Btrfs: Pass transaction handle to security and ACL initialization functions
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
4b4e25f2 39#include "compat.h"
39279cc3
CM
40#include "ctree.h"
41#include "disk-io.h"
42#include "transaction.h"
43#include "btrfs_inode.h"
44#include "ioctl.h"
45#include "print-tree.h"
0b86a832 46#include "volumes.h"
e6dcd2dc 47#include "ordered-data.h"
95819c05 48#include "xattr.h"
e02119d5 49#include "tree-log.h"
c8b97818 50#include "compression.h"
b4ce94de 51#include "locking.h"
39279cc3
CM
52
53struct btrfs_iget_args {
54 u64 ino;
55 struct btrfs_root *root;
56};
57
6e1d5dcc
AD
58static const struct inode_operations btrfs_dir_inode_operations;
59static const struct inode_operations btrfs_symlink_inode_operations;
60static const struct inode_operations btrfs_dir_ro_inode_operations;
61static const struct inode_operations btrfs_special_inode_operations;
62static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
63static const struct address_space_operations btrfs_aops;
64static const struct address_space_operations btrfs_symlink_aops;
828c0950 65static const struct file_operations btrfs_dir_file_operations;
d1310b2e 66static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
67
68static struct kmem_cache *btrfs_inode_cachep;
69struct kmem_cache *btrfs_trans_handle_cachep;
70struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
71struct kmem_cache *btrfs_path_cachep;
72
73#define S_SHIFT 12
74static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82};
83
7b128766 84static void btrfs_truncate(struct inode *inode);
c8b97818 85static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
86static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
7b128766 90
f34f57a3
YZ
91static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
92 struct inode *inode, struct inode *dir)
0279b4cd
JO
93{
94 int err;
95
f34f57a3 96 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 97 if (!err)
f34f57a3 98 err = btrfs_xattr_security_init(trans, inode, dir);
0279b4cd
JO
99 return err;
100}
101
c8b97818
CM
102/*
103 * this does all the hard work for inserting an inline extent into
104 * the btree. The caller should have done a btrfs_drop_extents so that
105 * no overlapping inline items exist in the btree
106 */
d397712b 107static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
108 struct btrfs_root *root, struct inode *inode,
109 u64 start, size_t size, size_t compressed_size,
110 struct page **compressed_pages)
111{
112 struct btrfs_key key;
113 struct btrfs_path *path;
114 struct extent_buffer *leaf;
115 struct page *page = NULL;
116 char *kaddr;
117 unsigned long ptr;
118 struct btrfs_file_extent_item *ei;
119 int err = 0;
120 int ret;
121 size_t cur_size = size;
122 size_t datasize;
123 unsigned long offset;
124 int use_compress = 0;
125
126 if (compressed_size && compressed_pages) {
127 use_compress = 1;
128 cur_size = compressed_size;
129 }
130
d397712b
CM
131 path = btrfs_alloc_path();
132 if (!path)
c8b97818
CM
133 return -ENOMEM;
134
b9473439 135 path->leave_spinning = 1;
c8b97818
CM
136 btrfs_set_trans_block_group(trans, inode);
137
138 key.objectid = inode->i_ino;
139 key.offset = start;
140 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
141 datasize = btrfs_file_extent_calc_inline_size(cur_size);
142
143 inode_add_bytes(inode, size);
144 ret = btrfs_insert_empty_item(trans, root, path, &key,
145 datasize);
146 BUG_ON(ret);
147 if (ret) {
148 err = ret;
c8b97818
CM
149 goto fail;
150 }
151 leaf = path->nodes[0];
152 ei = btrfs_item_ptr(leaf, path->slots[0],
153 struct btrfs_file_extent_item);
154 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156 btrfs_set_file_extent_encryption(leaf, ei, 0);
157 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159 ptr = btrfs_file_extent_inline_start(ei);
160
161 if (use_compress) {
162 struct page *cpage;
163 int i = 0;
d397712b 164 while (compressed_size > 0) {
c8b97818 165 cpage = compressed_pages[i];
5b050f04 166 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
167 PAGE_CACHE_SIZE);
168
b9473439 169 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 170 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 171 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
172
173 i++;
174 ptr += cur_size;
175 compressed_size -= cur_size;
176 }
177 btrfs_set_file_extent_compression(leaf, ei,
178 BTRFS_COMPRESS_ZLIB);
179 } else {
180 page = find_get_page(inode->i_mapping,
181 start >> PAGE_CACHE_SHIFT);
182 btrfs_set_file_extent_compression(leaf, ei, 0);
183 kaddr = kmap_atomic(page, KM_USER0);
184 offset = start & (PAGE_CACHE_SIZE - 1);
185 write_extent_buffer(leaf, kaddr + offset, ptr, size);
186 kunmap_atomic(kaddr, KM_USER0);
187 page_cache_release(page);
188 }
189 btrfs_mark_buffer_dirty(leaf);
190 btrfs_free_path(path);
191
c2167754
YZ
192 /*
193 * we're an inline extent, so nobody can
194 * extend the file past i_size without locking
195 * a page we already have locked.
196 *
197 * We must do any isize and inode updates
198 * before we unlock the pages. Otherwise we
199 * could end up racing with unlink.
200 */
c8b97818
CM
201 BTRFS_I(inode)->disk_i_size = inode->i_size;
202 btrfs_update_inode(trans, root, inode);
c2167754 203
c8b97818
CM
204 return 0;
205fail:
206 btrfs_free_path(path);
207 return err;
208}
209
210
211/*
212 * conditionally insert an inline extent into the file. This
213 * does the checks required to make sure the data is small enough
214 * to fit as an inline extent.
215 */
7f366cfe 216static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
217 struct btrfs_root *root,
218 struct inode *inode, u64 start, u64 end,
219 size_t compressed_size,
220 struct page **compressed_pages)
221{
222 u64 isize = i_size_read(inode);
223 u64 actual_end = min(end + 1, isize);
224 u64 inline_len = actual_end - start;
225 u64 aligned_end = (end + root->sectorsize - 1) &
226 ~((u64)root->sectorsize - 1);
227 u64 hint_byte;
228 u64 data_len = inline_len;
229 int ret;
230
231 if (compressed_size)
232 data_len = compressed_size;
233
234 if (start > 0 ||
70b99e69 235 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
236 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
237 (!compressed_size &&
238 (actual_end & (root->sectorsize - 1)) == 0) ||
239 end + 1 < isize ||
240 data_len > root->fs_info->max_inline) {
241 return 1;
242 }
243
920bbbfb 244 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 245 &hint_byte, 1);
c8b97818
CM
246 BUG_ON(ret);
247
248 if (isize > actual_end)
249 inline_len = min_t(u64, isize, actual_end);
250 ret = insert_inline_extent(trans, root, inode, start,
251 inline_len, compressed_size,
252 compressed_pages);
253 BUG_ON(ret);
a1ed835e 254 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
255 return 0;
256}
257
771ed689
CM
258struct async_extent {
259 u64 start;
260 u64 ram_size;
261 u64 compressed_size;
262 struct page **pages;
263 unsigned long nr_pages;
264 struct list_head list;
265};
266
267struct async_cow {
268 struct inode *inode;
269 struct btrfs_root *root;
270 struct page *locked_page;
271 u64 start;
272 u64 end;
273 struct list_head extents;
274 struct btrfs_work work;
275};
276
277static noinline int add_async_extent(struct async_cow *cow,
278 u64 start, u64 ram_size,
279 u64 compressed_size,
280 struct page **pages,
281 unsigned long nr_pages)
282{
283 struct async_extent *async_extent;
284
285 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
286 async_extent->start = start;
287 async_extent->ram_size = ram_size;
288 async_extent->compressed_size = compressed_size;
289 async_extent->pages = pages;
290 async_extent->nr_pages = nr_pages;
291 list_add_tail(&async_extent->list, &cow->extents);
292 return 0;
293}
294
d352ac68 295/*
771ed689
CM
296 * we create compressed extents in two phases. The first
297 * phase compresses a range of pages that have already been
298 * locked (both pages and state bits are locked).
c8b97818 299 *
771ed689
CM
300 * This is done inside an ordered work queue, and the compression
301 * is spread across many cpus. The actual IO submission is step
302 * two, and the ordered work queue takes care of making sure that
303 * happens in the same order things were put onto the queue by
304 * writepages and friends.
c8b97818 305 *
771ed689
CM
306 * If this code finds it can't get good compression, it puts an
307 * entry onto the work queue to write the uncompressed bytes. This
308 * makes sure that both compressed inodes and uncompressed inodes
309 * are written in the same order that pdflush sent them down.
d352ac68 310 */
771ed689
CM
311static noinline int compress_file_range(struct inode *inode,
312 struct page *locked_page,
313 u64 start, u64 end,
314 struct async_cow *async_cow,
315 int *num_added)
b888db2b
CM
316{
317 struct btrfs_root *root = BTRFS_I(inode)->root;
318 struct btrfs_trans_handle *trans;
db94535d 319 u64 num_bytes;
c8b97818
CM
320 u64 orig_start;
321 u64 disk_num_bytes;
db94535d 322 u64 blocksize = root->sectorsize;
c8b97818 323 u64 actual_end;
42dc7bab 324 u64 isize = i_size_read(inode);
e6dcd2dc 325 int ret = 0;
c8b97818
CM
326 struct page **pages = NULL;
327 unsigned long nr_pages;
328 unsigned long nr_pages_ret = 0;
329 unsigned long total_compressed = 0;
330 unsigned long total_in = 0;
331 unsigned long max_compressed = 128 * 1024;
771ed689 332 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
333 int i;
334 int will_compress;
b888db2b 335
c8b97818
CM
336 orig_start = start;
337
42dc7bab 338 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
339again:
340 will_compress = 0;
341 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
342 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 343
f03d9301
CM
344 /*
345 * we don't want to send crud past the end of i_size through
346 * compression, that's just a waste of CPU time. So, if the
347 * end of the file is before the start of our current
348 * requested range of bytes, we bail out to the uncompressed
349 * cleanup code that can deal with all of this.
350 *
351 * It isn't really the fastest way to fix things, but this is a
352 * very uncommon corner.
353 */
354 if (actual_end <= start)
355 goto cleanup_and_bail_uncompressed;
356
c8b97818
CM
357 total_compressed = actual_end - start;
358
359 /* we want to make sure that amount of ram required to uncompress
360 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
361 * of a compressed extent to 128k. This is a crucial number
362 * because it also controls how easily we can spread reads across
363 * cpus for decompression.
364 *
365 * We also want to make sure the amount of IO required to do
366 * a random read is reasonably small, so we limit the size of
367 * a compressed extent to 128k.
c8b97818
CM
368 */
369 total_compressed = min(total_compressed, max_uncompressed);
db94535d 370 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 371 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
372 disk_num_bytes = num_bytes;
373 total_in = 0;
374 ret = 0;
db94535d 375
771ed689
CM
376 /*
377 * we do compression for mount -o compress and when the
378 * inode has not been flagged as nocompress. This flag can
379 * change at any time if we discover bad compression ratios.
c8b97818 380 */
6cbff00f 381 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
c8b97818
CM
382 btrfs_test_opt(root, COMPRESS)) {
383 WARN_ON(pages);
cfbc246e 384 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 385
c8b97818
CM
386 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
387 total_compressed, pages,
388 nr_pages, &nr_pages_ret,
389 &total_in,
390 &total_compressed,
391 max_compressed);
392
393 if (!ret) {
394 unsigned long offset = total_compressed &
395 (PAGE_CACHE_SIZE - 1);
396 struct page *page = pages[nr_pages_ret - 1];
397 char *kaddr;
398
399 /* zero the tail end of the last page, we might be
400 * sending it down to disk
401 */
402 if (offset) {
403 kaddr = kmap_atomic(page, KM_USER0);
404 memset(kaddr + offset, 0,
405 PAGE_CACHE_SIZE - offset);
406 kunmap_atomic(kaddr, KM_USER0);
407 }
408 will_compress = 1;
409 }
410 }
411 if (start == 0) {
771ed689
CM
412 trans = btrfs_join_transaction(root, 1);
413 BUG_ON(!trans);
414 btrfs_set_trans_block_group(trans, inode);
415
c8b97818 416 /* lets try to make an inline extent */
771ed689 417 if (ret || total_in < (actual_end - start)) {
c8b97818 418 /* we didn't compress the entire range, try
771ed689 419 * to make an uncompressed inline extent.
c8b97818
CM
420 */
421 ret = cow_file_range_inline(trans, root, inode,
422 start, end, 0, NULL);
423 } else {
771ed689 424 /* try making a compressed inline extent */
c8b97818
CM
425 ret = cow_file_range_inline(trans, root, inode,
426 start, end,
427 total_compressed, pages);
428 }
429 if (ret == 0) {
771ed689
CM
430 /*
431 * inline extent creation worked, we don't need
432 * to create any more async work items. Unlock
433 * and free up our temp pages.
434 */
c8b97818 435 extent_clear_unlock_delalloc(inode,
a791e35e
CM
436 &BTRFS_I(inode)->io_tree,
437 start, end, NULL,
438 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 439 EXTENT_CLEAR_DELALLOC |
32c00aff 440 EXTENT_CLEAR_ACCOUNTING |
a791e35e 441 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
442
443 btrfs_end_transaction(trans, root);
c8b97818
CM
444 goto free_pages_out;
445 }
c2167754 446 btrfs_end_transaction(trans, root);
c8b97818
CM
447 }
448
449 if (will_compress) {
450 /*
451 * we aren't doing an inline extent round the compressed size
452 * up to a block size boundary so the allocator does sane
453 * things
454 */
455 total_compressed = (total_compressed + blocksize - 1) &
456 ~(blocksize - 1);
457
458 /*
459 * one last check to make sure the compression is really a
460 * win, compare the page count read with the blocks on disk
461 */
462 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
463 ~(PAGE_CACHE_SIZE - 1);
464 if (total_compressed >= total_in) {
465 will_compress = 0;
466 } else {
467 disk_num_bytes = total_compressed;
468 num_bytes = total_in;
469 }
470 }
471 if (!will_compress && pages) {
472 /*
473 * the compression code ran but failed to make things smaller,
474 * free any pages it allocated and our page pointer array
475 */
476 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 477 WARN_ON(pages[i]->mapping);
c8b97818
CM
478 page_cache_release(pages[i]);
479 }
480 kfree(pages);
481 pages = NULL;
482 total_compressed = 0;
483 nr_pages_ret = 0;
484
485 /* flag the file so we don't compress in the future */
6cbff00f 486 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
c8b97818 487 }
771ed689
CM
488 if (will_compress) {
489 *num_added += 1;
c8b97818 490
771ed689
CM
491 /* the async work queues will take care of doing actual
492 * allocation on disk for these compressed pages,
493 * and will submit them to the elevator.
494 */
495 add_async_extent(async_cow, start, num_bytes,
496 total_compressed, pages, nr_pages_ret);
179e29e4 497
42dc7bab 498 if (start + num_bytes < end && start + num_bytes < actual_end) {
771ed689
CM
499 start += num_bytes;
500 pages = NULL;
501 cond_resched();
502 goto again;
503 }
504 } else {
f03d9301 505cleanup_and_bail_uncompressed:
771ed689
CM
506 /*
507 * No compression, but we still need to write the pages in
508 * the file we've been given so far. redirty the locked
509 * page if it corresponds to our extent and set things up
510 * for the async work queue to run cow_file_range to do
511 * the normal delalloc dance
512 */
513 if (page_offset(locked_page) >= start &&
514 page_offset(locked_page) <= end) {
515 __set_page_dirty_nobuffers(locked_page);
516 /* unlocked later on in the async handlers */
517 }
518 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
519 *num_added += 1;
520 }
3b951516 521
771ed689
CM
522out:
523 return 0;
524
525free_pages_out:
526 for (i = 0; i < nr_pages_ret; i++) {
527 WARN_ON(pages[i]->mapping);
528 page_cache_release(pages[i]);
529 }
d397712b 530 kfree(pages);
771ed689
CM
531
532 goto out;
533}
534
535/*
536 * phase two of compressed writeback. This is the ordered portion
537 * of the code, which only gets called in the order the work was
538 * queued. We walk all the async extents created by compress_file_range
539 * and send them down to the disk.
540 */
541static noinline int submit_compressed_extents(struct inode *inode,
542 struct async_cow *async_cow)
543{
544 struct async_extent *async_extent;
545 u64 alloc_hint = 0;
546 struct btrfs_trans_handle *trans;
547 struct btrfs_key ins;
548 struct extent_map *em;
549 struct btrfs_root *root = BTRFS_I(inode)->root;
550 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
551 struct extent_io_tree *io_tree;
f5a84ee3 552 int ret = 0;
771ed689
CM
553
554 if (list_empty(&async_cow->extents))
555 return 0;
556
771ed689 557
d397712b 558 while (!list_empty(&async_cow->extents)) {
771ed689
CM
559 async_extent = list_entry(async_cow->extents.next,
560 struct async_extent, list);
561 list_del(&async_extent->list);
c8b97818 562
771ed689
CM
563 io_tree = &BTRFS_I(inode)->io_tree;
564
f5a84ee3 565retry:
771ed689
CM
566 /* did the compression code fall back to uncompressed IO? */
567 if (!async_extent->pages) {
568 int page_started = 0;
569 unsigned long nr_written = 0;
570
571 lock_extent(io_tree, async_extent->start,
d397712b
CM
572 async_extent->start +
573 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
574
575 /* allocate blocks */
f5a84ee3
JB
576 ret = cow_file_range(inode, async_cow->locked_page,
577 async_extent->start,
578 async_extent->start +
579 async_extent->ram_size - 1,
580 &page_started, &nr_written, 0);
771ed689
CM
581
582 /*
583 * if page_started, cow_file_range inserted an
584 * inline extent and took care of all the unlocking
585 * and IO for us. Otherwise, we need to submit
586 * all those pages down to the drive.
587 */
f5a84ee3 588 if (!page_started && !ret)
771ed689
CM
589 extent_write_locked_range(io_tree,
590 inode, async_extent->start,
d397712b 591 async_extent->start +
771ed689
CM
592 async_extent->ram_size - 1,
593 btrfs_get_extent,
594 WB_SYNC_ALL);
595 kfree(async_extent);
596 cond_resched();
597 continue;
598 }
599
600 lock_extent(io_tree, async_extent->start,
601 async_extent->start + async_extent->ram_size - 1,
602 GFP_NOFS);
771ed689 603
c2167754 604 trans = btrfs_join_transaction(root, 1);
771ed689
CM
605 ret = btrfs_reserve_extent(trans, root,
606 async_extent->compressed_size,
607 async_extent->compressed_size,
608 0, alloc_hint,
609 (u64)-1, &ins, 1);
c2167754
YZ
610 btrfs_end_transaction(trans, root);
611
f5a84ee3
JB
612 if (ret) {
613 int i;
614 for (i = 0; i < async_extent->nr_pages; i++) {
615 WARN_ON(async_extent->pages[i]->mapping);
616 page_cache_release(async_extent->pages[i]);
617 }
618 kfree(async_extent->pages);
619 async_extent->nr_pages = 0;
620 async_extent->pages = NULL;
621 unlock_extent(io_tree, async_extent->start,
622 async_extent->start +
623 async_extent->ram_size - 1, GFP_NOFS);
624 goto retry;
625 }
626
c2167754
YZ
627 /*
628 * here we're doing allocation and writeback of the
629 * compressed pages
630 */
631 btrfs_drop_extent_cache(inode, async_extent->start,
632 async_extent->start +
633 async_extent->ram_size - 1, 0);
634
771ed689
CM
635 em = alloc_extent_map(GFP_NOFS);
636 em->start = async_extent->start;
637 em->len = async_extent->ram_size;
445a6944 638 em->orig_start = em->start;
c8b97818 639
771ed689
CM
640 em->block_start = ins.objectid;
641 em->block_len = ins.offset;
642 em->bdev = root->fs_info->fs_devices->latest_bdev;
643 set_bit(EXTENT_FLAG_PINNED, &em->flags);
644 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
645
d397712b 646 while (1) {
890871be 647 write_lock(&em_tree->lock);
771ed689 648 ret = add_extent_mapping(em_tree, em);
890871be 649 write_unlock(&em_tree->lock);
771ed689
CM
650 if (ret != -EEXIST) {
651 free_extent_map(em);
652 break;
653 }
654 btrfs_drop_extent_cache(inode, async_extent->start,
655 async_extent->start +
656 async_extent->ram_size - 1, 0);
657 }
658
659 ret = btrfs_add_ordered_extent(inode, async_extent->start,
660 ins.objectid,
661 async_extent->ram_size,
662 ins.offset,
663 BTRFS_ORDERED_COMPRESSED);
664 BUG_ON(ret);
665
771ed689
CM
666 /*
667 * clear dirty, set writeback and unlock the pages.
668 */
669 extent_clear_unlock_delalloc(inode,
a791e35e
CM
670 &BTRFS_I(inode)->io_tree,
671 async_extent->start,
672 async_extent->start +
673 async_extent->ram_size - 1,
674 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
675 EXTENT_CLEAR_UNLOCK |
a3429ab7 676 EXTENT_CLEAR_DELALLOC |
a791e35e 677 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
678
679 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
680 async_extent->start,
681 async_extent->ram_size,
682 ins.objectid,
683 ins.offset, async_extent->pages,
684 async_extent->nr_pages);
771ed689
CM
685
686 BUG_ON(ret);
771ed689
CM
687 alloc_hint = ins.objectid + ins.offset;
688 kfree(async_extent);
689 cond_resched();
690 }
691
771ed689
CM
692 return 0;
693}
694
695/*
696 * when extent_io.c finds a delayed allocation range in the file,
697 * the call backs end up in this code. The basic idea is to
698 * allocate extents on disk for the range, and create ordered data structs
699 * in ram to track those extents.
700 *
701 * locked_page is the page that writepage had locked already. We use
702 * it to make sure we don't do extra locks or unlocks.
703 *
704 * *page_started is set to one if we unlock locked_page and do everything
705 * required to start IO on it. It may be clean and already done with
706 * IO when we return.
707 */
708static noinline int cow_file_range(struct inode *inode,
709 struct page *locked_page,
710 u64 start, u64 end, int *page_started,
711 unsigned long *nr_written,
712 int unlock)
713{
714 struct btrfs_root *root = BTRFS_I(inode)->root;
715 struct btrfs_trans_handle *trans;
716 u64 alloc_hint = 0;
717 u64 num_bytes;
718 unsigned long ram_size;
719 u64 disk_num_bytes;
720 u64 cur_alloc_size;
721 u64 blocksize = root->sectorsize;
722 u64 actual_end;
42dc7bab 723 u64 isize = i_size_read(inode);
771ed689
CM
724 struct btrfs_key ins;
725 struct extent_map *em;
726 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
727 int ret = 0;
728
729 trans = btrfs_join_transaction(root, 1);
730 BUG_ON(!trans);
731 btrfs_set_trans_block_group(trans, inode);
732
42dc7bab 733 actual_end = min_t(u64, isize, end + 1);
771ed689
CM
734
735 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
736 num_bytes = max(blocksize, num_bytes);
737 disk_num_bytes = num_bytes;
738 ret = 0;
739
740 if (start == 0) {
741 /* lets try to make an inline extent */
742 ret = cow_file_range_inline(trans, root, inode,
743 start, end, 0, NULL);
744 if (ret == 0) {
745 extent_clear_unlock_delalloc(inode,
a791e35e
CM
746 &BTRFS_I(inode)->io_tree,
747 start, end, NULL,
748 EXTENT_CLEAR_UNLOCK_PAGE |
749 EXTENT_CLEAR_UNLOCK |
750 EXTENT_CLEAR_DELALLOC |
32c00aff 751 EXTENT_CLEAR_ACCOUNTING |
a791e35e
CM
752 EXTENT_CLEAR_DIRTY |
753 EXTENT_SET_WRITEBACK |
754 EXTENT_END_WRITEBACK);
c2167754 755
771ed689
CM
756 *nr_written = *nr_written +
757 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
758 *page_started = 1;
759 ret = 0;
760 goto out;
761 }
762 }
763
764 BUG_ON(disk_num_bytes >
765 btrfs_super_total_bytes(&root->fs_info->super_copy));
766
b917b7c3
CM
767
768 read_lock(&BTRFS_I(inode)->extent_tree.lock);
769 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
770 start, num_bytes);
771 if (em) {
6346c939
JB
772 /*
773 * if block start isn't an actual block number then find the
774 * first block in this inode and use that as a hint. If that
775 * block is also bogus then just don't worry about it.
