Btrfs: prepare block group cache before writing
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
39279cc3
CM
62
63struct btrfs_iget_args {
90d3e592 64 struct btrfs_key *location;
39279cc3
CM
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
40f76580 128static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 129 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
130 struct btrfs_root *root, struct inode *inode,
131 u64 start, size_t size, size_t compressed_size,
fe3f566c 132 int compress_type,
c8b97818
CM
133 struct page **compressed_pages)
134{
c8b97818
CM
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
c8b97818 143 unsigned long offset;
c8b97818 144
fe3f566c 145 if (compressed_size && compressed_pages)
c8b97818 146 cur_size = compressed_size;
c8b97818 147
1acae57b 148 inode_add_bytes(inode, size);
c8b97818 149
1acae57b
FDBM
150 if (!extent_inserted) {
151 struct btrfs_key key;
152 size_t datasize;
c8b97818 153
1acae57b
FDBM
154 key.objectid = btrfs_ino(inode);
155 key.offset = start;
962a298f 156 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 157
1acae57b
FDBM
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 path->leave_spinning = 1;
160 ret = btrfs_insert_empty_item(trans, root, path, &key,
161 datasize);
162 if (ret) {
163 err = ret;
164 goto fail;
165 }
c8b97818
CM
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
261507a0 177 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
178 struct page *cpage;
179 int i = 0;
d397712b 180 while (compressed_size > 0) {
c8b97818 181 cpage = compressed_pages[i];
5b050f04 182 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
183 PAGE_CACHE_SIZE);
184
7ac687d9 185 kaddr = kmap_atomic(cpage);
c8b97818 186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 187 kunmap_atomic(kaddr);
c8b97818
CM
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
261507a0 194 compress_type);
c8b97818
CM
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 199 kaddr = kmap_atomic(page);
c8b97818
CM
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 202 kunmap_atomic(kaddr);
c8b97818
CM
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
1acae57b 206 btrfs_release_path(path);
c8b97818 207
c2167754
YZ
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
c8b97818 217 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 218 ret = btrfs_update_inode(trans, root, inode);
c2167754 219
79787eaa 220 return ret;
c8b97818 221fail:
c8b97818
CM
222 return err;
223}
224
225
226/*
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
230 */
00361589
JB
231static noinline int cow_file_range_inline(struct btrfs_root *root,
232 struct inode *inode, u64 start,
233 u64 end, size_t compressed_size,
234 int compress_type,
235 struct page **compressed_pages)
c8b97818 236{
00361589 237 struct btrfs_trans_handle *trans;
c8b97818
CM
238 u64 isize = i_size_read(inode);
239 u64 actual_end = min(end + 1, isize);
240 u64 inline_len = actual_end - start;
fda2832f 241 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
242 u64 data_len = inline_len;
243 int ret;
1acae57b
FDBM
244 struct btrfs_path *path;
245 int extent_inserted = 0;
246 u32 extent_item_size;
c8b97818
CM
247
248 if (compressed_size)
249 data_len = compressed_size;
250
251 if (start > 0 ||
354877be
WS
252 actual_end > PAGE_CACHE_SIZE ||
253 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
254 (!compressed_size &&
255 (actual_end & (root->sectorsize - 1)) == 0) ||
256 end + 1 < isize ||
257 data_len > root->fs_info->max_inline) {
258 return 1;
259 }
260
1acae57b
FDBM
261 path = btrfs_alloc_path();
262 if (!path)
263 return -ENOMEM;
264
00361589 265 trans = btrfs_join_transaction(root);
1acae57b
FDBM
266 if (IS_ERR(trans)) {
267 btrfs_free_path(path);
00361589 268 return PTR_ERR(trans);
1acae57b 269 }
00361589
JB
270 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
1acae57b
FDBM
272 if (compressed_size && compressed_pages)
273 extent_item_size = btrfs_file_extent_calc_inline_size(
274 compressed_size);
275 else
276 extent_item_size = btrfs_file_extent_calc_inline_size(
277 inline_len);
278
279 ret = __btrfs_drop_extents(trans, root, inode, path,
280 start, aligned_end, NULL,
281 1, 1, extent_item_size, &extent_inserted);
00361589
JB
282 if (ret) {
283 btrfs_abort_transaction(trans, root, ret);
284 goto out;
285 }
c8b97818
CM
286
287 if (isize > actual_end)
288 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
289 ret = insert_inline_extent(trans, path, extent_inserted,
290 root, inode, start,
c8b97818 291 inline_len, compressed_size,
fe3f566c 292 compress_type, compressed_pages);
2adcac1a 293 if (ret && ret != -ENOSPC) {
79787eaa 294 btrfs_abort_transaction(trans, root, ret);
00361589 295 goto out;
2adcac1a 296 } else if (ret == -ENOSPC) {
00361589
JB
297 ret = 1;
298 goto out;
79787eaa 299 }
2adcac1a 300
bdc20e67 301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 302 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 304out:
1acae57b 305 btrfs_free_path(path);
00361589
JB
306 btrfs_end_transaction(trans, root);
307 return ret;
c8b97818
CM
308}
309
771ed689
CM
310struct async_extent {
311 u64 start;
312 u64 ram_size;
313 u64 compressed_size;
314 struct page **pages;
315 unsigned long nr_pages;
261507a0 316 int compress_type;
771ed689
CM
317 struct list_head list;
318};
319
320struct async_cow {
321 struct inode *inode;
322 struct btrfs_root *root;
323 struct page *locked_page;
324 u64 start;
325 u64 end;
326 struct list_head extents;
327 struct btrfs_work work;
328};
329
330static noinline int add_async_extent(struct async_cow *cow,
331 u64 start, u64 ram_size,
332 u64 compressed_size,
333 struct page **pages,
261507a0
LZ
334 unsigned long nr_pages,
335 int compress_type)
771ed689
CM
336{
337 struct async_extent *async_extent;
338
339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 340 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
341 async_extent->start = start;
342 async_extent->ram_size = ram_size;
343 async_extent->compressed_size = compressed_size;
344 async_extent->pages = pages;
345 async_extent->nr_pages = nr_pages;
261507a0 346 async_extent->compress_type = compress_type;
771ed689
CM
347 list_add_tail(&async_extent->list, &cow->extents);
348 return 0;
349}
350
f79707b0
WS
351static inline int inode_need_compress(struct inode *inode)
352{
353 struct btrfs_root *root = BTRFS_I(inode)->root;
354
355 /* force compress */
356 if (btrfs_test_opt(root, FORCE_COMPRESS))
357 return 1;
358 /* bad compression ratios */
359 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
360 return 0;
361 if (btrfs_test_opt(root, COMPRESS) ||
362 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
363 BTRFS_I(inode)->force_compress)
364 return 1;
365 return 0;
366}
367
d352ac68 368/*
771ed689
CM
369 * we create compressed extents in two phases. The first
370 * phase compresses a range of pages that have already been
371 * locked (both pages and state bits are locked).
c8b97818 372 *
771ed689
CM
373 * This is done inside an ordered work queue, and the compression
374 * is spread across many cpus. The actual IO submission is step
375 * two, and the ordered work queue takes care of making sure that
376 * happens in the same order things were put onto the queue by
377 * writepages and friends.
c8b97818 378 *
771ed689
CM
379 * If this code finds it can't get good compression, it puts an
380 * entry onto the work queue to write the uncompressed bytes. This
381 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
382 * are written in the same order that the flusher thread sent them
383 * down.
d352ac68 384 */
c44f649e 385static noinline void compress_file_range(struct inode *inode,
771ed689
CM
386 struct page *locked_page,
387 u64 start, u64 end,
388 struct async_cow *async_cow,
389 int *num_added)
b888db2b
CM
390{
391 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 392 u64 num_bytes;
db94535d 393 u64 blocksize = root->sectorsize;
c8b97818 394 u64 actual_end;
42dc7bab 395 u64 isize = i_size_read(inode);
e6dcd2dc 396 int ret = 0;
c8b97818
CM
397 struct page **pages = NULL;
398 unsigned long nr_pages;
399 unsigned long nr_pages_ret = 0;
400 unsigned long total_compressed = 0;
401 unsigned long total_in = 0;
402 unsigned long max_compressed = 128 * 1024;
771ed689 403 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
404 int i;
405 int will_compress;
261507a0 406 int compress_type = root->fs_info->compress_type;
4adaa611 407 int redirty = 0;
b888db2b 408
4cb13e5d
LB
409 /* if this is a small write inside eof, kick off a defrag */
410 if ((end - start + 1) < 16 * 1024 &&
411 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
412 btrfs_add_inode_defrag(NULL, inode);
413
42dc7bab 414 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
415again:
416 will_compress = 0;
417 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
418 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 419
f03d9301
CM
420 /*
421 * we don't want to send crud past the end of i_size through
422 * compression, that's just a waste of CPU time. So, if the
423 * end of the file is before the start of our current
424 * requested range of bytes, we bail out to the uncompressed
425 * cleanup code that can deal with all of this.
426 *
427 * It isn't really the fastest way to fix things, but this is a
428 * very uncommon corner.
429 */
430 if (actual_end <= start)
431 goto cleanup_and_bail_uncompressed;
432
c8b97818
CM
433 total_compressed = actual_end - start;
434
4bcbb332
SW
435 /*
436 * skip compression for a small file range(<=blocksize) that
437 * isn't an inline extent, since it dosen't save disk space at all.
438 */
439 if (total_compressed <= blocksize &&
440 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
441 goto cleanup_and_bail_uncompressed;
442
c8b97818
CM
443 /* we want to make sure that amount of ram required to uncompress
444 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
445 * of a compressed extent to 128k. This is a crucial number
446 * because it also controls how easily we can spread reads across
447 * cpus for decompression.
448 *
449 * We also want to make sure the amount of IO required to do
450 * a random read is reasonably small, so we limit the size of
451 * a compressed extent to 128k.
c8b97818
CM
452 */
453 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 454 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 455 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
456 total_in = 0;
457 ret = 0;
db94535d 458
771ed689
CM
459 /*
460 * we do compression for mount -o compress and when the
461 * inode has not been flagged as nocompress. This flag can
462 * change at any time if we discover bad compression ratios.
c8b97818 463 */
f79707b0 464 if (inode_need_compress(inode)) {
c8b97818 465 WARN_ON(pages);
cfbc246e 466 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
467 if (!pages) {
468 /* just bail out to the uncompressed code */
469 goto cont;
470 }
c8b97818 471
261507a0
LZ
472 if (BTRFS_I(inode)->force_compress)
473 compress_type = BTRFS_I(inode)->force_compress;
474
4adaa611
CM
475 /*
476 * we need to call clear_page_dirty_for_io on each
477 * page in the range. Otherwise applications with the file
478 * mmap'd can wander in and change the page contents while
479 * we are compressing them.
480 *
481 * If the compression fails for any reason, we set the pages
482 * dirty again later on.
483 */
484 extent_range_clear_dirty_for_io(inode, start, end);
485 redirty = 1;
261507a0
LZ
486 ret = btrfs_compress_pages(compress_type,
487 inode->i_mapping, start,
488 total_compressed, pages,
489 nr_pages, &nr_pages_ret,
490 &total_in,
491 &total_compressed,
492 max_compressed);
c8b97818
CM
493
494 if (!ret) {
495 unsigned long offset = total_compressed &
496 (PAGE_CACHE_SIZE - 1);
497 struct page *page = pages[nr_pages_ret - 1];
498 char *kaddr;
499
500 /* zero the tail end of the last page, we might be
501 * sending it down to disk
502 */
503 if (offset) {
7ac687d9 504 kaddr = kmap_atomic(page);
c8b97818
CM
505 memset(kaddr + offset, 0,
506 PAGE_CACHE_SIZE - offset);
7ac687d9 507 kunmap_atomic(kaddr);
c8b97818
CM
508 }
509 will_compress = 1;
510 }
511 }
560f7d75 512cont:
c8b97818
CM
513 if (start == 0) {
514 /* lets try to make an inline extent */
771ed689 515 if (ret || total_in < (actual_end - start)) {
c8b97818 516 /* we didn't compress the entire range, try
771ed689 517 * to make an uncompressed inline extent.
c8b97818 518 */
00361589
JB
519 ret = cow_file_range_inline(root, inode, start, end,
520 0, 0, NULL);
c8b97818 521 } else {
771ed689 522 /* try making a compressed inline extent */
00361589 523 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
524 total_compressed,
525 compress_type, pages);
c8b97818 526 }
79787eaa 527 if (ret <= 0) {
151a41bc
JB
528 unsigned long clear_flags = EXTENT_DELALLOC |
529 EXTENT_DEFRAG;
e6eb4314
FM
530 unsigned long page_error_op;
531
151a41bc 532 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 533 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 534
771ed689 535 /*
79787eaa
JM
536 * inline extent creation worked or returned error,
537 * we don't need to create any more async work items.
538 * Unlock and free up our temp pages.
771ed689 539 */
c2790a2e 540 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 541 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
542 PAGE_CLEAR_DIRTY |
543 PAGE_SET_WRITEBACK |
e6eb4314 544 page_error_op |
c2790a2e 545 PAGE_END_WRITEBACK);
c8b97818
CM
546 goto free_pages_out;
547 }
548 }
549
550 if (will_compress) {
551 /*
552 * we aren't doing an inline extent round the compressed size
553 * up to a block size boundary so the allocator does sane
554 * things
555 */
fda2832f 556 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
557
558 /*
559 * one last check to make sure the compression is really a
560 * win, compare the page count read with the blocks on disk
561 */
fda2832f 562 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
563 if (total_compressed >= total_in) {
564 will_compress = 0;
565 } else {
c8b97818
CM
566 num_bytes = total_in;
567 }
568 }
569 if (!will_compress && pages) {
570 /*
571 * the compression code ran but failed to make things smaller,
572 * free any pages it allocated and our page pointer array
573 */
574 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 575 WARN_ON(pages[i]->mapping);
c8b97818
CM
576 page_cache_release(pages[i]);
577 }
578 kfree(pages);
579 pages = NULL;
580 total_compressed = 0;
581 nr_pages_ret = 0;
582
583 /* flag the file so we don't compress in the future */
1e701a32
CM
584 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
585 !(BTRFS_I(inode)->force_compress)) {
a555f810 586 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 587 }
c8b97818 588 }
771ed689
CM
589 if (will_compress) {
590 *num_added += 1;
c8b97818 591
771ed689
CM
592 /* the async work queues will take care of doing actual
593 * allocation on disk for these compressed pages,
594 * and will submit them to the elevator.
595 */
596 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
597 total_compressed, pages, nr_pages_ret,
598 compress_type);
179e29e4 599
24ae6365 600 if (start + num_bytes < end) {
771ed689
CM
601 start += num_bytes;
602 pages = NULL;
603 cond_resched();
604 goto again;
605 }
606 } else {
f03d9301 607cleanup_and_bail_uncompressed:
771ed689
CM
608 /*
609 * No compression, but we still need to write the pages in
610 * the file we've been given so far. redirty the locked
611 * page if it corresponds to our extent and set things up
612 * for the async work queue to run cow_file_range to do
613 * the normal delalloc dance
614 */
615 if (page_offset(locked_page) >= start &&
616 page_offset(locked_page) <= end) {
617 __set_page_dirty_nobuffers(locked_page);
618 /* unlocked later on in the async handlers */
619 }
4adaa611
CM
620 if (redirty)
621 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
622 add_async_extent(async_cow, start, end - start + 1,
623 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
624 *num_added += 1;
625 }
3b951516 626
c44f649e 627 return;
771ed689
CM
628
629free_pages_out:
630 for (i = 0; i < nr_pages_ret; i++) {
631 WARN_ON(pages[i]->mapping);
632 page_cache_release(pages[i]);
633 }
d397712b 634 kfree(pages);
771ed689 635}
771ed689 636
40ae837b
FM
637static void free_async_extent_pages(struct async_extent *async_extent)
638{
639 int i;
640
641 if (!async_extent->pages)
642 return;
643
644 for (i = 0; i < async_extent->nr_pages; i++) {
645 WARN_ON(async_extent->pages[i]->mapping);
646 page_cache_release(async_extent->pages[i]);
647 }
648 kfree(async_extent->pages);
649 async_extent->nr_pages = 0;
650 async_extent->pages = NULL;
771ed689
CM
651}
652
653/*
654 * phase two of compressed writeback. This is the ordered portion
655 * of the code, which only gets called in the order the work was
656 * queued. We walk all the async extents created by compress_file_range
657 * and send them down to the disk.
