btrfs: make clear_extent_bit helpers static inline
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
6e1d5dcc
AD
69static const struct inode_operations btrfs_dir_inode_operations;
70static const struct inode_operations btrfs_symlink_inode_operations;
71static const struct inode_operations btrfs_dir_ro_inode_operations;
72static const struct inode_operations btrfs_special_inode_operations;
73static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
74static const struct address_space_operations btrfs_aops;
75static const struct address_space_operations btrfs_symlink_aops;
828c0950 76static const struct file_operations btrfs_dir_file_operations;
d1310b2e 77static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
78
79static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 80static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
81struct kmem_cache *btrfs_trans_handle_cachep;
82struct kmem_cache *btrfs_transaction_cachep;
39279cc3 83struct kmem_cache *btrfs_path_cachep;
dc89e982 84struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
85
86#define S_SHIFT 12
87static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
95};
96
3972f260 97static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 98static int btrfs_truncate(struct inode *inode);
5fd02043 99static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
100static noinline int cow_file_range(struct inode *inode,
101 struct page *locked_page,
102 u64 start, u64 end, int *page_started,
103 unsigned long *nr_written, int unlock);
70c8a91c
JB
104static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 u64 len, u64 orig_start,
106 u64 block_start, u64 block_len,
cc95bef6
JB
107 u64 orig_block_len, u64 ram_bytes,
108 int type);
7b128766 109
48a3b636 110static int btrfs_dirty_inode(struct inode *inode);
7b128766 111
6a3891c5
JB
112#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113void btrfs_test_inode_set_ops(struct inode *inode)
114{
115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
116}
117#endif
118
f34f57a3 119static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
120 struct inode *inode, struct inode *dir,
121 const struct qstr *qstr)
0279b4cd
JO
122{
123 int err;
124
f34f57a3 125 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 126 if (!err)
2a7dba39 127 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
128 return err;
129}
130
c8b97818
CM
131/*
132 * this does all the hard work for inserting an inline extent into
133 * the btree. The caller should have done a btrfs_drop_extents so that
134 * no overlapping inline items exist in the btree
135 */
40f76580 136static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 137 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
138 struct btrfs_root *root, struct inode *inode,
139 u64 start, size_t size, size_t compressed_size,
fe3f566c 140 int compress_type,
c8b97818
CM
141 struct page **compressed_pages)
142{
c8b97818
CM
143 struct extent_buffer *leaf;
144 struct page *page = NULL;
145 char *kaddr;
146 unsigned long ptr;
147 struct btrfs_file_extent_item *ei;
148 int err = 0;
149 int ret;
150 size_t cur_size = size;
c8b97818 151 unsigned long offset;
c8b97818 152
fe3f566c 153 if (compressed_size && compressed_pages)
c8b97818 154 cur_size = compressed_size;
c8b97818 155
1acae57b 156 inode_add_bytes(inode, size);
c8b97818 157
1acae57b
FDBM
158 if (!extent_inserted) {
159 struct btrfs_key key;
160 size_t datasize;
c8b97818 161
1acae57b
FDBM
162 key.objectid = btrfs_ino(inode);
163 key.offset = start;
962a298f 164 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 165
1acae57b
FDBM
166 datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 path->leave_spinning = 1;
168 ret = btrfs_insert_empty_item(trans, root, path, &key,
169 datasize);
170 if (ret) {
171 err = ret;
172 goto fail;
173 }
c8b97818
CM
174 }
175 leaf = path->nodes[0];
176 ei = btrfs_item_ptr(leaf, path->slots[0],
177 struct btrfs_file_extent_item);
178 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 btrfs_set_file_extent_encryption(leaf, ei, 0);
181 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 ptr = btrfs_file_extent_inline_start(ei);
184
261507a0 185 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
186 struct page *cpage;
187 int i = 0;
d397712b 188 while (compressed_size > 0) {
c8b97818 189 cpage = compressed_pages[i];
5b050f04 190 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
191 PAGE_CACHE_SIZE);
192
7ac687d9 193 kaddr = kmap_atomic(cpage);
c8b97818 194 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 195 kunmap_atomic(kaddr);
c8b97818
CM
196
197 i++;
198 ptr += cur_size;
199 compressed_size -= cur_size;
200 }
201 btrfs_set_file_extent_compression(leaf, ei,
261507a0 202 compress_type);
c8b97818
CM
203 } else {
204 page = find_get_page(inode->i_mapping,
205 start >> PAGE_CACHE_SHIFT);
206 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 207 kaddr = kmap_atomic(page);
c8b97818
CM
208 offset = start & (PAGE_CACHE_SIZE - 1);
209 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 210 kunmap_atomic(kaddr);
c8b97818
CM
211 page_cache_release(page);
212 }
213 btrfs_mark_buffer_dirty(leaf);
1acae57b 214 btrfs_release_path(path);
c8b97818 215
c2167754
YZ
216 /*
217 * we're an inline extent, so nobody can
218 * extend the file past i_size without locking
219 * a page we already have locked.
220 *
221 * We must do any isize and inode updates
222 * before we unlock the pages. Otherwise we
223 * could end up racing with unlink.
224 */
c8b97818 225 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 226 ret = btrfs_update_inode(trans, root, inode);
c2167754 227
79787eaa 228 return ret;
c8b97818 229fail:
c8b97818
CM
230 return err;
231}
232
233
234/*
235 * conditionally insert an inline extent into the file. This
236 * does the checks required to make sure the data is small enough
237 * to fit as an inline extent.
238 */
00361589
JB
239static noinline int cow_file_range_inline(struct btrfs_root *root,
240 struct inode *inode, u64 start,
241 u64 end, size_t compressed_size,
242 int compress_type,
243 struct page **compressed_pages)
c8b97818 244{
00361589 245 struct btrfs_trans_handle *trans;
c8b97818
CM
246 u64 isize = i_size_read(inode);
247 u64 actual_end = min(end + 1, isize);
248 u64 inline_len = actual_end - start;
fda2832f 249 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
250 u64 data_len = inline_len;
251 int ret;
1acae57b
FDBM
252 struct btrfs_path *path;
253 int extent_inserted = 0;
254 u32 extent_item_size;
c8b97818
CM
255
256 if (compressed_size)
257 data_len = compressed_size;
258
259 if (start > 0 ||
354877be
WS
260 actual_end > PAGE_CACHE_SIZE ||
261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
262 (!compressed_size &&
263 (actual_end & (root->sectorsize - 1)) == 0) ||
264 end + 1 < isize ||
265 data_len > root->fs_info->max_inline) {
266 return 1;
267 }
268
1acae57b
FDBM
269 path = btrfs_alloc_path();
270 if (!path)
271 return -ENOMEM;
272
00361589 273 trans = btrfs_join_transaction(root);
1acae57b
FDBM
274 if (IS_ERR(trans)) {
275 btrfs_free_path(path);
00361589 276 return PTR_ERR(trans);
1acae57b 277 }
00361589
JB
278 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
279
1acae57b
FDBM
280 if (compressed_size && compressed_pages)
281 extent_item_size = btrfs_file_extent_calc_inline_size(
282 compressed_size);
283 else
284 extent_item_size = btrfs_file_extent_calc_inline_size(
285 inline_len);
286
287 ret = __btrfs_drop_extents(trans, root, inode, path,
288 start, aligned_end, NULL,
289 1, 1, extent_item_size, &extent_inserted);
00361589
JB
290 if (ret) {
291 btrfs_abort_transaction(trans, root, ret);
292 goto out;
293 }
c8b97818
CM
294
295 if (isize > actual_end)
296 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
297 ret = insert_inline_extent(trans, path, extent_inserted,
298 root, inode, start,
c8b97818 299 inline_len, compressed_size,
fe3f566c 300 compress_type, compressed_pages);
2adcac1a 301 if (ret && ret != -ENOSPC) {
79787eaa 302 btrfs_abort_transaction(trans, root, ret);
00361589 303 goto out;
2adcac1a 304 } else if (ret == -ENOSPC) {
00361589
JB
305 ret = 1;
306 goto out;
79787eaa 307 }
2adcac1a 308
bdc20e67 309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 310 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 312out:
94ed938a
QW
313 /*
314 * Don't forget to free the reserved space, as for inlined extent
315 * it won't count as data extent, free them directly here.
316 * And at reserve time, it's always aligned to page size, so
317 * just free one page here.
318 */
319 btrfs_qgroup_free_data(inode, 0, PAGE_CACHE_SIZE);
1acae57b 320 btrfs_free_path(path);
00361589
JB
321 btrfs_end_transaction(trans, root);
322 return ret;
c8b97818
CM
323}
324
771ed689
CM
325struct async_extent {
326 u64 start;
327 u64 ram_size;
328 u64 compressed_size;
329 struct page **pages;
330 unsigned long nr_pages;
261507a0 331 int compress_type;
771ed689
CM
332 struct list_head list;
333};
334
335struct async_cow {
336 struct inode *inode;
337 struct btrfs_root *root;
338 struct page *locked_page;
339 u64 start;
340 u64 end;
341 struct list_head extents;
342 struct btrfs_work work;
343};
344
345static noinline int add_async_extent(struct async_cow *cow,
346 u64 start, u64 ram_size,
347 u64 compressed_size,
348 struct page **pages,
261507a0
LZ
349 unsigned long nr_pages,
350 int compress_type)
771ed689
CM
351{
352 struct async_extent *async_extent;
353
354 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 355 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
356 async_extent->start = start;
357 async_extent->ram_size = ram_size;
358 async_extent->compressed_size = compressed_size;
359 async_extent->pages = pages;
360 async_extent->nr_pages = nr_pages;
261507a0 361 async_extent->compress_type = compress_type;
771ed689
CM
362 list_add_tail(&async_extent->list, &cow->extents);
363 return 0;
364}
365
f79707b0
WS
366static inline int inode_need_compress(struct inode *inode)
367{
368 struct btrfs_root *root = BTRFS_I(inode)->root;
369
370 /* force compress */
371 if (btrfs_test_opt(root, FORCE_COMPRESS))
372 return 1;
373 /* bad compression ratios */
374 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
375 return 0;
376 if (btrfs_test_opt(root, COMPRESS) ||
377 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
378 BTRFS_I(inode)->force_compress)
379 return 1;
380 return 0;
381}
382
d352ac68 383/*
771ed689
CM
384 * we create compressed extents in two phases. The first
385 * phase compresses a range of pages that have already been
386 * locked (both pages and state bits are locked).
c8b97818 387 *
771ed689
CM
388 * This is done inside an ordered work queue, and the compression
389 * is spread across many cpus. The actual IO submission is step
390 * two, and the ordered work queue takes care of making sure that
391 * happens in the same order things were put onto the queue by
392 * writepages and friends.
c8b97818 393 *
771ed689
CM
394 * If this code finds it can't get good compression, it puts an
395 * entry onto the work queue to write the uncompressed bytes. This
396 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
397 * are written in the same order that the flusher thread sent them
398 * down.
d352ac68 399 */
c44f649e 400static noinline void compress_file_range(struct inode *inode,
771ed689
CM
401 struct page *locked_page,
402 u64 start, u64 end,
403 struct async_cow *async_cow,
404 int *num_added)
b888db2b
CM
405{
406 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 407 u64 num_bytes;
db94535d 408 u64 blocksize = root->sectorsize;
c8b97818 409 u64 actual_end;
42dc7bab 410 u64 isize = i_size_read(inode);
e6dcd2dc 411 int ret = 0;
c8b97818
CM
412 struct page **pages = NULL;
413 unsigned long nr_pages;
414 unsigned long nr_pages_ret = 0;
415 unsigned long total_compressed = 0;
416 unsigned long total_in = 0;
417 unsigned long max_compressed = 128 * 1024;
771ed689 418 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
419 int i;
420 int will_compress;
261507a0 421 int compress_type = root->fs_info->compress_type;
4adaa611 422 int redirty = 0;
b888db2b 423
4cb13e5d
LB
424 /* if this is a small write inside eof, kick off a defrag */
425 if ((end - start + 1) < 16 * 1024 &&
426 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
427 btrfs_add_inode_defrag(NULL, inode);
428
42dc7bab 429 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
430again:
431 will_compress = 0;
432 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
433 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 434
f03d9301
CM
435 /*
436 * we don't want to send crud past the end of i_size through
437 * compression, that's just a waste of CPU time. So, if the
438 * end of the file is before the start of our current
439 * requested range of bytes, we bail out to the uncompressed
440 * cleanup code that can deal with all of this.
441 *
442 * It isn't really the fastest way to fix things, but this is a
443 * very uncommon corner.
444 */
445 if (actual_end <= start)
446 goto cleanup_and_bail_uncompressed;
447
c8b97818
CM
448 total_compressed = actual_end - start;
449
4bcbb332
SW
450 /*
451 * skip compression for a small file range(<=blocksize) that
452 * isn't an inline extent, since it dosen't save disk space at all.
453 */
454 if (total_compressed <= blocksize &&
455 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
456 goto cleanup_and_bail_uncompressed;
457
c8b97818
CM
458 /* we want to make sure that amount of ram required to uncompress
459 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
460 * of a compressed extent to 128k. This is a crucial number
461 * because it also controls how easily we can spread reads across
462 * cpus for decompression.
463 *
464 * We also want to make sure the amount of IO required to do
465 * a random read is reasonably small, so we limit the size of
466 * a compressed extent to 128k.
c8b97818
CM
467 */
468 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 469 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 470 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
471 total_in = 0;
472 ret = 0;
db94535d 473
771ed689
CM
474 /*
475 * we do compression for mount -o compress and when the
476 * inode has not been flagged as nocompress. This flag can
477 * change at any time if we discover bad compression ratios.
c8b97818 478 */
f79707b0 479 if (inode_need_compress(inode)) {
c8b97818 480 WARN_ON(pages);
31e818fe 481 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
482 if (!pages) {
483 /* just bail out to the uncompressed code */
484 goto cont;
485 }
c8b97818 486
261507a0
LZ
487 if (BTRFS_I(inode)->force_compress)
488 compress_type = BTRFS_I(inode)->force_compress;
489
4adaa611
CM
490 /*
491 * we need to call clear_page_dirty_for_io on each
492 * page in the range. Otherwise applications with the file
493 * mmap'd can wander in and change the page contents while
494 * we are compressing them.
495 *
496 * If the compression fails for any reason, we set the pages
497 * dirty again later on.
498 */
499 extent_range_clear_dirty_for_io(inode, start, end);
500 redirty = 1;
261507a0
LZ
501 ret = btrfs_compress_pages(compress_type,
502 inode->i_mapping, start,
503 total_compressed, pages,
504 nr_pages, &nr_pages_ret,
505 &total_in,
506 &total_compressed,
507 max_compressed);
c8b97818
CM
508
509 if (!ret) {
510 unsigned long offset = total_compressed &
511 (PAGE_CACHE_SIZE - 1);
512 struct page *page = pages[nr_pages_ret - 1];
513 char *kaddr;
514
515 /* zero the tail end of the last page, we might be
516 * sending it down to disk
517 */
518 if (offset) {
7ac687d9 519 kaddr = kmap_atomic(page);
c8b97818
CM
520 memset(kaddr + offset, 0,
521 PAGE_CACHE_SIZE - offset);
7ac687d9 522 kunmap_atomic(kaddr);
c8b97818
CM
523 }
524 will_compress = 1;
525 }
526 }
560f7d75 527cont:
c8b97818
CM
528 if (start == 0) {
529 /* lets try to make an inline extent */
771ed689 530 if (ret || total_in < (actual_end - start)) {
c8b97818 531 /* we didn't compress the entire range, try
771ed689 532 * to make an uncompressed inline extent.
c8b97818 533 */
00361589
JB
534 ret = cow_file_range_inline(root, inode, start, end,
535 0, 0, NULL);
c8b97818 536 } else {
771ed689 537 /* try making a compressed inline extent */
00361589 538 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
539 total_compressed,
540 compress_type, pages);
c8b97818 541 }
79787eaa 542 if (ret <= 0) {
151a41bc
JB
543 unsigned long clear_flags = EXTENT_DELALLOC |
544 EXTENT_DEFRAG;
e6eb4314
FM
545 unsigned long page_error_op;
546
151a41bc 547 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 548 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 549
771ed689 550 /*
79787eaa
JM
551 * inline extent creation worked or returned error,
552 * we don't need to create any more async work items.
553 * Unlock and free up our temp pages.
771ed689 554 */
c2790a2e 555 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 556 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
557 PAGE_CLEAR_DIRTY |
558 PAGE_SET_WRITEBACK |
e6eb4314 559 page_error_op |
c2790a2e 560 PAGE_END_WRITEBACK);
c8b97818
CM
561 goto free_pages_out;
562 }
563 }
564
565 if (will_compress) {
566 /*
567 * we aren't doing an inline extent round the compressed size
568 * up to a block size boundary so the allocator does sane
569 * things
570 */
fda2832f 571 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
572
573 /*
574 * one last check to make sure the compression is really a
575 * win, compare the page count read with the blocks on disk
576 */
fda2832f 577 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
578 if (total_compressed >= total_in) {
579 will_compress = 0;
580 } else {
c8b97818
CM
581 num_bytes = total_in;
582 }
583 }
584 if (!will_compress && pages) {
585 /*
586 * the compression code ran but failed to make things smaller,
587 * free any pages it allocated and our page pointer array
588 */
589 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 590 WARN_ON(pages[i]->mapping);
c8b97818
CM
591 page_cache_release(pages[i]);
592 }
593 kfree(pages);
594 pages = NULL;
595 total_compressed = 0;
596 nr_pages_ret = 0;
597
598 /* flag the file so we don't compress in the future */
1e701a32
CM
599 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
600 !(BTRFS_I(inode)->force_compress)) {
a555f810 601 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 602 }
c8b97818 603 }
771ed689
CM
604 if (will_compress) {
605 *num_added += 1;
c8b97818 606
771ed689
CM
607 /* the async work queues will take care of doing actual
608 * allocation on disk for these compressed pages,
609 * and will submit them to the elevator.
610 */
611 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
612 total_compressed, pages, nr_pages_ret,
613 compress_type);
179e29e4 614
24ae6365 615 if (start + num_bytes < end) {
771ed689
CM
616 start += num_bytes;
617 pages = NULL;
618 cond_resched();
619 goto again;
620 }
621 } else {
f03d9301 622cleanup_and_bail_uncompressed:
771ed689
CM
623 /*
624 * No compression, but we still need to write the pages in
625 * the file we've been given so far. redirty the locked
626 * page if it corresponds to our extent and set things up
627 * for the async work queue to run cow_file_range to do
628 * the normal delalloc dance
629 */
630 if (page_offset(locked_page) >= start &&
631 page_offset(locked_page) <= end) {
632 __set_page_dirty_nobuffers(locked_page);
633 /* unlocked later on in the async handlers */
634 }
4adaa611
CM
635 if (redirty)
636 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
637 add_async_extent(async_cow, start, end - start + 1,
638 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
639 *num_added += 1;
640 }
3b951516 641
c44f649e 642 return;
771ed689
CM
643
644free_pages_out:
645 for (i = 0; i < nr_pages_ret; i++) {
646 WARN_ON(pages[i]->mapping);
647 page_cache_release(pages[i]);
648 }
d397712b 649 kfree(pages);
771ed689 650}
771ed689 651
40ae837b
FM
652static void free_async_extent_pages(struct async_extent *async_extent)
653{
654 int i;
655
656 if (!async_extent->pages)
657 return;
658
659 for (i = 0; i < async_extent->nr_pages; i++) {
660 WARN_ON(async_extent->pages[i]->mapping);
661 page_cache_release(async_extent->pages[i]);
662 }
663 kfree(async_extent->pages);
664 async_extent->nr_pages = 0;
665 async_extent->pages = NULL;
771ed689
CM
666}
667
668/*
669 * phase two of compressed writeback. This is the ordered portion
670 * of the code, which only gets called in the order the work was
671 * queued. We walk all the async extents created by compress_file_range
672 * and send them down to the disk.
673 */
dec8f175 674static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
675 struct async_cow *async_cow)
676{
677 struct async_extent *async_extent;
678 u64 alloc_hint = 0;
771ed689
CM
679 struct btrfs_key ins;
680 struct extent_map *em;
681 struct btrfs_root *root = BTRFS_I(inode)->root;
682 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
683 struct extent_io_tree *io_tree;
f5a84ee3 684 int ret = 0;
771ed689 685
3e04e7f1 686again:
d397712b 687 while (!list_empty(&async_cow->extents)) {
771ed689
CM
688 async_extent = list_entry(async_cow->extents.next,
689 struct async_extent, list);
690 list_del(&async_extent->list);
c8b97818 691
771ed689
CM
692 io_tree = &BTRFS_I(inode)->io_tree;
693
f5a84ee3 694retry:
771ed689
CM
695 /* did the compression code fall back to uncompressed IO? */
696 if (!async_extent->pages) {
697 int page_started = 0;
698 unsigned long nr_written = 0;
699
700 lock_extent(io_tree, async_extent->start,
2ac55d41 701 async_extent->start +
d0082371 702 async_extent->ram_size - 1);
771ed689
CM
703
704 /* allocate blocks */
f5a84ee3
JB
705 ret = cow_file_range(inode, async_cow->locked_page,
706 async_extent->start,
707 async_extent->start +
708 async_extent->ram_size - 1,
709 &page_started, &nr_written, 0);
771ed689 710
79787eaa
JM
711 /* JDM XXX */
712
771ed689
CM
713 /*
714 * if page_started, cow_file_range inserted an
715 * inline extent and took care of all the unlocking
716 * and IO for us. Otherwise, we need to submit
717 * all those pages down to the drive.
718 */
f5a84ee3 719 if (!page_started && !ret)
771ed689
CM
720 extent_write_locked_range(io_tree,
721 inode, async_extent->start,
d397712b 722 async_extent->start +
771ed689
CM
723 async_extent->ram_size - 1,
724 btrfs_get_extent,
725 WB_SYNC_ALL);
3e04e7f1
JB
726 else if (ret)
727 unlock_page(async_cow->locked_page);
771ed689
CM
728 kfree(async_extent);
729 cond_resched();
730 continue;
731 }
732
733 lock_extent(io_tree, async_extent->start,
d0082371 734 async_extent->start + async_extent->ram_size - 1);
771ed689 735
00361589 736 ret = btrfs_reserve_extent(root,
771ed689
CM
737 async_extent->compressed_size,
738 async_extent->compressed_size,
e570fd27 739 0, alloc_hint, &ins, 1, 1);
f5a84ee3 740 if (ret) {
40ae837b 741 free_async_extent_pages(async_extent);
3e04e7f1 742
fdf8e2ea
JB
743 if (ret == -ENOSPC) {
744 unlock_extent(io_tree, async_extent->start,
745 async_extent->start +
746 async_extent->ram_size - 1);
ce62003f
LB
747
748 /*
749 * we need to redirty the pages if we decide to
750 * fallback to uncompressed IO, otherwise we
751 * will not submit these pages down to lower
752 * layers.
753 */
754 extent_range_redirty_for_io(inode,
755 async_extent->start,
756 async_extent->start +
757 async_extent->ram_size - 1);
758
79787eaa 759 goto retry;
fdf8e2ea 760 }
3e04e7f1 761 goto out_free;
f5a84ee3 762 }
c2167754
YZ
763 /*
764 * here we're doing allocation and writeback of the
765 * compressed pages
766 */
767 btrfs_drop_extent_cache(inode, async_extent->start,
768 async_extent->start +
769 async_extent->ram_size - 1, 0);
770
172ddd60 771 em = alloc_extent_map();
b9aa55be
LB
772 if (!em) {
773 ret = -ENOMEM;
3e04e7f1 774 goto out_free_reserve;
b9aa55be 775 }
771ed689
CM
776 em->start = async_extent->start;
777 em->len = async_extent->ram_size;
445a6944 778 em->orig_start = em->start;
2ab28f32
JB
779 em->mod_start = em->start;
780 em->mod_len = em->len;
c8b97818 781
771ed689
CM
782 em->block_start = ins.objectid;
783 em->block_len = ins.offset;
b4939680 784 em->orig_block_len = ins.offset;
cc95bef6 785 em->ram_bytes = async_extent->ram_size;
771ed689 786 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 787 em->compress_type = async_extent->compress_type;
771ed689
CM
788 set_bit(EXTENT_FLAG_PINNED, &em->flags);
789 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 790 em->generation = -1;
771ed689 791
d397712b 792 while (1) {
890871be 793 write_lock(&em_tree->lock);
09a2a8f9 794 ret = add_extent_mapping(em_tree, em, 1);
890871be 795 write_unlock(&em_tree->lock);
771ed689
CM
796 if (ret != -EEXIST) {
797 free_extent_map(em);
798 break;
799 }
800 btrfs_drop_extent_cache(inode, async_extent->start,
801 async_extent->start +
802 async_extent->ram_size - 1, 0);
803 }
804
3e04e7f1
JB
805 if (ret)
806 goto out_free_reserve;
807
261507a0
LZ
808 ret = btrfs_add_ordered_extent_compress(inode,
809 async_extent->start,
810 ins.objectid,
811 async_extent->ram_size,
812 ins.offset,
813 BTRFS_ORDERED_COMPRESSED,
814 async_extent->compress_type);
d9f85963
FM
815 if (ret) {
816 btrfs_drop_extent_cache(inode, async_extent->start,
817 async_extent->start +
818 async_extent->ram_size - 1, 0);
3e04e7f1 819 goto out_free_reserve;
d9f85963 820 }
771ed689 821
771ed689
CM
822 /*
823 * clear dirty, set writeback and unlock the pages.
824 */
c2790a2e 825 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
826 async_extent->start +
827 async_extent->ram_size - 1,
151a41bc
JB
828 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
829 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 830 PAGE_SET_WRITEBACK);
771ed689 831 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
832 async_extent->start,
833 async_extent->ram_size,
834 ins.objectid,
835 ins.offset, async_extent->pages,
836 async_extent->nr_pages);
fce2a4e6
FM
837 if (ret) {
838 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
839 struct page *p = async_extent->pages[0];
840 const u64 start = async_extent->start;
841 const u64 end = start + async_extent->ram_size - 1;
842
843 p->mapping = inode->i_mapping;
844 tree->ops->writepage_end_io_hook(p, start, end,
845 NULL, 0);
846 p->mapping = NULL;
847 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
848 PAGE_END_WRITEBACK |
849 PAGE_SET_ERROR);
40ae837b 850 free_async_extent_pages(async_extent);
fce2a4e6 851 }
771ed689
CM
852 alloc_hint = ins.objectid + ins.offset;
853 kfree(async_extent);
854 cond_resched();
855 }
dec8f175 856 return;
3e04e7f1 857out_free_reserve:
e570fd27 858 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 859out_free:
c2790a2e 860 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
861 async_extent->start +
862 async_extent->ram_size - 1,
c2790a2e 863 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
864 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
865 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
866 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
867 PAGE_SET_ERROR);
40ae837b 868 free_async_extent_pages(async_extent);
79787eaa 869 kfree(async_extent);
3e04e7f1 870 goto again;
771ed689
CM
871}
872
4b46fce2
JB
873static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
874 u64 num_bytes)
875{
876 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
877 struct extent_map *em;
878 u64 alloc_hint = 0;
879
880 read_lock(&em_tree->lock);
881 em = search_extent_mapping(em_tree, start, num_bytes);
882 if (em) {
883 /*
884 * if block start isn't an actual block number then find the
885 * first block in this inode and use that as a hint. If that
886 * block is also bogus then just don't worry about it.
887 */
888 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
889 free_extent_map(em);
890 em = search_extent_mapping(em_tree, 0, 0);
891 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
892 alloc_hint = em->block_start;
893 if (em)
894 free_extent_map(em);
895 } else {
896 alloc_hint = em->block_start;
897 free_extent_map(em);
898 }
899 }
900 read_unlock(&em_tree->lock);
901
902 return alloc_hint;
903}
904
771ed689
CM
905/*
906 * when extent_io.c finds a delayed allocation range in the file,
907 * the call backs end up in this code. The basic idea is to
908 * allocate extents on disk for the range, and create ordered data structs
909 * in ram to track those extents.
910 *
911 * locked_page is the page that writepage had locked already. We use
912 * it to make sure we don't do extra locks or unlocks.
913 *
914 * *page_started is set to one if we unlock locked_page and do everything
915 * required to start IO on it. It may be clean and already done with
916 * IO when we return.
917 */
00361589
JB
918static noinline int cow_file_range(struct inode *inode,
919 struct page *locked_page,
920 u64 start, u64 end, int *page_started,
921 unsigned long *nr_written,
922 int unlock)
771ed689 923{
00361589 924 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
925 u64 alloc_hint = 0;
926 u64 num_bytes;
927 unsigned long ram_size;
928 u64 disk_num_bytes;
929 u64 cur_alloc_size;
930 u64 blocksize = root->sectorsize;
771ed689
CM
931 struct btrfs_key ins;
932 struct extent_map *em;
933 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
934 int ret = 0;
935
02ecd2c2
JB
936 if (btrfs_is_free_space_inode(inode)) {
937 WARN_ON_ONCE(1);
29bce2f3
JB
938 ret = -EINVAL;
939 goto out_unlock;
02ecd2c2 940 }
771ed689 941
fda2832f 942 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
943 num_bytes = max(blocksize, num_bytes);
944 disk_num_bytes = num_bytes;
771ed689 945
4cb5300b 946 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
947 if (num_bytes < 64 * 1024 &&
948 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 949 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 950
771ed689
CM
951 if (start == 0) {
952 /* lets try to make an inline extent */
00361589
JB
953 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
954 NULL);
771ed689 955 if (ret == 0) {
c2790a2e
JB
956 extent_clear_unlock_delalloc(inode, start, end, NULL,
957 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 958 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
959 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
960 PAGE_END_WRITEBACK);
c2167754 961
771ed689
CM
962 *nr_written = *nr_written +
963 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
964 *page_started = 1;
771ed689 965 goto out;
79787eaa 966 } else if (ret < 0) {
79787eaa 967 goto out_unlock;
771ed689
CM
968 }
969 }
970
971 BUG_ON(disk_num_bytes >
6c41761f 972 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 973
4b46fce2 974 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
975 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
976
d397712b 977 while (disk_num_bytes > 0) {
a791e35e
CM
978 unsigned long op;
979
287a0ab9 980 cur_alloc_size = disk_num_bytes;
00361589 981 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 982 root->sectorsize, 0, alloc_hint,
e570fd27 983 &ins, 1, 1);
00361589 984 if (ret < 0)
79787eaa 985 goto out_unlock;
d397712b 986
172ddd60 987 em = alloc_extent_map();
b9aa55be
LB
988 if (!em) {
989 ret = -ENOMEM;
ace68bac 990 goto out_reserve;
b9aa55be 991 }
e6dcd2dc 992 em->start = start;
445a6944 993 em->orig_start = em->start;
771ed689
CM
994 ram_size = ins.offset;
995 em->len = ins.offset;
2ab28f32
JB
996 em->mod_start = em->start;
997 em->mod_len = em->len;
c8b97818 998
e6dcd2dc 999 em->block_start = ins.objectid;
c8b97818 1000 em->block_len = ins.offset;
b4939680 1001 em->orig_block_len = ins.offset;
cc95bef6 1002 em->ram_bytes = ram_size;
e6dcd2dc 1003 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1004 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1005 em->generation = -1;
c8b97818 1006
d397712b 1007 while (1) {
890871be 1008 write_lock(&em_tree->lock);
09a2a8f9 1009 ret = add_extent_mapping(em_tree, em, 1);
890871be 1010 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1011 if (ret != -EEXIST) {
1012 free_extent_map(em);
1013 break;
1014 }
1015 btrfs_drop_extent_cache(inode, start,
c8b97818 1016 start + ram_size - 1, 0);
e6dcd2dc 1017 }
ace68bac
LB
1018 if (ret)
1019 goto out_reserve;
e6dcd2dc 1020
98d20f67 1021 cur_alloc_size = ins.offset;
e6dcd2dc 1022 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1023 ram_size, cur_alloc_size, 0);
ace68bac 1024 if (ret)
d9f85963 1025 goto out_drop_extent_cache;
c8b97818 1026
17d217fe
YZ
1027 if (root->root_key.objectid ==
1028 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1029 ret = btrfs_reloc_clone_csums(inode, start,
1030 cur_alloc_size);
00361589 1031 if (ret)
d9f85963 1032 goto out_drop_extent_cache;
17d217fe
YZ
1033 }
1034
d397712b 1035 if (disk_num_bytes < cur_alloc_size)
3b951516 1036 break;
d397712b 1037
c8b97818
CM
1038 /* we're not doing compressed IO, don't unlock the first
1039 * page (which the caller expects to stay locked), don't
1040 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1041 *
1042 * Do set the Private2 bit so we know this page was properly
1043 * setup for writepage
c8b97818 1044 */
c2790a2e
JB
1045 op = unlock ? PAGE_UNLOCK : 0;
1046 op |= PAGE_SET_PRIVATE2;
a791e35e 1047
c2790a2e
JB
1048 extent_clear_unlock_delalloc(inode, start,
1049 start + ram_size - 1, locked_page,
1050 EXTENT_LOCKED | EXTENT_DELALLOC,
1051 op);
c8b97818 1052 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1053 num_bytes -= cur_alloc_size;
1054 alloc_hint = ins.objectid + ins.offset;
1055 start += cur_alloc_size;
b888db2b 1056 }
79787eaa 1057out:
be20aa9d 1058 return ret;
b7d5b0a8 1059
d9f85963
FM
1060out_drop_extent_cache:
1061 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1062out_reserve:
e570fd27 1063 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1064out_unlock:
c2790a2e 1065 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1066 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1067 EXTENT_DELALLOC | EXTENT_DEFRAG,
1068 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1069 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1070 goto out;
771ed689 1071}
c8b97818 1072
771ed689
CM
1073/*
1074 * work queue call back to started compression on a file and pages
1075 */
1076static noinline void async_cow_start(struct btrfs_work *work)
1077{
1078 struct async_cow *async_cow;
1079 int num_added = 0;
1080 async_cow = container_of(work, struct async_cow, work);
1081
1082 compress_file_range(async_cow->inode, async_cow->locked_page,
1083 async_cow->start, async_cow->end, async_cow,
1084 &num_added);
8180ef88 1085 if (num_added == 0) {
cb77fcd8 1086 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1087 async_cow->inode = NULL;
8180ef88 1088 }
771ed689
CM
1089}
1090
1091/*
1092 * work queue call back to submit previously compressed pages
1093 */
1094static noinline void async_cow_submit(struct btrfs_work *work)
1095{
1096 struct async_cow *async_cow;
1097 struct btrfs_root *root;
1098 unsigned long nr_pages;
1099
1100 async_cow = container_of(work, struct async_cow, work);
1101
1102 root = async_cow->root;
1103 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1104 PAGE_CACHE_SHIFT;
1105
ee863954
DS
1106 /*
1107 * atomic_sub_return implies a barrier for waitqueue_active
1108 */
66657b31 1109 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1110 5 * 1024 * 1024 &&
771ed689
CM
1111 waitqueue_active(&root->fs_info->async_submit_wait))
1112 wake_up(&root->fs_info->async_submit_wait);
1113
d397712b 1114 if (async_cow->inode)
771ed689 1115 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1116}
c8b97818 1117
771ed689
CM
1118static noinline void async_cow_free(struct btrfs_work *work)
1119{
1120 struct async_cow *async_cow;
1121 async_cow = container_of(work, struct async_cow, work);
8180ef88 1122 if (async_cow->inode)
cb77fcd8 1123 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1124 kfree(async_cow);
1125}
1126
1127static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1128 u64 start, u64 end, int *page_started,
1129 unsigned long *nr_written)
1130{
1131 struct async_cow *async_cow;
1132 struct btrfs_root *root = BTRFS_I(inode)->root;
1133 unsigned long nr_pages;
1134 u64 cur_end;
287082b0 1135 int limit = 10 * 1024 * 1024;
771ed689 1136
a3429ab7
CM
1137 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1138 1, 0, NULL, GFP_NOFS);
d397712b 1139 while (start < end) {
771ed689 1140 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1141 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1142 async_cow->inode = igrab(inode);
771ed689
CM
1143 async_cow->root = root;
1144 async_cow->locked_page = locked_page;
1145 async_cow->start = start;
1146
f79707b0
WS
1147 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1148 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1149 cur_end = end;
1150 else
1151 cur_end = min(end, start + 512 * 1024 - 1);
1152
1153 async_cow->end = cur_end;
1154 INIT_LIST_HEAD(&async_cow->extents);
1155
9e0af237
LB
1156 btrfs_init_work(&async_cow->work,
1157 btrfs_delalloc_helper,
1158 async_cow_start, async_cow_submit,
1159 async_cow_free);
771ed689 1160
771ed689
CM
1161 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1162 PAGE_CACHE_SHIFT;
1163 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1164
afe3d242
QW
1165 btrfs_queue_work(root->fs_info->delalloc_workers,
1166 &async_cow->work);
771ed689
CM
1167
1168 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1169 wait_event(root->fs_info->async_submit_wait,
1170 (atomic_read(&root->fs_info->async_delalloc_pages) <
1171 limit));
1172 }
1173
d397712b 1174 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1175 atomic_read(&root->fs_info->async_delalloc_pages)) {
1176 wait_event(root->fs_info->async_submit_wait,
1177 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1178 0));
1179 }
1180
1181 *nr_written += nr_pages;
1182 start = cur_end + 1;
1183 }
1184 *page_started = 1;
1185 return 0;
be20aa9d
CM
1186}
1187
d397712b 1188static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1189 u64 bytenr, u64 num_bytes)
1190{
1191 int ret;
1192 struct btrfs_ordered_sum *sums;
1193 LIST_HEAD(list);
1194
07d400a6 1195 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1196 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1197 if (ret == 0 && list_empty(&list))
1198 return 0;
1199
1200 while (!list_empty(&list)) {
1201 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1202 list_del(&sums->list);
1203 kfree(sums);
1204 }
1205 return 1;
1206}
1207
d352ac68
CM
1208/*
1209 * when nowcow writeback call back. This checks for snapshots or COW copies
1210 * of the extents that exist in the file, and COWs the file as required.
1211 *
1212 * If no cow copies or snapshots exist, we write directly to the existing
1213 * blocks on disk
1214 */
7f366cfe
CM
1215static noinline int run_delalloc_nocow(struct inode *inode,
1216 struct page *locked_page,
771ed689
CM
1217 u64 start, u64 end, int *page_started, int force,
1218 unsigned long *nr_written)
be20aa9d 1219{
be20aa9d 1220 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1221 struct btrfs_trans_handle *trans;
be20aa9d 1222 struct extent_buffer *leaf;
be20aa9d 1223 struct btrfs_path *path;
80ff3856 1224 struct btrfs_file_extent_item *fi;
be20aa9d 1225 struct btrfs_key found_key;
80ff3856
YZ
1226 u64 cow_start;
1227 u64 cur_offset;
1228 u64 extent_end;
5d4f98a2 1229 u64 extent_offset;
80ff3856
YZ
1230 u64 disk_bytenr;
1231 u64 num_bytes;
b4939680 1232 u64 disk_num_bytes;
cc95bef6 1233 u64 ram_bytes;
80ff3856 1234 int extent_type;
79787eaa 1235 int ret, err;
d899e052 1236 int type;
80ff3856
YZ
1237 int nocow;
1238 int check_prev = 1;
82d5902d 1239 bool nolock;
33345d01 1240 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1241
1242 path = btrfs_alloc_path();
17ca04af 1243 if (!path) {
c2790a2e
JB
1244 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1245 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1246 EXTENT_DO_ACCOUNTING |
1247 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1248 PAGE_CLEAR_DIRTY |
1249 PAGE_SET_WRITEBACK |
1250 PAGE_END_WRITEBACK);
d8926bb3 1251 return -ENOMEM;
17ca04af 1252 }
82d5902d 1253
83eea1f1 1254 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1255
1256 if (nolock)
7a7eaa40 1257 trans = btrfs_join_transaction_nolock(root);
82d5902d 1258 else
7a7eaa40 1259 trans = btrfs_join_transaction(root);
ff5714cc 1260
79787eaa 1261 if (IS_ERR(trans)) {
c2790a2e
JB
1262 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1263 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1264 EXTENT_DO_ACCOUNTING |
1265 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1266 PAGE_CLEAR_DIRTY |
1267 PAGE_SET_WRITEBACK |
1268 PAGE_END_WRITEBACK);
79787eaa
JM
1269 btrfs_free_path(path);
1270 return PTR_ERR(trans);
1271 }
1272
74b21075 1273 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1274
80ff3856
YZ
1275 cow_start = (u64)-1;
1276 cur_offset = start;
1277 while (1) {
33345d01 1278 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1279 cur_offset, 0);
d788a349 1280 if (ret < 0)
79787eaa 1281 goto error;
80ff3856
YZ
1282 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1283 leaf = path->nodes[0];
1284 btrfs_item_key_to_cpu(leaf, &found_key,
1285 path->slots[0] - 1);
33345d01 1286 if (found_key.objectid == ino &&
80ff3856
YZ
1287 found_key.type == BTRFS_EXTENT_DATA_KEY)
1288 path->slots[0]--;
1289 }
1290 check_prev = 0;
1291next_slot:
1292 leaf = path->nodes[0];
1293 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1294 ret = btrfs_next_leaf(root, path);
d788a349 1295 if (ret < 0)
79787eaa 1296 goto error;
80ff3856
YZ
1297 if (ret > 0)
1298 break;
1299 leaf = path->nodes[0];
1300 }
be20aa9d 1301
80ff3856
YZ
1302 nocow = 0;
1303 disk_bytenr = 0;
17d217fe 1304 num_bytes = 0;
80ff3856
YZ
1305 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1306
1d512cb7
FM
1307 if (found_key.objectid > ino)
1308 break;
1309 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1310 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1311 path->slots[0]++;
1312 goto next_slot;
1313 }
1314 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1315 found_key.offset > end)
1316 break;
1317
1318 if (found_key.offset > cur_offset) {
1319 extent_end = found_key.offset;
e9061e21 1320 extent_type = 0;
80ff3856
YZ
1321 goto out_check;
1322 }
1323
1324 fi = btrfs_item_ptr(leaf, path->slots[0],
1325 struct btrfs_file_extent_item);
1326 extent_type = btrfs_file_extent_type(leaf, fi);
1327
cc95bef6 1328 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1329 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1330 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1331 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1332 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1333 extent_end = found_key.offset +
1334 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1335 disk_num_bytes =
1336 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1337 if (extent_end <= start) {
1338 path->slots[0]++;
1339 goto next_slot;
1340 }
17d217fe
YZ
1341 if (disk_bytenr == 0)
1342 goto out_check;
80ff3856
YZ
1343 if (btrfs_file_extent_compression(leaf, fi) ||
1344 btrfs_file_extent_encryption(leaf, fi) ||
1345 btrfs_file_extent_other_encoding(leaf, fi))
1346 goto out_check;
d899e052
YZ
1347 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1348 goto out_check;
d2fb3437 1349 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1350 goto out_check;
33345d01 1351 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1352 found_key.offset -
1353 extent_offset, disk_bytenr))
17d217fe 1354 goto out_check;
5d4f98a2 1355 disk_bytenr += extent_offset;
17d217fe
YZ
1356 disk_bytenr += cur_offset - found_key.offset;
1357 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1358 /*
1359 * if there are pending snapshots for this root,
1360 * we fall into common COW way.
