Btrfs: avoid delayed metadata items during commits
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
4b4e25f2 41#include "compat.h"
39279cc3
CM
42#include "ctree.h"
43#include "disk-io.h"
44#include "transaction.h"
45#include "btrfs_inode.h"
46#include "ioctl.h"
47#include "print-tree.h"
0b86a832 48#include "volumes.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
c8b97818 52#include "compression.h"
b4ce94de 53#include "locking.h"
dc89e982 54#include "free-space-cache.h"
581bb050 55#include "inode-map.h"
39279cc3
CM
56
57struct btrfs_iget_args {
58 u64 ino;
59 struct btrfs_root *root;
60};
61
6e1d5dcc
AD
62static const struct inode_operations btrfs_dir_inode_operations;
63static const struct inode_operations btrfs_symlink_inode_operations;
64static const struct inode_operations btrfs_dir_ro_inode_operations;
65static const struct inode_operations btrfs_special_inode_operations;
66static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
67static const struct address_space_operations btrfs_aops;
68static const struct address_space_operations btrfs_symlink_aops;
828c0950 69static const struct file_operations btrfs_dir_file_operations;
d1310b2e 70static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
71
72static struct kmem_cache *btrfs_inode_cachep;
73struct kmem_cache *btrfs_trans_handle_cachep;
74struct kmem_cache *btrfs_transaction_cachep;
39279cc3 75struct kmem_cache *btrfs_path_cachep;
dc89e982 76struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
77
78#define S_SHIFT 12
79static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87};
88
a41ad394
JB
89static int btrfs_setsize(struct inode *inode, loff_t newsize);
90static int btrfs_truncate(struct inode *inode);
c8b97818 91static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
92static noinline int cow_file_range(struct inode *inode,
93 struct page *locked_page,
94 u64 start, u64 end, int *page_started,
95 unsigned long *nr_written, int unlock);
7b128766 96
f34f57a3 97static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
98 struct inode *inode, struct inode *dir,
99 const struct qstr *qstr)
0279b4cd
JO
100{
101 int err;
102
f34f57a3 103 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 104 if (!err)
2a7dba39 105 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
106 return err;
107}
108
c8b97818
CM
109/*
110 * this does all the hard work for inserting an inline extent into
111 * the btree. The caller should have done a btrfs_drop_extents so that
112 * no overlapping inline items exist in the btree
113 */
d397712b 114static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
115 struct btrfs_root *root, struct inode *inode,
116 u64 start, size_t size, size_t compressed_size,
fe3f566c 117 int compress_type,
c8b97818
CM
118 struct page **compressed_pages)
119{
120 struct btrfs_key key;
121 struct btrfs_path *path;
122 struct extent_buffer *leaf;
123 struct page *page = NULL;
124 char *kaddr;
125 unsigned long ptr;
126 struct btrfs_file_extent_item *ei;
127 int err = 0;
128 int ret;
129 size_t cur_size = size;
130 size_t datasize;
131 unsigned long offset;
c8b97818 132
fe3f566c 133 if (compressed_size && compressed_pages)
c8b97818 134 cur_size = compressed_size;
c8b97818 135
d397712b
CM
136 path = btrfs_alloc_path();
137 if (!path)
c8b97818
CM
138 return -ENOMEM;
139
b9473439 140 path->leave_spinning = 1;
c8b97818 141
33345d01 142 key.objectid = btrfs_ino(inode);
c8b97818
CM
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
c8b97818
CM
153 goto fail;
154 }
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
164
261507a0 165 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
166 struct page *cpage;
167 int i = 0;
d397712b 168 while (compressed_size > 0) {
c8b97818 169 cpage = compressed_pages[i];
5b050f04 170 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
171 PAGE_CACHE_SIZE);
172
b9473439 173 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 175 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
176
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
180 }
181 btrfs_set_file_extent_compression(leaf, ei,
261507a0 182 compress_type);
c8b97818
CM
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
192 }
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
195
c2167754
YZ
196 /*
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
200 *
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
204 */
c8b97818
CM
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
c2167754 207
c8b97818
CM
208 return 0;
209fail:
210 btrfs_free_path(path);
211 return err;
212}
213
214
215/*
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
219 */
7f366cfe 220static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
fe3f566c 223 size_t compressed_size, int compress_type,
c8b97818
CM
224 struct page **compressed_pages)
225{
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
70b99e69 239 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
920bbbfb 248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 249 &hint_byte, 1);
c8b97818
CM
250 BUG_ON(ret);
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
fe3f566c 256 compress_type, compressed_pages);
c8b97818 257 BUG_ON(ret);
0ca1f7ce 258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
260 return 0;
261}
262
771ed689
CM
263struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
261507a0 269 int compress_type;
771ed689
CM
270 struct list_head list;
271};
272
273struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
281};
282
283static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
261507a0
LZ
287 unsigned long nr_pages,
288 int compress_type)
771ed689
CM
289{
290 struct async_extent *async_extent;
291
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 293 BUG_ON(!async_extent);
771ed689
CM
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
261507a0 299 async_extent->compress_type = compress_type;
771ed689
CM
300 list_add_tail(&async_extent->list, &cow->extents);
301 return 0;
302}
303
d352ac68 304/*
771ed689
CM
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
c8b97818 308 *
771ed689
CM
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
c8b97818 314 *
771ed689
CM
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
d352ac68 319 */
771ed689
CM
320static noinline int compress_file_range(struct inode *inode,
321 struct page *locked_page,
322 u64 start, u64 end,
323 struct async_cow *async_cow,
324 int *num_added)
b888db2b
CM
325{
326 struct btrfs_root *root = BTRFS_I(inode)->root;
327 struct btrfs_trans_handle *trans;
db94535d 328 u64 num_bytes;
db94535d 329 u64 blocksize = root->sectorsize;
c8b97818 330 u64 actual_end;
42dc7bab 331 u64 isize = i_size_read(inode);
e6dcd2dc 332 int ret = 0;
c8b97818
CM
333 struct page **pages = NULL;
334 unsigned long nr_pages;
335 unsigned long nr_pages_ret = 0;
336 unsigned long total_compressed = 0;
337 unsigned long total_in = 0;
338 unsigned long max_compressed = 128 * 1024;
771ed689 339 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
340 int i;
341 int will_compress;
261507a0 342 int compress_type = root->fs_info->compress_type;
b888db2b 343
4cb5300b
CM
344 /* if this is a small write inside eof, kick off a defragbot */
345 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346 btrfs_add_inode_defrag(NULL, inode);
347
42dc7bab 348 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
349again:
350 will_compress = 0;
351 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 353
f03d9301
CM
354 /*
355 * we don't want to send crud past the end of i_size through
356 * compression, that's just a waste of CPU time. So, if the
357 * end of the file is before the start of our current
358 * requested range of bytes, we bail out to the uncompressed
359 * cleanup code that can deal with all of this.
360 *
361 * It isn't really the fastest way to fix things, but this is a
362 * very uncommon corner.
363 */
364 if (actual_end <= start)
365 goto cleanup_and_bail_uncompressed;
366
c8b97818
CM
367 total_compressed = actual_end - start;
368
369 /* we want to make sure that amount of ram required to uncompress
370 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
371 * of a compressed extent to 128k. This is a crucial number
372 * because it also controls how easily we can spread reads across
373 * cpus for decompression.
374 *
375 * We also want to make sure the amount of IO required to do
376 * a random read is reasonably small, so we limit the size of
377 * a compressed extent to 128k.
c8b97818
CM
378 */
379 total_compressed = min(total_compressed, max_uncompressed);
db94535d 380 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 381 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
382 total_in = 0;
383 ret = 0;
db94535d 384
771ed689
CM
385 /*
386 * we do compression for mount -o compress and when the
387 * inode has not been flagged as nocompress. This flag can
388 * change at any time if we discover bad compression ratios.
c8b97818 389 */
6cbff00f 390 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 391 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
392 (BTRFS_I(inode)->force_compress) ||
393 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 394 WARN_ON(pages);
cfbc246e 395 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
dac97e51 396 BUG_ON(!pages);
c8b97818 397
261507a0
LZ
398 if (BTRFS_I(inode)->force_compress)
399 compress_type = BTRFS_I(inode)->force_compress;
400
401 ret = btrfs_compress_pages(compress_type,
402 inode->i_mapping, start,
403 total_compressed, pages,
404 nr_pages, &nr_pages_ret,
405 &total_in,
406 &total_compressed,
407 max_compressed);
c8b97818
CM
408
409 if (!ret) {
410 unsigned long offset = total_compressed &
411 (PAGE_CACHE_SIZE - 1);
412 struct page *page = pages[nr_pages_ret - 1];
413 char *kaddr;
414
415 /* zero the tail end of the last page, we might be
416 * sending it down to disk
417 */
418 if (offset) {
419 kaddr = kmap_atomic(page, KM_USER0);
420 memset(kaddr + offset, 0,
421 PAGE_CACHE_SIZE - offset);
422 kunmap_atomic(kaddr, KM_USER0);
423 }
424 will_compress = 1;
425 }
426 }
427 if (start == 0) {
7a7eaa40 428 trans = btrfs_join_transaction(root);
3612b495 429 BUG_ON(IS_ERR(trans));
0ca1f7ce 430 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 431
c8b97818 432 /* lets try to make an inline extent */
771ed689 433 if (ret || total_in < (actual_end - start)) {
c8b97818 434 /* we didn't compress the entire range, try
771ed689 435 * to make an uncompressed inline extent.
c8b97818
CM
436 */
437 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 438 start, end, 0, 0, NULL);
c8b97818 439 } else {
771ed689 440 /* try making a compressed inline extent */
c8b97818
CM
441 ret = cow_file_range_inline(trans, root, inode,
442 start, end,
fe3f566c
LZ
443 total_compressed,
444 compress_type, pages);
c8b97818
CM
445 }
446 if (ret == 0) {
771ed689
CM
447 /*
448 * inline extent creation worked, we don't need
449 * to create any more async work items. Unlock
450 * and free up our temp pages.
451 */
c8b97818 452 extent_clear_unlock_delalloc(inode,
a791e35e
CM
453 &BTRFS_I(inode)->io_tree,
454 start, end, NULL,
455 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 456 EXTENT_CLEAR_DELALLOC |
a791e35e 457 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
458
459 btrfs_end_transaction(trans, root);
c8b97818
CM
460 goto free_pages_out;
461 }
c2167754 462 btrfs_end_transaction(trans, root);
c8b97818
CM
463 }
464
465 if (will_compress) {
466 /*
467 * we aren't doing an inline extent round the compressed size
468 * up to a block size boundary so the allocator does sane
469 * things
470 */
471 total_compressed = (total_compressed + blocksize - 1) &
472 ~(blocksize - 1);
473
474 /*
475 * one last check to make sure the compression is really a
476 * win, compare the page count read with the blocks on disk
477 */
478 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
479 ~(PAGE_CACHE_SIZE - 1);
480 if (total_compressed >= total_in) {
481 will_compress = 0;
482 } else {
c8b97818
CM
483 num_bytes = total_in;
484 }
485 }
486 if (!will_compress && pages) {
487 /*
488 * the compression code ran but failed to make things smaller,
489 * free any pages it allocated and our page pointer array
490 */
491 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 492 WARN_ON(pages[i]->mapping);
c8b97818
CM
493 page_cache_release(pages[i]);
494 }
495 kfree(pages);
496 pages = NULL;
497 total_compressed = 0;
498 nr_pages_ret = 0;
499
500 /* flag the file so we don't compress in the future */
1e701a32
CM
501 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
502 !(BTRFS_I(inode)->force_compress)) {
a555f810 503 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 504 }
c8b97818 505 }
771ed689
CM
506 if (will_compress) {
507 *num_added += 1;
c8b97818 508
771ed689
CM
509 /* the async work queues will take care of doing actual
510 * allocation on disk for these compressed pages,
511 * and will submit them to the elevator.
512 */
513 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
514 total_compressed, pages, nr_pages_ret,
515 compress_type);
179e29e4 516
24ae6365 517 if (start + num_bytes < end) {
771ed689
CM
518 start += num_bytes;
519 pages = NULL;
520 cond_resched();
521 goto again;
522 }
523 } else {
f03d9301 524cleanup_and_bail_uncompressed:
771ed689
CM
525 /*
526 * No compression, but we still need to write the pages in
527 * the file we've been given so far. redirty the locked
528 * page if it corresponds to our extent and set things up
529 * for the async work queue to run cow_file_range to do
530 * the normal delalloc dance
531 */
532 if (page_offset(locked_page) >= start &&
533 page_offset(locked_page) <= end) {
534 __set_page_dirty_nobuffers(locked_page);
535 /* unlocked later on in the async handlers */
536 }
261507a0
LZ
537 add_async_extent(async_cow, start, end - start + 1,
538 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
539 *num_added += 1;
540 }
3b951516 541
771ed689
CM
542out:
543 return 0;
544
545free_pages_out:
546 for (i = 0; i < nr_pages_ret; i++) {
547 WARN_ON(pages[i]->mapping);
548 page_cache_release(pages[i]);
549 }
d397712b 550 kfree(pages);
771ed689
CM
551
552 goto out;
553}
554
555/*
556 * phase two of compressed writeback. This is the ordered portion
557 * of the code, which only gets called in the order the work was
558 * queued. We walk all the async extents created by compress_file_range
559 * and send them down to the disk.
560 */
561static noinline int submit_compressed_extents(struct inode *inode,
562 struct async_cow *async_cow)
563{
564 struct async_extent *async_extent;
565 u64 alloc_hint = 0;
566 struct btrfs_trans_handle *trans;
567 struct btrfs_key ins;
568 struct extent_map *em;
569 struct btrfs_root *root = BTRFS_I(inode)->root;
570 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
571 struct extent_io_tree *io_tree;
f5a84ee3 572 int ret = 0;
771ed689
CM
573
574 if (list_empty(&async_cow->extents))
575 return 0;
576
771ed689 577
d397712b 578 while (!list_empty(&async_cow->extents)) {
771ed689
CM
579 async_extent = list_entry(async_cow->extents.next,
580 struct async_extent, list);
581 list_del(&async_extent->list);
c8b97818 582
771ed689
CM
583 io_tree = &BTRFS_I(inode)->io_tree;
584
f5a84ee3 585retry:
771ed689
CM
586 /* did the compression code fall back to uncompressed IO? */
587 if (!async_extent->pages) {
588 int page_started = 0;
589 unsigned long nr_written = 0;
590
591 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
592 async_extent->start +
593 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
594
595 /* allocate blocks */
f5a84ee3
JB
596 ret = cow_file_range(inode, async_cow->locked_page,
597 async_extent->start,
598 async_extent->start +
599 async_extent->ram_size - 1,
600 &page_started, &nr_written, 0);
771ed689
CM
601
602 /*
603 * if page_started, cow_file_range inserted an
604 * inline extent and took care of all the unlocking
605 * and IO for us. Otherwise, we need to submit
606 * all those pages down to the drive.
607 */
f5a84ee3 608 if (!page_started && !ret)
771ed689
CM
609 extent_write_locked_range(io_tree,
610 inode, async_extent->start,
d397712b 611 async_extent->start +
771ed689
CM
612 async_extent->ram_size - 1,
613 btrfs_get_extent,
614 WB_SYNC_ALL);
615 kfree(async_extent);
616 cond_resched();
617 continue;
618 }
619
620 lock_extent(io_tree, async_extent->start,
621 async_extent->start + async_extent->ram_size - 1,
622 GFP_NOFS);
771ed689 623
7a7eaa40 624 trans = btrfs_join_transaction(root);
3612b495 625 BUG_ON(IS_ERR(trans));
74b21075 626 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689
CM
627 ret = btrfs_reserve_extent(trans, root,
628 async_extent->compressed_size,
629 async_extent->compressed_size,
630 0, alloc_hint,
631 (u64)-1, &ins, 1);
c2167754
YZ
632 btrfs_end_transaction(trans, root);
633
f5a84ee3
JB
634 if (ret) {
635 int i;
636 for (i = 0; i < async_extent->nr_pages; i++) {
637 WARN_ON(async_extent->pages[i]->mapping);
638 page_cache_release(async_extent->pages[i]);
639 }
640 kfree(async_extent->pages);
641 async_extent->nr_pages = 0;
642 async_extent->pages = NULL;
643 unlock_extent(io_tree, async_extent->start,
644 async_extent->start +
645 async_extent->ram_size - 1, GFP_NOFS);
646 goto retry;
647 }
648
c2167754
YZ
649 /*
650 * here we're doing allocation and writeback of the
651 * compressed pages
652 */
653 btrfs_drop_extent_cache(inode, async_extent->start,
654 async_extent->start +
655 async_extent->ram_size - 1, 0);
656
172ddd60 657 em = alloc_extent_map();
c26a9203 658 BUG_ON(!em);
771ed689
CM
659 em->start = async_extent->start;
660 em->len = async_extent->ram_size;
445a6944 661 em->orig_start = em->start;
c8b97818 662
771ed689
CM
663 em->block_start = ins.objectid;
664 em->block_len = ins.offset;
665 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 666 em->compress_type = async_extent->compress_type;
771ed689
CM
667 set_bit(EXTENT_FLAG_PINNED, &em->flags);
668 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
669
d397712b 670 while (1) {
890871be 671 write_lock(&em_tree->lock);
771ed689 672 ret = add_extent_mapping(em_tree, em);
890871be 673 write_unlock(&em_tree->lock);
771ed689
CM
674 if (ret != -EEXIST) {
675 free_extent_map(em);
676 break;
677 }
678 btrfs_drop_extent_cache(inode, async_extent->start,
679 async_extent->start +
680 async_extent->ram_size - 1, 0);
681 }
682
261507a0
LZ
683 ret = btrfs_add_ordered_extent_compress(inode,
684 async_extent->start,
685 ins.objectid,
686 async_extent->ram_size,
687 ins.offset,
688 BTRFS_ORDERED_COMPRESSED,
689 async_extent->compress_type);
771ed689
CM
690 BUG_ON(ret);
691
771ed689
CM
692 /*
693 * clear dirty, set writeback and unlock the pages.
694 */
695 extent_clear_unlock_delalloc(inode,
a791e35e
CM
696 &BTRFS_I(inode)->io_tree,
697 async_extent->start,
698 async_extent->start +
699 async_extent->ram_size - 1,
700 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
701 EXTENT_CLEAR_UNLOCK |
a3429ab7 702 EXTENT_CLEAR_DELALLOC |
a791e35e 703 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
704
705 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
706 async_extent->start,
707 async_extent->ram_size,
708 ins.objectid,
709 ins.offset, async_extent->pages,
710 async_extent->nr_pages);
771ed689
CM
711
712 BUG_ON(ret);
771ed689
CM
713 alloc_hint = ins.objectid + ins.offset;
714 kfree(async_extent);
715 cond_resched();
716 }
717
771ed689
CM
718 return 0;
719}
720
4b46fce2
JB
721static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
722 u64 num_bytes)
723{
724 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725 struct extent_map *em;
726 u64 alloc_hint = 0;
727
728 read_lock(&em_tree->lock);
729 em = search_extent_mapping(em_tree, start, num_bytes);
730 if (em) {
731 /*
732 * if block start isn't an actual block number then find the
733 * first block in this inode and use that as a hint. If that
734 * block is also bogus then just don't worry about it.
735 */
736 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
737 free_extent_map(em);
738 em = search_extent_mapping(em_tree, 0, 0);
739 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
740 alloc_hint = em->block_start;
741 if (em)
742 free_extent_map(em);
743 } else {
744 alloc_hint = em->block_start;
745 free_extent_map(em);
746 }
747 }
748 read_unlock(&em_tree->lock);
749
750 return alloc_hint;
751}
752
82d5902d
LZ
753static inline bool is_free_space_inode(struct btrfs_root *root,
754 struct inode *inode)
755{
756 if (root == root->fs_info->tree_root ||
757 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID)
758 return true;
759 return false;
760}
761
771ed689
CM
762/*
763 * when extent_io.c finds a delayed allocation range in the file,
764 * the call backs end up in this code. The basic idea is to
765 * allocate extents on disk for the range, and create ordered data structs
766 * in ram to track those extents.
767 *
768 * locked_page is the page that writepage had locked already. We use
769 * it to make sure we don't do extra locks or unlocks.
770 *
771 * *page_started is set to one if we unlock locked_page and do everything
772 * required to start IO on it. It may be clean and already done with
773 * IO when we return.
774 */
775static noinline int cow_file_range(struct inode *inode,
776 struct page *locked_page,
777 u64 start, u64 end, int *page_started,
778 unsigned long *nr_written,
779 int unlock)
780{
781 struct btrfs_root *root = BTRFS_I(inode)->root;
782 struct btrfs_trans_handle *trans;
783 u64 alloc_hint = 0;
784 u64 num_bytes;
785 unsigned long ram_size;
786 u64 disk_num_bytes;
787 u64 cur_alloc_size;
788 u64 blocksize = root->sectorsize;
771ed689
CM
789 struct btrfs_key ins;
790 struct extent_map *em;
791 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
792 int ret = 0;
793
82d5902d 794 BUG_ON(is_free_space_inode(root, inode));
7a7eaa40 795 trans = btrfs_join_transaction(root);
3612b495 796 BUG_ON(IS_ERR(trans));
0ca1f7ce 797 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 798
771ed689
CM
799 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
800 num_bytes = max(blocksize, num_bytes);
801 disk_num_bytes = num_bytes;
802 ret = 0;
803
4cb5300b
CM
804 /* if this is a small write inside eof, kick off defrag */
805 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
806 btrfs_add_inode_defrag(trans, inode);
807
771ed689
CM
808 if (start == 0) {
809 /* lets try to make an inline extent */
810 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 811 start, end, 0, 0, NULL);
771ed689
CM
812 if (ret == 0) {
813 extent_clear_unlock_delalloc(inode,
a791e35e
CM
814 &BTRFS_I(inode)->io_tree,
815 start, end, NULL,
816 EXTENT_CLEAR_UNLOCK_PAGE |
817 EXTENT_CLEAR_UNLOCK |
818 EXTENT_CLEAR_DELALLOC |
819 EXTENT_CLEAR_DIRTY |
820 EXTENT_SET_WRITEBACK |
821 EXTENT_END_WRITEBACK);
c2167754 822
771ed689
CM
823 *nr_written = *nr_written +
824 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
825 *page_started = 1;
826 ret = 0;
827 goto out;
828 }
829 }
830
831 BUG_ON(disk_num_bytes >
832 btrfs_super_total_bytes(&root->fs_info->super_copy));
833
4b46fce2 834 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
835 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
836
d397712b 837 while (disk_num_bytes > 0) {
a791e35e
CM
838 unsigned long op;
839
287a0ab9 840 cur_alloc_size = disk_num_bytes;
e6dcd2dc 841 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 842 root->sectorsize, 0, alloc_hint,
e6dcd2dc 843 (u64)-1, &ins, 1);
d397712b
CM
844 BUG_ON(ret);
845
172ddd60 846 em = alloc_extent_map();
c26a9203 847 BUG_ON(!em);
e6dcd2dc 848 em->start = start;
445a6944 849 em->orig_start = em->start;
771ed689
CM
850 ram_size = ins.offset;
851 em->len = ins.offset;
c8b97818 852
e6dcd2dc 853 em->block_start = ins.objectid;
c8b97818 854 em->block_len = ins.offset;
e6dcd2dc 855 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 856 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 857
d397712b 858 while (1) {
890871be 859 write_lock(&em_tree->lock);
e6dcd2dc 860 ret = add_extent_mapping(em_tree, em);
890871be 861 write_unlock(&em_tree->lock);
e6dcd2dc
CM
862 if (ret != -EEXIST) {
863 free_extent_map(em);
864 break;
865 }
866 btrfs_drop_extent_cache(inode, start,
c8b97818 867 start + ram_size - 1, 0);
e6dcd2dc
CM
868 }
869
98d20f67 870 cur_alloc_size = ins.offset;
e6dcd2dc 871 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 872 ram_size, cur_alloc_size, 0);
e6dcd2dc 873 BUG_ON(ret);
c8b97818 874
17d217fe
YZ
875 if (root->root_key.objectid ==
876 BTRFS_DATA_RELOC_TREE_OBJECTID) {
877 ret = btrfs_reloc_clone_csums(inode, start,
878 cur_alloc_size);
879 BUG_ON(ret);
880 }
881
d397712b 882 if (disk_num_bytes < cur_alloc_size)
3b951516 883 break;
d397712b 884
c8b97818
CM
885 /* we're not doing compressed IO, don't unlock the first
886 * page (which the caller expects to stay locked), don't
887 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
888 *
889 * Do set the Private2 bit so we know this page was properly
890 * setup for writepage
c8b97818 891 */
a791e35e
CM
892 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
893 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
894 EXTENT_SET_PRIVATE2;
895
c8b97818
CM
896 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
897 start, start + ram_size - 1,
a791e35e 898 locked_page, op);
c8b97818 899 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
900 num_bytes -= cur_alloc_size;
901 alloc_hint = ins.objectid + ins.offset;
902 start += cur_alloc_size;
b888db2b 903 }
b888db2b 904out:
771ed689 905 ret = 0;
b888db2b 906 btrfs_end_transaction(trans, root);
c8b97818 907
be20aa9d 908 return ret;
771ed689 909}
c8b97818 910
771ed689
CM
911/*
912 * work queue call back to started compression on a file and pages
913 */
914static noinline void async_cow_start(struct btrfs_work *work)
915{
916 struct async_cow *async_cow;
917 int num_added = 0;
918 async_cow = container_of(work, struct async_cow, work);
919
920 compress_file_range(async_cow->inode, async_cow->locked_page,
921 async_cow->start, async_cow->end, async_cow,
922 &num_added);
923 if (num_added == 0)
924 async_cow->inode = NULL;
925}
926
927/*
928 * work queue call back to submit previously compressed pages
929 */
930static noinline void async_cow_submit(struct btrfs_work *work)
931{
932 struct async_cow *async_cow;
933 struct btrfs_root *root;
934 unsigned long nr_pages;
935
936 async_cow = container_of(work, struct async_cow, work);
937
938 root = async_cow->root;
939 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
940 PAGE_CACHE_SHIFT;
941
942 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
943
944 if (atomic_read(&root->fs_info->async_delalloc_pages) <
945 5 * 1042 * 1024 &&
946 waitqueue_active(&root->fs_info->async_submit_wait))
947 wake_up(&root->fs_info->async_submit_wait);
948
d397712b 949 if (async_cow->inode)
771ed689 950 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 951}
c8b97818 952
771ed689
CM
953static noinline void async_cow_free(struct btrfs_work *work)
954{
955 struct async_cow *async_cow;
956 async_cow = container_of(work, struct async_cow, work);
957 kfree(async_cow);
958}
959
960static int cow_file_range_async(struct inode *inode, struct page *locked_page,
961 u64 start, u64 end, int *page_started,
962 unsigned long *nr_written)
963{
964 struct async_cow *async_cow;
965 struct btrfs_root *root = BTRFS_I(inode)->root;
966 unsigned long nr_pages;
967 u64 cur_end;
968 int limit = 10 * 1024 * 1042;
969
a3429ab7
CM
970 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
971 1, 0, NULL, GFP_NOFS);
d397712b 972 while (start < end) {
771ed689 973 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
8d413713 974 BUG_ON(!async_cow);
771ed689
CM
975 async_cow->inode = inode;
976 async_cow->root = root;
977 async_cow->locked_page = locked_page;
978 async_cow->start = start;
979
6cbff00f 980 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
981 cur_end = end;
982 else
983 cur_end = min(end, start + 512 * 1024 - 1);
984
985 async_cow->end = cur_end;
986 INIT_LIST_HEAD(&async_cow->extents);
987
988 async_cow->work.func = async_cow_start;
989 async_cow->work.ordered_func = async_cow_submit;
990 async_cow->work.ordered_free = async_cow_free;
991 async_cow->work.flags = 0;
992
771ed689
CM
993 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
994 PAGE_CACHE_SHIFT;
995 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
996
997 btrfs_queue_worker(&root->fs_info->delalloc_workers,
998 &async_cow->work);
999
1000 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1001 wait_event(root->fs_info->async_submit_wait,
1002 (atomic_read(&root->fs_info->async_delalloc_pages) <
1003 limit));
1004 }
1005
d397712b 1006 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1007 atomic_read(&root->fs_info->async_delalloc_pages)) {
1008 wait_event(root->fs_info->async_submit_wait,
1009 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1010 0));
1011 }
1012
1013 *nr_written += nr_pages;
1014 start = cur_end + 1;
1015 }
1016 *page_started = 1;
1017 return 0;
be20aa9d
CM
1018}
1019
d397712b 1020static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1021 u64 bytenr, u64 num_bytes)
1022{
1023 int ret;
1024 struct btrfs_ordered_sum *sums;
1025 LIST_HEAD(list);
1026
07d400a6 1027 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1028 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1029 if (ret == 0 && list_empty(&list))
1030 return 0;
1031
1032 while (!list_empty(&list)) {
1033 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1034 list_del(&sums->list);
1035 kfree(sums);
1036 }
1037 return 1;
1038}
1039
d352ac68
CM
1040/*
1041 * when nowcow writeback call back. This checks for snapshots or COW copies
1042 * of the extents that exist in the file, and COWs the file as required.