776 */
777 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
778 free_extent_map(em);
779 em = search_extent_mapping(em_tree, 0, 0);
780 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
781 alloc_hint = em->block_start;
782 if (em)
783 free_extent_map(em);
784 } else {
785 alloc_hint = em->block_start;
786 free_extent_map(em);
787 }
b917b7c3
CM
788 }
789 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
771ed689
CM
790 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
791
d397712b 792 while (disk_num_bytes > 0) {
a791e35e
CM
793 unsigned long op;
794
c8b97818 795 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
e6dcd2dc 796 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 797 root->sectorsize, 0, alloc_hint,
e6dcd2dc 798 (u64)-1, &ins, 1);
d397712b
CM
799 BUG_ON(ret);
800
e6dcd2dc
CM
801 em = alloc_extent_map(GFP_NOFS);
802 em->start = start;
445a6944 803 em->orig_start = em->start;
771ed689
CM
804 ram_size = ins.offset;
805 em->len = ins.offset;
c8b97818 806
e6dcd2dc 807 em->block_start = ins.objectid;
c8b97818 808 em->block_len = ins.offset;
e6dcd2dc 809 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 810 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 811
d397712b 812 while (1) {
890871be 813 write_lock(&em_tree->lock);
e6dcd2dc 814 ret = add_extent_mapping(em_tree, em);
890871be 815 write_unlock(&em_tree->lock);
e6dcd2dc
CM
816 if (ret != -EEXIST) {
817 free_extent_map(em);
818 break;
819 }
820 btrfs_drop_extent_cache(inode, start,
c8b97818 821 start + ram_size - 1, 0);
e6dcd2dc
CM
822 }
823
98d20f67 824 cur_alloc_size = ins.offset;
e6dcd2dc 825 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 826 ram_size, cur_alloc_size, 0);
e6dcd2dc 827 BUG_ON(ret);
c8b97818 828
17d217fe
YZ
829 if (root->root_key.objectid ==
830 BTRFS_DATA_RELOC_TREE_OBJECTID) {
831 ret = btrfs_reloc_clone_csums(inode, start,
832 cur_alloc_size);
833 BUG_ON(ret);
834 }
835
d397712b 836 if (disk_num_bytes < cur_alloc_size)
3b951516 837 break;
d397712b 838
c8b97818
CM
839 /* we're not doing compressed IO, don't unlock the first
840 * page (which the caller expects to stay locked), don't
841 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
842 *
843 * Do set the Private2 bit so we know this page was properly
844 * setup for writepage
c8b97818 845 */
a791e35e
CM
846 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
847 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
848 EXTENT_SET_PRIVATE2;
849
c8b97818
CM
850 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
851 start, start + ram_size - 1,
a791e35e 852 locked_page, op);
c8b97818 853 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
854 num_bytes -= cur_alloc_size;
855 alloc_hint = ins.objectid + ins.offset;
856 start += cur_alloc_size;
b888db2b 857 }
b888db2b 858out:
771ed689 859 ret = 0;
b888db2b 860 btrfs_end_transaction(trans, root);
c8b97818 861
be20aa9d 862 return ret;
771ed689 863}
c8b97818 864
771ed689
CM
865/*
866 * work queue call back to started compression on a file and pages
867 */
868static noinline void async_cow_start(struct btrfs_work *work)
869{
870 struct async_cow *async_cow;
871 int num_added = 0;
872 async_cow = container_of(work, struct async_cow, work);
873
874 compress_file_range(async_cow->inode, async_cow->locked_page,
875 async_cow->start, async_cow->end, async_cow,
876 &num_added);
877 if (num_added == 0)
878 async_cow->inode = NULL;
879}
880
881/*
882 * work queue call back to submit previously compressed pages
883 */
884static noinline void async_cow_submit(struct btrfs_work *work)
885{
886 struct async_cow *async_cow;
887 struct btrfs_root *root;
888 unsigned long nr_pages;
889
890 async_cow = container_of(work, struct async_cow, work);
891
892 root = async_cow->root;
893 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
894 PAGE_CACHE_SHIFT;
895
896 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
897
898 if (atomic_read(&root->fs_info->async_delalloc_pages) <
899 5 * 1042 * 1024 &&
900 waitqueue_active(&root->fs_info->async_submit_wait))
901 wake_up(&root->fs_info->async_submit_wait);
902
d397712b 903 if (async_cow->inode)
771ed689 904 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 905}
c8b97818 906
771ed689
CM
907static noinline void async_cow_free(struct btrfs_work *work)
908{
909 struct async_cow *async_cow;
910 async_cow = container_of(work, struct async_cow, work);
911 kfree(async_cow);
912}
913
914static int cow_file_range_async(struct inode *inode, struct page *locked_page,
915 u64 start, u64 end, int *page_started,
916 unsigned long *nr_written)
917{
918 struct async_cow *async_cow;
919 struct btrfs_root *root = BTRFS_I(inode)->root;
920 unsigned long nr_pages;
921 u64 cur_end;
922 int limit = 10 * 1024 * 1042;
923
a3429ab7
CM
924 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
925 1, 0, NULL, GFP_NOFS);
d397712b 926 while (start < end) {
771ed689
CM
927 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
928 async_cow->inode = inode;
929 async_cow->root = root;
930 async_cow->locked_page = locked_page;
931 async_cow->start = start;
932
6cbff00f 933 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
934 cur_end = end;
935 else
936 cur_end = min(end, start + 512 * 1024 - 1);
937
938 async_cow->end = cur_end;
939 INIT_LIST_HEAD(&async_cow->extents);
940
941 async_cow->work.func = async_cow_start;
942 async_cow->work.ordered_func = async_cow_submit;
943 async_cow->work.ordered_free = async_cow_free;
944 async_cow->work.flags = 0;
945
771ed689
CM
946 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
947 PAGE_CACHE_SHIFT;
948 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
949
950 btrfs_queue_worker(&root->fs_info->delalloc_workers,
951 &async_cow->work);
952
953 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
954 wait_event(root->fs_info->async_submit_wait,
955 (atomic_read(&root->fs_info->async_delalloc_pages) <
956 limit));
957 }
958
d397712b 959 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
960 atomic_read(&root->fs_info->async_delalloc_pages)) {
961 wait_event(root->fs_info->async_submit_wait,
962 (atomic_read(&root->fs_info->async_delalloc_pages) ==
963 0));
964 }
965
966 *nr_written += nr_pages;
967 start = cur_end + 1;
968 }
969 *page_started = 1;
970 return 0;
be20aa9d
CM
971}
972
d397712b 973static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
974 u64 bytenr, u64 num_bytes)
975{
976 int ret;
977 struct btrfs_ordered_sum *sums;
978 LIST_HEAD(list);
979
07d400a6
YZ
980 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
981 bytenr + num_bytes - 1, &list);
17d217fe
YZ
982 if (ret == 0 && list_empty(&list))
983 return 0;
984
985 while (!list_empty(&list)) {
986 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
987 list_del(&sums->list);
988 kfree(sums);
989 }
990 return 1;
991}
992
d352ac68
CM
993/*
994 * when nowcow writeback call back. This checks for snapshots or COW copies
995 * of the extents that exist in the file, and COWs the file as required.
996 *
997 * If no cow copies or snapshots exist, we write directly to the existing
998 * blocks on disk
999 */
7f366cfe
CM
1000static noinline int run_delalloc_nocow(struct inode *inode,
1001 struct page *locked_page,
771ed689
CM
1002 u64 start, u64 end, int *page_started, int force,
1003 unsigned long *nr_written)
be20aa9d 1004{
be20aa9d 1005 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1006 struct btrfs_trans_handle *trans;
be20aa9d 1007 struct extent_buffer *leaf;
be20aa9d 1008 struct btrfs_path *path;
80ff3856 1009 struct btrfs_file_extent_item *fi;
be20aa9d 1010 struct btrfs_key found_key;
80ff3856
YZ
1011 u64 cow_start;
1012 u64 cur_offset;
1013 u64 extent_end;
5d4f98a2 1014 u64 extent_offset;
80ff3856
YZ
1015 u64 disk_bytenr;
1016 u64 num_bytes;
1017 int extent_type;
1018 int ret;
d899e052 1019 int type;
80ff3856
YZ
1020 int nocow;
1021 int check_prev = 1;
be20aa9d
CM
1022
1023 path = btrfs_alloc_path();
1024 BUG_ON(!path);
7ea394f1
YZ
1025 trans = btrfs_join_transaction(root, 1);
1026 BUG_ON(!trans);
be20aa9d 1027
80ff3856
YZ
1028 cow_start = (u64)-1;
1029 cur_offset = start;
1030 while (1) {
1031 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1032 cur_offset, 0);
1033 BUG_ON(ret < 0);
1034 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1035 leaf = path->nodes[0];
1036 btrfs_item_key_to_cpu(leaf, &found_key,
1037 path->slots[0] - 1);
1038 if (found_key.objectid == inode->i_ino &&
1039 found_key.type == BTRFS_EXTENT_DATA_KEY)
1040 path->slots[0]--;
1041 }
1042 check_prev = 0;
1043next_slot:
1044 leaf = path->nodes[0];
1045 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1046 ret = btrfs_next_leaf(root, path);
1047 if (ret < 0)
1048 BUG_ON(1);
1049 if (ret > 0)
1050 break;
1051 leaf = path->nodes[0];
1052 }
be20aa9d 1053
80ff3856
YZ
1054 nocow = 0;
1055 disk_bytenr = 0;
17d217fe 1056 num_bytes = 0;
80ff3856
YZ
1057 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1058
1059 if (found_key.objectid > inode->i_ino ||
1060 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1061 found_key.offset > end)
1062 break;
1063
1064 if (found_key.offset > cur_offset) {
1065 extent_end = found_key.offset;
e9061e21 1066 extent_type = 0;
80ff3856
YZ
1067 goto out_check;
1068 }
1069
1070 fi = btrfs_item_ptr(leaf, path->slots[0],
1071 struct btrfs_file_extent_item);
1072 extent_type = btrfs_file_extent_type(leaf, fi);
1073
d899e052
YZ
1074 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1075 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1076 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1077 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1078 extent_end = found_key.offset +
1079 btrfs_file_extent_num_bytes(leaf, fi);
1080 if (extent_end <= start) {
1081 path->slots[0]++;
1082 goto next_slot;
1083 }
17d217fe
YZ
1084 if (disk_bytenr == 0)
1085 goto out_check;
80ff3856
YZ
1086 if (btrfs_file_extent_compression(leaf, fi) ||
1087 btrfs_file_extent_encryption(leaf, fi) ||
1088 btrfs_file_extent_other_encoding(leaf, fi))
1089 goto out_check;
d899e052
YZ
1090 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1091 goto out_check;
d2fb3437 1092 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1093 goto out_check;
17d217fe 1094 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1095 found_key.offset -
1096 extent_offset, disk_bytenr))
17d217fe 1097 goto out_check;
5d4f98a2 1098 disk_bytenr += extent_offset;
17d217fe
YZ
1099 disk_bytenr += cur_offset - found_key.offset;
1100 num_bytes = min(end + 1, extent_end) - cur_offset;
1101 /*
1102 * force cow if csum exists in the range.
1103 * this ensure that csum for a given extent are
1104 * either valid or do not exist.
1105 */
1106 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1107 goto out_check;
80ff3856
YZ
1108 nocow = 1;
1109 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1110 extent_end = found_key.offset +
1111 btrfs_file_extent_inline_len(leaf, fi);
1112 extent_end = ALIGN(extent_end, root->sectorsize);
1113 } else {
1114 BUG_ON(1);
1115 }
1116out_check:
1117 if (extent_end <= start) {
1118 path->slots[0]++;
1119 goto next_slot;
1120 }
1121 if (!nocow) {
1122 if (cow_start == (u64)-1)
1123 cow_start = cur_offset;
1124 cur_offset = extent_end;
1125 if (cur_offset > end)
1126 break;
1127 path->slots[0]++;
1128 goto next_slot;
7ea394f1
YZ
1129 }
1130
1131 btrfs_release_path(root, path);
80ff3856
YZ
1132 if (cow_start != (u64)-1) {
1133 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1134 found_key.offset - 1, page_started,
1135 nr_written, 1);
80ff3856
YZ
1136 BUG_ON(ret);
1137 cow_start = (u64)-1;
7ea394f1 1138 }
80ff3856 1139
d899e052
YZ
1140 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1141 struct extent_map *em;
1142 struct extent_map_tree *em_tree;
1143 em_tree = &BTRFS_I(inode)->extent_tree;
1144 em = alloc_extent_map(GFP_NOFS);
1145 em->start = cur_offset;
445a6944 1146 em->orig_start = em->start;
d899e052
YZ
1147 em->len = num_bytes;
1148 em->block_len = num_bytes;
1149 em->block_start = disk_bytenr;
1150 em->bdev = root->fs_info->fs_devices->latest_bdev;
1151 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1152 while (1) {
890871be 1153 write_lock(&em_tree->lock);
d899e052 1154 ret = add_extent_mapping(em_tree, em);
890871be 1155 write_unlock(&em_tree->lock);
d899e052
YZ
1156 if (ret != -EEXIST) {
1157 free_extent_map(em);
1158 break;
1159 }
1160 btrfs_drop_extent_cache(inode, em->start,
1161 em->start + em->len - 1, 0);
1162 }
1163 type = BTRFS_ORDERED_PREALLOC;
1164 } else {
1165 type = BTRFS_ORDERED_NOCOW;
1166 }
80ff3856
YZ
1167
1168 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1169 num_bytes, num_bytes, type);
1170 BUG_ON(ret);
771ed689 1171
d899e052 1172 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1173 cur_offset, cur_offset + num_bytes - 1,
1174 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1175 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1176 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1177 cur_offset = extent_end;
1178 if (cur_offset > end)
1179 break;
be20aa9d 1180 }
80ff3856
YZ
1181 btrfs_release_path(root, path);
1182
1183 if (cur_offset <= end && cow_start == (u64)-1)
1184 cow_start = cur_offset;
1185 if (cow_start != (u64)-1) {
1186 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1187 page_started, nr_written, 1);
80ff3856
YZ
1188 BUG_ON(ret);
1189 }
1190
1191 ret = btrfs_end_transaction(trans, root);
1192 BUG_ON(ret);
7ea394f1 1193 btrfs_free_path(path);
80ff3856 1194 return 0;
be20aa9d
CM
1195}
1196
d352ac68
CM
1197/*
1198 * extent_io.c call back to do delayed allocation processing
1199 */
c8b97818 1200static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1201 u64 start, u64 end, int *page_started,
1202 unsigned long *nr_written)
be20aa9d 1203{
be20aa9d 1204 int ret;
7f366cfe 1205 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1206
6cbff00f 1207 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1208 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1209 page_started, 1, nr_written);
6cbff00f 1210 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1211 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1212 page_started, 0, nr_written);
7f366cfe
CM
1213 else if (!btrfs_test_opt(root, COMPRESS))
1214 ret = cow_file_range(inode, locked_page, start, end,
1215 page_started, nr_written, 1);
be20aa9d 1216 else
771ed689 1217 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1218 page_started, nr_written);
b888db2b
CM
1219 return ret;
1220}
1221
9ed74f2d
JB
1222static int btrfs_split_extent_hook(struct inode *inode,
1223 struct extent_state *orig, u64 split)
1224{
1225 struct btrfs_root *root = BTRFS_I(inode)->root;
1226 u64 size;
1227
1228 if (!(orig->state & EXTENT_DELALLOC))
1229 return 0;
1230
1231 size = orig->end - orig->start + 1;
1232 if (size > root->fs_info->max_extent) {
1233 u64 num_extents;
1234 u64 new_size;
1235
1236 new_size = orig->end - split + 1;
1237 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1238 root->fs_info->max_extent);
1239
1240 /*
32c00aff
JB
1241 * if we break a large extent up then leave oustanding_extents
1242 * be, since we've already accounted for the large extent.
9ed74f2d
JB
1243 */
1244 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1245 root->fs_info->max_extent) < num_extents)
1246 return 0;
1247 }
1248
32c00aff
JB
1249 spin_lock(&BTRFS_I(inode)->accounting_lock);
1250 BTRFS_I(inode)->outstanding_extents++;
1251 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1252
1253 return 0;
1254}
1255
1256/*
1257 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1258 * extents so we can keep track of new extents that are just merged onto old
1259 * extents, such as when we are doing sequential writes, so we can properly
1260 * account for the metadata space we'll need.
1261 */
1262static int btrfs_merge_extent_hook(struct inode *inode,
1263 struct extent_state *new,
1264 struct extent_state *other)
1265{
1266 struct btrfs_root *root = BTRFS_I(inode)->root;
1267 u64 new_size, old_size;
1268 u64 num_extents;
1269
1270 /* not delalloc, ignore it */
1271 if (!(other->state & EXTENT_DELALLOC))
1272 return 0;
1273
1274 old_size = other->end - other->start + 1;
1275 if (new->start < other->start)
1276 new_size = other->end - new->start + 1;
1277 else
1278 new_size = new->end - other->start + 1;
1279
1280 /* we're not bigger than the max, unreserve the space and go */
1281 if (new_size <= root->fs_info->max_extent) {
32c00aff
JB
1282 spin_lock(&BTRFS_I(inode)->accounting_lock);
1283 BTRFS_I(inode)->outstanding_extents--;
1284 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1285 return 0;
1286 }
1287
1288 /*
1289 * If we grew by another max_extent, just return, we want to keep that
1290 * reserved amount.
1291 */
1292 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1293 root->fs_info->max_extent);
1294 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1295 root->fs_info->max_extent) > num_extents)
1296 return 0;
1297
32c00aff
JB
1298 spin_lock(&BTRFS_I(inode)->accounting_lock);
1299 BTRFS_I(inode)->outstanding_extents--;
1300 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1301
1302 return 0;
1303}
1304
d352ac68
CM
1305/*
1306 * extent_io.c set_bit_hook, used to track delayed allocation
1307 * bytes in this file, and to maintain the list of inodes that
1308 * have pending delalloc work to be done.
1309 */
b2950863 1310static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1311 unsigned long old, unsigned long bits)
291d673e 1312{
9ed74f2d 1313
75eff68e
CM
1314 /*
1315 * set_bit and clear bit hooks normally require _irqsave/restore
1316 * but in this case, we are only testeing for the DELALLOC
1317 * bit, which is only set or cleared with irqs on
1318 */
b0c68f8b 1319 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1320 struct btrfs_root *root = BTRFS_I(inode)->root;
9ed74f2d 1321
32c00aff
JB
1322 spin_lock(&BTRFS_I(inode)->accounting_lock);
1323 BTRFS_I(inode)->outstanding_extents++;
1324 spin_unlock(&BTRFS_I(inode)->accounting_lock);
6a63209f 1325 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
75eff68e 1326 spin_lock(&root->fs_info->delalloc_lock);
9069218d 1327 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
291d673e 1328 root->fs_info->delalloc_bytes += end - start + 1;
ea8c2819
CM
1329 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1330 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1331 &root->fs_info->delalloc_inodes);
1332 }
75eff68e 1333 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1334 }
1335 return 0;
1336}
1337
d352ac68
CM
1338/*
1339 * extent_io.c clear_bit_hook, see set_bit_hook for why
1340 */
9ed74f2d
JB
1341static int btrfs_clear_bit_hook(struct inode *inode,
1342 struct extent_state *state, unsigned long bits)
291d673e 1343{
75eff68e
CM
1344 /*
1345 * set_bit and clear bit hooks normally require _irqsave/restore
1346 * but in this case, we are only testeing for the DELALLOC
1347 * bit, which is only set or cleared with irqs on
1348 */
9ed74f2d 1349 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1350 struct btrfs_root *root = BTRFS_I(inode)->root;
bcbfce8a 1351
32c00aff
JB
1352 if (bits & EXTENT_DO_ACCOUNTING) {
1353 spin_lock(&BTRFS_I(inode)->accounting_lock);
1354 BTRFS_I(inode)->outstanding_extents--;
1355 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1356 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1357 }
9ed74f2d 1358
75eff68e 1359 spin_lock(&root->fs_info->delalloc_lock);
9ed74f2d
JB
1360 if (state->end - state->start + 1 >
1361 root->fs_info->delalloc_bytes) {
d397712b
CM
1362 printk(KERN_INFO "btrfs warning: delalloc account "
1363 "%llu %llu\n",
9ed74f2d
JB
1364 (unsigned long long)
1365 state->end - state->start + 1,
d397712b
CM
1366 (unsigned long long)
1367 root->fs_info->delalloc_bytes);
6a63209f 1368 btrfs_delalloc_free_space(root, inode, (u64)-1);
b0c68f8b 1369 root->fs_info->delalloc_bytes = 0;
9069218d 1370 BTRFS_I(inode)->delalloc_bytes = 0;
b0c68f8b 1371 } else {
6a63209f 1372 btrfs_delalloc_free_space(root, inode,
9ed74f2d
JB
1373 state->end -
1374 state->start + 1);
1375 root->fs_info->delalloc_bytes -= state->end -
1376 state->start + 1;
1377 BTRFS_I(inode)->delalloc_bytes -= state->end -
1378 state->start + 1;
b0c68f8b 1379 }
ea8c2819
CM
1380 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1381 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1382 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1383 }
75eff68e 1384 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1385 }
1386 return 0;
1387}
1388
d352ac68
CM
1389/*
1390 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1391 * we don't create bios that span stripes or chunks
1392 */
239b14b3 1393int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1394 size_t size, struct bio *bio,
1395 unsigned long bio_flags)
239b14b3
CM
1396{
1397 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1398 struct btrfs_mapping_tree *map_tree;
a62b9401 1399 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1400 u64 length = 0;
1401 u64 map_length;
239b14b3
CM
1402 int ret;
1403
771ed689
CM
1404 if (bio_flags & EXTENT_BIO_COMPRESSED)
1405 return 0;
1406
f2d8d74d 1407 length = bio->bi_size;
239b14b3
CM
1408 map_tree = &root->fs_info->mapping_tree;
1409 map_length = length;
cea9e445 1410 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1411 &map_length, NULL, 0);
cea9e445 1412
d397712b 1413 if (map_length < length + size)
239b14b3 1414 return 1;
239b14b3
CM
1415 return 0;
1416}
1417
d352ac68
CM
1418/*
1419 * in order to insert checksums into the metadata in large chunks,
1420 * we wait until bio submission time. All the pages in the bio are
1421 * checksummed and sums are attached onto the ordered extent record.
1422 *
1423 * At IO completion time the cums attached on the ordered extent record
1424 * are inserted into the btree
1425 */
d397712b
CM
1426static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1427 struct bio *bio, int mirror_num,
1428 unsigned long bio_flags)
065631f6 1429{
065631f6 1430 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1431 int ret = 0;
e015640f 1432
d20f7043 1433 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1434 BUG_ON(ret);
4a69a410
CM
1435 return 0;
1436}
e015640f 1437
4a69a410
CM
1438/*
1439 * in order to insert checksums into the metadata in large chunks,
1440 * we wait until bio submission time. All the pages in the bio are
1441 * checksummed and sums are attached onto the ordered extent record.
1442 *
1443 * At IO completion time the cums attached on the ordered extent record
1444 * are inserted into the btree
1445 */
b2950863 1446static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
4a69a410
CM
1447 int mirror_num, unsigned long bio_flags)
1448{
1449 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1450 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1451}
1452
d352ac68 1453/*
cad321ad
CM
1454 * extent_io.c submission hook. This does the right thing for csum calculation
1455 * on write, or reading the csums from the tree before a read
d352ac68 1456 */
b2950863 1457static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
c8b97818 1458 int mirror_num, unsigned long bio_flags)
44b8bd7e
CM
1459{
1460 struct btrfs_root *root = BTRFS_I(inode)->root;
1461 int ret = 0;
19b9bdb0 1462 int skip_sum;
44b8bd7e 1463
6cbff00f 1464 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1465
e6dcd2dc
CM
1466 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1467 BUG_ON(ret);
065631f6 1468
4d1b5fb4 1469 if (!(rw & (1 << BIO_RW))) {
d20f7043 1470 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1471 return btrfs_submit_compressed_read(inode, bio,
1472 mirror_num, bio_flags);
d20f7043
CM
1473 } else if (!skip_sum)
1474 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1475 goto mapit;
19b9bdb0 1476 } else if (!skip_sum) {
17d217fe
YZ
1477 /* csum items have already been cloned */
1478 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1479 goto mapit;
19b9bdb0
CM
1480 /* we're doing a write, do the async checksumming */
1481 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1482 inode, rw, bio, mirror_num,
4a69a410
CM
1483 bio_flags, __btrfs_submit_bio_start,
1484 __btrfs_submit_bio_done);
19b9bdb0
CM
1485 }
1486
0b86a832 1487mapit:
8b712842 1488 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1489}
6885f308 1490
d352ac68
CM
1491/*
1492 * given a list of ordered sums record them in the inode. This happens
1493 * at IO completion time based on sums calculated at bio submission time.