1361 */
1362 if (!nolock) {
9ea24bbe 1363 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1364 if (!err)
1365 goto out_check;
1366 }
17d217fe
YZ
1367 /*
1368 * force cow if csum exists in the range.
1369 * this ensure that csum for a given extent are
1370 * either valid or do not exist.
1371 */
1372 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1373 goto out_check;
80ff3856
YZ
1374 nocow = 1;
1375 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1376 extent_end = found_key.offset +
514ac8ad
CM
1377 btrfs_file_extent_inline_len(leaf,
1378 path->slots[0], fi);
80ff3856
YZ
1379 extent_end = ALIGN(extent_end, root->sectorsize);
1380 } else {
1381 BUG_ON(1);
1382 }
1383out_check:
1384 if (extent_end <= start) {
1385 path->slots[0]++;
e9894fd3 1386 if (!nolock && nocow)
9ea24bbe 1387 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1388 goto next_slot;
1389 }
1390 if (!nocow) {
1391 if (cow_start == (u64)-1)
1392 cow_start = cur_offset;
1393 cur_offset = extent_end;
1394 if (cur_offset > end)
1395 break;
1396 path->slots[0]++;
1397 goto next_slot;
7ea394f1
YZ
1398 }
1399
b3b4aa74 1400 btrfs_release_path(path);
80ff3856 1401 if (cow_start != (u64)-1) {
00361589
JB
1402 ret = cow_file_range(inode, locked_page,
1403 cow_start, found_key.offset - 1,
1404 page_started, nr_written, 1);
e9894fd3
WS
1405 if (ret) {
1406 if (!nolock && nocow)
9ea24bbe 1407 btrfs_end_write_no_snapshoting(root);
79787eaa 1408 goto error;
e9894fd3 1409 }
80ff3856 1410 cow_start = (u64)-1;
7ea394f1 1411 }
80ff3856 1412
d899e052
YZ
1413 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1414 struct extent_map *em;
1415 struct extent_map_tree *em_tree;
1416 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1417 em = alloc_extent_map();
79787eaa 1418 BUG_ON(!em); /* -ENOMEM */
d899e052 1419 em->start = cur_offset;
70c8a91c 1420 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1421 em->len = num_bytes;
1422 em->block_len = num_bytes;
1423 em->block_start = disk_bytenr;
b4939680 1424 em->orig_block_len = disk_num_bytes;
cc95bef6 1425 em->ram_bytes = ram_bytes;
d899e052 1426 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1427 em->mod_start = em->start;
1428 em->mod_len = em->len;
d899e052 1429 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1430 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1431 em->generation = -1;
d899e052 1432 while (1) {
890871be 1433 write_lock(&em_tree->lock);
09a2a8f9 1434 ret = add_extent_mapping(em_tree, em, 1);
890871be 1435 write_unlock(&em_tree->lock);
d899e052
YZ
1436 if (ret != -EEXIST) {
1437 free_extent_map(em);
1438 break;
1439 }
1440 btrfs_drop_extent_cache(inode, em->start,
1441 em->start + em->len - 1, 0);
1442 }
1443 type = BTRFS_ORDERED_PREALLOC;
1444 } else {
1445 type = BTRFS_ORDERED_NOCOW;
1446 }
80ff3856
YZ
1447
1448 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1449 num_bytes, num_bytes, type);
79787eaa 1450 BUG_ON(ret); /* -ENOMEM */
771ed689 1451
efa56464
YZ
1452 if (root->root_key.objectid ==
1453 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1454 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1455 num_bytes);
e9894fd3
WS
1456 if (ret) {
1457 if (!nolock && nocow)
9ea24bbe 1458 btrfs_end_write_no_snapshoting(root);
79787eaa 1459 goto error;
e9894fd3 1460 }
efa56464
YZ
1461 }
1462
c2790a2e
JB
1463 extent_clear_unlock_delalloc(inode, cur_offset,
1464 cur_offset + num_bytes - 1,
1465 locked_page, EXTENT_LOCKED |
1466 EXTENT_DELALLOC, PAGE_UNLOCK |
1467 PAGE_SET_PRIVATE2);
e9894fd3 1468 if (!nolock && nocow)
9ea24bbe 1469 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1470 cur_offset = extent_end;
1471 if (cur_offset > end)
1472 break;
be20aa9d 1473 }
b3b4aa74 1474 btrfs_release_path(path);
80ff3856 1475
17ca04af 1476 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1477 cow_start = cur_offset;
17ca04af
JB
1478 cur_offset = end;
1479 }
1480
80ff3856 1481 if (cow_start != (u64)-1) {
00361589
JB
1482 ret = cow_file_range(inode, locked_page, cow_start, end,
1483 page_started, nr_written, 1);
d788a349 1484 if (ret)
79787eaa 1485 goto error;
80ff3856
YZ
1486 }
1487
79787eaa 1488error:
a698d075 1489 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1490 if (!ret)
1491 ret = err;
1492
17ca04af 1493 if (ret && cur_offset < end)
c2790a2e
JB
1494 extent_clear_unlock_delalloc(inode, cur_offset, end,
1495 locked_page, EXTENT_LOCKED |
151a41bc
JB
1496 EXTENT_DELALLOC | EXTENT_DEFRAG |
1497 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1498 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1499 PAGE_SET_WRITEBACK |
1500 PAGE_END_WRITEBACK);
7ea394f1 1501 btrfs_free_path(path);
79787eaa 1502 return ret;
be20aa9d
CM
1503}
1504
47059d93
WS
1505static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1506{
1507
1508 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1509 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1510 return 0;
1511
1512 /*
1513 * @defrag_bytes is a hint value, no spinlock held here,
1514 * if is not zero, it means the file is defragging.
1515 * Force cow if given extent needs to be defragged.
1516 */
1517 if (BTRFS_I(inode)->defrag_bytes &&
1518 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1519 EXTENT_DEFRAG, 0, NULL))
1520 return 1;
1521
1522 return 0;
1523}
1524
d352ac68
CM
1525/*
1526 * extent_io.c call back to do delayed allocation processing
1527 */
c8b97818 1528static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1529 u64 start, u64 end, int *page_started,
1530 unsigned long *nr_written)
be20aa9d 1531{
be20aa9d 1532 int ret;
47059d93 1533 int force_cow = need_force_cow(inode, start, end);
a2135011 1534
47059d93 1535 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1536 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1537 page_started, 1, nr_written);
47059d93 1538 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1539 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1540 page_started, 0, nr_written);
7816030e 1541 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1542 ret = cow_file_range(inode, locked_page, start, end,
1543 page_started, nr_written, 1);
7ddf5a42
JB
1544 } else {
1545 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1546 &BTRFS_I(inode)->runtime_flags);
771ed689 1547 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1548 page_started, nr_written);
7ddf5a42 1549 }
b888db2b
CM
1550 return ret;
1551}
1552
1bf85046
JM
1553static void btrfs_split_extent_hook(struct inode *inode,
1554 struct extent_state *orig, u64 split)
9ed74f2d 1555{
dcab6a3b
JB
1556 u64 size;
1557
0ca1f7ce 1558 /* not delalloc, ignore it */
9ed74f2d 1559 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1560 return;
9ed74f2d 1561
dcab6a3b
JB
1562 size = orig->end - orig->start + 1;
1563 if (size > BTRFS_MAX_EXTENT_SIZE) {
1564 u64 num_extents;
1565 u64 new_size;
1566
1567 /*
ba117213
JB
1568 * See the explanation in btrfs_merge_extent_hook, the same
1569 * applies here, just in reverse.
dcab6a3b
JB
1570 */
1571 new_size = orig->end - split + 1;
ba117213 1572 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1573 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1574 new_size = split - orig->start;
1575 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1576 BTRFS_MAX_EXTENT_SIZE);
1577 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1578 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1579 return;
1580 }
1581
9e0baf60
JB
1582 spin_lock(&BTRFS_I(inode)->lock);
1583 BTRFS_I(inode)->outstanding_extents++;
1584 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1585}
1586
1587/*
1588 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1589 * extents so we can keep track of new extents that are just merged onto old
1590 * extents, such as when we are doing sequential writes, so we can properly
1591 * account for the metadata space we'll need.
1592 */
1bf85046
JM
1593static void btrfs_merge_extent_hook(struct inode *inode,
1594 struct extent_state *new,
1595 struct extent_state *other)
9ed74f2d 1596{
dcab6a3b
JB
1597 u64 new_size, old_size;
1598 u64 num_extents;
1599
9ed74f2d
JB
1600 /* not delalloc, ignore it */
1601 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1602 return;
9ed74f2d 1603
8461a3de
JB
1604 if (new->start > other->start)
1605 new_size = new->end - other->start + 1;
1606 else
1607 new_size = other->end - new->start + 1;
dcab6a3b
JB
1608
1609 /* we're not bigger than the max, unreserve the space and go */
1610 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1611 spin_lock(&BTRFS_I(inode)->lock);
1612 BTRFS_I(inode)->outstanding_extents--;
1613 spin_unlock(&BTRFS_I(inode)->lock);
1614 return;
1615 }
1616
1617 /*
ba117213
JB
1618 * We have to add up either side to figure out how many extents were
1619 * accounted for before we merged into one big extent. If the number of
1620 * extents we accounted for is <= the amount we need for the new range
1621 * then we can return, otherwise drop. Think of it like this
1622 *
1623 * [ 4k][MAX_SIZE]
1624 *
1625 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1626 * need 2 outstanding extents, on one side we have 1 and the other side
1627 * we have 1 so they are == and we can return. But in this case
1628 *
1629 * [MAX_SIZE+4k][MAX_SIZE+4k]
1630 *
1631 * Each range on their own accounts for 2 extents, but merged together
1632 * they are only 3 extents worth of accounting, so we need to drop in
1633 * this case.
dcab6a3b 1634 */
ba117213 1635 old_size = other->end - other->start + 1;
dcab6a3b
JB
1636 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1637 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1638 old_size = new->end - new->start + 1;
1639 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1640 BTRFS_MAX_EXTENT_SIZE);
1641
dcab6a3b 1642 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1643 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1644 return;
1645
9e0baf60
JB
1646 spin_lock(&BTRFS_I(inode)->lock);
1647 BTRFS_I(inode)->outstanding_extents--;
1648 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1649}
1650
eb73c1b7
MX
1651static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1652 struct inode *inode)
1653{
1654 spin_lock(&root->delalloc_lock);
1655 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1656 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1657 &root->delalloc_inodes);
1658 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1659 &BTRFS_I(inode)->runtime_flags);
1660 root->nr_delalloc_inodes++;
1661 if (root->nr_delalloc_inodes == 1) {
1662 spin_lock(&root->fs_info->delalloc_root_lock);
1663 BUG_ON(!list_empty(&root->delalloc_root));
1664 list_add_tail(&root->delalloc_root,
1665 &root->fs_info->delalloc_roots);
1666 spin_unlock(&root->fs_info->delalloc_root_lock);
1667 }
1668 }
1669 spin_unlock(&root->delalloc_lock);
1670}
1671
1672static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1673 struct inode *inode)
1674{
1675 spin_lock(&root->delalloc_lock);
1676 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1677 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1678 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1679 &BTRFS_I(inode)->runtime_flags);
1680 root->nr_delalloc_inodes--;
1681 if (!root->nr_delalloc_inodes) {
1682 spin_lock(&root->fs_info->delalloc_root_lock);
1683 BUG_ON(list_empty(&root->delalloc_root));
1684 list_del_init(&root->delalloc_root);
1685 spin_unlock(&root->fs_info->delalloc_root_lock);
1686 }
1687 }
1688 spin_unlock(&root->delalloc_lock);
1689}
1690
d352ac68
CM
1691/*
1692 * extent_io.c set_bit_hook, used to track delayed allocation
1693 * bytes in this file, and to maintain the list of inodes that
1694 * have pending delalloc work to be done.
1695 */
1bf85046 1696static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1697 struct extent_state *state, unsigned *bits)
291d673e 1698{
9ed74f2d 1699
47059d93
WS
1700 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1701 WARN_ON(1);
75eff68e
CM
1702 /*
1703 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1704 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1705 * bit, which is only set or cleared with irqs on
1706 */
0ca1f7ce 1707 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1708 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1709 u64 len = state->end + 1 - state->start;
83eea1f1 1710 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1711
9e0baf60 1712 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1713 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1714 } else {
1715 spin_lock(&BTRFS_I(inode)->lock);
1716 BTRFS_I(inode)->outstanding_extents++;
1717 spin_unlock(&BTRFS_I(inode)->lock);
1718 }
287a0ab9 1719
6a3891c5
JB
1720 /* For sanity tests */
1721 if (btrfs_test_is_dummy_root(root))
1722 return;
1723
963d678b
MX
1724 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1725 root->fs_info->delalloc_batch);
df0af1a5 1726 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1727 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1728 if (*bits & EXTENT_DEFRAG)
1729 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1730 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1731 &BTRFS_I(inode)->runtime_flags))
1732 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1733 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1734 }
291d673e
CM
1735}
1736
d352ac68
CM
1737/*
1738 * extent_io.c clear_bit_hook, see set_bit_hook for why
1739 */
1bf85046 1740static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1741 struct extent_state *state,
9ee49a04 1742 unsigned *bits)
291d673e 1743{
47059d93 1744 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1745 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1746 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1747
1748 spin_lock(&BTRFS_I(inode)->lock);
1749 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1750 BTRFS_I(inode)->defrag_bytes -= len;
1751 spin_unlock(&BTRFS_I(inode)->lock);
1752
75eff68e
CM
1753 /*
1754 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1755 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1756 * bit, which is only set or cleared with irqs on
1757 */
0ca1f7ce 1758 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1759 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1760 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1761
9e0baf60 1762 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1763 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1764 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1765 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1766 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1767 spin_unlock(&BTRFS_I(inode)->lock);
1768 }
0ca1f7ce 1769
b6d08f06
JB
1770 /*
1771 * We don't reserve metadata space for space cache inodes so we
1772 * don't need to call dellalloc_release_metadata if there is an
1773 * error.
1774 */
1775 if (*bits & EXTENT_DO_ACCOUNTING &&
1776 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1777 btrfs_delalloc_release_metadata(inode, len);
1778
6a3891c5
JB
1779 /* For sanity tests. */
1780 if (btrfs_test_is_dummy_root(root))
1781 return;
1782
0cb59c99 1783 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1784 && do_list && !(state->state & EXTENT_NORESERVE))
51773bec
QW
1785 btrfs_free_reserved_data_space_noquota(inode,
1786 state->start, len);
9ed74f2d 1787
963d678b
MX
1788 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1789 root->fs_info->delalloc_batch);
df0af1a5 1790 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1791 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1792 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1793 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1794 &BTRFS_I(inode)->runtime_flags))
1795 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1796 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1797 }
291d673e
CM
1798}
1799
d352ac68
CM
1800/*
1801 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1802 * we don't create bios that span stripes or chunks
1803 */
64a16701 1804int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1805 size_t size, struct bio *bio,
1806 unsigned long bio_flags)
239b14b3
CM
1807{
1808 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1809 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1810 u64 length = 0;
1811 u64 map_length;
239b14b3
CM
1812 int ret;
1813
771ed689
CM
1814 if (bio_flags & EXTENT_BIO_COMPRESSED)
1815 return 0;
1816
4f024f37 1817 length = bio->bi_iter.bi_size;
239b14b3 1818 map_length = length;
64a16701 1819 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1820 &map_length, NULL, 0);
3ec706c8 1821 /* Will always return 0 with map_multi == NULL */
3444a972 1822 BUG_ON(ret < 0);
d397712b 1823 if (map_length < length + size)
239b14b3 1824 return 1;
3444a972 1825 return 0;
239b14b3
CM
1826}
1827
d352ac68
CM
1828/*
1829 * in order to insert checksums into the metadata in large chunks,
1830 * we wait until bio submission time. All the pages in the bio are
1831 * checksummed and sums are attached onto the ordered extent record.
1832 *
1833 * At IO completion time the cums attached on the ordered extent record
1834 * are inserted into the btree
1835 */
d397712b
CM
1836static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1837 struct bio *bio, int mirror_num,
eaf25d93
CM
1838 unsigned long bio_flags,
1839 u64 bio_offset)
065631f6 1840{
065631f6 1841 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1842 int ret = 0;
e015640f 1843
d20f7043 1844 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1845 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1846 return 0;
1847}
e015640f 1848
4a69a410
CM
1849/*
1850 * in order to insert checksums into the metadata in large chunks,
1851 * we wait until bio submission time. All the pages in the bio are
1852 * checksummed and sums are attached onto the ordered extent record.
1853 *
1854 * At IO completion time the cums attached on the ordered extent record
1855 * are inserted into the btree
1856 */
b2950863 1857static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1858 int mirror_num, unsigned long bio_flags,
1859 u64 bio_offset)
4a69a410
CM
1860{
1861 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1862 int ret;
1863
1864 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
4246a0b6
CH
1865 if (ret) {
1866 bio->bi_error = ret;
1867 bio_endio(bio);
1868 }
61891923 1869 return ret;
44b8bd7e
CM
1870}
1871
d352ac68 1872/*
cad321ad
CM
1873 * extent_io.c submission hook. This does the right thing for csum calculation
1874 * on write, or reading the csums from the tree before a read
d352ac68 1875 */
b2950863 1876static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1877 int mirror_num, unsigned long bio_flags,
1878 u64 bio_offset)
44b8bd7e
CM
1879{
1880 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1881 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1882 int ret = 0;
19b9bdb0 1883 int skip_sum;
b812ce28 1884 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1885
6cbff00f 1886 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1887
83eea1f1 1888 if (btrfs_is_free_space_inode(inode))
0d51e28a 1889 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1890
7b6d91da 1891 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1892 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1893 if (ret)
61891923 1894 goto out;
5fd02043 1895
d20f7043 1896 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1897 ret = btrfs_submit_compressed_read(inode, bio,
1898 mirror_num,
1899 bio_flags);
1900 goto out;
c2db1073
TI
1901 } else if (!skip_sum) {
1902 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1903 if (ret)
61891923 1904 goto out;
c2db1073 1905 }
4d1b5fb4 1906 goto mapit;
b812ce28 1907 } else if (async && !skip_sum) {
17d217fe
YZ
1908 /* csum items have already been cloned */
1909 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1910 goto mapit;
19b9bdb0 1911 /* we're doing a write, do the async checksumming */
61891923 1912 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1913 inode, rw, bio, mirror_num,
eaf25d93
CM
1914 bio_flags, bio_offset,
1915 __btrfs_submit_bio_start,
4a69a410 1916 __btrfs_submit_bio_done);
61891923 1917 goto out;
b812ce28
JB
1918 } else if (!skip_sum) {
1919 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1920 if (ret)
1921 goto out;
19b9bdb0
CM
1922 }
1923
0b86a832 1924mapit:
61891923
SB
1925 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1926
1927out:
4246a0b6
CH
1928 if (ret < 0) {
1929 bio->bi_error = ret;
1930 bio_endio(bio);
1931 }
61891923 1932 return ret;
065631f6 1933}
6885f308 1934
d352ac68
CM
1935/*
1936 * given a list of ordered sums record them in the inode. This happens
1937 * at IO completion time based on sums calculated at bio submission time.
1938 */
ba1da2f4 1939static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1940 struct inode *inode, u64 file_offset,
1941 struct list_head *list)
1942{
e6dcd2dc
CM
1943 struct btrfs_ordered_sum *sum;
1944
c6e30871 1945 list_for_each_entry(sum, list, list) {
39847c4d 1946 trans->adding_csums = 1;
d20f7043
CM
1947 btrfs_csum_file_blocks(trans,
1948 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1949 trans->adding_csums = 0;
e6dcd2dc
CM
1950 }
1951 return 0;
1952}
1953
2ac55d41
JB
1954int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1955 struct extent_state **cached_state)
ea8c2819 1956{
6c1500f2 1957 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1958 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1959 cached_state, GFP_NOFS);
ea8c2819
CM
1960}
1961
d352ac68 1962/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1963struct btrfs_writepage_fixup {
1964 struct page *page;
1965 struct btrfs_work work;
1966};
1967
b2950863 1968static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1969{
1970 struct btrfs_writepage_fixup *fixup;
1971 struct btrfs_ordered_extent *ordered;
2ac55d41 1972 struct extent_state *cached_state = NULL;
247e743c
CM
1973 struct page *page;
1974 struct inode *inode;
1975 u64 page_start;
1976 u64 page_end;
87826df0 1977 int ret;
247e743c
CM
1978
1979 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1980 page = fixup->page;
4a096752 1981again:
247e743c
CM
1982 lock_page(page);
1983 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1984 ClearPageChecked(page);
1985 goto out_page;
1986 }
1987
1988 inode = page->mapping->host;
1989 page_start = page_offset(page);
1990 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1991
2ac55d41 1992 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1993 &cached_state);
4a096752
CM
1994
1995 /* already ordered? We're done */
8b62b72b 1996 if (PagePrivate2(page))
247e743c 1997 goto out;
4a096752
CM
1998
1999 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2000 if (ordered) {
2ac55d41
JB
2001 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2002 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2003 unlock_page(page);
2004 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2005 btrfs_put_ordered_extent(ordered);
4a096752
CM
2006 goto again;
2007 }
247e743c 2008
7cf5b976
QW
2009 ret = btrfs_delalloc_reserve_space(inode, page_start,
2010 PAGE_CACHE_SIZE);
87826df0
JM
2011 if (ret) {
2012 mapping_set_error(page->mapping, ret);
2013 end_extent_writepage(page, ret, page_start, page_end);
2014 ClearPageChecked(page);
2015 goto out;
2016 }
2017
2ac55d41 2018 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 2019 ClearPageChecked(page);
87826df0 2020 set_page_dirty(page);
247e743c 2021out:
2ac55d41
JB
2022 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2023 &cached_state, GFP_NOFS);
247e743c
CM
2024out_page:
2025 unlock_page(page);
2026 page_cache_release(page);
b897abec 2027 kfree(fixup);
247e743c
CM
2028}
2029
2030/*
2031 * There are a few paths in the higher layers of the kernel that directly
2032 * set the page dirty bit without asking the filesystem if it is a
2033 * good idea. This causes problems because we want to make sure COW
2034 * properly happens and the data=ordered rules are followed.
2035 *
c8b97818 2036 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2037 * hasn't been properly setup for IO. We kick off an async process
2038 * to fix it up. The async helper will wait for ordered extents, set
2039 * the delalloc bit and make it safe to write the page.
2040 */
b2950863 2041static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2042{
2043 struct inode *inode = page->mapping->host;
2044 struct btrfs_writepage_fixup *fixup;
2045 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2046
8b62b72b
CM
2047 /* this page is properly in the ordered list */
2048 if (TestClearPagePrivate2(page))
247e743c
CM
2049 return 0;
2050
2051 if (PageChecked(page))
2052 return -EAGAIN;
2053
2054 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2055 if (!fixup)
2056 return -EAGAIN;
f421950f 2057
247e743c
CM
2058 SetPageChecked(page);
2059 page_cache_get(page);
9e0af237
LB
2060 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2061 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2062 fixup->page = page;
dc6e3209 2063 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2064 return -EBUSY;
247e743c
CM
2065}
2066
d899e052
YZ
2067static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2068 struct inode *inode, u64 file_pos,
2069 u64 disk_bytenr, u64 disk_num_bytes,
2070 u64 num_bytes, u64 ram_bytes,
2071 u8 compression, u8 encryption,
2072 u16 other_encoding, int extent_type)
2073{
2074 struct btrfs_root *root = BTRFS_I(inode)->root;
2075 struct btrfs_file_extent_item *fi;
2076 struct btrfs_path *path;
2077 struct extent_buffer *leaf;
2078 struct btrfs_key ins;
1acae57b 2079 int extent_inserted = 0;
d899e052
YZ
2080 int ret;
2081
2082 path = btrfs_alloc_path();
d8926bb3
MF
2083 if (!path)
2084 return -ENOMEM;
d899e052 2085
a1ed835e
CM
2086 /*
2087 * we may be replacing one extent in the tree with another.
2088 * The new extent is pinned in the extent map, and we don't want
2089 * to drop it from the cache until it is completely in the btree.
2090 *
2091 * So, tell btrfs_drop_extents to leave this extent in the cache.
2092 * the caller is expected to unpin it and allow it to be merged
2093 * with the others.
2094 */
1acae57b
FDBM
2095 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2096 file_pos + num_bytes, NULL, 0,
2097 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2098 if (ret)
2099 goto out;
d899e052 2100
1acae57b
FDBM
2101 if (!extent_inserted) {
2102 ins.objectid = btrfs_ino(inode);
2103 ins.offset = file_pos;
2104 ins.type = BTRFS_EXTENT_DATA_KEY;
2105
2106 path->leave_spinning = 1;
2107 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2108 sizeof(*fi));
2109 if (ret)
2110 goto out;
2111 }
d899e052
YZ
2112 leaf = path->nodes[0];
2113 fi = btrfs_item_ptr(leaf, path->slots[0],
2114 struct btrfs_file_extent_item);
2115 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2116 btrfs_set_file_extent_type(leaf, fi, extent_type);
2117 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2118 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2119 btrfs_set_file_extent_offset(leaf, fi, 0);
2120 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2121 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2122 btrfs_set_file_extent_compression(leaf, fi, compression);
2123 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2124 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2125
d899e052 2126 btrfs_mark_buffer_dirty(leaf);
ce195332 2127 btrfs_release_path(path);
d899e052
YZ
2128
2129 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2130
2131 ins.objectid = disk_bytenr;
2132 ins.offset = disk_num_bytes;
2133 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2134 ret = btrfs_alloc_reserved_file_extent(trans, root,
2135 root->root_key.objectid,
5846a3c2
QW
2136 btrfs_ino(inode), file_pos,
2137 ram_bytes, &ins);
297d750b 2138 /*
5846a3c2
QW
2139 * Release the reserved range from inode dirty range map, as it is
2140 * already moved into delayed_ref_head
297d750b
QW
2141 */
2142 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2143out:
d899e052 2144 btrfs_free_path(path);
b9473439 2145
79787eaa 2146 return ret;
d899e052
YZ
2147}
2148
38c227d8
LB
2149/* snapshot-aware defrag */
2150struct sa_defrag_extent_backref {
2151 struct rb_node node;
2152 struct old_sa_defrag_extent *old;
2153 u64 root_id;
2154 u64 inum;
2155 u64 file_pos;
2156 u64 extent_offset;
2157 u64 num_bytes;
2158 u64 generation;
2159};
2160
2161struct old_sa_defrag_extent {
2162 struct list_head list;
2163 struct new_sa_defrag_extent *new;
2164
2165 u64 extent_offset;
2166 u64 bytenr;
2167 u64 offset;
2168 u64 len;
2169 int count;
2170};
2171
2172struct new_sa_defrag_extent {
2173 struct rb_root root;
2174 struct list_head head;
2175 struct btrfs_path *path;
2176 struct inode *inode;
2177 u64 file_pos;
2178 u64 len;
2179 u64 bytenr;
2180 u64 disk_len;
2181 u8 compress_type;
2182};
2183
2184static int backref_comp(struct sa_defrag_extent_backref *b1,
2185 struct sa_defrag_extent_backref *b2)
2186{
2187 if (b1->root_id < b2->root_id)
2188 return -1;
2189 else if (b1->root_id > b2->root_id)
2190 return 1;
2191
2192 if (b1->inum < b2->inum)
2193 return -1;
2194 else if (b1->inum > b2->inum)
2195 return 1;
2196
2197 if (b1->file_pos < b2->file_pos)
2198 return -1;
2199 else if (b1->file_pos > b2->file_pos)
2200 return 1;
2201
2202 /*
2203 * [------------------------------] ===> (a range of space)
2204 * |<--->| |<---->| =============> (fs/file tree A)
2205 * |<---------------------------->| ===> (fs/file tree B)
2206 *
2207 * A range of space can refer to two file extents in one tree while
2208 * refer to only one file extent in another tree.
2209 *
2210 * So we may process a disk offset more than one time(two extents in A)
2211 * and locate at the same extent(one extent in B), then insert two same
2212 * backrefs(both refer to the extent in B).
2213 */
2214 return 0;
2215}
2216
2217static void backref_insert(struct rb_root *root,
2218 struct sa_defrag_extent_backref *backref)
2219{
2220 struct rb_node **p = &root->rb_node;
2221 struct rb_node *parent = NULL;
2222 struct sa_defrag_extent_backref *entry;
2223 int ret;
2224
2225 while (*p) {
2226 parent = *p;
2227 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2228
2229 ret = backref_comp(backref, entry);
2230 if (ret < 0)
2231 p = &(*p)->rb_left;
2232 else
2233 p = &(*p)->rb_right;
2234 }
2235
2236 rb_link_node(&backref->node, parent, p);
2237 rb_insert_color(&backref->node, root);
2238}
2239
2240/*
2241 * Note the backref might has changed, and in this case we just return 0.
2242 */
2243static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2244 void *ctx)
2245{
2246 struct btrfs_file_extent_item *extent;
2247 struct btrfs_fs_info *fs_info;
2248 struct old_sa_defrag_extent *old = ctx;
2249 struct new_sa_defrag_extent *new = old->new;
2250 struct btrfs_path *path = new->path;
2251 struct btrfs_key key;
2252 struct btrfs_root *root;
2253 struct sa_defrag_extent_backref *backref;
2254 struct extent_buffer *leaf;
2255 struct inode *inode = new->inode;
2256 int slot;
2257 int ret;
2258 u64 extent_offset;
2259 u64 num_bytes;
2260
2261 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2262 inum == btrfs_ino(inode))
2263 return 0;
2264
2265 key.objectid = root_id;
2266 key.type = BTRFS_ROOT_ITEM_KEY;
2267 key.offset = (u64)-1;
2268
2269 fs_info = BTRFS_I(inode)->root->fs_info;
2270 root = btrfs_read_fs_root_no_name(fs_info, &key);
2271 if (IS_ERR(root)) {
2272 if (PTR_ERR(root) == -ENOENT)
2273 return 0;
2274 WARN_ON(1);
2275 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2276 inum, offset, root_id);
2277 return PTR_ERR(root);
2278 }
2279
2280 key.objectid = inum;
2281 key.type = BTRFS_EXTENT_DATA_KEY;
2282 if (offset > (u64)-1 << 32)
2283 key.offset = 0;
2284 else
2285 key.offset = offset;
2286
2287 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2288 if (WARN_ON(ret < 0))
38c227d8 2289 return ret;
50f1319c 2290 ret = 0;
38c227d8
LB
2291
2292 while (1) {
2293 cond_resched();
2294
2295 leaf = path->nodes[0];
2296 slot = path->slots[0];
2297
2298 if (slot >= btrfs_header_nritems(leaf)) {
2299 ret = btrfs_next_leaf(root, path);
2300 if (ret < 0) {
2301 goto out;
2302 } else if (ret > 0) {
2303 ret = 0;
2304 goto out;
2305 }
2306 continue;
2307 }
2308
2309 path->slots[0]++;
2310
2311 btrfs_item_key_to_cpu(leaf, &key, slot);
2312
2313 if (key.objectid > inum)
2314 goto out;
2315
2316 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2317 continue;
2318
2319 extent = btrfs_item_ptr(leaf, slot,
2320 struct btrfs_file_extent_item);
2321
2322 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2323 continue;
2324
e68afa49
LB
2325 /*
2326 * 'offset' refers to the exact key.offset,
2327 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2328 * (key.offset - extent_offset).
2329 */
2330 if (key.offset != offset)
38c227d8
LB
2331 continue;
2332
e68afa49 2333 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2334 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2335
38c227d8
LB
2336 if (extent_offset >= old->extent_offset + old->offset +
2337 old->len || extent_offset + num_bytes <=
2338 old->extent_offset + old->offset)
2339 continue;
38c227d8
LB
2340 break;
2341 }
2342
2343 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2344 if (!backref) {
2345 ret = -ENOENT;
2346 goto out;
2347 }
2348
2349 backref->root_id = root_id;
2350 backref->inum = inum;
e68afa49 2351 backref->file_pos = offset;
38c227d8
LB
2352 backref->num_bytes = num_bytes;
2353 backref->extent_offset = extent_offset;
2354 backref->generation = btrfs_file_extent_generation(leaf, extent);
2355 backref->old = old;
2356 backref_insert(&new->root, backref);
2357 old->count++;
2358out:
2359 btrfs_release_path(path);
2360 WARN_ON(ret);
2361 return ret;
2362}
2363
2364static noinline bool record_extent_backrefs(struct btrfs_path *path,
2365 struct new_sa_defrag_extent *new)
2366{
2367 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2368 struct old_sa_defrag_extent *old, *tmp;
2369 int ret;
2370
2371 new->path = path;
2372
2373 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2374 ret = iterate_inodes_from_logical(old->bytenr +
2375 old->extent_offset, fs_info,
38c227d8
LB
2376 path, record_one_backref,
2377 old);
4724b106
JB
2378 if (ret < 0 && ret != -ENOENT)
2379 return false;
38c227d8
LB
2380
2381 /* no backref to be processed for this extent */
2382 if (!old->count) {
2383 list_del(&old->list);
2384 kfree(old);
2385 }
2386 }
2387
2388 if (list_empty(&new->head))
2389 return false;
2390
2391 return true;
2392}
2393
2394static int relink_is_mergable(struct extent_buffer *leaf,
2395 struct btrfs_file_extent_item *fi,
116e0024 2396 struct new_sa_defrag_extent *new)
38c227d8 2397{
116e0024 2398 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2399 return 0;
2400
2401 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2402 return 0;
2403
116e0024
LB
2404 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2405 return 0;
2406
2407 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2408 btrfs_file_extent_other_encoding(leaf, fi))
2409 return 0;
2410
2411 return 1;
2412}
2413
2414/*
2415 * Note the backref might has changed, and in this case we just return 0.