1043 *
1044 * If no cow copies or snapshots exist, we write directly to the existing
1045 * blocks on disk
1046 */
7f366cfe
CM
1047static noinline int run_delalloc_nocow(struct inode *inode,
1048 struct page *locked_page,
771ed689
CM
1049 u64 start, u64 end, int *page_started, int force,
1050 unsigned long *nr_written)
be20aa9d 1051{
be20aa9d 1052 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1053 struct btrfs_trans_handle *trans;
be20aa9d 1054 struct extent_buffer *leaf;
be20aa9d 1055 struct btrfs_path *path;
80ff3856 1056 struct btrfs_file_extent_item *fi;
be20aa9d 1057 struct btrfs_key found_key;
80ff3856
YZ
1058 u64 cow_start;
1059 u64 cur_offset;
1060 u64 extent_end;
5d4f98a2 1061 u64 extent_offset;
80ff3856
YZ
1062 u64 disk_bytenr;
1063 u64 num_bytes;
1064 int extent_type;
1065 int ret;
d899e052 1066 int type;
80ff3856
YZ
1067 int nocow;
1068 int check_prev = 1;
82d5902d 1069 bool nolock;
33345d01 1070 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1071
1072 path = btrfs_alloc_path();
1073 BUG_ON(!path);
82d5902d
LZ
1074
1075 nolock = is_free_space_inode(root, inode);
1076
1077 if (nolock)
7a7eaa40 1078 trans = btrfs_join_transaction_nolock(root);
82d5902d 1079 else
7a7eaa40 1080 trans = btrfs_join_transaction(root);
ff5714cc 1081
3612b495 1082 BUG_ON(IS_ERR(trans));
74b21075 1083 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1084
80ff3856
YZ
1085 cow_start = (u64)-1;
1086 cur_offset = start;
1087 while (1) {
33345d01 1088 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856
YZ
1089 cur_offset, 0);
1090 BUG_ON(ret < 0);
1091 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1092 leaf = path->nodes[0];
1093 btrfs_item_key_to_cpu(leaf, &found_key,
1094 path->slots[0] - 1);
33345d01 1095 if (found_key.objectid == ino &&
80ff3856
YZ
1096 found_key.type == BTRFS_EXTENT_DATA_KEY)
1097 path->slots[0]--;
1098 }
1099 check_prev = 0;
1100next_slot:
1101 leaf = path->nodes[0];
1102 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1103 ret = btrfs_next_leaf(root, path);
1104 if (ret < 0)
1105 BUG_ON(1);
1106 if (ret > 0)
1107 break;
1108 leaf = path->nodes[0];
1109 }
be20aa9d 1110
80ff3856
YZ
1111 nocow = 0;
1112 disk_bytenr = 0;
17d217fe 1113 num_bytes = 0;
80ff3856
YZ
1114 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1115
33345d01 1116 if (found_key.objectid > ino ||
80ff3856
YZ
1117 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1118 found_key.offset > end)
1119 break;
1120
1121 if (found_key.offset > cur_offset) {
1122 extent_end = found_key.offset;
e9061e21 1123 extent_type = 0;
80ff3856
YZ
1124 goto out_check;
1125 }
1126
1127 fi = btrfs_item_ptr(leaf, path->slots[0],
1128 struct btrfs_file_extent_item);
1129 extent_type = btrfs_file_extent_type(leaf, fi);
1130
d899e052
YZ
1131 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1132 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1133 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1134 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1135 extent_end = found_key.offset +
1136 btrfs_file_extent_num_bytes(leaf, fi);
1137 if (extent_end <= start) {
1138 path->slots[0]++;
1139 goto next_slot;
1140 }
17d217fe
YZ
1141 if (disk_bytenr == 0)
1142 goto out_check;
80ff3856
YZ
1143 if (btrfs_file_extent_compression(leaf, fi) ||
1144 btrfs_file_extent_encryption(leaf, fi) ||
1145 btrfs_file_extent_other_encoding(leaf, fi))
1146 goto out_check;
d899e052
YZ
1147 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1148 goto out_check;
d2fb3437 1149 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1150 goto out_check;
33345d01 1151 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1152 found_key.offset -
1153 extent_offset, disk_bytenr))
17d217fe 1154 goto out_check;
5d4f98a2 1155 disk_bytenr += extent_offset;
17d217fe
YZ
1156 disk_bytenr += cur_offset - found_key.offset;
1157 num_bytes = min(end + 1, extent_end) - cur_offset;
1158 /*
1159 * force cow if csum exists in the range.
1160 * this ensure that csum for a given extent are
1161 * either valid or do not exist.
1162 */
1163 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1164 goto out_check;
80ff3856
YZ
1165 nocow = 1;
1166 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1167 extent_end = found_key.offset +
1168 btrfs_file_extent_inline_len(leaf, fi);
1169 extent_end = ALIGN(extent_end, root->sectorsize);
1170 } else {
1171 BUG_ON(1);
1172 }
1173out_check:
1174 if (extent_end <= start) {
1175 path->slots[0]++;
1176 goto next_slot;
1177 }
1178 if (!nocow) {
1179 if (cow_start == (u64)-1)
1180 cow_start = cur_offset;
1181 cur_offset = extent_end;
1182 if (cur_offset > end)
1183 break;
1184 path->slots[0]++;
1185 goto next_slot;
7ea394f1
YZ
1186 }
1187
b3b4aa74 1188 btrfs_release_path(path);
80ff3856
YZ
1189 if (cow_start != (u64)-1) {
1190 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1191 found_key.offset - 1, page_started,
1192 nr_written, 1);
80ff3856
YZ
1193 BUG_ON(ret);
1194 cow_start = (u64)-1;
7ea394f1 1195 }
80ff3856 1196
d899e052
YZ
1197 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1198 struct extent_map *em;
1199 struct extent_map_tree *em_tree;
1200 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1201 em = alloc_extent_map();
c26a9203 1202 BUG_ON(!em);
d899e052 1203 em->start = cur_offset;
445a6944 1204 em->orig_start = em->start;
d899e052
YZ
1205 em->len = num_bytes;
1206 em->block_len = num_bytes;
1207 em->block_start = disk_bytenr;
1208 em->bdev = root->fs_info->fs_devices->latest_bdev;
1209 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1210 while (1) {
890871be 1211 write_lock(&em_tree->lock);
d899e052 1212 ret = add_extent_mapping(em_tree, em);
890871be 1213 write_unlock(&em_tree->lock);
d899e052
YZ
1214 if (ret != -EEXIST) {
1215 free_extent_map(em);
1216 break;
1217 }
1218 btrfs_drop_extent_cache(inode, em->start,
1219 em->start + em->len - 1, 0);
1220 }
1221 type = BTRFS_ORDERED_PREALLOC;
1222 } else {
1223 type = BTRFS_ORDERED_NOCOW;
1224 }
80ff3856
YZ
1225
1226 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1227 num_bytes, num_bytes, type);
1228 BUG_ON(ret);
771ed689 1229
efa56464
YZ
1230 if (root->root_key.objectid ==
1231 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1232 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1233 num_bytes);
1234 BUG_ON(ret);
1235 }
1236
d899e052 1237 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1238 cur_offset, cur_offset + num_bytes - 1,
1239 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1240 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1241 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1242 cur_offset = extent_end;
1243 if (cur_offset > end)
1244 break;
be20aa9d 1245 }
b3b4aa74 1246 btrfs_release_path(path);
80ff3856
YZ
1247
1248 if (cur_offset <= end && cow_start == (u64)-1)
1249 cow_start = cur_offset;
1250 if (cow_start != (u64)-1) {
1251 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1252 page_started, nr_written, 1);
80ff3856
YZ
1253 BUG_ON(ret);
1254 }
1255
0cb59c99
JB
1256 if (nolock) {
1257 ret = btrfs_end_transaction_nolock(trans, root);
1258 BUG_ON(ret);
1259 } else {
1260 ret = btrfs_end_transaction(trans, root);
1261 BUG_ON(ret);
1262 }
7ea394f1 1263 btrfs_free_path(path);
80ff3856 1264 return 0;
be20aa9d
CM
1265}
1266
d352ac68
CM
1267/*
1268 * extent_io.c call back to do delayed allocation processing
1269 */
c8b97818 1270static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1271 u64 start, u64 end, int *page_started,
1272 unsigned long *nr_written)
be20aa9d 1273{
be20aa9d 1274 int ret;
7f366cfe 1275 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1276
6cbff00f 1277 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1278 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1279 page_started, 1, nr_written);
6cbff00f 1280 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1281 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1282 page_started, 0, nr_written);
1e701a32 1283 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1284 !(BTRFS_I(inode)->force_compress) &&
1285 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1286 ret = cow_file_range(inode, locked_page, start, end,
1287 page_started, nr_written, 1);
be20aa9d 1288 else
771ed689 1289 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1290 page_started, nr_written);
b888db2b
CM
1291 return ret;
1292}
1293
9ed74f2d 1294static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1295 struct extent_state *orig, u64 split)
9ed74f2d 1296{
0ca1f7ce 1297 /* not delalloc, ignore it */
9ed74f2d
JB
1298 if (!(orig->state & EXTENT_DELALLOC))
1299 return 0;
1300
0ca1f7ce 1301 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1302 return 0;
1303}
1304
1305/*
1306 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307 * extents so we can keep track of new extents that are just merged onto old
1308 * extents, such as when we are doing sequential writes, so we can properly
1309 * account for the metadata space we'll need.
1310 */
1311static int btrfs_merge_extent_hook(struct inode *inode,
1312 struct extent_state *new,
1313 struct extent_state *other)
1314{
9ed74f2d
JB
1315 /* not delalloc, ignore it */
1316 if (!(other->state & EXTENT_DELALLOC))
1317 return 0;
1318
0ca1f7ce 1319 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1320 return 0;
1321}
1322
d352ac68
CM
1323/*
1324 * extent_io.c set_bit_hook, used to track delayed allocation
1325 * bytes in this file, and to maintain the list of inodes that
1326 * have pending delalloc work to be done.
1327 */
0ca1f7ce
YZ
1328static int btrfs_set_bit_hook(struct inode *inode,
1329 struct extent_state *state, int *bits)
291d673e 1330{
9ed74f2d 1331
75eff68e
CM
1332 /*
1333 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1334 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1335 * bit, which is only set or cleared with irqs on
1336 */
0ca1f7ce 1337 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1338 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1339 u64 len = state->end + 1 - state->start;
82d5902d 1340 bool do_list = !is_free_space_inode(root, inode);
9ed74f2d 1341
0ca1f7ce
YZ
1342 if (*bits & EXTENT_FIRST_DELALLOC)
1343 *bits &= ~EXTENT_FIRST_DELALLOC;
1344 else
1345 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1346
75eff68e 1347 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1348 BTRFS_I(inode)->delalloc_bytes += len;
1349 root->fs_info->delalloc_bytes += len;
0cb59c99 1350 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1351 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1352 &root->fs_info->delalloc_inodes);
1353 }
75eff68e 1354 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1355 }
1356 return 0;
1357}
1358
d352ac68
CM
1359/*
1360 * extent_io.c clear_bit_hook, see set_bit_hook for why
1361 */
9ed74f2d 1362static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1363 struct extent_state *state, int *bits)
291d673e 1364{
75eff68e
CM
1365 /*
1366 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1367 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1368 * bit, which is only set or cleared with irqs on
1369 */
0ca1f7ce 1370 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1371 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1372 u64 len = state->end + 1 - state->start;
82d5902d 1373 bool do_list = !is_free_space_inode(root, inode);
bcbfce8a 1374
0ca1f7ce
YZ
1375 if (*bits & EXTENT_FIRST_DELALLOC)
1376 *bits &= ~EXTENT_FIRST_DELALLOC;
1377 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1378 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1379
1380 if (*bits & EXTENT_DO_ACCOUNTING)
1381 btrfs_delalloc_release_metadata(inode, len);
1382
0cb59c99
JB
1383 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1384 && do_list)
0ca1f7ce 1385 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1386
75eff68e 1387 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1388 root->fs_info->delalloc_bytes -= len;
1389 BTRFS_I(inode)->delalloc_bytes -= len;
1390
0cb59c99 1391 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1392 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1393 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1394 }
75eff68e 1395 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1396 }
1397 return 0;
1398}
1399
d352ac68
CM
1400/*
1401 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1402 * we don't create bios that span stripes or chunks
1403 */
239b14b3 1404int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1405 size_t size, struct bio *bio,
1406 unsigned long bio_flags)
239b14b3
CM
1407{
1408 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1409 struct btrfs_mapping_tree *map_tree;
a62b9401 1410 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1411 u64 length = 0;
1412 u64 map_length;
239b14b3
CM
1413 int ret;
1414
771ed689
CM
1415 if (bio_flags & EXTENT_BIO_COMPRESSED)
1416 return 0;
1417
f2d8d74d 1418 length = bio->bi_size;
239b14b3
CM
1419 map_tree = &root->fs_info->mapping_tree;
1420 map_length = length;
cea9e445 1421 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1422 &map_length, NULL, 0);
cea9e445 1423
d397712b 1424 if (map_length < length + size)
239b14b3 1425 return 1;
411fc6bc 1426 return ret;
239b14b3
CM
1427}
1428
d352ac68
CM
1429/*
1430 * in order to insert checksums into the metadata in large chunks,
1431 * we wait until bio submission time. All the pages in the bio are
1432 * checksummed and sums are attached onto the ordered extent record.
1433 *
1434 * At IO completion time the cums attached on the ordered extent record
1435 * are inserted into the btree
1436 */
d397712b
CM
1437static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1438 struct bio *bio, int mirror_num,
eaf25d93
CM
1439 unsigned long bio_flags,
1440 u64 bio_offset)
065631f6 1441{
065631f6 1442 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1443 int ret = 0;
e015640f 1444
d20f7043 1445 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1446 BUG_ON(ret);
4a69a410
CM
1447 return 0;
1448}
e015640f 1449
4a69a410
CM
1450/*
1451 * in order to insert checksums into the metadata in large chunks,
1452 * we wait until bio submission time. All the pages in the bio are
1453 * checksummed and sums are attached onto the ordered extent record.
1454 *
1455 * At IO completion time the cums attached on the ordered extent record
1456 * are inserted into the btree
1457 */
b2950863 1458static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1459 int mirror_num, unsigned long bio_flags,
1460 u64 bio_offset)
4a69a410
CM
1461{
1462 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1463 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1464}
1465
d352ac68 1466/*
cad321ad
CM
1467 * extent_io.c submission hook. This does the right thing for csum calculation
1468 * on write, or reading the csums from the tree before a read
d352ac68 1469 */
b2950863 1470static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1471 int mirror_num, unsigned long bio_flags,
1472 u64 bio_offset)
44b8bd7e
CM
1473{
1474 struct btrfs_root *root = BTRFS_I(inode)->root;
1475 int ret = 0;
19b9bdb0 1476 int skip_sum;
44b8bd7e 1477
6cbff00f 1478 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1479
82d5902d 1480 if (is_free_space_inode(root, inode))
0cb59c99
JB
1481 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1482 else
1483 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1484 BUG_ON(ret);
065631f6 1485
7b6d91da 1486 if (!(rw & REQ_WRITE)) {
d20f7043 1487 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1488 return btrfs_submit_compressed_read(inode, bio,
1489 mirror_num, bio_flags);
c2db1073
TI
1490 } else if (!skip_sum) {
1491 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1492 if (ret)
1493 return ret;
1494 }
4d1b5fb4 1495 goto mapit;
19b9bdb0 1496 } else if (!skip_sum) {
17d217fe
YZ
1497 /* csum items have already been cloned */
1498 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1499 goto mapit;
19b9bdb0
CM
1500 /* we're doing a write, do the async checksumming */
1501 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1502 inode, rw, bio, mirror_num,
eaf25d93
CM
1503 bio_flags, bio_offset,
1504 __btrfs_submit_bio_start,
4a69a410 1505 __btrfs_submit_bio_done);
19b9bdb0
CM
1506 }
1507
0b86a832 1508mapit:
8b712842 1509 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1510}
6885f308 1511
d352ac68
CM
1512/*
1513 * given a list of ordered sums record them in the inode. This happens
1514 * at IO completion time based on sums calculated at bio submission time.
1515 */
ba1da2f4 1516static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1517 struct inode *inode, u64 file_offset,
1518 struct list_head *list)
1519{
e6dcd2dc
CM
1520 struct btrfs_ordered_sum *sum;
1521
c6e30871 1522 list_for_each_entry(sum, list, list) {
d20f7043
CM
1523 btrfs_csum_file_blocks(trans,
1524 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1525 }
1526 return 0;
1527}
1528
2ac55d41
JB
1529int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1530 struct extent_state **cached_state)
ea8c2819 1531{
d397712b 1532 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1533 WARN_ON(1);
ea8c2819 1534 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1535 cached_state, GFP_NOFS);
ea8c2819
CM
1536}
1537
d352ac68 1538/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1539struct btrfs_writepage_fixup {
1540 struct page *page;
1541 struct btrfs_work work;
1542};
1543
b2950863 1544static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1545{
1546 struct btrfs_writepage_fixup *fixup;
1547 struct btrfs_ordered_extent *ordered;
2ac55d41 1548 struct extent_state *cached_state = NULL;
247e743c
CM
1549 struct page *page;
1550 struct inode *inode;
1551 u64 page_start;
1552 u64 page_end;
1553
1554 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1555 page = fixup->page;
4a096752 1556again:
247e743c
CM
1557 lock_page(page);
1558 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1559 ClearPageChecked(page);
1560 goto out_page;
1561 }
1562
1563 inode = page->mapping->host;
1564 page_start = page_offset(page);
1565 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1566
2ac55d41
JB
1567 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1568 &cached_state, GFP_NOFS);
4a096752
CM
1569
1570 /* already ordered? We're done */
8b62b72b 1571 if (PagePrivate2(page))
247e743c 1572 goto out;
4a096752
CM
1573
1574 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1575 if (ordered) {
2ac55d41
JB
1576 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1577 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1578 unlock_page(page);
1579 btrfs_start_ordered_extent(inode, ordered, 1);
1580 goto again;
1581 }
247e743c 1582
0ca1f7ce 1583 BUG();
2ac55d41 1584 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1585 ClearPageChecked(page);
1586out:
2ac55d41
JB
1587 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1588 &cached_state, GFP_NOFS);
247e743c
CM
1589out_page:
1590 unlock_page(page);
1591 page_cache_release(page);
b897abec 1592 kfree(fixup);
247e743c
CM
1593}
1594
1595/*
1596 * There are a few paths in the higher layers of the kernel that directly
1597 * set the page dirty bit without asking the filesystem if it is a
1598 * good idea. This causes problems because we want to make sure COW
1599 * properly happens and the data=ordered rules are followed.
1600 *
c8b97818 1601 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1602 * hasn't been properly setup for IO. We kick off an async process
1603 * to fix it up. The async helper will wait for ordered extents, set
1604 * the delalloc bit and make it safe to write the page.
1605 */
b2950863 1606static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1607{
1608 struct inode *inode = page->mapping->host;
1609 struct btrfs_writepage_fixup *fixup;
1610 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1611
8b62b72b
CM
1612 /* this page is properly in the ordered list */
1613 if (TestClearPagePrivate2(page))
247e743c
CM
1614 return 0;
1615
1616 if (PageChecked(page))
1617 return -EAGAIN;
1618
1619 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1620 if (!fixup)
1621 return -EAGAIN;
f421950f 1622
247e743c
CM
1623 SetPageChecked(page);
1624 page_cache_get(page);
1625 fixup->work.func = btrfs_writepage_fixup_worker;
1626 fixup->page = page;
1627 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1628 return -EAGAIN;
1629}
1630
d899e052
YZ
1631static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1632 struct inode *inode, u64 file_pos,
1633 u64 disk_bytenr, u64 disk_num_bytes,
1634 u64 num_bytes, u64 ram_bytes,
1635 u8 compression, u8 encryption,
1636 u16 other_encoding, int extent_type)
1637{
1638 struct btrfs_root *root = BTRFS_I(inode)->root;
1639 struct btrfs_file_extent_item *fi;
1640 struct btrfs_path *path;
1641 struct extent_buffer *leaf;
1642 struct btrfs_key ins;
1643 u64 hint;
1644 int ret;
1645
1646 path = btrfs_alloc_path();
1647 BUG_ON(!path);
1648
b9473439 1649 path->leave_spinning = 1;
a1ed835e
CM
1650
1651 /*
1652 * we may be replacing one extent in the tree with another.
1653 * The new extent is pinned in the extent map, and we don't want
1654 * to drop it from the cache until it is completely in the btree.
1655 *
1656 * So, tell btrfs_drop_extents to leave this extent in the cache.
1657 * the caller is expected to unpin it and allow it to be merged
1658 * with the others.
1659 */
920bbbfb
YZ
1660 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1661 &hint, 0);
d899e052
YZ
1662 BUG_ON(ret);
1663
33345d01 1664 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1665 ins.offset = file_pos;
1666 ins.type = BTRFS_EXTENT_DATA_KEY;
1667 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1668 BUG_ON(ret);
1669 leaf = path->nodes[0];
1670 fi = btrfs_item_ptr(leaf, path->slots[0],
1671 struct btrfs_file_extent_item);
1672 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1673 btrfs_set_file_extent_type(leaf, fi, extent_type);
1674 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1675 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1676 btrfs_set_file_extent_offset(leaf, fi, 0);
1677 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1678 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1679 btrfs_set_file_extent_compression(leaf, fi, compression);
1680 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1681 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1682
1683 btrfs_unlock_up_safe(path, 1);
1684 btrfs_set_lock_blocking(leaf);
1685
d899e052
YZ
1686 btrfs_mark_buffer_dirty(leaf);
1687
1688 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1689
1690 ins.objectid = disk_bytenr;
1691 ins.offset = disk_num_bytes;
1692 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1693 ret = btrfs_alloc_reserved_file_extent(trans, root,
1694 root->root_key.objectid,
33345d01 1695 btrfs_ino(inode), file_pos, &ins);
d899e052 1696 BUG_ON(ret);
d899e052 1697 btrfs_free_path(path);
b9473439 1698
d899e052
YZ
1699 return 0;
1700}
1701
5d13a98f
CM
1702/*
1703 * helper function for btrfs_finish_ordered_io, this
1704 * just reads in some of the csum leaves to prime them into ram
1705 * before we start the transaction. It limits the amount of btree
1706 * reads required while inside the transaction.
1707 */
d352ac68
CM
1708/* as ordered data IO finishes, this gets called so we can finish
1709 * an ordered extent if the range of bytes in the file it covers are
1710 * fully written.
1711 */
211f90e6 1712static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1713{
e6dcd2dc 1714 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1715 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1716 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1717 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1718 struct extent_state *cached_state = NULL;
261507a0 1719 int compress_type = 0;
e6dcd2dc 1720 int ret;
82d5902d 1721 bool nolock;
e6dcd2dc 1722
5a1a3df1
JB
1723 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1724 end - start + 1);
ba1da2f4 1725 if (!ret)
e6dcd2dc 1726 return 0;
e6dcd2dc 1727 BUG_ON(!ordered_extent);
efd049fb 1728
82d5902d 1729 nolock = is_free_space_inode(root, inode);
0cb59c99 1730
c2167754
YZ
1731 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1732 BUG_ON(!list_empty(&ordered_extent->list));
1733 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1734 if (!ret) {
0cb59c99 1735 if (nolock)
7a7eaa40 1736 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1737 else
7a7eaa40 1738 trans = btrfs_join_transaction(root);
3612b495 1739 BUG_ON(IS_ERR(trans));
0ca1f7ce 1740 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1741 ret = btrfs_update_inode(trans, root, inode);
1742 BUG_ON(ret);
c2167754
YZ
1743 }
1744 goto out;
1745 }
e6dcd2dc 1746
2ac55d41
JB
1747 lock_extent_bits(io_tree, ordered_extent->file_offset,
1748 ordered_extent->file_offset + ordered_extent->len - 1,
1749 0, &cached_state, GFP_NOFS);
e6dcd2dc 1750
0cb59c99 1751 if (nolock)
7a7eaa40 1752 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1753 else
7a7eaa40 1754 trans = btrfs_join_transaction(root);
3612b495 1755 BUG_ON(IS_ERR(trans));
0ca1f7ce 1756 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1757
c8b97818 1758 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1759 compress_type = ordered_extent->compress_type;
d899e052 1760 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1761 BUG_ON(compress_type);
920bbbfb 1762 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1763 ordered_extent->file_offset,
1764 ordered_extent->file_offset +
1765 ordered_extent->len);
1766 BUG_ON(ret);
1767 } else {
0af3d00b 1768 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1769 ret = insert_reserved_file_extent(trans, inode,
1770 ordered_extent->file_offset,
1771 ordered_extent->start,
1772 ordered_extent->disk_len,
1773 ordered_extent->len,
1774 ordered_extent->len,
261507a0 1775 compress_type, 0, 0,
d899e052 1776 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1777 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1778 ordered_extent->file_offset,
1779 ordered_extent->len);
d899e052
YZ
1780 BUG_ON(ret);
1781 }
2ac55d41
JB
1782 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1783 ordered_extent->file_offset +
1784 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1785
e6dcd2dc
CM
1786 add_pending_csums(trans, inode, ordered_extent->file_offset,
1787 &ordered_extent->list);
1788
1ef30be1
JB
1789 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1790 if (!ret) {
1791 ret = btrfs_update_inode(trans, root, inode);
1792 BUG_ON(ret);
1793 }
1794 ret = 0;
c2167754 1795out:
0cb59c99
JB
1796 if (nolock) {
1797 if (trans)
1798 btrfs_end_transaction_nolock(trans, root);
1799 } else {
1800 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1801 if (trans)
1802 btrfs_end_transaction(trans, root);
1803 }
1804
e6dcd2dc
CM
1805 /* once for us */
1806 btrfs_put_ordered_extent(ordered_extent);
1807 /* once for the tree */
1808 btrfs_put_ordered_extent(ordered_extent);
1809
e6dcd2dc
CM
1810 return 0;
1811}
1812
b2950863 1813static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1814 struct extent_state *state, int uptodate)
1815{
1abe9b8a 1816 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1817
8b62b72b 1818 ClearPagePrivate2(page);
211f90e6
CM
1819 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1820}
1821
d352ac68
CM
1822/*
1823 * When IO fails, either with EIO or csum verification fails, we
1824 * try other mirrors that might have a good copy of the data. This
1825 * io_failure_record is used to record state as we go through all the
1826 * mirrors. If another mirror has good data, the page is set up to date
1827 * and things continue. If a good mirror can't be found, the original
1828 * bio end_io callback is called to indicate things have failed.
