4374 trans = btrfs_join_transaction_nolock(root, 1);
4375 else
4376 trans = btrfs_join_transaction(root, 1);
3612b495
TI
4377 if (IS_ERR(trans))
4378 return PTR_ERR(trans);
39279cc3 4379 btrfs_set_trans_block_group(trans, inode);
0af3d00b
JB
4380 if (nolock)
4381 ret = btrfs_end_transaction_nolock(trans, root);
4382 else
4383 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4384 }
4385 return ret;
4386}
4387
4388/*
54aa1f4d 4389 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4390 * inode changes. But, it is most likely to find the inode in cache.
4391 * FIXME, needs more benchmarking...there are no reasons other than performance
4392 * to keep or drop this code.
4393 */
4394void btrfs_dirty_inode(struct inode *inode)
4395{
4396 struct btrfs_root *root = BTRFS_I(inode)->root;
4397 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4398 int ret;
4399
4400 if (BTRFS_I(inode)->dummy_inode)
4401 return;
39279cc3 4402
f9295749 4403 trans = btrfs_join_transaction(root, 1);
3612b495 4404 BUG_ON(IS_ERR(trans));
39279cc3 4405 btrfs_set_trans_block_group(trans, inode);
8929ecfa
YZ
4406
4407 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4408 if (ret && ret == -ENOSPC) {
4409 /* whoops, lets try again with the full transaction */
4410 btrfs_end_transaction(trans, root);
4411 trans = btrfs_start_transaction(root, 1);
9aeead73
CM
4412 if (IS_ERR(trans)) {
4413 if (printk_ratelimit()) {
4414 printk(KERN_ERR "btrfs: fail to "
4415 "dirty inode %lu error %ld\n",
4416 inode->i_ino, PTR_ERR(trans));
4417 }
4418 return;
4419 }
94b60442 4420 btrfs_set_trans_block_group(trans, inode);
8929ecfa 4421
94b60442
CM
4422 ret = btrfs_update_inode(trans, root, inode);
4423 if (ret) {
9aeead73
CM
4424 if (printk_ratelimit()) {
4425 printk(KERN_ERR "btrfs: fail to "
4426 "dirty inode %lu error %d\n",
4427 inode->i_ino, ret);
4428 }
94b60442
CM
4429 }
4430 }
39279cc3 4431 btrfs_end_transaction(trans, root);
39279cc3
CM
4432}
4433
d352ac68
CM
4434/*
4435 * find the highest existing sequence number in a directory
4436 * and then set the in-memory index_cnt variable to reflect
4437 * free sequence numbers
4438 */
aec7477b
JB
4439static int btrfs_set_inode_index_count(struct inode *inode)
4440{
4441 struct btrfs_root *root = BTRFS_I(inode)->root;
4442 struct btrfs_key key, found_key;
4443 struct btrfs_path *path;
4444 struct extent_buffer *leaf;
4445 int ret;
4446
4447 key.objectid = inode->i_ino;
4448 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4449 key.offset = (u64)-1;
4450
4451 path = btrfs_alloc_path();
4452 if (!path)
4453 return -ENOMEM;
4454
4455 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4456 if (ret < 0)
4457 goto out;
4458 /* FIXME: we should be able to handle this */
4459 if (ret == 0)
4460 goto out;
4461 ret = 0;
4462
4463 /*
4464 * MAGIC NUMBER EXPLANATION:
4465 * since we search a directory based on f_pos we have to start at 2
4466 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4467 * else has to start at 2
4468 */
4469 if (path->slots[0] == 0) {
4470 BTRFS_I(inode)->index_cnt = 2;
4471 goto out;
4472 }
4473
4474 path->slots[0]--;
4475
4476 leaf = path->nodes[0];
4477 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4478
4479 if (found_key.objectid != inode->i_ino ||
4480 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4481 BTRFS_I(inode)->index_cnt = 2;
4482 goto out;
4483 }
4484
4485 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4486out:
4487 btrfs_free_path(path);
4488 return ret;
4489}
4490
d352ac68
CM
4491/*
4492 * helper to find a free sequence number in a given directory. This current
4493 * code is very simple, later versions will do smarter things in the btree
4494 */
3de4586c 4495int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4496{
4497 int ret = 0;
4498
4499 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4500 ret = btrfs_set_inode_index_count(dir);
d397712b 4501 if (ret)
aec7477b
JB
4502 return ret;
4503 }
4504
00e4e6b3 4505 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4506 BTRFS_I(dir)->index_cnt++;
4507
4508 return ret;
4509}
4510
39279cc3
CM
4511static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4512 struct btrfs_root *root,
aec7477b 4513 struct inode *dir,
9c58309d 4514 const char *name, int name_len,
d2fb3437
YZ
4515 u64 ref_objectid, u64 objectid,
4516 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4517{
4518 struct inode *inode;
5f39d397 4519 struct btrfs_inode_item *inode_item;
39279cc3 4520 struct btrfs_key *location;
5f39d397 4521 struct btrfs_path *path;
9c58309d
CM
4522 struct btrfs_inode_ref *ref;
4523 struct btrfs_key key[2];
4524 u32 sizes[2];
4525 unsigned long ptr;
39279cc3
CM
4526 int ret;
4527 int owner;
4528
5f39d397
CM
4529 path = btrfs_alloc_path();
4530 BUG_ON(!path);
4531
39279cc3
CM
4532 inode = new_inode(root->fs_info->sb);
4533 if (!inode)
4534 return ERR_PTR(-ENOMEM);
4535
aec7477b 4536 if (dir) {
1abe9b8a 4537 trace_btrfs_inode_request(dir);
4538
3de4586c 4539 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4540 if (ret) {
4541 iput(inode);
aec7477b 4542 return ERR_PTR(ret);
09771430 4543 }
aec7477b
JB
4544 }
4545 /*
4546 * index_cnt is ignored for everything but a dir,
4547 * btrfs_get_inode_index_count has an explanation for the magic
4548 * number
4549 */
4550 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4551 BTRFS_I(inode)->root = root;
e02119d5 4552 BTRFS_I(inode)->generation = trans->transid;
76195853 4553 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4554 btrfs_set_inode_space_info(root, inode);
b888db2b 4555
39279cc3
CM
4556 if (mode & S_IFDIR)
4557 owner = 0;
4558 else
4559 owner = 1;
d2fb3437
YZ
4560 BTRFS_I(inode)->block_group =
4561 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4562
4563 key[0].objectid = objectid;
4564 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4565 key[0].offset = 0;
4566
4567 key[1].objectid = objectid;
4568 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4569 key[1].offset = ref_objectid;
4570
4571 sizes[0] = sizeof(struct btrfs_inode_item);
4572 sizes[1] = name_len + sizeof(*ref);
4573
b9473439 4574 path->leave_spinning = 1;
9c58309d
CM
4575 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4576 if (ret != 0)
5f39d397
CM
4577 goto fail;
4578
ecc11fab 4579 inode_init_owner(inode, dir, mode);
39279cc3 4580 inode->i_ino = objectid;
a76a3cd4 4581 inode_set_bytes(inode, 0);
39279cc3 4582 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4583 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4584 struct btrfs_inode_item);
e02119d5 4585 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4586
4587 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4588 struct btrfs_inode_ref);
4589 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4590 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4591 ptr = (unsigned long)(ref + 1);
4592 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4593
5f39d397
CM
4594 btrfs_mark_buffer_dirty(path->nodes[0]);
4595 btrfs_free_path(path);
4596
39279cc3
CM
4597 location = &BTRFS_I(inode)->location;
4598 location->objectid = objectid;
39279cc3
CM
4599 location->offset = 0;
4600 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4601
6cbff00f
CH
4602 btrfs_inherit_iflags(inode, dir);
4603
94272164
CM
4604 if ((mode & S_IFREG)) {
4605 if (btrfs_test_opt(root, NODATASUM))
4606 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4607 if (btrfs_test_opt(root, NODATACOW) ||
4608 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4609 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4610 }
4611
39279cc3 4612 insert_inode_hash(inode);
5d4f98a2 4613 inode_tree_add(inode);
1abe9b8a 4614
4615 trace_btrfs_inode_new(inode);
4616
39279cc3 4617 return inode;
5f39d397 4618fail:
aec7477b
JB
4619 if (dir)
4620 BTRFS_I(dir)->index_cnt--;
5f39d397 4621 btrfs_free_path(path);
09771430 4622 iput(inode);
5f39d397 4623 return ERR_PTR(ret);
39279cc3
CM
4624}
4625
4626static inline u8 btrfs_inode_type(struct inode *inode)
4627{
4628 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4629}
4630
d352ac68
CM
4631/*
4632 * utility function to add 'inode' into 'parent_inode' with
4633 * a give name and a given sequence number.
4634 * if 'add_backref' is true, also insert a backref from the
4635 * inode to the parent directory.
4636 */
e02119d5
CM
4637int btrfs_add_link(struct btrfs_trans_handle *trans,
4638 struct inode *parent_inode, struct inode *inode,
4639 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4640{
4df27c4d 4641 int ret = 0;
39279cc3 4642 struct btrfs_key key;
e02119d5 4643 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4644
4df27c4d
YZ
4645 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4646 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4647 } else {
4648 key.objectid = inode->i_ino;
4649 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4650 key.offset = 0;
4651 }
4652
4653 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4654 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4655 key.objectid, root->root_key.objectid,
4656 parent_inode->i_ino,
4657 index, name, name_len);
4658 } else if (add_backref) {
4659 ret = btrfs_insert_inode_ref(trans, root,
4660 name, name_len, inode->i_ino,
4661 parent_inode->i_ino, index);
4662 }
39279cc3 4663
39279cc3 4664 if (ret == 0) {
4df27c4d
YZ
4665 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4666 parent_inode->i_ino, &key,
4667 btrfs_inode_type(inode), index);
4668 BUG_ON(ret);
4669
dbe674a9 4670 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4671 name_len * 2);
79c44584 4672 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4673 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4674 }
4675 return ret;
4676}
4677
4678static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4679 struct inode *dir, struct dentry *dentry,
4680 struct inode *inode, int backref, u64 index)
39279cc3 4681{
a1b075d2
JB
4682 int err = btrfs_add_link(trans, dir, inode,
4683 dentry->d_name.name, dentry->d_name.len,
4684 backref, index);
39279cc3
CM
4685 if (!err) {
4686 d_instantiate(dentry, inode);
4687 return 0;
4688 }
4689 if (err > 0)
4690 err = -EEXIST;
4691 return err;
4692}
4693
618e21d5
JB
4694static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4695 int mode, dev_t rdev)
4696{
4697 struct btrfs_trans_handle *trans;
4698 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4699 struct inode *inode = NULL;
618e21d5
JB
4700 int err;
4701 int drop_inode = 0;
4702 u64 objectid;
1832a6d5 4703 unsigned long nr = 0;
00e4e6b3 4704 u64 index = 0;
618e21d5
JB
4705
4706 if (!new_valid_dev(rdev))
4707 return -EINVAL;
4708
a22285a6
YZ
4709 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4710 if (err)
4711 return err;
4712
9ed74f2d
JB
4713 /*
4714 * 2 for inode item and ref
4715 * 2 for dir items
4716 * 1 for xattr if selinux is on
4717 */
a22285a6
YZ
4718 trans = btrfs_start_transaction(root, 5);
4719 if (IS_ERR(trans))
4720 return PTR_ERR(trans);
1832a6d5 4721
618e21d5
JB
4722 btrfs_set_trans_block_group(trans, dir);
4723
aec7477b 4724 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4725 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3 4726 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4727 err = PTR_ERR(inode);
4728 if (IS_ERR(inode))
4729 goto out_unlock;
4730
f34f57a3 4731 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4732 if (err) {
4733 drop_inode = 1;
4734 goto out_unlock;
4735 }
4736
618e21d5 4737 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4738 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4739 if (err)
4740 drop_inode = 1;
4741 else {
4742 inode->i_op = &btrfs_special_inode_operations;
4743 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4744 btrfs_update_inode(trans, root, inode);
618e21d5 4745 }
618e21d5
JB
4746 btrfs_update_inode_block_group(trans, inode);
4747 btrfs_update_inode_block_group(trans, dir);
4748out_unlock:
d3c2fdcf 4749 nr = trans->blocks_used;
89ce8a63 4750 btrfs_end_transaction_throttle(trans, root);
a22285a6 4751 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4752 if (drop_inode) {
4753 inode_dec_link_count(inode);
4754 iput(inode);
4755 }
618e21d5
JB
4756 return err;
4757}
4758
39279cc3
CM
4759static int btrfs_create(struct inode *dir, struct dentry *dentry,
4760 int mode, struct nameidata *nd)
4761{
4762 struct btrfs_trans_handle *trans;
4763 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4764 struct inode *inode = NULL;
39279cc3 4765 int drop_inode = 0;
a22285a6 4766 int err;
1832a6d5 4767 unsigned long nr = 0;
39279cc3 4768 u64 objectid;
00e4e6b3 4769 u64 index = 0;
39279cc3 4770
a22285a6
YZ
4771 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4772 if (err)
4773 return err;
9ed74f2d
JB
4774 /*
4775 * 2 for inode item and ref
4776 * 2 for dir items
4777 * 1 for xattr if selinux is on
4778 */
a22285a6
YZ
4779 trans = btrfs_start_transaction(root, 5);
4780 if (IS_ERR(trans))
4781 return PTR_ERR(trans);
9ed74f2d 4782
39279cc3
CM