2416 */
2417static noinline int relink_extent_backref(struct btrfs_path *path,
2418 struct sa_defrag_extent_backref *prev,
2419 struct sa_defrag_extent_backref *backref)
2420{
2421 struct btrfs_file_extent_item *extent;
2422 struct btrfs_file_extent_item *item;
2423 struct btrfs_ordered_extent *ordered;
2424 struct btrfs_trans_handle *trans;
2425 struct btrfs_fs_info *fs_info;
2426 struct btrfs_root *root;
2427 struct btrfs_key key;
2428 struct extent_buffer *leaf;
2429 struct old_sa_defrag_extent *old = backref->old;
2430 struct new_sa_defrag_extent *new = old->new;
2431 struct inode *src_inode = new->inode;
2432 struct inode *inode;
2433 struct extent_state *cached = NULL;
2434 int ret = 0;
2435 u64 start;
2436 u64 len;
2437 u64 lock_start;
2438 u64 lock_end;
2439 bool merge = false;
2440 int index;
2441
2442 if (prev && prev->root_id == backref->root_id &&
2443 prev->inum == backref->inum &&
2444 prev->file_pos + prev->num_bytes == backref->file_pos)
2445 merge = true;
2446
2447 /* step 1: get root */
2448 key.objectid = backref->root_id;
2449 key.type = BTRFS_ROOT_ITEM_KEY;
2450 key.offset = (u64)-1;
2451
2452 fs_info = BTRFS_I(src_inode)->root->fs_info;
2453 index = srcu_read_lock(&fs_info->subvol_srcu);
2454
2455 root = btrfs_read_fs_root_no_name(fs_info, &key);
2456 if (IS_ERR(root)) {
2457 srcu_read_unlock(&fs_info->subvol_srcu, index);
2458 if (PTR_ERR(root) == -ENOENT)
2459 return 0;
2460 return PTR_ERR(root);
2461 }
38c227d8 2462
bcbba5e6
WS
2463 if (btrfs_root_readonly(root)) {
2464 srcu_read_unlock(&fs_info->subvol_srcu, index);
2465 return 0;
2466 }
2467
38c227d8
LB
2468 /* step 2: get inode */
2469 key.objectid = backref->inum;
2470 key.type = BTRFS_INODE_ITEM_KEY;
2471 key.offset = 0;
2472
2473 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2474 if (IS_ERR(inode)) {
2475 srcu_read_unlock(&fs_info->subvol_srcu, index);
2476 return 0;
2477 }
2478
2479 srcu_read_unlock(&fs_info->subvol_srcu, index);
2480
2481 /* step 3: relink backref */
2482 lock_start = backref->file_pos;
2483 lock_end = backref->file_pos + backref->num_bytes - 1;
2484 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2485 0, &cached);
2486
2487 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2488 if (ordered) {
2489 btrfs_put_ordered_extent(ordered);
2490 goto out_unlock;
2491 }
2492
2493 trans = btrfs_join_transaction(root);
2494 if (IS_ERR(trans)) {
2495 ret = PTR_ERR(trans);
2496 goto out_unlock;
2497 }
2498
2499 key.objectid = backref->inum;
2500 key.type = BTRFS_EXTENT_DATA_KEY;
2501 key.offset = backref->file_pos;
2502
2503 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2504 if (ret < 0) {
2505 goto out_free_path;
2506 } else if (ret > 0) {
2507 ret = 0;
2508 goto out_free_path;
2509 }
2510
2511 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2512 struct btrfs_file_extent_item);
2513
2514 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2515 backref->generation)
2516 goto out_free_path;
2517
2518 btrfs_release_path(path);
2519
2520 start = backref->file_pos;
2521 if (backref->extent_offset < old->extent_offset + old->offset)
2522 start += old->extent_offset + old->offset -
2523 backref->extent_offset;
2524
2525 len = min(backref->extent_offset + backref->num_bytes,
2526 old->extent_offset + old->offset + old->len);
2527 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2528
2529 ret = btrfs_drop_extents(trans, root, inode, start,
2530 start + len, 1);
2531 if (ret)
2532 goto out_free_path;
2533again:
2534 key.objectid = btrfs_ino(inode);
2535 key.type = BTRFS_EXTENT_DATA_KEY;
2536 key.offset = start;
2537
a09a0a70 2538 path->leave_spinning = 1;
38c227d8
LB
2539 if (merge) {
2540 struct btrfs_file_extent_item *fi;
2541 u64 extent_len;
2542 struct btrfs_key found_key;
2543
3c9665df 2544 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2545 if (ret < 0)
2546 goto out_free_path;
2547
2548 path->slots[0]--;
2549 leaf = path->nodes[0];
2550 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2551
2552 fi = btrfs_item_ptr(leaf, path->slots[0],
2553 struct btrfs_file_extent_item);
2554 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2555
116e0024
LB
2556 if (extent_len + found_key.offset == start &&
2557 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2558 btrfs_set_file_extent_num_bytes(leaf, fi,
2559 extent_len + len);
2560 btrfs_mark_buffer_dirty(leaf);
2561 inode_add_bytes(inode, len);
2562
2563 ret = 1;
2564 goto out_free_path;
2565 } else {
2566 merge = false;
2567 btrfs_release_path(path);
2568 goto again;
2569 }
2570 }
2571
2572 ret = btrfs_insert_empty_item(trans, root, path, &key,
2573 sizeof(*extent));
2574 if (ret) {
2575 btrfs_abort_transaction(trans, root, ret);
2576 goto out_free_path;
2577 }
2578
2579 leaf = path->nodes[0];
2580 item = btrfs_item_ptr(leaf, path->slots[0],
2581 struct btrfs_file_extent_item);
2582 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2583 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2584 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2585 btrfs_set_file_extent_num_bytes(leaf, item, len);
2586 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2587 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2588 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2589 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2590 btrfs_set_file_extent_encryption(leaf, item, 0);
2591 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2592
2593 btrfs_mark_buffer_dirty(leaf);
2594 inode_add_bytes(inode, len);
a09a0a70 2595 btrfs_release_path(path);
38c227d8
LB
2596
2597 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2598 new->disk_len, 0,
2599 backref->root_id, backref->inum,
b06c4bf5 2600 new->file_pos); /* start - extent_offset */
38c227d8
LB
2601 if (ret) {
2602 btrfs_abort_transaction(trans, root, ret);
2603 goto out_free_path;
2604 }
2605
2606 ret = 1;
2607out_free_path:
2608 btrfs_release_path(path);
a09a0a70 2609 path->leave_spinning = 0;
38c227d8
LB
2610 btrfs_end_transaction(trans, root);
2611out_unlock:
2612 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2613 &cached, GFP_NOFS);
2614 iput(inode);
2615 return ret;
2616}
2617
6f519564
LB
2618static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2619{
2620 struct old_sa_defrag_extent *old, *tmp;
2621
2622 if (!new)
2623 return;
2624
2625 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2626 kfree(old);
2627 }
2628 kfree(new);
2629}
2630
38c227d8
LB
2631static void relink_file_extents(struct new_sa_defrag_extent *new)
2632{
2633 struct btrfs_path *path;
38c227d8
LB
2634 struct sa_defrag_extent_backref *backref;
2635 struct sa_defrag_extent_backref *prev = NULL;
2636 struct inode *inode;
2637 struct btrfs_root *root;
2638 struct rb_node *node;
2639 int ret;
2640
2641 inode = new->inode;
2642 root = BTRFS_I(inode)->root;
2643
2644 path = btrfs_alloc_path();
2645 if (!path)
2646 return;
2647
2648 if (!record_extent_backrefs(path, new)) {
2649 btrfs_free_path(path);
2650 goto out;
2651 }
2652 btrfs_release_path(path);
2653
2654 while (1) {
2655 node = rb_first(&new->root);
2656 if (!node)
2657 break;
2658 rb_erase(node, &new->root);
2659
2660 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2661
2662 ret = relink_extent_backref(path, prev, backref);
2663 WARN_ON(ret < 0);
2664
2665 kfree(prev);
2666
2667 if (ret == 1)
2668 prev = backref;
2669 else
2670 prev = NULL;
2671 cond_resched();
2672 }
2673 kfree(prev);
2674
2675 btrfs_free_path(path);
38c227d8 2676out:
6f519564
LB
2677 free_sa_defrag_extent(new);
2678
38c227d8
LB
2679 atomic_dec(&root->fs_info->defrag_running);
2680 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2681}
2682
2683static struct new_sa_defrag_extent *
2684record_old_file_extents(struct inode *inode,
2685 struct btrfs_ordered_extent *ordered)
2686{
2687 struct btrfs_root *root = BTRFS_I(inode)->root;
2688 struct btrfs_path *path;
2689 struct btrfs_key key;
6f519564 2690 struct old_sa_defrag_extent *old;
38c227d8
LB
2691 struct new_sa_defrag_extent *new;
2692 int ret;
2693
2694 new = kmalloc(sizeof(*new), GFP_NOFS);
2695 if (!new)
2696 return NULL;
2697
2698 new->inode = inode;
2699 new->file_pos = ordered->file_offset;
2700 new->len = ordered->len;
2701 new->bytenr = ordered->start;
2702 new->disk_len = ordered->disk_len;
2703 new->compress_type = ordered->compress_type;
2704 new->root = RB_ROOT;
2705 INIT_LIST_HEAD(&new->head);
2706
2707 path = btrfs_alloc_path();
2708 if (!path)
2709 goto out_kfree;
2710
2711 key.objectid = btrfs_ino(inode);
2712 key.type = BTRFS_EXTENT_DATA_KEY;
2713 key.offset = new->file_pos;
2714
2715 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2716 if (ret < 0)
2717 goto out_free_path;
2718 if (ret > 0 && path->slots[0] > 0)
2719 path->slots[0]--;
2720
2721 /* find out all the old extents for the file range */
2722 while (1) {
2723 struct btrfs_file_extent_item *extent;
2724 struct extent_buffer *l;
2725 int slot;
2726 u64 num_bytes;
2727 u64 offset;
2728 u64 end;
2729 u64 disk_bytenr;
2730 u64 extent_offset;
2731
2732 l = path->nodes[0];
2733 slot = path->slots[0];
2734
2735 if (slot >= btrfs_header_nritems(l)) {
2736 ret = btrfs_next_leaf(root, path);
2737 if (ret < 0)
6f519564 2738 goto out_free_path;
38c227d8
LB
2739 else if (ret > 0)
2740 break;
2741 continue;
2742 }
2743
2744 btrfs_item_key_to_cpu(l, &key, slot);
2745
2746 if (key.objectid != btrfs_ino(inode))
2747 break;
2748 if (key.type != BTRFS_EXTENT_DATA_KEY)
2749 break;
2750 if (key.offset >= new->file_pos + new->len)
2751 break;
2752
2753 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2754
2755 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2756 if (key.offset + num_bytes < new->file_pos)
2757 goto next;
2758
2759 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2760 if (!disk_bytenr)
2761 goto next;
2762
2763 extent_offset = btrfs_file_extent_offset(l, extent);
2764
2765 old = kmalloc(sizeof(*old), GFP_NOFS);
2766 if (!old)
6f519564 2767 goto out_free_path;
38c227d8
LB
2768
2769 offset = max(new->file_pos, key.offset);
2770 end = min(new->file_pos + new->len, key.offset + num_bytes);
2771
2772 old->bytenr = disk_bytenr;
2773 old->extent_offset = extent_offset;
2774 old->offset = offset - key.offset;
2775 old->len = end - offset;
2776 old->new = new;
2777 old->count = 0;
2778 list_add_tail(&old->list, &new->head);
2779next:
2780 path->slots[0]++;
2781 cond_resched();
2782 }
2783
2784 btrfs_free_path(path);
2785 atomic_inc(&root->fs_info->defrag_running);
2786
2787 return new;
2788
38c227d8
LB
2789out_free_path:
2790 btrfs_free_path(path);
2791out_kfree:
6f519564 2792 free_sa_defrag_extent(new);
38c227d8
LB
2793 return NULL;
2794}
2795
e570fd27
MX
2796static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2797 u64 start, u64 len)
2798{
2799 struct btrfs_block_group_cache *cache;
2800
2801 cache = btrfs_lookup_block_group(root->fs_info, start);
2802 ASSERT(cache);
2803
2804 spin_lock(&cache->lock);
2805 cache->delalloc_bytes -= len;
2806 spin_unlock(&cache->lock);
2807
2808 btrfs_put_block_group(cache);
2809}
2810
d352ac68
CM
2811/* as ordered data IO finishes, this gets called so we can finish
2812 * an ordered extent if the range of bytes in the file it covers are
2813 * fully written.
2814 */
5fd02043 2815static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2816{
5fd02043 2817 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2818 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2819 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2820 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2821 struct extent_state *cached_state = NULL;
38c227d8 2822 struct new_sa_defrag_extent *new = NULL;
261507a0 2823 int compress_type = 0;
77cef2ec
JB
2824 int ret = 0;
2825 u64 logical_len = ordered_extent->len;
82d5902d 2826 bool nolock;
77cef2ec 2827 bool truncated = false;
e6dcd2dc 2828
83eea1f1 2829 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2830
5fd02043
JB
2831 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2832 ret = -EIO;
2833 goto out;
2834 }
2835
f612496b
MX
2836 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2837 ordered_extent->file_offset +
2838 ordered_extent->len - 1);
2839
77cef2ec
JB
2840 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2841 truncated = true;
2842 logical_len = ordered_extent->truncated_len;
2843 /* Truncated the entire extent, don't bother adding */
2844 if (!logical_len)
2845 goto out;
2846 }
2847
c2167754 2848 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2849 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2850
2851 /*
2852 * For mwrite(mmap + memset to write) case, we still reserve
2853 * space for NOCOW range.
2854 * As NOCOW won't cause a new delayed ref, just free the space
2855 */
2856 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2857 ordered_extent->len);
6c760c07
JB
2858 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2859 if (nolock)
2860 trans = btrfs_join_transaction_nolock(root);
2861 else
2862 trans = btrfs_join_transaction(root);
2863 if (IS_ERR(trans)) {
2864 ret = PTR_ERR(trans);
2865 trans = NULL;
2866 goto out;
c2167754 2867 }
6c760c07
JB
2868 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2869 ret = btrfs_update_inode_fallback(trans, root, inode);
2870 if (ret) /* -ENOMEM or corruption */
2871 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2872 goto out;
2873 }
e6dcd2dc 2874
2ac55d41
JB
2875 lock_extent_bits(io_tree, ordered_extent->file_offset,
2876 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2877 0, &cached_state);
e6dcd2dc 2878
38c227d8
LB
2879 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2880 ordered_extent->file_offset + ordered_extent->len - 1,
2881 EXTENT_DEFRAG, 1, cached_state);
2882 if (ret) {
2883 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2884 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2885 /* the inode is shared */
2886 new = record_old_file_extents(inode, ordered_extent);
2887
2888 clear_extent_bit(io_tree, ordered_extent->file_offset,
2889 ordered_extent->file_offset + ordered_extent->len - 1,
2890 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2891 }
2892
0cb59c99 2893 if (nolock)
7a7eaa40 2894 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2895 else
7a7eaa40 2896 trans = btrfs_join_transaction(root);
79787eaa
JM
2897 if (IS_ERR(trans)) {
2898 ret = PTR_ERR(trans);
2899 trans = NULL;
2900 goto out_unlock;
2901 }
a79b7d4b 2902
0ca1f7ce 2903 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2904
c8b97818 2905 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2906 compress_type = ordered_extent->compress_type;
d899e052 2907 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2908 BUG_ON(compress_type);
920bbbfb 2909 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2910 ordered_extent->file_offset,
2911 ordered_extent->file_offset +
77cef2ec 2912 logical_len);
d899e052 2913 } else {
0af3d00b 2914 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2915 ret = insert_reserved_file_extent(trans, inode,
2916 ordered_extent->file_offset,
2917 ordered_extent->start,
2918 ordered_extent->disk_len,
77cef2ec 2919 logical_len, logical_len,
261507a0 2920 compress_type, 0, 0,
d899e052 2921 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2922 if (!ret)
2923 btrfs_release_delalloc_bytes(root,
2924 ordered_extent->start,
2925 ordered_extent->disk_len);
d899e052 2926 }
5dc562c5
JB
2927 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2928 ordered_extent->file_offset, ordered_extent->len,
2929 trans->transid);
79787eaa
JM
2930 if (ret < 0) {
2931 btrfs_abort_transaction(trans, root, ret);
5fd02043 2932 goto out_unlock;
79787eaa 2933 }
2ac55d41 2934
e6dcd2dc
CM
2935 add_pending_csums(trans, inode, ordered_extent->file_offset,
2936 &ordered_extent->list);
2937
6c760c07
JB
2938 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2939 ret = btrfs_update_inode_fallback(trans, root, inode);
2940 if (ret) { /* -ENOMEM or corruption */
2941 btrfs_abort_transaction(trans, root, ret);
2942 goto out_unlock;
1ef30be1
JB
2943 }
2944 ret = 0;
5fd02043
JB
2945out_unlock:
2946 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2947 ordered_extent->file_offset +
2948 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2949out:
5b0e95bf 2950 if (root != root->fs_info->tree_root)
0cb59c99 2951 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2952 if (trans)
2953 btrfs_end_transaction(trans, root);
0cb59c99 2954
77cef2ec
JB
2955 if (ret || truncated) {
2956 u64 start, end;
2957
2958 if (truncated)
2959 start = ordered_extent->file_offset + logical_len;
2960 else
2961 start = ordered_extent->file_offset;
2962 end = ordered_extent->file_offset + ordered_extent->len - 1;
2963 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2964
2965 /* Drop the cache for the part of the extent we didn't write. */
2966 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2967
0bec9ef5
JB
2968 /*
2969 * If the ordered extent had an IOERR or something else went
2970 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2971 * back to the allocator. We only free the extent in the
2972 * truncated case if we didn't write out the extent at all.
0bec9ef5 2973 */
77cef2ec
JB
2974 if ((ret || !logical_len) &&
2975 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2976 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2977 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 2978 ordered_extent->disk_len, 1);
0bec9ef5
JB
2979 }
2980
2981
5fd02043 2982 /*
8bad3c02
LB
2983 * This needs to be done to make sure anybody waiting knows we are done
2984 * updating everything for this ordered extent.
5fd02043
JB
2985 */
2986 btrfs_remove_ordered_extent(inode, ordered_extent);
2987
38c227d8 2988 /* for snapshot-aware defrag */
6f519564
LB
2989 if (new) {
2990 if (ret) {
2991 free_sa_defrag_extent(new);
2992 atomic_dec(&root->fs_info->defrag_running);
2993 } else {
2994 relink_file_extents(new);
2995 }
2996 }
38c227d8 2997
e6dcd2dc
CM
2998 /* once for us */
2999 btrfs_put_ordered_extent(ordered_extent);
3000 /* once for the tree */
3001 btrfs_put_ordered_extent(ordered_extent);
3002
5fd02043
JB
3003 return ret;
3004}
3005
3006static void finish_ordered_fn(struct btrfs_work *work)
3007{
3008 struct btrfs_ordered_extent *ordered_extent;
3009 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3010 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3011}
3012
b2950863 3013static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3014 struct extent_state *state, int uptodate)
3015{
5fd02043
JB
3016 struct inode *inode = page->mapping->host;
3017 struct btrfs_root *root = BTRFS_I(inode)->root;
3018 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3019 struct btrfs_workqueue *wq;
3020 btrfs_work_func_t func;
5fd02043 3021
1abe9b8a 3022 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3023
8b62b72b 3024 ClearPagePrivate2(page);
5fd02043
JB
3025 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3026 end - start + 1, uptodate))
3027 return 0;
3028
9e0af237
LB
3029 if (btrfs_is_free_space_inode(inode)) {
3030 wq = root->fs_info->endio_freespace_worker;
3031 func = btrfs_freespace_write_helper;
3032 } else {
3033 wq = root->fs_info->endio_write_workers;
3034 func = btrfs_endio_write_helper;
3035 }
5fd02043 3036
9e0af237
LB
3037 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3038 NULL);
3039 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3040
3041 return 0;
211f90e6
CM
3042}
3043
dc380aea
MX
3044static int __readpage_endio_check(struct inode *inode,
3045 struct btrfs_io_bio *io_bio,
3046 int icsum, struct page *page,
3047 int pgoff, u64 start, size_t len)
3048{
3049 char *kaddr;
3050 u32 csum_expected;
3051 u32 csum = ~(u32)0;
dc380aea
MX
3052
3053 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3054
3055 kaddr = kmap_atomic(page);
3056 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3057 btrfs_csum_final(csum, (char *)&csum);
3058 if (csum != csum_expected)
3059 goto zeroit;
3060
3061 kunmap_atomic(kaddr);
3062 return 0;
3063zeroit:
94647322
DS
3064 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3065 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3066 btrfs_ino(inode), start, csum, csum_expected);
3067 memset(kaddr + pgoff, 1, len);
3068 flush_dcache_page(page);
3069 kunmap_atomic(kaddr);
3070 if (csum_expected == 0)
3071 return 0;
3072 return -EIO;
3073}
3074
d352ac68
CM
3075/*
3076 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3077 * if there's a match, we allow the bio to finish. If not, the code in
3078 * extent_io.c will try to find good copies for us.
d352ac68 3079 */
facc8a22
MX
3080static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3081 u64 phy_offset, struct page *page,
3082 u64 start, u64 end, int mirror)
07157aac 3083{
4eee4fa4 3084 size_t offset = start - page_offset(page);
07157aac 3085 struct inode *inode = page->mapping->host;
d1310b2e 3086 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3087 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3088
d20f7043
CM
3089 if (PageChecked(page)) {
3090 ClearPageChecked(page);
dc380aea 3091 return 0;
d20f7043 3092 }
6cbff00f
CH
3093
3094 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3095 return 0;
17d217fe
YZ
3096
3097 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3098 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
3099 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3100 GFP_NOFS);
b6cda9bc 3101 return 0;
17d217fe 3102 }
d20f7043 3103
facc8a22 3104 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3105 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3106 start, (size_t)(end - start + 1));
07157aac 3107}
b888db2b 3108
24bbcf04
YZ
3109struct delayed_iput {
3110 struct list_head list;
3111 struct inode *inode;
3112};
3113
79787eaa
JM
3114/* JDM: If this is fs-wide, why can't we add a pointer to
3115 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
3116void btrfs_add_delayed_iput(struct inode *inode)
3117{
3118 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3119 struct delayed_iput *delayed;
3120
3121 if (atomic_add_unless(&inode->i_count, -1, 1))
3122 return;
3123
3124 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3125 delayed->inode = inode;
3126
3127 spin_lock(&fs_info->delayed_iput_lock);
3128 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3129 spin_unlock(&fs_info->delayed_iput_lock);
3130}
3131
3132void btrfs_run_delayed_iputs(struct btrfs_root *root)
3133{
3134 LIST_HEAD(list);
3135 struct btrfs_fs_info *fs_info = root->fs_info;
3136 struct delayed_iput *delayed;
3137 int empty;
3138
3139 spin_lock(&fs_info->delayed_iput_lock);
3140 empty = list_empty(&fs_info->delayed_iputs);
3141 spin_unlock(&fs_info->delayed_iput_lock);
3142 if (empty)
3143 return;
3144
d7c15171
ZL
3145 down_read(&fs_info->delayed_iput_sem);
3146
24bbcf04
YZ
3147 spin_lock(&fs_info->delayed_iput_lock);
3148 list_splice_init(&fs_info->delayed_iputs, &list);
3149 spin_unlock(&fs_info->delayed_iput_lock);
3150
3151 while (!list_empty(&list)) {
3152 delayed = list_entry(list.next, struct delayed_iput, list);
3153 list_del(&delayed->list);
3154 iput(delayed->inode);
3155 kfree(delayed);
3156 }
d7c15171
ZL
3157
3158 up_read(&root->fs_info->delayed_iput_sem);
24bbcf04
YZ
3159}
3160
d68fc57b 3161/*
42b2aa86 3162 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3163 * files in the subvolume, it removes orphan item and frees block_rsv
3164 * structure.
3165 */
3166void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3167 struct btrfs_root *root)
3168{
90290e19 3169 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3170 int ret;
3171
8a35d95f 3172 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3173 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3174 return;
3175
90290e19 3176 spin_lock(&root->orphan_lock);
8a35d95f 3177 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3178 spin_unlock(&root->orphan_lock);
3179 return;
3180 }
3181
3182 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3183 spin_unlock(&root->orphan_lock);
3184 return;
3185 }
3186
3187 block_rsv = root->orphan_block_rsv;
3188 root->orphan_block_rsv = NULL;
3189 spin_unlock(&root->orphan_lock);
3190
27cdeb70 3191 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3192 btrfs_root_refs(&root->root_item) > 0) {
3193 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3194 root->root_key.objectid);
4ef31a45
JB
3195 if (ret)
3196 btrfs_abort_transaction(trans, root, ret);
3197 else
27cdeb70
MX
3198 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3199 &root->state);
d68fc57b
YZ
3200 }
3201
90290e19
JB
3202 if (block_rsv) {
3203 WARN_ON(block_rsv->size > 0);
3204 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3205 }
3206}
3207
7b128766
JB
3208/*
3209 * This creates an orphan entry for the given inode in case something goes
3210 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3211 *
3212 * NOTE: caller of this function should reserve 5 units of metadata for
3213 * this function.
7b128766
JB
3214 */
3215int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3216{
3217 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3218 struct btrfs_block_rsv *block_rsv = NULL;
3219 int reserve = 0;
3220 int insert = 0;
3221 int ret;
7b128766 3222
d68fc57b 3223 if (!root->orphan_block_rsv) {
66d8f3dd 3224 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3225 if (!block_rsv)
3226 return -ENOMEM;
d68fc57b 3227 }
7b128766 3228
d68fc57b
YZ
3229 spin_lock(&root->orphan_lock);
3230 if (!root->orphan_block_rsv) {
3231 root->orphan_block_rsv = block_rsv;
3232 } else if (block_rsv) {
3233 btrfs_free_block_rsv(root, block_rsv);
3234 block_rsv = NULL;
7b128766 3235 }
7b128766 3236
8a35d95f
JB
3237 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3238 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3239#if 0
3240 /*
3241 * For proper ENOSPC handling, we should do orphan
3242 * cleanup when mounting. But this introduces backward
3243 * compatibility issue.
3244 */
3245 if (!xchg(&root->orphan_item_inserted, 1))
3246 insert = 2;
3247 else
3248 insert = 1;
3249#endif
3250 insert = 1;
321f0e70 3251 atomic_inc(&root->orphan_inodes);
7b128766
JB
3252 }
3253
72ac3c0d
JB
3254 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3255 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3256 reserve = 1;
d68fc57b 3257 spin_unlock(&root->orphan_lock);
7b128766 3258
d68fc57b
YZ
3259 /* grab metadata reservation from transaction handle */
3260 if (reserve) {
3261 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3262 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3263 }
7b128766 3264
d68fc57b
YZ
3265 /* insert an orphan item to track this unlinked/truncated file */
3266 if (insert >= 1) {
33345d01 3267 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3268 if (ret) {
703c88e0 3269 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3270 if (reserve) {
3271 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3272 &BTRFS_I(inode)->runtime_flags);
3273 btrfs_orphan_release_metadata(inode);
3274 }
3275 if (ret != -EEXIST) {
e8e7cff6
JB
3276 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3277 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3278 btrfs_abort_transaction(trans, root, ret);
3279 return ret;
3280 }
79787eaa
JM
3281 }
3282 ret = 0;
d68fc57b
YZ
3283 }
3284
3285 /* insert an orphan item to track subvolume contains orphan files */
3286 if (insert >= 2) {
3287 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3288 root->root_key.objectid);
79787eaa
JM
3289 if (ret && ret != -EEXIST) {
3290 btrfs_abort_transaction(trans, root, ret);
3291 return ret;
3292 }
d68fc57b
YZ
3293 }
3294 return 0;
7b128766
JB
3295}
3296
3297/*
3298 * We have done the truncate/delete so we can go ahead and remove the orphan
3299 * item for this particular inode.
3300 */
48a3b636
ES
3301static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3302 struct inode *inode)
7b128766
JB
3303{
3304 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3305 int delete_item = 0;
3306 int release_rsv = 0;
7b128766
JB
3307 int ret = 0;
3308
d68fc57b 3309 spin_lock(&root->orphan_lock);
8a35d95f
JB
3310 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3311 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3312 delete_item = 1;
7b128766 3313
72ac3c0d
JB
3314 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3315 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3316 release_rsv = 1;
d68fc57b 3317 spin_unlock(&root->orphan_lock);
7b128766 3318
703c88e0 3319 if (delete_item) {
8a35d95f 3320 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3321 if (trans)
3322 ret = btrfs_del_orphan_item(trans, root,
3323 btrfs_ino(inode));
8a35d95f 3324 }
7b128766 3325
703c88e0
FDBM
3326 if (release_rsv)
3327 btrfs_orphan_release_metadata(inode);
3328
4ef31a45 3329 return ret;
7b128766
JB
3330}
3331
3332/*
3333 * this cleans up any orphans that may be left on the list from the last use
3334 * of this root.
3335 */
66b4ffd1 3336int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3337{
3338 struct btrfs_path *path;
3339 struct extent_buffer *leaf;
7b128766
JB
3340 struct btrfs_key key, found_key;
3341 struct btrfs_trans_handle *trans;
3342 struct inode *inode;
8f6d7f4f 3343 u64 last_objectid = 0;
7b128766
JB
3344 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3345
d68fc57b 3346 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3347 return 0;
c71bf099
YZ
3348
3349 path = btrfs_alloc_path();
66b4ffd1
JB
3350 if (!path) {
3351 ret = -ENOMEM;
3352 goto out;
3353 }
7b128766
JB
3354 path->reada = -1;
3355
3356 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3357 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3358 key.offset = (u64)-1;
3359
7b128766
JB
3360 while (1) {
3361 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3362 if (ret < 0)
3363 goto out;
7b128766
JB
3364
3365 /*
3366 * if ret == 0 means we found what we were searching for, which
25985edc 3367 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3368 * find the key and see if we have stuff that matches
3369 */
3370 if (ret > 0) {
66b4ffd1 3371 ret = 0;
7b128766
JB
3372 if (path->slots[0] == 0)
3373 break;
3374 path->slots[0]--;
3375 }
3376
3377 /* pull out the item */
3378 leaf = path->nodes[0];
7b128766
JB
3379 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3380
3381 /* make sure the item matches what we want */
3382 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3383 break;
962a298f 3384 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3385 break;
3386
3387 /* release the path since we're done with it */
b3b4aa74 3388 btrfs_release_path(path);
7b128766
JB
3389
3390 /*
3391 * this is where we are basically btrfs_lookup, without the
3392 * crossing root thing. we store the inode number in the
3393 * offset of the orphan item.
3394 */
8f6d7f4f
JB
3395
3396 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3397 btrfs_err(root->fs_info,
3398 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3399 ret = -EINVAL;
3400 goto out;
3401 }
3402
3403 last_objectid = found_key.offset;
3404
5d4f98a2
YZ
3405 found_key.objectid = found_key.offset;
3406 found_key.type = BTRFS_INODE_ITEM_KEY;
3407 found_key.offset = 0;
73f73415 3408 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3409 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3410 if (ret && ret != -ESTALE)
66b4ffd1 3411 goto out;
7b128766 3412
f8e9e0b0
AJ
3413 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3414 struct btrfs_root *dead_root;
3415 struct btrfs_fs_info *fs_info = root->fs_info;
3416 int is_dead_root = 0;
3417
3418 /*
3419 * this is an orphan in the tree root. Currently these
3420 * could come from 2 sources:
3421 * a) a snapshot deletion in progress
3422 * b) a free space cache inode
3423 * We need to distinguish those two, as the snapshot
3424 * orphan must not get deleted.
3425 * find_dead_roots already ran before us, so if this
3426 * is a snapshot deletion, we should find the root
3427 * in the dead_roots list
3428 */
3429 spin_lock(&fs_info->trans_lock);
3430 list_for_each_entry(dead_root, &fs_info->dead_roots,
3431 root_list) {
3432 if (dead_root->root_key.objectid ==
3433 found_key.objectid) {
3434 is_dead_root = 1;
3435 break;
3436 }
3437 }
3438 spin_unlock(&fs_info->trans_lock);
3439 if (is_dead_root) {
3440 /* prevent this orphan from being found again */
3441 key.offset = found_key.objectid - 1;
3442 continue;
3443 }
3444 }
7b128766 3445 /*
a8c9e576
JB
3446 * Inode is already gone but the orphan item is still there,
3447 * kill the orphan item.
7b128766 3448 */
a8c9e576
JB
3449 if (ret == -ESTALE) {
3450 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3451 if (IS_ERR(trans)) {
3452 ret = PTR_ERR(trans);
3453 goto out;
3454 }
c2cf52eb
SK
3455 btrfs_debug(root->fs_info, "auto deleting %Lu",
3456 found_key.objectid);
a8c9e576
JB
3457 ret = btrfs_del_orphan_item(trans, root,
3458 found_key.objectid);
5b21f2ed 3459 btrfs_end_transaction(trans, root);
4ef31a45
JB
3460 if (ret)
3461 goto out;
7b128766
JB
3462 continue;
3463 }
3464
a8c9e576
JB
3465 /*
3466 * add this inode to the orphan list so btrfs_orphan_del does
3467 * the proper thing when we hit it
3468 */
8a35d95f
JB
3469 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3470 &BTRFS_I(inode)->runtime_flags);
925396ec 3471 atomic_inc(&root->orphan_inodes);
a8c9e576 3472
7b128766
JB
3473 /* if we have links, this was a truncate, lets do that */
3474 if (inode->i_nlink) {
fae7f21c 3475 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3476 iput(inode);
3477 continue;
3478 }
7b128766 3479 nr_truncate++;
f3fe820c
JB
3480
3481 /* 1 for the orphan item deletion. */
3482 trans = btrfs_start_transaction(root, 1);
3483 if (IS_ERR(trans)) {
c69b26b0 3484 iput(inode);
f3fe820c
JB
3485 ret = PTR_ERR(trans);
3486 goto out;
3487 }
3488 ret = btrfs_orphan_add(trans, inode);
3489 btrfs_end_transaction(trans, root);
c69b26b0
JB
3490 if (ret) {
3491 iput(inode);
f3fe820c 3492 goto out;
c69b26b0 3493 }
f3fe820c 3494
66b4ffd1 3495 ret = btrfs_truncate(inode);
4a7d0f68
JB
3496 if (ret)
3497 btrfs_orphan_del(NULL, inode);
7b128766
JB
3498 } else {
3499 nr_unlink++;
3500 }
3501
3502 /* this will do delete_inode and everything for us */
3503 iput(inode);
66b4ffd1
JB
3504 if (ret)
3505 goto out;
7b128766 3506 }
3254c876
MX
3507 /* release the path since we're done with it */
3508 btrfs_release_path(path);
3509
d68fc57b
YZ
3510 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3511
3512 if (root->orphan_block_rsv)
3513 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3514 (u64)-1);
3515
27cdeb70
MX
3516 if (root->orphan_block_rsv ||
3517 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3518 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3519 if (!IS_ERR(trans))
3520 btrfs_end_transaction(trans, root);
d68fc57b 3521 }
7b128766
JB
3522
3523 if (nr_unlink)
4884b476 3524 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3525 if (nr_truncate)
4884b476 3526 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3527
3528out:
3529 if (ret)
68b663d1 3530 btrfs_err(root->fs_info,
c2cf52eb 3531 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3532 btrfs_free_path(path);
3533 return ret;
7b128766
JB
3534}
3535
46a53cca
CM
3536/*
3537 * very simple check to peek ahead in the leaf looking for xattrs. If we
3538 * don't find any xattrs, we know there can't be any acls.
3539 *
3540 * slot is the slot the inode is in, objectid is the objectid of the inode
3541 */
3542static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3543 int slot, u64 objectid,
3544 int *first_xattr_slot)
46a53cca
CM
3545{
3546 u32 nritems = btrfs_header_nritems(leaf);
3547 struct btrfs_key found_key;
f23b5a59
JB
3548 static u64 xattr_access = 0;
3549 static u64 xattr_default = 0;
46a53cca
CM
3550 int scanned = 0;
3551
f23b5a59
JB
3552 if (!xattr_access) {
3553 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3554 strlen(POSIX_ACL_XATTR_ACCESS));
3555 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3556 strlen(POSIX_ACL_XATTR_DEFAULT));
3557 }
3558
46a53cca 3559 slot++;
63541927 3560 *first_xattr_slot = -1;
46a53cca
CM
3561 while (slot < nritems) {
3562 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3563
3564 /* we found a different objectid, there must not be acls */
3565 if (found_key.objectid != objectid)
3566 return 0;
3567
3568 /* we found an xattr, assume we've got an acl */
f23b5a59 3569 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3570 if (*first_xattr_slot == -1)
3571 *first_xattr_slot = slot;
f23b5a59
JB
3572 if (found_key.offset == xattr_access ||
3573 found_key.offset == xattr_default)
3574 return 1;
3575 }
46a53cca
CM
3576
3577 /*
3578 * we found a key greater than an xattr key, there can't
3579 * be any acls later on
3580 */
3581 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3582 return 0;
3583
3584 slot++;
3585 scanned++;
3586
3587 /*
3588 * it goes inode, inode backrefs, xattrs, extents,
3589 * so if there are a ton of hard links to an inode there can
3590 * be a lot of backrefs. Don't waste time searching too hard,
3591 * this is just an optimization
3592 */
3593 if (scanned >= 8)
3594 break;
3595 }
3596 /* we hit the end of the leaf before we found an xattr or
3597 * something larger than an xattr. We have to assume the inode
3598 * has acls
3599 */
63541927
FDBM
3600 if (*first_xattr_slot == -1)
3601 *first_xattr_slot = slot;
46a53cca
CM
3602 return 1;
3603}
3604
d352ac68
CM
3605/*
3606 * read an inode from the btree into the in-memory inode
3607 */
5d4f98a2 3608static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3609{
3610 struct btrfs_path *path;
5f39d397 3611 struct extent_buffer *leaf;
39279cc3
CM
3612 struct btrfs_inode_item *inode_item;
3613 struct btrfs_root *root = BTRFS_I(inode)->root;
3614 struct btrfs_key location;
67de1176 3615 unsigned long ptr;
46a53cca 3616 int maybe_acls;
618e21d5 3617 u32 rdev;
39279cc3 3618 int ret;
2f7e33d4 3619 bool filled = false;
63541927 3620 int first_xattr_slot;
2f7e33d4
MX
3621
3622 ret = btrfs_fill_inode(inode, &rdev);
3623 if (!ret)
3624 filled = true;
39279cc3
CM
3625
3626 path = btrfs_alloc_path();
1748f843
MF
3627 if (!path)
3628 goto make_bad;
3629
39279cc3 3630 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3631
39279cc3 3632 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3633 if (ret)
39279cc3 3634 goto make_bad;
39279cc3 3635
5f39d397 3636 leaf = path->nodes[0];
2f7e33d4
MX
3637
3638 if (filled)
67de1176 3639 goto cache_index;
2f7e33d4 3640
5f39d397
CM
3641 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3642 struct btrfs_inode_item);
5f39d397 3643 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3644 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3645 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3646 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3647 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3648
a937b979
DS
3649 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3650 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3651
a937b979
DS
3652 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3653 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3654
a937b979
DS
3655 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3656 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3657
9cc97d64 3658 BTRFS_I(inode)->i_otime.tv_sec =
3659 btrfs_timespec_sec(leaf, &inode_item->otime);
3660 BTRFS_I(inode)->i_otime.tv_nsec =
3661 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3662
a76a3cd4 3663 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3664 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3665 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3666
6e17d30b
YD
3667 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3668 inode->i_generation = BTRFS_I(inode)->generation;
3669 inode->i_rdev = 0;
3670 rdev = btrfs_inode_rdev(leaf, inode_item);
3671
3672 BTRFS_I(inode)->index_cnt = (u64)-1;
3673 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3674
3675cache_index:
5dc562c5
JB
3676 /*
3677 * If we were modified in the current generation and evicted from memory
3678 * and then re-read we need to do a full sync since we don't have any
3679 * idea about which extents were modified before we were evicted from
3680 * cache.
6e17d30b
YD
3681 *
3682 * This is required for both inode re-read from disk and delayed inode
3683 * in delayed_nodes_tree.
5dc562c5
JB
3684 */
3685 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3686 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3687 &BTRFS_I(inode)->runtime_flags);
3688
bde6c242
FM
3689 /*
3690 * We don't persist the id of the transaction where an unlink operation
3691 * against the inode was last made. So here we assume the inode might
3692 * have been evicted, and therefore the exact value of last_unlink_trans
3693 * lost, and set it to last_trans to avoid metadata inconsistencies
3694 * between the inode and its parent if the inode is fsync'ed and the log
3695 * replayed. For example, in the scenario:
3696 *
3697 * touch mydir/foo
3698 * ln mydir/foo mydir/bar
3699 * sync
3700 * unlink mydir/bar
3701 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3702 * xfs_io -c fsync mydir/foo
3703 * <power failure>
3704 * mount fs, triggers fsync log replay
3705 *
3706 * We must make sure that when we fsync our inode foo we also log its
3707 * parent inode, otherwise after log replay the parent still has the
3708 * dentry with the "bar" name but our inode foo has a link count of 1
3709 * and doesn't have an inode ref with the name "bar" anymore.
3710 *
3711 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3712 * but it guarantees correctness at the expense of ocassional full
3713 * transaction commits on fsync if our inode is a directory, or if our
3714 * inode is not a directory, logging its parent unnecessarily.
3715 */
3716 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3717
67de1176
MX
3718 path->slots[0]++;
3719 if (inode->i_nlink != 1 ||
3720 path->slots[0] >= btrfs_header_nritems(leaf))
3721 goto cache_acl;
3722
3723 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3724 if (location.objectid != btrfs_ino(inode))
3725 goto cache_acl;
3726
3727 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3728 if (location.type == BTRFS_INODE_REF_KEY) {
3729 struct btrfs_inode_ref *ref;
3730
3731 ref = (struct btrfs_inode_ref *)ptr;
3732 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3733 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3734 struct btrfs_inode_extref *extref;
3735
3736 extref = (struct btrfs_inode_extref *)ptr;
3737 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3738 extref);
3739 }
2f7e33d4 3740cache_acl:
46a53cca
CM
3741 /*
3742 * try to precache a NULL acl entry for files that don't have
3743 * any xattrs or acls
3744 */
33345d01 3745 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3746 btrfs_ino(inode), &first_xattr_slot);
3747 if (first_xattr_slot != -1) {
3748 path->slots[0] = first_xattr_slot;
3749 ret = btrfs_load_inode_props(inode, path);
3750 if (ret)
3751 btrfs_err(root->fs_info,
351fd353 3752 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3753 btrfs_ino(inode),
3754 root->root_key.objectid, ret);
3755 }
3756 btrfs_free_path(path);
3757
72c04902
AV
3758 if (!maybe_acls)
3759 cache_no_acl(inode);
46a53cca 3760
39279cc3 3761 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3762 case S_IFREG:
3763 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3764 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3765 inode->i_fop = &btrfs_file_operations;
3766 inode->i_op = &btrfs_file_inode_operations;
3767 break;
3768 case S_IFDIR:
3769 inode->i_fop = &btrfs_dir_file_operations;
3770 if (root == root->fs_info->tree_root)
3771 inode->i_op = &btrfs_dir_ro_inode_operations;
3772 else
3773 inode->i_op = &btrfs_dir_inode_operations;
3774 break;
3775 case S_IFLNK:
3776 inode->i_op = &btrfs_symlink_inode_operations;
3777 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3778 break;
618e21d5 3779 default:
0279b4cd 3780 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3781 init_special_inode(inode, inode->i_mode, rdev);
3782 break;
39279cc3 3783 }
6cbff00f
CH
3784
3785 btrfs_update_iflags(inode);
39279cc3
CM
3786 return;
3787
3788make_bad:
39279cc3 3789 btrfs_free_path(path);
39279cc3
CM
3790 make_bad_inode(inode);
3791}
3792
d352ac68
CM
3793/*
3794 * given a leaf and an inode, copy the inode fields into the leaf
3795 */
e02119d5
CM
3796static void fill_inode_item(struct btrfs_trans_handle *trans,
3797 struct extent_buffer *leaf,
5f39d397 3798 struct btrfs_inode_item *item,
39279cc3
CM
3799 struct inode *inode)
3800{
51fab693
LB
3801 struct btrfs_map_token token;
3802
3803 btrfs_init_map_token(&token);
5f39d397 3804
51fab693
LB
3805 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3806 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3807 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3808 &token);
3809 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3810 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3811
a937b979 3812 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3813 inode->i_atime.tv_sec, &token);
a937b979 3814 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3815 inode->i_atime.tv_nsec, &token);
5f39d397 3816
a937b979 3817 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3818 inode->i_mtime.tv_sec, &token);
a937b979 3819 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3820 inode->i_mtime.tv_nsec, &token);
5f39d397 3821
a937b979 3822 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3823 inode->i_ctime.tv_sec, &token);
a937b979 3824 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3825 inode->i_ctime.tv_nsec, &token);
5f39d397 3826
9cc97d64 3827 btrfs_set_token_timespec_sec(leaf, &item->otime,
3828 BTRFS_I(inode)->i_otime.tv_sec, &token);
3829 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3830 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3831
51fab693
LB
3832 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3833 &token);
3834 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3835 &token);
3836 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3837 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3838 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3839 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3840 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3841}
3842
d352ac68
CM
3843/*
3844 * copy everything in the in-memory inode into the btree.
3845 */
2115133f 3846static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3847 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3848{
3849 struct btrfs_inode_item *inode_item;
3850 struct btrfs_path *path;
5f39d397 3851 struct extent_buffer *leaf;
39279cc3
CM
3852 int ret;
3853
3854 path = btrfs_alloc_path();
16cdcec7
MX
3855 if (!path)
3856 return -ENOMEM;
3857
b9473439 3858 path->leave_spinning = 1;
16cdcec7
MX
3859 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3860 1);
39279cc3
CM
3861 if (ret) {
3862 if (ret > 0)
3863 ret = -ENOENT;
3864 goto failed;
3865 }
3866
5f39d397
CM
3867 leaf = path->nodes[0];
3868 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3869 struct btrfs_inode_item);
39279cc3 3870
e02119d5 3871 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3872 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3873 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3874 ret = 0;
3875failed:
39279cc3
CM
3876 btrfs_free_path(path);
3877 return ret;
3878}
3879
2115133f
CM
3880/*
3881 * copy everything in the in-memory inode into the btree.
3882 */
3883noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3884 struct btrfs_root *root, struct inode *inode)
3885{
3886 int ret;
3887
3888 /*
3889 * If the inode is a free space inode, we can deadlock during commit
3890 * if we put it into the delayed code.