658 */
dec8f175 659static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
660 struct async_cow *async_cow)
661{
662 struct async_extent *async_extent;
663 u64 alloc_hint = 0;
771ed689
CM
664 struct btrfs_key ins;
665 struct extent_map *em;
666 struct btrfs_root *root = BTRFS_I(inode)->root;
667 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
668 struct extent_io_tree *io_tree;
f5a84ee3 669 int ret = 0;
771ed689 670
3e04e7f1 671again:
d397712b 672 while (!list_empty(&async_cow->extents)) {
771ed689
CM
673 async_extent = list_entry(async_cow->extents.next,
674 struct async_extent, list);
675 list_del(&async_extent->list);
c8b97818 676
771ed689
CM
677 io_tree = &BTRFS_I(inode)->io_tree;
678
f5a84ee3 679retry:
771ed689
CM
680 /* did the compression code fall back to uncompressed IO? */
681 if (!async_extent->pages) {
682 int page_started = 0;
683 unsigned long nr_written = 0;
684
685 lock_extent(io_tree, async_extent->start,
2ac55d41 686 async_extent->start +
d0082371 687 async_extent->ram_size - 1);
771ed689
CM
688
689 /* allocate blocks */
f5a84ee3
JB
690 ret = cow_file_range(inode, async_cow->locked_page,
691 async_extent->start,
692 async_extent->start +
693 async_extent->ram_size - 1,
694 &page_started, &nr_written, 0);
771ed689 695
79787eaa
JM
696 /* JDM XXX */
697
771ed689
CM
698 /*
699 * if page_started, cow_file_range inserted an
700 * inline extent and took care of all the unlocking
701 * and IO for us. Otherwise, we need to submit
702 * all those pages down to the drive.
703 */
f5a84ee3 704 if (!page_started && !ret)
771ed689
CM
705 extent_write_locked_range(io_tree,
706 inode, async_extent->start,
d397712b 707 async_extent->start +
771ed689
CM
708 async_extent->ram_size - 1,
709 btrfs_get_extent,
710 WB_SYNC_ALL);
3e04e7f1
JB
711 else if (ret)
712 unlock_page(async_cow->locked_page);
771ed689
CM
713 kfree(async_extent);
714 cond_resched();
715 continue;
716 }
717
718 lock_extent(io_tree, async_extent->start,
d0082371 719 async_extent->start + async_extent->ram_size - 1);
771ed689 720
00361589 721 ret = btrfs_reserve_extent(root,
771ed689
CM
722 async_extent->compressed_size,
723 async_extent->compressed_size,
e570fd27 724 0, alloc_hint, &ins, 1, 1);
f5a84ee3 725 if (ret) {
40ae837b 726 free_async_extent_pages(async_extent);
3e04e7f1 727
fdf8e2ea
JB
728 if (ret == -ENOSPC) {
729 unlock_extent(io_tree, async_extent->start,
730 async_extent->start +
731 async_extent->ram_size - 1);
ce62003f
LB
732
733 /*
734 * we need to redirty the pages if we decide to
735 * fallback to uncompressed IO, otherwise we
736 * will not submit these pages down to lower
737 * layers.
738 */
739 extent_range_redirty_for_io(inode,
740 async_extent->start,
741 async_extent->start +
742 async_extent->ram_size - 1);
743
79787eaa 744 goto retry;
fdf8e2ea 745 }
3e04e7f1 746 goto out_free;
f5a84ee3
JB
747 }
748
c2167754
YZ
749 /*
750 * here we're doing allocation and writeback of the
751 * compressed pages
752 */
753 btrfs_drop_extent_cache(inode, async_extent->start,
754 async_extent->start +
755 async_extent->ram_size - 1, 0);
756
172ddd60 757 em = alloc_extent_map();
b9aa55be
LB
758 if (!em) {
759 ret = -ENOMEM;
3e04e7f1 760 goto out_free_reserve;
b9aa55be 761 }
771ed689
CM
762 em->start = async_extent->start;
763 em->len = async_extent->ram_size;
445a6944 764 em->orig_start = em->start;
2ab28f32
JB
765 em->mod_start = em->start;
766 em->mod_len = em->len;
c8b97818 767
771ed689
CM
768 em->block_start = ins.objectid;
769 em->block_len = ins.offset;
b4939680 770 em->orig_block_len = ins.offset;
cc95bef6 771 em->ram_bytes = async_extent->ram_size;
771ed689 772 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 773 em->compress_type = async_extent->compress_type;
771ed689
CM
774 set_bit(EXTENT_FLAG_PINNED, &em->flags);
775 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 776 em->generation = -1;
771ed689 777
d397712b 778 while (1) {
890871be 779 write_lock(&em_tree->lock);
09a2a8f9 780 ret = add_extent_mapping(em_tree, em, 1);
890871be 781 write_unlock(&em_tree->lock);
771ed689
CM
782 if (ret != -EEXIST) {
783 free_extent_map(em);
784 break;
785 }
786 btrfs_drop_extent_cache(inode, async_extent->start,
787 async_extent->start +
788 async_extent->ram_size - 1, 0);
789 }
790
3e04e7f1
JB
791 if (ret)
792 goto out_free_reserve;
793
261507a0
LZ
794 ret = btrfs_add_ordered_extent_compress(inode,
795 async_extent->start,
796 ins.objectid,
797 async_extent->ram_size,
798 ins.offset,
799 BTRFS_ORDERED_COMPRESSED,
800 async_extent->compress_type);
d9f85963
FM
801 if (ret) {
802 btrfs_drop_extent_cache(inode, async_extent->start,
803 async_extent->start +
804 async_extent->ram_size - 1, 0);
3e04e7f1 805 goto out_free_reserve;
d9f85963 806 }
771ed689 807
771ed689
CM
808 /*
809 * clear dirty, set writeback and unlock the pages.
810 */
c2790a2e 811 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
812 async_extent->start +
813 async_extent->ram_size - 1,
151a41bc
JB
814 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
815 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 816 PAGE_SET_WRITEBACK);
771ed689 817 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
818 async_extent->start,
819 async_extent->ram_size,
820 ins.objectid,
821 ins.offset, async_extent->pages,
822 async_extent->nr_pages);
fce2a4e6
FM
823 if (ret) {
824 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
825 struct page *p = async_extent->pages[0];
826 const u64 start = async_extent->start;
827 const u64 end = start + async_extent->ram_size - 1;
828
829 p->mapping = inode->i_mapping;
830 tree->ops->writepage_end_io_hook(p, start, end,
831 NULL, 0);
832 p->mapping = NULL;
833 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
834 PAGE_END_WRITEBACK |
835 PAGE_SET_ERROR);
40ae837b 836 free_async_extent_pages(async_extent);
fce2a4e6 837 }
771ed689
CM
838 alloc_hint = ins.objectid + ins.offset;
839 kfree(async_extent);
840 cond_resched();
841 }
dec8f175 842 return;
3e04e7f1 843out_free_reserve:
e570fd27 844 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 845out_free:
c2790a2e 846 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
847 async_extent->start +
848 async_extent->ram_size - 1,
c2790a2e 849 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
850 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
851 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
852 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
853 PAGE_SET_ERROR);
40ae837b 854 free_async_extent_pages(async_extent);
79787eaa 855 kfree(async_extent);
3e04e7f1 856 goto again;
771ed689
CM
857}
858
4b46fce2
JB
859static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
860 u64 num_bytes)
861{
862 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
863 struct extent_map *em;
864 u64 alloc_hint = 0;
865
866 read_lock(&em_tree->lock);
867 em = search_extent_mapping(em_tree, start, num_bytes);
868 if (em) {
869 /*
870 * if block start isn't an actual block number then find the
871 * first block in this inode and use that as a hint. If that
872 * block is also bogus then just don't worry about it.
873 */
874 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
875 free_extent_map(em);
876 em = search_extent_mapping(em_tree, 0, 0);
877 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
878 alloc_hint = em->block_start;
879 if (em)
880 free_extent_map(em);
881 } else {
882 alloc_hint = em->block_start;
883 free_extent_map(em);
884 }
885 }
886 read_unlock(&em_tree->lock);
887
888 return alloc_hint;
889}
890
771ed689
CM
891/*
892 * when extent_io.c finds a delayed allocation range in the file,
893 * the call backs end up in this code. The basic idea is to
894 * allocate extents on disk for the range, and create ordered data structs
895 * in ram to track those extents.
896 *
897 * locked_page is the page that writepage had locked already. We use
898 * it to make sure we don't do extra locks or unlocks.
899 *
900 * *page_started is set to one if we unlock locked_page and do everything
901 * required to start IO on it. It may be clean and already done with
902 * IO when we return.
903 */
00361589
JB
904static noinline int cow_file_range(struct inode *inode,
905 struct page *locked_page,
906 u64 start, u64 end, int *page_started,
907 unsigned long *nr_written,
908 int unlock)
771ed689 909{
00361589 910 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
911 u64 alloc_hint = 0;
912 u64 num_bytes;
913 unsigned long ram_size;
914 u64 disk_num_bytes;
915 u64 cur_alloc_size;
916 u64 blocksize = root->sectorsize;
771ed689
CM
917 struct btrfs_key ins;
918 struct extent_map *em;
919 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
920 int ret = 0;
921
02ecd2c2
JB
922 if (btrfs_is_free_space_inode(inode)) {
923 WARN_ON_ONCE(1);
29bce2f3
JB
924 ret = -EINVAL;
925 goto out_unlock;
02ecd2c2 926 }
771ed689 927
fda2832f 928 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
929 num_bytes = max(blocksize, num_bytes);
930 disk_num_bytes = num_bytes;
771ed689 931
4cb5300b 932 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
933 if (num_bytes < 64 * 1024 &&
934 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 935 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 936
771ed689
CM
937 if (start == 0) {
938 /* lets try to make an inline extent */
00361589
JB
939 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
940 NULL);
771ed689 941 if (ret == 0) {
c2790a2e
JB
942 extent_clear_unlock_delalloc(inode, start, end, NULL,
943 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 944 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
945 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
946 PAGE_END_WRITEBACK);
c2167754 947
771ed689
CM
948 *nr_written = *nr_written +
949 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
950 *page_started = 1;
771ed689 951 goto out;
79787eaa 952 } else if (ret < 0) {
79787eaa 953 goto out_unlock;
771ed689
CM
954 }
955 }
956
957 BUG_ON(disk_num_bytes >
6c41761f 958 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 959
4b46fce2 960 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
961 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
962
d397712b 963 while (disk_num_bytes > 0) {
a791e35e
CM
964 unsigned long op;
965
287a0ab9 966 cur_alloc_size = disk_num_bytes;
00361589 967 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 968 root->sectorsize, 0, alloc_hint,
e570fd27 969 &ins, 1, 1);
00361589 970 if (ret < 0)
79787eaa 971 goto out_unlock;
d397712b 972
172ddd60 973 em = alloc_extent_map();
b9aa55be
LB
974 if (!em) {
975 ret = -ENOMEM;
ace68bac 976 goto out_reserve;
b9aa55be 977 }
e6dcd2dc 978 em->start = start;
445a6944 979 em->orig_start = em->start;
771ed689
CM
980 ram_size = ins.offset;
981 em->len = ins.offset;
2ab28f32
JB
982 em->mod_start = em->start;
983 em->mod_len = em->len;
c8b97818 984
e6dcd2dc 985 em->block_start = ins.objectid;
c8b97818 986 em->block_len = ins.offset;
b4939680 987 em->orig_block_len = ins.offset;
cc95bef6 988 em->ram_bytes = ram_size;
e6dcd2dc 989 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 990 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 991 em->generation = -1;
c8b97818 992
d397712b 993 while (1) {
890871be 994 write_lock(&em_tree->lock);
09a2a8f9 995 ret = add_extent_mapping(em_tree, em, 1);
890871be 996 write_unlock(&em_tree->lock);
e6dcd2dc
CM
997 if (ret != -EEXIST) {
998 free_extent_map(em);
999 break;
1000 }
1001 btrfs_drop_extent_cache(inode, start,
c8b97818 1002 start + ram_size - 1, 0);
e6dcd2dc 1003 }
ace68bac
LB
1004 if (ret)
1005 goto out_reserve;
e6dcd2dc 1006
98d20f67 1007 cur_alloc_size = ins.offset;
e6dcd2dc 1008 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1009 ram_size, cur_alloc_size, 0);
ace68bac 1010 if (ret)
d9f85963 1011 goto out_drop_extent_cache;
c8b97818 1012
17d217fe
YZ
1013 if (root->root_key.objectid ==
1014 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1015 ret = btrfs_reloc_clone_csums(inode, start,
1016 cur_alloc_size);
00361589 1017 if (ret)
d9f85963 1018 goto out_drop_extent_cache;
17d217fe
YZ
1019 }
1020
d397712b 1021 if (disk_num_bytes < cur_alloc_size)
3b951516 1022 break;
d397712b 1023
c8b97818
CM
1024 /* we're not doing compressed IO, don't unlock the first
1025 * page (which the caller expects to stay locked), don't
1026 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1027 *
1028 * Do set the Private2 bit so we know this page was properly
1029 * setup for writepage
c8b97818 1030 */
c2790a2e
JB
1031 op = unlock ? PAGE_UNLOCK : 0;
1032 op |= PAGE_SET_PRIVATE2;
a791e35e 1033
c2790a2e
JB
1034 extent_clear_unlock_delalloc(inode, start,
1035 start + ram_size - 1, locked_page,
1036 EXTENT_LOCKED | EXTENT_DELALLOC,
1037 op);
c8b97818 1038 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1039 num_bytes -= cur_alloc_size;
1040 alloc_hint = ins.objectid + ins.offset;
1041 start += cur_alloc_size;
b888db2b 1042 }
79787eaa 1043out:
be20aa9d 1044 return ret;
b7d5b0a8 1045
d9f85963
FM
1046out_drop_extent_cache:
1047 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1048out_reserve:
e570fd27 1049 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1050out_unlock:
c2790a2e 1051 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1052 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1053 EXTENT_DELALLOC | EXTENT_DEFRAG,
1054 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1055 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1056 goto out;
771ed689 1057}
c8b97818 1058
771ed689
CM
1059/*
1060 * work queue call back to started compression on a file and pages
1061 */
1062static noinline void async_cow_start(struct btrfs_work *work)
1063{
1064 struct async_cow *async_cow;
1065 int num_added = 0;
1066 async_cow = container_of(work, struct async_cow, work);
1067
1068 compress_file_range(async_cow->inode, async_cow->locked_page,
1069 async_cow->start, async_cow->end, async_cow,
1070 &num_added);
8180ef88 1071 if (num_added == 0) {
cb77fcd8 1072 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1073 async_cow->inode = NULL;
8180ef88 1074 }
771ed689
CM
1075}
1076
1077/*
1078 * work queue call back to submit previously compressed pages
1079 */
1080static noinline void async_cow_submit(struct btrfs_work *work)
1081{
1082 struct async_cow *async_cow;
1083 struct btrfs_root *root;
1084 unsigned long nr_pages;
1085
1086 async_cow = container_of(work, struct async_cow, work);
1087
1088 root = async_cow->root;
1089 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1090 PAGE_CACHE_SHIFT;
1091
66657b31 1092 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1093 5 * 1024 * 1024 &&
771ed689
CM
1094 waitqueue_active(&root->fs_info->async_submit_wait))
1095 wake_up(&root->fs_info->async_submit_wait);
1096
d397712b 1097 if (async_cow->inode)
771ed689 1098 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1099}
c8b97818 1100
771ed689
CM
1101static noinline void async_cow_free(struct btrfs_work *work)
1102{
1103 struct async_cow *async_cow;
1104 async_cow = container_of(work, struct async_cow, work);
8180ef88 1105 if (async_cow->inode)
cb77fcd8 1106 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1107 kfree(async_cow);
1108}
1109
1110static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1111 u64 start, u64 end, int *page_started,
1112 unsigned long *nr_written)
1113{
1114 struct async_cow *async_cow;
1115 struct btrfs_root *root = BTRFS_I(inode)->root;
1116 unsigned long nr_pages;
1117 u64 cur_end;
287082b0 1118 int limit = 10 * 1024 * 1024;
771ed689 1119
a3429ab7
CM
1120 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1121 1, 0, NULL, GFP_NOFS);
d397712b 1122 while (start < end) {
771ed689 1123 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1124 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1125 async_cow->inode = igrab(inode);
771ed689
CM
1126 async_cow->root = root;
1127 async_cow->locked_page = locked_page;
1128 async_cow->start = start;
1129
f79707b0
WS
1130 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1131 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1132 cur_end = end;
1133 else
1134 cur_end = min(end, start + 512 * 1024 - 1);
1135
1136 async_cow->end = cur_end;
1137 INIT_LIST_HEAD(&async_cow->extents);
1138
9e0af237
LB
1139 btrfs_init_work(&async_cow->work,
1140 btrfs_delalloc_helper,
1141 async_cow_start, async_cow_submit,
1142 async_cow_free);
771ed689 1143
771ed689
CM
1144 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1145 PAGE_CACHE_SHIFT;
1146 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1147
afe3d242
QW
1148 btrfs_queue_work(root->fs_info->delalloc_workers,
1149 &async_cow->work);
771ed689
CM
1150
1151 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1152 wait_event(root->fs_info->async_submit_wait,
1153 (atomic_read(&root->fs_info->async_delalloc_pages) <
1154 limit));
1155 }
1156
d397712b 1157 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1158 atomic_read(&root->fs_info->async_delalloc_pages)) {
1159 wait_event(root->fs_info->async_submit_wait,
1160 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1161 0));
1162 }
1163
1164 *nr_written += nr_pages;
1165 start = cur_end + 1;
1166 }
1167 *page_started = 1;
1168 return 0;
be20aa9d
CM
1169}
1170
d397712b 1171static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1172 u64 bytenr, u64 num_bytes)
1173{
1174 int ret;
1175 struct btrfs_ordered_sum *sums;
1176 LIST_HEAD(list);
1177
07d400a6 1178 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1179 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1180 if (ret == 0 && list_empty(&list))
1181 return 0;
1182
1183 while (!list_empty(&list)) {
1184 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1185 list_del(&sums->list);
1186 kfree(sums);
1187 }
1188 return 1;
1189}
1190
d352ac68
CM
1191/*
1192 * when nowcow writeback call back. This checks for snapshots or COW copies
1193 * of the extents that exist in the file, and COWs the file as required.