4783 btrfs_set_trans_block_group(trans, dir);
4784
aec7477b 4785 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2
JB
4786 dentry->d_name.len, dir->i_ino, objectid,
4787 BTRFS_I(dir)->block_group, mode, &index);
39279cc3
CM
4788 err = PTR_ERR(inode);
4789 if (IS_ERR(inode))
4790 goto out_unlock;
4791
f34f57a3 4792 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4793 if (err) {
4794 drop_inode = 1;
4795 goto out_unlock;
4796 }
4797
39279cc3 4798 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4799 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4800 if (err)
4801 drop_inode = 1;
4802 else {
4803 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4804 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4805 inode->i_fop = &btrfs_file_operations;
4806 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4807 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4808 }
39279cc3
CM
4809 btrfs_update_inode_block_group(trans, inode);
4810 btrfs_update_inode_block_group(trans, dir);
4811out_unlock:
d3c2fdcf 4812 nr = trans->blocks_used;
ab78c84d 4813 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4814 if (drop_inode) {
4815 inode_dec_link_count(inode);
4816 iput(inode);
4817 }
d3c2fdcf 4818 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4819 return err;
4820}
4821
4822static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4823 struct dentry *dentry)
4824{
4825 struct btrfs_trans_handle *trans;
4826 struct btrfs_root *root = BTRFS_I(dir)->root;
4827 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4828 u64 index;
1832a6d5 4829 unsigned long nr = 0;
39279cc3
CM
4830 int err;
4831 int drop_inode = 0;
4832
4833 if (inode->i_nlink == 0)
4834 return -ENOENT;
4835
4a8be425
TH
4836 /* do not allow sys_link's with other subvols of the same device */
4837 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4838 return -EXDEV;
4a8be425 4839
c055e99e
AV
4840 if (inode->i_nlink == ~0U)
4841 return -EMLINK;
4842
9ed74f2d 4843 btrfs_inc_nlink(inode);
bc1cbf1f 4844 inode->i_ctime = CURRENT_TIME;
9ed74f2d 4845
3de4586c 4846 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4847 if (err)
4848 goto fail;
4849
a22285a6 4850 /*
7e6b6465 4851 * 2 items for inode and inode ref
a22285a6 4852 * 2 items for dir items
7e6b6465 4853 * 1 item for parent inode
a22285a6 4854 */
7e6b6465 4855 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4856 if (IS_ERR(trans)) {
4857 err = PTR_ERR(trans);
4858 goto fail;
4859 }
5f39d397 4860
39279cc3 4861 btrfs_set_trans_block_group(trans, dir);
7de9c6ee 4862 ihold(inode);
aec7477b 4863
a1b075d2 4864 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4865
a5719521 4866 if (err) {
54aa1f4d 4867 drop_inode = 1;
a5719521 4868 } else {
6a912213 4869 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4870 btrfs_update_inode_block_group(trans, dir);
4871 err = btrfs_update_inode(trans, root, inode);
4872 BUG_ON(err);
6a912213
JB
4873 btrfs_log_new_name(trans, inode, NULL, parent);
4874 dput(parent);
a5719521 4875 }
39279cc3 4876
d3c2fdcf 4877 nr = trans->blocks_used;
ab78c84d 4878 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4879fail:
39279cc3
CM
4880 if (drop_inode) {
4881 inode_dec_link_count(inode);
4882 iput(inode);
4883 }
d3c2fdcf 4884 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4885 return err;
4886}
4887
39279cc3
CM
4888static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4889{
b9d86667 4890 struct inode *inode = NULL;
39279cc3
CM
4891 struct btrfs_trans_handle *trans;
4892 struct btrfs_root *root = BTRFS_I(dir)->root;
4893 int err = 0;
4894 int drop_on_err = 0;
b9d86667 4895 u64 objectid = 0;
00e4e6b3 4896 u64 index = 0;
d3c2fdcf 4897 unsigned long nr = 1;
39279cc3 4898
a22285a6
YZ
4899 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4900 if (err)
4901 return err;
4902
9ed74f2d
JB
4903 /*
4904 * 2 items for inode and ref
4905 * 2 items for dir items
4906 * 1 for xattr if selinux is on
4907 */
a22285a6
YZ
4908 trans = btrfs_start_transaction(root, 5);
4909 if (IS_ERR(trans))
4910 return PTR_ERR(trans);
9ed74f2d 4911 btrfs_set_trans_block_group(trans, dir);
39279cc3 4912
aec7477b 4913 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4914 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
4915 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4916 &index);
39279cc3
CM
4917 if (IS_ERR(inode)) {
4918 err = PTR_ERR(inode);
4919 goto out_fail;
4920 }
5f39d397 4921
39279cc3 4922 drop_on_err = 1;
33268eaf 4923
f34f57a3 4924 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4925 if (err)
4926 goto out_fail;
4927
39279cc3
CM
4928 inode->i_op = &btrfs_dir_inode_operations;
4929 inode->i_fop = &btrfs_dir_file_operations;
4930 btrfs_set_trans_block_group(trans, inode);
4931
dbe674a9 4932 btrfs_i_size_write(inode, 0);
39279cc3
CM
4933 err = btrfs_update_inode(trans, root, inode);
4934 if (err)
4935 goto out_fail;
5f39d397 4936
a1b075d2
JB
4937 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4938 dentry->d_name.len, 0, index);
39279cc3
CM
4939 if (err)
4940 goto out_fail;
5f39d397 4941
39279cc3
CM
4942 d_instantiate(dentry, inode);
4943 drop_on_err = 0;
39279cc3
CM
4944 btrfs_update_inode_block_group(trans, inode);
4945 btrfs_update_inode_block_group(trans, dir);
4946
4947out_fail:
d3c2fdcf 4948 nr = trans->blocks_used;
ab78c84d 4949 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4950 if (drop_on_err)
4951 iput(inode);
d3c2fdcf 4952 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4953 return err;
4954}
4955
d352ac68
CM
4956/* helper for btfs_get_extent. Given an existing extent in the tree,
4957 * and an extent that you want to insert, deal with overlap and insert
4958 * the new extent into the tree.
4959 */
3b951516
CM
4960static int merge_extent_mapping(struct extent_map_tree *em_tree,
4961 struct extent_map *existing,
e6dcd2dc
CM
4962 struct extent_map *em,
4963 u64 map_start, u64 map_len)
3b951516
CM
4964{
4965 u64 start_diff;
3b951516 4966
e6dcd2dc
CM
4967 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4968 start_diff = map_start - em->start;
4969 em->start = map_start;
4970 em->len = map_len;
c8b97818
CM
4971 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4972 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4973 em->block_start += start_diff;
c8b97818
CM
4974 em->block_len -= start_diff;
4975 }
e6dcd2dc 4976 return add_extent_mapping(em_tree, em);
3b951516
CM
4977}
4978
c8b97818
CM
4979static noinline int uncompress_inline(struct btrfs_path *path,
4980 struct inode *inode, struct page *page,
4981 size_t pg_offset, u64 extent_offset,
4982 struct btrfs_file_extent_item *item)
4983{
4984 int ret;
4985 struct extent_buffer *leaf = path->nodes[0];
4986 char *tmp;
4987 size_t max_size;
4988 unsigned long inline_size;
4989 unsigned long ptr;
261507a0 4990 int compress_type;
c8b97818
CM
4991
4992 WARN_ON(pg_offset != 0);
261507a0 4993 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4994 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4995 inline_size = btrfs_file_extent_inline_item_len(leaf,
4996 btrfs_item_nr(leaf, path->slots[0]));
4997 tmp = kmalloc(inline_size, GFP_NOFS);
4998 ptr = btrfs_file_extent_inline_start(item);
4999
5000 read_extent_buffer(leaf, tmp, ptr, inline_size);
5001
5b050f04 5002 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5003 ret = btrfs_decompress(compress_type, tmp, page,
5004 extent_offset, inline_size, max_size);
c8b97818
CM
5005 if (ret) {
5006 char *kaddr = kmap_atomic(page, KM_USER0);
5007 unsigned long copy_size = min_t(u64,
5008 PAGE_CACHE_SIZE - pg_offset,
5009 max_size - extent_offset);
5010 memset(kaddr + pg_offset, 0, copy_size);
5011 kunmap_atomic(kaddr, KM_USER0);
5012 }
5013 kfree(tmp);
5014 return 0;
5015}
5016
d352ac68
CM
5017/*
5018 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5019 * the ugly parts come from merging extents from the disk with the in-ram
5020 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5021 * where the in-ram extents might be locked pending data=ordered completion.
5022 *
5023 * This also copies inline extents directly into the page.
5024 */
d397712b 5025
a52d9a80 5026struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5027 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5028 int create)
5029{
5030 int ret;
5031 int err = 0;
db94535d 5032 u64 bytenr;
a52d9a80
CM
5033 u64 extent_start = 0;
5034 u64 extent_end = 0;
5035 u64 objectid = inode->i_ino;
5036 u32 found_type;
f421950f 5037 struct btrfs_path *path = NULL;
a52d9a80
CM
5038 struct btrfs_root *root = BTRFS_I(inode)->root;
5039 struct btrfs_file_extent_item *item;
5f39d397
CM
5040 struct extent_buffer *leaf;
5041 struct btrfs_key found_key;
a52d9a80
CM
5042 struct extent_map *em = NULL;
5043 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5044 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5045 struct btrfs_trans_handle *trans = NULL;
261507a0 5046 int compress_type;
a52d9a80 5047
a52d9a80 5048again:
890871be 5049 read_lock(&em_tree->lock);
d1310b2e 5050 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5051 if (em)
5052 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5053 read_unlock(&em_tree->lock);
d1310b2e 5054
a52d9a80 5055 if (em) {
e1c4b745
CM
5056 if (em->start > start || em->start + em->len <= start)
5057 free_extent_map(em);
5058 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5059 free_extent_map(em);
5060 else
5061 goto out;
a52d9a80 5062 }
d1310b2e 5063 em = alloc_extent_map(GFP_NOFS);
a52d9a80 5064 if (!em) {
d1310b2e
CM
5065 err = -ENOMEM;
5066 goto out;
a52d9a80 5067 }
e6dcd2dc 5068 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5069 em->start = EXTENT_MAP_HOLE;
445a6944 5070 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5071 em->len = (u64)-1;
c8b97818 5072 em->block_len = (u64)-1;
f421950f
CM
5073
5074 if (!path) {
5075 path = btrfs_alloc_path();
5076 BUG_ON(!path);
5077 }
5078
179e29e4
CM
5079 ret = btrfs_lookup_file_extent(trans, root, path,
5080 objectid, start, trans != NULL);
a52d9a80
CM
5081 if (ret < 0) {
5082 err = ret;
5083 goto out;
5084 }
5085
5086 if (ret != 0) {
5087 if (path->slots[0] == 0)
5088 goto not_found;
5089 path->slots[0]--;
5090 }
5091
5f39d397
CM
5092 leaf = path->nodes[0];
5093 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5094 struct btrfs_file_extent_item);
a52d9a80 5095 /* are we inside the extent that was found? */
5f39d397
CM
5096 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5097 found_type = btrfs_key_type(&found_key);
5098 if (found_key.objectid != objectid ||
a52d9a80
CM
5099 found_type != BTRFS_EXTENT_DATA_KEY) {
5100 goto not_found;
5101 }
5102
5f39d397
CM
5103 found_type = btrfs_file_extent_type(leaf, item);
5104 extent_start = found_key.offset;
261507a0 5105 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5106 if (found_type == BTRFS_FILE_EXTENT_REG ||
5107 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5108 extent_end = extent_start +
db94535d 5109 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5110 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5111 size_t size;
5112 size = btrfs_file_extent_inline_len(leaf, item);
5113 extent_end = (extent_start + size + root->sectorsize - 1) &
5114 ~((u64)root->sectorsize - 1);
5115 }
5116
5117 if (start >= extent_end) {
5118 path->slots[0]++;
5119 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5120 ret = btrfs_next_leaf(root, path);
5121 if (ret < 0) {
5122 err = ret;
5123 goto out;
a52d9a80 5124 }
9036c102
YZ
5125 if (ret > 0)
5126 goto not_found;
5127 leaf = path->nodes[0];
a52d9a80 5128 }
9036c102
YZ
5129 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5130 if (found_key.objectid != objectid ||
5131 found_key.type != BTRFS_EXTENT_DATA_KEY)
5132 goto not_found;
5133 if (start + len <= found_key.offset)
5134 goto not_found;
5135 em->start = start;
5136 em->len = found_key.offset - start;
5137 goto not_found_em;
5138 }
5139
d899e052
YZ
5140 if (found_type == BTRFS_FILE_EXTENT_REG ||
5141 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5142 em->start = extent_start;
5143 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5144 em->orig_start = extent_start -
5145 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5146 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5147 if (bytenr == 0) {
5f39d397 5148 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5149 goto insert;
5150 }
261507a0 5151 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5152 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5153 em->compress_type = compress_type;
c8b97818
CM
5154 em->block_start = bytenr;
5155 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5156 item);
5157 } else {
5158 bytenr += btrfs_file_extent_offset(leaf, item);
5159 em->block_start = bytenr;
5160 em->block_len = em->len;
d899e052
YZ
5161 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5162 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5163 }
a52d9a80
CM
5164 goto insert;
5165 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5166 unsigned long ptr;