3891 *
3892 * The data relocation inode should also be directly updated
3893 * without delay
3894 */
83eea1f1 3895 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3896 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3897 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3898 btrfs_update_root_times(trans, root);
3899
2115133f
CM
3900 ret = btrfs_delayed_update_inode(trans, root, inode);
3901 if (!ret)
3902 btrfs_set_inode_last_trans(trans, inode);
3903 return ret;
3904 }
3905
3906 return btrfs_update_inode_item(trans, root, inode);
3907}
3908
be6aef60
JB
3909noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3910 struct btrfs_root *root,
3911 struct inode *inode)
2115133f
CM
3912{
3913 int ret;
3914
3915 ret = btrfs_update_inode(trans, root, inode);
3916 if (ret == -ENOSPC)
3917 return btrfs_update_inode_item(trans, root, inode);
3918 return ret;
3919}
3920
d352ac68
CM
3921/*
3922 * unlink helper that gets used here in inode.c and in the tree logging
3923 * recovery code. It remove a link in a directory with a given name, and
3924 * also drops the back refs in the inode to the directory
3925 */
92986796
AV
3926static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3927 struct btrfs_root *root,
3928 struct inode *dir, struct inode *inode,
3929 const char *name, int name_len)
39279cc3
CM
3930{
3931 struct btrfs_path *path;
39279cc3 3932 int ret = 0;
5f39d397 3933 struct extent_buffer *leaf;
39279cc3 3934 struct btrfs_dir_item *di;
5f39d397 3935 struct btrfs_key key;
aec7477b 3936 u64 index;
33345d01
LZ
3937 u64 ino = btrfs_ino(inode);
3938 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3939
3940 path = btrfs_alloc_path();
54aa1f4d
CM
3941 if (!path) {
3942 ret = -ENOMEM;
554233a6 3943 goto out;
54aa1f4d
CM
3944 }
3945
b9473439 3946 path->leave_spinning = 1;
33345d01 3947 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3948 name, name_len, -1);
3949 if (IS_ERR(di)) {
3950 ret = PTR_ERR(di);
3951 goto err;
3952 }
3953 if (!di) {
3954 ret = -ENOENT;
3955 goto err;
3956 }
5f39d397
CM
3957 leaf = path->nodes[0];
3958 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3959 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3960 if (ret)
3961 goto err;
b3b4aa74 3962 btrfs_release_path(path);
39279cc3 3963
67de1176
MX
3964 /*
3965 * If we don't have dir index, we have to get it by looking up
3966 * the inode ref, since we get the inode ref, remove it directly,
3967 * it is unnecessary to do delayed deletion.
3968 *
3969 * But if we have dir index, needn't search inode ref to get it.
3970 * Since the inode ref is close to the inode item, it is better
3971 * that we delay to delete it, and just do this deletion when
3972 * we update the inode item.
3973 */
3974 if (BTRFS_I(inode)->dir_index) {
3975 ret = btrfs_delayed_delete_inode_ref(inode);
3976 if (!ret) {
3977 index = BTRFS_I(inode)->dir_index;
3978 goto skip_backref;
3979 }
3980 }
3981
33345d01
LZ
3982 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3983 dir_ino, &index);
aec7477b 3984 if (ret) {
c2cf52eb
SK
3985 btrfs_info(root->fs_info,
3986 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3987 name_len, name, ino, dir_ino);
79787eaa 3988 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3989 goto err;
3990 }
67de1176 3991skip_backref:
16cdcec7 3992 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3993 if (ret) {
3994 btrfs_abort_transaction(trans, root, ret);
39279cc3 3995 goto err;
79787eaa 3996 }
39279cc3 3997
e02119d5 3998 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3999 inode, dir_ino);
79787eaa
JM
4000 if (ret != 0 && ret != -ENOENT) {
4001 btrfs_abort_transaction(trans, root, ret);
4002 goto err;
4003 }
e02119d5
CM
4004
4005 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4006 dir, index);
6418c961
CM
4007 if (ret == -ENOENT)
4008 ret = 0;
d4e3991b
ZB
4009 else if (ret)
4010 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
4011err:
4012 btrfs_free_path(path);
e02119d5
CM
4013 if (ret)
4014 goto out;
4015
4016 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4017 inode_inc_iversion(inode);
4018 inode_inc_iversion(dir);
e02119d5 4019 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 4020 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4021out:
39279cc3
CM
4022 return ret;
4023}
4024
92986796
AV
4025int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4026 struct btrfs_root *root,
4027 struct inode *dir, struct inode *inode,
4028 const char *name, int name_len)
4029{
4030 int ret;
4031 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4032 if (!ret) {
8b558c5f 4033 drop_nlink(inode);
92986796
AV
4034 ret = btrfs_update_inode(trans, root, inode);
4035 }
4036 return ret;
4037}
39279cc3 4038
a22285a6
YZ
4039/*
4040 * helper to start transaction for unlink and rmdir.
4041 *
d52be818
JB
4042 * unlink and rmdir are special in btrfs, they do not always free space, so
4043 * if we cannot make our reservations the normal way try and see if there is
4044 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4045 * allow the unlink to occur.
a22285a6 4046 */
d52be818 4047static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4048{
39279cc3 4049 struct btrfs_trans_handle *trans;
a22285a6 4050 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
4051 int ret;
4052
e70bea5f
JB
4053 /*
4054 * 1 for the possible orphan item
4055 * 1 for the dir item
4056 * 1 for the dir index
4057 * 1 for the inode ref
e70bea5f
JB
4058 * 1 for the inode
4059 */
6e137ed3 4060 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4061 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
4062 return trans;
4df27c4d 4063
d52be818
JB
4064 if (PTR_ERR(trans) == -ENOSPC) {
4065 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 4066
d52be818
JB
4067 trans = btrfs_start_transaction(root, 0);
4068 if (IS_ERR(trans))
4069 return trans;
4070 ret = btrfs_cond_migrate_bytes(root->fs_info,
4071 &root->fs_info->trans_block_rsv,
4072 num_bytes, 5);
4073 if (ret) {
4074 btrfs_end_transaction(trans, root);
4075 return ERR_PTR(ret);
a22285a6 4076 }
5a77d76c 4077 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 4078 trans->bytes_reserved = num_bytes;
a22285a6 4079 }
d52be818 4080 return trans;
a22285a6
YZ
4081}
4082
4083static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4084{
4085 struct btrfs_root *root = BTRFS_I(dir)->root;
4086 struct btrfs_trans_handle *trans;
2b0143b5 4087 struct inode *inode = d_inode(dentry);
a22285a6 4088 int ret;
a22285a6 4089
d52be818 4090 trans = __unlink_start_trans(dir);
a22285a6
YZ
4091 if (IS_ERR(trans))
4092 return PTR_ERR(trans);
5f39d397 4093
2b0143b5 4094 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4095
2b0143b5 4096 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4097 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4098 if (ret)
4099 goto out;
7b128766 4100
a22285a6 4101 if (inode->i_nlink == 0) {
7b128766 4102 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4103 if (ret)
4104 goto out;
a22285a6 4105 }
7b128766 4106
b532402e 4107out:
d52be818 4108 btrfs_end_transaction(trans, root);
b53d3f5d 4109 btrfs_btree_balance_dirty(root);
39279cc3
CM
4110 return ret;
4111}
4112
4df27c4d
YZ
4113int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4114 struct btrfs_root *root,
4115 struct inode *dir, u64 objectid,
4116 const char *name, int name_len)
4117{
4118 struct btrfs_path *path;
4119 struct extent_buffer *leaf;
4120 struct btrfs_dir_item *di;
4121 struct btrfs_key key;
4122 u64 index;
4123 int ret;
33345d01 4124 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4125
4126 path = btrfs_alloc_path();
4127 if (!path)
4128 return -ENOMEM;
4129
33345d01 4130 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4131 name, name_len, -1);
79787eaa
JM
4132 if (IS_ERR_OR_NULL(di)) {
4133 if (!di)
4134 ret = -ENOENT;
4135 else
4136 ret = PTR_ERR(di);
4137 goto out;
4138 }
4df27c4d
YZ
4139
4140 leaf = path->nodes[0];
4141 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4142 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4143 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
4144 if (ret) {
4145 btrfs_abort_transaction(trans, root, ret);
4146 goto out;
4147 }
b3b4aa74 4148 btrfs_release_path(path);
4df27c4d
YZ
4149
4150 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4151 objectid, root->root_key.objectid,
33345d01 4152 dir_ino, &index, name, name_len);
4df27c4d 4153 if (ret < 0) {
79787eaa
JM
4154 if (ret != -ENOENT) {
4155 btrfs_abort_transaction(trans, root, ret);
4156 goto out;
4157 }
33345d01 4158 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4159 name, name_len);
79787eaa
JM
4160 if (IS_ERR_OR_NULL(di)) {
4161 if (!di)
4162 ret = -ENOENT;
4163 else
4164 ret = PTR_ERR(di);
4165 btrfs_abort_transaction(trans, root, ret);
4166 goto out;
4167 }
4df27c4d
YZ
4168
4169 leaf = path->nodes[0];
4170 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4171 btrfs_release_path(path);
4df27c4d
YZ
4172 index = key.offset;
4173 }
945d8962 4174 btrfs_release_path(path);
4df27c4d 4175
16cdcec7 4176 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4177 if (ret) {
4178 btrfs_abort_transaction(trans, root, ret);
4179 goto out;
4180 }
4df27c4d
YZ
4181
4182 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4183 inode_inc_iversion(dir);
4df27c4d 4184 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 4185 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4186 if (ret)
4187 btrfs_abort_transaction(trans, root, ret);
4188out:
71d7aed0 4189 btrfs_free_path(path);
79787eaa 4190 return ret;
4df27c4d
YZ
4191}
4192
39279cc3
CM
4193static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4194{
2b0143b5 4195 struct inode *inode = d_inode(dentry);
1832a6d5 4196 int err = 0;
39279cc3 4197 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4198 struct btrfs_trans_handle *trans;
39279cc3 4199
b3ae244e 4200 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4201 return -ENOTEMPTY;
b3ae244e
DS
4202 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4203 return -EPERM;
134d4512 4204
d52be818 4205 trans = __unlink_start_trans(dir);
a22285a6 4206 if (IS_ERR(trans))
5df6a9f6 4207 return PTR_ERR(trans);
5df6a9f6 4208
33345d01 4209 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4210 err = btrfs_unlink_subvol(trans, root, dir,
4211 BTRFS_I(inode)->location.objectid,
4212 dentry->d_name.name,
4213 dentry->d_name.len);
4214 goto out;
4215 }
4216
7b128766
JB
4217 err = btrfs_orphan_add(trans, inode);
4218 if (err)
4df27c4d 4219 goto out;
7b128766 4220
39279cc3 4221 /* now the directory is empty */
2b0143b5 4222 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4223 dentry->d_name.name, dentry->d_name.len);
d397712b 4224 if (!err)
dbe674a9 4225 btrfs_i_size_write(inode, 0);
4df27c4d 4226out:
d52be818 4227 btrfs_end_transaction(trans, root);
b53d3f5d 4228 btrfs_btree_balance_dirty(root);
3954401f 4229
39279cc3
CM
4230 return err;
4231}
4232
28f75a0e
CM
4233static int truncate_space_check(struct btrfs_trans_handle *trans,
4234 struct btrfs_root *root,
4235 u64 bytes_deleted)
4236{
4237 int ret;
4238
4239 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4240 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4241 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4242 if (!ret)
4243 trans->bytes_reserved += bytes_deleted;
4244 return ret;
4245
4246}
4247
0305cd5f
FM
4248static int truncate_inline_extent(struct inode *inode,
4249 struct btrfs_path *path,
4250 struct btrfs_key *found_key,
4251 const u64 item_end,
4252 const u64 new_size)
4253{
4254 struct extent_buffer *leaf = path->nodes[0];
4255 int slot = path->slots[0];
4256 struct btrfs_file_extent_item *fi;
4257 u32 size = (u32)(new_size - found_key->offset);
4258 struct btrfs_root *root = BTRFS_I(inode)->root;
4259
4260 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4261
4262 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4263 loff_t offset = new_size;
4264 loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4265
4266 /*
4267 * Zero out the remaining of the last page of our inline extent,
4268 * instead of directly truncating our inline extent here - that
4269 * would be much more complex (decompressing all the data, then
4270 * compressing the truncated data, which might be bigger than
4271 * the size of the inline extent, resize the extent, etc).
4272 * We release the path because to get the page we might need to
4273 * read the extent item from disk (data not in the page cache).
4274 */
4275 btrfs_release_path(path);
4276 return btrfs_truncate_page(inode, offset, page_end - offset, 0);
4277 }
4278
4279 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4280 size = btrfs_file_extent_calc_inline_size(size);
4281 btrfs_truncate_item(root, path, size, 1);
4282
4283 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4284 inode_sub_bytes(inode, item_end + 1 - new_size);
4285
4286 return 0;
4287}
4288
39279cc3
CM
4289/*
4290 * this can truncate away extent items, csum items and directory items.
4291 * It starts at a high offset and removes keys until it can't find
d352ac68 4292 * any higher than new_size
39279cc3
CM
4293 *
4294 * csum items that cross the new i_size are truncated to the new size
4295 * as well.
7b128766
JB
4296 *
4297 * min_type is the minimum key type to truncate down to. If set to 0, this
4298 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4299 */
8082510e
YZ
4300int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4301 struct btrfs_root *root,
4302 struct inode *inode,
4303 u64 new_size, u32 min_type)
39279cc3 4304{
39279cc3 4305 struct btrfs_path *path;
5f39d397 4306 struct extent_buffer *leaf;
39279cc3 4307 struct btrfs_file_extent_item *fi;
8082510e
YZ
4308 struct btrfs_key key;
4309 struct btrfs_key found_key;
39279cc3 4310 u64 extent_start = 0;
db94535d 4311 u64 extent_num_bytes = 0;
5d4f98a2 4312 u64 extent_offset = 0;
39279cc3 4313 u64 item_end = 0;
c1aa4575 4314 u64 last_size = new_size;
8082510e 4315 u32 found_type = (u8)-1;
39279cc3
CM
4316 int found_extent;
4317 int del_item;
85e21bac
CM
4318 int pending_del_nr = 0;
4319 int pending_del_slot = 0;
179e29e4 4320 int extent_type = -1;
8082510e
YZ
4321 int ret;
4322 int err = 0;
33345d01 4323 u64 ino = btrfs_ino(inode);
28ed1345 4324 u64 bytes_deleted = 0;
1262133b
JB
4325 bool be_nice = 0;
4326 bool should_throttle = 0;
28f75a0e 4327 bool should_end = 0;
8082510e
YZ
4328
4329 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4330
28ed1345
CM
4331 /*
4332 * for non-free space inodes and ref cows, we want to back off from
4333 * time to time
4334 */
4335 if (!btrfs_is_free_space_inode(inode) &&
4336 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4337 be_nice = 1;
4338
0eb0e19c
MF
4339 path = btrfs_alloc_path();
4340 if (!path)
4341 return -ENOMEM;
4342 path->reada = -1;
4343
5dc562c5
JB
4344 /*
4345 * We want to drop from the next block forward in case this new size is
4346 * not block aligned since we will be keeping the last block of the
4347 * extent just the way it is.
4348 */
27cdeb70
MX
4349 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4350 root == root->fs_info->tree_root)
fda2832f
QW
4351 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4352 root->sectorsize), (u64)-1, 0);
8082510e 4353
16cdcec7
MX
4354 /*
4355 * This function is also used to drop the items in the log tree before
4356 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4357 * it is used to drop the loged items. So we shouldn't kill the delayed
4358 * items.
4359 */
4360 if (min_type == 0 && root == BTRFS_I(inode)->root)
4361 btrfs_kill_delayed_inode_items(inode);
4362
33345d01 4363 key.objectid = ino;
39279cc3 4364 key.offset = (u64)-1;
5f39d397
CM
4365 key.type = (u8)-1;
4366
85e21bac 4367search_again:
28ed1345
CM
4368 /*
4369 * with a 16K leaf size and 128MB extents, you can actually queue
4370 * up a huge file in a single leaf. Most of the time that
4371 * bytes_deleted is > 0, it will be huge by the time we get here
4372 */
4373 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4374 if (btrfs_should_end_transaction(trans, root)) {
4375 err = -EAGAIN;
4376 goto error;
4377 }
4378 }
4379
4380
b9473439 4381 path->leave_spinning = 1;
85e21bac 4382 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4383 if (ret < 0) {
4384 err = ret;
4385 goto out;
4386 }
d397712b 4387
85e21bac 4388 if (ret > 0) {
e02119d5
CM
4389 /* there are no items in the tree for us to truncate, we're
4390 * done
4391 */
8082510e
YZ
4392 if (path->slots[0] == 0)
4393 goto out;
85e21bac
CM
4394 path->slots[0]--;
4395 }
4396
d397712b 4397 while (1) {
39279cc3 4398 fi = NULL;
5f39d397
CM
4399 leaf = path->nodes[0];
4400 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4401 found_type = found_key.type;
39279cc3 4402
33345d01 4403 if (found_key.objectid != ino)
39279cc3 4404 break;
5f39d397 4405
85e21bac 4406 if (found_type < min_type)
39279cc3
CM
4407 break;
4408
5f39d397 4409 item_end = found_key.offset;
39279cc3 4410 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4411 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4412 struct btrfs_file_extent_item);
179e29e4
CM
4413 extent_type = btrfs_file_extent_type(leaf, fi);
4414 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4415 item_end +=
db94535d 4416 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4417 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4418 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4419 path->slots[0], fi);
39279cc3 4420 }
008630c1 4421 item_end--;
39279cc3 4422 }
8082510e
YZ
4423 if (found_type > min_type) {
4424 del_item = 1;
4425 } else {
4426 if (item_end < new_size)
b888db2b 4427 break;
8082510e
YZ
4428 if (found_key.offset >= new_size)
4429 del_item = 1;
4430 else
4431 del_item = 0;
39279cc3 4432 }
39279cc3 4433 found_extent = 0;
39279cc3 4434 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4435 if (found_type != BTRFS_EXTENT_DATA_KEY)
4436 goto delete;
4437
7f4f6e0a
JB
4438 if (del_item)
4439 last_size = found_key.offset;
4440 else
4441 last_size = new_size;
4442
179e29e4 4443 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4444 u64 num_dec;
db94535d 4445 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4446 if (!del_item) {
db94535d
CM
4447 u64 orig_num_bytes =
4448 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4449 extent_num_bytes = ALIGN(new_size -
4450 found_key.offset,
4451 root->sectorsize);
db94535d
CM
4452 btrfs_set_file_extent_num_bytes(leaf, fi,
4453 extent_num_bytes);
4454 num_dec = (orig_num_bytes -
9069218d 4455 extent_num_bytes);
27cdeb70
MX
4456 if (test_bit(BTRFS_ROOT_REF_COWS,
4457 &root->state) &&
4458 extent_start != 0)
a76a3cd4 4459 inode_sub_bytes(inode, num_dec);
5f39d397 4460 btrfs_mark_buffer_dirty(leaf);
39279cc3 4461 } else {
db94535d
CM
4462 extent_num_bytes =
4463 btrfs_file_extent_disk_num_bytes(leaf,
4464 fi);
5d4f98a2
YZ
4465 extent_offset = found_key.offset -
4466 btrfs_file_extent_offset(leaf, fi);
4467
39279cc3 4468 /* FIXME blocksize != 4096 */
9069218d 4469 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4470 if (extent_start != 0) {
4471 found_extent = 1;
27cdeb70
MX
4472 if (test_bit(BTRFS_ROOT_REF_COWS,
4473 &root->state))
a76a3cd4 4474 inode_sub_bytes(inode, num_dec);
e02119d5 4475 }
39279cc3 4476 }
9069218d 4477 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4478 /*
4479 * we can't truncate inline items that have had
4480 * special encodings
4481 */
4482 if (!del_item &&
c8b97818
CM
4483 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4484 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4485
4486 /*
0305cd5f
FM
4487 * Need to release path in order to truncate a
4488 * compressed extent. So delete any accumulated
4489 * extent items so far.
514ac8ad 4490 */
0305cd5f
FM
4491 if (btrfs_file_extent_compression(leaf, fi) !=
4492 BTRFS_COMPRESS_NONE && pending_del_nr) {
4493 err = btrfs_del_items(trans, root, path,
4494 pending_del_slot,
4495 pending_del_nr);
4496 if (err) {
4497 btrfs_abort_transaction(trans,
4498 root,
4499 err);
4500 goto error;
4501 }
4502 pending_del_nr = 0;
4503 }
4504
4505 err = truncate_inline_extent(inode, path,
4506 &found_key,
4507 item_end,
4508 new_size);
4509 if (err) {
4510 btrfs_abort_transaction(trans,
4511 root, err);
4512 goto error;
4513 }
27cdeb70
MX
4514 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4515 &root->state)) {
0305cd5f 4516 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4517 }
39279cc3 4518 }
179e29e4 4519delete:
39279cc3 4520 if (del_item) {
85e21bac
CM
4521 if (!pending_del_nr) {
4522 /* no pending yet, add ourselves */
4523 pending_del_slot = path->slots[0];
4524 pending_del_nr = 1;
4525 } else if (pending_del_nr &&
4526 path->slots[0] + 1 == pending_del_slot) {
4527 /* hop on the pending chunk */
4528 pending_del_nr++;
4529 pending_del_slot = path->slots[0];
4530 } else {
d397712b 4531 BUG();
85e21bac 4532 }
39279cc3
CM
4533 } else {
4534 break;
4535 }
28f75a0e
CM
4536 should_throttle = 0;
4537
27cdeb70
MX
4538 if (found_extent &&
4539 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4540 root == root->fs_info->tree_root)) {
b9473439 4541 btrfs_set_path_blocking(path);
28ed1345 4542 bytes_deleted += extent_num_bytes;
39279cc3 4543 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4544 extent_num_bytes, 0,
4545 btrfs_header_owner(leaf),
b06c4bf5 4546 ino, extent_offset);
39279cc3 4547 BUG_ON(ret);
1262133b 4548 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345
CM
4549 btrfs_async_run_delayed_refs(root,
4550 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4551 if (be_nice) {
4552 if (truncate_space_check(trans, root,
4553 extent_num_bytes)) {
4554 should_end = 1;
4555 }
4556 if (btrfs_should_throttle_delayed_refs(trans,
4557 root)) {
4558 should_throttle = 1;
4559 }
4560 }
39279cc3 4561 }
85e21bac 4562
8082510e
YZ
4563 if (found_type == BTRFS_INODE_ITEM_KEY)
4564 break;
4565
4566 if (path->slots[0] == 0 ||
1262133b 4567 path->slots[0] != pending_del_slot ||
28f75a0e 4568 should_throttle || should_end) {
8082510e
YZ
4569 if (pending_del_nr) {
4570 ret = btrfs_del_items(trans, root, path,
4571 pending_del_slot,
4572 pending_del_nr);
79787eaa
JM
4573 if (ret) {
4574 btrfs_abort_transaction(trans,
4575 root, ret);
4576 goto error;
4577 }
8082510e
YZ
4578 pending_del_nr = 0;
4579 }
b3b4aa74 4580 btrfs_release_path(path);
28f75a0e 4581 if (should_throttle) {
1262133b
JB
4582 unsigned long updates = trans->delayed_ref_updates;
4583 if (updates) {
4584 trans->delayed_ref_updates = 0;
4585 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4586 if (ret && !err)
4587 err = ret;
4588 }
4589 }
28f75a0e
CM
4590 /*
4591 * if we failed to refill our space rsv, bail out
4592 * and let the transaction restart
4593 */
4594 if (should_end) {
4595 err = -EAGAIN;
4596 goto error;
4597 }
85e21bac 4598 goto search_again;
8082510e
YZ
4599 } else {
4600 path->slots[0]--;
85e21bac 4601 }
39279cc3 4602 }
8082510e 4603out:
85e21bac
CM
4604 if (pending_del_nr) {
4605 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4606 pending_del_nr);
79787eaa
JM
4607 if (ret)
4608 btrfs_abort_transaction(trans, root, ret);
85e21bac 4609 }
79787eaa 4610error:
c1aa4575 4611 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4612 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4613
39279cc3 4614 btrfs_free_path(path);
28ed1345 4615
28f75a0e 4616 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
28ed1345
CM
4617 unsigned long updates = trans->delayed_ref_updates;
4618 if (updates) {
4619 trans->delayed_ref_updates = 0;
4620 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4621 if (ret && !err)
4622 err = ret;
4623 }
4624 }
8082510e 4625 return err;
39279cc3
CM
4626}
4627
4628/*
2aaa6655
JB
4629 * btrfs_truncate_page - read, zero a chunk and write a page
4630 * @inode - inode that we're zeroing
4631 * @from - the offset to start zeroing
4632 * @len - the length to zero, 0 to zero the entire range respective to the
4633 * offset
4634 * @front - zero up to the offset instead of from the offset on
4635 *
4636 * This will find the page for the "from" offset and cow the page and zero the
4637 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4638 */
2aaa6655
JB
4639int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4640 int front)
39279cc3 4641{
2aaa6655 4642 struct address_space *mapping = inode->i_mapping;
db94535d 4643 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4644 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4645 struct btrfs_ordered_extent *ordered;
2ac55d41 4646 struct extent_state *cached_state = NULL;
e6dcd2dc 4647 char *kaddr;
db94535d 4648 u32 blocksize = root->sectorsize;
39279cc3
CM
4649 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4650 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4651 struct page *page;
3b16a4e3 4652 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4653 int ret = 0;
a52d9a80 4654 u64 page_start;
e6dcd2dc 4655 u64 page_end;
39279cc3 4656
2aaa6655
JB
4657 if ((offset & (blocksize - 1)) == 0 &&
4658 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4659 goto out;
7cf5b976 4660 ret = btrfs_delalloc_reserve_space(inode,
df480633 4661 round_down(from, PAGE_CACHE_SIZE), PAGE_CACHE_SIZE);
5d5e103a
JB
4662 if (ret)
4663 goto out;
39279cc3 4664
211c17f5 4665again:
3b16a4e3 4666 page = find_or_create_page(mapping, index, mask);
5d5e103a 4667 if (!page) {
7cf5b976 4668 btrfs_delalloc_release_space(inode,
df480633
QW
4669 round_down(from, PAGE_CACHE_SIZE),
4670 PAGE_CACHE_SIZE);
ac6a2b36 4671 ret = -ENOMEM;
39279cc3 4672 goto out;
5d5e103a 4673 }
e6dcd2dc
CM
4674
4675 page_start = page_offset(page);
4676 page_end = page_start + PAGE_CACHE_SIZE - 1;
4677
39279cc3 4678 if (!PageUptodate(page)) {
9ebefb18 4679 ret = btrfs_readpage(NULL, page);
39279cc3 4680 lock_page(page);
211c17f5
CM
4681 if (page->mapping != mapping) {
4682 unlock_page(page);
4683 page_cache_release(page);
4684 goto again;
4685 }
39279cc3
CM
4686 if (!PageUptodate(page)) {
4687 ret = -EIO;
89642229 4688 goto out_unlock;
39279cc3
CM
4689 }
4690 }
211c17f5 4691 wait_on_page_writeback(page);
e6dcd2dc 4692
d0082371 4693 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4694 set_page_extent_mapped(page);
4695
4696 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4697 if (ordered) {
2ac55d41
JB
4698 unlock_extent_cached(io_tree, page_start, page_end,
4699 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4700 unlock_page(page);
4701 page_cache_release(page);
eb84ae03 4702 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4703 btrfs_put_ordered_extent(ordered);
4704 goto again;
4705 }
4706
2ac55d41 4707 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4708 EXTENT_DIRTY | EXTENT_DELALLOC |
4709 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4710 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4711
2ac55d41
JB
4712 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4713 &cached_state);
9ed74f2d 4714 if (ret) {
2ac55d41
JB
4715 unlock_extent_cached(io_tree, page_start, page_end,
4716 &cached_state, GFP_NOFS);
9ed74f2d
JB
4717 goto out_unlock;
4718 }
4719
e6dcd2dc 4720 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4721 if (!len)
4722 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4723 kaddr = kmap(page);
2aaa6655
JB
4724 if (front)
4725 memset(kaddr, 0, offset);
4726 else
4727 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4728 flush_dcache_page(page);
4729 kunmap(page);
4730 }
247e743c 4731 ClearPageChecked(page);
e6dcd2dc 4732 set_page_dirty(page);
2ac55d41
JB
4733 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4734 GFP_NOFS);
39279cc3 4735
89642229 4736out_unlock:
5d5e103a 4737 if (ret)
7cf5b976
QW
4738 btrfs_delalloc_release_space(inode, page_start,
4739 PAGE_CACHE_SIZE);
39279cc3
CM
4740 unlock_page(page);
4741 page_cache_release(page);
4742out:
4743 return ret;
4744}
4745
16e7549f
JB
4746static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4747 u64 offset, u64 len)
4748{
4749 struct btrfs_trans_handle *trans;
4750 int ret;
4751
4752 /*
4753 * Still need to make sure the inode looks like it's been updated so
4754 * that any holes get logged if we fsync.
4755 */
4756 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4757 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4758 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4759 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4760 return 0;
4761 }
4762
4763 /*
4764 * 1 - for the one we're dropping
4765 * 1 - for the one we're adding
4766 * 1 - for updating the inode.
4767 */
4768 trans = btrfs_start_transaction(root, 3);
4769 if (IS_ERR(trans))
4770 return PTR_ERR(trans);
4771
4772 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4773 if (ret) {
4774 btrfs_abort_transaction(trans, root, ret);
4775 btrfs_end_transaction(trans, root);
4776 return ret;
4777 }
4778
4779 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4780 0, 0, len, 0, len, 0, 0, 0);
4781 if (ret)
4782 btrfs_abort_transaction(trans, root, ret);
4783 else
4784 btrfs_update_inode(trans, root, inode);
4785 btrfs_end_transaction(trans, root);
4786 return ret;
4787}
4788
695a0d0d
JB
4789/*
4790 * This function puts in dummy file extents for the area we're creating a hole
4791 * for. So if we are truncating this file to a larger size we need to insert
4792 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4793 * the range between oldsize and size
4794 */
a41ad394 4795int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4796{
9036c102
YZ
4797 struct btrfs_root *root = BTRFS_I(inode)->root;
4798 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4799 struct extent_map *em = NULL;
2ac55d41 4800 struct extent_state *cached_state = NULL;
5dc562c5 4801 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4802 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4803 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4804 u64 last_byte;
4805 u64 cur_offset;
4806 u64 hole_size;
9ed74f2d 4807 int err = 0;
39279cc3 4808
a71754fc
JB
4809 /*
4810 * If our size started in the middle of a page we need to zero out the
4811 * rest of the page before we expand the i_size, otherwise we could
4812 * expose stale data.
4813 */
4814 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4815 if (err)
4816 return err;
4817
9036c102
YZ
4818 if (size <= hole_start)
4819 return 0;
4820
9036c102
YZ
4821 while (1) {
4822 struct btrfs_ordered_extent *ordered;
fa7c1494 4823
2ac55d41 4824 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4825 &cached_state);
fa7c1494
MX
4826 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4827 block_end - hole_start);
9036c102
YZ
4828 if (!ordered)
4829 break;
2ac55d41
JB
4830 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4831 &cached_state, GFP_NOFS);
fa7c1494 4832 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4833 btrfs_put_ordered_extent(ordered);
4834 }
39279cc3 4835
9036c102
YZ
4836 cur_offset = hole_start;
4837 while (1) {
4838 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4839 block_end - cur_offset, 0);
79787eaa
JM
4840 if (IS_ERR(em)) {
4841 err = PTR_ERR(em);
f2767956 4842 em = NULL;
79787eaa
JM
4843 break;
4844 }
9036c102 4845 last_byte = min(extent_map_end(em), block_end);
fda2832f 4846 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4847 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4848 struct extent_map *hole_em;
9036c102 4849 hole_size = last_byte - cur_offset;
9ed74f2d 4850
16e7549f
JB
4851 err = maybe_insert_hole(root, inode, cur_offset,
4852 hole_size);
4853 if (err)
3893e33b 4854 break;
5dc562c5
JB
4855 btrfs_drop_extent_cache(inode, cur_offset,
4856 cur_offset + hole_size - 1, 0);
4857 hole_em = alloc_extent_map();
4858 if (!hole_em) {
4859 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4860 &BTRFS_I(inode)->runtime_flags);
4861 goto next;
4862 }
4863 hole_em->start = cur_offset;
4864 hole_em->len = hole_size;
4865 hole_em->orig_start = cur_offset;
8082510e 4866
5dc562c5
JB
4867 hole_em->block_start = EXTENT_MAP_HOLE;
4868 hole_em->block_len = 0;
b4939680 4869 hole_em->orig_block_len = 0;
cc95bef6 4870 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4871 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4872 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4873 hole_em->generation = root->fs_info->generation;
8082510e 4874
5dc562c5
JB
4875 while (1) {
4876 write_lock(&em_tree->lock);
09a2a8f9 4877 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4878 write_unlock(&em_tree->lock);
4879 if (err != -EEXIST)
4880 break;
4881 btrfs_drop_extent_cache(inode, cur_offset,
4882 cur_offset +
4883 hole_size - 1, 0);
4884 }
4885 free_extent_map(hole_em);
9036c102 4886 }
16e7549f 4887next:
9036c102 4888 free_extent_map(em);
a22285a6 4889 em = NULL;
9036c102 4890 cur_offset = last_byte;
8082510e 4891 if (cur_offset >= block_end)
9036c102
YZ
4892 break;
4893 }
a22285a6 4894 free_extent_map(em);
2ac55d41
JB
4895 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4896 GFP_NOFS);
9036c102
YZ
4897 return err;
4898}
39279cc3 4899
9ea24bbe
FM
4900static int wait_snapshoting_atomic_t(atomic_t *a)
4901{
4902 schedule();
4903 return 0;
4904}
4905
4906static void wait_for_snapshot_creation(struct btrfs_root *root)
4907{
4908 while (true) {
4909 int ret;
4910
4911 ret = btrfs_start_write_no_snapshoting(root);
4912 if (ret)
4913 break;
4914 wait_on_atomic_t(&root->will_be_snapshoted,
4915 wait_snapshoting_atomic_t,
4916 TASK_UNINTERRUPTIBLE);
4917 }
4918}
4919
3972f260 4920static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4921{
f4a2f4c5
MX
4922 struct btrfs_root *root = BTRFS_I(inode)->root;
4923 struct btrfs_trans_handle *trans;
a41ad394 4924 loff_t oldsize = i_size_read(inode);
3972f260
ES
4925 loff_t newsize = attr->ia_size;
4926 int mask = attr->ia_valid;
8082510e
YZ
4927 int ret;
4928
3972f260
ES
4929 /*
4930 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4931 * special case where we need to update the times despite not having
4932 * these flags set. For all other operations the VFS set these flags
4933 * explicitly if it wants a timestamp update.
4934 */
dff6efc3
CH
4935 if (newsize != oldsize) {
4936 inode_inc_iversion(inode);
4937 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4938 inode->i_ctime = inode->i_mtime =
4939 current_fs_time(inode->i_sb);
4940 }
3972f260 4941
a41ad394 4942 if (newsize > oldsize) {
7caef267 4943 truncate_pagecache(inode, newsize);
9ea24bbe
FM
4944 /*
4945 * Don't do an expanding truncate while snapshoting is ongoing.
4946 * This is to ensure the snapshot captures a fully consistent
4947 * state of this file - if the snapshot captures this expanding
4948 * truncation, it must capture all writes that happened before
4949 * this truncation.
4950 */
4951 wait_for_snapshot_creation(root);
a41ad394 4952 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4953 if (ret) {
4954 btrfs_end_write_no_snapshoting(root);
8082510e 4955 return ret;
9ea24bbe 4956 }
8082510e 4957
f4a2f4c5 4958 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4959 if (IS_ERR(trans)) {
4960 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4961 return PTR_ERR(trans);
9ea24bbe 4962 }
f4a2f4c5
MX
4963
4964 i_size_write(inode, newsize);
4965 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4966 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4967 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4968 btrfs_end_transaction(trans, root);
a41ad394 4969 } else {
8082510e 4970
a41ad394
JB
4971 /*
4972 * We're truncating a file that used to have good data down to
4973 * zero. Make sure it gets into the ordered flush list so that
4974 * any new writes get down to disk quickly.
4975 */
4976 if (newsize == 0)
72ac3c0d
JB
4977 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4978 &BTRFS_I(inode)->runtime_flags);
8082510e 4979
f3fe820c
JB
4980 /*
4981 * 1 for the orphan item we're going to add
4982 * 1 for the orphan item deletion.
4983 */
4984 trans = btrfs_start_transaction(root, 2);
4985 if (IS_ERR(trans))
4986 return PTR_ERR(trans);
4987
4988 /*
4989 * We need to do this in case we fail at _any_ point during the
4990 * actual truncate. Once we do the truncate_setsize we could
4991 * invalidate pages which forces any outstanding ordered io to
4992 * be instantly completed which will give us extents that need
4993 * to be truncated. If we fail to get an orphan inode down we
4994 * could have left over extents that were never meant to live,
4995 * so we need to garuntee from this point on that everything
4996 * will be consistent.
4997 */
4998 ret = btrfs_orphan_add(trans, inode);
4999 btrfs_end_transaction(trans, root);
5000 if (ret)
5001 return ret;
5002
a41ad394
JB
5003 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5004 truncate_setsize(inode, newsize);
2e60a51e
MX
5005
5006 /* Disable nonlocked read DIO to avoid the end less truncate */
5007 btrfs_inode_block_unlocked_dio(inode);
5008 inode_dio_wait(inode);
5009 btrfs_inode_resume_unlocked_dio(inode);
5010
a41ad394 5011 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5012 if (ret && inode->i_nlink) {
5013 int err;
5014
5015 /*
5016 * failed to truncate, disk_i_size is only adjusted down
5017 * as we remove extents, so it should represent the true
5018 * size of the inode, so reset the in memory size and
5019 * delete our orphan entry.
5020 */
5021 trans = btrfs_join_transaction(root);
5022 if (IS_ERR(trans)) {
5023 btrfs_orphan_del(NULL, inode);
5024 return ret;
5025 }
5026 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5027 err = btrfs_orphan_del(trans, inode);
5028 if (err)
5029 btrfs_abort_transaction(trans, root, err);
5030 btrfs_end_transaction(trans, root);
5031 }
8082510e
YZ
5032 }
5033
a41ad394 5034 return ret;
8082510e
YZ
5035}
5036
9036c102
YZ
5037static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5038{
2b0143b5 5039 struct inode *inode = d_inode(dentry);
b83cc969 5040 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5041 int err;
39279cc3 5042
b83cc969
LZ
5043 if (btrfs_root_readonly(root))
5044 return -EROFS;
5045
9036c102
YZ
5046 err = inode_change_ok(inode, attr);
5047 if (err)
5048 return err;
2bf5a725 5049
5a3f23d5 5050 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5051 err = btrfs_setsize(inode, attr);
8082510e
YZ
5052 if (err)
5053 return err;
39279cc3 5054 }
9036c102 5055
1025774c
CH
5056 if (attr->ia_valid) {
5057 setattr_copy(inode, attr);
0c4d2d95 5058 inode_inc_iversion(inode);
22c44fe6 5059 err = btrfs_dirty_inode(inode);
1025774c 5060
22c44fe6 5061 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5062 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5063 }
33268eaf 5064
39279cc3
CM
5065 return err;
5066}
61295eb8 5067
131e404a
FDBM
5068/*
5069 * While truncating the inode pages during eviction, we get the VFS calling
5070 * btrfs_invalidatepage() against each page of the inode. This is slow because
5071 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5072 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5073 * extent_state structures over and over, wasting lots of time.
5074 *
5075 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5076 * those expensive operations on a per page basis and do only the ordered io
5077 * finishing, while we release here the extent_map and extent_state structures,
5078 * without the excessive merging and splitting.
5079 */
5080static void evict_inode_truncate_pages(struct inode *inode)
5081{
5082 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5083 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5084 struct rb_node *node;
5085
5086 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5087 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5088
5089 write_lock(&map_tree->lock);
5090 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5091 struct extent_map *em;
5092
5093 node = rb_first(&map_tree->map);
5094 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5095 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5096 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5097 remove_extent_mapping(map_tree, em);
5098 free_extent_map(em);
7064dd5c
FM
5099 if (need_resched()) {
5100 write_unlock(&map_tree->lock);
5101 cond_resched();
5102 write_lock(&map_tree->lock);
5103 }
131e404a
FDBM
5104 }
5105 write_unlock(&map_tree->lock);
5106
6ca07097
FM
5107 /*
5108 * Keep looping until we have no more ranges in the io tree.
5109 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5110 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5111 * still in progress (unlocked the pages in the bio but did not yet
5112 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5113 * ranges can still be locked and eviction started because before
5114 * submitting those bios, which are executed by a separate task (work
5115 * queue kthread), inode references (inode->i_count) were not taken
5116 * (which would be dropped in the end io callback of each bio).
5117 * Therefore here we effectively end up waiting for those bios and
5118 * anyone else holding locked ranges without having bumped the inode's
5119 * reference count - if we don't do it, when they access the inode's
5120 * io_tree to unlock a range it may be too late, leading to an
5121 * use-after-free issue.
