Btrfs: export btrfs space shared info to userspace
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
4b4e25f2 46#include "compat.h"
39279cc3
CM
47#include "ctree.h"
48#include "disk-io.h"
49#include "transaction.h"
50#include "btrfs_inode.h"
39279cc3 51#include "print-tree.h"
e6dcd2dc 52#include "ordered-data.h"
95819c05 53#include "xattr.h"
e02119d5 54#include "tree-log.h"
4a54c8c1 55#include "volumes.h"
c8b97818 56#include "compression.h"
b4ce94de 57#include "locking.h"
dc89e982 58#include "free-space-cache.h"
581bb050 59#include "inode-map.h"
38c227d8 60#include "backref.h"
f23b5a59 61#include "hash.h"
39279cc3
CM
62
63struct btrfs_iget_args {
64 u64 ino;
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
d397712b 128static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
129 struct btrfs_root *root, struct inode *inode,
130 u64 start, size_t size, size_t compressed_size,
fe3f566c 131 int compress_type,
c8b97818
CM
132 struct page **compressed_pages)
133{
134 struct btrfs_key key;
135 struct btrfs_path *path;
136 struct extent_buffer *leaf;
137 struct page *page = NULL;
138 char *kaddr;
139 unsigned long ptr;
140 struct btrfs_file_extent_item *ei;
141 int err = 0;
142 int ret;
143 size_t cur_size = size;
144 size_t datasize;
145 unsigned long offset;
c8b97818 146
fe3f566c 147 if (compressed_size && compressed_pages)
c8b97818 148 cur_size = compressed_size;
c8b97818 149
d397712b
CM
150 path = btrfs_alloc_path();
151 if (!path)
c8b97818
CM
152 return -ENOMEM;
153
b9473439 154 path->leave_spinning = 1;
c8b97818 155
33345d01 156 key.objectid = btrfs_ino(inode);
c8b97818
CM
157 key.offset = start;
158 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
159 datasize = btrfs_file_extent_calc_inline_size(cur_size);
160
161 inode_add_bytes(inode, size);
162 ret = btrfs_insert_empty_item(trans, root, path, &key,
163 datasize);
c8b97818
CM
164 if (ret) {
165 err = ret;
c8b97818
CM
166 goto fail;
167 }
168 leaf = path->nodes[0];
169 ei = btrfs_item_ptr(leaf, path->slots[0],
170 struct btrfs_file_extent_item);
171 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
172 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
173 btrfs_set_file_extent_encryption(leaf, ei, 0);
174 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
175 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
176 ptr = btrfs_file_extent_inline_start(ei);
177
261507a0 178 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
179 struct page *cpage;
180 int i = 0;
d397712b 181 while (compressed_size > 0) {
c8b97818 182 cpage = compressed_pages[i];
5b050f04 183 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
184 PAGE_CACHE_SIZE);
185
7ac687d9 186 kaddr = kmap_atomic(cpage);
c8b97818 187 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 188 kunmap_atomic(kaddr);
c8b97818
CM
189
190 i++;
191 ptr += cur_size;
192 compressed_size -= cur_size;
193 }
194 btrfs_set_file_extent_compression(leaf, ei,
261507a0 195 compress_type);
c8b97818
CM
196 } else {
197 page = find_get_page(inode->i_mapping,
198 start >> PAGE_CACHE_SHIFT);
199 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 200 kaddr = kmap_atomic(page);
c8b97818
CM
201 offset = start & (PAGE_CACHE_SIZE - 1);
202 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 203 kunmap_atomic(kaddr);
c8b97818
CM
204 page_cache_release(page);
205 }
206 btrfs_mark_buffer_dirty(leaf);
207 btrfs_free_path(path);
208
c2167754
YZ
209 /*
210 * we're an inline extent, so nobody can
211 * extend the file past i_size without locking
212 * a page we already have locked.
213 *
214 * We must do any isize and inode updates
215 * before we unlock the pages. Otherwise we
216 * could end up racing with unlink.
217 */
c8b97818 218 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 219 ret = btrfs_update_inode(trans, root, inode);
c2167754 220
79787eaa 221 return ret;
c8b97818
CM
222fail:
223 btrfs_free_path(path);
224 return err;
225}
226
227
228/*
229 * conditionally insert an inline extent into the file. This
230 * does the checks required to make sure the data is small enough
231 * to fit as an inline extent.
232 */
00361589
JB
233static noinline int cow_file_range_inline(struct btrfs_root *root,
234 struct inode *inode, u64 start,
235 u64 end, size_t compressed_size,
236 int compress_type,
237 struct page **compressed_pages)
c8b97818 238{
00361589 239 struct btrfs_trans_handle *trans;
c8b97818
CM
240 u64 isize = i_size_read(inode);
241 u64 actual_end = min(end + 1, isize);
242 u64 inline_len = actual_end - start;
fda2832f 243 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
244 u64 data_len = inline_len;
245 int ret;
246
247 if (compressed_size)
248 data_len = compressed_size;
249
250 if (start > 0 ||
70b99e69 251 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
252 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
253 (!compressed_size &&
254 (actual_end & (root->sectorsize - 1)) == 0) ||
255 end + 1 < isize ||
256 data_len > root->fs_info->max_inline) {
257 return 1;
258 }
259
00361589
JB
260 trans = btrfs_join_transaction(root);
261 if (IS_ERR(trans))
262 return PTR_ERR(trans);
263 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
264
2671485d 265 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
00361589
JB
266 if (ret) {
267 btrfs_abort_transaction(trans, root, ret);
268 goto out;
269 }
c8b97818
CM
270
271 if (isize > actual_end)
272 inline_len = min_t(u64, isize, actual_end);
273 ret = insert_inline_extent(trans, root, inode, start,
274 inline_len, compressed_size,
fe3f566c 275 compress_type, compressed_pages);
2adcac1a 276 if (ret && ret != -ENOSPC) {
79787eaa 277 btrfs_abort_transaction(trans, root, ret);
00361589 278 goto out;
2adcac1a 279 } else if (ret == -ENOSPC) {
00361589
JB
280 ret = 1;
281 goto out;
79787eaa 282 }
2adcac1a 283
bdc20e67 284 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 285 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 286 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589
JB
287out:
288 btrfs_end_transaction(trans, root);
289 return ret;
c8b97818
CM
290}
291
771ed689
CM
292struct async_extent {
293 u64 start;
294 u64 ram_size;
295 u64 compressed_size;
296 struct page **pages;
297 unsigned long nr_pages;
261507a0 298 int compress_type;
771ed689
CM
299 struct list_head list;
300};
301
302struct async_cow {
303 struct inode *inode;
304 struct btrfs_root *root;
305 struct page *locked_page;
306 u64 start;
307 u64 end;
308 struct list_head extents;
309 struct btrfs_work work;
310};
311
312static noinline int add_async_extent(struct async_cow *cow,
313 u64 start, u64 ram_size,
314 u64 compressed_size,
315 struct page **pages,
261507a0
LZ
316 unsigned long nr_pages,
317 int compress_type)
771ed689
CM
318{
319 struct async_extent *async_extent;
320
321 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 322 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
323 async_extent->start = start;
324 async_extent->ram_size = ram_size;
325 async_extent->compressed_size = compressed_size;
326 async_extent->pages = pages;
327 async_extent->nr_pages = nr_pages;
261507a0 328 async_extent->compress_type = compress_type;
771ed689
CM
329 list_add_tail(&async_extent->list, &cow->extents);
330 return 0;
331}
332
d352ac68 333/*
771ed689
CM
334 * we create compressed extents in two phases. The first
335 * phase compresses a range of pages that have already been
336 * locked (both pages and state bits are locked).
c8b97818 337 *
771ed689
CM
338 * This is done inside an ordered work queue, and the compression
339 * is spread across many cpus. The actual IO submission is step
340 * two, and the ordered work queue takes care of making sure that
341 * happens in the same order things were put onto the queue by
342 * writepages and friends.
c8b97818 343 *
771ed689
CM
344 * If this code finds it can't get good compression, it puts an
345 * entry onto the work queue to write the uncompressed bytes. This
346 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
347 * are written in the same order that the flusher thread sent them
348 * down.
d352ac68 349 */
771ed689
CM
350static noinline int compress_file_range(struct inode *inode,
351 struct page *locked_page,
352 u64 start, u64 end,
353 struct async_cow *async_cow,
354 int *num_added)
b888db2b
CM
355{
356 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 357 u64 num_bytes;
db94535d 358 u64 blocksize = root->sectorsize;
c8b97818 359 u64 actual_end;
42dc7bab 360 u64 isize = i_size_read(inode);
e6dcd2dc 361 int ret = 0;
c8b97818
CM
362 struct page **pages = NULL;
363 unsigned long nr_pages;
364 unsigned long nr_pages_ret = 0;
365 unsigned long total_compressed = 0;
366 unsigned long total_in = 0;
367 unsigned long max_compressed = 128 * 1024;
771ed689 368 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
369 int i;
370 int will_compress;
261507a0 371 int compress_type = root->fs_info->compress_type;
4adaa611 372 int redirty = 0;
b888db2b 373
4cb13e5d
LB
374 /* if this is a small write inside eof, kick off a defrag */
375 if ((end - start + 1) < 16 * 1024 &&
376 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
377 btrfs_add_inode_defrag(NULL, inode);
378
42dc7bab 379 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
380again:
381 will_compress = 0;
382 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
383 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 384
f03d9301
CM
385 /*
386 * we don't want to send crud past the end of i_size through
387 * compression, that's just a waste of CPU time. So, if the
388 * end of the file is before the start of our current
389 * requested range of bytes, we bail out to the uncompressed
390 * cleanup code that can deal with all of this.
391 *
392 * It isn't really the fastest way to fix things, but this is a
393 * very uncommon corner.
394 */
395 if (actual_end <= start)
396 goto cleanup_and_bail_uncompressed;
397
c8b97818
CM
398 total_compressed = actual_end - start;
399
400 /* we want to make sure that amount of ram required to uncompress
401 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
402 * of a compressed extent to 128k. This is a crucial number
403 * because it also controls how easily we can spread reads across
404 * cpus for decompression.
405 *
406 * We also want to make sure the amount of IO required to do
407 * a random read is reasonably small, so we limit the size of
408 * a compressed extent to 128k.
c8b97818
CM
409 */
410 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 411 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 412 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
413 total_in = 0;
414 ret = 0;
db94535d 415
771ed689
CM
416 /*
417 * we do compression for mount -o compress and when the
418 * inode has not been flagged as nocompress. This flag can
419 * change at any time if we discover bad compression ratios.
c8b97818 420 */
6cbff00f 421 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 422 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
423 (BTRFS_I(inode)->force_compress) ||
424 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 425 WARN_ON(pages);
cfbc246e 426 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
427 if (!pages) {
428 /* just bail out to the uncompressed code */
429 goto cont;
430 }
c8b97818 431
261507a0
LZ
432 if (BTRFS_I(inode)->force_compress)
433 compress_type = BTRFS_I(inode)->force_compress;
434
4adaa611
CM
435 /*
436 * we need to call clear_page_dirty_for_io on each
437 * page in the range. Otherwise applications with the file
438 * mmap'd can wander in and change the page contents while
439 * we are compressing them.
440 *
441 * If the compression fails for any reason, we set the pages
442 * dirty again later on.
443 */
444 extent_range_clear_dirty_for_io(inode, start, end);
445 redirty = 1;
261507a0
LZ
446 ret = btrfs_compress_pages(compress_type,
447 inode->i_mapping, start,
448 total_compressed, pages,
449 nr_pages, &nr_pages_ret,
450 &total_in,
451 &total_compressed,
452 max_compressed);
c8b97818
CM
453
454 if (!ret) {
455 unsigned long offset = total_compressed &
456 (PAGE_CACHE_SIZE - 1);
457 struct page *page = pages[nr_pages_ret - 1];
458 char *kaddr;
459
460 /* zero the tail end of the last page, we might be
461 * sending it down to disk
462 */
463 if (offset) {
7ac687d9 464 kaddr = kmap_atomic(page);
c8b97818
CM
465 memset(kaddr + offset, 0,
466 PAGE_CACHE_SIZE - offset);
7ac687d9 467 kunmap_atomic(kaddr);
c8b97818
CM
468 }
469 will_compress = 1;
470 }
471 }
560f7d75 472cont:
c8b97818
CM
473 if (start == 0) {
474 /* lets try to make an inline extent */
771ed689 475 if (ret || total_in < (actual_end - start)) {
c8b97818 476 /* we didn't compress the entire range, try
771ed689 477 * to make an uncompressed inline extent.
c8b97818 478 */
00361589
JB
479 ret = cow_file_range_inline(root, inode, start, end,
480 0, 0, NULL);
c8b97818 481 } else {
771ed689 482 /* try making a compressed inline extent */
00361589 483 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
484 total_compressed,
485 compress_type, pages);
c8b97818 486 }
79787eaa 487 if (ret <= 0) {
151a41bc
JB
488 unsigned long clear_flags = EXTENT_DELALLOC |
489 EXTENT_DEFRAG;
490 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
491
771ed689 492 /*
79787eaa
JM
493 * inline extent creation worked or returned error,
494 * we don't need to create any more async work items.
495 * Unlock and free up our temp pages.
771ed689 496 */
c2790a2e 497 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 498 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
499 PAGE_CLEAR_DIRTY |
500 PAGE_SET_WRITEBACK |
501 PAGE_END_WRITEBACK);
c8b97818
CM
502 goto free_pages_out;
503 }
504 }
505
506 if (will_compress) {
507 /*
508 * we aren't doing an inline extent round the compressed size
509 * up to a block size boundary so the allocator does sane
510 * things
511 */
fda2832f 512 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
513
514 /*
515 * one last check to make sure the compression is really a
516 * win, compare the page count read with the blocks on disk
517 */
fda2832f 518 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
519 if (total_compressed >= total_in) {
520 will_compress = 0;
521 } else {
c8b97818
CM
522 num_bytes = total_in;
523 }
524 }
525 if (!will_compress && pages) {
526 /*
527 * the compression code ran but failed to make things smaller,
528 * free any pages it allocated and our page pointer array
529 */
530 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 531 WARN_ON(pages[i]->mapping);
c8b97818
CM
532 page_cache_release(pages[i]);
533 }
534 kfree(pages);
535 pages = NULL;
536 total_compressed = 0;
537 nr_pages_ret = 0;
538
539 /* flag the file so we don't compress in the future */
1e701a32
CM
540 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
541 !(BTRFS_I(inode)->force_compress)) {
a555f810 542 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 543 }
c8b97818 544 }
771ed689
CM
545 if (will_compress) {
546 *num_added += 1;
c8b97818 547
771ed689
CM
548 /* the async work queues will take care of doing actual
549 * allocation on disk for these compressed pages,
550 * and will submit them to the elevator.
551 */
552 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
553 total_compressed, pages, nr_pages_ret,
554 compress_type);
179e29e4 555
24ae6365 556 if (start + num_bytes < end) {
771ed689
CM
557 start += num_bytes;
558 pages = NULL;
559 cond_resched();
560 goto again;
561 }
562 } else {
f03d9301 563cleanup_and_bail_uncompressed:
771ed689
CM
564 /*
565 * No compression, but we still need to write the pages in
566 * the file we've been given so far. redirty the locked
567 * page if it corresponds to our extent and set things up
568 * for the async work queue to run cow_file_range to do
569 * the normal delalloc dance
570 */
571 if (page_offset(locked_page) >= start &&
572 page_offset(locked_page) <= end) {
573 __set_page_dirty_nobuffers(locked_page);
574 /* unlocked later on in the async handlers */
575 }
4adaa611
CM
576 if (redirty)
577 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
578 add_async_extent(async_cow, start, end - start + 1,
579 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
580 *num_added += 1;
581 }
3b951516 582
771ed689 583out:
79787eaa 584 return ret;
771ed689
CM
585
586free_pages_out:
587 for (i = 0; i < nr_pages_ret; i++) {
588 WARN_ON(pages[i]->mapping);
589 page_cache_release(pages[i]);
590 }
d397712b 591 kfree(pages);
771ed689
CM
592
593 goto out;
594}
595
596/*
597 * phase two of compressed writeback. This is the ordered portion
598 * of the code, which only gets called in the order the work was
599 * queued. We walk all the async extents created by compress_file_range
600 * and send them down to the disk.
601 */
602static noinline int submit_compressed_extents(struct inode *inode,
603 struct async_cow *async_cow)
604{
605 struct async_extent *async_extent;
606 u64 alloc_hint = 0;
771ed689
CM
607 struct btrfs_key ins;
608 struct extent_map *em;
609 struct btrfs_root *root = BTRFS_I(inode)->root;
610 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
611 struct extent_io_tree *io_tree;
f5a84ee3 612 int ret = 0;
771ed689
CM
613
614 if (list_empty(&async_cow->extents))
615 return 0;
616
3e04e7f1 617again:
d397712b 618 while (!list_empty(&async_cow->extents)) {
771ed689
CM
619 async_extent = list_entry(async_cow->extents.next,
620 struct async_extent, list);
621 list_del(&async_extent->list);
c8b97818 622
771ed689
CM
623 io_tree = &BTRFS_I(inode)->io_tree;
624
f5a84ee3 625retry:
771ed689
CM
626 /* did the compression code fall back to uncompressed IO? */
627 if (!async_extent->pages) {
628 int page_started = 0;
629 unsigned long nr_written = 0;
630
631 lock_extent(io_tree, async_extent->start,
2ac55d41 632 async_extent->start +
d0082371 633 async_extent->ram_size - 1);
771ed689
CM
634
635 /* allocate blocks */
f5a84ee3
JB
636 ret = cow_file_range(inode, async_cow->locked_page,
637 async_extent->start,
638 async_extent->start +
639 async_extent->ram_size - 1,
640 &page_started, &nr_written, 0);
771ed689 641
79787eaa
JM
642 /* JDM XXX */
643
771ed689
CM
644 /*
645 * if page_started, cow_file_range inserted an
646 * inline extent and took care of all the unlocking
647 * and IO for us. Otherwise, we need to submit
648 * all those pages down to the drive.
649 */
f5a84ee3 650 if (!page_started && !ret)
771ed689
CM
651 extent_write_locked_range(io_tree,
652 inode, async_extent->start,
d397712b 653 async_extent->start +
771ed689
CM
654 async_extent->ram_size - 1,
655 btrfs_get_extent,
656 WB_SYNC_ALL);
3e04e7f1
JB
657 else if (ret)
658 unlock_page(async_cow->locked_page);
771ed689
CM
659 kfree(async_extent);
660 cond_resched();
661 continue;
662 }
663
664 lock_extent(io_tree, async_extent->start,
d0082371 665 async_extent->start + async_extent->ram_size - 1);
771ed689 666
00361589 667 ret = btrfs_reserve_extent(root,
771ed689
CM
668 async_extent->compressed_size,
669 async_extent->compressed_size,
81c9ad23 670 0, alloc_hint, &ins, 1);
f5a84ee3
JB
671 if (ret) {
672 int i;
3e04e7f1 673
f5a84ee3
JB
674 for (i = 0; i < async_extent->nr_pages; i++) {
675 WARN_ON(async_extent->pages[i]->mapping);
676 page_cache_release(async_extent->pages[i]);
677 }
678 kfree(async_extent->pages);
679 async_extent->nr_pages = 0;
680 async_extent->pages = NULL;
3e04e7f1 681
fdf8e2ea
JB
682 if (ret == -ENOSPC) {
683 unlock_extent(io_tree, async_extent->start,
684 async_extent->start +
685 async_extent->ram_size - 1);
79787eaa 686 goto retry;
fdf8e2ea 687 }
3e04e7f1 688 goto out_free;
f5a84ee3
JB
689 }
690
c2167754
YZ
691 /*
692 * here we're doing allocation and writeback of the
693 * compressed pages
694 */
695 btrfs_drop_extent_cache(inode, async_extent->start,
696 async_extent->start +
697 async_extent->ram_size - 1, 0);
698
172ddd60 699 em = alloc_extent_map();
b9aa55be
LB
700 if (!em) {
701 ret = -ENOMEM;
3e04e7f1 702 goto out_free_reserve;
b9aa55be 703 }
771ed689
CM
704 em->start = async_extent->start;
705 em->len = async_extent->ram_size;
445a6944 706 em->orig_start = em->start;
2ab28f32
JB
707 em->mod_start = em->start;
708 em->mod_len = em->len;
c8b97818 709
771ed689
CM
710 em->block_start = ins.objectid;
711 em->block_len = ins.offset;
b4939680 712 em->orig_block_len = ins.offset;
cc95bef6 713 em->ram_bytes = async_extent->ram_size;
771ed689 714 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 715 em->compress_type = async_extent->compress_type;
771ed689
CM
716 set_bit(EXTENT_FLAG_PINNED, &em->flags);
717 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 718 em->generation = -1;
771ed689 719
d397712b 720 while (1) {
890871be 721 write_lock(&em_tree->lock);
09a2a8f9 722 ret = add_extent_mapping(em_tree, em, 1);
890871be 723 write_unlock(&em_tree->lock);
771ed689
CM
724 if (ret != -EEXIST) {
725 free_extent_map(em);
726 break;
727 }
728 btrfs_drop_extent_cache(inode, async_extent->start,
729 async_extent->start +
730 async_extent->ram_size - 1, 0);
731 }
732
3e04e7f1
JB
733 if (ret)
734 goto out_free_reserve;
735
261507a0
LZ
736 ret = btrfs_add_ordered_extent_compress(inode,
737 async_extent->start,
738 ins.objectid,
739 async_extent->ram_size,
740 ins.offset,
741 BTRFS_ORDERED_COMPRESSED,
742 async_extent->compress_type);
3e04e7f1
JB
743 if (ret)
744 goto out_free_reserve;
771ed689 745
771ed689
CM
746 /*
747 * clear dirty, set writeback and unlock the pages.
748 */
c2790a2e 749 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
750 async_extent->start +
751 async_extent->ram_size - 1,
151a41bc
JB
752 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
753 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 754 PAGE_SET_WRITEBACK);
771ed689 755 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
756 async_extent->start,
757 async_extent->ram_size,
758 ins.objectid,
759 ins.offset, async_extent->pages,
760 async_extent->nr_pages);
771ed689
CM
761 alloc_hint = ins.objectid + ins.offset;
762 kfree(async_extent);
3e04e7f1
JB
763 if (ret)
764 goto out;
771ed689
CM
765 cond_resched();
766 }
79787eaa
JM
767 ret = 0;
768out:
769 return ret;
3e04e7f1
JB
770out_free_reserve:
771 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 772out_free:
c2790a2e 773 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
774 async_extent->start +
775 async_extent->ram_size - 1,
c2790a2e 776 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
777 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
778 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
779 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 780 kfree(async_extent);
3e04e7f1 781 goto again;
771ed689
CM
782}
783
4b46fce2
JB
784static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
785 u64 num_bytes)
786{
787 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
788 struct extent_map *em;
789 u64 alloc_hint = 0;
790
791 read_lock(&em_tree->lock);
792 em = search_extent_mapping(em_tree, start, num_bytes);
793 if (em) {
794 /*
795 * if block start isn't an actual block number then find the
796 * first block in this inode and use that as a hint. If that
797 * block is also bogus then just don't worry about it.
798 */
799 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
800 free_extent_map(em);
801 em = search_extent_mapping(em_tree, 0, 0);
802 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
803 alloc_hint = em->block_start;
804 if (em)
805 free_extent_map(em);
806 } else {
807 alloc_hint = em->block_start;
808 free_extent_map(em);
809 }
810 }
811 read_unlock(&em_tree->lock);
812
813 return alloc_hint;
814}
815
771ed689
CM
816/*
817 * when extent_io.c finds a delayed allocation range in the file,
818 * the call backs end up in this code. The basic idea is to
819 * allocate extents on disk for the range, and create ordered data structs
820 * in ram to track those extents.
821 *
822 * locked_page is the page that writepage had locked already. We use
823 * it to make sure we don't do extra locks or unlocks.
824 *
825 * *page_started is set to one if we unlock locked_page and do everything
826 * required to start IO on it. It may be clean and already done with
827 * IO when we return.
828 */
00361589
JB
829static noinline int cow_file_range(struct inode *inode,
830 struct page *locked_page,
831 u64 start, u64 end, int *page_started,
832 unsigned long *nr_written,
833 int unlock)
771ed689 834{
00361589 835 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
836 u64 alloc_hint = 0;
837 u64 num_bytes;
838 unsigned long ram_size;
839 u64 disk_num_bytes;
840 u64 cur_alloc_size;
841 u64 blocksize = root->sectorsize;
771ed689
CM
842 struct btrfs_key ins;
843 struct extent_map *em;
844 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
845 int ret = 0;
846
83eea1f1 847 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 848
fda2832f 849 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
850 num_bytes = max(blocksize, num_bytes);
851 disk_num_bytes = num_bytes;
771ed689 852
4cb5300b 853 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
854 if (num_bytes < 64 * 1024 &&
855 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 856 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 857
771ed689
CM
858 if (start == 0) {
859 /* lets try to make an inline extent */
00361589
JB
860 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
861 NULL);
771ed689 862 if (ret == 0) {
c2790a2e
JB
863 extent_clear_unlock_delalloc(inode, start, end, NULL,
864 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 865 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
866 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
867 PAGE_END_WRITEBACK);
c2167754 868
771ed689
CM
869 *nr_written = *nr_written +
870 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
871 *page_started = 1;
771ed689 872 goto out;
79787eaa 873 } else if (ret < 0) {
79787eaa 874 goto out_unlock;
771ed689
CM
875 }
876 }
877
878 BUG_ON(disk_num_bytes >
6c41761f 879 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 880
4b46fce2 881 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
882 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
883
d397712b 884 while (disk_num_bytes > 0) {
a791e35e
CM
885 unsigned long op;
886
287a0ab9 887 cur_alloc_size = disk_num_bytes;
00361589 888 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 889 root->sectorsize, 0, alloc_hint,
81c9ad23 890 &ins, 1);
00361589 891 if (ret < 0)
79787eaa 892 goto out_unlock;
d397712b 893
172ddd60 894 em = alloc_extent_map();
b9aa55be
LB
895 if (!em) {
896 ret = -ENOMEM;
ace68bac 897 goto out_reserve;
b9aa55be 898 }
e6dcd2dc 899 em->start = start;
445a6944 900 em->orig_start = em->start;
771ed689
CM
901 ram_size = ins.offset;
902 em->len = ins.offset;
2ab28f32
JB
903 em->mod_start = em->start;
904 em->mod_len = em->len;
c8b97818 905
e6dcd2dc 906 em->block_start = ins.objectid;
c8b97818 907 em->block_len = ins.offset;
b4939680 908 em->orig_block_len = ins.offset;
cc95bef6 909 em->ram_bytes = ram_size;
e6dcd2dc 910 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 911 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 912 em->generation = -1;
c8b97818 913
d397712b 914 while (1) {
890871be 915 write_lock(&em_tree->lock);
09a2a8f9 916 ret = add_extent_mapping(em_tree, em, 1);
890871be 917 write_unlock(&em_tree->lock);
e6dcd2dc
CM
918 if (ret != -EEXIST) {
919 free_extent_map(em);
920 break;
921 }
922 btrfs_drop_extent_cache(inode, start,
c8b97818 923 start + ram_size - 1, 0);
e6dcd2dc 924 }
ace68bac
LB
925 if (ret)
926 goto out_reserve;
e6dcd2dc 927
98d20f67 928 cur_alloc_size = ins.offset;
e6dcd2dc 929 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 930 ram_size, cur_alloc_size, 0);
ace68bac
LB
931 if (ret)
932 goto out_reserve;
c8b97818 933
17d217fe
YZ
934 if (root->root_key.objectid ==
935 BTRFS_DATA_RELOC_TREE_OBJECTID) {
936 ret = btrfs_reloc_clone_csums(inode, start,
937 cur_alloc_size);
00361589 938 if (ret)
ace68bac 939 goto out_reserve;
17d217fe
YZ
940 }
941
d397712b 942 if (disk_num_bytes < cur_alloc_size)
3b951516 943 break;
d397712b 944
c8b97818
CM
945 /* we're not doing compressed IO, don't unlock the first
946 * page (which the caller expects to stay locked), don't
947 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
948 *
949 * Do set the Private2 bit so we know this page was properly
950 * setup for writepage
c8b97818 951 */
c2790a2e
JB
952 op = unlock ? PAGE_UNLOCK : 0;
953 op |= PAGE_SET_PRIVATE2;
a791e35e 954
c2790a2e
JB
955 extent_clear_unlock_delalloc(inode, start,
956 start + ram_size - 1, locked_page,
957 EXTENT_LOCKED | EXTENT_DELALLOC,
958 op);
c8b97818 959 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
960 num_bytes -= cur_alloc_size;
961 alloc_hint = ins.objectid + ins.offset;
962 start += cur_alloc_size;
b888db2b 963 }
79787eaa 964out:
be20aa9d 965 return ret;
b7d5b0a8 966
ace68bac
LB
967out_reserve:
968 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 969out_unlock:
c2790a2e 970 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
971 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
972 EXTENT_DELALLOC | EXTENT_DEFRAG,
973 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
974 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 975 goto out;
771ed689 976}
c8b97818 977
771ed689
CM
978/*
979 * work queue call back to started compression on a file and pages
980 */
981static noinline void async_cow_start(struct btrfs_work *work)
982{
983 struct async_cow *async_cow;
984 int num_added = 0;
985 async_cow = container_of(work, struct async_cow, work);
986
987 compress_file_range(async_cow->inode, async_cow->locked_page,
988 async_cow->start, async_cow->end, async_cow,
989 &num_added);
8180ef88 990 if (num_added == 0) {
cb77fcd8 991 btrfs_add_delayed_iput(async_cow->inode);
771ed689 992 async_cow->inode = NULL;
8180ef88 993 }
771ed689
CM
994}
995
996/*
997 * work queue call back to submit previously compressed pages
998 */
999static noinline void async_cow_submit(struct btrfs_work *work)
1000{
1001 struct async_cow *async_cow;
1002 struct btrfs_root *root;
1003 unsigned long nr_pages;
1004
1005 async_cow = container_of(work, struct async_cow, work);
1006
1007 root = async_cow->root;
1008 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1009 PAGE_CACHE_SHIFT;
1010
66657b31 1011 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1012 5 * 1024 * 1024 &&
771ed689
CM
1013 waitqueue_active(&root->fs_info->async_submit_wait))
1014 wake_up(&root->fs_info->async_submit_wait);
1015
d397712b 1016 if (async_cow->inode)
771ed689 1017 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1018}
c8b97818 1019
771ed689
CM
1020static noinline void async_cow_free(struct btrfs_work *work)
1021{
1022 struct async_cow *async_cow;
1023 async_cow = container_of(work, struct async_cow, work);
8180ef88 1024 if (async_cow->inode)
cb77fcd8 1025 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1026 kfree(async_cow);
1027}
1028
1029static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1030 u64 start, u64 end, int *page_started,
1031 unsigned long *nr_written)
1032{
1033 struct async_cow *async_cow;
1034 struct btrfs_root *root = BTRFS_I(inode)->root;
1035 unsigned long nr_pages;
1036 u64 cur_end;
287082b0 1037 int limit = 10 * 1024 * 1024;
771ed689 1038
a3429ab7
CM
1039 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1040 1, 0, NULL, GFP_NOFS);
d397712b 1041 while (start < end) {
771ed689 1042 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1043 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1044 async_cow->inode = igrab(inode);
771ed689
CM
1045 async_cow->root = root;
1046 async_cow->locked_page = locked_page;
1047 async_cow->start = start;
1048
6cbff00f 1049 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1050 cur_end = end;
1051 else
1052 cur_end = min(end, start + 512 * 1024 - 1);
1053
1054 async_cow->end = cur_end;
1055 INIT_LIST_HEAD(&async_cow->extents);
1056
1057 async_cow->work.func = async_cow_start;
1058 async_cow->work.ordered_func = async_cow_submit;
1059 async_cow->work.ordered_free = async_cow_free;
1060 async_cow->work.flags = 0;
1061
771ed689
CM
1062 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1063 PAGE_CACHE_SHIFT;
1064 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1065
1066 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1067 &async_cow->work);
1068
1069 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1070 wait_event(root->fs_info->async_submit_wait,
1071 (atomic_read(&root->fs_info->async_delalloc_pages) <
1072 limit));
1073 }
1074
d397712b 1075 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1076 atomic_read(&root->fs_info->async_delalloc_pages)) {
1077 wait_event(root->fs_info->async_submit_wait,
1078 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1079 0));
1080 }
1081
1082 *nr_written += nr_pages;
1083 start = cur_end + 1;
1084 }
1085 *page_started = 1;
1086 return 0;
be20aa9d
CM
1087}
1088
d397712b 1089static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1090 u64 bytenr, u64 num_bytes)
1091{
1092 int ret;
1093 struct btrfs_ordered_sum *sums;
1094 LIST_HEAD(list);
1095
07d400a6 1096 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1097 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1098 if (ret == 0 && list_empty(&list))
1099 return 0;
1100
1101 while (!list_empty(&list)) {
1102 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1103 list_del(&sums->list);
1104 kfree(sums);
1105 }
1106 return 1;
1107}
1108
d352ac68
CM
1109/*
1110 * when nowcow writeback call back. This checks for snapshots or COW copies
1111 * of the extents that exist in the file, and COWs the file as required.