a52d9a80 5167 char *map;
3326d1b0
CM
5168 size_t size;
5169 size_t extent_offset;
5170 size_t copy_size;
a52d9a80 5171
689f9346 5172 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5173 if (!page || create) {
689f9346 5174 em->start = extent_start;
9036c102 5175 em->len = extent_end - extent_start;
689f9346
Y
5176 goto out;
5177 }
5f39d397 5178
9036c102
YZ
5179 size = btrfs_file_extent_inline_len(leaf, item);
5180 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5181 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5182 size - extent_offset);
3326d1b0 5183 em->start = extent_start + extent_offset;
70dec807
CM
5184 em->len = (copy_size + root->sectorsize - 1) &
5185 ~((u64)root->sectorsize - 1);
ff5b7ee3 5186 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5187 if (compress_type) {
c8b97818 5188 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5189 em->compress_type = compress_type;
5190 }
689f9346 5191 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5192 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5193 if (btrfs_file_extent_compression(leaf, item) !=
5194 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5195 ret = uncompress_inline(path, inode, page,
5196 pg_offset,
5197 extent_offset, item);
5198 BUG_ON(ret);
5199 } else {
5200 map = kmap(page);
5201 read_extent_buffer(leaf, map + pg_offset, ptr,
5202 copy_size);
93c82d57
CM
5203 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5204 memset(map + pg_offset + copy_size, 0,
5205 PAGE_CACHE_SIZE - pg_offset -
5206 copy_size);
5207 }
c8b97818
CM
5208 kunmap(page);
5209 }
179e29e4
CM
5210 flush_dcache_page(page);
5211 } else if (create && PageUptodate(page)) {
0ca1f7ce 5212 WARN_ON(1);
179e29e4
CM
5213 if (!trans) {
5214 kunmap(page);
5215 free_extent_map(em);
5216 em = NULL;
5217 btrfs_release_path(root, path);
f9295749 5218 trans = btrfs_join_transaction(root, 1);
3612b495
TI
5219 if (IS_ERR(trans))
5220 return ERR_CAST(trans);
179e29e4
CM
5221 goto again;
5222 }
c8b97818 5223 map = kmap(page);
70dec807 5224 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5225 copy_size);
c8b97818 5226 kunmap(page);
179e29e4 5227 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5228 }
d1310b2e
CM
5229 set_extent_uptodate(io_tree, em->start,
5230 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
5231 goto insert;
5232 } else {
d397712b 5233 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5234 WARN_ON(1);
5235 }
5236not_found:
5237 em->start = start;
d1310b2e 5238 em->len = len;
a52d9a80 5239not_found_em:
5f39d397 5240 em->block_start = EXTENT_MAP_HOLE;
9036c102 5241 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
5242insert:
5243 btrfs_release_path(root, path);
d1310b2e 5244 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5245 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5246 "[%llu %llu]\n", (unsigned long long)em->start,
5247 (unsigned long long)em->len,
5248 (unsigned long long)start,
5249 (unsigned long long)len);
a52d9a80
CM
5250 err = -EIO;
5251 goto out;
5252 }
d1310b2e
CM
5253
5254 err = 0;
890871be 5255 write_lock(&em_tree->lock);
a52d9a80 5256 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5257 /* it is possible that someone inserted the extent into the tree
5258 * while we had the lock dropped. It is also possible that
5259 * an overlapping map exists in the tree
5260 */
a52d9a80 5261 if (ret == -EEXIST) {
3b951516 5262 struct extent_map *existing;
e6dcd2dc
CM
5263
5264 ret = 0;
5265
3b951516 5266 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5267 if (existing && (existing->start > start ||
5268 existing->start + existing->len <= start)) {
5269 free_extent_map(existing);
5270 existing = NULL;
5271 }
3b951516
CM
5272 if (!existing) {
5273 existing = lookup_extent_mapping(em_tree, em->start,
5274 em->len);
5275 if (existing) {
5276 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5277 em, start,
5278 root->sectorsize);
3b951516
CM
5279 free_extent_map(existing);
5280 if (err) {
5281 free_extent_map(em);
5282 em = NULL;
5283 }
5284 } else {
5285 err = -EIO;
3b951516
CM
5286 free_extent_map(em);
5287 em = NULL;
5288 }
5289 } else {
5290 free_extent_map(em);
5291 em = existing;
e6dcd2dc 5292 err = 0;
a52d9a80 5293 }
a52d9a80 5294 }
890871be 5295 write_unlock(&em_tree->lock);
a52d9a80 5296out:
1abe9b8a 5297
5298 trace_btrfs_get_extent(root, em);
5299
f421950f
CM
5300 if (path)
5301 btrfs_free_path(path);
a52d9a80
CM
5302 if (trans) {
5303 ret = btrfs_end_transaction(trans, root);
d397712b 5304 if (!err)
a52d9a80
CM
5305 err = ret;
5306 }
a52d9a80
CM
5307 if (err) {
5308 free_extent_map(em);
a52d9a80
CM
5309 return ERR_PTR(err);
5310 }
5311 return em;
5312}
5313
ec29ed5b
CM
5314struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5315 size_t pg_offset, u64 start, u64 len,
5316 int create)
5317{
5318 struct extent_map *em;
5319 struct extent_map *hole_em = NULL;
5320 u64 range_start = start;
5321 u64 end;
5322 u64 found;
5323 u64 found_end;
5324 int err = 0;
5325
5326 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5327 if (IS_ERR(em))
5328 return em;
5329 if (em) {
5330 /*
5331 * if our em maps to a hole, there might
5332 * actually be delalloc bytes behind it
5333 */
5334 if (em->block_start != EXTENT_MAP_HOLE)
5335 return em;
5336 else
5337 hole_em = em;
5338 }
5339
5340 /* check to see if we've wrapped (len == -1 or similar) */
5341 end = start + len;
5342 if (end < start)
5343 end = (u64)-1;
5344 else
5345 end -= 1;
5346
5347 em = NULL;
5348
5349 /* ok, we didn't find anything, lets look for delalloc */
5350 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5351 end, len, EXTENT_DELALLOC, 1);
5352 found_end = range_start + found;
5353 if (found_end < range_start)
5354 found_end = (u64)-1;
5355
5356 /*
5357 * we didn't find anything useful, return
5358 * the original results from get_extent()
5359 */
5360 if (range_start > end || found_end <= start) {
5361 em = hole_em;
5362 hole_em = NULL;
5363 goto out;
5364 }
5365
5366 /* adjust the range_start to make sure it doesn't
5367 * go backwards from the start they passed in
5368 */
5369 range_start = max(start,range_start);
5370 found = found_end - range_start;
5371
5372 if (found > 0) {
5373 u64 hole_start = start;
5374 u64 hole_len = len;
5375
5376 em = alloc_extent_map(GFP_NOFS);
5377 if (!em) {
5378 err = -ENOMEM;
5379 goto out;
5380 }
5381 /*
5382 * when btrfs_get_extent can't find anything it
5383 * returns one huge hole
5384 *
5385 * make sure what it found really fits our range, and
5386 * adjust to make sure it is based on the start from
5387 * the caller
5388 */
5389 if (hole_em) {
5390 u64 calc_end = extent_map_end(hole_em);
5391
5392 if (calc_end <= start || (hole_em->start > end)) {
5393 free_extent_map(hole_em);
5394 hole_em = NULL;
5395 } else {
5396 hole_start = max(hole_em->start, start);
5397 hole_len = calc_end - hole_start;
5398 }
5399 }
5400 em->bdev = NULL;
5401 if (hole_em && range_start > hole_start) {
5402 /* our hole starts before our delalloc, so we
5403 * have to return just the parts of the hole
5404 * that go until the delalloc starts
5405 */
5406 em->len = min(hole_len,
5407 range_start - hole_start);
5408 em->start = hole_start;
5409 em->orig_start = hole_start;
5410 /*
5411 * don't adjust block start at all,
5412 * it is fixed at EXTENT_MAP_HOLE
5413 */
5414 em->block_start = hole_em->block_start;
5415 em->block_len = hole_len;
5416 } else {
5417 em->start = range_start;
5418 em->len = found;
5419 em->orig_start = range_start;
5420 em->block_start = EXTENT_MAP_DELALLOC;
5421 em->block_len = found;
5422 }
5423 } else if (hole_em) {
5424 return hole_em;
5425 }
5426out:
5427
5428 free_extent_map(hole_em);
5429 if (err) {
5430 free_extent_map(em);
5431 return ERR_PTR(err);
5432 }
5433 return em;
5434}
5435
4b46fce2
JB
5436static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5437 u64 start, u64 len)
5438{
5439 struct btrfs_root *root = BTRFS_I(inode)->root;
5440 struct btrfs_trans_handle *trans;
5441 struct extent_map *em;
5442 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5443 struct btrfs_key ins;
5444 u64 alloc_hint;
5445 int ret;
5446
5447 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5448
5449 trans = btrfs_join_transaction(root, 0);
3612b495
TI
5450 if (IS_ERR(trans))
5451 return ERR_CAST(trans);
4b46fce2
JB
5452
5453 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5454
5455 alloc_hint = get_extent_allocation_hint(inode, start, len);
5456 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5457 alloc_hint, (u64)-1, &ins, 1);
5458 if (ret) {
5459 em = ERR_PTR(ret);
5460 goto out;
5461 }
5462
5463 em = alloc_extent_map(GFP_NOFS);
5464 if (!em) {
5465 em = ERR_PTR(-ENOMEM);
5466 goto out;
5467 }
5468
5469 em->start = start;
5470 em->orig_start = em->start;
5471 em->len = ins.offset;
5472
5473 em->block_start = ins.objectid;
5474 em->block_len = ins.offset;
5475 em->bdev = root->fs_info->fs_devices->latest_bdev;
5476 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5477
5478 while (1) {
5479 write_lock(&em_tree->lock);
5480 ret = add_extent_mapping(em_tree, em);
5481 write_unlock(&em_tree->lock);
5482 if (ret != -EEXIST)
5483 break;
5484 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5485 }
5486
5487 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5488 ins.offset, ins.offset, 0);
5489 if (ret) {
5490 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5491 em = ERR_PTR(ret);
5492 }
5493out:
5494 btrfs_end_transaction(trans, root);
5495 return em;
5496}
5497
46bfbb5c
CM
5498/*
5499 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5500 * block must be cow'd
5501 */
5502static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5503 struct inode *inode, u64 offset, u64 len)
5504{
5505 struct btrfs_path *path;
5506 int ret;
5507 struct extent_buffer *leaf;
5508 struct btrfs_root *root = BTRFS_I(inode)->root;
5509 struct btrfs_file_extent_item *fi;
5510 struct btrfs_key key;
5511 u64 disk_bytenr;
5512 u64 backref_offset;
5513 u64 extent_end;
5514 u64 num_bytes;
5515 int slot;
5516 int found_type;
5517
5518 path = btrfs_alloc_path();
5519 if (!path)
5520 return -ENOMEM;
5521
5522 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5523 offset, 0);
5524 if (ret < 0)
5525 goto out;
5526
5527 slot = path->slots[0];
5528 if (ret == 1) {
5529 if (slot == 0) {
5530 /* can't find the item, must cow */
5531 ret = 0;
5532 goto out;
5533 }
5534 slot--;
5535 }
5536 ret = 0;
5537 leaf = path->nodes[0];
5538 btrfs_item_key_to_cpu(leaf, &key, slot);
5539 if (key.objectid != inode->i_ino ||
5540 key.type != BTRFS_EXTENT_DATA_KEY) {
5541 /* not our file or wrong item type, must cow */
5542 goto out;
5543 }
5544
5545 if (key.offset > offset) {
5546 /* Wrong offset, must cow */
5547 goto out;
5548 }
5549
5550 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5551 found_type = btrfs_file_extent_type(leaf, fi);
5552 if (found_type != BTRFS_FILE_EXTENT_REG &&
5553 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5554 /* not a regular extent, must cow */
5555 goto out;
5556 }
5557 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5558 backref_offset = btrfs_file_extent_offset(leaf, fi);
5559
5560 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5561 if (extent_end < offset + len) {
5562 /* extent doesn't include our full range, must cow */
5563 goto out;
5564 }
5565
5566 if (btrfs_extent_readonly(root, disk_bytenr))
5567 goto out;
5568
5569 /*
5570 * look for other files referencing this extent, if we
5571 * find any we must cow
5572 */
5573 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5574 key.offset - backref_offset, disk_bytenr))
5575 goto out;
5576
5577 /*
5578 * adjust disk_bytenr and num_bytes to cover just the bytes
5579 * in this extent we are about to write. If there
5580 * are any csums in that range we have to cow in order
5581 * to keep the csums correct
5582 */
5583 disk_bytenr += backref_offset;
5584 disk_bytenr += offset - key.offset;
5585 num_bytes = min(offset + len, extent_end) - offset;
5586 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5587 goto out;
5588 /*
5589 * all of the above have passed, it is safe to overwrite this extent
5590 * without cow
5591 */
5592 ret = 1;
5593out:
5594 btrfs_free_path(path);
5595 return ret;
5596}
5597
4b46fce2
JB
5598static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5599 struct buffer_head *bh_result, int create)
5600{
5601 struct extent_map *em;
5602 struct btrfs_root *root = BTRFS_I(inode)->root;
5603 u64 start = iblock << inode->i_blkbits;
5604 u64 len = bh_result->b_size;
46bfbb5c 5605 struct btrfs_trans_handle *trans;
4b46fce2
JB
5606
5607 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5608 if (IS_ERR(em))
5609 return PTR_ERR(em);
5610
5611 /*
5612 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5613 * io. INLINE is special, and we could probably kludge it in here, but
5614 * it's still buffered so for safety lets just fall back to the generic
5615 * buffered path.