5122 */
131e404a
FDBM
5123 spin_lock(&io_tree->lock);
5124 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5125 struct extent_state *state;
5126 struct extent_state *cached_state = NULL;
6ca07097
FM
5127 u64 start;
5128 u64 end;
131e404a
FDBM
5129
5130 node = rb_first(&io_tree->state);
5131 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5132 start = state->start;
5133 end = state->end;
131e404a
FDBM
5134 spin_unlock(&io_tree->lock);
5135
6ca07097 5136 lock_extent_bits(io_tree, start, end, 0, &cached_state);
b9d0b389
QW
5137
5138 /*
5139 * If still has DELALLOC flag, the extent didn't reach disk,
5140 * and its reserved space won't be freed by delayed_ref.
5141 * So we need to free its reserved space here.
5142 * (Refer to comment in btrfs_invalidatepage, case 2)
5143 *
5144 * Note, end is the bytenr of last byte, so we need + 1 here.
5145 */
5146 if (state->state & EXTENT_DELALLOC)
5147 btrfs_qgroup_free_data(inode, start, end - start + 1);
5148
6ca07097 5149 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5150 EXTENT_LOCKED | EXTENT_DIRTY |
5151 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5152 EXTENT_DEFRAG, 1, 1,
5153 &cached_state, GFP_NOFS);
131e404a 5154
7064dd5c 5155 cond_resched();
131e404a
FDBM
5156 spin_lock(&io_tree->lock);
5157 }
5158 spin_unlock(&io_tree->lock);
5159}
5160
bd555975 5161void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5162{
5163 struct btrfs_trans_handle *trans;
5164 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5165 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5166 int steal_from_global = 0;
07127184 5167 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
5168 int ret;
5169
1abe9b8a 5170 trace_btrfs_inode_evict(inode);
5171
131e404a
FDBM
5172 evict_inode_truncate_pages(inode);
5173
69e9c6c6
SB
5174 if (inode->i_nlink &&
5175 ((btrfs_root_refs(&root->root_item) != 0 &&
5176 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5177 btrfs_is_free_space_inode(inode)))
bd555975
AV
5178 goto no_delete;
5179
39279cc3 5180 if (is_bad_inode(inode)) {
7b128766 5181 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5182 goto no_delete;
5183 }
bd555975 5184 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5185 if (!special_file(inode->i_mode))
5186 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5187
f612496b
MX
5188 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5189
c71bf099 5190 if (root->fs_info->log_root_recovering) {
6bf02314 5191 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5192 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5193 goto no_delete;
5194 }
5195
76dda93c 5196 if (inode->i_nlink > 0) {
69e9c6c6
SB
5197 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5198 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5199 goto no_delete;
5200 }
5201
0e8c36a9
MX
5202 ret = btrfs_commit_inode_delayed_inode(inode);
5203 if (ret) {
5204 btrfs_orphan_del(NULL, inode);
5205 goto no_delete;
5206 }
5207
66d8f3dd 5208 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5209 if (!rsv) {
5210 btrfs_orphan_del(NULL, inode);
5211 goto no_delete;
5212 }
4a338542 5213 rsv->size = min_size;
ca7e70f5 5214 rsv->failfast = 1;
726c35fa 5215 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5216
dbe674a9 5217 btrfs_i_size_write(inode, 0);
5f39d397 5218
4289a667 5219 /*
8407aa46
MX
5220 * This is a bit simpler than btrfs_truncate since we've already
5221 * reserved our space for our orphan item in the unlink, so we just
5222 * need to reserve some slack space in case we add bytes and update
5223 * inode item when doing the truncate.
4289a667 5224 */
8082510e 5225 while (1) {
08e007d2
MX
5226 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5227 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5228
5229 /*
5230 * Try and steal from the global reserve since we will
5231 * likely not use this space anyway, we want to try as
5232 * hard as possible to get this to work.
5233 */
5234 if (ret)
3bce876f
JB
5235 steal_from_global++;
5236 else
5237 steal_from_global = 0;
5238 ret = 0;
d68fc57b 5239
3bce876f
JB
5240 /*
5241 * steal_from_global == 0: we reserved stuff, hooray!
5242 * steal_from_global == 1: we didn't reserve stuff, boo!
5243 * steal_from_global == 2: we've committed, still not a lot of
5244 * room but maybe we'll have room in the global reserve this
5245 * time.
5246 * steal_from_global == 3: abandon all hope!
5247 */
5248 if (steal_from_global > 2) {
c2cf52eb
SK
5249 btrfs_warn(root->fs_info,
5250 "Could not get space for a delete, will truncate on mount %d",
5251 ret);
4289a667
JB
5252 btrfs_orphan_del(NULL, inode);
5253 btrfs_free_block_rsv(root, rsv);
5254 goto no_delete;
d68fc57b 5255 }
7b128766 5256
0e8c36a9 5257 trans = btrfs_join_transaction(root);
4289a667
JB
5258 if (IS_ERR(trans)) {
5259 btrfs_orphan_del(NULL, inode);
5260 btrfs_free_block_rsv(root, rsv);
5261 goto no_delete;
d68fc57b 5262 }
7b128766 5263
3bce876f
JB
5264 /*
5265 * We can't just steal from the global reserve, we need tomake
5266 * sure there is room to do it, if not we need to commit and try
5267 * again.
5268 */
5269 if (steal_from_global) {
5270 if (!btrfs_check_space_for_delayed_refs(trans, root))
5271 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5272 min_size);
5273 else
5274 ret = -ENOSPC;
5275 }
5276
5277 /*
5278 * Couldn't steal from the global reserve, we have too much
5279 * pending stuff built up, commit the transaction and try it
5280 * again.
5281 */
5282 if (ret) {
5283 ret = btrfs_commit_transaction(trans, root);
5284 if (ret) {
5285 btrfs_orphan_del(NULL, inode);
5286 btrfs_free_block_rsv(root, rsv);
5287 goto no_delete;
5288 }
5289 continue;
5290 } else {
5291 steal_from_global = 0;
5292 }
5293
4289a667
JB
5294 trans->block_rsv = rsv;
5295
d68fc57b 5296 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5297 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5298 break;
85e21bac 5299
8407aa46 5300 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5301 btrfs_end_transaction(trans, root);
5302 trans = NULL;
b53d3f5d 5303 btrfs_btree_balance_dirty(root);
8082510e 5304 }
5f39d397 5305
4289a667
JB
5306 btrfs_free_block_rsv(root, rsv);
5307
4ef31a45
JB
5308 /*
5309 * Errors here aren't a big deal, it just means we leave orphan items
5310 * in the tree. They will be cleaned up on the next mount.
5311 */
8082510e 5312 if (ret == 0) {
4289a667 5313 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5314 btrfs_orphan_del(trans, inode);
5315 } else {
5316 btrfs_orphan_del(NULL, inode);
8082510e 5317 }
54aa1f4d 5318
4289a667 5319 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5320 if (!(root == root->fs_info->tree_root ||
5321 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5322 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5323
54aa1f4d 5324 btrfs_end_transaction(trans, root);
b53d3f5d 5325 btrfs_btree_balance_dirty(root);
39279cc3 5326no_delete:
89042e5a 5327 btrfs_remove_delayed_node(inode);
dbd5768f 5328 clear_inode(inode);
8082510e 5329 return;
39279cc3
CM
5330}
5331
5332/*
5333 * this returns the key found in the dir entry in the location pointer.
5334 * If no dir entries were found, location->objectid is 0.
5335 */
5336static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5337 struct btrfs_key *location)
5338{
5339 const char *name = dentry->d_name.name;
5340 int namelen = dentry->d_name.len;
5341 struct btrfs_dir_item *di;
5342 struct btrfs_path *path;
5343 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5344 int ret = 0;
39279cc3
CM
5345
5346 path = btrfs_alloc_path();
d8926bb3
MF
5347 if (!path)
5348 return -ENOMEM;
3954401f 5349
33345d01 5350 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5351 namelen, 0);
0d9f7f3e
Y
5352 if (IS_ERR(di))
5353 ret = PTR_ERR(di);
d397712b 5354
c704005d 5355 if (IS_ERR_OR_NULL(di))
3954401f 5356 goto out_err;
d397712b 5357
5f39d397 5358 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5359out:
39279cc3
CM
5360 btrfs_free_path(path);
5361 return ret;
3954401f
CM
5362out_err:
5363 location->objectid = 0;
5364 goto out;
39279cc3
CM
5365}
5366
5367/*
5368 * when we hit a tree root in a directory, the btrfs part of the inode
5369 * needs to be changed to reflect the root directory of the tree root. This
5370 * is kind of like crossing a mount point.
5371 */
5372static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5373 struct inode *dir,
5374 struct dentry *dentry,
5375 struct btrfs_key *location,
5376 struct btrfs_root **sub_root)
39279cc3 5377{
4df27c4d
YZ
5378 struct btrfs_path *path;
5379 struct btrfs_root *new_root;
5380 struct btrfs_root_ref *ref;
5381 struct extent_buffer *leaf;
1d4c08e0 5382 struct btrfs_key key;
4df27c4d
YZ
5383 int ret;
5384 int err = 0;
39279cc3 5385
4df27c4d
YZ
5386 path = btrfs_alloc_path();
5387 if (!path) {
5388 err = -ENOMEM;
5389 goto out;
5390 }
39279cc3 5391
4df27c4d 5392 err = -ENOENT;
1d4c08e0
DS
5393 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5394 key.type = BTRFS_ROOT_REF_KEY;
5395 key.offset = location->objectid;
5396
5397 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5398 0, 0);
4df27c4d
YZ
5399 if (ret) {
5400 if (ret < 0)
5401 err = ret;
5402 goto out;
5403 }
39279cc3 5404
4df27c4d
YZ
5405 leaf = path->nodes[0];
5406 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5407 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5408 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5409 goto out;
39279cc3 5410
4df27c4d
YZ
5411 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5412 (unsigned long)(ref + 1),
5413 dentry->d_name.len);
5414 if (ret)
5415 goto out;
5416
b3b4aa74 5417 btrfs_release_path(path);
4df27c4d
YZ
5418
5419 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5420 if (IS_ERR(new_root)) {
5421 err = PTR_ERR(new_root);
5422 goto out;
5423 }
5424
4df27c4d
YZ
5425 *sub_root = new_root;
5426 location->objectid = btrfs_root_dirid(&new_root->root_item);
5427 location->type = BTRFS_INODE_ITEM_KEY;
5428 location->offset = 0;
5429 err = 0;
5430out:
5431 btrfs_free_path(path);
5432 return err;
39279cc3
CM
5433}
5434
5d4f98a2
YZ
5435static void inode_tree_add(struct inode *inode)
5436{
5437 struct btrfs_root *root = BTRFS_I(inode)->root;
5438 struct btrfs_inode *entry;
03e860bd
FNP
5439 struct rb_node **p;
5440 struct rb_node *parent;
cef21937 5441 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5442 u64 ino = btrfs_ino(inode);
5d4f98a2 5443
1d3382cb 5444 if (inode_unhashed(inode))
76dda93c 5445 return;
e1409cef 5446 parent = NULL;
5d4f98a2 5447 spin_lock(&root->inode_lock);
e1409cef 5448 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5449 while (*p) {
5450 parent = *p;
5451 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5452
33345d01 5453 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5454 p = &parent->rb_left;
33345d01 5455 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5456 p = &parent->rb_right;
5d4f98a2
YZ
5457 else {
5458 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5459 (I_WILL_FREE | I_FREEING)));
cef21937 5460 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5461 RB_CLEAR_NODE(parent);
5462 spin_unlock(&root->inode_lock);
cef21937 5463 return;
5d4f98a2
YZ
5464 }
5465 }
cef21937
FDBM
5466 rb_link_node(new, parent, p);
5467 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5468 spin_unlock(&root->inode_lock);
5469}
5470
5471static void inode_tree_del(struct inode *inode)
5472{
5473 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5474 int empty = 0;
5d4f98a2 5475
03e860bd 5476 spin_lock(&root->inode_lock);
5d4f98a2 5477 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5478 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5479 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5480 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5481 }
03e860bd 5482 spin_unlock(&root->inode_lock);
76dda93c 5483
69e9c6c6 5484 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5485 synchronize_srcu(&root->fs_info->subvol_srcu);
5486 spin_lock(&root->inode_lock);
5487 empty = RB_EMPTY_ROOT(&root->inode_tree);
5488 spin_unlock(&root->inode_lock);
5489 if (empty)
5490 btrfs_add_dead_root(root);
5491 }
5492}
5493
143bede5 5494void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5495{
5496 struct rb_node *node;
5497 struct rb_node *prev;
5498 struct btrfs_inode *entry;
5499 struct inode *inode;
5500 u64 objectid = 0;
5501
7813b3db
LB
5502 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5503 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5504
5505 spin_lock(&root->inode_lock);
5506again:
5507 node = root->inode_tree.rb_node;
5508 prev = NULL;
5509 while (node) {
5510 prev = node;
5511 entry = rb_entry(node, struct btrfs_inode, rb_node);
5512
33345d01 5513 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5514 node = node->rb_left;
33345d01 5515 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5516 node = node->rb_right;
5517 else
5518 break;
5519 }
5520 if (!node) {
5521 while (prev) {
5522 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5523 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5524 node = prev;
5525 break;
5526 }
5527 prev = rb_next(prev);
5528 }
5529 }
5530 while (node) {
5531 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5532 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5533 inode = igrab(&entry->vfs_inode);
5534 if (inode) {
5535 spin_unlock(&root->inode_lock);
5536 if (atomic_read(&inode->i_count) > 1)
5537 d_prune_aliases(inode);
5538 /*
45321ac5 5539 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5540 * the inode cache when its usage count
5541 * hits zero.
5542 */
5543 iput(inode);
5544 cond_resched();
5545 spin_lock(&root->inode_lock);
5546 goto again;
5547 }
5548
5549 if (cond_resched_lock(&root->inode_lock))
5550 goto again;
5551
5552 node = rb_next(node);
5553 }
5554 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5555}
5556
e02119d5
CM
5557static int btrfs_init_locked_inode(struct inode *inode, void *p)
5558{
5559 struct btrfs_iget_args *args = p;
90d3e592
CM
5560 inode->i_ino = args->location->objectid;
5561 memcpy(&BTRFS_I(inode)->location, args->location,
5562 sizeof(*args->location));
e02119d5 5563 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5564 return 0;
5565}
5566
5567static int btrfs_find_actor(struct inode *inode, void *opaque)
5568{
5569 struct btrfs_iget_args *args = opaque;
90d3e592 5570 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5571 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5572}
5573
5d4f98a2 5574static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5575 struct btrfs_key *location,
5d4f98a2 5576 struct btrfs_root *root)
39279cc3
CM
5577{
5578 struct inode *inode;
5579 struct btrfs_iget_args args;
90d3e592 5580 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5581
90d3e592 5582 args.location = location;
39279cc3
CM
5583 args.root = root;
5584
778ba82b 5585 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5586 btrfs_init_locked_inode,
5587 (void *)&args);
5588 return inode;
5589}
5590
1a54ef8c
BR
5591/* Get an inode object given its location and corresponding root.
5592 * Returns in *is_new if the inode was read from disk
5593 */
5594struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5595 struct btrfs_root *root, int *new)
1a54ef8c
BR
5596{
5597 struct inode *inode;
5598
90d3e592 5599 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5600 if (!inode)
5d4f98a2 5601 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5602
5603 if (inode->i_state & I_NEW) {
1a54ef8c 5604 btrfs_read_locked_inode(inode);
1748f843
MF
5605 if (!is_bad_inode(inode)) {
5606 inode_tree_add(inode);
5607 unlock_new_inode(inode);
5608 if (new)
5609 *new = 1;
5610 } else {
e0b6d65b
ST
5611 unlock_new_inode(inode);
5612 iput(inode);
5613 inode = ERR_PTR(-ESTALE);
1748f843
MF
5614 }
5615 }
5616
1a54ef8c
BR
5617 return inode;
5618}
5619
4df27c4d
YZ
5620static struct inode *new_simple_dir(struct super_block *s,
5621 struct btrfs_key *key,
5622 struct btrfs_root *root)
5623{
5624 struct inode *inode = new_inode(s);
5625
5626 if (!inode)
5627 return ERR_PTR(-ENOMEM);
5628
4df27c4d
YZ
5629 BTRFS_I(inode)->root = root;
5630 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5631 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5632
5633 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5634 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5635 inode->i_fop = &simple_dir_operations;
5636 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
9cc97d64 5637 inode->i_mtime = CURRENT_TIME;
5638 inode->i_atime = inode->i_mtime;
5639 inode->i_ctime = inode->i_mtime;
5640 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5641
5642 return inode;
5643}
5644
3de4586c 5645struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5646{
d397712b 5647 struct inode *inode;
4df27c4d 5648 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5649 struct btrfs_root *sub_root = root;
5650 struct btrfs_key location;
76dda93c 5651 int index;
b4aff1f8 5652 int ret = 0;
39279cc3
CM
5653
5654 if (dentry->d_name.len > BTRFS_NAME_LEN)
5655 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5656
39e3c955 5657 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5658 if (ret < 0)
5659 return ERR_PTR(ret);
5f39d397 5660
4df27c4d 5661 if (location.objectid == 0)
5662344b 5662 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5663
5664 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5665 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5666 return inode;
5667 }
5668
5669 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5670
76dda93c 5671 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5672 ret = fixup_tree_root_location(root, dir, dentry,
5673 &location, &sub_root);
5674 if (ret < 0) {
5675 if (ret != -ENOENT)
5676 inode = ERR_PTR(ret);
5677 else
5678 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5679 } else {
73f73415 5680 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5681 }
76dda93c
YZ
5682 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5683
34d19bad 5684 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5685 down_read(&root->fs_info->cleanup_work_sem);
5686 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5687 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5688 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5689 if (ret) {
5690 iput(inode);
66b4ffd1 5691 inode = ERR_PTR(ret);
01cd3367 5692 }
c71bf099
YZ
5693 }
5694
3de4586c
CM
5695 return inode;
5696}
5697
fe15ce44 5698static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5699{
5700 struct btrfs_root *root;
2b0143b5 5701 struct inode *inode = d_inode(dentry);
76dda93c 5702
848cce0d 5703 if (!inode && !IS_ROOT(dentry))
2b0143b5 5704 inode = d_inode(dentry->d_parent);
76dda93c 5705
848cce0d
LZ
5706 if (inode) {
5707 root = BTRFS_I(inode)->root;
efefb143
YZ
5708 if (btrfs_root_refs(&root->root_item) == 0)
5709 return 1;
848cce0d
LZ
5710
5711 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5712 return 1;
efefb143 5713 }
76dda93c
YZ
5714 return 0;
5715}
5716
b4aff1f8
JB
5717static void btrfs_dentry_release(struct dentry *dentry)
5718{
944a4515 5719 kfree(dentry->d_fsdata);
b4aff1f8
JB
5720}
5721
3de4586c 5722static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5723 unsigned int flags)
3de4586c 5724{
5662344b 5725 struct inode *inode;
a66e7cc6 5726
5662344b
TI
5727 inode = btrfs_lookup_dentry(dir, dentry);
5728 if (IS_ERR(inode)) {
5729 if (PTR_ERR(inode) == -ENOENT)
5730 inode = NULL;
5731 else
5732 return ERR_CAST(inode);
5733 }
5734
41d28bca 5735 return d_splice_alias(inode, dentry);
39279cc3
CM
5736}
5737
16cdcec7 5738unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5739 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5740};
5741
9cdda8d3 5742static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5743{
9cdda8d3 5744 struct inode *inode = file_inode(file);
39279cc3
CM
5745 struct btrfs_root *root = BTRFS_I(inode)->root;
5746 struct btrfs_item *item;
5747 struct btrfs_dir_item *di;
5748 struct btrfs_key key;
5f39d397 5749 struct btrfs_key found_key;
39279cc3 5750 struct btrfs_path *path;
16cdcec7
MX
5751 struct list_head ins_list;
5752 struct list_head del_list;
39279cc3 5753 int ret;
5f39d397 5754 struct extent_buffer *leaf;
39279cc3 5755 int slot;
39279cc3
CM
5756 unsigned char d_type;
5757 int over = 0;
5758 u32 di_cur;
5759 u32 di_total;
5760 u32 di_len;
5761 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5762 char tmp_name[32];
5763 char *name_ptr;
5764 int name_len;
9cdda8d3 5765 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5766
5767 /* FIXME, use a real flag for deciding about the key type */
5768 if (root->fs_info->tree_root == root)
5769 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5770
9cdda8d3
AV
5771 if (!dir_emit_dots(file, ctx))
5772 return 0;
5773
49593bfa 5774 path = btrfs_alloc_path();
16cdcec7
MX
5775 if (!path)
5776 return -ENOMEM;
ff5714cc 5777
026fd317 5778 path->reada = 1;
49593bfa 5779
16cdcec7
MX
5780 if (key_type == BTRFS_DIR_INDEX_KEY) {
5781 INIT_LIST_HEAD(&ins_list);
5782 INIT_LIST_HEAD(&del_list);
5783 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5784 }
5785
962a298f 5786 key.type = key_type;
9cdda8d3 5787 key.offset = ctx->pos;
33345d01 5788 key.objectid = btrfs_ino(inode);
5f39d397 5789
39279cc3
CM
5790 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5791 if (ret < 0)
5792 goto err;
49593bfa
DW
5793
5794 while (1) {
5f39d397 5795 leaf = path->nodes[0];
39279cc3 5796 slot = path->slots[0];
b9e03af0
LZ
5797 if (slot >= btrfs_header_nritems(leaf)) {
5798 ret = btrfs_next_leaf(root, path);
5799 if (ret < 0)
5800 goto err;
5801 else if (ret > 0)
5802 break;
5803 continue;
39279cc3 5804 }
3de4586c 5805
dd3cc16b 5806 item = btrfs_item_nr(slot);
5f39d397
CM
5807 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5808
5809 if (found_key.objectid != key.objectid)
39279cc3 5810 break;
962a298f 5811 if (found_key.type != key_type)
39279cc3 5812 break;
9cdda8d3 5813 if (found_key.offset < ctx->pos)
b9e03af0 5814 goto next;
16cdcec7
MX
5815 if (key_type == BTRFS_DIR_INDEX_KEY &&
5816 btrfs_should_delete_dir_index(&del_list,
5817 found_key.offset))
5818 goto next;
5f39d397 5819
9cdda8d3 5820 ctx->pos = found_key.offset;
16cdcec7 5821 is_curr = 1;
49593bfa 5822
39279cc3
CM
5823 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5824 di_cur = 0;
5f39d397 5825 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5826
5827 while (di_cur < di_total) {
5f39d397
CM
5828 struct btrfs_key location;
5829
22a94d44
JB
5830 if (verify_dir_item(root, leaf, di))
5831 break;
5832
5f39d397 5833 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5834 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5835 name_ptr = tmp_name;
5836 } else {
5837 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5838 if (!name_ptr) {
5839 ret = -ENOMEM;
5840 goto err;
5841 }
5f39d397
CM
5842 }
5843 read_extent_buffer(leaf, name_ptr,
5844 (unsigned long)(di + 1), name_len);
5845
5846 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5847 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5848
fede766f 5849
3de4586c 5850 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5851 * skip it.
5852 *
5853 * In contrast to old kernels, we insert the snapshot's
5854 * dir item and dir index after it has been created, so
5855 * we won't find a reference to our own snapshot. We
5856 * still keep the following code for backward
5857 * compatibility.
3de4586c
CM
5858 */
5859 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5860 location.objectid == root->root_key.objectid) {
5861 over = 0;
5862 goto skip;
5863 }
9cdda8d3
AV
5864 over = !dir_emit(ctx, name_ptr, name_len,
5865 location.objectid, d_type);
5f39d397 5866
3de4586c 5867skip:
5f39d397
CM
5868 if (name_ptr != tmp_name)
5869 kfree(name_ptr);
5870
39279cc3
CM
5871 if (over)
5872 goto nopos;
5103e947 5873 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5874 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5875 di_cur += di_len;
5876 di = (struct btrfs_dir_item *)((char *)di + di_len);
5877 }
b9e03af0
LZ
5878next:
5879 path->slots[0]++;
39279cc3 5880 }
49593bfa 5881
16cdcec7
MX
5882 if (key_type == BTRFS_DIR_INDEX_KEY) {
5883 if (is_curr)
9cdda8d3
AV
5884 ctx->pos++;
5885 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5886 if (ret)
5887 goto nopos;
5888 }
5889
49593bfa 5890 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5891 ctx->pos++;
5892
5893 /*
5894 * Stop new entries from being returned after we return the last
5895 * entry.
5896 *
5897 * New directory entries are assigned a strictly increasing
5898 * offset. This means that new entries created during readdir
5899 * are *guaranteed* to be seen in the future by that readdir.
5900 * This has broken buggy programs which operate on names as
5901 * they're returned by readdir. Until we re-use freed offsets
5902 * we have this hack to stop new entries from being returned
5903 * under the assumption that they'll never reach this huge
5904 * offset.
5905 *
5906 * This is being careful not to overflow 32bit loff_t unless the
5907 * last entry requires it because doing so has broken 32bit apps
5908 * in the past.
5909 */
5910 if (key_type == BTRFS_DIR_INDEX_KEY) {
5911 if (ctx->pos >= INT_MAX)
5912 ctx->pos = LLONG_MAX;
5913 else
5914 ctx->pos = INT_MAX;
5915 }
39279cc3
CM
5916nopos:
5917 ret = 0;
5918err:
16cdcec7
MX
5919 if (key_type == BTRFS_DIR_INDEX_KEY)
5920 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5921 btrfs_free_path(path);
39279cc3
CM
5922 return ret;
5923}
5924
a9185b41 5925int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5926{
5927 struct btrfs_root *root = BTRFS_I(inode)->root;
5928 struct btrfs_trans_handle *trans;
5929 int ret = 0;
0af3d00b 5930 bool nolock = false;
39279cc3 5931
72ac3c0d 5932 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5933 return 0;
5934
83eea1f1 5935 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5936 nolock = true;
0af3d00b 5937
a9185b41 5938 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5939 if (nolock)
7a7eaa40 5940 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5941 else
7a7eaa40 5942 trans = btrfs_join_transaction(root);
3612b495
TI
5943 if (IS_ERR(trans))
5944 return PTR_ERR(trans);
a698d075 5945 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5946 }
5947 return ret;
5948}
5949
5950/*
54aa1f4d 5951 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5952 * inode changes. But, it is most likely to find the inode in cache.
5953 * FIXME, needs more benchmarking...there are no reasons other than performance
5954 * to keep or drop this code.
5955 */
48a3b636 5956static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5957{
5958 struct btrfs_root *root = BTRFS_I(inode)->root;
5959 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5960 int ret;
5961
72ac3c0d 5962 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5963 return 0;
39279cc3 5964
7a7eaa40 5965 trans = btrfs_join_transaction(root);
22c44fe6
JB
5966 if (IS_ERR(trans))
5967 return PTR_ERR(trans);
8929ecfa
YZ
5968
5969 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5970 if (ret && ret == -ENOSPC) {
5971 /* whoops, lets try again with the full transaction */
5972 btrfs_end_transaction(trans, root);
5973 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5974 if (IS_ERR(trans))
5975 return PTR_ERR(trans);
8929ecfa 5976
94b60442 5977 ret = btrfs_update_inode(trans, root, inode);
94b60442 5978 }
39279cc3 5979 btrfs_end_transaction(trans, root);
16cdcec7
MX
5980 if (BTRFS_I(inode)->delayed_node)
5981 btrfs_balance_delayed_items(root);
22c44fe6
JB
5982
5983 return ret;
5984}
5985
5986/*
5987 * This is a copy of file_update_time. We need this so we can return error on
5988 * ENOSPC for updating the inode in the case of file write and mmap writes.
5989 */
e41f941a
JB
5990static int btrfs_update_time(struct inode *inode, struct timespec *now,
5991 int flags)
22c44fe6 5992{
2bc55652
AB
5993 struct btrfs_root *root = BTRFS_I(inode)->root;
5994
5995 if (btrfs_root_readonly(root))
5996 return -EROFS;
5997
e41f941a 5998 if (flags & S_VERSION)
22c44fe6 5999 inode_inc_iversion(inode);
e41f941a
JB
6000 if (flags & S_CTIME)
6001 inode->i_ctime = *now;
6002 if (flags & S_MTIME)
6003 inode->i_mtime = *now;
6004 if (flags & S_ATIME)
6005 inode->i_atime = *now;
6006 return btrfs_dirty_inode(inode);
39279cc3
CM
6007}
6008
d352ac68
CM
6009/*
6010 * find the highest existing sequence number in a directory
6011 * and then set the in-memory index_cnt variable to reflect
6012 * free sequence numbers
6013 */
aec7477b
JB
6014static int btrfs_set_inode_index_count(struct inode *inode)
6015{
6016 struct btrfs_root *root = BTRFS_I(inode)->root;
6017 struct btrfs_key key, found_key;
6018 struct btrfs_path *path;
6019 struct extent_buffer *leaf;
6020 int ret;
6021
33345d01 6022 key.objectid = btrfs_ino(inode);
962a298f 6023 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6024 key.offset = (u64)-1;
6025
6026 path = btrfs_alloc_path();
6027 if (!path)
6028 return -ENOMEM;
6029
6030 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6031 if (ret < 0)
6032 goto out;
6033 /* FIXME: we should be able to handle this */
6034 if (ret == 0)
6035 goto out;
6036 ret = 0;
6037
6038 /*
6039 * MAGIC NUMBER EXPLANATION:
6040 * since we search a directory based on f_pos we have to start at 2
6041 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6042 * else has to start at 2
6043 */
6044 if (path->slots[0] == 0) {
6045 BTRFS_I(inode)->index_cnt = 2;
6046 goto out;
6047 }
6048
6049 path->slots[0]--;
6050
6051 leaf = path->nodes[0];
6052 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6053
33345d01 6054 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6055 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6056 BTRFS_I(inode)->index_cnt = 2;
6057 goto out;
6058 }
6059
6060 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6061out:
6062 btrfs_free_path(path);
6063 return ret;
6064}
6065
d352ac68
CM
6066/*
6067 * helper to find a free sequence number in a given directory. This current
6068 * code is very simple, later versions will do smarter things in the btree
6069 */
3de4586c 6070int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6071{
6072 int ret = 0;
6073
6074 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6075 ret = btrfs_inode_delayed_dir_index_count(dir);
6076 if (ret) {
6077 ret = btrfs_set_inode_index_count(dir);
6078 if (ret)
6079 return ret;
6080 }
aec7477b
JB
6081 }
6082
00e4e6b3 6083 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6084 BTRFS_I(dir)->index_cnt++;
6085
6086 return ret;
6087}
6088
b0d5d10f
CM
6089static int btrfs_insert_inode_locked(struct inode *inode)
6090{
6091 struct btrfs_iget_args args;
6092 args.location = &BTRFS_I(inode)->location;
6093 args.root = BTRFS_I(inode)->root;
6094
6095 return insert_inode_locked4(inode,
6096 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6097 btrfs_find_actor, &args);
6098}
6099
39279cc3
CM
6100static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6101 struct btrfs_root *root,
aec7477b 6102 struct inode *dir,
9c58309d 6103 const char *name, int name_len,
175a4eb7
AV
6104 u64 ref_objectid, u64 objectid,
6105 umode_t mode, u64 *index)
39279cc3
CM
6106{
6107 struct inode *inode;
5f39d397 6108 struct btrfs_inode_item *inode_item;
39279cc3 6109 struct btrfs_key *location;
5f39d397 6110 struct btrfs_path *path;
9c58309d
CM
6111 struct btrfs_inode_ref *ref;
6112 struct btrfs_key key[2];
6113 u32 sizes[2];
ef3b9af5 6114 int nitems = name ? 2 : 1;
9c58309d 6115 unsigned long ptr;
39279cc3 6116 int ret;
39279cc3 6117
5f39d397 6118 path = btrfs_alloc_path();
d8926bb3
MF
6119 if (!path)
6120 return ERR_PTR(-ENOMEM);
5f39d397 6121
39279cc3 6122 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6123 if (!inode) {
6124 btrfs_free_path(path);
39279cc3 6125 return ERR_PTR(-ENOMEM);
8fb27640 6126 }
39279cc3 6127
5762b5c9
FM
6128 /*
6129 * O_TMPFILE, set link count to 0, so that after this point,
6130 * we fill in an inode item with the correct link count.
6131 */
6132 if (!name)
6133 set_nlink(inode, 0);
6134
581bb050
LZ
6135 /*
6136 * we have to initialize this early, so we can reclaim the inode
6137 * number if we fail afterwards in this function.
6138 */
6139 inode->i_ino = objectid;
6140
ef3b9af5 6141 if (dir && name) {
1abe9b8a 6142 trace_btrfs_inode_request(dir);
6143
3de4586c 6144 ret = btrfs_set_inode_index(dir, index);
09771430 6145 if (ret) {
8fb27640 6146 btrfs_free_path(path);
09771430 6147 iput(inode);
aec7477b 6148 return ERR_PTR(ret);
09771430 6149 }
ef3b9af5
FM
6150 } else if (dir) {
6151 *index = 0;
aec7477b
JB
6152 }
6153 /*
6154 * index_cnt is ignored for everything but a dir,
6155 * btrfs_get_inode_index_count has an explanation for the magic
6156 * number
6157 */
6158 BTRFS_I(inode)->index_cnt = 2;
67de1176 6159 BTRFS_I(inode)->dir_index = *index;
39279cc3 6160 BTRFS_I(inode)->root = root;
e02119d5 6161 BTRFS_I(inode)->generation = trans->transid;
76195853 6162 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6163
5dc562c5
JB
6164 /*
6165 * We could have gotten an inode number from somebody who was fsynced
6166 * and then removed in this same transaction, so let's just set full
6167 * sync since it will be a full sync anyway and this will blow away the
6168 * old info in the log.
6169 */
6170 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6171
9c58309d 6172 key[0].objectid = objectid;
962a298f 6173 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6174 key[0].offset = 0;
6175
9c58309d 6176 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6177
6178 if (name) {
6179 /*
6180 * Start new inodes with an inode_ref. This is slightly more
6181 * efficient for small numbers of hard links since they will
6182 * be packed into one item. Extended refs will kick in if we
6183 * add more hard links than can fit in the ref item.
6184 */
6185 key[1].objectid = objectid;
962a298f 6186 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6187 key[1].offset = ref_objectid;
6188
6189 sizes[1] = name_len + sizeof(*ref);
6190 }
9c58309d 6191
b0d5d10f
CM
6192 location = &BTRFS_I(inode)->location;
6193 location->objectid = objectid;
6194 location->offset = 0;
962a298f 6195 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6196
6197 ret = btrfs_insert_inode_locked(inode);
6198 if (ret < 0)
6199 goto fail;
6200
b9473439 6201 path->leave_spinning = 1;
ef3b9af5 6202 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6203 if (ret != 0)
b0d5d10f 6204 goto fail_unlock;
5f39d397 6205
ecc11fab 6206 inode_init_owner(inode, dir, mode);
a76a3cd4 6207 inode_set_bytes(inode, 0);
9cc97d64 6208
6209 inode->i_mtime = CURRENT_TIME;
6210 inode->i_atime = inode->i_mtime;
6211 inode->i_ctime = inode->i_mtime;
6212 BTRFS_I(inode)->i_otime = inode->i_mtime;
6213
5f39d397
CM
6214 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6215 struct btrfs_inode_item);
293f7e07
LZ
6216 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6217 sizeof(*inode_item));
e02119d5 6218 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6219
ef3b9af5
FM
6220 if (name) {
6221 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6222 struct btrfs_inode_ref);
6223 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6224 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6225 ptr = (unsigned long)(ref + 1);
6226 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6227 }
9c58309d 6228
5f39d397
CM
6229 btrfs_mark_buffer_dirty(path->nodes[0]);
6230 btrfs_free_path(path);
6231
6cbff00f
CH
6232 btrfs_inherit_iflags(inode, dir);
6233
569254b0 6234 if (S_ISREG(mode)) {
94272164
CM
6235 if (btrfs_test_opt(root, NODATASUM))
6236 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 6237 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
6238 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6239 BTRFS_INODE_NODATASUM;
94272164
CM
6240 }
6241
5d4f98a2 6242 inode_tree_add(inode);
1abe9b8a 6243
6244 trace_btrfs_inode_new(inode);
1973f0fa 6245 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6246
8ea05e3a
AB
6247 btrfs_update_root_times(trans, root);
6248
63541927
FDBM
6249 ret = btrfs_inode_inherit_props(trans, inode, dir);
6250 if (ret)
6251 btrfs_err(root->fs_info,
6252 "error inheriting props for ino %llu (root %llu): %d",
6253 btrfs_ino(inode), root->root_key.objectid, ret);
6254
39279cc3 6255 return inode;
b0d5d10f
CM
6256
6257fail_unlock:
6258 unlock_new_inode(inode);
5f39d397 6259fail:
ef3b9af5 6260 if (dir && name)
aec7477b 6261 BTRFS_I(dir)->index_cnt--;
5f39d397 6262 btrfs_free_path(path);
09771430 6263 iput(inode);
5f39d397 6264 return ERR_PTR(ret);
39279cc3
CM
6265}
6266
6267static inline u8 btrfs_inode_type(struct inode *inode)
6268{
6269 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6270}
6271
d352ac68
CM
6272/*
6273 * utility function to add 'inode' into 'parent_inode' with
6274 * a give name and a given sequence number.
6275 * if 'add_backref' is true, also insert a backref from the
6276 * inode to the parent directory.
6277 */
e02119d5
CM
6278int btrfs_add_link(struct btrfs_trans_handle *trans,
6279 struct inode *parent_inode, struct inode *inode,
6280 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6281{
4df27c4d 6282 int ret = 0;
39279cc3 6283 struct btrfs_key key;
e02119d5 6284 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6285 u64 ino = btrfs_ino(inode);
6286 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6287
33345d01 6288 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6289 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6290 } else {
33345d01 6291 key.objectid = ino;
962a298f 6292 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6293 key.offset = 0;
6294 }
6295
33345d01 6296 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6297 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6298 key.objectid, root->root_key.objectid,
33345d01 6299 parent_ino, index, name, name_len);
4df27c4d 6300 } else if (add_backref) {
33345d01
LZ
6301 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6302 parent_ino, index);
4df27c4d 6303 }
39279cc3 6304
79787eaa
JM
6305 /* Nothing to clean up yet */
6306 if (ret)
6307 return ret;
4df27c4d 6308
79787eaa
JM
6309 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6310 parent_inode, &key,
6311 btrfs_inode_type(inode), index);
9c52057c 6312 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6313 goto fail_dir_item;
6314 else if (ret) {
6315 btrfs_abort_transaction(trans, root, ret);
6316 return ret;
39279cc3 6317 }
79787eaa
JM
6318
6319 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6320 name_len * 2);
0c4d2d95 6321 inode_inc_iversion(parent_inode);
79787eaa
JM
6322 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6323 ret = btrfs_update_inode(trans, root, parent_inode);
6324 if (ret)
6325 btrfs_abort_transaction(trans, root, ret);
39279cc3 6326 return ret;
fe66a05a
CM
6327
6328fail_dir_item:
6329 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6330 u64 local_index;
6331 int err;
6332 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6333 key.objectid, root->root_key.objectid,
6334 parent_ino, &local_index, name, name_len);
6335
6336 } else if (add_backref) {
6337 u64 local_index;
6338 int err;
6339
6340 err = btrfs_del_inode_ref(trans, root, name, name_len,
6341 ino, parent_ino, &local_index);
6342 }
6343 return ret;
39279cc3
CM
6344}
6345
6346static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6347 struct inode *dir, struct dentry *dentry,
6348 struct inode *inode, int backref, u64 index)
39279cc3 6349{
a1b075d2
JB
6350 int err = btrfs_add_link(trans, dir, inode,
6351 dentry->d_name.name, dentry->d_name.len,
6352 backref, index);
39279cc3
CM
6353 if (err > 0)
6354 err = -EEXIST;
6355 return err;
6356}
6357
618e21d5 6358static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6359 umode_t mode, dev_t rdev)
618e21d5
JB
6360{
6361 struct btrfs_trans_handle *trans;
6362 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6363 struct inode *inode = NULL;
618e21d5
JB
6364 int err;
6365 int drop_inode = 0;
6366 u64 objectid;
00e4e6b3 6367 u64 index = 0;
618e21d5 6368
9ed74f2d
JB
6369 /*
6370 * 2 for inode item and ref
6371 * 2 for dir items
6372 * 1 for xattr if selinux is on
6373 */
a22285a6
YZ
6374 trans = btrfs_start_transaction(root, 5);
6375 if (IS_ERR(trans))
6376 return PTR_ERR(trans);
1832a6d5 6377
581bb050
LZ
6378 err = btrfs_find_free_ino(root, &objectid);
6379 if (err)
6380 goto out_unlock;
6381
aec7477b 6382 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6383 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6384 mode, &index);
7cf96da3
TI
6385 if (IS_ERR(inode)) {
6386 err = PTR_ERR(inode);
618e21d5 6387 goto out_unlock;
7cf96da3 6388 }
618e21d5 6389
ad19db71
CS
6390 /*
6391 * If the active LSM wants to access the inode during
6392 * d_instantiate it needs these. Smack checks to see
6393 * if the filesystem supports xattrs by looking at the
6394 * ops vector.