1194 *
1195 * If no cow copies or snapshots exist, we write directly to the existing
1196 * blocks on disk
1197 */
7f366cfe
CM
1198static noinline int run_delalloc_nocow(struct inode *inode,
1199 struct page *locked_page,
771ed689
CM
1200 u64 start, u64 end, int *page_started, int force,
1201 unsigned long *nr_written)
be20aa9d 1202{
be20aa9d 1203 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1204 struct btrfs_trans_handle *trans;
be20aa9d 1205 struct extent_buffer *leaf;
be20aa9d 1206 struct btrfs_path *path;
80ff3856 1207 struct btrfs_file_extent_item *fi;
be20aa9d 1208 struct btrfs_key found_key;
80ff3856
YZ
1209 u64 cow_start;
1210 u64 cur_offset;
1211 u64 extent_end;
5d4f98a2 1212 u64 extent_offset;
80ff3856
YZ
1213 u64 disk_bytenr;
1214 u64 num_bytes;
b4939680 1215 u64 disk_num_bytes;
cc95bef6 1216 u64 ram_bytes;
80ff3856 1217 int extent_type;
79787eaa 1218 int ret, err;
d899e052 1219 int type;
80ff3856
YZ
1220 int nocow;
1221 int check_prev = 1;
82d5902d 1222 bool nolock;
33345d01 1223 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1224
1225 path = btrfs_alloc_path();
17ca04af 1226 if (!path) {
c2790a2e
JB
1227 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1228 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1229 EXTENT_DO_ACCOUNTING |
1230 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1231 PAGE_CLEAR_DIRTY |
1232 PAGE_SET_WRITEBACK |
1233 PAGE_END_WRITEBACK);
d8926bb3 1234 return -ENOMEM;
17ca04af 1235 }
82d5902d 1236
83eea1f1 1237 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1238
1239 if (nolock)
7a7eaa40 1240 trans = btrfs_join_transaction_nolock(root);
82d5902d 1241 else
7a7eaa40 1242 trans = btrfs_join_transaction(root);
ff5714cc 1243
79787eaa 1244 if (IS_ERR(trans)) {
c2790a2e
JB
1245 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1246 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1247 EXTENT_DO_ACCOUNTING |
1248 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1249 PAGE_CLEAR_DIRTY |
1250 PAGE_SET_WRITEBACK |
1251 PAGE_END_WRITEBACK);
79787eaa
JM
1252 btrfs_free_path(path);
1253 return PTR_ERR(trans);
1254 }
1255
74b21075 1256 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1257
80ff3856
YZ
1258 cow_start = (u64)-1;
1259 cur_offset = start;
1260 while (1) {
33345d01 1261 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1262 cur_offset, 0);
d788a349 1263 if (ret < 0)
79787eaa 1264 goto error;
80ff3856
YZ
1265 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1266 leaf = path->nodes[0];
1267 btrfs_item_key_to_cpu(leaf, &found_key,
1268 path->slots[0] - 1);
33345d01 1269 if (found_key.objectid == ino &&
80ff3856
YZ
1270 found_key.type == BTRFS_EXTENT_DATA_KEY)
1271 path->slots[0]--;
1272 }
1273 check_prev = 0;
1274next_slot:
1275 leaf = path->nodes[0];
1276 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1277 ret = btrfs_next_leaf(root, path);
d788a349 1278 if (ret < 0)
79787eaa 1279 goto error;
80ff3856
YZ
1280 if (ret > 0)
1281 break;
1282 leaf = path->nodes[0];
1283 }
be20aa9d 1284
80ff3856
YZ
1285 nocow = 0;
1286 disk_bytenr = 0;
17d217fe 1287 num_bytes = 0;
80ff3856
YZ
1288 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1289
33345d01 1290 if (found_key.objectid > ino ||
80ff3856
YZ
1291 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1292 found_key.offset > end)
1293 break;
1294
1295 if (found_key.offset > cur_offset) {
1296 extent_end = found_key.offset;
e9061e21 1297 extent_type = 0;
80ff3856
YZ
1298 goto out_check;
1299 }
1300
1301 fi = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_file_extent_item);
1303 extent_type = btrfs_file_extent_type(leaf, fi);
1304
cc95bef6 1305 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1306 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1307 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1308 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1309 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1310 extent_end = found_key.offset +
1311 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1312 disk_num_bytes =
1313 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1314 if (extent_end <= start) {
1315 path->slots[0]++;
1316 goto next_slot;
1317 }
17d217fe
YZ
1318 if (disk_bytenr == 0)
1319 goto out_check;
80ff3856
YZ
1320 if (btrfs_file_extent_compression(leaf, fi) ||
1321 btrfs_file_extent_encryption(leaf, fi) ||
1322 btrfs_file_extent_other_encoding(leaf, fi))
1323 goto out_check;
d899e052
YZ
1324 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1325 goto out_check;
d2fb3437 1326 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1327 goto out_check;
33345d01 1328 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1329 found_key.offset -
1330 extent_offset, disk_bytenr))
17d217fe 1331 goto out_check;
5d4f98a2 1332 disk_bytenr += extent_offset;
17d217fe
YZ
1333 disk_bytenr += cur_offset - found_key.offset;
1334 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1335 /*
1336 * if there are pending snapshots for this root,
1337 * we fall into common COW way.
1338 */
1339 if (!nolock) {
9ea24bbe 1340 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1341 if (!err)
1342 goto out_check;
1343 }
17d217fe
YZ
1344 /*
1345 * force cow if csum exists in the range.
1346 * this ensure that csum for a given extent are
1347 * either valid or do not exist.
1348 */
1349 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1350 goto out_check;
80ff3856
YZ
1351 nocow = 1;
1352 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1353 extent_end = found_key.offset +
514ac8ad
CM
1354 btrfs_file_extent_inline_len(leaf,
1355 path->slots[0], fi);
80ff3856
YZ
1356 extent_end = ALIGN(extent_end, root->sectorsize);
1357 } else {
1358 BUG_ON(1);
1359 }
1360out_check:
1361 if (extent_end <= start) {
1362 path->slots[0]++;
e9894fd3 1363 if (!nolock && nocow)
9ea24bbe 1364 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1365 goto next_slot;
1366 }
1367 if (!nocow) {
1368 if (cow_start == (u64)-1)
1369 cow_start = cur_offset;
1370 cur_offset = extent_end;
1371 if (cur_offset > end)
1372 break;
1373 path->slots[0]++;
1374 goto next_slot;
7ea394f1
YZ
1375 }
1376
b3b4aa74 1377 btrfs_release_path(path);
80ff3856 1378 if (cow_start != (u64)-1) {
00361589
JB
1379 ret = cow_file_range(inode, locked_page,
1380 cow_start, found_key.offset - 1,
1381 page_started, nr_written, 1);
e9894fd3
WS
1382 if (ret) {
1383 if (!nolock && nocow)
9ea24bbe 1384 btrfs_end_write_no_snapshoting(root);
79787eaa 1385 goto error;
e9894fd3 1386 }
80ff3856 1387 cow_start = (u64)-1;
7ea394f1 1388 }
80ff3856 1389
d899e052
YZ
1390 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1391 struct extent_map *em;
1392 struct extent_map_tree *em_tree;
1393 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1394 em = alloc_extent_map();
79787eaa 1395 BUG_ON(!em); /* -ENOMEM */
d899e052 1396 em->start = cur_offset;
70c8a91c 1397 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1398 em->len = num_bytes;
1399 em->block_len = num_bytes;
1400 em->block_start = disk_bytenr;
b4939680 1401 em->orig_block_len = disk_num_bytes;
cc95bef6 1402 em->ram_bytes = ram_bytes;
d899e052 1403 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1404 em->mod_start = em->start;
1405 em->mod_len = em->len;
d899e052 1406 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1407 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1408 em->generation = -1;
d899e052 1409 while (1) {
890871be 1410 write_lock(&em_tree->lock);
09a2a8f9 1411 ret = add_extent_mapping(em_tree, em, 1);
890871be 1412 write_unlock(&em_tree->lock);
d899e052
YZ
1413 if (ret != -EEXIST) {
1414 free_extent_map(em);
1415 break;
1416 }
1417 btrfs_drop_extent_cache(inode, em->start,
1418 em->start + em->len - 1, 0);
1419 }
1420 type = BTRFS_ORDERED_PREALLOC;
1421 } else {
1422 type = BTRFS_ORDERED_NOCOW;
1423 }
80ff3856
YZ
1424
1425 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1426 num_bytes, num_bytes, type);
79787eaa 1427 BUG_ON(ret); /* -ENOMEM */
771ed689 1428
efa56464
YZ
1429 if (root->root_key.objectid ==
1430 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1431 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1432 num_bytes);
e9894fd3
WS
1433 if (ret) {
1434 if (!nolock && nocow)
9ea24bbe 1435 btrfs_end_write_no_snapshoting(root);
79787eaa 1436 goto error;
e9894fd3 1437 }
efa56464
YZ
1438 }
1439
c2790a2e
JB
1440 extent_clear_unlock_delalloc(inode, cur_offset,
1441 cur_offset + num_bytes - 1,
1442 locked_page, EXTENT_LOCKED |
1443 EXTENT_DELALLOC, PAGE_UNLOCK |
1444 PAGE_SET_PRIVATE2);
e9894fd3 1445 if (!nolock && nocow)
9ea24bbe 1446 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1447 cur_offset = extent_end;
1448 if (cur_offset > end)
1449 break;
be20aa9d 1450 }
b3b4aa74 1451 btrfs_release_path(path);
80ff3856 1452
17ca04af 1453 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1454 cow_start = cur_offset;
17ca04af
JB
1455 cur_offset = end;
1456 }
1457
80ff3856 1458 if (cow_start != (u64)-1) {
00361589
JB
1459 ret = cow_file_range(inode, locked_page, cow_start, end,
1460 page_started, nr_written, 1);
d788a349 1461 if (ret)
79787eaa 1462 goto error;
80ff3856
YZ
1463 }
1464
79787eaa 1465error:
a698d075 1466 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1467 if (!ret)
1468 ret = err;
1469
17ca04af 1470 if (ret && cur_offset < end)
c2790a2e
JB
1471 extent_clear_unlock_delalloc(inode, cur_offset, end,
1472 locked_page, EXTENT_LOCKED |
151a41bc
JB
1473 EXTENT_DELALLOC | EXTENT_DEFRAG |
1474 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1475 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1476 PAGE_SET_WRITEBACK |
1477 PAGE_END_WRITEBACK);
7ea394f1 1478 btrfs_free_path(path);
79787eaa 1479 return ret;
be20aa9d
CM
1480}
1481
47059d93
WS
1482static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1483{
1484
1485 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1486 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1487 return 0;
1488
1489 /*
1490 * @defrag_bytes is a hint value, no spinlock held here,
1491 * if is not zero, it means the file is defragging.
1492 * Force cow if given extent needs to be defragged.
1493 */
1494 if (BTRFS_I(inode)->defrag_bytes &&
1495 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1496 EXTENT_DEFRAG, 0, NULL))
1497 return 1;
1498
1499 return 0;
1500}
1501
d352ac68
CM
1502/*
1503 * extent_io.c call back to do delayed allocation processing
1504 */
c8b97818 1505static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1506 u64 start, u64 end, int *page_started,
1507 unsigned long *nr_written)
be20aa9d 1508{
be20aa9d 1509 int ret;
47059d93 1510 int force_cow = need_force_cow(inode, start, end);
a2135011 1511
47059d93 1512 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1513 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1514 page_started, 1, nr_written);
47059d93 1515 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1516 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1517 page_started, 0, nr_written);
7816030e 1518 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1519 ret = cow_file_range(inode, locked_page, start, end,
1520 page_started, nr_written, 1);
7ddf5a42
JB
1521 } else {
1522 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1523 &BTRFS_I(inode)->runtime_flags);
771ed689 1524 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1525 page_started, nr_written);
7ddf5a42 1526 }
b888db2b
CM
1527 return ret;
1528}
1529
1bf85046
JM
1530static void btrfs_split_extent_hook(struct inode *inode,
1531 struct extent_state *orig, u64 split)
9ed74f2d 1532{
dcab6a3b
JB
1533 u64 size;
1534
0ca1f7ce 1535 /* not delalloc, ignore it */
9ed74f2d 1536 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1537 return;
9ed74f2d 1538
dcab6a3b
JB
1539 size = orig->end - orig->start + 1;
1540 if (size > BTRFS_MAX_EXTENT_SIZE) {
1541 u64 num_extents;
1542 u64 new_size;
1543
1544 /*
1545 * We need the largest size of the remaining extent to see if we
1546 * need to add a new outstanding extent. Think of the following
1547 * case
1548 *
1549 * [MEAX_EXTENT_SIZEx2 - 4k][4k]
1550 *
1551 * The new_size would just be 4k and we'd think we had enough
1552 * outstanding extents for this if we only took one side of the
1553 * split, same goes for the other direction. We need to see if
1554 * the larger size still is the same amount of extents as the
1555 * original size, because if it is we need to add a new
1556 * outstanding extent. But if we split up and the larger size
1557 * is less than the original then we are good to go since we've
1558 * already accounted for the extra extent in our original
1559 * accounting.
1560 */
1561 new_size = orig->end - split + 1;
1562 if ((split - orig->start) > new_size)
1563 new_size = split - orig->start;
1564
1565 num_extents = div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1566 BTRFS_MAX_EXTENT_SIZE);
1567 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1568 BTRFS_MAX_EXTENT_SIZE) < num_extents)
1569 return;
1570 }
1571
9e0baf60
JB
1572 spin_lock(&BTRFS_I(inode)->lock);
1573 BTRFS_I(inode)->outstanding_extents++;
1574 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1575}
1576
1577/*
1578 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1579 * extents so we can keep track of new extents that are just merged onto old
1580 * extents, such as when we are doing sequential writes, so we can properly
1581 * account for the metadata space we'll need.
1582 */
1bf85046
JM
1583static void btrfs_merge_extent_hook(struct inode *inode,
1584 struct extent_state *new,
1585 struct extent_state *other)
9ed74f2d 1586{
dcab6a3b
JB
1587 u64 new_size, old_size;
1588 u64 num_extents;
1589
9ed74f2d
JB
1590 /* not delalloc, ignore it */
1591 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1592 return;
9ed74f2d 1593
dcab6a3b 1594 old_size = other->end - other->start + 1;
8461a3de
JB
1595 if (old_size < (new->end - new->start + 1))
1596 old_size = (new->end - new->start + 1);
1597 if (new->start > other->start)
1598 new_size = new->end - other->start + 1;
1599 else
1600 new_size = other->end - new->start + 1;
dcab6a3b
JB
1601
1602 /* we're not bigger than the max, unreserve the space and go */
1603 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1604 spin_lock(&BTRFS_I(inode)->lock);
1605 BTRFS_I(inode)->outstanding_extents--;
1606 spin_unlock(&BTRFS_I(inode)->lock);
1607 return;
1608 }
1609
1610 /*
1611 * If we grew by another max_extent, just return, we want to keep that
1612 * reserved amount.
1613 */
1614 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1615 BTRFS_MAX_EXTENT_SIZE);
1616 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1617 BTRFS_MAX_EXTENT_SIZE) > num_extents)
1618 return;
1619
9e0baf60
JB
1620 spin_lock(&BTRFS_I(inode)->lock);
1621 BTRFS_I(inode)->outstanding_extents--;
1622 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1623}
1624
eb73c1b7
MX
1625static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1626 struct inode *inode)
1627{
1628 spin_lock(&root->delalloc_lock);
1629 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1630 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1631 &root->delalloc_inodes);
1632 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1633 &BTRFS_I(inode)->runtime_flags);
1634 root->nr_delalloc_inodes++;
1635 if (root->nr_delalloc_inodes == 1) {
1636 spin_lock(&root->fs_info->delalloc_root_lock);
1637 BUG_ON(!list_empty(&root->delalloc_root));
1638 list_add_tail(&root->delalloc_root,
1639 &root->fs_info->delalloc_roots);
1640 spin_unlock(&root->fs_info->delalloc_root_lock);
1641 }
1642 }
1643 spin_unlock(&root->delalloc_lock);
1644}
1645
1646static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1647 struct inode *inode)
1648{
1649 spin_lock(&root->delalloc_lock);
1650 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1651 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1652 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1653 &BTRFS_I(inode)->runtime_flags);
1654 root->nr_delalloc_inodes--;
1655 if (!root->nr_delalloc_inodes) {
1656 spin_lock(&root->fs_info->delalloc_root_lock);
1657 BUG_ON(list_empty(&root->delalloc_root));
1658 list_del_init(&root->delalloc_root);
1659 spin_unlock(&root->fs_info->delalloc_root_lock);
1660 }
1661 }
1662 spin_unlock(&root->delalloc_lock);
1663}
1664
d352ac68
CM
1665/*
1666 * extent_io.c set_bit_hook, used to track delayed allocation
1667 * bytes in this file, and to maintain the list of inodes that
1668 * have pending delalloc work to be done.
