btrfs: delayed_ref: Add new function to record reserved space into delayed ref
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
6e1d5dcc
AD
69static const struct inode_operations btrfs_dir_inode_operations;
70static const struct inode_operations btrfs_symlink_inode_operations;
71static const struct inode_operations btrfs_dir_ro_inode_operations;
72static const struct inode_operations btrfs_special_inode_operations;
73static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
74static const struct address_space_operations btrfs_aops;
75static const struct address_space_operations btrfs_symlink_aops;
828c0950 76static const struct file_operations btrfs_dir_file_operations;
d1310b2e 77static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
78
79static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 80static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
81struct kmem_cache *btrfs_trans_handle_cachep;
82struct kmem_cache *btrfs_transaction_cachep;
39279cc3 83struct kmem_cache *btrfs_path_cachep;
dc89e982 84struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
85
86#define S_SHIFT 12
87static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
95};
96
3972f260 97static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 98static int btrfs_truncate(struct inode *inode);
5fd02043 99static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
100static noinline int cow_file_range(struct inode *inode,
101 struct page *locked_page,
102 u64 start, u64 end, int *page_started,
103 unsigned long *nr_written, int unlock);
70c8a91c
JB
104static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 u64 len, u64 orig_start,
106 u64 block_start, u64 block_len,
cc95bef6
JB
107 u64 orig_block_len, u64 ram_bytes,
108 int type);
7b128766 109
48a3b636 110static int btrfs_dirty_inode(struct inode *inode);
7b128766 111
6a3891c5
JB
112#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113void btrfs_test_inode_set_ops(struct inode *inode)
114{
115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
116}
117#endif
118
f34f57a3 119static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
120 struct inode *inode, struct inode *dir,
121 const struct qstr *qstr)
0279b4cd
JO
122{
123 int err;
124
f34f57a3 125 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 126 if (!err)
2a7dba39 127 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
128 return err;
129}
130
c8b97818
CM
131/*
132 * this does all the hard work for inserting an inline extent into
133 * the btree. The caller should have done a btrfs_drop_extents so that
134 * no overlapping inline items exist in the btree
135 */
40f76580 136static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 137 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
138 struct btrfs_root *root, struct inode *inode,
139 u64 start, size_t size, size_t compressed_size,
fe3f566c 140 int compress_type,
c8b97818
CM
141 struct page **compressed_pages)
142{
c8b97818
CM
143 struct extent_buffer *leaf;
144 struct page *page = NULL;
145 char *kaddr;
146 unsigned long ptr;
147 struct btrfs_file_extent_item *ei;
148 int err = 0;
149 int ret;
150 size_t cur_size = size;
c8b97818 151 unsigned long offset;
c8b97818 152
fe3f566c 153 if (compressed_size && compressed_pages)
c8b97818 154 cur_size = compressed_size;
c8b97818 155
1acae57b 156 inode_add_bytes(inode, size);
c8b97818 157
1acae57b
FDBM
158 if (!extent_inserted) {
159 struct btrfs_key key;
160 size_t datasize;
c8b97818 161
1acae57b
FDBM
162 key.objectid = btrfs_ino(inode);
163 key.offset = start;
962a298f 164 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 165
1acae57b
FDBM
166 datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 path->leave_spinning = 1;
168 ret = btrfs_insert_empty_item(trans, root, path, &key,
169 datasize);
170 if (ret) {
171 err = ret;
172 goto fail;
173 }
c8b97818
CM
174 }
175 leaf = path->nodes[0];
176 ei = btrfs_item_ptr(leaf, path->slots[0],
177 struct btrfs_file_extent_item);
178 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 btrfs_set_file_extent_encryption(leaf, ei, 0);
181 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 ptr = btrfs_file_extent_inline_start(ei);
184
261507a0 185 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
186 struct page *cpage;
187 int i = 0;
d397712b 188 while (compressed_size > 0) {
c8b97818 189 cpage = compressed_pages[i];
5b050f04 190 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
191 PAGE_CACHE_SIZE);
192
7ac687d9 193 kaddr = kmap_atomic(cpage);
c8b97818 194 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 195 kunmap_atomic(kaddr);
c8b97818
CM
196
197 i++;
198 ptr += cur_size;
199 compressed_size -= cur_size;
200 }
201 btrfs_set_file_extent_compression(leaf, ei,
261507a0 202 compress_type);
c8b97818
CM
203 } else {
204 page = find_get_page(inode->i_mapping,
205 start >> PAGE_CACHE_SHIFT);
206 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 207 kaddr = kmap_atomic(page);
c8b97818
CM
208 offset = start & (PAGE_CACHE_SIZE - 1);
209 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 210 kunmap_atomic(kaddr);
c8b97818
CM
211 page_cache_release(page);
212 }
213 btrfs_mark_buffer_dirty(leaf);
1acae57b 214 btrfs_release_path(path);
c8b97818 215
c2167754
YZ
216 /*
217 * we're an inline extent, so nobody can
218 * extend the file past i_size without locking
219 * a page we already have locked.
220 *
221 * We must do any isize and inode updates
222 * before we unlock the pages. Otherwise we
223 * could end up racing with unlink.
224 */
c8b97818 225 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 226 ret = btrfs_update_inode(trans, root, inode);
c2167754 227
79787eaa 228 return ret;
c8b97818 229fail:
c8b97818
CM
230 return err;
231}
232
233
234/*
235 * conditionally insert an inline extent into the file. This
236 * does the checks required to make sure the data is small enough
237 * to fit as an inline extent.
238 */
00361589
JB
239static noinline int cow_file_range_inline(struct btrfs_root *root,
240 struct inode *inode, u64 start,
241 u64 end, size_t compressed_size,
242 int compress_type,
243 struct page **compressed_pages)
c8b97818 244{
00361589 245 struct btrfs_trans_handle *trans;
c8b97818
CM
246 u64 isize = i_size_read(inode);
247 u64 actual_end = min(end + 1, isize);
248 u64 inline_len = actual_end - start;
fda2832f 249 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
250 u64 data_len = inline_len;
251 int ret;
1acae57b
FDBM
252 struct btrfs_path *path;
253 int extent_inserted = 0;
254 u32 extent_item_size;
c8b97818
CM
255
256 if (compressed_size)
257 data_len = compressed_size;
258
259 if (start > 0 ||
354877be
WS
260 actual_end > PAGE_CACHE_SIZE ||
261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
262 (!compressed_size &&
263 (actual_end & (root->sectorsize - 1)) == 0) ||
264 end + 1 < isize ||
265 data_len > root->fs_info->max_inline) {
266 return 1;
267 }
268
1acae57b
FDBM
269 path = btrfs_alloc_path();
270 if (!path)
271 return -ENOMEM;
272
00361589 273 trans = btrfs_join_transaction(root);
1acae57b
FDBM
274 if (IS_ERR(trans)) {
275 btrfs_free_path(path);
00361589 276 return PTR_ERR(trans);
1acae57b 277 }
00361589
JB
278 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
279
1acae57b
FDBM
280 if (compressed_size && compressed_pages)
281 extent_item_size = btrfs_file_extent_calc_inline_size(
282 compressed_size);
283 else
284 extent_item_size = btrfs_file_extent_calc_inline_size(
285 inline_len);
286
287 ret = __btrfs_drop_extents(trans, root, inode, path,
288 start, aligned_end, NULL,
289 1, 1, extent_item_size, &extent_inserted);
00361589
JB
290 if (ret) {
291 btrfs_abort_transaction(trans, root, ret);
292 goto out;
293 }
c8b97818
CM
294
295 if (isize > actual_end)
296 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
297 ret = insert_inline_extent(trans, path, extent_inserted,
298 root, inode, start,
c8b97818 299 inline_len, compressed_size,
fe3f566c 300 compress_type, compressed_pages);
2adcac1a 301 if (ret && ret != -ENOSPC) {
79787eaa 302 btrfs_abort_transaction(trans, root, ret);
00361589 303 goto out;
2adcac1a 304 } else if (ret == -ENOSPC) {
00361589
JB
305 ret = 1;
306 goto out;
79787eaa 307 }
2adcac1a 308
bdc20e67 309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 310 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 312out:
1acae57b 313 btrfs_free_path(path);
00361589
JB
314 btrfs_end_transaction(trans, root);
315 return ret;
c8b97818
CM
316}
317
771ed689
CM
318struct async_extent {
319 u64 start;
320 u64 ram_size;
321 u64 compressed_size;
322 struct page **pages;
323 unsigned long nr_pages;
261507a0 324 int compress_type;
771ed689
CM
325 struct list_head list;
326};
327
328struct async_cow {
329 struct inode *inode;
330 struct btrfs_root *root;
331 struct page *locked_page;
332 u64 start;
333 u64 end;
334 struct list_head extents;
335 struct btrfs_work work;
336};
337
338static noinline int add_async_extent(struct async_cow *cow,
339 u64 start, u64 ram_size,
340 u64 compressed_size,
341 struct page **pages,
261507a0
LZ
342 unsigned long nr_pages,
343 int compress_type)
771ed689
CM
344{
345 struct async_extent *async_extent;
346
347 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 348 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
349 async_extent->start = start;
350 async_extent->ram_size = ram_size;
351 async_extent->compressed_size = compressed_size;
352 async_extent->pages = pages;
353 async_extent->nr_pages = nr_pages;
261507a0 354 async_extent->compress_type = compress_type;
771ed689
CM
355 list_add_tail(&async_extent->list, &cow->extents);
356 return 0;
357}
358
f79707b0
WS
359static inline int inode_need_compress(struct inode *inode)
360{
361 struct btrfs_root *root = BTRFS_I(inode)->root;
362
363 /* force compress */
364 if (btrfs_test_opt(root, FORCE_COMPRESS))
365 return 1;
366 /* bad compression ratios */
367 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
368 return 0;
369 if (btrfs_test_opt(root, COMPRESS) ||
370 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
371 BTRFS_I(inode)->force_compress)
372 return 1;
373 return 0;
374}
375
d352ac68 376/*
771ed689
CM
377 * we create compressed extents in two phases. The first
378 * phase compresses a range of pages that have already been
379 * locked (both pages and state bits are locked).
c8b97818 380 *
771ed689
CM
381 * This is done inside an ordered work queue, and the compression
382 * is spread across many cpus. The actual IO submission is step
383 * two, and the ordered work queue takes care of making sure that
384 * happens in the same order things were put onto the queue by
385 * writepages and friends.
c8b97818 386 *
771ed689
CM
387 * If this code finds it can't get good compression, it puts an
388 * entry onto the work queue to write the uncompressed bytes. This
389 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
390 * are written in the same order that the flusher thread sent them
391 * down.
d352ac68 392 */
c44f649e 393static noinline void compress_file_range(struct inode *inode,
771ed689
CM
394 struct page *locked_page,
395 u64 start, u64 end,
396 struct async_cow *async_cow,
397 int *num_added)
b888db2b
CM
398{
399 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 400 u64 num_bytes;
db94535d 401 u64 blocksize = root->sectorsize;
c8b97818 402 u64 actual_end;
42dc7bab 403 u64 isize = i_size_read(inode);
e6dcd2dc 404 int ret = 0;
c8b97818
CM
405 struct page **pages = NULL;
406 unsigned long nr_pages;
407 unsigned long nr_pages_ret = 0;
408 unsigned long total_compressed = 0;
409 unsigned long total_in = 0;
410 unsigned long max_compressed = 128 * 1024;
771ed689 411 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
412 int i;
413 int will_compress;
261507a0 414 int compress_type = root->fs_info->compress_type;
4adaa611 415 int redirty = 0;
b888db2b 416
4cb13e5d
LB
417 /* if this is a small write inside eof, kick off a defrag */
418 if ((end - start + 1) < 16 * 1024 &&
419 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
420 btrfs_add_inode_defrag(NULL, inode);
421
42dc7bab 422 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
423again:
424 will_compress = 0;
425 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
426 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 427
f03d9301
CM
428 /*
429 * we don't want to send crud past the end of i_size through
430 * compression, that's just a waste of CPU time. So, if the
431 * end of the file is before the start of our current
432 * requested range of bytes, we bail out to the uncompressed
433 * cleanup code that can deal with all of this.
434 *
435 * It isn't really the fastest way to fix things, but this is a
436 * very uncommon corner.
437 */
438 if (actual_end <= start)
439 goto cleanup_and_bail_uncompressed;
440
c8b97818
CM
441 total_compressed = actual_end - start;
442
4bcbb332
SW
443 /*
444 * skip compression for a small file range(<=blocksize) that
445 * isn't an inline extent, since it dosen't save disk space at all.
446 */
447 if (total_compressed <= blocksize &&
448 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
449 goto cleanup_and_bail_uncompressed;
450
c8b97818
CM
451 /* we want to make sure that amount of ram required to uncompress
452 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
453 * of a compressed extent to 128k. This is a crucial number
454 * because it also controls how easily we can spread reads across
455 * cpus for decompression.
456 *
457 * We also want to make sure the amount of IO required to do
458 * a random read is reasonably small, so we limit the size of
459 * a compressed extent to 128k.
c8b97818
CM
460 */
461 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 462 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 463 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
464 total_in = 0;
465 ret = 0;
db94535d 466
771ed689
CM
467 /*
468 * we do compression for mount -o compress and when the
469 * inode has not been flagged as nocompress. This flag can
470 * change at any time if we discover bad compression ratios.
c8b97818 471 */
f79707b0 472 if (inode_need_compress(inode)) {
c8b97818 473 WARN_ON(pages);
31e818fe 474 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
475 if (!pages) {
476 /* just bail out to the uncompressed code */
477 goto cont;
478 }
c8b97818 479
261507a0
LZ
480 if (BTRFS_I(inode)->force_compress)
481 compress_type = BTRFS_I(inode)->force_compress;
482
4adaa611
CM
483 /*
484 * we need to call clear_page_dirty_for_io on each
485 * page in the range. Otherwise applications with the file
486 * mmap'd can wander in and change the page contents while
487 * we are compressing them.
488 *
489 * If the compression fails for any reason, we set the pages
490 * dirty again later on.
491 */
492 extent_range_clear_dirty_for_io(inode, start, end);
493 redirty = 1;
261507a0
LZ
494 ret = btrfs_compress_pages(compress_type,
495 inode->i_mapping, start,
496 total_compressed, pages,
497 nr_pages, &nr_pages_ret,
498 &total_in,
499 &total_compressed,
500 max_compressed);
c8b97818
CM
501
502 if (!ret) {
503 unsigned long offset = total_compressed &
504 (PAGE_CACHE_SIZE - 1);
505 struct page *page = pages[nr_pages_ret - 1];
506 char *kaddr;
507
508 /* zero the tail end of the last page, we might be
509 * sending it down to disk
510 */
511 if (offset) {
7ac687d9 512 kaddr = kmap_atomic(page);
c8b97818
CM
513 memset(kaddr + offset, 0,
514 PAGE_CACHE_SIZE - offset);
7ac687d9 515 kunmap_atomic(kaddr);
c8b97818
CM
516 }
517 will_compress = 1;
518 }
519 }
560f7d75 520cont:
c8b97818
CM
521 if (start == 0) {
522 /* lets try to make an inline extent */
771ed689 523 if (ret || total_in < (actual_end - start)) {
c8b97818 524 /* we didn't compress the entire range, try
771ed689 525 * to make an uncompressed inline extent.
c8b97818 526 */
00361589
JB
527 ret = cow_file_range_inline(root, inode, start, end,
528 0, 0, NULL);
c8b97818 529 } else {
771ed689 530 /* try making a compressed inline extent */
00361589 531 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
532 total_compressed,
533 compress_type, pages);
c8b97818 534 }
79787eaa 535 if (ret <= 0) {
151a41bc
JB
536 unsigned long clear_flags = EXTENT_DELALLOC |
537 EXTENT_DEFRAG;
e6eb4314
FM
538 unsigned long page_error_op;
539
151a41bc 540 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 541 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 542
771ed689 543 /*
79787eaa
JM
544 * inline extent creation worked or returned error,
545 * we don't need to create any more async work items.
546 * Unlock and free up our temp pages.
771ed689 547 */
c2790a2e 548 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 549 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
550 PAGE_CLEAR_DIRTY |
551 PAGE_SET_WRITEBACK |
e6eb4314 552 page_error_op |
c2790a2e 553 PAGE_END_WRITEBACK);
c8b97818
CM
554 goto free_pages_out;
555 }
556 }
557
558 if (will_compress) {
559 /*
560 * we aren't doing an inline extent round the compressed size
561 * up to a block size boundary so the allocator does sane
562 * things
563 */
fda2832f 564 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
565
566 /*
567 * one last check to make sure the compression is really a
568 * win, compare the page count read with the blocks on disk
569 */
fda2832f 570 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
571 if (total_compressed >= total_in) {
572 will_compress = 0;
573 } else {
c8b97818
CM
574 num_bytes = total_in;
575 }
576 }
577 if (!will_compress && pages) {
578 /*
579 * the compression code ran but failed to make things smaller,
580 * free any pages it allocated and our page pointer array
581 */
582 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 583 WARN_ON(pages[i]->mapping);
c8b97818
CM
584 page_cache_release(pages[i]);
585 }
586 kfree(pages);
587 pages = NULL;
588 total_compressed = 0;
589 nr_pages_ret = 0;
590
591 /* flag the file so we don't compress in the future */
1e701a32
CM
592 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
593 !(BTRFS_I(inode)->force_compress)) {
a555f810 594 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 595 }
c8b97818 596 }
771ed689
CM
597 if (will_compress) {
598 *num_added += 1;
c8b97818 599
771ed689
CM
600 /* the async work queues will take care of doing actual
601 * allocation on disk for these compressed pages,
602 * and will submit them to the elevator.
603 */
604 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
605 total_compressed, pages, nr_pages_ret,
606 compress_type);
179e29e4 607
24ae6365 608 if (start + num_bytes < end) {
771ed689
CM
609 start += num_bytes;
610 pages = NULL;
611 cond_resched();
612 goto again;
613 }
614 } else {
f03d9301 615cleanup_and_bail_uncompressed:
771ed689
CM
616 /*
617 * No compression, but we still need to write the pages in
618 * the file we've been given so far. redirty the locked
619 * page if it corresponds to our extent and set things up
620 * for the async work queue to run cow_file_range to do
621 * the normal delalloc dance
622 */
623 if (page_offset(locked_page) >= start &&
624 page_offset(locked_page) <= end) {
625 __set_page_dirty_nobuffers(locked_page);
626 /* unlocked later on in the async handlers */
627 }
4adaa611
CM
628 if (redirty)
629 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
630 add_async_extent(async_cow, start, end - start + 1,
631 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
632 *num_added += 1;
633 }
3b951516 634
c44f649e 635 return;
771ed689
CM
636
637free_pages_out:
638 for (i = 0; i < nr_pages_ret; i++) {
639 WARN_ON(pages[i]->mapping);
640 page_cache_release(pages[i]);
641 }
d397712b 642 kfree(pages);
771ed689 643}
771ed689 644
40ae837b
FM
645static void free_async_extent_pages(struct async_extent *async_extent)
646{
647 int i;
648
649 if (!async_extent->pages)
650 return;
651
652 for (i = 0; i < async_extent->nr_pages; i++) {
653 WARN_ON(async_extent->pages[i]->mapping);
654 page_cache_release(async_extent->pages[i]);
655 }
656 kfree(async_extent->pages);
657 async_extent->nr_pages = 0;
658 async_extent->pages = NULL;
771ed689
CM
659}
660
661/*
662 * phase two of compressed writeback. This is the ordered portion
663 * of the code, which only gets called in the order the work was
664 * queued. We walk all the async extents created by compress_file_range
665 * and send them down to the disk.
666 */
dec8f175 667static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
668 struct async_cow *async_cow)
669{
670 struct async_extent *async_extent;
671 u64 alloc_hint = 0;
771ed689
CM
672 struct btrfs_key ins;
673 struct extent_map *em;
674 struct btrfs_root *root = BTRFS_I(inode)->root;
675 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
676 struct extent_io_tree *io_tree;
f5a84ee3 677 int ret = 0;
771ed689 678
3e04e7f1 679again:
d397712b 680 while (!list_empty(&async_cow->extents)) {
771ed689
CM
681 async_extent = list_entry(async_cow->extents.next,
682 struct async_extent, list);
683 list_del(&async_extent->list);
c8b97818 684
771ed689
CM
685 io_tree = &BTRFS_I(inode)->io_tree;
686
f5a84ee3 687retry:
771ed689
CM
688 /* did the compression code fall back to uncompressed IO? */
689 if (!async_extent->pages) {
690 int page_started = 0;
691 unsigned long nr_written = 0;
692
693 lock_extent(io_tree, async_extent->start,
2ac55d41 694 async_extent->start +
d0082371 695 async_extent->ram_size - 1);
771ed689
CM
696
697 /* allocate blocks */
f5a84ee3
JB
698 ret = cow_file_range(inode, async_cow->locked_page,
699 async_extent->start,
700 async_extent->start +
701 async_extent->ram_size - 1,
702 &page_started, &nr_written, 0);
771ed689 703
79787eaa
JM
704 /* JDM XXX */
705
771ed689
CM
706 /*
707 * if page_started, cow_file_range inserted an
708 * inline extent and took care of all the unlocking
709 * and IO for us. Otherwise, we need to submit
710 * all those pages down to the drive.
711 */
f5a84ee3 712 if (!page_started && !ret)
771ed689
CM
713 extent_write_locked_range(io_tree,
714 inode, async_extent->start,
d397712b 715 async_extent->start +
771ed689
CM
716 async_extent->ram_size - 1,
717 btrfs_get_extent,
718 WB_SYNC_ALL);
3e04e7f1
JB
719 else if (ret)
720 unlock_page(async_cow->locked_page);
771ed689
CM
721 kfree(async_extent);
722 cond_resched();
723 continue;
724 }
725
726 lock_extent(io_tree, async_extent->start,
d0082371 727 async_extent->start + async_extent->ram_size - 1);
771ed689 728
00361589 729 ret = btrfs_reserve_extent(root,
771ed689
CM
730 async_extent->compressed_size,
731 async_extent->compressed_size,
e570fd27 732 0, alloc_hint, &ins, 1, 1);
f5a84ee3 733 if (ret) {
40ae837b 734 free_async_extent_pages(async_extent);
3e04e7f1 735
fdf8e2ea
JB
736 if (ret == -ENOSPC) {
737 unlock_extent(io_tree, async_extent->start,
738 async_extent->start +
739 async_extent->ram_size - 1);
ce62003f
LB
740
741 /*
742 * we need to redirty the pages if we decide to
743 * fallback to uncompressed IO, otherwise we
744 * will not submit these pages down to lower
745 * layers.
746 */
747 extent_range_redirty_for_io(inode,
748 async_extent->start,
749 async_extent->start +
750 async_extent->ram_size - 1);
751
79787eaa 752 goto retry;
fdf8e2ea 753 }
3e04e7f1 754 goto out_free;
f5a84ee3 755 }
c2167754
YZ
756 /*
757 * here we're doing allocation and writeback of the
758 * compressed pages
759 */
760 btrfs_drop_extent_cache(inode, async_extent->start,
761 async_extent->start +
762 async_extent->ram_size - 1, 0);
763
172ddd60 764 em = alloc_extent_map();
b9aa55be
LB
765 if (!em) {
766 ret = -ENOMEM;
3e04e7f1 767 goto out_free_reserve;
b9aa55be 768 }
771ed689
CM
769 em->start = async_extent->start;
770 em->len = async_extent->ram_size;
445a6944 771 em->orig_start = em->start;
2ab28f32
JB
772 em->mod_start = em->start;
773 em->mod_len = em->len;
c8b97818 774
771ed689
CM
775 em->block_start = ins.objectid;
776 em->block_len = ins.offset;
b4939680 777 em->orig_block_len = ins.offset;
cc95bef6 778 em->ram_bytes = async_extent->ram_size;
771ed689 779 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 780 em->compress_type = async_extent->compress_type;
771ed689
CM
781 set_bit(EXTENT_FLAG_PINNED, &em->flags);
782 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 783 em->generation = -1;
771ed689 784
d397712b 785 while (1) {
890871be 786 write_lock(&em_tree->lock);
09a2a8f9 787 ret = add_extent_mapping(em_tree, em, 1);
890871be 788 write_unlock(&em_tree->lock);
771ed689
CM
789 if (ret != -EEXIST) {
790 free_extent_map(em);
791 break;
792 }
793 btrfs_drop_extent_cache(inode, async_extent->start,
794 async_extent->start +
795 async_extent->ram_size - 1, 0);
796 }
797
3e04e7f1
JB
798 if (ret)
799 goto out_free_reserve;
800
261507a0
LZ
801 ret = btrfs_add_ordered_extent_compress(inode,
802 async_extent->start,
803 ins.objectid,
804 async_extent->ram_size,
805 ins.offset,
806 BTRFS_ORDERED_COMPRESSED,
807 async_extent->compress_type);
d9f85963
FM
808 if (ret) {
809 btrfs_drop_extent_cache(inode, async_extent->start,
810 async_extent->start +
811 async_extent->ram_size - 1, 0);
3e04e7f1 812 goto out_free_reserve;
d9f85963 813 }
771ed689 814
771ed689
CM
815 /*
816 * clear dirty, set writeback and unlock the pages.
817 */
c2790a2e 818 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
819 async_extent->start +
820 async_extent->ram_size - 1,
151a41bc
JB
821 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
822 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 823 PAGE_SET_WRITEBACK);
771ed689 824 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
825 async_extent->start,
826 async_extent->ram_size,
827 ins.objectid,
828 ins.offset, async_extent->pages,
829 async_extent->nr_pages);
fce2a4e6
FM
830 if (ret) {
831 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
832 struct page *p = async_extent->pages[0];
833 const u64 start = async_extent->start;
834 const u64 end = start + async_extent->ram_size - 1;
835
836 p->mapping = inode->i_mapping;
837 tree->ops->writepage_end_io_hook(p, start, end,
838 NULL, 0);
839 p->mapping = NULL;
840 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
841 PAGE_END_WRITEBACK |
842 PAGE_SET_ERROR);
40ae837b 843 free_async_extent_pages(async_extent);
fce2a4e6 844 }
771ed689
CM
845 alloc_hint = ins.objectid + ins.offset;
846 kfree(async_extent);
847 cond_resched();
848 }
dec8f175 849 return;
3e04e7f1 850out_free_reserve:
e570fd27 851 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 852out_free:
c2790a2e 853 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
854 async_extent->start +
855 async_extent->ram_size - 1,
c2790a2e 856 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
857 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
858 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
859 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
860 PAGE_SET_ERROR);
40ae837b 861 free_async_extent_pages(async_extent);
79787eaa 862 kfree(async_extent);
3e04e7f1 863 goto again;
771ed689
CM
864}
865
4b46fce2
JB
866static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
867 u64 num_bytes)
868{
869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
870 struct extent_map *em;
871 u64 alloc_hint = 0;
872
873 read_lock(&em_tree->lock);
874 em = search_extent_mapping(em_tree, start, num_bytes);
875 if (em) {
876 /*
877 * if block start isn't an actual block number then find the
878 * first block in this inode and use that as a hint. If that
879 * block is also bogus then just don't worry about it.
880 */
881 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
882 free_extent_map(em);
883 em = search_extent_mapping(em_tree, 0, 0);
884 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
885 alloc_hint = em->block_start;
886 if (em)
887 free_extent_map(em);
888 } else {
889 alloc_hint = em->block_start;
890 free_extent_map(em);
891 }
892 }
893 read_unlock(&em_tree->lock);
894
895 return alloc_hint;
896}
897
771ed689
CM
898/*
899 * when extent_io.c finds a delayed allocation range in the file,
900 * the call backs end up in this code. The basic idea is to
901 * allocate extents on disk for the range, and create ordered data structs
902 * in ram to track those extents.
903 *
904 * locked_page is the page that writepage had locked already. We use
905 * it to make sure we don't do extra locks or unlocks.
906 *
907 * *page_started is set to one if we unlock locked_page and do everything
908 * required to start IO on it. It may be clean and already done with
909 * IO when we return.
910 */
00361589
JB
911static noinline int cow_file_range(struct inode *inode,
912 struct page *locked_page,
913 u64 start, u64 end, int *page_started,
914 unsigned long *nr_written,
915 int unlock)
771ed689 916{
00361589 917 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
918 u64 alloc_hint = 0;
919 u64 num_bytes;
920 unsigned long ram_size;
921 u64 disk_num_bytes;
922 u64 cur_alloc_size;
923 u64 blocksize = root->sectorsize;
771ed689
CM
924 struct btrfs_key ins;
925 struct extent_map *em;
926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
927 int ret = 0;
928
02ecd2c2
JB
929 if (btrfs_is_free_space_inode(inode)) {
930 WARN_ON_ONCE(1);
29bce2f3
JB
931 ret = -EINVAL;
932 goto out_unlock;
02ecd2c2 933 }
771ed689 934
fda2832f 935 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
936 num_bytes = max(blocksize, num_bytes);
937 disk_num_bytes = num_bytes;
771ed689 938
4cb5300b 939 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
940 if (num_bytes < 64 * 1024 &&
941 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 942 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 943
771ed689
CM
944 if (start == 0) {
945 /* lets try to make an inline extent */
00361589
JB
946 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
947 NULL);
771ed689 948 if (ret == 0) {
c2790a2e
JB
949 extent_clear_unlock_delalloc(inode, start, end, NULL,
950 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 951 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
952 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
953 PAGE_END_WRITEBACK);
c2167754 954
771ed689
CM
955 *nr_written = *nr_written +
956 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
957 *page_started = 1;
771ed689 958 goto out;
79787eaa 959 } else if (ret < 0) {
79787eaa 960 goto out_unlock;
771ed689
CM
961 }
962 }
963
964 BUG_ON(disk_num_bytes >
6c41761f 965 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 966
4b46fce2 967 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
968 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
969
d397712b 970 while (disk_num_bytes > 0) {
a791e35e
CM
971 unsigned long op;
972
287a0ab9 973 cur_alloc_size = disk_num_bytes;
00361589 974 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 975 root->sectorsize, 0, alloc_hint,
e570fd27 976 &ins, 1, 1);
00361589 977 if (ret < 0)
79787eaa 978 goto out_unlock;
d397712b 979
172ddd60 980 em = alloc_extent_map();
b9aa55be
LB
981 if (!em) {
982 ret = -ENOMEM;
ace68bac 983 goto out_reserve;
b9aa55be 984 }
e6dcd2dc 985 em->start = start;
445a6944 986 em->orig_start = em->start;
771ed689
CM
987 ram_size = ins.offset;
988 em->len = ins.offset;
2ab28f32
JB
989 em->mod_start = em->start;
990 em->mod_len = em->len;
c8b97818 991
e6dcd2dc 992 em->block_start = ins.objectid;
c8b97818 993 em->block_len = ins.offset;
b4939680 994 em->orig_block_len = ins.offset;
cc95bef6 995 em->ram_bytes = ram_size;
e6dcd2dc 996 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 997 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 998 em->generation = -1;
c8b97818 999
d397712b 1000 while (1) {
890871be 1001 write_lock(&em_tree->lock);
09a2a8f9 1002 ret = add_extent_mapping(em_tree, em, 1);
890871be 1003 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1004 if (ret != -EEXIST) {
1005 free_extent_map(em);
1006 break;
1007 }
1008 btrfs_drop_extent_cache(inode, start,
c8b97818 1009 start + ram_size - 1, 0);
e6dcd2dc 1010 }
ace68bac
LB
1011 if (ret)
1012 goto out_reserve;
e6dcd2dc 1013
98d20f67 1014 cur_alloc_size = ins.offset;
e6dcd2dc 1015 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1016 ram_size, cur_alloc_size, 0);
ace68bac 1017 if (ret)
d9f85963 1018 goto out_drop_extent_cache;
c8b97818 1019
17d217fe
YZ
1020 if (root->root_key.objectid ==
1021 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1022 ret = btrfs_reloc_clone_csums(inode, start,
1023 cur_alloc_size);
00361589 1024 if (ret)
d9f85963 1025 goto out_drop_extent_cache;
17d217fe
YZ
1026 }
1027
d397712b 1028 if (disk_num_bytes < cur_alloc_size)
3b951516 1029 break;
d397712b 1030
c8b97818
CM
1031 /* we're not doing compressed IO, don't unlock the first
1032 * page (which the caller expects to stay locked), don't
1033 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1034 *
1035 * Do set the Private2 bit so we know this page was properly
1036 * setup for writepage
c8b97818 1037 */
c2790a2e
JB
1038 op = unlock ? PAGE_UNLOCK : 0;
1039 op |= PAGE_SET_PRIVATE2;
a791e35e 1040
c2790a2e
JB
1041 extent_clear_unlock_delalloc(inode, start,
1042 start + ram_size - 1, locked_page,
1043 EXTENT_LOCKED | EXTENT_DELALLOC,
1044 op);
c8b97818 1045 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1046 num_bytes -= cur_alloc_size;
1047 alloc_hint = ins.objectid + ins.offset;
1048 start += cur_alloc_size;
b888db2b 1049 }
79787eaa 1050out:
be20aa9d 1051 return ret;
b7d5b0a8 1052
d9f85963
FM
1053out_drop_extent_cache:
1054 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1055out_reserve:
e570fd27 1056 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1057out_unlock:
c2790a2e 1058 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1059 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1060 EXTENT_DELALLOC | EXTENT_DEFRAG,
1061 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1062 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1063 goto out;
771ed689 1064}
c8b97818 1065
771ed689
CM
1066/*
1067 * work queue call back to started compression on a file and pages
1068 */
1069static noinline void async_cow_start(struct btrfs_work *work)
1070{
1071 struct async_cow *async_cow;
1072 int num_added = 0;
1073 async_cow = container_of(work, struct async_cow, work);
1074
1075 compress_file_range(async_cow->inode, async_cow->locked_page,
1076 async_cow->start, async_cow->end, async_cow,
1077 &num_added);
8180ef88 1078 if (num_added == 0) {
cb77fcd8 1079 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1080 async_cow->inode = NULL;
8180ef88 1081 }
771ed689
CM
1082}
1083
1084/*
1085 * work queue call back to submit previously compressed pages
1086 */
1087static noinline void async_cow_submit(struct btrfs_work *work)
1088{
1089 struct async_cow *async_cow;
1090 struct btrfs_root *root;
1091 unsigned long nr_pages;
1092
1093 async_cow = container_of(work, struct async_cow, work);
1094
1095 root = async_cow->root;
1096 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1097 PAGE_CACHE_SHIFT;
1098
ee863954
DS
1099 /*
1100 * atomic_sub_return implies a barrier for waitqueue_active
1101 */
66657b31 1102 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1103 5 * 1024 * 1024 &&
771ed689
CM
1104 waitqueue_active(&root->fs_info->async_submit_wait))
1105 wake_up(&root->fs_info->async_submit_wait);
1106
d397712b 1107 if (async_cow->inode)
771ed689 1108 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1109}
c8b97818 1110
771ed689
CM
1111static noinline void async_cow_free(struct btrfs_work *work)
1112{
1113 struct async_cow *async_cow;
1114 async_cow = container_of(work, struct async_cow, work);
8180ef88 1115 if (async_cow->inode)
cb77fcd8 1116 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1117 kfree(async_cow);
1118}
1119
1120static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1121 u64 start, u64 end, int *page_started,
1122 unsigned long *nr_written)
1123{
1124 struct async_cow *async_cow;
1125 struct btrfs_root *root = BTRFS_I(inode)->root;
1126 unsigned long nr_pages;
1127 u64 cur_end;
287082b0 1128 int limit = 10 * 1024 * 1024;
771ed689 1129
a3429ab7
CM
1130 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1131 1, 0, NULL, GFP_NOFS);
d397712b 1132 while (start < end) {
771ed689 1133 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1134 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1135 async_cow->inode = igrab(inode);
771ed689
CM
1136 async_cow->root = root;
1137 async_cow->locked_page = locked_page;
1138 async_cow->start = start;
1139
f79707b0
WS
1140 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1141 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1142 cur_end = end;
1143 else
1144 cur_end = min(end, start + 512 * 1024 - 1);
1145
1146 async_cow->end = cur_end;
1147 INIT_LIST_HEAD(&async_cow->extents);
1148
9e0af237
LB
1149 btrfs_init_work(&async_cow->work,
1150 btrfs_delalloc_helper,
1151 async_cow_start, async_cow_submit,
1152 async_cow_free);
771ed689 1153
771ed689
CM
1154 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1155 PAGE_CACHE_SHIFT;
1156 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1157
afe3d242
QW
1158 btrfs_queue_work(root->fs_info->delalloc_workers,
1159 &async_cow->work);
771ed689
CM
1160
1161 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1162 wait_event(root->fs_info->async_submit_wait,
1163 (atomic_read(&root->fs_info->async_delalloc_pages) <
1164 limit));
1165 }
1166
d397712b 1167 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1168 atomic_read(&root->fs_info->async_delalloc_pages)) {
1169 wait_event(root->fs_info->async_submit_wait,
1170 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1171 0));
1172 }
1173
1174 *nr_written += nr_pages;
1175 start = cur_end + 1;
1176 }
1177 *page_started = 1;
1178 return 0;
be20aa9d
CM
1179}
1180
d397712b 1181static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1182 u64 bytenr, u64 num_bytes)
1183{
1184 int ret;
1185 struct btrfs_ordered_sum *sums;
1186 LIST_HEAD(list);
1187
07d400a6 1188 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1189 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1190 if (ret == 0 && list_empty(&list))
1191 return 0;
1192
1193 while (!list_empty(&list)) {
1194 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1195 list_del(&sums->list);
1196 kfree(sums);
1197 }
1198 return 1;
1199}
1200
d352ac68
CM
1201/*
1202 * when nowcow writeback call back. This checks for snapshots or COW copies
1203 * of the extents that exist in the file, and COWs the file as required.
1204 *
1205 * If no cow copies or snapshots exist, we write directly to the existing
1206 * blocks on disk
1207 */
7f366cfe
CM
1208static noinline int run_delalloc_nocow(struct inode *inode,
1209 struct page *locked_page,
771ed689
CM
1210 u64 start, u64 end, int *page_started, int force,
1211 unsigned long *nr_written)
be20aa9d 1212{
be20aa9d 1213 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1214 struct btrfs_trans_handle *trans;
be20aa9d 1215 struct extent_buffer *leaf;
be20aa9d 1216 struct btrfs_path *path;
80ff3856 1217 struct btrfs_file_extent_item *fi;
be20aa9d 1218 struct btrfs_key found_key;
80ff3856
YZ
1219 u64 cow_start;
1220 u64 cur_offset;
1221 u64 extent_end;
5d4f98a2 1222 u64 extent_offset;
80ff3856
YZ
1223 u64 disk_bytenr;
1224 u64 num_bytes;
b4939680 1225 u64 disk_num_bytes;
cc95bef6 1226 u64 ram_bytes;
80ff3856 1227 int extent_type;
79787eaa 1228 int ret, err;
d899e052 1229 int type;
80ff3856
YZ
1230 int nocow;
1231 int check_prev = 1;
82d5902d 1232 bool nolock;
33345d01 1233 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1234
1235 path = btrfs_alloc_path();
17ca04af 1236 if (!path) {
c2790a2e
JB
1237 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1238 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1239 EXTENT_DO_ACCOUNTING |
1240 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1241 PAGE_CLEAR_DIRTY |
1242 PAGE_SET_WRITEBACK |
1243 PAGE_END_WRITEBACK);
d8926bb3 1244 return -ENOMEM;
17ca04af 1245 }
82d5902d 1246
83eea1f1 1247 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1248
1249 if (nolock)
7a7eaa40 1250 trans = btrfs_join_transaction_nolock(root);
82d5902d 1251 else
7a7eaa40 1252 trans = btrfs_join_transaction(root);
ff5714cc 1253
79787eaa 1254 if (IS_ERR(trans)) {
c2790a2e
JB
1255 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1256 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1257 EXTENT_DO_ACCOUNTING |
1258 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1259 PAGE_CLEAR_DIRTY |
1260 PAGE_SET_WRITEBACK |
1261 PAGE_END_WRITEBACK);
79787eaa
JM
1262 btrfs_free_path(path);
1263 return PTR_ERR(trans);
1264 }
1265
74b21075 1266 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1267
80ff3856
YZ
1268 cow_start = (u64)-1;
1269 cur_offset = start;
1270 while (1) {
33345d01 1271 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1272 cur_offset, 0);
d788a349 1273 if (ret < 0)
79787eaa 1274 goto error;
80ff3856
YZ
1275 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1276 leaf = path->nodes[0];
1277 btrfs_item_key_to_cpu(leaf, &found_key,
1278 path->slots[0] - 1);
33345d01 1279 if (found_key.objectid == ino &&
80ff3856
YZ
1280 found_key.type == BTRFS_EXTENT_DATA_KEY)
1281 path->slots[0]--;
1282 }
1283 check_prev = 0;
1284next_slot:
1285 leaf = path->nodes[0];
1286 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1287 ret = btrfs_next_leaf(root, path);
d788a349 1288 if (ret < 0)
79787eaa 1289 goto error;
80ff3856
YZ
1290 if (ret > 0)
1291 break;
1292 leaf = path->nodes[0];
1293 }
be20aa9d 1294
80ff3856
YZ
1295 nocow = 0;
1296 disk_bytenr = 0;
17d217fe 1297 num_bytes = 0;
80ff3856
YZ
1298 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1299
33345d01 1300 if (found_key.objectid > ino ||
80ff3856
YZ
1301 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1302 found_key.offset > end)
1303 break;
1304
1305 if (found_key.offset > cur_offset) {
1306 extent_end = found_key.offset;
e9061e21 1307 extent_type = 0;
80ff3856
YZ
1308 goto out_check;
1309 }
1310
1311 fi = btrfs_item_ptr(leaf, path->slots[0],
1312 struct btrfs_file_extent_item);
1313 extent_type = btrfs_file_extent_type(leaf, fi);
1314
cc95bef6 1315 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1316 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1317 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1318 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1319 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1320 extent_end = found_key.offset +
1321 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1322 disk_num_bytes =
1323 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1324 if (extent_end <= start) {
1325 path->slots[0]++;
1326 goto next_slot;
1327 }
17d217fe
YZ
1328 if (disk_bytenr == 0)
1329 goto out_check;
80ff3856
YZ
1330 if (btrfs_file_extent_compression(leaf, fi) ||
1331 btrfs_file_extent_encryption(leaf, fi) ||
1332 btrfs_file_extent_other_encoding(leaf, fi))
1333 goto out_check;
d899e052
YZ
1334 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1335 goto out_check;
d2fb3437 1336 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1337 goto out_check;
33345d01 1338 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1339 found_key.offset -
1340 extent_offset, disk_bytenr))
17d217fe 1341 goto out_check;
5d4f98a2 1342 disk_bytenr += extent_offset;
17d217fe
YZ
1343 disk_bytenr += cur_offset - found_key.offset;
1344 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1345 /*
1346 * if there are pending snapshots for this root,
1347 * we fall into common COW way.