1829 */
7e38326f
CM
1830struct io_failure_record {
1831 struct page *page;
1832 u64 start;
1833 u64 len;
1834 u64 logical;
d20f7043 1835 unsigned long bio_flags;
7e38326f
CM
1836 int last_mirror;
1837};
1838
b2950863 1839static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1840 struct page *page, u64 start, u64 end,
1841 struct extent_state *state)
7e38326f
CM
1842{
1843 struct io_failure_record *failrec = NULL;
1844 u64 private;
1845 struct extent_map *em;
1846 struct inode *inode = page->mapping->host;
1847 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1848 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1849 struct bio *bio;
1850 int num_copies;
1851 int ret;
1259ab75 1852 int rw;
7e38326f
CM
1853 u64 logical;
1854
1855 ret = get_state_private(failure_tree, start, &private);
1856 if (ret) {
7e38326f
CM
1857 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1858 if (!failrec)
1859 return -ENOMEM;
1860 failrec->start = start;
1861 failrec->len = end - start + 1;
1862 failrec->last_mirror = 0;
d20f7043 1863 failrec->bio_flags = 0;
7e38326f 1864
890871be 1865 read_lock(&em_tree->lock);
3b951516
CM
1866 em = lookup_extent_mapping(em_tree, start, failrec->len);
1867 if (em->start > start || em->start + em->len < start) {
1868 free_extent_map(em);
1869 em = NULL;
1870 }
890871be 1871 read_unlock(&em_tree->lock);
7e38326f 1872
c704005d 1873 if (IS_ERR_OR_NULL(em)) {
7e38326f
CM
1874 kfree(failrec);
1875 return -EIO;
1876 }
1877 logical = start - em->start;
1878 logical = em->block_start + logical;
d20f7043
CM
1879 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1880 logical = em->block_start;
1881 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1882 extent_set_compress_type(&failrec->bio_flags,
1883 em->compress_type);
d20f7043 1884 }
7e38326f
CM
1885 failrec->logical = logical;
1886 free_extent_map(em);
1887 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1888 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1889 set_state_private(failure_tree, start,
1890 (u64)(unsigned long)failrec);
7e38326f 1891 } else {
587f7704 1892 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1893 }
1894 num_copies = btrfs_num_copies(
1895 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1896 failrec->logical, failrec->len);
1897 failrec->last_mirror++;
1898 if (!state) {
cad321ad 1899 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1900 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1901 failrec->start,
1902 EXTENT_LOCKED);
1903 if (state && state->start != failrec->start)
1904 state = NULL;
cad321ad 1905 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1906 }
1907 if (!state || failrec->last_mirror > num_copies) {
1908 set_state_private(failure_tree, failrec->start, 0);
1909 clear_extent_bits(failure_tree, failrec->start,
1910 failrec->start + failrec->len - 1,
1911 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1912 kfree(failrec);
1913 return -EIO;
1914 }
1915 bio = bio_alloc(GFP_NOFS, 1);
1916 bio->bi_private = state;
1917 bio->bi_end_io = failed_bio->bi_end_io;
1918 bio->bi_sector = failrec->logical >> 9;
1919 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1920 bio->bi_size = 0;
d20f7043 1921
7e38326f 1922 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1923 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1924 rw = WRITE;
1925 else
1926 rw = READ;
1927
c2db1073 1928 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1929 failrec->last_mirror,
eaf25d93 1930 failrec->bio_flags, 0);
c2db1073 1931 return ret;
1259ab75
CM
1932}
1933
d352ac68
CM
1934/*
1935 * each time an IO finishes, we do a fast check in the IO failure tree
1936 * to see if we need to process or clean up an io_failure_record
1937 */
b2950863 1938static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1939{
1940 u64 private;
1941 u64 private_failure;
1942 struct io_failure_record *failure;
1943 int ret;
1944
1945 private = 0;
1946 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1947 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1948 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1949 start, &private_failure);
1950 if (ret == 0) {
1951 failure = (struct io_failure_record *)(unsigned long)
1952 private_failure;
1953 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1954 failure->start, 0);
1955 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1956 failure->start,
1957 failure->start + failure->len - 1,
1958 EXTENT_DIRTY | EXTENT_LOCKED,
1959 GFP_NOFS);
1960 kfree(failure);
1961 }
1962 }
7e38326f
CM
1963 return 0;
1964}
1965
d352ac68
CM
1966/*
1967 * when reads are done, we need to check csums to verify the data is correct
1968 * if there's a match, we allow the bio to finish. If not, we go through
1969 * the io_failure_record routines to find good copies
1970 */
b2950863 1971static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1972 struct extent_state *state)
07157aac 1973{
35ebb934 1974 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1975 struct inode *inode = page->mapping->host;
d1310b2e 1976 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1977 char *kaddr;
aadfeb6e 1978 u64 private = ~(u32)0;
07157aac 1979 int ret;
ff79f819
CM
1980 struct btrfs_root *root = BTRFS_I(inode)->root;
1981 u32 csum = ~(u32)0;
d1310b2e 1982
d20f7043
CM
1983 if (PageChecked(page)) {
1984 ClearPageChecked(page);
1985 goto good;
1986 }
6cbff00f
CH
1987
1988 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 1989 goto good;
17d217fe
YZ
1990
1991 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1992 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1993 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1994 GFP_NOFS);
b6cda9bc 1995 return 0;
17d217fe 1996 }
d20f7043 1997
c2e639f0 1998 if (state && state->start == start) {
70dec807
CM
1999 private = state->private;
2000 ret = 0;
2001 } else {
2002 ret = get_state_private(io_tree, start, &private);
2003 }
9ab86c8e 2004 kaddr = kmap_atomic(page, KM_USER0);
d397712b 2005 if (ret)
07157aac 2006 goto zeroit;
d397712b 2007
ff79f819
CM
2008 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2009 btrfs_csum_final(csum, (char *)&csum);
d397712b 2010 if (csum != private)
07157aac 2011 goto zeroit;
d397712b 2012
9ab86c8e 2013 kunmap_atomic(kaddr, KM_USER0);
d20f7043 2014good:
7e38326f
CM
2015 /* if the io failure tree for this inode is non-empty,
2016 * check to see if we've recovered from a failed IO
2017 */
1259ab75 2018 btrfs_clean_io_failures(inode, start);
07157aac
CM
2019 return 0;
2020
2021zeroit:
945d8962 2022 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2023 "private %llu\n",
2024 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2025 (unsigned long long)start, csum,
2026 (unsigned long long)private);
db94535d
CM
2027 memset(kaddr + offset, 1, end - start + 1);
2028 flush_dcache_page(page);
9ab86c8e 2029 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2030 if (private == 0)
2031 return 0;
7e38326f 2032 return -EIO;
07157aac 2033}
b888db2b 2034
24bbcf04
YZ
2035struct delayed_iput {
2036 struct list_head list;
2037 struct inode *inode;
2038};
2039
2040void btrfs_add_delayed_iput(struct inode *inode)
2041{
2042 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2043 struct delayed_iput *delayed;
2044
2045 if (atomic_add_unless(&inode->i_count, -1, 1))
2046 return;
2047
2048 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2049 delayed->inode = inode;
2050
2051 spin_lock(&fs_info->delayed_iput_lock);
2052 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2053 spin_unlock(&fs_info->delayed_iput_lock);
2054}
2055
2056void btrfs_run_delayed_iputs(struct btrfs_root *root)
2057{
2058 LIST_HEAD(list);
2059 struct btrfs_fs_info *fs_info = root->fs_info;
2060 struct delayed_iput *delayed;
2061 int empty;
2062
2063 spin_lock(&fs_info->delayed_iput_lock);
2064 empty = list_empty(&fs_info->delayed_iputs);
2065 spin_unlock(&fs_info->delayed_iput_lock);
2066 if (empty)
2067 return;
2068
2069 down_read(&root->fs_info->cleanup_work_sem);
2070 spin_lock(&fs_info->delayed_iput_lock);
2071 list_splice_init(&fs_info->delayed_iputs, &list);
2072 spin_unlock(&fs_info->delayed_iput_lock);
2073
2074 while (!list_empty(&list)) {
2075 delayed = list_entry(list.next, struct delayed_iput, list);
2076 list_del(&delayed->list);
2077 iput(delayed->inode);
2078 kfree(delayed);
2079 }
2080 up_read(&root->fs_info->cleanup_work_sem);
2081}
2082
d68fc57b
YZ
2083/*
2084 * calculate extra metadata reservation when snapshotting a subvolume
2085 * contains orphan files.
2086 */
2087void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2088 struct btrfs_pending_snapshot *pending,
2089 u64 *bytes_to_reserve)
2090{
2091 struct btrfs_root *root;
2092 struct btrfs_block_rsv *block_rsv;
2093 u64 num_bytes;
2094 int index;
2095
2096 root = pending->root;
2097 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2098 return;
2099
2100 block_rsv = root->orphan_block_rsv;
2101
2102 /* orphan block reservation for the snapshot */
2103 num_bytes = block_rsv->size;
2104
2105 /*
2106 * after the snapshot is created, COWing tree blocks may use more
2107 * space than it frees. So we should make sure there is enough
2108 * reserved space.
2109 */
2110 index = trans->transid & 0x1;
2111 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2112 num_bytes += block_rsv->size -
2113 (block_rsv->reserved + block_rsv->freed[index]);
2114 }
2115
2116 *bytes_to_reserve += num_bytes;
2117}
2118
2119void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2120 struct btrfs_pending_snapshot *pending)
2121{
2122 struct btrfs_root *root = pending->root;
2123 struct btrfs_root *snap = pending->snap;
2124 struct btrfs_block_rsv *block_rsv;
2125 u64 num_bytes;
2126 int index;
2127 int ret;
2128
2129 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2130 return;
2131
2132 /* refill source subvolume's orphan block reservation */
2133 block_rsv = root->orphan_block_rsv;
2134 index = trans->transid & 0x1;
2135 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2136 num_bytes = block_rsv->size -
2137 (block_rsv->reserved + block_rsv->freed[index]);
2138 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2139 root->orphan_block_rsv,
2140 num_bytes);
2141 BUG_ON(ret);
2142 }
2143
2144 /* setup orphan block reservation for the snapshot */
2145 block_rsv = btrfs_alloc_block_rsv(snap);
2146 BUG_ON(!block_rsv);
2147
2148 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2149 snap->orphan_block_rsv = block_rsv;
2150
2151 num_bytes = root->orphan_block_rsv->size;
2152 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2153 block_rsv, num_bytes);
2154 BUG_ON(ret);
2155
2156#if 0
2157 /* insert orphan item for the snapshot */
2158 WARN_ON(!root->orphan_item_inserted);
2159 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2160 snap->root_key.objectid);
2161 BUG_ON(ret);
2162 snap->orphan_item_inserted = 1;
2163#endif
2164}
2165
2166enum btrfs_orphan_cleanup_state {
2167 ORPHAN_CLEANUP_STARTED = 1,
2168 ORPHAN_CLEANUP_DONE = 2,
2169};
2170
2171/*
2172 * This is called in transaction commmit time. If there are no orphan
2173 * files in the subvolume, it removes orphan item and frees block_rsv
2174 * structure.
2175 */
2176void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2177 struct btrfs_root *root)
2178{
2179 int ret;
2180
2181 if (!list_empty(&root->orphan_list) ||
2182 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2183 return;
2184
2185 if (root->orphan_item_inserted &&
2186 btrfs_root_refs(&root->root_item) > 0) {
2187 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2188 root->root_key.objectid);
2189 BUG_ON(ret);
2190 root->orphan_item_inserted = 0;
2191 }
2192
2193 if (root->orphan_block_rsv) {
2194 WARN_ON(root->orphan_block_rsv->size > 0);
2195 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2196 root->orphan_block_rsv = NULL;
2197 }
2198}
2199
7b128766
JB
2200/*
2201 * This creates an orphan entry for the given inode in case something goes
2202 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2203 *
2204 * NOTE: caller of this function should reserve 5 units of metadata for
2205 * this function.
7b128766
JB
2206 */
2207int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2208{
2209 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2210 struct btrfs_block_rsv *block_rsv = NULL;
2211 int reserve = 0;
2212 int insert = 0;
2213 int ret;
7b128766 2214
d68fc57b
YZ
2215 if (!root->orphan_block_rsv) {
2216 block_rsv = btrfs_alloc_block_rsv(root);
2217 BUG_ON(!block_rsv);
2218 }
7b128766 2219
d68fc57b
YZ
2220 spin_lock(&root->orphan_lock);
2221 if (!root->orphan_block_rsv) {
2222 root->orphan_block_rsv = block_rsv;
2223 } else if (block_rsv) {
2224 btrfs_free_block_rsv(root, block_rsv);
2225 block_rsv = NULL;
7b128766 2226 }
7b128766 2227
d68fc57b
YZ
2228 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2229 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2230#if 0
2231 /*
2232 * For proper ENOSPC handling, we should do orphan
2233 * cleanup when mounting. But this introduces backward
2234 * compatibility issue.
2235 */
2236 if (!xchg(&root->orphan_item_inserted, 1))
2237 insert = 2;
2238 else
2239 insert = 1;
2240#endif
2241 insert = 1;
7b128766
JB
2242 }
2243
d68fc57b
YZ
2244 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2245 BTRFS_I(inode)->orphan_meta_reserved = 1;
2246 reserve = 1;
2247 }
2248 spin_unlock(&root->orphan_lock);
7b128766 2249
d68fc57b
YZ
2250 if (block_rsv)
2251 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2252
d68fc57b
YZ
2253 /* grab metadata reservation from transaction handle */
2254 if (reserve) {
2255 ret = btrfs_orphan_reserve_metadata(trans, inode);
2256 BUG_ON(ret);
2257 }
7b128766 2258
d68fc57b
YZ
2259 /* insert an orphan item to track this unlinked/truncated file */
2260 if (insert >= 1) {
33345d01 2261 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2262 BUG_ON(ret);
2263 }
2264
2265 /* insert an orphan item to track subvolume contains orphan files */
2266 if (insert >= 2) {
2267 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2268 root->root_key.objectid);
2269 BUG_ON(ret);
2270 }
2271 return 0;
7b128766
JB
2272}
2273
2274/*
2275 * We have done the truncate/delete so we can go ahead and remove the orphan
2276 * item for this particular inode.
2277 */
2278int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2279{
2280 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2281 int delete_item = 0;
2282 int release_rsv = 0;
7b128766
JB
2283 int ret = 0;
2284
d68fc57b
YZ
2285 spin_lock(&root->orphan_lock);
2286 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2287 list_del_init(&BTRFS_I(inode)->i_orphan);
2288 delete_item = 1;
7b128766
JB
2289 }
2290
d68fc57b
YZ
2291 if (BTRFS_I(inode)->orphan_meta_reserved) {
2292 BTRFS_I(inode)->orphan_meta_reserved = 0;
2293 release_rsv = 1;
7b128766 2294 }
d68fc57b 2295 spin_unlock(&root->orphan_lock);
7b128766 2296
d68fc57b 2297 if (trans && delete_item) {
33345d01 2298 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2299 BUG_ON(ret);
2300 }
7b128766 2301
d68fc57b
YZ
2302 if (release_rsv)
2303 btrfs_orphan_release_metadata(inode);
7b128766 2304
d68fc57b 2305 return 0;
7b128766
JB
2306}
2307
2308/*
2309 * this cleans up any orphans that may be left on the list from the last use
2310 * of this root.
2311 */
66b4ffd1 2312int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2313{
2314 struct btrfs_path *path;
2315 struct extent_buffer *leaf;
7b128766
JB
2316 struct btrfs_key key, found_key;
2317 struct btrfs_trans_handle *trans;
2318 struct inode *inode;
2319 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2320
d68fc57b 2321 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2322 return 0;
c71bf099
YZ
2323
2324 path = btrfs_alloc_path();
66b4ffd1
JB
2325 if (!path) {
2326 ret = -ENOMEM;
2327 goto out;
2328 }
7b128766
JB
2329 path->reada = -1;
2330
2331 key.objectid = BTRFS_ORPHAN_OBJECTID;
2332 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2333 key.offset = (u64)-1;
2334
7b128766
JB
2335 while (1) {
2336 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2337 if (ret < 0)
2338 goto out;
7b128766
JB
2339
2340 /*
2341 * if ret == 0 means we found what we were searching for, which
25985edc 2342 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2343 * find the key and see if we have stuff that matches
2344 */
2345 if (ret > 0) {
66b4ffd1 2346 ret = 0;
7b128766
JB
2347 if (path->slots[0] == 0)
2348 break;
2349 path->slots[0]--;
2350 }
2351
2352 /* pull out the item */
2353 leaf = path->nodes[0];
7b128766
JB
2354 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2355
2356 /* make sure the item matches what we want */
2357 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2358 break;
2359 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2360 break;
2361
2362 /* release the path since we're done with it */
b3b4aa74 2363 btrfs_release_path(path);
7b128766
JB
2364
2365 /*
2366 * this is where we are basically btrfs_lookup, without the
2367 * crossing root thing. we store the inode number in the
2368 * offset of the orphan item.
2369 */
5d4f98a2
YZ
2370 found_key.objectid = found_key.offset;
2371 found_key.type = BTRFS_INODE_ITEM_KEY;
2372 found_key.offset = 0;
73f73415 2373 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
66b4ffd1
JB
2374 if (IS_ERR(inode)) {
2375 ret = PTR_ERR(inode);
2376 goto out;
2377 }
7b128766 2378
7b128766
JB
2379 /*
2380 * add this inode to the orphan list so btrfs_orphan_del does
2381 * the proper thing when we hit it
2382 */
d68fc57b 2383 spin_lock(&root->orphan_lock);
7b128766 2384 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2385 spin_unlock(&root->orphan_lock);
7b128766
JB
2386
2387 /*
2388 * if this is a bad inode, means we actually succeeded in
2389 * removing the inode, but not the orphan record, which means
2390 * we need to manually delete the orphan since iput will just
2391 * do a destroy_inode
2392 */
2393 if (is_bad_inode(inode)) {
a22285a6 2394 trans = btrfs_start_transaction(root, 0);
66b4ffd1
JB
2395 if (IS_ERR(trans)) {
2396 ret = PTR_ERR(trans);
2397 goto out;
2398 }
7b128766 2399 btrfs_orphan_del(trans, inode);
5b21f2ed 2400 btrfs_end_transaction(trans, root);
7b128766
JB
2401 iput(inode);
2402 continue;
2403 }
2404
2405 /* if we have links, this was a truncate, lets do that */
2406 if (inode->i_nlink) {
a41ad394
JB
2407 if (!S_ISREG(inode->i_mode)) {
2408 WARN_ON(1);
2409 iput(inode);
2410 continue;
2411 }
7b128766 2412 nr_truncate++;
66b4ffd1 2413 ret = btrfs_truncate(inode);
7b128766
JB
2414 } else {
2415 nr_unlink++;
2416 }
2417
2418 /* this will do delete_inode and everything for us */
2419 iput(inode);
66b4ffd1
JB
2420 if (ret)
2421 goto out;
7b128766 2422 }
d68fc57b
YZ
2423 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2424
2425 if (root->orphan_block_rsv)
2426 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2427 (u64)-1);
2428
2429 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2430 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2431 if (!IS_ERR(trans))
2432 btrfs_end_transaction(trans, root);
d68fc57b 2433 }
7b128766
JB
2434
2435 if (nr_unlink)
2436 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2437 if (nr_truncate)
2438 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2439
2440out:
2441 if (ret)
2442 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2443 btrfs_free_path(path);
2444 return ret;
7b128766
JB
2445}
2446
46a53cca
CM
2447/*
2448 * very simple check to peek ahead in the leaf looking for xattrs. If we
2449 * don't find any xattrs, we know there can't be any acls.
2450 *
2451 * slot is the slot the inode is in, objectid is the objectid of the inode
2452 */
2453static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2454 int slot, u64 objectid)
2455{
2456 u32 nritems = btrfs_header_nritems(leaf);
2457 struct btrfs_key found_key;
2458 int scanned = 0;
2459
2460 slot++;
2461 while (slot < nritems) {
2462 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2463
2464 /* we found a different objectid, there must not be acls */
2465 if (found_key.objectid != objectid)
2466 return 0;
2467
2468 /* we found an xattr, assume we've got an acl */
2469 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2470 return 1;
2471
2472 /*
2473 * we found a key greater than an xattr key, there can't
2474 * be any acls later on
2475 */
2476 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2477 return 0;
2478
2479 slot++;
2480 scanned++;
2481
2482 /*
2483 * it goes inode, inode backrefs, xattrs, extents,
2484 * so if there are a ton of hard links to an inode there can
2485 * be a lot of backrefs. Don't waste time searching too hard,
2486 * this is just an optimization
2487 */
2488 if (scanned >= 8)
2489 break;
2490 }
2491 /* we hit the end of the leaf before we found an xattr or
2492 * something larger than an xattr. We have to assume the inode
2493 * has acls
2494 */
2495 return 1;
2496}
2497
d352ac68
CM
2498/*
2499 * read an inode from the btree into the in-memory inode
2500 */
5d4f98a2 2501static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2502{
2503 struct btrfs_path *path;
5f39d397 2504 struct extent_buffer *leaf;
39279cc3 2505 struct btrfs_inode_item *inode_item;
0b86a832 2506 struct btrfs_timespec *tspec;
39279cc3
CM
2507 struct btrfs_root *root = BTRFS_I(inode)->root;
2508 struct btrfs_key location;
46a53cca 2509 int maybe_acls;
618e21d5 2510 u32 rdev;
39279cc3
CM
2511 int ret;
2512
2513 path = btrfs_alloc_path();
2514 BUG_ON(!path);
d90c7321 2515 path->leave_spinning = 1;
39279cc3 2516 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2517
39279cc3 2518 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2519 if (ret)
39279cc3 2520 goto make_bad;
39279cc3 2521
5f39d397
CM
2522 leaf = path->nodes[0];
2523 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2524 struct btrfs_inode_item);
d90c7321
JB
2525 if (!leaf->map_token)
2526 map_private_extent_buffer(leaf, (unsigned long)inode_item,
2527 sizeof(struct btrfs_inode_item),
2528 &leaf->map_token, &leaf->kaddr,
2529 &leaf->map_start, &leaf->map_len,
2530 KM_USER1);
5f39d397
CM
2531
2532 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2533 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2534 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2535 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2536 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2537
2538 tspec = btrfs_inode_atime(inode_item);
2539 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2540 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2541
2542 tspec = btrfs_inode_mtime(inode_item);
2543 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2544 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2545
2546 tspec = btrfs_inode_ctime(inode_item);
2547 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2548 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2549
a76a3cd4 2550 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2551 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2552 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2553 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2554 inode->i_rdev = 0;
5f39d397
CM
2555 rdev = btrfs_inode_rdev(leaf, inode_item);
2556
aec7477b 2557 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2558 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2559
46a53cca
CM
2560 /*
2561 * try to precache a NULL acl entry for files that don't have
2562 * any xattrs or acls
2563 */
33345d01
LZ
2564 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2565 btrfs_ino(inode));
72c04902
AV
2566 if (!maybe_acls)
2567 cache_no_acl(inode);
46a53cca 2568
d90c7321
JB
2569 if (leaf->map_token) {
2570 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2571 leaf->map_token = NULL;
2572 }
2573
39279cc3
CM
2574 btrfs_free_path(path);
2575 inode_item = NULL;
2576
39279cc3 2577 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2578 case S_IFREG:
2579 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2580 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2581 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2582 inode->i_fop = &btrfs_file_operations;
2583 inode->i_op = &btrfs_file_inode_operations;
2584 break;
2585 case S_IFDIR:
2586 inode->i_fop = &btrfs_dir_file_operations;
2587 if (root == root->fs_info->tree_root)
2588 inode->i_op = &btrfs_dir_ro_inode_operations;
2589 else
2590 inode->i_op = &btrfs_dir_inode_operations;
2591 break;
2592 case S_IFLNK:
2593 inode->i_op = &btrfs_symlink_inode_operations;
2594 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2595 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2596 break;
618e21d5 2597 default:
0279b4cd 2598 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2599 init_special_inode(inode, inode->i_mode, rdev);
2600 break;
39279cc3 2601 }
6cbff00f
CH
2602
2603 btrfs_update_iflags(inode);
39279cc3
CM
2604 return;
2605
2606make_bad:
39279cc3 2607 btrfs_free_path(path);
39279cc3
CM
2608 make_bad_inode(inode);
2609}
2610
d352ac68
CM
2611/*
2612 * given a leaf and an inode, copy the inode fields into the leaf
2613 */
e02119d5
CM
2614static void fill_inode_item(struct btrfs_trans_handle *trans,
2615 struct extent_buffer *leaf,
5f39d397 2616 struct btrfs_inode_item *item,
39279cc3
CM
2617 struct inode *inode)
2618{
12ddb96c
JB
2619 if (!leaf->map_token)
2620 map_private_extent_buffer(leaf, (unsigned long)item,
2621 sizeof(struct btrfs_inode_item),
2622 &leaf->map_token, &leaf->kaddr,
2623 &leaf->map_start, &leaf->map_len,
2624 KM_USER1);
2625
5f39d397
CM
2626 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2627 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2628 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2629 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2630 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2631
2632 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2633 inode->i_atime.tv_sec);
2634 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2635 inode->i_atime.tv_nsec);
2636
2637 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2638 inode->i_mtime.tv_sec);
2639 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2640 inode->i_mtime.tv_nsec);
2641
2642 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2643 inode->i_ctime.tv_sec);
2644 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2645 inode->i_ctime.tv_nsec);
2646
a76a3cd4 2647 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2648 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2649 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2650 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2651 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2652 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2653 btrfs_set_inode_block_group(leaf, item, 0);
12ddb96c
JB
2654
2655 if (leaf->map_token) {
2656 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2657 leaf->map_token = NULL;
2658 }
39279cc3
CM
2659}
2660
d352ac68
CM
2661/*
2662 * copy everything in the in-memory inode into the btree.
2663 */
d397712b
CM
2664noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2665 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2666{
2667 struct btrfs_inode_item *inode_item;
2668 struct btrfs_path *path;
5f39d397 2669 struct extent_buffer *leaf;
39279cc3
CM
2670 int ret;
2671
16cdcec7
MX
2672 /*
2673 * If root is tree root, it means this inode is used to
2674 * store free space information. And these inodes are updated
2675 * when committing the transaction, so they needn't delaye to
2676 * be updated, or deadlock will occured.
2677 */
dcc6d073 2678 if (!is_free_space_inode(root, inode)) {
16cdcec7
MX
2679 ret = btrfs_delayed_update_inode(trans, root, inode);
2680 if (!ret)
2681 btrfs_set_inode_last_trans(trans, inode);
2682 return ret;
2683 }
2684
39279cc3 2685 path = btrfs_alloc_path();
16cdcec7
MX
2686 if (!path)
2687 return -ENOMEM;
2688
b9473439 2689 path->leave_spinning = 1;
16cdcec7
MX
2690 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2691 1);
39279cc3
CM
2692 if (ret) {
2693 if (ret > 0)
2694 ret = -ENOENT;
2695 goto failed;
2696 }
2697
b4ce94de 2698 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2699 leaf = path->nodes[0];
2700 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2701 struct btrfs_inode_item);
39279cc3 2702
e02119d5 2703 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2704 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2705 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2706 ret = 0;
2707failed:
39279cc3
CM
2708 btrfs_free_path(path);
2709 return ret;
2710}
2711
d352ac68
CM
2712/*
2713 * unlink helper that gets used here in inode.c and in the tree logging
2714 * recovery code. It remove a link in a directory with a given name, and
2715 * also drops the back refs in the inode to the directory
2716 */
92986796
AV
2717static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2718 struct btrfs_root *root,
2719 struct inode *dir, struct inode *inode,
2720 const char *name, int name_len)
39279cc3
CM
2721{
2722 struct btrfs_path *path;
39279cc3 2723 int ret = 0;
5f39d397 2724 struct extent_buffer *leaf;
39279cc3 2725 struct btrfs_dir_item *di;
5f39d397 2726 struct btrfs_key key;
aec7477b 2727 u64 index;
33345d01
LZ
2728 u64 ino = btrfs_ino(inode);
2729 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2730
2731 path = btrfs_alloc_path();
54aa1f4d
CM
2732 if (!path) {
2733 ret = -ENOMEM;
554233a6 2734 goto out;
54aa1f4d
CM
2735 }
2736
b9473439 2737 path->leave_spinning = 1;
33345d01 2738 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2739 name, name_len, -1);
2740 if (IS_ERR(di)) {
2741 ret = PTR_ERR(di);
2742 goto err;
2743 }
2744 if (!di) {
2745 ret = -ENOENT;
2746 goto err;
2747 }
5f39d397
CM
2748 leaf = path->nodes[0];
2749 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2750 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2751 if (ret)
2752 goto err;
b3b4aa74 2753 btrfs_release_path(path);
39279cc3 2754
33345d01
LZ
2755 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2756 dir_ino, &index);
aec7477b 2757 if (ret) {
d397712b 2758 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2759 "inode %llu parent %llu\n", name_len, name,
2760 (unsigned long long)ino, (unsigned long long)dir_ino);
aec7477b
JB
2761 goto err;
2762 }
2763
16cdcec7
MX
2764 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2765 if (ret)
39279cc3 2766 goto err;
39279cc3 2767
e02119d5 2768 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2769 inode, dir_ino);
49eb7e46 2770 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2771
2772 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2773 dir, index);
6418c961
CM
2774 if (ret == -ENOENT)
2775 ret = 0;
39279cc3
CM
2776err:
2777 btrfs_free_path(path);
e02119d5
CM
2778 if (ret)
2779 goto out;
2780
2781 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2782 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2783 btrfs_update_inode(trans, root, dir);
e02119d5 2784out:
39279cc3
CM
2785 return ret;
2786}
2787
92986796
AV
2788int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2789 struct btrfs_root *root,
2790 struct inode *dir, struct inode *inode,
2791 const char *name, int name_len)
2792{
2793 int ret;
2794 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2795 if (!ret) {
2796 btrfs_drop_nlink(inode);
2797 ret = btrfs_update_inode(trans, root, inode);
2798 }
2799 return ret;
2800}
2801
2802
a22285a6
YZ
2803/* helper to check if there is any shared block in the path */
2804static int check_path_shared(struct btrfs_root *root,
2805 struct btrfs_path *path)
39279cc3 2806{
a22285a6
YZ
2807 struct extent_buffer *eb;
2808 int level;
0e4dcbef 2809 u64 refs = 1;
5df6a9f6 2810
a22285a6 2811 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2812 int ret;
2813
a22285a6
YZ
2814 if (!path->nodes[level])
2815 break;
2816 eb = path->nodes[level];
2817 if (!btrfs_block_can_be_shared(root, eb))
2818 continue;
2819 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2820 &refs, NULL);
2821 if (refs > 1)
2822 return 1;
5df6a9f6 2823 }
dedefd72 2824 return 0;
39279cc3
CM
2825}
2826
a22285a6
YZ
2827/*
2828 * helper to start transaction for unlink and rmdir.
2829 *
2830 * unlink and rmdir are special in btrfs, they do not always free space.
2831 * so in enospc case, we should make sure they will free space before
2832 * allowing them to use the global metadata reservation.
2833 */
2834static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2835 struct dentry *dentry)
4df27c4d 2836{
39279cc3 2837 struct btrfs_trans_handle *trans;
a22285a6 2838 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2839 struct btrfs_path *path;
a22285a6 2840 struct btrfs_inode_ref *ref;
4df27c4d 2841 struct btrfs_dir_item *di;
7b128766 2842 struct inode *inode = dentry->d_inode;
4df27c4d 2843 u64 index;
a22285a6
YZ
2844 int check_link = 1;
2845 int err = -ENOSPC;
4df27c4d 2846 int ret;
33345d01
LZ
2847 u64 ino = btrfs_ino(inode);
2848 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2849
a22285a6
YZ
2850 trans = btrfs_start_transaction(root, 10);
2851 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2852 return trans;
4df27c4d 2853
33345d01 2854 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2855 return ERR_PTR(-ENOSPC);
4df27c4d 2856
a22285a6
YZ
2857 /* check if there is someone else holds reference */
2858 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2859 return ERR_PTR(-ENOSPC);
4df27c4d 2860
a22285a6
YZ
2861 if (atomic_read(&inode->i_count) > 2)
2862 return ERR_PTR(-ENOSPC);
4df27c4d 2863
a22285a6
YZ
2864 if (xchg(&root->fs_info->enospc_unlink, 1))
2865 return ERR_PTR(-ENOSPC);
2866
2867 path = btrfs_alloc_path();
2868 if (!path) {
2869 root->fs_info->enospc_unlink = 0;
2870 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2871 }
2872
a22285a6 2873 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2874 if (IS_ERR(trans)) {
a22285a6
YZ
2875 btrfs_free_path(path);
2876 root->fs_info->enospc_unlink = 0;
2877 return trans;
2878 }
4df27c4d 2879
a22285a6
YZ
2880 path->skip_locking = 1;
2881 path->search_commit_root = 1;
4df27c4d 2882
a22285a6
YZ
2883 ret = btrfs_lookup_inode(trans, root, path,
2884 &BTRFS_I(dir)->location, 0);
2885 if (ret < 0) {
2886 err = ret;
2887 goto out;
2888 }
2889 if (ret == 0) {
2890 if (check_path_shared(root, path))
2891 goto out;
2892 } else {
2893 check_link = 0;
5df6a9f6 2894 }
b3b4aa74 2895 btrfs_release_path(path);
a22285a6
YZ
2896
2897 ret = btrfs_lookup_inode(trans, root, path,
2898 &BTRFS_I(inode)->location, 0);
2899 if (ret < 0) {
2900 err = ret;
2901 goto out;
2902 }
2903 if (ret == 0) {
2904 if (check_path_shared(root, path))
2905 goto out;
2906 } else {
2907 check_link = 0;
2908 }
b3b4aa74 2909 btrfs_release_path(path);
a22285a6
YZ
2910
2911 if (ret == 0 && S_ISREG(inode->i_mode)) {
2912 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2913 ino, (u64)-1, 0);
a22285a6
YZ
2914 if (ret < 0) {
2915 err = ret;
2916 goto out;
2917 }
2918 BUG_ON(ret == 0);
2919 if (check_path_shared(root, path))
2920 goto out;
b3b4aa74 2921 btrfs_release_path(path);
a22285a6
YZ
2922 }
2923
2924 if (!check_link) {
2925 err = 0;
2926 goto out;
2927 }
2928
33345d01 2929 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2930 dentry->d_name.name, dentry->d_name.len, 0);
2931 if (IS_ERR(di)) {
2932 err = PTR_ERR(di);
2933 goto out;
2934 }
2935 if (di) {
2936 if (check_path_shared(root, path))
2937 goto out;
2938 } else {
2939 err = 0;
2940 goto out;
2941 }
b3b4aa74 2942 btrfs_release_path(path);
a22285a6
YZ
2943
2944 ref = btrfs_lookup_inode_ref(trans, root, path,
2945 dentry->d_name.name, dentry->d_name.len,
33345d01 2946 ino, dir_ino, 0);
a22285a6
YZ
2947 if (IS_ERR(ref)) {
2948 err = PTR_ERR(ref);
2949 goto out;
2950 }
2951 BUG_ON(!ref);
2952 if (check_path_shared(root, path))
2953 goto out;
2954 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 2955 btrfs_release_path(path);
a22285a6 2956
16cdcec7
MX
2957 /*
2958 * This is a commit root search, if we can lookup inode item and other
2959 * relative items in the commit root, it means the transaction of
2960 * dir/file creation has been committed, and the dir index item that we
2961 * delay to insert has also been inserted into the commit root. So
2962 * we needn't worry about the delayed insertion of the dir index item
2963 * here.