1494 */
ba1da2f4 1495static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1496 struct inode *inode, u64 file_offset,
1497 struct list_head *list)
1498{
e6dcd2dc
CM
1499 struct btrfs_ordered_sum *sum;
1500
1501 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1502
1503 list_for_each_entry(sum, list, list) {
d20f7043
CM
1504 btrfs_csum_file_blocks(trans,
1505 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1506 }
1507 return 0;
1508}
1509
ea8c2819
CM
1510int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1511{
d397712b 1512 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1513 WARN_ON(1);
ea8c2819
CM
1514 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1515 GFP_NOFS);
1516}
1517
d352ac68 1518/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1519struct btrfs_writepage_fixup {
1520 struct page *page;
1521 struct btrfs_work work;
1522};
1523
b2950863 1524static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1525{
1526 struct btrfs_writepage_fixup *fixup;
1527 struct btrfs_ordered_extent *ordered;
1528 struct page *page;
1529 struct inode *inode;
1530 u64 page_start;
1531 u64 page_end;
1532
1533 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1534 page = fixup->page;
4a096752 1535again:
247e743c
CM
1536 lock_page(page);
1537 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1538 ClearPageChecked(page);
1539 goto out_page;
1540 }
1541
1542 inode = page->mapping->host;
1543 page_start = page_offset(page);
1544 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1545
1546 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
4a096752
CM
1547
1548 /* already ordered? We're done */
8b62b72b 1549 if (PagePrivate2(page))
247e743c 1550 goto out;
4a096752
CM
1551
1552 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1553 if (ordered) {
1554 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1555 page_end, GFP_NOFS);
1556 unlock_page(page);
1557 btrfs_start_ordered_extent(inode, ordered, 1);
1558 goto again;
1559 }
247e743c 1560
ea8c2819 1561 btrfs_set_extent_delalloc(inode, page_start, page_end);
247e743c
CM
1562 ClearPageChecked(page);
1563out:
1564 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1565out_page:
1566 unlock_page(page);
1567 page_cache_release(page);
1568}
1569
1570/*
1571 * There are a few paths in the higher layers of the kernel that directly
1572 * set the page dirty bit without asking the filesystem if it is a
1573 * good idea. This causes problems because we want to make sure COW
1574 * properly happens and the data=ordered rules are followed.
1575 *
c8b97818 1576 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1577 * hasn't been properly setup for IO. We kick off an async process
1578 * to fix it up. The async helper will wait for ordered extents, set
1579 * the delalloc bit and make it safe to write the page.
1580 */
b2950863 1581static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1582{
1583 struct inode *inode = page->mapping->host;
1584 struct btrfs_writepage_fixup *fixup;
1585 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1586
8b62b72b
CM
1587 /* this page is properly in the ordered list */
1588 if (TestClearPagePrivate2(page))
247e743c
CM
1589 return 0;
1590
1591 if (PageChecked(page))
1592 return -EAGAIN;
1593
1594 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1595 if (!fixup)
1596 return -EAGAIN;
f421950f 1597
247e743c
CM
1598 SetPageChecked(page);
1599 page_cache_get(page);
1600 fixup->work.func = btrfs_writepage_fixup_worker;
1601 fixup->page = page;
1602 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1603 return -EAGAIN;
1604}
1605
d899e052
YZ
1606static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1607 struct inode *inode, u64 file_pos,
1608 u64 disk_bytenr, u64 disk_num_bytes,
1609 u64 num_bytes, u64 ram_bytes,
1610 u8 compression, u8 encryption,
1611 u16 other_encoding, int extent_type)
1612{
1613 struct btrfs_root *root = BTRFS_I(inode)->root;
1614 struct btrfs_file_extent_item *fi;
1615 struct btrfs_path *path;
1616 struct extent_buffer *leaf;
1617 struct btrfs_key ins;
1618 u64 hint;
1619 int ret;
1620
1621 path = btrfs_alloc_path();
1622 BUG_ON(!path);
1623
b9473439 1624 path->leave_spinning = 1;
a1ed835e
CM
1625
1626 /*
1627 * we may be replacing one extent in the tree with another.
1628 * The new extent is pinned in the extent map, and we don't want
1629 * to drop it from the cache until it is completely in the btree.
1630 *
1631 * So, tell btrfs_drop_extents to leave this extent in the cache.
1632 * the caller is expected to unpin it and allow it to be merged
1633 * with the others.
1634 */
920bbbfb
YZ
1635 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1636 &hint, 0);
d899e052
YZ
1637 BUG_ON(ret);
1638
1639 ins.objectid = inode->i_ino;
1640 ins.offset = file_pos;
1641 ins.type = BTRFS_EXTENT_DATA_KEY;
1642 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1643 BUG_ON(ret);
1644 leaf = path->nodes[0];
1645 fi = btrfs_item_ptr(leaf, path->slots[0],
1646 struct btrfs_file_extent_item);
1647 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1648 btrfs_set_file_extent_type(leaf, fi, extent_type);
1649 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1650 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1651 btrfs_set_file_extent_offset(leaf, fi, 0);
1652 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1653 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1654 btrfs_set_file_extent_compression(leaf, fi, compression);
1655 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1656 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1657
1658 btrfs_unlock_up_safe(path, 1);
1659 btrfs_set_lock_blocking(leaf);
1660
d899e052
YZ
1661 btrfs_mark_buffer_dirty(leaf);
1662
1663 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1664
1665 ins.objectid = disk_bytenr;
1666 ins.offset = disk_num_bytes;
1667 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1668 ret = btrfs_alloc_reserved_file_extent(trans, root,
1669 root->root_key.objectid,
1670 inode->i_ino, file_pos, &ins);
d899e052 1671 BUG_ON(ret);
d899e052 1672 btrfs_free_path(path);
b9473439 1673
d899e052
YZ
1674 return 0;
1675}
1676
5d13a98f
CM
1677/*
1678 * helper function for btrfs_finish_ordered_io, this
1679 * just reads in some of the csum leaves to prime them into ram
1680 * before we start the transaction. It limits the amount of btree
1681 * reads required while inside the transaction.
1682 */
1683static noinline void reada_csum(struct btrfs_root *root,
1684 struct btrfs_path *path,
1685 struct btrfs_ordered_extent *ordered_extent)
1686{
1687 struct btrfs_ordered_sum *sum;
1688 u64 bytenr;
1689
1690 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1691 list);
1692 bytenr = sum->sums[0].bytenr;
1693
1694 /*
1695 * we don't care about the results, the point of this search is
1696 * just to get the btree leaves into ram
1697 */
1698 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1699}
1700
d352ac68
CM
1701/* as ordered data IO finishes, this gets called so we can finish
1702 * an ordered extent if the range of bytes in the file it covers are
1703 * fully written.
1704 */
211f90e6 1705static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1706{
e6dcd2dc
CM
1707 struct btrfs_root *root = BTRFS_I(inode)->root;
1708 struct btrfs_trans_handle *trans;
5d13a98f 1709 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1710 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
b7ec40d7 1711 struct btrfs_path *path;
d899e052 1712 int compressed = 0;
e6dcd2dc
CM
1713 int ret;
1714
1715 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
ba1da2f4 1716 if (!ret)
e6dcd2dc 1717 return 0;
e6dcd2dc 1718
b7ec40d7
CM
1719 /*
1720 * before we join the transaction, try to do some of our IO.
1721 * This will limit the amount of IO that we have to do with
1722 * the transaction running. We're unlikely to need to do any
1723 * IO if the file extents are new, the disk_i_size checks
1724 * covers the most common case.
1725 */
1726 if (start < BTRFS_I(inode)->disk_i_size) {
1727 path = btrfs_alloc_path();
1728 if (path) {
1729 ret = btrfs_lookup_file_extent(NULL, root, path,
1730 inode->i_ino,
1731 start, 0);
5d13a98f
CM
1732 ordered_extent = btrfs_lookup_ordered_extent(inode,
1733 start);
1734 if (!list_empty(&ordered_extent->list)) {
1735 btrfs_release_path(root, path);
1736 reada_csum(root, path, ordered_extent);
1737 }
b7ec40d7
CM
1738 btrfs_free_path(path);
1739 }
1740 }
1741
5d13a98f
CM
1742 if (!ordered_extent)
1743 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
e6dcd2dc 1744 BUG_ON(!ordered_extent);
c2167754
YZ
1745 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1746 BUG_ON(!list_empty(&ordered_extent->list));
1747 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1748 if (!ret) {
1749 trans = btrfs_join_transaction(root, 1);
1750 ret = btrfs_update_inode(trans, root, inode);
1751 BUG_ON(ret);
1752 btrfs_end_transaction(trans, root);
1753 }
1754 goto out;
1755 }
e6dcd2dc
CM
1756
1757 lock_extent(io_tree, ordered_extent->file_offset,
1758 ordered_extent->file_offset + ordered_extent->len - 1,
1759 GFP_NOFS);
1760
c2167754
YZ
1761 trans = btrfs_join_transaction(root, 1);
1762
c8b97818 1763 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1764 compressed = 1;
1765 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1766 BUG_ON(compressed);
920bbbfb 1767 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1768 ordered_extent->file_offset,
1769 ordered_extent->file_offset +
1770 ordered_extent->len);
1771 BUG_ON(ret);
1772 } else {
1773 ret = insert_reserved_file_extent(trans, inode,
1774 ordered_extent->file_offset,
1775 ordered_extent->start,
1776 ordered_extent->disk_len,
1777 ordered_extent->len,
1778 ordered_extent->len,
1779 compressed, 0, 0,
1780 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1781 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1782 ordered_extent->file_offset,
1783 ordered_extent->len);
d899e052
YZ
1784 BUG_ON(ret);
1785 }
e6dcd2dc
CM
1786 unlock_extent(io_tree, ordered_extent->file_offset,
1787 ordered_extent->file_offset + ordered_extent->len - 1,
1788 GFP_NOFS);
1789 add_pending_csums(trans, inode, ordered_extent->file_offset,
1790 &ordered_extent->list);
1791
c2167754
YZ
1792 /* this also removes the ordered extent from the tree */
1793 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1794 ret = btrfs_update_inode(trans, root, inode);
1795 BUG_ON(ret);
1796 btrfs_end_transaction(trans, root);
1797out:
e6dcd2dc
CM
1798 /* once for us */
1799 btrfs_put_ordered_extent(ordered_extent);
1800 /* once for the tree */
1801 btrfs_put_ordered_extent(ordered_extent);
1802
e6dcd2dc
CM
1803 return 0;
1804}
1805
b2950863 1806static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1807 struct extent_state *state, int uptodate)
1808{
8b62b72b 1809 ClearPagePrivate2(page);
211f90e6
CM
1810 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1811}
1812
d352ac68
CM
1813/*
1814 * When IO fails, either with EIO or csum verification fails, we
1815 * try other mirrors that might have a good copy of the data. This
1816 * io_failure_record is used to record state as we go through all the
1817 * mirrors. If another mirror has good data, the page is set up to date
1818 * and things continue. If a good mirror can't be found, the original
1819 * bio end_io callback is called to indicate things have failed.
1820 */
7e38326f
CM
1821struct io_failure_record {
1822 struct page *page;
1823 u64 start;
1824 u64 len;
1825 u64 logical;
d20f7043 1826 unsigned long bio_flags;
7e38326f
CM
1827 int last_mirror;
1828};
1829
b2950863 1830static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1831 struct page *page, u64 start, u64 end,
1832 struct extent_state *state)
7e38326f
CM
1833{
1834 struct io_failure_record *failrec = NULL;
1835 u64 private;
1836 struct extent_map *em;
1837 struct inode *inode = page->mapping->host;
1838 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1839 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1840 struct bio *bio;
1841 int num_copies;
1842 int ret;
1259ab75 1843 int rw;
7e38326f
CM
1844 u64 logical;
1845
1846 ret = get_state_private(failure_tree, start, &private);
1847 if (ret) {
7e38326f
CM
1848 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1849 if (!failrec)
1850 return -ENOMEM;
1851 failrec->start = start;
1852 failrec->len = end - start + 1;
1853 failrec->last_mirror = 0;
d20f7043 1854 failrec->bio_flags = 0;
7e38326f 1855
890871be 1856 read_lock(&em_tree->lock);
3b951516
CM
1857 em = lookup_extent_mapping(em_tree, start, failrec->len);
1858 if (em->start > start || em->start + em->len < start) {
1859 free_extent_map(em);
1860 em = NULL;
1861 }
890871be 1862 read_unlock(&em_tree->lock);
7e38326f
CM
1863
1864 if (!em || IS_ERR(em)) {
1865 kfree(failrec);
1866 return -EIO;
1867 }
1868 logical = start - em->start;
1869 logical = em->block_start + logical;
d20f7043
CM
1870 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1871 logical = em->block_start;
1872 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1873 }
7e38326f
CM
1874 failrec->logical = logical;
1875 free_extent_map(em);
1876 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1877 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1878 set_state_private(failure_tree, start,
1879 (u64)(unsigned long)failrec);
7e38326f 1880 } else {
587f7704 1881 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1882 }
1883 num_copies = btrfs_num_copies(
1884 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1885 failrec->logical, failrec->len);
1886 failrec->last_mirror++;
1887 if (!state) {
cad321ad 1888 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1889 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1890 failrec->start,
1891 EXTENT_LOCKED);
1892 if (state && state->start != failrec->start)
1893 state = NULL;
cad321ad 1894 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1895 }
1896 if (!state || failrec->last_mirror > num_copies) {
1897 set_state_private(failure_tree, failrec->start, 0);
1898 clear_extent_bits(failure_tree, failrec->start,
1899 failrec->start + failrec->len - 1,
1900 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1901 kfree(failrec);
1902 return -EIO;
1903 }
1904 bio = bio_alloc(GFP_NOFS, 1);
1905 bio->bi_private = state;
1906 bio->bi_end_io = failed_bio->bi_end_io;
1907 bio->bi_sector = failrec->logical >> 9;
1908 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1909 bio->bi_size = 0;
d20f7043 1910
7e38326f 1911 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1259ab75
CM
1912 if (failed_bio->bi_rw & (1 << BIO_RW))
1913 rw = WRITE;
1914 else
1915 rw = READ;
1916
1917 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1918 failrec->last_mirror,
d20f7043 1919 failrec->bio_flags);
1259ab75
CM
1920 return 0;
1921}
1922
d352ac68
CM
1923/*
1924 * each time an IO finishes, we do a fast check in the IO failure tree
1925 * to see if we need to process or clean up an io_failure_record
1926 */
b2950863 1927static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1928{
1929 u64 private;
1930 u64 private_failure;
1931 struct io_failure_record *failure;
1932 int ret;
1933
1934 private = 0;
1935 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1936 (u64)-1, 1, EXTENT_DIRTY)) {
1937 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1938 start, &private_failure);
1939 if (ret == 0) {
1940 failure = (struct io_failure_record *)(unsigned long)
1941 private_failure;
1942 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1943 failure->start, 0);
1944 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1945 failure->start,
1946 failure->start + failure->len - 1,
1947 EXTENT_DIRTY | EXTENT_LOCKED,
1948 GFP_NOFS);
1949 kfree(failure);
1950 }
1951 }
7e38326f
CM
1952 return 0;
1953}
1954
d352ac68
CM
1955/*
1956 * when reads are done, we need to check csums to verify the data is correct
1957 * if there's a match, we allow the bio to finish. If not, we go through
1958 * the io_failure_record routines to find good copies
1959 */
b2950863 1960static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1961 struct extent_state *state)
07157aac 1962{
35ebb934 1963 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1964 struct inode *inode = page->mapping->host;
d1310b2e 1965 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1966 char *kaddr;
aadfeb6e 1967 u64 private = ~(u32)0;
07157aac 1968 int ret;
ff79f819
CM
1969 struct btrfs_root *root = BTRFS_I(inode)->root;
1970 u32 csum = ~(u32)0;
d1310b2e 1971
d20f7043
CM
1972 if (PageChecked(page)) {
1973 ClearPageChecked(page);
1974 goto good;
1975 }
6cbff00f
CH
1976
1977 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1978 return 0;
1979
1980 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1981 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1982 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1983 GFP_NOFS);
b6cda9bc 1984 return 0;
17d217fe 1985 }
d20f7043 1986
c2e639f0 1987 if (state && state->start == start) {
70dec807
CM
1988 private = state->private;
1989 ret = 0;
1990 } else {
1991 ret = get_state_private(io_tree, start, &private);
1992 }
9ab86c8e 1993 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1994 if (ret)
07157aac 1995 goto zeroit;
d397712b 1996
ff79f819
CM
1997 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1998 btrfs_csum_final(csum, (char *)&csum);
d397712b 1999 if (csum != private)
07157aac 2000 goto zeroit;
d397712b 2001
9ab86c8e 2002 kunmap_atomic(kaddr, KM_USER0);
d20f7043 2003good:
7e38326f
CM
2004 /* if the io failure tree for this inode is non-empty,
2005 * check to see if we've recovered from a failed IO
2006 */
1259ab75 2007 btrfs_clean_io_failures(inode, start);
07157aac
CM
2008 return 0;
2009
2010zeroit:
193f284d
CM
2011 if (printk_ratelimit()) {
2012 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2013 "private %llu\n", page->mapping->host->i_ino,
2014 (unsigned long long)start, csum,
2015 (unsigned long long)private);
2016 }
db94535d
CM
2017 memset(kaddr + offset, 1, end - start + 1);
2018 flush_dcache_page(page);
9ab86c8e 2019 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2020 if (private == 0)
2021 return 0;
7e38326f 2022 return -EIO;
07157aac 2023}
b888db2b 2024
7b128766
JB
2025/*
2026 * This creates an orphan entry for the given inode in case something goes
2027 * wrong in the middle of an unlink/truncate.
2028 */
2029int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2030{
2031 struct btrfs_root *root = BTRFS_I(inode)->root;
2032 int ret = 0;
2033
bcc63abb 2034 spin_lock(&root->list_lock);
7b128766
JB
2035
2036 /* already on the orphan list, we're good */
2037 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2038 spin_unlock(&root->list_lock);
7b128766
JB
2039 return 0;
2040 }
2041
2042 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2043
bcc63abb 2044 spin_unlock(&root->list_lock);
7b128766
JB
2045
2046 /*
2047 * insert an orphan item to track this unlinked/truncated file
2048 */
2049 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2050
2051 return ret;
2052}
2053
2054/*
2055 * We have done the truncate/delete so we can go ahead and remove the orphan
2056 * item for this particular inode.
2057 */
2058int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2059{
2060 struct btrfs_root *root = BTRFS_I(inode)->root;
2061 int ret = 0;
2062
bcc63abb 2063 spin_lock(&root->list_lock);
7b128766
JB
2064
2065 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2066 spin_unlock(&root->list_lock);
7b128766
JB
2067 return 0;
2068 }
2069
2070 list_del_init(&BTRFS_I(inode)->i_orphan);
2071 if (!trans) {
bcc63abb 2072 spin_unlock(&root->list_lock);
7b128766
JB
2073 return 0;
2074 }
2075
bcc63abb 2076 spin_unlock(&root->list_lock);
7b128766
JB
2077
2078 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2079
2080 return ret;
2081}
2082
2083/*
2084 * this cleans up any orphans that may be left on the list from the last use
2085 * of this root.
2086 */
2087void btrfs_orphan_cleanup(struct btrfs_root *root)
2088{
2089 struct btrfs_path *path;
2090 struct extent_buffer *leaf;
2091 struct btrfs_item *item;
2092 struct btrfs_key key, found_key;
2093 struct btrfs_trans_handle *trans;
2094 struct inode *inode;
2095 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2096
c71bf099 2097 if (!xchg(&root->clean_orphans, 0))
7b128766 2098 return;
c71bf099
YZ
2099
2100 path = btrfs_alloc_path();
2101 BUG_ON(!path);
7b128766
JB
2102 path->reada = -1;
2103
2104 key.objectid = BTRFS_ORPHAN_OBJECTID;
2105 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2106 key.offset = (u64)-1;
2107
7b128766
JB
2108 while (1) {
2109 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2110 if (ret < 0) {
2111 printk(KERN_ERR "Error searching slot for orphan: %d"
2112 "\n", ret);
2113 break;
2114 }
2115
2116 /*
2117 * if ret == 0 means we found what we were searching for, which
2118 * is weird, but possible, so only screw with path if we didnt
2119 * find the key and see if we have stuff that matches
2120 */
2121 if (ret > 0) {
2122 if (path->slots[0] == 0)
2123 break;
2124 path->slots[0]--;
2125 }
2126
2127 /* pull out the item */
2128 leaf = path->nodes[0];
2129 item = btrfs_item_nr(leaf, path->slots[0]);
2130 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2131
2132 /* make sure the item matches what we want */
2133 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2134 break;
2135 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2136 break;
2137
2138 /* release the path since we're done with it */
2139 btrfs_release_path(root, path);
2140
2141 /*
2142 * this is where we are basically btrfs_lookup, without the
2143 * crossing root thing. we store the inode number in the
2144 * offset of the orphan item.
2145 */
5d4f98a2
YZ
2146 found_key.objectid = found_key.offset;
2147 found_key.type = BTRFS_INODE_ITEM_KEY;
2148 found_key.offset = 0;
2149 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2150 if (IS_ERR(inode))
7b128766
JB
2151 break;
2152
7b128766
JB
2153 /*
2154 * add this inode to the orphan list so btrfs_orphan_del does
2155 * the proper thing when we hit it
2156 */
bcc63abb 2157 spin_lock(&root->list_lock);
7b128766 2158 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
bcc63abb 2159 spin_unlock(&root->list_lock);
7b128766
JB
2160
2161 /*
2162 * if this is a bad inode, means we actually succeeded in
2163 * removing the inode, but not the orphan record, which means
2164 * we need to manually delete the orphan since iput will just
2165 * do a destroy_inode
2166 */
2167 if (is_bad_inode(inode)) {
5b21f2ed 2168 trans = btrfs_start_transaction(root, 1);
7b128766 2169 btrfs_orphan_del(trans, inode);
5b21f2ed 2170 btrfs_end_transaction(trans, root);
7b128766
JB
2171 iput(inode);
2172 continue;
2173 }
2174
2175 /* if we have links, this was a truncate, lets do that */
2176 if (inode->i_nlink) {
2177 nr_truncate++;
2178 btrfs_truncate(inode);
2179 } else {
2180 nr_unlink++;
2181 }
2182
2183 /* this will do delete_inode and everything for us */
2184 iput(inode);
2185 }
2186
2187 if (nr_unlink)
2188 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2189 if (nr_truncate)
2190 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2191
2192 btrfs_free_path(path);
7b128766
JB
2193}
2194
46a53cca
CM
2195/*
2196 * very simple check to peek ahead in the leaf looking for xattrs. If we
2197 * don't find any xattrs, we know there can't be any acls.
2198 *
2199 * slot is the slot the inode is in, objectid is the objectid of the inode
2200 */
2201static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2202 int slot, u64 objectid)
2203{
2204 u32 nritems = btrfs_header_nritems(leaf);
2205 struct btrfs_key found_key;
2206 int scanned = 0;
2207
2208 slot++;
2209 while (slot < nritems) {
2210 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2211
2212 /* we found a different objectid, there must not be acls */
2213 if (found_key.objectid != objectid)
2214 return 0;
2215
2216 /* we found an xattr, assume we've got an acl */
2217 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2218 return 1;
2219
2220 /*
2221 * we found a key greater than an xattr key, there can't
2222 * be any acls later on
2223 */
2224 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2225 return 0;
2226
2227 slot++;
2228 scanned++;
2229
2230 /*
2231 * it goes inode, inode backrefs, xattrs, extents,
2232 * so if there are a ton of hard links to an inode there can
2233 * be a lot of backrefs. Don't waste time searching too hard,
2234 * this is just an optimization
2235 */
2236 if (scanned >= 8)
2237 break;
2238 }
2239 /* we hit the end of the leaf before we found an xattr or
2240 * something larger than an xattr. We have to assume the inode
2241 * has acls
2242 */
2243 return 1;
2244}
2245
d352ac68
CM
2246/*
2247 * read an inode from the btree into the in-memory inode
2248 */
5d4f98a2 2249static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2250{
2251 struct btrfs_path *path;
5f39d397 2252 struct extent_buffer *leaf;
39279cc3 2253 struct btrfs_inode_item *inode_item;
0b86a832 2254 struct btrfs_timespec *tspec;
39279cc3
CM
2255 struct btrfs_root *root = BTRFS_I(inode)->root;
2256 struct btrfs_key location;
46a53cca 2257 int maybe_acls;
39279cc3 2258 u64 alloc_group_block;
618e21d5 2259 u32 rdev;
39279cc3
CM
2260 int ret;
2261
2262 path = btrfs_alloc_path();
2263 BUG_ON(!path);
39279cc3 2264 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2265
39279cc3 2266 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2267 if (ret)
39279cc3 2268 goto make_bad;
39279cc3 2269
5f39d397
CM
2270 leaf = path->nodes[0];
2271 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2272 struct btrfs_inode_item);
2273
2274 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2275 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2276 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2277 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2278 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2279
2280 tspec = btrfs_inode_atime(inode_item);
2281 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2282 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2283
2284 tspec = btrfs_inode_mtime(inode_item);
2285 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2286 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2287
2288 tspec = btrfs_inode_ctime(inode_item);
2289 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2290 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2291
a76a3cd4 2292 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2293 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2294 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2295 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2296 inode->i_rdev = 0;
5f39d397
CM
2297 rdev = btrfs_inode_rdev(leaf, inode_item);
2298
aec7477b 2299 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2300 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2301
5f39d397 2302 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2303
46a53cca
CM
2304 /*
2305 * try to precache a NULL acl entry for files that don't have
2306 * any xattrs or acls
2307 */
2308 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2309 if (!maybe_acls)
2310 cache_no_acl(inode);
46a53cca 2311
d2fb3437
YZ
2312 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2313 alloc_group_block, 0);
39279cc3
CM
2314 btrfs_free_path(path);
2315 inode_item = NULL;
2316
39279cc3 2317 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2318 case S_IFREG:
2319 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2320 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2321 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2322 inode->i_fop = &btrfs_file_operations;
2323 inode->i_op = &btrfs_file_inode_operations;
2324 break;
2325 case S_IFDIR:
2326 inode->i_fop = &btrfs_dir_file_operations;
2327 if (root == root->fs_info->tree_root)
2328 inode->i_op = &btrfs_dir_ro_inode_operations;
2329 else
2330 inode->i_op = &btrfs_dir_inode_operations;
2331 break;
2332 case S_IFLNK:
2333 inode->i_op = &btrfs_symlink_inode_operations;
2334 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2335 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2336 break;
618e21d5 2337 default:
0279b4cd 2338 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2339 init_special_inode(inode, inode->i_mode, rdev);
2340 break;
39279cc3 2341 }
6cbff00f
CH
2342
2343 btrfs_update_iflags(inode);
39279cc3
CM
2344 return;
2345
2346make_bad:
39279cc3 2347 btrfs_free_path(path);
39279cc3
CM
2348 make_bad_inode(inode);
2349}
2350
d352ac68
CM
2351/*
2352 * given a leaf and an inode, copy the inode fields into the leaf
2353 */
e02119d5
CM
2354static void fill_inode_item(struct btrfs_trans_handle *trans,
2355 struct extent_buffer *leaf,
5f39d397 2356 struct btrfs_inode_item *item,
39279cc3
CM
2357 struct inode *inode)
2358{
5f39d397
CM
2359 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2360 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2361 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2362 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2363 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2364
2365 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2366 inode->i_atime.tv_sec);
2367 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2368 inode->i_atime.tv_nsec);
2369
2370 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2371 inode->i_mtime.tv_sec);
2372 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2373 inode->i_mtime.tv_nsec);
2374
2375 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2376 inode->i_ctime.tv_sec);
2377 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2378 inode->i_ctime.tv_nsec);
2379
a76a3cd4 2380 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2381 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2382 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2383 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2384 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2385 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2386 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2387}
2388
d352ac68
CM
2389/*
2390 * copy everything in the in-memory inode into the btree.