1348 */
1349 if (!nolock) {
9ea24bbe 1350 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1351 if (!err)
1352 goto out_check;
1353 }
17d217fe
YZ
1354 /*
1355 * force cow if csum exists in the range.
1356 * this ensure that csum for a given extent are
1357 * either valid or do not exist.
1358 */
1359 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1360 goto out_check;
80ff3856
YZ
1361 nocow = 1;
1362 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1363 extent_end = found_key.offset +
514ac8ad
CM
1364 btrfs_file_extent_inline_len(leaf,
1365 path->slots[0], fi);
80ff3856
YZ
1366 extent_end = ALIGN(extent_end, root->sectorsize);
1367 } else {
1368 BUG_ON(1);
1369 }
1370out_check:
1371 if (extent_end <= start) {
1372 path->slots[0]++;
e9894fd3 1373 if (!nolock && nocow)
9ea24bbe 1374 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1375 goto next_slot;
1376 }
1377 if (!nocow) {
1378 if (cow_start == (u64)-1)
1379 cow_start = cur_offset;
1380 cur_offset = extent_end;
1381 if (cur_offset > end)
1382 break;
1383 path->slots[0]++;
1384 goto next_slot;
7ea394f1
YZ
1385 }
1386
b3b4aa74 1387 btrfs_release_path(path);
80ff3856 1388 if (cow_start != (u64)-1) {
00361589
JB
1389 ret = cow_file_range(inode, locked_page,
1390 cow_start, found_key.offset - 1,
1391 page_started, nr_written, 1);
e9894fd3
WS
1392 if (ret) {
1393 if (!nolock && nocow)
9ea24bbe 1394 btrfs_end_write_no_snapshoting(root);
79787eaa 1395 goto error;
e9894fd3 1396 }
80ff3856 1397 cow_start = (u64)-1;
7ea394f1 1398 }
80ff3856 1399
d899e052
YZ
1400 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1401 struct extent_map *em;
1402 struct extent_map_tree *em_tree;
1403 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1404 em = alloc_extent_map();
79787eaa 1405 BUG_ON(!em); /* -ENOMEM */
d899e052 1406 em->start = cur_offset;
70c8a91c 1407 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1408 em->len = num_bytes;
1409 em->block_len = num_bytes;
1410 em->block_start = disk_bytenr;
b4939680 1411 em->orig_block_len = disk_num_bytes;
cc95bef6 1412 em->ram_bytes = ram_bytes;
d899e052 1413 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1414 em->mod_start = em->start;
1415 em->mod_len = em->len;
d899e052 1416 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1417 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1418 em->generation = -1;
d899e052 1419 while (1) {
890871be 1420 write_lock(&em_tree->lock);
09a2a8f9 1421 ret = add_extent_mapping(em_tree, em, 1);
890871be 1422 write_unlock(&em_tree->lock);
d899e052
YZ
1423 if (ret != -EEXIST) {
1424 free_extent_map(em);
1425 break;
1426 }
1427 btrfs_drop_extent_cache(inode, em->start,
1428 em->start + em->len - 1, 0);
1429 }
1430 type = BTRFS_ORDERED_PREALLOC;
1431 } else {
1432 type = BTRFS_ORDERED_NOCOW;
1433 }
80ff3856
YZ
1434
1435 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1436 num_bytes, num_bytes, type);
79787eaa 1437 BUG_ON(ret); /* -ENOMEM */
771ed689 1438
efa56464
YZ
1439 if (root->root_key.objectid ==
1440 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1441 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1442 num_bytes);
e9894fd3
WS
1443 if (ret) {
1444 if (!nolock && nocow)
9ea24bbe 1445 btrfs_end_write_no_snapshoting(root);
79787eaa 1446 goto error;
e9894fd3 1447 }
efa56464
YZ
1448 }
1449
c2790a2e
JB
1450 extent_clear_unlock_delalloc(inode, cur_offset,
1451 cur_offset + num_bytes - 1,
1452 locked_page, EXTENT_LOCKED |
1453 EXTENT_DELALLOC, PAGE_UNLOCK |
1454 PAGE_SET_PRIVATE2);
e9894fd3 1455 if (!nolock && nocow)
9ea24bbe 1456 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1457 cur_offset = extent_end;
1458 if (cur_offset > end)
1459 break;
be20aa9d 1460 }
b3b4aa74 1461 btrfs_release_path(path);
80ff3856 1462
17ca04af 1463 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1464 cow_start = cur_offset;
17ca04af
JB
1465 cur_offset = end;
1466 }
1467
80ff3856 1468 if (cow_start != (u64)-1) {
00361589
JB
1469 ret = cow_file_range(inode, locked_page, cow_start, end,
1470 page_started, nr_written, 1);
d788a349 1471 if (ret)
79787eaa 1472 goto error;
80ff3856
YZ
1473 }
1474
79787eaa 1475error:
a698d075 1476 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1477 if (!ret)
1478 ret = err;
1479
17ca04af 1480 if (ret && cur_offset < end)
c2790a2e
JB
1481 extent_clear_unlock_delalloc(inode, cur_offset, end,
1482 locked_page, EXTENT_LOCKED |
151a41bc
JB
1483 EXTENT_DELALLOC | EXTENT_DEFRAG |
1484 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1485 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1486 PAGE_SET_WRITEBACK |
1487 PAGE_END_WRITEBACK);
7ea394f1 1488 btrfs_free_path(path);
79787eaa 1489 return ret;
be20aa9d
CM
1490}
1491
47059d93
WS
1492static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1493{
1494
1495 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1496 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1497 return 0;
1498
1499 /*
1500 * @defrag_bytes is a hint value, no spinlock held here,
1501 * if is not zero, it means the file is defragging.
1502 * Force cow if given extent needs to be defragged.
1503 */
1504 if (BTRFS_I(inode)->defrag_bytes &&
1505 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1506 EXTENT_DEFRAG, 0, NULL))
1507 return 1;
1508
1509 return 0;
1510}
1511
d352ac68
CM
1512/*
1513 * extent_io.c call back to do delayed allocation processing
1514 */
c8b97818 1515static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1516 u64 start, u64 end, int *page_started,
1517 unsigned long *nr_written)
be20aa9d 1518{
be20aa9d 1519 int ret;
47059d93 1520 int force_cow = need_force_cow(inode, start, end);
a2135011 1521
47059d93 1522 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1523 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1524 page_started, 1, nr_written);
47059d93 1525 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1526 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1527 page_started, 0, nr_written);
7816030e 1528 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1529 ret = cow_file_range(inode, locked_page, start, end,
1530 page_started, nr_written, 1);
7ddf5a42
JB
1531 } else {
1532 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1533 &BTRFS_I(inode)->runtime_flags);
771ed689 1534 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1535 page_started, nr_written);
7ddf5a42 1536 }
b888db2b
CM
1537 return ret;
1538}
1539
1bf85046
JM
1540static void btrfs_split_extent_hook(struct inode *inode,
1541 struct extent_state *orig, u64 split)
9ed74f2d 1542{
dcab6a3b
JB
1543 u64 size;
1544
0ca1f7ce 1545 /* not delalloc, ignore it */
9ed74f2d 1546 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1547 return;
9ed74f2d 1548
dcab6a3b
JB
1549 size = orig->end - orig->start + 1;
1550 if (size > BTRFS_MAX_EXTENT_SIZE) {
1551 u64 num_extents;
1552 u64 new_size;
1553
1554 /*
ba117213
JB
1555 * See the explanation in btrfs_merge_extent_hook, the same
1556 * applies here, just in reverse.
dcab6a3b
JB
1557 */
1558 new_size = orig->end - split + 1;
ba117213 1559 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1560 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1561 new_size = split - orig->start;
1562 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1563 BTRFS_MAX_EXTENT_SIZE);
1564 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1565 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1566 return;
1567 }
1568
9e0baf60
JB
1569 spin_lock(&BTRFS_I(inode)->lock);
1570 BTRFS_I(inode)->outstanding_extents++;
1571 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1572}
1573
1574/*
1575 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1576 * extents so we can keep track of new extents that are just merged onto old
1577 * extents, such as when we are doing sequential writes, so we can properly
1578 * account for the metadata space we'll need.
1579 */
1bf85046
JM
1580static void btrfs_merge_extent_hook(struct inode *inode,
1581 struct extent_state *new,
1582 struct extent_state *other)
9ed74f2d 1583{
dcab6a3b
JB
1584 u64 new_size, old_size;
1585 u64 num_extents;
1586
9ed74f2d
JB
1587 /* not delalloc, ignore it */
1588 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1589 return;
9ed74f2d 1590
8461a3de
JB
1591 if (new->start > other->start)
1592 new_size = new->end - other->start + 1;
1593 else
1594 new_size = other->end - new->start + 1;
dcab6a3b
JB
1595
1596 /* we're not bigger than the max, unreserve the space and go */
1597 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1598 spin_lock(&BTRFS_I(inode)->lock);
1599 BTRFS_I(inode)->outstanding_extents--;
1600 spin_unlock(&BTRFS_I(inode)->lock);
1601 return;
1602 }
1603
1604 /*
ba117213
JB
1605 * We have to add up either side to figure out how many extents were
1606 * accounted for before we merged into one big extent. If the number of
1607 * extents we accounted for is <= the amount we need for the new range
1608 * then we can return, otherwise drop. Think of it like this
1609 *
1610 * [ 4k][MAX_SIZE]
1611 *
1612 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1613 * need 2 outstanding extents, on one side we have 1 and the other side
1614 * we have 1 so they are == and we can return. But in this case
1615 *
1616 * [MAX_SIZE+4k][MAX_SIZE+4k]
1617 *
1618 * Each range on their own accounts for 2 extents, but merged together
1619 * they are only 3 extents worth of accounting, so we need to drop in
1620 * this case.
dcab6a3b 1621 */
ba117213 1622 old_size = other->end - other->start + 1;
dcab6a3b
JB
1623 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1624 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1625 old_size = new->end - new->start + 1;
1626 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1627 BTRFS_MAX_EXTENT_SIZE);
1628
dcab6a3b 1629 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1630 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1631 return;
1632
9e0baf60
JB
1633 spin_lock(&BTRFS_I(inode)->lock);
1634 BTRFS_I(inode)->outstanding_extents--;
1635 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1636}
1637
eb73c1b7
MX
1638static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1639 struct inode *inode)
1640{
1641 spin_lock(&root->delalloc_lock);
1642 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1643 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1644 &root->delalloc_inodes);
1645 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1646 &BTRFS_I(inode)->runtime_flags);
1647 root->nr_delalloc_inodes++;
1648 if (root->nr_delalloc_inodes == 1) {
1649 spin_lock(&root->fs_info->delalloc_root_lock);
1650 BUG_ON(!list_empty(&root->delalloc_root));
1651 list_add_tail(&root->delalloc_root,
1652 &root->fs_info->delalloc_roots);
1653 spin_unlock(&root->fs_info->delalloc_root_lock);
1654 }
1655 }
1656 spin_unlock(&root->delalloc_lock);
1657}
1658
1659static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1660 struct inode *inode)
1661{
1662 spin_lock(&root->delalloc_lock);
1663 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1664 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1665 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1666 &BTRFS_I(inode)->runtime_flags);
1667 root->nr_delalloc_inodes--;
1668 if (!root->nr_delalloc_inodes) {
1669 spin_lock(&root->fs_info->delalloc_root_lock);
1670 BUG_ON(list_empty(&root->delalloc_root));
1671 list_del_init(&root->delalloc_root);
1672 spin_unlock(&root->fs_info->delalloc_root_lock);
1673 }
1674 }
1675 spin_unlock(&root->delalloc_lock);
1676}
1677
d352ac68
CM
1678/*
1679 * extent_io.c set_bit_hook, used to track delayed allocation
1680 * bytes in this file, and to maintain the list of inodes that
1681 * have pending delalloc work to be done.
1682 */
1bf85046 1683static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1684 struct extent_state *state, unsigned *bits)
291d673e 1685{
9ed74f2d 1686
47059d93
WS
1687 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1688 WARN_ON(1);
75eff68e
CM
1689 /*
1690 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1691 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1692 * bit, which is only set or cleared with irqs on
1693 */
0ca1f7ce 1694 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1695 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1696 u64 len = state->end + 1 - state->start;
83eea1f1 1697 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1698
9e0baf60 1699 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1700 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1701 } else {
1702 spin_lock(&BTRFS_I(inode)->lock);
1703 BTRFS_I(inode)->outstanding_extents++;
1704 spin_unlock(&BTRFS_I(inode)->lock);
1705 }
287a0ab9 1706
6a3891c5
JB
1707 /* For sanity tests */
1708 if (btrfs_test_is_dummy_root(root))
1709 return;
1710
963d678b
MX
1711 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1712 root->fs_info->delalloc_batch);
df0af1a5 1713 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1714 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1715 if (*bits & EXTENT_DEFRAG)
1716 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1717 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1718 &BTRFS_I(inode)->runtime_flags))
1719 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1720 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1721 }
291d673e
CM
1722}
1723
d352ac68
CM
1724/*
1725 * extent_io.c clear_bit_hook, see set_bit_hook for why
1726 */
1bf85046 1727static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1728 struct extent_state *state,
9ee49a04 1729 unsigned *bits)
291d673e 1730{
47059d93 1731 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1732 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1733 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1734
1735 spin_lock(&BTRFS_I(inode)->lock);
1736 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1737 BTRFS_I(inode)->defrag_bytes -= len;
1738 spin_unlock(&BTRFS_I(inode)->lock);
1739
75eff68e
CM
1740 /*
1741 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1742 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1743 * bit, which is only set or cleared with irqs on
1744 */
0ca1f7ce 1745 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1746 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1747 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1748
9e0baf60 1749 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1750 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1751 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1752 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1753 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1754 spin_unlock(&BTRFS_I(inode)->lock);
1755 }
0ca1f7ce 1756
b6d08f06
JB
1757 /*
1758 * We don't reserve metadata space for space cache inodes so we
1759 * don't need to call dellalloc_release_metadata if there is an
1760 * error.
1761 */
1762 if (*bits & EXTENT_DO_ACCOUNTING &&
1763 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1764 btrfs_delalloc_release_metadata(inode, len);
1765
6a3891c5
JB
1766 /* For sanity tests. */
1767 if (btrfs_test_is_dummy_root(root))
1768 return;
1769
0cb59c99 1770 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1771 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1772 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1773
963d678b
MX
1774 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1775 root->fs_info->delalloc_batch);
df0af1a5 1776 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1777 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1778 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1779 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1780 &BTRFS_I(inode)->runtime_flags))
1781 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1782 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1783 }
291d673e
CM
1784}
1785
d352ac68
CM
1786/*
1787 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1788 * we don't create bios that span stripes or chunks
1789 */
64a16701 1790int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1791 size_t size, struct bio *bio,
1792 unsigned long bio_flags)
239b14b3
CM
1793{
1794 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1795 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1796 u64 length = 0;
1797 u64 map_length;
239b14b3
CM
1798 int ret;
1799
771ed689
CM
1800 if (bio_flags & EXTENT_BIO_COMPRESSED)
1801 return 0;
1802
4f024f37 1803 length = bio->bi_iter.bi_size;
239b14b3 1804 map_length = length;
64a16701 1805 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1806 &map_length, NULL, 0);
3ec706c8 1807 /* Will always return 0 with map_multi == NULL */
3444a972 1808 BUG_ON(ret < 0);
d397712b 1809 if (map_length < length + size)
239b14b3 1810 return 1;
3444a972 1811 return 0;
239b14b3
CM
1812}
1813
d352ac68
CM
1814/*
1815 * in order to insert checksums into the metadata in large chunks,
1816 * we wait until bio submission time. All the pages in the bio are
1817 * checksummed and sums are attached onto the ordered extent record.
1818 *
1819 * At IO completion time the cums attached on the ordered extent record
1820 * are inserted into the btree
1821 */
d397712b
CM
1822static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1823 struct bio *bio, int mirror_num,
eaf25d93
CM
1824 unsigned long bio_flags,
1825 u64 bio_offset)
065631f6 1826{
065631f6 1827 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1828 int ret = 0;
e015640f 1829
d20f7043 1830 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1831 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1832 return 0;
1833}
e015640f 1834
4a69a410
CM
1835/*
1836 * in order to insert checksums into the metadata in large chunks,
1837 * we wait until bio submission time. All the pages in the bio are
1838 * checksummed and sums are attached onto the ordered extent record.
1839 *
1840 * At IO completion time the cums attached on the ordered extent record
1841 * are inserted into the btree
1842 */
b2950863 1843static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1844 int mirror_num, unsigned long bio_flags,
1845 u64 bio_offset)
4a69a410
CM
1846{
1847 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1848 int ret;
1849
1850 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
4246a0b6
CH
1851 if (ret) {
1852 bio->bi_error = ret;
1853 bio_endio(bio);
1854 }
61891923 1855 return ret;
44b8bd7e
CM
1856}
1857
d352ac68 1858/*
cad321ad
CM
1859 * extent_io.c submission hook. This does the right thing for csum calculation
1860 * on write, or reading the csums from the tree before a read
d352ac68 1861 */
b2950863 1862static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1863 int mirror_num, unsigned long bio_flags,
1864 u64 bio_offset)
44b8bd7e
CM
1865{
1866 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1867 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1868 int ret = 0;
19b9bdb0 1869 int skip_sum;
b812ce28 1870 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1871
6cbff00f 1872 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1873
83eea1f1 1874 if (btrfs_is_free_space_inode(inode))
0d51e28a 1875 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1876
7b6d91da 1877 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1878 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1879 if (ret)
61891923 1880 goto out;
5fd02043 1881
d20f7043 1882 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1883 ret = btrfs_submit_compressed_read(inode, bio,
1884 mirror_num,
1885 bio_flags);
1886 goto out;
c2db1073
TI
1887 } else if (!skip_sum) {
1888 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1889 if (ret)
61891923 1890 goto out;
c2db1073 1891 }
4d1b5fb4 1892 goto mapit;
b812ce28 1893 } else if (async && !skip_sum) {
17d217fe
YZ
1894 /* csum items have already been cloned */
1895 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1896 goto mapit;
19b9bdb0 1897 /* we're doing a write, do the async checksumming */
61891923 1898 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1899 inode, rw, bio, mirror_num,
eaf25d93
CM
1900 bio_flags, bio_offset,
1901 __btrfs_submit_bio_start,
4a69a410 1902 __btrfs_submit_bio_done);
61891923 1903 goto out;
b812ce28
JB
1904 } else if (!skip_sum) {
1905 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1906 if (ret)
1907 goto out;
19b9bdb0
CM
1908 }
1909
0b86a832 1910mapit:
61891923
SB
1911 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1912
1913out:
4246a0b6
CH
1914 if (ret < 0) {
1915 bio->bi_error = ret;
1916 bio_endio(bio);
1917 }
61891923 1918 return ret;
065631f6 1919}
6885f308 1920
d352ac68
CM
1921/*
1922 * given a list of ordered sums record them in the inode. This happens
1923 * at IO completion time based on sums calculated at bio submission time.
1924 */
ba1da2f4 1925static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1926 struct inode *inode, u64 file_offset,
1927 struct list_head *list)
1928{
e6dcd2dc
CM
1929 struct btrfs_ordered_sum *sum;
1930
c6e30871 1931 list_for_each_entry(sum, list, list) {
39847c4d 1932 trans->adding_csums = 1;
d20f7043
CM
1933 btrfs_csum_file_blocks(trans,
1934 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1935 trans->adding_csums = 0;
e6dcd2dc
CM
1936 }
1937 return 0;
1938}
1939
2ac55d41
JB
1940int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1941 struct extent_state **cached_state)
ea8c2819 1942{
6c1500f2 1943 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1944 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1945 cached_state, GFP_NOFS);
ea8c2819
CM
1946}
1947
d352ac68 1948/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1949struct btrfs_writepage_fixup {
1950 struct page *page;
1951 struct btrfs_work work;
1952};
1953
b2950863 1954static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1955{
1956 struct btrfs_writepage_fixup *fixup;
1957 struct btrfs_ordered_extent *ordered;
2ac55d41 1958 struct extent_state *cached_state = NULL;
247e743c
CM
1959 struct page *page;
1960 struct inode *inode;
1961 u64 page_start;
1962 u64 page_end;
87826df0 1963 int ret;
247e743c
CM
1964
1965 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1966 page = fixup->page;
4a096752 1967again:
247e743c
CM
1968 lock_page(page);
1969 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1970 ClearPageChecked(page);
1971 goto out_page;
1972 }
1973
1974 inode = page->mapping->host;
1975 page_start = page_offset(page);
1976 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1977
2ac55d41 1978 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1979 &cached_state);
4a096752
CM
1980
1981 /* already ordered? We're done */
8b62b72b 1982 if (PagePrivate2(page))
247e743c 1983 goto out;
4a096752
CM
1984
1985 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1986 if (ordered) {
2ac55d41
JB
1987 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1988 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1989 unlock_page(page);
1990 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1991 btrfs_put_ordered_extent(ordered);
4a096752
CM
1992 goto again;
1993 }
247e743c 1994
87826df0
JM
1995 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1996 if (ret) {
1997 mapping_set_error(page->mapping, ret);
1998 end_extent_writepage(page, ret, page_start, page_end);
1999 ClearPageChecked(page);
2000 goto out;
2001 }
2002
2ac55d41 2003 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 2004 ClearPageChecked(page);
87826df0 2005 set_page_dirty(page);
247e743c 2006out:
2ac55d41
JB
2007 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2008 &cached_state, GFP_NOFS);
247e743c
CM
2009out_page:
2010 unlock_page(page);
2011 page_cache_release(page);
b897abec 2012 kfree(fixup);
247e743c
CM
2013}
2014
2015/*
2016 * There are a few paths in the higher layers of the kernel that directly
2017 * set the page dirty bit without asking the filesystem if it is a
2018 * good idea. This causes problems because we want to make sure COW
2019 * properly happens and the data=ordered rules are followed.
2020 *
c8b97818 2021 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2022 * hasn't been properly setup for IO. We kick off an async process
2023 * to fix it up. The async helper will wait for ordered extents, set
2024 * the delalloc bit and make it safe to write the page.
2025 */
b2950863 2026static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2027{
2028 struct inode *inode = page->mapping->host;
2029 struct btrfs_writepage_fixup *fixup;
2030 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2031
8b62b72b
CM
2032 /* this page is properly in the ordered list */
2033 if (TestClearPagePrivate2(page))
247e743c
CM
2034 return 0;
2035
2036 if (PageChecked(page))
2037 return -EAGAIN;
2038
2039 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2040 if (!fixup)
2041 return -EAGAIN;
f421950f 2042
247e743c
CM
2043 SetPageChecked(page);
2044 page_cache_get(page);
9e0af237
LB
2045 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2046 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2047 fixup->page = page;
dc6e3209 2048 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2049 return -EBUSY;
247e743c
CM
2050}
2051
d899e052
YZ
2052static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2053 struct inode *inode, u64 file_pos,
2054 u64 disk_bytenr, u64 disk_num_bytes,
2055 u64 num_bytes, u64 ram_bytes,
2056 u8 compression, u8 encryption,
2057 u16 other_encoding, int extent_type)
2058{
2059 struct btrfs_root *root = BTRFS_I(inode)->root;
2060 struct btrfs_file_extent_item *fi;
2061 struct btrfs_path *path;
2062 struct extent_buffer *leaf;
2063 struct btrfs_key ins;
1acae57b 2064 int extent_inserted = 0;
d899e052
YZ
2065 int ret;
2066
2067 path = btrfs_alloc_path();
d8926bb3
MF
2068 if (!path)
2069 return -ENOMEM;
d899e052 2070
a1ed835e
CM
2071 /*
2072 * we may be replacing one extent in the tree with another.
2073 * The new extent is pinned in the extent map, and we don't want
2074 * to drop it from the cache until it is completely in the btree.
2075 *
2076 * So, tell btrfs_drop_extents to leave this extent in the cache.
2077 * the caller is expected to unpin it and allow it to be merged
2078 * with the others.
2079 */
1acae57b
FDBM
2080 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2081 file_pos + num_bytes, NULL, 0,
2082 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2083 if (ret)
2084 goto out;
d899e052 2085
1acae57b
FDBM
2086 if (!extent_inserted) {
2087 ins.objectid = btrfs_ino(inode);
2088 ins.offset = file_pos;
2089 ins.type = BTRFS_EXTENT_DATA_KEY;
2090
2091 path->leave_spinning = 1;
2092 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2093 sizeof(*fi));
2094 if (ret)
2095 goto out;
2096 }
d899e052
YZ
2097 leaf = path->nodes[0];
2098 fi = btrfs_item_ptr(leaf, path->slots[0],
2099 struct btrfs_file_extent_item);
2100 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2101 btrfs_set_file_extent_type(leaf, fi, extent_type);
2102 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2103 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2104 btrfs_set_file_extent_offset(leaf, fi, 0);
2105 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2106 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2107 btrfs_set_file_extent_compression(leaf, fi, compression);
2108 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2109 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2110
d899e052 2111 btrfs_mark_buffer_dirty(leaf);
ce195332 2112 btrfs_release_path(path);
d899e052
YZ
2113
2114 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2115
2116 ins.objectid = disk_bytenr;
2117 ins.offset = disk_num_bytes;
2118 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2119 ret = btrfs_alloc_reserved_file_extent(trans, root,
2120 root->root_key.objectid,
33345d01 2121 btrfs_ino(inode), file_pos, &ins);
79787eaa 2122out:
d899e052 2123 btrfs_free_path(path);
b9473439 2124
79787eaa 2125 return ret;
d899e052
YZ
2126}
2127
38c227d8
LB
2128/* snapshot-aware defrag */
2129struct sa_defrag_extent_backref {
2130 struct rb_node node;
2131 struct old_sa_defrag_extent *old;
2132 u64 root_id;
2133 u64 inum;
2134 u64 file_pos;
2135 u64 extent_offset;
2136 u64 num_bytes;
2137 u64 generation;
2138};
2139
2140struct old_sa_defrag_extent {
2141 struct list_head list;
2142 struct new_sa_defrag_extent *new;
2143
2144 u64 extent_offset;
2145 u64 bytenr;
2146 u64 offset;
2147 u64 len;
2148 int count;
2149};
2150
2151struct new_sa_defrag_extent {
2152 struct rb_root root;
2153 struct list_head head;
2154 struct btrfs_path *path;
2155 struct inode *inode;
2156 u64 file_pos;
2157 u64 len;
2158 u64 bytenr;
2159 u64 disk_len;
2160 u8 compress_type;
2161};
2162
2163static int backref_comp(struct sa_defrag_extent_backref *b1,
2164 struct sa_defrag_extent_backref *b2)
2165{
2166 if (b1->root_id < b2->root_id)
2167 return -1;
2168 else if (b1->root_id > b2->root_id)
2169 return 1;
2170
2171 if (b1->inum < b2->inum)
2172 return -1;
2173 else if (b1->inum > b2->inum)
2174 return 1;
2175
2176 if (b1->file_pos < b2->file_pos)
2177 return -1;
2178 else if (b1->file_pos > b2->file_pos)
2179 return 1;
2180
2181 /*
2182 * [------------------------------] ===> (a range of space)
2183 * |<--->| |<---->| =============> (fs/file tree A)
2184 * |<---------------------------->| ===> (fs/file tree B)
2185 *
2186 * A range of space can refer to two file extents in one tree while
2187 * refer to only one file extent in another tree.
2188 *
2189 * So we may process a disk offset more than one time(two extents in A)
2190 * and locate at the same extent(one extent in B), then insert two same
2191 * backrefs(both refer to the extent in B).
2192 */
2193 return 0;
2194}
2195
2196static void backref_insert(struct rb_root *root,
2197 struct sa_defrag_extent_backref *backref)
2198{
2199 struct rb_node **p = &root->rb_node;
2200 struct rb_node *parent = NULL;
2201 struct sa_defrag_extent_backref *entry;
2202 int ret;
2203
2204 while (*p) {
2205 parent = *p;
2206 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2207
2208 ret = backref_comp(backref, entry);
2209 if (ret < 0)
2210 p = &(*p)->rb_left;
2211 else
2212 p = &(*p)->rb_right;
2213 }
2214
2215 rb_link_node(&backref->node, parent, p);
2216 rb_insert_color(&backref->node, root);
2217}
2218
2219/*
2220 * Note the backref might has changed, and in this case we just return 0.
2221 */
2222static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2223 void *ctx)
2224{
2225 struct btrfs_file_extent_item *extent;
2226 struct btrfs_fs_info *fs_info;
2227 struct old_sa_defrag_extent *old = ctx;
2228 struct new_sa_defrag_extent *new = old->new;
2229 struct btrfs_path *path = new->path;
2230 struct btrfs_key key;
2231 struct btrfs_root *root;
2232 struct sa_defrag_extent_backref *backref;
2233 struct extent_buffer *leaf;
2234 struct inode *inode = new->inode;
2235 int slot;
2236 int ret;
2237 u64 extent_offset;
2238 u64 num_bytes;
2239
2240 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2241 inum == btrfs_ino(inode))
2242 return 0;
2243
2244 key.objectid = root_id;
2245 key.type = BTRFS_ROOT_ITEM_KEY;
2246 key.offset = (u64)-1;
2247
2248 fs_info = BTRFS_I(inode)->root->fs_info;
2249 root = btrfs_read_fs_root_no_name(fs_info, &key);
2250 if (IS_ERR(root)) {
2251 if (PTR_ERR(root) == -ENOENT)
2252 return 0;
2253 WARN_ON(1);
2254 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2255 inum, offset, root_id);
2256 return PTR_ERR(root);
2257 }
2258
2259 key.objectid = inum;
2260 key.type = BTRFS_EXTENT_DATA_KEY;
2261 if (offset > (u64)-1 << 32)
2262 key.offset = 0;
2263 else
2264 key.offset = offset;
2265
2266 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2267 if (WARN_ON(ret < 0))
38c227d8 2268 return ret;
50f1319c 2269 ret = 0;
38c227d8
LB
2270
2271 while (1) {
2272 cond_resched();
2273
2274 leaf = path->nodes[0];
2275 slot = path->slots[0];
2276
2277 if (slot >= btrfs_header_nritems(leaf)) {
2278 ret = btrfs_next_leaf(root, path);
2279 if (ret < 0) {
2280 goto out;
2281 } else if (ret > 0) {
2282 ret = 0;
2283 goto out;
2284 }
2285 continue;
2286 }
2287
2288 path->slots[0]++;
2289
2290 btrfs_item_key_to_cpu(leaf, &key, slot);
2291
2292 if (key.objectid > inum)
2293 goto out;
2294
2295 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2296 continue;
2297
2298 extent = btrfs_item_ptr(leaf, slot,
2299 struct btrfs_file_extent_item);
2300
2301 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2302 continue;
2303
e68afa49
LB
2304 /*
2305 * 'offset' refers to the exact key.offset,
2306 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2307 * (key.offset - extent_offset).
2308 */
2309 if (key.offset != offset)
38c227d8
LB
2310 continue;
2311
e68afa49 2312 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2313 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2314
38c227d8
LB
2315 if (extent_offset >= old->extent_offset + old->offset +
2316 old->len || extent_offset + num_bytes <=
2317 old->extent_offset + old->offset)
2318 continue;
38c227d8
LB
2319 break;
2320 }
2321
2322 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2323 if (!backref) {
2324 ret = -ENOENT;
2325 goto out;
2326 }
2327
2328 backref->root_id = root_id;
2329 backref->inum = inum;
e68afa49 2330 backref->file_pos = offset;
38c227d8
LB
2331 backref->num_bytes = num_bytes;
2332 backref->extent_offset = extent_offset;
2333 backref->generation = btrfs_file_extent_generation(leaf, extent);
2334 backref->old = old;
2335 backref_insert(&new->root, backref);
2336 old->count++;
2337out:
2338 btrfs_release_path(path);
2339 WARN_ON(ret);
2340 return ret;
2341}
2342
2343static noinline bool record_extent_backrefs(struct btrfs_path *path,
2344 struct new_sa_defrag_extent *new)
2345{
2346 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2347 struct old_sa_defrag_extent *old, *tmp;
2348 int ret;
2349
2350 new->path = path;
2351
2352 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2353 ret = iterate_inodes_from_logical(old->bytenr +
2354 old->extent_offset, fs_info,
38c227d8
LB
2355 path, record_one_backref,
2356 old);
4724b106
JB
2357 if (ret < 0 && ret != -ENOENT)
2358 return false;
38c227d8
LB
2359
2360 /* no backref to be processed for this extent */
2361 if (!old->count) {
2362 list_del(&old->list);
2363 kfree(old);
2364 }
2365 }
2366
2367 if (list_empty(&new->head))
2368 return false;
2369
2370 return true;
2371}
2372
2373static int relink_is_mergable(struct extent_buffer *leaf,
2374 struct btrfs_file_extent_item *fi,
116e0024 2375 struct new_sa_defrag_extent *new)
38c227d8 2376{
116e0024 2377 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2378 return 0;
2379
2380 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2381 return 0;
2382
116e0024
LB
2383 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2384 return 0;
2385
2386 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2387 btrfs_file_extent_other_encoding(leaf, fi))
2388 return 0;
2389
2390 return 1;
2391}
2392
2393/*
2394 * Note the backref might has changed, and in this case we just return 0.