6395 */
ad19db71 6396 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6397 init_special_inode(inode, inode->i_mode, rdev);
6398
6399 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6400 if (err)
b0d5d10f
CM
6401 goto out_unlock_inode;
6402
6403 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6404 if (err) {
6405 goto out_unlock_inode;
6406 } else {
1b4ab1bb 6407 btrfs_update_inode(trans, root, inode);
b0d5d10f 6408 unlock_new_inode(inode);
08c422c2 6409 d_instantiate(dentry, inode);
618e21d5 6410 }
b0d5d10f 6411
618e21d5 6412out_unlock:
7ad85bb7 6413 btrfs_end_transaction(trans, root);
c581afc8 6414 btrfs_balance_delayed_items(root);
b53d3f5d 6415 btrfs_btree_balance_dirty(root);
618e21d5
JB
6416 if (drop_inode) {
6417 inode_dec_link_count(inode);
6418 iput(inode);
6419 }
618e21d5 6420 return err;
b0d5d10f
CM
6421
6422out_unlock_inode:
6423 drop_inode = 1;
6424 unlock_new_inode(inode);
6425 goto out_unlock;
6426
618e21d5
JB
6427}
6428
39279cc3 6429static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6430 umode_t mode, bool excl)
39279cc3
CM
6431{
6432 struct btrfs_trans_handle *trans;
6433 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6434 struct inode *inode = NULL;
43baa579 6435 int drop_inode_on_err = 0;
a22285a6 6436 int err;
39279cc3 6437 u64 objectid;
00e4e6b3 6438 u64 index = 0;
39279cc3 6439
9ed74f2d
JB
6440 /*
6441 * 2 for inode item and ref
6442 * 2 for dir items
6443 * 1 for xattr if selinux is on
6444 */
a22285a6
YZ
6445 trans = btrfs_start_transaction(root, 5);
6446 if (IS_ERR(trans))
6447 return PTR_ERR(trans);
9ed74f2d 6448
581bb050
LZ
6449 err = btrfs_find_free_ino(root, &objectid);
6450 if (err)
6451 goto out_unlock;
6452
aec7477b 6453 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6454 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6455 mode, &index);
7cf96da3
TI
6456 if (IS_ERR(inode)) {
6457 err = PTR_ERR(inode);
39279cc3 6458 goto out_unlock;
7cf96da3 6459 }
43baa579 6460 drop_inode_on_err = 1;
ad19db71
CS
6461 /*
6462 * If the active LSM wants to access the inode during
6463 * d_instantiate it needs these. Smack checks to see
6464 * if the filesystem supports xattrs by looking at the
6465 * ops vector.
6466 */
6467 inode->i_fop = &btrfs_file_operations;
6468 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6469 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6470
6471 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6472 if (err)
6473 goto out_unlock_inode;
6474
6475 err = btrfs_update_inode(trans, root, inode);
6476 if (err)
6477 goto out_unlock_inode;
ad19db71 6478
a1b075d2 6479 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6480 if (err)
b0d5d10f 6481 goto out_unlock_inode;
43baa579 6482
43baa579 6483 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6484 unlock_new_inode(inode);
43baa579
FB
6485 d_instantiate(dentry, inode);
6486
39279cc3 6487out_unlock:
7ad85bb7 6488 btrfs_end_transaction(trans, root);
43baa579 6489 if (err && drop_inode_on_err) {
39279cc3
CM
6490 inode_dec_link_count(inode);
6491 iput(inode);
6492 }
c581afc8 6493 btrfs_balance_delayed_items(root);
b53d3f5d 6494 btrfs_btree_balance_dirty(root);
39279cc3 6495 return err;
b0d5d10f
CM
6496
6497out_unlock_inode:
6498 unlock_new_inode(inode);
6499 goto out_unlock;
6500
39279cc3
CM
6501}
6502
6503static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6504 struct dentry *dentry)
6505{
6506 struct btrfs_trans_handle *trans;
6507 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6508 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6509 u64 index;
39279cc3
CM
6510 int err;
6511 int drop_inode = 0;
6512
4a8be425
TH
6513 /* do not allow sys_link's with other subvols of the same device */
6514 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6515 return -EXDEV;
4a8be425 6516
f186373f 6517 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6518 return -EMLINK;
4a8be425 6519
3de4586c 6520 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6521 if (err)
6522 goto fail;
6523
a22285a6 6524 /*
7e6b6465 6525 * 2 items for inode and inode ref
a22285a6 6526 * 2 items for dir items
7e6b6465 6527 * 1 item for parent inode
a22285a6 6528 */
7e6b6465 6529 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6530 if (IS_ERR(trans)) {
6531 err = PTR_ERR(trans);
6532 goto fail;
6533 }
5f39d397 6534
67de1176
MX
6535 /* There are several dir indexes for this inode, clear the cache. */
6536 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6537 inc_nlink(inode);
0c4d2d95 6538 inode_inc_iversion(inode);
3153495d 6539 inode->i_ctime = CURRENT_TIME;
7de9c6ee 6540 ihold(inode);
e9976151 6541 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6542
a1b075d2 6543 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6544
a5719521 6545 if (err) {
54aa1f4d 6546 drop_inode = 1;
a5719521 6547 } else {
10d9f309 6548 struct dentry *parent = dentry->d_parent;
a5719521 6549 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6550 if (err)
6551 goto fail;
ef3b9af5
FM
6552 if (inode->i_nlink == 1) {
6553 /*
6554 * If new hard link count is 1, it's a file created
6555 * with open(2) O_TMPFILE flag.
6556 */
6557 err = btrfs_orphan_del(trans, inode);
6558 if (err)
6559 goto fail;
6560 }
08c422c2 6561 d_instantiate(dentry, inode);
6a912213 6562 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6563 }
39279cc3 6564
7ad85bb7 6565 btrfs_end_transaction(trans, root);
c581afc8 6566 btrfs_balance_delayed_items(root);
1832a6d5 6567fail:
39279cc3
CM
6568 if (drop_inode) {
6569 inode_dec_link_count(inode);
6570 iput(inode);
6571 }
b53d3f5d 6572 btrfs_btree_balance_dirty(root);
39279cc3
CM
6573 return err;
6574}
6575
18bb1db3 6576static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6577{
b9d86667 6578 struct inode *inode = NULL;
39279cc3
CM
6579 struct btrfs_trans_handle *trans;
6580 struct btrfs_root *root = BTRFS_I(dir)->root;
6581 int err = 0;
6582 int drop_on_err = 0;
b9d86667 6583 u64 objectid = 0;
00e4e6b3 6584 u64 index = 0;
39279cc3 6585
9ed74f2d
JB
6586 /*
6587 * 2 items for inode and ref
6588 * 2 items for dir items
6589 * 1 for xattr if selinux is on
6590 */
a22285a6
YZ
6591 trans = btrfs_start_transaction(root, 5);
6592 if (IS_ERR(trans))
6593 return PTR_ERR(trans);
39279cc3 6594
581bb050
LZ
6595 err = btrfs_find_free_ino(root, &objectid);
6596 if (err)
6597 goto out_fail;
6598
aec7477b 6599 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6600 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6601 S_IFDIR | mode, &index);
39279cc3
CM
6602 if (IS_ERR(inode)) {
6603 err = PTR_ERR(inode);
6604 goto out_fail;
6605 }
5f39d397 6606
39279cc3 6607 drop_on_err = 1;
b0d5d10f
CM
6608 /* these must be set before we unlock the inode */
6609 inode->i_op = &btrfs_dir_inode_operations;
6610 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6611
2a7dba39 6612 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6613 if (err)
b0d5d10f 6614 goto out_fail_inode;
39279cc3 6615
dbe674a9 6616 btrfs_i_size_write(inode, 0);
39279cc3
CM
6617 err = btrfs_update_inode(trans, root, inode);
6618 if (err)
b0d5d10f 6619 goto out_fail_inode;
5f39d397 6620
a1b075d2
JB
6621 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6622 dentry->d_name.len, 0, index);
39279cc3 6623 if (err)
b0d5d10f 6624 goto out_fail_inode;
5f39d397 6625
39279cc3 6626 d_instantiate(dentry, inode);
b0d5d10f
CM
6627 /*
6628 * mkdir is special. We're unlocking after we call d_instantiate
6629 * to avoid a race with nfsd calling d_instantiate.
6630 */
6631 unlock_new_inode(inode);
39279cc3 6632 drop_on_err = 0;
39279cc3
CM
6633
6634out_fail:
7ad85bb7 6635 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6636 if (drop_on_err) {
6637 inode_dec_link_count(inode);
39279cc3 6638 iput(inode);
c7cfb8a5 6639 }
c581afc8 6640 btrfs_balance_delayed_items(root);
b53d3f5d 6641 btrfs_btree_balance_dirty(root);
39279cc3 6642 return err;
b0d5d10f
CM
6643
6644out_fail_inode:
6645 unlock_new_inode(inode);
6646 goto out_fail;
39279cc3
CM
6647}
6648
e6c4efd8
QW
6649/* Find next extent map of a given extent map, caller needs to ensure locks */
6650static struct extent_map *next_extent_map(struct extent_map *em)
6651{
6652 struct rb_node *next;
6653
6654 next = rb_next(&em->rb_node);
6655 if (!next)
6656 return NULL;
6657 return container_of(next, struct extent_map, rb_node);
6658}
6659
6660static struct extent_map *prev_extent_map(struct extent_map *em)
6661{
6662 struct rb_node *prev;
6663
6664 prev = rb_prev(&em->rb_node);
6665 if (!prev)
6666 return NULL;
6667 return container_of(prev, struct extent_map, rb_node);
6668}
6669
d352ac68 6670/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6671 * the existing extent is the nearest extent to map_start,
d352ac68 6672 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6673 * the best fitted new extent into the tree.
d352ac68 6674 */
3b951516
CM
6675static int merge_extent_mapping(struct extent_map_tree *em_tree,
6676 struct extent_map *existing,
e6dcd2dc 6677 struct extent_map *em,
51f395ad 6678 u64 map_start)
3b951516 6679{
e6c4efd8
QW
6680 struct extent_map *prev;
6681 struct extent_map *next;
6682 u64 start;
6683 u64 end;
3b951516 6684 u64 start_diff;
3b951516 6685
e6dcd2dc 6686 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6687
6688 if (existing->start > map_start) {
6689 next = existing;
6690 prev = prev_extent_map(next);
6691 } else {
6692 prev = existing;
6693 next = next_extent_map(prev);
6694 }
6695
6696 start = prev ? extent_map_end(prev) : em->start;
6697 start = max_t(u64, start, em->start);
6698 end = next ? next->start : extent_map_end(em);
6699 end = min_t(u64, end, extent_map_end(em));
6700 start_diff = start - em->start;
6701 em->start = start;
6702 em->len = end - start;
c8b97818
CM
6703 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6704 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6705 em->block_start += start_diff;
c8b97818
CM
6706 em->block_len -= start_diff;
6707 }
09a2a8f9 6708 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6709}
6710
c8b97818
CM
6711static noinline int uncompress_inline(struct btrfs_path *path,
6712 struct inode *inode, struct page *page,
6713 size_t pg_offset, u64 extent_offset,
6714 struct btrfs_file_extent_item *item)
6715{
6716 int ret;
6717 struct extent_buffer *leaf = path->nodes[0];
6718 char *tmp;
6719 size_t max_size;
6720 unsigned long inline_size;
6721 unsigned long ptr;
261507a0 6722 int compress_type;
c8b97818
CM
6723
6724 WARN_ON(pg_offset != 0);
261507a0 6725 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6726 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6727 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6728 btrfs_item_nr(path->slots[0]));
c8b97818 6729 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6730 if (!tmp)
6731 return -ENOMEM;
c8b97818
CM
6732 ptr = btrfs_file_extent_inline_start(item);
6733
6734 read_extent_buffer(leaf, tmp, ptr, inline_size);
6735
5b050f04 6736 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6737 ret = btrfs_decompress(compress_type, tmp, page,
6738 extent_offset, inline_size, max_size);
c8b97818 6739 kfree(tmp);
166ae5a4 6740 return ret;
c8b97818
CM
6741}
6742
d352ac68
CM
6743/*
6744 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6745 * the ugly parts come from merging extents from the disk with the in-ram
6746 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6747 * where the in-ram extents might be locked pending data=ordered completion.
6748 *
6749 * This also copies inline extents directly into the page.
6750 */
d397712b 6751
a52d9a80 6752struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6753 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6754 int create)
6755{
6756 int ret;
6757 int err = 0;
a52d9a80
CM
6758 u64 extent_start = 0;
6759 u64 extent_end = 0;
33345d01 6760 u64 objectid = btrfs_ino(inode);
a52d9a80 6761 u32 found_type;
f421950f 6762 struct btrfs_path *path = NULL;
a52d9a80
CM
6763 struct btrfs_root *root = BTRFS_I(inode)->root;
6764 struct btrfs_file_extent_item *item;
5f39d397
CM
6765 struct extent_buffer *leaf;
6766 struct btrfs_key found_key;
a52d9a80
CM
6767 struct extent_map *em = NULL;
6768 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6769 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6770 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6771 const bool new_inline = !page || create;
a52d9a80 6772
a52d9a80 6773again:
890871be 6774 read_lock(&em_tree->lock);
d1310b2e 6775 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6776 if (em)
6777 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6778 read_unlock(&em_tree->lock);
d1310b2e 6779
a52d9a80 6780 if (em) {
e1c4b745
CM
6781 if (em->start > start || em->start + em->len <= start)
6782 free_extent_map(em);
6783 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6784 free_extent_map(em);
6785 else
6786 goto out;
a52d9a80 6787 }
172ddd60 6788 em = alloc_extent_map();
a52d9a80 6789 if (!em) {
d1310b2e
CM
6790 err = -ENOMEM;
6791 goto out;
a52d9a80 6792 }
e6dcd2dc 6793 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6794 em->start = EXTENT_MAP_HOLE;
445a6944 6795 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6796 em->len = (u64)-1;
c8b97818 6797 em->block_len = (u64)-1;
f421950f
CM
6798
6799 if (!path) {
6800 path = btrfs_alloc_path();
026fd317
JB
6801 if (!path) {
6802 err = -ENOMEM;
6803 goto out;
6804 }
6805 /*
6806 * Chances are we'll be called again, so go ahead and do
6807 * readahead
6808 */
6809 path->reada = 1;
f421950f
CM
6810 }
6811
179e29e4
CM
6812 ret = btrfs_lookup_file_extent(trans, root, path,
6813 objectid, start, trans != NULL);
a52d9a80
CM
6814 if (ret < 0) {
6815 err = ret;
6816 goto out;
6817 }
6818
6819 if (ret != 0) {
6820 if (path->slots[0] == 0)
6821 goto not_found;
6822 path->slots[0]--;
6823 }
6824
5f39d397
CM
6825 leaf = path->nodes[0];
6826 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6827 struct btrfs_file_extent_item);
a52d9a80 6828 /* are we inside the extent that was found? */
5f39d397 6829 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6830 found_type = found_key.type;
5f39d397 6831 if (found_key.objectid != objectid ||
a52d9a80 6832 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6833 /*
6834 * If we backup past the first extent we want to move forward
6835 * and see if there is an extent in front of us, otherwise we'll
6836 * say there is a hole for our whole search range which can
6837 * cause problems.
6838 */
6839 extent_end = start;
6840 goto next;
a52d9a80
CM
6841 }
6842
5f39d397
CM
6843 found_type = btrfs_file_extent_type(leaf, item);
6844 extent_start = found_key.offset;
d899e052
YZ
6845 if (found_type == BTRFS_FILE_EXTENT_REG ||
6846 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6847 extent_end = extent_start +
db94535d 6848 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6849 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6850 size_t size;
514ac8ad 6851 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6852 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6853 }
25a50341 6854next:
9036c102
YZ
6855 if (start >= extent_end) {
6856 path->slots[0]++;
6857 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6858 ret = btrfs_next_leaf(root, path);
6859 if (ret < 0) {
6860 err = ret;
6861 goto out;
a52d9a80 6862 }
9036c102
YZ
6863 if (ret > 0)
6864 goto not_found;
6865 leaf = path->nodes[0];
a52d9a80 6866 }
9036c102
YZ
6867 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6868 if (found_key.objectid != objectid ||
6869 found_key.type != BTRFS_EXTENT_DATA_KEY)
6870 goto not_found;
6871 if (start + len <= found_key.offset)
6872 goto not_found;
e2eca69d
WS
6873 if (start > found_key.offset)
6874 goto next;
9036c102 6875 em->start = start;
70c8a91c 6876 em->orig_start = start;
9036c102
YZ
6877 em->len = found_key.offset - start;
6878 goto not_found_em;
6879 }
6880
7ffbb598
FM
6881 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6882
d899e052
YZ
6883 if (found_type == BTRFS_FILE_EXTENT_REG ||
6884 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6885 goto insert;
6886 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6887 unsigned long ptr;
a52d9a80 6888 char *map;
3326d1b0
CM
6889 size_t size;
6890 size_t extent_offset;
6891 size_t copy_size;
a52d9a80 6892
7ffbb598 6893 if (new_inline)
689f9346 6894 goto out;
5f39d397 6895
514ac8ad 6896 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6897 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6898 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6899 size - extent_offset);
3326d1b0 6900 em->start = extent_start + extent_offset;
fda2832f 6901 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6902 em->orig_block_len = em->len;
70c8a91c 6903 em->orig_start = em->start;
689f9346 6904 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6905 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6906 if (btrfs_file_extent_compression(leaf, item) !=
6907 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6908 ret = uncompress_inline(path, inode, page,
6909 pg_offset,
6910 extent_offset, item);
166ae5a4
ZB
6911 if (ret) {
6912 err = ret;
6913 goto out;
6914 }
c8b97818
CM
6915 } else {
6916 map = kmap(page);
6917 read_extent_buffer(leaf, map + pg_offset, ptr,
6918 copy_size);
93c82d57
CM
6919 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6920 memset(map + pg_offset + copy_size, 0,
6921 PAGE_CACHE_SIZE - pg_offset -
6922 copy_size);
6923 }
c8b97818
CM
6924 kunmap(page);
6925 }
179e29e4
CM
6926 flush_dcache_page(page);
6927 } else if (create && PageUptodate(page)) {
6bf7e080 6928 BUG();
179e29e4
CM
6929 if (!trans) {
6930 kunmap(page);
6931 free_extent_map(em);
6932 em = NULL;
ff5714cc 6933
b3b4aa74 6934 btrfs_release_path(path);
7a7eaa40 6935 trans = btrfs_join_transaction(root);
ff5714cc 6936
3612b495
TI
6937 if (IS_ERR(trans))
6938 return ERR_CAST(trans);
179e29e4
CM
6939 goto again;
6940 }
c8b97818 6941 map = kmap(page);
70dec807 6942 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6943 copy_size);
c8b97818 6944 kunmap(page);
179e29e4 6945 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6946 }
d1310b2e 6947 set_extent_uptodate(io_tree, em->start,
507903b8 6948 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6949 goto insert;
a52d9a80
CM
6950 }
6951not_found:
6952 em->start = start;
70c8a91c 6953 em->orig_start = start;
d1310b2e 6954 em->len = len;
a52d9a80 6955not_found_em:
5f39d397 6956 em->block_start = EXTENT_MAP_HOLE;
9036c102 6957 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6958insert:
b3b4aa74 6959 btrfs_release_path(path);
d1310b2e 6960 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6961 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6962 em->start, em->len, start, len);
a52d9a80
CM
6963 err = -EIO;
6964 goto out;
6965 }
d1310b2e
CM
6966
6967 err = 0;
890871be 6968 write_lock(&em_tree->lock);
09a2a8f9 6969 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6970 /* it is possible that someone inserted the extent into the tree
6971 * while we had the lock dropped. It is also possible that
6972 * an overlapping map exists in the tree
6973 */
a52d9a80 6974 if (ret == -EEXIST) {
3b951516 6975 struct extent_map *existing;
e6dcd2dc
CM
6976
6977 ret = 0;
6978
e6c4efd8
QW
6979 existing = search_extent_mapping(em_tree, start, len);
6980 /*
6981 * existing will always be non-NULL, since there must be
6982 * extent causing the -EEXIST.
6983 */
6984 if (start >= extent_map_end(existing) ||
32be3a1a 6985 start <= existing->start) {
e6c4efd8
QW
6986 /*
6987 * The existing extent map is the one nearest to
6988 * the [start, start + len) range which overlaps
6989 */
6990 err = merge_extent_mapping(em_tree, existing,
6991 em, start);
e1c4b745 6992 free_extent_map(existing);
e6c4efd8 6993 if (err) {
3b951516
CM
6994 free_extent_map(em);
6995 em = NULL;
6996 }
6997 } else {
6998 free_extent_map(em);
6999 em = existing;
e6dcd2dc 7000 err = 0;
a52d9a80 7001 }
a52d9a80 7002 }
890871be 7003 write_unlock(&em_tree->lock);
a52d9a80 7004out:
1abe9b8a 7005
4cd8587c 7006 trace_btrfs_get_extent(root, em);
1abe9b8a 7007
527afb44 7008 btrfs_free_path(path);
a52d9a80
CM
7009 if (trans) {
7010 ret = btrfs_end_transaction(trans, root);
d397712b 7011 if (!err)
a52d9a80
CM
7012 err = ret;
7013 }
a52d9a80
CM
7014 if (err) {
7015 free_extent_map(em);
a52d9a80
CM
7016 return ERR_PTR(err);
7017 }
79787eaa 7018 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7019 return em;
7020}
7021
ec29ed5b
CM
7022struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7023 size_t pg_offset, u64 start, u64 len,
7024 int create)
7025{
7026 struct extent_map *em;
7027 struct extent_map *hole_em = NULL;
7028 u64 range_start = start;
7029 u64 end;
7030 u64 found;
7031 u64 found_end;
7032 int err = 0;
7033
7034 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7035 if (IS_ERR(em))
7036 return em;
7037 if (em) {
7038 /*
f9e4fb53
LB
7039 * if our em maps to
7040 * - a hole or
7041 * - a pre-alloc extent,
7042 * there might actually be delalloc bytes behind it.
ec29ed5b 7043 */
f9e4fb53
LB
7044 if (em->block_start != EXTENT_MAP_HOLE &&
7045 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7046 return em;
7047 else
7048 hole_em = em;
7049 }
7050
7051 /* check to see if we've wrapped (len == -1 or similar) */
7052 end = start + len;
7053 if (end < start)
7054 end = (u64)-1;
7055 else
7056 end -= 1;
7057
7058 em = NULL;
7059
7060 /* ok, we didn't find anything, lets look for delalloc */
7061 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7062 end, len, EXTENT_DELALLOC, 1);
7063 found_end = range_start + found;
7064 if (found_end < range_start)
7065 found_end = (u64)-1;
7066
7067 /*
7068 * we didn't find anything useful, return
7069 * the original results from get_extent()
7070 */
7071 if (range_start > end || found_end <= start) {
7072 em = hole_em;
7073 hole_em = NULL;
7074 goto out;
7075 }
7076
7077 /* adjust the range_start to make sure it doesn't
7078 * go backwards from the start they passed in
7079 */
67871254 7080 range_start = max(start, range_start);
ec29ed5b
CM
7081 found = found_end - range_start;
7082
7083 if (found > 0) {
7084 u64 hole_start = start;
7085 u64 hole_len = len;
7086
172ddd60 7087 em = alloc_extent_map();
ec29ed5b
CM
7088 if (!em) {
7089 err = -ENOMEM;
7090 goto out;
7091 }
7092 /*
7093 * when btrfs_get_extent can't find anything it
7094 * returns one huge hole
7095 *
7096 * make sure what it found really fits our range, and
7097 * adjust to make sure it is based on the start from
7098 * the caller
7099 */
7100 if (hole_em) {
7101 u64 calc_end = extent_map_end(hole_em);
7102
7103 if (calc_end <= start || (hole_em->start > end)) {
7104 free_extent_map(hole_em);
7105 hole_em = NULL;
7106 } else {
7107 hole_start = max(hole_em->start, start);
7108 hole_len = calc_end - hole_start;
7109 }
7110 }
7111 em->bdev = NULL;
7112 if (hole_em && range_start > hole_start) {
7113 /* our hole starts before our delalloc, so we
7114 * have to return just the parts of the hole
7115 * that go until the delalloc starts
7116 */
7117 em->len = min(hole_len,
7118 range_start - hole_start);
7119 em->start = hole_start;
7120 em->orig_start = hole_start;
7121 /*
7122 * don't adjust block start at all,
7123 * it is fixed at EXTENT_MAP_HOLE
7124 */
7125 em->block_start = hole_em->block_start;
7126 em->block_len = hole_len;
f9e4fb53
LB
7127 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7128 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7129 } else {
7130 em->start = range_start;
7131 em->len = found;
7132 em->orig_start = range_start;
7133 em->block_start = EXTENT_MAP_DELALLOC;
7134 em->block_len = found;
7135 }
7136 } else if (hole_em) {
7137 return hole_em;
7138 }
7139out:
7140
7141 free_extent_map(hole_em);
7142 if (err) {
7143 free_extent_map(em);
7144 return ERR_PTR(err);
7145 }
7146 return em;
7147}
7148
4b46fce2
JB
7149static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7150 u64 start, u64 len)
7151{
7152 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7153 struct extent_map *em;
4b46fce2
JB
7154 struct btrfs_key ins;
7155 u64 alloc_hint;
7156 int ret;
4b46fce2 7157
4b46fce2 7158 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 7159 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 7160 alloc_hint, &ins, 1, 1);
00361589
JB
7161 if (ret)
7162 return ERR_PTR(ret);
4b46fce2 7163
70c8a91c 7164 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 7165 ins.offset, ins.offset, ins.offset, 0);
00361589 7166 if (IS_ERR(em)) {
e570fd27 7167 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
7168 return em;
7169 }
4b46fce2
JB
7170
7171 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7172 ins.offset, ins.offset, 0);
7173 if (ret) {
e570fd27 7174 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
7175 free_extent_map(em);
7176 return ERR_PTR(ret);
4b46fce2 7177 }
00361589 7178
4b46fce2
JB
7179 return em;
7180}
7181
46bfbb5c
CM
7182/*
7183 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7184 * block must be cow'd
7185 */
00361589 7186noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7187 u64 *orig_start, u64 *orig_block_len,
7188 u64 *ram_bytes)
46bfbb5c 7189{
00361589 7190 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7191 struct btrfs_path *path;
7192 int ret;
7193 struct extent_buffer *leaf;
7194 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7195 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7196 struct btrfs_file_extent_item *fi;
7197 struct btrfs_key key;
7198 u64 disk_bytenr;
7199 u64 backref_offset;
7200 u64 extent_end;
7201 u64 num_bytes;
7202 int slot;
7203 int found_type;
7ee9e440 7204 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7205
46bfbb5c
CM
7206 path = btrfs_alloc_path();
7207 if (!path)
7208 return -ENOMEM;
7209
00361589 7210 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7211 offset, 0);
7212 if (ret < 0)
7213 goto out;
7214
7215 slot = path->slots[0];
7216 if (ret == 1) {
7217 if (slot == 0) {
7218 /* can't find the item, must cow */
7219 ret = 0;
7220 goto out;
7221 }
7222 slot--;
7223 }
7224 ret = 0;
7225 leaf = path->nodes[0];
7226 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7227 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7228 key.type != BTRFS_EXTENT_DATA_KEY) {
7229 /* not our file or wrong item type, must cow */
7230 goto out;
7231 }
7232
7233 if (key.offset > offset) {
7234 /* Wrong offset, must cow */
7235 goto out;
7236 }
7237
7238 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7239 found_type = btrfs_file_extent_type(leaf, fi);
7240 if (found_type != BTRFS_FILE_EXTENT_REG &&
7241 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7242 /* not a regular extent, must cow */
7243 goto out;
7244 }
7ee9e440
JB
7245
7246 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7247 goto out;
7248
e77751aa
MX
7249 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7250 if (extent_end <= offset)
7251 goto out;
7252
46bfbb5c 7253 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7254 if (disk_bytenr == 0)
7255 goto out;
7256
7257 if (btrfs_file_extent_compression(leaf, fi) ||
7258 btrfs_file_extent_encryption(leaf, fi) ||
7259 btrfs_file_extent_other_encoding(leaf, fi))
7260 goto out;
7261
46bfbb5c
CM
7262 backref_offset = btrfs_file_extent_offset(leaf, fi);
7263
7ee9e440
JB
7264 if (orig_start) {
7265 *orig_start = key.offset - backref_offset;
7266 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7267 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7268 }
eb384b55 7269
46bfbb5c
CM
7270 if (btrfs_extent_readonly(root, disk_bytenr))
7271 goto out;
7b2b7085
MX
7272
7273 num_bytes = min(offset + *len, extent_end) - offset;
7274 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7275 u64 range_end;
7276
7277 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7278 ret = test_range_bit(io_tree, offset, range_end,
7279 EXTENT_DELALLOC, 0, NULL);
7280 if (ret) {
7281 ret = -EAGAIN;
7282 goto out;
7283 }
7284 }
7285
1bda19eb 7286 btrfs_release_path(path);
46bfbb5c
CM
7287
7288 /*
7289 * look for other files referencing this extent, if we
7290 * find any we must cow
7291 */
00361589
JB
7292 trans = btrfs_join_transaction(root);
7293 if (IS_ERR(trans)) {
7294 ret = 0;
46bfbb5c 7295 goto out;
00361589
JB
7296 }
7297
7298 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7299 key.offset - backref_offset, disk_bytenr);
7300 btrfs_end_transaction(trans, root);
7301 if (ret) {
7302 ret = 0;
7303 goto out;
7304 }
46bfbb5c
CM
7305
7306 /*
7307 * adjust disk_bytenr and num_bytes to cover just the bytes
7308 * in this extent we are about to write. If there
7309 * are any csums in that range we have to cow in order
7310 * to keep the csums correct
7311 */
7312 disk_bytenr += backref_offset;
7313 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7314 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7315 goto out;
7316 /*
7317 * all of the above have passed, it is safe to overwrite this extent
7318 * without cow
7319 */
eb384b55 7320 *len = num_bytes;
46bfbb5c
CM
7321 ret = 1;
7322out:
7323 btrfs_free_path(path);
7324 return ret;
7325}
7326
fc4adbff
AG
7327bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7328{
7329 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7330 int found = false;
7331 void **pagep = NULL;
7332 struct page *page = NULL;
7333 int start_idx;
7334 int end_idx;
7335
7336 start_idx = start >> PAGE_CACHE_SHIFT;
7337
7338 /*
7339 * end is the last byte in the last page. end == start is legal
7340 */
7341 end_idx = end >> PAGE_CACHE_SHIFT;
7342
7343 rcu_read_lock();
7344
7345 /* Most of the code in this while loop is lifted from
7346 * find_get_page. It's been modified to begin searching from a
7347 * page and return just the first page found in that range. If the
7348 * found idx is less than or equal to the end idx then we know that
7349 * a page exists. If no pages are found or if those pages are
7350 * outside of the range then we're fine (yay!) */
7351 while (page == NULL &&
7352 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7353 page = radix_tree_deref_slot(pagep);
7354 if (unlikely(!page))
7355 break;
7356
7357 if (radix_tree_exception(page)) {
809f9016
FM
7358 if (radix_tree_deref_retry(page)) {
7359 page = NULL;
fc4adbff 7360 continue;
809f9016 7361 }
fc4adbff
AG
7362 /*
7363 * Otherwise, shmem/tmpfs must be storing a swap entry
7364 * here as an exceptional entry: so return it without
7365 * attempting to raise page count.
7366 */
6fdef6d4 7367 page = NULL;
fc4adbff
AG
7368 break; /* TODO: Is this relevant for this use case? */
7369 }
7370
91405151
FM
7371 if (!page_cache_get_speculative(page)) {
7372 page = NULL;
fc4adbff 7373 continue;
91405151 7374 }
fc4adbff
AG
7375
7376 /*
7377 * Has the page moved?
7378 * This is part of the lockless pagecache protocol. See
7379 * include/linux/pagemap.h for details.
7380 */
7381 if (unlikely(page != *pagep)) {
7382 page_cache_release(page);
7383 page = NULL;
7384 }
7385 }
7386
7387 if (page) {
7388 if (page->index <= end_idx)
7389 found = true;
7390 page_cache_release(page);
7391 }
7392
7393 rcu_read_unlock();
7394 return found;
7395}
7396
eb838e73
JB
7397static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7398 struct extent_state **cached_state, int writing)
7399{
7400 struct btrfs_ordered_extent *ordered;
7401 int ret = 0;
7402
7403 while (1) {
7404 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7405 0, cached_state);
7406 /*
7407 * We're concerned with the entire range that we're going to be
7408 * doing DIO to, so we need to make sure theres no ordered
7409 * extents in this range.
7410 */
7411 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7412 lockend - lockstart + 1);
7413
7414 /*
7415 * We need to make sure there are no buffered pages in this
7416 * range either, we could have raced between the invalidate in
7417 * generic_file_direct_write and locking the extent. The
7418 * invalidate needs to happen so that reads after a write do not
7419 * get stale data.
7420 */
fc4adbff
AG
7421 if (!ordered &&
7422 (!writing ||
7423 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7424 break;
7425
7426 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7427 cached_state, GFP_NOFS);
7428
7429 if (ordered) {
7430 btrfs_start_ordered_extent(inode, ordered, 1);
7431 btrfs_put_ordered_extent(ordered);
7432 } else {
7433 /* Screw you mmap */
728404da 7434 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
075bdbdb
FM
7435 if (ret)
7436 break;
7437 ret = filemap_fdatawait_range(inode->i_mapping,
7438 lockstart,
7439 lockend);
eb838e73
JB
7440 if (ret)
7441 break;
7442
7443 /*
7444 * If we found a page that couldn't be invalidated just
7445 * fall back to buffered.
7446 */
7447 ret = invalidate_inode_pages2_range(inode->i_mapping,
7448 lockstart >> PAGE_CACHE_SHIFT,
7449 lockend >> PAGE_CACHE_SHIFT);
7450 if (ret)
7451 break;
7452 }
7453
7454 cond_resched();
7455 }
7456
7457 return ret;
7458}
7459
69ffb543
JB
7460static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7461 u64 len, u64 orig_start,
7462 u64 block_start, u64 block_len,
cc95bef6
JB
7463 u64 orig_block_len, u64 ram_bytes,
7464 int type)
69ffb543
JB
7465{
7466 struct extent_map_tree *em_tree;
7467 struct extent_map *em;
7468 struct btrfs_root *root = BTRFS_I(inode)->root;
7469 int ret;
7470
7471 em_tree = &BTRFS_I(inode)->extent_tree;
7472 em = alloc_extent_map();
7473 if (!em)
7474 return ERR_PTR(-ENOMEM);
7475
7476 em->start = start;
7477 em->orig_start = orig_start;
2ab28f32
JB
7478 em->mod_start = start;
7479 em->mod_len = len;
69ffb543
JB
7480 em->len = len;
7481 em->block_len = block_len;
7482 em->block_start = block_start;
7483 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7484 em->orig_block_len = orig_block_len;
cc95bef6 7485 em->ram_bytes = ram_bytes;
70c8a91c 7486 em->generation = -1;
69ffb543
JB
7487 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7488 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7489 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7490
7491 do {
7492 btrfs_drop_extent_cache(inode, em->start,
7493 em->start + em->len - 1, 0);
7494 write_lock(&em_tree->lock);
09a2a8f9 7495 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7496 write_unlock(&em_tree->lock);
7497 } while (ret == -EEXIST);
7498
7499 if (ret) {
7500 free_extent_map(em);
7501 return ERR_PTR(ret);
7502 }
7503
7504 return em;
7505}
7506
50745b0a 7507struct btrfs_dio_data {
7508 u64 outstanding_extents;
7509 u64 reserve;
7510};
69ffb543 7511
9c9464cc
FM
7512static void adjust_dio_outstanding_extents(struct inode *inode,
7513 struct btrfs_dio_data *dio_data,
7514 const u64 len)
7515{
7516 unsigned num_extents;
7517
7518 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7519 BTRFS_MAX_EXTENT_SIZE);
7520 /*
7521 * If we have an outstanding_extents count still set then we're
7522 * within our reservation, otherwise we need to adjust our inode
7523 * counter appropriately.
7524 */
7525 if (dio_data->outstanding_extents) {
7526 dio_data->outstanding_extents -= num_extents;
7527 } else {
7528 spin_lock(&BTRFS_I(inode)->lock);
7529 BTRFS_I(inode)->outstanding_extents += num_extents;
7530 spin_unlock(&BTRFS_I(inode)->lock);
7531 }
7532}
7533
4b46fce2
JB
7534static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7535 struct buffer_head *bh_result, int create)
7536{
7537 struct extent_map *em;
7538 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7539 struct extent_state *cached_state = NULL;
50745b0a 7540 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7541 u64 start = iblock << inode->i_blkbits;
eb838e73 7542 u64 lockstart, lockend;
4b46fce2 7543 u64 len = bh_result->b_size;
eb838e73 7544 int unlock_bits = EXTENT_LOCKED;
0934856d 7545 int ret = 0;
eb838e73 7546
172a5049 7547 if (create)
3266789f 7548 unlock_bits |= EXTENT_DIRTY;
172a5049 7549 else
c329861d 7550 len = min_t(u64, len, root->sectorsize);
eb838e73 7551
c329861d
JB
7552 lockstart = start;
7553 lockend = start + len - 1;
7554
e1cbbfa5
JB
7555 if (current->journal_info) {
7556 /*
7557 * Need to pull our outstanding extents and set journal_info to NULL so
7558 * that anything that needs to check if there's a transction doesn't get
7559 * confused.
7560 */
50745b0a 7561 dio_data = current->journal_info;
e1cbbfa5
JB
7562 current->journal_info = NULL;
7563 }
7564
eb838e73
JB
7565 /*
7566 * If this errors out it's because we couldn't invalidate pagecache for
7567 * this range and we need to fallback to buffered.
7568 */
9c9464cc
FM
7569 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7570 create)) {
7571 ret = -ENOTBLK;
7572 goto err;
7573 }
eb838e73 7574
4b46fce2 7575 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7576 if (IS_ERR(em)) {
7577 ret = PTR_ERR(em);
7578 goto unlock_err;
7579 }
4b46fce2
JB
7580
7581 /*
7582 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7583 * io. INLINE is special, and we could probably kludge it in here, but
7584 * it's still buffered so for safety lets just fall back to the generic
7585 * buffered path.
7586 *
7587 * For COMPRESSED we _have_ to read the entire extent in so we can
7588 * decompress it, so there will be buffering required no matter what we
7589 * do, so go ahead and fallback to buffered.
7590 *
7591 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7592 * to buffered IO. Don't blame me, this is the price we pay for using
7593 * the generic code.
7594 */
7595 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7596 em->block_start == EXTENT_MAP_INLINE) {
7597 free_extent_map(em);
eb838e73
JB
7598 ret = -ENOTBLK;
7599 goto unlock_err;
4b46fce2
JB
7600 }
7601
7602 /* Just a good old fashioned hole, return */
7603 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7604 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7605 free_extent_map(em);
eb838e73 7606 goto unlock_err;
4b46fce2
JB
7607 }
7608
7609 /*
7610 * We don't allocate a new extent in the following cases
7611 *
7612 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7613 * existing extent.
7614 * 2) The extent is marked as PREALLOC. We're good to go here and can
7615 * just use the extent.
7616 *
7617 */
46bfbb5c 7618 if (!create) {
eb838e73
JB
7619 len = min(len, em->len - (start - em->start));
7620 lockstart = start + len;
7621 goto unlock;
46bfbb5c 7622 }
4b46fce2
JB
7623
7624 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7625 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7626 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7627 int type;
eb384b55 7628 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7629
7630 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7631 type = BTRFS_ORDERED_PREALLOC;
7632 else
7633 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7634 len = min(len, em->len - (start - em->start));
4b46fce2 7635 block_start = em->block_start + (start - em->start);
46bfbb5c 7636
00361589 7637 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 7638 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
7639 if (type == BTRFS_ORDERED_PREALLOC) {
7640 free_extent_map(em);
7641 em = create_pinned_em(inode, start, len,
7642 orig_start,
b4939680 7643 block_start, len,
cc95bef6
JB
7644 orig_block_len,
7645 ram_bytes, type);
555e1286
FM
7646 if (IS_ERR(em)) {
7647 ret = PTR_ERR(em);
69ffb543 7648 goto unlock_err;
555e1286 7649 }
69ffb543
JB
7650 }
7651
46bfbb5c
CM
7652 ret = btrfs_add_ordered_extent_dio(inode, start,
7653 block_start, len, len, type);
46bfbb5c
CM
7654 if (ret) {
7655 free_extent_map(em);
eb838e73 7656 goto unlock_err;
46bfbb5c
CM
7657 }
7658 goto unlock;
4b46fce2 7659 }
4b46fce2 7660 }
00361589 7661
46bfbb5c
CM
7662 /*
7663 * this will cow the extent, reset the len in case we changed
7664 * it above
7665 */
7666 len = bh_result->b_size;
70c8a91c
JB
7667 free_extent_map(em);
7668 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7669 if (IS_ERR(em)) {
7670 ret = PTR_ERR(em);
7671 goto unlock_err;
7672 }
46bfbb5c
CM
7673 len = min(len, em->len - (start - em->start));
7674unlock:
4b46fce2
JB
7675 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7676 inode->i_blkbits;
46bfbb5c 7677 bh_result->b_size = len;
4b46fce2
JB
7678 bh_result->b_bdev = em->bdev;
7679 set_buffer_mapped(bh_result);
c3473e83
JB
7680 if (create) {
7681 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7682 set_buffer_new(bh_result);
7683
7684 /*
7685 * Need to update the i_size under the extent lock so buffered
7686 * readers will get the updated i_size when we unlock.