2391 */
d397712b
CM
2392noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2393 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2394{
2395 struct btrfs_inode_item *inode_item;
2396 struct btrfs_path *path;
5f39d397 2397 struct extent_buffer *leaf;
39279cc3
CM
2398 int ret;
2399
2400 path = btrfs_alloc_path();
2401 BUG_ON(!path);
b9473439 2402 path->leave_spinning = 1;
39279cc3
CM
2403 ret = btrfs_lookup_inode(trans, root, path,
2404 &BTRFS_I(inode)->location, 1);
2405 if (ret) {
2406 if (ret > 0)
2407 ret = -ENOENT;
2408 goto failed;
2409 }
2410
b4ce94de 2411 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2412 leaf = path->nodes[0];
2413 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2414 struct btrfs_inode_item);
2415
e02119d5 2416 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2417 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2418 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2419 ret = 0;
2420failed:
39279cc3
CM
2421 btrfs_free_path(path);
2422 return ret;
2423}
2424
2425
d352ac68
CM
2426/*
2427 * unlink helper that gets used here in inode.c and in the tree logging
2428 * recovery code. It remove a link in a directory with a given name, and
2429 * also drops the back refs in the inode to the directory
2430 */
e02119d5
CM
2431int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2432 struct btrfs_root *root,
2433 struct inode *dir, struct inode *inode,
2434 const char *name, int name_len)
39279cc3
CM
2435{
2436 struct btrfs_path *path;
39279cc3 2437 int ret = 0;
5f39d397 2438 struct extent_buffer *leaf;
39279cc3 2439 struct btrfs_dir_item *di;
5f39d397 2440 struct btrfs_key key;
aec7477b 2441 u64 index;
39279cc3
CM
2442
2443 path = btrfs_alloc_path();
54aa1f4d
CM
2444 if (!path) {
2445 ret = -ENOMEM;
2446 goto err;
2447 }
2448
b9473439 2449 path->leave_spinning = 1;
39279cc3
CM
2450 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2451 name, name_len, -1);
2452 if (IS_ERR(di)) {
2453 ret = PTR_ERR(di);
2454 goto err;
2455 }
2456 if (!di) {
2457 ret = -ENOENT;
2458 goto err;
2459 }
5f39d397
CM
2460 leaf = path->nodes[0];
2461 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2462 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2463 if (ret)
2464 goto err;
39279cc3
CM
2465 btrfs_release_path(root, path);
2466
aec7477b 2467 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2468 inode->i_ino,
2469 dir->i_ino, &index);
aec7477b 2470 if (ret) {
d397712b 2471 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2472 "inode %lu parent %lu\n", name_len, name,
e02119d5 2473 inode->i_ino, dir->i_ino);
aec7477b
JB
2474 goto err;
2475 }
2476
39279cc3 2477 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2478 index, name, name_len, -1);
39279cc3
CM
2479 if (IS_ERR(di)) {
2480 ret = PTR_ERR(di);
2481 goto err;
2482 }
2483 if (!di) {
2484 ret = -ENOENT;
2485 goto err;
2486 }
2487 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2488 btrfs_release_path(root, path);
39279cc3 2489
e02119d5
CM
2490 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2491 inode, dir->i_ino);
49eb7e46 2492 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2493
2494 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2495 dir, index);
2496 BUG_ON(ret);
39279cc3
CM
2497err:
2498 btrfs_free_path(path);
e02119d5
CM
2499 if (ret)
2500 goto out;
2501
2502 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2503 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2504 btrfs_update_inode(trans, root, dir);
2505 btrfs_drop_nlink(inode);
2506 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2507out:
39279cc3
CM
2508 return ret;
2509}
2510
2511static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2512{
2513 struct btrfs_root *root;
2514 struct btrfs_trans_handle *trans;
7b128766 2515 struct inode *inode = dentry->d_inode;
39279cc3 2516 int ret;
1832a6d5 2517 unsigned long nr = 0;
39279cc3
CM
2518
2519 root = BTRFS_I(dir)->root;
1832a6d5 2520
5df6a9f6
JB
2521 /*
2522 * 5 items for unlink inode
2523 * 1 for orphan
2524 */
2525 ret = btrfs_reserve_metadata_space(root, 6);
2526 if (ret)
2527 return ret;
2528
39279cc3 2529 trans = btrfs_start_transaction(root, 1);
5df6a9f6
JB
2530 if (IS_ERR(trans)) {
2531 btrfs_unreserve_metadata_space(root, 6);
2532 return PTR_ERR(trans);
2533 }
5f39d397 2534
39279cc3 2535 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2536
2537 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2538
e02119d5
CM
2539 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2540 dentry->d_name.name, dentry->d_name.len);
7b128766
JB
2541
2542 if (inode->i_nlink == 0)
2543 ret = btrfs_orphan_add(trans, inode);
2544
d3c2fdcf 2545 nr = trans->blocks_used;
5f39d397 2546
89ce8a63 2547 btrfs_end_transaction_throttle(trans, root);
5df6a9f6 2548 btrfs_unreserve_metadata_space(root, 6);
d3c2fdcf 2549 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2550 return ret;
2551}
2552
4df27c4d
YZ
2553int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2554 struct btrfs_root *root,
2555 struct inode *dir, u64 objectid,
2556 const char *name, int name_len)
2557{
2558 struct btrfs_path *path;
2559 struct extent_buffer *leaf;
2560 struct btrfs_dir_item *di;
2561 struct btrfs_key key;
2562 u64 index;
2563 int ret;
2564
2565 path = btrfs_alloc_path();
2566 if (!path)
2567 return -ENOMEM;
2568
2569 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2570 name, name_len, -1);
2571 BUG_ON(!di || IS_ERR(di));
2572
2573 leaf = path->nodes[0];
2574 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2575 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2576 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2577 BUG_ON(ret);
2578 btrfs_release_path(root, path);
2579
2580 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2581 objectid, root->root_key.objectid,
2582 dir->i_ino, &index, name, name_len);
2583 if (ret < 0) {
2584 BUG_ON(ret != -ENOENT);
2585 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2586 name, name_len);
2587 BUG_ON(!di || IS_ERR(di));
2588
2589 leaf = path->nodes[0];
2590 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2591 btrfs_release_path(root, path);
2592 index = key.offset;
2593 }
2594
2595 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2596 index, name, name_len, -1);
2597 BUG_ON(!di || IS_ERR(di));
2598
2599 leaf = path->nodes[0];
2600 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2601 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2602 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2603 BUG_ON(ret);
2604 btrfs_release_path(root, path);
2605
2606 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2607 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2608 ret = btrfs_update_inode(trans, root, dir);
2609 BUG_ON(ret);
2610 dir->i_sb->s_dirt = 1;
2611
2612 btrfs_free_path(path);
2613 return 0;
2614}
2615
39279cc3
CM
2616static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2617{
2618 struct inode *inode = dentry->d_inode;
1832a6d5 2619 int err = 0;
39279cc3
CM
2620 int ret;
2621 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2622 struct btrfs_trans_handle *trans;
1832a6d5 2623 unsigned long nr = 0;
39279cc3 2624
3394e160 2625 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 2626 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2627 return -ENOTEMPTY;
2628
5df6a9f6
JB
2629 ret = btrfs_reserve_metadata_space(root, 5);
2630 if (ret)
2631 return ret;
2632
39279cc3 2633 trans = btrfs_start_transaction(root, 1);
5df6a9f6
JB
2634 if (IS_ERR(trans)) {
2635 btrfs_unreserve_metadata_space(root, 5);
2636 return PTR_ERR(trans);
2637 }
2638
39279cc3 2639 btrfs_set_trans_block_group(trans, dir);
39279cc3 2640
4df27c4d
YZ
2641 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2642 err = btrfs_unlink_subvol(trans, root, dir,
2643 BTRFS_I(inode)->location.objectid,
2644 dentry->d_name.name,
2645 dentry->d_name.len);
2646 goto out;
2647 }
2648
7b128766
JB
2649 err = btrfs_orphan_add(trans, inode);
2650 if (err)
4df27c4d 2651 goto out;
7b128766 2652
39279cc3 2653 /* now the directory is empty */
e02119d5
CM
2654 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2655 dentry->d_name.name, dentry->d_name.len);
d397712b 2656 if (!err)
dbe674a9 2657 btrfs_i_size_write(inode, 0);
4df27c4d 2658out:
d3c2fdcf 2659 nr = trans->blocks_used;
89ce8a63 2660 ret = btrfs_end_transaction_throttle(trans, root);
5df6a9f6 2661 btrfs_unreserve_metadata_space(root, 5);
d3c2fdcf 2662 btrfs_btree_balance_dirty(root, nr);
3954401f 2663
39279cc3
CM
2664 if (ret && !err)
2665 err = ret;
2666 return err;
2667}
2668
d20f7043 2669#if 0
323ac95b
CM
2670/*
2671 * when truncating bytes in a file, it is possible to avoid reading
2672 * the leaves that contain only checksum items. This can be the
2673 * majority of the IO required to delete a large file, but it must
2674 * be done carefully.
2675 *
2676 * The keys in the level just above the leaves are checked to make sure
2677 * the lowest key in a given leaf is a csum key, and starts at an offset
2678 * after the new size.
2679 *
2680 * Then the key for the next leaf is checked to make sure it also has
2681 * a checksum item for the same file. If it does, we know our target leaf
2682 * contains only checksum items, and it can be safely freed without reading
2683 * it.
2684 *
2685 * This is just an optimization targeted at large files. It may do
2686 * nothing. It will return 0 unless things went badly.
2687 */
2688static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2689 struct btrfs_root *root,
2690 struct btrfs_path *path,
2691 struct inode *inode, u64 new_size)
2692{
2693 struct btrfs_key key;
2694 int ret;
2695 int nritems;
2696 struct btrfs_key found_key;
2697 struct btrfs_key other_key;
5b84e8d6
YZ
2698 struct btrfs_leaf_ref *ref;
2699 u64 leaf_gen;
2700 u64 leaf_start;
323ac95b
CM
2701
2702 path->lowest_level = 1;
2703 key.objectid = inode->i_ino;
2704 key.type = BTRFS_CSUM_ITEM_KEY;
2705 key.offset = new_size;
2706again:
2707 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2708 if (ret < 0)
2709 goto out;
2710
2711 if (path->nodes[1] == NULL) {
2712 ret = 0;
2713 goto out;
2714 }
2715 ret = 0;
2716 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2717 nritems = btrfs_header_nritems(path->nodes[1]);
2718
2719 if (!nritems)
2720 goto out;
2721
2722 if (path->slots[1] >= nritems)
2723 goto next_node;
2724
2725 /* did we find a key greater than anything we want to delete? */
2726 if (found_key.objectid > inode->i_ino ||
2727 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2728 goto out;
2729
2730 /* we check the next key in the node to make sure the leave contains
2731 * only checksum items. This comparison doesn't work if our
2732 * leaf is the last one in the node
2733 */
2734 if (path->slots[1] + 1 >= nritems) {
2735next_node:
2736 /* search forward from the last key in the node, this
2737 * will bring us into the next node in the tree
2738 */
2739 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2740
2741 /* unlikely, but we inc below, so check to be safe */
2742 if (found_key.offset == (u64)-1)
2743 goto out;
2744
2745 /* search_forward needs a path with locks held, do the
2746 * search again for the original key. It is possible
2747 * this will race with a balance and return a path that
2748 * we could modify, but this drop is just an optimization
2749 * and is allowed to miss some leaves.
2750 */
2751 btrfs_release_path(root, path);
2752 found_key.offset++;
2753
2754 /* setup a max key for search_forward */
2755 other_key.offset = (u64)-1;
2756 other_key.type = key.type;
2757 other_key.objectid = key.objectid;
2758
2759 path->keep_locks = 1;
2760 ret = btrfs_search_forward(root, &found_key, &other_key,
2761 path, 0, 0);
2762 path->keep_locks = 0;
2763 if (ret || found_key.objectid != key.objectid ||
2764 found_key.type != key.type) {
2765 ret = 0;
2766 goto out;
2767 }
2768
2769 key.offset = found_key.offset;
2770 btrfs_release_path(root, path);
2771 cond_resched();
2772 goto again;
2773 }
2774
2775 /* we know there's one more slot after us in the tree,
2776 * read that key so we can verify it is also a checksum item
2777 */
2778 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2779
2780 if (found_key.objectid < inode->i_ino)
2781 goto next_key;
2782
2783 if (found_key.type != key.type || found_key.offset < new_size)
2784 goto next_key;
2785
2786 /*
2787 * if the key for the next leaf isn't a csum key from this objectid,
2788 * we can't be sure there aren't good items inside this leaf.
2789 * Bail out
2790 */
2791 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2792 goto out;
2793
5b84e8d6
YZ
2794 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2795 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
2796 /*
2797 * it is safe to delete this leaf, it contains only
2798 * csum items from this inode at an offset >= new_size
2799 */
5b84e8d6 2800 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
2801 BUG_ON(ret);
2802
5b84e8d6
YZ
2803 if (root->ref_cows && leaf_gen < trans->transid) {
2804 ref = btrfs_alloc_leaf_ref(root, 0);
2805 if (ref) {
2806 ref->root_gen = root->root_key.offset;
2807 ref->bytenr = leaf_start;
2808 ref->owner = 0;
2809 ref->generation = leaf_gen;
2810 ref->nritems = 0;
2811
bd56b302
CM
2812 btrfs_sort_leaf_ref(ref);
2813
5b84e8d6
YZ
2814 ret = btrfs_add_leaf_ref(root, ref, 0);
2815 WARN_ON(ret);
2816 btrfs_free_leaf_ref(root, ref);
2817 } else {
2818 WARN_ON(1);
2819 }
2820 }
323ac95b
CM
2821next_key:
2822 btrfs_release_path(root, path);
2823
2824 if (other_key.objectid == inode->i_ino &&
2825 other_key.type == key.type && other_key.offset > key.offset) {
2826 key.offset = other_key.offset;
2827 cond_resched();
2828 goto again;
2829 }
2830 ret = 0;
2831out:
2832 /* fixup any changes we've made to the path */
2833 path->lowest_level = 0;
2834 path->keep_locks = 0;
2835 btrfs_release_path(root, path);
2836 return ret;
2837}
2838
d20f7043
CM
2839#endif
2840
39279cc3
CM
2841/*
2842 * this can truncate away extent items, csum items and directory items.
2843 * It starts at a high offset and removes keys until it can't find
d352ac68 2844 * any higher than new_size
39279cc3
CM
2845 *
2846 * csum items that cross the new i_size are truncated to the new size
2847 * as well.
7b128766
JB
2848 *
2849 * min_type is the minimum key type to truncate down to. If set to 0, this
2850 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2851 */
8082510e
YZ
2852int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2853 struct btrfs_root *root,
2854 struct inode *inode,
2855 u64 new_size, u32 min_type)
39279cc3 2856{
39279cc3 2857 struct btrfs_path *path;
5f39d397 2858 struct extent_buffer *leaf;
39279cc3 2859 struct btrfs_file_extent_item *fi;
8082510e
YZ
2860 struct btrfs_key key;
2861 struct btrfs_key found_key;
39279cc3 2862 u64 extent_start = 0;
db94535d 2863 u64 extent_num_bytes = 0;
5d4f98a2 2864 u64 extent_offset = 0;
39279cc3 2865 u64 item_end = 0;
8082510e
YZ
2866 u64 mask = root->sectorsize - 1;
2867 u32 found_type = (u8)-1;
39279cc3
CM
2868 int found_extent;
2869 int del_item;
85e21bac
CM
2870 int pending_del_nr = 0;
2871 int pending_del_slot = 0;
179e29e4 2872 int extent_type = -1;
771ed689 2873 int encoding;
8082510e
YZ
2874 int ret;
2875 int err = 0;
2876
2877 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 2878
e02119d5 2879 if (root->ref_cows)
5b21f2ed 2880 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 2881
39279cc3
CM
2882 path = btrfs_alloc_path();
2883 BUG_ON(!path);
33c17ad5 2884 path->reada = -1;
5f39d397 2885
39279cc3
CM
2886 key.objectid = inode->i_ino;
2887 key.offset = (u64)-1;
5f39d397
CM
2888 key.type = (u8)-1;
2889
85e21bac 2890search_again:
b9473439 2891 path->leave_spinning = 1;
85e21bac 2892 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
2893 if (ret < 0) {
2894 err = ret;
2895 goto out;
2896 }
d397712b 2897
85e21bac 2898 if (ret > 0) {
e02119d5
CM
2899 /* there are no items in the tree for us to truncate, we're
2900 * done
2901 */
8082510e
YZ
2902 if (path->slots[0] == 0)
2903 goto out;
85e21bac
CM
2904 path->slots[0]--;
2905 }
2906
d397712b 2907 while (1) {
39279cc3 2908 fi = NULL;
5f39d397
CM
2909 leaf = path->nodes[0];
2910 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2911 found_type = btrfs_key_type(&found_key);
771ed689 2912 encoding = 0;
39279cc3 2913
5f39d397 2914 if (found_key.objectid != inode->i_ino)
39279cc3 2915 break;
5f39d397 2916
85e21bac 2917 if (found_type < min_type)
39279cc3
CM
2918 break;
2919
5f39d397 2920 item_end = found_key.offset;
39279cc3 2921 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 2922 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 2923 struct btrfs_file_extent_item);
179e29e4 2924 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
2925 encoding = btrfs_file_extent_compression(leaf, fi);
2926 encoding |= btrfs_file_extent_encryption(leaf, fi);
2927 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2928
179e29e4 2929 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 2930 item_end +=
db94535d 2931 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 2932 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 2933 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 2934 fi);
39279cc3 2935 }
008630c1 2936 item_end--;
39279cc3 2937 }
8082510e
YZ
2938 if (found_type > min_type) {
2939 del_item = 1;
2940 } else {
2941 if (item_end < new_size)
b888db2b 2942 break;
8082510e
YZ
2943 if (found_key.offset >= new_size)
2944 del_item = 1;
2945 else
2946 del_item = 0;
39279cc3 2947 }
39279cc3 2948 found_extent = 0;
39279cc3 2949 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
2950 if (found_type != BTRFS_EXTENT_DATA_KEY)
2951 goto delete;
2952
2953 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 2954 u64 num_dec;
db94535d 2955 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 2956 if (!del_item && !encoding) {
db94535d
CM
2957 u64 orig_num_bytes =
2958 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 2959 extent_num_bytes = new_size -
5f39d397 2960 found_key.offset + root->sectorsize - 1;
b1632b10
Y
2961 extent_num_bytes = extent_num_bytes &
2962 ~((u64)root->sectorsize - 1);
db94535d
CM
2963 btrfs_set_file_extent_num_bytes(leaf, fi,
2964 extent_num_bytes);
2965 num_dec = (orig_num_bytes -
9069218d 2966 extent_num_bytes);
e02119d5 2967 if (root->ref_cows && extent_start != 0)
a76a3cd4 2968 inode_sub_bytes(inode, num_dec);
5f39d397 2969 btrfs_mark_buffer_dirty(leaf);
39279cc3 2970 } else {
db94535d
CM
2971 extent_num_bytes =
2972 btrfs_file_extent_disk_num_bytes(leaf,
2973 fi);
5d4f98a2
YZ
2974 extent_offset = found_key.offset -
2975 btrfs_file_extent_offset(leaf, fi);
2976
39279cc3 2977 /* FIXME blocksize != 4096 */
9069218d 2978 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
2979 if (extent_start != 0) {
2980 found_extent = 1;
e02119d5 2981 if (root->ref_cows)
a76a3cd4 2982 inode_sub_bytes(inode, num_dec);
e02119d5 2983 }
39279cc3 2984 }
9069218d 2985 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
2986 /*
2987 * we can't truncate inline items that have had
2988 * special encodings
2989 */
2990 if (!del_item &&
2991 btrfs_file_extent_compression(leaf, fi) == 0 &&
2992 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2993 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
2994 u32 size = new_size - found_key.offset;
2995
2996 if (root->ref_cows) {
a76a3cd4
YZ
2997 inode_sub_bytes(inode, item_end + 1 -
2998 new_size);
e02119d5
CM
2999 }
3000 size =
3001 btrfs_file_extent_calc_inline_size(size);
9069218d 3002 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3003 size, 1);
9069218d 3004 BUG_ON(ret);
e02119d5 3005 } else if (root->ref_cows) {
a76a3cd4
YZ
3006 inode_sub_bytes(inode, item_end + 1 -
3007 found_key.offset);
9069218d 3008 }
39279cc3 3009 }
179e29e4 3010delete:
39279cc3 3011 if (del_item) {
85e21bac
CM
3012 if (!pending_del_nr) {
3013 /* no pending yet, add ourselves */
3014 pending_del_slot = path->slots[0];
3015 pending_del_nr = 1;
3016 } else if (pending_del_nr &&
3017 path->slots[0] + 1 == pending_del_slot) {
3018 /* hop on the pending chunk */
3019 pending_del_nr++;
3020 pending_del_slot = path->slots[0];
3021 } else {
d397712b 3022 BUG();
85e21bac 3023 }
39279cc3
CM
3024 } else {
3025 break;
3026 }
5d4f98a2 3027 if (found_extent && root->ref_cows) {
b9473439 3028 btrfs_set_path_blocking(path);
39279cc3 3029 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3030 extent_num_bytes, 0,
3031 btrfs_header_owner(leaf),
3032 inode->i_ino, extent_offset);
39279cc3
CM
3033 BUG_ON(ret);
3034 }
85e21bac 3035
8082510e
YZ
3036 if (found_type == BTRFS_INODE_ITEM_KEY)
3037 break;
3038
3039 if (path->slots[0] == 0 ||
3040 path->slots[0] != pending_del_slot) {
3041 if (root->ref_cows) {
3042 err = -EAGAIN;
3043 goto out;
3044 }
3045 if (pending_del_nr) {
3046 ret = btrfs_del_items(trans, root, path,
3047 pending_del_slot,
3048 pending_del_nr);
3049 BUG_ON(ret);
3050 pending_del_nr = 0;
3051 }
85e21bac
CM
3052 btrfs_release_path(root, path);
3053 goto search_again;
8082510e
YZ
3054 } else {
3055 path->slots[0]--;
85e21bac 3056 }
39279cc3 3057 }
8082510e 3058out:
85e21bac
CM
3059 if (pending_del_nr) {
3060 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3061 pending_del_nr);
3062 }
39279cc3 3063 btrfs_free_path(path);
8082510e 3064 return err;
39279cc3
CM
3065}
3066
3067/*
3068 * taken from block_truncate_page, but does cow as it zeros out
3069 * any bytes left in the last page in the file.