2964 */
33345d01 2965 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
2966 dentry->d_name.name, dentry->d_name.len, 0);
2967 if (IS_ERR(di)) {
2968 err = PTR_ERR(di);
2969 goto out;
2970 }
2971 BUG_ON(ret == -ENOENT);
2972 if (check_path_shared(root, path))
2973 goto out;
2974
2975 err = 0;
2976out:
2977 btrfs_free_path(path);
2978 if (err) {
2979 btrfs_end_transaction(trans, root);
2980 root->fs_info->enospc_unlink = 0;
2981 return ERR_PTR(err);
2982 }
2983
2984 trans->block_rsv = &root->fs_info->global_block_rsv;
2985 return trans;
2986}
2987
2988static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2989 struct btrfs_root *root)
2990{
2991 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2992 BUG_ON(!root->fs_info->enospc_unlink);
2993 root->fs_info->enospc_unlink = 0;
2994 }
2995 btrfs_end_transaction_throttle(trans, root);
2996}
2997
2998static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2999{
3000 struct btrfs_root *root = BTRFS_I(dir)->root;
3001 struct btrfs_trans_handle *trans;
3002 struct inode *inode = dentry->d_inode;
3003 int ret;
3004 unsigned long nr = 0;
3005
3006 trans = __unlink_start_trans(dir, dentry);
3007 if (IS_ERR(trans))
3008 return PTR_ERR(trans);
5f39d397 3009
12fcfd22
CM
3010 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3011
e02119d5
CM
3012 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3013 dentry->d_name.name, dentry->d_name.len);
a22285a6 3014 BUG_ON(ret);
7b128766 3015
a22285a6 3016 if (inode->i_nlink == 0) {
7b128766 3017 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
3018 BUG_ON(ret);
3019 }
7b128766 3020
d3c2fdcf 3021 nr = trans->blocks_used;
a22285a6 3022 __unlink_end_trans(trans, root);
d3c2fdcf 3023 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3024 return ret;
3025}
3026
4df27c4d
YZ
3027int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3028 struct btrfs_root *root,
3029 struct inode *dir, u64 objectid,
3030 const char *name, int name_len)
3031{
3032 struct btrfs_path *path;
3033 struct extent_buffer *leaf;
3034 struct btrfs_dir_item *di;
3035 struct btrfs_key key;
3036 u64 index;
3037 int ret;
33345d01 3038 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3039
3040 path = btrfs_alloc_path();
3041 if (!path)
3042 return -ENOMEM;
3043
33345d01 3044 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3045 name, name_len, -1);
c704005d 3046 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
3047
3048 leaf = path->nodes[0];
3049 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3050 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3051 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3052 BUG_ON(ret);
b3b4aa74 3053 btrfs_release_path(path);
4df27c4d
YZ
3054
3055 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3056 objectid, root->root_key.objectid,
33345d01 3057 dir_ino, &index, name, name_len);
4df27c4d
YZ
3058 if (ret < 0) {
3059 BUG_ON(ret != -ENOENT);
33345d01 3060 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3061 name, name_len);
c704005d 3062 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
3063
3064 leaf = path->nodes[0];
3065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3066 btrfs_release_path(path);
4df27c4d
YZ
3067 index = key.offset;
3068 }
945d8962 3069 btrfs_release_path(path);
4df27c4d 3070
16cdcec7 3071 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4df27c4d 3072 BUG_ON(ret);
4df27c4d
YZ
3073
3074 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3075 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3076 ret = btrfs_update_inode(trans, root, dir);
3077 BUG_ON(ret);
4df27c4d 3078
71d7aed0 3079 btrfs_free_path(path);
4df27c4d
YZ
3080 return 0;
3081}
3082
39279cc3
CM
3083static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3084{
3085 struct inode *inode = dentry->d_inode;
1832a6d5 3086 int err = 0;
39279cc3 3087 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3088 struct btrfs_trans_handle *trans;
1832a6d5 3089 unsigned long nr = 0;
39279cc3 3090
3394e160 3091 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 3092 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3093 return -ENOTEMPTY;
3094
a22285a6
YZ
3095 trans = __unlink_start_trans(dir, dentry);
3096 if (IS_ERR(trans))
5df6a9f6 3097 return PTR_ERR(trans);
5df6a9f6 3098
33345d01 3099 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3100 err = btrfs_unlink_subvol(trans, root, dir,
3101 BTRFS_I(inode)->location.objectid,
3102 dentry->d_name.name,
3103 dentry->d_name.len);
3104 goto out;
3105 }
3106
7b128766
JB
3107 err = btrfs_orphan_add(trans, inode);
3108 if (err)
4df27c4d 3109 goto out;
7b128766 3110
39279cc3 3111 /* now the directory is empty */
e02119d5
CM
3112 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3113 dentry->d_name.name, dentry->d_name.len);
d397712b 3114 if (!err)
dbe674a9 3115 btrfs_i_size_write(inode, 0);
4df27c4d 3116out:
d3c2fdcf 3117 nr = trans->blocks_used;
a22285a6 3118 __unlink_end_trans(trans, root);
d3c2fdcf 3119 btrfs_btree_balance_dirty(root, nr);
3954401f 3120
39279cc3
CM
3121 return err;
3122}
3123
39279cc3
CM
3124/*
3125 * this can truncate away extent items, csum items and directory items.
3126 * It starts at a high offset and removes keys until it can't find
d352ac68 3127 * any higher than new_size
39279cc3
CM
3128 *
3129 * csum items that cross the new i_size are truncated to the new size
3130 * as well.
7b128766
JB
3131 *
3132 * min_type is the minimum key type to truncate down to. If set to 0, this
3133 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3134 */
8082510e
YZ
3135int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3136 struct btrfs_root *root,
3137 struct inode *inode,
3138 u64 new_size, u32 min_type)
39279cc3 3139{
39279cc3 3140 struct btrfs_path *path;
5f39d397 3141 struct extent_buffer *leaf;
39279cc3 3142 struct btrfs_file_extent_item *fi;
8082510e
YZ
3143 struct btrfs_key key;
3144 struct btrfs_key found_key;
39279cc3 3145 u64 extent_start = 0;
db94535d 3146 u64 extent_num_bytes = 0;
5d4f98a2 3147 u64 extent_offset = 0;
39279cc3 3148 u64 item_end = 0;
8082510e
YZ
3149 u64 mask = root->sectorsize - 1;
3150 u32 found_type = (u8)-1;
39279cc3
CM
3151 int found_extent;
3152 int del_item;
85e21bac
CM
3153 int pending_del_nr = 0;
3154 int pending_del_slot = 0;
179e29e4 3155 int extent_type = -1;
771ed689 3156 int encoding;
8082510e
YZ
3157 int ret;
3158 int err = 0;
33345d01 3159 u64 ino = btrfs_ino(inode);
8082510e
YZ
3160
3161 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3162
0af3d00b 3163 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3164 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3165
16cdcec7
MX
3166 /*
3167 * This function is also used to drop the items in the log tree before
3168 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3169 * it is used to drop the loged items. So we shouldn't kill the delayed
3170 * items.
3171 */
3172 if (min_type == 0 && root == BTRFS_I(inode)->root)
3173 btrfs_kill_delayed_inode_items(inode);
3174
39279cc3
CM
3175 path = btrfs_alloc_path();
3176 BUG_ON(!path);
33c17ad5 3177 path->reada = -1;
5f39d397 3178
33345d01 3179 key.objectid = ino;
39279cc3 3180 key.offset = (u64)-1;
5f39d397
CM
3181 key.type = (u8)-1;
3182
85e21bac 3183search_again:
b9473439 3184 path->leave_spinning = 1;
85e21bac 3185 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3186 if (ret < 0) {
3187 err = ret;
3188 goto out;
3189 }
d397712b 3190
85e21bac 3191 if (ret > 0) {
e02119d5
CM
3192 /* there are no items in the tree for us to truncate, we're
3193 * done
3194 */
8082510e
YZ
3195 if (path->slots[0] == 0)
3196 goto out;
85e21bac
CM
3197 path->slots[0]--;
3198 }
3199
d397712b 3200 while (1) {
39279cc3 3201 fi = NULL;
5f39d397
CM
3202 leaf = path->nodes[0];
3203 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3204 found_type = btrfs_key_type(&found_key);
771ed689 3205 encoding = 0;
39279cc3 3206
33345d01 3207 if (found_key.objectid != ino)
39279cc3 3208 break;
5f39d397 3209
85e21bac 3210 if (found_type < min_type)
39279cc3
CM
3211 break;
3212
5f39d397 3213 item_end = found_key.offset;
39279cc3 3214 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3215 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3216 struct btrfs_file_extent_item);
179e29e4 3217 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3218 encoding = btrfs_file_extent_compression(leaf, fi);
3219 encoding |= btrfs_file_extent_encryption(leaf, fi);
3220 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3221
179e29e4 3222 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3223 item_end +=
db94535d 3224 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3225 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3226 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3227 fi);
39279cc3 3228 }
008630c1 3229 item_end--;
39279cc3 3230 }
8082510e
YZ
3231 if (found_type > min_type) {
3232 del_item = 1;
3233 } else {
3234 if (item_end < new_size)
b888db2b 3235 break;
8082510e
YZ
3236 if (found_key.offset >= new_size)
3237 del_item = 1;
3238 else
3239 del_item = 0;
39279cc3 3240 }
39279cc3 3241 found_extent = 0;
39279cc3 3242 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3243 if (found_type != BTRFS_EXTENT_DATA_KEY)
3244 goto delete;
3245
3246 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3247 u64 num_dec;
db94535d 3248 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3249 if (!del_item && !encoding) {
db94535d
CM
3250 u64 orig_num_bytes =
3251 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3252 extent_num_bytes = new_size -
5f39d397 3253 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3254 extent_num_bytes = extent_num_bytes &
3255 ~((u64)root->sectorsize - 1);
db94535d
CM
3256 btrfs_set_file_extent_num_bytes(leaf, fi,
3257 extent_num_bytes);
3258 num_dec = (orig_num_bytes -
9069218d 3259 extent_num_bytes);
e02119d5 3260 if (root->ref_cows && extent_start != 0)
a76a3cd4 3261 inode_sub_bytes(inode, num_dec);
5f39d397 3262 btrfs_mark_buffer_dirty(leaf);
39279cc3 3263 } else {
db94535d
CM
3264 extent_num_bytes =
3265 btrfs_file_extent_disk_num_bytes(leaf,
3266 fi);
5d4f98a2
YZ
3267 extent_offset = found_key.offset -
3268 btrfs_file_extent_offset(leaf, fi);
3269
39279cc3 3270 /* FIXME blocksize != 4096 */
9069218d 3271 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3272 if (extent_start != 0) {
3273 found_extent = 1;
e02119d5 3274 if (root->ref_cows)
a76a3cd4 3275 inode_sub_bytes(inode, num_dec);
e02119d5 3276 }
39279cc3 3277 }
9069218d 3278 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3279 /*
3280 * we can't truncate inline items that have had
3281 * special encodings
3282 */
3283 if (!del_item &&
3284 btrfs_file_extent_compression(leaf, fi) == 0 &&
3285 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3286 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3287 u32 size = new_size - found_key.offset;
3288
3289 if (root->ref_cows) {
a76a3cd4
YZ
3290 inode_sub_bytes(inode, item_end + 1 -
3291 new_size);
e02119d5
CM
3292 }
3293 size =
3294 btrfs_file_extent_calc_inline_size(size);
9069218d 3295 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3296 size, 1);
e02119d5 3297 } else if (root->ref_cows) {
a76a3cd4
YZ
3298 inode_sub_bytes(inode, item_end + 1 -
3299 found_key.offset);
9069218d 3300 }
39279cc3 3301 }
179e29e4 3302delete:
39279cc3 3303 if (del_item) {
85e21bac
CM
3304 if (!pending_del_nr) {
3305 /* no pending yet, add ourselves */
3306 pending_del_slot = path->slots[0];
3307 pending_del_nr = 1;
3308 } else if (pending_del_nr &&
3309 path->slots[0] + 1 == pending_del_slot) {
3310 /* hop on the pending chunk */
3311 pending_del_nr++;
3312 pending_del_slot = path->slots[0];
3313 } else {
d397712b 3314 BUG();
85e21bac 3315 }
39279cc3
CM
3316 } else {
3317 break;
3318 }
0af3d00b
JB
3319 if (found_extent && (root->ref_cows ||
3320 root == root->fs_info->tree_root)) {
b9473439 3321 btrfs_set_path_blocking(path);
39279cc3 3322 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3323 extent_num_bytes, 0,
3324 btrfs_header_owner(leaf),
33345d01 3325 ino, extent_offset);
39279cc3
CM
3326 BUG_ON(ret);
3327 }
85e21bac 3328
8082510e
YZ
3329 if (found_type == BTRFS_INODE_ITEM_KEY)
3330 break;
3331
3332 if (path->slots[0] == 0 ||
3333 path->slots[0] != pending_del_slot) {
82d5902d
LZ
3334 if (root->ref_cows &&
3335 BTRFS_I(inode)->location.objectid !=
3336 BTRFS_FREE_INO_OBJECTID) {
8082510e
YZ
3337 err = -EAGAIN;
3338 goto out;
3339 }
3340 if (pending_del_nr) {
3341 ret = btrfs_del_items(trans, root, path,
3342 pending_del_slot,
3343 pending_del_nr);
3344 BUG_ON(ret);
3345 pending_del_nr = 0;
3346 }
b3b4aa74 3347 btrfs_release_path(path);
85e21bac 3348 goto search_again;
8082510e
YZ
3349 } else {
3350 path->slots[0]--;
85e21bac 3351 }
39279cc3 3352 }
8082510e 3353out:
85e21bac
CM
3354 if (pending_del_nr) {
3355 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3356 pending_del_nr);
d68fc57b 3357 BUG_ON(ret);
85e21bac 3358 }
39279cc3 3359 btrfs_free_path(path);
8082510e 3360 return err;
39279cc3
CM
3361}
3362
3363/*
3364 * taken from block_truncate_page, but does cow as it zeros out
3365 * any bytes left in the last page in the file.
3366 */
3367static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3368{
3369 struct inode *inode = mapping->host;
db94535d 3370 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3371 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3372 struct btrfs_ordered_extent *ordered;
2ac55d41 3373 struct extent_state *cached_state = NULL;
e6dcd2dc 3374 char *kaddr;
db94535d 3375 u32 blocksize = root->sectorsize;
39279cc3
CM
3376 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3377 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3378 struct page *page;
39279cc3 3379 int ret = 0;
a52d9a80 3380 u64 page_start;
e6dcd2dc 3381 u64 page_end;
39279cc3
CM
3382
3383 if ((offset & (blocksize - 1)) == 0)
3384 goto out;
0ca1f7ce 3385 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3386 if (ret)
3387 goto out;
39279cc3
CM
3388
3389 ret = -ENOMEM;
211c17f5 3390again:
39279cc3 3391 page = grab_cache_page(mapping, index);
5d5e103a 3392 if (!page) {
0ca1f7ce 3393 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3394 goto out;
5d5e103a 3395 }
e6dcd2dc
CM
3396
3397 page_start = page_offset(page);
3398 page_end = page_start + PAGE_CACHE_SIZE - 1;
3399
39279cc3 3400 if (!PageUptodate(page)) {
9ebefb18 3401 ret = btrfs_readpage(NULL, page);
39279cc3 3402 lock_page(page);
211c17f5
CM
3403 if (page->mapping != mapping) {
3404 unlock_page(page);
3405 page_cache_release(page);
3406 goto again;
3407 }
39279cc3
CM
3408 if (!PageUptodate(page)) {
3409 ret = -EIO;
89642229 3410 goto out_unlock;
39279cc3
CM
3411 }
3412 }
211c17f5 3413 wait_on_page_writeback(page);
e6dcd2dc 3414
2ac55d41
JB
3415 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3416 GFP_NOFS);
e6dcd2dc
CM
3417 set_page_extent_mapped(page);
3418
3419 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3420 if (ordered) {
2ac55d41
JB
3421 unlock_extent_cached(io_tree, page_start, page_end,
3422 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3423 unlock_page(page);
3424 page_cache_release(page);
eb84ae03 3425 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3426 btrfs_put_ordered_extent(ordered);
3427 goto again;
3428 }
3429
2ac55d41 3430 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3431 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3432 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3433
2ac55d41
JB
3434 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3435 &cached_state);
9ed74f2d 3436 if (ret) {
2ac55d41
JB
3437 unlock_extent_cached(io_tree, page_start, page_end,
3438 &cached_state, GFP_NOFS);
9ed74f2d
JB
3439 goto out_unlock;
3440 }
3441
e6dcd2dc
CM
3442 ret = 0;
3443 if (offset != PAGE_CACHE_SIZE) {
3444 kaddr = kmap(page);
3445 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3446 flush_dcache_page(page);
3447 kunmap(page);
3448 }
247e743c 3449 ClearPageChecked(page);
e6dcd2dc 3450 set_page_dirty(page);
2ac55d41
JB
3451 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3452 GFP_NOFS);
39279cc3 3453
89642229 3454out_unlock:
5d5e103a 3455 if (ret)
0ca1f7ce 3456 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3457 unlock_page(page);
3458 page_cache_release(page);
3459out:
3460 return ret;
3461}
3462
695a0d0d
JB
3463/*
3464 * This function puts in dummy file extents for the area we're creating a hole
3465 * for. So if we are truncating this file to a larger size we need to insert
3466 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3467 * the range between oldsize and size
3468 */
a41ad394 3469int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3470{
9036c102
YZ
3471 struct btrfs_trans_handle *trans;
3472 struct btrfs_root *root = BTRFS_I(inode)->root;
3473 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3474 struct extent_map *em = NULL;
2ac55d41 3475 struct extent_state *cached_state = NULL;
9036c102 3476 u64 mask = root->sectorsize - 1;
a41ad394 3477 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3478 u64 block_end = (size + mask) & ~mask;
3479 u64 last_byte;
3480 u64 cur_offset;
3481 u64 hole_size;
9ed74f2d 3482 int err = 0;
39279cc3 3483
9036c102
YZ
3484 if (size <= hole_start)
3485 return 0;
3486
9036c102
YZ
3487 while (1) {
3488 struct btrfs_ordered_extent *ordered;
3489 btrfs_wait_ordered_range(inode, hole_start,
3490 block_end - hole_start);
2ac55d41
JB
3491 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3492 &cached_state, GFP_NOFS);
9036c102
YZ
3493 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3494 if (!ordered)
3495 break;
2ac55d41
JB
3496 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3497 &cached_state, GFP_NOFS);
9036c102
YZ
3498 btrfs_put_ordered_extent(ordered);
3499 }
39279cc3 3500
9036c102
YZ
3501 cur_offset = hole_start;
3502 while (1) {
3503 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3504 block_end - cur_offset, 0);
c704005d 3505 BUG_ON(IS_ERR_OR_NULL(em));
9036c102
YZ
3506 last_byte = min(extent_map_end(em), block_end);
3507 last_byte = (last_byte + mask) & ~mask;
8082510e 3508 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3509 u64 hint_byte = 0;
9036c102 3510 hole_size = last_byte - cur_offset;
9ed74f2d 3511
a22285a6
YZ
3512 trans = btrfs_start_transaction(root, 2);
3513 if (IS_ERR(trans)) {
3514 err = PTR_ERR(trans);
9ed74f2d 3515 break;
a22285a6 3516 }
8082510e
YZ
3517
3518 err = btrfs_drop_extents(trans, inode, cur_offset,
3519 cur_offset + hole_size,
3520 &hint_byte, 1);
3893e33b
JB
3521 if (err)
3522 break;
8082510e 3523
9036c102 3524 err = btrfs_insert_file_extent(trans, root,
33345d01 3525 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3526 0, hole_size, 0, hole_size,
3527 0, 0, 0);
3893e33b
JB
3528 if (err)
3529 break;
8082510e 3530
9036c102
YZ
3531 btrfs_drop_extent_cache(inode, hole_start,
3532 last_byte - 1, 0);
8082510e
YZ
3533
3534 btrfs_end_transaction(trans, root);
9036c102
YZ
3535 }
3536 free_extent_map(em);
a22285a6 3537 em = NULL;
9036c102 3538 cur_offset = last_byte;
8082510e 3539 if (cur_offset >= block_end)
9036c102
YZ
3540 break;
3541 }
1832a6d5 3542
a22285a6 3543 free_extent_map(em);
2ac55d41
JB
3544 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3545 GFP_NOFS);
9036c102
YZ
3546 return err;
3547}
39279cc3 3548
a41ad394 3549static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3550{
a41ad394 3551 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3552 int ret;
3553
a41ad394 3554 if (newsize == oldsize)
8082510e
YZ
3555 return 0;
3556
a41ad394
JB
3557 if (newsize > oldsize) {
3558 i_size_write(inode, newsize);
3559 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3560 truncate_pagecache(inode, oldsize, newsize);
3561 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3562 if (ret) {
a41ad394 3563 btrfs_setsize(inode, oldsize);
8082510e
YZ
3564 return ret;
3565 }
3566
930f028a 3567 mark_inode_dirty(inode);
a41ad394 3568 } else {
8082510e 3569
a41ad394
JB
3570 /*
3571 * We're truncating a file that used to have good data down to
3572 * zero. Make sure it gets into the ordered flush list so that
3573 * any new writes get down to disk quickly.
3574 */
3575 if (newsize == 0)
3576 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3577
a41ad394
JB
3578 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3579 truncate_setsize(inode, newsize);
3580 ret = btrfs_truncate(inode);
8082510e
YZ
3581 }
3582
a41ad394 3583 return ret;
8082510e
YZ
3584}
3585
9036c102
YZ
3586static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3587{
3588 struct inode *inode = dentry->d_inode;
b83cc969 3589 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3590 int err;
39279cc3 3591
b83cc969
LZ
3592 if (btrfs_root_readonly(root))
3593 return -EROFS;
3594
9036c102
YZ
3595 err = inode_change_ok(inode, attr);
3596 if (err)
3597 return err;
2bf5a725 3598
5a3f23d5 3599 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3600 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3601 if (err)
3602 return err;
39279cc3 3603 }
9036c102 3604
1025774c
CH
3605 if (attr->ia_valid) {
3606 setattr_copy(inode, attr);
3607 mark_inode_dirty(inode);
3608
3609 if (attr->ia_valid & ATTR_MODE)
3610 err = btrfs_acl_chmod(inode);
3611 }
33268eaf 3612
39279cc3
CM
3613 return err;
3614}
61295eb8 3615
bd555975 3616void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3617{
3618 struct btrfs_trans_handle *trans;
3619 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3620 unsigned long nr;
39279cc3
CM
3621 int ret;
3622
1abe9b8a 3623 trace_btrfs_inode_evict(inode);
3624
39279cc3 3625 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3626 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
82d5902d 3627 is_free_space_inode(root, inode)))
bd555975
AV
3628 goto no_delete;
3629
39279cc3 3630 if (is_bad_inode(inode)) {
7b128766 3631 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3632 goto no_delete;
3633 }
bd555975 3634 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3635 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3636
c71bf099
YZ
3637 if (root->fs_info->log_root_recovering) {
3638 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3639 goto no_delete;
3640 }
3641
76dda93c
YZ
3642 if (inode->i_nlink > 0) {
3643 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3644 goto no_delete;
3645 }
3646
dbe674a9 3647 btrfs_i_size_write(inode, 0);
5f39d397 3648
8082510e 3649 while (1) {
30b4caf5 3650 trans = btrfs_join_transaction(root);
d68fc57b 3651 BUG_ON(IS_ERR(trans));
d68fc57b
YZ
3652 trans->block_rsv = root->orphan_block_rsv;
3653
3654 ret = btrfs_block_rsv_check(trans, root,
3655 root->orphan_block_rsv, 0, 5);
3656 if (ret) {
3657 BUG_ON(ret != -EAGAIN);
3658 ret = btrfs_commit_transaction(trans, root);
3659 BUG_ON(ret);
3660 continue;
3661 }
7b128766 3662
d68fc57b 3663 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3664 if (ret != -EAGAIN)
3665 break;
85e21bac 3666
8082510e
YZ
3667 nr = trans->blocks_used;
3668 btrfs_end_transaction(trans, root);
3669 trans = NULL;
3670 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3671
8082510e 3672 }
5f39d397 3673
8082510e
YZ
3674 if (ret == 0) {
3675 ret = btrfs_orphan_del(trans, inode);
3676 BUG_ON(ret);
3677 }
54aa1f4d 3678
581bb050
LZ
3679 if (!(root == root->fs_info->tree_root ||
3680 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3681 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3682
d3c2fdcf 3683 nr = trans->blocks_used;
54aa1f4d 3684 btrfs_end_transaction(trans, root);
d3c2fdcf 3685 btrfs_btree_balance_dirty(root, nr);
39279cc3 3686no_delete:
bd555975 3687 end_writeback(inode);
8082510e 3688 return;
39279cc3
CM
3689}
3690
3691/*
3692 * this returns the key found in the dir entry in the location pointer.
3693 * If no dir entries were found, location->objectid is 0.
3694 */
3695static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3696 struct btrfs_key *location)
3697{
3698 const char *name = dentry->d_name.name;
3699 int namelen = dentry->d_name.len;
3700 struct btrfs_dir_item *di;
3701 struct btrfs_path *path;
3702 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3703 int ret = 0;
39279cc3
CM
3704
3705 path = btrfs_alloc_path();
3706 BUG_ON(!path);
3954401f 3707
33345d01 3708 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3709 namelen, 0);
0d9f7f3e
Y
3710 if (IS_ERR(di))
3711 ret = PTR_ERR(di);
d397712b 3712
c704005d 3713 if (IS_ERR_OR_NULL(di))
3954401f 3714 goto out_err;
d397712b 3715
5f39d397 3716 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3717out:
39279cc3
CM
3718 btrfs_free_path(path);
3719 return ret;
3954401f
CM
3720out_err:
3721 location->objectid = 0;
3722 goto out;
39279cc3
CM
3723}
3724
3725/*
3726 * when we hit a tree root in a directory, the btrfs part of the inode
3727 * needs to be changed to reflect the root directory of the tree root. This
3728 * is kind of like crossing a mount point.
3729 */
3730static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3731 struct inode *dir,
3732 struct dentry *dentry,
3733 struct btrfs_key *location,
3734 struct btrfs_root **sub_root)
39279cc3 3735{
4df27c4d
YZ
3736 struct btrfs_path *path;
3737 struct btrfs_root *new_root;
3738 struct btrfs_root_ref *ref;
3739 struct extent_buffer *leaf;
3740 int ret;
3741 int err = 0;
39279cc3 3742
4df27c4d
YZ
3743 path = btrfs_alloc_path();
3744 if (!path) {
3745 err = -ENOMEM;
3746 goto out;
3747 }
39279cc3 3748
4df27c4d
YZ
3749 err = -ENOENT;
3750 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3751 BTRFS_I(dir)->root->root_key.objectid,
3752 location->objectid);
3753 if (ret) {
3754 if (ret < 0)
3755 err = ret;
3756 goto out;
3757 }
39279cc3 3758
4df27c4d
YZ
3759 leaf = path->nodes[0];
3760 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3761 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3762 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3763 goto out;
39279cc3 3764
4df27c4d
YZ
3765 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3766 (unsigned long)(ref + 1),
3767 dentry->d_name.len);
3768 if (ret)
3769 goto out;
3770
b3b4aa74 3771 btrfs_release_path(path);
4df27c4d
YZ
3772
3773 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3774 if (IS_ERR(new_root)) {
3775 err = PTR_ERR(new_root);
3776 goto out;
3777 }
3778
3779 if (btrfs_root_refs(&new_root->root_item) == 0) {
3780 err = -ENOENT;
3781 goto out;
3782 }
3783
3784 *sub_root = new_root;
3785 location->objectid = btrfs_root_dirid(&new_root->root_item);
3786 location->type = BTRFS_INODE_ITEM_KEY;
3787 location->offset = 0;
3788 err = 0;
3789out:
3790 btrfs_free_path(path);
3791 return err;
39279cc3
CM
3792}
3793
5d4f98a2
YZ
3794static void inode_tree_add(struct inode *inode)
3795{
3796 struct btrfs_root *root = BTRFS_I(inode)->root;
3797 struct btrfs_inode *entry;
03e860bd
FNP
3798 struct rb_node **p;
3799 struct rb_node *parent;
33345d01 3800 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3801again:
3802 p = &root->inode_tree.rb_node;
3803 parent = NULL;
5d4f98a2 3804
1d3382cb 3805 if (inode_unhashed(inode))
76dda93c
YZ
3806 return;
3807
5d4f98a2
YZ
3808 spin_lock(&root->inode_lock);
3809 while (*p) {
3810 parent = *p;
3811 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3812
33345d01 3813 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3814 p = &parent->rb_left;
33345d01 3815 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3816 p = &parent->rb_right;
5d4f98a2
YZ
3817 else {
3818 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3819 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3820 rb_erase(parent, &root->inode_tree);
3821 RB_CLEAR_NODE(parent);
3822 spin_unlock(&root->inode_lock);
3823 goto again;
5d4f98a2
YZ
3824 }
3825 }
3826 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3827 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3828 spin_unlock(&root->inode_lock);
3829}
3830
3831static void inode_tree_del(struct inode *inode)
3832{
3833 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3834 int empty = 0;
5d4f98a2 3835
03e860bd 3836 spin_lock(&root->inode_lock);
5d4f98a2 3837 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3838 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3839 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3840 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3841 }
03e860bd 3842 spin_unlock(&root->inode_lock);
76dda93c 3843
0af3d00b
JB
3844 /*
3845 * Free space cache has inodes in the tree root, but the tree root has a
3846 * root_refs of 0, so this could end up dropping the tree root as a
3847 * snapshot, so we need the extra !root->fs_info->tree_root check to
3848 * make sure we don't drop it.