2395 */
2396static noinline int relink_extent_backref(struct btrfs_path *path,
2397 struct sa_defrag_extent_backref *prev,
2398 struct sa_defrag_extent_backref *backref)
2399{
2400 struct btrfs_file_extent_item *extent;
2401 struct btrfs_file_extent_item *item;
2402 struct btrfs_ordered_extent *ordered;
2403 struct btrfs_trans_handle *trans;
2404 struct btrfs_fs_info *fs_info;
2405 struct btrfs_root *root;
2406 struct btrfs_key key;
2407 struct extent_buffer *leaf;
2408 struct old_sa_defrag_extent *old = backref->old;
2409 struct new_sa_defrag_extent *new = old->new;
2410 struct inode *src_inode = new->inode;
2411 struct inode *inode;
2412 struct extent_state *cached = NULL;
2413 int ret = 0;
2414 u64 start;
2415 u64 len;
2416 u64 lock_start;
2417 u64 lock_end;
2418 bool merge = false;
2419 int index;
2420
2421 if (prev && prev->root_id == backref->root_id &&
2422 prev->inum == backref->inum &&
2423 prev->file_pos + prev->num_bytes == backref->file_pos)
2424 merge = true;
2425
2426 /* step 1: get root */
2427 key.objectid = backref->root_id;
2428 key.type = BTRFS_ROOT_ITEM_KEY;
2429 key.offset = (u64)-1;
2430
2431 fs_info = BTRFS_I(src_inode)->root->fs_info;
2432 index = srcu_read_lock(&fs_info->subvol_srcu);
2433
2434 root = btrfs_read_fs_root_no_name(fs_info, &key);
2435 if (IS_ERR(root)) {
2436 srcu_read_unlock(&fs_info->subvol_srcu, index);
2437 if (PTR_ERR(root) == -ENOENT)
2438 return 0;
2439 return PTR_ERR(root);
2440 }
38c227d8 2441
bcbba5e6
WS
2442 if (btrfs_root_readonly(root)) {
2443 srcu_read_unlock(&fs_info->subvol_srcu, index);
2444 return 0;
2445 }
2446
38c227d8
LB
2447 /* step 2: get inode */
2448 key.objectid = backref->inum;
2449 key.type = BTRFS_INODE_ITEM_KEY;
2450 key.offset = 0;
2451
2452 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2453 if (IS_ERR(inode)) {
2454 srcu_read_unlock(&fs_info->subvol_srcu, index);
2455 return 0;
2456 }
2457
2458 srcu_read_unlock(&fs_info->subvol_srcu, index);
2459
2460 /* step 3: relink backref */
2461 lock_start = backref->file_pos;
2462 lock_end = backref->file_pos + backref->num_bytes - 1;
2463 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2464 0, &cached);
2465
2466 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2467 if (ordered) {
2468 btrfs_put_ordered_extent(ordered);
2469 goto out_unlock;
2470 }
2471
2472 trans = btrfs_join_transaction(root);
2473 if (IS_ERR(trans)) {
2474 ret = PTR_ERR(trans);
2475 goto out_unlock;
2476 }
2477
2478 key.objectid = backref->inum;
2479 key.type = BTRFS_EXTENT_DATA_KEY;
2480 key.offset = backref->file_pos;
2481
2482 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2483 if (ret < 0) {
2484 goto out_free_path;
2485 } else if (ret > 0) {
2486 ret = 0;
2487 goto out_free_path;
2488 }
2489
2490 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2491 struct btrfs_file_extent_item);
2492
2493 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2494 backref->generation)
2495 goto out_free_path;
2496
2497 btrfs_release_path(path);
2498
2499 start = backref->file_pos;
2500 if (backref->extent_offset < old->extent_offset + old->offset)
2501 start += old->extent_offset + old->offset -
2502 backref->extent_offset;
2503
2504 len = min(backref->extent_offset + backref->num_bytes,
2505 old->extent_offset + old->offset + old->len);
2506 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2507
2508 ret = btrfs_drop_extents(trans, root, inode, start,
2509 start + len, 1);
2510 if (ret)
2511 goto out_free_path;
2512again:
2513 key.objectid = btrfs_ino(inode);
2514 key.type = BTRFS_EXTENT_DATA_KEY;
2515 key.offset = start;
2516
a09a0a70 2517 path->leave_spinning = 1;
38c227d8
LB
2518 if (merge) {
2519 struct btrfs_file_extent_item *fi;
2520 u64 extent_len;
2521 struct btrfs_key found_key;
2522
3c9665df 2523 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2524 if (ret < 0)
2525 goto out_free_path;
2526
2527 path->slots[0]--;
2528 leaf = path->nodes[0];
2529 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2530
2531 fi = btrfs_item_ptr(leaf, path->slots[0],
2532 struct btrfs_file_extent_item);
2533 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2534
116e0024
LB
2535 if (extent_len + found_key.offset == start &&
2536 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2537 btrfs_set_file_extent_num_bytes(leaf, fi,
2538 extent_len + len);
2539 btrfs_mark_buffer_dirty(leaf);
2540 inode_add_bytes(inode, len);
2541
2542 ret = 1;
2543 goto out_free_path;
2544 } else {
2545 merge = false;
2546 btrfs_release_path(path);
2547 goto again;
2548 }
2549 }
2550
2551 ret = btrfs_insert_empty_item(trans, root, path, &key,
2552 sizeof(*extent));
2553 if (ret) {
2554 btrfs_abort_transaction(trans, root, ret);
2555 goto out_free_path;
2556 }
2557
2558 leaf = path->nodes[0];
2559 item = btrfs_item_ptr(leaf, path->slots[0],
2560 struct btrfs_file_extent_item);
2561 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2562 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2563 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2564 btrfs_set_file_extent_num_bytes(leaf, item, len);
2565 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2566 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2567 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2568 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2569 btrfs_set_file_extent_encryption(leaf, item, 0);
2570 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2571
2572 btrfs_mark_buffer_dirty(leaf);
2573 inode_add_bytes(inode, len);
a09a0a70 2574 btrfs_release_path(path);
38c227d8
LB
2575
2576 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2577 new->disk_len, 0,
2578 backref->root_id, backref->inum,
2579 new->file_pos, 0); /* start - extent_offset */
2580 if (ret) {
2581 btrfs_abort_transaction(trans, root, ret);
2582 goto out_free_path;
2583 }
2584
2585 ret = 1;
2586out_free_path:
2587 btrfs_release_path(path);
a09a0a70 2588 path->leave_spinning = 0;
38c227d8
LB
2589 btrfs_end_transaction(trans, root);
2590out_unlock:
2591 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2592 &cached, GFP_NOFS);
2593 iput(inode);
2594 return ret;
2595}
2596
6f519564
LB
2597static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2598{
2599 struct old_sa_defrag_extent *old, *tmp;
2600
2601 if (!new)
2602 return;
2603
2604 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2605 kfree(old);
2606 }
2607 kfree(new);
2608}
2609
38c227d8
LB
2610static void relink_file_extents(struct new_sa_defrag_extent *new)
2611{
2612 struct btrfs_path *path;
38c227d8
LB
2613 struct sa_defrag_extent_backref *backref;
2614 struct sa_defrag_extent_backref *prev = NULL;
2615 struct inode *inode;
2616 struct btrfs_root *root;
2617 struct rb_node *node;
2618 int ret;
2619
2620 inode = new->inode;
2621 root = BTRFS_I(inode)->root;
2622
2623 path = btrfs_alloc_path();
2624 if (!path)
2625 return;
2626
2627 if (!record_extent_backrefs(path, new)) {
2628 btrfs_free_path(path);
2629 goto out;
2630 }
2631 btrfs_release_path(path);
2632
2633 while (1) {
2634 node = rb_first(&new->root);
2635 if (!node)
2636 break;
2637 rb_erase(node, &new->root);
2638
2639 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2640
2641 ret = relink_extent_backref(path, prev, backref);
2642 WARN_ON(ret < 0);
2643
2644 kfree(prev);
2645
2646 if (ret == 1)
2647 prev = backref;
2648 else
2649 prev = NULL;
2650 cond_resched();
2651 }
2652 kfree(prev);
2653
2654 btrfs_free_path(path);
38c227d8 2655out:
6f519564
LB
2656 free_sa_defrag_extent(new);
2657
38c227d8
LB
2658 atomic_dec(&root->fs_info->defrag_running);
2659 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2660}
2661
2662static struct new_sa_defrag_extent *
2663record_old_file_extents(struct inode *inode,
2664 struct btrfs_ordered_extent *ordered)
2665{
2666 struct btrfs_root *root = BTRFS_I(inode)->root;
2667 struct btrfs_path *path;
2668 struct btrfs_key key;
6f519564 2669 struct old_sa_defrag_extent *old;
38c227d8
LB
2670 struct new_sa_defrag_extent *new;
2671 int ret;
2672
2673 new = kmalloc(sizeof(*new), GFP_NOFS);
2674 if (!new)
2675 return NULL;
2676
2677 new->inode = inode;
2678 new->file_pos = ordered->file_offset;
2679 new->len = ordered->len;
2680 new->bytenr = ordered->start;
2681 new->disk_len = ordered->disk_len;
2682 new->compress_type = ordered->compress_type;
2683 new->root = RB_ROOT;
2684 INIT_LIST_HEAD(&new->head);
2685
2686 path = btrfs_alloc_path();
2687 if (!path)
2688 goto out_kfree;
2689
2690 key.objectid = btrfs_ino(inode);
2691 key.type = BTRFS_EXTENT_DATA_KEY;
2692 key.offset = new->file_pos;
2693
2694 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2695 if (ret < 0)
2696 goto out_free_path;
2697 if (ret > 0 && path->slots[0] > 0)
2698 path->slots[0]--;
2699
2700 /* find out all the old extents for the file range */
2701 while (1) {
2702 struct btrfs_file_extent_item *extent;
2703 struct extent_buffer *l;
2704 int slot;
2705 u64 num_bytes;
2706 u64 offset;
2707 u64 end;
2708 u64 disk_bytenr;
2709 u64 extent_offset;
2710
2711 l = path->nodes[0];
2712 slot = path->slots[0];
2713
2714 if (slot >= btrfs_header_nritems(l)) {
2715 ret = btrfs_next_leaf(root, path);
2716 if (ret < 0)
6f519564 2717 goto out_free_path;
38c227d8
LB
2718 else if (ret > 0)
2719 break;
2720 continue;
2721 }
2722
2723 btrfs_item_key_to_cpu(l, &key, slot);
2724
2725 if (key.objectid != btrfs_ino(inode))
2726 break;
2727 if (key.type != BTRFS_EXTENT_DATA_KEY)
2728 break;
2729 if (key.offset >= new->file_pos + new->len)
2730 break;
2731
2732 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2733
2734 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2735 if (key.offset + num_bytes < new->file_pos)
2736 goto next;
2737
2738 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2739 if (!disk_bytenr)
2740 goto next;
2741
2742 extent_offset = btrfs_file_extent_offset(l, extent);
2743
2744 old = kmalloc(sizeof(*old), GFP_NOFS);
2745 if (!old)
6f519564 2746 goto out_free_path;
38c227d8
LB
2747
2748 offset = max(new->file_pos, key.offset);
2749 end = min(new->file_pos + new->len, key.offset + num_bytes);
2750
2751 old->bytenr = disk_bytenr;
2752 old->extent_offset = extent_offset;
2753 old->offset = offset - key.offset;
2754 old->len = end - offset;
2755 old->new = new;
2756 old->count = 0;
2757 list_add_tail(&old->list, &new->head);
2758next:
2759 path->slots[0]++;
2760 cond_resched();
2761 }
2762
2763 btrfs_free_path(path);
2764 atomic_inc(&root->fs_info->defrag_running);
2765
2766 return new;
2767
38c227d8
LB
2768out_free_path:
2769 btrfs_free_path(path);
2770out_kfree:
6f519564 2771 free_sa_defrag_extent(new);
38c227d8
LB
2772 return NULL;
2773}
2774
e570fd27
MX
2775static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2776 u64 start, u64 len)
2777{
2778 struct btrfs_block_group_cache *cache;
2779
2780 cache = btrfs_lookup_block_group(root->fs_info, start);
2781 ASSERT(cache);
2782
2783 spin_lock(&cache->lock);
2784 cache->delalloc_bytes -= len;
2785 spin_unlock(&cache->lock);
2786
2787 btrfs_put_block_group(cache);
2788}
2789
d352ac68
CM
2790/* as ordered data IO finishes, this gets called so we can finish
2791 * an ordered extent if the range of bytes in the file it covers are
2792 * fully written.
2793 */
5fd02043 2794static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2795{
5fd02043 2796 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2797 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2798 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2799 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2800 struct extent_state *cached_state = NULL;
38c227d8 2801 struct new_sa_defrag_extent *new = NULL;
261507a0 2802 int compress_type = 0;
77cef2ec
JB
2803 int ret = 0;
2804 u64 logical_len = ordered_extent->len;
82d5902d 2805 bool nolock;
77cef2ec 2806 bool truncated = false;
e6dcd2dc 2807
83eea1f1 2808 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2809
5fd02043
JB
2810 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2811 ret = -EIO;
2812 goto out;
2813 }
2814
f612496b
MX
2815 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2816 ordered_extent->file_offset +
2817 ordered_extent->len - 1);
2818
77cef2ec
JB
2819 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2820 truncated = true;
2821 logical_len = ordered_extent->truncated_len;
2822 /* Truncated the entire extent, don't bother adding */
2823 if (!logical_len)
2824 goto out;
2825 }
2826
c2167754 2827 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2828 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2829 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2830 if (nolock)
2831 trans = btrfs_join_transaction_nolock(root);
2832 else
2833 trans = btrfs_join_transaction(root);
2834 if (IS_ERR(trans)) {
2835 ret = PTR_ERR(trans);
2836 trans = NULL;
2837 goto out;
c2167754 2838 }
6c760c07
JB
2839 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2840 ret = btrfs_update_inode_fallback(trans, root, inode);
2841 if (ret) /* -ENOMEM or corruption */
2842 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2843 goto out;
2844 }
e6dcd2dc 2845
2ac55d41
JB
2846 lock_extent_bits(io_tree, ordered_extent->file_offset,
2847 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2848 0, &cached_state);
e6dcd2dc 2849
38c227d8
LB
2850 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2851 ordered_extent->file_offset + ordered_extent->len - 1,
2852 EXTENT_DEFRAG, 1, cached_state);
2853 if (ret) {
2854 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2855 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2856 /* the inode is shared */
2857 new = record_old_file_extents(inode, ordered_extent);
2858
2859 clear_extent_bit(io_tree, ordered_extent->file_offset,
2860 ordered_extent->file_offset + ordered_extent->len - 1,
2861 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2862 }
2863
0cb59c99 2864 if (nolock)
7a7eaa40 2865 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2866 else
7a7eaa40 2867 trans = btrfs_join_transaction(root);
79787eaa
JM
2868 if (IS_ERR(trans)) {
2869 ret = PTR_ERR(trans);
2870 trans = NULL;
2871 goto out_unlock;
2872 }
a79b7d4b 2873
0ca1f7ce 2874 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2875
c8b97818 2876 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2877 compress_type = ordered_extent->compress_type;
d899e052 2878 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2879 BUG_ON(compress_type);
920bbbfb 2880 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2881 ordered_extent->file_offset,
2882 ordered_extent->file_offset +
77cef2ec 2883 logical_len);
d899e052 2884 } else {
0af3d00b 2885 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2886 ret = insert_reserved_file_extent(trans, inode,
2887 ordered_extent->file_offset,
2888 ordered_extent->start,
2889 ordered_extent->disk_len,
77cef2ec 2890 logical_len, logical_len,
261507a0 2891 compress_type, 0, 0,
d899e052 2892 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2893 if (!ret)
2894 btrfs_release_delalloc_bytes(root,
2895 ordered_extent->start,
2896 ordered_extent->disk_len);
d899e052 2897 }
5dc562c5
JB
2898 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2899 ordered_extent->file_offset, ordered_extent->len,
2900 trans->transid);
79787eaa
JM
2901 if (ret < 0) {
2902 btrfs_abort_transaction(trans, root, ret);
5fd02043 2903 goto out_unlock;
79787eaa 2904 }
2ac55d41 2905
e6dcd2dc
CM
2906 add_pending_csums(trans, inode, ordered_extent->file_offset,
2907 &ordered_extent->list);
2908
6c760c07
JB
2909 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2910 ret = btrfs_update_inode_fallback(trans, root, inode);
2911 if (ret) { /* -ENOMEM or corruption */
2912 btrfs_abort_transaction(trans, root, ret);
2913 goto out_unlock;
1ef30be1
JB
2914 }
2915 ret = 0;
5fd02043
JB
2916out_unlock:
2917 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2918 ordered_extent->file_offset +
2919 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2920out:
5b0e95bf 2921 if (root != root->fs_info->tree_root)
0cb59c99 2922 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2923 if (trans)
2924 btrfs_end_transaction(trans, root);
0cb59c99 2925
77cef2ec
JB
2926 if (ret || truncated) {
2927 u64 start, end;
2928
2929 if (truncated)
2930 start = ordered_extent->file_offset + logical_len;
2931 else
2932 start = ordered_extent->file_offset;
2933 end = ordered_extent->file_offset + ordered_extent->len - 1;
2934 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2935
2936 /* Drop the cache for the part of the extent we didn't write. */
2937 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2938
0bec9ef5
JB
2939 /*
2940 * If the ordered extent had an IOERR or something else went
2941 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2942 * back to the allocator. We only free the extent in the
2943 * truncated case if we didn't write out the extent at all.
0bec9ef5 2944 */
77cef2ec
JB
2945 if ((ret || !logical_len) &&
2946 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2947 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2948 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 2949 ordered_extent->disk_len, 1);
0bec9ef5
JB
2950 }
2951
2952
5fd02043 2953 /*
8bad3c02
LB
2954 * This needs to be done to make sure anybody waiting knows we are done
2955 * updating everything for this ordered extent.
5fd02043
JB
2956 */
2957 btrfs_remove_ordered_extent(inode, ordered_extent);
2958
38c227d8 2959 /* for snapshot-aware defrag */
6f519564
LB
2960 if (new) {
2961 if (ret) {
2962 free_sa_defrag_extent(new);
2963 atomic_dec(&root->fs_info->defrag_running);
2964 } else {
2965 relink_file_extents(new);
2966 }
2967 }
38c227d8 2968
e6dcd2dc
CM
2969 /* once for us */
2970 btrfs_put_ordered_extent(ordered_extent);
2971 /* once for the tree */
2972 btrfs_put_ordered_extent(ordered_extent);
2973
5fd02043
JB
2974 return ret;
2975}
2976
2977static void finish_ordered_fn(struct btrfs_work *work)
2978{
2979 struct btrfs_ordered_extent *ordered_extent;
2980 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2981 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2982}
2983
b2950863 2984static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2985 struct extent_state *state, int uptodate)
2986{
5fd02043
JB
2987 struct inode *inode = page->mapping->host;
2988 struct btrfs_root *root = BTRFS_I(inode)->root;
2989 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
2990 struct btrfs_workqueue *wq;
2991 btrfs_work_func_t func;
5fd02043 2992
1abe9b8a 2993 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2994
8b62b72b 2995 ClearPagePrivate2(page);
5fd02043
JB
2996 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2997 end - start + 1, uptodate))
2998 return 0;
2999
9e0af237
LB
3000 if (btrfs_is_free_space_inode(inode)) {
3001 wq = root->fs_info->endio_freespace_worker;
3002 func = btrfs_freespace_write_helper;
3003 } else {
3004 wq = root->fs_info->endio_write_workers;
3005 func = btrfs_endio_write_helper;
3006 }
5fd02043 3007
9e0af237
LB
3008 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3009 NULL);
3010 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3011
3012 return 0;
211f90e6
CM
3013}
3014
dc380aea
MX
3015static int __readpage_endio_check(struct inode *inode,
3016 struct btrfs_io_bio *io_bio,
3017 int icsum, struct page *page,
3018 int pgoff, u64 start, size_t len)
3019{
3020 char *kaddr;
3021 u32 csum_expected;
3022 u32 csum = ~(u32)0;
dc380aea
MX
3023
3024 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3025
3026 kaddr = kmap_atomic(page);
3027 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3028 btrfs_csum_final(csum, (char *)&csum);
3029 if (csum != csum_expected)
3030 goto zeroit;
3031
3032 kunmap_atomic(kaddr);
3033 return 0;
3034zeroit:
94647322
DS
3035 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3036 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3037 btrfs_ino(inode), start, csum, csum_expected);
3038 memset(kaddr + pgoff, 1, len);
3039 flush_dcache_page(page);
3040 kunmap_atomic(kaddr);
3041 if (csum_expected == 0)
3042 return 0;
3043 return -EIO;
3044}
3045
d352ac68
CM
3046/*
3047 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3048 * if there's a match, we allow the bio to finish. If not, the code in
3049 * extent_io.c will try to find good copies for us.
d352ac68 3050 */
facc8a22
MX
3051static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3052 u64 phy_offset, struct page *page,
3053 u64 start, u64 end, int mirror)
07157aac 3054{
4eee4fa4 3055 size_t offset = start - page_offset(page);
07157aac 3056 struct inode *inode = page->mapping->host;
d1310b2e 3057 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3058 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3059
d20f7043
CM
3060 if (PageChecked(page)) {
3061 ClearPageChecked(page);
dc380aea 3062 return 0;
d20f7043 3063 }
6cbff00f
CH
3064
3065 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3066 return 0;
17d217fe
YZ
3067
3068 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3069 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
3070 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3071 GFP_NOFS);
b6cda9bc 3072 return 0;
17d217fe 3073 }
d20f7043 3074
facc8a22 3075 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3076 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3077 start, (size_t)(end - start + 1));
07157aac 3078}
b888db2b 3079
24bbcf04
YZ
3080struct delayed_iput {
3081 struct list_head list;
3082 struct inode *inode;
3083};
3084
79787eaa
JM
3085/* JDM: If this is fs-wide, why can't we add a pointer to
3086 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
3087void btrfs_add_delayed_iput(struct inode *inode)
3088{
3089 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3090 struct delayed_iput *delayed;
3091
3092 if (atomic_add_unless(&inode->i_count, -1, 1))
3093 return;
3094
3095 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3096 delayed->inode = inode;
3097
3098 spin_lock(&fs_info->delayed_iput_lock);
3099 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3100 spin_unlock(&fs_info->delayed_iput_lock);
3101}
3102
3103void btrfs_run_delayed_iputs(struct btrfs_root *root)
3104{
3105 LIST_HEAD(list);
3106 struct btrfs_fs_info *fs_info = root->fs_info;
3107 struct delayed_iput *delayed;
3108 int empty;
3109
3110 spin_lock(&fs_info->delayed_iput_lock);
3111 empty = list_empty(&fs_info->delayed_iputs);
3112 spin_unlock(&fs_info->delayed_iput_lock);
3113 if (empty)
3114 return;
3115
d7c15171
ZL
3116 down_read(&fs_info->delayed_iput_sem);
3117
24bbcf04
YZ
3118 spin_lock(&fs_info->delayed_iput_lock);
3119 list_splice_init(&fs_info->delayed_iputs, &list);
3120 spin_unlock(&fs_info->delayed_iput_lock);
3121
3122 while (!list_empty(&list)) {
3123 delayed = list_entry(list.next, struct delayed_iput, list);
3124 list_del(&delayed->list);
3125 iput(delayed->inode);
3126 kfree(delayed);
3127 }
d7c15171
ZL
3128
3129 up_read(&root->fs_info->delayed_iput_sem);
24bbcf04
YZ
3130}
3131
d68fc57b 3132/*
42b2aa86 3133 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3134 * files in the subvolume, it removes orphan item and frees block_rsv
3135 * structure.
3136 */
3137void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3138 struct btrfs_root *root)
3139{
90290e19 3140 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3141 int ret;
3142
8a35d95f 3143 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3144 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3145 return;
3146
90290e19 3147 spin_lock(&root->orphan_lock);
8a35d95f 3148 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3149 spin_unlock(&root->orphan_lock);
3150 return;
3151 }
3152
3153 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3154 spin_unlock(&root->orphan_lock);
3155 return;
3156 }
3157
3158 block_rsv = root->orphan_block_rsv;
3159 root->orphan_block_rsv = NULL;
3160 spin_unlock(&root->orphan_lock);
3161
27cdeb70 3162 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3163 btrfs_root_refs(&root->root_item) > 0) {
3164 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3165 root->root_key.objectid);
4ef31a45
JB
3166 if (ret)
3167 btrfs_abort_transaction(trans, root, ret);
3168 else
27cdeb70
MX
3169 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3170 &root->state);
d68fc57b
YZ
3171 }
3172
90290e19
JB
3173 if (block_rsv) {
3174 WARN_ON(block_rsv->size > 0);
3175 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3176 }
3177}
3178
7b128766
JB
3179/*
3180 * This creates an orphan entry for the given inode in case something goes
3181 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3182 *
3183 * NOTE: caller of this function should reserve 5 units of metadata for
3184 * this function.
7b128766
JB
3185 */
3186int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3187{
3188 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3189 struct btrfs_block_rsv *block_rsv = NULL;
3190 int reserve = 0;
3191 int insert = 0;
3192 int ret;
7b128766 3193
d68fc57b 3194 if (!root->orphan_block_rsv) {
66d8f3dd 3195 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3196 if (!block_rsv)
3197 return -ENOMEM;
d68fc57b 3198 }
7b128766 3199
d68fc57b
YZ
3200 spin_lock(&root->orphan_lock);
3201 if (!root->orphan_block_rsv) {
3202 root->orphan_block_rsv = block_rsv;
3203 } else if (block_rsv) {
3204 btrfs_free_block_rsv(root, block_rsv);
3205 block_rsv = NULL;
7b128766 3206 }
7b128766 3207
8a35d95f
JB
3208 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3209 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3210#if 0
3211 /*
3212 * For proper ENOSPC handling, we should do orphan
3213 * cleanup when mounting. But this introduces backward
3214 * compatibility issue.
3215 */
3216 if (!xchg(&root->orphan_item_inserted, 1))
3217 insert = 2;
3218 else
3219 insert = 1;
3220#endif
3221 insert = 1;
321f0e70 3222 atomic_inc(&root->orphan_inodes);
7b128766
JB
3223 }
3224
72ac3c0d
JB
3225 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3226 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3227 reserve = 1;
d68fc57b 3228 spin_unlock(&root->orphan_lock);
7b128766 3229
d68fc57b
YZ
3230 /* grab metadata reservation from transaction handle */
3231 if (reserve) {
3232 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3233 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3234 }
7b128766 3235
d68fc57b
YZ
3236 /* insert an orphan item to track this unlinked/truncated file */
3237 if (insert >= 1) {
33345d01 3238 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3239 if (ret) {
703c88e0 3240 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3241 if (reserve) {
3242 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3243 &BTRFS_I(inode)->runtime_flags);
3244 btrfs_orphan_release_metadata(inode);
3245 }
3246 if (ret != -EEXIST) {
e8e7cff6
JB
3247 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3248 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3249 btrfs_abort_transaction(trans, root, ret);
3250 return ret;
3251 }
79787eaa
JM
3252 }
3253 ret = 0;
d68fc57b
YZ
3254 }
3255
3256 /* insert an orphan item to track subvolume contains orphan files */
3257 if (insert >= 2) {
3258 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3259 root->root_key.objectid);
79787eaa
JM
3260 if (ret && ret != -EEXIST) {
3261 btrfs_abort_transaction(trans, root, ret);
3262 return ret;
3263 }
d68fc57b
YZ
3264 }
3265 return 0;
7b128766
JB
3266}
3267
3268/*
3269 * We have done the truncate/delete so we can go ahead and remove the orphan
3270 * item for this particular inode.
3271 */
48a3b636
ES
3272static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3273 struct inode *inode)
7b128766
JB
3274{
3275 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3276 int delete_item = 0;
3277 int release_rsv = 0;
7b128766
JB
3278 int ret = 0;
3279
d68fc57b 3280 spin_lock(&root->orphan_lock);
8a35d95f
JB
3281 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3282 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3283 delete_item = 1;
7b128766 3284
72ac3c0d
JB
3285 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3286 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3287 release_rsv = 1;
d68fc57b 3288 spin_unlock(&root->orphan_lock);
7b128766 3289
703c88e0 3290 if (delete_item) {
8a35d95f 3291 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3292 if (trans)
3293 ret = btrfs_del_orphan_item(trans, root,
3294 btrfs_ino(inode));
8a35d95f 3295 }
7b128766 3296
703c88e0
FDBM
3297 if (release_rsv)
3298 btrfs_orphan_release_metadata(inode);
3299
4ef31a45 3300 return ret;
7b128766
JB
3301}
3302
3303/*
3304 * this cleans up any orphans that may be left on the list from the last use
3305 * of this root.
3306 */
66b4ffd1 3307int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3308{
3309 struct btrfs_path *path;
3310 struct extent_buffer *leaf;
7b128766
JB
3311 struct btrfs_key key, found_key;
3312 struct btrfs_trans_handle *trans;
3313 struct inode *inode;
8f6d7f4f 3314 u64 last_objectid = 0;
7b128766
JB
3315 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3316
d68fc57b 3317 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3318 return 0;
c71bf099
YZ
3319
3320 path = btrfs_alloc_path();
66b4ffd1
JB
3321 if (!path) {
3322 ret = -ENOMEM;
3323 goto out;
3324 }
7b128766
JB
3325 path->reada = -1;
3326
3327 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3328 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3329 key.offset = (u64)-1;
3330
7b128766
JB
3331 while (1) {
3332 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3333 if (ret < 0)
3334 goto out;
7b128766
JB
3335
3336 /*
3337 * if ret == 0 means we found what we were searching for, which
25985edc 3338 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3339 * find the key and see if we have stuff that matches
3340 */
3341 if (ret > 0) {
66b4ffd1 3342 ret = 0;
7b128766
JB
3343 if (path->slots[0] == 0)
3344 break;
3345 path->slots[0]--;
3346 }
3347
3348 /* pull out the item */
3349 leaf = path->nodes[0];
7b128766
JB
3350 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3351
3352 /* make sure the item matches what we want */
3353 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3354 break;
962a298f 3355 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3356 break;
3357
3358 /* release the path since we're done with it */
b3b4aa74 3359 btrfs_release_path(path);
7b128766
JB
3360
3361 /*
3362 * this is where we are basically btrfs_lookup, without the
3363 * crossing root thing. we store the inode number in the
3364 * offset of the orphan item.
3365 */
8f6d7f4f
JB
3366
3367 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3368 btrfs_err(root->fs_info,
3369 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3370 ret = -EINVAL;
3371 goto out;
3372 }
3373
3374 last_objectid = found_key.offset;
3375
5d4f98a2
YZ
3376 found_key.objectid = found_key.offset;
3377 found_key.type = BTRFS_INODE_ITEM_KEY;
3378 found_key.offset = 0;
73f73415 3379 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3380 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3381 if (ret && ret != -ESTALE)
66b4ffd1 3382 goto out;
7b128766 3383
f8e9e0b0
AJ
3384 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3385 struct btrfs_root *dead_root;
3386 struct btrfs_fs_info *fs_info = root->fs_info;
3387 int is_dead_root = 0;
3388
3389 /*
3390 * this is an orphan in the tree root. Currently these
3391 * could come from 2 sources:
3392 * a) a snapshot deletion in progress
3393 * b) a free space cache inode
3394 * We need to distinguish those two, as the snapshot
3395 * orphan must not get deleted.
3396 * find_dead_roots already ran before us, so if this
3397 * is a snapshot deletion, we should find the root
3398 * in the dead_roots list
3399 */
3400 spin_lock(&fs_info->trans_lock);
3401 list_for_each_entry(dead_root, &fs_info->dead_roots,
3402 root_list) {
3403 if (dead_root->root_key.objectid ==
3404 found_key.objectid) {
3405 is_dead_root = 1;
3406 break;
3407 }
3408 }
3409 spin_unlock(&fs_info->trans_lock);
3410 if (is_dead_root) {
3411 /* prevent this orphan from being found again */
3412 key.offset = found_key.objectid - 1;
3413 continue;
3414 }
3415 }
7b128766 3416 /*
a8c9e576
JB
3417 * Inode is already gone but the orphan item is still there,
3418 * kill the orphan item.
7b128766 3419 */
a8c9e576
JB
3420 if (ret == -ESTALE) {
3421 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3422 if (IS_ERR(trans)) {
3423 ret = PTR_ERR(trans);
3424 goto out;
3425 }
c2cf52eb
SK
3426 btrfs_debug(root->fs_info, "auto deleting %Lu",
3427 found_key.objectid);
a8c9e576
JB
3428 ret = btrfs_del_orphan_item(trans, root,
3429 found_key.objectid);
5b21f2ed 3430 btrfs_end_transaction(trans, root);
4ef31a45
JB
3431 if (ret)
3432 goto out;
7b128766
JB
3433 continue;
3434 }
3435
a8c9e576
JB
3436 /*
3437 * add this inode to the orphan list so btrfs_orphan_del does
3438 * the proper thing when we hit it
3439 */
8a35d95f
JB
3440 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3441 &BTRFS_I(inode)->runtime_flags);
925396ec 3442 atomic_inc(&root->orphan_inodes);
a8c9e576 3443
7b128766
JB
3444 /* if we have links, this was a truncate, lets do that */
3445 if (inode->i_nlink) {
fae7f21c 3446 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3447 iput(inode);
3448 continue;
3449 }
7b128766 3450 nr_truncate++;
f3fe820c
JB
3451
3452 /* 1 for the orphan item deletion. */
3453 trans = btrfs_start_transaction(root, 1);
3454 if (IS_ERR(trans)) {
c69b26b0 3455 iput(inode);
f3fe820c
JB
3456 ret = PTR_ERR(trans);
3457 goto out;
3458 }
3459 ret = btrfs_orphan_add(trans, inode);
3460 btrfs_end_transaction(trans, root);
c69b26b0
JB
3461 if (ret) {
3462 iput(inode);
f3fe820c 3463 goto out;
c69b26b0 3464 }
f3fe820c 3465
66b4ffd1 3466 ret = btrfs_truncate(inode);
4a7d0f68
JB
3467 if (ret)
3468 btrfs_orphan_del(NULL, inode);
7b128766
JB
3469 } else {
3470 nr_unlink++;
3471 }
3472
3473 /* this will do delete_inode and everything for us */
3474 iput(inode);
66b4ffd1
JB
3475 if (ret)
3476 goto out;
7b128766 3477 }
3254c876
MX
3478 /* release the path since we're done with it */
3479 btrfs_release_path(path);
3480
d68fc57b
YZ
3481 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3482
3483 if (root->orphan_block_rsv)
3484 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3485 (u64)-1);
3486
27cdeb70
MX
3487 if (root->orphan_block_rsv ||
3488 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3489 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3490 if (!IS_ERR(trans))
3491 btrfs_end_transaction(trans, root);
d68fc57b 3492 }
7b128766
JB
3493
3494 if (nr_unlink)
4884b476 3495 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3496 if (nr_truncate)
4884b476 3497 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3498
3499out:
3500 if (ret)
68b663d1 3501 btrfs_err(root->fs_info,
c2cf52eb 3502 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3503 btrfs_free_path(path);
3504 return ret;
7b128766
JB
3505}
3506
46a53cca
CM
3507/*
3508 * very simple check to peek ahead in the leaf looking for xattrs. If we
3509 * don't find any xattrs, we know there can't be any acls.
3510 *
3511 * slot is the slot the inode is in, objectid is the objectid of the inode
3512 */
3513static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3514 int slot, u64 objectid,
3515 int *first_xattr_slot)
46a53cca
CM
3516{
3517 u32 nritems = btrfs_header_nritems(leaf);
3518 struct btrfs_key found_key;
f23b5a59
JB
3519 static u64 xattr_access = 0;
3520 static u64 xattr_default = 0;
46a53cca
CM
3521 int scanned = 0;
3522
f23b5a59
JB
3523 if (!xattr_access) {
3524 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3525 strlen(POSIX_ACL_XATTR_ACCESS));
3526 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3527 strlen(POSIX_ACL_XATTR_DEFAULT));
3528 }
3529
46a53cca 3530 slot++;
63541927 3531 *first_xattr_slot = -1;
46a53cca
CM
3532 while (slot < nritems) {
3533 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3534
3535 /* we found a different objectid, there must not be acls */
3536 if (found_key.objectid != objectid)
3537 return 0;
3538
3539 /* we found an xattr, assume we've got an acl */
f23b5a59 3540 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3541 if (*first_xattr_slot == -1)
3542 *first_xattr_slot = slot;
f23b5a59
JB
3543 if (found_key.offset == xattr_access ||
3544 found_key.offset == xattr_default)
3545 return 1;
3546 }
46a53cca
CM
3547
3548 /*
3549 * we found a key greater than an xattr key, there can't
3550 * be any acls later on
3551 */
3552 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3553 return 0;
3554
3555 slot++;
3556 scanned++;
3557
3558 /*
3559 * it goes inode, inode backrefs, xattrs, extents,
3560 * so if there are a ton of hard links to an inode there can
3561 * be a lot of backrefs. Don't waste time searching too hard,
3562 * this is just an optimization
3563 */
3564 if (scanned >= 8)
3565 break;
3566 }
3567 /* we hit the end of the leaf before we found an xattr or
3568 * something larger than an xattr. We have to assume the inode
3569 * has acls
3570 */
63541927
FDBM
3571 if (*first_xattr_slot == -1)
3572 *first_xattr_slot = slot;
46a53cca
CM
3573 return 1;
3574}
3575
d352ac68
CM
3576/*
3577 * read an inode from the btree into the in-memory inode
3578 */
5d4f98a2 3579static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3580{
3581 struct btrfs_path *path;
5f39d397 3582 struct extent_buffer *leaf;
39279cc3
CM
3583 struct btrfs_inode_item *inode_item;
3584 struct btrfs_root *root = BTRFS_I(inode)->root;
3585 struct btrfs_key location;
67de1176 3586 unsigned long ptr;
46a53cca 3587 int maybe_acls;
618e21d5 3588 u32 rdev;
39279cc3 3589 int ret;
2f7e33d4 3590 bool filled = false;
63541927 3591 int first_xattr_slot;
2f7e33d4
MX
3592
3593 ret = btrfs_fill_inode(inode, &rdev);
3594 if (!ret)
3595 filled = true;
39279cc3
CM
3596
3597 path = btrfs_alloc_path();
1748f843
MF
3598 if (!path)
3599 goto make_bad;
3600
39279cc3 3601 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3602
39279cc3 3603 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3604 if (ret)
39279cc3 3605 goto make_bad;
39279cc3 3606
5f39d397 3607 leaf = path->nodes[0];
2f7e33d4
MX
3608
3609 if (filled)
67de1176 3610 goto cache_index;
2f7e33d4 3611
5f39d397
CM
3612 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3613 struct btrfs_inode_item);
5f39d397 3614 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3615 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3616 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3617 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3618 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3619
a937b979
DS
3620 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3621 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3622
a937b979
DS
3623 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3624 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3625
a937b979
DS
3626 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3627 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3628
9cc97d64 3629 BTRFS_I(inode)->i_otime.tv_sec =
3630 btrfs_timespec_sec(leaf, &inode_item->otime);
3631 BTRFS_I(inode)->i_otime.tv_nsec =
3632 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3633
a76a3cd4 3634 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3635 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3636 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3637
6e17d30b
YD
3638 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3639 inode->i_generation = BTRFS_I(inode)->generation;
3640 inode->i_rdev = 0;
3641 rdev = btrfs_inode_rdev(leaf, inode_item);
3642
3643 BTRFS_I(inode)->index_cnt = (u64)-1;
3644 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3645
3646cache_index:
5dc562c5
JB
3647 /*
3648 * If we were modified in the current generation and evicted from memory
3649 * and then re-read we need to do a full sync since we don't have any
3650 * idea about which extents were modified before we were evicted from
3651 * cache.
6e17d30b
YD
3652 *
3653 * This is required for both inode re-read from disk and delayed inode
3654 * in delayed_nodes_tree.
5dc562c5
JB
3655 */
3656 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3657 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3658 &BTRFS_I(inode)->runtime_flags);
3659
bde6c242
FM
3660 /*
3661 * We don't persist the id of the transaction where an unlink operation
3662 * against the inode was last made. So here we assume the inode might
3663 * have been evicted, and therefore the exact value of last_unlink_trans
3664 * lost, and set it to last_trans to avoid metadata inconsistencies
3665 * between the inode and its parent if the inode is fsync'ed and the log
3666 * replayed. For example, in the scenario:
3667 *
3668 * touch mydir/foo
3669 * ln mydir/foo mydir/bar
3670 * sync
3671 * unlink mydir/bar
3672 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3673 * xfs_io -c fsync mydir/foo
3674 * <power failure>
3675 * mount fs, triggers fsync log replay
3676 *
3677 * We must make sure that when we fsync our inode foo we also log its
3678 * parent inode, otherwise after log replay the parent still has the
3679 * dentry with the "bar" name but our inode foo has a link count of 1
3680 * and doesn't have an inode ref with the name "bar" anymore.
3681 *
3682 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3683 * but it guarantees correctness at the expense of ocassional full
3684 * transaction commits on fsync if our inode is a directory, or if our
3685 * inode is not a directory, logging its parent unnecessarily.
3686 */
3687 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3688
67de1176
MX
3689 path->slots[0]++;
3690 if (inode->i_nlink != 1 ||
3691 path->slots[0] >= btrfs_header_nritems(leaf))
3692 goto cache_acl;
3693
3694 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3695 if (location.objectid != btrfs_ino(inode))
3696 goto cache_acl;
3697
3698 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3699 if (location.type == BTRFS_INODE_REF_KEY) {
3700 struct btrfs_inode_ref *ref;
3701
3702 ref = (struct btrfs_inode_ref *)ptr;
3703 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3704 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3705 struct btrfs_inode_extref *extref;
3706
3707 extref = (struct btrfs_inode_extref *)ptr;
3708 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3709 extref);
3710 }
2f7e33d4 3711cache_acl:
46a53cca
CM
3712 /*
3713 * try to precache a NULL acl entry for files that don't have
3714 * any xattrs or acls
3715 */
33345d01 3716 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3717 btrfs_ino(inode), &first_xattr_slot);
3718 if (first_xattr_slot != -1) {
3719 path->slots[0] = first_xattr_slot;
3720 ret = btrfs_load_inode_props(inode, path);
3721 if (ret)
3722 btrfs_err(root->fs_info,
351fd353 3723 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3724 btrfs_ino(inode),
3725 root->root_key.objectid, ret);
3726 }
3727 btrfs_free_path(path);
3728
72c04902
AV
3729 if (!maybe_acls)
3730 cache_no_acl(inode);
46a53cca 3731
39279cc3 3732 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3733 case S_IFREG:
3734 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3735 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3736 inode->i_fop = &btrfs_file_operations;
3737 inode->i_op = &btrfs_file_inode_operations;
3738 break;
3739 case S_IFDIR:
3740 inode->i_fop = &btrfs_dir_file_operations;
3741 if (root == root->fs_info->tree_root)
3742 inode->i_op = &btrfs_dir_ro_inode_operations;
3743 else
3744 inode->i_op = &btrfs_dir_inode_operations;
3745 break;
3746 case S_IFLNK:
3747 inode->i_op = &btrfs_symlink_inode_operations;
3748 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3749 break;
618e21d5 3750 default:
0279b4cd 3751 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3752 init_special_inode(inode, inode->i_mode, rdev);
3753 break;
39279cc3 3754 }
6cbff00f
CH
3755
3756 btrfs_update_iflags(inode);
39279cc3
CM
3757 return;
3758
3759make_bad:
39279cc3 3760 btrfs_free_path(path);
39279cc3
CM
3761 make_bad_inode(inode);
3762}
3763
d352ac68
CM
3764/*
3765 * given a leaf and an inode, copy the inode fields into the leaf
3766 */
e02119d5
CM
3767static void fill_inode_item(struct btrfs_trans_handle *trans,
3768 struct extent_buffer *leaf,
5f39d397 3769 struct btrfs_inode_item *item,
39279cc3
CM
3770 struct inode *inode)
3771{
51fab693
LB
3772 struct btrfs_map_token token;
3773
3774 btrfs_init_map_token(&token);
5f39d397 3775
51fab693
LB
3776 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3777 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3778 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3779 &token);
3780 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3781 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3782
a937b979 3783 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3784 inode->i_atime.tv_sec, &token);
a937b979 3785 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3786 inode->i_atime.tv_nsec, &token);
5f39d397 3787
a937b979 3788 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3789 inode->i_mtime.tv_sec, &token);
a937b979 3790 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3791 inode->i_mtime.tv_nsec, &token);
5f39d397 3792
a937b979 3793 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3794 inode->i_ctime.tv_sec, &token);
a937b979 3795 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3796 inode->i_ctime.tv_nsec, &token);
5f39d397 3797
9cc97d64 3798 btrfs_set_token_timespec_sec(leaf, &item->otime,
3799 BTRFS_I(inode)->i_otime.tv_sec, &token);
3800 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3801 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3802
51fab693
LB
3803 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3804 &token);
3805 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3806 &token);
3807 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3808 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3809 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3810 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3811 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3812}
3813
d352ac68
CM
3814/*
3815 * copy everything in the in-memory inode into the btree.
3816 */
2115133f 3817static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3818 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3819{
3820 struct btrfs_inode_item *inode_item;
3821 struct btrfs_path *path;
5f39d397 3822 struct extent_buffer *leaf;
39279cc3
CM
3823 int ret;
3824
3825 path = btrfs_alloc_path();
16cdcec7
MX
3826 if (!path)
3827 return -ENOMEM;
3828
b9473439 3829 path->leave_spinning = 1;
16cdcec7
MX
3830 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3831 1);
39279cc3
CM
3832 if (ret) {
3833 if (ret > 0)
3834 ret = -ENOENT;
3835 goto failed;
3836 }
3837
5f39d397
CM
3838 leaf = path->nodes[0];
3839 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3840 struct btrfs_inode_item);
39279cc3 3841
e02119d5 3842 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3843 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3844 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3845 ret = 0;
3846failed:
39279cc3
CM
3847 btrfs_free_path(path);
3848 return ret;
3849}
3850
2115133f
CM
3851/*
3852 * copy everything in the in-memory inode into the btree.