5616 *
5617 * For COMPRESSED we _have_ to read the entire extent in so we can
5618 * decompress it, so there will be buffering required no matter what we
5619 * do, so go ahead and fallback to buffered.
5620 *
5621 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5622 * to buffered IO. Don't blame me, this is the price we pay for using
5623 * the generic code.
5624 */
5625 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5626 em->block_start == EXTENT_MAP_INLINE) {
5627 free_extent_map(em);
5628 return -ENOTBLK;
5629 }
5630
5631 /* Just a good old fashioned hole, return */
5632 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5633 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5634 free_extent_map(em);
5635 /* DIO will do one hole at a time, so just unlock a sector */
5636 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5637 start + root->sectorsize - 1, GFP_NOFS);
5638 return 0;
5639 }
5640
5641 /*
5642 * We don't allocate a new extent in the following cases
5643 *
5644 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5645 * existing extent.
5646 * 2) The extent is marked as PREALLOC. We're good to go here and can
5647 * just use the extent.
5648 *
5649 */
46bfbb5c
CM
5650 if (!create) {
5651 len = em->len - (start - em->start);
4b46fce2 5652 goto map;
46bfbb5c 5653 }
4b46fce2
JB
5654
5655 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5656 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5657 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5658 int type;
5659 int ret;
46bfbb5c 5660 u64 block_start;
4b46fce2
JB
5661
5662 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5663 type = BTRFS_ORDERED_PREALLOC;
5664 else
5665 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5666 len = min(len, em->len - (start - em->start));
4b46fce2 5667 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5668
5669 /*
5670 * we're not going to log anything, but we do need
5671 * to make sure the current transaction stays open
5672 * while we look for nocow cross refs
5673 */
5674 trans = btrfs_join_transaction(root, 0);
3612b495 5675 if (IS_ERR(trans))
46bfbb5c
CM
5676 goto must_cow;
5677
5678 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5679 ret = btrfs_add_ordered_extent_dio(inode, start,
5680 block_start, len, len, type);
5681 btrfs_end_transaction(trans, root);
5682 if (ret) {
5683 free_extent_map(em);
5684 return ret;
5685 }
5686 goto unlock;
4b46fce2 5687 }
46bfbb5c 5688 btrfs_end_transaction(trans, root);
4b46fce2 5689 }
46bfbb5c
CM
5690must_cow:
5691 /*
5692 * this will cow the extent, reset the len in case we changed
5693 * it above
5694 */
5695 len = bh_result->b_size;
5696 free_extent_map(em);
5697 em = btrfs_new_extent_direct(inode, start, len);
5698 if (IS_ERR(em))
5699 return PTR_ERR(em);
5700 len = min(len, em->len - (start - em->start));
5701unlock:
4845e44f
CM
5702 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5703 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5704 0, NULL, GFP_NOFS);
4b46fce2
JB
5705map:
5706 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5707 inode->i_blkbits;
46bfbb5c 5708 bh_result->b_size = len;
4b46fce2
JB
5709 bh_result->b_bdev = em->bdev;
5710 set_buffer_mapped(bh_result);
5711 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5712 set_buffer_new(bh_result);
5713
5714 free_extent_map(em);
5715
5716 return 0;
5717}
5718
5719struct btrfs_dio_private {
5720 struct inode *inode;
5721 u64 logical_offset;
5722 u64 disk_bytenr;
5723 u64 bytes;
5724 u32 *csums;
5725 void *private;
e65e1535
MX
5726
5727 /* number of bios pending for this dio */
5728 atomic_t pending_bios;
5729
5730 /* IO errors */
5731 int errors;
5732
5733 struct bio *orig_bio;
4b46fce2
JB
5734};
5735
5736static void btrfs_endio_direct_read(struct bio *bio, int err)
5737{
e65e1535 5738 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5739 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5740 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5741 struct inode *inode = dip->inode;
5742 struct btrfs_root *root = BTRFS_I(inode)->root;
5743 u64 start;
5744 u32 *private = dip->csums;
5745
5746 start = dip->logical_offset;
5747 do {
5748 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5749 struct page *page = bvec->bv_page;
5750 char *kaddr;
5751 u32 csum = ~(u32)0;
5752 unsigned long flags;
5753
5754 local_irq_save(flags);
5755 kaddr = kmap_atomic(page, KM_IRQ0);
5756 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5757 csum, bvec->bv_len);
5758 btrfs_csum_final(csum, (char *)&csum);
5759 kunmap_atomic(kaddr, KM_IRQ0);
5760 local_irq_restore(flags);
5761
5762 flush_dcache_page(bvec->bv_page);
5763 if (csum != *private) {
5764 printk(KERN_ERR "btrfs csum failed ino %lu off"
5765 " %llu csum %u private %u\n",
5766 inode->i_ino, (unsigned long long)start,
5767 csum, *private);
5768 err = -EIO;
5769 }
5770 }
5771
5772 start += bvec->bv_len;
5773 private++;
5774 bvec++;
5775 } while (bvec <= bvec_end);
5776
5777 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5778 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5779 bio->bi_private = dip->private;
5780
5781 kfree(dip->csums);
5782 kfree(dip);
c0da7aa1
JB
5783
5784 /* If we had a csum failure make sure to clear the uptodate flag */
5785 if (err)
5786 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5787 dio_end_io(bio, err);
5788}
5789
5790static void btrfs_endio_direct_write(struct bio *bio, int err)
5791{
5792 struct btrfs_dio_private *dip = bio->bi_private;
5793 struct inode *inode = dip->inode;
5794 struct btrfs_root *root = BTRFS_I(inode)->root;
5795 struct btrfs_trans_handle *trans;
5796 struct btrfs_ordered_extent *ordered = NULL;
5797 struct extent_state *cached_state = NULL;
163cf09c
CM
5798 u64 ordered_offset = dip->logical_offset;
5799 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5800 int ret;
5801
5802 if (err)
5803 goto out_done;
163cf09c
CM
5804again:
5805 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5806 &ordered_offset,
5807 ordered_bytes);
4b46fce2 5808 if (!ret)
163cf09c 5809 goto out_test;
4b46fce2
JB
5810
5811 BUG_ON(!ordered);
5812
5813 trans = btrfs_join_transaction(root, 1);
3612b495 5814 if (IS_ERR(trans)) {
4b46fce2
JB
5815 err = -ENOMEM;
5816 goto out;
5817 }
5818 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5819
5820 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5821 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5822 if (!ret)
5823 ret = btrfs_update_inode(trans, root, inode);
5824 err = ret;
5825 goto out;
5826 }
5827
5828 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5829 ordered->file_offset + ordered->len - 1, 0,
5830 &cached_state, GFP_NOFS);
5831
5832 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5833 ret = btrfs_mark_extent_written(trans, inode,
5834 ordered->file_offset,
5835 ordered->file_offset +
5836 ordered->len);
5837 if (ret) {
5838 err = ret;
5839 goto out_unlock;
5840 }
5841 } else {
5842 ret = insert_reserved_file_extent(trans, inode,
5843 ordered->file_offset,
5844 ordered->start,
5845 ordered->disk_len,
5846 ordered->len,
5847 ordered->len,
5848 0, 0, 0,
5849 BTRFS_FILE_EXTENT_REG);
5850 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5851 ordered->file_offset, ordered->len);
5852 if (ret) {
5853 err = ret;
5854 WARN_ON(1);
5855 goto out_unlock;
5856 }
5857 }
5858
5859 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5860 btrfs_ordered_update_i_size(inode, 0, ordered);
5861 btrfs_update_inode(trans, root, inode);
5862out_unlock:
5863 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5864 ordered->file_offset + ordered->len - 1,
5865 &cached_state, GFP_NOFS);
5866out:
5867 btrfs_delalloc_release_metadata(inode, ordered->len);
5868 btrfs_end_transaction(trans, root);
163cf09c 5869 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5870 btrfs_put_ordered_extent(ordered);
5871 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5872
5873out_test:
5874 /*
5875 * our bio might span multiple ordered extents. If we haven't
5876 * completed the accounting for the whole dio, go back and try again
5877 */
5878 if (ordered_offset < dip->logical_offset + dip->bytes) {
5879 ordered_bytes = dip->logical_offset + dip->bytes -
5880 ordered_offset;
5881 goto again;
5882 }
4b46fce2
JB
5883out_done:
5884 bio->bi_private = dip->private;
5885
5886 kfree(dip->csums);
5887 kfree(dip);
c0da7aa1
JB
5888
5889 /* If we had an error make sure to clear the uptodate flag */
5890 if (err)
5891 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5892 dio_end_io(bio, err);
5893}
5894
eaf25d93
CM
5895static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5896 struct bio *bio, int mirror_num,
5897 unsigned long bio_flags, u64 offset)
5898{
5899 int ret;
5900 struct btrfs_root *root = BTRFS_I(inode)->root;
5901 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5902 BUG_ON(ret);
5903 return 0;
5904}
5905
e65e1535
MX
5906static void btrfs_end_dio_bio(struct bio *bio, int err)
5907{
5908 struct btrfs_dio_private *dip = bio->bi_private;
5909
5910 if (err) {
5911 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
3dd1462e
JB
5912 "sector %#Lx len %u err no %d\n",
5913 dip->inode->i_ino, bio->bi_rw,
5914 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5915 dip->errors = 1;
5916
5917 /*
5918 * before atomic variable goto zero, we must make sure
5919 * dip->errors is perceived to be set.
5920 */
5921 smp_mb__before_atomic_dec();
5922 }
5923
5924 /* if there are more bios still pending for this dio, just exit */
5925 if (!atomic_dec_and_test(&dip->pending_bios))
5926 goto out;
5927
5928 if (dip->errors)
5929 bio_io_error(dip->orig_bio);
5930 else {
5931 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5932 bio_endio(dip->orig_bio, 0);
5933 }
5934out:
5935 bio_put(bio);
5936}
5937
5938static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5939 u64 first_sector, gfp_t gfp_flags)
5940{
5941 int nr_vecs = bio_get_nr_vecs(bdev);
5942 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5943}
5944
5945static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5946 int rw, u64 file_offset, int skip_sum,
5947 u32 *csums)
5948{
5949 int write = rw & REQ_WRITE;
5950 struct btrfs_root *root = BTRFS_I(inode)->root;
5951 int ret;
5952
5953 bio_get(bio);
5954 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5955 if (ret)
5956 goto err;
5957
5958 if (write && !skip_sum) {
5959 ret = btrfs_wq_submit_bio(root->fs_info,
5960 inode, rw, bio, 0, 0,
5961 file_offset,
5962 __btrfs_submit_bio_start_direct_io,
5963 __btrfs_submit_bio_done);
5964 goto err;
c2db1073
TI
5965 } else if (!skip_sum) {
5966 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 5967 file_offset, csums);
c2db1073
TI
5968 if (ret)
5969 goto err;
5970 }
e65e1535
MX
5971
5972 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5973err:
5974 bio_put(bio);
5975 return ret;
5976}
5977
5978static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5979 int skip_sum)
5980{
5981 struct inode *inode = dip->inode;
5982 struct btrfs_root *root = BTRFS_I(inode)->root;
5983 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5984 struct bio *bio;
5985 struct bio *orig_bio = dip->orig_bio;
5986 struct bio_vec *bvec = orig_bio->bi_io_vec;
5987 u64 start_sector = orig_bio->bi_sector;
5988 u64 file_offset = dip->logical_offset;
5989 u64 submit_len = 0;
5990 u64 map_length;
5991 int nr_pages = 0;
5992 u32 *csums = dip->csums;
5993 int ret = 0;
98bc3149 5994 int write = rw & REQ_WRITE;
e65e1535
MX
5995
5996 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5997 if (!bio)
5998 return -ENOMEM;
5999 bio->bi_private = dip;
6000 bio->bi_end_io = btrfs_end_dio_bio;
6001 atomic_inc(&dip->pending_bios);
6002
6003 map_length = orig_bio->bi_size;
6004 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6005 &map_length, NULL, 0);
6006 if (ret) {
6007 bio_put(bio);
6008 return -EIO;
6009 }
6010
6011 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6012 if (unlikely(map_length < submit_len + bvec->bv_len ||
6013 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6014 bvec->bv_offset) < bvec->bv_len)) {
6015 /*
6016 * inc the count before we submit the bio so
6017 * we know the end IO handler won't happen before
6018 * we inc the count. Otherwise, the dip might get freed
6019 * before we're done setting it up
6020 */
6021 atomic_inc(&dip->pending_bios);
6022 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6023 file_offset, skip_sum,
6024 csums);
6025 if (ret) {
6026 bio_put(bio);
6027 atomic_dec(&dip->pending_bios);
6028 goto out_err;
6029 }
6030
98bc3149
JB
6031 /* Write's use the ordered csums */
6032 if (!write && !skip_sum)
e65e1535
MX
6033 csums = csums + nr_pages;
6034 start_sector += submit_len >> 9;
6035 file_offset += submit_len;
6036
6037 submit_len = 0;
6038 nr_pages = 0;
6039
6040 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6041 start_sector, GFP_NOFS);
6042 if (!bio)
6043 goto out_err;
6044 bio->bi_private = dip;
6045 bio->bi_end_io = btrfs_end_dio_bio;
6046
6047 map_length = orig_bio->bi_size;
6048 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6049 &map_length, NULL, 0);
6050 if (ret) {
6051 bio_put(bio);
6052 goto out_err;
6053 }
6054 } else {
6055 submit_len += bvec->bv_len;
6056 nr_pages ++;
6057 bvec++;
6058 }
6059 }
6060
6061 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6062 csums);
6063 if (!ret)
6064 return 0;
6065
6066 bio_put(bio);
6067out_err:
6068 dip->errors = 1;
6069 /*
6070 * before atomic variable goto zero, we must
6071 * make sure dip->errors is perceived to be set.