1112 *
1113 * If no cow copies or snapshots exist, we write directly to the existing
1114 * blocks on disk
1115 */
7f366cfe
CM
1116static noinline int run_delalloc_nocow(struct inode *inode,
1117 struct page *locked_page,
771ed689
CM
1118 u64 start, u64 end, int *page_started, int force,
1119 unsigned long *nr_written)
be20aa9d 1120{
be20aa9d 1121 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1122 struct btrfs_trans_handle *trans;
be20aa9d 1123 struct extent_buffer *leaf;
be20aa9d 1124 struct btrfs_path *path;
80ff3856 1125 struct btrfs_file_extent_item *fi;
be20aa9d 1126 struct btrfs_key found_key;
80ff3856
YZ
1127 u64 cow_start;
1128 u64 cur_offset;
1129 u64 extent_end;
5d4f98a2 1130 u64 extent_offset;
80ff3856
YZ
1131 u64 disk_bytenr;
1132 u64 num_bytes;
b4939680 1133 u64 disk_num_bytes;
cc95bef6 1134 u64 ram_bytes;
80ff3856 1135 int extent_type;
79787eaa 1136 int ret, err;
d899e052 1137 int type;
80ff3856
YZ
1138 int nocow;
1139 int check_prev = 1;
82d5902d 1140 bool nolock;
33345d01 1141 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1142
1143 path = btrfs_alloc_path();
17ca04af 1144 if (!path) {
c2790a2e
JB
1145 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1146 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1147 EXTENT_DO_ACCOUNTING |
1148 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1149 PAGE_CLEAR_DIRTY |
1150 PAGE_SET_WRITEBACK |
1151 PAGE_END_WRITEBACK);
d8926bb3 1152 return -ENOMEM;
17ca04af 1153 }
82d5902d 1154
83eea1f1 1155 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1156
1157 if (nolock)
7a7eaa40 1158 trans = btrfs_join_transaction_nolock(root);
82d5902d 1159 else
7a7eaa40 1160 trans = btrfs_join_transaction(root);
ff5714cc 1161
79787eaa 1162 if (IS_ERR(trans)) {
c2790a2e
JB
1163 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1164 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1165 EXTENT_DO_ACCOUNTING |
1166 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1167 PAGE_CLEAR_DIRTY |
1168 PAGE_SET_WRITEBACK |
1169 PAGE_END_WRITEBACK);
79787eaa
JM
1170 btrfs_free_path(path);
1171 return PTR_ERR(trans);
1172 }
1173
74b21075 1174 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1175
80ff3856
YZ
1176 cow_start = (u64)-1;
1177 cur_offset = start;
1178 while (1) {
33345d01 1179 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1180 cur_offset, 0);
79787eaa
JM
1181 if (ret < 0) {
1182 btrfs_abort_transaction(trans, root, ret);
1183 goto error;
1184 }
80ff3856
YZ
1185 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1186 leaf = path->nodes[0];
1187 btrfs_item_key_to_cpu(leaf, &found_key,
1188 path->slots[0] - 1);
33345d01 1189 if (found_key.objectid == ino &&
80ff3856
YZ
1190 found_key.type == BTRFS_EXTENT_DATA_KEY)
1191 path->slots[0]--;
1192 }
1193 check_prev = 0;
1194next_slot:
1195 leaf = path->nodes[0];
1196 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1197 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1198 if (ret < 0) {
1199 btrfs_abort_transaction(trans, root, ret);
1200 goto error;
1201 }
80ff3856
YZ
1202 if (ret > 0)
1203 break;
1204 leaf = path->nodes[0];
1205 }
be20aa9d 1206
80ff3856
YZ
1207 nocow = 0;
1208 disk_bytenr = 0;
17d217fe 1209 num_bytes = 0;
80ff3856
YZ
1210 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1211
33345d01 1212 if (found_key.objectid > ino ||
80ff3856
YZ
1213 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1214 found_key.offset > end)
1215 break;
1216
1217 if (found_key.offset > cur_offset) {
1218 extent_end = found_key.offset;
e9061e21 1219 extent_type = 0;
80ff3856
YZ
1220 goto out_check;
1221 }
1222
1223 fi = btrfs_item_ptr(leaf, path->slots[0],
1224 struct btrfs_file_extent_item);
1225 extent_type = btrfs_file_extent_type(leaf, fi);
1226
cc95bef6 1227 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1228 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1229 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1230 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1231 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1232 extent_end = found_key.offset +
1233 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1234 disk_num_bytes =
1235 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1236 if (extent_end <= start) {
1237 path->slots[0]++;
1238 goto next_slot;
1239 }
17d217fe
YZ
1240 if (disk_bytenr == 0)
1241 goto out_check;
80ff3856
YZ
1242 if (btrfs_file_extent_compression(leaf, fi) ||
1243 btrfs_file_extent_encryption(leaf, fi) ||
1244 btrfs_file_extent_other_encoding(leaf, fi))
1245 goto out_check;
d899e052
YZ
1246 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1247 goto out_check;
d2fb3437 1248 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1249 goto out_check;
33345d01 1250 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1251 found_key.offset -
1252 extent_offset, disk_bytenr))
17d217fe 1253 goto out_check;
5d4f98a2 1254 disk_bytenr += extent_offset;
17d217fe
YZ
1255 disk_bytenr += cur_offset - found_key.offset;
1256 num_bytes = min(end + 1, extent_end) - cur_offset;
1257 /*
1258 * force cow if csum exists in the range.
1259 * this ensure that csum for a given extent are
1260 * either valid or do not exist.
1261 */
1262 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1263 goto out_check;
80ff3856
YZ
1264 nocow = 1;
1265 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1266 extent_end = found_key.offset +
1267 btrfs_file_extent_inline_len(leaf, fi);
1268 extent_end = ALIGN(extent_end, root->sectorsize);
1269 } else {
1270 BUG_ON(1);
1271 }
1272out_check:
1273 if (extent_end <= start) {
1274 path->slots[0]++;
1275 goto next_slot;
1276 }
1277 if (!nocow) {
1278 if (cow_start == (u64)-1)
1279 cow_start = cur_offset;
1280 cur_offset = extent_end;
1281 if (cur_offset > end)
1282 break;
1283 path->slots[0]++;
1284 goto next_slot;
7ea394f1
YZ
1285 }
1286
b3b4aa74 1287 btrfs_release_path(path);
80ff3856 1288 if (cow_start != (u64)-1) {
00361589
JB
1289 ret = cow_file_range(inode, locked_page,
1290 cow_start, found_key.offset - 1,
1291 page_started, nr_written, 1);
79787eaa
JM
1292 if (ret) {
1293 btrfs_abort_transaction(trans, root, ret);
1294 goto error;
1295 }
80ff3856 1296 cow_start = (u64)-1;
7ea394f1 1297 }
80ff3856 1298
d899e052
YZ
1299 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1300 struct extent_map *em;
1301 struct extent_map_tree *em_tree;
1302 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1303 em = alloc_extent_map();
79787eaa 1304 BUG_ON(!em); /* -ENOMEM */
d899e052 1305 em->start = cur_offset;
70c8a91c 1306 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1307 em->len = num_bytes;
1308 em->block_len = num_bytes;
1309 em->block_start = disk_bytenr;
b4939680 1310 em->orig_block_len = disk_num_bytes;
cc95bef6 1311 em->ram_bytes = ram_bytes;
d899e052 1312 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1313 em->mod_start = em->start;
1314 em->mod_len = em->len;
d899e052 1315 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1316 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1317 em->generation = -1;
d899e052 1318 while (1) {
890871be 1319 write_lock(&em_tree->lock);
09a2a8f9 1320 ret = add_extent_mapping(em_tree, em, 1);
890871be 1321 write_unlock(&em_tree->lock);
d899e052
YZ
1322 if (ret != -EEXIST) {
1323 free_extent_map(em);
1324 break;
1325 }
1326 btrfs_drop_extent_cache(inode, em->start,
1327 em->start + em->len - 1, 0);
1328 }
1329 type = BTRFS_ORDERED_PREALLOC;
1330 } else {
1331 type = BTRFS_ORDERED_NOCOW;
1332 }
80ff3856
YZ
1333
1334 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1335 num_bytes, num_bytes, type);
79787eaa 1336 BUG_ON(ret); /* -ENOMEM */
771ed689 1337
efa56464
YZ
1338 if (root->root_key.objectid ==
1339 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1340 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1341 num_bytes);
79787eaa
JM
1342 if (ret) {
1343 btrfs_abort_transaction(trans, root, ret);
1344 goto error;
1345 }
efa56464
YZ
1346 }
1347
c2790a2e
JB
1348 extent_clear_unlock_delalloc(inode, cur_offset,
1349 cur_offset + num_bytes - 1,
1350 locked_page, EXTENT_LOCKED |
1351 EXTENT_DELALLOC, PAGE_UNLOCK |
1352 PAGE_SET_PRIVATE2);
80ff3856
YZ
1353 cur_offset = extent_end;
1354 if (cur_offset > end)
1355 break;
be20aa9d 1356 }
b3b4aa74 1357 btrfs_release_path(path);
80ff3856 1358
17ca04af 1359 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1360 cow_start = cur_offset;
17ca04af
JB
1361 cur_offset = end;
1362 }
1363
80ff3856 1364 if (cow_start != (u64)-1) {
00361589
JB
1365 ret = cow_file_range(inode, locked_page, cow_start, end,
1366 page_started, nr_written, 1);
79787eaa
JM
1367 if (ret) {
1368 btrfs_abort_transaction(trans, root, ret);
1369 goto error;
1370 }
80ff3856
YZ
1371 }
1372
79787eaa 1373error:
a698d075 1374 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1375 if (!ret)
1376 ret = err;
1377
17ca04af 1378 if (ret && cur_offset < end)
c2790a2e
JB
1379 extent_clear_unlock_delalloc(inode, cur_offset, end,
1380 locked_page, EXTENT_LOCKED |
151a41bc
JB
1381 EXTENT_DELALLOC | EXTENT_DEFRAG |
1382 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1383 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1384 PAGE_SET_WRITEBACK |
1385 PAGE_END_WRITEBACK);
7ea394f1 1386 btrfs_free_path(path);
79787eaa 1387 return ret;
be20aa9d
CM
1388}
1389
d352ac68
CM
1390/*
1391 * extent_io.c call back to do delayed allocation processing
1392 */
c8b97818 1393static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1394 u64 start, u64 end, int *page_started,
1395 unsigned long *nr_written)
be20aa9d 1396{
be20aa9d 1397 int ret;
7f366cfe 1398 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1399
7ddf5a42 1400 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1401 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1402 page_started, 1, nr_written);
7ddf5a42 1403 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1404 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1405 page_started, 0, nr_written);
7ddf5a42
JB
1406 } else if (!btrfs_test_opt(root, COMPRESS) &&
1407 !(BTRFS_I(inode)->force_compress) &&
1408 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1409 ret = cow_file_range(inode, locked_page, start, end,
1410 page_started, nr_written, 1);
7ddf5a42
JB
1411 } else {
1412 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1413 &BTRFS_I(inode)->runtime_flags);
771ed689 1414 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1415 page_started, nr_written);
7ddf5a42 1416 }
b888db2b
CM
1417 return ret;
1418}
1419
1bf85046
JM
1420static void btrfs_split_extent_hook(struct inode *inode,
1421 struct extent_state *orig, u64 split)
9ed74f2d 1422{
0ca1f7ce 1423 /* not delalloc, ignore it */
9ed74f2d 1424 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1425 return;
9ed74f2d 1426
9e0baf60
JB
1427 spin_lock(&BTRFS_I(inode)->lock);
1428 BTRFS_I(inode)->outstanding_extents++;
1429 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1430}
1431
1432/*
1433 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1434 * extents so we can keep track of new extents that are just merged onto old
1435 * extents, such as when we are doing sequential writes, so we can properly
1436 * account for the metadata space we'll need.
1437 */
1bf85046
JM
1438static void btrfs_merge_extent_hook(struct inode *inode,
1439 struct extent_state *new,
1440 struct extent_state *other)
9ed74f2d 1441{
9ed74f2d
JB
1442 /* not delalloc, ignore it */
1443 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1444 return;
9ed74f2d 1445
9e0baf60
JB
1446 spin_lock(&BTRFS_I(inode)->lock);
1447 BTRFS_I(inode)->outstanding_extents--;
1448 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1449}
1450
eb73c1b7
MX
1451static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1452 struct inode *inode)
1453{
1454 spin_lock(&root->delalloc_lock);
1455 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1456 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1457 &root->delalloc_inodes);
1458 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1459 &BTRFS_I(inode)->runtime_flags);
1460 root->nr_delalloc_inodes++;
1461 if (root->nr_delalloc_inodes == 1) {
1462 spin_lock(&root->fs_info->delalloc_root_lock);
1463 BUG_ON(!list_empty(&root->delalloc_root));
1464 list_add_tail(&root->delalloc_root,
1465 &root->fs_info->delalloc_roots);
1466 spin_unlock(&root->fs_info->delalloc_root_lock);
1467 }
1468 }
1469 spin_unlock(&root->delalloc_lock);
1470}
1471
1472static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1473 struct inode *inode)
1474{
1475 spin_lock(&root->delalloc_lock);
1476 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1477 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1478 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1479 &BTRFS_I(inode)->runtime_flags);
1480 root->nr_delalloc_inodes--;
1481 if (!root->nr_delalloc_inodes) {
1482 spin_lock(&root->fs_info->delalloc_root_lock);
1483 BUG_ON(list_empty(&root->delalloc_root));
1484 list_del_init(&root->delalloc_root);
1485 spin_unlock(&root->fs_info->delalloc_root_lock);
1486 }
1487 }
1488 spin_unlock(&root->delalloc_lock);
1489}
1490
d352ac68
CM
1491/*
1492 * extent_io.c set_bit_hook, used to track delayed allocation
1493 * bytes in this file, and to maintain the list of inodes that
1494 * have pending delalloc work to be done.
1495 */
1bf85046 1496static void btrfs_set_bit_hook(struct inode *inode,
41074888 1497 struct extent_state *state, unsigned long *bits)
291d673e 1498{
9ed74f2d 1499
75eff68e
CM
1500 /*
1501 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1502 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1503 * bit, which is only set or cleared with irqs on
1504 */
0ca1f7ce 1505 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1506 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1507 u64 len = state->end + 1 - state->start;
83eea1f1 1508 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1509
9e0baf60 1510 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1511 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1512 } else {
1513 spin_lock(&BTRFS_I(inode)->lock);
1514 BTRFS_I(inode)->outstanding_extents++;
1515 spin_unlock(&BTRFS_I(inode)->lock);
1516 }
287a0ab9 1517
963d678b
MX
1518 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1519 root->fs_info->delalloc_batch);
df0af1a5 1520 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1521 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5 1522 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1523 &BTRFS_I(inode)->runtime_flags))
1524 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1525 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1526 }
291d673e
CM
1527}
1528
d352ac68
CM
1529/*
1530 * extent_io.c clear_bit_hook, see set_bit_hook for why
1531 */
1bf85046 1532static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1533 struct extent_state *state,
1534 unsigned long *bits)
291d673e 1535{
75eff68e
CM
1536 /*
1537 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1538 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1539 * bit, which is only set or cleared with irqs on
1540 */
0ca1f7ce 1541 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1542 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1543 u64 len = state->end + 1 - state->start;
83eea1f1 1544 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1545
9e0baf60 1546 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1547 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1548 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1549 spin_lock(&BTRFS_I(inode)->lock);
1550 BTRFS_I(inode)->outstanding_extents--;
1551 spin_unlock(&BTRFS_I(inode)->lock);
1552 }
0ca1f7ce
YZ
1553
1554 if (*bits & EXTENT_DO_ACCOUNTING)
1555 btrfs_delalloc_release_metadata(inode, len);
1556
0cb59c99 1557 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1558 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1559 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1560
963d678b
MX
1561 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1562 root->fs_info->delalloc_batch);
df0af1a5 1563 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1564 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1565 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1566 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1567 &BTRFS_I(inode)->runtime_flags))
1568 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1569 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1570 }
291d673e
CM
1571}
1572
d352ac68
CM
1573/*
1574 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1575 * we don't create bios that span stripes or chunks
1576 */
64a16701 1577int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1578 size_t size, struct bio *bio,
1579 unsigned long bio_flags)
239b14b3
CM
1580{
1581 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1582 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1583 u64 length = 0;
1584 u64 map_length;
239b14b3
CM
1585 int ret;
1586
771ed689
CM
1587 if (bio_flags & EXTENT_BIO_COMPRESSED)
1588 return 0;
1589
f2d8d74d 1590 length = bio->bi_size;
239b14b3 1591 map_length = length;
64a16701 1592 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1593 &map_length, NULL, 0);
3ec706c8 1594 /* Will always return 0 with map_multi == NULL */
3444a972 1595 BUG_ON(ret < 0);
d397712b 1596 if (map_length < length + size)
239b14b3 1597 return 1;
3444a972 1598 return 0;
239b14b3
CM
1599}
1600
d352ac68
CM
1601/*
1602 * in order to insert checksums into the metadata in large chunks,
1603 * we wait until bio submission time. All the pages in the bio are
1604 * checksummed and sums are attached onto the ordered extent record.
1605 *
1606 * At IO completion time the cums attached on the ordered extent record
1607 * are inserted into the btree
1608 */
d397712b
CM
1609static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1610 struct bio *bio, int mirror_num,
eaf25d93
CM
1611 unsigned long bio_flags,
1612 u64 bio_offset)
065631f6 1613{
065631f6 1614 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1615 int ret = 0;
e015640f 1616
d20f7043 1617 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1618 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1619 return 0;
1620}
e015640f 1621
4a69a410
CM
1622/*
1623 * in order to insert checksums into the metadata in large chunks,
1624 * we wait until bio submission time. All the pages in the bio are
1625 * checksummed and sums are attached onto the ordered extent record.
1626 *
1627 * At IO completion time the cums attached on the ordered extent record
1628 * are inserted into the btree
1629 */
b2950863 1630static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1631 int mirror_num, unsigned long bio_flags,
1632 u64 bio_offset)
4a69a410
CM
1633{
1634 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1635 int ret;
1636
1637 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1638 if (ret)
1639 bio_endio(bio, ret);
1640 return ret;
44b8bd7e
CM
1641}
1642
d352ac68 1643/*
cad321ad
CM
1644 * extent_io.c submission hook. This does the right thing for csum calculation
1645 * on write, or reading the csums from the tree before a read
d352ac68 1646 */
b2950863 1647static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1648 int mirror_num, unsigned long bio_flags,
1649 u64 bio_offset)
44b8bd7e
CM
1650{
1651 struct btrfs_root *root = BTRFS_I(inode)->root;
1652 int ret = 0;
19b9bdb0 1653 int skip_sum;
0417341e 1654 int metadata = 0;
b812ce28 1655 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1656
6cbff00f 1657 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1658
83eea1f1 1659 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1660 metadata = 2;
1661
7b6d91da 1662 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1663 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1664 if (ret)
61891923 1665 goto out;
5fd02043 1666
d20f7043 1667 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1668 ret = btrfs_submit_compressed_read(inode, bio,
1669 mirror_num,
1670 bio_flags);
1671 goto out;
c2db1073
TI
1672 } else if (!skip_sum) {
1673 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1674 if (ret)
61891923 1675 goto out;
c2db1073 1676 }
4d1b5fb4 1677 goto mapit;
b812ce28 1678 } else if (async && !skip_sum) {
17d217fe
YZ
1679 /* csum items have already been cloned */
1680 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1681 goto mapit;
19b9bdb0 1682 /* we're doing a write, do the async checksumming */
61891923 1683 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1684 inode, rw, bio, mirror_num,
eaf25d93
CM
1685 bio_flags, bio_offset,
1686 __btrfs_submit_bio_start,
4a69a410 1687 __btrfs_submit_bio_done);
61891923 1688 goto out;
b812ce28
JB
1689 } else if (!skip_sum) {
1690 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1691 if (ret)
1692 goto out;
19b9bdb0
CM
1693 }
1694
0b86a832 1695mapit:
61891923
SB
1696 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1697
1698out:
1699 if (ret < 0)
1700 bio_endio(bio, ret);
1701 return ret;
065631f6 1702}
6885f308 1703
d352ac68
CM
1704/*
1705 * given a list of ordered sums record them in the inode. This happens
1706 * at IO completion time based on sums calculated at bio submission time.
1707 */
ba1da2f4 1708static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1709 struct inode *inode, u64 file_offset,
1710 struct list_head *list)
1711{
e6dcd2dc
CM
1712 struct btrfs_ordered_sum *sum;
1713
c6e30871 1714 list_for_each_entry(sum, list, list) {
39847c4d 1715 trans->adding_csums = 1;
d20f7043
CM
1716 btrfs_csum_file_blocks(trans,
1717 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1718 trans->adding_csums = 0;
e6dcd2dc
CM
1719 }
1720 return 0;
1721}
1722
2ac55d41
JB
1723int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1724 struct extent_state **cached_state)
ea8c2819 1725{
6c1500f2 1726 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1727 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1728 cached_state, GFP_NOFS);
ea8c2819
CM
1729}
1730
d352ac68 1731/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1732struct btrfs_writepage_fixup {
1733 struct page *page;
1734 struct btrfs_work work;
1735};
1736
b2950863 1737static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1738{
1739 struct btrfs_writepage_fixup *fixup;
1740 struct btrfs_ordered_extent *ordered;
2ac55d41 1741 struct extent_state *cached_state = NULL;
247e743c
CM
1742 struct page *page;
1743 struct inode *inode;
1744 u64 page_start;
1745 u64 page_end;
87826df0 1746 int ret;
247e743c
CM
1747
1748 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1749 page = fixup->page;
4a096752 1750again:
247e743c
CM
1751 lock_page(page);
1752 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1753 ClearPageChecked(page);
1754 goto out_page;
1755 }
1756
1757 inode = page->mapping->host;
1758 page_start = page_offset(page);
1759 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1760
2ac55d41 1761 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1762 &cached_state);
4a096752
CM
1763
1764 /* already ordered? We're done */
8b62b72b 1765 if (PagePrivate2(page))
247e743c 1766 goto out;
4a096752
CM
1767
1768 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1769 if (ordered) {
2ac55d41
JB
1770 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1771 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1772 unlock_page(page);
1773 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1774 btrfs_put_ordered_extent(ordered);
4a096752
CM
1775 goto again;
1776 }
247e743c 1777
87826df0
JM
1778 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1779 if (ret) {
1780 mapping_set_error(page->mapping, ret);
1781 end_extent_writepage(page, ret, page_start, page_end);
1782 ClearPageChecked(page);
1783 goto out;
1784 }
1785
2ac55d41 1786 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1787 ClearPageChecked(page);
87826df0 1788 set_page_dirty(page);
247e743c 1789out:
2ac55d41
JB
1790 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1791 &cached_state, GFP_NOFS);
247e743c
CM
1792out_page:
1793 unlock_page(page);
1794 page_cache_release(page);
b897abec 1795 kfree(fixup);
247e743c
CM
1796}
1797
1798/*
1799 * There are a few paths in the higher layers of the kernel that directly
1800 * set the page dirty bit without asking the filesystem if it is a
1801 * good idea. This causes problems because we want to make sure COW
1802 * properly happens and the data=ordered rules are followed.
1803 *
c8b97818 1804 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1805 * hasn't been properly setup for IO. We kick off an async process
1806 * to fix it up. The async helper will wait for ordered extents, set
1807 * the delalloc bit and make it safe to write the page.
1808 */
b2950863 1809static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1810{
1811 struct inode *inode = page->mapping->host;
1812 struct btrfs_writepage_fixup *fixup;
1813 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1814
8b62b72b
CM
1815 /* this page is properly in the ordered list */
1816 if (TestClearPagePrivate2(page))
247e743c
CM
1817 return 0;
1818
1819 if (PageChecked(page))
1820 return -EAGAIN;
1821
1822 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1823 if (!fixup)
1824 return -EAGAIN;
f421950f 1825
247e743c
CM
1826 SetPageChecked(page);
1827 page_cache_get(page);
1828 fixup->work.func = btrfs_writepage_fixup_worker;
1829 fixup->page = page;
1830 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1831 return -EBUSY;
247e743c
CM
1832}
1833
d899e052
YZ
1834static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1835 struct inode *inode, u64 file_pos,
1836 u64 disk_bytenr, u64 disk_num_bytes,
1837 u64 num_bytes, u64 ram_bytes,
1838 u8 compression, u8 encryption,
1839 u16 other_encoding, int extent_type)
1840{
1841 struct btrfs_root *root = BTRFS_I(inode)->root;
1842 struct btrfs_file_extent_item *fi;
1843 struct btrfs_path *path;
1844 struct extent_buffer *leaf;
1845 struct btrfs_key ins;
d899e052
YZ
1846 int ret;
1847
1848 path = btrfs_alloc_path();
d8926bb3
MF
1849 if (!path)
1850 return -ENOMEM;
d899e052 1851
b9473439 1852 path->leave_spinning = 1;
a1ed835e
CM
1853
1854 /*
1855 * we may be replacing one extent in the tree with another.
1856 * The new extent is pinned in the extent map, and we don't want
1857 * to drop it from the cache until it is completely in the btree.
1858 *
1859 * So, tell btrfs_drop_extents to leave this extent in the cache.
1860 * the caller is expected to unpin it and allow it to be merged
1861 * with the others.
1862 */
5dc562c5 1863 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1864 file_pos + num_bytes, 0);
79787eaa
JM
1865 if (ret)
1866 goto out;
d899e052 1867
33345d01 1868 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1869 ins.offset = file_pos;
1870 ins.type = BTRFS_EXTENT_DATA_KEY;
1871 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1872 if (ret)
1873 goto out;
d899e052
YZ
1874 leaf = path->nodes[0];
1875 fi = btrfs_item_ptr(leaf, path->slots[0],
1876 struct btrfs_file_extent_item);
1877 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1878 btrfs_set_file_extent_type(leaf, fi, extent_type);
1879 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1880 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1881 btrfs_set_file_extent_offset(leaf, fi, 0);
1882 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1883 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1884 btrfs_set_file_extent_compression(leaf, fi, compression);
1885 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1886 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1887
d899e052 1888 btrfs_mark_buffer_dirty(leaf);
ce195332 1889 btrfs_release_path(path);
d899e052
YZ
1890
1891 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1892
1893 ins.objectid = disk_bytenr;
1894 ins.offset = disk_num_bytes;
1895 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1896 ret = btrfs_alloc_reserved_file_extent(trans, root,
1897 root->root_key.objectid,
33345d01 1898 btrfs_ino(inode), file_pos, &ins);
79787eaa 1899out:
d899e052 1900 btrfs_free_path(path);
b9473439 1901
79787eaa 1902 return ret;
d899e052
YZ
1903}
1904
38c227d8
LB
1905/* snapshot-aware defrag */
1906struct sa_defrag_extent_backref {
1907 struct rb_node node;
1908 struct old_sa_defrag_extent *old;
1909 u64 root_id;
1910 u64 inum;
1911 u64 file_pos;
1912 u64 extent_offset;
1913 u64 num_bytes;
1914 u64 generation;
1915};
1916
1917struct old_sa_defrag_extent {
1918 struct list_head list;
1919 struct new_sa_defrag_extent *new;
1920
1921 u64 extent_offset;
1922 u64 bytenr;
1923 u64 offset;
1924 u64 len;
1925 int count;
1926};
1927
1928struct new_sa_defrag_extent {
1929 struct rb_root root;
1930 struct list_head head;
1931 struct btrfs_path *path;
1932 struct inode *inode;
1933 u64 file_pos;
1934 u64 len;
1935 u64 bytenr;
1936 u64 disk_len;
1937 u8 compress_type;
1938};
1939
1940static int backref_comp(struct sa_defrag_extent_backref *b1,
1941 struct sa_defrag_extent_backref *b2)
1942{
1943 if (b1->root_id < b2->root_id)
1944 return -1;
1945 else if (b1->root_id > b2->root_id)
1946 return 1;
1947
1948 if (b1->inum < b2->inum)
1949 return -1;
1950 else if (b1->inum > b2->inum)
1951 return 1;
1952
1953 if (b1->file_pos < b2->file_pos)
1954 return -1;
1955 else if (b1->file_pos > b2->file_pos)
1956 return 1;
1957
1958 /*
1959 * [------------------------------] ===> (a range of space)
1960 * |<--->| |<---->| =============> (fs/file tree A)
1961 * |<---------------------------->| ===> (fs/file tree B)
1962 *
1963 * A range of space can refer to two file extents in one tree while
1964 * refer to only one file extent in another tree.
1965 *
1966 * So we may process a disk offset more than one time(two extents in A)
1967 * and locate at the same extent(one extent in B), then insert two same
1968 * backrefs(both refer to the extent in B).
1969 */
1970 return 0;
1971}
1972
1973static void backref_insert(struct rb_root *root,
1974 struct sa_defrag_extent_backref *backref)
1975{
1976 struct rb_node **p = &root->rb_node;
1977 struct rb_node *parent = NULL;
1978 struct sa_defrag_extent_backref *entry;
1979 int ret;
1980
1981 while (*p) {
1982 parent = *p;
1983 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
1984
1985 ret = backref_comp(backref, entry);
1986 if (ret < 0)
1987 p = &(*p)->rb_left;
1988 else
1989 p = &(*p)->rb_right;
1990 }
1991
1992 rb_link_node(&backref->node, parent, p);
1993 rb_insert_color(&backref->node, root);
1994}
1995
1996/*
1997 * Note the backref might has changed, and in this case we just return 0.
1998 */
1999static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2000 void *ctx)
2001{
2002 struct btrfs_file_extent_item *extent;
2003 struct btrfs_fs_info *fs_info;
2004 struct old_sa_defrag_extent *old = ctx;
2005 struct new_sa_defrag_extent *new = old->new;
2006 struct btrfs_path *path = new->path;
2007 struct btrfs_key key;
2008 struct btrfs_root *root;
2009 struct sa_defrag_extent_backref *backref;
2010 struct extent_buffer *leaf;
2011 struct inode *inode = new->inode;
2012 int slot;
2013 int ret;
2014 u64 extent_offset;
2015 u64 num_bytes;
2016
2017 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2018 inum == btrfs_ino(inode))
2019 return 0;
2020
2021 key.objectid = root_id;
2022 key.type = BTRFS_ROOT_ITEM_KEY;
2023 key.offset = (u64)-1;
2024
2025 fs_info = BTRFS_I(inode)->root->fs_info;
2026 root = btrfs_read_fs_root_no_name(fs_info, &key);
2027 if (IS_ERR(root)) {
2028 if (PTR_ERR(root) == -ENOENT)
2029 return 0;
2030 WARN_ON(1);
2031 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2032 inum, offset, root_id);
2033 return PTR_ERR(root);
2034 }
2035
2036 key.objectid = inum;
2037 key.type = BTRFS_EXTENT_DATA_KEY;
2038 if (offset > (u64)-1 << 32)
2039 key.offset = 0;
2040 else
2041 key.offset = offset;
2042
2043 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2044 if (ret < 0) {
2045 WARN_ON(1);
2046 return ret;
2047 }
50f1319c 2048 ret = 0;
38c227d8
LB
2049
2050 while (1) {
2051 cond_resched();
2052
2053 leaf = path->nodes[0];
2054 slot = path->slots[0];
2055
2056 if (slot >= btrfs_header_nritems(leaf)) {
2057 ret = btrfs_next_leaf(root, path);
2058 if (ret < 0) {
2059 goto out;
2060 } else if (ret > 0) {
2061 ret = 0;
2062 goto out;
2063 }
2064 continue;
2065 }
2066
2067 path->slots[0]++;
2068
2069 btrfs_item_key_to_cpu(leaf, &key, slot);
2070
2071 if (key.objectid > inum)
2072 goto out;
2073
2074 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2075 continue;
2076
2077 extent = btrfs_item_ptr(leaf, slot,
2078 struct btrfs_file_extent_item);
2079
2080 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2081 continue;
2082
e68afa49
LB
2083 /*
2084 * 'offset' refers to the exact key.offset,
2085 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2086 * (key.offset - extent_offset).
2087 */
2088 if (key.offset != offset)
38c227d8
LB
2089 continue;
2090
e68afa49 2091 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2092 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2093
38c227d8
LB
2094 if (extent_offset >= old->extent_offset + old->offset +
2095 old->len || extent_offset + num_bytes <=
2096 old->extent_offset + old->offset)
2097 continue;
38c227d8
LB
2098 break;
2099 }
2100
2101 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2102 if (!backref) {
2103 ret = -ENOENT;
2104 goto out;
2105 }
2106
2107 backref->root_id = root_id;
2108 backref->inum = inum;
e68afa49 2109 backref->file_pos = offset;
38c227d8
LB
2110 backref->num_bytes = num_bytes;
2111 backref->extent_offset = extent_offset;
2112 backref->generation = btrfs_file_extent_generation(leaf, extent);
2113 backref->old = old;
2114 backref_insert(&new->root, backref);
2115 old->count++;
2116out:
2117 btrfs_release_path(path);
2118 WARN_ON(ret);
2119 return ret;
2120}
2121
2122static noinline bool record_extent_backrefs(struct btrfs_path *path,
2123 struct new_sa_defrag_extent *new)
2124{
2125 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2126 struct old_sa_defrag_extent *old, *tmp;
2127 int ret;
2128
2129 new->path = path;
2130
2131 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2132 ret = iterate_inodes_from_logical(old->bytenr +
2133 old->extent_offset, fs_info,
38c227d8
LB
2134 path, record_one_backref,
2135 old);
2136 BUG_ON(ret < 0 && ret != -ENOENT);
2137
2138 /* no backref to be processed for this extent */
2139 if (!old->count) {
2140 list_del(&old->list);
2141 kfree(old);
2142 }
2143 }
2144
2145 if (list_empty(&new->head))
2146 return false;
2147
2148 return true;
2149}
2150
2151static int relink_is_mergable(struct extent_buffer *leaf,
2152 struct btrfs_file_extent_item *fi,
116e0024 2153 struct new_sa_defrag_extent *new)
38c227d8 2154{
116e0024 2155 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2156 return 0;
2157
2158 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2159 return 0;
2160
116e0024
LB
2161 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2162 return 0;
2163
2164 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2165 btrfs_file_extent_other_encoding(leaf, fi))
2166 return 0;
2167
2168 return 1;
2169}
2170
2171/*
2172 * Note the backref might has changed, and in this case we just return 0.