3853 */
3854noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3855 struct btrfs_root *root, struct inode *inode)
3856{
3857 int ret;
3858
3859 /*
3860 * If the inode is a free space inode, we can deadlock during commit
3861 * if we put it into the delayed code.
3862 *
3863 * The data relocation inode should also be directly updated
3864 * without delay
3865 */
83eea1f1 3866 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3867 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3868 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3869 btrfs_update_root_times(trans, root);
3870
2115133f
CM
3871 ret = btrfs_delayed_update_inode(trans, root, inode);
3872 if (!ret)
3873 btrfs_set_inode_last_trans(trans, inode);
3874 return ret;
3875 }
3876
3877 return btrfs_update_inode_item(trans, root, inode);
3878}
3879
be6aef60
JB
3880noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3881 struct btrfs_root *root,
3882 struct inode *inode)
2115133f
CM
3883{
3884 int ret;
3885
3886 ret = btrfs_update_inode(trans, root, inode);
3887 if (ret == -ENOSPC)
3888 return btrfs_update_inode_item(trans, root, inode);
3889 return ret;
3890}
3891
d352ac68
CM
3892/*
3893 * unlink helper that gets used here in inode.c and in the tree logging
3894 * recovery code. It remove a link in a directory with a given name, and
3895 * also drops the back refs in the inode to the directory
3896 */
92986796
AV
3897static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3898 struct btrfs_root *root,
3899 struct inode *dir, struct inode *inode,
3900 const char *name, int name_len)
39279cc3
CM
3901{
3902 struct btrfs_path *path;
39279cc3 3903 int ret = 0;
5f39d397 3904 struct extent_buffer *leaf;
39279cc3 3905 struct btrfs_dir_item *di;
5f39d397 3906 struct btrfs_key key;
aec7477b 3907 u64 index;
33345d01
LZ
3908 u64 ino = btrfs_ino(inode);
3909 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3910
3911 path = btrfs_alloc_path();
54aa1f4d
CM
3912 if (!path) {
3913 ret = -ENOMEM;
554233a6 3914 goto out;
54aa1f4d
CM
3915 }
3916
b9473439 3917 path->leave_spinning = 1;
33345d01 3918 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3919 name, name_len, -1);
3920 if (IS_ERR(di)) {
3921 ret = PTR_ERR(di);
3922 goto err;
3923 }
3924 if (!di) {
3925 ret = -ENOENT;
3926 goto err;
3927 }
5f39d397
CM
3928 leaf = path->nodes[0];
3929 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3930 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3931 if (ret)
3932 goto err;
b3b4aa74 3933 btrfs_release_path(path);
39279cc3 3934
67de1176
MX
3935 /*
3936 * If we don't have dir index, we have to get it by looking up
3937 * the inode ref, since we get the inode ref, remove it directly,
3938 * it is unnecessary to do delayed deletion.
3939 *
3940 * But if we have dir index, needn't search inode ref to get it.
3941 * Since the inode ref is close to the inode item, it is better
3942 * that we delay to delete it, and just do this deletion when
3943 * we update the inode item.
3944 */
3945 if (BTRFS_I(inode)->dir_index) {
3946 ret = btrfs_delayed_delete_inode_ref(inode);
3947 if (!ret) {
3948 index = BTRFS_I(inode)->dir_index;
3949 goto skip_backref;
3950 }
3951 }
3952
33345d01
LZ
3953 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3954 dir_ino, &index);
aec7477b 3955 if (ret) {
c2cf52eb
SK
3956 btrfs_info(root->fs_info,
3957 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3958 name_len, name, ino, dir_ino);
79787eaa 3959 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3960 goto err;
3961 }
67de1176 3962skip_backref:
16cdcec7 3963 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3964 if (ret) {
3965 btrfs_abort_transaction(trans, root, ret);
39279cc3 3966 goto err;
79787eaa 3967 }
39279cc3 3968
e02119d5 3969 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3970 inode, dir_ino);
79787eaa
JM
3971 if (ret != 0 && ret != -ENOENT) {
3972 btrfs_abort_transaction(trans, root, ret);
3973 goto err;
3974 }
e02119d5
CM
3975
3976 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3977 dir, index);
6418c961
CM
3978 if (ret == -ENOENT)
3979 ret = 0;
d4e3991b
ZB
3980 else if (ret)
3981 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3982err:
3983 btrfs_free_path(path);
e02119d5
CM
3984 if (ret)
3985 goto out;
3986
3987 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3988 inode_inc_iversion(inode);
3989 inode_inc_iversion(dir);
e02119d5 3990 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3991 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3992out:
39279cc3
CM
3993 return ret;
3994}
3995
92986796
AV
3996int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3997 struct btrfs_root *root,
3998 struct inode *dir, struct inode *inode,
3999 const char *name, int name_len)
4000{
4001 int ret;
4002 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4003 if (!ret) {
8b558c5f 4004 drop_nlink(inode);
92986796
AV
4005 ret = btrfs_update_inode(trans, root, inode);
4006 }
4007 return ret;
4008}
39279cc3 4009
a22285a6
YZ
4010/*
4011 * helper to start transaction for unlink and rmdir.
4012 *
d52be818
JB
4013 * unlink and rmdir are special in btrfs, they do not always free space, so
4014 * if we cannot make our reservations the normal way try and see if there is
4015 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4016 * allow the unlink to occur.
a22285a6 4017 */
d52be818 4018static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4019{
39279cc3 4020 struct btrfs_trans_handle *trans;
a22285a6 4021 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
4022 int ret;
4023
e70bea5f
JB
4024 /*
4025 * 1 for the possible orphan item
4026 * 1 for the dir item
4027 * 1 for the dir index
4028 * 1 for the inode ref
e70bea5f
JB
4029 * 1 for the inode
4030 */
6e137ed3 4031 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4032 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
4033 return trans;
4df27c4d 4034
d52be818
JB
4035 if (PTR_ERR(trans) == -ENOSPC) {
4036 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 4037
d52be818
JB
4038 trans = btrfs_start_transaction(root, 0);
4039 if (IS_ERR(trans))
4040 return trans;
4041 ret = btrfs_cond_migrate_bytes(root->fs_info,
4042 &root->fs_info->trans_block_rsv,
4043 num_bytes, 5);
4044 if (ret) {
4045 btrfs_end_transaction(trans, root);
4046 return ERR_PTR(ret);
a22285a6 4047 }
5a77d76c 4048 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 4049 trans->bytes_reserved = num_bytes;
a22285a6 4050 }
d52be818 4051 return trans;
a22285a6
YZ
4052}
4053
4054static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4055{
4056 struct btrfs_root *root = BTRFS_I(dir)->root;
4057 struct btrfs_trans_handle *trans;
2b0143b5 4058 struct inode *inode = d_inode(dentry);
a22285a6 4059 int ret;
a22285a6 4060
d52be818 4061 trans = __unlink_start_trans(dir);
a22285a6
YZ
4062 if (IS_ERR(trans))
4063 return PTR_ERR(trans);
5f39d397 4064
2b0143b5 4065 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4066
2b0143b5 4067 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4068 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4069 if (ret)
4070 goto out;
7b128766 4071
a22285a6 4072 if (inode->i_nlink == 0) {
7b128766 4073 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4074 if (ret)
4075 goto out;
a22285a6 4076 }
7b128766 4077
b532402e 4078out:
d52be818 4079 btrfs_end_transaction(trans, root);
b53d3f5d 4080 btrfs_btree_balance_dirty(root);
39279cc3
CM
4081 return ret;
4082}
4083
4df27c4d
YZ
4084int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4085 struct btrfs_root *root,
4086 struct inode *dir, u64 objectid,
4087 const char *name, int name_len)
4088{
4089 struct btrfs_path *path;
4090 struct extent_buffer *leaf;
4091 struct btrfs_dir_item *di;
4092 struct btrfs_key key;
4093 u64 index;
4094 int ret;
33345d01 4095 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4096
4097 path = btrfs_alloc_path();
4098 if (!path)
4099 return -ENOMEM;
4100
33345d01 4101 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4102 name, name_len, -1);
79787eaa
JM
4103 if (IS_ERR_OR_NULL(di)) {
4104 if (!di)
4105 ret = -ENOENT;
4106 else
4107 ret = PTR_ERR(di);
4108 goto out;
4109 }
4df27c4d
YZ
4110
4111 leaf = path->nodes[0];
4112 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4113 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4114 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
4115 if (ret) {
4116 btrfs_abort_transaction(trans, root, ret);
4117 goto out;
4118 }
b3b4aa74 4119 btrfs_release_path(path);
4df27c4d
YZ
4120
4121 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4122 objectid, root->root_key.objectid,
33345d01 4123 dir_ino, &index, name, name_len);
4df27c4d 4124 if (ret < 0) {
79787eaa
JM
4125 if (ret != -ENOENT) {
4126 btrfs_abort_transaction(trans, root, ret);
4127 goto out;
4128 }
33345d01 4129 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4130 name, name_len);
79787eaa
JM
4131 if (IS_ERR_OR_NULL(di)) {
4132 if (!di)
4133 ret = -ENOENT;
4134 else
4135 ret = PTR_ERR(di);
4136 btrfs_abort_transaction(trans, root, ret);
4137 goto out;
4138 }
4df27c4d
YZ
4139
4140 leaf = path->nodes[0];
4141 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4142 btrfs_release_path(path);
4df27c4d
YZ
4143 index = key.offset;
4144 }
945d8962 4145 btrfs_release_path(path);
4df27c4d 4146
16cdcec7 4147 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4148 if (ret) {
4149 btrfs_abort_transaction(trans, root, ret);
4150 goto out;
4151 }
4df27c4d
YZ
4152
4153 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4154 inode_inc_iversion(dir);
4df27c4d 4155 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 4156 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4157 if (ret)
4158 btrfs_abort_transaction(trans, root, ret);
4159out:
71d7aed0 4160 btrfs_free_path(path);
79787eaa 4161 return ret;
4df27c4d
YZ
4162}
4163
39279cc3
CM
4164static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4165{
2b0143b5 4166 struct inode *inode = d_inode(dentry);
1832a6d5 4167 int err = 0;
39279cc3 4168 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4169 struct btrfs_trans_handle *trans;
39279cc3 4170
b3ae244e 4171 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4172 return -ENOTEMPTY;
b3ae244e
DS
4173 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4174 return -EPERM;
134d4512 4175
d52be818 4176 trans = __unlink_start_trans(dir);
a22285a6 4177 if (IS_ERR(trans))
5df6a9f6 4178 return PTR_ERR(trans);
5df6a9f6 4179
33345d01 4180 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4181 err = btrfs_unlink_subvol(trans, root, dir,
4182 BTRFS_I(inode)->location.objectid,
4183 dentry->d_name.name,
4184 dentry->d_name.len);
4185 goto out;
4186 }
4187
7b128766
JB
4188 err = btrfs_orphan_add(trans, inode);
4189 if (err)
4df27c4d 4190 goto out;
7b128766 4191
39279cc3 4192 /* now the directory is empty */
2b0143b5 4193 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4194 dentry->d_name.name, dentry->d_name.len);
d397712b 4195 if (!err)
dbe674a9 4196 btrfs_i_size_write(inode, 0);
4df27c4d 4197out:
d52be818 4198 btrfs_end_transaction(trans, root);
b53d3f5d 4199 btrfs_btree_balance_dirty(root);
3954401f 4200
39279cc3
CM
4201 return err;
4202}
4203
28f75a0e
CM
4204static int truncate_space_check(struct btrfs_trans_handle *trans,
4205 struct btrfs_root *root,
4206 u64 bytes_deleted)
4207{
4208 int ret;
4209
4210 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4211 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4212 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4213 if (!ret)
4214 trans->bytes_reserved += bytes_deleted;
4215 return ret;
4216
4217}
4218
0305cd5f
FM
4219static int truncate_inline_extent(struct inode *inode,
4220 struct btrfs_path *path,
4221 struct btrfs_key *found_key,
4222 const u64 item_end,
4223 const u64 new_size)
4224{
4225 struct extent_buffer *leaf = path->nodes[0];
4226 int slot = path->slots[0];
4227 struct btrfs_file_extent_item *fi;
4228 u32 size = (u32)(new_size - found_key->offset);
4229 struct btrfs_root *root = BTRFS_I(inode)->root;
4230
4231 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4232
4233 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4234 loff_t offset = new_size;
4235 loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4236
4237 /*
4238 * Zero out the remaining of the last page of our inline extent,
4239 * instead of directly truncating our inline extent here - that
4240 * would be much more complex (decompressing all the data, then
4241 * compressing the truncated data, which might be bigger than
4242 * the size of the inline extent, resize the extent, etc).
4243 * We release the path because to get the page we might need to
4244 * read the extent item from disk (data not in the page cache).
4245 */
4246 btrfs_release_path(path);
4247 return btrfs_truncate_page(inode, offset, page_end - offset, 0);
4248 }
4249
4250 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4251 size = btrfs_file_extent_calc_inline_size(size);
4252 btrfs_truncate_item(root, path, size, 1);
4253
4254 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4255 inode_sub_bytes(inode, item_end + 1 - new_size);
4256
4257 return 0;
4258}
4259
39279cc3
CM
4260/*
4261 * this can truncate away extent items, csum items and directory items.
4262 * It starts at a high offset and removes keys until it can't find
d352ac68 4263 * any higher than new_size
39279cc3
CM
4264 *
4265 * csum items that cross the new i_size are truncated to the new size
4266 * as well.
7b128766
JB
4267 *
4268 * min_type is the minimum key type to truncate down to. If set to 0, this
4269 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4270 */
8082510e
YZ
4271int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4272 struct btrfs_root *root,
4273 struct inode *inode,
4274 u64 new_size, u32 min_type)
39279cc3 4275{
39279cc3 4276 struct btrfs_path *path;
5f39d397 4277 struct extent_buffer *leaf;
39279cc3 4278 struct btrfs_file_extent_item *fi;
8082510e
YZ
4279 struct btrfs_key key;
4280 struct btrfs_key found_key;
39279cc3 4281 u64 extent_start = 0;
db94535d 4282 u64 extent_num_bytes = 0;
5d4f98a2 4283 u64 extent_offset = 0;
39279cc3 4284 u64 item_end = 0;
c1aa4575 4285 u64 last_size = new_size;
8082510e 4286 u32 found_type = (u8)-1;
39279cc3
CM
4287 int found_extent;
4288 int del_item;
85e21bac
CM
4289 int pending_del_nr = 0;
4290 int pending_del_slot = 0;
179e29e4 4291 int extent_type = -1;
8082510e
YZ
4292 int ret;
4293 int err = 0;
33345d01 4294 u64 ino = btrfs_ino(inode);
28ed1345 4295 u64 bytes_deleted = 0;
1262133b
JB
4296 bool be_nice = 0;
4297 bool should_throttle = 0;
28f75a0e 4298 bool should_end = 0;
8082510e
YZ
4299
4300 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4301
28ed1345
CM
4302 /*
4303 * for non-free space inodes and ref cows, we want to back off from
4304 * time to time
4305 */
4306 if (!btrfs_is_free_space_inode(inode) &&
4307 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4308 be_nice = 1;
4309
0eb0e19c
MF
4310 path = btrfs_alloc_path();
4311 if (!path)
4312 return -ENOMEM;
4313 path->reada = -1;
4314
5dc562c5
JB
4315 /*
4316 * We want to drop from the next block forward in case this new size is
4317 * not block aligned since we will be keeping the last block of the
4318 * extent just the way it is.
4319 */
27cdeb70
MX
4320 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4321 root == root->fs_info->tree_root)
fda2832f
QW
4322 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4323 root->sectorsize), (u64)-1, 0);
8082510e 4324
16cdcec7
MX
4325 /*
4326 * This function is also used to drop the items in the log tree before
4327 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4328 * it is used to drop the loged items. So we shouldn't kill the delayed
4329 * items.
4330 */
4331 if (min_type == 0 && root == BTRFS_I(inode)->root)
4332 btrfs_kill_delayed_inode_items(inode);
4333
33345d01 4334 key.objectid = ino;
39279cc3 4335 key.offset = (u64)-1;
5f39d397
CM
4336 key.type = (u8)-1;
4337
85e21bac 4338search_again:
28ed1345
CM
4339 /*
4340 * with a 16K leaf size and 128MB extents, you can actually queue
4341 * up a huge file in a single leaf. Most of the time that
4342 * bytes_deleted is > 0, it will be huge by the time we get here
4343 */
4344 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4345 if (btrfs_should_end_transaction(trans, root)) {
4346 err = -EAGAIN;
4347 goto error;
4348 }
4349 }
4350
4351
b9473439 4352 path->leave_spinning = 1;
85e21bac 4353 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4354 if (ret < 0) {
4355 err = ret;
4356 goto out;
4357 }
d397712b 4358
85e21bac 4359 if (ret > 0) {
e02119d5
CM
4360 /* there are no items in the tree for us to truncate, we're
4361 * done
4362 */
8082510e
YZ
4363 if (path->slots[0] == 0)
4364 goto out;
85e21bac
CM
4365 path->slots[0]--;
4366 }
4367
d397712b 4368 while (1) {
39279cc3 4369 fi = NULL;
5f39d397
CM
4370 leaf = path->nodes[0];
4371 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4372 found_type = found_key.type;
39279cc3 4373
33345d01 4374 if (found_key.objectid != ino)
39279cc3 4375 break;
5f39d397 4376
85e21bac 4377 if (found_type < min_type)
39279cc3
CM
4378 break;
4379
5f39d397 4380 item_end = found_key.offset;
39279cc3 4381 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4382 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4383 struct btrfs_file_extent_item);
179e29e4
CM
4384 extent_type = btrfs_file_extent_type(leaf, fi);
4385 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4386 item_end +=
db94535d 4387 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4388 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4389 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4390 path->slots[0], fi);
39279cc3 4391 }
008630c1 4392 item_end--;
39279cc3 4393 }
8082510e
YZ
4394 if (found_type > min_type) {
4395 del_item = 1;
4396 } else {
4397 if (item_end < new_size)
b888db2b 4398 break;
8082510e
YZ
4399 if (found_key.offset >= new_size)
4400 del_item = 1;
4401 else
4402 del_item = 0;
39279cc3 4403 }
39279cc3 4404 found_extent = 0;
39279cc3 4405 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4406 if (found_type != BTRFS_EXTENT_DATA_KEY)
4407 goto delete;
4408
7f4f6e0a
JB
4409 if (del_item)
4410 last_size = found_key.offset;
4411 else
4412 last_size = new_size;
4413
179e29e4 4414 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4415 u64 num_dec;
db94535d 4416 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4417 if (!del_item) {
db94535d
CM
4418 u64 orig_num_bytes =
4419 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4420 extent_num_bytes = ALIGN(new_size -
4421 found_key.offset,
4422 root->sectorsize);
db94535d
CM
4423 btrfs_set_file_extent_num_bytes(leaf, fi,
4424 extent_num_bytes);
4425 num_dec = (orig_num_bytes -
9069218d 4426 extent_num_bytes);
27cdeb70
MX
4427 if (test_bit(BTRFS_ROOT_REF_COWS,
4428 &root->state) &&
4429 extent_start != 0)
a76a3cd4 4430 inode_sub_bytes(inode, num_dec);
5f39d397 4431 btrfs_mark_buffer_dirty(leaf);
39279cc3 4432 } else {
db94535d
CM
4433 extent_num_bytes =
4434 btrfs_file_extent_disk_num_bytes(leaf,
4435 fi);
5d4f98a2
YZ
4436 extent_offset = found_key.offset -
4437 btrfs_file_extent_offset(leaf, fi);
4438
39279cc3 4439 /* FIXME blocksize != 4096 */
9069218d 4440 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4441 if (extent_start != 0) {
4442 found_extent = 1;
27cdeb70
MX
4443 if (test_bit(BTRFS_ROOT_REF_COWS,
4444 &root->state))
a76a3cd4 4445 inode_sub_bytes(inode, num_dec);
e02119d5 4446 }
39279cc3 4447 }
9069218d 4448 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4449 /*
4450 * we can't truncate inline items that have had
4451 * special encodings
4452 */
4453 if (!del_item &&
c8b97818
CM
4454 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4455 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4456
4457 /*
0305cd5f
FM
4458 * Need to release path in order to truncate a
4459 * compressed extent. So delete any accumulated
4460 * extent items so far.
514ac8ad 4461 */
0305cd5f
FM
4462 if (btrfs_file_extent_compression(leaf, fi) !=
4463 BTRFS_COMPRESS_NONE && pending_del_nr) {
4464 err = btrfs_del_items(trans, root, path,
4465 pending_del_slot,
4466 pending_del_nr);
4467 if (err) {
4468 btrfs_abort_transaction(trans,
4469 root,
4470 err);
4471 goto error;
4472 }
4473 pending_del_nr = 0;
4474 }
4475
4476 err = truncate_inline_extent(inode, path,
4477 &found_key,
4478 item_end,
4479 new_size);
4480 if (err) {
4481 btrfs_abort_transaction(trans,
4482 root, err);
4483 goto error;
4484 }
27cdeb70
MX
4485 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4486 &root->state)) {
0305cd5f 4487 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4488 }
39279cc3 4489 }
179e29e4 4490delete:
39279cc3 4491 if (del_item) {
85e21bac
CM
4492 if (!pending_del_nr) {
4493 /* no pending yet, add ourselves */
4494 pending_del_slot = path->slots[0];
4495 pending_del_nr = 1;
4496 } else if (pending_del_nr &&
4497 path->slots[0] + 1 == pending_del_slot) {
4498 /* hop on the pending chunk */
4499 pending_del_nr++;
4500 pending_del_slot = path->slots[0];
4501 } else {
d397712b 4502 BUG();
85e21bac 4503 }
39279cc3
CM
4504 } else {
4505 break;
4506 }
28f75a0e
CM
4507 should_throttle = 0;
4508
27cdeb70
MX
4509 if (found_extent &&
4510 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4511 root == root->fs_info->tree_root)) {
b9473439 4512 btrfs_set_path_blocking(path);
28ed1345 4513 bytes_deleted += extent_num_bytes;
39279cc3 4514 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4515 extent_num_bytes, 0,
4516 btrfs_header_owner(leaf),
66d7e7f0 4517 ino, extent_offset, 0);
39279cc3 4518 BUG_ON(ret);
1262133b 4519 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345
CM
4520 btrfs_async_run_delayed_refs(root,
4521 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4522 if (be_nice) {
4523 if (truncate_space_check(trans, root,
4524 extent_num_bytes)) {
4525 should_end = 1;
4526 }
4527 if (btrfs_should_throttle_delayed_refs(trans,
4528 root)) {
4529 should_throttle = 1;
4530 }
4531 }
39279cc3 4532 }
85e21bac 4533
8082510e
YZ
4534 if (found_type == BTRFS_INODE_ITEM_KEY)
4535 break;
4536
4537 if (path->slots[0] == 0 ||
1262133b 4538 path->slots[0] != pending_del_slot ||
28f75a0e 4539 should_throttle || should_end) {
8082510e
YZ
4540 if (pending_del_nr) {
4541 ret = btrfs_del_items(trans, root, path,
4542 pending_del_slot,
4543 pending_del_nr);
79787eaa
JM
4544 if (ret) {
4545 btrfs_abort_transaction(trans,
4546 root, ret);
4547 goto error;
4548 }
8082510e
YZ
4549 pending_del_nr = 0;
4550 }
b3b4aa74 4551 btrfs_release_path(path);
28f75a0e 4552 if (should_throttle) {
1262133b
JB
4553 unsigned long updates = trans->delayed_ref_updates;
4554 if (updates) {
4555 trans->delayed_ref_updates = 0;
4556 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4557 if (ret && !err)
4558 err = ret;
4559 }
4560 }
28f75a0e
CM
4561 /*
4562 * if we failed to refill our space rsv, bail out
4563 * and let the transaction restart
4564 */
4565 if (should_end) {
4566 err = -EAGAIN;
4567 goto error;
4568 }
85e21bac 4569 goto search_again;
8082510e
YZ
4570 } else {
4571 path->slots[0]--;
85e21bac 4572 }
39279cc3 4573 }
8082510e 4574out:
85e21bac
CM
4575 if (pending_del_nr) {
4576 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4577 pending_del_nr);
79787eaa
JM
4578 if (ret)
4579 btrfs_abort_transaction(trans, root, ret);
85e21bac 4580 }
79787eaa 4581error:
c1aa4575 4582 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4583 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4584
39279cc3 4585 btrfs_free_path(path);
28ed1345 4586
28f75a0e 4587 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
28ed1345
CM
4588 unsigned long updates = trans->delayed_ref_updates;
4589 if (updates) {
4590 trans->delayed_ref_updates = 0;
4591 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4592 if (ret && !err)
4593 err = ret;
4594 }
4595 }
8082510e 4596 return err;
39279cc3
CM
4597}
4598
4599/*
2aaa6655
JB
4600 * btrfs_truncate_page - read, zero a chunk and write a page
4601 * @inode - inode that we're zeroing
4602 * @from - the offset to start zeroing
4603 * @len - the length to zero, 0 to zero the entire range respective to the
4604 * offset
4605 * @front - zero up to the offset instead of from the offset on
4606 *
4607 * This will find the page for the "from" offset and cow the page and zero the
4608 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4609 */
2aaa6655
JB
4610int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4611 int front)
39279cc3 4612{
2aaa6655 4613 struct address_space *mapping = inode->i_mapping;
db94535d 4614 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4615 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4616 struct btrfs_ordered_extent *ordered;
2ac55d41 4617 struct extent_state *cached_state = NULL;
e6dcd2dc 4618 char *kaddr;
db94535d 4619 u32 blocksize = root->sectorsize;
39279cc3
CM
4620 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4621 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4622 struct page *page;
3b16a4e3 4623 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4624 int ret = 0;
a52d9a80 4625 u64 page_start;
e6dcd2dc 4626 u64 page_end;
39279cc3 4627
2aaa6655
JB
4628 if ((offset & (blocksize - 1)) == 0 &&
4629 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4630 goto out;
0ca1f7ce 4631 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4632 if (ret)
4633 goto out;
39279cc3 4634
211c17f5 4635again:
3b16a4e3 4636 page = find_or_create_page(mapping, index, mask);
5d5e103a 4637 if (!page) {
0ca1f7ce 4638 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4639 ret = -ENOMEM;
39279cc3 4640 goto out;
5d5e103a 4641 }
e6dcd2dc
CM
4642
4643 page_start = page_offset(page);
4644 page_end = page_start + PAGE_CACHE_SIZE - 1;
4645
39279cc3 4646 if (!PageUptodate(page)) {
9ebefb18 4647 ret = btrfs_readpage(NULL, page);
39279cc3 4648 lock_page(page);
211c17f5
CM
4649 if (page->mapping != mapping) {
4650 unlock_page(page);
4651 page_cache_release(page);
4652 goto again;
4653 }
39279cc3
CM
4654 if (!PageUptodate(page)) {
4655 ret = -EIO;
89642229 4656 goto out_unlock;
39279cc3
CM
4657 }
4658 }
211c17f5 4659 wait_on_page_writeback(page);
e6dcd2dc 4660
d0082371 4661 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4662 set_page_extent_mapped(page);
4663
4664 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4665 if (ordered) {
2ac55d41
JB
4666 unlock_extent_cached(io_tree, page_start, page_end,
4667 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4668 unlock_page(page);
4669 page_cache_release(page);
eb84ae03 4670 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4671 btrfs_put_ordered_extent(ordered);
4672 goto again;
4673 }
4674
2ac55d41 4675 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4676 EXTENT_DIRTY | EXTENT_DELALLOC |
4677 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4678 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4679
2ac55d41
JB
4680 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4681 &cached_state);
9ed74f2d 4682 if (ret) {
2ac55d41
JB
4683 unlock_extent_cached(io_tree, page_start, page_end,
4684 &cached_state, GFP_NOFS);
9ed74f2d
JB
4685 goto out_unlock;
4686 }
4687
e6dcd2dc 4688 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4689 if (!len)
4690 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4691 kaddr = kmap(page);
2aaa6655
JB
4692 if (front)
4693 memset(kaddr, 0, offset);
4694 else
4695 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4696 flush_dcache_page(page);
4697 kunmap(page);
4698 }
247e743c 4699 ClearPageChecked(page);
e6dcd2dc 4700 set_page_dirty(page);
2ac55d41
JB
4701 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4702 GFP_NOFS);
39279cc3 4703
89642229 4704out_unlock:
5d5e103a 4705 if (ret)
0ca1f7ce 4706 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4707 unlock_page(page);
4708 page_cache_release(page);
4709out:
4710 return ret;
4711}
4712
16e7549f
JB
4713static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4714 u64 offset, u64 len)
4715{
4716 struct btrfs_trans_handle *trans;
4717 int ret;
4718
4719 /*
4720 * Still need to make sure the inode looks like it's been updated so
4721 * that any holes get logged if we fsync.
4722 */
4723 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4724 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4725 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4726 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4727 return 0;
4728 }
4729
4730 /*
4731 * 1 - for the one we're dropping
4732 * 1 - for the one we're adding
4733 * 1 - for updating the inode.
4734 */
4735 trans = btrfs_start_transaction(root, 3);
4736 if (IS_ERR(trans))
4737 return PTR_ERR(trans);
4738
4739 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4740 if (ret) {
4741 btrfs_abort_transaction(trans, root, ret);
4742 btrfs_end_transaction(trans, root);
4743 return ret;
4744 }
4745
4746 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4747 0, 0, len, 0, len, 0, 0, 0);
4748 if (ret)
4749 btrfs_abort_transaction(trans, root, ret);
4750 else
4751 btrfs_update_inode(trans, root, inode);
4752 btrfs_end_transaction(trans, root);
4753 return ret;
4754}
4755
695a0d0d
JB
4756/*
4757 * This function puts in dummy file extents for the area we're creating a hole
4758 * for. So if we are truncating this file to a larger size we need to insert
4759 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4760 * the range between oldsize and size
4761 */
a41ad394 4762int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4763{
9036c102
YZ
4764 struct btrfs_root *root = BTRFS_I(inode)->root;
4765 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4766 struct extent_map *em = NULL;
2ac55d41 4767 struct extent_state *cached_state = NULL;
5dc562c5 4768 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4769 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4770 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4771 u64 last_byte;
4772 u64 cur_offset;
4773 u64 hole_size;
9ed74f2d 4774 int err = 0;
39279cc3 4775
a71754fc
JB
4776 /*
4777 * If our size started in the middle of a page we need to zero out the
4778 * rest of the page before we expand the i_size, otherwise we could
4779 * expose stale data.
4780 */
4781 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4782 if (err)
4783 return err;
4784
9036c102
YZ
4785 if (size <= hole_start)
4786 return 0;
4787
9036c102
YZ
4788 while (1) {
4789 struct btrfs_ordered_extent *ordered;
fa7c1494 4790
2ac55d41 4791 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4792 &cached_state);
fa7c1494
MX
4793 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4794 block_end - hole_start);
9036c102
YZ
4795 if (!ordered)
4796 break;
2ac55d41
JB
4797 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4798 &cached_state, GFP_NOFS);
fa7c1494 4799 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4800 btrfs_put_ordered_extent(ordered);
4801 }
39279cc3 4802
9036c102
YZ
4803 cur_offset = hole_start;
4804 while (1) {
4805 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4806 block_end - cur_offset, 0);
79787eaa
JM
4807 if (IS_ERR(em)) {
4808 err = PTR_ERR(em);
f2767956 4809 em = NULL;
79787eaa
JM
4810 break;
4811 }
9036c102 4812 last_byte = min(extent_map_end(em), block_end);
fda2832f 4813 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4814 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4815 struct extent_map *hole_em;
9036c102 4816 hole_size = last_byte - cur_offset;
9ed74f2d 4817
16e7549f
JB
4818 err = maybe_insert_hole(root, inode, cur_offset,
4819 hole_size);
4820 if (err)
3893e33b 4821 break;
5dc562c5
JB
4822 btrfs_drop_extent_cache(inode, cur_offset,
4823 cur_offset + hole_size - 1, 0);
4824 hole_em = alloc_extent_map();
4825 if (!hole_em) {
4826 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4827 &BTRFS_I(inode)->runtime_flags);
4828 goto next;
4829 }
4830 hole_em->start = cur_offset;
4831 hole_em->len = hole_size;
4832 hole_em->orig_start = cur_offset;
8082510e 4833
5dc562c5
JB
4834 hole_em->block_start = EXTENT_MAP_HOLE;
4835 hole_em->block_len = 0;
b4939680 4836 hole_em->orig_block_len = 0;
cc95bef6 4837 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4838 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4839 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4840 hole_em->generation = root->fs_info->generation;
8082510e 4841
5dc562c5
JB
4842 while (1) {
4843 write_lock(&em_tree->lock);
09a2a8f9 4844 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4845 write_unlock(&em_tree->lock);
4846 if (err != -EEXIST)
4847 break;
4848 btrfs_drop_extent_cache(inode, cur_offset,
4849 cur_offset +
4850 hole_size - 1, 0);
4851 }
4852 free_extent_map(hole_em);
9036c102 4853 }
16e7549f 4854next:
9036c102 4855 free_extent_map(em);
a22285a6 4856 em = NULL;
9036c102 4857 cur_offset = last_byte;
8082510e 4858 if (cur_offset >= block_end)
9036c102
YZ
4859 break;
4860 }
a22285a6 4861 free_extent_map(em);
2ac55d41
JB
4862 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4863 GFP_NOFS);
9036c102
YZ
4864 return err;
4865}
39279cc3 4866
9ea24bbe
FM
4867static int wait_snapshoting_atomic_t(atomic_t *a)
4868{
4869 schedule();
4870 return 0;
4871}
4872
4873static void wait_for_snapshot_creation(struct btrfs_root *root)
4874{
4875 while (true) {
4876 int ret;
4877
4878 ret = btrfs_start_write_no_snapshoting(root);
4879 if (ret)
4880 break;
4881 wait_on_atomic_t(&root->will_be_snapshoted,
4882 wait_snapshoting_atomic_t,
4883 TASK_UNINTERRUPTIBLE);
4884 }
4885}
4886
3972f260 4887static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4888{
f4a2f4c5
MX
4889 struct btrfs_root *root = BTRFS_I(inode)->root;
4890 struct btrfs_trans_handle *trans;
a41ad394 4891 loff_t oldsize = i_size_read(inode);
3972f260
ES
4892 loff_t newsize = attr->ia_size;
4893 int mask = attr->ia_valid;
8082510e
YZ
4894 int ret;
4895
3972f260
ES
4896 /*
4897 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4898 * special case where we need to update the times despite not having
4899 * these flags set. For all other operations the VFS set these flags
4900 * explicitly if it wants a timestamp update.
4901 */
dff6efc3
CH
4902 if (newsize != oldsize) {
4903 inode_inc_iversion(inode);
4904 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4905 inode->i_ctime = inode->i_mtime =
4906 current_fs_time(inode->i_sb);
4907 }
3972f260 4908
a41ad394 4909 if (newsize > oldsize) {
7caef267 4910 truncate_pagecache(inode, newsize);
9ea24bbe
FM
4911 /*
4912 * Don't do an expanding truncate while snapshoting is ongoing.
4913 * This is to ensure the snapshot captures a fully consistent
4914 * state of this file - if the snapshot captures this expanding
4915 * truncation, it must capture all writes that happened before
4916 * this truncation.
4917 */
4918 wait_for_snapshot_creation(root);
a41ad394 4919 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4920 if (ret) {
4921 btrfs_end_write_no_snapshoting(root);
8082510e 4922 return ret;
9ea24bbe 4923 }
8082510e 4924
f4a2f4c5 4925 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4926 if (IS_ERR(trans)) {
4927 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4928 return PTR_ERR(trans);
9ea24bbe 4929 }
f4a2f4c5
MX
4930
4931 i_size_write(inode, newsize);
4932 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4933 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4934 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4935 btrfs_end_transaction(trans, root);
a41ad394 4936 } else {
8082510e 4937
a41ad394
JB
4938 /*
4939 * We're truncating a file that used to have good data down to
4940 * zero. Make sure it gets into the ordered flush list so that
4941 * any new writes get down to disk quickly.
4942 */
4943 if (newsize == 0)
72ac3c0d
JB
4944 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4945 &BTRFS_I(inode)->runtime_flags);
8082510e 4946
f3fe820c
JB
4947 /*
4948 * 1 for the orphan item we're going to add
4949 * 1 for the orphan item deletion.
4950 */
4951 trans = btrfs_start_transaction(root, 2);
4952 if (IS_ERR(trans))
4953 return PTR_ERR(trans);
4954
4955 /*
4956 * We need to do this in case we fail at _any_ point during the
4957 * actual truncate. Once we do the truncate_setsize we could
4958 * invalidate pages which forces any outstanding ordered io to
4959 * be instantly completed which will give us extents that need
4960 * to be truncated. If we fail to get an orphan inode down we
4961 * could have left over extents that were never meant to live,
4962 * so we need to garuntee from this point on that everything
4963 * will be consistent.
4964 */
4965 ret = btrfs_orphan_add(trans, inode);
4966 btrfs_end_transaction(trans, root);
4967 if (ret)
4968 return ret;
4969
a41ad394
JB
4970 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4971 truncate_setsize(inode, newsize);
2e60a51e
MX
4972
4973 /* Disable nonlocked read DIO to avoid the end less truncate */
4974 btrfs_inode_block_unlocked_dio(inode);
4975 inode_dio_wait(inode);
4976 btrfs_inode_resume_unlocked_dio(inode);
4977
a41ad394 4978 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4979 if (ret && inode->i_nlink) {
4980 int err;
4981
4982 /*
4983 * failed to truncate, disk_i_size is only adjusted down
4984 * as we remove extents, so it should represent the true
4985 * size of the inode, so reset the in memory size and
4986 * delete our orphan entry.
4987 */
4988 trans = btrfs_join_transaction(root);
4989 if (IS_ERR(trans)) {
4990 btrfs_orphan_del(NULL, inode);
4991 return ret;
4992 }
4993 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4994 err = btrfs_orphan_del(trans, inode);
4995 if (err)
4996 btrfs_abort_transaction(trans, root, err);
4997 btrfs_end_transaction(trans, root);
4998 }
8082510e
YZ
4999 }
5000
a41ad394 5001 return ret;
8082510e
YZ
5002}
5003
9036c102
YZ
5004static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5005{
2b0143b5 5006 struct inode *inode = d_inode(dentry);
b83cc969 5007 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5008 int err;
39279cc3 5009
b83cc969
LZ
5010 if (btrfs_root_readonly(root))
5011 return -EROFS;
5012
9036c102
YZ
5013 err = inode_change_ok(inode, attr);
5014 if (err)
5015 return err;
2bf5a725 5016
5a3f23d5 5017 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5018 err = btrfs_setsize(inode, attr);
8082510e
YZ
5019 if (err)
5020 return err;
39279cc3 5021 }
9036c102 5022
1025774c
CH
5023 if (attr->ia_valid) {
5024 setattr_copy(inode, attr);
0c4d2d95 5025 inode_inc_iversion(inode);
22c44fe6 5026 err = btrfs_dirty_inode(inode);
1025774c 5027
22c44fe6 5028 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5029 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5030 }
33268eaf 5031
39279cc3
CM
5032 return err;
5033}
61295eb8 5034
131e404a
FDBM
5035/*
5036 * While truncating the inode pages during eviction, we get the VFS calling
5037 * btrfs_invalidatepage() against each page of the inode. This is slow because
5038 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5039 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5040 * extent_state structures over and over, wasting lots of time.
5041 *
5042 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5043 * those expensive operations on a per page basis and do only the ordered io
5044 * finishing, while we release here the extent_map and extent_state structures,
5045 * without the excessive merging and splitting.
5046 */
5047static void evict_inode_truncate_pages(struct inode *inode)
5048{
5049 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5050 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5051 struct rb_node *node;
5052
5053 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5054 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5055
5056 write_lock(&map_tree->lock);
5057 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5058 struct extent_map *em;
5059
5060 node = rb_first(&map_tree->map);
5061 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5062 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5063 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5064 remove_extent_mapping(map_tree, em);
5065 free_extent_map(em);
7064dd5c
FM
5066 if (need_resched()) {
5067 write_unlock(&map_tree->lock);
5068 cond_resched();
5069 write_lock(&map_tree->lock);
5070 }
131e404a
FDBM
5071 }
5072 write_unlock(&map_tree->lock);
5073
6ca07097
FM
5074 /*
5075 * Keep looping until we have no more ranges in the io tree.
5076 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5077 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5078 * still in progress (unlocked the pages in the bio but did not yet
5079 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5080 * ranges can still be locked and eviction started because before
5081 * submitting those bios, which are executed by a separate task (work
5082 * queue kthread), inode references (inode->i_count) were not taken
5083 * (which would be dropped in the end io callback of each bio).