6072 */
6073 smp_mb__before_atomic_dec();
6074 if (atomic_dec_and_test(&dip->pending_bios))
6075 bio_io_error(dip->orig_bio);
6076
6077 /* bio_end_io() will handle error, so we needn't return it */
6078 return 0;
6079}
6080
4b46fce2
JB
6081static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6082 loff_t file_offset)
6083{
6084 struct btrfs_root *root = BTRFS_I(inode)->root;
6085 struct btrfs_dio_private *dip;
6086 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6087 int skip_sum;
7b6d91da 6088 int write = rw & REQ_WRITE;
4b46fce2
JB
6089 int ret = 0;
6090
6091 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6092
6093 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6094 if (!dip) {
6095 ret = -ENOMEM;
6096 goto free_ordered;
6097 }
6098 dip->csums = NULL;
6099
98bc3149
JB
6100 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6101 if (!write && !skip_sum) {
4b46fce2
JB
6102 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6103 if (!dip->csums) {
b4966b77 6104 kfree(dip);
4b46fce2
JB
6105 ret = -ENOMEM;
6106 goto free_ordered;
6107 }
6108 }
6109
6110 dip->private = bio->bi_private;
6111 dip->inode = inode;
6112 dip->logical_offset = file_offset;
6113
4b46fce2
JB
6114 dip->bytes = 0;
6115 do {
6116 dip->bytes += bvec->bv_len;
6117 bvec++;
6118 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6119
46bfbb5c 6120 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6121 bio->bi_private = dip;
e65e1535
MX
6122 dip->errors = 0;
6123 dip->orig_bio = bio;
6124 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6125
6126 if (write)
6127 bio->bi_end_io = btrfs_endio_direct_write;
6128 else
6129 bio->bi_end_io = btrfs_endio_direct_read;
6130
e65e1535
MX
6131 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6132 if (!ret)
eaf25d93 6133 return;
4b46fce2
JB
6134free_ordered:
6135 /*
6136 * If this is a write, we need to clean up the reserved space and kill
6137 * the ordered extent.
6138 */
6139 if (write) {
6140 struct btrfs_ordered_extent *ordered;
955256f2 6141 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6142 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6143 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6144 btrfs_free_reserved_extent(root, ordered->start,
6145 ordered->disk_len);
6146 btrfs_put_ordered_extent(ordered);
6147 btrfs_put_ordered_extent(ordered);
6148 }
6149 bio_endio(bio, ret);
6150}
6151
5a5f79b5
CM
6152static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6153 const struct iovec *iov, loff_t offset,
6154 unsigned long nr_segs)
6155{
6156 int seg;
6157 size_t size;
6158 unsigned long addr;
6159 unsigned blocksize_mask = root->sectorsize - 1;
6160 ssize_t retval = -EINVAL;
6161 loff_t end = offset;
6162
6163 if (offset & blocksize_mask)
6164 goto out;
6165
6166 /* Check the memory alignment. Blocks cannot straddle pages */
6167 for (seg = 0; seg < nr_segs; seg++) {
6168 addr = (unsigned long)iov[seg].iov_base;
6169 size = iov[seg].iov_len;
6170 end += size;
6171 if ((addr & blocksize_mask) || (size & blocksize_mask))
6172 goto out;
6173 }
6174 retval = 0;
6175out:
6176 return retval;
6177}
16432985
CM
6178static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6179 const struct iovec *iov, loff_t offset,
6180 unsigned long nr_segs)
6181{
4b46fce2
JB
6182 struct file *file = iocb->ki_filp;
6183 struct inode *inode = file->f_mapping->host;
6184 struct btrfs_ordered_extent *ordered;
4845e44f 6185 struct extent_state *cached_state = NULL;
4b46fce2
JB
6186 u64 lockstart, lockend;
6187 ssize_t ret;
4845e44f
CM
6188 int writing = rw & WRITE;
6189 int write_bits = 0;
3f7c579c 6190 size_t count = iov_length(iov, nr_segs);
4b46fce2 6191
5a5f79b5
CM
6192 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6193 offset, nr_segs)) {
6194 return 0;
6195 }
6196
4b46fce2 6197 lockstart = offset;
3f7c579c
CM
6198 lockend = offset + count - 1;
6199
6200 if (writing) {
6201 ret = btrfs_delalloc_reserve_space(inode, count);
6202 if (ret)
6203 goto out;
6204 }
4845e44f 6205
4b46fce2 6206 while (1) {
4845e44f
CM
6207 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6208 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6209 /*
6210 * We're concerned with the entire range that we're going to be
6211 * doing DIO to, so we need to make sure theres no ordered
6212 * extents in this range.
6213 */
6214 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6215 lockend - lockstart + 1);
6216 if (!ordered)
6217 break;
4845e44f
CM
6218 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6219 &cached_state, GFP_NOFS);
4b46fce2
JB
6220 btrfs_start_ordered_extent(inode, ordered, 1);
6221 btrfs_put_ordered_extent(ordered);
6222 cond_resched();
6223 }
6224
4845e44f
CM
6225 /*
6226 * we don't use btrfs_set_extent_delalloc because we don't want
6227 * the dirty or uptodate bits
6228 */
6229 if (writing) {
6230 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6231 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6232 EXTENT_DELALLOC, 0, NULL, &cached_state,
6233 GFP_NOFS);
6234 if (ret) {
6235 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6236 lockend, EXTENT_LOCKED | write_bits,
6237 1, 0, &cached_state, GFP_NOFS);
6238 goto out;
6239 }
6240 }
6241
6242 free_extent_state(cached_state);
6243 cached_state = NULL;
6244
5a5f79b5
CM
6245 ret = __blockdev_direct_IO(rw, iocb, inode,
6246 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6247 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6248 btrfs_submit_direct, 0);
4b46fce2
JB
6249
6250 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6251 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6252 offset + iov_length(iov, nr_segs) - 1,
6253 EXTENT_LOCKED | write_bits, 1, 0,
6254 &cached_state, GFP_NOFS);
4b46fce2
JB
6255 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6256 /*
6257 * We're falling back to buffered, unlock the section we didn't
6258 * do IO on.
6259 */
4845e44f
CM
6260 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6261 offset + iov_length(iov, nr_segs) - 1,
6262 EXTENT_LOCKED | write_bits, 1, 0,
6263 &cached_state, GFP_NOFS);
4b46fce2 6264 }
4845e44f
CM
6265out:
6266 free_extent_state(cached_state);
4b46fce2 6267 return ret;
16432985
CM
6268}
6269
1506fcc8
YS
6270static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6271 __u64 start, __u64 len)
6272{
ec29ed5b 6273 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6274}
6275
a52d9a80 6276int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6277{
d1310b2e
CM
6278 struct extent_io_tree *tree;
6279 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6280 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6281}
1832a6d5 6282
a52d9a80 6283static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6284{
d1310b2e 6285 struct extent_io_tree *tree;
b888db2b
CM
6286
6287
6288 if (current->flags & PF_MEMALLOC) {
6289 redirty_page_for_writepage(wbc, page);
6290 unlock_page(page);
6291 return 0;
6292 }
d1310b2e 6293 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6294 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6295}
6296
f421950f
CM
6297int btrfs_writepages(struct address_space *mapping,
6298 struct writeback_control *wbc)
b293f02e 6299{
d1310b2e 6300 struct extent_io_tree *tree;
771ed689 6301
d1310b2e 6302 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6303 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6304}
6305
3ab2fb5a
CM
6306static int
6307btrfs_readpages(struct file *file, struct address_space *mapping,
6308 struct list_head *pages, unsigned nr_pages)
6309{
d1310b2e
CM
6310 struct extent_io_tree *tree;
6311 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6312 return extent_readpages(tree, mapping, pages, nr_pages,
6313 btrfs_get_extent);
6314}
e6dcd2dc 6315static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6316{
d1310b2e
CM
6317 struct extent_io_tree *tree;
6318 struct extent_map_tree *map;
a52d9a80 6319 int ret;
8c2383c3 6320
d1310b2e
CM
6321 tree = &BTRFS_I(page->mapping->host)->io_tree;
6322 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6323 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6324 if (ret == 1) {
6325 ClearPagePrivate(page);
6326 set_page_private(page, 0);
6327 page_cache_release(page);
39279cc3 6328 }
a52d9a80 6329 return ret;
39279cc3
CM
6330}
6331
e6dcd2dc
CM
6332static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6333{
98509cfc
CM
6334 if (PageWriteback(page) || PageDirty(page))
6335 return 0;
b335b003 6336 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6337}
6338
a52d9a80 6339static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6340{
d1310b2e 6341 struct extent_io_tree *tree;
e6dcd2dc 6342 struct btrfs_ordered_extent *ordered;
2ac55d41 6343 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6344 u64 page_start = page_offset(page);
6345 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6346
8b62b72b
CM
6347
6348 /*
6349 * we have the page locked, so new writeback can't start,
6350 * and the dirty bit won't be cleared while we are here.
6351 *
6352 * Wait for IO on this page so that we can safely clear
6353 * the PagePrivate2 bit and do ordered accounting
6354 */
e6dcd2dc 6355 wait_on_page_writeback(page);
8b62b72b 6356
d1310b2e 6357 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6358 if (offset) {
6359 btrfs_releasepage(page, GFP_NOFS);
6360 return;
6361 }
2ac55d41
JB
6362 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6363 GFP_NOFS);
e6dcd2dc
CM
6364 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6365 page_offset(page));
6366 if (ordered) {
eb84ae03
CM
6367 /*
6368 * IO on this page will never be started, so we need
6369 * to account for any ordered extents now
6370 */
e6dcd2dc
CM
6371 clear_extent_bit(tree, page_start, page_end,
6372 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6373 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6374 &cached_state, GFP_NOFS);
8b62b72b
CM
6375 /*
6376 * whoever cleared the private bit is responsible
6377 * for the finish_ordered_io
6378 */
6379 if (TestClearPagePrivate2(page)) {
6380 btrfs_finish_ordered_io(page->mapping->host,
6381 page_start, page_end);
6382 }
e6dcd2dc 6383 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6384 cached_state = NULL;
6385 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6386 GFP_NOFS);
e6dcd2dc
CM
6387 }
6388 clear_extent_bit(tree, page_start, page_end,
32c00aff 6389 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6390 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6391 __btrfs_releasepage(page, GFP_NOFS);
6392
4a096752 6393 ClearPageChecked(page);
9ad6b7bc 6394 if (PagePrivate(page)) {
9ad6b7bc
CM
6395 ClearPagePrivate(page);
6396 set_page_private(page, 0);
6397 page_cache_release(page);
6398 }
39279cc3
CM
6399}
6400
9ebefb18
CM
6401/*
6402 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6403 * called from a page fault handler when a page is first dirtied. Hence we must
6404 * be careful to check for EOF conditions here. We set the page up correctly
6405 * for a written page which means we get ENOSPC checking when writing into
6406 * holes and correct delalloc and unwritten extent mapping on filesystems that
6407 * support these features.