2173 */
2174static noinline int relink_extent_backref(struct btrfs_path *path,
2175 struct sa_defrag_extent_backref *prev,
2176 struct sa_defrag_extent_backref *backref)
2177{
2178 struct btrfs_file_extent_item *extent;
2179 struct btrfs_file_extent_item *item;
2180 struct btrfs_ordered_extent *ordered;
2181 struct btrfs_trans_handle *trans;
2182 struct btrfs_fs_info *fs_info;
2183 struct btrfs_root *root;
2184 struct btrfs_key key;
2185 struct extent_buffer *leaf;
2186 struct old_sa_defrag_extent *old = backref->old;
2187 struct new_sa_defrag_extent *new = old->new;
2188 struct inode *src_inode = new->inode;
2189 struct inode *inode;
2190 struct extent_state *cached = NULL;
2191 int ret = 0;
2192 u64 start;
2193 u64 len;
2194 u64 lock_start;
2195 u64 lock_end;
2196 bool merge = false;
2197 int index;
2198
2199 if (prev && prev->root_id == backref->root_id &&
2200 prev->inum == backref->inum &&
2201 prev->file_pos + prev->num_bytes == backref->file_pos)
2202 merge = true;
2203
2204 /* step 1: get root */
2205 key.objectid = backref->root_id;
2206 key.type = BTRFS_ROOT_ITEM_KEY;
2207 key.offset = (u64)-1;
2208
2209 fs_info = BTRFS_I(src_inode)->root->fs_info;
2210 index = srcu_read_lock(&fs_info->subvol_srcu);
2211
2212 root = btrfs_read_fs_root_no_name(fs_info, &key);
2213 if (IS_ERR(root)) {
2214 srcu_read_unlock(&fs_info->subvol_srcu, index);
2215 if (PTR_ERR(root) == -ENOENT)
2216 return 0;
2217 return PTR_ERR(root);
2218 }
38c227d8
LB
2219
2220 /* step 2: get inode */
2221 key.objectid = backref->inum;
2222 key.type = BTRFS_INODE_ITEM_KEY;
2223 key.offset = 0;
2224
2225 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2226 if (IS_ERR(inode)) {
2227 srcu_read_unlock(&fs_info->subvol_srcu, index);
2228 return 0;
2229 }
2230
2231 srcu_read_unlock(&fs_info->subvol_srcu, index);
2232
2233 /* step 3: relink backref */
2234 lock_start = backref->file_pos;
2235 lock_end = backref->file_pos + backref->num_bytes - 1;
2236 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2237 0, &cached);
2238
2239 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2240 if (ordered) {
2241 btrfs_put_ordered_extent(ordered);
2242 goto out_unlock;
2243 }
2244
2245 trans = btrfs_join_transaction(root);
2246 if (IS_ERR(trans)) {
2247 ret = PTR_ERR(trans);
2248 goto out_unlock;
2249 }
2250
2251 key.objectid = backref->inum;
2252 key.type = BTRFS_EXTENT_DATA_KEY;
2253 key.offset = backref->file_pos;
2254
2255 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2256 if (ret < 0) {
2257 goto out_free_path;
2258 } else if (ret > 0) {
2259 ret = 0;
2260 goto out_free_path;
2261 }
2262
2263 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2264 struct btrfs_file_extent_item);
2265
2266 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2267 backref->generation)
2268 goto out_free_path;
2269
2270 btrfs_release_path(path);
2271
2272 start = backref->file_pos;
2273 if (backref->extent_offset < old->extent_offset + old->offset)
2274 start += old->extent_offset + old->offset -
2275 backref->extent_offset;
2276
2277 len = min(backref->extent_offset + backref->num_bytes,
2278 old->extent_offset + old->offset + old->len);
2279 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2280
2281 ret = btrfs_drop_extents(trans, root, inode, start,
2282 start + len, 1);
2283 if (ret)
2284 goto out_free_path;
2285again:
2286 key.objectid = btrfs_ino(inode);
2287 key.type = BTRFS_EXTENT_DATA_KEY;
2288 key.offset = start;
2289
a09a0a70 2290 path->leave_spinning = 1;
38c227d8
LB
2291 if (merge) {
2292 struct btrfs_file_extent_item *fi;
2293 u64 extent_len;
2294 struct btrfs_key found_key;
2295
2296 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2297 if (ret < 0)
2298 goto out_free_path;
2299
2300 path->slots[0]--;
2301 leaf = path->nodes[0];
2302 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2303
2304 fi = btrfs_item_ptr(leaf, path->slots[0],
2305 struct btrfs_file_extent_item);
2306 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2307
116e0024
LB
2308 if (extent_len + found_key.offset == start &&
2309 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2310 btrfs_set_file_extent_num_bytes(leaf, fi,
2311 extent_len + len);
2312 btrfs_mark_buffer_dirty(leaf);
2313 inode_add_bytes(inode, len);
2314
2315 ret = 1;
2316 goto out_free_path;
2317 } else {
2318 merge = false;
2319 btrfs_release_path(path);
2320 goto again;
2321 }
2322 }
2323
2324 ret = btrfs_insert_empty_item(trans, root, path, &key,
2325 sizeof(*extent));
2326 if (ret) {
2327 btrfs_abort_transaction(trans, root, ret);
2328 goto out_free_path;
2329 }
2330
2331 leaf = path->nodes[0];
2332 item = btrfs_item_ptr(leaf, path->slots[0],
2333 struct btrfs_file_extent_item);
2334 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2335 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2336 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2337 btrfs_set_file_extent_num_bytes(leaf, item, len);
2338 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2339 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2340 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2341 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2342 btrfs_set_file_extent_encryption(leaf, item, 0);
2343 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2344
2345 btrfs_mark_buffer_dirty(leaf);
2346 inode_add_bytes(inode, len);
a09a0a70 2347 btrfs_release_path(path);
38c227d8
LB
2348
2349 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2350 new->disk_len, 0,
2351 backref->root_id, backref->inum,
2352 new->file_pos, 0); /* start - extent_offset */
2353 if (ret) {
2354 btrfs_abort_transaction(trans, root, ret);
2355 goto out_free_path;
2356 }
2357
2358 ret = 1;
2359out_free_path:
2360 btrfs_release_path(path);
a09a0a70 2361 path->leave_spinning = 0;
38c227d8
LB
2362 btrfs_end_transaction(trans, root);
2363out_unlock:
2364 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2365 &cached, GFP_NOFS);
2366 iput(inode);
2367 return ret;
2368}
2369
2370static void relink_file_extents(struct new_sa_defrag_extent *new)
2371{
2372 struct btrfs_path *path;
2373 struct old_sa_defrag_extent *old, *tmp;
2374 struct sa_defrag_extent_backref *backref;
2375 struct sa_defrag_extent_backref *prev = NULL;
2376 struct inode *inode;
2377 struct btrfs_root *root;
2378 struct rb_node *node;
2379 int ret;
2380
2381 inode = new->inode;
2382 root = BTRFS_I(inode)->root;
2383
2384 path = btrfs_alloc_path();
2385 if (!path)
2386 return;
2387
2388 if (!record_extent_backrefs(path, new)) {
2389 btrfs_free_path(path);
2390 goto out;
2391 }
2392 btrfs_release_path(path);
2393
2394 while (1) {
2395 node = rb_first(&new->root);
2396 if (!node)
2397 break;
2398 rb_erase(node, &new->root);
2399
2400 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2401
2402 ret = relink_extent_backref(path, prev, backref);
2403 WARN_ON(ret < 0);
2404
2405 kfree(prev);
2406
2407 if (ret == 1)
2408 prev = backref;
2409 else
2410 prev = NULL;
2411 cond_resched();
2412 }
2413 kfree(prev);
2414
2415 btrfs_free_path(path);
2416
2417 list_for_each_entry_safe(old, tmp, &new->head, list) {
2418 list_del(&old->list);
2419 kfree(old);
2420 }
2421out:
2422 atomic_dec(&root->fs_info->defrag_running);
2423 wake_up(&root->fs_info->transaction_wait);
2424
2425 kfree(new);
2426}
2427
2428static struct new_sa_defrag_extent *
2429record_old_file_extents(struct inode *inode,
2430 struct btrfs_ordered_extent *ordered)
2431{
2432 struct btrfs_root *root = BTRFS_I(inode)->root;
2433 struct btrfs_path *path;
2434 struct btrfs_key key;
2435 struct old_sa_defrag_extent *old, *tmp;
2436 struct new_sa_defrag_extent *new;
2437 int ret;
2438
2439 new = kmalloc(sizeof(*new), GFP_NOFS);
2440 if (!new)
2441 return NULL;
2442
2443 new->inode = inode;
2444 new->file_pos = ordered->file_offset;
2445 new->len = ordered->len;
2446 new->bytenr = ordered->start;
2447 new->disk_len = ordered->disk_len;
2448 new->compress_type = ordered->compress_type;
2449 new->root = RB_ROOT;
2450 INIT_LIST_HEAD(&new->head);
2451
2452 path = btrfs_alloc_path();
2453 if (!path)
2454 goto out_kfree;
2455
2456 key.objectid = btrfs_ino(inode);
2457 key.type = BTRFS_EXTENT_DATA_KEY;
2458 key.offset = new->file_pos;
2459
2460 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2461 if (ret < 0)
2462 goto out_free_path;
2463 if (ret > 0 && path->slots[0] > 0)
2464 path->slots[0]--;
2465
2466 /* find out all the old extents for the file range */
2467 while (1) {
2468 struct btrfs_file_extent_item *extent;
2469 struct extent_buffer *l;
2470 int slot;
2471 u64 num_bytes;
2472 u64 offset;
2473 u64 end;
2474 u64 disk_bytenr;
2475 u64 extent_offset;
2476
2477 l = path->nodes[0];
2478 slot = path->slots[0];
2479
2480 if (slot >= btrfs_header_nritems(l)) {
2481 ret = btrfs_next_leaf(root, path);
2482 if (ret < 0)
2483 goto out_free_list;
2484 else if (ret > 0)
2485 break;
2486 continue;
2487 }
2488
2489 btrfs_item_key_to_cpu(l, &key, slot);
2490
2491 if (key.objectid != btrfs_ino(inode))
2492 break;
2493 if (key.type != BTRFS_EXTENT_DATA_KEY)
2494 break;
2495 if (key.offset >= new->file_pos + new->len)
2496 break;
2497
2498 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2499
2500 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2501 if (key.offset + num_bytes < new->file_pos)
2502 goto next;
2503
2504 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2505 if (!disk_bytenr)
2506 goto next;
2507
2508 extent_offset = btrfs_file_extent_offset(l, extent);
2509
2510 old = kmalloc(sizeof(*old), GFP_NOFS);
2511 if (!old)
2512 goto out_free_list;
2513
2514 offset = max(new->file_pos, key.offset);
2515 end = min(new->file_pos + new->len, key.offset + num_bytes);
2516
2517 old->bytenr = disk_bytenr;
2518 old->extent_offset = extent_offset;
2519 old->offset = offset - key.offset;
2520 old->len = end - offset;
2521 old->new = new;
2522 old->count = 0;
2523 list_add_tail(&old->list, &new->head);
2524next:
2525 path->slots[0]++;
2526 cond_resched();
2527 }
2528
2529 btrfs_free_path(path);
2530 atomic_inc(&root->fs_info->defrag_running);
2531
2532 return new;
2533
2534out_free_list:
2535 list_for_each_entry_safe(old, tmp, &new->head, list) {
2536 list_del(&old->list);
2537 kfree(old);
2538 }
2539out_free_path:
2540 btrfs_free_path(path);
2541out_kfree:
2542 kfree(new);
2543 return NULL;
2544}
2545
5d13a98f
CM
2546/*
2547 * helper function for btrfs_finish_ordered_io, this
2548 * just reads in some of the csum leaves to prime them into ram
2549 * before we start the transaction. It limits the amount of btree
2550 * reads required while inside the transaction.
2551 */
d352ac68
CM
2552/* as ordered data IO finishes, this gets called so we can finish
2553 * an ordered extent if the range of bytes in the file it covers are
2554 * fully written.
2555 */
5fd02043 2556static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2557{
5fd02043 2558 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2559 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2560 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2561 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2562 struct extent_state *cached_state = NULL;
38c227d8 2563 struct new_sa_defrag_extent *new = NULL;
261507a0 2564 int compress_type = 0;
77cef2ec
JB
2565 int ret = 0;
2566 u64 logical_len = ordered_extent->len;
82d5902d 2567 bool nolock;
77cef2ec 2568 bool truncated = false;
e6dcd2dc 2569
83eea1f1 2570 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2571
5fd02043
JB
2572 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2573 ret = -EIO;
2574 goto out;
2575 }
2576
77cef2ec
JB
2577 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2578 truncated = true;
2579 logical_len = ordered_extent->truncated_len;
2580 /* Truncated the entire extent, don't bother adding */
2581 if (!logical_len)
2582 goto out;
2583 }
2584
c2167754 2585 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2586 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2587 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2588 if (nolock)
2589 trans = btrfs_join_transaction_nolock(root);
2590 else
2591 trans = btrfs_join_transaction(root);
2592 if (IS_ERR(trans)) {
2593 ret = PTR_ERR(trans);
2594 trans = NULL;
2595 goto out;
c2167754 2596 }
6c760c07
JB
2597 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2598 ret = btrfs_update_inode_fallback(trans, root, inode);
2599 if (ret) /* -ENOMEM or corruption */
2600 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2601 goto out;
2602 }
e6dcd2dc 2603
2ac55d41
JB
2604 lock_extent_bits(io_tree, ordered_extent->file_offset,
2605 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2606 0, &cached_state);
e6dcd2dc 2607
38c227d8
LB
2608 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2609 ordered_extent->file_offset + ordered_extent->len - 1,
2610 EXTENT_DEFRAG, 1, cached_state);
2611 if (ret) {
2612 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2613 if (last_snapshot >= BTRFS_I(inode)->generation)
2614 /* the inode is shared */
2615 new = record_old_file_extents(inode, ordered_extent);
2616
2617 clear_extent_bit(io_tree, ordered_extent->file_offset,
2618 ordered_extent->file_offset + ordered_extent->len - 1,
2619 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2620 }
2621
0cb59c99 2622 if (nolock)
7a7eaa40 2623 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2624 else
7a7eaa40 2625 trans = btrfs_join_transaction(root);
79787eaa
JM
2626 if (IS_ERR(trans)) {
2627 ret = PTR_ERR(trans);
2628 trans = NULL;
2629 goto out_unlock;
2630 }
0ca1f7ce 2631 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2632
c8b97818 2633 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2634 compress_type = ordered_extent->compress_type;
d899e052 2635 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2636 BUG_ON(compress_type);
920bbbfb 2637 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2638 ordered_extent->file_offset,
2639 ordered_extent->file_offset +
77cef2ec 2640 logical_len);
d899e052 2641 } else {
0af3d00b 2642 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2643 ret = insert_reserved_file_extent(trans, inode,
2644 ordered_extent->file_offset,
2645 ordered_extent->start,
2646 ordered_extent->disk_len,
77cef2ec 2647 logical_len, logical_len,
261507a0 2648 compress_type, 0, 0,
d899e052 2649 BTRFS_FILE_EXTENT_REG);
d899e052 2650 }
5dc562c5
JB
2651 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2652 ordered_extent->file_offset, ordered_extent->len,
2653 trans->transid);
79787eaa
JM
2654 if (ret < 0) {
2655 btrfs_abort_transaction(trans, root, ret);
5fd02043 2656 goto out_unlock;
79787eaa 2657 }
2ac55d41 2658
e6dcd2dc
CM
2659 add_pending_csums(trans, inode, ordered_extent->file_offset,
2660 &ordered_extent->list);
2661
6c760c07
JB
2662 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2663 ret = btrfs_update_inode_fallback(trans, root, inode);
2664 if (ret) { /* -ENOMEM or corruption */
2665 btrfs_abort_transaction(trans, root, ret);
2666 goto out_unlock;
1ef30be1
JB
2667 }
2668 ret = 0;
5fd02043
JB
2669out_unlock:
2670 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2671 ordered_extent->file_offset +
2672 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2673out:
5b0e95bf 2674 if (root != root->fs_info->tree_root)
0cb59c99 2675 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2676 if (trans)
2677 btrfs_end_transaction(trans, root);
0cb59c99 2678
77cef2ec
JB
2679 if (ret || truncated) {
2680 u64 start, end;
2681
2682 if (truncated)
2683 start = ordered_extent->file_offset + logical_len;
2684 else
2685 start = ordered_extent->file_offset;
2686 end = ordered_extent->file_offset + ordered_extent->len - 1;
2687 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2688
2689 /* Drop the cache for the part of the extent we didn't write. */
2690 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2691
0bec9ef5
JB
2692 /*
2693 * If the ordered extent had an IOERR or something else went
2694 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2695 * back to the allocator. We only free the extent in the
2696 * truncated case if we didn't write out the extent at all.
0bec9ef5 2697 */
77cef2ec
JB
2698 if ((ret || !logical_len) &&
2699 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2700 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2701 btrfs_free_reserved_extent(root, ordered_extent->start,
2702 ordered_extent->disk_len);
2703 }
2704
2705
5fd02043 2706 /*
8bad3c02
LB
2707 * This needs to be done to make sure anybody waiting knows we are done
2708 * updating everything for this ordered extent.
5fd02043
JB
2709 */
2710 btrfs_remove_ordered_extent(inode, ordered_extent);
2711
38c227d8
LB
2712 /* for snapshot-aware defrag */
2713 if (new)
2714 relink_file_extents(new);
2715
e6dcd2dc
CM
2716 /* once for us */
2717 btrfs_put_ordered_extent(ordered_extent);
2718 /* once for the tree */
2719 btrfs_put_ordered_extent(ordered_extent);
2720
5fd02043
JB
2721 return ret;
2722}
2723
2724static void finish_ordered_fn(struct btrfs_work *work)
2725{
2726 struct btrfs_ordered_extent *ordered_extent;
2727 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2728 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2729}
2730
b2950863 2731static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2732 struct extent_state *state, int uptodate)
2733{
5fd02043
JB
2734 struct inode *inode = page->mapping->host;
2735 struct btrfs_root *root = BTRFS_I(inode)->root;
2736 struct btrfs_ordered_extent *ordered_extent = NULL;
2737 struct btrfs_workers *workers;
2738
1abe9b8a 2739 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2740
8b62b72b 2741 ClearPagePrivate2(page);
5fd02043
JB
2742 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2743 end - start + 1, uptodate))
2744 return 0;
2745
2746 ordered_extent->work.func = finish_ordered_fn;
2747 ordered_extent->work.flags = 0;
2748
83eea1f1 2749 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2750 workers = &root->fs_info->endio_freespace_worker;
2751 else
2752 workers = &root->fs_info->endio_write_workers;
2753 btrfs_queue_worker(workers, &ordered_extent->work);
2754
2755 return 0;
211f90e6
CM
2756}
2757
d352ac68
CM
2758/*
2759 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2760 * if there's a match, we allow the bio to finish. If not, the code in
2761 * extent_io.c will try to find good copies for us.
d352ac68 2762 */
facc8a22
MX
2763static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2764 u64 phy_offset, struct page *page,
2765 u64 start, u64 end, int mirror)
07157aac 2766{
4eee4fa4 2767 size_t offset = start - page_offset(page);
07157aac 2768 struct inode *inode = page->mapping->host;
d1310b2e 2769 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2770 char *kaddr;
ff79f819 2771 struct btrfs_root *root = BTRFS_I(inode)->root;
facc8a22 2772 u32 csum_expected;
ff79f819 2773 u32 csum = ~(u32)0;
c2cf52eb
SK
2774 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2775 DEFAULT_RATELIMIT_BURST);
d1310b2e 2776
d20f7043
CM
2777 if (PageChecked(page)) {
2778 ClearPageChecked(page);
2779 goto good;
2780 }
6cbff00f
CH
2781
2782 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2783 goto good;
17d217fe
YZ
2784
2785 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2786 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2787 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2788 GFP_NOFS);
b6cda9bc 2789 return 0;
17d217fe 2790 }
d20f7043 2791
facc8a22
MX
2792 phy_offset >>= inode->i_sb->s_blocksize_bits;
2793 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
d397712b 2794
facc8a22 2795 kaddr = kmap_atomic(page);
b0496686 2796 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2797 btrfs_csum_final(csum, (char *)&csum);
facc8a22 2798 if (csum != csum_expected)
07157aac 2799 goto zeroit;
d397712b 2800
7ac687d9 2801 kunmap_atomic(kaddr);
d20f7043 2802good:
07157aac
CM
2803 return 0;
2804
2805zeroit:
c2cf52eb 2806 if (__ratelimit(&_rs))
facc8a22 2807 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c 2808 btrfs_ino(page->mapping->host), start, csum, csum_expected);
db94535d
CM
2809 memset(kaddr + offset, 1, end - start + 1);
2810 flush_dcache_page(page);
7ac687d9 2811 kunmap_atomic(kaddr);
facc8a22 2812 if (csum_expected == 0)
3b951516 2813 return 0;
7e38326f 2814 return -EIO;
07157aac 2815}
b888db2b 2816
24bbcf04
YZ
2817struct delayed_iput {
2818 struct list_head list;
2819 struct inode *inode;
2820};
2821
79787eaa
JM
2822/* JDM: If this is fs-wide, why can't we add a pointer to
2823 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2824void btrfs_add_delayed_iput(struct inode *inode)
2825{
2826 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2827 struct delayed_iput *delayed;
2828
2829 if (atomic_add_unless(&inode->i_count, -1, 1))
2830 return;
2831
2832 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2833 delayed->inode = inode;
2834
2835 spin_lock(&fs_info->delayed_iput_lock);
2836 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2837 spin_unlock(&fs_info->delayed_iput_lock);
2838}
2839
2840void btrfs_run_delayed_iputs(struct btrfs_root *root)
2841{
2842 LIST_HEAD(list);
2843 struct btrfs_fs_info *fs_info = root->fs_info;
2844 struct delayed_iput *delayed;
2845 int empty;
2846
2847 spin_lock(&fs_info->delayed_iput_lock);
2848 empty = list_empty(&fs_info->delayed_iputs);
2849 spin_unlock(&fs_info->delayed_iput_lock);
2850 if (empty)
2851 return;
2852
24bbcf04
YZ
2853 spin_lock(&fs_info->delayed_iput_lock);
2854 list_splice_init(&fs_info->delayed_iputs, &list);
2855 spin_unlock(&fs_info->delayed_iput_lock);
2856
2857 while (!list_empty(&list)) {
2858 delayed = list_entry(list.next, struct delayed_iput, list);
2859 list_del(&delayed->list);
2860 iput(delayed->inode);
2861 kfree(delayed);
2862 }
24bbcf04
YZ
2863}
2864
d68fc57b 2865/*
42b2aa86 2866 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2867 * files in the subvolume, it removes orphan item and frees block_rsv
2868 * structure.
2869 */
2870void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2871 struct btrfs_root *root)
2872{
90290e19 2873 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2874 int ret;
2875
8a35d95f 2876 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2877 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2878 return;
2879
90290e19 2880 spin_lock(&root->orphan_lock);
8a35d95f 2881 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2882 spin_unlock(&root->orphan_lock);
2883 return;
2884 }
2885
2886 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2887 spin_unlock(&root->orphan_lock);
2888 return;
2889 }
2890
2891 block_rsv = root->orphan_block_rsv;
2892 root->orphan_block_rsv = NULL;
2893 spin_unlock(&root->orphan_lock);
2894
d68fc57b
YZ
2895 if (root->orphan_item_inserted &&
2896 btrfs_root_refs(&root->root_item) > 0) {
2897 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2898 root->root_key.objectid);
4ef31a45
JB
2899 if (ret)
2900 btrfs_abort_transaction(trans, root, ret);
2901 else
2902 root->orphan_item_inserted = 0;
d68fc57b
YZ
2903 }
2904
90290e19
JB
2905 if (block_rsv) {
2906 WARN_ON(block_rsv->size > 0);
2907 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2908 }
2909}
2910
7b128766
JB
2911/*
2912 * This creates an orphan entry for the given inode in case something goes
2913 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2914 *
2915 * NOTE: caller of this function should reserve 5 units of metadata for
2916 * this function.
7b128766
JB
2917 */
2918int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2919{
2920 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2921 struct btrfs_block_rsv *block_rsv = NULL;
2922 int reserve = 0;
2923 int insert = 0;
2924 int ret;
7b128766 2925
d68fc57b 2926 if (!root->orphan_block_rsv) {
66d8f3dd 2927 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2928 if (!block_rsv)
2929 return -ENOMEM;
d68fc57b 2930 }
7b128766 2931
d68fc57b
YZ
2932 spin_lock(&root->orphan_lock);
2933 if (!root->orphan_block_rsv) {
2934 root->orphan_block_rsv = block_rsv;
2935 } else if (block_rsv) {
2936 btrfs_free_block_rsv(root, block_rsv);
2937 block_rsv = NULL;
7b128766 2938 }
7b128766 2939
8a35d95f
JB
2940 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2941 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2942#if 0
2943 /*
2944 * For proper ENOSPC handling, we should do orphan
2945 * cleanup when mounting. But this introduces backward
2946 * compatibility issue.
2947 */
2948 if (!xchg(&root->orphan_item_inserted, 1))
2949 insert = 2;
2950 else
2951 insert = 1;
2952#endif
2953 insert = 1;
321f0e70 2954 atomic_inc(&root->orphan_inodes);
7b128766
JB
2955 }
2956
72ac3c0d
JB
2957 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2958 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2959 reserve = 1;
d68fc57b 2960 spin_unlock(&root->orphan_lock);
7b128766 2961
d68fc57b
YZ
2962 /* grab metadata reservation from transaction handle */
2963 if (reserve) {
2964 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2965 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2966 }
7b128766 2967
d68fc57b
YZ
2968 /* insert an orphan item to track this unlinked/truncated file */
2969 if (insert >= 1) {
33345d01 2970 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 2971 if (ret) {
4ef31a45
JB
2972 if (reserve) {
2973 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2974 &BTRFS_I(inode)->runtime_flags);
2975 btrfs_orphan_release_metadata(inode);
2976 }
2977 if (ret != -EEXIST) {
e8e7cff6
JB
2978 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2979 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
2980 btrfs_abort_transaction(trans, root, ret);
2981 return ret;
2982 }
79787eaa
JM
2983 }
2984 ret = 0;
d68fc57b
YZ
2985 }
2986
2987 /* insert an orphan item to track subvolume contains orphan files */
2988 if (insert >= 2) {
2989 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2990 root->root_key.objectid);
79787eaa
JM
2991 if (ret && ret != -EEXIST) {
2992 btrfs_abort_transaction(trans, root, ret);
2993 return ret;
2994 }
d68fc57b
YZ
2995 }
2996 return 0;
7b128766
JB
2997}
2998
2999/*
3000 * We have done the truncate/delete so we can go ahead and remove the orphan
3001 * item for this particular inode.
3002 */
48a3b636
ES
3003static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3004 struct inode *inode)
7b128766
JB
3005{
3006 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3007 int delete_item = 0;
3008 int release_rsv = 0;
7b128766
JB
3009 int ret = 0;
3010
d68fc57b 3011 spin_lock(&root->orphan_lock);
8a35d95f
JB
3012 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3013 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3014 delete_item = 1;
7b128766 3015
72ac3c0d
JB
3016 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3017 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3018 release_rsv = 1;
d68fc57b 3019 spin_unlock(&root->orphan_lock);
7b128766 3020
4ef31a45 3021 if (trans && delete_item)
33345d01 3022 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
7b128766 3023
8a35d95f 3024 if (release_rsv) {
d68fc57b 3025 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
3026 atomic_dec(&root->orphan_inodes);
3027 }
7b128766 3028
4ef31a45 3029 return ret;
7b128766
JB
3030}
3031
3032/*
3033 * this cleans up any orphans that may be left on the list from the last use
3034 * of this root.
3035 */
66b4ffd1 3036int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3037{
3038 struct btrfs_path *path;
3039 struct extent_buffer *leaf;
7b128766
JB
3040 struct btrfs_key key, found_key;
3041 struct btrfs_trans_handle *trans;
3042 struct inode *inode;
8f6d7f4f 3043 u64 last_objectid = 0;
7b128766
JB
3044 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3045
d68fc57b 3046 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3047 return 0;
c71bf099
YZ
3048
3049 path = btrfs_alloc_path();
66b4ffd1
JB
3050 if (!path) {
3051 ret = -ENOMEM;
3052 goto out;
3053 }
7b128766
JB
3054 path->reada = -1;
3055
3056 key.objectid = BTRFS_ORPHAN_OBJECTID;
3057 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3058 key.offset = (u64)-1;
3059
7b128766
JB
3060 while (1) {
3061 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3062 if (ret < 0)
3063 goto out;
7b128766
JB
3064
3065 /*
3066 * if ret == 0 means we found what we were searching for, which
25985edc 3067 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3068 * find the key and see if we have stuff that matches
3069 */
3070 if (ret > 0) {
66b4ffd1 3071 ret = 0;
7b128766
JB
3072 if (path->slots[0] == 0)
3073 break;
3074 path->slots[0]--;
3075 }
3076
3077 /* pull out the item */
3078 leaf = path->nodes[0];
7b128766
JB
3079 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3080
3081 /* make sure the item matches what we want */
3082 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3083 break;
3084 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3085 break;
3086
3087 /* release the path since we're done with it */
b3b4aa74 3088 btrfs_release_path(path);
7b128766
JB
3089
3090 /*
3091 * this is where we are basically btrfs_lookup, without the
3092 * crossing root thing. we store the inode number in the
3093 * offset of the orphan item.
3094 */
8f6d7f4f
JB
3095
3096 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3097 btrfs_err(root->fs_info,
3098 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3099 ret = -EINVAL;
3100 goto out;
3101 }
3102
3103 last_objectid = found_key.offset;
3104
5d4f98a2
YZ
3105 found_key.objectid = found_key.offset;
3106 found_key.type = BTRFS_INODE_ITEM_KEY;
3107 found_key.offset = 0;
73f73415 3108 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3109 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3110 if (ret && ret != -ESTALE)
66b4ffd1 3111 goto out;
7b128766 3112
f8e9e0b0
AJ
3113 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3114 struct btrfs_root *dead_root;
3115 struct btrfs_fs_info *fs_info = root->fs_info;
3116 int is_dead_root = 0;
3117
3118 /*
3119 * this is an orphan in the tree root. Currently these
3120 * could come from 2 sources:
3121 * a) a snapshot deletion in progress
3122 * b) a free space cache inode
3123 * We need to distinguish those two, as the snapshot
3124 * orphan must not get deleted.
3125 * find_dead_roots already ran before us, so if this
3126 * is a snapshot deletion, we should find the root
3127 * in the dead_roots list
3128 */
3129 spin_lock(&fs_info->trans_lock);
3130 list_for_each_entry(dead_root, &fs_info->dead_roots,
3131 root_list) {
3132 if (dead_root->root_key.objectid ==
3133 found_key.objectid) {
3134 is_dead_root = 1;
3135 break;
3136 }
3137 }
3138 spin_unlock(&fs_info->trans_lock);
3139 if (is_dead_root) {
3140 /* prevent this orphan from being found again */
3141 key.offset = found_key.objectid - 1;
3142 continue;
3143 }
3144 }
7b128766 3145 /*
a8c9e576
JB
3146 * Inode is already gone but the orphan item is still there,
3147 * kill the orphan item.
7b128766 3148 */
a8c9e576
JB
3149 if (ret == -ESTALE) {
3150 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3151 if (IS_ERR(trans)) {
3152 ret = PTR_ERR(trans);
3153 goto out;
3154 }
c2cf52eb
SK
3155 btrfs_debug(root->fs_info, "auto deleting %Lu",
3156 found_key.objectid);
a8c9e576
JB
3157 ret = btrfs_del_orphan_item(trans, root,
3158 found_key.objectid);
5b21f2ed 3159 btrfs_end_transaction(trans, root);
4ef31a45
JB
3160 if (ret)
3161 goto out;
7b128766
JB
3162 continue;
3163 }
3164
a8c9e576
JB
3165 /*
3166 * add this inode to the orphan list so btrfs_orphan_del does
3167 * the proper thing when we hit it
3168 */
8a35d95f
JB
3169 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3170 &BTRFS_I(inode)->runtime_flags);
925396ec 3171 atomic_inc(&root->orphan_inodes);
a8c9e576 3172
7b128766
JB
3173 /* if we have links, this was a truncate, lets do that */
3174 if (inode->i_nlink) {
a41ad394
JB
3175 if (!S_ISREG(inode->i_mode)) {
3176 WARN_ON(1);
3177 iput(inode);
3178 continue;
3179 }
7b128766 3180 nr_truncate++;
f3fe820c
JB
3181
3182 /* 1 for the orphan item deletion. */
3183 trans = btrfs_start_transaction(root, 1);
3184 if (IS_ERR(trans)) {
c69b26b0 3185 iput(inode);
f3fe820c
JB
3186 ret = PTR_ERR(trans);
3187 goto out;
3188 }
3189 ret = btrfs_orphan_add(trans, inode);
3190 btrfs_end_transaction(trans, root);
c69b26b0
JB
3191 if (ret) {
3192 iput(inode);
f3fe820c 3193 goto out;
c69b26b0 3194 }
f3fe820c 3195
66b4ffd1 3196 ret = btrfs_truncate(inode);
4a7d0f68
JB
3197 if (ret)
3198 btrfs_orphan_del(NULL, inode);
7b128766
JB
3199 } else {
3200 nr_unlink++;
3201 }
3202
3203 /* this will do delete_inode and everything for us */
3204 iput(inode);
66b4ffd1
JB
3205 if (ret)
3206 goto out;
7b128766 3207 }
3254c876
MX
3208 /* release the path since we're done with it */
3209 btrfs_release_path(path);
3210
d68fc57b
YZ
3211 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3212
3213 if (root->orphan_block_rsv)
3214 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3215 (u64)-1);
3216
3217 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 3218 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3219 if (!IS_ERR(trans))
3220 btrfs_end_transaction(trans, root);
d68fc57b 3221 }
7b128766
JB
3222
3223 if (nr_unlink)
4884b476 3224 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3225 if (nr_truncate)
4884b476 3226 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3227
3228out:
3229 if (ret)
c2cf52eb
SK
3230 btrfs_crit(root->fs_info,
3231 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3232 btrfs_free_path(path);
3233 return ret;
7b128766
JB
3234}
3235
46a53cca
CM
3236/*
3237 * very simple check to peek ahead in the leaf looking for xattrs. If we
3238 * don't find any xattrs, we know there can't be any acls.
3239 *
3240 * slot is the slot the inode is in, objectid is the objectid of the inode
3241 */
3242static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3243 int slot, u64 objectid)
3244{
3245 u32 nritems = btrfs_header_nritems(leaf);
3246 struct btrfs_key found_key;
f23b5a59
JB
3247 static u64 xattr_access = 0;
3248 static u64 xattr_default = 0;
46a53cca
CM
3249 int scanned = 0;
3250
f23b5a59
JB
3251 if (!xattr_access) {
3252 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3253 strlen(POSIX_ACL_XATTR_ACCESS));
3254 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3255 strlen(POSIX_ACL_XATTR_DEFAULT));
3256 }
3257
46a53cca
CM
3258 slot++;
3259 while (slot < nritems) {
3260 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3261
3262 /* we found a different objectid, there must not be acls */
3263 if (found_key.objectid != objectid)
3264 return 0;
3265
3266 /* we found an xattr, assume we've got an acl */
f23b5a59
JB
3267 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3268 if (found_key.offset == xattr_access ||
3269 found_key.offset == xattr_default)
3270 return 1;
3271 }
46a53cca
CM
3272
3273 /*
3274 * we found a key greater than an xattr key, there can't
3275 * be any acls later on
3276 */
3277 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3278 return 0;
3279
3280 slot++;
3281 scanned++;
3282
3283 /*
3284 * it goes inode, inode backrefs, xattrs, extents,
3285 * so if there are a ton of hard links to an inode there can
3286 * be a lot of backrefs. Don't waste time searching too hard,
3287 * this is just an optimization
3288 */
3289 if (scanned >= 8)
3290 break;
3291 }
3292 /* we hit the end of the leaf before we found an xattr or
3293 * something larger than an xattr. We have to assume the inode
3294 * has acls
3295 */
3296 return 1;
3297}
3298
d352ac68
CM
3299/*
3300 * read an inode from the btree into the in-memory inode
3301 */
5d4f98a2 3302static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3303{
3304 struct btrfs_path *path;
5f39d397 3305 struct extent_buffer *leaf;
39279cc3 3306 struct btrfs_inode_item *inode_item;
0b86a832 3307 struct btrfs_timespec *tspec;
39279cc3
CM
3308 struct btrfs_root *root = BTRFS_I(inode)->root;
3309 struct btrfs_key location;
46a53cca 3310 int maybe_acls;
618e21d5 3311 u32 rdev;
39279cc3 3312 int ret;
2f7e33d4
MX
3313 bool filled = false;
3314
3315 ret = btrfs_fill_inode(inode, &rdev);
3316 if (!ret)
3317 filled = true;
39279cc3
CM
3318
3319 path = btrfs_alloc_path();
1748f843
MF
3320 if (!path)
3321 goto make_bad;
3322
d90c7321 3323 path->leave_spinning = 1;
39279cc3 3324 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3325
39279cc3 3326 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3327 if (ret)
39279cc3 3328 goto make_bad;
39279cc3 3329
5f39d397 3330 leaf = path->nodes[0];
2f7e33d4
MX
3331
3332 if (filled)
3333 goto cache_acl;
3334
5f39d397
CM
3335 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3336 struct btrfs_inode_item);
5f39d397 3337 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3338 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3339 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3340 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3341 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3342
3343 tspec = btrfs_inode_atime(inode_item);
3344 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3345 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3346
3347 tspec = btrfs_inode_mtime(inode_item);
3348 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3349 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3350
3351 tspec = btrfs_inode_ctime(inode_item);
3352 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3353 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3354
a76a3cd4 3355 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3356 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3357 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3358
3359 /*
3360 * If we were modified in the current generation and evicted from memory
3361 * and then re-read we need to do a full sync since we don't have any
3362 * idea about which extents were modified before we were evicted from
3363 * cache.