5084 * Therefore here we effectively end up waiting for those bios and
5085 * anyone else holding locked ranges without having bumped the inode's
5086 * reference count - if we don't do it, when they access the inode's
5087 * io_tree to unlock a range it may be too late, leading to an
5088 * use-after-free issue.
5089 */
131e404a
FDBM
5090 spin_lock(&io_tree->lock);
5091 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5092 struct extent_state *state;
5093 struct extent_state *cached_state = NULL;
6ca07097
FM
5094 u64 start;
5095 u64 end;
131e404a
FDBM
5096
5097 node = rb_first(&io_tree->state);
5098 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5099 start = state->start;
5100 end = state->end;
131e404a
FDBM
5101 spin_unlock(&io_tree->lock);
5102
6ca07097
FM
5103 lock_extent_bits(io_tree, start, end, 0, &cached_state);
5104 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5105 EXTENT_LOCKED | EXTENT_DIRTY |
5106 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5107 EXTENT_DEFRAG, 1, 1,
5108 &cached_state, GFP_NOFS);
131e404a 5109
7064dd5c 5110 cond_resched();
131e404a
FDBM
5111 spin_lock(&io_tree->lock);
5112 }
5113 spin_unlock(&io_tree->lock);
5114}
5115
bd555975 5116void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5117{
5118 struct btrfs_trans_handle *trans;
5119 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5120 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5121 int steal_from_global = 0;
07127184 5122 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
5123 int ret;
5124
1abe9b8a 5125 trace_btrfs_inode_evict(inode);
5126
131e404a
FDBM
5127 evict_inode_truncate_pages(inode);
5128
69e9c6c6
SB
5129 if (inode->i_nlink &&
5130 ((btrfs_root_refs(&root->root_item) != 0 &&
5131 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5132 btrfs_is_free_space_inode(inode)))
bd555975
AV
5133 goto no_delete;
5134
39279cc3 5135 if (is_bad_inode(inode)) {
7b128766 5136 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5137 goto no_delete;
5138 }
bd555975 5139 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5140 if (!special_file(inode->i_mode))
5141 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5142
f612496b
MX
5143 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5144
c71bf099 5145 if (root->fs_info->log_root_recovering) {
6bf02314 5146 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5147 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5148 goto no_delete;
5149 }
5150
76dda93c 5151 if (inode->i_nlink > 0) {
69e9c6c6
SB
5152 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5153 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5154 goto no_delete;
5155 }
5156
0e8c36a9
MX
5157 ret = btrfs_commit_inode_delayed_inode(inode);
5158 if (ret) {
5159 btrfs_orphan_del(NULL, inode);
5160 goto no_delete;
5161 }
5162
66d8f3dd 5163 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5164 if (!rsv) {
5165 btrfs_orphan_del(NULL, inode);
5166 goto no_delete;
5167 }
4a338542 5168 rsv->size = min_size;
ca7e70f5 5169 rsv->failfast = 1;
726c35fa 5170 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5171
dbe674a9 5172 btrfs_i_size_write(inode, 0);
5f39d397 5173
4289a667 5174 /*
8407aa46
MX
5175 * This is a bit simpler than btrfs_truncate since we've already
5176 * reserved our space for our orphan item in the unlink, so we just
5177 * need to reserve some slack space in case we add bytes and update
5178 * inode item when doing the truncate.
4289a667 5179 */
8082510e 5180 while (1) {
08e007d2
MX
5181 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5182 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5183
5184 /*
5185 * Try and steal from the global reserve since we will
5186 * likely not use this space anyway, we want to try as
5187 * hard as possible to get this to work.
5188 */
5189 if (ret)
3bce876f
JB
5190 steal_from_global++;
5191 else
5192 steal_from_global = 0;
5193 ret = 0;
d68fc57b 5194
3bce876f
JB
5195 /*
5196 * steal_from_global == 0: we reserved stuff, hooray!
5197 * steal_from_global == 1: we didn't reserve stuff, boo!
5198 * steal_from_global == 2: we've committed, still not a lot of
5199 * room but maybe we'll have room in the global reserve this
5200 * time.
5201 * steal_from_global == 3: abandon all hope!
5202 */
5203 if (steal_from_global > 2) {
c2cf52eb
SK
5204 btrfs_warn(root->fs_info,
5205 "Could not get space for a delete, will truncate on mount %d",
5206 ret);
4289a667
JB
5207 btrfs_orphan_del(NULL, inode);
5208 btrfs_free_block_rsv(root, rsv);
5209 goto no_delete;
d68fc57b 5210 }
7b128766 5211
0e8c36a9 5212 trans = btrfs_join_transaction(root);
4289a667
JB
5213 if (IS_ERR(trans)) {
5214 btrfs_orphan_del(NULL, inode);
5215 btrfs_free_block_rsv(root, rsv);
5216 goto no_delete;
d68fc57b 5217 }
7b128766 5218
3bce876f
JB
5219 /*
5220 * We can't just steal from the global reserve, we need tomake
5221 * sure there is room to do it, if not we need to commit and try
5222 * again.
5223 */
5224 if (steal_from_global) {
5225 if (!btrfs_check_space_for_delayed_refs(trans, root))
5226 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5227 min_size);
5228 else
5229 ret = -ENOSPC;
5230 }
5231
5232 /*
5233 * Couldn't steal from the global reserve, we have too much
5234 * pending stuff built up, commit the transaction and try it
5235 * again.
5236 */
5237 if (ret) {
5238 ret = btrfs_commit_transaction(trans, root);
5239 if (ret) {
5240 btrfs_orphan_del(NULL, inode);
5241 btrfs_free_block_rsv(root, rsv);
5242 goto no_delete;
5243 }
5244 continue;
5245 } else {
5246 steal_from_global = 0;
5247 }
5248
4289a667
JB
5249 trans->block_rsv = rsv;
5250
d68fc57b 5251 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5252 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5253 break;
85e21bac 5254
8407aa46 5255 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5256 btrfs_end_transaction(trans, root);
5257 trans = NULL;
b53d3f5d 5258 btrfs_btree_balance_dirty(root);
8082510e 5259 }
5f39d397 5260
4289a667
JB
5261 btrfs_free_block_rsv(root, rsv);
5262
4ef31a45
JB
5263 /*
5264 * Errors here aren't a big deal, it just means we leave orphan items
5265 * in the tree. They will be cleaned up on the next mount.
5266 */
8082510e 5267 if (ret == 0) {
4289a667 5268 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5269 btrfs_orphan_del(trans, inode);
5270 } else {
5271 btrfs_orphan_del(NULL, inode);
8082510e 5272 }
54aa1f4d 5273
4289a667 5274 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5275 if (!(root == root->fs_info->tree_root ||
5276 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5277 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5278
54aa1f4d 5279 btrfs_end_transaction(trans, root);
b53d3f5d 5280 btrfs_btree_balance_dirty(root);
39279cc3 5281no_delete:
89042e5a 5282 btrfs_remove_delayed_node(inode);
dbd5768f 5283 clear_inode(inode);
8082510e 5284 return;
39279cc3
CM
5285}
5286
5287/*
5288 * this returns the key found in the dir entry in the location pointer.
5289 * If no dir entries were found, location->objectid is 0.
5290 */
5291static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5292 struct btrfs_key *location)
5293{
5294 const char *name = dentry->d_name.name;
5295 int namelen = dentry->d_name.len;
5296 struct btrfs_dir_item *di;
5297 struct btrfs_path *path;
5298 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5299 int ret = 0;
39279cc3
CM
5300
5301 path = btrfs_alloc_path();
d8926bb3
MF
5302 if (!path)
5303 return -ENOMEM;
3954401f 5304
33345d01 5305 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5306 namelen, 0);
0d9f7f3e
Y
5307 if (IS_ERR(di))
5308 ret = PTR_ERR(di);
d397712b 5309
c704005d 5310 if (IS_ERR_OR_NULL(di))
3954401f 5311 goto out_err;
d397712b 5312
5f39d397 5313 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5314out:
39279cc3
CM
5315 btrfs_free_path(path);
5316 return ret;
3954401f
CM
5317out_err:
5318 location->objectid = 0;
5319 goto out;
39279cc3
CM
5320}
5321
5322/*
5323 * when we hit a tree root in a directory, the btrfs part of the inode
5324 * needs to be changed to reflect the root directory of the tree root. This
5325 * is kind of like crossing a mount point.
5326 */
5327static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5328 struct inode *dir,
5329 struct dentry *dentry,
5330 struct btrfs_key *location,
5331 struct btrfs_root **sub_root)
39279cc3 5332{
4df27c4d
YZ
5333 struct btrfs_path *path;
5334 struct btrfs_root *new_root;
5335 struct btrfs_root_ref *ref;
5336 struct extent_buffer *leaf;
1d4c08e0 5337 struct btrfs_key key;
4df27c4d
YZ
5338 int ret;
5339 int err = 0;
39279cc3 5340
4df27c4d
YZ
5341 path = btrfs_alloc_path();
5342 if (!path) {
5343 err = -ENOMEM;
5344 goto out;
5345 }
39279cc3 5346
4df27c4d 5347 err = -ENOENT;
1d4c08e0
DS
5348 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5349 key.type = BTRFS_ROOT_REF_KEY;
5350 key.offset = location->objectid;
5351
5352 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5353 0, 0);
4df27c4d
YZ
5354 if (ret) {
5355 if (ret < 0)
5356 err = ret;
5357 goto out;
5358 }
39279cc3 5359
4df27c4d
YZ
5360 leaf = path->nodes[0];
5361 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5362 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5363 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5364 goto out;
39279cc3 5365
4df27c4d
YZ
5366 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5367 (unsigned long)(ref + 1),
5368 dentry->d_name.len);
5369 if (ret)
5370 goto out;
5371
b3b4aa74 5372 btrfs_release_path(path);
4df27c4d
YZ
5373
5374 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5375 if (IS_ERR(new_root)) {
5376 err = PTR_ERR(new_root);
5377 goto out;
5378 }
5379
4df27c4d
YZ
5380 *sub_root = new_root;
5381 location->objectid = btrfs_root_dirid(&new_root->root_item);
5382 location->type = BTRFS_INODE_ITEM_KEY;
5383 location->offset = 0;
5384 err = 0;
5385out:
5386 btrfs_free_path(path);
5387 return err;
39279cc3
CM
5388}
5389
5d4f98a2
YZ
5390static void inode_tree_add(struct inode *inode)
5391{
5392 struct btrfs_root *root = BTRFS_I(inode)->root;
5393 struct btrfs_inode *entry;
03e860bd
FNP
5394 struct rb_node **p;
5395 struct rb_node *parent;
cef21937 5396 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5397 u64 ino = btrfs_ino(inode);
5d4f98a2 5398
1d3382cb 5399 if (inode_unhashed(inode))
76dda93c 5400 return;
e1409cef 5401 parent = NULL;
5d4f98a2 5402 spin_lock(&root->inode_lock);
e1409cef 5403 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5404 while (*p) {
5405 parent = *p;
5406 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5407
33345d01 5408 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5409 p = &parent->rb_left;
33345d01 5410 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5411 p = &parent->rb_right;
5d4f98a2
YZ
5412 else {
5413 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5414 (I_WILL_FREE | I_FREEING)));
cef21937 5415 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5416 RB_CLEAR_NODE(parent);
5417 spin_unlock(&root->inode_lock);
cef21937 5418 return;
5d4f98a2
YZ
5419 }
5420 }
cef21937
FDBM
5421 rb_link_node(new, parent, p);
5422 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5423 spin_unlock(&root->inode_lock);
5424}
5425
5426static void inode_tree_del(struct inode *inode)
5427{
5428 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5429 int empty = 0;
5d4f98a2 5430
03e860bd 5431 spin_lock(&root->inode_lock);
5d4f98a2 5432 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5433 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5434 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5435 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5436 }
03e860bd 5437 spin_unlock(&root->inode_lock);
76dda93c 5438
69e9c6c6 5439 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5440 synchronize_srcu(&root->fs_info->subvol_srcu);
5441 spin_lock(&root->inode_lock);
5442 empty = RB_EMPTY_ROOT(&root->inode_tree);
5443 spin_unlock(&root->inode_lock);
5444 if (empty)
5445 btrfs_add_dead_root(root);
5446 }
5447}
5448
143bede5 5449void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5450{
5451 struct rb_node *node;
5452 struct rb_node *prev;
5453 struct btrfs_inode *entry;
5454 struct inode *inode;
5455 u64 objectid = 0;
5456
7813b3db
LB
5457 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5458 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5459
5460 spin_lock(&root->inode_lock);
5461again:
5462 node = root->inode_tree.rb_node;
5463 prev = NULL;
5464 while (node) {
5465 prev = node;
5466 entry = rb_entry(node, struct btrfs_inode, rb_node);
5467
33345d01 5468 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5469 node = node->rb_left;
33345d01 5470 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5471 node = node->rb_right;
5472 else
5473 break;
5474 }
5475 if (!node) {
5476 while (prev) {
5477 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5478 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5479 node = prev;
5480 break;
5481 }
5482 prev = rb_next(prev);
5483 }
5484 }
5485 while (node) {
5486 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5487 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5488 inode = igrab(&entry->vfs_inode);
5489 if (inode) {
5490 spin_unlock(&root->inode_lock);
5491 if (atomic_read(&inode->i_count) > 1)
5492 d_prune_aliases(inode);
5493 /*
45321ac5 5494 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5495 * the inode cache when its usage count
5496 * hits zero.
5497 */
5498 iput(inode);
5499 cond_resched();
5500 spin_lock(&root->inode_lock);
5501 goto again;
5502 }
5503
5504 if (cond_resched_lock(&root->inode_lock))
5505 goto again;
5506
5507 node = rb_next(node);
5508 }
5509 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5510}
5511
e02119d5
CM
5512static int btrfs_init_locked_inode(struct inode *inode, void *p)
5513{
5514 struct btrfs_iget_args *args = p;
90d3e592
CM
5515 inode->i_ino = args->location->objectid;
5516 memcpy(&BTRFS_I(inode)->location, args->location,
5517 sizeof(*args->location));
e02119d5 5518 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5519 return 0;
5520}
5521
5522static int btrfs_find_actor(struct inode *inode, void *opaque)
5523{
5524 struct btrfs_iget_args *args = opaque;
90d3e592 5525 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5526 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5527}
5528
5d4f98a2 5529static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5530 struct btrfs_key *location,
5d4f98a2 5531 struct btrfs_root *root)
39279cc3
CM
5532{
5533 struct inode *inode;
5534 struct btrfs_iget_args args;
90d3e592 5535 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5536
90d3e592 5537 args.location = location;
39279cc3
CM
5538 args.root = root;
5539
778ba82b 5540 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5541 btrfs_init_locked_inode,
5542 (void *)&args);
5543 return inode;
5544}
5545
1a54ef8c
BR
5546/* Get an inode object given its location and corresponding root.
5547 * Returns in *is_new if the inode was read from disk
5548 */
5549struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5550 struct btrfs_root *root, int *new)
1a54ef8c
BR
5551{
5552 struct inode *inode;
5553
90d3e592 5554 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5555 if (!inode)
5d4f98a2 5556 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5557
5558 if (inode->i_state & I_NEW) {
1a54ef8c 5559 btrfs_read_locked_inode(inode);
1748f843
MF
5560 if (!is_bad_inode(inode)) {
5561 inode_tree_add(inode);
5562 unlock_new_inode(inode);
5563 if (new)
5564 *new = 1;
5565 } else {
e0b6d65b
ST
5566 unlock_new_inode(inode);
5567 iput(inode);
5568 inode = ERR_PTR(-ESTALE);
1748f843
MF
5569 }
5570 }
5571
1a54ef8c
BR
5572 return inode;
5573}
5574
4df27c4d
YZ
5575static struct inode *new_simple_dir(struct super_block *s,
5576 struct btrfs_key *key,
5577 struct btrfs_root *root)
5578{
5579 struct inode *inode = new_inode(s);
5580
5581 if (!inode)
5582 return ERR_PTR(-ENOMEM);
5583
4df27c4d
YZ
5584 BTRFS_I(inode)->root = root;
5585 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5586 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5587
5588 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5589 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5590 inode->i_fop = &simple_dir_operations;
5591 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
9cc97d64 5592 inode->i_mtime = CURRENT_TIME;
5593 inode->i_atime = inode->i_mtime;
5594 inode->i_ctime = inode->i_mtime;
5595 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5596
5597 return inode;
5598}
5599
3de4586c 5600struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5601{
d397712b 5602 struct inode *inode;
4df27c4d 5603 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5604 struct btrfs_root *sub_root = root;
5605 struct btrfs_key location;
76dda93c 5606 int index;
b4aff1f8 5607 int ret = 0;
39279cc3
CM
5608
5609 if (dentry->d_name.len > BTRFS_NAME_LEN)
5610 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5611
39e3c955 5612 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5613 if (ret < 0)
5614 return ERR_PTR(ret);
5f39d397 5615
4df27c4d 5616 if (location.objectid == 0)
5662344b 5617 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5618
5619 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5620 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5621 return inode;
5622 }
5623
5624 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5625
76dda93c 5626 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5627 ret = fixup_tree_root_location(root, dir, dentry,
5628 &location, &sub_root);
5629 if (ret < 0) {
5630 if (ret != -ENOENT)
5631 inode = ERR_PTR(ret);
5632 else
5633 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5634 } else {
73f73415 5635 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5636 }
76dda93c
YZ
5637 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5638
34d19bad 5639 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5640 down_read(&root->fs_info->cleanup_work_sem);
5641 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5642 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5643 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5644 if (ret) {
5645 iput(inode);
66b4ffd1 5646 inode = ERR_PTR(ret);
01cd3367 5647 }
c71bf099
YZ
5648 }
5649
3de4586c
CM
5650 return inode;
5651}
5652
fe15ce44 5653static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5654{
5655 struct btrfs_root *root;
2b0143b5 5656 struct inode *inode = d_inode(dentry);
76dda93c 5657
848cce0d 5658 if (!inode && !IS_ROOT(dentry))
2b0143b5 5659 inode = d_inode(dentry->d_parent);
76dda93c 5660
848cce0d
LZ
5661 if (inode) {
5662 root = BTRFS_I(inode)->root;
efefb143
YZ
5663 if (btrfs_root_refs(&root->root_item) == 0)
5664 return 1;
848cce0d
LZ
5665
5666 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5667 return 1;
efefb143 5668 }
76dda93c
YZ
5669 return 0;
5670}
5671
b4aff1f8
JB
5672static void btrfs_dentry_release(struct dentry *dentry)
5673{
944a4515 5674 kfree(dentry->d_fsdata);
b4aff1f8
JB
5675}
5676
3de4586c 5677static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5678 unsigned int flags)
3de4586c 5679{
5662344b 5680 struct inode *inode;
a66e7cc6 5681
5662344b
TI
5682 inode = btrfs_lookup_dentry(dir, dentry);
5683 if (IS_ERR(inode)) {
5684 if (PTR_ERR(inode) == -ENOENT)
5685 inode = NULL;
5686 else
5687 return ERR_CAST(inode);
5688 }
5689
41d28bca 5690 return d_splice_alias(inode, dentry);
39279cc3
CM
5691}
5692
16cdcec7 5693unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5694 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5695};
5696
9cdda8d3 5697static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5698{
9cdda8d3 5699 struct inode *inode = file_inode(file);
39279cc3
CM
5700 struct btrfs_root *root = BTRFS_I(inode)->root;
5701 struct btrfs_item *item;
5702 struct btrfs_dir_item *di;
5703 struct btrfs_key key;
5f39d397 5704 struct btrfs_key found_key;
39279cc3 5705 struct btrfs_path *path;
16cdcec7
MX
5706 struct list_head ins_list;
5707 struct list_head del_list;
39279cc3 5708 int ret;
5f39d397 5709 struct extent_buffer *leaf;
39279cc3 5710 int slot;
39279cc3
CM
5711 unsigned char d_type;
5712 int over = 0;
5713 u32 di_cur;
5714 u32 di_total;
5715 u32 di_len;
5716 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5717 char tmp_name[32];
5718 char *name_ptr;
5719 int name_len;
9cdda8d3 5720 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5721
5722 /* FIXME, use a real flag for deciding about the key type */
5723 if (root->fs_info->tree_root == root)
5724 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5725
9cdda8d3
AV
5726 if (!dir_emit_dots(file, ctx))
5727 return 0;
5728
49593bfa 5729 path = btrfs_alloc_path();
16cdcec7
MX
5730 if (!path)
5731 return -ENOMEM;
ff5714cc 5732
026fd317 5733 path->reada = 1;
49593bfa 5734
16cdcec7
MX
5735 if (key_type == BTRFS_DIR_INDEX_KEY) {
5736 INIT_LIST_HEAD(&ins_list);
5737 INIT_LIST_HEAD(&del_list);
5738 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5739 }
5740
962a298f 5741 key.type = key_type;
9cdda8d3 5742 key.offset = ctx->pos;
33345d01 5743 key.objectid = btrfs_ino(inode);
5f39d397 5744
39279cc3
CM
5745 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5746 if (ret < 0)
5747 goto err;
49593bfa
DW
5748
5749 while (1) {
5f39d397 5750 leaf = path->nodes[0];
39279cc3 5751 slot = path->slots[0];
b9e03af0
LZ
5752 if (slot >= btrfs_header_nritems(leaf)) {
5753 ret = btrfs_next_leaf(root, path);
5754 if (ret < 0)
5755 goto err;
5756 else if (ret > 0)
5757 break;
5758 continue;
39279cc3 5759 }
3de4586c 5760
dd3cc16b 5761 item = btrfs_item_nr(slot);
5f39d397
CM
5762 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5763
5764 if (found_key.objectid != key.objectid)
39279cc3 5765 break;
962a298f 5766 if (found_key.type != key_type)
39279cc3 5767 break;
9cdda8d3 5768 if (found_key.offset < ctx->pos)
b9e03af0 5769 goto next;
16cdcec7
MX
5770 if (key_type == BTRFS_DIR_INDEX_KEY &&
5771 btrfs_should_delete_dir_index(&del_list,
5772 found_key.offset))
5773 goto next;
5f39d397 5774
9cdda8d3 5775 ctx->pos = found_key.offset;
16cdcec7 5776 is_curr = 1;
49593bfa 5777
39279cc3
CM
5778 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5779 di_cur = 0;
5f39d397 5780 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5781
5782 while (di_cur < di_total) {
5f39d397
CM
5783 struct btrfs_key location;
5784
22a94d44
JB
5785 if (verify_dir_item(root, leaf, di))
5786 break;
5787
5f39d397 5788 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5789 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5790 name_ptr = tmp_name;
5791 } else {
5792 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5793 if (!name_ptr) {
5794 ret = -ENOMEM;
5795 goto err;
5796 }
5f39d397
CM
5797 }
5798 read_extent_buffer(leaf, name_ptr,
5799 (unsigned long)(di + 1), name_len);
5800
5801 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5802 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5803
fede766f 5804
3de4586c 5805 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5806 * skip it.
5807 *
5808 * In contrast to old kernels, we insert the snapshot's
5809 * dir item and dir index after it has been created, so
5810 * we won't find a reference to our own snapshot. We
5811 * still keep the following code for backward
5812 * compatibility.
3de4586c
CM
5813 */
5814 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5815 location.objectid == root->root_key.objectid) {
5816 over = 0;
5817 goto skip;
5818 }
9cdda8d3
AV
5819 over = !dir_emit(ctx, name_ptr, name_len,
5820 location.objectid, d_type);
5f39d397 5821
3de4586c 5822skip:
5f39d397
CM
5823 if (name_ptr != tmp_name)
5824 kfree(name_ptr);
5825
39279cc3
CM
5826 if (over)
5827 goto nopos;
5103e947 5828 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5829 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5830 di_cur += di_len;
5831 di = (struct btrfs_dir_item *)((char *)di + di_len);
5832 }
b9e03af0
LZ
5833next:
5834 path->slots[0]++;
39279cc3 5835 }
49593bfa 5836
16cdcec7
MX
5837 if (key_type == BTRFS_DIR_INDEX_KEY) {
5838 if (is_curr)
9cdda8d3
AV
5839 ctx->pos++;
5840 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5841 if (ret)
5842 goto nopos;
5843 }
5844
49593bfa 5845 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5846 ctx->pos++;
5847
5848 /*
5849 * Stop new entries from being returned after we return the last
5850 * entry.
5851 *
5852 * New directory entries are assigned a strictly increasing
5853 * offset. This means that new entries created during readdir
5854 * are *guaranteed* to be seen in the future by that readdir.
5855 * This has broken buggy programs which operate on names as
5856 * they're returned by readdir. Until we re-use freed offsets
5857 * we have this hack to stop new entries from being returned
5858 * under the assumption that they'll never reach this huge
5859 * offset.
5860 *
5861 * This is being careful not to overflow 32bit loff_t unless the
5862 * last entry requires it because doing so has broken 32bit apps
5863 * in the past.
5864 */
5865 if (key_type == BTRFS_DIR_INDEX_KEY) {
5866 if (ctx->pos >= INT_MAX)
5867 ctx->pos = LLONG_MAX;
5868 else
5869 ctx->pos = INT_MAX;
5870 }
39279cc3
CM
5871nopos:
5872 ret = 0;
5873err:
16cdcec7
MX
5874 if (key_type == BTRFS_DIR_INDEX_KEY)
5875 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5876 btrfs_free_path(path);
39279cc3
CM
5877 return ret;
5878}
5879
a9185b41 5880int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5881{
5882 struct btrfs_root *root = BTRFS_I(inode)->root;
5883 struct btrfs_trans_handle *trans;
5884 int ret = 0;
0af3d00b 5885 bool nolock = false;
39279cc3 5886
72ac3c0d 5887 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5888 return 0;
5889
83eea1f1 5890 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5891 nolock = true;
0af3d00b 5892
a9185b41 5893 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5894 if (nolock)
7a7eaa40 5895 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5896 else
7a7eaa40 5897 trans = btrfs_join_transaction(root);
3612b495
TI
5898 if (IS_ERR(trans))
5899 return PTR_ERR(trans);
a698d075 5900 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5901 }
5902 return ret;
5903}
5904
5905/*
54aa1f4d 5906 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5907 * inode changes. But, it is most likely to find the inode in cache.
5908 * FIXME, needs more benchmarking...there are no reasons other than performance
5909 * to keep or drop this code.
5910 */
48a3b636 5911static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5912{
5913 struct btrfs_root *root = BTRFS_I(inode)->root;
5914 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5915 int ret;
5916
72ac3c0d 5917 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5918 return 0;
39279cc3 5919
7a7eaa40 5920 trans = btrfs_join_transaction(root);
22c44fe6
JB
5921 if (IS_ERR(trans))
5922 return PTR_ERR(trans);
8929ecfa
YZ
5923
5924 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5925 if (ret && ret == -ENOSPC) {
5926 /* whoops, lets try again with the full transaction */
5927 btrfs_end_transaction(trans, root);
5928 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5929 if (IS_ERR(trans))
5930 return PTR_ERR(trans);
8929ecfa 5931
94b60442 5932 ret = btrfs_update_inode(trans, root, inode);
94b60442 5933 }
39279cc3 5934 btrfs_end_transaction(trans, root);
16cdcec7
MX
5935 if (BTRFS_I(inode)->delayed_node)
5936 btrfs_balance_delayed_items(root);
22c44fe6
JB
5937
5938 return ret;
5939}
5940
5941/*
5942 * This is a copy of file_update_time. We need this so we can return error on
5943 * ENOSPC for updating the inode in the case of file write and mmap writes.
5944 */
e41f941a
JB
5945static int btrfs_update_time(struct inode *inode, struct timespec *now,
5946 int flags)
22c44fe6 5947{
2bc55652
AB
5948 struct btrfs_root *root = BTRFS_I(inode)->root;
5949
5950 if (btrfs_root_readonly(root))
5951 return -EROFS;
5952
e41f941a 5953 if (flags & S_VERSION)
22c44fe6 5954 inode_inc_iversion(inode);
e41f941a
JB
5955 if (flags & S_CTIME)
5956 inode->i_ctime = *now;
5957 if (flags & S_MTIME)
5958 inode->i_mtime = *now;
5959 if (flags & S_ATIME)
5960 inode->i_atime = *now;
5961 return btrfs_dirty_inode(inode);
39279cc3
CM
5962}
5963
d352ac68
CM
5964/*
5965 * find the highest existing sequence number in a directory
5966 * and then set the in-memory index_cnt variable to reflect
5967 * free sequence numbers
5968 */
aec7477b
JB
5969static int btrfs_set_inode_index_count(struct inode *inode)
5970{
5971 struct btrfs_root *root = BTRFS_I(inode)->root;
5972 struct btrfs_key key, found_key;
5973 struct btrfs_path *path;
5974 struct extent_buffer *leaf;
5975 int ret;
5976
33345d01 5977 key.objectid = btrfs_ino(inode);
962a298f 5978 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5979 key.offset = (u64)-1;
5980
5981 path = btrfs_alloc_path();
5982 if (!path)
5983 return -ENOMEM;
5984
5985 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5986 if (ret < 0)
5987 goto out;
5988 /* FIXME: we should be able to handle this */
5989 if (ret == 0)
5990 goto out;
5991 ret = 0;
5992
5993 /*
5994 * MAGIC NUMBER EXPLANATION:
5995 * since we search a directory based on f_pos we have to start at 2
5996 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5997 * else has to start at 2
5998 */
5999 if (path->slots[0] == 0) {
6000 BTRFS_I(inode)->index_cnt = 2;
6001 goto out;
6002 }
6003
6004 path->slots[0]--;
6005
6006 leaf = path->nodes[0];
6007 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6008
33345d01 6009 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6010 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6011 BTRFS_I(inode)->index_cnt = 2;
6012 goto out;
6013 }
6014
6015 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6016out:
6017 btrfs_free_path(path);
6018 return ret;
6019}
6020
d352ac68
CM
6021/*
6022 * helper to find a free sequence number in a given directory. This current
6023 * code is very simple, later versions will do smarter things in the btree
6024 */
3de4586c 6025int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6026{
6027 int ret = 0;
6028
6029 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6030 ret = btrfs_inode_delayed_dir_index_count(dir);
6031 if (ret) {
6032 ret = btrfs_set_inode_index_count(dir);
6033 if (ret)
6034 return ret;
6035 }
aec7477b
JB
6036 }
6037
00e4e6b3 6038 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6039 BTRFS_I(dir)->index_cnt++;
6040
6041 return ret;
6042}
6043
b0d5d10f
CM
6044static int btrfs_insert_inode_locked(struct inode *inode)
6045{
6046 struct btrfs_iget_args args;
6047 args.location = &BTRFS_I(inode)->location;
6048 args.root = BTRFS_I(inode)->root;
6049
6050 return insert_inode_locked4(inode,
6051 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6052 btrfs_find_actor, &args);
6053}
6054
39279cc3
CM
6055static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6056 struct btrfs_root *root,
aec7477b 6057 struct inode *dir,
9c58309d 6058 const char *name, int name_len,
175a4eb7
AV
6059 u64 ref_objectid, u64 objectid,
6060 umode_t mode, u64 *index)
39279cc3
CM
6061{
6062 struct inode *inode;
5f39d397 6063 struct btrfs_inode_item *inode_item;
39279cc3 6064 struct btrfs_key *location;
5f39d397 6065 struct btrfs_path *path;
9c58309d
CM
6066 struct btrfs_inode_ref *ref;
6067 struct btrfs_key key[2];
6068 u32 sizes[2];
ef3b9af5 6069 int nitems = name ? 2 : 1;
9c58309d 6070 unsigned long ptr;
39279cc3 6071 int ret;
39279cc3 6072
5f39d397 6073 path = btrfs_alloc_path();
d8926bb3
MF
6074 if (!path)
6075 return ERR_PTR(-ENOMEM);
5f39d397 6076
39279cc3 6077 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6078 if (!inode) {
6079 btrfs_free_path(path);
39279cc3 6080 return ERR_PTR(-ENOMEM);
8fb27640 6081 }
39279cc3 6082
5762b5c9
FM
6083 /*
6084 * O_TMPFILE, set link count to 0, so that after this point,
6085 * we fill in an inode item with the correct link count.
6086 */
6087 if (!name)
6088 set_nlink(inode, 0);
6089
581bb050
LZ
6090 /*
6091 * we have to initialize this early, so we can reclaim the inode
6092 * number if we fail afterwards in this function.
6093 */
6094 inode->i_ino = objectid;
6095
ef3b9af5 6096 if (dir && name) {
1abe9b8a 6097 trace_btrfs_inode_request(dir);
6098
3de4586c 6099 ret = btrfs_set_inode_index(dir, index);
09771430 6100 if (ret) {
8fb27640 6101 btrfs_free_path(path);
09771430 6102 iput(inode);
aec7477b 6103 return ERR_PTR(ret);
09771430 6104 }
ef3b9af5
FM
6105 } else if (dir) {
6106 *index = 0;
aec7477b
JB
6107 }
6108 /*
6109 * index_cnt is ignored for everything but a dir,
6110 * btrfs_get_inode_index_count has an explanation for the magic
6111 * number
6112 */
6113 BTRFS_I(inode)->index_cnt = 2;
67de1176 6114 BTRFS_I(inode)->dir_index = *index;
39279cc3 6115 BTRFS_I(inode)->root = root;
e02119d5 6116 BTRFS_I(inode)->generation = trans->transid;
76195853 6117 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6118
5dc562c5
JB
6119 /*
6120 * We could have gotten an inode number from somebody who was fsynced
6121 * and then removed in this same transaction, so let's just set full
6122 * sync since it will be a full sync anyway and this will blow away the
6123 * old info in the log.
6124 */
6125 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6126
9c58309d 6127 key[0].objectid = objectid;
962a298f 6128 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6129 key[0].offset = 0;
6130
9c58309d 6131 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6132
6133 if (name) {
6134 /*
6135 * Start new inodes with an inode_ref. This is slightly more
6136 * efficient for small numbers of hard links since they will
6137 * be packed into one item. Extended refs will kick in if we
6138 * add more hard links than can fit in the ref item.
6139 */
6140 key[1].objectid = objectid;
962a298f 6141 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6142 key[1].offset = ref_objectid;
6143
6144 sizes[1] = name_len + sizeof(*ref);
6145 }
9c58309d 6146
b0d5d10f
CM
6147 location = &BTRFS_I(inode)->location;
6148 location->objectid = objectid;
6149 location->offset = 0;
962a298f 6150 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6151
6152 ret = btrfs_insert_inode_locked(inode);
6153 if (ret < 0)
6154 goto fail;
6155
b9473439 6156 path->leave_spinning = 1;
ef3b9af5 6157 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6158 if (ret != 0)
b0d5d10f 6159 goto fail_unlock;
5f39d397 6160
ecc11fab 6161 inode_init_owner(inode, dir, mode);
a76a3cd4 6162 inode_set_bytes(inode, 0);
9cc97d64 6163
6164 inode->i_mtime = CURRENT_TIME;
6165 inode->i_atime = inode->i_mtime;
6166 inode->i_ctime = inode->i_mtime;
6167 BTRFS_I(inode)->i_otime = inode->i_mtime;
6168
5f39d397
CM
6169 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6170 struct btrfs_inode_item);
293f7e07
LZ
6171 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6172 sizeof(*inode_item));
e02119d5 6173 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6174
ef3b9af5
FM
6175 if (name) {
6176 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6177 struct btrfs_inode_ref);
6178 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6179 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6180 ptr = (unsigned long)(ref + 1);
6181 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6182 }
9c58309d 6183
5f39d397
CM
6184 btrfs_mark_buffer_dirty(path->nodes[0]);
6185 btrfs_free_path(path);
6186
6cbff00f
CH
6187 btrfs_inherit_iflags(inode, dir);
6188
569254b0 6189 if (S_ISREG(mode)) {
94272164
CM
6190 if (btrfs_test_opt(root, NODATASUM))
6191 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 6192 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
6193 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6194 BTRFS_INODE_NODATASUM;
94272164
CM
6195 }
6196
5d4f98a2 6197 inode_tree_add(inode);
1abe9b8a 6198
6199 trace_btrfs_inode_new(inode);
1973f0fa 6200 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6201
8ea05e3a
AB
6202 btrfs_update_root_times(trans, root);
6203
63541927
FDBM
6204 ret = btrfs_inode_inherit_props(trans, inode, dir);
6205 if (ret)
6206 btrfs_err(root->fs_info,
6207 "error inheriting props for ino %llu (root %llu): %d",
6208 btrfs_ino(inode), root->root_key.objectid, ret);
6209
39279cc3 6210 return inode;
b0d5d10f
CM
6211
6212fail_unlock:
6213 unlock_new_inode(inode);
5f39d397 6214fail:
ef3b9af5 6215 if (dir && name)
aec7477b 6216 BTRFS_I(dir)->index_cnt--;
5f39d397 6217 btrfs_free_path(path);
09771430 6218 iput(inode);
5f39d397 6219 return ERR_PTR(ret);
39279cc3
CM
6220}
6221
6222static inline u8 btrfs_inode_type(struct inode *inode)
6223{
6224 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6225}
6226
d352ac68
CM
6227/*
6228 * utility function to add 'inode' into 'parent_inode' with
6229 * a give name and a given sequence number.
6230 * if 'add_backref' is true, also insert a backref from the
6231 * inode to the parent directory.
6232 */
e02119d5
CM
6233int btrfs_add_link(struct btrfs_trans_handle *trans,
6234 struct inode *parent_inode, struct inode *inode,
6235 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6236{
4df27c4d 6237 int ret = 0;
39279cc3 6238 struct btrfs_key key;
e02119d5 6239 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6240 u64 ino = btrfs_ino(inode);
6241 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6242
33345d01 6243 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6244 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6245 } else {
33345d01 6246 key.objectid = ino;
962a298f 6247 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6248 key.offset = 0;
6249 }
6250
33345d01 6251 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6252 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6253 key.objectid, root->root_key.objectid,
33345d01 6254 parent_ino, index, name, name_len);
4df27c4d 6255 } else if (add_backref) {
33345d01
LZ
6256 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6257 parent_ino, index);
4df27c4d 6258 }
39279cc3 6259
79787eaa
JM
6260 /* Nothing to clean up yet */
6261 if (ret)
6262 return ret;
4df27c4d 6263
79787eaa
JM
6264 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6265 parent_inode, &key,
6266 btrfs_inode_type(inode), index);
9c52057c 6267 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6268 goto fail_dir_item;
6269 else if (ret) {
6270 btrfs_abort_transaction(trans, root, ret);
6271 return ret;
39279cc3 6272 }
79787eaa
JM
6273
6274 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6275 name_len * 2);
0c4d2d95 6276 inode_inc_iversion(parent_inode);
79787eaa
JM
6277 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6278 ret = btrfs_update_inode(trans, root, parent_inode);
6279 if (ret)
6280 btrfs_abort_transaction(trans, root, ret);
39279cc3 6281 return ret;
fe66a05a
CM
6282
6283fail_dir_item:
6284 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6285 u64 local_index;
6286 int err;
6287 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6288 key.objectid, root->root_key.objectid,
6289 parent_ino, &local_index, name, name_len);
6290
6291 } else if (add_backref) {
6292 u64 local_index;
6293 int err;
6294
6295 err = btrfs_del_inode_ref(trans, root, name, name_len,
6296 ino, parent_ino, &local_index);
6297 }
6298 return ret;
39279cc3
CM
6299}
6300
6301static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6302 struct inode *dir, struct dentry *dentry,
6303 struct inode *inode, int backref, u64 index)
39279cc3 6304{
a1b075d2
JB
6305 int err = btrfs_add_link(trans, dir, inode,
6306 dentry->d_name.name, dentry->d_name.len,
6307 backref, index);
39279cc3
CM
6308 if (err > 0)
6309 err = -EEXIST;
6310 return err;
6311}
6312
618e21d5 6313static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6314 umode_t mode, dev_t rdev)
618e21d5
JB
6315{
6316 struct btrfs_trans_handle *trans;
6317 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6318 struct inode *inode = NULL;
618e21d5
JB
6319 int err;
6320 int drop_inode = 0;
6321 u64 objectid;
00e4e6b3 6322 u64 index = 0;
618e21d5
JB
6323
6324 if (!new_valid_dev(rdev))
6325 return -EINVAL;
6326
9ed74f2d
JB
6327 /*
6328 * 2 for inode item and ref
6329 * 2 for dir items
6330 * 1 for xattr if selinux is on
6331 */
a22285a6
YZ
6332 trans = btrfs_start_transaction(root, 5);
6333 if (IS_ERR(trans))
6334 return PTR_ERR(trans);
1832a6d5 6335
581bb050
LZ
6336 err = btrfs_find_free_ino(root, &objectid);
6337 if (err)
6338 goto out_unlock;
6339
aec7477b 6340 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6341 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6342 mode, &index);
7cf96da3
TI
6343 if (IS_ERR(inode)) {
6344 err = PTR_ERR(inode);
618e21d5 6345 goto out_unlock;
7cf96da3 6346 }
618e21d5 6347
ad19db71
CS
6348 /*
6349 * If the active LSM wants to access the inode during
6350 * d_instantiate it needs these. Smack checks to see
6351 * if the filesystem supports xattrs by looking at the
6352 * ops vector.