7687 */
7688 if (start + len > i_size_read(inode))
7689 i_size_write(inode, start + len);
0934856d 7690
9c9464cc 7691 adjust_dio_outstanding_extents(inode, dio_data, len);
7cf5b976 7692 btrfs_free_reserved_data_space(inode, start, len);
50745b0a 7693 WARN_ON(dio_data->reserve < len);
7694 dio_data->reserve -= len;
7695 current->journal_info = dio_data;
c3473e83 7696 }
4b46fce2 7697
eb838e73
JB
7698 /*
7699 * In the case of write we need to clear and unlock the entire range,
7700 * in the case of read we need to unlock only the end area that we
7701 * aren't using if there is any left over space.
7702 */
24c03fa5 7703 if (lockstart < lockend) {
0934856d
MX
7704 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7705 lockend, unlock_bits, 1, 0,
7706 &cached_state, GFP_NOFS);
24c03fa5 7707 } else {
eb838e73 7708 free_extent_state(cached_state);
24c03fa5 7709 }
eb838e73 7710
4b46fce2
JB
7711 free_extent_map(em);
7712
7713 return 0;
eb838e73
JB
7714
7715unlock_err:
eb838e73
JB
7716 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7717 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7718err:
50745b0a 7719 if (dio_data)
7720 current->journal_info = dio_data;
9c9464cc
FM
7721 /*
7722 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7723 * write less data then expected, so that we don't underflow our inode's
7724 * outstanding extents counter.
7725 */
7726 if (create && dio_data)
7727 adjust_dio_outstanding_extents(inode, dio_data, len);
7728
eb838e73 7729 return ret;
4b46fce2
JB
7730}
7731
8b110e39
MX
7732static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7733 int rw, int mirror_num)
7734{
7735 struct btrfs_root *root = BTRFS_I(inode)->root;
7736 int ret;
7737
7738 BUG_ON(rw & REQ_WRITE);
7739
7740 bio_get(bio);
7741
7742 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7743 BTRFS_WQ_ENDIO_DIO_REPAIR);
7744 if (ret)
7745 goto err;
7746
7747 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7748err:
7749 bio_put(bio);
7750 return ret;
7751}
7752
7753static int btrfs_check_dio_repairable(struct inode *inode,
7754 struct bio *failed_bio,
7755 struct io_failure_record *failrec,
7756 int failed_mirror)
7757{
7758 int num_copies;
7759
7760 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7761 failrec->logical, failrec->len);
7762 if (num_copies == 1) {
7763 /*
7764 * we only have a single copy of the data, so don't bother with
7765 * all the retry and error correction code that follows. no
7766 * matter what the error is, it is very likely to persist.
7767 */
7768 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7769 num_copies, failrec->this_mirror, failed_mirror);
7770 return 0;
7771 }
7772
7773 failrec->failed_mirror = failed_mirror;
7774 failrec->this_mirror++;
7775 if (failrec->this_mirror == failed_mirror)
7776 failrec->this_mirror++;
7777
7778 if (failrec->this_mirror > num_copies) {
7779 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7780 num_copies, failrec->this_mirror, failed_mirror);
7781 return 0;
7782 }
7783
7784 return 1;
7785}
7786
7787static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7788 struct page *page, u64 start, u64 end,
7789 int failed_mirror, bio_end_io_t *repair_endio,
7790 void *repair_arg)
7791{
7792 struct io_failure_record *failrec;
7793 struct bio *bio;
7794 int isector;
7795 int read_mode;
7796 int ret;
7797
7798 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7799
7800 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7801 if (ret)
7802 return ret;
7803
7804 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7805 failed_mirror);
7806 if (!ret) {
7807 free_io_failure(inode, failrec);
7808 return -EIO;
7809 }
7810
7811 if (failed_bio->bi_vcnt > 1)
7812 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7813 else
7814 read_mode = READ_SYNC;
7815
7816 isector = start - btrfs_io_bio(failed_bio)->logical;
7817 isector >>= inode->i_sb->s_blocksize_bits;
7818 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7819 0, isector, repair_endio, repair_arg);
7820 if (!bio) {
7821 free_io_failure(inode, failrec);
7822 return -EIO;
7823 }
7824
7825 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7826 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7827 read_mode, failrec->this_mirror, failrec->in_validation);
7828
7829 ret = submit_dio_repair_bio(inode, bio, read_mode,
7830 failrec->this_mirror);
7831 if (ret) {
7832 free_io_failure(inode, failrec);
7833 bio_put(bio);
7834 }
7835
7836 return ret;
7837}
7838
7839struct btrfs_retry_complete {
7840 struct completion done;
7841 struct inode *inode;
7842 u64 start;
7843 int uptodate;
7844};
7845
4246a0b6 7846static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7847{
7848 struct btrfs_retry_complete *done = bio->bi_private;
7849 struct bio_vec *bvec;
7850 int i;
7851
4246a0b6 7852 if (bio->bi_error)
8b110e39
MX
7853 goto end;
7854
7855 done->uptodate = 1;
7856 bio_for_each_segment_all(bvec, bio, i)
7857 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7858end:
7859 complete(&done->done);
7860 bio_put(bio);
7861}
7862
7863static int __btrfs_correct_data_nocsum(struct inode *inode,
7864 struct btrfs_io_bio *io_bio)
4b46fce2 7865{
2c30c71b 7866 struct bio_vec *bvec;
8b110e39 7867 struct btrfs_retry_complete done;
4b46fce2 7868 u64 start;
2c30c71b 7869 int i;
c1dc0896 7870 int ret;
4b46fce2 7871
8b110e39
MX
7872 start = io_bio->logical;
7873 done.inode = inode;
7874
7875 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7876try_again:
7877 done.uptodate = 0;
7878 done.start = start;
7879 init_completion(&done.done);
7880
7881 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7882 start + bvec->bv_len - 1,
7883 io_bio->mirror_num,
7884 btrfs_retry_endio_nocsum, &done);
7885 if (ret)
7886 return ret;
7887
7888 wait_for_completion(&done.done);
7889
7890 if (!done.uptodate) {
7891 /* We might have another mirror, so try again */
7892 goto try_again;
7893 }
7894
7895 start += bvec->bv_len;
7896 }
7897
7898 return 0;
7899}
7900
4246a0b6 7901static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7902{
7903 struct btrfs_retry_complete *done = bio->bi_private;
7904 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7905 struct bio_vec *bvec;
7906 int uptodate;
7907 int ret;
7908 int i;
7909
4246a0b6 7910 if (bio->bi_error)
8b110e39
MX
7911 goto end;
7912
7913 uptodate = 1;
7914 bio_for_each_segment_all(bvec, bio, i) {
7915 ret = __readpage_endio_check(done->inode, io_bio, i,
7916 bvec->bv_page, 0,
7917 done->start, bvec->bv_len);
7918 if (!ret)
7919 clean_io_failure(done->inode, done->start,
7920 bvec->bv_page, 0);
7921 else
7922 uptodate = 0;
7923 }
7924
7925 done->uptodate = uptodate;
7926end:
7927 complete(&done->done);
7928 bio_put(bio);
7929}
7930
7931static int __btrfs_subio_endio_read(struct inode *inode,
7932 struct btrfs_io_bio *io_bio, int err)
7933{
7934 struct bio_vec *bvec;
7935 struct btrfs_retry_complete done;
7936 u64 start;
7937 u64 offset = 0;
7938 int i;
7939 int ret;
dc380aea 7940
8b110e39 7941 err = 0;
c1dc0896 7942 start = io_bio->logical;
8b110e39
MX
7943 done.inode = inode;
7944
c1dc0896 7945 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
dc380aea
MX
7946 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7947 0, start, bvec->bv_len);
8b110e39
MX
7948 if (likely(!ret))
7949 goto next;
7950try_again:
7951 done.uptodate = 0;
7952 done.start = start;
7953 init_completion(&done.done);
7954
7955 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7956 start + bvec->bv_len - 1,
7957 io_bio->mirror_num,
7958 btrfs_retry_endio, &done);
7959 if (ret) {
7960 err = ret;
7961 goto next;
7962 }
7963
7964 wait_for_completion(&done.done);
7965
7966 if (!done.uptodate) {
7967 /* We might have another mirror, so try again */
7968 goto try_again;
7969 }
7970next:
7971 offset += bvec->bv_len;
4b46fce2 7972 start += bvec->bv_len;
2c30c71b 7973 }
c1dc0896
MX
7974
7975 return err;
7976}
7977
8b110e39
MX
7978static int btrfs_subio_endio_read(struct inode *inode,
7979 struct btrfs_io_bio *io_bio, int err)
7980{
7981 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7982
7983 if (skip_csum) {
7984 if (unlikely(err))
7985 return __btrfs_correct_data_nocsum(inode, io_bio);
7986 else
7987 return 0;
7988 } else {
7989 return __btrfs_subio_endio_read(inode, io_bio, err);
7990 }
7991}
7992
4246a0b6 7993static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
7994{
7995 struct btrfs_dio_private *dip = bio->bi_private;
7996 struct inode *inode = dip->inode;
7997 struct bio *dio_bio;
7998 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 7999 int err = bio->bi_error;
c1dc0896 8000
8b110e39
MX
8001 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8002 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8003
4b46fce2 8004 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8005 dip->logical_offset + dip->bytes - 1);
9be3395b 8006 dio_bio = dip->dio_bio;
4b46fce2 8007
4b46fce2 8008 kfree(dip);
c0da7aa1 8009
4246a0b6 8010 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8011
8012 if (io_bio->end_io)
8013 io_bio->end_io(io_bio, err);
9be3395b 8014 bio_put(bio);
4b46fce2
JB
8015}
8016
4246a0b6 8017static void btrfs_endio_direct_write(struct bio *bio)
4b46fce2
JB
8018{
8019 struct btrfs_dio_private *dip = bio->bi_private;
8020 struct inode *inode = dip->inode;
8021 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 8022 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
8023 u64 ordered_offset = dip->logical_offset;
8024 u64 ordered_bytes = dip->bytes;
9be3395b 8025 struct bio *dio_bio;
4b46fce2
JB
8026 int ret;
8027
163cf09c
CM
8028again:
8029 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8030 &ordered_offset,
4246a0b6
CH
8031 ordered_bytes,
8032 !bio->bi_error);
4b46fce2 8033 if (!ret)
163cf09c 8034 goto out_test;
4b46fce2 8035
9e0af237
LB
8036 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8037 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8038 btrfs_queue_work(root->fs_info->endio_write_workers,
8039 &ordered->work);
163cf09c
CM
8040out_test:
8041 /*
8042 * our bio might span multiple ordered extents. If we haven't
8043 * completed the accounting for the whole dio, go back and try again
8044 */
8045 if (ordered_offset < dip->logical_offset + dip->bytes) {
8046 ordered_bytes = dip->logical_offset + dip->bytes -
8047 ordered_offset;
5fd02043 8048 ordered = NULL;
163cf09c
CM
8049 goto again;
8050 }
9be3395b 8051 dio_bio = dip->dio_bio;
4b46fce2 8052
4b46fce2 8053 kfree(dip);
c0da7aa1 8054
4246a0b6 8055 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8056 bio_put(bio);
4b46fce2
JB
8057}
8058
eaf25d93
CM
8059static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8060 struct bio *bio, int mirror_num,
8061 unsigned long bio_flags, u64 offset)
8062{
8063 int ret;
8064 struct btrfs_root *root = BTRFS_I(inode)->root;
8065 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8066 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8067 return 0;
8068}
8069
4246a0b6 8070static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8071{
8072 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8073 int err = bio->bi_error;
e65e1535 8074
8b110e39
MX
8075 if (err)
8076 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8077 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8078 btrfs_ino(dip->inode), bio->bi_rw,
8079 (unsigned long long)bio->bi_iter.bi_sector,
8080 bio->bi_iter.bi_size, err);
8081
8082 if (dip->subio_endio)
8083 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8084
8085 if (err) {
e65e1535
MX
8086 dip->errors = 1;
8087
8088 /*
8089 * before atomic variable goto zero, we must make sure
8090 * dip->errors is perceived to be set.
8091 */
4e857c58 8092 smp_mb__before_atomic();
e65e1535
MX
8093 }
8094
8095 /* if there are more bios still pending for this dio, just exit */
8096 if (!atomic_dec_and_test(&dip->pending_bios))
8097 goto out;
8098
9be3395b 8099 if (dip->errors) {
e65e1535 8100 bio_io_error(dip->orig_bio);
9be3395b 8101 } else {
4246a0b6
CH
8102 dip->dio_bio->bi_error = 0;
8103 bio_endio(dip->orig_bio);
e65e1535
MX
8104 }
8105out:
8106 bio_put(bio);
8107}
8108
8109static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8110 u64 first_sector, gfp_t gfp_flags)
8111{
da2f0f74 8112 struct bio *bio;
22365979 8113 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8114 if (bio)
8115 bio_associate_current(bio);
8116 return bio;
e65e1535
MX
8117}
8118
c1dc0896
MX
8119static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8120 struct inode *inode,
8121 struct btrfs_dio_private *dip,
8122 struct bio *bio,
8123 u64 file_offset)
8124{
8125 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8126 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8127 int ret;
8128
8129 /*
8130 * We load all the csum data we need when we submit
8131 * the first bio to reduce the csum tree search and
8132 * contention.
8133 */
8134 if (dip->logical_offset == file_offset) {
8135 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8136 file_offset);
8137 if (ret)
8138 return ret;
8139 }
8140
8141 if (bio == dip->orig_bio)
8142 return 0;
8143
8144 file_offset -= dip->logical_offset;
8145 file_offset >>= inode->i_sb->s_blocksize_bits;
8146 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8147
8148 return 0;
8149}
8150
e65e1535
MX
8151static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8152 int rw, u64 file_offset, int skip_sum,
c329861d 8153 int async_submit)
e65e1535 8154{
facc8a22 8155 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
8156 int write = rw & REQ_WRITE;
8157 struct btrfs_root *root = BTRFS_I(inode)->root;
8158 int ret;
8159
b812ce28
JB
8160 if (async_submit)
8161 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8162
e65e1535 8163 bio_get(bio);
5fd02043
JB
8164
8165 if (!write) {
bfebd8b5
DS
8166 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8167 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8168 if (ret)
8169 goto err;
8170 }
e65e1535 8171
1ae39938
JB
8172 if (skip_sum)
8173 goto map;
8174
8175 if (write && async_submit) {
e65e1535
MX
8176 ret = btrfs_wq_submit_bio(root->fs_info,
8177 inode, rw, bio, 0, 0,
8178 file_offset,
8179 __btrfs_submit_bio_start_direct_io,
8180 __btrfs_submit_bio_done);
8181 goto err;
1ae39938
JB
8182 } else if (write) {
8183 /*
8184 * If we aren't doing async submit, calculate the csum of the
8185 * bio now.
8186 */
8187 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8188 if (ret)
8189 goto err;
23ea8e5a 8190 } else {
c1dc0896
MX
8191 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8192 file_offset);
c2db1073
TI
8193 if (ret)
8194 goto err;
8195 }
1ae39938
JB
8196map:
8197 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
8198err:
8199 bio_put(bio);
8200 return ret;
8201}
8202
8203static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8204 int skip_sum)
8205{
8206 struct inode *inode = dip->inode;
8207 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8208 struct bio *bio;
8209 struct bio *orig_bio = dip->orig_bio;
8210 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8211 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8212 u64 file_offset = dip->logical_offset;
8213 u64 submit_len = 0;
8214 u64 map_length;
8215 int nr_pages = 0;
23ea8e5a 8216 int ret;
1ae39938 8217 int async_submit = 0;
e65e1535 8218
4f024f37 8219 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8220 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 8221 &map_length, NULL, 0);
7a5c3c9b 8222 if (ret)
e65e1535 8223 return -EIO;
facc8a22 8224
4f024f37 8225 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8226 bio = orig_bio;
c1dc0896 8227 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8228 goto submit;
8229 }
8230
53b381b3 8231 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8232 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8233 async_submit = 0;
8234 else
8235 async_submit = 1;
8236
02f57c7a
JB
8237 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8238 if (!bio)
8239 return -ENOMEM;
7a5c3c9b 8240
02f57c7a
JB
8241 bio->bi_private = dip;
8242 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8243 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8244 atomic_inc(&dip->pending_bios);
8245
e65e1535 8246 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
ee39b432 8247 if (map_length < submit_len + bvec->bv_len ||
e65e1535 8248 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
ee39b432 8249 bvec->bv_offset) < bvec->bv_len) {
e65e1535
MX
8250 /*
8251 * inc the count before we submit the bio so
8252 * we know the end IO handler won't happen before
8253 * we inc the count. Otherwise, the dip might get freed
8254 * before we're done setting it up
8255 */
8256 atomic_inc(&dip->pending_bios);
8257 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8258 file_offset, skip_sum,
c329861d 8259 async_submit);
e65e1535
MX
8260 if (ret) {
8261 bio_put(bio);
8262 atomic_dec(&dip->pending_bios);
8263 goto out_err;
8264 }
8265
e65e1535
MX
8266 start_sector += submit_len >> 9;
8267 file_offset += submit_len;
8268
8269 submit_len = 0;
8270 nr_pages = 0;
8271
8272 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8273 start_sector, GFP_NOFS);
8274 if (!bio)
8275 goto out_err;
8276 bio->bi_private = dip;
8277 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8278 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8279
4f024f37 8280 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8281 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 8282 start_sector << 9,
e65e1535
MX
8283 &map_length, NULL, 0);
8284 if (ret) {
8285 bio_put(bio);
8286 goto out_err;
8287 }
8288 } else {
8289 submit_len += bvec->bv_len;
67871254 8290 nr_pages++;
e65e1535
MX
8291 bvec++;
8292 }
8293 }
8294
02f57c7a 8295submit:
e65e1535 8296 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 8297 async_submit);
e65e1535
MX
8298 if (!ret)
8299 return 0;
8300
8301 bio_put(bio);
8302out_err:
8303 dip->errors = 1;
8304 /*
8305 * before atomic variable goto zero, we must
8306 * make sure dip->errors is perceived to be set.
8307 */
4e857c58 8308 smp_mb__before_atomic();
e65e1535
MX
8309 if (atomic_dec_and_test(&dip->pending_bios))
8310 bio_io_error(dip->orig_bio);
8311
8312 /* bio_end_io() will handle error, so we needn't return it */
8313 return 0;
8314}
8315
9be3395b
CM
8316static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8317 struct inode *inode, loff_t file_offset)
4b46fce2 8318{
61de718f
FM
8319 struct btrfs_dio_private *dip = NULL;
8320 struct bio *io_bio = NULL;
23ea8e5a 8321 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8322 int skip_sum;
7b6d91da 8323 int write = rw & REQ_WRITE;
4b46fce2
JB
8324 int ret = 0;
8325
8326 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8327
9be3395b 8328 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8329 if (!io_bio) {
8330 ret = -ENOMEM;
8331 goto free_ordered;
8332 }
8333
c1dc0896 8334 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8335 if (!dip) {
8336 ret = -ENOMEM;
61de718f 8337 goto free_ordered;
4b46fce2 8338 }
4b46fce2 8339
9be3395b 8340 dip->private = dio_bio->bi_private;
4b46fce2
JB
8341 dip->inode = inode;
8342 dip->logical_offset = file_offset;
4f024f37
KO
8343 dip->bytes = dio_bio->bi_iter.bi_size;
8344 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8345 io_bio->bi_private = dip;
9be3395b
CM
8346 dip->orig_bio = io_bio;
8347 dip->dio_bio = dio_bio;
e65e1535 8348 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8349 btrfs_bio = btrfs_io_bio(io_bio);
8350 btrfs_bio->logical = file_offset;
4b46fce2 8351
c1dc0896 8352 if (write) {
9be3395b 8353 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8354 } else {
9be3395b 8355 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8356 dip->subio_endio = btrfs_subio_endio_read;
8357 }
4b46fce2 8358
e65e1535
MX
8359 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8360 if (!ret)
eaf25d93 8361 return;
9be3395b 8362
23ea8e5a
MX
8363 if (btrfs_bio->end_io)
8364 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8365
4b46fce2
JB
8366free_ordered:
8367 /*
61de718f
FM
8368 * If we arrived here it means either we failed to submit the dip
8369 * or we either failed to clone the dio_bio or failed to allocate the
8370 * dip. If we cloned the dio_bio and allocated the dip, we can just
8371 * call bio_endio against our io_bio so that we get proper resource
8372 * cleanup if we fail to submit the dip, otherwise, we must do the
8373 * same as btrfs_endio_direct_[write|read] because we can't call these
8374 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8375 */
61de718f 8376 if (io_bio && dip) {
4246a0b6
CH
8377 io_bio->bi_error = -EIO;
8378 bio_endio(io_bio);
61de718f
FM
8379 /*
8380 * The end io callbacks free our dip, do the final put on io_bio
8381 * and all the cleanup and final put for dio_bio (through
8382 * dio_end_io()).
8383 */
8384 dip = NULL;
8385 io_bio = NULL;
8386 } else {
8387 if (write) {
8388 struct btrfs_ordered_extent *ordered;
8389
8390 ordered = btrfs_lookup_ordered_extent(inode,
8391 file_offset);
8392 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
8393 /*
8394 * Decrements our ref on the ordered extent and removes
8395 * the ordered extent from the inode's ordered tree,
8396 * doing all the proper resource cleanup such as for the
8397 * reserved space and waking up any waiters for this
8398 * ordered extent (through btrfs_remove_ordered_extent).
8399 */
8400 btrfs_finish_ordered_io(ordered);
8401 } else {
8402 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8403 file_offset + dio_bio->bi_iter.bi_size - 1);
8404 }
4246a0b6 8405 dio_bio->bi_error = -EIO;
61de718f
FM
8406 /*
8407 * Releases and cleans up our dio_bio, no need to bio_put()
8408 * nor bio_endio()/bio_io_error() against dio_bio.
8409 */
8410 dio_end_io(dio_bio, ret);
4b46fce2 8411 }
61de718f
FM
8412 if (io_bio)
8413 bio_put(io_bio);
8414 kfree(dip);
4b46fce2
JB
8415}
8416
6f673763 8417static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8418 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8419{
8420 int seg;
a1b75f7d 8421 int i;
5a5f79b5
CM
8422 unsigned blocksize_mask = root->sectorsize - 1;
8423 ssize_t retval = -EINVAL;
5a5f79b5
CM
8424
8425 if (offset & blocksize_mask)
8426 goto out;
8427
28060d5d
AV
8428 if (iov_iter_alignment(iter) & blocksize_mask)
8429 goto out;
a1b75f7d 8430
28060d5d 8431 /* If this is a write we don't need to check anymore */
6f673763 8432 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8433 return 0;
8434 /*
8435 * Check to make sure we don't have duplicate iov_base's in this
8436 * iovec, if so return EINVAL, otherwise we'll get csum errors
8437 * when reading back.
8438 */
8439 for (seg = 0; seg < iter->nr_segs; seg++) {
8440 for (i = seg + 1; i < iter->nr_segs; i++) {
8441 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8442 goto out;
8443 }
5a5f79b5
CM
8444 }
8445 retval = 0;
8446out:
8447 return retval;
8448}
eb838e73 8449
22c6186e
OS
8450static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8451 loff_t offset)
16432985 8452{
4b46fce2
JB
8453 struct file *file = iocb->ki_filp;
8454 struct inode *inode = file->f_mapping->host;
50745b0a 8455 struct btrfs_root *root = BTRFS_I(inode)->root;
8456 struct btrfs_dio_data dio_data = { 0 };
0934856d 8457 size_t count = 0;
2e60a51e 8458 int flags = 0;
38851cc1
MX
8459 bool wakeup = true;
8460 bool relock = false;
0934856d 8461 ssize_t ret;
4b46fce2 8462
6f673763 8463 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8464 return 0;
3f7c579c 8465
fe0f07d0 8466 inode_dio_begin(inode);
4e857c58 8467 smp_mb__after_atomic();
38851cc1 8468
0e267c44 8469 /*
41bd9ca4
MX
8470 * The generic stuff only does filemap_write_and_wait_range, which
8471 * isn't enough if we've written compressed pages to this area, so
8472 * we need to flush the dirty pages again to make absolutely sure
8473 * that any outstanding dirty pages are on disk.
0e267c44 8474 */
a6cbcd4a 8475 count = iov_iter_count(iter);
41bd9ca4
MX
8476 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8477 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8478 filemap_fdatawrite_range(inode->i_mapping, offset,
8479 offset + count - 1);
0e267c44 8480
6f673763 8481 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8482 /*
8483 * If the write DIO is beyond the EOF, we need update
8484 * the isize, but it is protected by i_mutex. So we can
8485 * not unlock the i_mutex at this case.
8486 */
8487 if (offset + count <= inode->i_size) {
8488 mutex_unlock(&inode->i_mutex);
8489 relock = true;
8490 }
7cf5b976 8491 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8492 if (ret)
38851cc1 8493 goto out;
50745b0a 8494 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8495 BTRFS_MAX_EXTENT_SIZE - 1,
8496 BTRFS_MAX_EXTENT_SIZE);
8497
8498 /*
8499 * We need to know how many extents we reserved so that we can
8500 * do the accounting properly if we go over the number we
8501 * originally calculated. Abuse current->journal_info for this.
8502 */
50745b0a 8503 dio_data.reserve = round_up(count, root->sectorsize);
8504 current->journal_info = &dio_data;
ee39b432
DS
8505 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8506 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8507 inode_dio_end(inode);
38851cc1
MX
8508 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8509 wakeup = false;
0934856d
MX
8510 }
8511
17f8c842
OS
8512 ret = __blockdev_direct_IO(iocb, inode,
8513 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8514 iter, offset, btrfs_get_blocks_direct, NULL,
8515 btrfs_submit_direct, flags);
6f673763 8516 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8517 current->journal_info = NULL;
ddba1bfc 8518 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8519 if (dio_data.reserve)
7cf5b976
QW
8520 btrfs_delalloc_release_space(inode, offset,
8521 dio_data.reserve);
ddba1bfc 8522 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8523 btrfs_delalloc_release_space(inode, offset,
8524 count - (size_t)ret);
0934856d 8525 }
38851cc1 8526out:
2e60a51e 8527 if (wakeup)
fe0f07d0 8528 inode_dio_end(inode);
38851cc1
MX
8529 if (relock)
8530 mutex_lock(&inode->i_mutex);
0934856d
MX
8531
8532 return ret;
16432985
CM
8533}
8534
05dadc09
TI
8535#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8536
1506fcc8
YS
8537static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8538 __u64 start, __u64 len)
8539{
05dadc09
TI
8540 int ret;
8541
8542 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8543 if (ret)
8544 return ret;
8545
ec29ed5b 8546 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8547}
8548
a52d9a80 8549int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8550{
d1310b2e
CM
8551 struct extent_io_tree *tree;
8552 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8553 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8554}
1832a6d5 8555
a52d9a80 8556static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8557{
d1310b2e 8558 struct extent_io_tree *tree;
b888db2b
CM
8559
8560
8561 if (current->flags & PF_MEMALLOC) {
8562 redirty_page_for_writepage(wbc, page);
8563 unlock_page(page);
8564 return 0;
8565 }
d1310b2e 8566 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 8567 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
8568}
8569
48a3b636
ES
8570static int btrfs_writepages(struct address_space *mapping,
8571 struct writeback_control *wbc)
b293f02e 8572{
d1310b2e 8573 struct extent_io_tree *tree;
771ed689 8574
d1310b2e 8575 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8576 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8577}
8578
3ab2fb5a
CM
8579static int
8580btrfs_readpages(struct file *file, struct address_space *mapping,
8581 struct list_head *pages, unsigned nr_pages)
8582{
d1310b2e
CM
8583 struct extent_io_tree *tree;
8584 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8585 return extent_readpages(tree, mapping, pages, nr_pages,
8586 btrfs_get_extent);
8587}
e6dcd2dc 8588static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8589{
d1310b2e
CM
8590 struct extent_io_tree *tree;
8591 struct extent_map_tree *map;
a52d9a80 8592 int ret;
8c2383c3 8593
d1310b2e
CM
8594 tree = &BTRFS_I(page->mapping->host)->io_tree;
8595 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8596 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8597 if (ret == 1) {
8598 ClearPagePrivate(page);
8599 set_page_private(page, 0);
8600 page_cache_release(page);
39279cc3 8601 }
a52d9a80 8602 return ret;
39279cc3
CM
8603}
8604
e6dcd2dc
CM
8605static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8606{
98509cfc
CM
8607 if (PageWriteback(page) || PageDirty(page))
8608 return 0;
b335b003 8609 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8610}
8611
d47992f8
LC
8612static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8613 unsigned int length)
39279cc3 8614{
5fd02043 8615 struct inode *inode = page->mapping->host;
d1310b2e 8616 struct extent_io_tree *tree;
e6dcd2dc 8617 struct btrfs_ordered_extent *ordered;
2ac55d41 8618 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8619 u64 page_start = page_offset(page);
8620 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 8621 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8622
8b62b72b
CM
8623 /*
8624 * we have the page locked, so new writeback can't start,
8625 * and the dirty bit won't be cleared while we are here.
8626 *
8627 * Wait for IO on this page so that we can safely clear
8628 * the PagePrivate2 bit and do ordered accounting
8629 */
e6dcd2dc 8630 wait_on_page_writeback(page);
8b62b72b 8631
5fd02043 8632 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8633 if (offset) {
8634 btrfs_releasepage(page, GFP_NOFS);
8635 return;
8636 }
131e404a
FDBM
8637
8638 if (!inode_evicting)
8639 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8640 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 8641 if (ordered) {
eb84ae03
CM
8642 /*
8643 * IO on this page will never be started, so we need
8644 * to account for any ordered extents now
8645 */
131e404a
FDBM
8646 if (!inode_evicting)
8647 clear_extent_bit(tree, page_start, page_end,
8648 EXTENT_DIRTY | EXTENT_DELALLOC |
8649 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8650 EXTENT_DEFRAG, 1, 0, &cached_state,
8651 GFP_NOFS);
8b62b72b
CM
8652 /*
8653 * whoever cleared the private bit is responsible
8654 * for the finish_ordered_io
8655 */
77cef2ec
JB
8656 if (TestClearPagePrivate2(page)) {
8657 struct btrfs_ordered_inode_tree *tree;
8658 u64 new_len;
8659
8660 tree = &BTRFS_I(inode)->ordered_tree;
8661
8662 spin_lock_irq(&tree->lock);
8663 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8664 new_len = page_start - ordered->file_offset;
8665 if (new_len < ordered->truncated_len)
8666 ordered->truncated_len = new_len;
8667 spin_unlock_irq(&tree->lock);
8668
8669 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8670 page_start,
8671 PAGE_CACHE_SIZE, 1))
8672 btrfs_finish_ordered_io(ordered);
8b62b72b 8673 }
e6dcd2dc 8674 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8675 if (!inode_evicting) {
8676 cached_state = NULL;
8677 lock_extent_bits(tree, page_start, page_end, 0,
8678 &cached_state);
8679 }
8680 }
8681
b9d0b389
QW
8682 /*
8683 * Qgroup reserved space handler
8684 * Page here will be either
8685 * 1) Already written to disk
8686 * In this case, its reserved space is released from data rsv map
8687 * and will be freed by delayed_ref handler finally.
8688 * So even we call qgroup_free_data(), it won't decrease reserved
8689 * space.
8690 * 2) Not written to disk
8691 * This means the reserved space should be freed here.
8692 */
8693 btrfs_qgroup_free_data(inode, page_start, PAGE_CACHE_SIZE);
131e404a
FDBM
8694 if (!inode_evicting) {
8695 clear_extent_bit(tree, page_start, page_end,
8696 EXTENT_LOCKED | EXTENT_DIRTY |
8697 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8698 EXTENT_DEFRAG, 1, 1,
8699 &cached_state, GFP_NOFS);
8700
8701 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8702 }
e6dcd2dc 8703
4a096752 8704 ClearPageChecked(page);
9ad6b7bc 8705 if (PagePrivate(page)) {
9ad6b7bc
CM
8706 ClearPagePrivate(page);
8707 set_page_private(page, 0);
8708 page_cache_release(page);
8709 }
39279cc3
CM
8710}
8711
9ebefb18
CM
8712/*
8713 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8714 * called from a page fault handler when a page is first dirtied. Hence we must
8715 * be careful to check for EOF conditions here. We set the page up correctly
8716 * for a written page which means we get ENOSPC checking when writing into
8717 * holes and correct delalloc and unwritten extent mapping on filesystems that
8718 * support these features.
8719 *
8720 * We are not allowed to take the i_mutex here so we have to play games to
8721 * protect against truncate races as the page could now be beyond EOF. Because
8722 * vmtruncate() writes the inode size before removing pages, once we have the
8723 * page lock we can determine safely if the page is beyond EOF. If it is not
8724 * beyond EOF, then the page is guaranteed safe against truncation until we
8725 * unlock the page.
8726 */
c2ec175c 8727int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8728{
c2ec175c 8729 struct page *page = vmf->page;
496ad9aa 8730 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8731 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8732 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8733 struct btrfs_ordered_extent *ordered;
2ac55d41 8734 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8735 char *kaddr;
8736 unsigned long zero_start;
9ebefb18 8737 loff_t size;
1832a6d5 8738 int ret;
9998eb70 8739 int reserved = 0;
a52d9a80 8740 u64 page_start;
e6dcd2dc 8741 u64 page_end;
9ebefb18 8742
b2b5ef5c 8743 sb_start_pagefault(inode->i_sb);
df480633
QW
8744 page_start = page_offset(page);
8745 page_end = page_start + PAGE_CACHE_SIZE - 1;
8746
7cf5b976
QW
8747 ret = btrfs_delalloc_reserve_space(inode, page_start,
8748 PAGE_CACHE_SIZE);
9998eb70 8749 if (!ret) {
e41f941a 8750 ret = file_update_time(vma->vm_file);
9998eb70
CM
8751 reserved = 1;
8752 }
56a76f82
NP
8753 if (ret) {
8754 if (ret == -ENOMEM)
8755 ret = VM_FAULT_OOM;
8756 else /* -ENOSPC, -EIO, etc */
8757 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8758 if (reserved)
8759 goto out;
8760 goto out_noreserve;
56a76f82 8761 }
1832a6d5 8762
56a76f82 8763 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8764again:
9ebefb18 8765 lock_page(page);
9ebefb18 8766 size = i_size_read(inode);
a52d9a80 8767
9ebefb18 8768 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8769 (page_start >= size)) {
9ebefb18
CM
8770 /* page got truncated out from underneath us */
8771 goto out_unlock;
8772 }
e6dcd2dc
CM
8773 wait_on_page_writeback(page);
8774
d0082371 8775 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
8776 set_page_extent_mapped(page);
8777
eb84ae03
CM
8778 /*
8779 * we can't set the delalloc bits if there are pending ordered
8780 * extents. Drop our locks and wait for them to finish
8781 */
e6dcd2dc
CM
8782 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8783 if (ordered) {
2ac55d41
JB
8784 unlock_extent_cached(io_tree, page_start, page_end,
8785 &cached_state, GFP_NOFS);
e6dcd2dc 8786 unlock_page(page);
eb84ae03 8787 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8788 btrfs_put_ordered_extent(ordered);
8789 goto again;
8790 }
8791
fbf19087
JB
8792 /*
8793 * XXX - page_mkwrite gets called every time the page is dirtied, even
8794 * if it was already dirty, so for space accounting reasons we need to
8795 * clear any delalloc bits for the range we are fixing to save. There
8796 * is probably a better way to do this, but for now keep consistent with
8797 * prepare_pages in the normal write path.
8798 */
2ac55d41 8799 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
8800 EXTENT_DIRTY | EXTENT_DELALLOC |
8801 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 8802 0, 0, &cached_state, GFP_NOFS);
fbf19087 8803
2ac55d41
JB
8804 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8805 &cached_state);
9ed74f2d 8806 if (ret) {
2ac55d41
JB
8807 unlock_extent_cached(io_tree, page_start, page_end,
8808 &cached_state, GFP_NOFS);
9ed74f2d
JB
8809 ret = VM_FAULT_SIGBUS;
8810 goto out_unlock;
8811 }
e6dcd2dc 8812 ret = 0;
9ebefb18
CM
8813
8814 /* page is wholly or partially inside EOF */
a52d9a80 8815 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 8816 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 8817 else
e6dcd2dc 8818 zero_start = PAGE_CACHE_SIZE;
9ebefb18 8819
e6dcd2dc
CM
8820 if (zero_start != PAGE_CACHE_SIZE) {
8821 kaddr = kmap(page);
8822 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8823 flush_dcache_page(page);
8824 kunmap(page);
8825 }
247e743c 8826 ClearPageChecked(page);
e6dcd2dc 8827 set_page_dirty(page);
50a9b214 8828 SetPageUptodate(page);
5a3f23d5 8829
257c62e1
CM
8830 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8831 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8832 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8833
2ac55d41 8834 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
8835
8836out_unlock:
b2b5ef5c
JK
8837 if (!ret) {
8838 sb_end_pagefault(inode->i_sb);
50a9b214 8839 return VM_FAULT_LOCKED;
b2b5ef5c 8840 }
9ebefb18 8841 unlock_page(page);
1832a6d5 8842out:
7cf5b976 8843 btrfs_delalloc_release_space(inode, page_start, PAGE_CACHE_SIZE);
9998eb70 8844out_noreserve:
b2b5ef5c 8845 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
8846 return ret;
8847}
8848
a41ad394 8849static int btrfs_truncate(struct inode *inode)
39279cc3
CM
8850{
8851 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8852 struct btrfs_block_rsv *rsv;
a71754fc 8853 int ret = 0;
3893e33b 8854 int err = 0;
39279cc3 8855 struct btrfs_trans_handle *trans;
dbe674a9 8856 u64 mask = root->sectorsize - 1;
07127184 8857 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 8858
0ef8b726
JB
8859 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8860 (u64)-1);
8861 if (ret)
8862 return ret;
39279cc3 8863
fcb80c2a
JB
8864 /*
8865 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8866 * 3 things going on here
8867 *
8868 * 1) We need to reserve space for our orphan item and the space to
8869 * delete our orphan item. Lord knows we don't want to have a dangling
8870 * orphan item because we didn't reserve space to remove it.
8871 *
8872 * 2) We need to reserve space to update our inode.
8873 *
8874 * 3) We need to have something to cache all the space that is going to
8875 * be free'd up by the truncate operation, but also have some slack
8876 * space reserved in case it uses space during the truncate (thank you
8877 * very much snapshotting).
8878 *
8879 * And we need these to all be seperate. The fact is we can use alot of
8880 * space doing the truncate, and we have no earthly idea how much space
8881 * we will use, so we need the truncate reservation to be seperate so it
8882 * doesn't end up using space reserved for updating the inode or
8883 * removing the orphan item. We also need to be able to stop the
8884 * transaction and start a new one, which means we need to be able to
8885 * update the inode several times, and we have no idea of knowing how
8886 * many times that will be, so we can't just reserve 1 item for the
8887 * entirety of the opration, so that has to be done seperately as well.
8888 * Then there is the orphan item, which does indeed need to be held on
8889 * to for the whole operation, and we need nobody to touch this reserved
8890 * space except the orphan code.
8891 *
8892 * So that leaves us with
8893 *
8894 * 1) root->orphan_block_rsv - for the orphan deletion.
8895 * 2) rsv - for the truncate reservation, which we will steal from the
8896 * transaction reservation.
8897 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8898 * updating the inode.
8899 */
66d8f3dd 8900 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8901 if (!rsv)
8902 return -ENOMEM;
4a338542 8903 rsv->size = min_size;
ca7e70f5 8904 rsv->failfast = 1;
f0cd846e 8905
907cbceb 8906 /*
07127184 8907 * 1 for the truncate slack space
907cbceb
JB
8908 * 1 for updating the inode.
8909 */
f3fe820c 8910 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
8911 if (IS_ERR(trans)) {
8912 err = PTR_ERR(trans);
8913 goto out;
8914 }
f0cd846e 8915
907cbceb
JB
8916 /* Migrate the slack space for the truncate to our reserve */
8917 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8918 min_size);
fcb80c2a 8919 BUG_ON(ret);
f0cd846e 8920
5dc562c5
JB
8921 /*
8922 * So if we truncate and then write and fsync we normally would just
8923 * write the extents that changed, which is a problem if we need to
8924 * first truncate that entire inode. So set this flag so we write out
8925 * all of the extents in the inode to the sync log so we're completely
8926 * safe.