3849 */
3850 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3851 root != root->fs_info->tree_root) {
76dda93c
YZ
3852 synchronize_srcu(&root->fs_info->subvol_srcu);
3853 spin_lock(&root->inode_lock);
3854 empty = RB_EMPTY_ROOT(&root->inode_tree);
3855 spin_unlock(&root->inode_lock);
3856 if (empty)
3857 btrfs_add_dead_root(root);
3858 }
3859}
3860
3861int btrfs_invalidate_inodes(struct btrfs_root *root)
3862{
3863 struct rb_node *node;
3864 struct rb_node *prev;
3865 struct btrfs_inode *entry;
3866 struct inode *inode;
3867 u64 objectid = 0;
3868
3869 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3870
3871 spin_lock(&root->inode_lock);
3872again:
3873 node = root->inode_tree.rb_node;
3874 prev = NULL;
3875 while (node) {
3876 prev = node;
3877 entry = rb_entry(node, struct btrfs_inode, rb_node);
3878
33345d01 3879 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 3880 node = node->rb_left;
33345d01 3881 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
3882 node = node->rb_right;
3883 else
3884 break;
3885 }
3886 if (!node) {
3887 while (prev) {
3888 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 3889 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
3890 node = prev;
3891 break;
3892 }
3893 prev = rb_next(prev);
3894 }
3895 }
3896 while (node) {
3897 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 3898 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
3899 inode = igrab(&entry->vfs_inode);
3900 if (inode) {
3901 spin_unlock(&root->inode_lock);
3902 if (atomic_read(&inode->i_count) > 1)
3903 d_prune_aliases(inode);
3904 /*
45321ac5 3905 * btrfs_drop_inode will have it removed from
76dda93c
YZ
3906 * the inode cache when its usage count
3907 * hits zero.
3908 */
3909 iput(inode);
3910 cond_resched();
3911 spin_lock(&root->inode_lock);
3912 goto again;
3913 }
3914
3915 if (cond_resched_lock(&root->inode_lock))
3916 goto again;
3917
3918 node = rb_next(node);
3919 }
3920 spin_unlock(&root->inode_lock);
3921 return 0;
5d4f98a2
YZ
3922}
3923
e02119d5
CM
3924static int btrfs_init_locked_inode(struct inode *inode, void *p)
3925{
3926 struct btrfs_iget_args *args = p;
3927 inode->i_ino = args->ino;
e02119d5 3928 BTRFS_I(inode)->root = args->root;
6a63209f 3929 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3930 return 0;
3931}
3932
3933static int btrfs_find_actor(struct inode *inode, void *opaque)
3934{
3935 struct btrfs_iget_args *args = opaque;
33345d01 3936 return args->ino == btrfs_ino(inode) &&
d397712b 3937 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3938}
3939
5d4f98a2
YZ
3940static struct inode *btrfs_iget_locked(struct super_block *s,
3941 u64 objectid,
3942 struct btrfs_root *root)
39279cc3
CM
3943{
3944 struct inode *inode;
3945 struct btrfs_iget_args args;
3946 args.ino = objectid;
3947 args.root = root;
3948
3949 inode = iget5_locked(s, objectid, btrfs_find_actor,
3950 btrfs_init_locked_inode,
3951 (void *)&args);
3952 return inode;
3953}
3954
1a54ef8c
BR
3955/* Get an inode object given its location and corresponding root.
3956 * Returns in *is_new if the inode was read from disk
3957 */
3958struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 3959 struct btrfs_root *root, int *new)
1a54ef8c
BR
3960{
3961 struct inode *inode;
3962
3963 inode = btrfs_iget_locked(s, location->objectid, root);
3964 if (!inode)
5d4f98a2 3965 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3966
3967 if (inode->i_state & I_NEW) {
3968 BTRFS_I(inode)->root = root;
3969 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3970 btrfs_read_locked_inode(inode);
5d4f98a2 3971 inode_tree_add(inode);
1a54ef8c 3972 unlock_new_inode(inode);
73f73415
JB
3973 if (new)
3974 *new = 1;
1a54ef8c
BR
3975 }
3976
3977 return inode;
3978}
3979
4df27c4d
YZ
3980static struct inode *new_simple_dir(struct super_block *s,
3981 struct btrfs_key *key,
3982 struct btrfs_root *root)
3983{
3984 struct inode *inode = new_inode(s);
3985
3986 if (!inode)
3987 return ERR_PTR(-ENOMEM);
3988
4df27c4d
YZ
3989 BTRFS_I(inode)->root = root;
3990 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3991 BTRFS_I(inode)->dummy_inode = 1;
3992
3993 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3994 inode->i_op = &simple_dir_inode_operations;
3995 inode->i_fop = &simple_dir_operations;
3996 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3997 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3998
3999 return inode;
4000}
4001
3de4586c 4002struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4003{
d397712b 4004 struct inode *inode;
4df27c4d 4005 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4006 struct btrfs_root *sub_root = root;
4007 struct btrfs_key location;
76dda93c 4008 int index;
5d4f98a2 4009 int ret;
39279cc3
CM
4010
4011 if (dentry->d_name.len > BTRFS_NAME_LEN)
4012 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4013
39279cc3 4014 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4015
39279cc3
CM
4016 if (ret < 0)
4017 return ERR_PTR(ret);
5f39d397 4018
4df27c4d
YZ
4019 if (location.objectid == 0)
4020 return NULL;
4021
4022 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4023 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4024 return inode;
4025 }
4026
4027 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4028
76dda93c 4029 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4030 ret = fixup_tree_root_location(root, dir, dentry,
4031 &location, &sub_root);
4032 if (ret < 0) {
4033 if (ret != -ENOENT)
4034 inode = ERR_PTR(ret);
4035 else
4036 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4037 } else {
73f73415 4038 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4039 }
76dda93c
YZ
4040 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4041
34d19bad 4042 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4043 down_read(&root->fs_info->cleanup_work_sem);
4044 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4045 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4046 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4047 if (ret)
4048 inode = ERR_PTR(ret);
c71bf099
YZ
4049 }
4050
3de4586c
CM
4051 return inode;
4052}
4053
fe15ce44 4054static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4055{
4056 struct btrfs_root *root;
4057
efefb143
YZ
4058 if (!dentry->d_inode && !IS_ROOT(dentry))
4059 dentry = dentry->d_parent;
76dda93c 4060
efefb143
YZ
4061 if (dentry->d_inode) {
4062 root = BTRFS_I(dentry->d_inode)->root;
4063 if (btrfs_root_refs(&root->root_item) == 0)
4064 return 1;
4065 }
76dda93c
YZ
4066 return 0;
4067}
4068
3de4586c
CM
4069static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4070 struct nameidata *nd)
4071{
4072 struct inode *inode;
4073
3de4586c
CM
4074 inode = btrfs_lookup_dentry(dir, dentry);
4075 if (IS_ERR(inode))
4076 return ERR_CAST(inode);
7b128766 4077
39279cc3
CM
4078 return d_splice_alias(inode, dentry);
4079}
4080
16cdcec7 4081unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4082 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4083};
4084
cbdf5a24
DW
4085static int btrfs_real_readdir(struct file *filp, void *dirent,
4086 filldir_t filldir)
39279cc3 4087{
6da6abae 4088 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4089 struct btrfs_root *root = BTRFS_I(inode)->root;
4090 struct btrfs_item *item;
4091 struct btrfs_dir_item *di;
4092 struct btrfs_key key;
5f39d397 4093 struct btrfs_key found_key;
39279cc3 4094 struct btrfs_path *path;
16cdcec7
MX
4095 struct list_head ins_list;
4096 struct list_head del_list;
39279cc3 4097 int ret;
5f39d397 4098 struct extent_buffer *leaf;
39279cc3 4099 int slot;
39279cc3
CM
4100 unsigned char d_type;
4101 int over = 0;
4102 u32 di_cur;
4103 u32 di_total;
4104 u32 di_len;
4105 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4106 char tmp_name[32];
4107 char *name_ptr;
4108 int name_len;
16cdcec7 4109 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4110
4111 /* FIXME, use a real flag for deciding about the key type */
4112 if (root->fs_info->tree_root == root)
4113 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4114
3954401f
CM
4115 /* special case for "." */
4116 if (filp->f_pos == 0) {
33345d01 4117 over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR);
3954401f
CM
4118 if (over)
4119 return 0;
4120 filp->f_pos = 1;
4121 }
3954401f
CM
4122 /* special case for .., just use the back ref */
4123 if (filp->f_pos == 1) {
5ecc7e5d 4124 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4125 over = filldir(dirent, "..", 2,
5ecc7e5d 4126 2, pino, DT_DIR);
3954401f 4127 if (over)
49593bfa 4128 return 0;
3954401f
CM
4129 filp->f_pos = 2;
4130 }
49593bfa 4131 path = btrfs_alloc_path();
16cdcec7
MX
4132 if (!path)
4133 return -ENOMEM;
ff5714cc 4134
026fd317 4135 path->reada = 1;
49593bfa 4136
16cdcec7
MX
4137 if (key_type == BTRFS_DIR_INDEX_KEY) {
4138 INIT_LIST_HEAD(&ins_list);
4139 INIT_LIST_HEAD(&del_list);
4140 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4141 }
4142
39279cc3
CM
4143 btrfs_set_key_type(&key, key_type);
4144 key.offset = filp->f_pos;
33345d01 4145 key.objectid = btrfs_ino(inode);
5f39d397 4146
39279cc3
CM
4147 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4148 if (ret < 0)
4149 goto err;
49593bfa
DW
4150
4151 while (1) {
5f39d397 4152 leaf = path->nodes[0];
39279cc3 4153 slot = path->slots[0];
b9e03af0
LZ
4154 if (slot >= btrfs_header_nritems(leaf)) {
4155 ret = btrfs_next_leaf(root, path);
4156 if (ret < 0)
4157 goto err;
4158 else if (ret > 0)
4159 break;
4160 continue;
39279cc3 4161 }
3de4586c 4162
5f39d397
CM
4163 item = btrfs_item_nr(leaf, slot);
4164 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4165
4166 if (found_key.objectid != key.objectid)
39279cc3 4167 break;
5f39d397 4168 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4169 break;
5f39d397 4170 if (found_key.offset < filp->f_pos)
b9e03af0 4171 goto next;
16cdcec7
MX
4172 if (key_type == BTRFS_DIR_INDEX_KEY &&
4173 btrfs_should_delete_dir_index(&del_list,
4174 found_key.offset))
4175 goto next;
5f39d397
CM
4176
4177 filp->f_pos = found_key.offset;
16cdcec7 4178 is_curr = 1;
49593bfa 4179
39279cc3
CM
4180 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4181 di_cur = 0;
5f39d397 4182 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4183
4184 while (di_cur < di_total) {
5f39d397
CM
4185 struct btrfs_key location;
4186
22a94d44
JB
4187 if (verify_dir_item(root, leaf, di))
4188 break;
4189
5f39d397 4190 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4191 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4192 name_ptr = tmp_name;
4193 } else {
4194 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4195 if (!name_ptr) {
4196 ret = -ENOMEM;
4197 goto err;
4198 }
5f39d397
CM
4199 }
4200 read_extent_buffer(leaf, name_ptr,
4201 (unsigned long)(di + 1), name_len);
4202
4203 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4204 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4205
4206 /* is this a reference to our own snapshot? If so
4207 * skip it
4208 */
4209 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4210 location.objectid == root->root_key.objectid) {
4211 over = 0;
4212 goto skip;
4213 }
5f39d397 4214 over = filldir(dirent, name_ptr, name_len,
49593bfa 4215 found_key.offset, location.objectid,
39279cc3 4216 d_type);
5f39d397 4217
3de4586c 4218skip:
5f39d397
CM
4219 if (name_ptr != tmp_name)
4220 kfree(name_ptr);
4221
39279cc3
CM
4222 if (over)
4223 goto nopos;
5103e947 4224 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4225 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4226 di_cur += di_len;
4227 di = (struct btrfs_dir_item *)((char *)di + di_len);
4228 }
b9e03af0
LZ
4229next:
4230 path->slots[0]++;
39279cc3 4231 }
49593bfa 4232
16cdcec7
MX
4233 if (key_type == BTRFS_DIR_INDEX_KEY) {
4234 if (is_curr)
4235 filp->f_pos++;
4236 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4237 &ins_list);
4238 if (ret)
4239 goto nopos;
4240 }
4241
49593bfa 4242 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4243 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4244 /*
4245 * 32-bit glibc will use getdents64, but then strtol -
4246 * so the last number we can serve is this.
4247 */
4248 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4249 else
4250 filp->f_pos++;
39279cc3
CM
4251nopos:
4252 ret = 0;
4253err:
16cdcec7
MX
4254 if (key_type == BTRFS_DIR_INDEX_KEY)
4255 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4256 btrfs_free_path(path);
39279cc3
CM
4257 return ret;
4258}
4259
a9185b41 4260int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4261{
4262 struct btrfs_root *root = BTRFS_I(inode)->root;
4263 struct btrfs_trans_handle *trans;
4264 int ret = 0;
0af3d00b 4265 bool nolock = false;
39279cc3 4266
8929ecfa 4267 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4268 return 0;
4269
7841cb28 4270 if (btrfs_fs_closing(root->fs_info) && is_free_space_inode(root, inode))
82d5902d 4271 nolock = true;
0af3d00b 4272
a9185b41 4273 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4274 if (nolock)
7a7eaa40 4275 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4276 else
7a7eaa40 4277 trans = btrfs_join_transaction(root);
3612b495
TI
4278 if (IS_ERR(trans))
4279 return PTR_ERR(trans);
0af3d00b
JB
4280 if (nolock)
4281 ret = btrfs_end_transaction_nolock(trans, root);
4282 else
4283 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4284 }
4285 return ret;
4286}
4287
4288/*
54aa1f4d 4289 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4290 * inode changes. But, it is most likely to find the inode in cache.
4291 * FIXME, needs more benchmarking...there are no reasons other than performance
4292 * to keep or drop this code.
4293 */
4294void btrfs_dirty_inode(struct inode *inode)
4295{
4296 struct btrfs_root *root = BTRFS_I(inode)->root;
4297 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4298 int ret;
4299
4300 if (BTRFS_I(inode)->dummy_inode)
4301 return;
39279cc3 4302
7a7eaa40 4303 trans = btrfs_join_transaction(root);
3612b495 4304 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
4305
4306 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4307 if (ret && ret == -ENOSPC) {
4308 /* whoops, lets try again with the full transaction */
4309 btrfs_end_transaction(trans, root);
4310 trans = btrfs_start_transaction(root, 1);
9aeead73 4311 if (IS_ERR(trans)) {
7a36ddec 4312 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4313 "dirty inode %llu error %ld\n",
4314 (unsigned long long)btrfs_ino(inode),
4315 PTR_ERR(trans));
9aeead73
CM
4316 return;
4317 }
8929ecfa 4318
94b60442
CM
4319 ret = btrfs_update_inode(trans, root, inode);
4320 if (ret) {
7a36ddec 4321 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4322 "dirty inode %llu error %d\n",
4323 (unsigned long long)btrfs_ino(inode),
4324 ret);
94b60442
CM
4325 }
4326 }
39279cc3 4327 btrfs_end_transaction(trans, root);
16cdcec7
MX
4328 if (BTRFS_I(inode)->delayed_node)
4329 btrfs_balance_delayed_items(root);
39279cc3
CM
4330}
4331
d352ac68
CM
4332/*
4333 * find the highest existing sequence number in a directory
4334 * and then set the in-memory index_cnt variable to reflect
4335 * free sequence numbers
4336 */
aec7477b
JB
4337static int btrfs_set_inode_index_count(struct inode *inode)
4338{
4339 struct btrfs_root *root = BTRFS_I(inode)->root;
4340 struct btrfs_key key, found_key;
4341 struct btrfs_path *path;
4342 struct extent_buffer *leaf;
4343 int ret;
4344
33345d01 4345 key.objectid = btrfs_ino(inode);
aec7477b
JB
4346 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4347 key.offset = (u64)-1;
4348
4349 path = btrfs_alloc_path();
4350 if (!path)
4351 return -ENOMEM;
4352
4353 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4354 if (ret < 0)
4355 goto out;
4356 /* FIXME: we should be able to handle this */
4357 if (ret == 0)
4358 goto out;
4359 ret = 0;
4360
4361 /*
4362 * MAGIC NUMBER EXPLANATION:
4363 * since we search a directory based on f_pos we have to start at 2
4364 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4365 * else has to start at 2
4366 */
4367 if (path->slots[0] == 0) {
4368 BTRFS_I(inode)->index_cnt = 2;
4369 goto out;
4370 }
4371
4372 path->slots[0]--;
4373
4374 leaf = path->nodes[0];
4375 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4376
33345d01 4377 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4378 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4379 BTRFS_I(inode)->index_cnt = 2;
4380 goto out;
4381 }
4382
4383 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4384out:
4385 btrfs_free_path(path);
4386 return ret;
4387}
4388
d352ac68
CM
4389/*
4390 * helper to find a free sequence number in a given directory. This current
4391 * code is very simple, later versions will do smarter things in the btree
4392 */
3de4586c 4393int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4394{
4395 int ret = 0;
4396
4397 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4398 ret = btrfs_inode_delayed_dir_index_count(dir);
4399 if (ret) {
4400 ret = btrfs_set_inode_index_count(dir);
4401 if (ret)
4402 return ret;
4403 }
aec7477b
JB
4404 }
4405
00e4e6b3 4406 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4407 BTRFS_I(dir)->index_cnt++;
4408
4409 return ret;
4410}
4411
39279cc3
CM
4412static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4413 struct btrfs_root *root,
aec7477b 4414 struct inode *dir,
9c58309d 4415 const char *name, int name_len,
d82a6f1d
JB
4416 u64 ref_objectid, u64 objectid, int mode,
4417 u64 *index)
39279cc3
CM
4418{
4419 struct inode *inode;
5f39d397 4420 struct btrfs_inode_item *inode_item;
39279cc3 4421 struct btrfs_key *location;
5f39d397 4422 struct btrfs_path *path;
9c58309d
CM
4423 struct btrfs_inode_ref *ref;
4424 struct btrfs_key key[2];
4425 u32 sizes[2];
4426 unsigned long ptr;
39279cc3
CM
4427 int ret;
4428 int owner;
4429
5f39d397
CM
4430 path = btrfs_alloc_path();
4431 BUG_ON(!path);
4432
39279cc3 4433 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4434 if (!inode) {
4435 btrfs_free_path(path);
39279cc3 4436 return ERR_PTR(-ENOMEM);
8fb27640 4437 }
39279cc3 4438
581bb050
LZ
4439 /*
4440 * we have to initialize this early, so we can reclaim the inode
4441 * number if we fail afterwards in this function.
4442 */
4443 inode->i_ino = objectid;
4444
aec7477b 4445 if (dir) {
1abe9b8a 4446 trace_btrfs_inode_request(dir);
4447
3de4586c 4448 ret = btrfs_set_inode_index(dir, index);
09771430 4449 if (ret) {
8fb27640 4450 btrfs_free_path(path);
09771430 4451 iput(inode);
aec7477b 4452 return ERR_PTR(ret);
09771430 4453 }
aec7477b
JB
4454 }
4455 /*
4456 * index_cnt is ignored for everything but a dir,
4457 * btrfs_get_inode_index_count has an explanation for the magic
4458 * number
4459 */
4460 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4461 BTRFS_I(inode)->root = root;
e02119d5 4462 BTRFS_I(inode)->generation = trans->transid;
76195853 4463 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4464 btrfs_set_inode_space_info(root, inode);
b888db2b 4465
39279cc3
CM
4466 if (mode & S_IFDIR)
4467 owner = 0;
4468 else
4469 owner = 1;
9c58309d
CM
4470
4471 key[0].objectid = objectid;
4472 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4473 key[0].offset = 0;
4474
4475 key[1].objectid = objectid;
4476 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4477 key[1].offset = ref_objectid;
4478
4479 sizes[0] = sizeof(struct btrfs_inode_item);
4480 sizes[1] = name_len + sizeof(*ref);
4481
b9473439 4482 path->leave_spinning = 1;
9c58309d
CM
4483 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4484 if (ret != 0)
5f39d397
CM
4485 goto fail;
4486
ecc11fab 4487 inode_init_owner(inode, dir, mode);
a76a3cd4 4488 inode_set_bytes(inode, 0);
39279cc3 4489 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4490 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4491 struct btrfs_inode_item);
e02119d5 4492 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4493
4494 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4495 struct btrfs_inode_ref);
4496 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4497 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4498 ptr = (unsigned long)(ref + 1);
4499 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4500
5f39d397
CM
4501 btrfs_mark_buffer_dirty(path->nodes[0]);
4502 btrfs_free_path(path);
4503
39279cc3
CM
4504 location = &BTRFS_I(inode)->location;
4505 location->objectid = objectid;
39279cc3
CM
4506 location->offset = 0;
4507 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4508
6cbff00f
CH
4509 btrfs_inherit_iflags(inode, dir);
4510
94272164
CM
4511 if ((mode & S_IFREG)) {
4512 if (btrfs_test_opt(root, NODATASUM))
4513 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4514 if (btrfs_test_opt(root, NODATACOW) ||
4515 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4516 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4517 }
4518
39279cc3 4519 insert_inode_hash(inode);
5d4f98a2 4520 inode_tree_add(inode);
1abe9b8a 4521
4522 trace_btrfs_inode_new(inode);
4523
39279cc3 4524 return inode;
5f39d397 4525fail:
aec7477b
JB
4526 if (dir)
4527 BTRFS_I(dir)->index_cnt--;
5f39d397 4528 btrfs_free_path(path);
09771430 4529 iput(inode);
5f39d397 4530 return ERR_PTR(ret);
39279cc3
CM
4531}
4532
4533static inline u8 btrfs_inode_type(struct inode *inode)
4534{
4535 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4536}
4537
d352ac68
CM
4538/*
4539 * utility function to add 'inode' into 'parent_inode' with
4540 * a give name and a given sequence number.
4541 * if 'add_backref' is true, also insert a backref from the
4542 * inode to the parent directory.
4543 */
e02119d5
CM
4544int btrfs_add_link(struct btrfs_trans_handle *trans,
4545 struct inode *parent_inode, struct inode *inode,
4546 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4547{
4df27c4d 4548 int ret = 0;
39279cc3 4549 struct btrfs_key key;
e02119d5 4550 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4551 u64 ino = btrfs_ino(inode);
4552 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4553
33345d01 4554 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4555 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4556 } else {
33345d01 4557 key.objectid = ino;
4df27c4d
YZ
4558 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4559 key.offset = 0;
4560 }
4561
33345d01 4562 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4563 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4564 key.objectid, root->root_key.objectid,
33345d01 4565 parent_ino, index, name, name_len);
4df27c4d 4566 } else if (add_backref) {
33345d01
LZ
4567 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4568 parent_ino, index);
4df27c4d 4569 }
39279cc3 4570
39279cc3 4571 if (ret == 0) {
4df27c4d 4572 ret = btrfs_insert_dir_item(trans, root, name, name_len,
16cdcec7 4573 parent_inode, &key,
4df27c4d
YZ
4574 btrfs_inode_type(inode), index);
4575 BUG_ON(ret);
4576
dbe674a9 4577 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4578 name_len * 2);
79c44584 4579 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4580 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4581 }
4582 return ret;
4583}
4584
4585static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4586 struct inode *dir, struct dentry *dentry,
4587 struct inode *inode, int backref, u64 index)
39279cc3 4588{
a1b075d2
JB
4589 int err = btrfs_add_link(trans, dir, inode,
4590 dentry->d_name.name, dentry->d_name.len,
4591 backref, index);
39279cc3
CM
4592 if (!err) {
4593 d_instantiate(dentry, inode);
4594 return 0;
4595 }
4596 if (err > 0)
4597 err = -EEXIST;
4598 return err;
4599}
4600
618e21d5
JB
4601static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4602 int mode, dev_t rdev)
4603{
4604 struct btrfs_trans_handle *trans;
4605 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4606 struct inode *inode = NULL;
618e21d5
JB
4607 int err;
4608 int drop_inode = 0;
4609 u64 objectid;
1832a6d5 4610 unsigned long nr = 0;
00e4e6b3 4611 u64 index = 0;
618e21d5
JB
4612
4613 if (!new_valid_dev(rdev))
4614 return -EINVAL;
4615
9ed74f2d
JB
4616 /*
4617 * 2 for inode item and ref
4618 * 2 for dir items
4619 * 1 for xattr if selinux is on
4620 */
a22285a6
YZ
4621 trans = btrfs_start_transaction(root, 5);
4622 if (IS_ERR(trans))
4623 return PTR_ERR(trans);
1832a6d5 4624
581bb050
LZ
4625 err = btrfs_find_free_ino(root, &objectid);
4626 if (err)
4627 goto out_unlock;
4628
aec7477b 4629 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4630 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4631 mode, &index);
7cf96da3
TI
4632 if (IS_ERR(inode)) {
4633 err = PTR_ERR(inode);
618e21d5 4634 goto out_unlock;
7cf96da3 4635 }
618e21d5 4636
2a7dba39 4637 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4638 if (err) {
4639 drop_inode = 1;
4640 goto out_unlock;
4641 }
4642
a1b075d2 4643 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4644 if (err)
4645 drop_inode = 1;
4646 else {
4647 inode->i_op = &btrfs_special_inode_operations;
4648 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4649 btrfs_update_inode(trans, root, inode);
618e21d5 4650 }
618e21d5 4651out_unlock:
d3c2fdcf 4652 nr = trans->blocks_used;
89ce8a63 4653 btrfs_end_transaction_throttle(trans, root);
a22285a6 4654 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4655 if (drop_inode) {
4656 inode_dec_link_count(inode);
4657 iput(inode);
4658 }
618e21d5
JB
4659 return err;
4660}
4661
39279cc3
CM
4662static int btrfs_create(struct inode *dir, struct dentry *dentry,
4663 int mode, struct nameidata *nd)
4664{
4665 struct btrfs_trans_handle *trans;
4666 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4667 struct inode *inode = NULL;
39279cc3 4668 int drop_inode = 0;
a22285a6 4669 int err;
1832a6d5 4670 unsigned long nr = 0;
39279cc3 4671 u64 objectid;
00e4e6b3 4672 u64 index = 0;
39279cc3 4673
9ed74f2d
JB
4674 /*
4675 * 2 for inode item and ref
4676 * 2 for dir items
4677 * 1 for xattr if selinux is on
4678 */
a22285a6
YZ
4679 trans = btrfs_start_transaction(root, 5);
4680 if (IS_ERR(trans))
4681 return PTR_ERR(trans);
9ed74f2d 4682
581bb050
LZ
4683 err = btrfs_find_free_ino(root, &objectid);
4684 if (err)
4685 goto out_unlock;
4686
aec7477b 4687 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4688 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4689 mode, &index);
7cf96da3
TI
4690 if (IS_ERR(inode)) {
4691 err = PTR_ERR(inode);
39279cc3 4692 goto out_unlock;
7cf96da3 4693 }
39279cc3 4694
2a7dba39 4695 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4696 if (err) {
4697 drop_inode = 1;
4698 goto out_unlock;
4699 }
4700
a1b075d2 4701 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4702 if (err)
4703 drop_inode = 1;
4704 else {
4705 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4706 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4707 inode->i_fop = &btrfs_file_operations;
4708 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4709 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4710 }
39279cc3 4711out_unlock:
d3c2fdcf 4712 nr = trans->blocks_used;
ab78c84d 4713 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4714 if (drop_inode) {
4715 inode_dec_link_count(inode);
4716 iput(inode);
4717 }
d3c2fdcf 4718 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4719 return err;
4720}
4721
4722static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4723 struct dentry *dentry)
4724{
4725 struct btrfs_trans_handle *trans;
4726 struct btrfs_root *root = BTRFS_I(dir)->root;
4727 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4728 u64 index;
1832a6d5 4729 unsigned long nr = 0;
39279cc3
CM
4730 int err;
4731 int drop_inode = 0;
4732
4a8be425
TH
4733 /* do not allow sys_link's with other subvols of the same device */
4734 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4735 return -EXDEV;
4a8be425 4736
c055e99e
AV
4737 if (inode->i_nlink == ~0U)
4738 return -EMLINK;
4a8be425 4739
3de4586c 4740 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4741 if (err)
4742 goto fail;
4743
a22285a6 4744 /*
7e6b6465 4745 * 2 items for inode and inode ref
a22285a6 4746 * 2 items for dir items
7e6b6465 4747 * 1 item for parent inode
a22285a6 4748 */
7e6b6465 4749 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4750 if (IS_ERR(trans)) {
4751 err = PTR_ERR(trans);
4752 goto fail;
4753 }
5f39d397 4754
3153495d
MX
4755 btrfs_inc_nlink(inode);
4756 inode->i_ctime = CURRENT_TIME;
7de9c6ee 4757 ihold(inode);
aec7477b 4758
a1b075d2 4759 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4760
a5719521 4761 if (err) {
54aa1f4d 4762 drop_inode = 1;
a5719521 4763 } else {
6a912213 4764 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4765 err = btrfs_update_inode(trans, root, inode);
4766 BUG_ON(err);
6a912213
JB
4767 btrfs_log_new_name(trans, inode, NULL, parent);
4768 dput(parent);
a5719521 4769 }
39279cc3 4770
d3c2fdcf 4771 nr = trans->blocks_used;
ab78c84d 4772 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4773fail:
39279cc3
CM
4774 if (drop_inode) {
4775 inode_dec_link_count(inode);
4776 iput(inode);
4777 }
d3c2fdcf 4778 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4779 return err;
4780}
4781
39279cc3
CM
4782static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4783{
b9d86667 4784 struct inode *inode = NULL;
39279cc3
CM
4785 struct btrfs_trans_handle *trans;
4786 struct btrfs_root *root = BTRFS_I(dir)->root;
4787 int err = 0;
4788 int drop_on_err = 0;
b9d86667 4789 u64 objectid = 0;
00e4e6b3 4790 u64 index = 0;
d3c2fdcf 4791 unsigned long nr = 1;
39279cc3 4792
9ed74f2d
JB
4793 /*
4794 * 2 items for inode and ref
4795 * 2 items for dir items
4796 * 1 for xattr if selinux is on
4797 */
a22285a6
YZ
4798 trans = btrfs_start_transaction(root, 5);
4799 if (IS_ERR(trans))
4800 return PTR_ERR(trans);
39279cc3 4801
581bb050
LZ
4802 err = btrfs_find_free_ino(root, &objectid);
4803 if (err)
4804 goto out_fail;
4805
aec7477b 4806 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4807 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4808 S_IFDIR | mode, &index);
39279cc3
CM
4809 if (IS_ERR(inode)) {
4810 err = PTR_ERR(inode);
4811 goto out_fail;
4812 }
5f39d397 4813
39279cc3 4814 drop_on_err = 1;
33268eaf 4815
2a7dba39 4816 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4817 if (err)
4818 goto out_fail;
4819
39279cc3
CM
4820 inode->i_op = &btrfs_dir_inode_operations;
4821 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 4822
dbe674a9 4823 btrfs_i_size_write(inode, 0);
39279cc3
CM
4824 err = btrfs_update_inode(trans, root, inode);
4825 if (err)
4826 goto out_fail;
5f39d397 4827
a1b075d2
JB
4828 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4829 dentry->d_name.len, 0, index);
39279cc3
CM
4830 if (err)
4831 goto out_fail;
5f39d397 4832
39279cc3
CM
4833 d_instantiate(dentry, inode);
4834 drop_on_err = 0;
39279cc3
CM
4835
4836out_fail:
d3c2fdcf 4837 nr = trans->blocks_used;
ab78c84d 4838 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4839 if (drop_on_err)
4840 iput(inode);
d3c2fdcf 4841 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4842 return err;
4843}
4844
d352ac68
CM
4845/* helper for btfs_get_extent. Given an existing extent in the tree,
4846 * and an extent that you want to insert, deal with overlap and insert
4847 * the new extent into the tree.