6408 *
6409 * We are not allowed to take the i_mutex here so we have to play games to
6410 * protect against truncate races as the page could now be beyond EOF. Because
6411 * vmtruncate() writes the inode size before removing pages, once we have the
6412 * page lock we can determine safely if the page is beyond EOF. If it is not
6413 * beyond EOF, then the page is guaranteed safe against truncation until we
6414 * unlock the page.
6415 */
c2ec175c 6416int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6417{
c2ec175c 6418 struct page *page = vmf->page;
6da6abae 6419 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6420 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6421 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6422 struct btrfs_ordered_extent *ordered;
2ac55d41 6423 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6424 char *kaddr;
6425 unsigned long zero_start;
9ebefb18 6426 loff_t size;
1832a6d5 6427 int ret;
a52d9a80 6428 u64 page_start;
e6dcd2dc 6429 u64 page_end;
9ebefb18 6430
0ca1f7ce 6431 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6432 if (ret) {
6433 if (ret == -ENOMEM)
6434 ret = VM_FAULT_OOM;
6435 else /* -ENOSPC, -EIO, etc */
6436 ret = VM_FAULT_SIGBUS;
1832a6d5 6437 goto out;
56a76f82 6438 }
1832a6d5 6439
56a76f82 6440 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6441again:
9ebefb18 6442 lock_page(page);
9ebefb18 6443 size = i_size_read(inode);
e6dcd2dc
CM
6444 page_start = page_offset(page);
6445 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6446
9ebefb18 6447 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6448 (page_start >= size)) {
9ebefb18
CM
6449 /* page got truncated out from underneath us */
6450 goto out_unlock;
6451 }
e6dcd2dc
CM
6452 wait_on_page_writeback(page);
6453
2ac55d41
JB
6454 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6455 GFP_NOFS);
e6dcd2dc
CM
6456 set_page_extent_mapped(page);
6457
eb84ae03
CM
6458 /*
6459 * we can't set the delalloc bits if there are pending ordered
6460 * extents. Drop our locks and wait for them to finish
6461 */
e6dcd2dc
CM
6462 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6463 if (ordered) {
2ac55d41
JB
6464 unlock_extent_cached(io_tree, page_start, page_end,
6465 &cached_state, GFP_NOFS);
e6dcd2dc 6466 unlock_page(page);
eb84ae03 6467 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6468 btrfs_put_ordered_extent(ordered);
6469 goto again;
6470 }
6471
fbf19087
JB
6472 /*
6473 * XXX - page_mkwrite gets called every time the page is dirtied, even
6474 * if it was already dirty, so for space accounting reasons we need to
6475 * clear any delalloc bits for the range we are fixing to save. There
6476 * is probably a better way to do this, but for now keep consistent with
6477 * prepare_pages in the normal write path.
6478 */
2ac55d41 6479 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6480 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6481 0, 0, &cached_state, GFP_NOFS);
fbf19087 6482
2ac55d41
JB
6483 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6484 &cached_state);
9ed74f2d 6485 if (ret) {
2ac55d41
JB
6486 unlock_extent_cached(io_tree, page_start, page_end,
6487 &cached_state, GFP_NOFS);
9ed74f2d
JB
6488 ret = VM_FAULT_SIGBUS;
6489 goto out_unlock;
6490 }
e6dcd2dc 6491 ret = 0;
9ebefb18
CM
6492
6493 /* page is wholly or partially inside EOF */
a52d9a80 6494 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6495 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6496 else
e6dcd2dc 6497 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6498
e6dcd2dc
CM
6499 if (zero_start != PAGE_CACHE_SIZE) {
6500 kaddr = kmap(page);
6501 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6502 flush_dcache_page(page);
6503 kunmap(page);
6504 }
247e743c 6505 ClearPageChecked(page);
e6dcd2dc 6506 set_page_dirty(page);
50a9b214 6507 SetPageUptodate(page);
5a3f23d5 6508
257c62e1
CM
6509 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6510 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6511
2ac55d41 6512 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6513
6514out_unlock:
50a9b214
CM
6515 if (!ret)
6516 return VM_FAULT_LOCKED;
9ebefb18 6517 unlock_page(page);
0ca1f7ce 6518 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6519out:
9ebefb18
CM
6520 return ret;
6521}
6522
a41ad394 6523static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6524{
6525 struct btrfs_root *root = BTRFS_I(inode)->root;
6526 int ret;
3893e33b 6527 int err = 0;
39279cc3 6528 struct btrfs_trans_handle *trans;
d3c2fdcf 6529 unsigned long nr;
dbe674a9 6530 u64 mask = root->sectorsize - 1;
39279cc3 6531
5d5e103a
JB
6532 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6533 if (ret)
a41ad394 6534 return ret;
8082510e 6535
4a096752 6536 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6537 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6538
f0cd846e
JB
6539 trans = btrfs_start_transaction(root, 5);
6540 if (IS_ERR(trans))
6541 return PTR_ERR(trans);
6542
6543 btrfs_set_trans_block_group(trans, inode);
6544
6545 ret = btrfs_orphan_add(trans, inode);
6546 if (ret) {
6547 btrfs_end_transaction(trans, root);
6548 return ret;
6549 }
6550
6551 nr = trans->blocks_used;
6552 btrfs_end_transaction(trans, root);
6553 btrfs_btree_balance_dirty(root, nr);
6554
6555 /* Now start a transaction for the truncate */
d68fc57b 6556 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6557 if (IS_ERR(trans))
6558 return PTR_ERR(trans);
8082510e 6559 btrfs_set_trans_block_group(trans, inode);
d68fc57b 6560 trans->block_rsv = root->orphan_block_rsv;
5a3f23d5
CM
6561
6562 /*
6563 * setattr is responsible for setting the ordered_data_close flag,
6564 * but that is only tested during the last file release. That
6565 * could happen well after the next commit, leaving a great big
6566 * window where new writes may get lost if someone chooses to write
6567 * to this file after truncating to zero
6568 *
6569 * The inode doesn't have any dirty data here, and so if we commit
6570 * this is a noop. If someone immediately starts writing to the inode
6571 * it is very likely we'll catch some of their writes in this
6572 * transaction, and the commit will find this file on the ordered
6573 * data list with good things to send down.
6574 *
6575 * This is a best effort solution, there is still a window where
6576 * using truncate to replace the contents of the file will
6577 * end up with a zero length file after a crash.
6578 */
6579 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6580 btrfs_add_ordered_operation(trans, root, inode);
6581
8082510e 6582 while (1) {
d68fc57b
YZ
6583 if (!trans) {
6584 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6585 if (IS_ERR(trans))
6586 return PTR_ERR(trans);
d68fc57b
YZ
6587 btrfs_set_trans_block_group(trans, inode);
6588 trans->block_rsv = root->orphan_block_rsv;
6589 }
6590
6591 ret = btrfs_block_rsv_check(trans, root,
6592 root->orphan_block_rsv, 0, 5);
3893e33b 6593 if (ret == -EAGAIN) {
d68fc57b 6594 ret = btrfs_commit_transaction(trans, root);
3893e33b
JB
6595 if (ret)
6596 return ret;
d68fc57b
YZ
6597 trans = NULL;
6598 continue;
3893e33b
JB
6599 } else if (ret) {
6600 err = ret;
6601 break;
d68fc57b
YZ
6602 }
6603
8082510e
YZ
6604 ret = btrfs_truncate_inode_items(trans, root, inode,
6605 inode->i_size,
6606 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6607 if (ret != -EAGAIN) {
6608 err = ret;
8082510e 6609 break;
3893e33b 6610 }
39279cc3 6611
8082510e 6612 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6613 if (ret) {
6614 err = ret;
6615 break;
6616 }
5f39d397 6617
8082510e
YZ
6618 nr = trans->blocks_used;
6619 btrfs_end_transaction(trans, root);
d68fc57b 6620 trans = NULL;
8082510e 6621 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6622 }
6623
6624 if (ret == 0 && inode->i_nlink > 0) {
6625 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6626 if (ret)
6627 err = ret;
ded5db9d
JB
6628 } else if (ret && inode->i_nlink > 0) {
6629 /*
6630 * Failed to do the truncate, remove us from the in memory
6631 * orphan list.
6632 */
6633 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6634 }
6635
6636 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6637 if (ret && !err)
6638 err = ret;
7b128766 6639
7b128766 6640 nr = trans->blocks_used;
89ce8a63 6641 ret = btrfs_end_transaction_throttle(trans, root);
3893e33b
JB
6642 if (ret && !err)
6643 err = ret;
d3c2fdcf 6644 btrfs_btree_balance_dirty(root, nr);
a41ad394 6645
3893e33b 6646 return err;
39279cc3
CM
6647}
6648
d352ac68
CM
6649/*
6650 * create a new subvolume directory/inode (helper for the ioctl).
6651 */
d2fb3437 6652int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 6653 struct btrfs_root *new_root,
d2fb3437 6654 u64 new_dirid, u64 alloc_hint)
39279cc3 6655{
39279cc3 6656 struct inode *inode;
76dda93c 6657 int err;
00e4e6b3 6658 u64 index = 0;
39279cc3 6659
aec7477b 6660 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 6661 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 6662 if (IS_ERR(inode))
f46b5a66 6663 return PTR_ERR(inode);
39279cc3
CM
6664 inode->i_op = &btrfs_dir_inode_operations;
6665 inode->i_fop = &btrfs_dir_file_operations;
6666
39279cc3 6667 inode->i_nlink = 1;
dbe674a9 6668 btrfs_i_size_write(inode, 0);
3b96362c 6669
76dda93c
YZ
6670 err = btrfs_update_inode(trans, new_root, inode);
6671 BUG_ON(err);
cb8e7090 6672
76dda93c 6673 iput(inode);
cb8e7090 6674 return 0;
39279cc3
CM
6675}
6676
d352ac68
CM
6677/* helper function for file defrag and space balancing. This
6678 * forces readahead on a given range of bytes in an inode
6679 */
edbd8d4e 6680unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6681 struct file_ra_state *ra, struct file *file,
6682 pgoff_t offset, pgoff_t last_index)
6683{
8e7bf94f 6684 pgoff_t req_size = last_index - offset + 1;
86479a04 6685
86479a04
CM
6686 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6687 return offset + req_size;
86479a04
CM
6688}
6689
39279cc3
CM
6690struct inode *btrfs_alloc_inode(struct super_block *sb)
6691{
6692 struct btrfs_inode *ei;
2ead6ae7 6693 struct inode *inode;
39279cc3
CM
6694
6695 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6696 if (!ei)
6697 return NULL;
2ead6ae7
YZ
6698
6699 ei->root = NULL;
6700 ei->space_info = NULL;
6701 ei->generation = 0;
6702 ei->sequence = 0;
15ee9bc7 6703 ei->last_trans = 0;
257c62e1 6704 ei->last_sub_trans = 0;
e02119d5 6705 ei->logged_trans = 0;
2ead6ae7
YZ
6706 ei->delalloc_bytes = 0;
6707 ei->reserved_bytes = 0;
6708 ei->disk_i_size = 0;
6709 ei->flags = 0;
6710 ei->index_cnt = (u64)-1;
6711 ei->last_unlink_trans = 0;
6712
0ca1f7ce 6713 atomic_set(&ei->outstanding_extents, 0);
57a45ced 6714 atomic_set(&ei->reserved_extents, 0);
2ead6ae7
YZ
6715
6716 ei->ordered_data_close = 0;
d68fc57b 6717 ei->orphan_meta_reserved = 0;
2ead6ae7 6718 ei->dummy_inode = 0;
261507a0 6719 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7
YZ
6720
6721 inode = &ei->vfs_inode;
6722 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6723 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6724 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6725 mutex_init(&ei->log_mutex);
e6dcd2dc 6726 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6727 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6728 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6729 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6730 RB_CLEAR_NODE(&ei->rb_node);
6731
6732 return inode;
39279cc3
CM
6733}
6734
fa0d7e3d
NP
6735static void btrfs_i_callback(struct rcu_head *head)
6736{
6737 struct inode *inode = container_of(head, struct inode, i_rcu);
6738 INIT_LIST_HEAD(&inode->i_dentry);
6739 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6740}
6741
39279cc3
CM
6742void btrfs_destroy_inode(struct inode *inode)
6743{
e6dcd2dc 6744 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6745 struct btrfs_root *root = BTRFS_I(inode)->root;
6746
39279cc3
CM
6747 WARN_ON(!list_empty(&inode->i_dentry));
6748 WARN_ON(inode->i_data.nrpages);
0ca1f7ce 6749 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
57a45ced 6750 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
39279cc3 6751
a6dbd429
JB
6752 /*
6753 * This can happen where we create an inode, but somebody else also
6754 * created the same inode and we need to destroy the one we already
6755 * created.
6756 */
6757 if (!root)
6758 goto free;
6759
5a3f23d5
CM
6760 /*
6761 * Make sure we're properly removed from the ordered operation
6762 * lists.