3364 */
3365 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3366 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3367 &BTRFS_I(inode)->runtime_flags);
3368
0c4d2d95 3369 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3370 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3371 inode->i_rdev = 0;
5f39d397
CM
3372 rdev = btrfs_inode_rdev(leaf, inode_item);
3373
aec7477b 3374 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3375 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 3376cache_acl:
46a53cca
CM
3377 /*
3378 * try to precache a NULL acl entry for files that don't have
3379 * any xattrs or acls
3380 */
33345d01
LZ
3381 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3382 btrfs_ino(inode));
72c04902
AV
3383 if (!maybe_acls)
3384 cache_no_acl(inode);
46a53cca 3385
39279cc3 3386 btrfs_free_path(path);
39279cc3 3387
39279cc3 3388 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3389 case S_IFREG:
3390 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3391 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3392 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3393 inode->i_fop = &btrfs_file_operations;
3394 inode->i_op = &btrfs_file_inode_operations;
3395 break;
3396 case S_IFDIR:
3397 inode->i_fop = &btrfs_dir_file_operations;
3398 if (root == root->fs_info->tree_root)
3399 inode->i_op = &btrfs_dir_ro_inode_operations;
3400 else
3401 inode->i_op = &btrfs_dir_inode_operations;
3402 break;
3403 case S_IFLNK:
3404 inode->i_op = &btrfs_symlink_inode_operations;
3405 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3406 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3407 break;
618e21d5 3408 default:
0279b4cd 3409 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3410 init_special_inode(inode, inode->i_mode, rdev);
3411 break;
39279cc3 3412 }
6cbff00f
CH
3413
3414 btrfs_update_iflags(inode);
39279cc3
CM
3415 return;
3416
3417make_bad:
39279cc3 3418 btrfs_free_path(path);
39279cc3
CM
3419 make_bad_inode(inode);
3420}
3421
d352ac68
CM
3422/*
3423 * given a leaf and an inode, copy the inode fields into the leaf
3424 */
e02119d5
CM
3425static void fill_inode_item(struct btrfs_trans_handle *trans,
3426 struct extent_buffer *leaf,
5f39d397 3427 struct btrfs_inode_item *item,
39279cc3
CM
3428 struct inode *inode)
3429{
51fab693
LB
3430 struct btrfs_map_token token;
3431
3432 btrfs_init_map_token(&token);
5f39d397 3433
51fab693
LB
3434 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3435 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3436 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3437 &token);
3438 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3439 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3440
51fab693
LB
3441 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3442 inode->i_atime.tv_sec, &token);
3443 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3444 inode->i_atime.tv_nsec, &token);
5f39d397 3445
51fab693
LB
3446 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3447 inode->i_mtime.tv_sec, &token);
3448 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3449 inode->i_mtime.tv_nsec, &token);
5f39d397 3450
51fab693
LB
3451 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3452 inode->i_ctime.tv_sec, &token);
3453 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3454 inode->i_ctime.tv_nsec, &token);
5f39d397 3455
51fab693
LB
3456 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3457 &token);
3458 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3459 &token);
3460 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3461 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3462 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3463 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3464 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3465}
3466
d352ac68
CM
3467/*
3468 * copy everything in the in-memory inode into the btree.
3469 */
2115133f 3470static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3471 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3472{
3473 struct btrfs_inode_item *inode_item;
3474 struct btrfs_path *path;
5f39d397 3475 struct extent_buffer *leaf;
39279cc3
CM
3476 int ret;
3477
3478 path = btrfs_alloc_path();
16cdcec7
MX
3479 if (!path)
3480 return -ENOMEM;
3481
b9473439 3482 path->leave_spinning = 1;
16cdcec7
MX
3483 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3484 1);
39279cc3
CM
3485 if (ret) {
3486 if (ret > 0)
3487 ret = -ENOENT;
3488 goto failed;
3489 }
3490
b4ce94de 3491 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
3492 leaf = path->nodes[0];
3493 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3494 struct btrfs_inode_item);
39279cc3 3495
e02119d5 3496 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3497 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3498 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3499 ret = 0;
3500failed:
39279cc3
CM
3501 btrfs_free_path(path);
3502 return ret;
3503}
3504
2115133f
CM
3505/*
3506 * copy everything in the in-memory inode into the btree.
3507 */
3508noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3509 struct btrfs_root *root, struct inode *inode)
3510{
3511 int ret;
3512
3513 /*
3514 * If the inode is a free space inode, we can deadlock during commit
3515 * if we put it into the delayed code.
3516 *
3517 * The data relocation inode should also be directly updated
3518 * without delay
3519 */
83eea1f1 3520 if (!btrfs_is_free_space_inode(inode)
2115133f 3521 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3522 btrfs_update_root_times(trans, root);
3523
2115133f
CM
3524 ret = btrfs_delayed_update_inode(trans, root, inode);
3525 if (!ret)
3526 btrfs_set_inode_last_trans(trans, inode);
3527 return ret;
3528 }
3529
3530 return btrfs_update_inode_item(trans, root, inode);
3531}
3532
be6aef60
JB
3533noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3534 struct btrfs_root *root,
3535 struct inode *inode)
2115133f
CM
3536{
3537 int ret;
3538
3539 ret = btrfs_update_inode(trans, root, inode);
3540 if (ret == -ENOSPC)
3541 return btrfs_update_inode_item(trans, root, inode);
3542 return ret;
3543}
3544
d352ac68
CM
3545/*
3546 * unlink helper that gets used here in inode.c and in the tree logging
3547 * recovery code. It remove a link in a directory with a given name, and
3548 * also drops the back refs in the inode to the directory
3549 */
92986796
AV
3550static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3551 struct btrfs_root *root,
3552 struct inode *dir, struct inode *inode,
3553 const char *name, int name_len)
39279cc3
CM
3554{
3555 struct btrfs_path *path;
39279cc3 3556 int ret = 0;
5f39d397 3557 struct extent_buffer *leaf;
39279cc3 3558 struct btrfs_dir_item *di;
5f39d397 3559 struct btrfs_key key;
aec7477b 3560 u64 index;
33345d01
LZ
3561 u64 ino = btrfs_ino(inode);
3562 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3563
3564 path = btrfs_alloc_path();
54aa1f4d
CM
3565 if (!path) {
3566 ret = -ENOMEM;
554233a6 3567 goto out;
54aa1f4d
CM
3568 }
3569
b9473439 3570 path->leave_spinning = 1;
33345d01 3571 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3572 name, name_len, -1);
3573 if (IS_ERR(di)) {
3574 ret = PTR_ERR(di);
3575 goto err;
3576 }
3577 if (!di) {
3578 ret = -ENOENT;
3579 goto err;
3580 }
5f39d397
CM
3581 leaf = path->nodes[0];
3582 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3583 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3584 if (ret)
3585 goto err;
b3b4aa74 3586 btrfs_release_path(path);
39279cc3 3587
33345d01
LZ
3588 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3589 dir_ino, &index);
aec7477b 3590 if (ret) {
c2cf52eb
SK
3591 btrfs_info(root->fs_info,
3592 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3593 name_len, name, ino, dir_ino);
79787eaa 3594 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3595 goto err;
3596 }
3597
16cdcec7 3598 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3599 if (ret) {
3600 btrfs_abort_transaction(trans, root, ret);
39279cc3 3601 goto err;
79787eaa 3602 }
39279cc3 3603
e02119d5 3604 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3605 inode, dir_ino);
79787eaa
JM
3606 if (ret != 0 && ret != -ENOENT) {
3607 btrfs_abort_transaction(trans, root, ret);
3608 goto err;
3609 }
e02119d5
CM
3610
3611 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3612 dir, index);
6418c961
CM
3613 if (ret == -ENOENT)
3614 ret = 0;
d4e3991b
ZB
3615 else if (ret)
3616 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3617err:
3618 btrfs_free_path(path);
e02119d5
CM
3619 if (ret)
3620 goto out;
3621
3622 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3623 inode_inc_iversion(inode);
3624 inode_inc_iversion(dir);
e02119d5 3625 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3626 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3627out:
39279cc3
CM
3628 return ret;
3629}
3630
92986796
AV
3631int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3632 struct btrfs_root *root,
3633 struct inode *dir, struct inode *inode,
3634 const char *name, int name_len)
3635{
3636 int ret;
3637 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3638 if (!ret) {
3639 btrfs_drop_nlink(inode);
3640 ret = btrfs_update_inode(trans, root, inode);
3641 }
3642 return ret;
3643}
39279cc3 3644
a22285a6
YZ
3645/*
3646 * helper to start transaction for unlink and rmdir.
3647 *
d52be818
JB
3648 * unlink and rmdir are special in btrfs, they do not always free space, so
3649 * if we cannot make our reservations the normal way try and see if there is
3650 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3651 * allow the unlink to occur.
a22285a6 3652 */
d52be818 3653static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3654{
39279cc3 3655 struct btrfs_trans_handle *trans;
a22285a6 3656 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3657 int ret;
3658
e70bea5f
JB
3659 /*
3660 * 1 for the possible orphan item
3661 * 1 for the dir item
3662 * 1 for the dir index
3663 * 1 for the inode ref
e70bea5f
JB
3664 * 1 for the inode
3665 */
6e137ed3 3666 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3667 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3668 return trans;
4df27c4d 3669
d52be818
JB
3670 if (PTR_ERR(trans) == -ENOSPC) {
3671 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3672
d52be818
JB
3673 trans = btrfs_start_transaction(root, 0);
3674 if (IS_ERR(trans))
3675 return trans;
3676 ret = btrfs_cond_migrate_bytes(root->fs_info,
3677 &root->fs_info->trans_block_rsv,
3678 num_bytes, 5);
3679 if (ret) {
3680 btrfs_end_transaction(trans, root);
3681 return ERR_PTR(ret);
a22285a6 3682 }
5a77d76c 3683 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3684 trans->bytes_reserved = num_bytes;
a22285a6 3685 }
d52be818 3686 return trans;
a22285a6
YZ
3687}
3688
3689static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3690{
3691 struct btrfs_root *root = BTRFS_I(dir)->root;
3692 struct btrfs_trans_handle *trans;
3693 struct inode *inode = dentry->d_inode;
3694 int ret;
a22285a6 3695
d52be818 3696 trans = __unlink_start_trans(dir);
a22285a6
YZ
3697 if (IS_ERR(trans))
3698 return PTR_ERR(trans);
5f39d397 3699
12fcfd22
CM
3700 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3701
e02119d5
CM
3702 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3703 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3704 if (ret)
3705 goto out;
7b128766 3706
a22285a6 3707 if (inode->i_nlink == 0) {
7b128766 3708 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3709 if (ret)
3710 goto out;
a22285a6 3711 }
7b128766 3712
b532402e 3713out:
d52be818 3714 btrfs_end_transaction(trans, root);
b53d3f5d 3715 btrfs_btree_balance_dirty(root);
39279cc3
CM
3716 return ret;
3717}
3718
4df27c4d
YZ
3719int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3720 struct btrfs_root *root,
3721 struct inode *dir, u64 objectid,
3722 const char *name, int name_len)
3723{
3724 struct btrfs_path *path;
3725 struct extent_buffer *leaf;
3726 struct btrfs_dir_item *di;
3727 struct btrfs_key key;
3728 u64 index;
3729 int ret;
33345d01 3730 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3731
3732 path = btrfs_alloc_path();
3733 if (!path)
3734 return -ENOMEM;
3735
33345d01 3736 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3737 name, name_len, -1);
79787eaa
JM
3738 if (IS_ERR_OR_NULL(di)) {
3739 if (!di)
3740 ret = -ENOENT;
3741 else
3742 ret = PTR_ERR(di);
3743 goto out;
3744 }
4df27c4d
YZ
3745
3746 leaf = path->nodes[0];
3747 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3748 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3749 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3750 if (ret) {
3751 btrfs_abort_transaction(trans, root, ret);
3752 goto out;
3753 }
b3b4aa74 3754 btrfs_release_path(path);
4df27c4d
YZ
3755
3756 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3757 objectid, root->root_key.objectid,
33345d01 3758 dir_ino, &index, name, name_len);
4df27c4d 3759 if (ret < 0) {
79787eaa
JM
3760 if (ret != -ENOENT) {
3761 btrfs_abort_transaction(trans, root, ret);
3762 goto out;
3763 }
33345d01 3764 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3765 name, name_len);
79787eaa
JM
3766 if (IS_ERR_OR_NULL(di)) {
3767 if (!di)
3768 ret = -ENOENT;
3769 else
3770 ret = PTR_ERR(di);
3771 btrfs_abort_transaction(trans, root, ret);
3772 goto out;
3773 }
4df27c4d
YZ
3774
3775 leaf = path->nodes[0];
3776 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3777 btrfs_release_path(path);
4df27c4d
YZ
3778 index = key.offset;
3779 }
945d8962 3780 btrfs_release_path(path);
4df27c4d 3781
16cdcec7 3782 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3783 if (ret) {
3784 btrfs_abort_transaction(trans, root, ret);
3785 goto out;
3786 }
4df27c4d
YZ
3787
3788 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3789 inode_inc_iversion(dir);
4df27c4d 3790 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3791 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3792 if (ret)
3793 btrfs_abort_transaction(trans, root, ret);
3794out:
71d7aed0 3795 btrfs_free_path(path);
79787eaa 3796 return ret;
4df27c4d
YZ
3797}
3798
39279cc3
CM
3799static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3800{
3801 struct inode *inode = dentry->d_inode;
1832a6d5 3802 int err = 0;
39279cc3 3803 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3804 struct btrfs_trans_handle *trans;
39279cc3 3805
b3ae244e 3806 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3807 return -ENOTEMPTY;
b3ae244e
DS
3808 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3809 return -EPERM;
134d4512 3810
d52be818 3811 trans = __unlink_start_trans(dir);
a22285a6 3812 if (IS_ERR(trans))
5df6a9f6 3813 return PTR_ERR(trans);
5df6a9f6 3814
33345d01 3815 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3816 err = btrfs_unlink_subvol(trans, root, dir,
3817 BTRFS_I(inode)->location.objectid,
3818 dentry->d_name.name,
3819 dentry->d_name.len);
3820 goto out;
3821 }
3822
7b128766
JB
3823 err = btrfs_orphan_add(trans, inode);
3824 if (err)
4df27c4d 3825 goto out;
7b128766 3826
39279cc3 3827 /* now the directory is empty */
e02119d5
CM
3828 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3829 dentry->d_name.name, dentry->d_name.len);
d397712b 3830 if (!err)
dbe674a9 3831 btrfs_i_size_write(inode, 0);
4df27c4d 3832out:
d52be818 3833 btrfs_end_transaction(trans, root);
b53d3f5d 3834 btrfs_btree_balance_dirty(root);
3954401f 3835
39279cc3
CM
3836 return err;
3837}
3838
39279cc3
CM
3839/*
3840 * this can truncate away extent items, csum items and directory items.
3841 * It starts at a high offset and removes keys until it can't find
d352ac68 3842 * any higher than new_size
39279cc3
CM
3843 *
3844 * csum items that cross the new i_size are truncated to the new size
3845 * as well.
7b128766
JB
3846 *
3847 * min_type is the minimum key type to truncate down to. If set to 0, this
3848 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3849 */
8082510e
YZ
3850int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3851 struct btrfs_root *root,
3852 struct inode *inode,
3853 u64 new_size, u32 min_type)
39279cc3 3854{
39279cc3 3855 struct btrfs_path *path;
5f39d397 3856 struct extent_buffer *leaf;
39279cc3 3857 struct btrfs_file_extent_item *fi;
8082510e
YZ
3858 struct btrfs_key key;
3859 struct btrfs_key found_key;
39279cc3 3860 u64 extent_start = 0;
db94535d 3861 u64 extent_num_bytes = 0;
5d4f98a2 3862 u64 extent_offset = 0;
39279cc3 3863 u64 item_end = 0;
7f4f6e0a 3864 u64 last_size = (u64)-1;
8082510e 3865 u32 found_type = (u8)-1;
39279cc3
CM
3866 int found_extent;
3867 int del_item;
85e21bac
CM
3868 int pending_del_nr = 0;
3869 int pending_del_slot = 0;
179e29e4 3870 int extent_type = -1;
8082510e
YZ
3871 int ret;
3872 int err = 0;
33345d01 3873 u64 ino = btrfs_ino(inode);
8082510e
YZ
3874
3875 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3876
0eb0e19c
MF
3877 path = btrfs_alloc_path();
3878 if (!path)
3879 return -ENOMEM;
3880 path->reada = -1;
3881
5dc562c5
JB
3882 /*
3883 * We want to drop from the next block forward in case this new size is
3884 * not block aligned since we will be keeping the last block of the
3885 * extent just the way it is.
3886 */
0af3d00b 3887 if (root->ref_cows || root == root->fs_info->tree_root)
fda2832f
QW
3888 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3889 root->sectorsize), (u64)-1, 0);
8082510e 3890
16cdcec7
MX
3891 /*
3892 * This function is also used to drop the items in the log tree before
3893 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3894 * it is used to drop the loged items. So we shouldn't kill the delayed
3895 * items.
3896 */
3897 if (min_type == 0 && root == BTRFS_I(inode)->root)
3898 btrfs_kill_delayed_inode_items(inode);
3899
33345d01 3900 key.objectid = ino;
39279cc3 3901 key.offset = (u64)-1;
5f39d397
CM
3902 key.type = (u8)-1;
3903
85e21bac 3904search_again:
b9473439 3905 path->leave_spinning = 1;
85e21bac 3906 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3907 if (ret < 0) {
3908 err = ret;
3909 goto out;
3910 }
d397712b 3911
85e21bac 3912 if (ret > 0) {
e02119d5
CM
3913 /* there are no items in the tree for us to truncate, we're
3914 * done
3915 */
8082510e
YZ
3916 if (path->slots[0] == 0)
3917 goto out;
85e21bac
CM
3918 path->slots[0]--;
3919 }
3920
d397712b 3921 while (1) {
39279cc3 3922 fi = NULL;
5f39d397
CM
3923 leaf = path->nodes[0];
3924 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3925 found_type = btrfs_key_type(&found_key);
39279cc3 3926
33345d01 3927 if (found_key.objectid != ino)
39279cc3 3928 break;
5f39d397 3929
85e21bac 3930 if (found_type < min_type)
39279cc3
CM
3931 break;
3932
5f39d397 3933 item_end = found_key.offset;
39279cc3 3934 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3935 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3936 struct btrfs_file_extent_item);
179e29e4
CM
3937 extent_type = btrfs_file_extent_type(leaf, fi);
3938 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3939 item_end +=
db94535d 3940 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3941 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3942 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3943 fi);
39279cc3 3944 }
008630c1 3945 item_end--;
39279cc3 3946 }
8082510e
YZ
3947 if (found_type > min_type) {
3948 del_item = 1;
3949 } else {
3950 if (item_end < new_size)
b888db2b 3951 break;
8082510e
YZ
3952 if (found_key.offset >= new_size)
3953 del_item = 1;
3954 else
3955 del_item = 0;
39279cc3 3956 }
39279cc3 3957 found_extent = 0;
39279cc3 3958 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3959 if (found_type != BTRFS_EXTENT_DATA_KEY)
3960 goto delete;
3961
7f4f6e0a
JB
3962 if (del_item)
3963 last_size = found_key.offset;
3964 else
3965 last_size = new_size;
3966
179e29e4 3967 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3968 u64 num_dec;
db94535d 3969 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3970 if (!del_item) {
db94535d
CM
3971 u64 orig_num_bytes =
3972 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
3973 extent_num_bytes = ALIGN(new_size -
3974 found_key.offset,
3975 root->sectorsize);
db94535d
CM
3976 btrfs_set_file_extent_num_bytes(leaf, fi,
3977 extent_num_bytes);
3978 num_dec = (orig_num_bytes -
9069218d 3979 extent_num_bytes);
e02119d5 3980 if (root->ref_cows && extent_start != 0)
a76a3cd4 3981 inode_sub_bytes(inode, num_dec);
5f39d397 3982 btrfs_mark_buffer_dirty(leaf);
39279cc3 3983 } else {
db94535d
CM
3984 extent_num_bytes =
3985 btrfs_file_extent_disk_num_bytes(leaf,
3986 fi);
5d4f98a2
YZ
3987 extent_offset = found_key.offset -
3988 btrfs_file_extent_offset(leaf, fi);
3989
39279cc3 3990 /* FIXME blocksize != 4096 */
9069218d 3991 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3992 if (extent_start != 0) {
3993 found_extent = 1;
e02119d5 3994 if (root->ref_cows)
a76a3cd4 3995 inode_sub_bytes(inode, num_dec);
e02119d5 3996 }
39279cc3 3997 }
9069218d 3998 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3999 /*
4000 * we can't truncate inline items that have had
4001 * special encodings
4002 */
4003 if (!del_item &&
4004 btrfs_file_extent_compression(leaf, fi) == 0 &&
4005 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4006 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4007 u32 size = new_size - found_key.offset;
4008
4009 if (root->ref_cows) {
a76a3cd4
YZ
4010 inode_sub_bytes(inode, item_end + 1 -
4011 new_size);
e02119d5
CM
4012 }
4013 size =
4014 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4015 btrfs_truncate_item(root, path, size, 1);
e02119d5 4016 } else if (root->ref_cows) {
a76a3cd4
YZ
4017 inode_sub_bytes(inode, item_end + 1 -
4018 found_key.offset);
9069218d 4019 }
39279cc3 4020 }
179e29e4 4021delete:
39279cc3 4022 if (del_item) {
85e21bac
CM
4023 if (!pending_del_nr) {
4024 /* no pending yet, add ourselves */
4025 pending_del_slot = path->slots[0];
4026 pending_del_nr = 1;
4027 } else if (pending_del_nr &&
4028 path->slots[0] + 1 == pending_del_slot) {
4029 /* hop on the pending chunk */
4030 pending_del_nr++;
4031 pending_del_slot = path->slots[0];
4032 } else {
d397712b 4033 BUG();
85e21bac 4034 }
39279cc3
CM
4035 } else {
4036 break;
4037 }
0af3d00b
JB
4038 if (found_extent && (root->ref_cows ||
4039 root == root->fs_info->tree_root)) {
b9473439 4040 btrfs_set_path_blocking(path);
39279cc3 4041 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4042 extent_num_bytes, 0,
4043 btrfs_header_owner(leaf),
66d7e7f0 4044 ino, extent_offset, 0);
39279cc3
CM
4045 BUG_ON(ret);
4046 }
85e21bac 4047
8082510e
YZ
4048 if (found_type == BTRFS_INODE_ITEM_KEY)
4049 break;
4050
4051 if (path->slots[0] == 0 ||
4052 path->slots[0] != pending_del_slot) {
8082510e
YZ
4053 if (pending_del_nr) {
4054 ret = btrfs_del_items(trans, root, path,
4055 pending_del_slot,
4056 pending_del_nr);
79787eaa
JM
4057 if (ret) {
4058 btrfs_abort_transaction(trans,
4059 root, ret);
4060 goto error;
4061 }
8082510e
YZ
4062 pending_del_nr = 0;
4063 }
b3b4aa74 4064 btrfs_release_path(path);
85e21bac 4065 goto search_again;
8082510e
YZ
4066 } else {
4067 path->slots[0]--;
85e21bac 4068 }
39279cc3 4069 }
8082510e 4070out:
85e21bac
CM
4071 if (pending_del_nr) {
4072 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4073 pending_del_nr);
79787eaa
JM
4074 if (ret)
4075 btrfs_abort_transaction(trans, root, ret);
85e21bac 4076 }
79787eaa 4077error:
7f4f6e0a
JB
4078 if (last_size != (u64)-1)
4079 btrfs_ordered_update_i_size(inode, last_size, NULL);
39279cc3 4080 btrfs_free_path(path);
8082510e 4081 return err;
39279cc3
CM
4082}
4083
4084/*
2aaa6655
JB
4085 * btrfs_truncate_page - read, zero a chunk and write a page
4086 * @inode - inode that we're zeroing
4087 * @from - the offset to start zeroing
4088 * @len - the length to zero, 0 to zero the entire range respective to the
4089 * offset
4090 * @front - zero up to the offset instead of from the offset on
4091 *
4092 * This will find the page for the "from" offset and cow the page and zero the
4093 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4094 */
2aaa6655
JB
4095int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4096 int front)
39279cc3 4097{
2aaa6655 4098 struct address_space *mapping = inode->i_mapping;
db94535d 4099 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4100 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4101 struct btrfs_ordered_extent *ordered;
2ac55d41 4102 struct extent_state *cached_state = NULL;
e6dcd2dc 4103 char *kaddr;
db94535d 4104 u32 blocksize = root->sectorsize;
39279cc3
CM
4105 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4106 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4107 struct page *page;
3b16a4e3 4108 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4109 int ret = 0;
a52d9a80 4110 u64 page_start;
e6dcd2dc 4111 u64 page_end;
39279cc3 4112
2aaa6655
JB
4113 if ((offset & (blocksize - 1)) == 0 &&
4114 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4115 goto out;
0ca1f7ce 4116 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4117 if (ret)
4118 goto out;
39279cc3 4119
211c17f5 4120again:
3b16a4e3 4121 page = find_or_create_page(mapping, index, mask);
5d5e103a 4122 if (!page) {
0ca1f7ce 4123 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4124 ret = -ENOMEM;
39279cc3 4125 goto out;
5d5e103a 4126 }
e6dcd2dc
CM
4127
4128 page_start = page_offset(page);
4129 page_end = page_start + PAGE_CACHE_SIZE - 1;
4130
39279cc3 4131 if (!PageUptodate(page)) {
9ebefb18 4132 ret = btrfs_readpage(NULL, page);
39279cc3 4133 lock_page(page);
211c17f5
CM
4134 if (page->mapping != mapping) {
4135 unlock_page(page);
4136 page_cache_release(page);
4137 goto again;
4138 }
39279cc3
CM
4139 if (!PageUptodate(page)) {
4140 ret = -EIO;
89642229 4141 goto out_unlock;
39279cc3
CM
4142 }
4143 }
211c17f5 4144 wait_on_page_writeback(page);
e6dcd2dc 4145
d0082371 4146 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4147 set_page_extent_mapped(page);
4148
4149 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4150 if (ordered) {
2ac55d41
JB
4151 unlock_extent_cached(io_tree, page_start, page_end,
4152 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4153 unlock_page(page);
4154 page_cache_release(page);
eb84ae03 4155 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4156 btrfs_put_ordered_extent(ordered);
4157 goto again;
4158 }
4159
2ac55d41 4160 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4161 EXTENT_DIRTY | EXTENT_DELALLOC |
4162 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4163 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4164
2ac55d41
JB
4165 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4166 &cached_state);
9ed74f2d 4167 if (ret) {
2ac55d41
JB
4168 unlock_extent_cached(io_tree, page_start, page_end,
4169 &cached_state, GFP_NOFS);
9ed74f2d
JB
4170 goto out_unlock;
4171 }
4172
e6dcd2dc 4173 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4174 if (!len)
4175 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4176 kaddr = kmap(page);
2aaa6655
JB
4177 if (front)
4178 memset(kaddr, 0, offset);
4179 else
4180 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4181 flush_dcache_page(page);
4182 kunmap(page);
4183 }
247e743c 4184 ClearPageChecked(page);
e6dcd2dc 4185 set_page_dirty(page);
2ac55d41
JB
4186 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4187 GFP_NOFS);
39279cc3 4188
89642229 4189out_unlock:
5d5e103a 4190 if (ret)
0ca1f7ce 4191 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4192 unlock_page(page);
4193 page_cache_release(page);
4194out:
4195 return ret;
4196}
4197
695a0d0d
JB
4198/*
4199 * This function puts in dummy file extents for the area we're creating a hole
4200 * for. So if we are truncating this file to a larger size we need to insert
4201 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4202 * the range between oldsize and size
4203 */
a41ad394 4204int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4205{
9036c102
YZ
4206 struct btrfs_trans_handle *trans;
4207 struct btrfs_root *root = BTRFS_I(inode)->root;
4208 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4209 struct extent_map *em = NULL;
2ac55d41 4210 struct extent_state *cached_state = NULL;
5dc562c5 4211 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4212 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4213 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4214 u64 last_byte;
4215 u64 cur_offset;
4216 u64 hole_size;
9ed74f2d 4217 int err = 0;
39279cc3 4218
a71754fc
JB
4219 /*
4220 * If our size started in the middle of a page we need to zero out the
4221 * rest of the page before we expand the i_size, otherwise we could
4222 * expose stale data.
4223 */
4224 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4225 if (err)
4226 return err;
4227
9036c102
YZ
4228 if (size <= hole_start)
4229 return 0;
4230
9036c102
YZ
4231 while (1) {
4232 struct btrfs_ordered_extent *ordered;
4233 btrfs_wait_ordered_range(inode, hole_start,
4234 block_end - hole_start);
2ac55d41 4235 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4236 &cached_state);
9036c102
YZ
4237 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4238 if (!ordered)
4239 break;
2ac55d41
JB
4240 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4241 &cached_state, GFP_NOFS);
9036c102
YZ
4242 btrfs_put_ordered_extent(ordered);
4243 }
39279cc3 4244
9036c102
YZ
4245 cur_offset = hole_start;
4246 while (1) {
4247 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4248 block_end - cur_offset, 0);
79787eaa
JM
4249 if (IS_ERR(em)) {
4250 err = PTR_ERR(em);
f2767956 4251 em = NULL;
79787eaa
JM
4252 break;
4253 }
9036c102 4254 last_byte = min(extent_map_end(em), block_end);
fda2832f 4255 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4256 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4257 struct extent_map *hole_em;
9036c102 4258 hole_size = last_byte - cur_offset;
9ed74f2d 4259
3642320e 4260 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
4261 if (IS_ERR(trans)) {
4262 err = PTR_ERR(trans);
9ed74f2d 4263 break;
a22285a6 4264 }
8082510e 4265
5dc562c5
JB
4266 err = btrfs_drop_extents(trans, root, inode,
4267 cur_offset,
2671485d 4268 cur_offset + hole_size, 1);
5b397377 4269 if (err) {
79787eaa 4270 btrfs_abort_transaction(trans, root, err);
5b397377 4271 btrfs_end_transaction(trans, root);
3893e33b 4272 break;
5b397377 4273 }
8082510e 4274
9036c102 4275 err = btrfs_insert_file_extent(trans, root,
33345d01 4276 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
4277 0, hole_size, 0, hole_size,
4278 0, 0, 0);
5b397377 4279 if (err) {
79787eaa 4280 btrfs_abort_transaction(trans, root, err);
5b397377 4281 btrfs_end_transaction(trans, root);
3893e33b 4282 break;
5b397377 4283 }
8082510e 4284
5dc562c5
JB
4285 btrfs_drop_extent_cache(inode, cur_offset,
4286 cur_offset + hole_size - 1, 0);
4287 hole_em = alloc_extent_map();
4288 if (!hole_em) {
4289 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4290 &BTRFS_I(inode)->runtime_flags);
4291 goto next;
4292 }
4293 hole_em->start = cur_offset;
4294 hole_em->len = hole_size;
4295 hole_em->orig_start = cur_offset;
8082510e 4296
5dc562c5
JB
4297 hole_em->block_start = EXTENT_MAP_HOLE;
4298 hole_em->block_len = 0;
b4939680 4299 hole_em->orig_block_len = 0;
cc95bef6 4300 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4301 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4302 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4303 hole_em->generation = trans->transid;
8082510e 4304
5dc562c5
JB
4305 while (1) {
4306 write_lock(&em_tree->lock);
09a2a8f9 4307 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4308 write_unlock(&em_tree->lock);
4309 if (err != -EEXIST)
4310 break;
4311 btrfs_drop_extent_cache(inode, cur_offset,
4312 cur_offset +
4313 hole_size - 1, 0);
4314 }
4315 free_extent_map(hole_em);
4316next:
3642320e 4317 btrfs_update_inode(trans, root, inode);
8082510e 4318 btrfs_end_transaction(trans, root);
9036c102
YZ
4319 }
4320 free_extent_map(em);
a22285a6 4321 em = NULL;
9036c102 4322 cur_offset = last_byte;
8082510e 4323 if (cur_offset >= block_end)
9036c102
YZ
4324 break;
4325 }
1832a6d5 4326
a22285a6 4327 free_extent_map(em);
2ac55d41
JB
4328 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4329 GFP_NOFS);
9036c102
YZ
4330 return err;
4331}
39279cc3 4332
3972f260 4333static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4334{
f4a2f4c5
MX
4335 struct btrfs_root *root = BTRFS_I(inode)->root;
4336 struct btrfs_trans_handle *trans;
a41ad394 4337 loff_t oldsize = i_size_read(inode);
3972f260
ES
4338 loff_t newsize = attr->ia_size;
4339 int mask = attr->ia_valid;
8082510e
YZ
4340 int ret;
4341
3972f260
ES
4342 /*
4343 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4344 * special case where we need to update the times despite not having
4345 * these flags set. For all other operations the VFS set these flags
4346 * explicitly if it wants a timestamp update.
4347 */
4348 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4349 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4350
a41ad394 4351 if (newsize > oldsize) {
7caef267 4352 truncate_pagecache(inode, newsize);
a41ad394 4353 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4354 if (ret)
8082510e 4355 return ret;
8082510e 4356
f4a2f4c5
MX
4357 trans = btrfs_start_transaction(root, 1);
4358 if (IS_ERR(trans))
4359 return PTR_ERR(trans);
4360
4361 i_size_write(inode, newsize);
4362 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4363 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4364 btrfs_end_transaction(trans, root);
a41ad394 4365 } else {
8082510e 4366
a41ad394
JB
4367 /*
4368 * We're truncating a file that used to have good data down to
4369 * zero. Make sure it gets into the ordered flush list so that
4370 * any new writes get down to disk quickly.
4371 */
4372 if (newsize == 0)
72ac3c0d
JB
4373 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4374 &BTRFS_I(inode)->runtime_flags);
8082510e 4375
f3fe820c
JB
4376 /*
4377 * 1 for the orphan item we're going to add
4378 * 1 for the orphan item deletion.
4379 */
4380 trans = btrfs_start_transaction(root, 2);
4381 if (IS_ERR(trans))
4382 return PTR_ERR(trans);
4383
4384 /*
4385 * We need to do this in case we fail at _any_ point during the
4386 * actual truncate. Once we do the truncate_setsize we could
4387 * invalidate pages which forces any outstanding ordered io to
4388 * be instantly completed which will give us extents that need
4389 * to be truncated. If we fail to get an orphan inode down we
4390 * could have left over extents that were never meant to live,
4391 * so we need to garuntee from this point on that everything
4392 * will be consistent.
4393 */
4394 ret = btrfs_orphan_add(trans, inode);
4395 btrfs_end_transaction(trans, root);
4396 if (ret)
4397 return ret;
4398
a41ad394
JB
4399 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4400 truncate_setsize(inode, newsize);
2e60a51e
MX
4401
4402 /* Disable nonlocked read DIO to avoid the end less truncate */
4403 btrfs_inode_block_unlocked_dio(inode);
4404 inode_dio_wait(inode);
4405 btrfs_inode_resume_unlocked_dio(inode);
4406
a41ad394 4407 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4408 if (ret && inode->i_nlink) {
4409 int err;
4410
4411 /*
4412 * failed to truncate, disk_i_size is only adjusted down
4413 * as we remove extents, so it should represent the true
4414 * size of the inode, so reset the in memory size and
4415 * delete our orphan entry.