4848 */
3b951516
CM
4849static int merge_extent_mapping(struct extent_map_tree *em_tree,
4850 struct extent_map *existing,
e6dcd2dc
CM
4851 struct extent_map *em,
4852 u64 map_start, u64 map_len)
3b951516
CM
4853{
4854 u64 start_diff;
3b951516 4855
e6dcd2dc
CM
4856 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4857 start_diff = map_start - em->start;
4858 em->start = map_start;
4859 em->len = map_len;
c8b97818
CM
4860 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4861 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4862 em->block_start += start_diff;
c8b97818
CM
4863 em->block_len -= start_diff;
4864 }
e6dcd2dc 4865 return add_extent_mapping(em_tree, em);
3b951516
CM
4866}
4867
c8b97818
CM
4868static noinline int uncompress_inline(struct btrfs_path *path,
4869 struct inode *inode, struct page *page,
4870 size_t pg_offset, u64 extent_offset,
4871 struct btrfs_file_extent_item *item)
4872{
4873 int ret;
4874 struct extent_buffer *leaf = path->nodes[0];
4875 char *tmp;
4876 size_t max_size;
4877 unsigned long inline_size;
4878 unsigned long ptr;
261507a0 4879 int compress_type;
c8b97818
CM
4880
4881 WARN_ON(pg_offset != 0);
261507a0 4882 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4883 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4884 inline_size = btrfs_file_extent_inline_item_len(leaf,
4885 btrfs_item_nr(leaf, path->slots[0]));
4886 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
4887 if (!tmp)
4888 return -ENOMEM;
c8b97818
CM
4889 ptr = btrfs_file_extent_inline_start(item);
4890
4891 read_extent_buffer(leaf, tmp, ptr, inline_size);
4892
5b050f04 4893 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4894 ret = btrfs_decompress(compress_type, tmp, page,
4895 extent_offset, inline_size, max_size);
c8b97818
CM
4896 if (ret) {
4897 char *kaddr = kmap_atomic(page, KM_USER0);
4898 unsigned long copy_size = min_t(u64,
4899 PAGE_CACHE_SIZE - pg_offset,
4900 max_size - extent_offset);
4901 memset(kaddr + pg_offset, 0, copy_size);
4902 kunmap_atomic(kaddr, KM_USER0);
4903 }
4904 kfree(tmp);
4905 return 0;
4906}
4907
d352ac68
CM
4908/*
4909 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4910 * the ugly parts come from merging extents from the disk with the in-ram
4911 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4912 * where the in-ram extents might be locked pending data=ordered completion.
4913 *
4914 * This also copies inline extents directly into the page.
4915 */
d397712b 4916
a52d9a80 4917struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4918 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4919 int create)
4920{
4921 int ret;
4922 int err = 0;
db94535d 4923 u64 bytenr;
a52d9a80
CM
4924 u64 extent_start = 0;
4925 u64 extent_end = 0;
33345d01 4926 u64 objectid = btrfs_ino(inode);
a52d9a80 4927 u32 found_type;
f421950f 4928 struct btrfs_path *path = NULL;
a52d9a80
CM
4929 struct btrfs_root *root = BTRFS_I(inode)->root;
4930 struct btrfs_file_extent_item *item;
5f39d397
CM
4931 struct extent_buffer *leaf;
4932 struct btrfs_key found_key;
a52d9a80
CM
4933 struct extent_map *em = NULL;
4934 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4935 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4936 struct btrfs_trans_handle *trans = NULL;
261507a0 4937 int compress_type;
a52d9a80 4938
a52d9a80 4939again:
890871be 4940 read_lock(&em_tree->lock);
d1310b2e 4941 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4942 if (em)
4943 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4944 read_unlock(&em_tree->lock);
d1310b2e 4945
a52d9a80 4946 if (em) {
e1c4b745
CM
4947 if (em->start > start || em->start + em->len <= start)
4948 free_extent_map(em);
4949 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4950 free_extent_map(em);
4951 else
4952 goto out;
a52d9a80 4953 }
172ddd60 4954 em = alloc_extent_map();
a52d9a80 4955 if (!em) {
d1310b2e
CM
4956 err = -ENOMEM;
4957 goto out;
a52d9a80 4958 }
e6dcd2dc 4959 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4960 em->start = EXTENT_MAP_HOLE;
445a6944 4961 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4962 em->len = (u64)-1;
c8b97818 4963 em->block_len = (u64)-1;
f421950f
CM
4964
4965 if (!path) {
4966 path = btrfs_alloc_path();
026fd317
JB
4967 if (!path) {
4968 err = -ENOMEM;
4969 goto out;
4970 }
4971 /*
4972 * Chances are we'll be called again, so go ahead and do
4973 * readahead
4974 */
4975 path->reada = 1;
f421950f
CM
4976 }
4977
179e29e4
CM
4978 ret = btrfs_lookup_file_extent(trans, root, path,
4979 objectid, start, trans != NULL);
a52d9a80
CM
4980 if (ret < 0) {
4981 err = ret;
4982 goto out;
4983 }
4984
4985 if (ret != 0) {
4986 if (path->slots[0] == 0)
4987 goto not_found;
4988 path->slots[0]--;
4989 }
4990
5f39d397
CM
4991 leaf = path->nodes[0];
4992 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4993 struct btrfs_file_extent_item);
a52d9a80 4994 /* are we inside the extent that was found? */
5f39d397
CM
4995 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4996 found_type = btrfs_key_type(&found_key);
4997 if (found_key.objectid != objectid ||
a52d9a80
CM
4998 found_type != BTRFS_EXTENT_DATA_KEY) {
4999 goto not_found;
5000 }
5001
5f39d397
CM
5002 found_type = btrfs_file_extent_type(leaf, item);
5003 extent_start = found_key.offset;
261507a0 5004 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5005 if (found_type == BTRFS_FILE_EXTENT_REG ||
5006 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5007 extent_end = extent_start +
db94535d 5008 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5009 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5010 size_t size;
5011 size = btrfs_file_extent_inline_len(leaf, item);
5012 extent_end = (extent_start + size + root->sectorsize - 1) &
5013 ~((u64)root->sectorsize - 1);
5014 }
5015
5016 if (start >= extent_end) {
5017 path->slots[0]++;
5018 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5019 ret = btrfs_next_leaf(root, path);
5020 if (ret < 0) {
5021 err = ret;
5022 goto out;
a52d9a80 5023 }
9036c102
YZ
5024 if (ret > 0)
5025 goto not_found;
5026 leaf = path->nodes[0];
a52d9a80 5027 }
9036c102
YZ
5028 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5029 if (found_key.objectid != objectid ||
5030 found_key.type != BTRFS_EXTENT_DATA_KEY)
5031 goto not_found;
5032 if (start + len <= found_key.offset)
5033 goto not_found;
5034 em->start = start;
5035 em->len = found_key.offset - start;
5036 goto not_found_em;
5037 }
5038
d899e052
YZ
5039 if (found_type == BTRFS_FILE_EXTENT_REG ||
5040 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5041 em->start = extent_start;
5042 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5043 em->orig_start = extent_start -
5044 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5045 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5046 if (bytenr == 0) {
5f39d397 5047 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5048 goto insert;
5049 }
261507a0 5050 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5051 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5052 em->compress_type = compress_type;
c8b97818
CM
5053 em->block_start = bytenr;
5054 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5055 item);
5056 } else {
5057 bytenr += btrfs_file_extent_offset(leaf, item);
5058 em->block_start = bytenr;
5059 em->block_len = em->len;
d899e052
YZ
5060 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5061 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5062 }
a52d9a80
CM
5063 goto insert;
5064 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5065 unsigned long ptr;
a52d9a80 5066 char *map;
3326d1b0
CM
5067 size_t size;
5068 size_t extent_offset;
5069 size_t copy_size;
a52d9a80 5070
689f9346 5071 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5072 if (!page || create) {
689f9346 5073 em->start = extent_start;
9036c102 5074 em->len = extent_end - extent_start;
689f9346
Y
5075 goto out;
5076 }
5f39d397 5077
9036c102
YZ
5078 size = btrfs_file_extent_inline_len(leaf, item);
5079 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5080 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5081 size - extent_offset);
3326d1b0 5082 em->start = extent_start + extent_offset;
70dec807
CM
5083 em->len = (copy_size + root->sectorsize - 1) &
5084 ~((u64)root->sectorsize - 1);
ff5b7ee3 5085 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5086 if (compress_type) {
c8b97818 5087 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5088 em->compress_type = compress_type;
5089 }
689f9346 5090 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5091 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5092 if (btrfs_file_extent_compression(leaf, item) !=
5093 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5094 ret = uncompress_inline(path, inode, page,
5095 pg_offset,
5096 extent_offset, item);
5097 BUG_ON(ret);
5098 } else {
5099 map = kmap(page);
5100 read_extent_buffer(leaf, map + pg_offset, ptr,
5101 copy_size);
93c82d57
CM
5102 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5103 memset(map + pg_offset + copy_size, 0,
5104 PAGE_CACHE_SIZE - pg_offset -
5105 copy_size);
5106 }
c8b97818
CM
5107 kunmap(page);
5108 }
179e29e4
CM
5109 flush_dcache_page(page);
5110 } else if (create && PageUptodate(page)) {
0ca1f7ce 5111 WARN_ON(1);
179e29e4
CM
5112 if (!trans) {
5113 kunmap(page);
5114 free_extent_map(em);
5115 em = NULL;
ff5714cc 5116
b3b4aa74 5117 btrfs_release_path(path);
7a7eaa40 5118 trans = btrfs_join_transaction(root);
ff5714cc 5119
3612b495
TI
5120 if (IS_ERR(trans))
5121 return ERR_CAST(trans);
179e29e4
CM
5122 goto again;
5123 }
c8b97818 5124 map = kmap(page);
70dec807 5125 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5126 copy_size);
c8b97818 5127 kunmap(page);
179e29e4 5128 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5129 }
d1310b2e 5130 set_extent_uptodate(io_tree, em->start,
507903b8 5131 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5132 goto insert;
5133 } else {
d397712b 5134 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5135 WARN_ON(1);
5136 }
5137not_found:
5138 em->start = start;
d1310b2e 5139 em->len = len;
a52d9a80 5140not_found_em:
5f39d397 5141 em->block_start = EXTENT_MAP_HOLE;
9036c102 5142 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5143insert:
b3b4aa74 5144 btrfs_release_path(path);
d1310b2e 5145 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5146 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5147 "[%llu %llu]\n", (unsigned long long)em->start,
5148 (unsigned long long)em->len,
5149 (unsigned long long)start,
5150 (unsigned long long)len);
a52d9a80
CM
5151 err = -EIO;
5152 goto out;
5153 }
d1310b2e
CM
5154
5155 err = 0;
890871be 5156 write_lock(&em_tree->lock);
a52d9a80 5157 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5158 /* it is possible that someone inserted the extent into the tree
5159 * while we had the lock dropped. It is also possible that
5160 * an overlapping map exists in the tree
5161 */
a52d9a80 5162 if (ret == -EEXIST) {
3b951516 5163 struct extent_map *existing;
e6dcd2dc
CM
5164
5165 ret = 0;
5166
3b951516 5167 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5168 if (existing && (existing->start > start ||
5169 existing->start + existing->len <= start)) {
5170 free_extent_map(existing);
5171 existing = NULL;
5172 }
3b951516
CM
5173 if (!existing) {
5174 existing = lookup_extent_mapping(em_tree, em->start,
5175 em->len);
5176 if (existing) {
5177 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5178 em, start,
5179 root->sectorsize);
3b951516
CM
5180 free_extent_map(existing);
5181 if (err) {
5182 free_extent_map(em);
5183 em = NULL;
5184 }
5185 } else {
5186 err = -EIO;
3b951516
CM
5187 free_extent_map(em);
5188 em = NULL;
5189 }
5190 } else {
5191 free_extent_map(em);
5192 em = existing;
e6dcd2dc 5193 err = 0;
a52d9a80 5194 }
a52d9a80 5195 }
890871be 5196 write_unlock(&em_tree->lock);
a52d9a80 5197out:
1abe9b8a 5198
5199 trace_btrfs_get_extent(root, em);
5200
f421950f
CM
5201 if (path)
5202 btrfs_free_path(path);
a52d9a80
CM
5203 if (trans) {
5204 ret = btrfs_end_transaction(trans, root);
d397712b 5205 if (!err)
a52d9a80
CM
5206 err = ret;
5207 }
a52d9a80
CM
5208 if (err) {
5209 free_extent_map(em);
a52d9a80
CM
5210 return ERR_PTR(err);
5211 }
5212 return em;
5213}
5214
ec29ed5b
CM
5215struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5216 size_t pg_offset, u64 start, u64 len,
5217 int create)
5218{
5219 struct extent_map *em;
5220 struct extent_map *hole_em = NULL;
5221 u64 range_start = start;
5222 u64 end;
5223 u64 found;
5224 u64 found_end;
5225 int err = 0;
5226
5227 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5228 if (IS_ERR(em))
5229 return em;
5230 if (em) {
5231 /*
5232 * if our em maps to a hole, there might
5233 * actually be delalloc bytes behind it
5234 */
5235 if (em->block_start != EXTENT_MAP_HOLE)
5236 return em;
5237 else
5238 hole_em = em;
5239 }
5240
5241 /* check to see if we've wrapped (len == -1 or similar) */
5242 end = start + len;
5243 if (end < start)
5244 end = (u64)-1;
5245 else
5246 end -= 1;
5247
5248 em = NULL;
5249
5250 /* ok, we didn't find anything, lets look for delalloc */
5251 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5252 end, len, EXTENT_DELALLOC, 1);
5253 found_end = range_start + found;
5254 if (found_end < range_start)
5255 found_end = (u64)-1;
5256
5257 /*
5258 * we didn't find anything useful, return
5259 * the original results from get_extent()
5260 */
5261 if (range_start > end || found_end <= start) {
5262 em = hole_em;
5263 hole_em = NULL;
5264 goto out;
5265 }
5266
5267 /* adjust the range_start to make sure it doesn't
5268 * go backwards from the start they passed in
5269 */
5270 range_start = max(start,range_start);
5271 found = found_end - range_start;
5272
5273 if (found > 0) {
5274 u64 hole_start = start;
5275 u64 hole_len = len;
5276
172ddd60 5277 em = alloc_extent_map();
ec29ed5b
CM
5278 if (!em) {
5279 err = -ENOMEM;
5280 goto out;
5281 }
5282 /*
5283 * when btrfs_get_extent can't find anything it
5284 * returns one huge hole
5285 *
5286 * make sure what it found really fits our range, and
5287 * adjust to make sure it is based on the start from
5288 * the caller
5289 */
5290 if (hole_em) {
5291 u64 calc_end = extent_map_end(hole_em);
5292
5293 if (calc_end <= start || (hole_em->start > end)) {
5294 free_extent_map(hole_em);
5295 hole_em = NULL;
5296 } else {
5297 hole_start = max(hole_em->start, start);
5298 hole_len = calc_end - hole_start;
5299 }
5300 }
5301 em->bdev = NULL;
5302 if (hole_em && range_start > hole_start) {
5303 /* our hole starts before our delalloc, so we
5304 * have to return just the parts of the hole
5305 * that go until the delalloc starts
5306 */
5307 em->len = min(hole_len,
5308 range_start - hole_start);
5309 em->start = hole_start;
5310 em->orig_start = hole_start;
5311 /*
5312 * don't adjust block start at all,
5313 * it is fixed at EXTENT_MAP_HOLE
5314 */
5315 em->block_start = hole_em->block_start;
5316 em->block_len = hole_len;
5317 } else {
5318 em->start = range_start;
5319 em->len = found;
5320 em->orig_start = range_start;
5321 em->block_start = EXTENT_MAP_DELALLOC;
5322 em->block_len = found;
5323 }
5324 } else if (hole_em) {
5325 return hole_em;
5326 }
5327out:
5328
5329 free_extent_map(hole_em);
5330 if (err) {
5331 free_extent_map(em);
5332 return ERR_PTR(err);
5333 }
5334 return em;
5335}
5336
4b46fce2 5337static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5338 struct extent_map *em,
4b46fce2
JB
5339 u64 start, u64 len)
5340{
5341 struct btrfs_root *root = BTRFS_I(inode)->root;
5342 struct btrfs_trans_handle *trans;
4b46fce2
JB
5343 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5344 struct btrfs_key ins;
5345 u64 alloc_hint;
5346 int ret;
16d299ac 5347 bool insert = false;
4b46fce2 5348
16d299ac
JB
5349 /*
5350 * Ok if the extent map we looked up is a hole and is for the exact
5351 * range we want, there is no reason to allocate a new one, however if
5352 * it is not right then we need to free this one and drop the cache for
5353 * our range.
5354 */
5355 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5356 em->len != len) {
5357 free_extent_map(em);
5358 em = NULL;
5359 insert = true;
5360 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5361 }
4b46fce2 5362
7a7eaa40 5363 trans = btrfs_join_transaction(root);
3612b495
TI
5364 if (IS_ERR(trans))
5365 return ERR_CAST(trans);
4b46fce2 5366
4cb5300b
CM
5367 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5368 btrfs_add_inode_defrag(trans, inode);
5369
4b46fce2
JB
5370 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5371
5372 alloc_hint = get_extent_allocation_hint(inode, start, len);
5373 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5374 alloc_hint, (u64)-1, &ins, 1);
5375 if (ret) {
5376 em = ERR_PTR(ret);
5377 goto out;
5378 }
5379
4b46fce2 5380 if (!em) {
172ddd60 5381 em = alloc_extent_map();
16d299ac
JB
5382 if (!em) {
5383 em = ERR_PTR(-ENOMEM);
5384 goto out;
5385 }
4b46fce2
JB
5386 }
5387
5388 em->start = start;
5389 em->orig_start = em->start;
5390 em->len = ins.offset;
5391
5392 em->block_start = ins.objectid;
5393 em->block_len = ins.offset;
5394 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5395
5396 /*
5397 * We need to do this because if we're using the original em we searched
5398 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5399 */
5400 em->flags = 0;
4b46fce2
JB
5401 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5402
16d299ac 5403 while (insert) {
4b46fce2
JB
5404 write_lock(&em_tree->lock);
5405 ret = add_extent_mapping(em_tree, em);
5406 write_unlock(&em_tree->lock);
5407 if (ret != -EEXIST)
5408 break;
5409 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5410 }
5411
5412 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5413 ins.offset, ins.offset, 0);
5414 if (ret) {
5415 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5416 em = ERR_PTR(ret);
5417 }
5418out:
5419 btrfs_end_transaction(trans, root);
5420 return em;
5421}
5422
46bfbb5c
CM
5423/*
5424 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5425 * block must be cow'd
5426 */
5427static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5428 struct inode *inode, u64 offset, u64 len)
5429{
5430 struct btrfs_path *path;
5431 int ret;
5432 struct extent_buffer *leaf;
5433 struct btrfs_root *root = BTRFS_I(inode)->root;
5434 struct btrfs_file_extent_item *fi;
5435 struct btrfs_key key;
5436 u64 disk_bytenr;
5437 u64 backref_offset;
5438 u64 extent_end;
5439 u64 num_bytes;
5440 int slot;
5441 int found_type;
5442
5443 path = btrfs_alloc_path();
5444 if (!path)
5445 return -ENOMEM;
5446
33345d01 5447 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5448 offset, 0);
5449 if (ret < 0)
5450 goto out;
5451
5452 slot = path->slots[0];
5453 if (ret == 1) {
5454 if (slot == 0) {
5455 /* can't find the item, must cow */
5456 ret = 0;
5457 goto out;
5458 }
5459 slot--;
5460 }
5461 ret = 0;
5462 leaf = path->nodes[0];
5463 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5464 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5465 key.type != BTRFS_EXTENT_DATA_KEY) {
5466 /* not our file or wrong item type, must cow */
5467 goto out;
5468 }
5469
5470 if (key.offset > offset) {
5471 /* Wrong offset, must cow */
5472 goto out;
5473 }
5474
5475 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5476 found_type = btrfs_file_extent_type(leaf, fi);
5477 if (found_type != BTRFS_FILE_EXTENT_REG &&
5478 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5479 /* not a regular extent, must cow */
5480 goto out;
5481 }
5482 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5483 backref_offset = btrfs_file_extent_offset(leaf, fi);
5484
5485 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5486 if (extent_end < offset + len) {
5487 /* extent doesn't include our full range, must cow */
5488 goto out;
5489 }
5490
5491 if (btrfs_extent_readonly(root, disk_bytenr))
5492 goto out;
5493
5494 /*
5495 * look for other files referencing this extent, if we
5496 * find any we must cow
5497 */
33345d01 5498 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5499 key.offset - backref_offset, disk_bytenr))
5500 goto out;
5501
5502 /*
5503 * adjust disk_bytenr and num_bytes to cover just the bytes
5504 * in this extent we are about to write. If there
5505 * are any csums in that range we have to cow in order
5506 * to keep the csums correct
5507 */
5508 disk_bytenr += backref_offset;
5509 disk_bytenr += offset - key.offset;
5510 num_bytes = min(offset + len, extent_end) - offset;
5511 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5512 goto out;
5513 /*
5514 * all of the above have passed, it is safe to overwrite this extent
5515 * without cow
5516 */
5517 ret = 1;
5518out:
5519 btrfs_free_path(path);
5520 return ret;
5521}
5522
4b46fce2
JB
5523static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5524 struct buffer_head *bh_result, int create)
5525{
5526 struct extent_map *em;
5527 struct btrfs_root *root = BTRFS_I(inode)->root;
5528 u64 start = iblock << inode->i_blkbits;
5529 u64 len = bh_result->b_size;
46bfbb5c 5530 struct btrfs_trans_handle *trans;
4b46fce2
JB
5531
5532 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5533 if (IS_ERR(em))
5534 return PTR_ERR(em);
5535
5536 /*
5537 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5538 * io. INLINE is special, and we could probably kludge it in here, but
5539 * it's still buffered so for safety lets just fall back to the generic
5540 * buffered path.
5541 *
5542 * For COMPRESSED we _have_ to read the entire extent in so we can
5543 * decompress it, so there will be buffering required no matter what we
5544 * do, so go ahead and fallback to buffered.
5545 *
5546 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5547 * to buffered IO. Don't blame me, this is the price we pay for using
5548 * the generic code.
5549 */
5550 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5551 em->block_start == EXTENT_MAP_INLINE) {
5552 free_extent_map(em);
5553 return -ENOTBLK;
5554 }
5555
5556 /* Just a good old fashioned hole, return */
5557 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5558 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5559 free_extent_map(em);
5560 /* DIO will do one hole at a time, so just unlock a sector */
5561 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5562 start + root->sectorsize - 1, GFP_NOFS);
5563 return 0;
5564 }
5565
5566 /*
5567 * We don't allocate a new extent in the following cases
5568 *
5569 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5570 * existing extent.
5571 * 2) The extent is marked as PREALLOC. We're good to go here and can
5572 * just use the extent.