1669 */
1bf85046 1670static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1671 struct extent_state *state, unsigned *bits)
291d673e 1672{
9ed74f2d 1673
47059d93
WS
1674 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1675 WARN_ON(1);
75eff68e
CM
1676 /*
1677 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1678 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1679 * bit, which is only set or cleared with irqs on
1680 */
0ca1f7ce 1681 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1682 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1683 u64 len = state->end + 1 - state->start;
83eea1f1 1684 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1685
9e0baf60 1686 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1687 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1688 } else {
1689 spin_lock(&BTRFS_I(inode)->lock);
1690 BTRFS_I(inode)->outstanding_extents++;
1691 spin_unlock(&BTRFS_I(inode)->lock);
1692 }
287a0ab9 1693
963d678b
MX
1694 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1695 root->fs_info->delalloc_batch);
df0af1a5 1696 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1697 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1698 if (*bits & EXTENT_DEFRAG)
1699 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1700 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1701 &BTRFS_I(inode)->runtime_flags))
1702 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1703 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1704 }
291d673e
CM
1705}
1706
d352ac68
CM
1707/*
1708 * extent_io.c clear_bit_hook, see set_bit_hook for why
1709 */
1bf85046 1710static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1711 struct extent_state *state,
9ee49a04 1712 unsigned *bits)
291d673e 1713{
47059d93 1714 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1715 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1716 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1717
1718 spin_lock(&BTRFS_I(inode)->lock);
1719 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1720 BTRFS_I(inode)->defrag_bytes -= len;
1721 spin_unlock(&BTRFS_I(inode)->lock);
1722
75eff68e
CM
1723 /*
1724 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1725 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1726 * bit, which is only set or cleared with irqs on
1727 */
0ca1f7ce 1728 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1729 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1730 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1731
9e0baf60 1732 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1733 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1734 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1735 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1736 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1737 spin_unlock(&BTRFS_I(inode)->lock);
1738 }
0ca1f7ce 1739
b6d08f06
JB
1740 /*
1741 * We don't reserve metadata space for space cache inodes so we
1742 * don't need to call dellalloc_release_metadata if there is an
1743 * error.
1744 */
1745 if (*bits & EXTENT_DO_ACCOUNTING &&
1746 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1747 btrfs_delalloc_release_metadata(inode, len);
1748
0cb59c99 1749 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1750 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1751 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1752
963d678b
MX
1753 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1754 root->fs_info->delalloc_batch);
df0af1a5 1755 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1756 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1757 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1758 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1759 &BTRFS_I(inode)->runtime_flags))
1760 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1761 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1762 }
291d673e
CM
1763}
1764
d352ac68
CM
1765/*
1766 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1767 * we don't create bios that span stripes or chunks
1768 */
64a16701 1769int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1770 size_t size, struct bio *bio,
1771 unsigned long bio_flags)
239b14b3
CM
1772{
1773 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1774 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1775 u64 length = 0;
1776 u64 map_length;
239b14b3
CM
1777 int ret;
1778
771ed689
CM
1779 if (bio_flags & EXTENT_BIO_COMPRESSED)
1780 return 0;
1781
4f024f37 1782 length = bio->bi_iter.bi_size;
239b14b3 1783 map_length = length;
64a16701 1784 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1785 &map_length, NULL, 0);
3ec706c8 1786 /* Will always return 0 with map_multi == NULL */
3444a972 1787 BUG_ON(ret < 0);
d397712b 1788 if (map_length < length + size)
239b14b3 1789 return 1;
3444a972 1790 return 0;
239b14b3
CM
1791}
1792
d352ac68
CM
1793/*
1794 * in order to insert checksums into the metadata in large chunks,
1795 * we wait until bio submission time. All the pages in the bio are
1796 * checksummed and sums are attached onto the ordered extent record.
1797 *
1798 * At IO completion time the cums attached on the ordered extent record
1799 * are inserted into the btree
1800 */
d397712b
CM
1801static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1802 struct bio *bio, int mirror_num,
eaf25d93
CM
1803 unsigned long bio_flags,
1804 u64 bio_offset)
065631f6 1805{
065631f6 1806 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1807 int ret = 0;
e015640f 1808
d20f7043 1809 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1810 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1811 return 0;
1812}
e015640f 1813
4a69a410
CM
1814/*
1815 * in order to insert checksums into the metadata in large chunks,
1816 * we wait until bio submission time. All the pages in the bio are
1817 * checksummed and sums are attached onto the ordered extent record.
1818 *
1819 * At IO completion time the cums attached on the ordered extent record
1820 * are inserted into the btree
1821 */
b2950863 1822static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1823 int mirror_num, unsigned long bio_flags,
1824 u64 bio_offset)
4a69a410
CM
1825{
1826 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1827 int ret;
1828
1829 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1830 if (ret)
1831 bio_endio(bio, ret);
1832 return ret;
44b8bd7e
CM
1833}
1834
d352ac68 1835/*
cad321ad
CM
1836 * extent_io.c submission hook. This does the right thing for csum calculation
1837 * on write, or reading the csums from the tree before a read
d352ac68 1838 */
b2950863 1839static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1840 int mirror_num, unsigned long bio_flags,
1841 u64 bio_offset)
44b8bd7e
CM
1842{
1843 struct btrfs_root *root = BTRFS_I(inode)->root;
1844 int ret = 0;
19b9bdb0 1845 int skip_sum;
0417341e 1846 int metadata = 0;
b812ce28 1847 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1848
6cbff00f 1849 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1850
83eea1f1 1851 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1852 metadata = 2;
1853
7b6d91da 1854 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1855 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1856 if (ret)
61891923 1857 goto out;
5fd02043 1858
d20f7043 1859 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1860 ret = btrfs_submit_compressed_read(inode, bio,
1861 mirror_num,
1862 bio_flags);
1863 goto out;
c2db1073
TI
1864 } else if (!skip_sum) {
1865 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1866 if (ret)
61891923 1867 goto out;
c2db1073 1868 }
4d1b5fb4 1869 goto mapit;
b812ce28 1870 } else if (async && !skip_sum) {
17d217fe
YZ
1871 /* csum items have already been cloned */
1872 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1873 goto mapit;
19b9bdb0 1874 /* we're doing a write, do the async checksumming */
61891923 1875 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1876 inode, rw, bio, mirror_num,
eaf25d93
CM
1877 bio_flags, bio_offset,
1878 __btrfs_submit_bio_start,
4a69a410 1879 __btrfs_submit_bio_done);
61891923 1880 goto out;
b812ce28
JB
1881 } else if (!skip_sum) {
1882 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1883 if (ret)
1884 goto out;
19b9bdb0
CM
1885 }
1886
0b86a832 1887mapit:
61891923
SB
1888 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1889
1890out:
1891 if (ret < 0)
1892 bio_endio(bio, ret);
1893 return ret;
065631f6 1894}
6885f308 1895
d352ac68
CM
1896/*
1897 * given a list of ordered sums record them in the inode. This happens
1898 * at IO completion time based on sums calculated at bio submission time.
1899 */
ba1da2f4 1900static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1901 struct inode *inode, u64 file_offset,
1902 struct list_head *list)
1903{
e6dcd2dc
CM
1904 struct btrfs_ordered_sum *sum;
1905
c6e30871 1906 list_for_each_entry(sum, list, list) {
39847c4d 1907 trans->adding_csums = 1;
d20f7043
CM
1908 btrfs_csum_file_blocks(trans,
1909 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1910 trans->adding_csums = 0;
e6dcd2dc
CM
1911 }
1912 return 0;
1913}
1914
2ac55d41
JB
1915int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1916 struct extent_state **cached_state)
ea8c2819 1917{
6c1500f2 1918 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1919 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1920 cached_state, GFP_NOFS);
ea8c2819
CM
1921}
1922
d352ac68 1923/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1924struct btrfs_writepage_fixup {
1925 struct page *page;
1926 struct btrfs_work work;
1927};
1928
b2950863 1929static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1930{
1931 struct btrfs_writepage_fixup *fixup;
1932 struct btrfs_ordered_extent *ordered;
2ac55d41 1933 struct extent_state *cached_state = NULL;
247e743c
CM
1934 struct page *page;
1935 struct inode *inode;
1936 u64 page_start;
1937 u64 page_end;
87826df0 1938 int ret;
247e743c
CM
1939
1940 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1941 page = fixup->page;
4a096752 1942again:
247e743c
CM
1943 lock_page(page);
1944 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1945 ClearPageChecked(page);
1946 goto out_page;
1947 }
1948
1949 inode = page->mapping->host;
1950 page_start = page_offset(page);
1951 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1952
2ac55d41 1953 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1954 &cached_state);
4a096752
CM
1955
1956 /* already ordered? We're done */
8b62b72b 1957 if (PagePrivate2(page))
247e743c 1958 goto out;
4a096752
CM
1959
1960 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1961 if (ordered) {
2ac55d41
JB
1962 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1963 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1964 unlock_page(page);
1965 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1966 btrfs_put_ordered_extent(ordered);
4a096752
CM
1967 goto again;
1968 }
247e743c 1969
87826df0
JM
1970 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1971 if (ret) {
1972 mapping_set_error(page->mapping, ret);
1973 end_extent_writepage(page, ret, page_start, page_end);
1974 ClearPageChecked(page);
1975 goto out;
1976 }
1977
2ac55d41 1978 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1979 ClearPageChecked(page);
87826df0 1980 set_page_dirty(page);
247e743c 1981out:
2ac55d41
JB
1982 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1983 &cached_state, GFP_NOFS);
247e743c
CM
1984out_page:
1985 unlock_page(page);
1986 page_cache_release(page);
b897abec 1987 kfree(fixup);
247e743c
CM
1988}
1989
1990/*
1991 * There are a few paths in the higher layers of the kernel that directly
1992 * set the page dirty bit without asking the filesystem if it is a
1993 * good idea. This causes problems because we want to make sure COW
1994 * properly happens and the data=ordered rules are followed.
1995 *
c8b97818 1996 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1997 * hasn't been properly setup for IO. We kick off an async process
1998 * to fix it up. The async helper will wait for ordered extents, set
1999 * the delalloc bit and make it safe to write the page.
2000 */
b2950863 2001static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2002{
2003 struct inode *inode = page->mapping->host;
2004 struct btrfs_writepage_fixup *fixup;
2005 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2006
8b62b72b
CM
2007 /* this page is properly in the ordered list */
2008 if (TestClearPagePrivate2(page))
247e743c
CM
2009 return 0;
2010
2011 if (PageChecked(page))
2012 return -EAGAIN;
2013
2014 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2015 if (!fixup)
2016 return -EAGAIN;
f421950f 2017
247e743c
CM
2018 SetPageChecked(page);
2019 page_cache_get(page);
9e0af237
LB
2020 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2021 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2022 fixup->page = page;
dc6e3209 2023 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2024 return -EBUSY;
247e743c
CM
2025}
2026
d899e052
YZ
2027static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2028 struct inode *inode, u64 file_pos,
2029 u64 disk_bytenr, u64 disk_num_bytes,
2030 u64 num_bytes, u64 ram_bytes,
2031 u8 compression, u8 encryption,
2032 u16 other_encoding, int extent_type)
2033{
2034 struct btrfs_root *root = BTRFS_I(inode)->root;
2035 struct btrfs_file_extent_item *fi;
2036 struct btrfs_path *path;
2037 struct extent_buffer *leaf;
2038 struct btrfs_key ins;
1acae57b 2039 int extent_inserted = 0;
d899e052
YZ
2040 int ret;
2041
2042 path = btrfs_alloc_path();
d8926bb3
MF
2043 if (!path)
2044 return -ENOMEM;
d899e052 2045
a1ed835e
CM
2046 /*
2047 * we may be replacing one extent in the tree with another.
2048 * The new extent is pinned in the extent map, and we don't want
2049 * to drop it from the cache until it is completely in the btree.
2050 *
2051 * So, tell btrfs_drop_extents to leave this extent in the cache.
2052 * the caller is expected to unpin it and allow it to be merged
2053 * with the others.
2054 */
1acae57b
FDBM
2055 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2056 file_pos + num_bytes, NULL, 0,
2057 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2058 if (ret)
2059 goto out;
d899e052 2060
1acae57b
FDBM
2061 if (!extent_inserted) {
2062 ins.objectid = btrfs_ino(inode);
2063 ins.offset = file_pos;
2064 ins.type = BTRFS_EXTENT_DATA_KEY;
2065
2066 path->leave_spinning = 1;
2067 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2068 sizeof(*fi));
2069 if (ret)
2070 goto out;
2071 }
d899e052
YZ
2072 leaf = path->nodes[0];
2073 fi = btrfs_item_ptr(leaf, path->slots[0],
2074 struct btrfs_file_extent_item);
2075 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2076 btrfs_set_file_extent_type(leaf, fi, extent_type);
2077 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2078 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2079 btrfs_set_file_extent_offset(leaf, fi, 0);
2080 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2081 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2082 btrfs_set_file_extent_compression(leaf, fi, compression);
2083 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2084 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2085
d899e052 2086 btrfs_mark_buffer_dirty(leaf);
ce195332 2087 btrfs_release_path(path);
d899e052
YZ
2088
2089 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2090
2091 ins.objectid = disk_bytenr;
2092 ins.offset = disk_num_bytes;
2093 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2094 ret = btrfs_alloc_reserved_file_extent(trans, root,
2095 root->root_key.objectid,
33345d01 2096 btrfs_ino(inode), file_pos, &ins);
79787eaa 2097out:
d899e052 2098 btrfs_free_path(path);
b9473439 2099
79787eaa 2100 return ret;
d899e052
YZ
2101}
2102
38c227d8
LB
2103/* snapshot-aware defrag */
2104struct sa_defrag_extent_backref {
2105 struct rb_node node;
2106 struct old_sa_defrag_extent *old;
2107 u64 root_id;
2108 u64 inum;
2109 u64 file_pos;
2110 u64 extent_offset;
2111 u64 num_bytes;
2112 u64 generation;
2113};
2114
2115struct old_sa_defrag_extent {
2116 struct list_head list;
2117 struct new_sa_defrag_extent *new;
2118
2119 u64 extent_offset;
2120 u64 bytenr;
2121 u64 offset;
2122 u64 len;
2123 int count;
2124};
2125
2126struct new_sa_defrag_extent {
2127 struct rb_root root;
2128 struct list_head head;
2129 struct btrfs_path *path;
2130 struct inode *inode;
2131 u64 file_pos;
2132 u64 len;
2133 u64 bytenr;
2134 u64 disk_len;
2135 u8 compress_type;
2136};
2137
2138static int backref_comp(struct sa_defrag_extent_backref *b1,
2139 struct sa_defrag_extent_backref *b2)
2140{
2141 if (b1->root_id < b2->root_id)
2142 return -1;
2143 else if (b1->root_id > b2->root_id)
2144 return 1;
2145
2146 if (b1->inum < b2->inum)
2147 return -1;
2148 else if (b1->inum > b2->inum)
2149 return 1;
2150
2151 if (b1->file_pos < b2->file_pos)
2152 return -1;
2153 else if (b1->file_pos > b2->file_pos)
2154 return 1;
2155
2156 /*
2157 * [------------------------------] ===> (a range of space)
2158 * |<--->| |<---->| =============> (fs/file tree A)
2159 * |<---------------------------->| ===> (fs/file tree B)
2160 *
2161 * A range of space can refer to two file extents in one tree while
2162 * refer to only one file extent in another tree.
2163 *
2164 * So we may process a disk offset more than one time(two extents in A)
2165 * and locate at the same extent(one extent in B), then insert two same
2166 * backrefs(both refer to the extent in B).
2167 */
2168 return 0;
2169}
2170
2171static void backref_insert(struct rb_root *root,
2172 struct sa_defrag_extent_backref *backref)
2173{
2174 struct rb_node **p = &root->rb_node;
2175 struct rb_node *parent = NULL;
2176 struct sa_defrag_extent_backref *entry;
2177 int ret;
2178
2179 while (*p) {
2180 parent = *p;
2181 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2182
2183 ret = backref_comp(backref, entry);
2184 if (ret < 0)
2185 p = &(*p)->rb_left;
2186 else
2187 p = &(*p)->rb_right;
2188 }
2189
2190 rb_link_node(&backref->node, parent, p);
2191 rb_insert_color(&backref->node, root);
2192}
2193
2194/*
2195 * Note the backref might has changed, and in this case we just return 0.