6763 */
6764 smp_mb();
6765 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6766 spin_lock(&root->fs_info->ordered_extent_lock);
6767 list_del_init(&BTRFS_I(inode)->ordered_operations);
6768 spin_unlock(&root->fs_info->ordered_extent_lock);
6769 }
6770
0af3d00b
JB
6771 if (root == root->fs_info->tree_root) {
6772 struct btrfs_block_group_cache *block_group;
6773
6774 block_group = btrfs_lookup_block_group(root->fs_info,
6775 BTRFS_I(inode)->block_group);
6776 if (block_group && block_group->inode == inode) {
6777 spin_lock(&block_group->lock);
6778 block_group->inode = NULL;
6779 spin_unlock(&block_group->lock);
6780 btrfs_put_block_group(block_group);
6781 } else if (block_group) {
6782 btrfs_put_block_group(block_group);
6783 }
6784 }
6785
d68fc57b 6786 spin_lock(&root->orphan_lock);
7b128766 6787 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
6788 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6789 inode->i_ino);
6790 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6791 }
d68fc57b 6792 spin_unlock(&root->orphan_lock);
7b128766 6793
d397712b 6794 while (1) {
e6dcd2dc
CM
6795 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6796 if (!ordered)
6797 break;
6798 else {
d397712b
CM
6799 printk(KERN_ERR "btrfs found ordered "
6800 "extent %llu %llu on inode cleanup\n",
6801 (unsigned long long)ordered->file_offset,
6802 (unsigned long long)ordered->len);
e6dcd2dc
CM
6803 btrfs_remove_ordered_extent(inode, ordered);
6804 btrfs_put_ordered_extent(ordered);
6805 btrfs_put_ordered_extent(ordered);
6806 }
6807 }
5d4f98a2 6808 inode_tree_del(inode);
5b21f2ed 6809 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6810free:
fa0d7e3d 6811 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6812}
6813
45321ac5 6814int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6815{
6816 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6817
0af3d00b
JB
6818 if (btrfs_root_refs(&root->root_item) == 0 &&
6819 root != root->fs_info->tree_root)
45321ac5 6820 return 1;
76dda93c 6821 else
45321ac5 6822 return generic_drop_inode(inode);
76dda93c
YZ
6823}
6824
0ee0fda0 6825static void init_once(void *foo)
39279cc3
CM
6826{
6827 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6828
6829 inode_init_once(&ei->vfs_inode);
6830}
6831
6832void btrfs_destroy_cachep(void)
6833{
6834 if (btrfs_inode_cachep)
6835 kmem_cache_destroy(btrfs_inode_cachep);
6836 if (btrfs_trans_handle_cachep)
6837 kmem_cache_destroy(btrfs_trans_handle_cachep);
6838 if (btrfs_transaction_cachep)
6839 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6840 if (btrfs_path_cachep)
6841 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6842 if (btrfs_free_space_cachep)
6843 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6844}
6845
6846int btrfs_init_cachep(void)
6847{
9601e3f6
CH
6848 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6849 sizeof(struct btrfs_inode), 0,
6850 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6851 if (!btrfs_inode_cachep)
6852 goto fail;
9601e3f6
CH
6853
6854 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6855 sizeof(struct btrfs_trans_handle), 0,
6856 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6857 if (!btrfs_trans_handle_cachep)
6858 goto fail;
9601e3f6
CH
6859
6860 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6861 sizeof(struct btrfs_transaction), 0,
6862 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6863 if (!btrfs_transaction_cachep)
6864 goto fail;
9601e3f6
CH
6865
6866 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6867 sizeof(struct btrfs_path), 0,
6868 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6869 if (!btrfs_path_cachep)
6870 goto fail;
9601e3f6 6871
dc89e982
JB
6872 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6873 sizeof(struct btrfs_free_space), 0,
6874 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6875 if (!btrfs_free_space_cachep)
6876 goto fail;
6877
39279cc3
CM
6878 return 0;
6879fail:
6880 btrfs_destroy_cachep();
6881 return -ENOMEM;
6882}
6883
6884static int btrfs_getattr(struct vfsmount *mnt,
6885 struct dentry *dentry, struct kstat *stat)
6886{
6887 struct inode *inode = dentry->d_inode;
6888 generic_fillattr(inode, stat);
3394e160 6889 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 6890 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6891 stat->blocks = (inode_get_bytes(inode) +
6892 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6893 return 0;
6894}
6895
75e7cb7f
LB
6896/*
6897 * If a file is moved, it will inherit the cow and compression flags of the new
6898 * directory.
6899 */
6900static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6901{
6902 struct btrfs_inode *b_dir = BTRFS_I(dir);
6903 struct btrfs_inode *b_inode = BTRFS_I(inode);
6904
6905 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6906 b_inode->flags |= BTRFS_INODE_NODATACOW;
6907 else
6908 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6909
6910 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6911 b_inode->flags |= BTRFS_INODE_COMPRESS;
6912 else
6913 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6914}
6915
d397712b
CM
6916static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6917 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6918{
6919 struct btrfs_trans_handle *trans;
6920 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6921 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6922 struct inode *new_inode = new_dentry->d_inode;
6923 struct inode *old_inode = old_dentry->d_inode;
6924 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6925 u64 index = 0;
4df27c4d 6926 u64 root_objectid;
39279cc3
CM
6927 int ret;
6928
f679a840
YZ
6929 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6930 return -EPERM;
6931
4df27c4d
YZ
6932 /* we only allow rename subvolume link between subvolumes */
6933 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6934 return -EXDEV;
6935
4df27c4d
YZ
6936 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6937 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6938 return -ENOTEMPTY;
5f39d397 6939
4df27c4d
YZ
6940 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6941 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6942 return -ENOTEMPTY;
5a3f23d5
CM
6943 /*
6944 * we're using rename to replace one file with another.
6945 * and the replacement file is large. Start IO on it now so
6946 * we don't add too much work to the end of the transaction
6947 */
4baf8c92 6948 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6949 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6950 filemap_flush(old_inode->i_mapping);
6951
76dda93c
YZ
6952 /* close the racy window with snapshot create/destroy ioctl */
6953 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6954 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6955 /*
6956 * We want to reserve the absolute worst case amount of items. So if
6957 * both inodes are subvols and we need to unlink them then that would
6958 * require 4 item modifications, but if they are both normal inodes it
6959 * would require 5 item modifications, so we'll assume their normal
6960 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6961 * should cover the worst case number of items we'll modify.
6962 */
6963 trans = btrfs_start_transaction(root, 20);
6964 if (IS_ERR(trans))
6965 return PTR_ERR(trans);
76dda93c 6966
a5719521 6967 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 6968
4df27c4d
YZ
6969 if (dest != root)
6970 btrfs_record_root_in_trans(trans, dest);
5f39d397 6971
a5719521
YZ
6972 ret = btrfs_set_inode_index(new_dir, &index);
6973 if (ret)
6974 goto out_fail;
5a3f23d5 6975
a5719521 6976 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6977 /* force full log commit if subvolume involved. */
6978 root->fs_info->last_trans_log_full_commit = trans->transid;
6979 } else {
a5719521
YZ
6980 ret = btrfs_insert_inode_ref(trans, dest,
6981 new_dentry->d_name.name,
6982 new_dentry->d_name.len,
6983 old_inode->i_ino,
6984 new_dir->i_ino, index);
6985 if (ret)
6986 goto out_fail;
4df27c4d
YZ
6987 /*
6988 * this is an ugly little race, but the rename is required
6989 * to make sure that if we crash, the inode is either at the
6990 * old name or the new one. pinning the log transaction lets
6991 * us make sure we don't allow a log commit to come in after
6992 * we unlink the name but before we add the new name back in.
6993 */
6994 btrfs_pin_log_trans(root);
6995 }
5a3f23d5
CM
6996 /*
6997 * make sure the inode gets flushed if it is replacing
6998 * something.
6999 */
7000 if (new_inode && new_inode->i_size &&
7001 old_inode && S_ISREG(old_inode->i_mode)) {
7002 btrfs_add_ordered_operation(trans, root, old_inode);
7003 }
7004
39279cc3
CM
7005 old_dir->i_ctime = old_dir->i_mtime = ctime;
7006 new_dir->i_ctime = new_dir->i_mtime = ctime;
7007 old_inode->i_ctime = ctime;
5f39d397 7008
12fcfd22
CM
7009 if (old_dentry->d_parent != new_dentry->d_parent)
7010 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7011
4df27c4d
YZ
7012 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7013 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7014 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7015 old_dentry->d_name.name,
7016 old_dentry->d_name.len);
7017 } else {
92986796
AV
7018 ret = __btrfs_unlink_inode(trans, root, old_dir,
7019 old_dentry->d_inode,
7020 old_dentry->d_name.name,
7021 old_dentry->d_name.len);
7022 if (!ret)
7023 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7024 }
7025 BUG_ON(ret);
39279cc3
CM
7026
7027 if (new_inode) {
7028 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
7029 if (unlikely(new_inode->i_ino ==
7030 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7031 root_objectid = BTRFS_I(new_inode)->location.objectid;
7032 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7033 root_objectid,
7034 new_dentry->d_name.name,
7035 new_dentry->d_name.len);
7036 BUG_ON(new_inode->i_nlink == 0);
7037 } else {
7038 ret = btrfs_unlink_inode(trans, dest, new_dir,
7039 new_dentry->d_inode,
7040 new_dentry->d_name.name,
7041 new_dentry->d_name.len);
7042 }
7043 BUG_ON(ret);
7b128766 7044 if (new_inode->i_nlink == 0) {
e02119d5 7045 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7046 BUG_ON(ret);
7b128766 7047 }
39279cc3 7048 }
aec7477b 7049
75e7cb7f
LB
7050 fixup_inode_flags(new_dir, old_inode);
7051
4df27c4d
YZ
7052 ret = btrfs_add_link(trans, new_dir, old_inode,
7053 new_dentry->d_name.name,
a5719521 7054 new_dentry->d_name.len, 0, index);
4df27c4d 7055 BUG_ON(ret);
39279cc3 7056
4df27c4d 7057 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
7058 struct dentry *parent = dget_parent(new_dentry);
7059 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7060 dput(parent);
4df27c4d
YZ
7061 btrfs_end_log_trans(root);
7062 }
39279cc3 7063out_fail:
ab78c84d 7064 btrfs_end_transaction_throttle(trans, root);
4df27c4d 7065
76dda93c
YZ
7066 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7067 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7068
39279cc3
CM
7069 return ret;
7070}
7071
d352ac68
CM
7072/*
7073 * some fairly slow code that needs optimization. This walks the list
7074 * of all the inodes with pending delalloc and forces them to disk.
7075 */
24bbcf04 7076int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7077{
7078 struct list_head *head = &root->fs_info->delalloc_inodes;
7079 struct btrfs_inode *binode;
5b21f2ed 7080 struct inode *inode;
ea8c2819 7081
c146afad
YZ
7082 if (root->fs_info->sb->s_flags & MS_RDONLY)
7083 return -EROFS;
7084
75eff68e 7085 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7086 while (!list_empty(head)) {
ea8c2819
CM
7087 binode = list_entry(head->next, struct btrfs_inode,
7088 delalloc_inodes);
5b21f2ed
ZY
7089 inode = igrab(&binode->vfs_inode);
7090 if (!inode)
7091 list_del_init(&binode->delalloc_inodes);
75eff68e 7092 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7093 if (inode) {
8c8bee1d 7094 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7095 if (delay_iput)
7096 btrfs_add_delayed_iput(inode);
7097 else
7098 iput(inode);
5b21f2ed
ZY
7099 }
7100 cond_resched();
75eff68e 7101 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7102 }
75eff68e 7103 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7104
7105 /* the filemap_flush will queue IO into the worker threads, but
7106 * we have to make sure the IO is actually started and that
7107 * ordered extents get created before we return
7108 */
7109 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7110 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7111 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7112 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7113 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7114 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7115 }
7116 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7117 return 0;
7118}
7119
0019f10d
JB
7120int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7121 int sync)
5da9d01b
YZ
7122{
7123 struct btrfs_inode *binode;
7124 struct inode *inode = NULL;
7125
7126 spin_lock(&root->fs_info->delalloc_lock);
7127 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7128 binode = list_entry(root->fs_info->delalloc_inodes.next,
7129 struct btrfs_inode, delalloc_inodes);
7130 inode = igrab(&binode->vfs_inode);
7131 if (inode) {
7132 list_move_tail(&binode->delalloc_inodes,
7133 &root->fs_info->delalloc_inodes);
7134 break;
7135 }
7136
7137 list_del_init(&binode->delalloc_inodes);
7138 cond_resched_lock(&root->fs_info->delalloc_lock);
7139 }
7140 spin_unlock(&root->fs_info->delalloc_lock);
7141
7142 if (inode) {
0019f10d
JB
7143 if (sync) {
7144 filemap_write_and_wait(inode->i_mapping);
7145 /*
7146 * We have to do this because compression doesn't
7147 * actually set PG_writeback until it submits the pages
7148 * for IO, which happens in an async thread, so we could
7149 * race and not actually wait for any writeback pages
7150 * because they've not been submitted yet. Technically
7151 * this could still be the case for the ordered stuff
7152 * since the async thread may not have started to do its
7153 * work yet. If this becomes the case then we need to
7154 * figure out a way to make sure that in writepage we
7155 * wait for any async pages to be submitted before
7156 * returning so that fdatawait does what its supposed to
7157 * do.