6353 */
ad19db71 6354 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6355 init_special_inode(inode, inode->i_mode, rdev);
6356
6357 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6358 if (err)
b0d5d10f
CM
6359 goto out_unlock_inode;
6360
6361 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6362 if (err) {
6363 goto out_unlock_inode;
6364 } else {
1b4ab1bb 6365 btrfs_update_inode(trans, root, inode);
b0d5d10f 6366 unlock_new_inode(inode);
08c422c2 6367 d_instantiate(dentry, inode);
618e21d5 6368 }
b0d5d10f 6369
618e21d5 6370out_unlock:
7ad85bb7 6371 btrfs_end_transaction(trans, root);
c581afc8 6372 btrfs_balance_delayed_items(root);
b53d3f5d 6373 btrfs_btree_balance_dirty(root);
618e21d5
JB
6374 if (drop_inode) {
6375 inode_dec_link_count(inode);
6376 iput(inode);
6377 }
618e21d5 6378 return err;
b0d5d10f
CM
6379
6380out_unlock_inode:
6381 drop_inode = 1;
6382 unlock_new_inode(inode);
6383 goto out_unlock;
6384
618e21d5
JB
6385}
6386
39279cc3 6387static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6388 umode_t mode, bool excl)
39279cc3
CM
6389{
6390 struct btrfs_trans_handle *trans;
6391 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6392 struct inode *inode = NULL;
43baa579 6393 int drop_inode_on_err = 0;
a22285a6 6394 int err;
39279cc3 6395 u64 objectid;
00e4e6b3 6396 u64 index = 0;
39279cc3 6397
9ed74f2d
JB
6398 /*
6399 * 2 for inode item and ref
6400 * 2 for dir items
6401 * 1 for xattr if selinux is on
6402 */
a22285a6
YZ
6403 trans = btrfs_start_transaction(root, 5);
6404 if (IS_ERR(trans))
6405 return PTR_ERR(trans);
9ed74f2d 6406
581bb050
LZ
6407 err = btrfs_find_free_ino(root, &objectid);
6408 if (err)
6409 goto out_unlock;
6410
aec7477b 6411 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6412 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6413 mode, &index);
7cf96da3
TI
6414 if (IS_ERR(inode)) {
6415 err = PTR_ERR(inode);
39279cc3 6416 goto out_unlock;
7cf96da3 6417 }
43baa579 6418 drop_inode_on_err = 1;
ad19db71
CS
6419 /*
6420 * If the active LSM wants to access the inode during
6421 * d_instantiate it needs these. Smack checks to see
6422 * if the filesystem supports xattrs by looking at the
6423 * ops vector.
6424 */
6425 inode->i_fop = &btrfs_file_operations;
6426 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6427 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6428
6429 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6430 if (err)
6431 goto out_unlock_inode;
6432
6433 err = btrfs_update_inode(trans, root, inode);
6434 if (err)
6435 goto out_unlock_inode;
ad19db71 6436
a1b075d2 6437 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6438 if (err)
b0d5d10f 6439 goto out_unlock_inode;
43baa579 6440
43baa579 6441 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6442 unlock_new_inode(inode);
43baa579
FB
6443 d_instantiate(dentry, inode);
6444
39279cc3 6445out_unlock:
7ad85bb7 6446 btrfs_end_transaction(trans, root);
43baa579 6447 if (err && drop_inode_on_err) {
39279cc3
CM
6448 inode_dec_link_count(inode);
6449 iput(inode);
6450 }
c581afc8 6451 btrfs_balance_delayed_items(root);
b53d3f5d 6452 btrfs_btree_balance_dirty(root);
39279cc3 6453 return err;
b0d5d10f
CM
6454
6455out_unlock_inode:
6456 unlock_new_inode(inode);
6457 goto out_unlock;
6458
39279cc3
CM
6459}
6460
6461static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6462 struct dentry *dentry)
6463{
6464 struct btrfs_trans_handle *trans;
6465 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6466 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6467 u64 index;
39279cc3
CM
6468 int err;
6469 int drop_inode = 0;
6470
4a8be425
TH
6471 /* do not allow sys_link's with other subvols of the same device */
6472 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6473 return -EXDEV;
4a8be425 6474
f186373f 6475 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6476 return -EMLINK;
4a8be425 6477
3de4586c 6478 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6479 if (err)
6480 goto fail;
6481
a22285a6 6482 /*
7e6b6465 6483 * 2 items for inode and inode ref
a22285a6 6484 * 2 items for dir items
7e6b6465 6485 * 1 item for parent inode
a22285a6 6486 */
7e6b6465 6487 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6488 if (IS_ERR(trans)) {
6489 err = PTR_ERR(trans);
6490 goto fail;
6491 }
5f39d397 6492
67de1176
MX
6493 /* There are several dir indexes for this inode, clear the cache. */
6494 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6495 inc_nlink(inode);
0c4d2d95 6496 inode_inc_iversion(inode);
3153495d 6497 inode->i_ctime = CURRENT_TIME;
7de9c6ee 6498 ihold(inode);
e9976151 6499 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6500
a1b075d2 6501 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6502
a5719521 6503 if (err) {
54aa1f4d 6504 drop_inode = 1;
a5719521 6505 } else {
10d9f309 6506 struct dentry *parent = dentry->d_parent;
a5719521 6507 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6508 if (err)
6509 goto fail;
ef3b9af5
FM
6510 if (inode->i_nlink == 1) {
6511 /*
6512 * If new hard link count is 1, it's a file created
6513 * with open(2) O_TMPFILE flag.
6514 */
6515 err = btrfs_orphan_del(trans, inode);
6516 if (err)
6517 goto fail;
6518 }
08c422c2 6519 d_instantiate(dentry, inode);
6a912213 6520 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6521 }
39279cc3 6522
7ad85bb7 6523 btrfs_end_transaction(trans, root);
c581afc8 6524 btrfs_balance_delayed_items(root);
1832a6d5 6525fail:
39279cc3
CM
6526 if (drop_inode) {
6527 inode_dec_link_count(inode);
6528 iput(inode);
6529 }
b53d3f5d 6530 btrfs_btree_balance_dirty(root);
39279cc3
CM
6531 return err;
6532}
6533
18bb1db3 6534static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6535{
b9d86667 6536 struct inode *inode = NULL;
39279cc3
CM
6537 struct btrfs_trans_handle *trans;
6538 struct btrfs_root *root = BTRFS_I(dir)->root;
6539 int err = 0;
6540 int drop_on_err = 0;
b9d86667 6541 u64 objectid = 0;
00e4e6b3 6542 u64 index = 0;
39279cc3 6543
9ed74f2d
JB
6544 /*
6545 * 2 items for inode and ref
6546 * 2 items for dir items
6547 * 1 for xattr if selinux is on
6548 */
a22285a6
YZ
6549 trans = btrfs_start_transaction(root, 5);
6550 if (IS_ERR(trans))
6551 return PTR_ERR(trans);
39279cc3 6552
581bb050
LZ
6553 err = btrfs_find_free_ino(root, &objectid);
6554 if (err)
6555 goto out_fail;
6556
aec7477b 6557 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6558 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6559 S_IFDIR | mode, &index);
39279cc3
CM
6560 if (IS_ERR(inode)) {
6561 err = PTR_ERR(inode);
6562 goto out_fail;
6563 }
5f39d397 6564
39279cc3 6565 drop_on_err = 1;
b0d5d10f
CM
6566 /* these must be set before we unlock the inode */
6567 inode->i_op = &btrfs_dir_inode_operations;
6568 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6569
2a7dba39 6570 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6571 if (err)
b0d5d10f 6572 goto out_fail_inode;
39279cc3 6573
dbe674a9 6574 btrfs_i_size_write(inode, 0);
39279cc3
CM
6575 err = btrfs_update_inode(trans, root, inode);
6576 if (err)
b0d5d10f 6577 goto out_fail_inode;
5f39d397 6578
a1b075d2
JB
6579 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6580 dentry->d_name.len, 0, index);
39279cc3 6581 if (err)
b0d5d10f 6582 goto out_fail_inode;
5f39d397 6583
39279cc3 6584 d_instantiate(dentry, inode);
b0d5d10f
CM
6585 /*
6586 * mkdir is special. We're unlocking after we call d_instantiate
6587 * to avoid a race with nfsd calling d_instantiate.
6588 */
6589 unlock_new_inode(inode);
39279cc3 6590 drop_on_err = 0;
39279cc3
CM
6591
6592out_fail:
7ad85bb7 6593 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6594 if (drop_on_err) {
6595 inode_dec_link_count(inode);
39279cc3 6596 iput(inode);
c7cfb8a5 6597 }
c581afc8 6598 btrfs_balance_delayed_items(root);
b53d3f5d 6599 btrfs_btree_balance_dirty(root);
39279cc3 6600 return err;
b0d5d10f
CM
6601
6602out_fail_inode:
6603 unlock_new_inode(inode);
6604 goto out_fail;
39279cc3
CM
6605}
6606
e6c4efd8
QW
6607/* Find next extent map of a given extent map, caller needs to ensure locks */
6608static struct extent_map *next_extent_map(struct extent_map *em)
6609{
6610 struct rb_node *next;
6611
6612 next = rb_next(&em->rb_node);
6613 if (!next)
6614 return NULL;
6615 return container_of(next, struct extent_map, rb_node);
6616}
6617
6618static struct extent_map *prev_extent_map(struct extent_map *em)
6619{
6620 struct rb_node *prev;
6621
6622 prev = rb_prev(&em->rb_node);
6623 if (!prev)
6624 return NULL;
6625 return container_of(prev, struct extent_map, rb_node);
6626}
6627
d352ac68 6628/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6629 * the existing extent is the nearest extent to map_start,
d352ac68 6630 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6631 * the best fitted new extent into the tree.
d352ac68 6632 */
3b951516
CM
6633static int merge_extent_mapping(struct extent_map_tree *em_tree,
6634 struct extent_map *existing,
e6dcd2dc 6635 struct extent_map *em,
51f395ad 6636 u64 map_start)
3b951516 6637{
e6c4efd8
QW
6638 struct extent_map *prev;
6639 struct extent_map *next;
6640 u64 start;
6641 u64 end;
3b951516 6642 u64 start_diff;
3b951516 6643
e6dcd2dc 6644 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6645
6646 if (existing->start > map_start) {
6647 next = existing;
6648 prev = prev_extent_map(next);
6649 } else {
6650 prev = existing;
6651 next = next_extent_map(prev);
6652 }
6653
6654 start = prev ? extent_map_end(prev) : em->start;
6655 start = max_t(u64, start, em->start);
6656 end = next ? next->start : extent_map_end(em);
6657 end = min_t(u64, end, extent_map_end(em));
6658 start_diff = start - em->start;
6659 em->start = start;
6660 em->len = end - start;
c8b97818
CM
6661 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6662 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6663 em->block_start += start_diff;
c8b97818
CM
6664 em->block_len -= start_diff;
6665 }
09a2a8f9 6666 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6667}
6668
c8b97818
CM
6669static noinline int uncompress_inline(struct btrfs_path *path,
6670 struct inode *inode, struct page *page,
6671 size_t pg_offset, u64 extent_offset,
6672 struct btrfs_file_extent_item *item)
6673{
6674 int ret;
6675 struct extent_buffer *leaf = path->nodes[0];
6676 char *tmp;
6677 size_t max_size;
6678 unsigned long inline_size;
6679 unsigned long ptr;
261507a0 6680 int compress_type;
c8b97818
CM
6681
6682 WARN_ON(pg_offset != 0);
261507a0 6683 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6684 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6685 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6686 btrfs_item_nr(path->slots[0]));
c8b97818 6687 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6688 if (!tmp)
6689 return -ENOMEM;
c8b97818
CM
6690 ptr = btrfs_file_extent_inline_start(item);
6691
6692 read_extent_buffer(leaf, tmp, ptr, inline_size);
6693
5b050f04 6694 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6695 ret = btrfs_decompress(compress_type, tmp, page,
6696 extent_offset, inline_size, max_size);
c8b97818 6697 kfree(tmp);
166ae5a4 6698 return ret;
c8b97818
CM
6699}
6700
d352ac68
CM
6701/*
6702 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6703 * the ugly parts come from merging extents from the disk with the in-ram
6704 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6705 * where the in-ram extents might be locked pending data=ordered completion.
6706 *
6707 * This also copies inline extents directly into the page.
6708 */
d397712b 6709
a52d9a80 6710struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6711 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6712 int create)
6713{
6714 int ret;
6715 int err = 0;
a52d9a80
CM
6716 u64 extent_start = 0;
6717 u64 extent_end = 0;
33345d01 6718 u64 objectid = btrfs_ino(inode);
a52d9a80 6719 u32 found_type;
f421950f 6720 struct btrfs_path *path = NULL;
a52d9a80
CM
6721 struct btrfs_root *root = BTRFS_I(inode)->root;
6722 struct btrfs_file_extent_item *item;
5f39d397
CM
6723 struct extent_buffer *leaf;
6724 struct btrfs_key found_key;
a52d9a80
CM
6725 struct extent_map *em = NULL;
6726 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6727 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6728 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6729 const bool new_inline = !page || create;
a52d9a80 6730
a52d9a80 6731again:
890871be 6732 read_lock(&em_tree->lock);
d1310b2e 6733 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6734 if (em)
6735 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6736 read_unlock(&em_tree->lock);
d1310b2e 6737
a52d9a80 6738 if (em) {
e1c4b745
CM
6739 if (em->start > start || em->start + em->len <= start)
6740 free_extent_map(em);
6741 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6742 free_extent_map(em);
6743 else
6744 goto out;
a52d9a80 6745 }
172ddd60 6746 em = alloc_extent_map();
a52d9a80 6747 if (!em) {
d1310b2e
CM
6748 err = -ENOMEM;
6749 goto out;
a52d9a80 6750 }
e6dcd2dc 6751 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6752 em->start = EXTENT_MAP_HOLE;
445a6944 6753 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6754 em->len = (u64)-1;
c8b97818 6755 em->block_len = (u64)-1;
f421950f
CM
6756
6757 if (!path) {
6758 path = btrfs_alloc_path();
026fd317
JB
6759 if (!path) {
6760 err = -ENOMEM;
6761 goto out;
6762 }
6763 /*
6764 * Chances are we'll be called again, so go ahead and do
6765 * readahead
6766 */
6767 path->reada = 1;
f421950f
CM
6768 }
6769
179e29e4
CM
6770 ret = btrfs_lookup_file_extent(trans, root, path,
6771 objectid, start, trans != NULL);
a52d9a80
CM
6772 if (ret < 0) {
6773 err = ret;
6774 goto out;
6775 }
6776
6777 if (ret != 0) {
6778 if (path->slots[0] == 0)
6779 goto not_found;
6780 path->slots[0]--;
6781 }
6782
5f39d397
CM
6783 leaf = path->nodes[0];
6784 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6785 struct btrfs_file_extent_item);
a52d9a80 6786 /* are we inside the extent that was found? */
5f39d397 6787 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6788 found_type = found_key.type;
5f39d397 6789 if (found_key.objectid != objectid ||
a52d9a80 6790 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6791 /*
6792 * If we backup past the first extent we want to move forward
6793 * and see if there is an extent in front of us, otherwise we'll
6794 * say there is a hole for our whole search range which can
6795 * cause problems.
6796 */
6797 extent_end = start;
6798 goto next;
a52d9a80
CM
6799 }
6800
5f39d397
CM
6801 found_type = btrfs_file_extent_type(leaf, item);
6802 extent_start = found_key.offset;
d899e052
YZ
6803 if (found_type == BTRFS_FILE_EXTENT_REG ||
6804 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6805 extent_end = extent_start +
db94535d 6806 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6807 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6808 size_t size;
514ac8ad 6809 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6810 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6811 }
25a50341 6812next:
9036c102
YZ
6813 if (start >= extent_end) {
6814 path->slots[0]++;
6815 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6816 ret = btrfs_next_leaf(root, path);
6817 if (ret < 0) {
6818 err = ret;
6819 goto out;
a52d9a80 6820 }
9036c102
YZ
6821 if (ret > 0)
6822 goto not_found;
6823 leaf = path->nodes[0];
a52d9a80 6824 }
9036c102
YZ
6825 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6826 if (found_key.objectid != objectid ||
6827 found_key.type != BTRFS_EXTENT_DATA_KEY)
6828 goto not_found;
6829 if (start + len <= found_key.offset)
6830 goto not_found;
e2eca69d
WS
6831 if (start > found_key.offset)
6832 goto next;
9036c102 6833 em->start = start;
70c8a91c 6834 em->orig_start = start;
9036c102
YZ
6835 em->len = found_key.offset - start;
6836 goto not_found_em;
6837 }
6838
7ffbb598
FM
6839 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6840
d899e052
YZ
6841 if (found_type == BTRFS_FILE_EXTENT_REG ||
6842 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6843 goto insert;
6844 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6845 unsigned long ptr;
a52d9a80 6846 char *map;
3326d1b0
CM
6847 size_t size;
6848 size_t extent_offset;
6849 size_t copy_size;
a52d9a80 6850
7ffbb598 6851 if (new_inline)
689f9346 6852 goto out;
5f39d397 6853
514ac8ad 6854 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6855 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6856 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6857 size - extent_offset);
3326d1b0 6858 em->start = extent_start + extent_offset;
fda2832f 6859 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6860 em->orig_block_len = em->len;
70c8a91c 6861 em->orig_start = em->start;
689f9346 6862 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6863 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6864 if (btrfs_file_extent_compression(leaf, item) !=
6865 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6866 ret = uncompress_inline(path, inode, page,
6867 pg_offset,
6868 extent_offset, item);
166ae5a4
ZB
6869 if (ret) {
6870 err = ret;
6871 goto out;
6872 }
c8b97818
CM
6873 } else {
6874 map = kmap(page);
6875 read_extent_buffer(leaf, map + pg_offset, ptr,
6876 copy_size);
93c82d57
CM
6877 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6878 memset(map + pg_offset + copy_size, 0,
6879 PAGE_CACHE_SIZE - pg_offset -
6880 copy_size);
6881 }
c8b97818
CM
6882 kunmap(page);
6883 }
179e29e4
CM
6884 flush_dcache_page(page);
6885 } else if (create && PageUptodate(page)) {
6bf7e080 6886 BUG();
179e29e4
CM
6887 if (!trans) {
6888 kunmap(page);
6889 free_extent_map(em);
6890 em = NULL;
ff5714cc 6891
b3b4aa74 6892 btrfs_release_path(path);
7a7eaa40 6893 trans = btrfs_join_transaction(root);
ff5714cc 6894
3612b495
TI
6895 if (IS_ERR(trans))
6896 return ERR_CAST(trans);
179e29e4
CM
6897 goto again;
6898 }
c8b97818 6899 map = kmap(page);
70dec807 6900 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6901 copy_size);
c8b97818 6902 kunmap(page);
179e29e4 6903 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6904 }
d1310b2e 6905 set_extent_uptodate(io_tree, em->start,
507903b8 6906 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6907 goto insert;
a52d9a80
CM
6908 }
6909not_found:
6910 em->start = start;
70c8a91c 6911 em->orig_start = start;
d1310b2e 6912 em->len = len;
a52d9a80 6913not_found_em:
5f39d397 6914 em->block_start = EXTENT_MAP_HOLE;
9036c102 6915 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6916insert:
b3b4aa74 6917 btrfs_release_path(path);
d1310b2e 6918 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6919 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6920 em->start, em->len, start, len);
a52d9a80
CM
6921 err = -EIO;
6922 goto out;
6923 }
d1310b2e
CM
6924
6925 err = 0;
890871be 6926 write_lock(&em_tree->lock);
09a2a8f9 6927 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6928 /* it is possible that someone inserted the extent into the tree
6929 * while we had the lock dropped. It is also possible that
6930 * an overlapping map exists in the tree
6931 */
a52d9a80 6932 if (ret == -EEXIST) {
3b951516 6933 struct extent_map *existing;
e6dcd2dc
CM
6934
6935 ret = 0;
6936
e6c4efd8
QW
6937 existing = search_extent_mapping(em_tree, start, len);
6938 /*
6939 * existing will always be non-NULL, since there must be
6940 * extent causing the -EEXIST.
6941 */
6942 if (start >= extent_map_end(existing) ||
32be3a1a 6943 start <= existing->start) {
e6c4efd8
QW
6944 /*
6945 * The existing extent map is the one nearest to
6946 * the [start, start + len) range which overlaps
6947 */
6948 err = merge_extent_mapping(em_tree, existing,
6949 em, start);
e1c4b745 6950 free_extent_map(existing);
e6c4efd8 6951 if (err) {
3b951516
CM
6952 free_extent_map(em);
6953 em = NULL;
6954 }
6955 } else {
6956 free_extent_map(em);
6957 em = existing;
e6dcd2dc 6958 err = 0;
a52d9a80 6959 }
a52d9a80 6960 }
890871be 6961 write_unlock(&em_tree->lock);
a52d9a80 6962out:
1abe9b8a 6963
4cd8587c 6964 trace_btrfs_get_extent(root, em);
1abe9b8a 6965
527afb44 6966 btrfs_free_path(path);
a52d9a80
CM
6967 if (trans) {
6968 ret = btrfs_end_transaction(trans, root);
d397712b 6969 if (!err)
a52d9a80
CM
6970 err = ret;
6971 }
a52d9a80
CM
6972 if (err) {
6973 free_extent_map(em);
a52d9a80
CM
6974 return ERR_PTR(err);
6975 }
79787eaa 6976 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6977 return em;
6978}
6979
ec29ed5b
CM
6980struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6981 size_t pg_offset, u64 start, u64 len,
6982 int create)
6983{
6984 struct extent_map *em;
6985 struct extent_map *hole_em = NULL;
6986 u64 range_start = start;
6987 u64 end;
6988 u64 found;
6989 u64 found_end;
6990 int err = 0;
6991
6992 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6993 if (IS_ERR(em))
6994 return em;
6995 if (em) {
6996 /*
f9e4fb53
LB
6997 * if our em maps to
6998 * - a hole or
6999 * - a pre-alloc extent,
7000 * there might actually be delalloc bytes behind it.
ec29ed5b 7001 */
f9e4fb53
LB
7002 if (em->block_start != EXTENT_MAP_HOLE &&
7003 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7004 return em;
7005 else
7006 hole_em = em;
7007 }
7008
7009 /* check to see if we've wrapped (len == -1 or similar) */
7010 end = start + len;
7011 if (end < start)
7012 end = (u64)-1;
7013 else
7014 end -= 1;
7015
7016 em = NULL;
7017
7018 /* ok, we didn't find anything, lets look for delalloc */
7019 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7020 end, len, EXTENT_DELALLOC, 1);
7021 found_end = range_start + found;
7022 if (found_end < range_start)
7023 found_end = (u64)-1;
7024
7025 /*
7026 * we didn't find anything useful, return
7027 * the original results from get_extent()
7028 */
7029 if (range_start > end || found_end <= start) {
7030 em = hole_em;
7031 hole_em = NULL;
7032 goto out;
7033 }
7034
7035 /* adjust the range_start to make sure it doesn't
7036 * go backwards from the start they passed in
7037 */
67871254 7038 range_start = max(start, range_start);
ec29ed5b
CM
7039 found = found_end - range_start;
7040
7041 if (found > 0) {
7042 u64 hole_start = start;
7043 u64 hole_len = len;
7044
172ddd60 7045 em = alloc_extent_map();
ec29ed5b
CM
7046 if (!em) {
7047 err = -ENOMEM;
7048 goto out;
7049 }
7050 /*
7051 * when btrfs_get_extent can't find anything it
7052 * returns one huge hole
7053 *
7054 * make sure what it found really fits our range, and
7055 * adjust to make sure it is based on the start from
7056 * the caller
7057 */
7058 if (hole_em) {
7059 u64 calc_end = extent_map_end(hole_em);
7060
7061 if (calc_end <= start || (hole_em->start > end)) {
7062 free_extent_map(hole_em);
7063 hole_em = NULL;
7064 } else {
7065 hole_start = max(hole_em->start, start);
7066 hole_len = calc_end - hole_start;
7067 }
7068 }
7069 em->bdev = NULL;
7070 if (hole_em && range_start > hole_start) {
7071 /* our hole starts before our delalloc, so we
7072 * have to return just the parts of the hole
7073 * that go until the delalloc starts
7074 */
7075 em->len = min(hole_len,
7076 range_start - hole_start);
7077 em->start = hole_start;
7078 em->orig_start = hole_start;
7079 /*
7080 * don't adjust block start at all,
7081 * it is fixed at EXTENT_MAP_HOLE
7082 */
7083 em->block_start = hole_em->block_start;
7084 em->block_len = hole_len;
f9e4fb53
LB
7085 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7086 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7087 } else {
7088 em->start = range_start;
7089 em->len = found;
7090 em->orig_start = range_start;
7091 em->block_start = EXTENT_MAP_DELALLOC;
7092 em->block_len = found;
7093 }
7094 } else if (hole_em) {
7095 return hole_em;
7096 }
7097out:
7098
7099 free_extent_map(hole_em);
7100 if (err) {
7101 free_extent_map(em);
7102 return ERR_PTR(err);
7103 }
7104 return em;
7105}
7106
4b46fce2
JB
7107static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7108 u64 start, u64 len)
7109{
7110 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7111 struct extent_map *em;
4b46fce2
JB
7112 struct btrfs_key ins;
7113 u64 alloc_hint;
7114 int ret;
4b46fce2 7115
4b46fce2 7116 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 7117 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 7118 alloc_hint, &ins, 1, 1);
00361589
JB
7119 if (ret)
7120 return ERR_PTR(ret);
4b46fce2 7121
70c8a91c 7122 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 7123 ins.offset, ins.offset, ins.offset, 0);
00361589 7124 if (IS_ERR(em)) {
e570fd27 7125 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
7126 return em;
7127 }
4b46fce2
JB
7128
7129 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7130 ins.offset, ins.offset, 0);
7131 if (ret) {
e570fd27 7132 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
7133 free_extent_map(em);
7134 return ERR_PTR(ret);
4b46fce2 7135 }
00361589 7136
4b46fce2
JB
7137 return em;
7138}
7139
46bfbb5c
CM
7140/*
7141 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7142 * block must be cow'd
7143 */
00361589 7144noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7145 u64 *orig_start, u64 *orig_block_len,
7146 u64 *ram_bytes)
46bfbb5c 7147{
00361589 7148 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7149 struct btrfs_path *path;
7150 int ret;
7151 struct extent_buffer *leaf;
7152 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7153 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7154 struct btrfs_file_extent_item *fi;
7155 struct btrfs_key key;
7156 u64 disk_bytenr;
7157 u64 backref_offset;
7158 u64 extent_end;
7159 u64 num_bytes;
7160 int slot;
7161 int found_type;
7ee9e440 7162 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7163
46bfbb5c
CM
7164 path = btrfs_alloc_path();
7165 if (!path)
7166 return -ENOMEM;
7167
00361589 7168 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7169 offset, 0);
7170 if (ret < 0)
7171 goto out;
7172
7173 slot = path->slots[0];
7174 if (ret == 1) {
7175 if (slot == 0) {
7176 /* can't find the item, must cow */
7177 ret = 0;
7178 goto out;
7179 }
7180 slot--;
7181 }
7182 ret = 0;
7183 leaf = path->nodes[0];
7184 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7185 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7186 key.type != BTRFS_EXTENT_DATA_KEY) {
7187 /* not our file or wrong item type, must cow */
7188 goto out;
7189 }
7190
7191 if (key.offset > offset) {
7192 /* Wrong offset, must cow */
7193 goto out;
7194 }
7195
7196 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7197 found_type = btrfs_file_extent_type(leaf, fi);
7198 if (found_type != BTRFS_FILE_EXTENT_REG &&
7199 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7200 /* not a regular extent, must cow */
7201 goto out;
7202 }
7ee9e440
JB
7203
7204 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7205 goto out;
7206
e77751aa
MX
7207 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7208 if (extent_end <= offset)
7209 goto out;
7210
46bfbb5c 7211 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7212 if (disk_bytenr == 0)
7213 goto out;
7214
7215 if (btrfs_file_extent_compression(leaf, fi) ||
7216 btrfs_file_extent_encryption(leaf, fi) ||
7217 btrfs_file_extent_other_encoding(leaf, fi))
7218 goto out;
7219
46bfbb5c
CM
7220 backref_offset = btrfs_file_extent_offset(leaf, fi);
7221
7ee9e440
JB
7222 if (orig_start) {
7223 *orig_start = key.offset - backref_offset;
7224 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7225 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7226 }
eb384b55 7227
46bfbb5c
CM
7228 if (btrfs_extent_readonly(root, disk_bytenr))
7229 goto out;
7b2b7085
MX
7230
7231 num_bytes = min(offset + *len, extent_end) - offset;
7232 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7233 u64 range_end;
7234
7235 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7236 ret = test_range_bit(io_tree, offset, range_end,
7237 EXTENT_DELALLOC, 0, NULL);
7238 if (ret) {
7239 ret = -EAGAIN;
7240 goto out;
7241 }
7242 }
7243
1bda19eb 7244 btrfs_release_path(path);
46bfbb5c
CM
7245
7246 /*
7247 * look for other files referencing this extent, if we
7248 * find any we must cow
7249 */
00361589
JB
7250 trans = btrfs_join_transaction(root);
7251 if (IS_ERR(trans)) {
7252 ret = 0;
46bfbb5c 7253 goto out;
00361589
JB
7254 }
7255
7256 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7257 key.offset - backref_offset, disk_bytenr);
7258 btrfs_end_transaction(trans, root);
7259 if (ret) {
7260 ret = 0;
7261 goto out;
7262 }
46bfbb5c
CM
7263
7264 /*
7265 * adjust disk_bytenr and num_bytes to cover just the bytes
7266 * in this extent we are about to write. If there
7267 * are any csums in that range we have to cow in order
7268 * to keep the csums correct
7269 */
7270 disk_bytenr += backref_offset;
7271 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7272 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7273 goto out;
7274 /*
7275 * all of the above have passed, it is safe to overwrite this extent
7276 * without cow
7277 */
eb384b55 7278 *len = num_bytes;
46bfbb5c
CM
7279 ret = 1;
7280out:
7281 btrfs_free_path(path);
7282 return ret;
7283}
7284
fc4adbff
AG
7285bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7286{
7287 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7288 int found = false;
7289 void **pagep = NULL;
7290 struct page *page = NULL;
7291 int start_idx;
7292 int end_idx;
7293
7294 start_idx = start >> PAGE_CACHE_SHIFT;
7295
7296 /*
7297 * end is the last byte in the last page. end == start is legal
7298 */
7299 end_idx = end >> PAGE_CACHE_SHIFT;
7300
7301 rcu_read_lock();
7302
7303 /* Most of the code in this while loop is lifted from
7304 * find_get_page. It's been modified to begin searching from a
7305 * page and return just the first page found in that range. If the
7306 * found idx is less than or equal to the end idx then we know that
7307 * a page exists. If no pages are found or if those pages are
7308 * outside of the range then we're fine (yay!) */
7309 while (page == NULL &&
7310 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7311 page = radix_tree_deref_slot(pagep);
7312 if (unlikely(!page))
7313 break;
7314
7315 if (radix_tree_exception(page)) {
809f9016
FM
7316 if (radix_tree_deref_retry(page)) {
7317 page = NULL;
fc4adbff 7318 continue;
809f9016 7319 }
fc4adbff
AG
7320 /*
7321 * Otherwise, shmem/tmpfs must be storing a swap entry
7322 * here as an exceptional entry: so return it without
7323 * attempting to raise page count.
7324 */
6fdef6d4 7325 page = NULL;
fc4adbff
AG
7326 break; /* TODO: Is this relevant for this use case? */
7327 }
7328
91405151
FM
7329 if (!page_cache_get_speculative(page)) {
7330 page = NULL;
fc4adbff 7331 continue;
91405151 7332 }
fc4adbff
AG
7333
7334 /*
7335 * Has the page moved?
7336 * This is part of the lockless pagecache protocol. See
7337 * include/linux/pagemap.h for details.
7338 */
7339 if (unlikely(page != *pagep)) {
7340 page_cache_release(page);
7341 page = NULL;
7342 }
7343 }
7344
7345 if (page) {
7346 if (page->index <= end_idx)
7347 found = true;
7348 page_cache_release(page);
7349 }
7350
7351 rcu_read_unlock();
7352 return found;
7353}
7354
eb838e73
JB
7355static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7356 struct extent_state **cached_state, int writing)
7357{
7358 struct btrfs_ordered_extent *ordered;
7359 int ret = 0;
7360
7361 while (1) {
7362 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7363 0, cached_state);
7364 /*
7365 * We're concerned with the entire range that we're going to be
7366 * doing DIO to, so we need to make sure theres no ordered
7367 * extents in this range.
7368 */
7369 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7370 lockend - lockstart + 1);
7371
7372 /*
7373 * We need to make sure there are no buffered pages in this
7374 * range either, we could have raced between the invalidate in
7375 * generic_file_direct_write and locking the extent. The
7376 * invalidate needs to happen so that reads after a write do not
7377 * get stale data.
7378 */
fc4adbff
AG
7379 if (!ordered &&
7380 (!writing ||
7381 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7382 break;
7383
7384 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7385 cached_state, GFP_NOFS);
7386
7387 if (ordered) {
7388 btrfs_start_ordered_extent(inode, ordered, 1);
7389 btrfs_put_ordered_extent(ordered);
7390 } else {
7391 /* Screw you mmap */
728404da 7392 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
075bdbdb
FM
7393 if (ret)
7394 break;
7395 ret = filemap_fdatawait_range(inode->i_mapping,
7396 lockstart,
7397 lockend);
eb838e73
JB
7398 if (ret)
7399 break;
7400
7401 /*
7402 * If we found a page that couldn't be invalidated just
7403 * fall back to buffered.
7404 */
7405 ret = invalidate_inode_pages2_range(inode->i_mapping,
7406 lockstart >> PAGE_CACHE_SHIFT,
7407 lockend >> PAGE_CACHE_SHIFT);
7408 if (ret)
7409 break;
7410 }
7411
7412 cond_resched();
7413 }
7414
7415 return ret;
7416}
7417
69ffb543
JB
7418static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7419 u64 len, u64 orig_start,
7420 u64 block_start, u64 block_len,
cc95bef6
JB
7421 u64 orig_block_len, u64 ram_bytes,
7422 int type)
69ffb543
JB
7423{
7424 struct extent_map_tree *em_tree;
7425 struct extent_map *em;
7426 struct btrfs_root *root = BTRFS_I(inode)->root;
7427 int ret;
7428
7429 em_tree = &BTRFS_I(inode)->extent_tree;
7430 em = alloc_extent_map();
7431 if (!em)
7432 return ERR_PTR(-ENOMEM);
7433
7434 em->start = start;
7435 em->orig_start = orig_start;
2ab28f32
JB
7436 em->mod_start = start;
7437 em->mod_len = len;
69ffb543
JB
7438 em->len = len;
7439 em->block_len = block_len;
7440 em->block_start = block_start;
7441 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7442 em->orig_block_len = orig_block_len;
cc95bef6 7443 em->ram_bytes = ram_bytes;
70c8a91c 7444 em->generation = -1;
69ffb543
JB
7445 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7446 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7447 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7448
7449 do {
7450 btrfs_drop_extent_cache(inode, em->start,
7451 em->start + em->len - 1, 0);
7452 write_lock(&em_tree->lock);
09a2a8f9 7453 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7454 write_unlock(&em_tree->lock);
7455 } while (ret == -EEXIST);
7456
7457 if (ret) {
7458 free_extent_map(em);
7459 return ERR_PTR(ret);
7460 }
7461
7462 return em;
7463}
7464
50745b0a 7465struct btrfs_dio_data {
7466 u64 outstanding_extents;
7467 u64 reserve;
7468};
69ffb543 7469
4b46fce2
JB
7470static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7471 struct buffer_head *bh_result, int create)
7472{
7473 struct extent_map *em;
7474 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7475 struct extent_state *cached_state = NULL;
50745b0a 7476 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7477 u64 start = iblock << inode->i_blkbits;
eb838e73 7478 u64 lockstart, lockend;
4b46fce2 7479 u64 len = bh_result->b_size;
eb838e73 7480 int unlock_bits = EXTENT_LOCKED;
0934856d 7481 int ret = 0;
eb838e73 7482
172a5049 7483 if (create)
3266789f 7484 unlock_bits |= EXTENT_DIRTY;
172a5049 7485 else
c329861d 7486 len = min_t(u64, len, root->sectorsize);
eb838e73 7487
c329861d
JB
7488 lockstart = start;
7489 lockend = start + len - 1;
7490
e1cbbfa5
JB
7491 if (current->journal_info) {
7492 /*
7493 * Need to pull our outstanding extents and set journal_info to NULL so
7494 * that anything that needs to check if there's a transction doesn't get
7495 * confused.
7496 */
50745b0a 7497 dio_data = current->journal_info;
e1cbbfa5
JB
7498 current->journal_info = NULL;
7499 }
7500
eb838e73
JB
7501 /*
7502 * If this errors out it's because we couldn't invalidate pagecache for
7503 * this range and we need to fallback to buffered.
7504 */
7505 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7506 return -ENOTBLK;
7507
4b46fce2 7508 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7509 if (IS_ERR(em)) {
7510 ret = PTR_ERR(em);
7511 goto unlock_err;
7512 }
4b46fce2
JB
7513
7514 /*
7515 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7516 * io. INLINE is special, and we could probably kludge it in here, but
7517 * it's still buffered so for safety lets just fall back to the generic
7518 * buffered path.
7519 *
7520 * For COMPRESSED we _have_ to read the entire extent in so we can
7521 * decompress it, so there will be buffering required no matter what we
7522 * do, so go ahead and fallback to buffered.
7523 *
7524 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7525 * to buffered IO. Don't blame me, this is the price we pay for using
7526 * the generic code.
7527 */
7528 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7529 em->block_start == EXTENT_MAP_INLINE) {
7530 free_extent_map(em);
eb838e73
JB
7531 ret = -ENOTBLK;
7532 goto unlock_err;
4b46fce2
JB
7533 }
7534
7535 /* Just a good old fashioned hole, return */
7536 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7537 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7538 free_extent_map(em);
eb838e73 7539 goto unlock_err;
4b46fce2
JB
7540 }
7541
7542 /*
7543 * We don't allocate a new extent in the following cases
7544 *
7545 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7546 * existing extent.
7547 * 2) The extent is marked as PREALLOC. We're good to go here and can
7548 * just use the extent.
7549 *
7550 */
46bfbb5c 7551 if (!create) {
eb838e73
JB
7552 len = min(len, em->len - (start - em->start));
7553 lockstart = start + len;
7554 goto unlock;
46bfbb5c 7555 }
4b46fce2
JB
7556
7557 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7558 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7559 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7560 int type;
eb384b55 7561 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7562
7563 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7564 type = BTRFS_ORDERED_PREALLOC;
7565 else
7566 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7567 len = min(len, em->len - (start - em->start));
4b46fce2 7568 block_start = em->block_start + (start - em->start);
46bfbb5c 7569
00361589 7570 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 7571 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
7572 if (type == BTRFS_ORDERED_PREALLOC) {
7573 free_extent_map(em);
7574 em = create_pinned_em(inode, start, len,
7575 orig_start,
b4939680 7576 block_start, len,
cc95bef6
JB
7577 orig_block_len,
7578 ram_bytes, type);
555e1286
FM
7579 if (IS_ERR(em)) {
7580 ret = PTR_ERR(em);
69ffb543 7581 goto unlock_err;
555e1286 7582 }
69ffb543
JB
7583 }
7584
46bfbb5c
CM
7585 ret = btrfs_add_ordered_extent_dio(inode, start,
7586 block_start, len, len, type);
46bfbb5c
CM
7587 if (ret) {
7588 free_extent_map(em);
eb838e73 7589 goto unlock_err;
46bfbb5c
CM
7590 }
7591 goto unlock;
4b46fce2 7592 }
4b46fce2 7593 }
00361589 7594
46bfbb5c
CM
7595 /*
7596 * this will cow the extent, reset the len in case we changed
7597 * it above
7598 */
7599 len = bh_result->b_size;
70c8a91c
JB
7600 free_extent_map(em);
7601 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7602 if (IS_ERR(em)) {
7603 ret = PTR_ERR(em);
7604 goto unlock_err;
7605 }
46bfbb5c
CM
7606 len = min(len, em->len - (start - em->start));
7607unlock:
4b46fce2
JB
7608 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7609 inode->i_blkbits;
46bfbb5c 7610 bh_result->b_size = len;
4b46fce2
JB
7611 bh_result->b_bdev = em->bdev;
7612 set_buffer_mapped(bh_result);
c3473e83
JB
7613 if (create) {
7614 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7615 set_buffer_new(bh_result);
7616
7617 /*
7618 * Need to update the i_size under the extent lock so buffered
7619 * readers will get the updated i_size when we unlock.