3070 */
3071static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3072{
3073 struct inode *inode = mapping->host;
db94535d 3074 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3075 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3076 struct btrfs_ordered_extent *ordered;
3077 char *kaddr;
db94535d 3078 u32 blocksize = root->sectorsize;
39279cc3
CM
3079 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3080 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3081 struct page *page;
39279cc3 3082 int ret = 0;
a52d9a80 3083 u64 page_start;
e6dcd2dc 3084 u64 page_end;
39279cc3
CM
3085
3086 if ((offset & (blocksize - 1)) == 0)
3087 goto out;
5d5e103a
JB
3088 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3089 if (ret)
3090 goto out;
3091
3092 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3093 if (ret)
3094 goto out;
39279cc3
CM
3095
3096 ret = -ENOMEM;
211c17f5 3097again:
39279cc3 3098 page = grab_cache_page(mapping, index);
5d5e103a
JB
3099 if (!page) {
3100 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3101 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
39279cc3 3102 goto out;
5d5e103a 3103 }
e6dcd2dc
CM
3104
3105 page_start = page_offset(page);
3106 page_end = page_start + PAGE_CACHE_SIZE - 1;
3107
39279cc3 3108 if (!PageUptodate(page)) {
9ebefb18 3109 ret = btrfs_readpage(NULL, page);
39279cc3 3110 lock_page(page);
211c17f5
CM
3111 if (page->mapping != mapping) {
3112 unlock_page(page);
3113 page_cache_release(page);
3114 goto again;
3115 }
39279cc3
CM
3116 if (!PageUptodate(page)) {
3117 ret = -EIO;
89642229 3118 goto out_unlock;
39279cc3
CM
3119 }
3120 }
211c17f5 3121 wait_on_page_writeback(page);
e6dcd2dc
CM
3122
3123 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3124 set_page_extent_mapped(page);
3125
3126 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3127 if (ordered) {
3128 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3129 unlock_page(page);
3130 page_cache_release(page);
eb84ae03 3131 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3132 btrfs_put_ordered_extent(ordered);
3133 goto again;
3134 }
3135
5d5e103a
JB
3136 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
3137 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3138 GFP_NOFS);
3139
9ed74f2d
JB
3140 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3141 if (ret) {
3142 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3143 goto out_unlock;
3144 }
3145
e6dcd2dc
CM
3146 ret = 0;
3147 if (offset != PAGE_CACHE_SIZE) {
3148 kaddr = kmap(page);
3149 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3150 flush_dcache_page(page);
3151 kunmap(page);
3152 }
247e743c 3153 ClearPageChecked(page);
e6dcd2dc
CM
3154 set_page_dirty(page);
3155 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
39279cc3 3156
89642229 3157out_unlock:
5d5e103a
JB
3158 if (ret)
3159 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3160 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
39279cc3
CM
3161 unlock_page(page);
3162 page_cache_release(page);
3163out:
3164 return ret;
3165}
3166
9036c102 3167int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 3168{
9036c102
YZ
3169 struct btrfs_trans_handle *trans;
3170 struct btrfs_root *root = BTRFS_I(inode)->root;
3171 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3172 struct extent_map *em;
3173 u64 mask = root->sectorsize - 1;
3174 u64 hole_start = (inode->i_size + mask) & ~mask;
3175 u64 block_end = (size + mask) & ~mask;
3176 u64 last_byte;
3177 u64 cur_offset;
3178 u64 hole_size;
9ed74f2d 3179 int err = 0;
39279cc3 3180
9036c102
YZ
3181 if (size <= hole_start)
3182 return 0;
3183
9036c102
YZ
3184 while (1) {
3185 struct btrfs_ordered_extent *ordered;
3186 btrfs_wait_ordered_range(inode, hole_start,
3187 block_end - hole_start);
3188 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3189 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3190 if (!ordered)
3191 break;
3192 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3193 btrfs_put_ordered_extent(ordered);
3194 }
39279cc3 3195
9036c102
YZ
3196 cur_offset = hole_start;
3197 while (1) {
3198 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3199 block_end - cur_offset, 0);
3200 BUG_ON(IS_ERR(em) || !em);
3201 last_byte = min(extent_map_end(em), block_end);
3202 last_byte = (last_byte + mask) & ~mask;
8082510e 3203 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3204 u64 hint_byte = 0;
9036c102 3205 hole_size = last_byte - cur_offset;
9ed74f2d 3206
8082510e 3207 err = btrfs_reserve_metadata_space(root, 2);
9ed74f2d
JB
3208 if (err)
3209 break;
3210
8082510e
YZ
3211 trans = btrfs_start_transaction(root, 1);
3212 btrfs_set_trans_block_group(trans, inode);
3213
3214 err = btrfs_drop_extents(trans, inode, cur_offset,
3215 cur_offset + hole_size,
3216 &hint_byte, 1);
3217 BUG_ON(err);
3218
9036c102
YZ
3219 err = btrfs_insert_file_extent(trans, root,
3220 inode->i_ino, cur_offset, 0,
3221 0, hole_size, 0, hole_size,
3222 0, 0, 0);
8082510e
YZ
3223 BUG_ON(err);
3224
9036c102
YZ
3225 btrfs_drop_extent_cache(inode, hole_start,
3226 last_byte - 1, 0);
8082510e
YZ
3227
3228 btrfs_end_transaction(trans, root);
3229 btrfs_unreserve_metadata_space(root, 2);
9036c102
YZ
3230 }
3231 free_extent_map(em);
3232 cur_offset = last_byte;
8082510e 3233 if (cur_offset >= block_end)
9036c102
YZ
3234 break;
3235 }
1832a6d5 3236
9036c102
YZ
3237 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3238 return err;
3239}
39279cc3 3240
8082510e
YZ
3241static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3242{
3243 struct btrfs_root *root = BTRFS_I(inode)->root;
3244 struct btrfs_trans_handle *trans;
3245 unsigned long nr;
3246 int ret;
3247
3248 if (attr->ia_size == inode->i_size)
3249 return 0;
3250
3251 if (attr->ia_size > inode->i_size) {
3252 unsigned long limit;
3253 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3254 if (attr->ia_size > inode->i_sb->s_maxbytes)
3255 return -EFBIG;
3256 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3257 send_sig(SIGXFSZ, current, 0);
3258 return -EFBIG;
3259 }
3260 }
3261
3262 ret = btrfs_reserve_metadata_space(root, 1);
3263 if (ret)
3264 return ret;
3265
3266 trans = btrfs_start_transaction(root, 1);
3267 btrfs_set_trans_block_group(trans, inode);
3268
3269 ret = btrfs_orphan_add(trans, inode);
3270 BUG_ON(ret);
3271
3272 nr = trans->blocks_used;
3273 btrfs_end_transaction(trans, root);
3274 btrfs_unreserve_metadata_space(root, 1);
3275 btrfs_btree_balance_dirty(root, nr);
3276
3277 if (attr->ia_size > inode->i_size) {
3278 ret = btrfs_cont_expand(inode, attr->ia_size);
3279 if (ret) {
3280 btrfs_truncate(inode);
3281 return ret;
3282 }
3283
3284 i_size_write(inode, attr->ia_size);
3285 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3286
3287 trans = btrfs_start_transaction(root, 1);
3288 btrfs_set_trans_block_group(trans, inode);
3289
3290 ret = btrfs_update_inode(trans, root, inode);
3291 BUG_ON(ret);
3292 if (inode->i_nlink > 0) {
3293 ret = btrfs_orphan_del(trans, inode);
3294 BUG_ON(ret);
3295 }
3296 nr = trans->blocks_used;
3297 btrfs_end_transaction(trans, root);
3298 btrfs_btree_balance_dirty(root, nr);
3299 return 0;
3300 }
3301
3302 /*
3303 * We're truncating a file that used to have good data down to
3304 * zero. Make sure it gets into the ordered flush list so that
3305 * any new writes get down to disk quickly.
3306 */
3307 if (attr->ia_size == 0)
3308 BTRFS_I(inode)->ordered_data_close = 1;
3309
3310 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3311 ret = vmtruncate(inode, attr->ia_size);
3312 BUG_ON(ret);
3313
3314 return 0;
3315}
3316
9036c102
YZ
3317static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3318{
3319 struct inode *inode = dentry->d_inode;
3320 int err;
39279cc3 3321
9036c102
YZ
3322 err = inode_change_ok(inode, attr);
3323 if (err)
3324 return err;
2bf5a725 3325
5a3f23d5 3326 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
8082510e
YZ
3327 err = btrfs_setattr_size(inode, attr);
3328 if (err)
3329 return err;
39279cc3 3330 }
8082510e 3331 attr->ia_valid &= ~ATTR_SIZE;
9036c102 3332
8082510e
YZ
3333 if (attr->ia_valid)
3334 err = inode_setattr(inode, attr);
33268eaf
JB
3335
3336 if (!err && ((attr->ia_valid & ATTR_MODE)))
3337 err = btrfs_acl_chmod(inode);
39279cc3
CM
3338 return err;
3339}
61295eb8 3340
39279cc3
CM
3341void btrfs_delete_inode(struct inode *inode)
3342{
3343 struct btrfs_trans_handle *trans;
3344 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3345 unsigned long nr;
39279cc3
CM
3346 int ret;
3347
3348 truncate_inode_pages(&inode->i_data, 0);
3349 if (is_bad_inode(inode)) {
7b128766 3350 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3351 goto no_delete;
3352 }
4a096752 3353 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3354
c71bf099
YZ
3355 if (root->fs_info->log_root_recovering) {
3356 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3357 goto no_delete;
3358 }
3359
76dda93c
YZ
3360 if (inode->i_nlink > 0) {
3361 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3362 goto no_delete;
3363 }
3364
dbe674a9 3365 btrfs_i_size_write(inode, 0);
5f39d397 3366
8082510e
YZ
3367 while (1) {
3368 trans = btrfs_start_transaction(root, 1);
3369 btrfs_set_trans_block_group(trans, inode);
3370 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
7b128766 3371
8082510e
YZ
3372 if (ret != -EAGAIN)
3373 break;
85e21bac 3374
8082510e
YZ
3375 nr = trans->blocks_used;
3376 btrfs_end_transaction(trans, root);
3377 trans = NULL;
3378 btrfs_btree_balance_dirty(root, nr);
3379 }
5f39d397 3380
8082510e
YZ
3381 if (ret == 0) {
3382 ret = btrfs_orphan_del(trans, inode);
3383 BUG_ON(ret);
3384 }
54aa1f4d 3385
d3c2fdcf 3386 nr = trans->blocks_used;
54aa1f4d 3387 btrfs_end_transaction(trans, root);
d3c2fdcf 3388 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3389no_delete:
3390 clear_inode(inode);
8082510e 3391 return;
39279cc3
CM
3392}
3393
3394/*
3395 * this returns the key found in the dir entry in the location pointer.
3396 * If no dir entries were found, location->objectid is 0.
3397 */
3398static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3399 struct btrfs_key *location)
3400{
3401 const char *name = dentry->d_name.name;
3402 int namelen = dentry->d_name.len;
3403 struct btrfs_dir_item *di;
3404 struct btrfs_path *path;
3405 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3406 int ret = 0;
39279cc3
CM
3407
3408 path = btrfs_alloc_path();
3409 BUG_ON(!path);
3954401f 3410
39279cc3
CM
3411 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3412 namelen, 0);
0d9f7f3e
Y
3413 if (IS_ERR(di))
3414 ret = PTR_ERR(di);
d397712b
CM
3415
3416 if (!di || IS_ERR(di))
3954401f 3417 goto out_err;
d397712b 3418
5f39d397 3419 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3420out:
39279cc3
CM
3421 btrfs_free_path(path);
3422 return ret;
3954401f
CM
3423out_err:
3424 location->objectid = 0;
3425 goto out;
39279cc3
CM
3426}
3427
3428/*
3429 * when we hit a tree root in a directory, the btrfs part of the inode
3430 * needs to be changed to reflect the root directory of the tree root. This
3431 * is kind of like crossing a mount point.
3432 */
3433static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3434 struct inode *dir,
3435 struct dentry *dentry,
3436 struct btrfs_key *location,
3437 struct btrfs_root **sub_root)
39279cc3 3438{
4df27c4d
YZ
3439 struct btrfs_path *path;
3440 struct btrfs_root *new_root;
3441 struct btrfs_root_ref *ref;
3442 struct extent_buffer *leaf;
3443 int ret;
3444 int err = 0;
39279cc3 3445
4df27c4d
YZ
3446 path = btrfs_alloc_path();
3447 if (!path) {
3448 err = -ENOMEM;
3449 goto out;
3450 }
39279cc3 3451
4df27c4d
YZ
3452 err = -ENOENT;
3453 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3454 BTRFS_I(dir)->root->root_key.objectid,
3455 location->objectid);
3456 if (ret) {
3457 if (ret < 0)
3458 err = ret;
3459 goto out;
3460 }
39279cc3 3461
4df27c4d
YZ
3462 leaf = path->nodes[0];
3463 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3464 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3465 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3466 goto out;
39279cc3 3467
4df27c4d
YZ
3468 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3469 (unsigned long)(ref + 1),
3470 dentry->d_name.len);
3471 if (ret)
3472 goto out;
3473
3474 btrfs_release_path(root->fs_info->tree_root, path);
3475
3476 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3477 if (IS_ERR(new_root)) {
3478 err = PTR_ERR(new_root);
3479 goto out;
3480 }
3481
3482 if (btrfs_root_refs(&new_root->root_item) == 0) {
3483 err = -ENOENT;
3484 goto out;
3485 }
3486
3487 *sub_root = new_root;
3488 location->objectid = btrfs_root_dirid(&new_root->root_item);
3489 location->type = BTRFS_INODE_ITEM_KEY;
3490 location->offset = 0;
3491 err = 0;
3492out:
3493 btrfs_free_path(path);
3494 return err;
39279cc3
CM
3495}
3496
5d4f98a2
YZ
3497static void inode_tree_add(struct inode *inode)
3498{
3499 struct btrfs_root *root = BTRFS_I(inode)->root;
3500 struct btrfs_inode *entry;
03e860bd
FNP
3501 struct rb_node **p;
3502 struct rb_node *parent;
03e860bd
FNP
3503again:
3504 p = &root->inode_tree.rb_node;
3505 parent = NULL;
5d4f98a2 3506
76dda93c
YZ
3507 if (hlist_unhashed(&inode->i_hash))
3508 return;
3509
5d4f98a2
YZ
3510 spin_lock(&root->inode_lock);
3511 while (*p) {
3512 parent = *p;
3513 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3514
3515 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3516 p = &parent->rb_left;
5d4f98a2 3517 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3518 p = &parent->rb_right;
5d4f98a2
YZ
3519 else {
3520 WARN_ON(!(entry->vfs_inode.i_state &
3521 (I_WILL_FREE | I_FREEING | I_CLEAR)));
03e860bd
FNP
3522 rb_erase(parent, &root->inode_tree);
3523 RB_CLEAR_NODE(parent);
3524 spin_unlock(&root->inode_lock);
3525 goto again;
5d4f98a2
YZ
3526 }
3527 }
3528 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3529 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3530 spin_unlock(&root->inode_lock);
3531}
3532
3533static void inode_tree_del(struct inode *inode)
3534{
3535 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3536 int empty = 0;
5d4f98a2 3537
03e860bd 3538 spin_lock(&root->inode_lock);
5d4f98a2 3539 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3540 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3541 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3542 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3543 }
03e860bd 3544 spin_unlock(&root->inode_lock);
76dda93c
YZ
3545
3546 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3547 synchronize_srcu(&root->fs_info->subvol_srcu);
3548 spin_lock(&root->inode_lock);
3549 empty = RB_EMPTY_ROOT(&root->inode_tree);
3550 spin_unlock(&root->inode_lock);
3551 if (empty)
3552 btrfs_add_dead_root(root);
3553 }
3554}
3555
3556int btrfs_invalidate_inodes(struct btrfs_root *root)
3557{
3558 struct rb_node *node;
3559 struct rb_node *prev;
3560 struct btrfs_inode *entry;
3561 struct inode *inode;
3562 u64 objectid = 0;
3563
3564 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3565
3566 spin_lock(&root->inode_lock);
3567again:
3568 node = root->inode_tree.rb_node;
3569 prev = NULL;
3570 while (node) {
3571 prev = node;
3572 entry = rb_entry(node, struct btrfs_inode, rb_node);
3573
3574 if (objectid < entry->vfs_inode.i_ino)
3575 node = node->rb_left;
3576 else if (objectid > entry->vfs_inode.i_ino)
3577 node = node->rb_right;
3578 else
3579 break;
3580 }
3581 if (!node) {
3582 while (prev) {
3583 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3584 if (objectid <= entry->vfs_inode.i_ino) {
3585 node = prev;
3586 break;
3587 }
3588 prev = rb_next(prev);
3589 }
3590 }
3591 while (node) {
3592 entry = rb_entry(node, struct btrfs_inode, rb_node);
3593 objectid = entry->vfs_inode.i_ino + 1;
3594 inode = igrab(&entry->vfs_inode);
3595 if (inode) {
3596 spin_unlock(&root->inode_lock);
3597 if (atomic_read(&inode->i_count) > 1)
3598 d_prune_aliases(inode);
3599 /*
3600 * btrfs_drop_inode will remove it from
3601 * the inode cache when its usage count
3602 * hits zero.
3603 */
3604 iput(inode);
3605 cond_resched();
3606 spin_lock(&root->inode_lock);
3607 goto again;
3608 }
3609
3610 if (cond_resched_lock(&root->inode_lock))
3611 goto again;
3612
3613 node = rb_next(node);
3614 }
3615 spin_unlock(&root->inode_lock);
3616 return 0;
5d4f98a2
YZ
3617}
3618
e02119d5 3619static noinline void init_btrfs_i(struct inode *inode)
39279cc3 3620{
e02119d5
CM
3621 struct btrfs_inode *bi = BTRFS_I(inode);
3622
e02119d5 3623 bi->generation = 0;
c3027eb5 3624 bi->sequence = 0;
e02119d5 3625 bi->last_trans = 0;
257c62e1 3626 bi->last_sub_trans = 0;
e02119d5
CM
3627 bi->logged_trans = 0;
3628 bi->delalloc_bytes = 0;
6a63209f 3629 bi->reserved_bytes = 0;
e02119d5
CM
3630 bi->disk_i_size = 0;
3631 bi->flags = 0;
3632 bi->index_cnt = (u64)-1;
12fcfd22 3633 bi->last_unlink_trans = 0;
2757495c 3634 bi->ordered_data_close = 0;
d1310b2e
CM
3635 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3636 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
b888db2b 3637 inode->i_mapping, GFP_NOFS);
7e38326f
CM
3638 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3639 inode->i_mapping, GFP_NOFS);
ea8c2819 3640 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
5a3f23d5 3641 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
5d4f98a2 3642 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
ba1da2f4 3643 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
e02119d5
CM
3644 mutex_init(&BTRFS_I(inode)->log_mutex);
3645}
3646
3647static int btrfs_init_locked_inode(struct inode *inode, void *p)
3648{
3649 struct btrfs_iget_args *args = p;
3650 inode->i_ino = args->ino;
3651 init_btrfs_i(inode);
3652 BTRFS_I(inode)->root = args->root;
6a63209f 3653 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3654 return 0;
3655}
3656
3657static int btrfs_find_actor(struct inode *inode, void *opaque)
3658{
3659 struct btrfs_iget_args *args = opaque;
d397712b
CM
3660 return args->ino == inode->i_ino &&
3661 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3662}
3663
5d4f98a2
YZ
3664static struct inode *btrfs_iget_locked(struct super_block *s,
3665 u64 objectid,
3666 struct btrfs_root *root)
39279cc3
CM
3667{
3668 struct inode *inode;
3669 struct btrfs_iget_args args;
3670 args.ino = objectid;
3671 args.root = root;
3672
3673 inode = iget5_locked(s, objectid, btrfs_find_actor,
3674 btrfs_init_locked_inode,
3675 (void *)&args);
3676 return inode;
3677}
3678
1a54ef8c
BR
3679/* Get an inode object given its location and corresponding root.
3680 * Returns in *is_new if the inode was read from disk
3681 */
3682struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5d4f98a2 3683 struct btrfs_root *root)
1a54ef8c
BR
3684{
3685 struct inode *inode;
3686
3687 inode = btrfs_iget_locked(s, location->objectid, root);
3688 if (!inode)
5d4f98a2 3689 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3690
3691 if (inode->i_state & I_NEW) {
3692 BTRFS_I(inode)->root = root;
3693 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3694 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
3695
3696 inode_tree_add(inode);
1a54ef8c 3697 unlock_new_inode(inode);
1a54ef8c
BR
3698 }
3699
3700 return inode;
3701}
3702
4df27c4d
YZ
3703static struct inode *new_simple_dir(struct super_block *s,
3704 struct btrfs_key *key,
3705 struct btrfs_root *root)
3706{
3707 struct inode *inode = new_inode(s);
3708
3709 if (!inode)
3710 return ERR_PTR(-ENOMEM);
3711
3712 init_btrfs_i(inode);
3713
3714 BTRFS_I(inode)->root = root;
3715 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3716 BTRFS_I(inode)->dummy_inode = 1;
3717
3718 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3719 inode->i_op = &simple_dir_inode_operations;
3720 inode->i_fop = &simple_dir_operations;
3721 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3722 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3723
3724 return inode;
3725}
3726
3de4586c 3727struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3728{
d397712b 3729 struct inode *inode;
4df27c4d 3730 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3731 struct btrfs_root *sub_root = root;
3732 struct btrfs_key location;
76dda93c 3733 int index;
5d4f98a2 3734 int ret;
39279cc3 3735
76dda93c
YZ
3736 dentry->d_op = &btrfs_dentry_operations;
3737
39279cc3
CM
3738 if (dentry->d_name.len > BTRFS_NAME_LEN)
3739 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3740
39279cc3 3741 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 3742
39279cc3
CM
3743 if (ret < 0)
3744 return ERR_PTR(ret);
5f39d397 3745
4df27c4d
YZ
3746 if (location.objectid == 0)
3747 return NULL;
3748
3749 if (location.type == BTRFS_INODE_ITEM_KEY) {
3750 inode = btrfs_iget(dir->i_sb, &location, root);
3751 return inode;
3752 }
3753
3754 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3755
76dda93c 3756 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3757 ret = fixup_tree_root_location(root, dir, dentry,
3758 &location, &sub_root);
3759 if (ret < 0) {
3760 if (ret != -ENOENT)
3761 inode = ERR_PTR(ret);
3762 else
3763 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3764 } else {
5d4f98a2 3765 inode = btrfs_iget(dir->i_sb, &location, sub_root);
39279cc3 3766 }
76dda93c
YZ
3767 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3768
c71bf099
YZ
3769 if (root != sub_root) {
3770 down_read(&root->fs_info->cleanup_work_sem);
3771 if (!(inode->i_sb->s_flags & MS_RDONLY))
3772 btrfs_orphan_cleanup(sub_root);
3773 up_read(&root->fs_info->cleanup_work_sem);
3774 }
3775
3de4586c
CM
3776 return inode;
3777}
3778
76dda93c
YZ
3779static int btrfs_dentry_delete(struct dentry *dentry)
3780{
3781 struct btrfs_root *root;
3782
efefb143
YZ
3783 if (!dentry->d_inode && !IS_ROOT(dentry))
3784 dentry = dentry->d_parent;
76dda93c 3785
efefb143
YZ
3786 if (dentry->d_inode) {
3787 root = BTRFS_I(dentry->d_inode)->root;
3788 if (btrfs_root_refs(&root->root_item) == 0)
3789 return 1;
3790 }
76dda93c
YZ
3791 return 0;
3792}
3793
3de4586c
CM
3794static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3795 struct nameidata *nd)
3796{
3797 struct inode *inode;
3798
3de4586c
CM
3799 inode = btrfs_lookup_dentry(dir, dentry);
3800 if (IS_ERR(inode))
3801 return ERR_CAST(inode);
7b128766 3802
39279cc3
CM
3803 return d_splice_alias(inode, dentry);
3804}
3805
39279cc3
CM
3806static unsigned char btrfs_filetype_table[] = {
3807 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3808};
3809
cbdf5a24
DW
3810static int btrfs_real_readdir(struct file *filp, void *dirent,
3811 filldir_t filldir)
39279cc3 3812{
6da6abae 3813 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
3814 struct btrfs_root *root = BTRFS_I(inode)->root;
3815 struct btrfs_item *item;
3816 struct btrfs_dir_item *di;
3817 struct btrfs_key key;
5f39d397 3818 struct btrfs_key found_key;
39279cc3
CM
3819 struct btrfs_path *path;
3820 int ret;
3821 u32 nritems;
5f39d397 3822 struct extent_buffer *leaf;
39279cc3
CM
3823 int slot;
3824 int advance;
3825 unsigned char d_type;
3826 int over = 0;
3827 u32 di_cur;
3828 u32 di_total;
3829 u32 di_len;
3830 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
3831 char tmp_name[32];
3832 char *name_ptr;
3833 int name_len;
39279cc3
CM
3834
3835 /* FIXME, use a real flag for deciding about the key type */
3836 if (root->fs_info->tree_root == root)
3837 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 3838
3954401f
CM
3839 /* special case for "." */
3840 if (filp->f_pos == 0) {
3841 over = filldir(dirent, ".", 1,
3842 1, inode->i_ino,
3843 DT_DIR);
3844 if (over)
3845 return 0;
3846 filp->f_pos = 1;
3847 }
3954401f
CM
3848 /* special case for .., just use the back ref */
3849 if (filp->f_pos == 1) {
5ecc7e5d 3850 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 3851 over = filldir(dirent, "..", 2,
5ecc7e5d 3852 2, pino, DT_DIR);
3954401f 3853 if (over)
49593bfa 3854 return 0;
3954401f
CM
3855 filp->f_pos = 2;
3856 }
49593bfa
DW
3857 path = btrfs_alloc_path();
3858 path->reada = 2;
3859
39279cc3
CM
3860 btrfs_set_key_type(&key, key_type);
3861 key.offset = filp->f_pos;
49593bfa 3862 key.objectid = inode->i_ino;
5f39d397 3863
39279cc3
CM
3864 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3865 if (ret < 0)
3866 goto err;
3867 advance = 0;
49593bfa
DW
3868
3869 while (1) {
5f39d397
CM
3870 leaf = path->nodes[0];
3871 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3872 slot = path->slots[0];
3873 if (advance || slot >= nritems) {
49593bfa 3874 if (slot >= nritems - 1) {
39279cc3
CM
3875 ret = btrfs_next_leaf(root, path);
3876 if (ret)
3877 break;
5f39d397
CM
3878 leaf = path->nodes[0];
3879 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3880 slot = path->slots[0];
3881 } else {
3882 slot++;
3883 path->slots[0]++;
3884 }
3885 }
3de4586c 3886
39279cc3 3887 advance = 1;
5f39d397
CM
3888 item = btrfs_item_nr(leaf, slot);
3889 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3890
3891 if (found_key.objectid != key.objectid)
39279cc3 3892 break;
5f39d397 3893 if (btrfs_key_type(&found_key) != key_type)
39279cc3 3894 break;
5f39d397 3895 if (found_key.offset < filp->f_pos)
39279cc3 3896 continue;
5f39d397
CM
3897
3898 filp->f_pos = found_key.offset;
49593bfa 3899
39279cc3
CM
3900 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3901 di_cur = 0;
5f39d397 3902 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
3903
3904 while (di_cur < di_total) {
5f39d397
CM
3905 struct btrfs_key location;
3906
3907 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 3908 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
3909 name_ptr = tmp_name;
3910 } else {
3911 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
3912 if (!name_ptr) {
3913 ret = -ENOMEM;
3914 goto err;
3915 }
5f39d397
CM
3916 }
3917 read_extent_buffer(leaf, name_ptr,
3918 (unsigned long)(di + 1), name_len);
3919
3920 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3921 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
3922
3923 /* is this a reference to our own snapshot? If so
3924 * skip it
3925 */
3926 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3927 location.objectid == root->root_key.objectid) {
3928 over = 0;
3929 goto skip;
3930 }
5f39d397 3931 over = filldir(dirent, name_ptr, name_len,
49593bfa 3932 found_key.offset, location.objectid,
39279cc3 3933 d_type);
5f39d397 3934
3de4586c 3935skip:
5f39d397
CM
3936 if (name_ptr != tmp_name)
3937 kfree(name_ptr);
3938
39279cc3
CM
3939 if (over)
3940 goto nopos;
5103e947 3941 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 3942 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
3943 di_cur += di_len;
3944 di = (struct btrfs_dir_item *)((char *)di + di_len);
3945 }
3946 }
49593bfa
DW
3947
3948 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 3949 if (key_type == BTRFS_DIR_INDEX_KEY)
89f135d8 3950 filp->f_pos = INT_LIMIT(off_t);
5e591a07
YZ
3951 else
3952 filp->f_pos++;
39279cc3
CM
3953nopos:
3954 ret = 0;
3955err:
39279cc3 3956 btrfs_free_path(path);
39279cc3
CM
3957 return ret;
3958}
3959
3960int btrfs_write_inode(struct inode *inode, int wait)
3961{
3962 struct btrfs_root *root = BTRFS_I(inode)->root;
3963 struct btrfs_trans_handle *trans;
3964 int ret = 0;
3965
c146afad 3966 if (root->fs_info->btree_inode == inode)
4ca8b41e
CM
3967 return 0;
3968
39279cc3 3969 if (wait) {
f9295749 3970 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3971 btrfs_set_trans_block_group(trans, inode);
3972 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
3973 }
3974 return ret;
3975}
3976
3977/*
54aa1f4d 3978 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
3979 * inode changes. But, it is most likely to find the inode in cache.