4416 */
4417 trans = btrfs_join_transaction(root);
4418 if (IS_ERR(trans)) {
4419 btrfs_orphan_del(NULL, inode);
4420 return ret;
4421 }
4422 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4423 err = btrfs_orphan_del(trans, inode);
4424 if (err)
4425 btrfs_abort_transaction(trans, root, err);
4426 btrfs_end_transaction(trans, root);
4427 }
8082510e
YZ
4428 }
4429
a41ad394 4430 return ret;
8082510e
YZ
4431}
4432
9036c102
YZ
4433static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4434{
4435 struct inode *inode = dentry->d_inode;
b83cc969 4436 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4437 int err;
39279cc3 4438
b83cc969
LZ
4439 if (btrfs_root_readonly(root))
4440 return -EROFS;
4441
9036c102
YZ
4442 err = inode_change_ok(inode, attr);
4443 if (err)
4444 return err;
2bf5a725 4445
5a3f23d5 4446 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4447 err = btrfs_setsize(inode, attr);
8082510e
YZ
4448 if (err)
4449 return err;
39279cc3 4450 }
9036c102 4451
1025774c
CH
4452 if (attr->ia_valid) {
4453 setattr_copy(inode, attr);
0c4d2d95 4454 inode_inc_iversion(inode);
22c44fe6 4455 err = btrfs_dirty_inode(inode);
1025774c 4456
22c44fe6 4457 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
4458 err = btrfs_acl_chmod(inode);
4459 }
33268eaf 4460
39279cc3
CM
4461 return err;
4462}
61295eb8 4463
bd555975 4464void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4465{
4466 struct btrfs_trans_handle *trans;
4467 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4468 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4469 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4470 int ret;
4471
1abe9b8a 4472 trace_btrfs_inode_evict(inode);
4473
39279cc3 4474 truncate_inode_pages(&inode->i_data, 0);
69e9c6c6
SB
4475 if (inode->i_nlink &&
4476 ((btrfs_root_refs(&root->root_item) != 0 &&
4477 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4478 btrfs_is_free_space_inode(inode)))
bd555975
AV
4479 goto no_delete;
4480
39279cc3 4481 if (is_bad_inode(inode)) {
7b128766 4482 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4483 goto no_delete;
4484 }
bd555975 4485 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4486 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4487
c71bf099 4488 if (root->fs_info->log_root_recovering) {
6bf02314 4489 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4490 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4491 goto no_delete;
4492 }
4493
76dda93c 4494 if (inode->i_nlink > 0) {
69e9c6c6
SB
4495 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4496 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
4497 goto no_delete;
4498 }
4499
0e8c36a9
MX
4500 ret = btrfs_commit_inode_delayed_inode(inode);
4501 if (ret) {
4502 btrfs_orphan_del(NULL, inode);
4503 goto no_delete;
4504 }
4505
66d8f3dd 4506 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4507 if (!rsv) {
4508 btrfs_orphan_del(NULL, inode);
4509 goto no_delete;
4510 }
4a338542 4511 rsv->size = min_size;
ca7e70f5 4512 rsv->failfast = 1;
726c35fa 4513 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4514
dbe674a9 4515 btrfs_i_size_write(inode, 0);
5f39d397 4516
4289a667 4517 /*
8407aa46
MX
4518 * This is a bit simpler than btrfs_truncate since we've already
4519 * reserved our space for our orphan item in the unlink, so we just
4520 * need to reserve some slack space in case we add bytes and update
4521 * inode item when doing the truncate.
4289a667 4522 */
8082510e 4523 while (1) {
08e007d2
MX
4524 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4525 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4526
4527 /*
4528 * Try and steal from the global reserve since we will
4529 * likely not use this space anyway, we want to try as
4530 * hard as possible to get this to work.
4531 */
4532 if (ret)
4533 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4534
d68fc57b 4535 if (ret) {
c2cf52eb
SK
4536 btrfs_warn(root->fs_info,
4537 "Could not get space for a delete, will truncate on mount %d",
4538 ret);
4289a667
JB
4539 btrfs_orphan_del(NULL, inode);
4540 btrfs_free_block_rsv(root, rsv);
4541 goto no_delete;
d68fc57b 4542 }
7b128766 4543
0e8c36a9 4544 trans = btrfs_join_transaction(root);
4289a667
JB
4545 if (IS_ERR(trans)) {
4546 btrfs_orphan_del(NULL, inode);
4547 btrfs_free_block_rsv(root, rsv);
4548 goto no_delete;
d68fc57b 4549 }
7b128766 4550
4289a667
JB
4551 trans->block_rsv = rsv;
4552
d68fc57b 4553 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4554 if (ret != -ENOSPC)
8082510e 4555 break;
85e21bac 4556
8407aa46 4557 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4558 btrfs_end_transaction(trans, root);
4559 trans = NULL;
b53d3f5d 4560 btrfs_btree_balance_dirty(root);
8082510e 4561 }
5f39d397 4562
4289a667
JB
4563 btrfs_free_block_rsv(root, rsv);
4564
4ef31a45
JB
4565 /*
4566 * Errors here aren't a big deal, it just means we leave orphan items
4567 * in the tree. They will be cleaned up on the next mount.
4568 */
8082510e 4569 if (ret == 0) {
4289a667 4570 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
4571 btrfs_orphan_del(trans, inode);
4572 } else {
4573 btrfs_orphan_del(NULL, inode);
8082510e 4574 }
54aa1f4d 4575
4289a667 4576 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4577 if (!(root == root->fs_info->tree_root ||
4578 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4579 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4580
54aa1f4d 4581 btrfs_end_transaction(trans, root);
b53d3f5d 4582 btrfs_btree_balance_dirty(root);
39279cc3 4583no_delete:
89042e5a 4584 btrfs_remove_delayed_node(inode);
dbd5768f 4585 clear_inode(inode);
8082510e 4586 return;
39279cc3
CM
4587}
4588
4589/*
4590 * this returns the key found in the dir entry in the location pointer.
4591 * If no dir entries were found, location->objectid is 0.
4592 */
4593static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4594 struct btrfs_key *location)
4595{
4596 const char *name = dentry->d_name.name;
4597 int namelen = dentry->d_name.len;
4598 struct btrfs_dir_item *di;
4599 struct btrfs_path *path;
4600 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4601 int ret = 0;
39279cc3
CM
4602
4603 path = btrfs_alloc_path();
d8926bb3
MF
4604 if (!path)
4605 return -ENOMEM;
3954401f 4606
33345d01 4607 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4608 namelen, 0);
0d9f7f3e
Y
4609 if (IS_ERR(di))
4610 ret = PTR_ERR(di);
d397712b 4611
c704005d 4612 if (IS_ERR_OR_NULL(di))
3954401f 4613 goto out_err;
d397712b 4614
5f39d397 4615 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4616out:
39279cc3
CM
4617 btrfs_free_path(path);
4618 return ret;
3954401f
CM
4619out_err:
4620 location->objectid = 0;
4621 goto out;
39279cc3
CM
4622}
4623
4624/*
4625 * when we hit a tree root in a directory, the btrfs part of the inode
4626 * needs to be changed to reflect the root directory of the tree root. This
4627 * is kind of like crossing a mount point.
4628 */
4629static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4630 struct inode *dir,
4631 struct dentry *dentry,
4632 struct btrfs_key *location,
4633 struct btrfs_root **sub_root)
39279cc3 4634{
4df27c4d
YZ
4635 struct btrfs_path *path;
4636 struct btrfs_root *new_root;
4637 struct btrfs_root_ref *ref;
4638 struct extent_buffer *leaf;
4639 int ret;
4640 int err = 0;
39279cc3 4641
4df27c4d
YZ
4642 path = btrfs_alloc_path();
4643 if (!path) {
4644 err = -ENOMEM;
4645 goto out;
4646 }
39279cc3 4647
4df27c4d
YZ
4648 err = -ENOENT;
4649 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4650 BTRFS_I(dir)->root->root_key.objectid,
4651 location->objectid);
4652 if (ret) {
4653 if (ret < 0)
4654 err = ret;
4655 goto out;
4656 }
39279cc3 4657
4df27c4d
YZ
4658 leaf = path->nodes[0];
4659 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4660 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4661 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4662 goto out;
39279cc3 4663
4df27c4d
YZ
4664 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4665 (unsigned long)(ref + 1),
4666 dentry->d_name.len);
4667 if (ret)
4668 goto out;
4669
b3b4aa74 4670 btrfs_release_path(path);
4df27c4d
YZ
4671
4672 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4673 if (IS_ERR(new_root)) {
4674 err = PTR_ERR(new_root);
4675 goto out;
4676 }
4677
4df27c4d
YZ
4678 *sub_root = new_root;
4679 location->objectid = btrfs_root_dirid(&new_root->root_item);
4680 location->type = BTRFS_INODE_ITEM_KEY;
4681 location->offset = 0;
4682 err = 0;
4683out:
4684 btrfs_free_path(path);
4685 return err;
39279cc3
CM
4686}
4687
5d4f98a2
YZ
4688static void inode_tree_add(struct inode *inode)
4689{
4690 struct btrfs_root *root = BTRFS_I(inode)->root;
4691 struct btrfs_inode *entry;
03e860bd
FNP
4692 struct rb_node **p;
4693 struct rb_node *parent;
cef21937 4694 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 4695 u64 ino = btrfs_ino(inode);
5d4f98a2 4696
1d3382cb 4697 if (inode_unhashed(inode))
76dda93c 4698 return;
e1409cef 4699 parent = NULL;
5d4f98a2 4700 spin_lock(&root->inode_lock);
e1409cef 4701 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4702 while (*p) {
4703 parent = *p;
4704 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4705
33345d01 4706 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4707 p = &parent->rb_left;
33345d01 4708 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4709 p = &parent->rb_right;
5d4f98a2
YZ
4710 else {
4711 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4712 (I_WILL_FREE | I_FREEING)));
cef21937 4713 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
4714 RB_CLEAR_NODE(parent);
4715 spin_unlock(&root->inode_lock);
cef21937 4716 return;
5d4f98a2
YZ
4717 }
4718 }
cef21937
FDBM
4719 rb_link_node(new, parent, p);
4720 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
4721 spin_unlock(&root->inode_lock);
4722}
4723
4724static void inode_tree_del(struct inode *inode)
4725{
4726 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4727 int empty = 0;
5d4f98a2 4728
03e860bd 4729 spin_lock(&root->inode_lock);
5d4f98a2 4730 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4731 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4732 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4733 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4734 }
03e860bd 4735 spin_unlock(&root->inode_lock);
76dda93c 4736
69e9c6c6 4737 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
4738 synchronize_srcu(&root->fs_info->subvol_srcu);
4739 spin_lock(&root->inode_lock);
4740 empty = RB_EMPTY_ROOT(&root->inode_tree);
4741 spin_unlock(&root->inode_lock);
4742 if (empty)
4743 btrfs_add_dead_root(root);
4744 }
4745}
4746
143bede5 4747void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4748{
4749 struct rb_node *node;
4750 struct rb_node *prev;
4751 struct btrfs_inode *entry;
4752 struct inode *inode;
4753 u64 objectid = 0;
4754
4755 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4756
4757 spin_lock(&root->inode_lock);
4758again:
4759 node = root->inode_tree.rb_node;
4760 prev = NULL;
4761 while (node) {
4762 prev = node;
4763 entry = rb_entry(node, struct btrfs_inode, rb_node);
4764
33345d01 4765 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4766 node = node->rb_left;
33345d01 4767 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4768 node = node->rb_right;
4769 else
4770 break;
4771 }
4772 if (!node) {
4773 while (prev) {
4774 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4775 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4776 node = prev;
4777 break;
4778 }
4779 prev = rb_next(prev);
4780 }
4781 }
4782 while (node) {
4783 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4784 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4785 inode = igrab(&entry->vfs_inode);
4786 if (inode) {
4787 spin_unlock(&root->inode_lock);
4788 if (atomic_read(&inode->i_count) > 1)
4789 d_prune_aliases(inode);
4790 /*
45321ac5 4791 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4792 * the inode cache when its usage count
4793 * hits zero.
4794 */
4795 iput(inode);
4796 cond_resched();
4797 spin_lock(&root->inode_lock);
4798 goto again;
4799 }
4800
4801 if (cond_resched_lock(&root->inode_lock))
4802 goto again;
4803
4804 node = rb_next(node);
4805 }
4806 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4807}
4808
e02119d5
CM
4809static int btrfs_init_locked_inode(struct inode *inode, void *p)
4810{
4811 struct btrfs_iget_args *args = p;
4812 inode->i_ino = args->ino;
e02119d5 4813 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4814 return 0;
4815}
4816
4817static int btrfs_find_actor(struct inode *inode, void *opaque)
4818{
4819 struct btrfs_iget_args *args = opaque;
33345d01 4820 return args->ino == btrfs_ino(inode) &&
d397712b 4821 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4822}
4823
5d4f98a2
YZ
4824static struct inode *btrfs_iget_locked(struct super_block *s,
4825 u64 objectid,
4826 struct btrfs_root *root)
39279cc3
CM
4827{
4828 struct inode *inode;
4829 struct btrfs_iget_args args;
4830 args.ino = objectid;
4831 args.root = root;
4832
4833 inode = iget5_locked(s, objectid, btrfs_find_actor,
4834 btrfs_init_locked_inode,
4835 (void *)&args);
4836 return inode;
4837}
4838
1a54ef8c
BR
4839/* Get an inode object given its location and corresponding root.
4840 * Returns in *is_new if the inode was read from disk
4841 */
4842struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4843 struct btrfs_root *root, int *new)
1a54ef8c
BR
4844{
4845 struct inode *inode;
4846
4847 inode = btrfs_iget_locked(s, location->objectid, root);
4848 if (!inode)
5d4f98a2 4849 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4850
4851 if (inode->i_state & I_NEW) {
4852 BTRFS_I(inode)->root = root;
4853 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4854 btrfs_read_locked_inode(inode);
1748f843
MF
4855 if (!is_bad_inode(inode)) {
4856 inode_tree_add(inode);
4857 unlock_new_inode(inode);
4858 if (new)
4859 *new = 1;
4860 } else {
e0b6d65b
ST
4861 unlock_new_inode(inode);
4862 iput(inode);
4863 inode = ERR_PTR(-ESTALE);
1748f843
MF
4864 }
4865 }
4866
1a54ef8c
BR
4867 return inode;
4868}
4869
4df27c4d
YZ
4870static struct inode *new_simple_dir(struct super_block *s,
4871 struct btrfs_key *key,
4872 struct btrfs_root *root)
4873{
4874 struct inode *inode = new_inode(s);
4875
4876 if (!inode)
4877 return ERR_PTR(-ENOMEM);
4878
4df27c4d
YZ
4879 BTRFS_I(inode)->root = root;
4880 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4881 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4882
4883 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4884 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4885 inode->i_fop = &simple_dir_operations;
4886 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4887 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4888
4889 return inode;
4890}
4891
3de4586c 4892struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4893{
d397712b 4894 struct inode *inode;
4df27c4d 4895 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4896 struct btrfs_root *sub_root = root;
4897 struct btrfs_key location;
76dda93c 4898 int index;
b4aff1f8 4899 int ret = 0;
39279cc3
CM
4900
4901 if (dentry->d_name.len > BTRFS_NAME_LEN)
4902 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4903
39e3c955 4904 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
4905 if (ret < 0)
4906 return ERR_PTR(ret);
5f39d397 4907
4df27c4d
YZ
4908 if (location.objectid == 0)
4909 return NULL;
4910
4911 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4912 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4913 return inode;
4914 }
4915
4916 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4917
76dda93c 4918 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4919 ret = fixup_tree_root_location(root, dir, dentry,
4920 &location, &sub_root);
4921 if (ret < 0) {
4922 if (ret != -ENOENT)
4923 inode = ERR_PTR(ret);
4924 else
4925 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4926 } else {
73f73415 4927 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4928 }
76dda93c
YZ
4929 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4930
34d19bad 4931 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4932 down_read(&root->fs_info->cleanup_work_sem);
4933 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4934 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4935 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
4936 if (ret) {
4937 iput(inode);
66b4ffd1 4938 inode = ERR_PTR(ret);
01cd3367 4939 }
c71bf099
YZ
4940 }
4941
3de4586c
CM
4942 return inode;
4943}
4944
fe15ce44 4945static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4946{
4947 struct btrfs_root *root;
848cce0d 4948 struct inode *inode = dentry->d_inode;
76dda93c 4949
848cce0d
LZ
4950 if (!inode && !IS_ROOT(dentry))
4951 inode = dentry->d_parent->d_inode;
76dda93c 4952
848cce0d
LZ
4953 if (inode) {
4954 root = BTRFS_I(inode)->root;
efefb143
YZ
4955 if (btrfs_root_refs(&root->root_item) == 0)
4956 return 1;
848cce0d
LZ
4957
4958 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4959 return 1;
efefb143 4960 }
76dda93c
YZ
4961 return 0;
4962}
4963
b4aff1f8
JB
4964static void btrfs_dentry_release(struct dentry *dentry)
4965{
4966 if (dentry->d_fsdata)
4967 kfree(dentry->d_fsdata);
4968}
4969
3de4586c 4970static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 4971 unsigned int flags)
3de4586c 4972{
a66e7cc6
JB
4973 struct dentry *ret;
4974
4975 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
a66e7cc6 4976 return ret;
39279cc3
CM
4977}
4978
16cdcec7 4979unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4980 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4981};
4982
9cdda8d3 4983static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 4984{
9cdda8d3 4985 struct inode *inode = file_inode(file);
39279cc3
CM
4986 struct btrfs_root *root = BTRFS_I(inode)->root;
4987 struct btrfs_item *item;
4988 struct btrfs_dir_item *di;
4989 struct btrfs_key key;
5f39d397 4990 struct btrfs_key found_key;
39279cc3 4991 struct btrfs_path *path;
16cdcec7
MX
4992 struct list_head ins_list;
4993 struct list_head del_list;
39279cc3 4994 int ret;
5f39d397 4995 struct extent_buffer *leaf;
39279cc3 4996 int slot;
39279cc3
CM
4997 unsigned char d_type;
4998 int over = 0;
4999 u32 di_cur;
5000 u32 di_total;
5001 u32 di_len;
5002 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5003 char tmp_name[32];
5004 char *name_ptr;
5005 int name_len;
9cdda8d3 5006 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5007
5008 /* FIXME, use a real flag for deciding about the key type */
5009 if (root->fs_info->tree_root == root)
5010 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5011
9cdda8d3
AV
5012 if (!dir_emit_dots(file, ctx))
5013 return 0;
5014
49593bfa 5015 path = btrfs_alloc_path();
16cdcec7
MX
5016 if (!path)
5017 return -ENOMEM;
ff5714cc 5018
026fd317 5019 path->reada = 1;
49593bfa 5020
16cdcec7
MX
5021 if (key_type == BTRFS_DIR_INDEX_KEY) {
5022 INIT_LIST_HEAD(&ins_list);
5023 INIT_LIST_HEAD(&del_list);
5024 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5025 }
5026
39279cc3 5027 btrfs_set_key_type(&key, key_type);
9cdda8d3 5028 key.offset = ctx->pos;
33345d01 5029 key.objectid = btrfs_ino(inode);
5f39d397 5030
39279cc3
CM
5031 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5032 if (ret < 0)
5033 goto err;
49593bfa
DW
5034
5035 while (1) {
5f39d397 5036 leaf = path->nodes[0];
39279cc3 5037 slot = path->slots[0];
b9e03af0
LZ
5038 if (slot >= btrfs_header_nritems(leaf)) {
5039 ret = btrfs_next_leaf(root, path);
5040 if (ret < 0)
5041 goto err;
5042 else if (ret > 0)
5043 break;
5044 continue;
39279cc3 5045 }
3de4586c 5046
dd3cc16b 5047 item = btrfs_item_nr(slot);
5f39d397
CM
5048 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5049
5050 if (found_key.objectid != key.objectid)
39279cc3 5051 break;
5f39d397 5052 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5053 break;
9cdda8d3 5054 if (found_key.offset < ctx->pos)
b9e03af0 5055 goto next;
16cdcec7
MX
5056 if (key_type == BTRFS_DIR_INDEX_KEY &&
5057 btrfs_should_delete_dir_index(&del_list,
5058 found_key.offset))
5059 goto next;
5f39d397 5060
9cdda8d3 5061 ctx->pos = found_key.offset;
16cdcec7 5062 is_curr = 1;
49593bfa 5063
39279cc3
CM
5064 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5065 di_cur = 0;
5f39d397 5066 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5067
5068 while (di_cur < di_total) {
5f39d397
CM
5069 struct btrfs_key location;
5070
22a94d44
JB
5071 if (verify_dir_item(root, leaf, di))
5072 break;
5073
5f39d397 5074 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5075 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5076 name_ptr = tmp_name;
5077 } else {
5078 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5079 if (!name_ptr) {
5080 ret = -ENOMEM;
5081 goto err;
5082 }
5f39d397
CM
5083 }
5084 read_extent_buffer(leaf, name_ptr,
5085 (unsigned long)(di + 1), name_len);
5086
5087 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5088 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5089
fede766f 5090
3de4586c 5091 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5092 * skip it.
5093 *
5094 * In contrast to old kernels, we insert the snapshot's
5095 * dir item and dir index after it has been created, so
5096 * we won't find a reference to our own snapshot. We
5097 * still keep the following code for backward
5098 * compatibility.
3de4586c
CM
5099 */
5100 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5101 location.objectid == root->root_key.objectid) {
5102 over = 0;
5103 goto skip;
5104 }
9cdda8d3
AV
5105 over = !dir_emit(ctx, name_ptr, name_len,
5106 location.objectid, d_type);
5f39d397 5107
3de4586c 5108skip:
5f39d397
CM
5109 if (name_ptr != tmp_name)
5110 kfree(name_ptr);
5111
39279cc3
CM
5112 if (over)
5113 goto nopos;
5103e947 5114 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5115 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5116 di_cur += di_len;
5117 di = (struct btrfs_dir_item *)((char *)di + di_len);
5118 }
b9e03af0
LZ
5119next:
5120 path->slots[0]++;
39279cc3 5121 }
49593bfa 5122
16cdcec7
MX
5123 if (key_type == BTRFS_DIR_INDEX_KEY) {
5124 if (is_curr)
9cdda8d3
AV
5125 ctx->pos++;
5126 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5127 if (ret)
5128 goto nopos;
5129 }
5130
49593bfa 5131 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5132 ctx->pos++;
5133
5134 /*
5135 * Stop new entries from being returned after we return the last
5136 * entry.
5137 *
5138 * New directory entries are assigned a strictly increasing
5139 * offset. This means that new entries created during readdir
5140 * are *guaranteed* to be seen in the future by that readdir.
5141 * This has broken buggy programs which operate on names as
5142 * they're returned by readdir. Until we re-use freed offsets
5143 * we have this hack to stop new entries from being returned
5144 * under the assumption that they'll never reach this huge
5145 * offset.
5146 *
5147 * This is being careful not to overflow 32bit loff_t unless the
5148 * last entry requires it because doing so has broken 32bit apps
5149 * in the past.
5150 */
5151 if (key_type == BTRFS_DIR_INDEX_KEY) {
5152 if (ctx->pos >= INT_MAX)
5153 ctx->pos = LLONG_MAX;
5154 else
5155 ctx->pos = INT_MAX;
5156 }
39279cc3
CM
5157nopos:
5158 ret = 0;
5159err:
16cdcec7
MX
5160 if (key_type == BTRFS_DIR_INDEX_KEY)
5161 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5162 btrfs_free_path(path);
39279cc3
CM
5163 return ret;
5164}
5165
a9185b41 5166int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5167{
5168 struct btrfs_root *root = BTRFS_I(inode)->root;
5169 struct btrfs_trans_handle *trans;
5170 int ret = 0;
0af3d00b 5171 bool nolock = false;
39279cc3 5172
72ac3c0d 5173 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5174 return 0;
5175
83eea1f1 5176 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5177 nolock = true;
0af3d00b 5178
a9185b41 5179 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5180 if (nolock)
7a7eaa40 5181 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5182 else
7a7eaa40 5183 trans = btrfs_join_transaction(root);
3612b495
TI
5184 if (IS_ERR(trans))
5185 return PTR_ERR(trans);
a698d075 5186 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5187 }
5188 return ret;
5189}
5190
5191/*
54aa1f4d 5192 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5193 * inode changes. But, it is most likely to find the inode in cache.
5194 * FIXME, needs more benchmarking...there are no reasons other than performance
5195 * to keep or drop this code.
5196 */
48a3b636 5197static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5198{
5199 struct btrfs_root *root = BTRFS_I(inode)->root;
5200 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5201 int ret;
5202
72ac3c0d 5203 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5204 return 0;
39279cc3 5205
7a7eaa40 5206 trans = btrfs_join_transaction(root);
22c44fe6
JB
5207 if (IS_ERR(trans))
5208 return PTR_ERR(trans);
8929ecfa
YZ
5209
5210 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5211 if (ret && ret == -ENOSPC) {
5212 /* whoops, lets try again with the full transaction */
5213 btrfs_end_transaction(trans, root);
5214 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5215 if (IS_ERR(trans))
5216 return PTR_ERR(trans);
8929ecfa 5217
94b60442 5218 ret = btrfs_update_inode(trans, root, inode);
94b60442 5219 }
39279cc3 5220 btrfs_end_transaction(trans, root);
16cdcec7
MX
5221 if (BTRFS_I(inode)->delayed_node)
5222 btrfs_balance_delayed_items(root);
22c44fe6
JB
5223
5224 return ret;
5225}
5226
5227/*
5228 * This is a copy of file_update_time. We need this so we can return error on
5229 * ENOSPC for updating the inode in the case of file write and mmap writes.
5230 */
e41f941a
JB
5231static int btrfs_update_time(struct inode *inode, struct timespec *now,
5232 int flags)
22c44fe6 5233{
2bc55652
AB
5234 struct btrfs_root *root = BTRFS_I(inode)->root;
5235
5236 if (btrfs_root_readonly(root))
5237 return -EROFS;
5238
e41f941a 5239 if (flags & S_VERSION)
22c44fe6 5240 inode_inc_iversion(inode);
e41f941a
JB
5241 if (flags & S_CTIME)
5242 inode->i_ctime = *now;
5243 if (flags & S_MTIME)
5244 inode->i_mtime = *now;
5245 if (flags & S_ATIME)
5246 inode->i_atime = *now;
5247 return btrfs_dirty_inode(inode);
39279cc3
CM
5248}
5249
d352ac68
CM
5250/*
5251 * find the highest existing sequence number in a directory
5252 * and then set the in-memory index_cnt variable to reflect
5253 * free sequence numbers
5254 */
aec7477b
JB
5255static int btrfs_set_inode_index_count(struct inode *inode)
5256{
5257 struct btrfs_root *root = BTRFS_I(inode)->root;
5258 struct btrfs_key key, found_key;
5259 struct btrfs_path *path;
5260 struct extent_buffer *leaf;
5261 int ret;
5262
33345d01 5263 key.objectid = btrfs_ino(inode);
aec7477b
JB
5264 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5265 key.offset = (u64)-1;
5266
5267 path = btrfs_alloc_path();
5268 if (!path)
5269 return -ENOMEM;
5270
5271 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5272 if (ret < 0)
5273 goto out;
5274 /* FIXME: we should be able to handle this */
5275 if (ret == 0)
5276 goto out;
5277 ret = 0;
5278
5279 /*
5280 * MAGIC NUMBER EXPLANATION:
5281 * since we search a directory based on f_pos we have to start at 2
5282 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5283 * else has to start at 2
5284 */
5285 if (path->slots[0] == 0) {
5286 BTRFS_I(inode)->index_cnt = 2;
5287 goto out;
5288 }
5289
5290 path->slots[0]--;
5291
5292 leaf = path->nodes[0];
5293 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5294
33345d01 5295 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5296 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5297 BTRFS_I(inode)->index_cnt = 2;
5298 goto out;
5299 }
5300
5301 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5302out:
5303 btrfs_free_path(path);
5304 return ret;
5305}
5306
d352ac68
CM
5307/*
5308 * helper to find a free sequence number in a given directory. This current
5309 * code is very simple, later versions will do smarter things in the btree
5310 */
3de4586c 5311int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5312{
5313 int ret = 0;
5314
5315 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5316 ret = btrfs_inode_delayed_dir_index_count(dir);
5317 if (ret) {
5318 ret = btrfs_set_inode_index_count(dir);
5319 if (ret)
5320 return ret;
5321 }
aec7477b
JB
5322 }
5323
00e4e6b3 5324 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5325 BTRFS_I(dir)->index_cnt++;
5326
5327 return ret;
5328}
5329
39279cc3
CM
5330static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5331 struct btrfs_root *root,
aec7477b 5332 struct inode *dir,
9c58309d 5333 const char *name, int name_len,
175a4eb7
AV
5334 u64 ref_objectid, u64 objectid,
5335 umode_t mode, u64 *index)
39279cc3
CM
5336{
5337 struct inode *inode;
5f39d397 5338 struct btrfs_inode_item *inode_item;
39279cc3 5339 struct btrfs_key *location;
5f39d397 5340 struct btrfs_path *path;
9c58309d
CM
5341 struct btrfs_inode_ref *ref;
5342 struct btrfs_key key[2];
5343 u32 sizes[2];
5344 unsigned long ptr;
39279cc3
CM
5345 int ret;
5346 int owner;
5347
5f39d397 5348 path = btrfs_alloc_path();
d8926bb3
MF
5349 if (!path)
5350 return ERR_PTR(-ENOMEM);
5f39d397 5351
39279cc3 5352 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5353 if (!inode) {
5354 btrfs_free_path(path);
39279cc3 5355 return ERR_PTR(-ENOMEM);
8fb27640 5356 }
39279cc3 5357
581bb050
LZ
5358 /*
5359 * we have to initialize this early, so we can reclaim the inode
5360 * number if we fail afterwards in this function.
5361 */
5362 inode->i_ino = objectid;
5363
aec7477b 5364 if (dir) {
1abe9b8a 5365 trace_btrfs_inode_request(dir);
5366
3de4586c 5367 ret = btrfs_set_inode_index(dir, index);
09771430 5368 if (ret) {
8fb27640 5369 btrfs_free_path(path);
09771430 5370 iput(inode);
aec7477b 5371 return ERR_PTR(ret);
09771430 5372 }
aec7477b
JB
5373 }
5374 /*
5375 * index_cnt is ignored for everything but a dir,
5376 * btrfs_get_inode_index_count has an explanation for the magic
5377 * number
5378 */
5379 BTRFS_I(inode)->index_cnt = 2;
39279cc3 5380 BTRFS_I(inode)->root = root;
e02119d5 5381 BTRFS_I(inode)->generation = trans->transid;
76195853 5382 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5383
5dc562c5
JB
5384 /*
5385 * We could have gotten an inode number from somebody who was fsynced
5386 * and then removed in this same transaction, so let's just set full
5387 * sync since it will be a full sync anyway and this will blow away the
5388 * old info in the log.
5389 */
5390 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5391
569254b0 5392 if (S_ISDIR(mode))
39279cc3
CM
5393 owner = 0;
5394 else
5395 owner = 1;
9c58309d
CM
5396
5397 key[0].objectid = objectid;
5398 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5399 key[0].offset = 0;
5400
f186373f
MF
5401 /*
5402 * Start new inodes with an inode_ref. This is slightly more
5403 * efficient for small numbers of hard links since they will
5404 * be packed into one item. Extended refs will kick in if we
5405 * add more hard links than can fit in the ref item.
5406 */
9c58309d
CM
5407 key[1].objectid = objectid;
5408 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5409 key[1].offset = ref_objectid;
5410
5411 sizes[0] = sizeof(struct btrfs_inode_item);
5412 sizes[1] = name_len + sizeof(*ref);
5413
b9473439 5414 path->leave_spinning = 1;
9c58309d
CM
5415 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5416 if (ret != 0)
5f39d397
CM
5417 goto fail;
5418
ecc11fab 5419 inode_init_owner(inode, dir, mode);
a76a3cd4 5420 inode_set_bytes(inode, 0);
39279cc3 5421 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5422 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5423 struct btrfs_inode_item);
293f7e07
LZ
5424 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5425 sizeof(*inode_item));
e02119d5 5426 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
5427
5428 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5429 struct btrfs_inode_ref);
5430 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 5431 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
5432 ptr = (unsigned long)(ref + 1);
5433 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5434
5f39d397
CM
5435 btrfs_mark_buffer_dirty(path->nodes[0]);
5436 btrfs_free_path(path);
5437
39279cc3
CM
5438 location = &BTRFS_I(inode)->location;
5439 location->objectid = objectid;
39279cc3
CM
5440 location->offset = 0;
5441 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5442
6cbff00f
CH
5443 btrfs_inherit_iflags(inode, dir);
5444
569254b0 5445 if (S_ISREG(mode)) {
94272164
CM
5446 if (btrfs_test_opt(root, NODATASUM))
5447 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5448 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5449 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5450 BTRFS_INODE_NODATASUM;
94272164
CM
5451 }
5452
39279cc3 5453 insert_inode_hash(inode);
5d4f98a2 5454 inode_tree_add(inode);
1abe9b8a 5455
5456 trace_btrfs_inode_new(inode);
1973f0fa 5457 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5458
8ea05e3a
AB
5459 btrfs_update_root_times(trans, root);
5460
39279cc3 5461 return inode;
5f39d397 5462fail:
aec7477b
JB
5463 if (dir)
5464 BTRFS_I(dir)->index_cnt--;
5f39d397 5465 btrfs_free_path(path);
09771430 5466 iput(inode);
5f39d397 5467 return ERR_PTR(ret);
39279cc3
CM
5468}
5469
5470static inline u8 btrfs_inode_type(struct inode *inode)
5471{
5472 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5473}
5474
d352ac68
CM
5475/*
5476 * utility function to add 'inode' into 'parent_inode' with
5477 * a give name and a given sequence number.
5478 * if 'add_backref' is true, also insert a backref from the
5479 * inode to the parent directory.
5480 */
e02119d5
CM
5481int btrfs_add_link(struct btrfs_trans_handle *trans,
5482 struct inode *parent_inode, struct inode *inode,
5483 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5484{
4df27c4d 5485 int ret = 0;
39279cc3 5486 struct btrfs_key key;
e02119d5 5487 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5488 u64 ino = btrfs_ino(inode);
5489 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5490
33345d01 5491 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5492 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5493 } else {
33345d01 5494 key.objectid = ino;
4df27c4d
YZ
5495 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5496 key.offset = 0;
5497 }
5498
33345d01 5499 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5500 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5501 key.objectid, root->root_key.objectid,
33345d01 5502 parent_ino, index, name, name_len);
4df27c4d 5503 } else if (add_backref) {
33345d01
LZ
5504 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5505 parent_ino, index);
4df27c4d 5506 }
39279cc3 5507
79787eaa
JM
5508 /* Nothing to clean up yet */
5509 if (ret)
5510 return ret;
4df27c4d 5511
79787eaa
JM
5512 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5513 parent_inode, &key,
5514 btrfs_inode_type(inode), index);
9c52057c 5515 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5516 goto fail_dir_item;
5517 else if (ret) {
5518 btrfs_abort_transaction(trans, root, ret);
5519 return ret;
39279cc3 5520 }
79787eaa
JM
5521
5522 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5523 name_len * 2);
0c4d2d95 5524 inode_inc_iversion(parent_inode);
79787eaa
JM
5525 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5526 ret = btrfs_update_inode(trans, root, parent_inode);
5527 if (ret)
5528 btrfs_abort_transaction(trans, root, ret);
39279cc3 5529 return ret;
fe66a05a
CM
5530
5531fail_dir_item:
5532 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5533 u64 local_index;
5534 int err;
5535 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5536 key.objectid, root->root_key.objectid,
5537 parent_ino, &local_index, name, name_len);
5538
5539 } else if (add_backref) {
5540 u64 local_index;
5541 int err;
5542
5543 err = btrfs_del_inode_ref(trans, root, name, name_len,
5544 ino, parent_ino, &local_index);
5545 }
5546 return ret;
39279cc3
CM
5547}
5548
5549static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5550 struct inode *dir, struct dentry *dentry,
5551 struct inode *inode, int backref, u64 index)
39279cc3 5552{
a1b075d2
JB
5553 int err = btrfs_add_link(trans, dir, inode,
5554 dentry->d_name.name, dentry->d_name.len,
5555 backref, index);
39279cc3
CM
5556 if (err > 0)
5557 err = -EEXIST;
5558 return err;
5559}
5560
618e21d5 5561static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5562 umode_t mode, dev_t rdev)
618e21d5
JB
5563{
5564 struct btrfs_trans_handle *trans;
5565 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5566 struct inode *inode = NULL;
618e21d5
JB
5567 int err;
5568 int drop_inode = 0;
5569 u64 objectid;
00e4e6b3 5570 u64 index = 0;
618e21d5
JB
5571
5572 if (!new_valid_dev(rdev))
5573 return -EINVAL;
5574
9ed74f2d
JB
5575 /*
5576 * 2 for inode item and ref
5577 * 2 for dir items
5578 * 1 for xattr if selinux is on
5579 */
a22285a6
YZ
5580 trans = btrfs_start_transaction(root, 5);
5581 if (IS_ERR(trans))
5582 return PTR_ERR(trans);
1832a6d5 5583
581bb050
LZ
5584 err = btrfs_find_free_ino(root, &objectid);
5585 if (err)
5586 goto out_unlock;
5587
aec7477b 5588 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5589 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5590 mode, &index);
7cf96da3
TI
5591 if (IS_ERR(inode)) {
5592 err = PTR_ERR(inode);
618e21d5 5593 goto out_unlock;
7cf96da3 5594 }
618e21d5 5595
2a7dba39 5596 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5597 if (err) {
5598 drop_inode = 1;
5599 goto out_unlock;
5600 }
5601
ad19db71
CS
5602 /*
5603 * If the active LSM wants to access the inode during
5604 * d_instantiate it needs these. Smack checks to see
5605 * if the filesystem supports xattrs by looking at the
5606 * ops vector.