2196 */
2197static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2198 void *ctx)
2199{
2200 struct btrfs_file_extent_item *extent;
2201 struct btrfs_fs_info *fs_info;
2202 struct old_sa_defrag_extent *old = ctx;
2203 struct new_sa_defrag_extent *new = old->new;
2204 struct btrfs_path *path = new->path;
2205 struct btrfs_key key;
2206 struct btrfs_root *root;
2207 struct sa_defrag_extent_backref *backref;
2208 struct extent_buffer *leaf;
2209 struct inode *inode = new->inode;
2210 int slot;
2211 int ret;
2212 u64 extent_offset;
2213 u64 num_bytes;
2214
2215 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2216 inum == btrfs_ino(inode))
2217 return 0;
2218
2219 key.objectid = root_id;
2220 key.type = BTRFS_ROOT_ITEM_KEY;
2221 key.offset = (u64)-1;
2222
2223 fs_info = BTRFS_I(inode)->root->fs_info;
2224 root = btrfs_read_fs_root_no_name(fs_info, &key);
2225 if (IS_ERR(root)) {
2226 if (PTR_ERR(root) == -ENOENT)
2227 return 0;
2228 WARN_ON(1);
2229 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2230 inum, offset, root_id);
2231 return PTR_ERR(root);
2232 }
2233
2234 key.objectid = inum;
2235 key.type = BTRFS_EXTENT_DATA_KEY;
2236 if (offset > (u64)-1 << 32)
2237 key.offset = 0;
2238 else
2239 key.offset = offset;
2240
2241 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2242 if (WARN_ON(ret < 0))
38c227d8 2243 return ret;
50f1319c 2244 ret = 0;
38c227d8
LB
2245
2246 while (1) {
2247 cond_resched();
2248
2249 leaf = path->nodes[0];
2250 slot = path->slots[0];
2251
2252 if (slot >= btrfs_header_nritems(leaf)) {
2253 ret = btrfs_next_leaf(root, path);
2254 if (ret < 0) {
2255 goto out;
2256 } else if (ret > 0) {
2257 ret = 0;
2258 goto out;
2259 }
2260 continue;
2261 }
2262
2263 path->slots[0]++;
2264
2265 btrfs_item_key_to_cpu(leaf, &key, slot);
2266
2267 if (key.objectid > inum)
2268 goto out;
2269
2270 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2271 continue;
2272
2273 extent = btrfs_item_ptr(leaf, slot,
2274 struct btrfs_file_extent_item);
2275
2276 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2277 continue;
2278
e68afa49
LB
2279 /*
2280 * 'offset' refers to the exact key.offset,
2281 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2282 * (key.offset - extent_offset).
2283 */
2284 if (key.offset != offset)
38c227d8
LB
2285 continue;
2286
e68afa49 2287 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2288 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2289
38c227d8
LB
2290 if (extent_offset >= old->extent_offset + old->offset +
2291 old->len || extent_offset + num_bytes <=
2292 old->extent_offset + old->offset)
2293 continue;
38c227d8
LB
2294 break;
2295 }
2296
2297 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2298 if (!backref) {
2299 ret = -ENOENT;
2300 goto out;
2301 }
2302
2303 backref->root_id = root_id;
2304 backref->inum = inum;
e68afa49 2305 backref->file_pos = offset;
38c227d8
LB
2306 backref->num_bytes = num_bytes;
2307 backref->extent_offset = extent_offset;
2308 backref->generation = btrfs_file_extent_generation(leaf, extent);
2309 backref->old = old;
2310 backref_insert(&new->root, backref);
2311 old->count++;
2312out:
2313 btrfs_release_path(path);
2314 WARN_ON(ret);
2315 return ret;
2316}
2317
2318static noinline bool record_extent_backrefs(struct btrfs_path *path,
2319 struct new_sa_defrag_extent *new)
2320{
2321 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2322 struct old_sa_defrag_extent *old, *tmp;
2323 int ret;
2324
2325 new->path = path;
2326
2327 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2328 ret = iterate_inodes_from_logical(old->bytenr +
2329 old->extent_offset, fs_info,
38c227d8
LB
2330 path, record_one_backref,
2331 old);
4724b106
JB
2332 if (ret < 0 && ret != -ENOENT)
2333 return false;
38c227d8
LB
2334
2335 /* no backref to be processed for this extent */
2336 if (!old->count) {
2337 list_del(&old->list);
2338 kfree(old);
2339 }
2340 }
2341
2342 if (list_empty(&new->head))
2343 return false;
2344
2345 return true;
2346}
2347
2348static int relink_is_mergable(struct extent_buffer *leaf,
2349 struct btrfs_file_extent_item *fi,
116e0024 2350 struct new_sa_defrag_extent *new)
38c227d8 2351{
116e0024 2352 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2353 return 0;
2354
2355 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2356 return 0;
2357
116e0024
LB
2358 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2359 return 0;
2360
2361 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2362 btrfs_file_extent_other_encoding(leaf, fi))
2363 return 0;
2364
2365 return 1;
2366}
2367
2368/*
2369 * Note the backref might has changed, and in this case we just return 0.
2370 */
2371static noinline int relink_extent_backref(struct btrfs_path *path,
2372 struct sa_defrag_extent_backref *prev,
2373 struct sa_defrag_extent_backref *backref)
2374{
2375 struct btrfs_file_extent_item *extent;
2376 struct btrfs_file_extent_item *item;
2377 struct btrfs_ordered_extent *ordered;
2378 struct btrfs_trans_handle *trans;
2379 struct btrfs_fs_info *fs_info;
2380 struct btrfs_root *root;
2381 struct btrfs_key key;
2382 struct extent_buffer *leaf;
2383 struct old_sa_defrag_extent *old = backref->old;
2384 struct new_sa_defrag_extent *new = old->new;
2385 struct inode *src_inode = new->inode;
2386 struct inode *inode;
2387 struct extent_state *cached = NULL;
2388 int ret = 0;
2389 u64 start;
2390 u64 len;
2391 u64 lock_start;
2392 u64 lock_end;
2393 bool merge = false;
2394 int index;
2395
2396 if (prev && prev->root_id == backref->root_id &&
2397 prev->inum == backref->inum &&
2398 prev->file_pos + prev->num_bytes == backref->file_pos)
2399 merge = true;
2400
2401 /* step 1: get root */
2402 key.objectid = backref->root_id;
2403 key.type = BTRFS_ROOT_ITEM_KEY;
2404 key.offset = (u64)-1;
2405
2406 fs_info = BTRFS_I(src_inode)->root->fs_info;
2407 index = srcu_read_lock(&fs_info->subvol_srcu);
2408
2409 root = btrfs_read_fs_root_no_name(fs_info, &key);
2410 if (IS_ERR(root)) {
2411 srcu_read_unlock(&fs_info->subvol_srcu, index);
2412 if (PTR_ERR(root) == -ENOENT)
2413 return 0;
2414 return PTR_ERR(root);
2415 }
38c227d8 2416
bcbba5e6
WS
2417 if (btrfs_root_readonly(root)) {
2418 srcu_read_unlock(&fs_info->subvol_srcu, index);
2419 return 0;
2420 }
2421
38c227d8
LB
2422 /* step 2: get inode */
2423 key.objectid = backref->inum;
2424 key.type = BTRFS_INODE_ITEM_KEY;
2425 key.offset = 0;
2426
2427 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2428 if (IS_ERR(inode)) {
2429 srcu_read_unlock(&fs_info->subvol_srcu, index);
2430 return 0;
2431 }
2432
2433 srcu_read_unlock(&fs_info->subvol_srcu, index);
2434
2435 /* step 3: relink backref */
2436 lock_start = backref->file_pos;
2437 lock_end = backref->file_pos + backref->num_bytes - 1;
2438 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2439 0, &cached);
2440
2441 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2442 if (ordered) {
2443 btrfs_put_ordered_extent(ordered);
2444 goto out_unlock;
2445 }
2446
2447 trans = btrfs_join_transaction(root);
2448 if (IS_ERR(trans)) {
2449 ret = PTR_ERR(trans);
2450 goto out_unlock;
2451 }
2452
2453 key.objectid = backref->inum;
2454 key.type = BTRFS_EXTENT_DATA_KEY;
2455 key.offset = backref->file_pos;
2456
2457 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2458 if (ret < 0) {
2459 goto out_free_path;
2460 } else if (ret > 0) {
2461 ret = 0;
2462 goto out_free_path;
2463 }
2464
2465 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2466 struct btrfs_file_extent_item);
2467
2468 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2469 backref->generation)
2470 goto out_free_path;
2471
2472 btrfs_release_path(path);
2473
2474 start = backref->file_pos;
2475 if (backref->extent_offset < old->extent_offset + old->offset)
2476 start += old->extent_offset + old->offset -
2477 backref->extent_offset;
2478
2479 len = min(backref->extent_offset + backref->num_bytes,
2480 old->extent_offset + old->offset + old->len);
2481 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2482
2483 ret = btrfs_drop_extents(trans, root, inode, start,
2484 start + len, 1);
2485 if (ret)
2486 goto out_free_path;
2487again:
2488 key.objectid = btrfs_ino(inode);
2489 key.type = BTRFS_EXTENT_DATA_KEY;
2490 key.offset = start;
2491
a09a0a70 2492 path->leave_spinning = 1;
38c227d8
LB
2493 if (merge) {
2494 struct btrfs_file_extent_item *fi;
2495 u64 extent_len;
2496 struct btrfs_key found_key;
2497
3c9665df 2498 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2499 if (ret < 0)
2500 goto out_free_path;
2501
2502 path->slots[0]--;
2503 leaf = path->nodes[0];
2504 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2505
2506 fi = btrfs_item_ptr(leaf, path->slots[0],
2507 struct btrfs_file_extent_item);
2508 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2509
116e0024
LB
2510 if (extent_len + found_key.offset == start &&
2511 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2512 btrfs_set_file_extent_num_bytes(leaf, fi,
2513 extent_len + len);
2514 btrfs_mark_buffer_dirty(leaf);
2515 inode_add_bytes(inode, len);
2516
2517 ret = 1;
2518 goto out_free_path;
2519 } else {
2520 merge = false;
2521 btrfs_release_path(path);
2522 goto again;
2523 }
2524 }
2525
2526 ret = btrfs_insert_empty_item(trans, root, path, &key,
2527 sizeof(*extent));
2528 if (ret) {
2529 btrfs_abort_transaction(trans, root, ret);
2530 goto out_free_path;
2531 }
2532
2533 leaf = path->nodes[0];
2534 item = btrfs_item_ptr(leaf, path->slots[0],
2535 struct btrfs_file_extent_item);
2536 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2537 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2538 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2539 btrfs_set_file_extent_num_bytes(leaf, item, len);
2540 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2541 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2542 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2543 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2544 btrfs_set_file_extent_encryption(leaf, item, 0);
2545 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2546
2547 btrfs_mark_buffer_dirty(leaf);
2548 inode_add_bytes(inode, len);
a09a0a70 2549 btrfs_release_path(path);
38c227d8
LB
2550
2551 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2552 new->disk_len, 0,
2553 backref->root_id, backref->inum,
2554 new->file_pos, 0); /* start - extent_offset */
2555 if (ret) {
2556 btrfs_abort_transaction(trans, root, ret);
2557 goto out_free_path;
2558 }
2559
2560 ret = 1;
2561out_free_path:
2562 btrfs_release_path(path);
a09a0a70 2563 path->leave_spinning = 0;
38c227d8
LB
2564 btrfs_end_transaction(trans, root);
2565out_unlock:
2566 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2567 &cached, GFP_NOFS);
2568 iput(inode);
2569 return ret;
2570}
2571
6f519564
LB
2572static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2573{
2574 struct old_sa_defrag_extent *old, *tmp;
2575
2576 if (!new)
2577 return;
2578
2579 list_for_each_entry_safe(old, tmp, &new->head, list) {
2580 list_del(&old->list);
2581 kfree(old);
2582 }
2583 kfree(new);
2584}
2585
38c227d8
LB
2586static void relink_file_extents(struct new_sa_defrag_extent *new)
2587{
2588 struct btrfs_path *path;
38c227d8
LB
2589 struct sa_defrag_extent_backref *backref;
2590 struct sa_defrag_extent_backref *prev = NULL;
2591 struct inode *inode;
2592 struct btrfs_root *root;
2593 struct rb_node *node;
2594 int ret;
2595
2596 inode = new->inode;
2597 root = BTRFS_I(inode)->root;
2598
2599 path = btrfs_alloc_path();
2600 if (!path)
2601 return;
2602
2603 if (!record_extent_backrefs(path, new)) {
2604 btrfs_free_path(path);
2605 goto out;
2606 }
2607 btrfs_release_path(path);
2608
2609 while (1) {
2610 node = rb_first(&new->root);
2611 if (!node)
2612 break;
2613 rb_erase(node, &new->root);
2614
2615 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2616
2617 ret = relink_extent_backref(path, prev, backref);
2618 WARN_ON(ret < 0);
2619
2620 kfree(prev);
2621
2622 if (ret == 1)
2623 prev = backref;
2624 else
2625 prev = NULL;
2626 cond_resched();
2627 }
2628 kfree(prev);
2629
2630 btrfs_free_path(path);
38c227d8 2631out:
6f519564
LB
2632 free_sa_defrag_extent(new);
2633
38c227d8
LB
2634 atomic_dec(&root->fs_info->defrag_running);
2635 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2636}
2637
2638static struct new_sa_defrag_extent *
2639record_old_file_extents(struct inode *inode,
2640 struct btrfs_ordered_extent *ordered)
2641{
2642 struct btrfs_root *root = BTRFS_I(inode)->root;
2643 struct btrfs_path *path;
2644 struct btrfs_key key;
6f519564 2645 struct old_sa_defrag_extent *old;
38c227d8
LB
2646 struct new_sa_defrag_extent *new;
2647 int ret;
2648
2649 new = kmalloc(sizeof(*new), GFP_NOFS);
2650 if (!new)
2651 return NULL;
2652
2653 new->inode = inode;
2654 new->file_pos = ordered->file_offset;
2655 new->len = ordered->len;
2656 new->bytenr = ordered->start;
2657 new->disk_len = ordered->disk_len;
2658 new->compress_type = ordered->compress_type;
2659 new->root = RB_ROOT;
2660 INIT_LIST_HEAD(&new->head);
2661
2662 path = btrfs_alloc_path();
2663 if (!path)
2664 goto out_kfree;
2665
2666 key.objectid = btrfs_ino(inode);
2667 key.type = BTRFS_EXTENT_DATA_KEY;
2668 key.offset = new->file_pos;
2669
2670 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2671 if (ret < 0)
2672 goto out_free_path;
2673 if (ret > 0 && path->slots[0] > 0)
2674 path->slots[0]--;
2675
2676 /* find out all the old extents for the file range */
2677 while (1) {
2678 struct btrfs_file_extent_item *extent;
2679 struct extent_buffer *l;
2680 int slot;
2681 u64 num_bytes;
2682 u64 offset;
2683 u64 end;
2684 u64 disk_bytenr;
2685 u64 extent_offset;
2686
2687 l = path->nodes[0];
2688 slot = path->slots[0];
2689
2690 if (slot >= btrfs_header_nritems(l)) {
2691 ret = btrfs_next_leaf(root, path);
2692 if (ret < 0)
6f519564 2693 goto out_free_path;
38c227d8
LB
2694 else if (ret > 0)
2695 break;
2696 continue;
2697 }
2698
2699 btrfs_item_key_to_cpu(l, &key, slot);
2700
2701 if (key.objectid != btrfs_ino(inode))
2702 break;
2703 if (key.type != BTRFS_EXTENT_DATA_KEY)
2704 break;
2705 if (key.offset >= new->file_pos + new->len)
2706 break;
2707
2708 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2709
2710 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2711 if (key.offset + num_bytes < new->file_pos)
2712 goto next;
2713
2714 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2715 if (!disk_bytenr)
2716 goto next;
2717
2718 extent_offset = btrfs_file_extent_offset(l, extent);
2719
2720 old = kmalloc(sizeof(*old), GFP_NOFS);
2721 if (!old)
6f519564 2722 goto out_free_path;
38c227d8
LB
2723
2724 offset = max(new->file_pos, key.offset);
2725 end = min(new->file_pos + new->len, key.offset + num_bytes);
2726
2727 old->bytenr = disk_bytenr;
2728 old->extent_offset = extent_offset;
2729 old->offset = offset - key.offset;
2730 old->len = end - offset;
2731 old->new = new;
2732 old->count = 0;
2733 list_add_tail(&old->list, &new->head);
2734next:
2735 path->slots[0]++;
2736 cond_resched();
2737 }
2738
2739 btrfs_free_path(path);
2740 atomic_inc(&root->fs_info->defrag_running);
2741
2742 return new;
2743
38c227d8
LB
2744out_free_path:
2745 btrfs_free_path(path);
2746out_kfree:
6f519564 2747 free_sa_defrag_extent(new);
38c227d8
LB
2748 return NULL;
2749}
2750
e570fd27
MX
2751static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2752 u64 start, u64 len)
2753{
2754 struct btrfs_block_group_cache *cache;
2755
2756 cache = btrfs_lookup_block_group(root->fs_info, start);
2757 ASSERT(cache);
2758
2759 spin_lock(&cache->lock);
2760 cache->delalloc_bytes -= len;
2761 spin_unlock(&cache->lock);
2762
2763 btrfs_put_block_group(cache);
2764}
2765
d352ac68
CM
2766/* as ordered data IO finishes, this gets called so we can finish
2767 * an ordered extent if the range of bytes in the file it covers are
2768 * fully written.