3980 * FIXME, needs more benchmarking...there are no reasons other than performance
3981 * to keep or drop this code.
3982 */
3983void btrfs_dirty_inode(struct inode *inode)
3984{
3985 struct btrfs_root *root = BTRFS_I(inode)->root;
3986 struct btrfs_trans_handle *trans;
3987
f9295749 3988 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3989 btrfs_set_trans_block_group(trans, inode);
3990 btrfs_update_inode(trans, root, inode);
3991 btrfs_end_transaction(trans, root);
39279cc3
CM
3992}
3993
d352ac68
CM
3994/*
3995 * find the highest existing sequence number in a directory
3996 * and then set the in-memory index_cnt variable to reflect
3997 * free sequence numbers
3998 */
aec7477b
JB
3999static int btrfs_set_inode_index_count(struct inode *inode)
4000{
4001 struct btrfs_root *root = BTRFS_I(inode)->root;
4002 struct btrfs_key key, found_key;
4003 struct btrfs_path *path;
4004 struct extent_buffer *leaf;
4005 int ret;
4006
4007 key.objectid = inode->i_ino;
4008 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4009 key.offset = (u64)-1;
4010
4011 path = btrfs_alloc_path();
4012 if (!path)
4013 return -ENOMEM;
4014
4015 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4016 if (ret < 0)
4017 goto out;
4018 /* FIXME: we should be able to handle this */
4019 if (ret == 0)
4020 goto out;
4021 ret = 0;
4022
4023 /*
4024 * MAGIC NUMBER EXPLANATION:
4025 * since we search a directory based on f_pos we have to start at 2
4026 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4027 * else has to start at 2
4028 */
4029 if (path->slots[0] == 0) {
4030 BTRFS_I(inode)->index_cnt = 2;
4031 goto out;
4032 }
4033
4034 path->slots[0]--;
4035
4036 leaf = path->nodes[0];
4037 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4038
4039 if (found_key.objectid != inode->i_ino ||
4040 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4041 BTRFS_I(inode)->index_cnt = 2;
4042 goto out;
4043 }
4044
4045 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4046out:
4047 btrfs_free_path(path);
4048 return ret;
4049}
4050
d352ac68
CM
4051/*
4052 * helper to find a free sequence number in a given directory. This current
4053 * code is very simple, later versions will do smarter things in the btree
4054 */
3de4586c 4055int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4056{
4057 int ret = 0;
4058
4059 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4060 ret = btrfs_set_inode_index_count(dir);
d397712b 4061 if (ret)
aec7477b
JB
4062 return ret;
4063 }
4064
00e4e6b3 4065 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4066 BTRFS_I(dir)->index_cnt++;
4067
4068 return ret;
4069}
4070
39279cc3
CM
4071static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4072 struct btrfs_root *root,
aec7477b 4073 struct inode *dir,
9c58309d 4074 const char *name, int name_len,
d2fb3437
YZ
4075 u64 ref_objectid, u64 objectid,
4076 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4077{
4078 struct inode *inode;
5f39d397 4079 struct btrfs_inode_item *inode_item;
39279cc3 4080 struct btrfs_key *location;
5f39d397 4081 struct btrfs_path *path;
9c58309d
CM
4082 struct btrfs_inode_ref *ref;
4083 struct btrfs_key key[2];
4084 u32 sizes[2];
4085 unsigned long ptr;
39279cc3
CM
4086 int ret;
4087 int owner;
4088
5f39d397
CM
4089 path = btrfs_alloc_path();
4090 BUG_ON(!path);
4091
39279cc3
CM
4092 inode = new_inode(root->fs_info->sb);
4093 if (!inode)
4094 return ERR_PTR(-ENOMEM);
4095
aec7477b 4096 if (dir) {
3de4586c 4097 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4098 if (ret) {
4099 iput(inode);
aec7477b 4100 return ERR_PTR(ret);
09771430 4101 }
aec7477b
JB
4102 }
4103 /*
4104 * index_cnt is ignored for everything but a dir,
4105 * btrfs_get_inode_index_count has an explanation for the magic
4106 * number
4107 */
e02119d5 4108 init_btrfs_i(inode);
aec7477b 4109 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4110 BTRFS_I(inode)->root = root;
e02119d5 4111 BTRFS_I(inode)->generation = trans->transid;
6a63209f 4112 btrfs_set_inode_space_info(root, inode);
b888db2b 4113
39279cc3
CM
4114 if (mode & S_IFDIR)
4115 owner = 0;
4116 else
4117 owner = 1;
d2fb3437
YZ
4118 BTRFS_I(inode)->block_group =
4119 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4120
4121 key[0].objectid = objectid;
4122 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4123 key[0].offset = 0;
4124
4125 key[1].objectid = objectid;
4126 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4127 key[1].offset = ref_objectid;
4128
4129 sizes[0] = sizeof(struct btrfs_inode_item);
4130 sizes[1] = name_len + sizeof(*ref);
4131
b9473439 4132 path->leave_spinning = 1;
9c58309d
CM
4133 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4134 if (ret != 0)
5f39d397
CM
4135 goto fail;
4136
79683f2d 4137 inode->i_uid = current_fsuid();
8c087b51 4138
42f15d77 4139 if (dir && (dir->i_mode & S_ISGID)) {
8c087b51
CB
4140 inode->i_gid = dir->i_gid;
4141 if (S_ISDIR(mode))
4142 mode |= S_ISGID;
4143 } else
4144 inode->i_gid = current_fsgid();
4145
39279cc3
CM
4146 inode->i_mode = mode;
4147 inode->i_ino = objectid;
a76a3cd4 4148 inode_set_bytes(inode, 0);
39279cc3 4149 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4150 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4151 struct btrfs_inode_item);
e02119d5 4152 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4153
4154 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4155 struct btrfs_inode_ref);
4156 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4157 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4158 ptr = (unsigned long)(ref + 1);
4159 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4160
5f39d397
CM
4161 btrfs_mark_buffer_dirty(path->nodes[0]);
4162 btrfs_free_path(path);
4163
39279cc3
CM
4164 location = &BTRFS_I(inode)->location;
4165 location->objectid = objectid;
39279cc3
CM
4166 location->offset = 0;
4167 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4168
6cbff00f
CH
4169 btrfs_inherit_iflags(inode, dir);
4170
94272164
CM
4171 if ((mode & S_IFREG)) {
4172 if (btrfs_test_opt(root, NODATASUM))
4173 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4174 if (btrfs_test_opt(root, NODATACOW))
4175 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4176 }
4177
39279cc3 4178 insert_inode_hash(inode);
5d4f98a2 4179 inode_tree_add(inode);
39279cc3 4180 return inode;
5f39d397 4181fail:
aec7477b
JB
4182 if (dir)
4183 BTRFS_I(dir)->index_cnt--;
5f39d397 4184 btrfs_free_path(path);
09771430 4185 iput(inode);
5f39d397 4186 return ERR_PTR(ret);
39279cc3
CM
4187}
4188
4189static inline u8 btrfs_inode_type(struct inode *inode)
4190{
4191 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4192}
4193
d352ac68
CM
4194/*
4195 * utility function to add 'inode' into 'parent_inode' with
4196 * a give name and a given sequence number.
4197 * if 'add_backref' is true, also insert a backref from the
4198 * inode to the parent directory.
4199 */
e02119d5
CM
4200int btrfs_add_link(struct btrfs_trans_handle *trans,
4201 struct inode *parent_inode, struct inode *inode,
4202 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4203{
4df27c4d 4204 int ret = 0;
39279cc3 4205 struct btrfs_key key;
e02119d5 4206 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4207
4df27c4d
YZ
4208 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4209 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4210 } else {
4211 key.objectid = inode->i_ino;
4212 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4213 key.offset = 0;
4214 }
4215
4216 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4217 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4218 key.objectid, root->root_key.objectid,
4219 parent_inode->i_ino,
4220 index, name, name_len);
4221 } else if (add_backref) {
4222 ret = btrfs_insert_inode_ref(trans, root,
4223 name, name_len, inode->i_ino,
4224 parent_inode->i_ino, index);
4225 }
39279cc3 4226
39279cc3 4227 if (ret == 0) {
4df27c4d
YZ
4228 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4229 parent_inode->i_ino, &key,
4230 btrfs_inode_type(inode), index);
4231 BUG_ON(ret);
4232
dbe674a9 4233 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4234 name_len * 2);
79c44584 4235 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4236 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4237 }
4238 return ret;
4239}
4240
4241static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
9c58309d 4242 struct dentry *dentry, struct inode *inode,
00e4e6b3 4243 int backref, u64 index)
39279cc3 4244{
e02119d5
CM
4245 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4246 inode, dentry->d_name.name,
4247 dentry->d_name.len, backref, index);
39279cc3
CM
4248 if (!err) {
4249 d_instantiate(dentry, inode);
4250 return 0;
4251 }
4252 if (err > 0)
4253 err = -EEXIST;
4254 return err;
4255}
4256
618e21d5
JB
4257static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4258 int mode, dev_t rdev)
4259{
4260 struct btrfs_trans_handle *trans;
4261 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4262 struct inode *inode = NULL;
618e21d5
JB
4263 int err;
4264 int drop_inode = 0;
4265 u64 objectid;
1832a6d5 4266 unsigned long nr = 0;
00e4e6b3 4267 u64 index = 0;
618e21d5
JB
4268
4269 if (!new_valid_dev(rdev))
4270 return -EINVAL;
4271
9ed74f2d
JB
4272 /*
4273 * 2 for inode item and ref
4274 * 2 for dir items
4275 * 1 for xattr if selinux is on
4276 */
4277 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4278 if (err)
9ed74f2d 4279 return err;
1832a6d5 4280
618e21d5 4281 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4282 if (!trans)
4283 goto fail;
618e21d5
JB
4284 btrfs_set_trans_block_group(trans, dir);
4285
4286 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4287 if (err) {
4288 err = -ENOSPC;
4289 goto out_unlock;
4290 }
4291
aec7477b 4292 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4293 dentry->d_name.len,
4294 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3 4295 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4296 err = PTR_ERR(inode);
4297 if (IS_ERR(inode))
4298 goto out_unlock;
4299
f34f57a3 4300 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4301 if (err) {
4302 drop_inode = 1;
4303 goto out_unlock;
4304 }
4305
618e21d5 4306 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4307 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
618e21d5
JB
4308 if (err)
4309 drop_inode = 1;
4310 else {
4311 inode->i_op = &btrfs_special_inode_operations;
4312 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4313 btrfs_update_inode(trans, root, inode);
618e21d5 4314 }
618e21d5
JB
4315 btrfs_update_inode_block_group(trans, inode);
4316 btrfs_update_inode_block_group(trans, dir);
4317out_unlock:
d3c2fdcf 4318 nr = trans->blocks_used;
89ce8a63 4319 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4320fail:
9ed74f2d 4321 btrfs_unreserve_metadata_space(root, 5);
618e21d5
JB
4322 if (drop_inode) {
4323 inode_dec_link_count(inode);
4324 iput(inode);
4325 }
d3c2fdcf 4326 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4327 return err;
4328}
4329
39279cc3
CM
4330static int btrfs_create(struct inode *dir, struct dentry *dentry,
4331 int mode, struct nameidata *nd)
4332{
4333 struct btrfs_trans_handle *trans;
4334 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4335 struct inode *inode = NULL;
39279cc3
CM
4336 int err;
4337 int drop_inode = 0;
1832a6d5 4338 unsigned long nr = 0;
39279cc3 4339 u64 objectid;
00e4e6b3 4340 u64 index = 0;
39279cc3 4341
9ed74f2d
JB
4342 /*
4343 * 2 for inode item and ref
4344 * 2 for dir items
4345 * 1 for xattr if selinux is on
4346 */
4347 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4348 if (err)
9ed74f2d
JB
4349 return err;
4350
39279cc3 4351 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4352 if (!trans)
4353 goto fail;
39279cc3
CM
4354 btrfs_set_trans_block_group(trans, dir);
4355
4356 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4357 if (err) {
4358 err = -ENOSPC;
4359 goto out_unlock;
4360 }
4361
aec7477b 4362 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4363 dentry->d_name.len,
4364 dentry->d_parent->d_inode->i_ino,
00e4e6b3
CM
4365 objectid, BTRFS_I(dir)->block_group, mode,
4366 &index);
39279cc3
CM
4367 err = PTR_ERR(inode);
4368 if (IS_ERR(inode))
4369 goto out_unlock;
4370
f34f57a3 4371 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4372 if (err) {
4373 drop_inode = 1;
4374 goto out_unlock;
4375 }
4376
39279cc3 4377 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4378 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
4379 if (err)
4380 drop_inode = 1;
4381 else {
4382 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4383 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4384 inode->i_fop = &btrfs_file_operations;
4385 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4386 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4387 }
39279cc3
CM
4388 btrfs_update_inode_block_group(trans, inode);
4389 btrfs_update_inode_block_group(trans, dir);
4390out_unlock:
d3c2fdcf 4391 nr = trans->blocks_used;
ab78c84d 4392 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4393fail:
9ed74f2d 4394 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4395 if (drop_inode) {
4396 inode_dec_link_count(inode);
4397 iput(inode);
4398 }
d3c2fdcf 4399 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4400 return err;
4401}
4402
4403static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4404 struct dentry *dentry)
4405{
4406 struct btrfs_trans_handle *trans;
4407 struct btrfs_root *root = BTRFS_I(dir)->root;
4408 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4409 u64 index;
1832a6d5 4410 unsigned long nr = 0;
39279cc3
CM
4411 int err;
4412 int drop_inode = 0;
4413
4414 if (inode->i_nlink == 0)
4415 return -ENOENT;
4416
9ed74f2d
JB
4417 /*
4418 * 1 item for inode ref
4419 * 2 items for dir items
4420 */
4421 err = btrfs_reserve_metadata_space(root, 3);
1832a6d5 4422 if (err)
9ed74f2d
JB
4423 return err;
4424
4425 btrfs_inc_nlink(inode);
4426
3de4586c 4427 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4428 if (err)
4429 goto fail;
4430
39279cc3 4431 trans = btrfs_start_transaction(root, 1);
5f39d397 4432
39279cc3
CM
4433 btrfs_set_trans_block_group(trans, dir);
4434 atomic_inc(&inode->i_count);
aec7477b 4435
00e4e6b3 4436 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
5f39d397 4437
a5719521 4438 if (err) {
54aa1f4d 4439 drop_inode = 1;
a5719521
YZ
4440 } else {
4441 btrfs_update_inode_block_group(trans, dir);
4442 err = btrfs_update_inode(trans, root, inode);
4443 BUG_ON(err);
4444 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4445 }
39279cc3 4446
d3c2fdcf 4447 nr = trans->blocks_used;
ab78c84d 4448 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4449fail:
9ed74f2d 4450 btrfs_unreserve_metadata_space(root, 3);
39279cc3
CM
4451 if (drop_inode) {
4452 inode_dec_link_count(inode);
4453 iput(inode);
4454 }
d3c2fdcf 4455 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4456 return err;
4457}
4458
39279cc3
CM
4459static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4460{
b9d86667 4461 struct inode *inode = NULL;
39279cc3
CM
4462 struct btrfs_trans_handle *trans;
4463 struct btrfs_root *root = BTRFS_I(dir)->root;
4464 int err = 0;
4465 int drop_on_err = 0;
b9d86667 4466 u64 objectid = 0;
00e4e6b3 4467 u64 index = 0;
d3c2fdcf 4468 unsigned long nr = 1;
39279cc3 4469
9ed74f2d
JB
4470 /*
4471 * 2 items for inode and ref
4472 * 2 items for dir items
4473 * 1 for xattr if selinux is on
4474 */
4475 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4476 if (err)
9ed74f2d 4477 return err;
1832a6d5 4478
39279cc3 4479 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4480 if (!trans) {
4481 err = -ENOMEM;
39279cc3
CM
4482 goto out_unlock;
4483 }
9ed74f2d 4484 btrfs_set_trans_block_group(trans, dir);
39279cc3
CM
4485
4486 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4487 if (err) {
4488 err = -ENOSPC;
4489 goto out_unlock;
4490 }
4491
aec7477b 4492 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4493 dentry->d_name.len,
4494 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
4495 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4496 &index);
39279cc3
CM
4497 if (IS_ERR(inode)) {
4498 err = PTR_ERR(inode);
4499 goto out_fail;
4500 }
5f39d397 4501
39279cc3 4502 drop_on_err = 1;
33268eaf 4503
f34f57a3 4504 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4505 if (err)
4506 goto out_fail;
4507
39279cc3
CM
4508 inode->i_op = &btrfs_dir_inode_operations;
4509 inode->i_fop = &btrfs_dir_file_operations;
4510 btrfs_set_trans_block_group(trans, inode);
4511
dbe674a9 4512 btrfs_i_size_write(inode, 0);
39279cc3
CM
4513 err = btrfs_update_inode(trans, root, inode);
4514 if (err)
4515 goto out_fail;
5f39d397 4516
e02119d5
CM
4517 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4518 inode, dentry->d_name.name,
4519 dentry->d_name.len, 0, index);
39279cc3
CM
4520 if (err)
4521 goto out_fail;
5f39d397 4522
39279cc3
CM
4523 d_instantiate(dentry, inode);
4524 drop_on_err = 0;
39279cc3
CM
4525 btrfs_update_inode_block_group(trans, inode);
4526 btrfs_update_inode_block_group(trans, dir);
4527
4528out_fail:
d3c2fdcf 4529 nr = trans->blocks_used;
ab78c84d 4530 btrfs_end_transaction_throttle(trans, root);
5f39d397 4531
39279cc3 4532out_unlock:
9ed74f2d 4533 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4534 if (drop_on_err)
4535 iput(inode);
d3c2fdcf 4536 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4537 return err;
4538}
4539
d352ac68
CM
4540/* helper for btfs_get_extent. Given an existing extent in the tree,
4541 * and an extent that you want to insert, deal with overlap and insert
4542 * the new extent into the tree.
4543 */
3b951516
CM
4544static int merge_extent_mapping(struct extent_map_tree *em_tree,
4545 struct extent_map *existing,
e6dcd2dc
CM
4546 struct extent_map *em,
4547 u64 map_start, u64 map_len)
3b951516
CM
4548{
4549 u64 start_diff;
3b951516 4550
e6dcd2dc
CM
4551 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4552 start_diff = map_start - em->start;
4553 em->start = map_start;
4554 em->len = map_len;
c8b97818
CM
4555 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4556 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4557 em->block_start += start_diff;
c8b97818
CM
4558 em->block_len -= start_diff;
4559 }
e6dcd2dc 4560 return add_extent_mapping(em_tree, em);
3b951516
CM
4561}
4562
c8b97818
CM
4563static noinline int uncompress_inline(struct btrfs_path *path,
4564 struct inode *inode, struct page *page,
4565 size_t pg_offset, u64 extent_offset,
4566 struct btrfs_file_extent_item *item)
4567{
4568 int ret;
4569 struct extent_buffer *leaf = path->nodes[0];
4570 char *tmp;
4571 size_t max_size;
4572 unsigned long inline_size;
4573 unsigned long ptr;
4574
4575 WARN_ON(pg_offset != 0);
4576 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4577 inline_size = btrfs_file_extent_inline_item_len(leaf,
4578 btrfs_item_nr(leaf, path->slots[0]));
4579 tmp = kmalloc(inline_size, GFP_NOFS);
4580 ptr = btrfs_file_extent_inline_start(item);
4581
4582 read_extent_buffer(leaf, tmp, ptr, inline_size);
4583
5b050f04 4584 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
4585 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4586 inline_size, max_size);
4587 if (ret) {
4588 char *kaddr = kmap_atomic(page, KM_USER0);
4589 unsigned long copy_size = min_t(u64,
4590 PAGE_CACHE_SIZE - pg_offset,
4591 max_size - extent_offset);
4592 memset(kaddr + pg_offset, 0, copy_size);
4593 kunmap_atomic(kaddr, KM_USER0);
4594 }
4595 kfree(tmp);
4596 return 0;
4597}
4598
d352ac68
CM
4599/*
4600 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4601 * the ugly parts come from merging extents from the disk with the in-ram
4602 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4603 * where the in-ram extents might be locked pending data=ordered completion.
4604 *
4605 * This also copies inline extents directly into the page.