5607 */
5608
5609 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5610 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5611 if (err)
5612 drop_inode = 1;
5613 else {
618e21d5 5614 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5615 btrfs_update_inode(trans, root, inode);
08c422c2 5616 d_instantiate(dentry, inode);
618e21d5 5617 }
618e21d5 5618out_unlock:
7ad85bb7 5619 btrfs_end_transaction(trans, root);
b53d3f5d 5620 btrfs_btree_balance_dirty(root);
618e21d5
JB
5621 if (drop_inode) {
5622 inode_dec_link_count(inode);
5623 iput(inode);
5624 }
618e21d5
JB
5625 return err;
5626}
5627
39279cc3 5628static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5629 umode_t mode, bool excl)
39279cc3
CM
5630{
5631 struct btrfs_trans_handle *trans;
5632 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5633 struct inode *inode = NULL;
43baa579 5634 int drop_inode_on_err = 0;
a22285a6 5635 int err;
39279cc3 5636 u64 objectid;
00e4e6b3 5637 u64 index = 0;
39279cc3 5638
9ed74f2d
JB
5639 /*
5640 * 2 for inode item and ref
5641 * 2 for dir items
5642 * 1 for xattr if selinux is on
5643 */
a22285a6
YZ
5644 trans = btrfs_start_transaction(root, 5);
5645 if (IS_ERR(trans))
5646 return PTR_ERR(trans);
9ed74f2d 5647
581bb050
LZ
5648 err = btrfs_find_free_ino(root, &objectid);
5649 if (err)
5650 goto out_unlock;
5651
aec7477b 5652 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5653 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5654 mode, &index);
7cf96da3
TI
5655 if (IS_ERR(inode)) {
5656 err = PTR_ERR(inode);
39279cc3 5657 goto out_unlock;
7cf96da3 5658 }
43baa579 5659 drop_inode_on_err = 1;
39279cc3 5660
2a7dba39 5661 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5662 if (err)
33268eaf 5663 goto out_unlock;
33268eaf 5664
9185aa58
FB
5665 err = btrfs_update_inode(trans, root, inode);
5666 if (err)
5667 goto out_unlock;
5668
ad19db71
CS
5669 /*
5670 * If the active LSM wants to access the inode during
5671 * d_instantiate it needs these. Smack checks to see
5672 * if the filesystem supports xattrs by looking at the
5673 * ops vector.
5674 */
5675 inode->i_fop = &btrfs_file_operations;
5676 inode->i_op = &btrfs_file_inode_operations;
5677
a1b075d2 5678 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5679 if (err)
43baa579
FB
5680 goto out_unlock;
5681
5682 inode->i_mapping->a_ops = &btrfs_aops;
5683 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5684 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5685 d_instantiate(dentry, inode);
5686
39279cc3 5687out_unlock:
7ad85bb7 5688 btrfs_end_transaction(trans, root);
43baa579 5689 if (err && drop_inode_on_err) {
39279cc3
CM
5690 inode_dec_link_count(inode);
5691 iput(inode);
5692 }
b53d3f5d 5693 btrfs_btree_balance_dirty(root);
39279cc3
CM
5694 return err;
5695}
5696
5697static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5698 struct dentry *dentry)
5699{
5700 struct btrfs_trans_handle *trans;
5701 struct btrfs_root *root = BTRFS_I(dir)->root;
5702 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5703 u64 index;
39279cc3
CM
5704 int err;
5705 int drop_inode = 0;
5706
4a8be425
TH
5707 /* do not allow sys_link's with other subvols of the same device */
5708 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5709 return -EXDEV;
4a8be425 5710
f186373f 5711 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5712 return -EMLINK;
4a8be425 5713
3de4586c 5714 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5715 if (err)
5716 goto fail;
5717
a22285a6 5718 /*
7e6b6465 5719 * 2 items for inode and inode ref
a22285a6 5720 * 2 items for dir items
7e6b6465 5721 * 1 item for parent inode
a22285a6 5722 */
7e6b6465 5723 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5724 if (IS_ERR(trans)) {
5725 err = PTR_ERR(trans);
5726 goto fail;
5727 }
5f39d397 5728
3153495d 5729 btrfs_inc_nlink(inode);
0c4d2d95 5730 inode_inc_iversion(inode);
3153495d 5731 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5732 ihold(inode);
e9976151 5733 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5734
a1b075d2 5735 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5736
a5719521 5737 if (err) {
54aa1f4d 5738 drop_inode = 1;
a5719521 5739 } else {
10d9f309 5740 struct dentry *parent = dentry->d_parent;
a5719521 5741 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5742 if (err)
5743 goto fail;
08c422c2 5744 d_instantiate(dentry, inode);
6a912213 5745 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5746 }
39279cc3 5747
7ad85bb7 5748 btrfs_end_transaction(trans, root);
1832a6d5 5749fail:
39279cc3
CM
5750 if (drop_inode) {
5751 inode_dec_link_count(inode);
5752 iput(inode);
5753 }
b53d3f5d 5754 btrfs_btree_balance_dirty(root);
39279cc3
CM
5755 return err;
5756}
5757
18bb1db3 5758static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5759{
b9d86667 5760 struct inode *inode = NULL;
39279cc3
CM
5761 struct btrfs_trans_handle *trans;
5762 struct btrfs_root *root = BTRFS_I(dir)->root;
5763 int err = 0;
5764 int drop_on_err = 0;
b9d86667 5765 u64 objectid = 0;
00e4e6b3 5766 u64 index = 0;
39279cc3 5767
9ed74f2d
JB
5768 /*
5769 * 2 items for inode and ref
5770 * 2 items for dir items
5771 * 1 for xattr if selinux is on
5772 */
a22285a6
YZ
5773 trans = btrfs_start_transaction(root, 5);
5774 if (IS_ERR(trans))
5775 return PTR_ERR(trans);
39279cc3 5776
581bb050
LZ
5777 err = btrfs_find_free_ino(root, &objectid);
5778 if (err)
5779 goto out_fail;
5780
aec7477b 5781 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5782 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5783 S_IFDIR | mode, &index);
39279cc3
CM
5784 if (IS_ERR(inode)) {
5785 err = PTR_ERR(inode);
5786 goto out_fail;
5787 }
5f39d397 5788
39279cc3 5789 drop_on_err = 1;
33268eaf 5790
2a7dba39 5791 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5792 if (err)
5793 goto out_fail;
5794
39279cc3
CM
5795 inode->i_op = &btrfs_dir_inode_operations;
5796 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5797
dbe674a9 5798 btrfs_i_size_write(inode, 0);
39279cc3
CM
5799 err = btrfs_update_inode(trans, root, inode);
5800 if (err)
5801 goto out_fail;
5f39d397 5802
a1b075d2
JB
5803 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5804 dentry->d_name.len, 0, index);
39279cc3
CM
5805 if (err)
5806 goto out_fail;
5f39d397 5807
39279cc3
CM
5808 d_instantiate(dentry, inode);
5809 drop_on_err = 0;
39279cc3
CM
5810
5811out_fail:
7ad85bb7 5812 btrfs_end_transaction(trans, root);
39279cc3
CM
5813 if (drop_on_err)
5814 iput(inode);
b53d3f5d 5815 btrfs_btree_balance_dirty(root);
39279cc3
CM
5816 return err;
5817}
5818
d352ac68
CM
5819/* helper for btfs_get_extent. Given an existing extent in the tree,
5820 * and an extent that you want to insert, deal with overlap and insert
5821 * the new extent into the tree.
5822 */
3b951516
CM
5823static int merge_extent_mapping(struct extent_map_tree *em_tree,
5824 struct extent_map *existing,
e6dcd2dc
CM
5825 struct extent_map *em,
5826 u64 map_start, u64 map_len)
3b951516
CM
5827{
5828 u64 start_diff;
3b951516 5829
e6dcd2dc
CM
5830 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5831 start_diff = map_start - em->start;
5832 em->start = map_start;
5833 em->len = map_len;
c8b97818
CM
5834 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5835 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5836 em->block_start += start_diff;
c8b97818
CM
5837 em->block_len -= start_diff;
5838 }
09a2a8f9 5839 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
5840}
5841
c8b97818
CM
5842static noinline int uncompress_inline(struct btrfs_path *path,
5843 struct inode *inode, struct page *page,
5844 size_t pg_offset, u64 extent_offset,
5845 struct btrfs_file_extent_item *item)
5846{
5847 int ret;
5848 struct extent_buffer *leaf = path->nodes[0];
5849 char *tmp;
5850 size_t max_size;
5851 unsigned long inline_size;
5852 unsigned long ptr;
261507a0 5853 int compress_type;
c8b97818
CM
5854
5855 WARN_ON(pg_offset != 0);
261507a0 5856 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5857 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5858 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 5859 btrfs_item_nr(path->slots[0]));
c8b97818 5860 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5861 if (!tmp)
5862 return -ENOMEM;
c8b97818
CM
5863 ptr = btrfs_file_extent_inline_start(item);
5864
5865 read_extent_buffer(leaf, tmp, ptr, inline_size);
5866
5b050f04 5867 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5868 ret = btrfs_decompress(compress_type, tmp, page,
5869 extent_offset, inline_size, max_size);
c8b97818 5870 if (ret) {
7ac687d9 5871 char *kaddr = kmap_atomic(page);
c8b97818
CM
5872 unsigned long copy_size = min_t(u64,
5873 PAGE_CACHE_SIZE - pg_offset,
5874 max_size - extent_offset);
5875 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5876 kunmap_atomic(kaddr);
c8b97818
CM
5877 }
5878 kfree(tmp);
5879 return 0;
5880}
5881
d352ac68
CM
5882/*
5883 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5884 * the ugly parts come from merging extents from the disk with the in-ram
5885 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5886 * where the in-ram extents might be locked pending data=ordered completion.
5887 *
5888 * This also copies inline extents directly into the page.
5889 */
d397712b 5890
a52d9a80 5891struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5892 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5893 int create)
5894{
5895 int ret;
5896 int err = 0;
db94535d 5897 u64 bytenr;
a52d9a80
CM
5898 u64 extent_start = 0;
5899 u64 extent_end = 0;
33345d01 5900 u64 objectid = btrfs_ino(inode);
a52d9a80 5901 u32 found_type;
f421950f 5902 struct btrfs_path *path = NULL;
a52d9a80
CM
5903 struct btrfs_root *root = BTRFS_I(inode)->root;
5904 struct btrfs_file_extent_item *item;
5f39d397
CM
5905 struct extent_buffer *leaf;
5906 struct btrfs_key found_key;
a52d9a80
CM
5907 struct extent_map *em = NULL;
5908 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5909 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5910 struct btrfs_trans_handle *trans = NULL;
261507a0 5911 int compress_type;
a52d9a80 5912
a52d9a80 5913again:
890871be 5914 read_lock(&em_tree->lock);
d1310b2e 5915 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5916 if (em)
5917 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5918 read_unlock(&em_tree->lock);
d1310b2e 5919
a52d9a80 5920 if (em) {
e1c4b745
CM
5921 if (em->start > start || em->start + em->len <= start)
5922 free_extent_map(em);
5923 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5924 free_extent_map(em);
5925 else
5926 goto out;
a52d9a80 5927 }
172ddd60 5928 em = alloc_extent_map();
a52d9a80 5929 if (!em) {
d1310b2e
CM
5930 err = -ENOMEM;
5931 goto out;
a52d9a80 5932 }
e6dcd2dc 5933 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5934 em->start = EXTENT_MAP_HOLE;
445a6944 5935 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5936 em->len = (u64)-1;
c8b97818 5937 em->block_len = (u64)-1;
f421950f
CM
5938
5939 if (!path) {
5940 path = btrfs_alloc_path();
026fd317
JB
5941 if (!path) {
5942 err = -ENOMEM;
5943 goto out;
5944 }
5945 /*
5946 * Chances are we'll be called again, so go ahead and do
5947 * readahead
5948 */
5949 path->reada = 1;
f421950f
CM
5950 }
5951
179e29e4
CM
5952 ret = btrfs_lookup_file_extent(trans, root, path,
5953 objectid, start, trans != NULL);
a52d9a80
CM
5954 if (ret < 0) {
5955 err = ret;
5956 goto out;
5957 }
5958
5959 if (ret != 0) {
5960 if (path->slots[0] == 0)
5961 goto not_found;
5962 path->slots[0]--;
5963 }
5964
5f39d397
CM
5965 leaf = path->nodes[0];
5966 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5967 struct btrfs_file_extent_item);
a52d9a80 5968 /* are we inside the extent that was found? */
5f39d397
CM
5969 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5970 found_type = btrfs_key_type(&found_key);
5971 if (found_key.objectid != objectid ||
a52d9a80
CM
5972 found_type != BTRFS_EXTENT_DATA_KEY) {
5973 goto not_found;
5974 }
5975
5f39d397
CM
5976 found_type = btrfs_file_extent_type(leaf, item);
5977 extent_start = found_key.offset;
261507a0 5978 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5979 if (found_type == BTRFS_FILE_EXTENT_REG ||
5980 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5981 extent_end = extent_start +
db94535d 5982 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5983 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5984 size_t size;
5985 size = btrfs_file_extent_inline_len(leaf, item);
fda2832f 5986 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102
YZ
5987 }
5988
5989 if (start >= extent_end) {
5990 path->slots[0]++;
5991 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5992 ret = btrfs_next_leaf(root, path);
5993 if (ret < 0) {
5994 err = ret;
5995 goto out;
a52d9a80 5996 }
9036c102
YZ
5997 if (ret > 0)
5998 goto not_found;
5999 leaf = path->nodes[0];
a52d9a80 6000 }
9036c102
YZ
6001 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6002 if (found_key.objectid != objectid ||
6003 found_key.type != BTRFS_EXTENT_DATA_KEY)
6004 goto not_found;
6005 if (start + len <= found_key.offset)
6006 goto not_found;
6007 em->start = start;
70c8a91c 6008 em->orig_start = start;
9036c102
YZ
6009 em->len = found_key.offset - start;
6010 goto not_found_em;
6011 }
6012
cc95bef6 6013 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
d899e052
YZ
6014 if (found_type == BTRFS_FILE_EXTENT_REG ||
6015 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
6016 em->start = extent_start;
6017 em->len = extent_end - extent_start;
ff5b7ee3
YZ
6018 em->orig_start = extent_start -
6019 btrfs_file_extent_offset(leaf, item);
b4939680
JB
6020 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6021 item);
db94535d
CM
6022 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6023 if (bytenr == 0) {
5f39d397 6024 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
6025 goto insert;
6026 }
261507a0 6027 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 6028 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 6029 em->compress_type = compress_type;
c8b97818 6030 em->block_start = bytenr;
b4939680 6031 em->block_len = em->orig_block_len;
c8b97818
CM
6032 } else {
6033 bytenr += btrfs_file_extent_offset(leaf, item);
6034 em->block_start = bytenr;
6035 em->block_len = em->len;
d899e052
YZ
6036 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6037 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 6038 }
a52d9a80
CM
6039 goto insert;
6040 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6041 unsigned long ptr;
a52d9a80 6042 char *map;
3326d1b0
CM
6043 size_t size;
6044 size_t extent_offset;
6045 size_t copy_size;
a52d9a80 6046
689f9346 6047 em->block_start = EXTENT_MAP_INLINE;
c8b97818 6048 if (!page || create) {
689f9346 6049 em->start = extent_start;
9036c102 6050 em->len = extent_end - extent_start;
689f9346
Y
6051 goto out;
6052 }
5f39d397 6053
9036c102
YZ
6054 size = btrfs_file_extent_inline_len(leaf, item);
6055 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6056 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6057 size - extent_offset);
3326d1b0 6058 em->start = extent_start + extent_offset;
fda2832f 6059 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6060 em->orig_block_len = em->len;
70c8a91c 6061 em->orig_start = em->start;
261507a0 6062 if (compress_type) {
c8b97818 6063 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
6064 em->compress_type = compress_type;
6065 }
689f9346 6066 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6067 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6068 if (btrfs_file_extent_compression(leaf, item) !=
6069 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6070 ret = uncompress_inline(path, inode, page,
6071 pg_offset,
6072 extent_offset, item);
79787eaa 6073 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
6074 } else {
6075 map = kmap(page);
6076 read_extent_buffer(leaf, map + pg_offset, ptr,
6077 copy_size);
93c82d57
CM
6078 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6079 memset(map + pg_offset + copy_size, 0,
6080 PAGE_CACHE_SIZE - pg_offset -
6081 copy_size);
6082 }
c8b97818
CM
6083 kunmap(page);
6084 }
179e29e4
CM
6085 flush_dcache_page(page);
6086 } else if (create && PageUptodate(page)) {
6bf7e080 6087 BUG();
179e29e4
CM
6088 if (!trans) {
6089 kunmap(page);
6090 free_extent_map(em);
6091 em = NULL;
ff5714cc 6092
b3b4aa74 6093 btrfs_release_path(path);
7a7eaa40 6094 trans = btrfs_join_transaction(root);
ff5714cc 6095
3612b495
TI
6096 if (IS_ERR(trans))
6097 return ERR_CAST(trans);
179e29e4
CM
6098 goto again;
6099 }
c8b97818 6100 map = kmap(page);
70dec807 6101 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6102 copy_size);
c8b97818 6103 kunmap(page);
179e29e4 6104 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6105 }
d1310b2e 6106 set_extent_uptodate(io_tree, em->start,
507903b8 6107 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
6108 goto insert;
6109 } else {
31b1a2bd 6110 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
6111 }
6112not_found:
6113 em->start = start;
70c8a91c 6114 em->orig_start = start;
d1310b2e 6115 em->len = len;
a52d9a80 6116not_found_em:
5f39d397 6117 em->block_start = EXTENT_MAP_HOLE;
9036c102 6118 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6119insert:
b3b4aa74 6120 btrfs_release_path(path);
d1310b2e 6121 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6122 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6123 em->start, em->len, start, len);
a52d9a80
CM
6124 err = -EIO;
6125 goto out;
6126 }
d1310b2e
CM
6127
6128 err = 0;
890871be 6129 write_lock(&em_tree->lock);
09a2a8f9 6130 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6131 /* it is possible that someone inserted the extent into the tree
6132 * while we had the lock dropped. It is also possible that
6133 * an overlapping map exists in the tree
6134 */
a52d9a80 6135 if (ret == -EEXIST) {
3b951516 6136 struct extent_map *existing;
e6dcd2dc
CM
6137
6138 ret = 0;
6139
3b951516 6140 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6141 if (existing && (existing->start > start ||
6142 existing->start + existing->len <= start)) {
6143 free_extent_map(existing);
6144 existing = NULL;
6145 }
3b951516
CM
6146 if (!existing) {
6147 existing = lookup_extent_mapping(em_tree, em->start,
6148 em->len);
6149 if (existing) {
6150 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6151 em, start,
6152 root->sectorsize);
3b951516
CM
6153 free_extent_map(existing);
6154 if (err) {
6155 free_extent_map(em);
6156 em = NULL;
6157 }
6158 } else {
6159 err = -EIO;
3b951516
CM
6160 free_extent_map(em);
6161 em = NULL;
6162 }
6163 } else {
6164 free_extent_map(em);
6165 em = existing;
e6dcd2dc 6166 err = 0;
a52d9a80 6167 }
a52d9a80 6168 }
890871be 6169 write_unlock(&em_tree->lock);
a52d9a80 6170out:
1abe9b8a 6171
f0bd95ea
TI
6172 if (em)
6173 trace_btrfs_get_extent(root, em);
1abe9b8a 6174
f421950f
CM
6175 if (path)
6176 btrfs_free_path(path);
a52d9a80
CM
6177 if (trans) {
6178 ret = btrfs_end_transaction(trans, root);
d397712b 6179 if (!err)
a52d9a80
CM
6180 err = ret;
6181 }
a52d9a80
CM
6182 if (err) {
6183 free_extent_map(em);
a52d9a80
CM
6184 return ERR_PTR(err);
6185 }
79787eaa 6186 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6187 return em;
6188}
6189
ec29ed5b
CM
6190struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6191 size_t pg_offset, u64 start, u64 len,
6192 int create)
6193{
6194 struct extent_map *em;
6195 struct extent_map *hole_em = NULL;
6196 u64 range_start = start;
6197 u64 end;
6198 u64 found;
6199 u64 found_end;
6200 int err = 0;
6201
6202 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6203 if (IS_ERR(em))
6204 return em;
6205 if (em) {
6206 /*
f9e4fb53
LB
6207 * if our em maps to
6208 * - a hole or
6209 * - a pre-alloc extent,
6210 * there might actually be delalloc bytes behind it.
ec29ed5b 6211 */
f9e4fb53
LB
6212 if (em->block_start != EXTENT_MAP_HOLE &&
6213 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6214 return em;
6215 else
6216 hole_em = em;
6217 }
6218
6219 /* check to see if we've wrapped (len == -1 or similar) */
6220 end = start + len;
6221 if (end < start)
6222 end = (u64)-1;
6223 else
6224 end -= 1;
6225
6226 em = NULL;
6227
6228 /* ok, we didn't find anything, lets look for delalloc */
6229 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6230 end, len, EXTENT_DELALLOC, 1);
6231 found_end = range_start + found;
6232 if (found_end < range_start)
6233 found_end = (u64)-1;
6234
6235 /*
6236 * we didn't find anything useful, return
6237 * the original results from get_extent()
6238 */
6239 if (range_start > end || found_end <= start) {
6240 em = hole_em;
6241 hole_em = NULL;
6242 goto out;
6243 }
6244
6245 /* adjust the range_start to make sure it doesn't
6246 * go backwards from the start they passed in
6247 */
6248 range_start = max(start,range_start);
6249 found = found_end - range_start;
6250
6251 if (found > 0) {
6252 u64 hole_start = start;
6253 u64 hole_len = len;
6254
172ddd60 6255 em = alloc_extent_map();
ec29ed5b
CM
6256 if (!em) {
6257 err = -ENOMEM;
6258 goto out;
6259 }
6260 /*
6261 * when btrfs_get_extent can't find anything it
6262 * returns one huge hole
6263 *
6264 * make sure what it found really fits our range, and
6265 * adjust to make sure it is based on the start from
6266 * the caller
6267 */
6268 if (hole_em) {
6269 u64 calc_end = extent_map_end(hole_em);
6270
6271 if (calc_end <= start || (hole_em->start > end)) {
6272 free_extent_map(hole_em);
6273 hole_em = NULL;
6274 } else {
6275 hole_start = max(hole_em->start, start);
6276 hole_len = calc_end - hole_start;
6277 }
6278 }
6279 em->bdev = NULL;
6280 if (hole_em && range_start > hole_start) {
6281 /* our hole starts before our delalloc, so we
6282 * have to return just the parts of the hole
6283 * that go until the delalloc starts
6284 */
6285 em->len = min(hole_len,
6286 range_start - hole_start);
6287 em->start = hole_start;
6288 em->orig_start = hole_start;
6289 /*
6290 * don't adjust block start at all,
6291 * it is fixed at EXTENT_MAP_HOLE
6292 */
6293 em->block_start = hole_em->block_start;
6294 em->block_len = hole_len;
f9e4fb53
LB
6295 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6296 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6297 } else {
6298 em->start = range_start;
6299 em->len = found;
6300 em->orig_start = range_start;
6301 em->block_start = EXTENT_MAP_DELALLOC;
6302 em->block_len = found;
6303 }
6304 } else if (hole_em) {
6305 return hole_em;
6306 }
6307out:
6308
6309 free_extent_map(hole_em);
6310 if (err) {
6311 free_extent_map(em);
6312 return ERR_PTR(err);
6313 }
6314 return em;
6315}
6316
4b46fce2
JB
6317static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6318 u64 start, u64 len)
6319{
6320 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6321 struct extent_map *em;
4b46fce2
JB
6322 struct btrfs_key ins;
6323 u64 alloc_hint;
6324 int ret;
4b46fce2 6325
4b46fce2 6326 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6327 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
81c9ad23 6328 alloc_hint, &ins, 1);
00361589
JB
6329 if (ret)
6330 return ERR_PTR(ret);
4b46fce2 6331
70c8a91c 6332 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6333 ins.offset, ins.offset, ins.offset, 0);
00361589
JB
6334 if (IS_ERR(em)) {
6335 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6336 return em;
6337 }
4b46fce2
JB
6338
6339 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6340 ins.offset, ins.offset, 0);
6341 if (ret) {
6342 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
00361589
JB
6343 free_extent_map(em);
6344 return ERR_PTR(ret);
4b46fce2 6345 }
00361589 6346
4b46fce2
JB
6347 return em;
6348}
6349
46bfbb5c
CM
6350/*
6351 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6352 * block must be cow'd
6353 */
00361589 6354noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6355 u64 *orig_start, u64 *orig_block_len,
6356 u64 *ram_bytes)
46bfbb5c 6357{
00361589 6358 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6359 struct btrfs_path *path;
6360 int ret;
6361 struct extent_buffer *leaf;
6362 struct btrfs_root *root = BTRFS_I(inode)->root;
6363 struct btrfs_file_extent_item *fi;
6364 struct btrfs_key key;
6365 u64 disk_bytenr;
6366 u64 backref_offset;
6367 u64 extent_end;
6368 u64 num_bytes;
6369 int slot;
6370 int found_type;
7ee9e440 6371 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
46bfbb5c
CM
6372 path = btrfs_alloc_path();
6373 if (!path)
6374 return -ENOMEM;
6375
00361589 6376 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6377 offset, 0);
6378 if (ret < 0)
6379 goto out;
6380
6381 slot = path->slots[0];
6382 if (ret == 1) {
6383 if (slot == 0) {
6384 /* can't find the item, must cow */
6385 ret = 0;
6386 goto out;
6387 }
6388 slot--;
6389 }
6390 ret = 0;
6391 leaf = path->nodes[0];
6392 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6393 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6394 key.type != BTRFS_EXTENT_DATA_KEY) {
6395 /* not our file or wrong item type, must cow */
6396 goto out;
6397 }
6398
6399 if (key.offset > offset) {
6400 /* Wrong offset, must cow */
6401 goto out;
6402 }
6403
6404 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6405 found_type = btrfs_file_extent_type(leaf, fi);
6406 if (found_type != BTRFS_FILE_EXTENT_REG &&
6407 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6408 /* not a regular extent, must cow */
6409 goto out;
6410 }
7ee9e440
JB
6411
6412 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6413 goto out;
6414
46bfbb5c 6415 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6416 if (disk_bytenr == 0)
6417 goto out;
6418
6419 if (btrfs_file_extent_compression(leaf, fi) ||
6420 btrfs_file_extent_encryption(leaf, fi) ||
6421 btrfs_file_extent_other_encoding(leaf, fi))
6422 goto out;
6423
46bfbb5c
CM
6424 backref_offset = btrfs_file_extent_offset(leaf, fi);
6425
7ee9e440
JB
6426 if (orig_start) {
6427 *orig_start = key.offset - backref_offset;
6428 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6429 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6430 }
eb384b55 6431
46bfbb5c 6432 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
46bfbb5c
CM
6433
6434 if (btrfs_extent_readonly(root, disk_bytenr))
6435 goto out;
1bda19eb 6436 btrfs_release_path(path);
46bfbb5c
CM
6437
6438 /*
6439 * look for other files referencing this extent, if we
6440 * find any we must cow
6441 */
00361589
JB
6442 trans = btrfs_join_transaction(root);
6443 if (IS_ERR(trans)) {
6444 ret = 0;
46bfbb5c 6445 goto out;
00361589
JB
6446 }
6447
6448 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6449 key.offset - backref_offset, disk_bytenr);
6450 btrfs_end_transaction(trans, root);
6451 if (ret) {
6452 ret = 0;
6453 goto out;
6454 }
46bfbb5c
CM
6455
6456 /*
6457 * adjust disk_bytenr and num_bytes to cover just the bytes
6458 * in this extent we are about to write. If there
6459 * are any csums in that range we have to cow in order
6460 * to keep the csums correct
6461 */
6462 disk_bytenr += backref_offset;
6463 disk_bytenr += offset - key.offset;
eb384b55 6464 num_bytes = min(offset + *len, extent_end) - offset;
46bfbb5c
CM
6465 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6466 goto out;
6467 /*
6468 * all of the above have passed, it is safe to overwrite this extent
6469 * without cow
6470 */
eb384b55 6471 *len = num_bytes;
46bfbb5c
CM
6472 ret = 1;
6473out:
6474 btrfs_free_path(path);
6475 return ret;
6476}
6477
eb838e73
JB
6478static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6479 struct extent_state **cached_state, int writing)
6480{
6481 struct btrfs_ordered_extent *ordered;
6482 int ret = 0;
6483
6484 while (1) {
6485 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6486 0, cached_state);
6487 /*
6488 * We're concerned with the entire range that we're going to be
6489 * doing DIO to, so we need to make sure theres no ordered
6490 * extents in this range.
6491 */
6492 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6493 lockend - lockstart + 1);
6494
6495 /*
6496 * We need to make sure there are no buffered pages in this
6497 * range either, we could have raced between the invalidate in
6498 * generic_file_direct_write and locking the extent. The
6499 * invalidate needs to happen so that reads after a write do not
6500 * get stale data.
6501 */
6502 if (!ordered && (!writing ||
6503 !test_range_bit(&BTRFS_I(inode)->io_tree,
6504 lockstart, lockend, EXTENT_UPTODATE, 0,
6505 *cached_state)))
6506 break;
6507
6508 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6509 cached_state, GFP_NOFS);
6510
6511 if (ordered) {
6512 btrfs_start_ordered_extent(inode, ordered, 1);
6513 btrfs_put_ordered_extent(ordered);
6514 } else {
6515 /* Screw you mmap */
6516 ret = filemap_write_and_wait_range(inode->i_mapping,
6517 lockstart,
6518 lockend);
6519 if (ret)
6520 break;
6521
6522 /*
6523 * If we found a page that couldn't be invalidated just
6524 * fall back to buffered.
6525 */
6526 ret = invalidate_inode_pages2_range(inode->i_mapping,
6527 lockstart >> PAGE_CACHE_SHIFT,
6528 lockend >> PAGE_CACHE_SHIFT);
6529 if (ret)
6530 break;
6531 }
6532
6533 cond_resched();
6534 }
6535
6536 return ret;
6537}
6538
69ffb543
JB
6539static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6540 u64 len, u64 orig_start,
6541 u64 block_start, u64 block_len,
cc95bef6
JB
6542 u64 orig_block_len, u64 ram_bytes,
6543 int type)
69ffb543
JB
6544{
6545 struct extent_map_tree *em_tree;
6546 struct extent_map *em;
6547 struct btrfs_root *root = BTRFS_I(inode)->root;
6548 int ret;
6549
6550 em_tree = &BTRFS_I(inode)->extent_tree;
6551 em = alloc_extent_map();
6552 if (!em)
6553 return ERR_PTR(-ENOMEM);
6554
6555 em->start = start;
6556 em->orig_start = orig_start;
2ab28f32
JB
6557 em->mod_start = start;
6558 em->mod_len = len;
69ffb543
JB
6559 em->len = len;
6560 em->block_len = block_len;
6561 em->block_start = block_start;
6562 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6563 em->orig_block_len = orig_block_len;
cc95bef6 6564 em->ram_bytes = ram_bytes;
70c8a91c 6565 em->generation = -1;
69ffb543
JB
6566 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6567 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6568 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6569
6570 do {
6571 btrfs_drop_extent_cache(inode, em->start,
6572 em->start + em->len - 1, 0);
6573 write_lock(&em_tree->lock);
09a2a8f9 6574 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6575 write_unlock(&em_tree->lock);
6576 } while (ret == -EEXIST);
6577
6578 if (ret) {
6579 free_extent_map(em);
6580 return ERR_PTR(ret);
6581 }
6582
6583 return em;
6584}
6585
6586
4b46fce2
JB
6587static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6588 struct buffer_head *bh_result, int create)
6589{
6590 struct extent_map *em;
6591 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6592 struct extent_state *cached_state = NULL;
4b46fce2 6593 u64 start = iblock << inode->i_blkbits;
eb838e73 6594 u64 lockstart, lockend;
4b46fce2 6595 u64 len = bh_result->b_size;
eb838e73 6596 int unlock_bits = EXTENT_LOCKED;
0934856d 6597 int ret = 0;
eb838e73 6598
172a5049 6599 if (create)
eb838e73 6600 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6601 else
c329861d 6602 len = min_t(u64, len, root->sectorsize);
eb838e73 6603
c329861d
JB
6604 lockstart = start;
6605 lockend = start + len - 1;
6606
eb838e73
JB
6607 /*
6608 * If this errors out it's because we couldn't invalidate pagecache for
6609 * this range and we need to fallback to buffered.
6610 */
6611 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6612 return -ENOTBLK;
6613
4b46fce2 6614 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6615 if (IS_ERR(em)) {
6616 ret = PTR_ERR(em);
6617 goto unlock_err;
6618 }
4b46fce2
JB
6619
6620 /*
6621 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6622 * io. INLINE is special, and we could probably kludge it in here, but
6623 * it's still buffered so for safety lets just fall back to the generic
6624 * buffered path.
6625 *
6626 * For COMPRESSED we _have_ to read the entire extent in so we can
6627 * decompress it, so there will be buffering required no matter what we
6628 * do, so go ahead and fallback to buffered.
6629 *
6630 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6631 * to buffered IO. Don't blame me, this is the price we pay for using
6632 * the generic code.