5573 *
5574 */
46bfbb5c
CM
5575 if (!create) {
5576 len = em->len - (start - em->start);
4b46fce2 5577 goto map;
46bfbb5c 5578 }
4b46fce2
JB
5579
5580 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5581 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5582 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5583 int type;
5584 int ret;
46bfbb5c 5585 u64 block_start;
4b46fce2
JB
5586
5587 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5588 type = BTRFS_ORDERED_PREALLOC;
5589 else
5590 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5591 len = min(len, em->len - (start - em->start));
4b46fce2 5592 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5593
5594 /*
5595 * we're not going to log anything, but we do need
5596 * to make sure the current transaction stays open
5597 * while we look for nocow cross refs
5598 */
7a7eaa40 5599 trans = btrfs_join_transaction(root);
3612b495 5600 if (IS_ERR(trans))
46bfbb5c
CM
5601 goto must_cow;
5602
5603 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5604 ret = btrfs_add_ordered_extent_dio(inode, start,
5605 block_start, len, len, type);
5606 btrfs_end_transaction(trans, root);
5607 if (ret) {
5608 free_extent_map(em);
5609 return ret;
5610 }
5611 goto unlock;
4b46fce2 5612 }
46bfbb5c 5613 btrfs_end_transaction(trans, root);
4b46fce2 5614 }
46bfbb5c
CM
5615must_cow:
5616 /*
5617 * this will cow the extent, reset the len in case we changed
5618 * it above
5619 */
5620 len = bh_result->b_size;
16d299ac 5621 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5622 if (IS_ERR(em))
5623 return PTR_ERR(em);
5624 len = min(len, em->len - (start - em->start));
5625unlock:
4845e44f
CM
5626 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5627 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5628 0, NULL, GFP_NOFS);
4b46fce2
JB
5629map:
5630 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5631 inode->i_blkbits;
46bfbb5c 5632 bh_result->b_size = len;
4b46fce2
JB
5633 bh_result->b_bdev = em->bdev;
5634 set_buffer_mapped(bh_result);
5635 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5636 set_buffer_new(bh_result);
5637
5638 free_extent_map(em);
5639
5640 return 0;
5641}
5642
5643struct btrfs_dio_private {
5644 struct inode *inode;
5645 u64 logical_offset;
5646 u64 disk_bytenr;
5647 u64 bytes;
5648 u32 *csums;
5649 void *private;
e65e1535
MX
5650
5651 /* number of bios pending for this dio */
5652 atomic_t pending_bios;
5653
5654 /* IO errors */
5655 int errors;
5656
5657 struct bio *orig_bio;
4b46fce2
JB
5658};
5659
5660static void btrfs_endio_direct_read(struct bio *bio, int err)
5661{
e65e1535 5662 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5663 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5664 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5665 struct inode *inode = dip->inode;
5666 struct btrfs_root *root = BTRFS_I(inode)->root;
5667 u64 start;
5668 u32 *private = dip->csums;
5669
5670 start = dip->logical_offset;
5671 do {
5672 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5673 struct page *page = bvec->bv_page;
5674 char *kaddr;
5675 u32 csum = ~(u32)0;
5676 unsigned long flags;
5677
5678 local_irq_save(flags);
5679 kaddr = kmap_atomic(page, KM_IRQ0);
5680 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5681 csum, bvec->bv_len);
5682 btrfs_csum_final(csum, (char *)&csum);
5683 kunmap_atomic(kaddr, KM_IRQ0);
5684 local_irq_restore(flags);
5685
5686 flush_dcache_page(bvec->bv_page);
5687 if (csum != *private) {
33345d01 5688 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5689 " %llu csum %u private %u\n",
33345d01
LZ
5690 (unsigned long long)btrfs_ino(inode),
5691 (unsigned long long)start,
4b46fce2
JB
5692 csum, *private);
5693 err = -EIO;
5694 }
5695 }
5696
5697 start += bvec->bv_len;
5698 private++;
5699 bvec++;
5700 } while (bvec <= bvec_end);
5701
5702 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5703 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5704 bio->bi_private = dip->private;
5705
5706 kfree(dip->csums);
5707 kfree(dip);
c0da7aa1
JB
5708
5709 /* If we had a csum failure make sure to clear the uptodate flag */
5710 if (err)
5711 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5712 dio_end_io(bio, err);
5713}
5714
5715static void btrfs_endio_direct_write(struct bio *bio, int err)
5716{
5717 struct btrfs_dio_private *dip = bio->bi_private;
5718 struct inode *inode = dip->inode;
5719 struct btrfs_root *root = BTRFS_I(inode)->root;
5720 struct btrfs_trans_handle *trans;
5721 struct btrfs_ordered_extent *ordered = NULL;
5722 struct extent_state *cached_state = NULL;
163cf09c
CM
5723 u64 ordered_offset = dip->logical_offset;
5724 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5725 int ret;
5726
5727 if (err)
5728 goto out_done;
163cf09c
CM
5729again:
5730 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5731 &ordered_offset,
5732 ordered_bytes);
4b46fce2 5733 if (!ret)
163cf09c 5734 goto out_test;
4b46fce2
JB
5735
5736 BUG_ON(!ordered);
5737
7a7eaa40 5738 trans = btrfs_join_transaction(root);
3612b495 5739 if (IS_ERR(trans)) {
4b46fce2
JB
5740 err = -ENOMEM;
5741 goto out;
5742 }
5743 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5744
5745 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5746 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5747 if (!ret)
5748 ret = btrfs_update_inode(trans, root, inode);
5749 err = ret;
5750 goto out;
5751 }
5752
5753 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5754 ordered->file_offset + ordered->len - 1, 0,
5755 &cached_state, GFP_NOFS);
5756
5757 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5758 ret = btrfs_mark_extent_written(trans, inode,
5759 ordered->file_offset,
5760 ordered->file_offset +
5761 ordered->len);
5762 if (ret) {
5763 err = ret;
5764 goto out_unlock;
5765 }
5766 } else {
5767 ret = insert_reserved_file_extent(trans, inode,
5768 ordered->file_offset,
5769 ordered->start,
5770 ordered->disk_len,
5771 ordered->len,
5772 ordered->len,
5773 0, 0, 0,
5774 BTRFS_FILE_EXTENT_REG);
5775 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5776 ordered->file_offset, ordered->len);
5777 if (ret) {
5778 err = ret;
5779 WARN_ON(1);
5780 goto out_unlock;
5781 }
5782 }
5783
5784 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1
JB
5785 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5786 if (!ret)
5787 btrfs_update_inode(trans, root, inode);
5788 ret = 0;
4b46fce2
JB
5789out_unlock:
5790 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5791 ordered->file_offset + ordered->len - 1,
5792 &cached_state, GFP_NOFS);
5793out:
5794 btrfs_delalloc_release_metadata(inode, ordered->len);
5795 btrfs_end_transaction(trans, root);
163cf09c 5796 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5797 btrfs_put_ordered_extent(ordered);
5798 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5799
5800out_test:
5801 /*
5802 * our bio might span multiple ordered extents. If we haven't
5803 * completed the accounting for the whole dio, go back and try again
5804 */
5805 if (ordered_offset < dip->logical_offset + dip->bytes) {
5806 ordered_bytes = dip->logical_offset + dip->bytes -
5807 ordered_offset;
5808 goto again;
5809 }
4b46fce2
JB
5810out_done:
5811 bio->bi_private = dip->private;
5812
5813 kfree(dip->csums);
5814 kfree(dip);
c0da7aa1
JB
5815
5816 /* If we had an error make sure to clear the uptodate flag */
5817 if (err)
5818 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5819 dio_end_io(bio, err);
5820}
5821
eaf25d93
CM
5822static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5823 struct bio *bio, int mirror_num,
5824 unsigned long bio_flags, u64 offset)
5825{
5826 int ret;
5827 struct btrfs_root *root = BTRFS_I(inode)->root;
5828 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5829 BUG_ON(ret);
5830 return 0;
5831}
5832
e65e1535
MX
5833static void btrfs_end_dio_bio(struct bio *bio, int err)
5834{
5835 struct btrfs_dio_private *dip = bio->bi_private;
5836
5837 if (err) {
33345d01 5838 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 5839 "sector %#Lx len %u err no %d\n",
33345d01 5840 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 5841 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5842 dip->errors = 1;
5843
5844 /*
5845 * before atomic variable goto zero, we must make sure
5846 * dip->errors is perceived to be set.
5847 */
5848 smp_mb__before_atomic_dec();
5849 }
5850
5851 /* if there are more bios still pending for this dio, just exit */
5852 if (!atomic_dec_and_test(&dip->pending_bios))
5853 goto out;
5854
5855 if (dip->errors)
5856 bio_io_error(dip->orig_bio);
5857 else {
5858 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5859 bio_endio(dip->orig_bio, 0);
5860 }
5861out:
5862 bio_put(bio);
5863}
5864
5865static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5866 u64 first_sector, gfp_t gfp_flags)
5867{
5868 int nr_vecs = bio_get_nr_vecs(bdev);
5869 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5870}
5871
5872static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5873 int rw, u64 file_offset, int skip_sum,
1ae39938 5874 u32 *csums, int async_submit)
e65e1535
MX
5875{
5876 int write = rw & REQ_WRITE;
5877 struct btrfs_root *root = BTRFS_I(inode)->root;
5878 int ret;
5879
5880 bio_get(bio);
5881 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5882 if (ret)
5883 goto err;
5884
1ae39938
JB
5885 if (skip_sum)
5886 goto map;
5887
5888 if (write && async_submit) {
e65e1535
MX
5889 ret = btrfs_wq_submit_bio(root->fs_info,
5890 inode, rw, bio, 0, 0,
5891 file_offset,
5892 __btrfs_submit_bio_start_direct_io,
5893 __btrfs_submit_bio_done);
5894 goto err;
1ae39938
JB
5895 } else if (write) {
5896 /*
5897 * If we aren't doing async submit, calculate the csum of the
5898 * bio now.
5899 */
5900 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5901 if (ret)
5902 goto err;
c2db1073
TI
5903 } else if (!skip_sum) {
5904 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 5905 file_offset, csums);
c2db1073
TI
5906 if (ret)
5907 goto err;
5908 }
e65e1535 5909
1ae39938
JB
5910map:
5911 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
5912err:
5913 bio_put(bio);
5914 return ret;
5915}
5916
5917static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5918 int skip_sum)
5919{
5920 struct inode *inode = dip->inode;
5921 struct btrfs_root *root = BTRFS_I(inode)->root;
5922 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5923 struct bio *bio;
5924 struct bio *orig_bio = dip->orig_bio;
5925 struct bio_vec *bvec = orig_bio->bi_io_vec;
5926 u64 start_sector = orig_bio->bi_sector;
5927 u64 file_offset = dip->logical_offset;
5928 u64 submit_len = 0;
5929 u64 map_length;
5930 int nr_pages = 0;
5931 u32 *csums = dip->csums;
5932 int ret = 0;
1ae39938 5933 int async_submit = 0;
98bc3149 5934 int write = rw & REQ_WRITE;
e65e1535 5935
e65e1535
MX
5936 map_length = orig_bio->bi_size;
5937 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5938 &map_length, NULL, 0);
5939 if (ret) {
64728bbb 5940 bio_put(orig_bio);
e65e1535
MX
5941 return -EIO;
5942 }
5943
02f57c7a
JB
5944 if (map_length >= orig_bio->bi_size) {
5945 bio = orig_bio;
5946 goto submit;
5947 }
5948
1ae39938 5949 async_submit = 1;
02f57c7a
JB
5950 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5951 if (!bio)
5952 return -ENOMEM;
5953 bio->bi_private = dip;
5954 bio->bi_end_io = btrfs_end_dio_bio;
5955 atomic_inc(&dip->pending_bios);
5956
e65e1535
MX
5957 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5958 if (unlikely(map_length < submit_len + bvec->bv_len ||
5959 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5960 bvec->bv_offset) < bvec->bv_len)) {
5961 /*
5962 * inc the count before we submit the bio so
5963 * we know the end IO handler won't happen before
5964 * we inc the count. Otherwise, the dip might get freed
5965 * before we're done setting it up
5966 */
5967 atomic_inc(&dip->pending_bios);
5968 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5969 file_offset, skip_sum,
1ae39938 5970 csums, async_submit);
e65e1535
MX
5971 if (ret) {
5972 bio_put(bio);
5973 atomic_dec(&dip->pending_bios);
5974 goto out_err;
5975 }
5976
98bc3149
JB
5977 /* Write's use the ordered csums */
5978 if (!write && !skip_sum)
e65e1535
MX
5979 csums = csums + nr_pages;
5980 start_sector += submit_len >> 9;
5981 file_offset += submit_len;
5982
5983 submit_len = 0;
5984 nr_pages = 0;
5985
5986 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5987 start_sector, GFP_NOFS);
5988 if (!bio)
5989 goto out_err;
5990 bio->bi_private = dip;
5991 bio->bi_end_io = btrfs_end_dio_bio;
5992
5993 map_length = orig_bio->bi_size;
5994 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5995 &map_length, NULL, 0);
5996 if (ret) {
5997 bio_put(bio);
5998 goto out_err;
5999 }
6000 } else {
6001 submit_len += bvec->bv_len;
6002 nr_pages ++;
6003 bvec++;
6004 }
6005 }
6006
02f57c7a 6007submit:
e65e1535 6008 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6009 csums, async_submit);
e65e1535
MX
6010 if (!ret)
6011 return 0;
6012
6013 bio_put(bio);
6014out_err:
6015 dip->errors = 1;
6016 /*
6017 * before atomic variable goto zero, we must
6018 * make sure dip->errors is perceived to be set.
6019 */
6020 smp_mb__before_atomic_dec();
6021 if (atomic_dec_and_test(&dip->pending_bios))
6022 bio_io_error(dip->orig_bio);
6023
6024 /* bio_end_io() will handle error, so we needn't return it */
6025 return 0;
6026}
6027
4b46fce2
JB
6028static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6029 loff_t file_offset)
6030{
6031 struct btrfs_root *root = BTRFS_I(inode)->root;
6032 struct btrfs_dio_private *dip;
6033 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6034 int skip_sum;
7b6d91da 6035 int write = rw & REQ_WRITE;
4b46fce2
JB
6036 int ret = 0;
6037
6038 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6039
6040 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6041 if (!dip) {
6042 ret = -ENOMEM;
6043 goto free_ordered;
6044 }
6045 dip->csums = NULL;
6046
98bc3149
JB
6047 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6048 if (!write && !skip_sum) {
4b46fce2
JB
6049 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6050 if (!dip->csums) {
b4966b77 6051 kfree(dip);
4b46fce2
JB
6052 ret = -ENOMEM;
6053 goto free_ordered;
6054 }
6055 }
6056
6057 dip->private = bio->bi_private;
6058 dip->inode = inode;
6059 dip->logical_offset = file_offset;
6060
4b46fce2
JB
6061 dip->bytes = 0;
6062 do {
6063 dip->bytes += bvec->bv_len;
6064 bvec++;
6065 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6066
46bfbb5c 6067 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6068 bio->bi_private = dip;
e65e1535
MX
6069 dip->errors = 0;
6070 dip->orig_bio = bio;
6071 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6072
6073 if (write)
6074 bio->bi_end_io = btrfs_endio_direct_write;
6075 else
6076 bio->bi_end_io = btrfs_endio_direct_read;
6077
e65e1535
MX
6078 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6079 if (!ret)
eaf25d93 6080 return;
4b46fce2
JB
6081free_ordered:
6082 /*
6083 * If this is a write, we need to clean up the reserved space and kill
6084 * the ordered extent.
6085 */
6086 if (write) {
6087 struct btrfs_ordered_extent *ordered;
955256f2 6088 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6089 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6090 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6091 btrfs_free_reserved_extent(root, ordered->start,
6092 ordered->disk_len);
6093 btrfs_put_ordered_extent(ordered);
6094 btrfs_put_ordered_extent(ordered);
6095 }
6096 bio_endio(bio, ret);
6097}
6098
5a5f79b5
CM
6099static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6100 const struct iovec *iov, loff_t offset,
6101 unsigned long nr_segs)
6102{
6103 int seg;
a1b75f7d 6104 int i;
5a5f79b5
CM
6105 size_t size;
6106 unsigned long addr;
6107 unsigned blocksize_mask = root->sectorsize - 1;
6108 ssize_t retval = -EINVAL;
6109 loff_t end = offset;
6110
6111 if (offset & blocksize_mask)
6112 goto out;
6113
6114 /* Check the memory alignment. Blocks cannot straddle pages */
6115 for (seg = 0; seg < nr_segs; seg++) {
6116 addr = (unsigned long)iov[seg].iov_base;
6117 size = iov[seg].iov_len;
6118 end += size;
a1b75f7d 6119 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6120 goto out;
a1b75f7d
JB
6121
6122 /* If this is a write we don't need to check anymore */
6123 if (rw & WRITE)
6124 continue;
6125
6126 /*
6127 * Check to make sure we don't have duplicate iov_base's in this
6128 * iovec, if so return EINVAL, otherwise we'll get csum errors
6129 * when reading back.
6130 */
6131 for (i = seg + 1; i < nr_segs; i++) {
6132 if (iov[seg].iov_base == iov[i].iov_base)
6133 goto out;
6134 }
5a5f79b5
CM
6135 }
6136 retval = 0;
6137out:
6138 return retval;
6139}
16432985
CM
6140static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6141 const struct iovec *iov, loff_t offset,
6142 unsigned long nr_segs)
6143{
4b46fce2
JB
6144 struct file *file = iocb->ki_filp;
6145 struct inode *inode = file->f_mapping->host;
6146 struct btrfs_ordered_extent *ordered;
4845e44f 6147 struct extent_state *cached_state = NULL;
4b46fce2
JB
6148 u64 lockstart, lockend;
6149 ssize_t ret;
4845e44f
CM
6150 int writing = rw & WRITE;
6151 int write_bits = 0;
3f7c579c 6152 size_t count = iov_length(iov, nr_segs);
4b46fce2 6153
5a5f79b5
CM
6154 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6155 offset, nr_segs)) {
6156 return 0;
6157 }
6158
4b46fce2 6159 lockstart = offset;
3f7c579c
CM
6160 lockend = offset + count - 1;
6161
6162 if (writing) {
6163 ret = btrfs_delalloc_reserve_space(inode, count);
6164 if (ret)
6165 goto out;
6166 }
4845e44f 6167
4b46fce2 6168 while (1) {
4845e44f
CM
6169 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6170 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6171 /*
6172 * We're concerned with the entire range that we're going to be
6173 * doing DIO to, so we need to make sure theres no ordered
6174 * extents in this range.
6175 */
6176 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6177 lockend - lockstart + 1);
6178 if (!ordered)
6179 break;
4845e44f
CM
6180 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6181 &cached_state, GFP_NOFS);
4b46fce2
JB
6182 btrfs_start_ordered_extent(inode, ordered, 1);
6183 btrfs_put_ordered_extent(ordered);
6184 cond_resched();
6185 }
6186
4845e44f
CM
6187 /*
6188 * we don't use btrfs_set_extent_delalloc because we don't want
6189 * the dirty or uptodate bits
6190 */
6191 if (writing) {
6192 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6193 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6194 EXTENT_DELALLOC, 0, NULL, &cached_state,
6195 GFP_NOFS);
6196 if (ret) {
6197 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6198 lockend, EXTENT_LOCKED | write_bits,
6199 1, 0, &cached_state, GFP_NOFS);
6200 goto out;
6201 }
6202 }
6203
6204 free_extent_state(cached_state);
6205 cached_state = NULL;
6206
5a5f79b5
CM
6207 ret = __blockdev_direct_IO(rw, iocb, inode,
6208 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6209 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6210 btrfs_submit_direct, 0);
4b46fce2
JB
6211
6212 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6213 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6214 offset + iov_length(iov, nr_segs) - 1,
6215 EXTENT_LOCKED | write_bits, 1, 0,
6216 &cached_state, GFP_NOFS);
4b46fce2
JB
6217 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6218 /*
6219 * We're falling back to buffered, unlock the section we didn't
6220 * do IO on.
6221 */
4845e44f
CM
6222 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6223 offset + iov_length(iov, nr_segs) - 1,
6224 EXTENT_LOCKED | write_bits, 1, 0,
6225 &cached_state, GFP_NOFS);
4b46fce2 6226 }
4845e44f
CM
6227out:
6228 free_extent_state(cached_state);
4b46fce2 6229 return ret;
16432985
CM
6230}
6231
1506fcc8
YS
6232static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6233 __u64 start, __u64 len)
6234{
ec29ed5b 6235 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6236}
6237
a52d9a80 6238int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6239{
d1310b2e
CM
6240 struct extent_io_tree *tree;
6241 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6242 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6243}
1832a6d5 6244
a52d9a80 6245static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6246{
d1310b2e 6247 struct extent_io_tree *tree;
b888db2b
CM
6248
6249
6250 if (current->flags & PF_MEMALLOC) {
6251 redirty_page_for_writepage(wbc, page);
6252 unlock_page(page);
6253 return 0;
6254 }
d1310b2e 6255 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6256 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6257}
6258
f421950f
CM
6259int btrfs_writepages(struct address_space *mapping,
6260 struct writeback_control *wbc)
b293f02e 6261{
d1310b2e 6262 struct extent_io_tree *tree;
771ed689 6263
d1310b2e 6264 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6265 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6266}
6267
3ab2fb5a
CM
6268static int
6269btrfs_readpages(struct file *file, struct address_space *mapping,
6270 struct list_head *pages, unsigned nr_pages)
6271{
d1310b2e
CM
6272 struct extent_io_tree *tree;
6273 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6274 return extent_readpages(tree, mapping, pages, nr_pages,
6275 btrfs_get_extent);
6276}
e6dcd2dc 6277static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6278{
d1310b2e
CM
6279 struct extent_io_tree *tree;
6280 struct extent_map_tree *map;
a52d9a80 6281 int ret;
8c2383c3 6282
d1310b2e
CM
6283 tree = &BTRFS_I(page->mapping->host)->io_tree;
6284 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6285 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6286 if (ret == 1) {
6287 ClearPagePrivate(page);
6288 set_page_private(page, 0);
6289 page_cache_release(page);
39279cc3 6290 }
a52d9a80 6291 return ret;
39279cc3
CM
6292}
6293
e6dcd2dc
CM
6294static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6295{
98509cfc
CM
6296 if (PageWriteback(page) || PageDirty(page))
6297 return 0;
b335b003 6298 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6299}
6300
a52d9a80 6301static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6302{
d1310b2e 6303 struct extent_io_tree *tree;
e6dcd2dc 6304 struct btrfs_ordered_extent *ordered;
2ac55d41 6305 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6306 u64 page_start = page_offset(page);
6307 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6308
8b62b72b
CM
6309
6310 /*
6311 * we have the page locked, so new writeback can't start,
6312 * and the dirty bit won't be cleared while we are here.
6313 *
6314 * Wait for IO on this page so that we can safely clear
6315 * the PagePrivate2 bit and do ordered accounting
6316 */
e6dcd2dc 6317 wait_on_page_writeback(page);
8b62b72b 6318
d1310b2e 6319 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6320 if (offset) {
6321 btrfs_releasepage(page, GFP_NOFS);
6322 return;
6323 }
2ac55d41
JB
6324 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6325 GFP_NOFS);
e6dcd2dc
CM
6326 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6327 page_offset(page));
6328 if (ordered) {
eb84ae03
CM
6329 /*
6330 * IO on this page will never be started, so we need
6331 * to account for any ordered extents now
6332 */
e6dcd2dc
CM
6333 clear_extent_bit(tree, page_start, page_end,
6334 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6335 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6336 &cached_state, GFP_NOFS);
8b62b72b
CM
6337 /*
6338 * whoever cleared the private bit is responsible
6339 * for the finish_ordered_io
6340 */
6341 if (TestClearPagePrivate2(page)) {
6342 btrfs_finish_ordered_io(page->mapping->host,
6343 page_start, page_end);
6344 }
e6dcd2dc 6345 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6346 cached_state = NULL;
6347 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6348 GFP_NOFS);
e6dcd2dc
CM
6349 }
6350 clear_extent_bit(tree, page_start, page_end,
32c00aff 6351 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6352 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6353 __btrfs_releasepage(page, GFP_NOFS);
6354
4a096752 6355 ClearPageChecked(page);
9ad6b7bc 6356 if (PagePrivate(page)) {
9ad6b7bc
CM
6357 ClearPagePrivate(page);
6358 set_page_private(page, 0);
6359 page_cache_release(page);
6360 }
39279cc3
CM
6361}
6362
9ebefb18
CM
6363/*
6364 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6365 * called from a page fault handler when a page is first dirtied. Hence we must
6366 * be careful to check for EOF conditions here. We set the page up correctly
6367 * for a written page which means we get ENOSPC checking when writing into
6368 * holes and correct delalloc and unwritten extent mapping on filesystems that
6369 * support these features.
6370 *
6371 * We are not allowed to take the i_mutex here so we have to play games to
6372 * protect against truncate races as the page could now be beyond EOF. Because
6373 * vmtruncate() writes the inode size before removing pages, once we have the
6374 * page lock we can determine safely if the page is beyond EOF. If it is not
6375 * beyond EOF, then the page is guaranteed safe against truncation until we
6376 * unlock the page.
6377 */
c2ec175c 6378int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6379{
c2ec175c 6380 struct page *page = vmf->page;
6da6abae 6381 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6382 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6383 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6384 struct btrfs_ordered_extent *ordered;
2ac55d41 6385 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6386 char *kaddr;
6387 unsigned long zero_start;
9ebefb18 6388 loff_t size;
1832a6d5 6389 int ret;
a52d9a80 6390 u64 page_start;
e6dcd2dc 6391 u64 page_end;
9ebefb18 6392
0ca1f7ce 6393 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6394 if (ret) {
6395 if (ret == -ENOMEM)
6396 ret = VM_FAULT_OOM;
6397 else /* -ENOSPC, -EIO, etc */
6398 ret = VM_FAULT_SIGBUS;
1832a6d5 6399 goto out;
56a76f82 6400 }
1832a6d5 6401
56a76f82 6402 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6403again:
9ebefb18 6404 lock_page(page);
9ebefb18 6405 size = i_size_read(inode);
e6dcd2dc
CM
6406 page_start = page_offset(page);
6407 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6408
9ebefb18 6409 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6410 (page_start >= size)) {
9ebefb18
CM
6411 /* page got truncated out from underneath us */
6412 goto out_unlock;
6413 }
e6dcd2dc
CM
6414 wait_on_page_writeback(page);
6415
2ac55d41
JB
6416 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6417 GFP_NOFS);
e6dcd2dc
CM
6418 set_page_extent_mapped(page);
6419
eb84ae03
CM
6420 /*
6421 * we can't set the delalloc bits if there are pending ordered
6422 * extents. Drop our locks and wait for them to finish
6423 */
e6dcd2dc
CM
6424 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6425 if (ordered) {
2ac55d41
JB
6426 unlock_extent_cached(io_tree, page_start, page_end,
6427 &cached_state, GFP_NOFS);
e6dcd2dc 6428 unlock_page(page);
eb84ae03 6429 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6430 btrfs_put_ordered_extent(ordered);
6431 goto again;
6432 }
6433
fbf19087
JB
6434 /*
6435 * XXX - page_mkwrite gets called every time the page is dirtied, even
6436 * if it was already dirty, so for space accounting reasons we need to
6437 * clear any delalloc bits for the range we are fixing to save. There
6438 * is probably a better way to do this, but for now keep consistent with
6439 * prepare_pages in the normal write path.
6440 */
2ac55d41 6441 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6442 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6443 0, 0, &cached_state, GFP_NOFS);
fbf19087 6444
2ac55d41
JB
6445 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6446 &cached_state);
9ed74f2d 6447 if (ret) {
2ac55d41
JB
6448 unlock_extent_cached(io_tree, page_start, page_end,
6449 &cached_state, GFP_NOFS);
9ed74f2d
JB
6450 ret = VM_FAULT_SIGBUS;
6451 goto out_unlock;
6452 }
e6dcd2dc 6453 ret = 0;
9ebefb18
CM
6454
6455 /* page is wholly or partially inside EOF */
a52d9a80 6456 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6457 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6458 else
e6dcd2dc 6459 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6460
e6dcd2dc
CM
6461 if (zero_start != PAGE_CACHE_SIZE) {
6462 kaddr = kmap(page);
6463 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6464 flush_dcache_page(page);
6465 kunmap(page);
6466 }
247e743c 6467 ClearPageChecked(page);
e6dcd2dc 6468 set_page_dirty(page);
50a9b214 6469 SetPageUptodate(page);
5a3f23d5 6470
257c62e1
CM
6471 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6472 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6473
2ac55d41 6474 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6475
6476out_unlock:
50a9b214
CM
6477 if (!ret)
6478 return VM_FAULT_LOCKED;
9ebefb18 6479 unlock_page(page);
0ca1f7ce 6480 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6481out:
9ebefb18
CM
6482 return ret;
6483}
6484
a41ad394 6485static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6486{
6487 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6488 struct btrfs_block_rsv *rsv;
39279cc3 6489 int ret;
3893e33b 6490 int err = 0;
39279cc3 6491 struct btrfs_trans_handle *trans;
d3c2fdcf 6492 unsigned long nr;
dbe674a9 6493 u64 mask = root->sectorsize - 1;
39279cc3 6494
5d5e103a
JB
6495 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6496 if (ret)
a41ad394 6497 return ret;
8082510e 6498
4a096752 6499 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6500 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6501
fcb80c2a
JB
6502 /*
6503 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6504 * 3 things going on here
6505 *
6506 * 1) We need to reserve space for our orphan item and the space to
6507 * delete our orphan item. Lord knows we don't want to have a dangling
6508 * orphan item because we didn't reserve space to remove it.
6509 *
6510 * 2) We need to reserve space to update our inode.
6511 *
6512 * 3) We need to have something to cache all the space that is going to
6513 * be free'd up by the truncate operation, but also have some slack
6514 * space reserved in case it uses space during the truncate (thank you
6515 * very much snapshotting).
6516 *
6517 * And we need these to all be seperate. The fact is we can use alot of
6518 * space doing the truncate, and we have no earthly idea how much space
6519 * we will use, so we need the truncate reservation to be seperate so it
6520 * doesn't end up using space reserved for updating the inode or
6521 * removing the orphan item. We also need to be able to stop the
6522 * transaction and start a new one, which means we need to be able to
6523 * update the inode several times, and we have no idea of knowing how
6524 * many times that will be, so we can't just reserve 1 item for the
6525 * entirety of the opration, so that has to be done seperately as well.
6526 * Then there is the orphan item, which does indeed need to be held on
6527 * to for the whole operation, and we need nobody to touch this reserved
6528 * space except the orphan code.
6529 *
6530 * So that leaves us with
6531 *
6532 * 1) root->orphan_block_rsv - for the orphan deletion.
6533 * 2) rsv - for the truncate reservation, which we will steal from the
6534 * transaction reservation.
6535 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6536 * updating the inode.
6537 */
6538 rsv = btrfs_alloc_block_rsv(root);
6539 if (!rsv)
6540 return -ENOMEM;
6541 btrfs_add_durable_block_rsv(root->fs_info, rsv);
6542
6543 trans = btrfs_start_transaction(root, 4);
6544 if (IS_ERR(trans)) {
6545 err = PTR_ERR(trans);
6546 goto out;
6547 }
f0cd846e 6548
fcb80c2a
JB
6549 /*
6550 * Reserve space for the truncate process. Truncate should be adding
6551 * space, but if there are snapshots it may end up using space.
6552 */
6553 ret = btrfs_truncate_reserve_metadata(trans, root, rsv);
6554 BUG_ON(ret);
f0cd846e
JB
6555
6556 ret = btrfs_orphan_add(trans, inode);
6557 if (ret) {
6558 btrfs_end_transaction(trans, root);
fcb80c2a 6559 goto out;
f0cd846e
JB
6560 }
6561
6562 nr = trans->blocks_used;
6563 btrfs_end_transaction(trans, root);
6564 btrfs_btree_balance_dirty(root, nr);
6565
fcb80c2a
JB
6566 /*
6567 * Ok so we've already migrated our bytes over for the truncate, so here
6568 * just reserve the one slot we need for updating the inode.
6569 */
6570 trans = btrfs_start_transaction(root, 1);
6571 if (IS_ERR(trans)) {
6572 err = PTR_ERR(trans);
6573 goto out;
6574 }
fcb80c2a 6575 trans->block_rsv = rsv;
5a3f23d5
CM
6576
6577 /*
6578 * setattr is responsible for setting the ordered_data_close flag,
6579 * but that is only tested during the last file release. That
6580 * could happen well after the next commit, leaving a great big
6581 * window where new writes may get lost if someone chooses to write
6582 * to this file after truncating to zero
6583 *
6584 * The inode doesn't have any dirty data here, and so if we commit
6585 * this is a noop. If someone immediately starts writing to the inode
6586 * it is very likely we'll catch some of their writes in this
6587 * transaction, and the commit will find this file on the ordered
6588 * data list with good things to send down.
6589 *
6590 * This is a best effort solution, there is still a window where
6591 * using truncate to replace the contents of the file will
6592 * end up with a zero length file after a crash.