4606 */
d397712b 4607
a52d9a80 4608struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4609 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4610 int create)
4611{
4612 int ret;
4613 int err = 0;
db94535d 4614 u64 bytenr;
a52d9a80
CM
4615 u64 extent_start = 0;
4616 u64 extent_end = 0;
4617 u64 objectid = inode->i_ino;
4618 u32 found_type;
f421950f 4619 struct btrfs_path *path = NULL;
a52d9a80
CM
4620 struct btrfs_root *root = BTRFS_I(inode)->root;
4621 struct btrfs_file_extent_item *item;
5f39d397
CM
4622 struct extent_buffer *leaf;
4623 struct btrfs_key found_key;
a52d9a80
CM
4624 struct extent_map *em = NULL;
4625 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4626 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4627 struct btrfs_trans_handle *trans = NULL;
c8b97818 4628 int compressed;
a52d9a80 4629
a52d9a80 4630again:
890871be 4631 read_lock(&em_tree->lock);
d1310b2e 4632 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4633 if (em)
4634 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4635 read_unlock(&em_tree->lock);
d1310b2e 4636
a52d9a80 4637 if (em) {
e1c4b745
CM
4638 if (em->start > start || em->start + em->len <= start)
4639 free_extent_map(em);
4640 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4641 free_extent_map(em);
4642 else
4643 goto out;
a52d9a80 4644 }
d1310b2e 4645 em = alloc_extent_map(GFP_NOFS);
a52d9a80 4646 if (!em) {
d1310b2e
CM
4647 err = -ENOMEM;
4648 goto out;
a52d9a80 4649 }
e6dcd2dc 4650 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4651 em->start = EXTENT_MAP_HOLE;
445a6944 4652 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4653 em->len = (u64)-1;
c8b97818 4654 em->block_len = (u64)-1;
f421950f
CM
4655
4656 if (!path) {
4657 path = btrfs_alloc_path();
4658 BUG_ON(!path);
4659 }
4660
179e29e4
CM
4661 ret = btrfs_lookup_file_extent(trans, root, path,
4662 objectid, start, trans != NULL);
a52d9a80
CM
4663 if (ret < 0) {
4664 err = ret;
4665 goto out;
4666 }
4667
4668 if (ret != 0) {
4669 if (path->slots[0] == 0)
4670 goto not_found;
4671 path->slots[0]--;
4672 }
4673
5f39d397
CM
4674 leaf = path->nodes[0];
4675 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4676 struct btrfs_file_extent_item);
a52d9a80 4677 /* are we inside the extent that was found? */
5f39d397
CM
4678 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4679 found_type = btrfs_key_type(&found_key);
4680 if (found_key.objectid != objectid ||
a52d9a80
CM
4681 found_type != BTRFS_EXTENT_DATA_KEY) {
4682 goto not_found;
4683 }
4684
5f39d397
CM
4685 found_type = btrfs_file_extent_type(leaf, item);
4686 extent_start = found_key.offset;
c8b97818 4687 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4688 if (found_type == BTRFS_FILE_EXTENT_REG ||
4689 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4690 extent_end = extent_start +
db94535d 4691 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
4692 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4693 size_t size;
4694 size = btrfs_file_extent_inline_len(leaf, item);
4695 extent_end = (extent_start + size + root->sectorsize - 1) &
4696 ~((u64)root->sectorsize - 1);
4697 }
4698
4699 if (start >= extent_end) {
4700 path->slots[0]++;
4701 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4702 ret = btrfs_next_leaf(root, path);
4703 if (ret < 0) {
4704 err = ret;
4705 goto out;
a52d9a80 4706 }
9036c102
YZ
4707 if (ret > 0)
4708 goto not_found;
4709 leaf = path->nodes[0];
a52d9a80 4710 }
9036c102
YZ
4711 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4712 if (found_key.objectid != objectid ||
4713 found_key.type != BTRFS_EXTENT_DATA_KEY)
4714 goto not_found;
4715 if (start + len <= found_key.offset)
4716 goto not_found;
4717 em->start = start;
4718 em->len = found_key.offset - start;
4719 goto not_found_em;
4720 }
4721
d899e052
YZ
4722 if (found_type == BTRFS_FILE_EXTENT_REG ||
4723 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
4724 em->start = extent_start;
4725 em->len = extent_end - extent_start;
ff5b7ee3
YZ
4726 em->orig_start = extent_start -
4727 btrfs_file_extent_offset(leaf, item);
db94535d
CM
4728 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4729 if (bytenr == 0) {
5f39d397 4730 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
4731 goto insert;
4732 }
c8b97818
CM
4733 if (compressed) {
4734 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4735 em->block_start = bytenr;
4736 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4737 item);
4738 } else {
4739 bytenr += btrfs_file_extent_offset(leaf, item);
4740 em->block_start = bytenr;
4741 em->block_len = em->len;
d899e052
YZ
4742 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4743 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 4744 }
a52d9a80
CM
4745 goto insert;
4746 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4747 unsigned long ptr;
a52d9a80 4748 char *map;
3326d1b0
CM
4749 size_t size;
4750 size_t extent_offset;
4751 size_t copy_size;
a52d9a80 4752
689f9346 4753 em->block_start = EXTENT_MAP_INLINE;
c8b97818 4754 if (!page || create) {
689f9346 4755 em->start = extent_start;
9036c102 4756 em->len = extent_end - extent_start;
689f9346
Y
4757 goto out;
4758 }
5f39d397 4759
9036c102
YZ
4760 size = btrfs_file_extent_inline_len(leaf, item);
4761 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 4762 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 4763 size - extent_offset);
3326d1b0 4764 em->start = extent_start + extent_offset;
70dec807
CM
4765 em->len = (copy_size + root->sectorsize - 1) &
4766 ~((u64)root->sectorsize - 1);
ff5b7ee3 4767 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
4768 if (compressed)
4769 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 4770 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 4771 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
4772 if (btrfs_file_extent_compression(leaf, item) ==
4773 BTRFS_COMPRESS_ZLIB) {
4774 ret = uncompress_inline(path, inode, page,
4775 pg_offset,
4776 extent_offset, item);
4777 BUG_ON(ret);
4778 } else {
4779 map = kmap(page);
4780 read_extent_buffer(leaf, map + pg_offset, ptr,
4781 copy_size);
93c82d57
CM
4782 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4783 memset(map + pg_offset + copy_size, 0,
4784 PAGE_CACHE_SIZE - pg_offset -
4785 copy_size);
4786 }
c8b97818
CM
4787 kunmap(page);
4788 }
179e29e4
CM
4789 flush_dcache_page(page);
4790 } else if (create && PageUptodate(page)) {
4791 if (!trans) {
4792 kunmap(page);
4793 free_extent_map(em);
4794 em = NULL;
4795 btrfs_release_path(root, path);
f9295749 4796 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
4797 goto again;
4798 }
c8b97818 4799 map = kmap(page);
70dec807 4800 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 4801 copy_size);
c8b97818 4802 kunmap(page);
179e29e4 4803 btrfs_mark_buffer_dirty(leaf);
a52d9a80 4804 }
d1310b2e
CM
4805 set_extent_uptodate(io_tree, em->start,
4806 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
4807 goto insert;
4808 } else {
d397712b 4809 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
4810 WARN_ON(1);
4811 }
4812not_found:
4813 em->start = start;
d1310b2e 4814 em->len = len;
a52d9a80 4815not_found_em:
5f39d397 4816 em->block_start = EXTENT_MAP_HOLE;
9036c102 4817 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
4818insert:
4819 btrfs_release_path(root, path);
d1310b2e 4820 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
4821 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4822 "[%llu %llu]\n", (unsigned long long)em->start,
4823 (unsigned long long)em->len,
4824 (unsigned long long)start,
4825 (unsigned long long)len);
a52d9a80
CM
4826 err = -EIO;
4827 goto out;
4828 }
d1310b2e
CM
4829
4830 err = 0;
890871be 4831 write_lock(&em_tree->lock);
a52d9a80 4832 ret = add_extent_mapping(em_tree, em);
3b951516
CM
4833 /* it is possible that someone inserted the extent into the tree
4834 * while we had the lock dropped. It is also possible that
4835 * an overlapping map exists in the tree
4836 */
a52d9a80 4837 if (ret == -EEXIST) {
3b951516 4838 struct extent_map *existing;
e6dcd2dc
CM
4839
4840 ret = 0;
4841
3b951516 4842 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
4843 if (existing && (existing->start > start ||
4844 existing->start + existing->len <= start)) {
4845 free_extent_map(existing);
4846 existing = NULL;
4847 }
3b951516
CM
4848 if (!existing) {
4849 existing = lookup_extent_mapping(em_tree, em->start,
4850 em->len);
4851 if (existing) {
4852 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
4853 em, start,
4854 root->sectorsize);
3b951516
CM
4855 free_extent_map(existing);
4856 if (err) {
4857 free_extent_map(em);
4858 em = NULL;
4859 }
4860 } else {
4861 err = -EIO;
3b951516
CM
4862 free_extent_map(em);
4863 em = NULL;
4864 }
4865 } else {
4866 free_extent_map(em);
4867 em = existing;
e6dcd2dc 4868 err = 0;
a52d9a80 4869 }
a52d9a80 4870 }
890871be 4871 write_unlock(&em_tree->lock);
a52d9a80 4872out:
f421950f
CM
4873 if (path)
4874 btrfs_free_path(path);
a52d9a80
CM
4875 if (trans) {
4876 ret = btrfs_end_transaction(trans, root);
d397712b 4877 if (!err)
a52d9a80
CM
4878 err = ret;
4879 }
a52d9a80
CM
4880 if (err) {
4881 free_extent_map(em);
a52d9a80
CM
4882 return ERR_PTR(err);
4883 }
4884 return em;
4885}
4886
16432985
CM
4887static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4888 const struct iovec *iov, loff_t offset,
4889 unsigned long nr_segs)
4890{
e1c4b745 4891 return -EINVAL;
16432985
CM
4892}
4893
1506fcc8
YS
4894static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4895 __u64 start, __u64 len)
4896{
4897 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4898}
4899
a52d9a80 4900int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 4901{
d1310b2e
CM
4902 struct extent_io_tree *tree;
4903 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4904 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 4905}
1832a6d5 4906
a52d9a80 4907static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 4908{
d1310b2e 4909 struct extent_io_tree *tree;
b888db2b
CM
4910
4911
4912 if (current->flags & PF_MEMALLOC) {
4913 redirty_page_for_writepage(wbc, page);
4914 unlock_page(page);
4915 return 0;
4916 }
d1310b2e 4917 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4918 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
4919}
4920
f421950f
CM
4921int btrfs_writepages(struct address_space *mapping,
4922 struct writeback_control *wbc)
b293f02e 4923{
d1310b2e 4924 struct extent_io_tree *tree;
771ed689 4925
d1310b2e 4926 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
4927 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4928}
4929
3ab2fb5a
CM
4930static int
4931btrfs_readpages(struct file *file, struct address_space *mapping,
4932 struct list_head *pages, unsigned nr_pages)
4933{
d1310b2e
CM
4934 struct extent_io_tree *tree;
4935 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
4936 return extent_readpages(tree, mapping, pages, nr_pages,
4937 btrfs_get_extent);
4938}
e6dcd2dc 4939static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 4940{
d1310b2e
CM
4941 struct extent_io_tree *tree;
4942 struct extent_map_tree *map;
a52d9a80 4943 int ret;
8c2383c3 4944
d1310b2e
CM
4945 tree = &BTRFS_I(page->mapping->host)->io_tree;
4946 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 4947 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
4948 if (ret == 1) {
4949 ClearPagePrivate(page);
4950 set_page_private(page, 0);
4951 page_cache_release(page);
39279cc3 4952 }
a52d9a80 4953 return ret;
39279cc3
CM
4954}
4955
e6dcd2dc
CM
4956static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4957{
98509cfc
CM
4958 if (PageWriteback(page) || PageDirty(page))
4959 return 0;
b335b003 4960 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
4961}
4962
a52d9a80 4963static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 4964{
d1310b2e 4965 struct extent_io_tree *tree;
e6dcd2dc
CM
4966 struct btrfs_ordered_extent *ordered;
4967 u64 page_start = page_offset(page);
4968 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 4969
8b62b72b
CM
4970
4971 /*
4972 * we have the page locked, so new writeback can't start,
4973 * and the dirty bit won't be cleared while we are here.
4974 *
4975 * Wait for IO on this page so that we can safely clear
4976 * the PagePrivate2 bit and do ordered accounting
4977 */
e6dcd2dc 4978 wait_on_page_writeback(page);
8b62b72b 4979
d1310b2e 4980 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
4981 if (offset) {
4982 btrfs_releasepage(page, GFP_NOFS);
4983 return;
4984 }
e6dcd2dc
CM
4985 lock_extent(tree, page_start, page_end, GFP_NOFS);
4986 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4987 page_offset(page));
4988 if (ordered) {
eb84ae03
CM
4989 /*
4990 * IO on this page will never be started, so we need
4991 * to account for any ordered extents now
4992 */
e6dcd2dc
CM
4993 clear_extent_bit(tree, page_start, page_end,
4994 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff
JB
4995 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
4996 NULL, GFP_NOFS);
8b62b72b
CM
4997 /*
4998 * whoever cleared the private bit is responsible
4999 * for the finish_ordered_io
5000 */
5001 if (TestClearPagePrivate2(page)) {
5002 btrfs_finish_ordered_io(page->mapping->host,
5003 page_start, page_end);
5004 }
e6dcd2dc
CM
5005 btrfs_put_ordered_extent(ordered);
5006 lock_extent(tree, page_start, page_end, GFP_NOFS);
5007 }
5008 clear_extent_bit(tree, page_start, page_end,
32c00aff
JB
5009 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5010 EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
e6dcd2dc
CM
5011 __btrfs_releasepage(page, GFP_NOFS);
5012
4a096752 5013 ClearPageChecked(page);
9ad6b7bc 5014 if (PagePrivate(page)) {
9ad6b7bc
CM
5015 ClearPagePrivate(page);
5016 set_page_private(page, 0);
5017 page_cache_release(page);
5018 }
39279cc3
CM
5019}
5020
9ebefb18
CM
5021/*
5022 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5023 * called from a page fault handler when a page is first dirtied. Hence we must
5024 * be careful to check for EOF conditions here. We set the page up correctly
5025 * for a written page which means we get ENOSPC checking when writing into
5026 * holes and correct delalloc and unwritten extent mapping on filesystems that
5027 * support these features.
5028 *
5029 * We are not allowed to take the i_mutex here so we have to play games to
5030 * protect against truncate races as the page could now be beyond EOF. Because
5031 * vmtruncate() writes the inode size before removing pages, once we have the
5032 * page lock we can determine safely if the page is beyond EOF. If it is not
5033 * beyond EOF, then the page is guaranteed safe against truncation until we
5034 * unlock the page.
5035 */
c2ec175c 5036int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 5037{
c2ec175c 5038 struct page *page = vmf->page;
6da6abae 5039 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 5040 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
5041 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5042 struct btrfs_ordered_extent *ordered;
5043 char *kaddr;
5044 unsigned long zero_start;
9ebefb18 5045 loff_t size;
1832a6d5 5046 int ret;
a52d9a80 5047 u64 page_start;
e6dcd2dc 5048 u64 page_end;
9ebefb18 5049
6a63209f 5050 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
56a76f82
NP
5051 if (ret) {
5052 if (ret == -ENOMEM)
5053 ret = VM_FAULT_OOM;
5054 else /* -ENOSPC, -EIO, etc */
5055 ret = VM_FAULT_SIGBUS;
1832a6d5 5056 goto out;
56a76f82 5057 }
1832a6d5 5058
9ed74f2d
JB
5059 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
5060 if (ret) {
5061 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5062 ret = VM_FAULT_SIGBUS;
5063 goto out;
5064 }
5065
56a76f82 5066 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 5067again:
9ebefb18 5068 lock_page(page);
9ebefb18 5069 size = i_size_read(inode);
e6dcd2dc
CM
5070 page_start = page_offset(page);
5071 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 5072
9ebefb18 5073 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 5074 (page_start >= size)) {
6a63209f 5075 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ebefb18
CM
5076 /* page got truncated out from underneath us */
5077 goto out_unlock;
5078 }
e6dcd2dc
CM
5079 wait_on_page_writeback(page);
5080
5081 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5082 set_page_extent_mapped(page);
5083
eb84ae03
CM
5084 /*
5085 * we can't set the delalloc bits if there are pending ordered
5086 * extents. Drop our locks and wait for them to finish
5087 */
e6dcd2dc
CM
5088 ordered = btrfs_lookup_ordered_extent(inode, page_start);
5089 if (ordered) {
5090 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5091 unlock_page(page);
eb84ae03 5092 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
5093 btrfs_put_ordered_extent(ordered);
5094 goto again;
5095 }
5096
fbf19087
JB
5097 /*
5098 * XXX - page_mkwrite gets called every time the page is dirtied, even
5099 * if it was already dirty, so for space accounting reasons we need to
5100 * clear any delalloc bits for the range we are fixing to save. There
5101 * is probably a better way to do this, but for now keep consistent with
5102 * prepare_pages in the normal write path.
5103 */
5104 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff
JB
5105 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5106 GFP_NOFS);
fbf19087 5107
9ed74f2d
JB
5108 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
5109 if (ret) {
5110 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5111 ret = VM_FAULT_SIGBUS;
fbf19087 5112 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ed74f2d
JB
5113 goto out_unlock;
5114 }
e6dcd2dc 5115 ret = 0;
9ebefb18
CM
5116
5117 /* page is wholly or partially inside EOF */
a52d9a80 5118 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 5119 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 5120 else
e6dcd2dc 5121 zero_start = PAGE_CACHE_SIZE;
9ebefb18 5122
e6dcd2dc
CM
5123 if (zero_start != PAGE_CACHE_SIZE) {
5124 kaddr = kmap(page);
5125 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5126 flush_dcache_page(page);
5127 kunmap(page);
5128 }
247e743c 5129 ClearPageChecked(page);
e6dcd2dc 5130 set_page_dirty(page);
50a9b214 5131 SetPageUptodate(page);
5a3f23d5 5132
257c62e1
CM
5133 BTRFS_I(inode)->last_trans = root->fs_info->generation;
5134 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5135
e6dcd2dc 5136 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
9ebefb18
CM
5137
5138out_unlock:
9ed74f2d 5139 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
50a9b214
CM
5140 if (!ret)
5141 return VM_FAULT_LOCKED;
9ebefb18 5142 unlock_page(page);
1832a6d5 5143out:
9ebefb18
CM
5144 return ret;
5145}
5146
39279cc3
CM
5147static void btrfs_truncate(struct inode *inode)
5148{
5149 struct btrfs_root *root = BTRFS_I(inode)->root;
5150 int ret;
5151 struct btrfs_trans_handle *trans;
d3c2fdcf 5152 unsigned long nr;
dbe674a9 5153 u64 mask = root->sectorsize - 1;
39279cc3 5154
8082510e
YZ
5155 if (!S_ISREG(inode->i_mode)) {
5156 WARN_ON(1);
39279cc3 5157 return;
8082510e 5158 }
39279cc3 5159
5d5e103a
JB
5160 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5161 if (ret)
5162 return;
8082510e 5163
4a096752 5164 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 5165 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 5166
39279cc3 5167 trans = btrfs_start_transaction(root, 1);
8082510e 5168 btrfs_set_trans_block_group(trans, inode);
5a3f23d5
CM
5169
5170 /*
5171 * setattr is responsible for setting the ordered_data_close flag,
5172 * but that is only tested during the last file release. That
5173 * could happen well after the next commit, leaving a great big
5174 * window where new writes may get lost if someone chooses to write
5175 * to this file after truncating to zero
5176 *
5177 * The inode doesn't have any dirty data here, and so if we commit
5178 * this is a noop. If someone immediately starts writing to the inode
5179 * it is very likely we'll catch some of their writes in this
5180 * transaction, and the commit will find this file on the ordered
5181 * data list with good things to send down.
5182 *
5183 * This is a best effort solution, there is still a window where
5184 * using truncate to replace the contents of the file will
5185 * end up with a zero length file after a crash.
5186 */
5187 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5188 btrfs_add_ordered_operation(trans, root, inode);
5189
8082510e
YZ
5190 while (1) {
5191 ret = btrfs_truncate_inode_items(trans, root, inode,
5192 inode->i_size,
5193 BTRFS_EXTENT_DATA_KEY);
5194 if (ret != -EAGAIN)
5195 break;
39279cc3 5196
8082510e
YZ
5197 ret = btrfs_update_inode(trans, root, inode);
5198 BUG_ON(ret);
5f39d397 5199
8082510e
YZ
5200 nr = trans->blocks_used;
5201 btrfs_end_transaction(trans, root);
5202 btrfs_btree_balance_dirty(root, nr);
5203
5204 trans = btrfs_start_transaction(root, 1);
5205 btrfs_set_trans_block_group(trans, inode);
5206 }
5207
5208 if (ret == 0 && inode->i_nlink > 0) {
5209 ret = btrfs_orphan_del(trans, inode);
5210 BUG_ON(ret);
5211 }
5212
5213 ret = btrfs_update_inode(trans, root, inode);
7b128766
JB
5214 BUG_ON(ret);
5215
7b128766 5216 nr = trans->blocks_used;
89ce8a63 5217 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 5218 BUG_ON(ret);
d3c2fdcf 5219 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5220}
5221
d352ac68
CM
5222/*
5223 * create a new subvolume directory/inode (helper for the ioctl).
5224 */
d2fb3437 5225int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 5226 struct btrfs_root *new_root,
d2fb3437 5227 u64 new_dirid, u64 alloc_hint)
39279cc3 5228{
39279cc3 5229 struct inode *inode;
76dda93c 5230 int err;
00e4e6b3 5231 u64 index = 0;
39279cc3 5232
aec7477b 5233 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 5234 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 5235 if (IS_ERR(inode))
f46b5a66 5236 return PTR_ERR(inode);
39279cc3
CM
5237 inode->i_op = &btrfs_dir_inode_operations;
5238 inode->i_fop = &btrfs_dir_file_operations;
5239
39279cc3 5240 inode->i_nlink = 1;
dbe674a9 5241 btrfs_i_size_write(inode, 0);
3b96362c 5242
76dda93c
YZ
5243 err = btrfs_update_inode(trans, new_root, inode);
5244 BUG_ON(err);
cb8e7090 5245
76dda93c 5246 iput(inode);
cb8e7090 5247 return 0;
39279cc3
CM
5248}
5249
d352ac68
CM
5250/* helper function for file defrag and space balancing. This
5251 * forces readahead on a given range of bytes in an inode
5252 */
edbd8d4e 5253unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
5254 struct file_ra_state *ra, struct file *file,
5255 pgoff_t offset, pgoff_t last_index)
5256{
8e7bf94f 5257 pgoff_t req_size = last_index - offset + 1;
86479a04 5258
86479a04
CM
5259 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5260 return offset + req_size;
86479a04
CM
5261}
5262
39279cc3
CM
5263struct inode *btrfs_alloc_inode(struct super_block *sb)
5264{
5265 struct btrfs_inode *ei;
5266
5267 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5268 if (!ei)
5269 return NULL;
15ee9bc7 5270 ei->last_trans = 0;
257c62e1 5271 ei->last_sub_trans = 0;
e02119d5 5272 ei->logged_trans = 0;
32c00aff
JB
5273 ei->outstanding_extents = 0;
5274 ei->reserved_extents = 0;
a6dbd429 5275 ei->root = NULL;
32c00aff 5276 spin_lock_init(&ei->accounting_lock);
e6dcd2dc 5277 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 5278 INIT_LIST_HEAD(&ei->i_orphan);
5a3f23d5 5279 INIT_LIST_HEAD(&ei->ordered_operations);
39279cc3
CM
5280 return &ei->vfs_inode;
5281}
5282
5283void btrfs_destroy_inode(struct inode *inode)
5284{
e6dcd2dc 5285 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
5286 struct btrfs_root *root = BTRFS_I(inode)->root;
5287
39279cc3
CM
5288 WARN_ON(!list_empty(&inode->i_dentry));
5289 WARN_ON(inode->i_data.nrpages);
5290
a6dbd429
JB
5291 /*
5292 * This can happen where we create an inode, but somebody else also
5293 * created the same inode and we need to destroy the one we already
5294 * created.
5295 */
5296 if (!root)
5297 goto free;
5298
5a3f23d5
CM
5299 /*
5300 * Make sure we're properly removed from the ordered operation
5301 * lists.