6633 */
6634 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6635 em->block_start == EXTENT_MAP_INLINE) {
6636 free_extent_map(em);
eb838e73
JB
6637 ret = -ENOTBLK;
6638 goto unlock_err;
4b46fce2
JB
6639 }
6640
6641 /* Just a good old fashioned hole, return */
6642 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6643 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6644 free_extent_map(em);
eb838e73 6645 goto unlock_err;
4b46fce2
JB
6646 }
6647
6648 /*
6649 * We don't allocate a new extent in the following cases
6650 *
6651 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6652 * existing extent.
6653 * 2) The extent is marked as PREALLOC. We're good to go here and can
6654 * just use the extent.
6655 *
6656 */
46bfbb5c 6657 if (!create) {
eb838e73
JB
6658 len = min(len, em->len - (start - em->start));
6659 lockstart = start + len;
6660 goto unlock;
46bfbb5c 6661 }
4b46fce2
JB
6662
6663 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6664 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6665 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6666 int type;
6667 int ret;
eb384b55 6668 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
6669
6670 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6671 type = BTRFS_ORDERED_PREALLOC;
6672 else
6673 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6674 len = min(len, em->len - (start - em->start));
4b46fce2 6675 block_start = em->block_start + (start - em->start);
46bfbb5c 6676
00361589 6677 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 6678 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
6679 if (type == BTRFS_ORDERED_PREALLOC) {
6680 free_extent_map(em);
6681 em = create_pinned_em(inode, start, len,
6682 orig_start,
b4939680 6683 block_start, len,
cc95bef6
JB
6684 orig_block_len,
6685 ram_bytes, type);
00361589 6686 if (IS_ERR(em))
69ffb543 6687 goto unlock_err;
69ffb543
JB
6688 }
6689
46bfbb5c
CM
6690 ret = btrfs_add_ordered_extent_dio(inode, start,
6691 block_start, len, len, type);
46bfbb5c
CM
6692 if (ret) {
6693 free_extent_map(em);
eb838e73 6694 goto unlock_err;
46bfbb5c
CM
6695 }
6696 goto unlock;
4b46fce2 6697 }
4b46fce2 6698 }
00361589 6699
46bfbb5c
CM
6700 /*
6701 * this will cow the extent, reset the len in case we changed
6702 * it above
6703 */
6704 len = bh_result->b_size;
70c8a91c
JB
6705 free_extent_map(em);
6706 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6707 if (IS_ERR(em)) {
6708 ret = PTR_ERR(em);
6709 goto unlock_err;
6710 }
46bfbb5c
CM
6711 len = min(len, em->len - (start - em->start));
6712unlock:
4b46fce2
JB
6713 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6714 inode->i_blkbits;
46bfbb5c 6715 bh_result->b_size = len;
4b46fce2
JB
6716 bh_result->b_bdev = em->bdev;
6717 set_buffer_mapped(bh_result);
c3473e83
JB
6718 if (create) {
6719 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6720 set_buffer_new(bh_result);
6721
6722 /*
6723 * Need to update the i_size under the extent lock so buffered
6724 * readers will get the updated i_size when we unlock.
6725 */
6726 if (start + len > i_size_read(inode))
6727 i_size_write(inode, start + len);
0934856d 6728
172a5049
MX
6729 spin_lock(&BTRFS_I(inode)->lock);
6730 BTRFS_I(inode)->outstanding_extents++;
6731 spin_unlock(&BTRFS_I(inode)->lock);
6732
0934856d
MX
6733 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6734 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6735 &cached_state, GFP_NOFS);
6736 BUG_ON(ret);
c3473e83 6737 }
4b46fce2 6738
eb838e73
JB
6739 /*
6740 * In the case of write we need to clear and unlock the entire range,
6741 * in the case of read we need to unlock only the end area that we
6742 * aren't using if there is any left over space.
6743 */
24c03fa5 6744 if (lockstart < lockend) {
0934856d
MX
6745 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6746 lockend, unlock_bits, 1, 0,
6747 &cached_state, GFP_NOFS);
24c03fa5 6748 } else {
eb838e73 6749 free_extent_state(cached_state);
24c03fa5 6750 }
eb838e73 6751
4b46fce2
JB
6752 free_extent_map(em);
6753
6754 return 0;
eb838e73
JB
6755
6756unlock_err:
eb838e73
JB
6757 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6758 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6759 return ret;
4b46fce2
JB
6760}
6761
4b46fce2
JB
6762static void btrfs_endio_direct_read(struct bio *bio, int err)
6763{
e65e1535 6764 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6765 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6766 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6767 struct inode *inode = dip->inode;
6768 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 6769 struct bio *dio_bio;
facc8a22
MX
6770 u32 *csums = (u32 *)dip->csum;
6771 int index = 0;
4b46fce2 6772 u64 start;
4b46fce2
JB
6773
6774 start = dip->logical_offset;
6775 do {
6776 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6777 struct page *page = bvec->bv_page;
6778 char *kaddr;
6779 u32 csum = ~(u32)0;
6780 unsigned long flags;
6781
6782 local_irq_save(flags);
7ac687d9 6783 kaddr = kmap_atomic(page);
b0496686 6784 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
6785 csum, bvec->bv_len);
6786 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6787 kunmap_atomic(kaddr);
4b46fce2
JB
6788 local_irq_restore(flags);
6789
6790 flush_dcache_page(bvec->bv_page);
facc8a22
MX
6791 if (csum != csums[index]) {
6792 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c
GU
6793 btrfs_ino(inode), start, csum,
6794 csums[index]);
4b46fce2
JB
6795 err = -EIO;
6796 }
6797 }
6798
6799 start += bvec->bv_len;
4b46fce2 6800 bvec++;
facc8a22 6801 index++;
4b46fce2
JB
6802 } while (bvec <= bvec_end);
6803
6804 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6805 dip->logical_offset + dip->bytes - 1);
9be3395b 6806 dio_bio = dip->dio_bio;
4b46fce2 6807
4b46fce2 6808 kfree(dip);
c0da7aa1
JB
6809
6810 /* If we had a csum failure make sure to clear the uptodate flag */
6811 if (err)
9be3395b
CM
6812 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6813 dio_end_io(dio_bio, err);
6814 bio_put(bio);
4b46fce2
JB
6815}
6816
6817static void btrfs_endio_direct_write(struct bio *bio, int err)
6818{
6819 struct btrfs_dio_private *dip = bio->bi_private;
6820 struct inode *inode = dip->inode;
6821 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6822 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6823 u64 ordered_offset = dip->logical_offset;
6824 u64 ordered_bytes = dip->bytes;
9be3395b 6825 struct bio *dio_bio;
4b46fce2
JB
6826 int ret;
6827
6828 if (err)
6829 goto out_done;
163cf09c
CM
6830again:
6831 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6832 &ordered_offset,
5fd02043 6833 ordered_bytes, !err);
4b46fce2 6834 if (!ret)
163cf09c 6835 goto out_test;
4b46fce2 6836
5fd02043
JB
6837 ordered->work.func = finish_ordered_fn;
6838 ordered->work.flags = 0;
6839 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6840 &ordered->work);
163cf09c
CM
6841out_test:
6842 /*
6843 * our bio might span multiple ordered extents. If we haven't
6844 * completed the accounting for the whole dio, go back and try again
6845 */
6846 if (ordered_offset < dip->logical_offset + dip->bytes) {
6847 ordered_bytes = dip->logical_offset + dip->bytes -
6848 ordered_offset;
5fd02043 6849 ordered = NULL;
163cf09c
CM
6850 goto again;
6851 }
4b46fce2 6852out_done:
9be3395b 6853 dio_bio = dip->dio_bio;
4b46fce2 6854
4b46fce2 6855 kfree(dip);
c0da7aa1
JB
6856
6857 /* If we had an error make sure to clear the uptodate flag */
6858 if (err)
9be3395b
CM
6859 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6860 dio_end_io(dio_bio, err);
6861 bio_put(bio);
4b46fce2
JB
6862}
6863
eaf25d93
CM
6864static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6865 struct bio *bio, int mirror_num,
6866 unsigned long bio_flags, u64 offset)
6867{
6868 int ret;
6869 struct btrfs_root *root = BTRFS_I(inode)->root;
6870 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6871 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6872 return 0;
6873}
6874
e65e1535
MX
6875static void btrfs_end_dio_bio(struct bio *bio, int err)
6876{
6877 struct btrfs_dio_private *dip = bio->bi_private;
6878
6879 if (err) {
33345d01 6880 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6881 "sector %#Lx len %u err no %d\n",
c1c9ff7c 6882 btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6883 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6884 dip->errors = 1;
6885
6886 /*
6887 * before atomic variable goto zero, we must make sure
6888 * dip->errors is perceived to be set.
6889 */
6890 smp_mb__before_atomic_dec();
6891 }
6892
6893 /* if there are more bios still pending for this dio, just exit */
6894 if (!atomic_dec_and_test(&dip->pending_bios))
6895 goto out;
6896
9be3395b 6897 if (dip->errors) {
e65e1535 6898 bio_io_error(dip->orig_bio);
9be3395b
CM
6899 } else {
6900 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
6901 bio_endio(dip->orig_bio, 0);
6902 }
6903out:
6904 bio_put(bio);
6905}
6906
6907static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6908 u64 first_sector, gfp_t gfp_flags)
6909{
6910 int nr_vecs = bio_get_nr_vecs(bdev);
6911 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6912}
6913
6914static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6915 int rw, u64 file_offset, int skip_sum,
c329861d 6916 int async_submit)
e65e1535 6917{
facc8a22 6918 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
6919 int write = rw & REQ_WRITE;
6920 struct btrfs_root *root = BTRFS_I(inode)->root;
6921 int ret;
6922
b812ce28
JB
6923 if (async_submit)
6924 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6925
e65e1535 6926 bio_get(bio);
5fd02043
JB
6927
6928 if (!write) {
6929 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6930 if (ret)
6931 goto err;
6932 }
e65e1535 6933
1ae39938
JB
6934 if (skip_sum)
6935 goto map;
6936
6937 if (write && async_submit) {
e65e1535
MX
6938 ret = btrfs_wq_submit_bio(root->fs_info,
6939 inode, rw, bio, 0, 0,
6940 file_offset,
6941 __btrfs_submit_bio_start_direct_io,
6942 __btrfs_submit_bio_done);
6943 goto err;
1ae39938
JB
6944 } else if (write) {
6945 /*
6946 * If we aren't doing async submit, calculate the csum of the
6947 * bio now.
6948 */
6949 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6950 if (ret)
6951 goto err;
c2db1073 6952 } else if (!skip_sum) {
facc8a22
MX
6953 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
6954 file_offset);
c2db1073
TI
6955 if (ret)
6956 goto err;
6957 }
e65e1535 6958
1ae39938
JB
6959map:
6960 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6961err:
6962 bio_put(bio);
6963 return ret;
6964}
6965
6966static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6967 int skip_sum)
6968{
6969 struct inode *inode = dip->inode;
6970 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
6971 struct bio *bio;
6972 struct bio *orig_bio = dip->orig_bio;
6973 struct bio_vec *bvec = orig_bio->bi_io_vec;
6974 u64 start_sector = orig_bio->bi_sector;
6975 u64 file_offset = dip->logical_offset;
6976 u64 submit_len = 0;
6977 u64 map_length;
6978 int nr_pages = 0;
e65e1535 6979 int ret = 0;
1ae39938 6980 int async_submit = 0;
e65e1535 6981
e65e1535 6982 map_length = orig_bio->bi_size;
53b381b3 6983 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535
MX
6984 &map_length, NULL, 0);
6985 if (ret) {
64728bbb 6986 bio_put(orig_bio);
e65e1535
MX
6987 return -EIO;
6988 }
facc8a22 6989
02f57c7a
JB
6990 if (map_length >= orig_bio->bi_size) {
6991 bio = orig_bio;
6992 goto submit;
6993 }
6994
53b381b3
DW
6995 /* async crcs make it difficult to collect full stripe writes. */
6996 if (btrfs_get_alloc_profile(root, 1) &
6997 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
6998 async_submit = 0;
6999 else
7000 async_submit = 1;
7001
02f57c7a
JB
7002 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7003 if (!bio)
7004 return -ENOMEM;
7005 bio->bi_private = dip;
7006 bio->bi_end_io = btrfs_end_dio_bio;
7007 atomic_inc(&dip->pending_bios);
7008
e65e1535
MX
7009 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7010 if (unlikely(map_length < submit_len + bvec->bv_len ||
7011 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7012 bvec->bv_offset) < bvec->bv_len)) {
7013 /*
7014 * inc the count before we submit the bio so
7015 * we know the end IO handler won't happen before
7016 * we inc the count. Otherwise, the dip might get freed
7017 * before we're done setting it up
7018 */
7019 atomic_inc(&dip->pending_bios);
7020 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7021 file_offset, skip_sum,
c329861d 7022 async_submit);
e65e1535
MX
7023 if (ret) {
7024 bio_put(bio);
7025 atomic_dec(&dip->pending_bios);
7026 goto out_err;
7027 }
7028
e65e1535
MX
7029 start_sector += submit_len >> 9;
7030 file_offset += submit_len;
7031
7032 submit_len = 0;
7033 nr_pages = 0;
7034
7035 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7036 start_sector, GFP_NOFS);
7037 if (!bio)
7038 goto out_err;
7039 bio->bi_private = dip;
7040 bio->bi_end_io = btrfs_end_dio_bio;
7041
7042 map_length = orig_bio->bi_size;
53b381b3 7043 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7044 start_sector << 9,
e65e1535
MX
7045 &map_length, NULL, 0);
7046 if (ret) {
7047 bio_put(bio);
7048 goto out_err;
7049 }
7050 } else {
7051 submit_len += bvec->bv_len;
7052 nr_pages ++;
7053 bvec++;
7054 }
7055 }
7056
02f57c7a 7057submit:
e65e1535 7058 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7059 async_submit);
e65e1535
MX
7060 if (!ret)
7061 return 0;
7062
7063 bio_put(bio);
7064out_err:
7065 dip->errors = 1;
7066 /*
7067 * before atomic variable goto zero, we must
7068 * make sure dip->errors is perceived to be set.
7069 */
7070 smp_mb__before_atomic_dec();
7071 if (atomic_dec_and_test(&dip->pending_bios))
7072 bio_io_error(dip->orig_bio);
7073
7074 /* bio_end_io() will handle error, so we needn't return it */
7075 return 0;
7076}
7077
9be3395b
CM
7078static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7079 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7080{
7081 struct btrfs_root *root = BTRFS_I(inode)->root;
7082 struct btrfs_dio_private *dip;
9be3395b 7083 struct bio *io_bio;
4b46fce2 7084 int skip_sum;
facc8a22 7085 int sum_len;
7b6d91da 7086 int write = rw & REQ_WRITE;
4b46fce2 7087 int ret = 0;
facc8a22 7088 u16 csum_size;
4b46fce2
JB
7089
7090 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7091
9be3395b 7092 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7093 if (!io_bio) {
7094 ret = -ENOMEM;
7095 goto free_ordered;
7096 }
7097
facc8a22
MX
7098 if (!skip_sum && !write) {
7099 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7100 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7101 sum_len *= csum_size;
7102 } else {
7103 sum_len = 0;
7104 }
7105
7106 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
4b46fce2
JB
7107 if (!dip) {
7108 ret = -ENOMEM;
9be3395b 7109 goto free_io_bio;
4b46fce2 7110 }
4b46fce2 7111
9be3395b 7112 dip->private = dio_bio->bi_private;
4b46fce2
JB
7113 dip->inode = inode;
7114 dip->logical_offset = file_offset;
e6da5d2e 7115 dip->bytes = dio_bio->bi_size;
9be3395b
CM
7116 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7117 io_bio->bi_private = dip;
e65e1535 7118 dip->errors = 0;
9be3395b
CM
7119 dip->orig_bio = io_bio;
7120 dip->dio_bio = dio_bio;
e65e1535 7121 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7122
7123 if (write)
9be3395b 7124 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7125 else
9be3395b 7126 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7127
e65e1535
MX
7128 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7129 if (!ret)
eaf25d93 7130 return;
9be3395b
CM
7131
7132free_io_bio:
7133 bio_put(io_bio);
7134
4b46fce2
JB
7135free_ordered:
7136 /*
7137 * If this is a write, we need to clean up the reserved space and kill
7138 * the ordered extent.
7139 */
7140 if (write) {
7141 struct btrfs_ordered_extent *ordered;
955256f2 7142 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7143 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7144 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7145 btrfs_free_reserved_extent(root, ordered->start,
7146 ordered->disk_len);
7147 btrfs_put_ordered_extent(ordered);
7148 btrfs_put_ordered_extent(ordered);
7149 }
9be3395b 7150 bio_endio(dio_bio, ret);
4b46fce2
JB
7151}
7152
5a5f79b5
CM
7153static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7154 const struct iovec *iov, loff_t offset,
7155 unsigned long nr_segs)
7156{
7157 int seg;
a1b75f7d 7158 int i;
5a5f79b5
CM
7159 size_t size;
7160 unsigned long addr;
7161 unsigned blocksize_mask = root->sectorsize - 1;
7162 ssize_t retval = -EINVAL;
7163 loff_t end = offset;
7164
7165 if (offset & blocksize_mask)
7166 goto out;
7167
7168 /* Check the memory alignment. Blocks cannot straddle pages */
7169 for (seg = 0; seg < nr_segs; seg++) {
7170 addr = (unsigned long)iov[seg].iov_base;
7171 size = iov[seg].iov_len;
7172 end += size;
a1b75f7d 7173 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 7174 goto out;
a1b75f7d
JB
7175
7176 /* If this is a write we don't need to check anymore */
7177 if (rw & WRITE)
7178 continue;
7179
7180 /*
7181 * Check to make sure we don't have duplicate iov_base's in this
7182 * iovec, if so return EINVAL, otherwise we'll get csum errors
7183 * when reading back.
7184 */
7185 for (i = seg + 1; i < nr_segs; i++) {
7186 if (iov[seg].iov_base == iov[i].iov_base)
7187 goto out;
7188 }
5a5f79b5
CM
7189 }
7190 retval = 0;
7191out:
7192 return retval;
7193}
eb838e73 7194
16432985
CM
7195static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7196 const struct iovec *iov, loff_t offset,
7197 unsigned long nr_segs)
7198{
4b46fce2
JB
7199 struct file *file = iocb->ki_filp;
7200 struct inode *inode = file->f_mapping->host;
0934856d 7201 size_t count = 0;
2e60a51e 7202 int flags = 0;
38851cc1
MX
7203 bool wakeup = true;
7204 bool relock = false;
0934856d 7205 ssize_t ret;
4b46fce2 7206
5a5f79b5 7207 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 7208 offset, nr_segs))
5a5f79b5 7209 return 0;
3f7c579c 7210
38851cc1
MX
7211 atomic_inc(&inode->i_dio_count);
7212 smp_mb__after_atomic_inc();
7213
0e267c44
JB
7214 /*
7215 * The generic stuff only does filemap_write_and_wait_range, which isn't
7216 * enough if we've written compressed pages to this area, so we need to
7217 * call btrfs_wait_ordered_range to make absolutely sure that any
7218 * outstanding dirty pages are on disk.
7219 */
7220 count = iov_length(iov, nr_segs);
7221 btrfs_wait_ordered_range(inode, offset, count);
7222
0934856d 7223 if (rw & WRITE) {
38851cc1
MX
7224 /*
7225 * If the write DIO is beyond the EOF, we need update
7226 * the isize, but it is protected by i_mutex. So we can
7227 * not unlock the i_mutex at this case.
7228 */
7229 if (offset + count <= inode->i_size) {
7230 mutex_unlock(&inode->i_mutex);
7231 relock = true;
7232 }
0934856d
MX
7233 ret = btrfs_delalloc_reserve_space(inode, count);
7234 if (ret)
38851cc1
MX
7235 goto out;
7236 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7237 &BTRFS_I(inode)->runtime_flags))) {
7238 inode_dio_done(inode);
7239 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7240 wakeup = false;
0934856d
MX
7241 }
7242
7243 ret = __blockdev_direct_IO(rw, iocb, inode,
7244 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7245 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
2e60a51e 7246 btrfs_submit_direct, flags);
0934856d
MX
7247 if (rw & WRITE) {
7248 if (ret < 0 && ret != -EIOCBQUEUED)
7249 btrfs_delalloc_release_space(inode, count);
172a5049 7250 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7251 btrfs_delalloc_release_space(inode,
7252 count - (size_t)ret);
172a5049
MX
7253 else
7254 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7255 }
38851cc1 7256out:
2e60a51e
MX
7257 if (wakeup)
7258 inode_dio_done(inode);
38851cc1
MX
7259 if (relock)
7260 mutex_lock(&inode->i_mutex);
0934856d
MX
7261
7262 return ret;
16432985
CM
7263}
7264
05dadc09
TI
7265#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7266
1506fcc8
YS
7267static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7268 __u64 start, __u64 len)
7269{
05dadc09
TI
7270 int ret;
7271
7272 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7273 if (ret)
7274 return ret;
7275
ec29ed5b 7276 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7277}
7278
a52d9a80 7279int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7280{
d1310b2e
CM
7281 struct extent_io_tree *tree;
7282 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7283 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7284}
1832a6d5 7285
a52d9a80 7286static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7287{
d1310b2e 7288 struct extent_io_tree *tree;
b888db2b
CM
7289
7290
7291 if (current->flags & PF_MEMALLOC) {
7292 redirty_page_for_writepage(wbc, page);
7293 unlock_page(page);
7294 return 0;
7295 }
d1310b2e 7296 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7297 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7298}
7299
48a3b636
ES
7300static int btrfs_writepages(struct address_space *mapping,
7301 struct writeback_control *wbc)
b293f02e 7302{
d1310b2e 7303 struct extent_io_tree *tree;
771ed689 7304
d1310b2e 7305 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7306 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7307}
7308
3ab2fb5a
CM
7309static int
7310btrfs_readpages(struct file *file, struct address_space *mapping,
7311 struct list_head *pages, unsigned nr_pages)
7312{
d1310b2e
CM
7313 struct extent_io_tree *tree;
7314 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7315 return extent_readpages(tree, mapping, pages, nr_pages,
7316 btrfs_get_extent);
7317}
e6dcd2dc 7318static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7319{
d1310b2e
CM
7320 struct extent_io_tree *tree;
7321 struct extent_map_tree *map;
a52d9a80 7322 int ret;
8c2383c3 7323
d1310b2e
CM
7324 tree = &BTRFS_I(page->mapping->host)->io_tree;
7325 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7326 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7327 if (ret == 1) {
7328 ClearPagePrivate(page);
7329 set_page_private(page, 0);
7330 page_cache_release(page);
39279cc3 7331 }
a52d9a80 7332 return ret;
39279cc3
CM
7333}
7334
e6dcd2dc
CM
7335static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7336{
98509cfc
CM
7337 if (PageWriteback(page) || PageDirty(page))
7338 return 0;
b335b003 7339 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7340}
7341
d47992f8
LC
7342static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7343 unsigned int length)
39279cc3 7344{
5fd02043 7345 struct inode *inode = page->mapping->host;
d1310b2e 7346 struct extent_io_tree *tree;
e6dcd2dc 7347 struct btrfs_ordered_extent *ordered;
2ac55d41 7348 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7349 u64 page_start = page_offset(page);
7350 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 7351
8b62b72b
CM
7352 /*
7353 * we have the page locked, so new writeback can't start,
7354 * and the dirty bit won't be cleared while we are here.
7355 *
7356 * Wait for IO on this page so that we can safely clear
7357 * the PagePrivate2 bit and do ordered accounting
7358 */
e6dcd2dc 7359 wait_on_page_writeback(page);
8b62b72b 7360
5fd02043 7361 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7362 if (offset) {
7363 btrfs_releasepage(page, GFP_NOFS);
7364 return;
7365 }
d0082371 7366 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
4eee4fa4 7367 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
e6dcd2dc 7368 if (ordered) {
eb84ae03
CM
7369 /*
7370 * IO on this page will never be started, so we need
7371 * to account for any ordered extents now
7372 */
e6dcd2dc
CM
7373 clear_extent_bit(tree, page_start, page_end,
7374 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7375 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7376 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
7377 /*
7378 * whoever cleared the private bit is responsible
7379 * for the finish_ordered_io
7380 */
77cef2ec
JB
7381 if (TestClearPagePrivate2(page)) {
7382 struct btrfs_ordered_inode_tree *tree;
7383 u64 new_len;
7384
7385 tree = &BTRFS_I(inode)->ordered_tree;
7386
7387 spin_lock_irq(&tree->lock);
7388 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7389 new_len = page_start - ordered->file_offset;
7390 if (new_len < ordered->truncated_len)
7391 ordered->truncated_len = new_len;
7392 spin_unlock_irq(&tree->lock);
7393
7394 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7395 page_start,
7396 PAGE_CACHE_SIZE, 1))
7397 btrfs_finish_ordered_io(ordered);
8b62b72b 7398 }
e6dcd2dc 7399 btrfs_put_ordered_extent(ordered);
2ac55d41 7400 cached_state = NULL;
d0082371 7401 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7402 }
7403 clear_extent_bit(tree, page_start, page_end,
32c00aff 7404 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7405 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7406 &cached_state, GFP_NOFS);
e6dcd2dc
CM
7407 __btrfs_releasepage(page, GFP_NOFS);
7408
4a096752 7409 ClearPageChecked(page);
9ad6b7bc 7410 if (PagePrivate(page)) {
9ad6b7bc
CM
7411 ClearPagePrivate(page);
7412 set_page_private(page, 0);
7413 page_cache_release(page);
7414 }
39279cc3
CM
7415}
7416
9ebefb18
CM
7417/*
7418 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7419 * called from a page fault handler when a page is first dirtied. Hence we must
7420 * be careful to check for EOF conditions here. We set the page up correctly
7421 * for a written page which means we get ENOSPC checking when writing into
7422 * holes and correct delalloc and unwritten extent mapping on filesystems that
7423 * support these features.
7424 *
7425 * We are not allowed to take the i_mutex here so we have to play games to
7426 * protect against truncate races as the page could now be beyond EOF. Because
7427 * vmtruncate() writes the inode size before removing pages, once we have the
7428 * page lock we can determine safely if the page is beyond EOF. If it is not
7429 * beyond EOF, then the page is guaranteed safe against truncation until we
7430 * unlock the page.
7431 */
c2ec175c 7432int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7433{
c2ec175c 7434 struct page *page = vmf->page;
496ad9aa 7435 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7436 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7437 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7438 struct btrfs_ordered_extent *ordered;
2ac55d41 7439 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7440 char *kaddr;
7441 unsigned long zero_start;
9ebefb18 7442 loff_t size;
1832a6d5 7443 int ret;
9998eb70 7444 int reserved = 0;
a52d9a80 7445 u64 page_start;
e6dcd2dc 7446 u64 page_end;
9ebefb18 7447
b2b5ef5c 7448 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7449 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7450 if (!ret) {
e41f941a 7451 ret = file_update_time(vma->vm_file);
9998eb70
CM
7452 reserved = 1;
7453 }
56a76f82
NP
7454 if (ret) {
7455 if (ret == -ENOMEM)
7456 ret = VM_FAULT_OOM;
7457 else /* -ENOSPC, -EIO, etc */
7458 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7459 if (reserved)
7460 goto out;
7461 goto out_noreserve;
56a76f82 7462 }
1832a6d5 7463
56a76f82 7464 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7465again:
9ebefb18 7466 lock_page(page);
9ebefb18 7467 size = i_size_read(inode);
e6dcd2dc
CM
7468 page_start = page_offset(page);
7469 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7470
9ebefb18 7471 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7472 (page_start >= size)) {
9ebefb18
CM
7473 /* page got truncated out from underneath us */
7474 goto out_unlock;
7475 }
e6dcd2dc
CM
7476 wait_on_page_writeback(page);
7477
d0082371 7478 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7479 set_page_extent_mapped(page);
7480
eb84ae03
CM
7481 /*
7482 * we can't set the delalloc bits if there are pending ordered
7483 * extents. Drop our locks and wait for them to finish
7484 */
e6dcd2dc
CM
7485 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7486 if (ordered) {
2ac55d41
JB
7487 unlock_extent_cached(io_tree, page_start, page_end,
7488 &cached_state, GFP_NOFS);
e6dcd2dc 7489 unlock_page(page);
eb84ae03 7490 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7491 btrfs_put_ordered_extent(ordered);
7492 goto again;
7493 }
7494
fbf19087
JB
7495 /*
7496 * XXX - page_mkwrite gets called every time the page is dirtied, even
7497 * if it was already dirty, so for space accounting reasons we need to
7498 * clear any delalloc bits for the range we are fixing to save. There
7499 * is probably a better way to do this, but for now keep consistent with
7500 * prepare_pages in the normal write path.
7501 */
2ac55d41 7502 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7503 EXTENT_DIRTY | EXTENT_DELALLOC |
7504 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7505 0, 0, &cached_state, GFP_NOFS);
fbf19087 7506
2ac55d41
JB
7507 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7508 &cached_state);
9ed74f2d 7509 if (ret) {
2ac55d41
JB
7510 unlock_extent_cached(io_tree, page_start, page_end,
7511 &cached_state, GFP_NOFS);
9ed74f2d
JB
7512 ret = VM_FAULT_SIGBUS;
7513 goto out_unlock;
7514 }
e6dcd2dc 7515 ret = 0;
9ebefb18
CM
7516
7517 /* page is wholly or partially inside EOF */
a52d9a80 7518 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7519 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7520 else
e6dcd2dc 7521 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7522
e6dcd2dc
CM
7523 if (zero_start != PAGE_CACHE_SIZE) {
7524 kaddr = kmap(page);
7525 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7526 flush_dcache_page(page);
7527 kunmap(page);
7528 }
247e743c 7529 ClearPageChecked(page);
e6dcd2dc 7530 set_page_dirty(page);
50a9b214 7531 SetPageUptodate(page);
5a3f23d5 7532
257c62e1
CM
7533 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7534 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7535 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7536
2ac55d41 7537 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7538
7539out_unlock:
b2b5ef5c
JK
7540 if (!ret) {
7541 sb_end_pagefault(inode->i_sb);
50a9b214 7542 return VM_FAULT_LOCKED;
b2b5ef5c 7543 }
9ebefb18 7544 unlock_page(page);
1832a6d5 7545out:
ec39e180 7546 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7547out_noreserve:
b2b5ef5c 7548 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7549 return ret;
7550}
7551
a41ad394 7552static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7553{
7554 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7555 struct btrfs_block_rsv *rsv;
a71754fc 7556 int ret = 0;
3893e33b 7557 int err = 0;
39279cc3 7558 struct btrfs_trans_handle *trans;
dbe674a9 7559 u64 mask = root->sectorsize - 1;
07127184 7560 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7561
4a096752 7562 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
39279cc3 7563
fcb80c2a
JB
7564 /*
7565 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7566 * 3 things going on here
7567 *
7568 * 1) We need to reserve space for our orphan item and the space to
7569 * delete our orphan item. Lord knows we don't want to have a dangling
7570 * orphan item because we didn't reserve space to remove it.
7571 *
7572 * 2) We need to reserve space to update our inode.
7573 *
7574 * 3) We need to have something to cache all the space that is going to
7575 * be free'd up by the truncate operation, but also have some slack
7576 * space reserved in case it uses space during the truncate (thank you
7577 * very much snapshotting).
7578 *
7579 * And we need these to all be seperate. The fact is we can use alot of
7580 * space doing the truncate, and we have no earthly idea how much space
7581 * we will use, so we need the truncate reservation to be seperate so it
7582 * doesn't end up using space reserved for updating the inode or
7583 * removing the orphan item. We also need to be able to stop the
7584 * transaction and start a new one, which means we need to be able to
7585 * update the inode several times, and we have no idea of knowing how
7586 * many times that will be, so we can't just reserve 1 item for the
7587 * entirety of the opration, so that has to be done seperately as well.
7588 * Then there is the orphan item, which does indeed need to be held on
7589 * to for the whole operation, and we need nobody to touch this reserved
7590 * space except the orphan code.
7591 *
7592 * So that leaves us with
7593 *
7594 * 1) root->orphan_block_rsv - for the orphan deletion.
7595 * 2) rsv - for the truncate reservation, which we will steal from the
7596 * transaction reservation.
7597 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7598 * updating the inode.
7599 */
66d8f3dd 7600 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7601 if (!rsv)
7602 return -ENOMEM;
4a338542 7603 rsv->size = min_size;
ca7e70f5 7604 rsv->failfast = 1;
f0cd846e 7605
907cbceb 7606 /*
07127184 7607 * 1 for the truncate slack space
907cbceb
JB
7608 * 1 for updating the inode.
7609 */
f3fe820c 7610 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7611 if (IS_ERR(trans)) {
7612 err = PTR_ERR(trans);
7613 goto out;
7614 }
f0cd846e 7615
907cbceb
JB
7616 /* Migrate the slack space for the truncate to our reserve */
7617 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7618 min_size);
fcb80c2a 7619 BUG_ON(ret);
f0cd846e 7620
5a3f23d5
CM
7621 /*
7622 * setattr is responsible for setting the ordered_data_close flag,
7623 * but that is only tested during the last file release. That
7624 * could happen well after the next commit, leaving a great big
7625 * window where new writes may get lost if someone chooses to write
7626 * to this file after truncating to zero
7627 *
7628 * The inode doesn't have any dirty data here, and so if we commit
7629 * this is a noop. If someone immediately starts writing to the inode
7630 * it is very likely we'll catch some of their writes in this
7631 * transaction, and the commit will find this file on the ordered
7632 * data list with good things to send down.
7633 *
7634 * This is a best effort solution, there is still a window where
7635 * using truncate to replace the contents of the file will
7636 * end up with a zero length file after a crash.
7637 */
72ac3c0d
JB
7638 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7639 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7640 btrfs_add_ordered_operation(trans, root, inode);
7641
5dc562c5
JB
7642 /*
7643 * So if we truncate and then write and fsync we normally would just
7644 * write the extents that changed, which is a problem if we need to
7645 * first truncate that entire inode. So set this flag so we write out
7646 * all of the extents in the inode to the sync log so we're completely
7647 * safe.
7648 */
7649 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7650 trans->block_rsv = rsv;
907cbceb 7651
8082510e
YZ
7652 while (1) {
7653 ret = btrfs_truncate_inode_items(trans, root, inode,
7654 inode->i_size,
7655 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7656 if (ret != -ENOSPC) {
3893e33b 7657 err = ret;
8082510e 7658 break;
3893e33b 7659 }
39279cc3 7660
fcb80c2a 7661 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7662 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7663 if (ret) {
7664 err = ret;
7665 break;
7666 }
ca7e70f5 7667
8082510e 7668 btrfs_end_transaction(trans, root);
b53d3f5d 7669 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7670
7671 trans = btrfs_start_transaction(root, 2);
7672 if (IS_ERR(trans)) {
7673 ret = err = PTR_ERR(trans);
7674 trans = NULL;
7675 break;
7676 }
7677
7678 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7679 rsv, min_size);
7680 BUG_ON(ret); /* shouldn't happen */
7681 trans->block_rsv = rsv;
8082510e
YZ
7682 }
7683
7684 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7685 trans->block_rsv = root->orphan_block_rsv;
8082510e 7686 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7687 if (ret)
7688 err = ret;
8082510e
YZ
7689 }
7690
917c16b2
CM
7691 if (trans) {
7692 trans->block_rsv = &root->fs_info->trans_block_rsv;
7693 ret = btrfs_update_inode(trans, root, inode);
7694 if (ret && !err)
7695 err = ret;
7b128766 7696
7ad85bb7 7697 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7698 btrfs_btree_balance_dirty(root);
917c16b2 7699 }
fcb80c2a
JB
7700
7701out:
7702 btrfs_free_block_rsv(root, rsv);
7703
3893e33b
JB
7704 if (ret && !err)
7705 err = ret;
a41ad394 7706
3893e33b 7707 return err;
39279cc3
CM
7708}
7709
d352ac68
CM
7710/*
7711 * create a new subvolume directory/inode (helper for the ioctl).