2769 */
5fd02043 2770static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2771{
5fd02043 2772 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2773 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2774 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2775 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2776 struct extent_state *cached_state = NULL;
38c227d8 2777 struct new_sa_defrag_extent *new = NULL;
261507a0 2778 int compress_type = 0;
77cef2ec
JB
2779 int ret = 0;
2780 u64 logical_len = ordered_extent->len;
82d5902d 2781 bool nolock;
77cef2ec 2782 bool truncated = false;
e6dcd2dc 2783
83eea1f1 2784 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2785
5fd02043
JB
2786 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2787 ret = -EIO;
2788 goto out;
2789 }
2790
f612496b
MX
2791 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2792 ordered_extent->file_offset +
2793 ordered_extent->len - 1);
2794
77cef2ec
JB
2795 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2796 truncated = true;
2797 logical_len = ordered_extent->truncated_len;
2798 /* Truncated the entire extent, don't bother adding */
2799 if (!logical_len)
2800 goto out;
2801 }
2802
c2167754 2803 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2804 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2805 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2806 if (nolock)
2807 trans = btrfs_join_transaction_nolock(root);
2808 else
2809 trans = btrfs_join_transaction(root);
2810 if (IS_ERR(trans)) {
2811 ret = PTR_ERR(trans);
2812 trans = NULL;
2813 goto out;
c2167754 2814 }
6c760c07
JB
2815 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2816 ret = btrfs_update_inode_fallback(trans, root, inode);
2817 if (ret) /* -ENOMEM or corruption */
2818 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2819 goto out;
2820 }
e6dcd2dc 2821
2ac55d41
JB
2822 lock_extent_bits(io_tree, ordered_extent->file_offset,
2823 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2824 0, &cached_state);
e6dcd2dc 2825
38c227d8
LB
2826 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2827 ordered_extent->file_offset + ordered_extent->len - 1,
2828 EXTENT_DEFRAG, 1, cached_state);
2829 if (ret) {
2830 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2831 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2832 /* the inode is shared */
2833 new = record_old_file_extents(inode, ordered_extent);
2834
2835 clear_extent_bit(io_tree, ordered_extent->file_offset,
2836 ordered_extent->file_offset + ordered_extent->len - 1,
2837 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2838 }
2839
0cb59c99 2840 if (nolock)
7a7eaa40 2841 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2842 else
7a7eaa40 2843 trans = btrfs_join_transaction(root);
79787eaa
JM
2844 if (IS_ERR(trans)) {
2845 ret = PTR_ERR(trans);
2846 trans = NULL;
2847 goto out_unlock;
2848 }
a79b7d4b 2849
0ca1f7ce 2850 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2851
c8b97818 2852 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2853 compress_type = ordered_extent->compress_type;
d899e052 2854 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2855 BUG_ON(compress_type);
920bbbfb 2856 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2857 ordered_extent->file_offset,
2858 ordered_extent->file_offset +
77cef2ec 2859 logical_len);
d899e052 2860 } else {
0af3d00b 2861 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2862 ret = insert_reserved_file_extent(trans, inode,
2863 ordered_extent->file_offset,
2864 ordered_extent->start,
2865 ordered_extent->disk_len,
77cef2ec 2866 logical_len, logical_len,
261507a0 2867 compress_type, 0, 0,
d899e052 2868 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2869 if (!ret)
2870 btrfs_release_delalloc_bytes(root,
2871 ordered_extent->start,
2872 ordered_extent->disk_len);
d899e052 2873 }
5dc562c5
JB
2874 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2875 ordered_extent->file_offset, ordered_extent->len,
2876 trans->transid);
79787eaa
JM
2877 if (ret < 0) {
2878 btrfs_abort_transaction(trans, root, ret);
5fd02043 2879 goto out_unlock;
79787eaa 2880 }
2ac55d41 2881
e6dcd2dc
CM
2882 add_pending_csums(trans, inode, ordered_extent->file_offset,
2883 &ordered_extent->list);
2884
6c760c07
JB
2885 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2886 ret = btrfs_update_inode_fallback(trans, root, inode);
2887 if (ret) { /* -ENOMEM or corruption */
2888 btrfs_abort_transaction(trans, root, ret);
2889 goto out_unlock;
1ef30be1
JB
2890 }
2891 ret = 0;
5fd02043
JB
2892out_unlock:
2893 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2894 ordered_extent->file_offset +
2895 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2896out:
5b0e95bf 2897 if (root != root->fs_info->tree_root)
0cb59c99 2898 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2899 if (trans)
2900 btrfs_end_transaction(trans, root);
0cb59c99 2901
77cef2ec
JB
2902 if (ret || truncated) {
2903 u64 start, end;
2904
2905 if (truncated)
2906 start = ordered_extent->file_offset + logical_len;
2907 else
2908 start = ordered_extent->file_offset;
2909 end = ordered_extent->file_offset + ordered_extent->len - 1;
2910 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2911
2912 /* Drop the cache for the part of the extent we didn't write. */
2913 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2914
0bec9ef5
JB
2915 /*
2916 * If the ordered extent had an IOERR or something else went
2917 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2918 * back to the allocator. We only free the extent in the
2919 * truncated case if we didn't write out the extent at all.
0bec9ef5 2920 */
77cef2ec
JB
2921 if ((ret || !logical_len) &&
2922 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2923 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2924 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 2925 ordered_extent->disk_len, 1);
0bec9ef5
JB
2926 }
2927
2928
5fd02043 2929 /*
8bad3c02
LB
2930 * This needs to be done to make sure anybody waiting knows we are done
2931 * updating everything for this ordered extent.
5fd02043
JB
2932 */
2933 btrfs_remove_ordered_extent(inode, ordered_extent);
2934
38c227d8 2935 /* for snapshot-aware defrag */
6f519564
LB
2936 if (new) {
2937 if (ret) {
2938 free_sa_defrag_extent(new);
2939 atomic_dec(&root->fs_info->defrag_running);
2940 } else {
2941 relink_file_extents(new);
2942 }
2943 }
38c227d8 2944
e6dcd2dc
CM
2945 /* once for us */
2946 btrfs_put_ordered_extent(ordered_extent);
2947 /* once for the tree */
2948 btrfs_put_ordered_extent(ordered_extent);
2949
5fd02043
JB
2950 return ret;
2951}
2952
2953static void finish_ordered_fn(struct btrfs_work *work)
2954{
2955 struct btrfs_ordered_extent *ordered_extent;
2956 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2957 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2958}
2959
b2950863 2960static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2961 struct extent_state *state, int uptodate)
2962{
5fd02043
JB
2963 struct inode *inode = page->mapping->host;
2964 struct btrfs_root *root = BTRFS_I(inode)->root;
2965 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
2966 struct btrfs_workqueue *wq;
2967 btrfs_work_func_t func;
5fd02043 2968
1abe9b8a 2969 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2970
8b62b72b 2971 ClearPagePrivate2(page);
5fd02043
JB
2972 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2973 end - start + 1, uptodate))
2974 return 0;
2975
9e0af237
LB
2976 if (btrfs_is_free_space_inode(inode)) {
2977 wq = root->fs_info->endio_freespace_worker;
2978 func = btrfs_freespace_write_helper;
2979 } else {
2980 wq = root->fs_info->endio_write_workers;
2981 func = btrfs_endio_write_helper;
2982 }
5fd02043 2983
9e0af237
LB
2984 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
2985 NULL);
2986 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
2987
2988 return 0;
211f90e6
CM
2989}
2990
dc380aea
MX
2991static int __readpage_endio_check(struct inode *inode,
2992 struct btrfs_io_bio *io_bio,
2993 int icsum, struct page *page,
2994 int pgoff, u64 start, size_t len)
2995{
2996 char *kaddr;
2997 u32 csum_expected;
2998 u32 csum = ~(u32)0;
2999 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
3000 DEFAULT_RATELIMIT_BURST);
3001
3002 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3003
3004 kaddr = kmap_atomic(page);
3005 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3006 btrfs_csum_final(csum, (char *)&csum);
3007 if (csum != csum_expected)
3008 goto zeroit;
3009
3010 kunmap_atomic(kaddr);
3011 return 0;
3012zeroit:
3013 if (__ratelimit(&_rs))
f0954c66 3014 btrfs_warn(BTRFS_I(inode)->root->fs_info,
dc380aea
MX
3015 "csum failed ino %llu off %llu csum %u expected csum %u",
3016 btrfs_ino(inode), start, csum, csum_expected);
3017 memset(kaddr + pgoff, 1, len);
3018 flush_dcache_page(page);
3019 kunmap_atomic(kaddr);
3020 if (csum_expected == 0)
3021 return 0;
3022 return -EIO;
3023}
3024
d352ac68
CM
3025/*
3026 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3027 * if there's a match, we allow the bio to finish. If not, the code in
3028 * extent_io.c will try to find good copies for us.
d352ac68 3029 */
facc8a22
MX
3030static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3031 u64 phy_offset, struct page *page,
3032 u64 start, u64 end, int mirror)
07157aac 3033{
4eee4fa4 3034 size_t offset = start - page_offset(page);
07157aac 3035 struct inode *inode = page->mapping->host;
d1310b2e 3036 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3037 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3038
d20f7043
CM
3039 if (PageChecked(page)) {
3040 ClearPageChecked(page);
dc380aea 3041 return 0;
d20f7043 3042 }
6cbff00f
CH
3043
3044 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3045 return 0;
17d217fe
YZ
3046
3047 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3048 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
3049 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3050 GFP_NOFS);
b6cda9bc 3051 return 0;
17d217fe 3052 }
d20f7043 3053
facc8a22 3054 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3055 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3056 start, (size_t)(end - start + 1));
07157aac 3057}
b888db2b 3058
24bbcf04
YZ
3059struct delayed_iput {
3060 struct list_head list;
3061 struct inode *inode;
3062};
3063
79787eaa
JM
3064/* JDM: If this is fs-wide, why can't we add a pointer to
3065 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
3066void btrfs_add_delayed_iput(struct inode *inode)
3067{
3068 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3069 struct delayed_iput *delayed;
3070
3071 if (atomic_add_unless(&inode->i_count, -1, 1))
3072 return;
3073
3074 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3075 delayed->inode = inode;
3076
3077 spin_lock(&fs_info->delayed_iput_lock);
3078 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3079 spin_unlock(&fs_info->delayed_iput_lock);
3080}
3081
3082void btrfs_run_delayed_iputs(struct btrfs_root *root)
3083{
3084 LIST_HEAD(list);
3085 struct btrfs_fs_info *fs_info = root->fs_info;
3086 struct delayed_iput *delayed;
3087 int empty;
3088
3089 spin_lock(&fs_info->delayed_iput_lock);
3090 empty = list_empty(&fs_info->delayed_iputs);
3091 spin_unlock(&fs_info->delayed_iput_lock);
3092 if (empty)
3093 return;
3094
24bbcf04
YZ
3095 spin_lock(&fs_info->delayed_iput_lock);
3096 list_splice_init(&fs_info->delayed_iputs, &list);
3097 spin_unlock(&fs_info->delayed_iput_lock);
3098
3099 while (!list_empty(&list)) {
3100 delayed = list_entry(list.next, struct delayed_iput, list);
3101 list_del(&delayed->list);
3102 iput(delayed->inode);
3103 kfree(delayed);
3104 }
24bbcf04
YZ
3105}
3106
d68fc57b 3107/*
42b2aa86 3108 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3109 * files in the subvolume, it removes orphan item and frees block_rsv
3110 * structure.
3111 */
3112void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3113 struct btrfs_root *root)
3114{
90290e19 3115 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3116 int ret;
3117
8a35d95f 3118 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3119 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3120 return;
3121
90290e19 3122 spin_lock(&root->orphan_lock);
8a35d95f 3123 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3124 spin_unlock(&root->orphan_lock);
3125 return;
3126 }
3127
3128 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3129 spin_unlock(&root->orphan_lock);
3130 return;
3131 }
3132
3133 block_rsv = root->orphan_block_rsv;
3134 root->orphan_block_rsv = NULL;
3135 spin_unlock(&root->orphan_lock);
3136
27cdeb70 3137 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3138 btrfs_root_refs(&root->root_item) > 0) {
3139 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3140 root->root_key.objectid);
4ef31a45
JB
3141 if (ret)
3142 btrfs_abort_transaction(trans, root, ret);
3143 else
27cdeb70
MX
3144 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3145 &root->state);
d68fc57b
YZ
3146 }
3147
90290e19
JB
3148 if (block_rsv) {
3149 WARN_ON(block_rsv->size > 0);
3150 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3151 }
3152}
3153
7b128766
JB
3154/*
3155 * This creates an orphan entry for the given inode in case something goes
3156 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3157 *
3158 * NOTE: caller of this function should reserve 5 units of metadata for
3159 * this function.
7b128766
JB
3160 */
3161int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3162{
3163 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3164 struct btrfs_block_rsv *block_rsv = NULL;
3165 int reserve = 0;
3166 int insert = 0;
3167 int ret;
7b128766 3168
d68fc57b 3169 if (!root->orphan_block_rsv) {
66d8f3dd 3170 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3171 if (!block_rsv)
3172 return -ENOMEM;
d68fc57b 3173 }
7b128766 3174
d68fc57b
YZ
3175 spin_lock(&root->orphan_lock);
3176 if (!root->orphan_block_rsv) {
3177 root->orphan_block_rsv = block_rsv;
3178 } else if (block_rsv) {
3179 btrfs_free_block_rsv(root, block_rsv);
3180 block_rsv = NULL;
7b128766 3181 }
7b128766 3182
8a35d95f
JB
3183 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3184 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3185#if 0
3186 /*
3187 * For proper ENOSPC handling, we should do orphan
3188 * cleanup when mounting. But this introduces backward
3189 * compatibility issue.
3190 */
3191 if (!xchg(&root->orphan_item_inserted, 1))
3192 insert = 2;
3193 else
3194 insert = 1;
3195#endif
3196 insert = 1;
321f0e70 3197 atomic_inc(&root->orphan_inodes);
7b128766
JB
3198 }
3199
72ac3c0d
JB
3200 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3201 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3202 reserve = 1;
d68fc57b 3203 spin_unlock(&root->orphan_lock);
7b128766 3204
d68fc57b
YZ
3205 /* grab metadata reservation from transaction handle */
3206 if (reserve) {
3207 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3208 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3209 }
7b128766 3210
d68fc57b
YZ
3211 /* insert an orphan item to track this unlinked/truncated file */
3212 if (insert >= 1) {
33345d01 3213 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3214 if (ret) {
703c88e0 3215 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3216 if (reserve) {
3217 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3218 &BTRFS_I(inode)->runtime_flags);
3219 btrfs_orphan_release_metadata(inode);
3220 }
3221 if (ret != -EEXIST) {
e8e7cff6
JB
3222 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3223 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3224 btrfs_abort_transaction(trans, root, ret);
3225 return ret;
3226 }
79787eaa
JM
3227 }
3228 ret = 0;
d68fc57b
YZ
3229 }
3230
3231 /* insert an orphan item to track subvolume contains orphan files */
3232 if (insert >= 2) {
3233 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3234 root->root_key.objectid);
79787eaa
JM
3235 if (ret && ret != -EEXIST) {
3236 btrfs_abort_transaction(trans, root, ret);
3237 return ret;
3238 }
d68fc57b
YZ
3239 }
3240 return 0;
7b128766
JB
3241}
3242
3243/*
3244 * We have done the truncate/delete so we can go ahead and remove the orphan
3245 * item for this particular inode.
3246 */
48a3b636
ES
3247static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3248 struct inode *inode)
7b128766
JB
3249{
3250 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3251 int delete_item = 0;
3252 int release_rsv = 0;
7b128766
JB
3253 int ret = 0;
3254
d68fc57b 3255 spin_lock(&root->orphan_lock);
8a35d95f
JB
3256 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3257 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3258 delete_item = 1;
7b128766 3259
72ac3c0d
JB
3260 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3261 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3262 release_rsv = 1;
d68fc57b 3263 spin_unlock(&root->orphan_lock);
7b128766 3264
703c88e0 3265 if (delete_item) {
8a35d95f 3266 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3267 if (trans)
3268 ret = btrfs_del_orphan_item(trans, root,
3269 btrfs_ino(inode));
8a35d95f 3270 }
7b128766 3271
703c88e0
FDBM
3272 if (release_rsv)
3273 btrfs_orphan_release_metadata(inode);
3274
4ef31a45 3275 return ret;
7b128766
JB
3276}
3277
3278/*
3279 * this cleans up any orphans that may be left on the list from the last use
3280 * of this root.
3281 */
66b4ffd1 3282int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3283{
3284 struct btrfs_path *path;
3285 struct extent_buffer *leaf;
7b128766
JB
3286 struct btrfs_key key, found_key;
3287 struct btrfs_trans_handle *trans;
3288 struct inode *inode;
8f6d7f4f 3289 u64 last_objectid = 0;
7b128766
JB
3290 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3291
d68fc57b 3292 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3293 return 0;
c71bf099
YZ
3294
3295 path = btrfs_alloc_path();
66b4ffd1
JB
3296 if (!path) {
3297 ret = -ENOMEM;
3298 goto out;
3299 }
7b128766
JB
3300 path->reada = -1;
3301
3302 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3303 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3304 key.offset = (u64)-1;
3305
7b128766
JB
3306 while (1) {
3307 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3308 if (ret < 0)
3309 goto out;
7b128766
JB
3310
3311 /*
3312 * if ret == 0 means we found what we were searching for, which
25985edc 3313 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3314 * find the key and see if we have stuff that matches
3315 */
3316 if (ret > 0) {
66b4ffd1 3317 ret = 0;
7b128766
JB
3318 if (path->slots[0] == 0)
3319 break;
3320 path->slots[0]--;
3321 }
3322
3323 /* pull out the item */
3324 leaf = path->nodes[0];
7b128766
JB
3325 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3326
3327 /* make sure the item matches what we want */
3328 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3329 break;
962a298f 3330 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3331 break;
3332
3333 /* release the path since we're done with it */
b3b4aa74 3334 btrfs_release_path(path);
7b128766
JB
3335
3336 /*
3337 * this is where we are basically btrfs_lookup, without the
3338 * crossing root thing. we store the inode number in the
3339 * offset of the orphan item.