6593 */
6594 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6595 btrfs_add_ordered_operation(trans, root, inode);
6596
8082510e 6597 while (1) {
d68fc57b 6598 if (!trans) {
fcb80c2a
JB
6599 trans = btrfs_start_transaction(root, 3);
6600 if (IS_ERR(trans)) {
6601 err = PTR_ERR(trans);
6602 goto out;
6603 }
d68fc57b 6604
fcb80c2a
JB
6605 ret = btrfs_truncate_reserve_metadata(trans, root,
6606 rsv);
6607 BUG_ON(ret);
6608
fcb80c2a 6609 trans->block_rsv = rsv;
d68fc57b
YZ
6610 }
6611
8082510e
YZ
6612 ret = btrfs_truncate_inode_items(trans, root, inode,
6613 inode->i_size,
6614 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6615 if (ret != -EAGAIN) {
6616 err = ret;
8082510e 6617 break;
3893e33b 6618 }
39279cc3 6619
fcb80c2a 6620 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6621 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6622 if (ret) {
6623 err = ret;
6624 break;
6625 }
5f39d397 6626
8082510e
YZ
6627 nr = trans->blocks_used;
6628 btrfs_end_transaction(trans, root);
d68fc57b 6629 trans = NULL;
8082510e 6630 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6631 }
6632
6633 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6634 trans->block_rsv = root->orphan_block_rsv;
8082510e 6635 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6636 if (ret)
6637 err = ret;
ded5db9d
JB
6638 } else if (ret && inode->i_nlink > 0) {
6639 /*
6640 * Failed to do the truncate, remove us from the in memory
6641 * orphan list.
6642 */
6643 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6644 }
6645
fcb80c2a 6646 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6647 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6648 if (ret && !err)
6649 err = ret;
7b128766 6650
7b128766 6651 nr = trans->blocks_used;
89ce8a63 6652 ret = btrfs_end_transaction_throttle(trans, root);
fcb80c2a
JB
6653 btrfs_btree_balance_dirty(root, nr);
6654
6655out:
6656 btrfs_free_block_rsv(root, rsv);
6657
3893e33b
JB
6658 if (ret && !err)
6659 err = ret;
a41ad394 6660
3893e33b 6661 return err;
39279cc3
CM
6662}
6663
d352ac68
CM
6664/*
6665 * create a new subvolume directory/inode (helper for the ioctl).
6666 */
d2fb3437 6667int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 6668 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 6669{
39279cc3 6670 struct inode *inode;
76dda93c 6671 int err;
00e4e6b3 6672 u64 index = 0;
39279cc3 6673
aec7477b 6674 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d82a6f1d 6675 new_dirid, S_IFDIR | 0700, &index);
54aa1f4d 6676 if (IS_ERR(inode))
f46b5a66 6677 return PTR_ERR(inode);
39279cc3
CM
6678 inode->i_op = &btrfs_dir_inode_operations;
6679 inode->i_fop = &btrfs_dir_file_operations;
6680
39279cc3 6681 inode->i_nlink = 1;
dbe674a9 6682 btrfs_i_size_write(inode, 0);
3b96362c 6683
76dda93c
YZ
6684 err = btrfs_update_inode(trans, new_root, inode);
6685 BUG_ON(err);
cb8e7090 6686
76dda93c 6687 iput(inode);
cb8e7090 6688 return 0;
39279cc3
CM
6689}
6690
d352ac68
CM
6691/* helper function for file defrag and space balancing. This
6692 * forces readahead on a given range of bytes in an inode
6693 */
edbd8d4e 6694unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6695 struct file_ra_state *ra, struct file *file,
6696 pgoff_t offset, pgoff_t last_index)
6697{
8e7bf94f 6698 pgoff_t req_size = last_index - offset + 1;
86479a04 6699
86479a04
CM
6700 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6701 return offset + req_size;
86479a04
CM
6702}
6703
39279cc3
CM
6704struct inode *btrfs_alloc_inode(struct super_block *sb)
6705{
6706 struct btrfs_inode *ei;
2ead6ae7 6707 struct inode *inode;
39279cc3
CM
6708
6709 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6710 if (!ei)
6711 return NULL;
2ead6ae7
YZ
6712
6713 ei->root = NULL;
6714 ei->space_info = NULL;
6715 ei->generation = 0;
6716 ei->sequence = 0;
15ee9bc7 6717 ei->last_trans = 0;
257c62e1 6718 ei->last_sub_trans = 0;
e02119d5 6719 ei->logged_trans = 0;
2ead6ae7
YZ
6720 ei->delalloc_bytes = 0;
6721 ei->reserved_bytes = 0;
6722 ei->disk_i_size = 0;
6723 ei->flags = 0;
6724 ei->index_cnt = (u64)-1;
6725 ei->last_unlink_trans = 0;
6726
0ca1f7ce 6727 atomic_set(&ei->outstanding_extents, 0);
57a45ced 6728 atomic_set(&ei->reserved_extents, 0);
2ead6ae7
YZ
6729
6730 ei->ordered_data_close = 0;
d68fc57b 6731 ei->orphan_meta_reserved = 0;
2ead6ae7 6732 ei->dummy_inode = 0;
4cb5300b 6733 ei->in_defrag = 0;
261507a0 6734 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6735
16cdcec7
MX
6736 ei->delayed_node = NULL;
6737
2ead6ae7 6738 inode = &ei->vfs_inode;
a8067e02 6739 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
6740 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6741 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
2ead6ae7 6742 mutex_init(&ei->log_mutex);
e6dcd2dc 6743 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6744 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6745 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6746 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6747 RB_CLEAR_NODE(&ei->rb_node);
6748
6749 return inode;
39279cc3
CM
6750}
6751
fa0d7e3d
NP
6752static void btrfs_i_callback(struct rcu_head *head)
6753{
6754 struct inode *inode = container_of(head, struct inode, i_rcu);
6755 INIT_LIST_HEAD(&inode->i_dentry);
6756 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6757}
6758
39279cc3
CM
6759void btrfs_destroy_inode(struct inode *inode)
6760{
e6dcd2dc 6761 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6762 struct btrfs_root *root = BTRFS_I(inode)->root;
6763
39279cc3
CM
6764 WARN_ON(!list_empty(&inode->i_dentry));
6765 WARN_ON(inode->i_data.nrpages);
0ca1f7ce 6766 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
57a45ced 6767 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
39279cc3 6768
a6dbd429
JB
6769 /*
6770 * This can happen where we create an inode, but somebody else also
6771 * created the same inode and we need to destroy the one we already
6772 * created.
6773 */
6774 if (!root)
6775 goto free;
6776
5a3f23d5
CM
6777 /*
6778 * Make sure we're properly removed from the ordered operation
6779 * lists.
6780 */
6781 smp_mb();
6782 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6783 spin_lock(&root->fs_info->ordered_extent_lock);
6784 list_del_init(&BTRFS_I(inode)->ordered_operations);
6785 spin_unlock(&root->fs_info->ordered_extent_lock);
6786 }
6787
d68fc57b 6788 spin_lock(&root->orphan_lock);
7b128766 6789 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
33345d01
LZ
6790 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6791 (unsigned long long)btrfs_ino(inode));
8082510e 6792 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6793 }
d68fc57b 6794 spin_unlock(&root->orphan_lock);
7b128766 6795
d397712b 6796 while (1) {
e6dcd2dc
CM
6797 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6798 if (!ordered)
6799 break;
6800 else {
d397712b
CM
6801 printk(KERN_ERR "btrfs found ordered "
6802 "extent %llu %llu on inode cleanup\n",
6803 (unsigned long long)ordered->file_offset,
6804 (unsigned long long)ordered->len);
e6dcd2dc
CM
6805 btrfs_remove_ordered_extent(inode, ordered);
6806 btrfs_put_ordered_extent(ordered);
6807 btrfs_put_ordered_extent(ordered);
6808 }
6809 }
5d4f98a2 6810 inode_tree_del(inode);
5b21f2ed 6811 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6812free:
16cdcec7 6813 btrfs_remove_delayed_node(inode);
fa0d7e3d 6814 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6815}
6816
45321ac5 6817int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6818{
6819 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6820
0af3d00b 6821 if (btrfs_root_refs(&root->root_item) == 0 &&
82d5902d 6822 !is_free_space_inode(root, inode))
45321ac5 6823 return 1;
76dda93c 6824 else
45321ac5 6825 return generic_drop_inode(inode);
76dda93c
YZ
6826}
6827
0ee0fda0 6828static void init_once(void *foo)
39279cc3
CM
6829{
6830 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6831
6832 inode_init_once(&ei->vfs_inode);
6833}
6834
6835void btrfs_destroy_cachep(void)
6836{
6837 if (btrfs_inode_cachep)
6838 kmem_cache_destroy(btrfs_inode_cachep);
6839 if (btrfs_trans_handle_cachep)
6840 kmem_cache_destroy(btrfs_trans_handle_cachep);
6841 if (btrfs_transaction_cachep)
6842 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6843 if (btrfs_path_cachep)
6844 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6845 if (btrfs_free_space_cachep)
6846 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6847}
6848
6849int btrfs_init_cachep(void)
6850{
9601e3f6
CH
6851 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6852 sizeof(struct btrfs_inode), 0,
6853 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6854 if (!btrfs_inode_cachep)
6855 goto fail;
9601e3f6
CH
6856
6857 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6858 sizeof(struct btrfs_trans_handle), 0,
6859 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6860 if (!btrfs_trans_handle_cachep)
6861 goto fail;
9601e3f6
CH
6862
6863 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6864 sizeof(struct btrfs_transaction), 0,
6865 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6866 if (!btrfs_transaction_cachep)
6867 goto fail;
9601e3f6
CH
6868
6869 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6870 sizeof(struct btrfs_path), 0,
6871 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6872 if (!btrfs_path_cachep)
6873 goto fail;
9601e3f6 6874
dc89e982
JB
6875 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6876 sizeof(struct btrfs_free_space), 0,
6877 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6878 if (!btrfs_free_space_cachep)
6879 goto fail;
6880
39279cc3
CM
6881 return 0;
6882fail:
6883 btrfs_destroy_cachep();
6884 return -ENOMEM;
6885}
6886
6887static int btrfs_getattr(struct vfsmount *mnt,
6888 struct dentry *dentry, struct kstat *stat)
6889{
6890 struct inode *inode = dentry->d_inode;
6891 generic_fillattr(inode, stat);
3394e160 6892 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 6893 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6894 stat->blocks = (inode_get_bytes(inode) +
6895 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6896 return 0;
6897}
6898
75e7cb7f
LB
6899/*
6900 * If a file is moved, it will inherit the cow and compression flags of the new
6901 * directory.
6902 */
6903static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6904{
6905 struct btrfs_inode *b_dir = BTRFS_I(dir);
6906 struct btrfs_inode *b_inode = BTRFS_I(inode);
6907
6908 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6909 b_inode->flags |= BTRFS_INODE_NODATACOW;
6910 else
6911 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6912
6913 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6914 b_inode->flags |= BTRFS_INODE_COMPRESS;
6915 else
6916 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6917}
6918
d397712b
CM
6919static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6920 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6921{
6922 struct btrfs_trans_handle *trans;
6923 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6924 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6925 struct inode *new_inode = new_dentry->d_inode;
6926 struct inode *old_inode = old_dentry->d_inode;
6927 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6928 u64 index = 0;
4df27c4d 6929 u64 root_objectid;
39279cc3 6930 int ret;
33345d01 6931 u64 old_ino = btrfs_ino(old_inode);
39279cc3 6932
33345d01 6933 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
6934 return -EPERM;
6935
4df27c4d 6936 /* we only allow rename subvolume link between subvolumes */
33345d01 6937 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6938 return -EXDEV;
6939
33345d01
LZ
6940 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6941 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6942 return -ENOTEMPTY;
5f39d397 6943
4df27c4d
YZ
6944 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6945 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6946 return -ENOTEMPTY;
5a3f23d5
CM
6947 /*
6948 * we're using rename to replace one file with another.
6949 * and the replacement file is large. Start IO on it now so
6950 * we don't add too much work to the end of the transaction
6951 */
4baf8c92 6952 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6953 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6954 filemap_flush(old_inode->i_mapping);
6955
76dda93c 6956 /* close the racy window with snapshot create/destroy ioctl */
33345d01 6957 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 6958 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6959 /*
6960 * We want to reserve the absolute worst case amount of items. So if
6961 * both inodes are subvols and we need to unlink them then that would
6962 * require 4 item modifications, but if they are both normal inodes it
6963 * would require 5 item modifications, so we'll assume their normal
6964 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6965 * should cover the worst case number of items we'll modify.
6966 */
6967 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
6968 if (IS_ERR(trans)) {
6969 ret = PTR_ERR(trans);
6970 goto out_notrans;
6971 }
76dda93c 6972
4df27c4d
YZ
6973 if (dest != root)
6974 btrfs_record_root_in_trans(trans, dest);
5f39d397 6975
a5719521
YZ
6976 ret = btrfs_set_inode_index(new_dir, &index);
6977 if (ret)
6978 goto out_fail;
5a3f23d5 6979
33345d01 6980 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6981 /* force full log commit if subvolume involved. */
6982 root->fs_info->last_trans_log_full_commit = trans->transid;
6983 } else {
a5719521
YZ
6984 ret = btrfs_insert_inode_ref(trans, dest,
6985 new_dentry->d_name.name,
6986 new_dentry->d_name.len,
33345d01
LZ
6987 old_ino,
6988 btrfs_ino(new_dir), index);
a5719521
YZ
6989 if (ret)
6990 goto out_fail;
4df27c4d
YZ
6991 /*
6992 * this is an ugly little race, but the rename is required
6993 * to make sure that if we crash, the inode is either at the
6994 * old name or the new one. pinning the log transaction lets
6995 * us make sure we don't allow a log commit to come in after
6996 * we unlink the name but before we add the new name back in.
6997 */
6998 btrfs_pin_log_trans(root);
6999 }
5a3f23d5
CM
7000 /*
7001 * make sure the inode gets flushed if it is replacing
7002 * something.
7003 */
33345d01 7004 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7005 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7006
39279cc3
CM
7007 old_dir->i_ctime = old_dir->i_mtime = ctime;
7008 new_dir->i_ctime = new_dir->i_mtime = ctime;
7009 old_inode->i_ctime = ctime;
5f39d397 7010
12fcfd22
CM
7011 if (old_dentry->d_parent != new_dentry->d_parent)
7012 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7013
33345d01 7014 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7015 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7016 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7017 old_dentry->d_name.name,
7018 old_dentry->d_name.len);
7019 } else {
92986796
AV
7020 ret = __btrfs_unlink_inode(trans, root, old_dir,
7021 old_dentry->d_inode,
7022 old_dentry->d_name.name,
7023 old_dentry->d_name.len);
7024 if (!ret)
7025 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7026 }
7027 BUG_ON(ret);
39279cc3
CM
7028
7029 if (new_inode) {
7030 new_inode->i_ctime = CURRENT_TIME;
33345d01 7031 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7032 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7033 root_objectid = BTRFS_I(new_inode)->location.objectid;
7034 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7035 root_objectid,
7036 new_dentry->d_name.name,
7037 new_dentry->d_name.len);
7038 BUG_ON(new_inode->i_nlink == 0);
7039 } else {
7040 ret = btrfs_unlink_inode(trans, dest, new_dir,
7041 new_dentry->d_inode,
7042 new_dentry->d_name.name,
7043 new_dentry->d_name.len);
7044 }
7045 BUG_ON(ret);
7b128766 7046 if (new_inode->i_nlink == 0) {
e02119d5 7047 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7048 BUG_ON(ret);
7b128766 7049 }
39279cc3 7050 }
aec7477b 7051
75e7cb7f
LB
7052 fixup_inode_flags(new_dir, old_inode);
7053
4df27c4d
YZ
7054 ret = btrfs_add_link(trans, new_dir, old_inode,
7055 new_dentry->d_name.name,
a5719521 7056 new_dentry->d_name.len, 0, index);
4df27c4d 7057 BUG_ON(ret);
39279cc3 7058
33345d01 7059 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
7060 struct dentry *parent = dget_parent(new_dentry);
7061 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7062 dput(parent);
4df27c4d
YZ
7063 btrfs_end_log_trans(root);
7064 }
39279cc3 7065out_fail:
ab78c84d 7066 btrfs_end_transaction_throttle(trans, root);
b44c59a8 7067out_notrans:
33345d01 7068 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7069 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7070
39279cc3
CM
7071 return ret;
7072}
7073
d352ac68
CM
7074/*
7075 * some fairly slow code that needs optimization. This walks the list
7076 * of all the inodes with pending delalloc and forces them to disk.
7077 */
24bbcf04 7078int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7079{
7080 struct list_head *head = &root->fs_info->delalloc_inodes;
7081 struct btrfs_inode *binode;
5b21f2ed 7082 struct inode *inode;
ea8c2819 7083
c146afad
YZ
7084 if (root->fs_info->sb->s_flags & MS_RDONLY)
7085 return -EROFS;
7086
75eff68e 7087 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7088 while (!list_empty(head)) {
ea8c2819
CM
7089 binode = list_entry(head->next, struct btrfs_inode,
7090 delalloc_inodes);
5b21f2ed
ZY
7091 inode = igrab(&binode->vfs_inode);
7092 if (!inode)
7093 list_del_init(&binode->delalloc_inodes);
75eff68e 7094 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7095 if (inode) {
8c8bee1d 7096 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7097 if (delay_iput)
7098 btrfs_add_delayed_iput(inode);
7099 else
7100 iput(inode);
5b21f2ed
ZY
7101 }
7102 cond_resched();
75eff68e 7103 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7104 }
75eff68e 7105 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7106
7107 /* the filemap_flush will queue IO into the worker threads, but
7108 * we have to make sure the IO is actually started and that
7109 * ordered extents get created before we return
7110 */
7111 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7112 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7113 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7114 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7115 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7116 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7117 }
7118 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7119 return 0;
7120}
7121
39279cc3
CM
7122static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7123 const char *symname)
7124{
7125 struct btrfs_trans_handle *trans;
7126 struct btrfs_root *root = BTRFS_I(dir)->root;
7127 struct btrfs_path *path;
7128 struct btrfs_key key;
1832a6d5 7129 struct inode *inode = NULL;
39279cc3
CM
7130 int err;
7131 int drop_inode = 0;
7132 u64 objectid;
00e4e6b3 7133 u64 index = 0 ;
39279cc3
CM
7134 int name_len;
7135 int datasize;
5f39d397 7136 unsigned long ptr;
39279cc3 7137 struct btrfs_file_extent_item *ei;
5f39d397 7138 struct extent_buffer *leaf;
1832a6d5 7139 unsigned long nr = 0;
39279cc3
CM
7140
7141 name_len = strlen(symname) + 1;
7142 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7143 return -ENAMETOOLONG;
1832a6d5 7144
9ed74f2d
JB
7145 /*
7146 * 2 items for inode item and ref
7147 * 2 items for dir items
7148 * 1 item for xattr if selinux is on
7149 */
a22285a6
YZ
7150 trans = btrfs_start_transaction(root, 5);
7151 if (IS_ERR(trans))
7152 return PTR_ERR(trans);
1832a6d5 7153
581bb050
LZ
7154 err = btrfs_find_free_ino(root, &objectid);
7155 if (err)
7156 goto out_unlock;
7157
aec7477b 7158 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7159 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7160 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7161 if (IS_ERR(inode)) {
7162 err = PTR_ERR(inode);
39279cc3 7163 goto out_unlock;
7cf96da3 7164 }
39279cc3 7165
2a7dba39 7166 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7167 if (err) {
7168 drop_inode = 1;
7169 goto out_unlock;
7170 }
7171
a1b075d2 7172 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7173 if (err)
7174 drop_inode = 1;
7175 else {
7176 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7177 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7178 inode->i_fop = &btrfs_file_operations;
7179 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7180 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7181 }
39279cc3
CM
7182 if (drop_inode)
7183 goto out_unlock;
7184
7185 path = btrfs_alloc_path();
7186 BUG_ON(!path);
33345d01 7187 key.objectid = btrfs_ino(inode);
39279cc3 7188 key.offset = 0;
39279cc3
CM
7189 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7190 datasize = btrfs_file_extent_calc_inline_size(name_len);
7191 err = btrfs_insert_empty_item(trans, root, path, &key,
7192 datasize);
54aa1f4d
CM
7193 if (err) {
7194 drop_inode = 1;
b0839166 7195 btrfs_free_path(path);
54aa1f4d
CM
7196 goto out_unlock;
7197 }
5f39d397
CM
7198 leaf = path->nodes[0];
7199 ei = btrfs_item_ptr(leaf, path->slots[0],
7200 struct btrfs_file_extent_item);
7201 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7202 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7203 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7204 btrfs_set_file_extent_encryption(leaf, ei, 0);
7205 btrfs_set_file_extent_compression(leaf, ei, 0);
7206 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7207 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7208
39279cc3 7209 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7210 write_extent_buffer(leaf, symname, ptr, name_len);
7211 btrfs_mark_buffer_dirty(leaf);
39279cc3 7212 btrfs_free_path(path);
5f39d397 7213
39279cc3
CM
7214 inode->i_op = &btrfs_symlink_inode_operations;
7215 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7216 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7217 inode_set_bytes(inode, name_len);
dbe674a9 7218 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7219 err = btrfs_update_inode(trans, root, inode);
7220 if (err)
7221 drop_inode = 1;
39279cc3
CM
7222
7223out_unlock:
d3c2fdcf 7224 nr = trans->blocks_used;
ab78c84d 7225 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7226 if (drop_inode) {
7227 inode_dec_link_count(inode);
7228 iput(inode);
7229 }
d3c2fdcf 7230 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7231 return err;
7232}
16432985 7233
0af3d00b
JB
7234static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7235 u64 start, u64 num_bytes, u64 min_size,
7236 loff_t actual_len, u64 *alloc_hint,
7237 struct btrfs_trans_handle *trans)
d899e052 7238{
d899e052
YZ
7239 struct btrfs_root *root = BTRFS_I(inode)->root;
7240 struct btrfs_key ins;
d899e052 7241 u64 cur_offset = start;
55a61d1d 7242 u64 i_size;
d899e052 7243 int ret = 0;
0af3d00b 7244 bool own_trans = true;
d899e052 7245
0af3d00b
JB
7246 if (trans)
7247 own_trans = false;
d899e052 7248 while (num_bytes > 0) {
0af3d00b
JB
7249 if (own_trans) {
7250 trans = btrfs_start_transaction(root, 3);
7251 if (IS_ERR(trans)) {
7252 ret = PTR_ERR(trans);
7253 break;
7254 }
5a303d5d
YZ
7255 }
7256
efa56464
YZ
7257 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7258 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7259 if (ret) {
0af3d00b
JB
7260 if (own_trans)
7261 btrfs_end_transaction(trans, root);
a22285a6 7262 break;
d899e052 7263 }
5a303d5d 7264
d899e052
YZ
7265 ret = insert_reserved_file_extent(trans, inode,
7266 cur_offset, ins.objectid,
7267 ins.offset, ins.offset,
920bbbfb 7268 ins.offset, 0, 0, 0,
d899e052
YZ
7269 BTRFS_FILE_EXTENT_PREALLOC);
7270 BUG_ON(ret);
a1ed835e
CM
7271 btrfs_drop_extent_cache(inode, cur_offset,
7272 cur_offset + ins.offset -1, 0);
5a303d5d 7273
d899e052
YZ
7274 num_bytes -= ins.offset;
7275 cur_offset += ins.offset;
efa56464 7276 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7277
d899e052 7278 inode->i_ctime = CURRENT_TIME;
6cbff00f 7279 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7280 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7281 (actual_len > inode->i_size) &&
7282 (cur_offset > inode->i_size)) {
d1ea6a61 7283 if (cur_offset > actual_len)
55a61d1d 7284 i_size = actual_len;
d1ea6a61 7285 else
55a61d1d
JB
7286 i_size = cur_offset;
7287 i_size_write(inode, i_size);
7288 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7289 }
7290
d899e052
YZ
7291 ret = btrfs_update_inode(trans, root, inode);
7292 BUG_ON(ret);
d899e052 7293
0af3d00b
JB
7294 if (own_trans)
7295 btrfs_end_transaction(trans, root);
5a303d5d 7296 }
d899e052
YZ
7297 return ret;
7298}
7299
0af3d00b
JB
7300int btrfs_prealloc_file_range(struct inode *inode, int mode,
7301 u64 start, u64 num_bytes, u64 min_size,
7302 loff_t actual_len, u64 *alloc_hint)
7303{
7304 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7305 min_size, actual_len, alloc_hint,
7306 NULL);
7307}
7308
7309int btrfs_prealloc_file_range_trans(struct inode *inode,
7310 struct btrfs_trans_handle *trans, int mode,
7311 u64 start, u64 num_bytes, u64 min_size,
7312 loff_t actual_len, u64 *alloc_hint)
7313{
7314 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7315 min_size, actual_len, alloc_hint, trans);
7316}
7317
e6dcd2dc
CM
7318static int btrfs_set_page_dirty(struct page *page)
7319{
e6dcd2dc
CM
7320 return __set_page_dirty_nobuffers(page);
7321}
7322
b74c79e9 7323static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7324{
b83cc969
LZ
7325 struct btrfs_root *root = BTRFS_I(inode)->root;
7326
7327 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7328 return -EROFS;
6cbff00f 7329 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7330 return -EACCES;
b74c79e9 7331 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7332}
39279cc3 7333
6e1d5dcc 7334static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7335 .getattr = btrfs_getattr,
39279cc3
CM
7336 .lookup = btrfs_lookup,
7337 .create = btrfs_create,
7338 .unlink = btrfs_unlink,
7339 .link = btrfs_link,
7340 .mkdir = btrfs_mkdir,
7341 .rmdir = btrfs_rmdir,
7342 .rename = btrfs_rename,
7343 .symlink = btrfs_symlink,
7344 .setattr = btrfs_setattr,
618e21d5 7345 .mknod = btrfs_mknod,
95819c05
CH
7346 .setxattr = btrfs_setxattr,
7347 .getxattr = btrfs_getxattr,
5103e947 7348 .listxattr = btrfs_listxattr,
95819c05 7349 .removexattr = btrfs_removexattr,
fdebe2bd 7350 .permission = btrfs_permission,
39279cc3 7351};
6e1d5dcc 7352static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7353 .lookup = btrfs_lookup,
fdebe2bd 7354 .permission = btrfs_permission,
39279cc3 7355};
76dda93c 7356
828c0950 7357static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7358 .llseek = generic_file_llseek,
7359 .read = generic_read_dir,
cbdf5a24 7360 .readdir = btrfs_real_readdir,
34287aa3 7361 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7362#ifdef CONFIG_COMPAT
34287aa3 7363 .compat_ioctl = btrfs_ioctl,
39279cc3 7364#endif
6bf13c0c 7365 .release = btrfs_release_file,
e02119d5 7366 .fsync = btrfs_sync_file,
39279cc3
CM
7367};
7368
d1310b2e 7369static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7370 .fill_delalloc = run_delalloc_range,
065631f6 7371 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7372 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7373 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7374 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7375 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7376 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7377 .set_bit_hook = btrfs_set_bit_hook,
7378 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7379 .merge_extent_hook = btrfs_merge_extent_hook,
7380 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7381};
7382
35054394
CM
7383/*
7384 * btrfs doesn't support the bmap operation because swapfiles
7385 * use bmap to make a mapping of extents in the file. They assume
7386 * these extents won't change over the life of the file and they
7387 * use the bmap result to do IO directly to the drive.
7388 *
7389 * the btrfs bmap call would return logical addresses that aren't
7390 * suitable for IO and they also will change frequently as COW
7391 * operations happen. So, swapfile + btrfs == corruption.
7392 *
7393 * For now we're avoiding this by dropping bmap.
7394 */
7f09410b 7395static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7396 .readpage = btrfs_readpage,
7397 .writepage = btrfs_writepage,
b293f02e 7398 .writepages = btrfs_writepages,
3ab2fb5a 7399 .readpages = btrfs_readpages,
16432985 7400 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7401 .invalidatepage = btrfs_invalidatepage,
7402 .releasepage = btrfs_releasepage,
e6dcd2dc 7403 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7404 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7405};
7406
7f09410b 7407static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7408 .readpage = btrfs_readpage,
7409 .writepage = btrfs_writepage,
2bf5a725
CM
7410 .invalidatepage = btrfs_invalidatepage,
7411 .releasepage = btrfs_releasepage,
39279cc3
CM
7412};
7413
6e1d5dcc 7414static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7415 .getattr = btrfs_getattr,
7416 .setattr = btrfs_setattr,
95819c05
CH
7417 .setxattr = btrfs_setxattr,
7418 .getxattr = btrfs_getxattr,
5103e947 7419 .listxattr = btrfs_listxattr,
95819c05 7420 .removexattr = btrfs_removexattr,
fdebe2bd 7421 .permission = btrfs_permission,
1506fcc8 7422 .fiemap = btrfs_fiemap,
39279cc3 7423};
6e1d5dcc 7424static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7425 .getattr = btrfs_getattr,
7426 .setattr = btrfs_setattr,
fdebe2bd 7427 .permission = btrfs_permission,
95819c05
CH
7428 .setxattr = btrfs_setxattr,
7429 .getxattr = btrfs_getxattr,
33268eaf 7430 .listxattr = btrfs_listxattr,
95819c05 7431 .removexattr = btrfs_removexattr,
618e21d5 7432};
6e1d5dcc 7433static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7434 .readlink = generic_readlink,
7435 .follow_link = page_follow_link_light,
7436 .put_link = page_put_link,
f209561a 7437 .getattr = btrfs_getattr,
fdebe2bd 7438 .permission = btrfs_permission,
0279b4cd
JO
7439 .setxattr = btrfs_setxattr,
7440 .getxattr = btrfs_getxattr,
7441 .listxattr = btrfs_listxattr,
7442 .removexattr = btrfs_removexattr,
39279cc3 7443};
76dda93c 7444
82d339d9 7445const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7446 .d_delete = btrfs_dentry_delete,
7447};