7712 */
d2fb3437 7713int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7714 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7715{
39279cc3 7716 struct inode *inode;
76dda93c 7717 int err;
00e4e6b3 7718 u64 index = 0;
39279cc3 7719
12fc9d09
FA
7720 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7721 new_dirid, new_dirid,
7722 S_IFDIR | (~current_umask() & S_IRWXUGO),
7723 &index);
54aa1f4d 7724 if (IS_ERR(inode))
f46b5a66 7725 return PTR_ERR(inode);
39279cc3
CM
7726 inode->i_op = &btrfs_dir_inode_operations;
7727 inode->i_fop = &btrfs_dir_file_operations;
7728
bfe86848 7729 set_nlink(inode, 1);
dbe674a9 7730 btrfs_i_size_write(inode, 0);
3b96362c 7731
76dda93c 7732 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7733
76dda93c 7734 iput(inode);
ce598979 7735 return err;
39279cc3
CM
7736}
7737
39279cc3
CM
7738struct inode *btrfs_alloc_inode(struct super_block *sb)
7739{
7740 struct btrfs_inode *ei;
2ead6ae7 7741 struct inode *inode;
39279cc3
CM
7742
7743 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7744 if (!ei)
7745 return NULL;
2ead6ae7
YZ
7746
7747 ei->root = NULL;
2ead6ae7 7748 ei->generation = 0;
15ee9bc7 7749 ei->last_trans = 0;
257c62e1 7750 ei->last_sub_trans = 0;
e02119d5 7751 ei->logged_trans = 0;
2ead6ae7 7752 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7753 ei->disk_i_size = 0;
7754 ei->flags = 0;
7709cde3 7755 ei->csum_bytes = 0;
2ead6ae7
YZ
7756 ei->index_cnt = (u64)-1;
7757 ei->last_unlink_trans = 0;
46d8bc34 7758 ei->last_log_commit = 0;
2ead6ae7 7759
9e0baf60
JB
7760 spin_lock_init(&ei->lock);
7761 ei->outstanding_extents = 0;
7762 ei->reserved_extents = 0;
2ead6ae7 7763
72ac3c0d 7764 ei->runtime_flags = 0;
261507a0 7765 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7766
16cdcec7
MX
7767 ei->delayed_node = NULL;
7768
2ead6ae7 7769 inode = &ei->vfs_inode;
a8067e02 7770 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7771 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7772 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7773 ei->io_tree.track_uptodate = 1;
7774 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7775 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7776 mutex_init(&ei->log_mutex);
f248679e 7777 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7778 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7779 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7780 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7781 RB_CLEAR_NODE(&ei->rb_node);
7782
7783 return inode;
39279cc3
CM
7784}
7785
fa0d7e3d
NP
7786static void btrfs_i_callback(struct rcu_head *head)
7787{
7788 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7789 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7790}
7791
39279cc3
CM
7792void btrfs_destroy_inode(struct inode *inode)
7793{
e6dcd2dc 7794 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7795 struct btrfs_root *root = BTRFS_I(inode)->root;
7796
b3d9b7a3 7797 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7798 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7799 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7800 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7801 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7802 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7803
a6dbd429
JB
7804 /*
7805 * This can happen where we create an inode, but somebody else also
7806 * created the same inode and we need to destroy the one we already
7807 * created.
7808 */
7809 if (!root)
7810 goto free;
7811
5a3f23d5
CM
7812 /*
7813 * Make sure we're properly removed from the ordered operation
7814 * lists.
7815 */
7816 smp_mb();
7817 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
199c2a9c 7818 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 7819 list_del_init(&BTRFS_I(inode)->ordered_operations);
199c2a9c 7820 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
7821 }
7822
8a35d95f
JB
7823 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7824 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 7825 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 7826 btrfs_ino(inode));
8a35d95f 7827 atomic_dec(&root->orphan_inodes);
7b128766 7828 }
7b128766 7829
d397712b 7830 while (1) {
e6dcd2dc
CM
7831 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7832 if (!ordered)
7833 break;
7834 else {
c2cf52eb 7835 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 7836 ordered->file_offset, ordered->len);
e6dcd2dc
CM
7837 btrfs_remove_ordered_extent(inode, ordered);
7838 btrfs_put_ordered_extent(ordered);
7839 btrfs_put_ordered_extent(ordered);
7840 }
7841 }
5d4f98a2 7842 inode_tree_del(inode);
5b21f2ed 7843 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7844free:
fa0d7e3d 7845 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7846}
7847
45321ac5 7848int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7849{
7850 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7851
6379ef9f
NA
7852 if (root == NULL)
7853 return 1;
7854
fa6ac876 7855 /* the snap/subvol tree is on deleting */
69e9c6c6 7856 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 7857 return 1;
76dda93c 7858 else
45321ac5 7859 return generic_drop_inode(inode);
76dda93c
YZ
7860}
7861
0ee0fda0 7862static void init_once(void *foo)
39279cc3
CM
7863{
7864 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7865
7866 inode_init_once(&ei->vfs_inode);
7867}
7868
7869void btrfs_destroy_cachep(void)
7870{
8c0a8537
KS
7871 /*
7872 * Make sure all delayed rcu free inodes are flushed before we
7873 * destroy cache.
7874 */
7875 rcu_barrier();
39279cc3
CM
7876 if (btrfs_inode_cachep)
7877 kmem_cache_destroy(btrfs_inode_cachep);
7878 if (btrfs_trans_handle_cachep)
7879 kmem_cache_destroy(btrfs_trans_handle_cachep);
7880 if (btrfs_transaction_cachep)
7881 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7882 if (btrfs_path_cachep)
7883 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7884 if (btrfs_free_space_cachep)
7885 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7886 if (btrfs_delalloc_work_cachep)
7887 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
7888}
7889
7890int btrfs_init_cachep(void)
7891{
837e1972 7892 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
7893 sizeof(struct btrfs_inode), 0,
7894 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7895 if (!btrfs_inode_cachep)
7896 goto fail;
9601e3f6 7897
837e1972 7898 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
7899 sizeof(struct btrfs_trans_handle), 0,
7900 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7901 if (!btrfs_trans_handle_cachep)
7902 goto fail;
9601e3f6 7903
837e1972 7904 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
7905 sizeof(struct btrfs_transaction), 0,
7906 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7907 if (!btrfs_transaction_cachep)
7908 goto fail;
9601e3f6 7909
837e1972 7910 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
7911 sizeof(struct btrfs_path), 0,
7912 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7913 if (!btrfs_path_cachep)
7914 goto fail;
9601e3f6 7915
837e1972 7916 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
7917 sizeof(struct btrfs_free_space), 0,
7918 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7919 if (!btrfs_free_space_cachep)
7920 goto fail;
7921
8ccf6f19
MX
7922 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7923 sizeof(struct btrfs_delalloc_work), 0,
7924 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7925 NULL);
7926 if (!btrfs_delalloc_work_cachep)
7927 goto fail;
7928
39279cc3
CM
7929 return 0;
7930fail:
7931 btrfs_destroy_cachep();
7932 return -ENOMEM;
7933}
7934
7935static int btrfs_getattr(struct vfsmount *mnt,
7936 struct dentry *dentry, struct kstat *stat)
7937{
df0af1a5 7938 u64 delalloc_bytes;
39279cc3 7939 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7940 u32 blocksize = inode->i_sb->s_blocksize;
7941
39279cc3 7942 generic_fillattr(inode, stat);
0ee5dc67 7943 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7944 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
7945
7946 spin_lock(&BTRFS_I(inode)->lock);
7947 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
7948 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 7949 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 7950 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7951 return 0;
7952}
7953
d397712b
CM
7954static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7955 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7956{
7957 struct btrfs_trans_handle *trans;
7958 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7959 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7960 struct inode *new_inode = new_dentry->d_inode;
7961 struct inode *old_inode = old_dentry->d_inode;
7962 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7963 u64 index = 0;
4df27c4d 7964 u64 root_objectid;
39279cc3 7965 int ret;
33345d01 7966 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7967
33345d01 7968 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7969 return -EPERM;
7970
4df27c4d 7971 /* we only allow rename subvolume link between subvolumes */
33345d01 7972 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7973 return -EXDEV;
7974
33345d01
LZ
7975 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7976 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7977 return -ENOTEMPTY;
5f39d397 7978
4df27c4d
YZ
7979 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7980 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7981 return -ENOTEMPTY;
9c52057c
CM
7982
7983
7984 /* check for collisions, even if the name isn't there */
4871c158 7985 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
7986 new_dentry->d_name.name,
7987 new_dentry->d_name.len);
7988
7989 if (ret) {
7990 if (ret == -EEXIST) {
7991 /* we shouldn't get
7992 * eexist without a new_inode */
7993 if (!new_inode) {
7994 WARN_ON(1);
7995 return ret;
7996 }
7997 } else {
7998 /* maybe -EOVERFLOW */
7999 return ret;
8000 }
8001 }
8002 ret = 0;
8003
5a3f23d5
CM
8004 /*
8005 * we're using rename to replace one file with another.
8006 * and the replacement file is large. Start IO on it now so
8007 * we don't add too much work to the end of the transaction
8008 */
4baf8c92 8009 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
8010 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8011 filemap_flush(old_inode->i_mapping);
8012
76dda93c 8013 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8014 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8015 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8016 /*
8017 * We want to reserve the absolute worst case amount of items. So if
8018 * both inodes are subvols and we need to unlink them then that would
8019 * require 4 item modifications, but if they are both normal inodes it
8020 * would require 5 item modifications, so we'll assume their normal
8021 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8022 * should cover the worst case number of items we'll modify.
8023 */
6e137ed3 8024 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8025 if (IS_ERR(trans)) {
8026 ret = PTR_ERR(trans);
8027 goto out_notrans;
8028 }
76dda93c 8029
4df27c4d
YZ
8030 if (dest != root)
8031 btrfs_record_root_in_trans(trans, dest);
5f39d397 8032
a5719521
YZ
8033 ret = btrfs_set_inode_index(new_dir, &index);
8034 if (ret)
8035 goto out_fail;
5a3f23d5 8036
33345d01 8037 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8038 /* force full log commit if subvolume involved. */
8039 root->fs_info->last_trans_log_full_commit = trans->transid;
8040 } else {
a5719521
YZ
8041 ret = btrfs_insert_inode_ref(trans, dest,
8042 new_dentry->d_name.name,
8043 new_dentry->d_name.len,
33345d01
LZ
8044 old_ino,
8045 btrfs_ino(new_dir), index);
a5719521
YZ
8046 if (ret)
8047 goto out_fail;
4df27c4d
YZ
8048 /*
8049 * this is an ugly little race, but the rename is required
8050 * to make sure that if we crash, the inode is either at the
8051 * old name or the new one. pinning the log transaction lets
8052 * us make sure we don't allow a log commit to come in after
8053 * we unlink the name but before we add the new name back in.
8054 */
8055 btrfs_pin_log_trans(root);
8056 }
5a3f23d5
CM
8057 /*
8058 * make sure the inode gets flushed if it is replacing
8059 * something.
8060 */
33345d01 8061 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 8062 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 8063
0c4d2d95
JB
8064 inode_inc_iversion(old_dir);
8065 inode_inc_iversion(new_dir);
8066 inode_inc_iversion(old_inode);
39279cc3
CM
8067 old_dir->i_ctime = old_dir->i_mtime = ctime;
8068 new_dir->i_ctime = new_dir->i_mtime = ctime;
8069 old_inode->i_ctime = ctime;
5f39d397 8070
12fcfd22
CM
8071 if (old_dentry->d_parent != new_dentry->d_parent)
8072 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8073
33345d01 8074 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8075 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8076 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8077 old_dentry->d_name.name,
8078 old_dentry->d_name.len);
8079 } else {
92986796
AV
8080 ret = __btrfs_unlink_inode(trans, root, old_dir,
8081 old_dentry->d_inode,
8082 old_dentry->d_name.name,
8083 old_dentry->d_name.len);
8084 if (!ret)
8085 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8086 }
79787eaa
JM
8087 if (ret) {
8088 btrfs_abort_transaction(trans, root, ret);
8089 goto out_fail;
8090 }
39279cc3
CM
8091
8092 if (new_inode) {
0c4d2d95 8093 inode_inc_iversion(new_inode);
39279cc3 8094 new_inode->i_ctime = CURRENT_TIME;
33345d01 8095 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8096 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8097 root_objectid = BTRFS_I(new_inode)->location.objectid;
8098 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8099 root_objectid,
8100 new_dentry->d_name.name,
8101 new_dentry->d_name.len);
8102 BUG_ON(new_inode->i_nlink == 0);
8103 } else {
8104 ret = btrfs_unlink_inode(trans, dest, new_dir,
8105 new_dentry->d_inode,
8106 new_dentry->d_name.name,
8107 new_dentry->d_name.len);
8108 }
4ef31a45 8109 if (!ret && new_inode->i_nlink == 0)
e02119d5 8110 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8111 if (ret) {
8112 btrfs_abort_transaction(trans, root, ret);
8113 goto out_fail;
8114 }
39279cc3 8115 }
aec7477b 8116
4df27c4d
YZ
8117 ret = btrfs_add_link(trans, new_dir, old_inode,
8118 new_dentry->d_name.name,
a5719521 8119 new_dentry->d_name.len, 0, index);
79787eaa
JM
8120 if (ret) {
8121 btrfs_abort_transaction(trans, root, ret);
8122 goto out_fail;
8123 }
39279cc3 8124
33345d01 8125 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8126 struct dentry *parent = new_dentry->d_parent;
6a912213 8127 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8128 btrfs_end_log_trans(root);
8129 }
39279cc3 8130out_fail:
7ad85bb7 8131 btrfs_end_transaction(trans, root);
b44c59a8 8132out_notrans:
33345d01 8133 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8134 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8135
39279cc3
CM
8136 return ret;
8137}
8138
8ccf6f19
MX
8139static void btrfs_run_delalloc_work(struct btrfs_work *work)
8140{
8141 struct btrfs_delalloc_work *delalloc_work;
8142
8143 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8144 work);
8145 if (delalloc_work->wait)
8146 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8147 else
8148 filemap_flush(delalloc_work->inode->i_mapping);
8149
8150 if (delalloc_work->delay_iput)
8151 btrfs_add_delayed_iput(delalloc_work->inode);
8152 else
8153 iput(delalloc_work->inode);
8154 complete(&delalloc_work->completion);
8155}
8156
8157struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8158 int wait, int delay_iput)
8159{
8160 struct btrfs_delalloc_work *work;
8161
8162 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8163 if (!work)
8164 return NULL;
8165
8166 init_completion(&work->completion);
8167 INIT_LIST_HEAD(&work->list);
8168 work->inode = inode;
8169 work->wait = wait;
8170 work->delay_iput = delay_iput;
8171 work->work.func = btrfs_run_delalloc_work;
8172
8173 return work;
8174}
8175
8176void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8177{
8178 wait_for_completion(&work->completion);
8179 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8180}
8181
d352ac68
CM
8182/*
8183 * some fairly slow code that needs optimization. This walks the list
8184 * of all the inodes with pending delalloc and forces them to disk.
8185 */
eb73c1b7 8186static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 8187{
ea8c2819 8188 struct btrfs_inode *binode;
5b21f2ed 8189 struct inode *inode;
8ccf6f19
MX
8190 struct btrfs_delalloc_work *work, *next;
8191 struct list_head works;
1eafa6c7 8192 struct list_head splice;
8ccf6f19 8193 int ret = 0;
ea8c2819 8194
8ccf6f19 8195 INIT_LIST_HEAD(&works);
1eafa6c7 8196 INIT_LIST_HEAD(&splice);
63607cc8 8197
eb73c1b7
MX
8198 spin_lock(&root->delalloc_lock);
8199 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8200 while (!list_empty(&splice)) {
8201 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8202 delalloc_inodes);
1eafa6c7 8203
eb73c1b7
MX
8204 list_move_tail(&binode->delalloc_inodes,
8205 &root->delalloc_inodes);
5b21f2ed 8206 inode = igrab(&binode->vfs_inode);
df0af1a5 8207 if (!inode) {
eb73c1b7 8208 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8209 continue;
df0af1a5 8210 }
eb73c1b7 8211 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8212
8213 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8214 if (unlikely(!work)) {
f4ab9ea7
JB
8215 if (delay_iput)
8216 btrfs_add_delayed_iput(inode);
8217 else
8218 iput(inode);
1eafa6c7
MX
8219 ret = -ENOMEM;
8220 goto out;
5b21f2ed 8221 }
1eafa6c7
MX
8222 list_add_tail(&work->list, &works);
8223 btrfs_queue_worker(&root->fs_info->flush_workers,
8224 &work->work);
8225
5b21f2ed 8226 cond_resched();
eb73c1b7 8227 spin_lock(&root->delalloc_lock);
ea8c2819 8228 }
eb73c1b7 8229 spin_unlock(&root->delalloc_lock);
8c8bee1d 8230
1eafa6c7
MX
8231 list_for_each_entry_safe(work, next, &works, list) {
8232 list_del_init(&work->list);
8233 btrfs_wait_and_free_delalloc_work(work);
8234 }
eb73c1b7
MX
8235 return 0;
8236out:
8237 list_for_each_entry_safe(work, next, &works, list) {
8238 list_del_init(&work->list);
8239 btrfs_wait_and_free_delalloc_work(work);
8240 }
8241
8242 if (!list_empty_careful(&splice)) {
8243 spin_lock(&root->delalloc_lock);
8244 list_splice_tail(&splice, &root->delalloc_inodes);
8245 spin_unlock(&root->delalloc_lock);
8246 }
8247 return ret;
8248}
1eafa6c7 8249
eb73c1b7
MX
8250int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8251{
8252 int ret;
1eafa6c7 8253
eb73c1b7
MX
8254 if (root->fs_info->sb->s_flags & MS_RDONLY)
8255 return -EROFS;
8256
8257 ret = __start_delalloc_inodes(root, delay_iput);
8258 /*
8259 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
8260 * we have to make sure the IO is actually started and that
8261 * ordered extents get created before we return
8262 */
8263 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8264 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8265 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8266 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8267 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8268 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8269 }
8270 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
8271 return ret;
8272}
8273
8274int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info,
8275 int delay_iput)
8276{
8277 struct btrfs_root *root;
8278 struct list_head splice;
8279 int ret;
8280
8281 if (fs_info->sb->s_flags & MS_RDONLY)
8282 return -EROFS;
8283
8284 INIT_LIST_HEAD(&splice);
8285
8286 spin_lock(&fs_info->delalloc_root_lock);
8287 list_splice_init(&fs_info->delalloc_roots, &splice);
8288 while (!list_empty(&splice)) {
8289 root = list_first_entry(&splice, struct btrfs_root,
8290 delalloc_root);
8291 root = btrfs_grab_fs_root(root);
8292 BUG_ON(!root);
8293 list_move_tail(&root->delalloc_root,
8294 &fs_info->delalloc_roots);
8295 spin_unlock(&fs_info->delalloc_root_lock);
8296
8297 ret = __start_delalloc_inodes(root, delay_iput);
8298 btrfs_put_fs_root(root);
8299 if (ret)
8300 goto out;
8301
8302 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 8303 }
eb73c1b7 8304 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8305
eb73c1b7
MX
8306 atomic_inc(&fs_info->async_submit_draining);
8307 while (atomic_read(&fs_info->nr_async_submits) ||
8308 atomic_read(&fs_info->async_delalloc_pages)) {
8309 wait_event(fs_info->async_submit_wait,
8310 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8311 atomic_read(&fs_info->async_delalloc_pages) == 0));
8312 }
8313 atomic_dec(&fs_info->async_submit_draining);
8314 return 0;
8315out:
1eafa6c7 8316 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
8317 spin_lock(&fs_info->delalloc_root_lock);
8318 list_splice_tail(&splice, &fs_info->delalloc_roots);
8319 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8320 }
8ccf6f19 8321 return ret;
ea8c2819
CM
8322}
8323
39279cc3
CM
8324static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8325 const char *symname)
8326{
8327 struct btrfs_trans_handle *trans;
8328 struct btrfs_root *root = BTRFS_I(dir)->root;
8329 struct btrfs_path *path;
8330 struct btrfs_key key;
1832a6d5 8331 struct inode *inode = NULL;
39279cc3
CM
8332 int err;
8333 int drop_inode = 0;
8334 u64 objectid;
00e4e6b3 8335 u64 index = 0 ;
39279cc3
CM
8336 int name_len;
8337 int datasize;
5f39d397 8338 unsigned long ptr;
39279cc3 8339 struct btrfs_file_extent_item *ei;
5f39d397 8340 struct extent_buffer *leaf;
39279cc3 8341
f06becc4 8342 name_len = strlen(symname);
39279cc3
CM
8343 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8344 return -ENAMETOOLONG;
1832a6d5 8345
9ed74f2d
JB
8346 /*
8347 * 2 items for inode item and ref
8348 * 2 items for dir items
8349 * 1 item for xattr if selinux is on
8350 */
a22285a6
YZ
8351 trans = btrfs_start_transaction(root, 5);
8352 if (IS_ERR(trans))
8353 return PTR_ERR(trans);
1832a6d5 8354
581bb050
LZ
8355 err = btrfs_find_free_ino(root, &objectid);
8356 if (err)
8357 goto out_unlock;
8358
aec7477b 8359 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8360 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8361 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8362 if (IS_ERR(inode)) {
8363 err = PTR_ERR(inode);
39279cc3 8364 goto out_unlock;
7cf96da3 8365 }
39279cc3 8366
2a7dba39 8367 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8368 if (err) {
8369 drop_inode = 1;
8370 goto out_unlock;
8371 }
8372
ad19db71
CS
8373 /*
8374 * If the active LSM wants to access the inode during
8375 * d_instantiate it needs these. Smack checks to see
8376 * if the filesystem supports xattrs by looking at the
8377 * ops vector.
8378 */
8379 inode->i_fop = &btrfs_file_operations;
8380 inode->i_op = &btrfs_file_inode_operations;
8381
a1b075d2 8382 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8383 if (err)
8384 drop_inode = 1;
8385 else {
8386 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8387 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8388 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8389 }
39279cc3
CM
8390 if (drop_inode)
8391 goto out_unlock;
8392
8393 path = btrfs_alloc_path();
d8926bb3
MF
8394 if (!path) {
8395 err = -ENOMEM;
8396 drop_inode = 1;
8397 goto out_unlock;
8398 }
33345d01 8399 key.objectid = btrfs_ino(inode);
39279cc3 8400 key.offset = 0;
39279cc3
CM
8401 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8402 datasize = btrfs_file_extent_calc_inline_size(name_len);
8403 err = btrfs_insert_empty_item(trans, root, path, &key,
8404 datasize);
54aa1f4d
CM
8405 if (err) {
8406 drop_inode = 1;
b0839166 8407 btrfs_free_path(path);
54aa1f4d
CM
8408 goto out_unlock;
8409 }
5f39d397
CM
8410 leaf = path->nodes[0];
8411 ei = btrfs_item_ptr(leaf, path->slots[0],
8412 struct btrfs_file_extent_item);
8413 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8414 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8415 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8416 btrfs_set_file_extent_encryption(leaf, ei, 0);
8417 btrfs_set_file_extent_compression(leaf, ei, 0);
8418 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8419 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8420
39279cc3 8421 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8422 write_extent_buffer(leaf, symname, ptr, name_len);
8423 btrfs_mark_buffer_dirty(leaf);
39279cc3 8424 btrfs_free_path(path);
5f39d397 8425
39279cc3
CM
8426 inode->i_op = &btrfs_symlink_inode_operations;
8427 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8428 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8429 inode_set_bytes(inode, name_len);
f06becc4 8430 btrfs_i_size_write(inode, name_len);
54aa1f4d
CM
8431 err = btrfs_update_inode(trans, root, inode);
8432 if (err)
8433 drop_inode = 1;
39279cc3
CM
8434
8435out_unlock:
08c422c2
AV
8436 if (!err)
8437 d_instantiate(dentry, inode);
7ad85bb7 8438 btrfs_end_transaction(trans, root);
39279cc3
CM
8439 if (drop_inode) {
8440 inode_dec_link_count(inode);
8441 iput(inode);
8442 }
b53d3f5d 8443 btrfs_btree_balance_dirty(root);
39279cc3
CM
8444 return err;
8445}
16432985 8446
0af3d00b
JB
8447static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8448 u64 start, u64 num_bytes, u64 min_size,
8449 loff_t actual_len, u64 *alloc_hint,
8450 struct btrfs_trans_handle *trans)
d899e052 8451{
5dc562c5
JB
8452 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8453 struct extent_map *em;
d899e052
YZ
8454 struct btrfs_root *root = BTRFS_I(inode)->root;
8455 struct btrfs_key ins;
d899e052 8456 u64 cur_offset = start;
55a61d1d 8457 u64 i_size;
154ea289 8458 u64 cur_bytes;
d899e052 8459 int ret = 0;
0af3d00b 8460 bool own_trans = true;
d899e052 8461
0af3d00b
JB
8462 if (trans)
8463 own_trans = false;
d899e052 8464 while (num_bytes > 0) {
0af3d00b
JB
8465 if (own_trans) {
8466 trans = btrfs_start_transaction(root, 3);
8467 if (IS_ERR(trans)) {
8468 ret = PTR_ERR(trans);
8469 break;
8470 }
5a303d5d
YZ
8471 }
8472
154ea289
CM
8473 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8474 cur_bytes = max(cur_bytes, min_size);
00361589
JB
8475 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8476 *alloc_hint, &ins, 1);
5a303d5d 8477 if (ret) {
0af3d00b
JB
8478 if (own_trans)
8479 btrfs_end_transaction(trans, root);
a22285a6 8480 break;
d899e052 8481 }
5a303d5d 8482
d899e052
YZ
8483 ret = insert_reserved_file_extent(trans, inode,
8484 cur_offset, ins.objectid,
8485 ins.offset, ins.offset,
920bbbfb 8486 ins.offset, 0, 0, 0,
d899e052 8487 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
8488 if (ret) {
8489 btrfs_abort_transaction(trans, root, ret);
8490 if (own_trans)
8491 btrfs_end_transaction(trans, root);
8492 break;
8493 }
a1ed835e
CM
8494 btrfs_drop_extent_cache(inode, cur_offset,
8495 cur_offset + ins.offset -1, 0);
5a303d5d 8496
5dc562c5
JB
8497 em = alloc_extent_map();
8498 if (!em) {
8499 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8500 &BTRFS_I(inode)->runtime_flags);
8501 goto next;
8502 }
8503
8504 em->start = cur_offset;
8505 em->orig_start = cur_offset;
8506 em->len = ins.offset;
8507 em->block_start = ins.objectid;
8508 em->block_len = ins.offset;
b4939680 8509 em->orig_block_len = ins.offset;
cc95bef6 8510 em->ram_bytes = ins.offset;
5dc562c5
JB
8511 em->bdev = root->fs_info->fs_devices->latest_bdev;
8512 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8513 em->generation = trans->transid;
8514
8515 while (1) {
8516 write_lock(&em_tree->lock);
09a2a8f9 8517 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8518 write_unlock(&em_tree->lock);
8519 if (ret != -EEXIST)
8520 break;
8521 btrfs_drop_extent_cache(inode, cur_offset,
8522 cur_offset + ins.offset - 1,
8523 0);
8524 }
8525 free_extent_map(em);
8526next:
d899e052
YZ
8527 num_bytes -= ins.offset;
8528 cur_offset += ins.offset;
efa56464 8529 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8530
0c4d2d95 8531 inode_inc_iversion(inode);
d899e052 8532 inode->i_ctime = CURRENT_TIME;
6cbff00f 8533 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8534 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8535 (actual_len > inode->i_size) &&
8536 (cur_offset > inode->i_size)) {
d1ea6a61 8537 if (cur_offset > actual_len)
55a61d1d 8538 i_size = actual_len;
d1ea6a61 8539 else
55a61d1d
JB
8540 i_size = cur_offset;
8541 i_size_write(inode, i_size);
8542 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8543 }
8544
d899e052 8545 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8546
8547 if (ret) {
8548 btrfs_abort_transaction(trans, root, ret);
8549 if (own_trans)
8550 btrfs_end_transaction(trans, root);
8551 break;
8552 }
d899e052 8553
0af3d00b
JB
8554 if (own_trans)
8555 btrfs_end_transaction(trans, root);
5a303d5d 8556 }
d899e052
YZ
8557 return ret;
8558}
8559
0af3d00b
JB
8560int btrfs_prealloc_file_range(struct inode *inode, int mode,
8561 u64 start, u64 num_bytes, u64 min_size,
8562 loff_t actual_len, u64 *alloc_hint)
8563{
8564 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8565 min_size, actual_len, alloc_hint,
8566 NULL);
8567}
8568
8569int btrfs_prealloc_file_range_trans(struct inode *inode,
8570 struct btrfs_trans_handle *trans, int mode,
8571 u64 start, u64 num_bytes, u64 min_size,
8572 loff_t actual_len, u64 *alloc_hint)
8573{
8574 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8575 min_size, actual_len, alloc_hint, trans);
8576}
8577
e6dcd2dc
CM
8578static int btrfs_set_page_dirty(struct page *page)
8579{
e6dcd2dc
CM
8580 return __set_page_dirty_nobuffers(page);
8581}
8582
10556cb2 8583static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8584{
b83cc969 8585 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8586 umode_t mode = inode->i_mode;
b83cc969 8587
cb6db4e5
JM
8588 if (mask & MAY_WRITE &&
8589 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8590 if (btrfs_root_readonly(root))
8591 return -EROFS;
8592 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8593 return -EACCES;
8594 }
2830ba7f 8595 return generic_permission(inode, mask);
fdebe2bd 8596}
39279cc3 8597
6e1d5dcc 8598static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 8599 .getattr = btrfs_getattr,
39279cc3
CM
8600 .lookup = btrfs_lookup,
8601 .create = btrfs_create,
8602 .unlink = btrfs_unlink,
8603 .link = btrfs_link,
8604 .mkdir = btrfs_mkdir,
8605 .rmdir = btrfs_rmdir,
8606 .rename = btrfs_rename,
8607 .symlink = btrfs_symlink,
8608 .setattr = btrfs_setattr,
618e21d5 8609 .mknod = btrfs_mknod,
95819c05
CH
8610 .setxattr = btrfs_setxattr,
8611 .getxattr = btrfs_getxattr,
5103e947 8612 .listxattr = btrfs_listxattr,
95819c05 8613 .removexattr = btrfs_removexattr,
fdebe2bd 8614 .permission = btrfs_permission,
4e34e719 8615 .get_acl = btrfs_get_acl,
93fd63c2 8616 .update_time = btrfs_update_time,
39279cc3 8617};
6e1d5dcc 8618static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 8619 .lookup = btrfs_lookup,
fdebe2bd 8620 .permission = btrfs_permission,
4e34e719 8621 .get_acl = btrfs_get_acl,
93fd63c2 8622 .update_time = btrfs_update_time,
39279cc3 8623};
76dda93c 8624
828c0950 8625static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
8626 .llseek = generic_file_llseek,
8627 .read = generic_read_dir,
9cdda8d3 8628 .iterate = btrfs_real_readdir,
34287aa3 8629 .unlocked_ioctl = btrfs_ioctl,
39279cc3 8630#ifdef CONFIG_COMPAT
34287aa3 8631 .compat_ioctl = btrfs_ioctl,
39279cc3 8632#endif
6bf13c0c 8633 .release = btrfs_release_file,
e02119d5 8634 .fsync = btrfs_sync_file,
39279cc3
CM
8635};
8636
d1310b2e 8637static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 8638 .fill_delalloc = run_delalloc_range,
065631f6 8639 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8640 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8641 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8642 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8643 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8644 .set_bit_hook = btrfs_set_bit_hook,
8645 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8646 .merge_extent_hook = btrfs_merge_extent_hook,
8647 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8648};
8649
35054394
CM
8650/*
8651 * btrfs doesn't support the bmap operation because swapfiles
8652 * use bmap to make a mapping of extents in the file. They assume
8653 * these extents won't change over the life of the file and they
8654 * use the bmap result to do IO directly to the drive.
8655 *
8656 * the btrfs bmap call would return logical addresses that aren't
8657 * suitable for IO and they also will change frequently as COW
8658 * operations happen. So, swapfile + btrfs == corruption.
8659 *
8660 * For now we're avoiding this by dropping bmap.
8661 */
7f09410b 8662static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8663 .readpage = btrfs_readpage,
8664 .writepage = btrfs_writepage,
b293f02e 8665 .writepages = btrfs_writepages,
3ab2fb5a 8666 .readpages = btrfs_readpages,
16432985 8667 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8668 .invalidatepage = btrfs_invalidatepage,
8669 .releasepage = btrfs_releasepage,
e6dcd2dc 8670 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8671 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8672};
8673
7f09410b 8674static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8675 .readpage = btrfs_readpage,
8676 .writepage = btrfs_writepage,
2bf5a725
CM
8677 .invalidatepage = btrfs_invalidatepage,
8678 .releasepage = btrfs_releasepage,
39279cc3
CM
8679};
8680
6e1d5dcc 8681static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8682 .getattr = btrfs_getattr,
8683 .setattr = btrfs_setattr,
95819c05
CH
8684 .setxattr = btrfs_setxattr,
8685 .getxattr = btrfs_getxattr,
5103e947 8686 .listxattr = btrfs_listxattr,
95819c05 8687 .removexattr = btrfs_removexattr,
fdebe2bd 8688 .permission = btrfs_permission,
1506fcc8 8689 .fiemap = btrfs_fiemap,
4e34e719 8690 .get_acl = btrfs_get_acl,
e41f941a 8691 .update_time = btrfs_update_time,
39279cc3 8692};
6e1d5dcc 8693static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8694 .getattr = btrfs_getattr,
8695 .setattr = btrfs_setattr,
fdebe2bd 8696 .permission = btrfs_permission,
95819c05
CH
8697 .setxattr = btrfs_setxattr,
8698 .getxattr = btrfs_getxattr,
33268eaf 8699 .listxattr = btrfs_listxattr,
95819c05 8700 .removexattr = btrfs_removexattr,
4e34e719 8701 .get_acl = btrfs_get_acl,
e41f941a 8702 .update_time = btrfs_update_time,
618e21d5 8703};
6e1d5dcc 8704static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8705 .readlink = generic_readlink,
8706 .follow_link = page_follow_link_light,
8707 .put_link = page_put_link,
f209561a 8708 .getattr = btrfs_getattr,
22c44fe6 8709 .setattr = btrfs_setattr,
fdebe2bd 8710 .permission = btrfs_permission,
0279b4cd
JO
8711 .setxattr = btrfs_setxattr,
8712 .getxattr = btrfs_getxattr,
8713 .listxattr = btrfs_listxattr,
8714 .removexattr = btrfs_removexattr,
4e34e719 8715 .get_acl = btrfs_get_acl,
e41f941a 8716 .update_time = btrfs_update_time,
39279cc3 8717};
76dda93c 8718
82d339d9 8719const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8720 .d_delete = btrfs_dentry_delete,
b4aff1f8 8721 .d_release = btrfs_dentry_release,
76dda93c 8722};