3340 */
8f6d7f4f
JB
3341
3342 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3343 btrfs_err(root->fs_info,
3344 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3345 ret = -EINVAL;
3346 goto out;
3347 }
3348
3349 last_objectid = found_key.offset;
3350
5d4f98a2
YZ
3351 found_key.objectid = found_key.offset;
3352 found_key.type = BTRFS_INODE_ITEM_KEY;
3353 found_key.offset = 0;
73f73415 3354 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3355 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3356 if (ret && ret != -ESTALE)
66b4ffd1 3357 goto out;
7b128766 3358
f8e9e0b0
AJ
3359 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3360 struct btrfs_root *dead_root;
3361 struct btrfs_fs_info *fs_info = root->fs_info;
3362 int is_dead_root = 0;
3363
3364 /*
3365 * this is an orphan in the tree root. Currently these
3366 * could come from 2 sources:
3367 * a) a snapshot deletion in progress
3368 * b) a free space cache inode
3369 * We need to distinguish those two, as the snapshot
3370 * orphan must not get deleted.
3371 * find_dead_roots already ran before us, so if this
3372 * is a snapshot deletion, we should find the root
3373 * in the dead_roots list
3374 */
3375 spin_lock(&fs_info->trans_lock);
3376 list_for_each_entry(dead_root, &fs_info->dead_roots,
3377 root_list) {
3378 if (dead_root->root_key.objectid ==
3379 found_key.objectid) {
3380 is_dead_root = 1;
3381 break;
3382 }
3383 }
3384 spin_unlock(&fs_info->trans_lock);
3385 if (is_dead_root) {
3386 /* prevent this orphan from being found again */
3387 key.offset = found_key.objectid - 1;
3388 continue;
3389 }
3390 }
7b128766 3391 /*
a8c9e576
JB
3392 * Inode is already gone but the orphan item is still there,
3393 * kill the orphan item.
7b128766 3394 */
a8c9e576
JB
3395 if (ret == -ESTALE) {
3396 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3397 if (IS_ERR(trans)) {
3398 ret = PTR_ERR(trans);
3399 goto out;
3400 }
c2cf52eb
SK
3401 btrfs_debug(root->fs_info, "auto deleting %Lu",
3402 found_key.objectid);
a8c9e576
JB
3403 ret = btrfs_del_orphan_item(trans, root,
3404 found_key.objectid);
5b21f2ed 3405 btrfs_end_transaction(trans, root);
4ef31a45
JB
3406 if (ret)
3407 goto out;
7b128766
JB
3408 continue;
3409 }
3410
a8c9e576
JB
3411 /*
3412 * add this inode to the orphan list so btrfs_orphan_del does
3413 * the proper thing when we hit it
3414 */
8a35d95f
JB
3415 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3416 &BTRFS_I(inode)->runtime_flags);
925396ec 3417 atomic_inc(&root->orphan_inodes);
a8c9e576 3418
7b128766
JB
3419 /* if we have links, this was a truncate, lets do that */
3420 if (inode->i_nlink) {
fae7f21c 3421 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3422 iput(inode);
3423 continue;
3424 }
7b128766 3425 nr_truncate++;
f3fe820c
JB
3426
3427 /* 1 for the orphan item deletion. */
3428 trans = btrfs_start_transaction(root, 1);
3429 if (IS_ERR(trans)) {
c69b26b0 3430 iput(inode);
f3fe820c
JB
3431 ret = PTR_ERR(trans);
3432 goto out;
3433 }
3434 ret = btrfs_orphan_add(trans, inode);
3435 btrfs_end_transaction(trans, root);
c69b26b0
JB
3436 if (ret) {
3437 iput(inode);
f3fe820c 3438 goto out;
c69b26b0 3439 }
f3fe820c 3440
66b4ffd1 3441 ret = btrfs_truncate(inode);
4a7d0f68
JB
3442 if (ret)
3443 btrfs_orphan_del(NULL, inode);
7b128766
JB
3444 } else {
3445 nr_unlink++;
3446 }
3447
3448 /* this will do delete_inode and everything for us */
3449 iput(inode);
66b4ffd1
JB
3450 if (ret)
3451 goto out;
7b128766 3452 }
3254c876
MX
3453 /* release the path since we're done with it */
3454 btrfs_release_path(path);
3455
d68fc57b
YZ
3456 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3457
3458 if (root->orphan_block_rsv)
3459 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3460 (u64)-1);
3461
27cdeb70
MX
3462 if (root->orphan_block_rsv ||
3463 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3464 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3465 if (!IS_ERR(trans))
3466 btrfs_end_transaction(trans, root);
d68fc57b 3467 }
7b128766
JB
3468
3469 if (nr_unlink)
4884b476 3470 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3471 if (nr_truncate)
4884b476 3472 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3473
3474out:
3475 if (ret)
68b663d1 3476 btrfs_err(root->fs_info,
c2cf52eb 3477 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3478 btrfs_free_path(path);
3479 return ret;
7b128766
JB
3480}
3481
46a53cca
CM
3482/*
3483 * very simple check to peek ahead in the leaf looking for xattrs. If we
3484 * don't find any xattrs, we know there can't be any acls.
3485 *
3486 * slot is the slot the inode is in, objectid is the objectid of the inode
3487 */
3488static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3489 int slot, u64 objectid,
3490 int *first_xattr_slot)
46a53cca
CM
3491{
3492 u32 nritems = btrfs_header_nritems(leaf);
3493 struct btrfs_key found_key;
f23b5a59
JB
3494 static u64 xattr_access = 0;
3495 static u64 xattr_default = 0;
46a53cca
CM
3496 int scanned = 0;
3497
f23b5a59
JB
3498 if (!xattr_access) {
3499 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3500 strlen(POSIX_ACL_XATTR_ACCESS));
3501 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3502 strlen(POSIX_ACL_XATTR_DEFAULT));
3503 }
3504
46a53cca 3505 slot++;
63541927 3506 *first_xattr_slot = -1;
46a53cca
CM
3507 while (slot < nritems) {
3508 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3509
3510 /* we found a different objectid, there must not be acls */
3511 if (found_key.objectid != objectid)
3512 return 0;
3513
3514 /* we found an xattr, assume we've got an acl */
f23b5a59 3515 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3516 if (*first_xattr_slot == -1)
3517 *first_xattr_slot = slot;
f23b5a59
JB
3518 if (found_key.offset == xattr_access ||
3519 found_key.offset == xattr_default)
3520 return 1;
3521 }
46a53cca
CM
3522
3523 /*
3524 * we found a key greater than an xattr key, there can't
3525 * be any acls later on
3526 */
3527 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3528 return 0;
3529
3530 slot++;
3531 scanned++;
3532
3533 /*
3534 * it goes inode, inode backrefs, xattrs, extents,
3535 * so if there are a ton of hard links to an inode there can
3536 * be a lot of backrefs. Don't waste time searching too hard,
3537 * this is just an optimization
3538 */
3539 if (scanned >= 8)
3540 break;
3541 }
3542 /* we hit the end of the leaf before we found an xattr or
3543 * something larger than an xattr. We have to assume the inode
3544 * has acls
3545 */
63541927
FDBM
3546 if (*first_xattr_slot == -1)
3547 *first_xattr_slot = slot;
46a53cca
CM
3548 return 1;
3549}
3550
d352ac68
CM
3551/*
3552 * read an inode from the btree into the in-memory inode
3553 */
5d4f98a2 3554static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3555{
3556 struct btrfs_path *path;
5f39d397 3557 struct extent_buffer *leaf;
39279cc3
CM
3558 struct btrfs_inode_item *inode_item;
3559 struct btrfs_root *root = BTRFS_I(inode)->root;
3560 struct btrfs_key location;
67de1176 3561 unsigned long ptr;
46a53cca 3562 int maybe_acls;
618e21d5 3563 u32 rdev;
39279cc3 3564 int ret;
2f7e33d4 3565 bool filled = false;
63541927 3566 int first_xattr_slot;
2f7e33d4
MX
3567
3568 ret = btrfs_fill_inode(inode, &rdev);
3569 if (!ret)
3570 filled = true;
39279cc3
CM
3571
3572 path = btrfs_alloc_path();
1748f843
MF
3573 if (!path)
3574 goto make_bad;
3575
39279cc3 3576 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3577
39279cc3 3578 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3579 if (ret)
39279cc3 3580 goto make_bad;
39279cc3 3581
5f39d397 3582 leaf = path->nodes[0];
2f7e33d4
MX
3583
3584 if (filled)
67de1176 3585 goto cache_index;
2f7e33d4 3586
5f39d397
CM
3587 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3588 struct btrfs_inode_item);
5f39d397 3589 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3590 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3591 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3592 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3593 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3594
a937b979
DS
3595 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3596 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3597
a937b979
DS
3598 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3599 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3600
a937b979
DS
3601 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3602 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3603
9cc97d64 3604 BTRFS_I(inode)->i_otime.tv_sec =
3605 btrfs_timespec_sec(leaf, &inode_item->otime);
3606 BTRFS_I(inode)->i_otime.tv_nsec =
3607 btrfs_timespec_nsec(leaf, &inode_item->otime);
3608
a76a3cd4 3609 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3610 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3611 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3612
3613 /*
3614 * If we were modified in the current generation and evicted from memory
3615 * and then re-read we need to do a full sync since we don't have any
3616 * idea about which extents were modified before we were evicted from
3617 * cache.
3618 */
3619 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3620 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3621 &BTRFS_I(inode)->runtime_flags);
3622
0c4d2d95 3623 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3624 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3625 inode->i_rdev = 0;
5f39d397
CM
3626 rdev = btrfs_inode_rdev(leaf, inode_item);
3627
aec7477b 3628 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3629 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
67de1176
MX
3630
3631cache_index:
3632 path->slots[0]++;
3633 if (inode->i_nlink != 1 ||
3634 path->slots[0] >= btrfs_header_nritems(leaf))
3635 goto cache_acl;
3636
3637 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3638 if (location.objectid != btrfs_ino(inode))
3639 goto cache_acl;
3640
3641 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3642 if (location.type == BTRFS_INODE_REF_KEY) {
3643 struct btrfs_inode_ref *ref;
3644
3645 ref = (struct btrfs_inode_ref *)ptr;
3646 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3647 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3648 struct btrfs_inode_extref *extref;
3649
3650 extref = (struct btrfs_inode_extref *)ptr;
3651 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3652 extref);
3653 }
2f7e33d4 3654cache_acl:
46a53cca
CM
3655 /*
3656 * try to precache a NULL acl entry for files that don't have
3657 * any xattrs or acls
3658 */
33345d01 3659 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3660 btrfs_ino(inode), &first_xattr_slot);
3661 if (first_xattr_slot != -1) {
3662 path->slots[0] = first_xattr_slot;
3663 ret = btrfs_load_inode_props(inode, path);
3664 if (ret)
3665 btrfs_err(root->fs_info,
351fd353 3666 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3667 btrfs_ino(inode),
3668 root->root_key.objectid, ret);
3669 }
3670 btrfs_free_path(path);
3671
72c04902
AV
3672 if (!maybe_acls)
3673 cache_no_acl(inode);
46a53cca 3674
39279cc3 3675 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3676 case S_IFREG:
3677 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3678 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3679 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3680 inode->i_fop = &btrfs_file_operations;
3681 inode->i_op = &btrfs_file_inode_operations;
3682 break;
3683 case S_IFDIR:
3684 inode->i_fop = &btrfs_dir_file_operations;
3685 if (root == root->fs_info->tree_root)
3686 inode->i_op = &btrfs_dir_ro_inode_operations;
3687 else
3688 inode->i_op = &btrfs_dir_inode_operations;
3689 break;
3690 case S_IFLNK:
3691 inode->i_op = &btrfs_symlink_inode_operations;
3692 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3693 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3694 break;
618e21d5 3695 default:
0279b4cd 3696 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3697 init_special_inode(inode, inode->i_mode, rdev);
3698 break;
39279cc3 3699 }
6cbff00f
CH
3700
3701 btrfs_update_iflags(inode);
39279cc3
CM
3702 return;
3703
3704make_bad:
39279cc3 3705 btrfs_free_path(path);
39279cc3
CM
3706 make_bad_inode(inode);
3707}
3708
d352ac68
CM
3709/*
3710 * given a leaf and an inode, copy the inode fields into the leaf
3711 */
e02119d5
CM
3712static void fill_inode_item(struct btrfs_trans_handle *trans,
3713 struct extent_buffer *leaf,
5f39d397 3714 struct btrfs_inode_item *item,
39279cc3
CM
3715 struct inode *inode)
3716{
51fab693
LB
3717 struct btrfs_map_token token;
3718
3719 btrfs_init_map_token(&token);
5f39d397 3720
51fab693
LB
3721 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3722 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3723 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3724 &token);
3725 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3726 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3727
a937b979 3728 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3729 inode->i_atime.tv_sec, &token);
a937b979 3730 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3731 inode->i_atime.tv_nsec, &token);
5f39d397 3732
a937b979 3733 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3734 inode->i_mtime.tv_sec, &token);
a937b979 3735 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3736 inode->i_mtime.tv_nsec, &token);
5f39d397 3737
a937b979 3738 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3739 inode->i_ctime.tv_sec, &token);
a937b979 3740 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3741 inode->i_ctime.tv_nsec, &token);
5f39d397 3742
9cc97d64 3743 btrfs_set_token_timespec_sec(leaf, &item->otime,
3744 BTRFS_I(inode)->i_otime.tv_sec, &token);
3745 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3746 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3747
51fab693
LB
3748 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3749 &token);
3750 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3751 &token);
3752 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3753 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3754 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3755 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3756 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3757}
3758
d352ac68
CM
3759/*
3760 * copy everything in the in-memory inode into the btree.
3761 */
2115133f 3762static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3763 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3764{
3765 struct btrfs_inode_item *inode_item;
3766 struct btrfs_path *path;
5f39d397 3767 struct extent_buffer *leaf;
39279cc3
CM
3768 int ret;
3769
3770 path = btrfs_alloc_path();
16cdcec7
MX
3771 if (!path)
3772 return -ENOMEM;
3773
b9473439 3774 path->leave_spinning = 1;
16cdcec7
MX
3775 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3776 1);
39279cc3
CM
3777 if (ret) {
3778 if (ret > 0)
3779 ret = -ENOENT;
3780 goto failed;
3781 }
3782
5f39d397
CM
3783 leaf = path->nodes[0];
3784 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3785 struct btrfs_inode_item);
39279cc3 3786
e02119d5 3787 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3788 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3789 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3790 ret = 0;
3791failed:
39279cc3
CM
3792 btrfs_free_path(path);
3793 return ret;
3794}
3795
2115133f
CM
3796/*
3797 * copy everything in the in-memory inode into the btree.
3798 */
3799noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3800 struct btrfs_root *root, struct inode *inode)
3801{
3802 int ret;
3803
3804 /*
3805 * If the inode is a free space inode, we can deadlock during commit
3806 * if we put it into the delayed code.
3807 *
3808 * The data relocation inode should also be directly updated
3809 * without delay
3810 */
83eea1f1 3811 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3812 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3813 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3814 btrfs_update_root_times(trans, root);
3815
2115133f
CM
3816 ret = btrfs_delayed_update_inode(trans, root, inode);
3817 if (!ret)
3818 btrfs_set_inode_last_trans(trans, inode);
3819 return ret;
3820 }
3821
3822 return btrfs_update_inode_item(trans, root, inode);
3823}
3824
be6aef60
JB
3825noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3826 struct btrfs_root *root,
3827 struct inode *inode)
2115133f
CM
3828{
3829 int ret;
3830
3831 ret = btrfs_update_inode(trans, root, inode);
3832 if (ret == -ENOSPC)
3833 return btrfs_update_inode_item(trans, root, inode);
3834 return ret;
3835}
3836
d352ac68
CM
3837/*
3838 * unlink helper that gets used here in inode.c and in the tree logging
3839 * recovery code. It remove a link in a directory with a given name, and
3840 * also drops the back refs in the inode to the directory
3841 */
92986796
AV
3842static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3843 struct btrfs_root *root,
3844 struct inode *dir, struct inode *inode,
3845 const char *name, int name_len)
39279cc3
CM
3846{
3847 struct btrfs_path *path;
39279cc3 3848 int ret = 0;
5f39d397 3849 struct extent_buffer *leaf;
39279cc3 3850 struct btrfs_dir_item *di;
5f39d397 3851 struct btrfs_key key;
aec7477b 3852 u64 index;
33345d01
LZ
3853 u64 ino = btrfs_ino(inode);
3854 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3855
3856 path = btrfs_alloc_path();
54aa1f4d
CM
3857 if (!path) {
3858 ret = -ENOMEM;
554233a6 3859 goto out;
54aa1f4d
CM
3860 }
3861
b9473439 3862 path->leave_spinning = 1;
33345d01 3863 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3864 name, name_len, -1);
3865 if (IS_ERR(di)) {
3866 ret = PTR_ERR(di);
3867 goto err;
3868 }
3869 if (!di) {
3870 ret = -ENOENT;
3871 goto err;
3872 }
5f39d397
CM
3873 leaf = path->nodes[0];
3874 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3875 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3876 if (ret)
3877 goto err;
b3b4aa74 3878 btrfs_release_path(path);
39279cc3 3879
67de1176
MX
3880 /*
3881 * If we don't have dir index, we have to get it by looking up
3882 * the inode ref, since we get the inode ref, remove it directly,
3883 * it is unnecessary to do delayed deletion.