7620 */
7621 if (start + len > i_size_read(inode))
7622 i_size_write(inode, start + len);
0934856d 7623
e1cbbfa5
JB
7624 /*
7625 * If we have an outstanding_extents count still set then we're
7626 * within our reservation, otherwise we need to adjust our inode
7627 * counter appropriately.
7628 */
50745b0a 7629 if (dio_data->outstanding_extents) {
7630 (dio_data->outstanding_extents)--;
e1cbbfa5 7631 } else {
3e05bde8
JB
7632 spin_lock(&BTRFS_I(inode)->lock);
7633 BTRFS_I(inode)->outstanding_extents++;
7634 spin_unlock(&BTRFS_I(inode)->lock);
7635 }
e1cbbfa5 7636
3266789f 7637 btrfs_free_reserved_data_space(inode, len);
50745b0a 7638 WARN_ON(dio_data->reserve < len);
7639 dio_data->reserve -= len;
7640 current->journal_info = dio_data;
c3473e83 7641 }
4b46fce2 7642
eb838e73
JB
7643 /*
7644 * In the case of write we need to clear and unlock the entire range,
7645 * in the case of read we need to unlock only the end area that we
7646 * aren't using if there is any left over space.
7647 */
24c03fa5 7648 if (lockstart < lockend) {
0934856d
MX
7649 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7650 lockend, unlock_bits, 1, 0,
7651 &cached_state, GFP_NOFS);
24c03fa5 7652 } else {
eb838e73 7653 free_extent_state(cached_state);
24c03fa5 7654 }
eb838e73 7655
4b46fce2
JB
7656 free_extent_map(em);
7657
7658 return 0;
eb838e73
JB
7659
7660unlock_err:
eb838e73
JB
7661 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7662 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
50745b0a 7663 if (dio_data)
7664 current->journal_info = dio_data;
eb838e73 7665 return ret;
4b46fce2
JB
7666}
7667
8b110e39
MX
7668static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7669 int rw, int mirror_num)
7670{
7671 struct btrfs_root *root = BTRFS_I(inode)->root;
7672 int ret;
7673
7674 BUG_ON(rw & REQ_WRITE);
7675
7676 bio_get(bio);
7677
7678 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7679 BTRFS_WQ_ENDIO_DIO_REPAIR);
7680 if (ret)
7681 goto err;
7682
7683 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7684err:
7685 bio_put(bio);
7686 return ret;
7687}
7688
7689static int btrfs_check_dio_repairable(struct inode *inode,
7690 struct bio *failed_bio,
7691 struct io_failure_record *failrec,
7692 int failed_mirror)
7693{
7694 int num_copies;
7695
7696 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7697 failrec->logical, failrec->len);
7698 if (num_copies == 1) {
7699 /*
7700 * we only have a single copy of the data, so don't bother with
7701 * all the retry and error correction code that follows. no
7702 * matter what the error is, it is very likely to persist.
7703 */
7704 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7705 num_copies, failrec->this_mirror, failed_mirror);
7706 return 0;
7707 }
7708
7709 failrec->failed_mirror = failed_mirror;
7710 failrec->this_mirror++;
7711 if (failrec->this_mirror == failed_mirror)
7712 failrec->this_mirror++;
7713
7714 if (failrec->this_mirror > num_copies) {
7715 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7716 num_copies, failrec->this_mirror, failed_mirror);
7717 return 0;
7718 }
7719
7720 return 1;
7721}
7722
7723static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7724 struct page *page, u64 start, u64 end,
7725 int failed_mirror, bio_end_io_t *repair_endio,
7726 void *repair_arg)
7727{
7728 struct io_failure_record *failrec;
7729 struct bio *bio;
7730 int isector;
7731 int read_mode;
7732 int ret;
7733
7734 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7735
7736 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7737 if (ret)
7738 return ret;
7739
7740 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7741 failed_mirror);
7742 if (!ret) {
7743 free_io_failure(inode, failrec);
7744 return -EIO;
7745 }
7746
7747 if (failed_bio->bi_vcnt > 1)
7748 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7749 else
7750 read_mode = READ_SYNC;
7751
7752 isector = start - btrfs_io_bio(failed_bio)->logical;
7753 isector >>= inode->i_sb->s_blocksize_bits;
7754 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7755 0, isector, repair_endio, repair_arg);
7756 if (!bio) {
7757 free_io_failure(inode, failrec);
7758 return -EIO;
7759 }
7760
7761 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7762 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7763 read_mode, failrec->this_mirror, failrec->in_validation);
7764
7765 ret = submit_dio_repair_bio(inode, bio, read_mode,
7766 failrec->this_mirror);
7767 if (ret) {
7768 free_io_failure(inode, failrec);
7769 bio_put(bio);
7770 }
7771
7772 return ret;
7773}
7774
7775struct btrfs_retry_complete {
7776 struct completion done;
7777 struct inode *inode;
7778 u64 start;
7779 int uptodate;
7780};
7781
4246a0b6 7782static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7783{
7784 struct btrfs_retry_complete *done = bio->bi_private;
7785 struct bio_vec *bvec;
7786 int i;
7787
4246a0b6 7788 if (bio->bi_error)
8b110e39
MX
7789 goto end;
7790
7791 done->uptodate = 1;
7792 bio_for_each_segment_all(bvec, bio, i)
7793 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7794end:
7795 complete(&done->done);
7796 bio_put(bio);
7797}
7798
7799static int __btrfs_correct_data_nocsum(struct inode *inode,
7800 struct btrfs_io_bio *io_bio)
4b46fce2 7801{
2c30c71b 7802 struct bio_vec *bvec;
8b110e39 7803 struct btrfs_retry_complete done;
4b46fce2 7804 u64 start;
2c30c71b 7805 int i;
c1dc0896 7806 int ret;
4b46fce2 7807
8b110e39
MX
7808 start = io_bio->logical;
7809 done.inode = inode;
7810
7811 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7812try_again:
7813 done.uptodate = 0;
7814 done.start = start;
7815 init_completion(&done.done);
7816
7817 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7818 start + bvec->bv_len - 1,
7819 io_bio->mirror_num,
7820 btrfs_retry_endio_nocsum, &done);
7821 if (ret)
7822 return ret;
7823
7824 wait_for_completion(&done.done);
7825
7826 if (!done.uptodate) {
7827 /* We might have another mirror, so try again */
7828 goto try_again;
7829 }
7830
7831 start += bvec->bv_len;
7832 }
7833
7834 return 0;
7835}
7836
4246a0b6 7837static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7838{
7839 struct btrfs_retry_complete *done = bio->bi_private;
7840 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7841 struct bio_vec *bvec;
7842 int uptodate;
7843 int ret;
7844 int i;
7845
4246a0b6 7846 if (bio->bi_error)
8b110e39
MX
7847 goto end;
7848
7849 uptodate = 1;
7850 bio_for_each_segment_all(bvec, bio, i) {
7851 ret = __readpage_endio_check(done->inode, io_bio, i,
7852 bvec->bv_page, 0,
7853 done->start, bvec->bv_len);
7854 if (!ret)
7855 clean_io_failure(done->inode, done->start,
7856 bvec->bv_page, 0);
7857 else
7858 uptodate = 0;
7859 }
7860
7861 done->uptodate = uptodate;
7862end:
7863 complete(&done->done);
7864 bio_put(bio);
7865}
7866
7867static int __btrfs_subio_endio_read(struct inode *inode,
7868 struct btrfs_io_bio *io_bio, int err)
7869{
7870 struct bio_vec *bvec;
7871 struct btrfs_retry_complete done;
7872 u64 start;
7873 u64 offset = 0;
7874 int i;
7875 int ret;
dc380aea 7876
8b110e39 7877 err = 0;
c1dc0896 7878 start = io_bio->logical;
8b110e39
MX
7879 done.inode = inode;
7880
c1dc0896 7881 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
dc380aea
MX
7882 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7883 0, start, bvec->bv_len);
8b110e39
MX
7884 if (likely(!ret))
7885 goto next;
7886try_again:
7887 done.uptodate = 0;
7888 done.start = start;
7889 init_completion(&done.done);
7890
7891 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7892 start + bvec->bv_len - 1,
7893 io_bio->mirror_num,
7894 btrfs_retry_endio, &done);
7895 if (ret) {
7896 err = ret;
7897 goto next;
7898 }
7899
7900 wait_for_completion(&done.done);
7901
7902 if (!done.uptodate) {
7903 /* We might have another mirror, so try again */
7904 goto try_again;
7905 }
7906next:
7907 offset += bvec->bv_len;
4b46fce2 7908 start += bvec->bv_len;
2c30c71b 7909 }
c1dc0896
MX
7910
7911 return err;
7912}
7913
8b110e39
MX
7914static int btrfs_subio_endio_read(struct inode *inode,
7915 struct btrfs_io_bio *io_bio, int err)
7916{
7917 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7918
7919 if (skip_csum) {
7920 if (unlikely(err))
7921 return __btrfs_correct_data_nocsum(inode, io_bio);
7922 else
7923 return 0;
7924 } else {
7925 return __btrfs_subio_endio_read(inode, io_bio, err);
7926 }
7927}
7928
4246a0b6 7929static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
7930{
7931 struct btrfs_dio_private *dip = bio->bi_private;
7932 struct inode *inode = dip->inode;
7933 struct bio *dio_bio;
7934 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 7935 int err = bio->bi_error;
c1dc0896 7936
8b110e39
MX
7937 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7938 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 7939
4b46fce2 7940 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 7941 dip->logical_offset + dip->bytes - 1);
9be3395b 7942 dio_bio = dip->dio_bio;
4b46fce2 7943
4b46fce2 7944 kfree(dip);
c0da7aa1 7945
4246a0b6 7946 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
7947
7948 if (io_bio->end_io)
7949 io_bio->end_io(io_bio, err);
9be3395b 7950 bio_put(bio);
4b46fce2
JB
7951}
7952
4246a0b6 7953static void btrfs_endio_direct_write(struct bio *bio)
4b46fce2
JB
7954{
7955 struct btrfs_dio_private *dip = bio->bi_private;
7956 struct inode *inode = dip->inode;
7957 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 7958 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
7959 u64 ordered_offset = dip->logical_offset;
7960 u64 ordered_bytes = dip->bytes;
9be3395b 7961 struct bio *dio_bio;
4b46fce2
JB
7962 int ret;
7963
163cf09c
CM
7964again:
7965 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7966 &ordered_offset,
4246a0b6
CH
7967 ordered_bytes,
7968 !bio->bi_error);
4b46fce2 7969 if (!ret)
163cf09c 7970 goto out_test;
4b46fce2 7971
9e0af237
LB
7972 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7973 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
7974 btrfs_queue_work(root->fs_info->endio_write_workers,
7975 &ordered->work);
163cf09c
CM
7976out_test:
7977 /*
7978 * our bio might span multiple ordered extents. If we haven't
7979 * completed the accounting for the whole dio, go back and try again
7980 */
7981 if (ordered_offset < dip->logical_offset + dip->bytes) {
7982 ordered_bytes = dip->logical_offset + dip->bytes -
7983 ordered_offset;
5fd02043 7984 ordered = NULL;
163cf09c
CM
7985 goto again;
7986 }
9be3395b 7987 dio_bio = dip->dio_bio;
4b46fce2 7988
4b46fce2 7989 kfree(dip);
c0da7aa1 7990
4246a0b6 7991 dio_end_io(dio_bio, bio->bi_error);
9be3395b 7992 bio_put(bio);
4b46fce2
JB
7993}
7994
eaf25d93
CM
7995static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7996 struct bio *bio, int mirror_num,
7997 unsigned long bio_flags, u64 offset)
7998{
7999 int ret;
8000 struct btrfs_root *root = BTRFS_I(inode)->root;
8001 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8002 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8003 return 0;
8004}
8005
4246a0b6 8006static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8007{
8008 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8009 int err = bio->bi_error;
e65e1535 8010
8b110e39
MX
8011 if (err)
8012 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8013 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8014 btrfs_ino(dip->inode), bio->bi_rw,
8015 (unsigned long long)bio->bi_iter.bi_sector,
8016 bio->bi_iter.bi_size, err);
8017
8018 if (dip->subio_endio)
8019 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8020
8021 if (err) {
e65e1535
MX
8022 dip->errors = 1;
8023
8024 /*
8025 * before atomic variable goto zero, we must make sure
8026 * dip->errors is perceived to be set.
8027 */
4e857c58 8028 smp_mb__before_atomic();
e65e1535
MX
8029 }
8030
8031 /* if there are more bios still pending for this dio, just exit */
8032 if (!atomic_dec_and_test(&dip->pending_bios))
8033 goto out;
8034
9be3395b 8035 if (dip->errors) {
e65e1535 8036 bio_io_error(dip->orig_bio);
9be3395b 8037 } else {
4246a0b6
CH
8038 dip->dio_bio->bi_error = 0;
8039 bio_endio(dip->orig_bio);
e65e1535
MX
8040 }
8041out:
8042 bio_put(bio);
8043}
8044
8045static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8046 u64 first_sector, gfp_t gfp_flags)
8047{
da2f0f74 8048 struct bio *bio;
22365979 8049 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8050 if (bio)
8051 bio_associate_current(bio);
8052 return bio;
e65e1535
MX
8053}
8054
c1dc0896
MX
8055static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8056 struct inode *inode,
8057 struct btrfs_dio_private *dip,
8058 struct bio *bio,
8059 u64 file_offset)
8060{
8061 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8062 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8063 int ret;
8064
8065 /*
8066 * We load all the csum data we need when we submit
8067 * the first bio to reduce the csum tree search and
8068 * contention.
8069 */
8070 if (dip->logical_offset == file_offset) {
8071 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8072 file_offset);
8073 if (ret)
8074 return ret;
8075 }
8076
8077 if (bio == dip->orig_bio)
8078 return 0;
8079
8080 file_offset -= dip->logical_offset;
8081 file_offset >>= inode->i_sb->s_blocksize_bits;
8082 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8083
8084 return 0;
8085}
8086
e65e1535
MX
8087static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8088 int rw, u64 file_offset, int skip_sum,
c329861d 8089 int async_submit)
e65e1535 8090{
facc8a22 8091 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
8092 int write = rw & REQ_WRITE;
8093 struct btrfs_root *root = BTRFS_I(inode)->root;
8094 int ret;
8095
b812ce28
JB
8096 if (async_submit)
8097 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8098
e65e1535 8099 bio_get(bio);
5fd02043
JB
8100
8101 if (!write) {
bfebd8b5
DS
8102 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8103 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8104 if (ret)
8105 goto err;
8106 }
e65e1535 8107
1ae39938
JB
8108 if (skip_sum)
8109 goto map;
8110
8111 if (write && async_submit) {
e65e1535
MX
8112 ret = btrfs_wq_submit_bio(root->fs_info,
8113 inode, rw, bio, 0, 0,
8114 file_offset,
8115 __btrfs_submit_bio_start_direct_io,
8116 __btrfs_submit_bio_done);
8117 goto err;
1ae39938
JB
8118 } else if (write) {
8119 /*
8120 * If we aren't doing async submit, calculate the csum of the
8121 * bio now.
8122 */
8123 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8124 if (ret)
8125 goto err;
23ea8e5a 8126 } else {
c1dc0896
MX
8127 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8128 file_offset);
c2db1073
TI
8129 if (ret)
8130 goto err;
8131 }
1ae39938
JB
8132map:
8133 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
8134err:
8135 bio_put(bio);
8136 return ret;
8137}
8138
8139static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8140 int skip_sum)
8141{
8142 struct inode *inode = dip->inode;
8143 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8144 struct bio *bio;
8145 struct bio *orig_bio = dip->orig_bio;
8146 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8147 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8148 u64 file_offset = dip->logical_offset;
8149 u64 submit_len = 0;
8150 u64 map_length;
8151 int nr_pages = 0;
23ea8e5a 8152 int ret;
1ae39938 8153 int async_submit = 0;
e65e1535 8154
4f024f37 8155 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8156 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 8157 &map_length, NULL, 0);
7a5c3c9b 8158 if (ret)
e65e1535 8159 return -EIO;
facc8a22 8160
4f024f37 8161 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8162 bio = orig_bio;
c1dc0896 8163 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8164 goto submit;
8165 }
8166
53b381b3 8167 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8168 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8169 async_submit = 0;
8170 else
8171 async_submit = 1;
8172
02f57c7a
JB
8173 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8174 if (!bio)
8175 return -ENOMEM;
7a5c3c9b 8176
02f57c7a
JB
8177 bio->bi_private = dip;
8178 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8179 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8180 atomic_inc(&dip->pending_bios);
8181
e65e1535 8182 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
ee39b432 8183 if (map_length < submit_len + bvec->bv_len ||
e65e1535 8184 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
ee39b432 8185 bvec->bv_offset) < bvec->bv_len) {
e65e1535
MX
8186 /*
8187 * inc the count before we submit the bio so
8188 * we know the end IO handler won't happen before
8189 * we inc the count. Otherwise, the dip might get freed
8190 * before we're done setting it up
8191 */
8192 atomic_inc(&dip->pending_bios);
8193 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8194 file_offset, skip_sum,
c329861d 8195 async_submit);
e65e1535
MX
8196 if (ret) {
8197 bio_put(bio);
8198 atomic_dec(&dip->pending_bios);
8199 goto out_err;
8200 }
8201
e65e1535
MX
8202 start_sector += submit_len >> 9;
8203 file_offset += submit_len;
8204
8205 submit_len = 0;
8206 nr_pages = 0;
8207
8208 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8209 start_sector, GFP_NOFS);
8210 if (!bio)
8211 goto out_err;
8212 bio->bi_private = dip;
8213 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8214 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8215
4f024f37 8216 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8217 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 8218 start_sector << 9,
e65e1535
MX
8219 &map_length, NULL, 0);
8220 if (ret) {
8221 bio_put(bio);
8222 goto out_err;
8223 }
8224 } else {
8225 submit_len += bvec->bv_len;
67871254 8226 nr_pages++;
e65e1535
MX
8227 bvec++;
8228 }
8229 }
8230
02f57c7a 8231submit:
e65e1535 8232 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 8233 async_submit);
e65e1535
MX
8234 if (!ret)
8235 return 0;
8236
8237 bio_put(bio);
8238out_err:
8239 dip->errors = 1;
8240 /*
8241 * before atomic variable goto zero, we must
8242 * make sure dip->errors is perceived to be set.
8243 */
4e857c58 8244 smp_mb__before_atomic();
e65e1535
MX
8245 if (atomic_dec_and_test(&dip->pending_bios))
8246 bio_io_error(dip->orig_bio);
8247
8248 /* bio_end_io() will handle error, so we needn't return it */
8249 return 0;
8250}
8251
9be3395b
CM
8252static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8253 struct inode *inode, loff_t file_offset)
4b46fce2 8254{
61de718f
FM
8255 struct btrfs_dio_private *dip = NULL;
8256 struct bio *io_bio = NULL;
23ea8e5a 8257 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8258 int skip_sum;
7b6d91da 8259 int write = rw & REQ_WRITE;
4b46fce2
JB
8260 int ret = 0;
8261
8262 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8263
9be3395b 8264 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8265 if (!io_bio) {
8266 ret = -ENOMEM;
8267 goto free_ordered;
8268 }
8269
c1dc0896 8270 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8271 if (!dip) {
8272 ret = -ENOMEM;
61de718f 8273 goto free_ordered;
4b46fce2 8274 }
4b46fce2 8275
9be3395b 8276 dip->private = dio_bio->bi_private;
4b46fce2
JB
8277 dip->inode = inode;
8278 dip->logical_offset = file_offset;
4f024f37
KO
8279 dip->bytes = dio_bio->bi_iter.bi_size;
8280 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8281 io_bio->bi_private = dip;
9be3395b
CM
8282 dip->orig_bio = io_bio;
8283 dip->dio_bio = dio_bio;
e65e1535 8284 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8285 btrfs_bio = btrfs_io_bio(io_bio);
8286 btrfs_bio->logical = file_offset;
4b46fce2 8287
c1dc0896 8288 if (write) {
9be3395b 8289 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8290 } else {
9be3395b 8291 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8292 dip->subio_endio = btrfs_subio_endio_read;
8293 }
4b46fce2 8294
e65e1535
MX
8295 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8296 if (!ret)
eaf25d93 8297 return;
9be3395b 8298
23ea8e5a
MX
8299 if (btrfs_bio->end_io)
8300 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8301
4b46fce2
JB
8302free_ordered:
8303 /*
61de718f
FM
8304 * If we arrived here it means either we failed to submit the dip
8305 * or we either failed to clone the dio_bio or failed to allocate the
8306 * dip. If we cloned the dio_bio and allocated the dip, we can just
8307 * call bio_endio against our io_bio so that we get proper resource
8308 * cleanup if we fail to submit the dip, otherwise, we must do the
8309 * same as btrfs_endio_direct_[write|read] because we can't call these
8310 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8311 */
61de718f 8312 if (io_bio && dip) {
4246a0b6
CH
8313 io_bio->bi_error = -EIO;
8314 bio_endio(io_bio);
61de718f
FM
8315 /*
8316 * The end io callbacks free our dip, do the final put on io_bio
8317 * and all the cleanup and final put for dio_bio (through
8318 * dio_end_io()).
8319 */
8320 dip = NULL;
8321 io_bio = NULL;
8322 } else {
8323 if (write) {
8324 struct btrfs_ordered_extent *ordered;
8325
8326 ordered = btrfs_lookup_ordered_extent(inode,
8327 file_offset);
8328 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
8329 /*
8330 * Decrements our ref on the ordered extent and removes
8331 * the ordered extent from the inode's ordered tree,
8332 * doing all the proper resource cleanup such as for the
8333 * reserved space and waking up any waiters for this
8334 * ordered extent (through btrfs_remove_ordered_extent).
8335 */
8336 btrfs_finish_ordered_io(ordered);
8337 } else {
8338 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8339 file_offset + dio_bio->bi_iter.bi_size - 1);
8340 }
4246a0b6 8341 dio_bio->bi_error = -EIO;
61de718f
FM
8342 /*
8343 * Releases and cleans up our dio_bio, no need to bio_put()
8344 * nor bio_endio()/bio_io_error() against dio_bio.
8345 */
8346 dio_end_io(dio_bio, ret);
4b46fce2 8347 }
61de718f
FM
8348 if (io_bio)
8349 bio_put(io_bio);
8350 kfree(dip);
4b46fce2
JB
8351}
8352
6f673763 8353static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8354 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8355{
8356 int seg;
a1b75f7d 8357 int i;
5a5f79b5
CM
8358 unsigned blocksize_mask = root->sectorsize - 1;
8359 ssize_t retval = -EINVAL;
5a5f79b5
CM
8360
8361 if (offset & blocksize_mask)
8362 goto out;
8363
28060d5d
AV
8364 if (iov_iter_alignment(iter) & blocksize_mask)
8365 goto out;
a1b75f7d 8366
28060d5d 8367 /* If this is a write we don't need to check anymore */
6f673763 8368 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8369 return 0;
8370 /*
8371 * Check to make sure we don't have duplicate iov_base's in this
8372 * iovec, if so return EINVAL, otherwise we'll get csum errors
8373 * when reading back.
8374 */
8375 for (seg = 0; seg < iter->nr_segs; seg++) {
8376 for (i = seg + 1; i < iter->nr_segs; i++) {
8377 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8378 goto out;
8379 }
5a5f79b5
CM
8380 }
8381 retval = 0;
8382out:
8383 return retval;
8384}
eb838e73 8385
22c6186e
OS
8386static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8387 loff_t offset)
16432985 8388{
4b46fce2
JB
8389 struct file *file = iocb->ki_filp;
8390 struct inode *inode = file->f_mapping->host;
50745b0a 8391 struct btrfs_root *root = BTRFS_I(inode)->root;
8392 struct btrfs_dio_data dio_data = { 0 };
0934856d 8393 size_t count = 0;
2e60a51e 8394 int flags = 0;
38851cc1
MX
8395 bool wakeup = true;
8396 bool relock = false;
0934856d 8397 ssize_t ret;
4b46fce2 8398
6f673763 8399 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8400 return 0;
3f7c579c 8401
fe0f07d0 8402 inode_dio_begin(inode);
4e857c58 8403 smp_mb__after_atomic();
38851cc1 8404
0e267c44 8405 /*
41bd9ca4
MX
8406 * The generic stuff only does filemap_write_and_wait_range, which
8407 * isn't enough if we've written compressed pages to this area, so
8408 * we need to flush the dirty pages again to make absolutely sure
8409 * that any outstanding dirty pages are on disk.
0e267c44 8410 */
a6cbcd4a 8411 count = iov_iter_count(iter);
41bd9ca4
MX
8412 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8413 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8414 filemap_fdatawrite_range(inode->i_mapping, offset,
8415 offset + count - 1);
0e267c44 8416
6f673763 8417 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8418 /*
8419 * If the write DIO is beyond the EOF, we need update
8420 * the isize, but it is protected by i_mutex. So we can
8421 * not unlock the i_mutex at this case.
8422 */
8423 if (offset + count <= inode->i_size) {
8424 mutex_unlock(&inode->i_mutex);
8425 relock = true;
8426 }
0934856d
MX
8427 ret = btrfs_delalloc_reserve_space(inode, count);
8428 if (ret)
38851cc1 8429 goto out;
50745b0a 8430 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8431 BTRFS_MAX_EXTENT_SIZE - 1,
8432 BTRFS_MAX_EXTENT_SIZE);
8433
8434 /*
8435 * We need to know how many extents we reserved so that we can
8436 * do the accounting properly if we go over the number we
8437 * originally calculated. Abuse current->journal_info for this.
8438 */
50745b0a 8439 dio_data.reserve = round_up(count, root->sectorsize);
8440 current->journal_info = &dio_data;
ee39b432
DS
8441 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8442 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8443 inode_dio_end(inode);
38851cc1
MX
8444 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8445 wakeup = false;
0934856d
MX
8446 }
8447
17f8c842
OS
8448 ret = __blockdev_direct_IO(iocb, inode,
8449 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8450 iter, offset, btrfs_get_blocks_direct, NULL,
8451 btrfs_submit_direct, flags);
6f673763 8452 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8453 current->journal_info = NULL;
ddba1bfc 8454 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8455 if (dio_data.reserve)
8456 btrfs_delalloc_release_space(inode,
8457 dio_data.reserve);
ddba1bfc 8458 } else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
8459 btrfs_delalloc_release_space(inode,
8460 count - (size_t)ret);
0934856d 8461 }
38851cc1 8462out:
2e60a51e 8463 if (wakeup)
fe0f07d0 8464 inode_dio_end(inode);
38851cc1
MX
8465 if (relock)
8466 mutex_lock(&inode->i_mutex);
0934856d
MX
8467
8468 return ret;
16432985
CM
8469}
8470
05dadc09
TI
8471#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8472
1506fcc8
YS
8473static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8474 __u64 start, __u64 len)
8475{
05dadc09
TI
8476 int ret;
8477
8478 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8479 if (ret)
8480 return ret;
8481
ec29ed5b 8482 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8483}
8484
a52d9a80 8485int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8486{
d1310b2e
CM
8487 struct extent_io_tree *tree;
8488 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8489 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8490}
1832a6d5 8491
a52d9a80 8492static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8493{
d1310b2e 8494 struct extent_io_tree *tree;
b888db2b
CM
8495
8496
8497 if (current->flags & PF_MEMALLOC) {
8498 redirty_page_for_writepage(wbc, page);
8499 unlock_page(page);
8500 return 0;
8501 }
d1310b2e 8502 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 8503 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
8504}
8505
48a3b636
ES
8506static int btrfs_writepages(struct address_space *mapping,
8507 struct writeback_control *wbc)
b293f02e 8508{
d1310b2e 8509 struct extent_io_tree *tree;
771ed689 8510
d1310b2e 8511 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8512 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8513}
8514
3ab2fb5a
CM
8515static int
8516btrfs_readpages(struct file *file, struct address_space *mapping,
8517 struct list_head *pages, unsigned nr_pages)
8518{
d1310b2e
CM
8519 struct extent_io_tree *tree;
8520 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8521 return extent_readpages(tree, mapping, pages, nr_pages,
8522 btrfs_get_extent);
8523}
e6dcd2dc 8524static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8525{
d1310b2e
CM
8526 struct extent_io_tree *tree;
8527 struct extent_map_tree *map;
a52d9a80 8528 int ret;
8c2383c3 8529
d1310b2e
CM
8530 tree = &BTRFS_I(page->mapping->host)->io_tree;
8531 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8532 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8533 if (ret == 1) {
8534 ClearPagePrivate(page);
8535 set_page_private(page, 0);
8536 page_cache_release(page);
39279cc3 8537 }
a52d9a80 8538 return ret;
39279cc3
CM
8539}
8540
e6dcd2dc
CM
8541static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8542{
98509cfc
CM
8543 if (PageWriteback(page) || PageDirty(page))
8544 return 0;
b335b003 8545 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8546}
8547
d47992f8
LC
8548static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8549 unsigned int length)
39279cc3 8550{
5fd02043 8551 struct inode *inode = page->mapping->host;
d1310b2e 8552 struct extent_io_tree *tree;
e6dcd2dc 8553 struct btrfs_ordered_extent *ordered;
2ac55d41 8554 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8555 u64 page_start = page_offset(page);
8556 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 8557 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8558
8b62b72b
CM
8559 /*
8560 * we have the page locked, so new writeback can't start,
8561 * and the dirty bit won't be cleared while we are here.
8562 *
8563 * Wait for IO on this page so that we can safely clear
8564 * the PagePrivate2 bit and do ordered accounting
8565 */
e6dcd2dc 8566 wait_on_page_writeback(page);
8b62b72b 8567
5fd02043 8568 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8569 if (offset) {
8570 btrfs_releasepage(page, GFP_NOFS);
8571 return;
8572 }
131e404a
FDBM
8573
8574 if (!inode_evicting)
8575 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8576 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 8577 if (ordered) {
eb84ae03
CM
8578 /*
8579 * IO on this page will never be started, so we need
8580 * to account for any ordered extents now
8581 */
131e404a
FDBM
8582 if (!inode_evicting)
8583 clear_extent_bit(tree, page_start, page_end,
8584 EXTENT_DIRTY | EXTENT_DELALLOC |
8585 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8586 EXTENT_DEFRAG, 1, 0, &cached_state,
8587 GFP_NOFS);
8b62b72b
CM
8588 /*
8589 * whoever cleared the private bit is responsible
8590 * for the finish_ordered_io
8591 */
77cef2ec
JB
8592 if (TestClearPagePrivate2(page)) {
8593 struct btrfs_ordered_inode_tree *tree;
8594 u64 new_len;
8595
8596 tree = &BTRFS_I(inode)->ordered_tree;
8597
8598 spin_lock_irq(&tree->lock);
8599 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8600 new_len = page_start - ordered->file_offset;
8601 if (new_len < ordered->truncated_len)
8602 ordered->truncated_len = new_len;
8603 spin_unlock_irq(&tree->lock);
8604
8605 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8606 page_start,
8607 PAGE_CACHE_SIZE, 1))
8608 btrfs_finish_ordered_io(ordered);
8b62b72b 8609 }
e6dcd2dc 8610 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8611 if (!inode_evicting) {
8612 cached_state = NULL;
8613 lock_extent_bits(tree, page_start, page_end, 0,
8614 &cached_state);
8615 }
8616 }
8617
8618 if (!inode_evicting) {
8619 clear_extent_bit(tree, page_start, page_end,
8620 EXTENT_LOCKED | EXTENT_DIRTY |
8621 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8622 EXTENT_DEFRAG, 1, 1,
8623 &cached_state, GFP_NOFS);
8624
8625 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8626 }
e6dcd2dc 8627
4a096752 8628 ClearPageChecked(page);
9ad6b7bc 8629 if (PagePrivate(page)) {
9ad6b7bc
CM
8630 ClearPagePrivate(page);
8631 set_page_private(page, 0);
8632 page_cache_release(page);
8633 }
39279cc3
CM
8634}
8635
9ebefb18
CM
8636/*
8637 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8638 * called from a page fault handler when a page is first dirtied. Hence we must
8639 * be careful to check for EOF conditions here. We set the page up correctly
8640 * for a written page which means we get ENOSPC checking when writing into
8641 * holes and correct delalloc and unwritten extent mapping on filesystems that
8642 * support these features.
8643 *
8644 * We are not allowed to take the i_mutex here so we have to play games to
8645 * protect against truncate races as the page could now be beyond EOF. Because
8646 * vmtruncate() writes the inode size before removing pages, once we have the
8647 * page lock we can determine safely if the page is beyond EOF. If it is not
8648 * beyond EOF, then the page is guaranteed safe against truncation until we
8649 * unlock the page.
8650 */
c2ec175c 8651int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8652{
c2ec175c 8653 struct page *page = vmf->page;
496ad9aa 8654 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8655 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8656 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8657 struct btrfs_ordered_extent *ordered;
2ac55d41 8658 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8659 char *kaddr;
8660 unsigned long zero_start;
9ebefb18 8661 loff_t size;
1832a6d5 8662 int ret;
9998eb70 8663 int reserved = 0;
a52d9a80 8664 u64 page_start;
e6dcd2dc 8665 u64 page_end;
9ebefb18 8666
b2b5ef5c 8667 sb_start_pagefault(inode->i_sb);
0ca1f7ce 8668 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 8669 if (!ret) {
e41f941a 8670 ret = file_update_time(vma->vm_file);
9998eb70
CM
8671 reserved = 1;
8672 }
56a76f82
NP
8673 if (ret) {
8674 if (ret == -ENOMEM)
8675 ret = VM_FAULT_OOM;
8676 else /* -ENOSPC, -EIO, etc */
8677 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8678 if (reserved)
8679 goto out;
8680 goto out_noreserve;
56a76f82 8681 }
1832a6d5 8682
56a76f82 8683 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8684again:
9ebefb18 8685 lock_page(page);
9ebefb18 8686 size = i_size_read(inode);
e6dcd2dc
CM
8687 page_start = page_offset(page);
8688 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 8689
9ebefb18 8690 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8691 (page_start >= size)) {
9ebefb18
CM
8692 /* page got truncated out from underneath us */
8693 goto out_unlock;
8694 }
e6dcd2dc
CM
8695 wait_on_page_writeback(page);
8696
d0082371 8697 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
8698 set_page_extent_mapped(page);
8699
eb84ae03
CM
8700 /*
8701 * we can't set the delalloc bits if there are pending ordered
8702 * extents. Drop our locks and wait for them to finish
8703 */
e6dcd2dc
CM
8704 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8705 if (ordered) {
2ac55d41
JB
8706 unlock_extent_cached(io_tree, page_start, page_end,
8707 &cached_state, GFP_NOFS);
e6dcd2dc 8708 unlock_page(page);
eb84ae03 8709 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8710 btrfs_put_ordered_extent(ordered);
8711 goto again;
8712 }
8713
fbf19087
JB
8714 /*
8715 * XXX - page_mkwrite gets called every time the page is dirtied, even
8716 * if it was already dirty, so for space accounting reasons we need to
8717 * clear any delalloc bits for the range we are fixing to save. There
8718 * is probably a better way to do this, but for now keep consistent with
8719 * prepare_pages in the normal write path.
8720 */
2ac55d41 8721 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
8722 EXTENT_DIRTY | EXTENT_DELALLOC |
8723 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 8724 0, 0, &cached_state, GFP_NOFS);
fbf19087 8725
2ac55d41
JB
8726 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8727 &cached_state);
9ed74f2d 8728 if (ret) {
2ac55d41
JB
8729 unlock_extent_cached(io_tree, page_start, page_end,
8730 &cached_state, GFP_NOFS);
9ed74f2d
JB
8731 ret = VM_FAULT_SIGBUS;
8732 goto out_unlock;
8733 }
e6dcd2dc 8734 ret = 0;
9ebefb18
CM
8735
8736 /* page is wholly or partially inside EOF */
a52d9a80 8737 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 8738 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 8739 else
e6dcd2dc 8740 zero_start = PAGE_CACHE_SIZE;
9ebefb18 8741
e6dcd2dc
CM
8742 if (zero_start != PAGE_CACHE_SIZE) {
8743 kaddr = kmap(page);
8744 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8745 flush_dcache_page(page);
8746 kunmap(page);
8747 }
247e743c 8748 ClearPageChecked(page);
e6dcd2dc 8749 set_page_dirty(page);
50a9b214 8750 SetPageUptodate(page);
5a3f23d5 8751
257c62e1
CM
8752 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8753 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8754 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8755
2ac55d41 8756 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
8757
8758out_unlock:
b2b5ef5c
JK
8759 if (!ret) {
8760 sb_end_pagefault(inode->i_sb);
50a9b214 8761 return VM_FAULT_LOCKED;
b2b5ef5c 8762 }
9ebefb18 8763 unlock_page(page);
1832a6d5 8764out:
ec39e180 8765 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 8766out_noreserve:
b2b5ef5c 8767 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
8768 return ret;
8769}
8770
a41ad394 8771static int btrfs_truncate(struct inode *inode)
39279cc3
CM
8772{
8773 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8774 struct btrfs_block_rsv *rsv;
a71754fc 8775 int ret = 0;
3893e33b 8776 int err = 0;
39279cc3 8777 struct btrfs_trans_handle *trans;
dbe674a9 8778 u64 mask = root->sectorsize - 1;
07127184 8779 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 8780
0ef8b726
JB
8781 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8782 (u64)-1);
8783 if (ret)
8784 return ret;
39279cc3 8785
fcb80c2a
JB
8786 /*
8787 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8788 * 3 things going on here
8789 *
8790 * 1) We need to reserve space for our orphan item and the space to
8791 * delete our orphan item. Lord knows we don't want to have a dangling
8792 * orphan item because we didn't reserve space to remove it.
8793 *
8794 * 2) We need to reserve space to update our inode.
8795 *
8796 * 3) We need to have something to cache all the space that is going to
8797 * be free'd up by the truncate operation, but also have some slack
8798 * space reserved in case it uses space during the truncate (thank you
8799 * very much snapshotting).
8800 *
8801 * And we need these to all be seperate. The fact is we can use alot of
8802 * space doing the truncate, and we have no earthly idea how much space
8803 * we will use, so we need the truncate reservation to be seperate so it
8804 * doesn't end up using space reserved for updating the inode or
8805 * removing the orphan item. We also need to be able to stop the
8806 * transaction and start a new one, which means we need to be able to
8807 * update the inode several times, and we have no idea of knowing how
8808 * many times that will be, so we can't just reserve 1 item for the
8809 * entirety of the opration, so that has to be done seperately as well.
8810 * Then there is the orphan item, which does indeed need to be held on
8811 * to for the whole operation, and we need nobody to touch this reserved
8812 * space except the orphan code.
8813 *
8814 * So that leaves us with
8815 *
8816 * 1) root->orphan_block_rsv - for the orphan deletion.
8817 * 2) rsv - for the truncate reservation, which we will steal from the
8818 * transaction reservation.
8819 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8820 * updating the inode.
8821 */
66d8f3dd 8822 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8823 if (!rsv)
8824 return -ENOMEM;
4a338542 8825 rsv->size = min_size;
ca7e70f5 8826 rsv->failfast = 1;
f0cd846e 8827
907cbceb 8828 /*
07127184 8829 * 1 for the truncate slack space
907cbceb
JB
8830 * 1 for updating the inode.
8831 */
f3fe820c 8832 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
8833 if (IS_ERR(trans)) {
8834 err = PTR_ERR(trans);
8835 goto out;
8836 }
f0cd846e 8837
907cbceb
JB
8838 /* Migrate the slack space for the truncate to our reserve */
8839 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8840 min_size);
fcb80c2a 8841 BUG_ON(ret);
f0cd846e 8842
5dc562c5
JB
8843 /*
8844 * So if we truncate and then write and fsync we normally would just
8845 * write the extents that changed, which is a problem if we need to
8846 * first truncate that entire inode. So set this flag so we write out
8847 * all of the extents in the inode to the sync log so we're completely
8848 * safe.