8927 */
8928 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8929 trans->block_rsv = rsv;
907cbceb 8930
8082510e
YZ
8931 while (1) {
8932 ret = btrfs_truncate_inode_items(trans, root, inode,
8933 inode->i_size,
8934 BTRFS_EXTENT_DATA_KEY);
28ed1345 8935 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 8936 err = ret;
8082510e 8937 break;
3893e33b 8938 }
39279cc3 8939
fcb80c2a 8940 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 8941 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
8942 if (ret) {
8943 err = ret;
8944 break;
8945 }
ca7e70f5 8946
8082510e 8947 btrfs_end_transaction(trans, root);
b53d3f5d 8948 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
8949
8950 trans = btrfs_start_transaction(root, 2);
8951 if (IS_ERR(trans)) {
8952 ret = err = PTR_ERR(trans);
8953 trans = NULL;
8954 break;
8955 }
8956
8957 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8958 rsv, min_size);
8959 BUG_ON(ret); /* shouldn't happen */
8960 trans->block_rsv = rsv;
8082510e
YZ
8961 }
8962
8963 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 8964 trans->block_rsv = root->orphan_block_rsv;
8082510e 8965 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
8966 if (ret)
8967 err = ret;
8082510e
YZ
8968 }
8969
917c16b2
CM
8970 if (trans) {
8971 trans->block_rsv = &root->fs_info->trans_block_rsv;
8972 ret = btrfs_update_inode(trans, root, inode);
8973 if (ret && !err)
8974 err = ret;
7b128766 8975
7ad85bb7 8976 ret = btrfs_end_transaction(trans, root);
b53d3f5d 8977 btrfs_btree_balance_dirty(root);
917c16b2 8978 }
fcb80c2a
JB
8979
8980out:
8981 btrfs_free_block_rsv(root, rsv);
8982
3893e33b
JB
8983 if (ret && !err)
8984 err = ret;
a41ad394 8985
3893e33b 8986 return err;
39279cc3
CM
8987}
8988
d352ac68
CM
8989/*
8990 * create a new subvolume directory/inode (helper for the ioctl).
8991 */
d2fb3437 8992int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8993 struct btrfs_root *new_root,
8994 struct btrfs_root *parent_root,
8995 u64 new_dirid)
39279cc3 8996{
39279cc3 8997 struct inode *inode;
76dda93c 8998 int err;
00e4e6b3 8999 u64 index = 0;
39279cc3 9000
12fc9d09
FA
9001 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9002 new_dirid, new_dirid,
9003 S_IFDIR | (~current_umask() & S_IRWXUGO),
9004 &index);
54aa1f4d 9005 if (IS_ERR(inode))
f46b5a66 9006 return PTR_ERR(inode);
39279cc3
CM
9007 inode->i_op = &btrfs_dir_inode_operations;
9008 inode->i_fop = &btrfs_dir_file_operations;
9009
bfe86848 9010 set_nlink(inode, 1);
dbe674a9 9011 btrfs_i_size_write(inode, 0);
b0d5d10f 9012 unlock_new_inode(inode);
3b96362c 9013
63541927
FDBM
9014 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9015 if (err)
9016 btrfs_err(new_root->fs_info,
351fd353 9017 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9018 new_root->root_key.objectid, err);
9019
76dda93c 9020 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9021
76dda93c 9022 iput(inode);
ce598979 9023 return err;
39279cc3
CM
9024}
9025
39279cc3
CM
9026struct inode *btrfs_alloc_inode(struct super_block *sb)
9027{
9028 struct btrfs_inode *ei;
2ead6ae7 9029 struct inode *inode;
39279cc3
CM
9030
9031 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9032 if (!ei)
9033 return NULL;
2ead6ae7
YZ
9034
9035 ei->root = NULL;
2ead6ae7 9036 ei->generation = 0;
15ee9bc7 9037 ei->last_trans = 0;
257c62e1 9038 ei->last_sub_trans = 0;
e02119d5 9039 ei->logged_trans = 0;
2ead6ae7 9040 ei->delalloc_bytes = 0;
47059d93 9041 ei->defrag_bytes = 0;
2ead6ae7
YZ
9042 ei->disk_i_size = 0;
9043 ei->flags = 0;
7709cde3 9044 ei->csum_bytes = 0;
2ead6ae7 9045 ei->index_cnt = (u64)-1;
67de1176 9046 ei->dir_index = 0;
2ead6ae7 9047 ei->last_unlink_trans = 0;
46d8bc34 9048 ei->last_log_commit = 0;
2ead6ae7 9049
9e0baf60
JB
9050 spin_lock_init(&ei->lock);
9051 ei->outstanding_extents = 0;
9052 ei->reserved_extents = 0;
2ead6ae7 9053
72ac3c0d 9054 ei->runtime_flags = 0;
261507a0 9055 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9056
16cdcec7
MX
9057 ei->delayed_node = NULL;
9058
9cc97d64 9059 ei->i_otime.tv_sec = 0;
9060 ei->i_otime.tv_nsec = 0;
9061
2ead6ae7 9062 inode = &ei->vfs_inode;
a8067e02 9063 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9064 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9065 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9066 ei->io_tree.track_uptodate = 1;
9067 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9068 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9069 mutex_init(&ei->log_mutex);
f248679e 9070 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9071 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9072 INIT_LIST_HEAD(&ei->delalloc_inodes);
2ead6ae7
YZ
9073 RB_CLEAR_NODE(&ei->rb_node);
9074
9075 return inode;
39279cc3
CM
9076}
9077
aaedb55b
JB
9078#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9079void btrfs_test_destroy_inode(struct inode *inode)
9080{
9081 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9082 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9083}
9084#endif
9085
fa0d7e3d
NP
9086static void btrfs_i_callback(struct rcu_head *head)
9087{
9088 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9089 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9090}
9091
39279cc3
CM
9092void btrfs_destroy_inode(struct inode *inode)
9093{
e6dcd2dc 9094 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9095 struct btrfs_root *root = BTRFS_I(inode)->root;
9096
b3d9b7a3 9097 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9098 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9099 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9100 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9101 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9102 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9103 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9104
a6dbd429
JB
9105 /*
9106 * This can happen where we create an inode, but somebody else also
9107 * created the same inode and we need to destroy the one we already
9108 * created.
9109 */
9110 if (!root)
9111 goto free;
9112
8a35d95f
JB
9113 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9114 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9115 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9116 btrfs_ino(inode));
8a35d95f 9117 atomic_dec(&root->orphan_inodes);
7b128766 9118 }
7b128766 9119
d397712b 9120 while (1) {
e6dcd2dc
CM
9121 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9122 if (!ordered)
9123 break;
9124 else {
c2cf52eb 9125 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 9126 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9127 btrfs_remove_ordered_extent(inode, ordered);
9128 btrfs_put_ordered_extent(ordered);
9129 btrfs_put_ordered_extent(ordered);
9130 }
9131 }
56fa9d07 9132 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9133 inode_tree_del(inode);
5b21f2ed 9134 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9135free:
fa0d7e3d 9136 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9137}
9138
45321ac5 9139int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9140{
9141 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9142
6379ef9f
NA
9143 if (root == NULL)
9144 return 1;
9145
fa6ac876 9146 /* the snap/subvol tree is on deleting */
69e9c6c6 9147 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9148 return 1;
76dda93c 9149 else
45321ac5 9150 return generic_drop_inode(inode);
76dda93c
YZ
9151}
9152
0ee0fda0 9153static void init_once(void *foo)
39279cc3
CM
9154{
9155 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9156
9157 inode_init_once(&ei->vfs_inode);
9158}
9159
9160void btrfs_destroy_cachep(void)
9161{
8c0a8537
KS
9162 /*
9163 * Make sure all delayed rcu free inodes are flushed before we
9164 * destroy cache.
9165 */
9166 rcu_barrier();
39279cc3
CM
9167 if (btrfs_inode_cachep)
9168 kmem_cache_destroy(btrfs_inode_cachep);
9169 if (btrfs_trans_handle_cachep)
9170 kmem_cache_destroy(btrfs_trans_handle_cachep);
9171 if (btrfs_transaction_cachep)
9172 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
9173 if (btrfs_path_cachep)
9174 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
9175 if (btrfs_free_space_cachep)
9176 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
9177 if (btrfs_delalloc_work_cachep)
9178 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
9179}
9180
9181int btrfs_init_cachep(void)
9182{
837e1972 9183 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
9184 sizeof(struct btrfs_inode), 0,
9185 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
9186 if (!btrfs_inode_cachep)
9187 goto fail;
9601e3f6 9188
837e1972 9189 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
9190 sizeof(struct btrfs_trans_handle), 0,
9191 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9192 if (!btrfs_trans_handle_cachep)
9193 goto fail;
9601e3f6 9194
837e1972 9195 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
9196 sizeof(struct btrfs_transaction), 0,
9197 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9198 if (!btrfs_transaction_cachep)
9199 goto fail;
9601e3f6 9200
837e1972 9201 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
9202 sizeof(struct btrfs_path), 0,
9203 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9204 if (!btrfs_path_cachep)
9205 goto fail;
9601e3f6 9206
837e1972 9207 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
9208 sizeof(struct btrfs_free_space), 0,
9209 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9210 if (!btrfs_free_space_cachep)
9211 goto fail;
9212
8ccf6f19
MX
9213 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9214 sizeof(struct btrfs_delalloc_work), 0,
9215 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9216 NULL);
9217 if (!btrfs_delalloc_work_cachep)
9218 goto fail;
9219
39279cc3
CM
9220 return 0;
9221fail:
9222 btrfs_destroy_cachep();
9223 return -ENOMEM;
9224}
9225
9226static int btrfs_getattr(struct vfsmount *mnt,
9227 struct dentry *dentry, struct kstat *stat)
9228{
df0af1a5 9229 u64 delalloc_bytes;
2b0143b5 9230 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9231 u32 blocksize = inode->i_sb->s_blocksize;
9232
39279cc3 9233 generic_fillattr(inode, stat);
0ee5dc67 9234 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 9235 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
9236
9237 spin_lock(&BTRFS_I(inode)->lock);
9238 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9239 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9240 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9241 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9242 return 0;
9243}
9244
d397712b
CM
9245static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9246 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
9247{
9248 struct btrfs_trans_handle *trans;
9249 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9250 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9251 struct inode *new_inode = d_inode(new_dentry);
9252 struct inode *old_inode = d_inode(old_dentry);
39279cc3 9253 struct timespec ctime = CURRENT_TIME;
00e4e6b3 9254 u64 index = 0;
4df27c4d 9255 u64 root_objectid;
39279cc3 9256 int ret;
33345d01 9257 u64 old_ino = btrfs_ino(old_inode);
39279cc3 9258
33345d01 9259 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9260 return -EPERM;
9261
4df27c4d 9262 /* we only allow rename subvolume link between subvolumes */
33345d01 9263 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9264 return -EXDEV;
9265
33345d01
LZ
9266 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9267 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9268 return -ENOTEMPTY;
5f39d397 9269
4df27c4d
YZ
9270 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9271 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9272 return -ENOTEMPTY;
9c52057c
CM
9273
9274
9275 /* check for collisions, even if the name isn't there */
4871c158 9276 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9277 new_dentry->d_name.name,
9278 new_dentry->d_name.len);
9279
9280 if (ret) {
9281 if (ret == -EEXIST) {
9282 /* we shouldn't get
9283 * eexist without a new_inode */
fae7f21c 9284 if (WARN_ON(!new_inode)) {
9c52057c
CM
9285 return ret;
9286 }
9287 } else {
9288 /* maybe -EOVERFLOW */
9289 return ret;
9290 }
9291 }
9292 ret = 0;
9293
5a3f23d5 9294 /*
8d875f95
CM
9295 * we're using rename to replace one file with another. Start IO on it
9296 * now so we don't add too much work to the end of the transaction
5a3f23d5 9297 */
8d875f95 9298 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9299 filemap_flush(old_inode->i_mapping);
9300
76dda93c 9301 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9302 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9303 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9304 /*
9305 * We want to reserve the absolute worst case amount of items. So if
9306 * both inodes are subvols and we need to unlink them then that would
9307 * require 4 item modifications, but if they are both normal inodes it
9308 * would require 5 item modifications, so we'll assume their normal
9309 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9310 * should cover the worst case number of items we'll modify.
9311 */
6e137ed3 9312 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
9313 if (IS_ERR(trans)) {
9314 ret = PTR_ERR(trans);
9315 goto out_notrans;
9316 }
76dda93c 9317
4df27c4d
YZ
9318 if (dest != root)
9319 btrfs_record_root_in_trans(trans, dest);
5f39d397 9320
a5719521
YZ
9321 ret = btrfs_set_inode_index(new_dir, &index);
9322 if (ret)
9323 goto out_fail;
5a3f23d5 9324
67de1176 9325 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9326 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9327 /* force full log commit if subvolume involved. */
995946dd 9328 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9329 } else {
a5719521
YZ
9330 ret = btrfs_insert_inode_ref(trans, dest,
9331 new_dentry->d_name.name,
9332 new_dentry->d_name.len,
33345d01
LZ
9333 old_ino,
9334 btrfs_ino(new_dir), index);
a5719521
YZ
9335 if (ret)
9336 goto out_fail;
4df27c4d
YZ
9337 /*
9338 * this is an ugly little race, but the rename is required
9339 * to make sure that if we crash, the inode is either at the
9340 * old name or the new one. pinning the log transaction lets
9341 * us make sure we don't allow a log commit to come in after
9342 * we unlink the name but before we add the new name back in.
9343 */
9344 btrfs_pin_log_trans(root);
9345 }
5a3f23d5 9346
0c4d2d95
JB
9347 inode_inc_iversion(old_dir);
9348 inode_inc_iversion(new_dir);
9349 inode_inc_iversion(old_inode);
39279cc3
CM
9350 old_dir->i_ctime = old_dir->i_mtime = ctime;
9351 new_dir->i_ctime = new_dir->i_mtime = ctime;
9352 old_inode->i_ctime = ctime;
5f39d397 9353
12fcfd22
CM
9354 if (old_dentry->d_parent != new_dentry->d_parent)
9355 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9356
33345d01 9357 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9358 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9359 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9360 old_dentry->d_name.name,
9361 old_dentry->d_name.len);
9362 } else {
92986796 9363 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9364 d_inode(old_dentry),
92986796
AV
9365 old_dentry->d_name.name,
9366 old_dentry->d_name.len);
9367 if (!ret)
9368 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9369 }
79787eaa
JM
9370 if (ret) {
9371 btrfs_abort_transaction(trans, root, ret);
9372 goto out_fail;
9373 }
39279cc3
CM
9374
9375 if (new_inode) {
0c4d2d95 9376 inode_inc_iversion(new_inode);
39279cc3 9377 new_inode->i_ctime = CURRENT_TIME;
33345d01 9378 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9379 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9380 root_objectid = BTRFS_I(new_inode)->location.objectid;
9381 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9382 root_objectid,
9383 new_dentry->d_name.name,
9384 new_dentry->d_name.len);
9385 BUG_ON(new_inode->i_nlink == 0);
9386 } else {
9387 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9388 d_inode(new_dentry),
4df27c4d
YZ
9389 new_dentry->d_name.name,
9390 new_dentry->d_name.len);
9391 }
4ef31a45 9392 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9393 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa
JM
9394 if (ret) {
9395 btrfs_abort_transaction(trans, root, ret);
9396 goto out_fail;
9397 }
39279cc3 9398 }
aec7477b 9399
4df27c4d
YZ
9400 ret = btrfs_add_link(trans, new_dir, old_inode,
9401 new_dentry->d_name.name,
a5719521 9402 new_dentry->d_name.len, 0, index);
79787eaa
JM
9403 if (ret) {
9404 btrfs_abort_transaction(trans, root, ret);
9405 goto out_fail;
9406 }
39279cc3 9407
67de1176
MX
9408 if (old_inode->i_nlink == 1)
9409 BTRFS_I(old_inode)->dir_index = index;
9410
33345d01 9411 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 9412 struct dentry *parent = new_dentry->d_parent;
6a912213 9413 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
9414 btrfs_end_log_trans(root);
9415 }
39279cc3 9416out_fail:
7ad85bb7 9417 btrfs_end_transaction(trans, root);
b44c59a8 9418out_notrans:
33345d01 9419 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9420 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9421
39279cc3
CM
9422 return ret;
9423}
9424
80ace85c
MS
9425static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9426 struct inode *new_dir, struct dentry *new_dentry,
9427 unsigned int flags)
9428{
9429 if (flags & ~RENAME_NOREPLACE)
9430 return -EINVAL;
9431
9432 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9433}
9434
8ccf6f19
MX
9435static void btrfs_run_delalloc_work(struct btrfs_work *work)
9436{
9437 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9438 struct inode *inode;
8ccf6f19
MX
9439
9440 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9441 work);
9f23e289
JB
9442 inode = delalloc_work->inode;
9443 if (delalloc_work->wait) {
9444 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9445 } else {
9446 filemap_flush(inode->i_mapping);
9447 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9448 &BTRFS_I(inode)->runtime_flags))
9449 filemap_flush(inode->i_mapping);
9450 }
8ccf6f19
MX
9451
9452 if (delalloc_work->delay_iput)
9f23e289 9453 btrfs_add_delayed_iput(inode);
8ccf6f19 9454 else
9f23e289 9455 iput(inode);
8ccf6f19
MX
9456 complete(&delalloc_work->completion);
9457}
9458
9459struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9460 int wait, int delay_iput)
9461{
9462 struct btrfs_delalloc_work *work;
9463
9464 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9465 if (!work)
9466 return NULL;
9467
9468 init_completion(&work->completion);
9469 INIT_LIST_HEAD(&work->list);
9470 work->inode = inode;
9471 work->wait = wait;
9472 work->delay_iput = delay_iput;
9e0af237
LB
9473 WARN_ON_ONCE(!inode);
9474 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9475 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9476
9477 return work;
9478}
9479
9480void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9481{
9482 wait_for_completion(&work->completion);
9483 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9484}
9485
d352ac68
CM
9486/*
9487 * some fairly slow code that needs optimization. This walks the list
9488 * of all the inodes with pending delalloc and forces them to disk.
9489 */
6c255e67
MX
9490static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9491 int nr)
ea8c2819 9492{
ea8c2819 9493 struct btrfs_inode *binode;
5b21f2ed 9494 struct inode *inode;
8ccf6f19
MX
9495 struct btrfs_delalloc_work *work, *next;
9496 struct list_head works;
1eafa6c7 9497 struct list_head splice;
8ccf6f19 9498 int ret = 0;
ea8c2819 9499
8ccf6f19 9500 INIT_LIST_HEAD(&works);
1eafa6c7 9501 INIT_LIST_HEAD(&splice);
63607cc8 9502
573bfb72 9503 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9504 spin_lock(&root->delalloc_lock);
9505 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9506 while (!list_empty(&splice)) {
9507 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9508 delalloc_inodes);
1eafa6c7 9509
eb73c1b7
MX
9510 list_move_tail(&binode->delalloc_inodes,
9511 &root->delalloc_inodes);
5b21f2ed 9512 inode = igrab(&binode->vfs_inode);
df0af1a5 9513 if (!inode) {
eb73c1b7 9514 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9515 continue;
df0af1a5 9516 }
eb73c1b7 9517 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
9518
9519 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
5d99a998 9520 if (!work) {
f4ab9ea7
JB
9521 if (delay_iput)
9522 btrfs_add_delayed_iput(inode);
9523 else
9524 iput(inode);
1eafa6c7 9525 ret = -ENOMEM;
a1ecaabb 9526 goto out;
5b21f2ed 9527 }
1eafa6c7 9528 list_add_tail(&work->list, &works);
a44903ab
QW
9529 btrfs_queue_work(root->fs_info->flush_workers,
9530 &work->work);
6c255e67
MX
9531 ret++;
9532 if (nr != -1 && ret >= nr)
a1ecaabb 9533 goto out;
5b21f2ed 9534 cond_resched();
eb73c1b7 9535 spin_lock(&root->delalloc_lock);
ea8c2819 9536 }
eb73c1b7 9537 spin_unlock(&root->delalloc_lock);
8c8bee1d 9538
a1ecaabb 9539out:
eb73c1b7
MX
9540 list_for_each_entry_safe(work, next, &works, list) {
9541 list_del_init(&work->list);
9542 btrfs_wait_and_free_delalloc_work(work);
9543 }
9544
9545 if (!list_empty_careful(&splice)) {
9546 spin_lock(&root->delalloc_lock);
9547 list_splice_tail(&splice, &root->delalloc_inodes);
9548 spin_unlock(&root->delalloc_lock);
9549 }
573bfb72 9550 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9551 return ret;
9552}
1eafa6c7 9553
eb73c1b7
MX
9554int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9555{
9556 int ret;
1eafa6c7 9557
2c21b4d7 9558 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
9559 return -EROFS;
9560
6c255e67
MX
9561 ret = __start_delalloc_inodes(root, delay_iput, -1);
9562 if (ret > 0)
9563 ret = 0;
eb73c1b7
MX
9564 /*
9565 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
9566 * we have to make sure the IO is actually started and that
9567 * ordered extents get created before we return
9568 */
9569 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 9570 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 9571 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 9572 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
9573 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9574 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
9575 }
9576 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
9577 return ret;
9578}
9579
6c255e67
MX
9580int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9581 int nr)
eb73c1b7
MX
9582{
9583 struct btrfs_root *root;
9584 struct list_head splice;
9585 int ret;
9586
2c21b4d7 9587 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9588 return -EROFS;
9589
9590 INIT_LIST_HEAD(&splice);
9591
573bfb72 9592 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9593 spin_lock(&fs_info->delalloc_root_lock);
9594 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9595 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9596 root = list_first_entry(&splice, struct btrfs_root,
9597 delalloc_root);
9598 root = btrfs_grab_fs_root(root);
9599 BUG_ON(!root);
9600 list_move_tail(&root->delalloc_root,
9601 &fs_info->delalloc_roots);
9602 spin_unlock(&fs_info->delalloc_root_lock);
9603
6c255e67 9604 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 9605 btrfs_put_fs_root(root);
6c255e67 9606 if (ret < 0)
eb73c1b7
MX
9607 goto out;
9608
6c255e67
MX
9609 if (nr != -1) {
9610 nr -= ret;
9611 WARN_ON(nr < 0);
9612 }
eb73c1b7 9613 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9614 }
eb73c1b7 9615 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9616
6c255e67 9617 ret = 0;
eb73c1b7
MX
9618 atomic_inc(&fs_info->async_submit_draining);
9619 while (atomic_read(&fs_info->nr_async_submits) ||
9620 atomic_read(&fs_info->async_delalloc_pages)) {
9621 wait_event(fs_info->async_submit_wait,
9622 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9623 atomic_read(&fs_info->async_delalloc_pages) == 0));
9624 }
9625 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 9626out:
1eafa6c7 9627 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
9628 spin_lock(&fs_info->delalloc_root_lock);
9629 list_splice_tail(&splice, &fs_info->delalloc_roots);
9630 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9631 }
573bfb72 9632 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9633 return ret;
ea8c2819
CM
9634}
9635
39279cc3
CM
9636static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9637 const char *symname)
9638{
9639 struct btrfs_trans_handle *trans;
9640 struct btrfs_root *root = BTRFS_I(dir)->root;
9641 struct btrfs_path *path;
9642 struct btrfs_key key;
1832a6d5 9643 struct inode *inode = NULL;
39279cc3
CM
9644 int err;
9645 int drop_inode = 0;
9646 u64 objectid;
67871254 9647 u64 index = 0;
39279cc3
CM
9648 int name_len;
9649 int datasize;
5f39d397 9650 unsigned long ptr;
39279cc3 9651 struct btrfs_file_extent_item *ei;
5f39d397 9652 struct extent_buffer *leaf;
39279cc3 9653
f06becc4 9654 name_len = strlen(symname);
39279cc3
CM
9655 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9656 return -ENAMETOOLONG;
1832a6d5 9657
9ed74f2d
JB
9658 /*
9659 * 2 items for inode item and ref
9660 * 2 items for dir items
9661 * 1 item for xattr if selinux is on
9662 */
a22285a6
YZ
9663 trans = btrfs_start_transaction(root, 5);
9664 if (IS_ERR(trans))
9665 return PTR_ERR(trans);
1832a6d5 9666
581bb050
LZ
9667 err = btrfs_find_free_ino(root, &objectid);
9668 if (err)
9669 goto out_unlock;
9670
aec7477b 9671 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 9672 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 9673 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9674 if (IS_ERR(inode)) {
9675 err = PTR_ERR(inode);
39279cc3 9676 goto out_unlock;
7cf96da3 9677 }
39279cc3 9678
ad19db71
CS
9679 /*
9680 * If the active LSM wants to access the inode during
9681 * d_instantiate it needs these. Smack checks to see
9682 * if the filesystem supports xattrs by looking at the
9683 * ops vector.
9684 */
9685 inode->i_fop = &btrfs_file_operations;
9686 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9687 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9688 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9689
9690 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9691 if (err)
9692 goto out_unlock_inode;
ad19db71 9693
a1b075d2 9694 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 9695 if (err)
b0d5d10f 9696 goto out_unlock_inode;
39279cc3
CM
9697
9698 path = btrfs_alloc_path();
d8926bb3
MF
9699 if (!path) {
9700 err = -ENOMEM;
b0d5d10f 9701 goto out_unlock_inode;
d8926bb3 9702 }
33345d01 9703 key.objectid = btrfs_ino(inode);
39279cc3 9704 key.offset = 0;
962a298f 9705 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9706 datasize = btrfs_file_extent_calc_inline_size(name_len);
9707 err = btrfs_insert_empty_item(trans, root, path, &key,
9708 datasize);
54aa1f4d 9709 if (err) {
b0839166 9710 btrfs_free_path(path);
b0d5d10f 9711 goto out_unlock_inode;
54aa1f4d 9712 }
5f39d397
CM
9713 leaf = path->nodes[0];
9714 ei = btrfs_item_ptr(leaf, path->slots[0],
9715 struct btrfs_file_extent_item);
9716 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9717 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9718 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9719 btrfs_set_file_extent_encryption(leaf, ei, 0);
9720 btrfs_set_file_extent_compression(leaf, ei, 0);
9721 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9722 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9723
39279cc3 9724 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9725 write_extent_buffer(leaf, symname, ptr, name_len);
9726 btrfs_mark_buffer_dirty(leaf);
39279cc3 9727 btrfs_free_path(path);
5f39d397 9728
39279cc3
CM
9729 inode->i_op = &btrfs_symlink_inode_operations;
9730 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 9731 inode_set_bytes(inode, name_len);
f06becc4 9732 btrfs_i_size_write(inode, name_len);
54aa1f4d 9733 err = btrfs_update_inode(trans, root, inode);
b0d5d10f 9734 if (err) {
54aa1f4d 9735 drop_inode = 1;
b0d5d10f
CM
9736 goto out_unlock_inode;
9737 }
9738
9739 unlock_new_inode(inode);
9740 d_instantiate(dentry, inode);
39279cc3
CM
9741
9742out_unlock:
7ad85bb7 9743 btrfs_end_transaction(trans, root);
39279cc3
CM
9744 if (drop_inode) {
9745 inode_dec_link_count(inode);
9746 iput(inode);
9747 }
b53d3f5d 9748 btrfs_btree_balance_dirty(root);
39279cc3 9749 return err;
b0d5d10f
CM
9750
9751out_unlock_inode:
9752 drop_inode = 1;
9753 unlock_new_inode(inode);
9754 goto out_unlock;
39279cc3 9755}
16432985 9756
0af3d00b
JB
9757static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9758 u64 start, u64 num_bytes, u64 min_size,
9759 loff_t actual_len, u64 *alloc_hint,
9760 struct btrfs_trans_handle *trans)
d899e052 9761{
5dc562c5
JB
9762 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9763 struct extent_map *em;
d899e052
YZ
9764 struct btrfs_root *root = BTRFS_I(inode)->root;
9765 struct btrfs_key ins;
d899e052 9766 u64 cur_offset = start;
55a61d1d 9767 u64 i_size;
154ea289 9768 u64 cur_bytes;
0b670dc4 9769 u64 last_alloc = (u64)-1;
d899e052 9770 int ret = 0;
0af3d00b 9771 bool own_trans = true;
d899e052 9772
0af3d00b
JB
9773 if (trans)
9774 own_trans = false;
d899e052 9775 while (num_bytes > 0) {
0af3d00b
JB
9776 if (own_trans) {
9777 trans = btrfs_start_transaction(root, 3);
9778 if (IS_ERR(trans)) {
9779 ret = PTR_ERR(trans);
9780 break;
9781 }
5a303d5d
YZ
9782 }
9783
154ea289
CM
9784 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9785 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9786 /*
9787 * If we are severely fragmented we could end up with really
9788 * small allocations, so if the allocator is returning small
9789 * chunks lets make its job easier by only searching for those
9790 * sized chunks.
9791 */
9792 cur_bytes = min(cur_bytes, last_alloc);
00361589 9793 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 9794 *alloc_hint, &ins, 1, 0);
5a303d5d 9795 if (ret) {
0af3d00b
JB
9796 if (own_trans)
9797 btrfs_end_transaction(trans, root);
a22285a6 9798 break;
d899e052 9799 }
5a303d5d 9800
0b670dc4 9801 last_alloc = ins.offset;
d899e052
YZ
9802 ret = insert_reserved_file_extent(trans, inode,
9803 cur_offset, ins.objectid,
9804 ins.offset, ins.offset,
920bbbfb 9805 ins.offset, 0, 0, 0,
d899e052 9806 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 9807 if (ret) {
857cc2fc 9808 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 9809 ins.offset, 0);
79787eaa
JM
9810 btrfs_abort_transaction(trans, root, ret);
9811 if (own_trans)
9812 btrfs_end_transaction(trans, root);
9813 break;
9814 }
31193213 9815
a1ed835e
CM
9816 btrfs_drop_extent_cache(inode, cur_offset,
9817 cur_offset + ins.offset -1, 0);
5a303d5d 9818
5dc562c5
JB
9819 em = alloc_extent_map();
9820 if (!em) {
9821 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9822 &BTRFS_I(inode)->runtime_flags);
9823 goto next;
9824 }
9825
9826 em->start = cur_offset;
9827 em->orig_start = cur_offset;
9828 em->len = ins.offset;
9829 em->block_start = ins.objectid;
9830 em->block_len = ins.offset;
b4939680 9831 em->orig_block_len = ins.offset;
cc95bef6 9832 em->ram_bytes = ins.offset;
5dc562c5
JB
9833 em->bdev = root->fs_info->fs_devices->latest_bdev;
9834 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9835 em->generation = trans->transid;
9836
9837 while (1) {
9838 write_lock(&em_tree->lock);
09a2a8f9 9839 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9840 write_unlock(&em_tree->lock);
9841 if (ret != -EEXIST)
9842 break;
9843 btrfs_drop_extent_cache(inode, cur_offset,
9844 cur_offset + ins.offset - 1,
9845 0);
9846 }
9847 free_extent_map(em);
9848next:
d899e052
YZ
9849 num_bytes -= ins.offset;
9850 cur_offset += ins.offset;
efa56464 9851 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9852
0c4d2d95 9853 inode_inc_iversion(inode);
d899e052 9854 inode->i_ctime = CURRENT_TIME;
6cbff00f 9855 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9856 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9857 (actual_len > inode->i_size) &&
9858 (cur_offset > inode->i_size)) {
d1ea6a61 9859 if (cur_offset > actual_len)
55a61d1d 9860 i_size = actual_len;
d1ea6a61 9861 else
55a61d1d
JB
9862 i_size = cur_offset;
9863 i_size_write(inode, i_size);
9864 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
9865 }
9866
d899e052 9867 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9868
9869 if (ret) {
9870 btrfs_abort_transaction(trans, root, ret);
9871 if (own_trans)
9872 btrfs_end_transaction(trans, root);
9873 break;
9874 }
d899e052 9875
0af3d00b
JB
9876 if (own_trans)
9877 btrfs_end_transaction(trans, root);
5a303d5d 9878 }
d899e052
YZ
9879 return ret;
9880}
9881
0af3d00b
JB
9882int btrfs_prealloc_file_range(struct inode *inode, int mode,
9883 u64 start, u64 num_bytes, u64 min_size,
9884 loff_t actual_len, u64 *alloc_hint)
9885{
9886 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9887 min_size, actual_len, alloc_hint,
9888 NULL);
9889}
9890
9891int btrfs_prealloc_file_range_trans(struct inode *inode,
9892 struct btrfs_trans_handle *trans, int mode,
9893 u64 start, u64 num_bytes, u64 min_size,
9894 loff_t actual_len, u64 *alloc_hint)
9895{
9896 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9897 min_size, actual_len, alloc_hint, trans);
9898}
9899
e6dcd2dc
CM
9900static int btrfs_set_page_dirty(struct page *page)
9901{
e6dcd2dc
CM
9902 return __set_page_dirty_nobuffers(page);
9903}
9904
10556cb2 9905static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9906{
b83cc969 9907 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9908 umode_t mode = inode->i_mode;
b83cc969 9909
cb6db4e5
JM
9910 if (mask & MAY_WRITE &&
9911 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9912 if (btrfs_root_readonly(root))
9913 return -EROFS;
9914 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9915 return -EACCES;
9916 }
2830ba7f 9917 return generic_permission(inode, mask);
fdebe2bd 9918}
39279cc3 9919
ef3b9af5
FM
9920static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9921{
9922 struct btrfs_trans_handle *trans;
9923 struct btrfs_root *root = BTRFS_I(dir)->root;
9924 struct inode *inode = NULL;
9925 u64 objectid;
9926 u64 index;
9927 int ret = 0;
9928
9929 /*
9930 * 5 units required for adding orphan entry
9931 */
9932 trans = btrfs_start_transaction(root, 5);
9933 if (IS_ERR(trans))
9934 return PTR_ERR(trans);
9935
9936 ret = btrfs_find_free_ino(root, &objectid);
9937 if (ret)
9938 goto out;
9939
9940 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9941 btrfs_ino(dir), objectid, mode, &index);
9942 if (IS_ERR(inode)) {
9943 ret = PTR_ERR(inode);
9944 inode = NULL;
9945 goto out;
9946 }
9947
ef3b9af5
FM
9948 inode->i_fop = &btrfs_file_operations;
9949 inode->i_op = &btrfs_file_inode_operations;
9950
9951 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
9952 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9953
b0d5d10f
CM
9954 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9955 if (ret)
9956 goto out_inode;
9957
9958 ret = btrfs_update_inode(trans, root, inode);
9959 if (ret)
9960 goto out_inode;
ef3b9af5
FM
9961 ret = btrfs_orphan_add(trans, inode);
9962 if (ret)
b0d5d10f 9963 goto out_inode;
ef3b9af5 9964
5762b5c9
FM
9965 /*
9966 * We set number of links to 0 in btrfs_new_inode(), and here we set
9967 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9968 * through:
9969 *
9970 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9971 */
9972 set_nlink(inode, 1);
b0d5d10f 9973 unlock_new_inode(inode);
ef3b9af5
FM
9974 d_tmpfile(dentry, inode);
9975 mark_inode_dirty(inode);
9976
9977out:
9978 btrfs_end_transaction(trans, root);
9979 if (ret)
9980 iput(inode);
9981 btrfs_balance_delayed_items(root);
9982 btrfs_btree_balance_dirty(root);
ef3b9af5 9983 return ret;
b0d5d10f
CM
9984
9985out_inode:
9986 unlock_new_inode(inode);
9987 goto out;
9988
ef3b9af5
FM
9989}
9990
b38ef71c
FM
9991/* Inspired by filemap_check_errors() */
9992int btrfs_inode_check_errors(struct inode *inode)
9993{
9994 int ret = 0;
9995
9996 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9997 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9998 ret = -ENOSPC;
9999 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10000 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10001 ret = -EIO;
10002
10003 return ret;
10004}
10005
6e1d5dcc 10006static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10007 .getattr = btrfs_getattr,
39279cc3
CM
10008 .lookup = btrfs_lookup,
10009 .create = btrfs_create,
10010 .unlink = btrfs_unlink,
10011 .link = btrfs_link,
10012 .mkdir = btrfs_mkdir,
10013 .rmdir = btrfs_rmdir,
80ace85c 10014 .rename2 = btrfs_rename2,
39279cc3
CM
10015 .symlink = btrfs_symlink,
10016 .setattr = btrfs_setattr,
618e21d5 10017 .mknod = btrfs_mknod,
95819c05
CH
10018 .setxattr = btrfs_setxattr,
10019 .getxattr = btrfs_getxattr,
5103e947 10020 .listxattr = btrfs_listxattr,
95819c05 10021 .removexattr = btrfs_removexattr,
fdebe2bd 10022 .permission = btrfs_permission,
4e34e719 10023 .get_acl = btrfs_get_acl,
996a710d 10024 .set_acl = btrfs_set_acl,
93fd63c2 10025 .update_time = btrfs_update_time,
ef3b9af5 10026 .tmpfile = btrfs_tmpfile,
39279cc3 10027};
6e1d5dcc 10028static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10029 .lookup = btrfs_lookup,
fdebe2bd 10030 .permission = btrfs_permission,
4e34e719 10031 .get_acl = btrfs_get_acl,
996a710d 10032 .set_acl = btrfs_set_acl,
93fd63c2 10033 .update_time = btrfs_update_time,
39279cc3 10034};
76dda93c 10035
828c0950 10036static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10037 .llseek = generic_file_llseek,
10038 .read = generic_read_dir,
9cdda8d3 10039 .iterate = btrfs_real_readdir,
34287aa3 10040 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10041#ifdef CONFIG_COMPAT
34287aa3 10042 .compat_ioctl = btrfs_ioctl,
39279cc3 10043#endif
6bf13c0c 10044 .release = btrfs_release_file,
e02119d5 10045 .fsync = btrfs_sync_file,
39279cc3
CM
10046};
10047
d1310b2e 10048static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10049 .fill_delalloc = run_delalloc_range,
065631f6 10050 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10051 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10052 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10053 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10054 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10055 .set_bit_hook = btrfs_set_bit_hook,
10056 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10057 .merge_extent_hook = btrfs_merge_extent_hook,
10058 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10059};
10060
35054394
CM
10061/*
10062 * btrfs doesn't support the bmap operation because swapfiles
10063 * use bmap to make a mapping of extents in the file. They assume
10064 * these extents won't change over the life of the file and they
10065 * use the bmap result to do IO directly to the drive.
10066 *
10067 * the btrfs bmap call would return logical addresses that aren't
10068 * suitable for IO and they also will change frequently as COW
10069 * operations happen. So, swapfile + btrfs == corruption.
10070 *
10071 * For now we're avoiding this by dropping bmap.
10072 */
7f09410b 10073static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10074 .readpage = btrfs_readpage,
10075 .writepage = btrfs_writepage,
b293f02e 10076 .writepages = btrfs_writepages,
3ab2fb5a 10077 .readpages = btrfs_readpages,
16432985 10078 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10079 .invalidatepage = btrfs_invalidatepage,
10080 .releasepage = btrfs_releasepage,
e6dcd2dc 10081 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10082 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10083};
10084
7f09410b 10085static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10086 .readpage = btrfs_readpage,
10087 .writepage = btrfs_writepage,
2bf5a725
CM
10088 .invalidatepage = btrfs_invalidatepage,
10089 .releasepage = btrfs_releasepage,
39279cc3
CM
10090};
10091
6e1d5dcc 10092static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10093 .getattr = btrfs_getattr,
10094 .setattr = btrfs_setattr,
95819c05
CH
10095 .setxattr = btrfs_setxattr,
10096 .getxattr = btrfs_getxattr,
5103e947 10097 .listxattr = btrfs_listxattr,
95819c05 10098 .removexattr = btrfs_removexattr,
fdebe2bd 10099 .permission = btrfs_permission,
1506fcc8 10100 .fiemap = btrfs_fiemap,
4e34e719 10101 .get_acl = btrfs_get_acl,
996a710d 10102 .set_acl = btrfs_set_acl,
e41f941a 10103 .update_time = btrfs_update_time,
39279cc3 10104};
6e1d5dcc 10105static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10106 .getattr = btrfs_getattr,
10107 .setattr = btrfs_setattr,
fdebe2bd 10108 .permission = btrfs_permission,
95819c05
CH
10109 .setxattr = btrfs_setxattr,
10110 .getxattr = btrfs_getxattr,
33268eaf 10111 .listxattr = btrfs_listxattr,
95819c05 10112 .removexattr = btrfs_removexattr,
4e34e719 10113 .get_acl = btrfs_get_acl,
996a710d 10114 .set_acl = btrfs_set_acl,
e41f941a 10115 .update_time = btrfs_update_time,
618e21d5 10116};
6e1d5dcc 10117static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
10118 .readlink = generic_readlink,
10119 .follow_link = page_follow_link_light,
10120 .put_link = page_put_link,
f209561a 10121 .getattr = btrfs_getattr,
22c44fe6 10122 .setattr = btrfs_setattr,
fdebe2bd 10123 .permission = btrfs_permission,
0279b4cd
JO
10124 .setxattr = btrfs_setxattr,
10125 .getxattr = btrfs_getxattr,
10126 .listxattr = btrfs_listxattr,
10127 .removexattr = btrfs_removexattr,
e41f941a 10128 .update_time = btrfs_update_time,
39279cc3 10129};
76dda93c 10130
82d339d9 10131const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10132 .d_delete = btrfs_dentry_delete,
b4aff1f8 10133 .d_release = btrfs_dentry_release,
76dda93c 10134};