5302 */
5303 smp_mb();
5304 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5305 spin_lock(&root->fs_info->ordered_extent_lock);
5306 list_del_init(&BTRFS_I(inode)->ordered_operations);
5307 spin_unlock(&root->fs_info->ordered_extent_lock);
5308 }
5309
5310 spin_lock(&root->list_lock);
7b128766 5311 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
5312 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5313 inode->i_ino);
5314 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 5315 }
5a3f23d5 5316 spin_unlock(&root->list_lock);
7b128766 5317
d397712b 5318 while (1) {
e6dcd2dc
CM
5319 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5320 if (!ordered)
5321 break;
5322 else {
d397712b
CM
5323 printk(KERN_ERR "btrfs found ordered "
5324 "extent %llu %llu on inode cleanup\n",
5325 (unsigned long long)ordered->file_offset,
5326 (unsigned long long)ordered->len);
e6dcd2dc
CM
5327 btrfs_remove_ordered_extent(inode, ordered);
5328 btrfs_put_ordered_extent(ordered);
5329 btrfs_put_ordered_extent(ordered);
5330 }
5331 }
5d4f98a2 5332 inode_tree_del(inode);
5b21f2ed 5333 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 5334free:
39279cc3
CM
5335 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5336}
5337
76dda93c
YZ
5338void btrfs_drop_inode(struct inode *inode)
5339{
5340 struct btrfs_root *root = BTRFS_I(inode)->root;
5341
5342 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5343 generic_delete_inode(inode);
5344 else
5345 generic_drop_inode(inode);
5346}
5347
0ee0fda0 5348static void init_once(void *foo)
39279cc3
CM
5349{
5350 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5351
5352 inode_init_once(&ei->vfs_inode);
5353}
5354
5355void btrfs_destroy_cachep(void)
5356{
5357 if (btrfs_inode_cachep)
5358 kmem_cache_destroy(btrfs_inode_cachep);
5359 if (btrfs_trans_handle_cachep)
5360 kmem_cache_destroy(btrfs_trans_handle_cachep);
5361 if (btrfs_transaction_cachep)
5362 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
5363 if (btrfs_path_cachep)
5364 kmem_cache_destroy(btrfs_path_cachep);
5365}
5366
5367int btrfs_init_cachep(void)
5368{
9601e3f6
CH
5369 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5370 sizeof(struct btrfs_inode), 0,
5371 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
5372 if (!btrfs_inode_cachep)
5373 goto fail;
9601e3f6
CH
5374
5375 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5376 sizeof(struct btrfs_trans_handle), 0,
5377 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5378 if (!btrfs_trans_handle_cachep)
5379 goto fail;
9601e3f6
CH
5380
5381 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5382 sizeof(struct btrfs_transaction), 0,
5383 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5384 if (!btrfs_transaction_cachep)
5385 goto fail;
9601e3f6
CH
5386
5387 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5388 sizeof(struct btrfs_path), 0,
5389 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5390 if (!btrfs_path_cachep)
5391 goto fail;
9601e3f6 5392
39279cc3
CM
5393 return 0;
5394fail:
5395 btrfs_destroy_cachep();
5396 return -ENOMEM;
5397}
5398
5399static int btrfs_getattr(struct vfsmount *mnt,
5400 struct dentry *dentry, struct kstat *stat)
5401{
5402 struct inode *inode = dentry->d_inode;
5403 generic_fillattr(inode, stat);
3394e160 5404 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 5405 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
5406 stat->blocks = (inode_get_bytes(inode) +
5407 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
5408 return 0;
5409}
5410
d397712b
CM
5411static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5412 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
5413{
5414 struct btrfs_trans_handle *trans;
5415 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 5416 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
5417 struct inode *new_inode = new_dentry->d_inode;
5418 struct inode *old_inode = old_dentry->d_inode;
5419 struct timespec ctime = CURRENT_TIME;
00e4e6b3 5420 u64 index = 0;
4df27c4d 5421 u64 root_objectid;
39279cc3
CM
5422 int ret;
5423
f679a840
YZ
5424 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5425 return -EPERM;
5426
4df27c4d
YZ
5427 /* we only allow rename subvolume link between subvolumes */
5428 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
5429 return -EXDEV;
5430
4df27c4d
YZ
5431 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5432 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 5433 return -ENOTEMPTY;
5f39d397 5434
4df27c4d
YZ
5435 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5436 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5437 return -ENOTEMPTY;
0660b5af 5438
9ed74f2d 5439 /*
5df6a9f6
JB
5440 * We want to reserve the absolute worst case amount of items. So if
5441 * both inodes are subvols and we need to unlink them then that would
5442 * require 4 item modifications, but if they are both normal inodes it
5443 * would require 5 item modifications, so we'll assume their normal
5444 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5445 * should cover the worst case number of items we'll modify.
9ed74f2d 5446 */
5df6a9f6 5447 ret = btrfs_reserve_metadata_space(root, 11);
1832a6d5 5448 if (ret)
4df27c4d 5449 return ret;
1832a6d5 5450
5a3f23d5
CM
5451 /*
5452 * we're using rename to replace one file with another.
5453 * and the replacement file is large. Start IO on it now so
5454 * we don't add too much work to the end of the transaction
5455 */
4baf8c92 5456 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
5457 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5458 filemap_flush(old_inode->i_mapping);
5459
76dda93c
YZ
5460 /* close the racy window with snapshot create/destroy ioctl */
5461 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5462 down_read(&root->fs_info->subvol_sem);
5463
39279cc3 5464 trans = btrfs_start_transaction(root, 1);
a5719521 5465 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 5466
4df27c4d
YZ
5467 if (dest != root)
5468 btrfs_record_root_in_trans(trans, dest);
5f39d397 5469
a5719521
YZ
5470 ret = btrfs_set_inode_index(new_dir, &index);
5471 if (ret)
5472 goto out_fail;
5a3f23d5 5473
a5719521 5474 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5475 /* force full log commit if subvolume involved. */
5476 root->fs_info->last_trans_log_full_commit = trans->transid;
5477 } else {
a5719521
YZ
5478 ret = btrfs_insert_inode_ref(trans, dest,
5479 new_dentry->d_name.name,
5480 new_dentry->d_name.len,
5481 old_inode->i_ino,
5482 new_dir->i_ino, index);
5483 if (ret)
5484 goto out_fail;
4df27c4d
YZ
5485 /*
5486 * this is an ugly little race, but the rename is required
5487 * to make sure that if we crash, the inode is either at the
5488 * old name or the new one. pinning the log transaction lets
5489 * us make sure we don't allow a log commit to come in after
5490 * we unlink the name but before we add the new name back in.
5491 */
5492 btrfs_pin_log_trans(root);
5493 }
5a3f23d5
CM
5494 /*
5495 * make sure the inode gets flushed if it is replacing
5496 * something.
5497 */
5498 if (new_inode && new_inode->i_size &&
5499 old_inode && S_ISREG(old_inode->i_mode)) {
5500 btrfs_add_ordered_operation(trans, root, old_inode);
5501 }
5502
39279cc3
CM
5503 old_dir->i_ctime = old_dir->i_mtime = ctime;
5504 new_dir->i_ctime = new_dir->i_mtime = ctime;
5505 old_inode->i_ctime = ctime;
5f39d397 5506
12fcfd22
CM
5507 if (old_dentry->d_parent != new_dentry->d_parent)
5508 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5509
4df27c4d
YZ
5510 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5511 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5512 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5513 old_dentry->d_name.name,
5514 old_dentry->d_name.len);
5515 } else {
5516 btrfs_inc_nlink(old_dentry->d_inode);
5517 ret = btrfs_unlink_inode(trans, root, old_dir,
5518 old_dentry->d_inode,
5519 old_dentry->d_name.name,
5520 old_dentry->d_name.len);
5521 }
5522 BUG_ON(ret);
39279cc3
CM
5523
5524 if (new_inode) {
5525 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
5526 if (unlikely(new_inode->i_ino ==
5527 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5528 root_objectid = BTRFS_I(new_inode)->location.objectid;
5529 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5530 root_objectid,
5531 new_dentry->d_name.name,
5532 new_dentry->d_name.len);
5533 BUG_ON(new_inode->i_nlink == 0);
5534 } else {
5535 ret = btrfs_unlink_inode(trans, dest, new_dir,
5536 new_dentry->d_inode,
5537 new_dentry->d_name.name,
5538 new_dentry->d_name.len);
5539 }
5540 BUG_ON(ret);
7b128766 5541 if (new_inode->i_nlink == 0) {
e02119d5 5542 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 5543 BUG_ON(ret);
7b128766 5544 }
39279cc3 5545 }
aec7477b 5546
4df27c4d
YZ
5547 ret = btrfs_add_link(trans, new_dir, old_inode,
5548 new_dentry->d_name.name,
a5719521 5549 new_dentry->d_name.len, 0, index);
4df27c4d 5550 BUG_ON(ret);
39279cc3 5551
4df27c4d
YZ
5552 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5553 btrfs_log_new_name(trans, old_inode, old_dir,
5554 new_dentry->d_parent);
5555 btrfs_end_log_trans(root);
5556 }
39279cc3 5557out_fail:
ab78c84d 5558 btrfs_end_transaction_throttle(trans, root);
4df27c4d 5559
76dda93c
YZ
5560 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5561 up_read(&root->fs_info->subvol_sem);
9ed74f2d 5562
5df6a9f6 5563 btrfs_unreserve_metadata_space(root, 11);
39279cc3
CM
5564 return ret;
5565}
5566
d352ac68
CM
5567/*
5568 * some fairly slow code that needs optimization. This walks the list
5569 * of all the inodes with pending delalloc and forces them to disk.
5570 */
ea8c2819
CM
5571int btrfs_start_delalloc_inodes(struct btrfs_root *root)
5572{
5573 struct list_head *head = &root->fs_info->delalloc_inodes;
5574 struct btrfs_inode *binode;
5b21f2ed 5575 struct inode *inode;
ea8c2819 5576
c146afad
YZ
5577 if (root->fs_info->sb->s_flags & MS_RDONLY)
5578 return -EROFS;
5579
75eff68e 5580 spin_lock(&root->fs_info->delalloc_lock);
d397712b 5581 while (!list_empty(head)) {
ea8c2819
CM
5582 binode = list_entry(head->next, struct btrfs_inode,
5583 delalloc_inodes);
5b21f2ed
ZY
5584 inode = igrab(&binode->vfs_inode);
5585 if (!inode)
5586 list_del_init(&binode->delalloc_inodes);
75eff68e 5587 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 5588 if (inode) {
8c8bee1d 5589 filemap_flush(inode->i_mapping);
5b21f2ed
ZY
5590 iput(inode);
5591 }
5592 cond_resched();
75eff68e 5593 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 5594 }
75eff68e 5595 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
5596
5597 /* the filemap_flush will queue IO into the worker threads, but
5598 * we have to make sure the IO is actually started and that
5599 * ordered extents get created before we return
5600 */
5601 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 5602 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 5603 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 5604 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
5605 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5606 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
5607 }
5608 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
5609 return 0;
5610}
5611
39279cc3
CM
5612static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5613 const char *symname)
5614{
5615 struct btrfs_trans_handle *trans;
5616 struct btrfs_root *root = BTRFS_I(dir)->root;
5617 struct btrfs_path *path;
5618 struct btrfs_key key;
1832a6d5 5619 struct inode *inode = NULL;
39279cc3
CM
5620 int err;
5621 int drop_inode = 0;
5622 u64 objectid;
00e4e6b3 5623 u64 index = 0 ;
39279cc3
CM
5624 int name_len;
5625 int datasize;
5f39d397 5626 unsigned long ptr;
39279cc3 5627 struct btrfs_file_extent_item *ei;
5f39d397 5628 struct extent_buffer *leaf;
1832a6d5 5629 unsigned long nr = 0;
39279cc3
CM
5630
5631 name_len = strlen(symname) + 1;
5632 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5633 return -ENAMETOOLONG;
1832a6d5 5634
9ed74f2d
JB
5635 /*
5636 * 2 items for inode item and ref
5637 * 2 items for dir items
5638 * 1 item for xattr if selinux is on
5639 */
5640 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 5641 if (err)
9ed74f2d 5642 return err;
1832a6d5 5643
39279cc3 5644 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
5645 if (!trans)
5646 goto out_fail;
39279cc3
CM
5647 btrfs_set_trans_block_group(trans, dir);
5648
5649 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5650 if (err) {
5651 err = -ENOSPC;
5652 goto out_unlock;
5653 }
5654
aec7477b 5655 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
5656 dentry->d_name.len,
5657 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
5658 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5659 &index);
39279cc3
CM
5660 err = PTR_ERR(inode);
5661 if (IS_ERR(inode))
5662 goto out_unlock;
5663
f34f57a3 5664 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
5665 if (err) {
5666 drop_inode = 1;
5667 goto out_unlock;
5668 }
5669
39279cc3 5670 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 5671 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
5672 if (err)
5673 drop_inode = 1;
5674 else {
5675 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5676 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
5677 inode->i_fop = &btrfs_file_operations;
5678 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 5679 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 5680 }
39279cc3
CM
5681 btrfs_update_inode_block_group(trans, inode);
5682 btrfs_update_inode_block_group(trans, dir);
5683 if (drop_inode)
5684 goto out_unlock;
5685
5686 path = btrfs_alloc_path();
5687 BUG_ON(!path);
5688 key.objectid = inode->i_ino;
5689 key.offset = 0;
39279cc3
CM
5690 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5691 datasize = btrfs_file_extent_calc_inline_size(name_len);
5692 err = btrfs_insert_empty_item(trans, root, path, &key,
5693 datasize);
54aa1f4d
CM
5694 if (err) {
5695 drop_inode = 1;
5696 goto out_unlock;
5697 }
5f39d397
CM
5698 leaf = path->nodes[0];
5699 ei = btrfs_item_ptr(leaf, path->slots[0],
5700 struct btrfs_file_extent_item);
5701 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5702 btrfs_set_file_extent_type(leaf, ei,
39279cc3 5703 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
5704 btrfs_set_file_extent_encryption(leaf, ei, 0);
5705 btrfs_set_file_extent_compression(leaf, ei, 0);
5706 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5707 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5708
39279cc3 5709 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
5710 write_extent_buffer(leaf, symname, ptr, name_len);
5711 btrfs_mark_buffer_dirty(leaf);
39279cc3 5712 btrfs_free_path(path);
5f39d397 5713
39279cc3
CM
5714 inode->i_op = &btrfs_symlink_inode_operations;
5715 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 5716 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 5717 inode_set_bytes(inode, name_len);
dbe674a9 5718 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
5719 err = btrfs_update_inode(trans, root, inode);
5720 if (err)
5721 drop_inode = 1;
39279cc3
CM
5722
5723out_unlock:
d3c2fdcf 5724 nr = trans->blocks_used;
ab78c84d 5725 btrfs_end_transaction_throttle(trans, root);
1832a6d5 5726out_fail:
9ed74f2d 5727 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
5728 if (drop_inode) {
5729 inode_dec_link_count(inode);
5730 iput(inode);
5731 }
d3c2fdcf 5732 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5733 return err;
5734}
16432985 5735
5a303d5d 5736static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
920bbbfb 5737 u64 alloc_hint, int mode)
d899e052 5738{
5a303d5d 5739 struct btrfs_trans_handle *trans;
d899e052
YZ
5740 struct btrfs_root *root = BTRFS_I(inode)->root;
5741 struct btrfs_key ins;
5742 u64 alloc_size;
5743 u64 cur_offset = start;
5744 u64 num_bytes = end - start;
5745 int ret = 0;
5746
d899e052
YZ
5747 while (num_bytes > 0) {
5748 alloc_size = min(num_bytes, root->fs_info->max_extent);
9ed74f2d 5749
d899e052
YZ
5750 ret = btrfs_reserve_extent(trans, root, alloc_size,
5751 root->sectorsize, 0, alloc_hint,
5752 (u64)-1, &ins, 1);
5753 if (ret) {
5754 WARN_ON(1);
5a303d5d
YZ
5755 break;
5756 }
5757
5758 ret = btrfs_reserve_metadata_space(root, 3);
5759 if (ret) {
5760 btrfs_free_reserved_extent(root, ins.objectid,
5761 ins.offset);
5762 break;
d899e052 5763 }
5a303d5d
YZ
5764
5765 trans = btrfs_start_transaction(root, 1);
5766
d899e052
YZ
5767 ret = insert_reserved_file_extent(trans, inode,
5768 cur_offset, ins.objectid,
5769 ins.offset, ins.offset,
920bbbfb 5770 ins.offset, 0, 0, 0,
d899e052
YZ
5771 BTRFS_FILE_EXTENT_PREALLOC);
5772 BUG_ON(ret);
a1ed835e
CM
5773 btrfs_drop_extent_cache(inode, cur_offset,
5774 cur_offset + ins.offset -1, 0);
5a303d5d 5775
d899e052
YZ
5776 num_bytes -= ins.offset;
5777 cur_offset += ins.offset;
5778 alloc_hint = ins.objectid + ins.offset;
5a303d5d 5779
d899e052 5780 inode->i_ctime = CURRENT_TIME;
6cbff00f 5781 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 5782 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5a303d5d
YZ
5783 cur_offset > inode->i_size) {
5784 i_size_write(inode, cur_offset);
5785 btrfs_ordered_update_i_size(inode, cur_offset, NULL);
5786 }
5787
d899e052
YZ
5788 ret = btrfs_update_inode(trans, root, inode);
5789 BUG_ON(ret);
d899e052 5790
5a303d5d
YZ
5791 btrfs_end_transaction(trans, root);
5792 btrfs_unreserve_metadata_space(root, 3);
5793 }
d899e052
YZ
5794 return ret;
5795}
5796
5797static long btrfs_fallocate(struct inode *inode, int mode,
5798 loff_t offset, loff_t len)
5799{
5800 u64 cur_offset;
5801 u64 last_byte;
5802 u64 alloc_start;
5803 u64 alloc_end;
5804 u64 alloc_hint = 0;
e980b50c 5805 u64 locked_end;
d899e052
YZ
5806 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5807 struct extent_map *em;
5808 int ret;
5809
5810 alloc_start = offset & ~mask;
5811 alloc_end = (offset + len + mask) & ~mask;
5812
546888da
CM
5813 /*
5814 * wait for ordered IO before we have any locks. We'll loop again
5815 * below with the locks held.
5816 */
5817 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5818
d899e052
YZ
5819 mutex_lock(&inode->i_mutex);
5820 if (alloc_start > inode->i_size) {
5821 ret = btrfs_cont_expand(inode, alloc_start);
5822 if (ret)
5823 goto out;
5824 }
5825
5a303d5d 5826 ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode,
a970b0a1
JB
5827 alloc_end - alloc_start);
5828 if (ret)
5829 goto out;
5830
e980b50c 5831 locked_end = alloc_end - 1;
d899e052
YZ
5832 while (1) {
5833 struct btrfs_ordered_extent *ordered;
546888da 5834
546888da
CM
5835 /* the extent lock is ordered inside the running
5836 * transaction
5837 */
e980b50c
CM
5838 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5839 GFP_NOFS);
d899e052
YZ
5840 ordered = btrfs_lookup_first_ordered_extent(inode,
5841 alloc_end - 1);
5842 if (ordered &&
5843 ordered->file_offset + ordered->len > alloc_start &&
5844 ordered->file_offset < alloc_end) {
5845 btrfs_put_ordered_extent(ordered);
5846 unlock_extent(&BTRFS_I(inode)->io_tree,
e980b50c 5847 alloc_start, locked_end, GFP_NOFS);
546888da
CM
5848 /*
5849 * we can't wait on the range with the transaction
5850 * running or with the extent lock held
5851 */
d899e052
YZ
5852 btrfs_wait_ordered_range(inode, alloc_start,
5853 alloc_end - alloc_start);
5854 } else {
5855 if (ordered)
5856 btrfs_put_ordered_extent(ordered);
5857 break;
5858 }
5859 }
5860
5861 cur_offset = alloc_start;
5862 while (1) {
5863 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5864 alloc_end - cur_offset, 0);
5865 BUG_ON(IS_ERR(em) || !em);
5866 last_byte = min(extent_map_end(em), alloc_end);
5867 last_byte = (last_byte + mask) & ~mask;
5a303d5d
YZ
5868 if (em->block_start == EXTENT_MAP_HOLE ||
5869 (cur_offset >= inode->i_size &&
5870 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5871 ret = prealloc_file_range(inode,
5872 cur_offset, last_byte,
5873 alloc_hint, mode);
d899e052
YZ
5874 if (ret < 0) {
5875 free_extent_map(em);
5876 break;
5877 }
5878 }
5879 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5880 alloc_hint = em->block_start;
5881 free_extent_map(em);
5882
5883 cur_offset = last_byte;
5884 if (cur_offset >= alloc_end) {
5885 ret = 0;
5886 break;
5887 }
5888 }
e980b50c 5889 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
d899e052 5890 GFP_NOFS);
546888da 5891
5a303d5d
YZ
5892 btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode,
5893 alloc_end - alloc_start);
d899e052
YZ
5894out:
5895 mutex_unlock(&inode->i_mutex);
5896 return ret;
5897}
5898
e6dcd2dc
CM
5899static int btrfs_set_page_dirty(struct page *page)
5900{
e6dcd2dc
CM
5901 return __set_page_dirty_nobuffers(page);
5902}
5903
0ee0fda0 5904static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 5905{
6cbff00f 5906 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 5907 return -EACCES;
33268eaf 5908 return generic_permission(inode, mask, btrfs_check_acl);
fdebe2bd 5909}
39279cc3 5910
6e1d5dcc 5911static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 5912 .getattr = btrfs_getattr,
39279cc3
CM
5913 .lookup = btrfs_lookup,
5914 .create = btrfs_create,
5915 .unlink = btrfs_unlink,
5916 .link = btrfs_link,
5917 .mkdir = btrfs_mkdir,
5918 .rmdir = btrfs_rmdir,
5919 .rename = btrfs_rename,
5920 .symlink = btrfs_symlink,
5921 .setattr = btrfs_setattr,
618e21d5 5922 .mknod = btrfs_mknod,
95819c05
CH
5923 .setxattr = btrfs_setxattr,
5924 .getxattr = btrfs_getxattr,
5103e947 5925 .listxattr = btrfs_listxattr,
95819c05 5926 .removexattr = btrfs_removexattr,
fdebe2bd 5927 .permission = btrfs_permission,
39279cc3 5928};
6e1d5dcc 5929static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 5930 .lookup = btrfs_lookup,
fdebe2bd 5931 .permission = btrfs_permission,
39279cc3 5932};
76dda93c 5933
828c0950 5934static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
5935 .llseek = generic_file_llseek,
5936 .read = generic_read_dir,
cbdf5a24 5937 .readdir = btrfs_real_readdir,
34287aa3 5938 .unlocked_ioctl = btrfs_ioctl,
39279cc3 5939#ifdef CONFIG_COMPAT
34287aa3 5940 .compat_ioctl = btrfs_ioctl,
39279cc3 5941#endif
6bf13c0c 5942 .release = btrfs_release_file,
e02119d5 5943 .fsync = btrfs_sync_file,
39279cc3
CM
5944};
5945
d1310b2e 5946static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 5947 .fill_delalloc = run_delalloc_range,
065631f6 5948 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 5949 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 5950 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 5951 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 5952 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 5953 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
5954 .set_bit_hook = btrfs_set_bit_hook,
5955 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
5956 .merge_extent_hook = btrfs_merge_extent_hook,
5957 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
5958};
5959
35054394
CM
5960/*
5961 * btrfs doesn't support the bmap operation because swapfiles
5962 * use bmap to make a mapping of extents in the file. They assume
5963 * these extents won't change over the life of the file and they
5964 * use the bmap result to do IO directly to the drive.
5965 *
5966 * the btrfs bmap call would return logical addresses that aren't
5967 * suitable for IO and they also will change frequently as COW
5968 * operations happen. So, swapfile + btrfs == corruption.
5969 *
5970 * For now we're avoiding this by dropping bmap.
5971 */
7f09410b 5972static const struct address_space_operations btrfs_aops = {
39279cc3
CM
5973 .readpage = btrfs_readpage,
5974 .writepage = btrfs_writepage,
b293f02e 5975 .writepages = btrfs_writepages,
3ab2fb5a 5976 .readpages = btrfs_readpages,
39279cc3 5977 .sync_page = block_sync_page,
16432985 5978 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
5979 .invalidatepage = btrfs_invalidatepage,
5980 .releasepage = btrfs_releasepage,
e6dcd2dc 5981 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 5982 .error_remove_page = generic_error_remove_page,
39279cc3
CM
5983};
5984
7f09410b 5985static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
5986 .readpage = btrfs_readpage,
5987 .writepage = btrfs_writepage,
2bf5a725
CM
5988 .invalidatepage = btrfs_invalidatepage,
5989 .releasepage = btrfs_releasepage,
39279cc3
CM
5990};
5991
6e1d5dcc 5992static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
5993 .truncate = btrfs_truncate,
5994 .getattr = btrfs_getattr,
5995 .setattr = btrfs_setattr,
95819c05
CH
5996 .setxattr = btrfs_setxattr,
5997 .getxattr = btrfs_getxattr,
5103e947 5998 .listxattr = btrfs_listxattr,
95819c05 5999 .removexattr = btrfs_removexattr,
fdebe2bd 6000 .permission = btrfs_permission,
d899e052 6001 .fallocate = btrfs_fallocate,
1506fcc8 6002 .fiemap = btrfs_fiemap,
39279cc3 6003};
6e1d5dcc 6004static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
6005 .getattr = btrfs_getattr,
6006 .setattr = btrfs_setattr,
fdebe2bd 6007 .permission = btrfs_permission,
95819c05
CH
6008 .setxattr = btrfs_setxattr,
6009 .getxattr = btrfs_getxattr,
33268eaf 6010 .listxattr = btrfs_listxattr,
95819c05 6011 .removexattr = btrfs_removexattr,
618e21d5 6012};
6e1d5dcc 6013static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
6014 .readlink = generic_readlink,
6015 .follow_link = page_follow_link_light,
6016 .put_link = page_put_link,
fdebe2bd 6017 .permission = btrfs_permission,
0279b4cd
JO
6018 .setxattr = btrfs_setxattr,
6019 .getxattr = btrfs_getxattr,
6020 .listxattr = btrfs_listxattr,
6021 .removexattr = btrfs_removexattr,
39279cc3 6022};
76dda93c 6023
82d339d9 6024const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
6025 .d_delete = btrfs_dentry_delete,
6026};