8849 */
8850 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8851 trans->block_rsv = rsv;
907cbceb 8852
8082510e
YZ
8853 while (1) {
8854 ret = btrfs_truncate_inode_items(trans, root, inode,
8855 inode->i_size,
8856 BTRFS_EXTENT_DATA_KEY);
28ed1345 8857 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 8858 err = ret;
8082510e 8859 break;
3893e33b 8860 }
39279cc3 8861
fcb80c2a 8862 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 8863 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
8864 if (ret) {
8865 err = ret;
8866 break;
8867 }
ca7e70f5 8868
8082510e 8869 btrfs_end_transaction(trans, root);
b53d3f5d 8870 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
8871
8872 trans = btrfs_start_transaction(root, 2);
8873 if (IS_ERR(trans)) {
8874 ret = err = PTR_ERR(trans);
8875 trans = NULL;
8876 break;
8877 }
8878
8879 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8880 rsv, min_size);
8881 BUG_ON(ret); /* shouldn't happen */
8882 trans->block_rsv = rsv;
8082510e
YZ
8883 }
8884
8885 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 8886 trans->block_rsv = root->orphan_block_rsv;
8082510e 8887 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
8888 if (ret)
8889 err = ret;
8082510e
YZ
8890 }
8891
917c16b2
CM
8892 if (trans) {
8893 trans->block_rsv = &root->fs_info->trans_block_rsv;
8894 ret = btrfs_update_inode(trans, root, inode);
8895 if (ret && !err)
8896 err = ret;
7b128766 8897
7ad85bb7 8898 ret = btrfs_end_transaction(trans, root);
b53d3f5d 8899 btrfs_btree_balance_dirty(root);
917c16b2 8900 }
fcb80c2a
JB
8901
8902out:
8903 btrfs_free_block_rsv(root, rsv);
8904
3893e33b
JB
8905 if (ret && !err)
8906 err = ret;
a41ad394 8907
3893e33b 8908 return err;
39279cc3
CM
8909}
8910
d352ac68
CM
8911/*
8912 * create a new subvolume directory/inode (helper for the ioctl).
8913 */
d2fb3437 8914int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8915 struct btrfs_root *new_root,
8916 struct btrfs_root *parent_root,
8917 u64 new_dirid)
39279cc3 8918{
39279cc3 8919 struct inode *inode;
76dda93c 8920 int err;
00e4e6b3 8921 u64 index = 0;
39279cc3 8922
12fc9d09
FA
8923 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8924 new_dirid, new_dirid,
8925 S_IFDIR | (~current_umask() & S_IRWXUGO),
8926 &index);
54aa1f4d 8927 if (IS_ERR(inode))
f46b5a66 8928 return PTR_ERR(inode);
39279cc3
CM
8929 inode->i_op = &btrfs_dir_inode_operations;
8930 inode->i_fop = &btrfs_dir_file_operations;
8931
bfe86848 8932 set_nlink(inode, 1);
dbe674a9 8933 btrfs_i_size_write(inode, 0);
b0d5d10f 8934 unlock_new_inode(inode);
3b96362c 8935
63541927
FDBM
8936 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8937 if (err)
8938 btrfs_err(new_root->fs_info,
351fd353 8939 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8940 new_root->root_key.objectid, err);
8941
76dda93c 8942 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8943
76dda93c 8944 iput(inode);
ce598979 8945 return err;
39279cc3
CM
8946}
8947
39279cc3
CM
8948struct inode *btrfs_alloc_inode(struct super_block *sb)
8949{
8950 struct btrfs_inode *ei;
2ead6ae7 8951 struct inode *inode;
39279cc3
CM
8952
8953 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8954 if (!ei)
8955 return NULL;
2ead6ae7
YZ
8956
8957 ei->root = NULL;
2ead6ae7 8958 ei->generation = 0;
15ee9bc7 8959 ei->last_trans = 0;
257c62e1 8960 ei->last_sub_trans = 0;
e02119d5 8961 ei->logged_trans = 0;
2ead6ae7 8962 ei->delalloc_bytes = 0;
47059d93 8963 ei->defrag_bytes = 0;
2ead6ae7
YZ
8964 ei->disk_i_size = 0;
8965 ei->flags = 0;
7709cde3 8966 ei->csum_bytes = 0;
2ead6ae7 8967 ei->index_cnt = (u64)-1;
67de1176 8968 ei->dir_index = 0;
2ead6ae7 8969 ei->last_unlink_trans = 0;
46d8bc34 8970 ei->last_log_commit = 0;
2ead6ae7 8971
9e0baf60
JB
8972 spin_lock_init(&ei->lock);
8973 ei->outstanding_extents = 0;
8974 ei->reserved_extents = 0;
2ead6ae7 8975
72ac3c0d 8976 ei->runtime_flags = 0;
261507a0 8977 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8978
16cdcec7
MX
8979 ei->delayed_node = NULL;
8980
9cc97d64 8981 ei->i_otime.tv_sec = 0;
8982 ei->i_otime.tv_nsec = 0;
8983
2ead6ae7 8984 inode = &ei->vfs_inode;
a8067e02 8985 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
8986 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8987 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
8988 ei->io_tree.track_uptodate = 1;
8989 ei->io_failure_tree.track_uptodate = 1;
b812ce28 8990 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8991 mutex_init(&ei->log_mutex);
f248679e 8992 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 8993 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8994 INIT_LIST_HEAD(&ei->delalloc_inodes);
2ead6ae7
YZ
8995 RB_CLEAR_NODE(&ei->rb_node);
8996
8997 return inode;
39279cc3
CM
8998}
8999
aaedb55b
JB
9000#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9001void btrfs_test_destroy_inode(struct inode *inode)
9002{
9003 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9004 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9005}
9006#endif
9007
fa0d7e3d
NP
9008static void btrfs_i_callback(struct rcu_head *head)
9009{
9010 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9011 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9012}
9013
39279cc3
CM
9014void btrfs_destroy_inode(struct inode *inode)
9015{
e6dcd2dc 9016 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9017 struct btrfs_root *root = BTRFS_I(inode)->root;
9018
b3d9b7a3 9019 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9020 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9021 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9022 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9023 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9024 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9025 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9026
a6dbd429
JB
9027 /*
9028 * This can happen where we create an inode, but somebody else also
9029 * created the same inode and we need to destroy the one we already
9030 * created.
9031 */
9032 if (!root)
9033 goto free;
9034
8a35d95f
JB
9035 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9036 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9037 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9038 btrfs_ino(inode));
8a35d95f 9039 atomic_dec(&root->orphan_inodes);
7b128766 9040 }
7b128766 9041
d397712b 9042 while (1) {
e6dcd2dc
CM
9043 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9044 if (!ordered)
9045 break;
9046 else {
c2cf52eb 9047 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 9048 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9049 btrfs_remove_ordered_extent(inode, ordered);
9050 btrfs_put_ordered_extent(ordered);
9051 btrfs_put_ordered_extent(ordered);
9052 }
9053 }
5d4f98a2 9054 inode_tree_del(inode);
5b21f2ed 9055 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9056free:
fa0d7e3d 9057 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9058}
9059
45321ac5 9060int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9061{
9062 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9063
6379ef9f
NA
9064 if (root == NULL)
9065 return 1;
9066
fa6ac876 9067 /* the snap/subvol tree is on deleting */
69e9c6c6 9068 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9069 return 1;
76dda93c 9070 else
45321ac5 9071 return generic_drop_inode(inode);
76dda93c
YZ
9072}
9073
0ee0fda0 9074static void init_once(void *foo)
39279cc3
CM
9075{
9076 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9077
9078 inode_init_once(&ei->vfs_inode);
9079}
9080
9081void btrfs_destroy_cachep(void)
9082{
8c0a8537
KS
9083 /*
9084 * Make sure all delayed rcu free inodes are flushed before we
9085 * destroy cache.
9086 */
9087 rcu_barrier();
39279cc3
CM
9088 if (btrfs_inode_cachep)
9089 kmem_cache_destroy(btrfs_inode_cachep);
9090 if (btrfs_trans_handle_cachep)
9091 kmem_cache_destroy(btrfs_trans_handle_cachep);
9092 if (btrfs_transaction_cachep)
9093 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
9094 if (btrfs_path_cachep)
9095 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
9096 if (btrfs_free_space_cachep)
9097 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
9098 if (btrfs_delalloc_work_cachep)
9099 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
9100}
9101
9102int btrfs_init_cachep(void)
9103{
837e1972 9104 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
9105 sizeof(struct btrfs_inode), 0,
9106 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
9107 if (!btrfs_inode_cachep)
9108 goto fail;
9601e3f6 9109
837e1972 9110 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
9111 sizeof(struct btrfs_trans_handle), 0,
9112 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9113 if (!btrfs_trans_handle_cachep)
9114 goto fail;
9601e3f6 9115
837e1972 9116 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
9117 sizeof(struct btrfs_transaction), 0,
9118 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9119 if (!btrfs_transaction_cachep)
9120 goto fail;
9601e3f6 9121
837e1972 9122 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
9123 sizeof(struct btrfs_path), 0,
9124 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9125 if (!btrfs_path_cachep)
9126 goto fail;
9601e3f6 9127
837e1972 9128 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
9129 sizeof(struct btrfs_free_space), 0,
9130 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9131 if (!btrfs_free_space_cachep)
9132 goto fail;
9133
8ccf6f19
MX
9134 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9135 sizeof(struct btrfs_delalloc_work), 0,
9136 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9137 NULL);
9138 if (!btrfs_delalloc_work_cachep)
9139 goto fail;
9140
39279cc3
CM
9141 return 0;
9142fail:
9143 btrfs_destroy_cachep();
9144 return -ENOMEM;
9145}
9146
9147static int btrfs_getattr(struct vfsmount *mnt,
9148 struct dentry *dentry, struct kstat *stat)
9149{
df0af1a5 9150 u64 delalloc_bytes;
2b0143b5 9151 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9152 u32 blocksize = inode->i_sb->s_blocksize;
9153
39279cc3 9154 generic_fillattr(inode, stat);
0ee5dc67 9155 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 9156 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
9157
9158 spin_lock(&BTRFS_I(inode)->lock);
9159 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9160 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9161 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9162 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9163 return 0;
9164}
9165
d397712b
CM
9166static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9167 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
9168{
9169 struct btrfs_trans_handle *trans;
9170 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9171 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9172 struct inode *new_inode = d_inode(new_dentry);
9173 struct inode *old_inode = d_inode(old_dentry);
39279cc3 9174 struct timespec ctime = CURRENT_TIME;
00e4e6b3 9175 u64 index = 0;
4df27c4d 9176 u64 root_objectid;
39279cc3 9177 int ret;
33345d01 9178 u64 old_ino = btrfs_ino(old_inode);
39279cc3 9179
33345d01 9180 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9181 return -EPERM;
9182
4df27c4d 9183 /* we only allow rename subvolume link between subvolumes */
33345d01 9184 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9185 return -EXDEV;
9186
33345d01
LZ
9187 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9188 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9189 return -ENOTEMPTY;
5f39d397 9190
4df27c4d
YZ
9191 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9192 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9193 return -ENOTEMPTY;
9c52057c
CM
9194
9195
9196 /* check for collisions, even if the name isn't there */
4871c158 9197 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9198 new_dentry->d_name.name,
9199 new_dentry->d_name.len);
9200
9201 if (ret) {
9202 if (ret == -EEXIST) {
9203 /* we shouldn't get
9204 * eexist without a new_inode */
fae7f21c 9205 if (WARN_ON(!new_inode)) {
9c52057c
CM
9206 return ret;
9207 }
9208 } else {
9209 /* maybe -EOVERFLOW */
9210 return ret;
9211 }
9212 }
9213 ret = 0;
9214
5a3f23d5 9215 /*
8d875f95
CM
9216 * we're using rename to replace one file with another. Start IO on it
9217 * now so we don't add too much work to the end of the transaction
5a3f23d5 9218 */
8d875f95 9219 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9220 filemap_flush(old_inode->i_mapping);
9221
76dda93c 9222 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9223 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9224 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9225 /*
9226 * We want to reserve the absolute worst case amount of items. So if
9227 * both inodes are subvols and we need to unlink them then that would
9228 * require 4 item modifications, but if they are both normal inodes it
9229 * would require 5 item modifications, so we'll assume their normal
9230 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9231 * should cover the worst case number of items we'll modify.
9232 */
6e137ed3 9233 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
9234 if (IS_ERR(trans)) {
9235 ret = PTR_ERR(trans);
9236 goto out_notrans;
9237 }
76dda93c 9238
4df27c4d
YZ
9239 if (dest != root)
9240 btrfs_record_root_in_trans(trans, dest);
5f39d397 9241
a5719521
YZ
9242 ret = btrfs_set_inode_index(new_dir, &index);
9243 if (ret)
9244 goto out_fail;
5a3f23d5 9245
67de1176 9246 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9247 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9248 /* force full log commit if subvolume involved. */
995946dd 9249 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9250 } else {
a5719521
YZ
9251 ret = btrfs_insert_inode_ref(trans, dest,
9252 new_dentry->d_name.name,
9253 new_dentry->d_name.len,
33345d01
LZ
9254 old_ino,
9255 btrfs_ino(new_dir), index);
a5719521
YZ
9256 if (ret)
9257 goto out_fail;
4df27c4d
YZ
9258 /*
9259 * this is an ugly little race, but the rename is required
9260 * to make sure that if we crash, the inode is either at the
9261 * old name or the new one. pinning the log transaction lets
9262 * us make sure we don't allow a log commit to come in after
9263 * we unlink the name but before we add the new name back in.
9264 */
9265 btrfs_pin_log_trans(root);
9266 }
5a3f23d5 9267
0c4d2d95
JB
9268 inode_inc_iversion(old_dir);
9269 inode_inc_iversion(new_dir);
9270 inode_inc_iversion(old_inode);
39279cc3
CM
9271 old_dir->i_ctime = old_dir->i_mtime = ctime;
9272 new_dir->i_ctime = new_dir->i_mtime = ctime;
9273 old_inode->i_ctime = ctime;
5f39d397 9274
12fcfd22
CM
9275 if (old_dentry->d_parent != new_dentry->d_parent)
9276 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9277
33345d01 9278 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9279 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9280 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9281 old_dentry->d_name.name,
9282 old_dentry->d_name.len);
9283 } else {
92986796 9284 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9285 d_inode(old_dentry),
92986796
AV
9286 old_dentry->d_name.name,
9287 old_dentry->d_name.len);
9288 if (!ret)
9289 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9290 }
79787eaa
JM
9291 if (ret) {
9292 btrfs_abort_transaction(trans, root, ret);
9293 goto out_fail;
9294 }
39279cc3
CM
9295
9296 if (new_inode) {
0c4d2d95 9297 inode_inc_iversion(new_inode);
39279cc3 9298 new_inode->i_ctime = CURRENT_TIME;
33345d01 9299 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9300 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9301 root_objectid = BTRFS_I(new_inode)->location.objectid;
9302 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9303 root_objectid,
9304 new_dentry->d_name.name,
9305 new_dentry->d_name.len);
9306 BUG_ON(new_inode->i_nlink == 0);
9307 } else {
9308 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9309 d_inode(new_dentry),
4df27c4d
YZ
9310 new_dentry->d_name.name,
9311 new_dentry->d_name.len);
9312 }
4ef31a45 9313 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9314 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa
JM
9315 if (ret) {
9316 btrfs_abort_transaction(trans, root, ret);
9317 goto out_fail;
9318 }
39279cc3 9319 }
aec7477b 9320
4df27c4d
YZ
9321 ret = btrfs_add_link(trans, new_dir, old_inode,
9322 new_dentry->d_name.name,
a5719521 9323 new_dentry->d_name.len, 0, index);
79787eaa
JM
9324 if (ret) {
9325 btrfs_abort_transaction(trans, root, ret);
9326 goto out_fail;
9327 }
39279cc3 9328
67de1176
MX
9329 if (old_inode->i_nlink == 1)
9330 BTRFS_I(old_inode)->dir_index = index;
9331
33345d01 9332 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 9333 struct dentry *parent = new_dentry->d_parent;
6a912213 9334 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
9335 btrfs_end_log_trans(root);
9336 }
39279cc3 9337out_fail:
7ad85bb7 9338 btrfs_end_transaction(trans, root);
b44c59a8 9339out_notrans:
33345d01 9340 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9341 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9342
39279cc3
CM
9343 return ret;
9344}
9345
80ace85c
MS
9346static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9347 struct inode *new_dir, struct dentry *new_dentry,
9348 unsigned int flags)
9349{
9350 if (flags & ~RENAME_NOREPLACE)
9351 return -EINVAL;
9352
9353 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9354}
9355
8ccf6f19
MX
9356static void btrfs_run_delalloc_work(struct btrfs_work *work)
9357{
9358 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9359 struct inode *inode;
8ccf6f19
MX
9360
9361 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9362 work);
9f23e289
JB
9363 inode = delalloc_work->inode;
9364 if (delalloc_work->wait) {
9365 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9366 } else {
9367 filemap_flush(inode->i_mapping);
9368 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9369 &BTRFS_I(inode)->runtime_flags))
9370 filemap_flush(inode->i_mapping);
9371 }
8ccf6f19
MX
9372
9373 if (delalloc_work->delay_iput)
9f23e289 9374 btrfs_add_delayed_iput(inode);
8ccf6f19 9375 else
9f23e289 9376 iput(inode);
8ccf6f19
MX
9377 complete(&delalloc_work->completion);
9378}
9379
9380struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9381 int wait, int delay_iput)
9382{
9383 struct btrfs_delalloc_work *work;
9384
9385 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9386 if (!work)
9387 return NULL;
9388
9389 init_completion(&work->completion);
9390 INIT_LIST_HEAD(&work->list);
9391 work->inode = inode;
9392 work->wait = wait;
9393 work->delay_iput = delay_iput;
9e0af237
LB
9394 WARN_ON_ONCE(!inode);
9395 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9396 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9397
9398 return work;
9399}
9400
9401void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9402{
9403 wait_for_completion(&work->completion);
9404 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9405}
9406
d352ac68
CM
9407/*
9408 * some fairly slow code that needs optimization. This walks the list
9409 * of all the inodes with pending delalloc and forces them to disk.
9410 */
6c255e67
MX
9411static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9412 int nr)
ea8c2819 9413{
ea8c2819 9414 struct btrfs_inode *binode;
5b21f2ed 9415 struct inode *inode;
8ccf6f19
MX
9416 struct btrfs_delalloc_work *work, *next;
9417 struct list_head works;
1eafa6c7 9418 struct list_head splice;
8ccf6f19 9419 int ret = 0;
ea8c2819 9420
8ccf6f19 9421 INIT_LIST_HEAD(&works);
1eafa6c7 9422 INIT_LIST_HEAD(&splice);
63607cc8 9423
573bfb72 9424 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9425 spin_lock(&root->delalloc_lock);
9426 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9427 while (!list_empty(&splice)) {
9428 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9429 delalloc_inodes);
1eafa6c7 9430
eb73c1b7
MX
9431 list_move_tail(&binode->delalloc_inodes,
9432 &root->delalloc_inodes);
5b21f2ed 9433 inode = igrab(&binode->vfs_inode);
df0af1a5 9434 if (!inode) {
eb73c1b7 9435 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9436 continue;
df0af1a5 9437 }
eb73c1b7 9438 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
9439
9440 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
5d99a998 9441 if (!work) {
f4ab9ea7
JB
9442 if (delay_iput)
9443 btrfs_add_delayed_iput(inode);
9444 else
9445 iput(inode);
1eafa6c7 9446 ret = -ENOMEM;
a1ecaabb 9447 goto out;
5b21f2ed 9448 }
1eafa6c7 9449 list_add_tail(&work->list, &works);
a44903ab
QW
9450 btrfs_queue_work(root->fs_info->flush_workers,
9451 &work->work);
6c255e67
MX
9452 ret++;
9453 if (nr != -1 && ret >= nr)
a1ecaabb 9454 goto out;
5b21f2ed 9455 cond_resched();
eb73c1b7 9456 spin_lock(&root->delalloc_lock);
ea8c2819 9457 }
eb73c1b7 9458 spin_unlock(&root->delalloc_lock);
8c8bee1d 9459
a1ecaabb 9460out:
eb73c1b7
MX
9461 list_for_each_entry_safe(work, next, &works, list) {
9462 list_del_init(&work->list);
9463 btrfs_wait_and_free_delalloc_work(work);
9464 }
9465
9466 if (!list_empty_careful(&splice)) {
9467 spin_lock(&root->delalloc_lock);
9468 list_splice_tail(&splice, &root->delalloc_inodes);
9469 spin_unlock(&root->delalloc_lock);
9470 }
573bfb72 9471 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9472 return ret;
9473}
1eafa6c7 9474
eb73c1b7
MX
9475int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9476{
9477 int ret;
1eafa6c7 9478
2c21b4d7 9479 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
9480 return -EROFS;
9481
6c255e67
MX
9482 ret = __start_delalloc_inodes(root, delay_iput, -1);
9483 if (ret > 0)
9484 ret = 0;
eb73c1b7
MX
9485 /*
9486 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
9487 * we have to make sure the IO is actually started and that
9488 * ordered extents get created before we return
9489 */
9490 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 9491 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 9492 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 9493 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
9494 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9495 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
9496 }
9497 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
9498 return ret;
9499}
9500
6c255e67
MX
9501int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9502 int nr)
eb73c1b7
MX
9503{
9504 struct btrfs_root *root;
9505 struct list_head splice;
9506 int ret;
9507
2c21b4d7 9508 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9509 return -EROFS;
9510
9511 INIT_LIST_HEAD(&splice);
9512
573bfb72 9513 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9514 spin_lock(&fs_info->delalloc_root_lock);
9515 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9516 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9517 root = list_first_entry(&splice, struct btrfs_root,
9518 delalloc_root);
9519 root = btrfs_grab_fs_root(root);
9520 BUG_ON(!root);
9521 list_move_tail(&root->delalloc_root,
9522 &fs_info->delalloc_roots);
9523 spin_unlock(&fs_info->delalloc_root_lock);
9524
6c255e67 9525 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 9526 btrfs_put_fs_root(root);
6c255e67 9527 if (ret < 0)
eb73c1b7
MX
9528 goto out;
9529
6c255e67
MX
9530 if (nr != -1) {
9531 nr -= ret;
9532 WARN_ON(nr < 0);
9533 }
eb73c1b7 9534 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9535 }
eb73c1b7 9536 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9537
6c255e67 9538 ret = 0;
eb73c1b7
MX
9539 atomic_inc(&fs_info->async_submit_draining);
9540 while (atomic_read(&fs_info->nr_async_submits) ||
9541 atomic_read(&fs_info->async_delalloc_pages)) {
9542 wait_event(fs_info->async_submit_wait,
9543 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9544 atomic_read(&fs_info->async_delalloc_pages) == 0));
9545 }
9546 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 9547out:
1eafa6c7 9548 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
9549 spin_lock(&fs_info->delalloc_root_lock);
9550 list_splice_tail(&splice, &fs_info->delalloc_roots);
9551 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9552 }
573bfb72 9553 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9554 return ret;
ea8c2819
CM
9555}
9556
39279cc3
CM
9557static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9558 const char *symname)
9559{
9560 struct btrfs_trans_handle *trans;
9561 struct btrfs_root *root = BTRFS_I(dir)->root;
9562 struct btrfs_path *path;
9563 struct btrfs_key key;
1832a6d5 9564 struct inode *inode = NULL;
39279cc3
CM
9565 int err;
9566 int drop_inode = 0;
9567 u64 objectid;
67871254 9568 u64 index = 0;
39279cc3
CM
9569 int name_len;
9570 int datasize;
5f39d397 9571 unsigned long ptr;
39279cc3 9572 struct btrfs_file_extent_item *ei;
5f39d397 9573 struct extent_buffer *leaf;
39279cc3 9574
f06becc4 9575 name_len = strlen(symname);
39279cc3
CM
9576 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9577 return -ENAMETOOLONG;
1832a6d5 9578
9ed74f2d
JB
9579 /*
9580 * 2 items for inode item and ref
9581 * 2 items for dir items
9582 * 1 item for xattr if selinux is on
9583 */
a22285a6
YZ
9584 trans = btrfs_start_transaction(root, 5);
9585 if (IS_ERR(trans))
9586 return PTR_ERR(trans);
1832a6d5 9587
581bb050
LZ
9588 err = btrfs_find_free_ino(root, &objectid);
9589 if (err)
9590 goto out_unlock;
9591
aec7477b 9592 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 9593 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 9594 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9595 if (IS_ERR(inode)) {
9596 err = PTR_ERR(inode);
39279cc3 9597 goto out_unlock;
7cf96da3 9598 }
39279cc3 9599
ad19db71
CS
9600 /*
9601 * If the active LSM wants to access the inode during
9602 * d_instantiate it needs these. Smack checks to see
9603 * if the filesystem supports xattrs by looking at the
9604 * ops vector.
9605 */
9606 inode->i_fop = &btrfs_file_operations;
9607 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9608 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9609 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9610
9611 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9612 if (err)
9613 goto out_unlock_inode;
ad19db71 9614
a1b075d2 9615 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 9616 if (err)
b0d5d10f 9617 goto out_unlock_inode;
39279cc3
CM
9618
9619 path = btrfs_alloc_path();
d8926bb3
MF
9620 if (!path) {
9621 err = -ENOMEM;
b0d5d10f 9622 goto out_unlock_inode;
d8926bb3 9623 }
33345d01 9624 key.objectid = btrfs_ino(inode);
39279cc3 9625 key.offset = 0;
962a298f 9626 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9627 datasize = btrfs_file_extent_calc_inline_size(name_len);
9628 err = btrfs_insert_empty_item(trans, root, path, &key,
9629 datasize);
54aa1f4d 9630 if (err) {
b0839166 9631 btrfs_free_path(path);
b0d5d10f 9632 goto out_unlock_inode;
54aa1f4d 9633 }
5f39d397
CM
9634 leaf = path->nodes[0];
9635 ei = btrfs_item_ptr(leaf, path->slots[0],
9636 struct btrfs_file_extent_item);
9637 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9638 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9639 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9640 btrfs_set_file_extent_encryption(leaf, ei, 0);
9641 btrfs_set_file_extent_compression(leaf, ei, 0);
9642 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9643 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9644
39279cc3 9645 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9646 write_extent_buffer(leaf, symname, ptr, name_len);
9647 btrfs_mark_buffer_dirty(leaf);
39279cc3 9648 btrfs_free_path(path);
5f39d397 9649
39279cc3
CM
9650 inode->i_op = &btrfs_symlink_inode_operations;
9651 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 9652 inode_set_bytes(inode, name_len);
f06becc4 9653 btrfs_i_size_write(inode, name_len);
54aa1f4d 9654 err = btrfs_update_inode(trans, root, inode);
b0d5d10f 9655 if (err) {
54aa1f4d 9656 drop_inode = 1;
b0d5d10f
CM
9657 goto out_unlock_inode;
9658 }
9659
9660 unlock_new_inode(inode);
9661 d_instantiate(dentry, inode);
39279cc3
CM
9662
9663out_unlock:
7ad85bb7 9664 btrfs_end_transaction(trans, root);
39279cc3
CM
9665 if (drop_inode) {
9666 inode_dec_link_count(inode);
9667 iput(inode);
9668 }
b53d3f5d 9669 btrfs_btree_balance_dirty(root);
39279cc3 9670 return err;
b0d5d10f
CM
9671
9672out_unlock_inode:
9673 drop_inode = 1;
9674 unlock_new_inode(inode);
9675 goto out_unlock;
39279cc3 9676}
16432985 9677
0af3d00b
JB
9678static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9679 u64 start, u64 num_bytes, u64 min_size,
9680 loff_t actual_len, u64 *alloc_hint,
9681 struct btrfs_trans_handle *trans)
d899e052 9682{
5dc562c5
JB
9683 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9684 struct extent_map *em;
d899e052
YZ
9685 struct btrfs_root *root = BTRFS_I(inode)->root;
9686 struct btrfs_key ins;
d899e052 9687 u64 cur_offset = start;
55a61d1d 9688 u64 i_size;
154ea289 9689 u64 cur_bytes;
d899e052 9690 int ret = 0;
0af3d00b 9691 bool own_trans = true;
d899e052 9692
0af3d00b
JB
9693 if (trans)
9694 own_trans = false;
d899e052 9695 while (num_bytes > 0) {
0af3d00b
JB
9696 if (own_trans) {
9697 trans = btrfs_start_transaction(root, 3);
9698 if (IS_ERR(trans)) {
9699 ret = PTR_ERR(trans);
9700 break;
9701 }
5a303d5d
YZ
9702 }
9703
154ea289
CM
9704 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9705 cur_bytes = max(cur_bytes, min_size);
00361589 9706 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 9707 *alloc_hint, &ins, 1, 0);
5a303d5d 9708 if (ret) {
0af3d00b
JB
9709 if (own_trans)
9710 btrfs_end_transaction(trans, root);
a22285a6 9711 break;
d899e052 9712 }
5a303d5d 9713
d899e052
YZ
9714 ret = insert_reserved_file_extent(trans, inode,
9715 cur_offset, ins.objectid,
9716 ins.offset, ins.offset,
920bbbfb 9717 ins.offset, 0, 0, 0,
d899e052 9718 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 9719 if (ret) {
857cc2fc 9720 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 9721 ins.offset, 0);
79787eaa
JM
9722 btrfs_abort_transaction(trans, root, ret);
9723 if (own_trans)
9724 btrfs_end_transaction(trans, root);
9725 break;
9726 }
31193213 9727
a1ed835e
CM
9728 btrfs_drop_extent_cache(inode, cur_offset,
9729 cur_offset + ins.offset -1, 0);
5a303d5d 9730
5dc562c5
JB
9731 em = alloc_extent_map();
9732 if (!em) {
9733 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9734 &BTRFS_I(inode)->runtime_flags);
9735 goto next;
9736 }
9737
9738 em->start = cur_offset;
9739 em->orig_start = cur_offset;
9740 em->len = ins.offset;
9741 em->block_start = ins.objectid;
9742 em->block_len = ins.offset;
b4939680 9743 em->orig_block_len = ins.offset;
cc95bef6 9744 em->ram_bytes = ins.offset;
5dc562c5
JB
9745 em->bdev = root->fs_info->fs_devices->latest_bdev;
9746 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9747 em->generation = trans->transid;
9748
9749 while (1) {
9750 write_lock(&em_tree->lock);
09a2a8f9 9751 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9752 write_unlock(&em_tree->lock);
9753 if (ret != -EEXIST)
9754 break;
9755 btrfs_drop_extent_cache(inode, cur_offset,
9756 cur_offset + ins.offset - 1,
9757 0);
9758 }
9759 free_extent_map(em);
9760next:
d899e052
YZ
9761 num_bytes -= ins.offset;
9762 cur_offset += ins.offset;
efa56464 9763 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9764
0c4d2d95 9765 inode_inc_iversion(inode);
d899e052 9766 inode->i_ctime = CURRENT_TIME;
6cbff00f 9767 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9768 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9769 (actual_len > inode->i_size) &&
9770 (cur_offset > inode->i_size)) {
d1ea6a61 9771 if (cur_offset > actual_len)
55a61d1d 9772 i_size = actual_len;
d1ea6a61 9773 else
55a61d1d
JB
9774 i_size = cur_offset;
9775 i_size_write(inode, i_size);
9776 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
9777 }
9778
d899e052 9779 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9780
9781 if (ret) {
9782 btrfs_abort_transaction(trans, root, ret);
9783 if (own_trans)
9784 btrfs_end_transaction(trans, root);
9785 break;
9786 }
d899e052 9787
0af3d00b
JB
9788 if (own_trans)
9789 btrfs_end_transaction(trans, root);
5a303d5d 9790 }
d899e052
YZ
9791 return ret;
9792}
9793
0af3d00b
JB
9794int btrfs_prealloc_file_range(struct inode *inode, int mode,
9795 u64 start, u64 num_bytes, u64 min_size,
9796 loff_t actual_len, u64 *alloc_hint)
9797{
9798 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9799 min_size, actual_len, alloc_hint,
9800 NULL);
9801}
9802
9803int btrfs_prealloc_file_range_trans(struct inode *inode,
9804 struct btrfs_trans_handle *trans, int mode,
9805 u64 start, u64 num_bytes, u64 min_size,
9806 loff_t actual_len, u64 *alloc_hint)
9807{
9808 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9809 min_size, actual_len, alloc_hint, trans);
9810}
9811
e6dcd2dc
CM
9812static int btrfs_set_page_dirty(struct page *page)
9813{
e6dcd2dc
CM
9814 return __set_page_dirty_nobuffers(page);
9815}
9816
10556cb2 9817static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9818{
b83cc969 9819 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9820 umode_t mode = inode->i_mode;
b83cc969 9821
cb6db4e5
JM
9822 if (mask & MAY_WRITE &&
9823 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9824 if (btrfs_root_readonly(root))
9825 return -EROFS;
9826 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9827 return -EACCES;
9828 }
2830ba7f 9829 return generic_permission(inode, mask);
fdebe2bd 9830}
39279cc3 9831
ef3b9af5
FM
9832static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9833{
9834 struct btrfs_trans_handle *trans;
9835 struct btrfs_root *root = BTRFS_I(dir)->root;
9836 struct inode *inode = NULL;
9837 u64 objectid;
9838 u64 index;
9839 int ret = 0;
9840
9841 /*
9842 * 5 units required for adding orphan entry
9843 */
9844 trans = btrfs_start_transaction(root, 5);
9845 if (IS_ERR(trans))
9846 return PTR_ERR(trans);
9847
9848 ret = btrfs_find_free_ino(root, &objectid);
9849 if (ret)
9850 goto out;
9851
9852 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9853 btrfs_ino(dir), objectid, mode, &index);
9854 if (IS_ERR(inode)) {
9855 ret = PTR_ERR(inode);
9856 inode = NULL;
9857 goto out;
9858 }
9859
ef3b9af5
FM
9860 inode->i_fop = &btrfs_file_operations;
9861 inode->i_op = &btrfs_file_inode_operations;
9862
9863 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
9864 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9865
b0d5d10f
CM
9866 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9867 if (ret)
9868 goto out_inode;
9869
9870 ret = btrfs_update_inode(trans, root, inode);
9871 if (ret)
9872 goto out_inode;
ef3b9af5
FM
9873 ret = btrfs_orphan_add(trans, inode);
9874 if (ret)
b0d5d10f 9875 goto out_inode;
ef3b9af5 9876
5762b5c9
FM
9877 /*
9878 * We set number of links to 0 in btrfs_new_inode(), and here we set
9879 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9880 * through:
9881 *
9882 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9883 */
9884 set_nlink(inode, 1);
b0d5d10f 9885 unlock_new_inode(inode);
ef3b9af5
FM
9886 d_tmpfile(dentry, inode);
9887 mark_inode_dirty(inode);
9888
9889out:
9890 btrfs_end_transaction(trans, root);
9891 if (ret)
9892 iput(inode);
9893 btrfs_balance_delayed_items(root);
9894 btrfs_btree_balance_dirty(root);
ef3b9af5 9895 return ret;
b0d5d10f
CM
9896
9897out_inode:
9898 unlock_new_inode(inode);
9899 goto out;
9900
ef3b9af5
FM
9901}
9902
b38ef71c
FM
9903/* Inspired by filemap_check_errors() */
9904int btrfs_inode_check_errors(struct inode *inode)
9905{
9906 int ret = 0;
9907
9908 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9909 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9910 ret = -ENOSPC;
9911 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9912 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9913 ret = -EIO;
9914
9915 return ret;
9916}
9917
6e1d5dcc 9918static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 9919 .getattr = btrfs_getattr,
39279cc3
CM
9920 .lookup = btrfs_lookup,
9921 .create = btrfs_create,
9922 .unlink = btrfs_unlink,
9923 .link = btrfs_link,
9924 .mkdir = btrfs_mkdir,
9925 .rmdir = btrfs_rmdir,
80ace85c 9926 .rename2 = btrfs_rename2,
39279cc3
CM
9927 .symlink = btrfs_symlink,
9928 .setattr = btrfs_setattr,
618e21d5 9929 .mknod = btrfs_mknod,
95819c05
CH
9930 .setxattr = btrfs_setxattr,
9931 .getxattr = btrfs_getxattr,
5103e947 9932 .listxattr = btrfs_listxattr,
95819c05 9933 .removexattr = btrfs_removexattr,
fdebe2bd 9934 .permission = btrfs_permission,
4e34e719 9935 .get_acl = btrfs_get_acl,
996a710d 9936 .set_acl = btrfs_set_acl,
93fd63c2 9937 .update_time = btrfs_update_time,
ef3b9af5 9938 .tmpfile = btrfs_tmpfile,
39279cc3 9939};
6e1d5dcc 9940static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 9941 .lookup = btrfs_lookup,
fdebe2bd 9942 .permission = btrfs_permission,
4e34e719 9943 .get_acl = btrfs_get_acl,
996a710d 9944 .set_acl = btrfs_set_acl,
93fd63c2 9945 .update_time = btrfs_update_time,
39279cc3 9946};
76dda93c 9947
828c0950 9948static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
9949 .llseek = generic_file_llseek,
9950 .read = generic_read_dir,
9cdda8d3 9951 .iterate = btrfs_real_readdir,
34287aa3 9952 .unlocked_ioctl = btrfs_ioctl,
39279cc3 9953#ifdef CONFIG_COMPAT
34287aa3 9954 .compat_ioctl = btrfs_ioctl,
39279cc3 9955#endif
6bf13c0c 9956 .release = btrfs_release_file,
e02119d5 9957 .fsync = btrfs_sync_file,
39279cc3
CM
9958};
9959
d1310b2e 9960static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 9961 .fill_delalloc = run_delalloc_range,
065631f6 9962 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 9963 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 9964 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 9965 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 9966 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
9967 .set_bit_hook = btrfs_set_bit_hook,
9968 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
9969 .merge_extent_hook = btrfs_merge_extent_hook,
9970 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
9971};
9972
35054394
CM
9973/*
9974 * btrfs doesn't support the bmap operation because swapfiles
9975 * use bmap to make a mapping of extents in the file. They assume
9976 * these extents won't change over the life of the file and they
9977 * use the bmap result to do IO directly to the drive.
9978 *
9979 * the btrfs bmap call would return logical addresses that aren't
9980 * suitable for IO and they also will change frequently as COW
9981 * operations happen. So, swapfile + btrfs == corruption.
9982 *
9983 * For now we're avoiding this by dropping bmap.
9984 */
7f09410b 9985static const struct address_space_operations btrfs_aops = {
39279cc3
CM
9986 .readpage = btrfs_readpage,
9987 .writepage = btrfs_writepage,
b293f02e 9988 .writepages = btrfs_writepages,
3ab2fb5a 9989 .readpages = btrfs_readpages,
16432985 9990 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
9991 .invalidatepage = btrfs_invalidatepage,
9992 .releasepage = btrfs_releasepage,
e6dcd2dc 9993 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 9994 .error_remove_page = generic_error_remove_page,
39279cc3
CM
9995};
9996
7f09410b 9997static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
9998 .readpage = btrfs_readpage,
9999 .writepage = btrfs_writepage,
2bf5a725
CM
10000 .invalidatepage = btrfs_invalidatepage,
10001 .releasepage = btrfs_releasepage,
39279cc3
CM
10002};
10003
6e1d5dcc 10004static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10005 .getattr = btrfs_getattr,
10006 .setattr = btrfs_setattr,
95819c05
CH
10007 .setxattr = btrfs_setxattr,
10008 .getxattr = btrfs_getxattr,
5103e947 10009 .listxattr = btrfs_listxattr,
95819c05 10010 .removexattr = btrfs_removexattr,
fdebe2bd 10011 .permission = btrfs_permission,
1506fcc8 10012 .fiemap = btrfs_fiemap,
4e34e719 10013 .get_acl = btrfs_get_acl,
996a710d 10014 .set_acl = btrfs_set_acl,
e41f941a 10015 .update_time = btrfs_update_time,
39279cc3 10016};
6e1d5dcc 10017static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10018 .getattr = btrfs_getattr,
10019 .setattr = btrfs_setattr,
fdebe2bd 10020 .permission = btrfs_permission,
95819c05
CH
10021 .setxattr = btrfs_setxattr,
10022 .getxattr = btrfs_getxattr,
33268eaf 10023 .listxattr = btrfs_listxattr,
95819c05 10024 .removexattr = btrfs_removexattr,
4e34e719 10025 .get_acl = btrfs_get_acl,
996a710d 10026 .set_acl = btrfs_set_acl,
e41f941a 10027 .update_time = btrfs_update_time,
618e21d5 10028};
6e1d5dcc 10029static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
10030 .readlink = generic_readlink,
10031 .follow_link = page_follow_link_light,
10032 .put_link = page_put_link,
f209561a 10033 .getattr = btrfs_getattr,
22c44fe6 10034 .setattr = btrfs_setattr,
fdebe2bd 10035 .permission = btrfs_permission,
0279b4cd
JO
10036 .setxattr = btrfs_setxattr,
10037 .getxattr = btrfs_getxattr,
10038 .listxattr = btrfs_listxattr,
10039 .removexattr = btrfs_removexattr,
e41f941a 10040 .update_time = btrfs_update_time,
39279cc3 10041};
76dda93c 10042
82d339d9 10043const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10044 .d_delete = btrfs_dentry_delete,
b4aff1f8 10045 .d_release = btrfs_dentry_release,
76dda93c 10046};