7158 */
7159 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7160 } else {
7161 filemap_flush(inode->i_mapping);
7162 }
5da9d01b
YZ
7163 if (delay_iput)
7164 btrfs_add_delayed_iput(inode);
7165 else
7166 iput(inode);
7167 return 1;
7168 }
7169 return 0;
7170}
7171
39279cc3
CM
7172static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7173 const char *symname)
7174{
7175 struct btrfs_trans_handle *trans;
7176 struct btrfs_root *root = BTRFS_I(dir)->root;
7177 struct btrfs_path *path;
7178 struct btrfs_key key;
1832a6d5 7179 struct inode *inode = NULL;
39279cc3
CM
7180 int err;
7181 int drop_inode = 0;
7182 u64 objectid;
00e4e6b3 7183 u64 index = 0 ;
39279cc3
CM
7184 int name_len;
7185 int datasize;
5f39d397 7186 unsigned long ptr;
39279cc3 7187 struct btrfs_file_extent_item *ei;
5f39d397 7188 struct extent_buffer *leaf;
1832a6d5 7189 unsigned long nr = 0;
39279cc3
CM
7190
7191 name_len = strlen(symname) + 1;
7192 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7193 return -ENAMETOOLONG;
1832a6d5 7194
a22285a6
YZ
7195 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7196 if (err)
7197 return err;
9ed74f2d
JB
7198 /*
7199 * 2 items for inode item and ref
7200 * 2 items for dir items
7201 * 1 item for xattr if selinux is on
7202 */
a22285a6
YZ
7203 trans = btrfs_start_transaction(root, 5);
7204 if (IS_ERR(trans))
7205 return PTR_ERR(trans);
1832a6d5 7206
39279cc3
CM
7207 btrfs_set_trans_block_group(trans, dir);
7208
aec7477b 7209 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 7210 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
7211 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7212 &index);
39279cc3
CM
7213 err = PTR_ERR(inode);
7214 if (IS_ERR(inode))
7215 goto out_unlock;
7216
f34f57a3 7217 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
7218 if (err) {
7219 drop_inode = 1;
7220 goto out_unlock;
7221 }
7222
39279cc3 7223 btrfs_set_trans_block_group(trans, inode);
a1b075d2 7224 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7225 if (err)
7226 drop_inode = 1;
7227 else {
7228 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7229 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7230 inode->i_fop = &btrfs_file_operations;
7231 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7232 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7233 }
39279cc3
CM
7234 btrfs_update_inode_block_group(trans, inode);
7235 btrfs_update_inode_block_group(trans, dir);
7236 if (drop_inode)
7237 goto out_unlock;
7238
7239 path = btrfs_alloc_path();
7240 BUG_ON(!path);
7241 key.objectid = inode->i_ino;
7242 key.offset = 0;
39279cc3
CM
7243 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7244 datasize = btrfs_file_extent_calc_inline_size(name_len);
7245 err = btrfs_insert_empty_item(trans, root, path, &key,
7246 datasize);
54aa1f4d
CM
7247 if (err) {
7248 drop_inode = 1;
7249 goto out_unlock;
7250 }
5f39d397
CM
7251 leaf = path->nodes[0];
7252 ei = btrfs_item_ptr(leaf, path->slots[0],
7253 struct btrfs_file_extent_item);
7254 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7255 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7256 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7257 btrfs_set_file_extent_encryption(leaf, ei, 0);
7258 btrfs_set_file_extent_compression(leaf, ei, 0);
7259 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7260 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7261
39279cc3 7262 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7263 write_extent_buffer(leaf, symname, ptr, name_len);
7264 btrfs_mark_buffer_dirty(leaf);
39279cc3 7265 btrfs_free_path(path);
5f39d397 7266
39279cc3
CM
7267 inode->i_op = &btrfs_symlink_inode_operations;
7268 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7269 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7270 inode_set_bytes(inode, name_len);
dbe674a9 7271 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7272 err = btrfs_update_inode(trans, root, inode);
7273 if (err)
7274 drop_inode = 1;
39279cc3
CM
7275
7276out_unlock:
d3c2fdcf 7277 nr = trans->blocks_used;
ab78c84d 7278 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7279 if (drop_inode) {
7280 inode_dec_link_count(inode);
7281 iput(inode);
7282 }
d3c2fdcf 7283 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7284 return err;
7285}
16432985 7286
0af3d00b
JB
7287static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7288 u64 start, u64 num_bytes, u64 min_size,
7289 loff_t actual_len, u64 *alloc_hint,
7290 struct btrfs_trans_handle *trans)
d899e052 7291{
d899e052
YZ
7292 struct btrfs_root *root = BTRFS_I(inode)->root;
7293 struct btrfs_key ins;
d899e052 7294 u64 cur_offset = start;
55a61d1d 7295 u64 i_size;
d899e052 7296 int ret = 0;
0af3d00b 7297 bool own_trans = true;
d899e052 7298
0af3d00b
JB
7299 if (trans)
7300 own_trans = false;
d899e052 7301 while (num_bytes > 0) {
0af3d00b
JB
7302 if (own_trans) {
7303 trans = btrfs_start_transaction(root, 3);
7304 if (IS_ERR(trans)) {
7305 ret = PTR_ERR(trans);
7306 break;
7307 }
5a303d5d
YZ
7308 }
7309
efa56464
YZ
7310 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7311 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7312 if (ret) {
0af3d00b
JB
7313 if (own_trans)
7314 btrfs_end_transaction(trans, root);
a22285a6 7315 break;
d899e052 7316 }
5a303d5d 7317
d899e052
YZ
7318 ret = insert_reserved_file_extent(trans, inode,
7319 cur_offset, ins.objectid,
7320 ins.offset, ins.offset,
920bbbfb 7321 ins.offset, 0, 0, 0,
d899e052
YZ
7322 BTRFS_FILE_EXTENT_PREALLOC);
7323 BUG_ON(ret);
a1ed835e
CM
7324 btrfs_drop_extent_cache(inode, cur_offset,
7325 cur_offset + ins.offset -1, 0);
5a303d5d 7326
d899e052
YZ
7327 num_bytes -= ins.offset;
7328 cur_offset += ins.offset;
efa56464 7329 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7330
d899e052 7331 inode->i_ctime = CURRENT_TIME;
6cbff00f 7332 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7333 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7334 (actual_len > inode->i_size) &&
7335 (cur_offset > inode->i_size)) {
d1ea6a61 7336 if (cur_offset > actual_len)
55a61d1d 7337 i_size = actual_len;
d1ea6a61 7338 else
55a61d1d
JB
7339 i_size = cur_offset;
7340 i_size_write(inode, i_size);
7341 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7342 }
7343
d899e052
YZ
7344 ret = btrfs_update_inode(trans, root, inode);
7345 BUG_ON(ret);
d899e052 7346
0af3d00b
JB
7347 if (own_trans)
7348 btrfs_end_transaction(trans, root);
5a303d5d 7349 }
d899e052
YZ
7350 return ret;
7351}
7352
0af3d00b
JB
7353int btrfs_prealloc_file_range(struct inode *inode, int mode,
7354 u64 start, u64 num_bytes, u64 min_size,
7355 loff_t actual_len, u64 *alloc_hint)
7356{
7357 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7358 min_size, actual_len, alloc_hint,
7359 NULL);
7360}
7361
7362int btrfs_prealloc_file_range_trans(struct inode *inode,
7363 struct btrfs_trans_handle *trans, int mode,
7364 u64 start, u64 num_bytes, u64 min_size,
7365 loff_t actual_len, u64 *alloc_hint)
7366{
7367 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7368 min_size, actual_len, alloc_hint, trans);
7369}
7370
e6dcd2dc
CM
7371static int btrfs_set_page_dirty(struct page *page)
7372{
e6dcd2dc
CM
7373 return __set_page_dirty_nobuffers(page);
7374}
7375
b74c79e9 7376static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7377{
b83cc969
LZ
7378 struct btrfs_root *root = BTRFS_I(inode)->root;
7379
7380 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7381 return -EROFS;
6cbff00f 7382 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7383 return -EACCES;
b74c79e9 7384 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7385}
39279cc3 7386
6e1d5dcc 7387static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7388 .getattr = btrfs_getattr,
39279cc3
CM
7389 .lookup = btrfs_lookup,
7390 .create = btrfs_create,
7391 .unlink = btrfs_unlink,
7392 .link = btrfs_link,
7393 .mkdir = btrfs_mkdir,
7394 .rmdir = btrfs_rmdir,
7395 .rename = btrfs_rename,
7396 .symlink = btrfs_symlink,
7397 .setattr = btrfs_setattr,
618e21d5 7398 .mknod = btrfs_mknod,
95819c05
CH
7399 .setxattr = btrfs_setxattr,
7400 .getxattr = btrfs_getxattr,
5103e947 7401 .listxattr = btrfs_listxattr,
95819c05 7402 .removexattr = btrfs_removexattr,
fdebe2bd 7403 .permission = btrfs_permission,
39279cc3 7404};
6e1d5dcc 7405static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7406 .lookup = btrfs_lookup,
fdebe2bd 7407 .permission = btrfs_permission,
39279cc3 7408};
76dda93c 7409
828c0950 7410static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7411 .llseek = generic_file_llseek,
7412 .read = generic_read_dir,
cbdf5a24 7413 .readdir = btrfs_real_readdir,
34287aa3 7414 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7415#ifdef CONFIG_COMPAT
34287aa3 7416 .compat_ioctl = btrfs_ioctl,
39279cc3 7417#endif
6bf13c0c 7418 .release = btrfs_release_file,
e02119d5 7419 .fsync = btrfs_sync_file,
39279cc3
CM
7420};
7421
d1310b2e 7422static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7423 .fill_delalloc = run_delalloc_range,
065631f6 7424 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7425 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7426 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7427 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7428 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7429 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7430 .set_bit_hook = btrfs_set_bit_hook,
7431 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7432 .merge_extent_hook = btrfs_merge_extent_hook,
7433 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7434};
7435
35054394
CM
7436/*
7437 * btrfs doesn't support the bmap operation because swapfiles
7438 * use bmap to make a mapping of extents in the file. They assume
7439 * these extents won't change over the life of the file and they
7440 * use the bmap result to do IO directly to the drive.
7441 *
7442 * the btrfs bmap call would return logical addresses that aren't
7443 * suitable for IO and they also will change frequently as COW
7444 * operations happen. So, swapfile + btrfs == corruption.
7445 *
7446 * For now we're avoiding this by dropping bmap.
7447 */
7f09410b 7448static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7449 .readpage = btrfs_readpage,
7450 .writepage = btrfs_writepage,
b293f02e 7451 .writepages = btrfs_writepages,
3ab2fb5a 7452 .readpages = btrfs_readpages,
39279cc3 7453 .sync_page = block_sync_page,
16432985 7454 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7455 .invalidatepage = btrfs_invalidatepage,
7456 .releasepage = btrfs_releasepage,
e6dcd2dc 7457 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7458 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7459};
7460
7f09410b 7461static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7462 .readpage = btrfs_readpage,
7463 .writepage = btrfs_writepage,
2bf5a725
CM
7464 .invalidatepage = btrfs_invalidatepage,
7465 .releasepage = btrfs_releasepage,
39279cc3
CM
7466};
7467
6e1d5dcc 7468static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7469 .getattr = btrfs_getattr,
7470 .setattr = btrfs_setattr,
95819c05
CH
7471 .setxattr = btrfs_setxattr,
7472 .getxattr = btrfs_getxattr,
5103e947 7473 .listxattr = btrfs_listxattr,
95819c05 7474 .removexattr = btrfs_removexattr,
fdebe2bd 7475 .permission = btrfs_permission,
1506fcc8 7476 .fiemap = btrfs_fiemap,
39279cc3 7477};
6e1d5dcc 7478static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7479 .getattr = btrfs_getattr,
7480 .setattr = btrfs_setattr,
fdebe2bd 7481 .permission = btrfs_permission,
95819c05
CH
7482 .setxattr = btrfs_setxattr,
7483 .getxattr = btrfs_getxattr,
33268eaf 7484 .listxattr = btrfs_listxattr,
95819c05 7485 .removexattr = btrfs_removexattr,
618e21d5 7486};
6e1d5dcc 7487static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7488 .readlink = generic_readlink,
7489 .follow_link = page_follow_link_light,
7490 .put_link = page_put_link,
f209561a 7491 .getattr = btrfs_getattr,
fdebe2bd 7492 .permission = btrfs_permission,
0279b4cd
JO
7493 .setxattr = btrfs_setxattr,
7494 .getxattr = btrfs_getxattr,
7495 .listxattr = btrfs_listxattr,
7496 .removexattr = btrfs_removexattr,
39279cc3 7497};
76dda93c 7498
82d339d9 7499const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7500 .d_delete = btrfs_dentry_delete,
7501};