3884 *
3885 * But if we have dir index, needn't search inode ref to get it.
3886 * Since the inode ref is close to the inode item, it is better
3887 * that we delay to delete it, and just do this deletion when
3888 * we update the inode item.
3889 */
3890 if (BTRFS_I(inode)->dir_index) {
3891 ret = btrfs_delayed_delete_inode_ref(inode);
3892 if (!ret) {
3893 index = BTRFS_I(inode)->dir_index;
3894 goto skip_backref;
3895 }
3896 }
3897
33345d01
LZ
3898 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3899 dir_ino, &index);
aec7477b 3900 if (ret) {
c2cf52eb
SK
3901 btrfs_info(root->fs_info,
3902 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3903 name_len, name, ino, dir_ino);
79787eaa 3904 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3905 goto err;
3906 }
67de1176 3907skip_backref:
16cdcec7 3908 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3909 if (ret) {
3910 btrfs_abort_transaction(trans, root, ret);
39279cc3 3911 goto err;
79787eaa 3912 }
39279cc3 3913
e02119d5 3914 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3915 inode, dir_ino);
79787eaa
JM
3916 if (ret != 0 && ret != -ENOENT) {
3917 btrfs_abort_transaction(trans, root, ret);
3918 goto err;
3919 }
e02119d5
CM
3920
3921 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3922 dir, index);
6418c961
CM
3923 if (ret == -ENOENT)
3924 ret = 0;
d4e3991b
ZB
3925 else if (ret)
3926 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3927err:
3928 btrfs_free_path(path);
e02119d5
CM
3929 if (ret)
3930 goto out;
3931
3932 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3933 inode_inc_iversion(inode);
3934 inode_inc_iversion(dir);
e02119d5 3935 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3936 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3937out:
39279cc3
CM
3938 return ret;
3939}
3940
92986796
AV
3941int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3942 struct btrfs_root *root,
3943 struct inode *dir, struct inode *inode,
3944 const char *name, int name_len)
3945{
3946 int ret;
3947 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3948 if (!ret) {
8b558c5f 3949 drop_nlink(inode);
92986796
AV
3950 ret = btrfs_update_inode(trans, root, inode);
3951 }
3952 return ret;
3953}
39279cc3 3954
a22285a6
YZ
3955/*
3956 * helper to start transaction for unlink and rmdir.
3957 *
d52be818
JB
3958 * unlink and rmdir are special in btrfs, they do not always free space, so
3959 * if we cannot make our reservations the normal way try and see if there is
3960 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3961 * allow the unlink to occur.
a22285a6 3962 */
d52be818 3963static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3964{
39279cc3 3965 struct btrfs_trans_handle *trans;
a22285a6 3966 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3967 int ret;
3968
e70bea5f
JB
3969 /*
3970 * 1 for the possible orphan item
3971 * 1 for the dir item
3972 * 1 for the dir index
3973 * 1 for the inode ref
e70bea5f
JB
3974 * 1 for the inode
3975 */
6e137ed3 3976 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3977 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3978 return trans;
4df27c4d 3979
d52be818
JB
3980 if (PTR_ERR(trans) == -ENOSPC) {
3981 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3982
d52be818
JB
3983 trans = btrfs_start_transaction(root, 0);
3984 if (IS_ERR(trans))
3985 return trans;
3986 ret = btrfs_cond_migrate_bytes(root->fs_info,
3987 &root->fs_info->trans_block_rsv,
3988 num_bytes, 5);
3989 if (ret) {
3990 btrfs_end_transaction(trans, root);
3991 return ERR_PTR(ret);
a22285a6 3992 }
5a77d76c 3993 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3994 trans->bytes_reserved = num_bytes;
a22285a6 3995 }
d52be818 3996 return trans;
a22285a6
YZ
3997}
3998
3999static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4000{
4001 struct btrfs_root *root = BTRFS_I(dir)->root;
4002 struct btrfs_trans_handle *trans;
4003 struct inode *inode = dentry->d_inode;
4004 int ret;
a22285a6 4005
d52be818 4006 trans = __unlink_start_trans(dir);
a22285a6
YZ
4007 if (IS_ERR(trans))
4008 return PTR_ERR(trans);
5f39d397 4009
12fcfd22
CM
4010 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
4011
e02119d5
CM
4012 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4013 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4014 if (ret)
4015 goto out;
7b128766 4016
a22285a6 4017 if (inode->i_nlink == 0) {
7b128766 4018 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4019 if (ret)
4020 goto out;
a22285a6 4021 }
7b128766 4022
b532402e 4023out:
d52be818 4024 btrfs_end_transaction(trans, root);
b53d3f5d 4025 btrfs_btree_balance_dirty(root);
39279cc3
CM
4026 return ret;
4027}
4028
4df27c4d
YZ
4029int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4030 struct btrfs_root *root,
4031 struct inode *dir, u64 objectid,
4032 const char *name, int name_len)
4033{
4034 struct btrfs_path *path;
4035 struct extent_buffer *leaf;
4036 struct btrfs_dir_item *di;
4037 struct btrfs_key key;
4038 u64 index;
4039 int ret;
33345d01 4040 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4041
4042 path = btrfs_alloc_path();
4043 if (!path)
4044 return -ENOMEM;
4045
33345d01 4046 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4047 name, name_len, -1);
79787eaa
JM
4048 if (IS_ERR_OR_NULL(di)) {
4049 if (!di)
4050 ret = -ENOENT;
4051 else
4052 ret = PTR_ERR(di);
4053 goto out;
4054 }
4df27c4d
YZ
4055
4056 leaf = path->nodes[0];
4057 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4058 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4059 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
4060 if (ret) {
4061 btrfs_abort_transaction(trans, root, ret);
4062 goto out;
4063 }
b3b4aa74 4064 btrfs_release_path(path);
4df27c4d
YZ
4065
4066 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4067 objectid, root->root_key.objectid,
33345d01 4068 dir_ino, &index, name, name_len);
4df27c4d 4069 if (ret < 0) {
79787eaa
JM
4070 if (ret != -ENOENT) {
4071 btrfs_abort_transaction(trans, root, ret);
4072 goto out;
4073 }
33345d01 4074 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4075 name, name_len);
79787eaa
JM
4076 if (IS_ERR_OR_NULL(di)) {
4077 if (!di)
4078 ret = -ENOENT;
4079 else
4080 ret = PTR_ERR(di);
4081 btrfs_abort_transaction(trans, root, ret);
4082 goto out;
4083 }
4df27c4d
YZ
4084
4085 leaf = path->nodes[0];
4086 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4087 btrfs_release_path(path);
4df27c4d
YZ
4088 index = key.offset;
4089 }
945d8962 4090 btrfs_release_path(path);
4df27c4d 4091
16cdcec7 4092 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4093 if (ret) {
4094 btrfs_abort_transaction(trans, root, ret);
4095 goto out;
4096 }
4df27c4d
YZ
4097
4098 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4099 inode_inc_iversion(dir);
4df27c4d 4100 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 4101 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4102 if (ret)
4103 btrfs_abort_transaction(trans, root, ret);
4104out:
71d7aed0 4105 btrfs_free_path(path);
79787eaa 4106 return ret;
4df27c4d
YZ
4107}
4108
39279cc3
CM
4109static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4110{
4111 struct inode *inode = dentry->d_inode;
1832a6d5 4112 int err = 0;
39279cc3 4113 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4114 struct btrfs_trans_handle *trans;
39279cc3 4115
b3ae244e 4116 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4117 return -ENOTEMPTY;
b3ae244e
DS
4118 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4119 return -EPERM;
134d4512 4120
d52be818 4121 trans = __unlink_start_trans(dir);
a22285a6 4122 if (IS_ERR(trans))
5df6a9f6 4123 return PTR_ERR(trans);
5df6a9f6 4124
33345d01 4125 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4126 err = btrfs_unlink_subvol(trans, root, dir,
4127 BTRFS_I(inode)->location.objectid,
4128 dentry->d_name.name,
4129 dentry->d_name.len);
4130 goto out;
4131 }
4132
7b128766
JB
4133 err = btrfs_orphan_add(trans, inode);
4134 if (err)
4df27c4d 4135 goto out;
7b128766 4136
39279cc3 4137 /* now the directory is empty */
e02119d5
CM
4138 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4139 dentry->d_name.name, dentry->d_name.len);
d397712b 4140 if (!err)
dbe674a9 4141 btrfs_i_size_write(inode, 0);
4df27c4d 4142out:
d52be818 4143 btrfs_end_transaction(trans, root);
b53d3f5d 4144 btrfs_btree_balance_dirty(root);
3954401f 4145
39279cc3
CM
4146 return err;
4147}
4148
39279cc3
CM
4149/*
4150 * this can truncate away extent items, csum items and directory items.
4151 * It starts at a high offset and removes keys until it can't find
d352ac68 4152 * any higher than new_size
39279cc3
CM
4153 *
4154 * csum items that cross the new i_size are truncated to the new size
4155 * as well.
7b128766
JB
4156 *
4157 * min_type is the minimum key type to truncate down to. If set to 0, this
4158 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4159 */
8082510e
YZ
4160int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4161 struct btrfs_root *root,
4162 struct inode *inode,
4163 u64 new_size, u32 min_type)
39279cc3 4164{
39279cc3 4165 struct btrfs_path *path;
5f39d397 4166 struct extent_buffer *leaf;
39279cc3 4167 struct btrfs_file_extent_item *fi;
8082510e
YZ
4168 struct btrfs_key key;
4169 struct btrfs_key found_key;
39279cc3 4170 u64 extent_start = 0;
db94535d 4171 u64 extent_num_bytes = 0;
5d4f98a2 4172 u64 extent_offset = 0;
39279cc3 4173 u64 item_end = 0;
7f4f6e0a 4174 u64 last_size = (u64)-1;
8082510e 4175 u32 found_type = (u8)-1;
39279cc3
CM
4176 int found_extent;
4177 int del_item;
85e21bac
CM
4178 int pending_del_nr = 0;
4179 int pending_del_slot = 0;
179e29e4 4180 int extent_type = -1;
8082510e
YZ
4181 int ret;
4182 int err = 0;
33345d01 4183 u64 ino = btrfs_ino(inode);
8082510e
YZ
4184
4185 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4186
0eb0e19c
MF
4187 path = btrfs_alloc_path();
4188 if (!path)
4189 return -ENOMEM;
4190 path->reada = -1;
4191
5dc562c5
JB
4192 /*
4193 * We want to drop from the next block forward in case this new size is
4194 * not block aligned since we will be keeping the last block of the
4195 * extent just the way it is.
4196 */
27cdeb70
MX
4197 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4198 root == root->fs_info->tree_root)
fda2832f
QW
4199 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4200 root->sectorsize), (u64)-1, 0);
8082510e 4201
16cdcec7
MX
4202 /*
4203 * This function is also used to drop the items in the log tree before
4204 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4205 * it is used to drop the loged items. So we shouldn't kill the delayed
4206 * items.
4207 */
4208 if (min_type == 0 && root == BTRFS_I(inode)->root)
4209 btrfs_kill_delayed_inode_items(inode);
4210
33345d01 4211 key.objectid = ino;
39279cc3 4212 key.offset = (u64)-1;
5f39d397
CM
4213 key.type = (u8)-1;
4214
85e21bac 4215search_again:
b9473439 4216 path->leave_spinning = 1;
85e21bac 4217 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4218 if (ret < 0) {
4219 err = ret;
4220 goto out;
4221 }
d397712b 4222
85e21bac 4223 if (ret > 0) {
e02119d5
CM
4224 /* there are no items in the tree for us to truncate, we're
4225 * done
4226 */
8082510e
YZ
4227 if (path->slots[0] == 0)
4228 goto out;
85e21bac
CM
4229 path->slots[0]--;
4230 }
4231
d397712b 4232 while (1) {
39279cc3 4233 fi = NULL;
5f39d397
CM
4234 leaf = path->nodes[0];
4235 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4236 found_type = found_key.type;
39279cc3 4237
33345d01 4238 if (found_key.objectid != ino)
39279cc3 4239 break;
5f39d397 4240
85e21bac 4241 if (found_type < min_type)
39279cc3
CM
4242 break;
4243
5f39d397 4244 item_end = found_key.offset;
39279cc3 4245 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4246 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4247 struct btrfs_file_extent_item);
179e29e4
CM
4248 extent_type = btrfs_file_extent_type(leaf, fi);
4249 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4250 item_end +=
db94535d 4251 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4252 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4253 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4254 path->slots[0], fi);
39279cc3 4255 }
008630c1 4256 item_end--;
39279cc3 4257 }
8082510e
YZ
4258 if (found_type > min_type) {
4259 del_item = 1;
4260 } else {
4261 if (item_end < new_size)
b888db2b 4262 break;
8082510e
YZ
4263 if (found_key.offset >= new_size)
4264 del_item = 1;
4265 else
4266 del_item = 0;
39279cc3 4267 }
39279cc3 4268 found_extent = 0;
39279cc3 4269 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4270 if (found_type != BTRFS_EXTENT_DATA_KEY)
4271 goto delete;
4272
7f4f6e0a
JB
4273 if (del_item)
4274 last_size = found_key.offset;
4275 else
4276 last_size = new_size;
4277
179e29e4 4278 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4279 u64 num_dec;
db94535d 4280 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4281 if (!del_item) {
db94535d
CM
4282 u64 orig_num_bytes =
4283 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4284 extent_num_bytes = ALIGN(new_size -
4285 found_key.offset,
4286 root->sectorsize);
db94535d
CM
4287 btrfs_set_file_extent_num_bytes(leaf, fi,
4288 extent_num_bytes);
4289 num_dec = (orig_num_bytes -
9069218d 4290 extent_num_bytes);
27cdeb70
MX
4291 if (test_bit(BTRFS_ROOT_REF_COWS,
4292 &root->state) &&
4293 extent_start != 0)
a76a3cd4 4294 inode_sub_bytes(inode, num_dec);
5f39d397 4295 btrfs_mark_buffer_dirty(leaf);
39279cc3 4296 } else {
db94535d
CM
4297 extent_num_bytes =
4298 btrfs_file_extent_disk_num_bytes(leaf,
4299 fi);
5d4f98a2
YZ
4300 extent_offset = found_key.offset -
4301 btrfs_file_extent_offset(leaf, fi);
4302
39279cc3 4303 /* FIXME blocksize != 4096 */
9069218d 4304 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4305 if (extent_start != 0) {
4306 found_extent = 1;
27cdeb70
MX
4307 if (test_bit(BTRFS_ROOT_REF_COWS,
4308 &root->state))
a76a3cd4 4309 inode_sub_bytes(inode, num_dec);
e02119d5 4310 }
39279cc3 4311 }
9069218d 4312 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4313 /*
4314 * we can't truncate inline items that have had
4315 * special encodings
4316 */
4317 if (!del_item &&
4318 btrfs_file_extent_compression(leaf, fi) == 0 &&
4319 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4320 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4321 u32 size = new_size - found_key.offset;
4322
27cdeb70 4323 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
a76a3cd4
YZ
4324 inode_sub_bytes(inode, item_end + 1 -
4325 new_size);
514ac8ad
CM
4326
4327 /*
4328 * update the ram bytes to properly reflect
4329 * the new size of our item
4330 */
4331 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
e02119d5
CM
4332 size =
4333 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4334 btrfs_truncate_item(root, path, size, 1);
27cdeb70
MX
4335 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4336 &root->state)) {
a76a3cd4
YZ
4337 inode_sub_bytes(inode, item_end + 1 -
4338 found_key.offset);
9069218d 4339 }
39279cc3 4340 }
179e29e4 4341delete:
39279cc3 4342 if (del_item) {
85e21bac
CM
4343 if (!pending_del_nr) {
4344 /* no pending yet, add ourselves */
4345 pending_del_slot = path->slots[0];
4346 pending_del_nr = 1;
4347 } else if (pending_del_nr &&
4348 path->slots[0] + 1 == pending_del_slot) {
4349 /* hop on the pending chunk */
4350 pending_del_nr++;
4351 pending_del_slot = path->slots[0];
4352 } else {
d397712b 4353 BUG();
85e21bac 4354 }
39279cc3
CM
4355 } else {
4356 break;
4357 }
27cdeb70
MX
4358 if (found_extent &&
4359 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4360 root == root->fs_info->tree_root)) {
b9473439 4361 btrfs_set_path_blocking(path);
39279cc3 4362 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4363 extent_num_bytes, 0,
4364 btrfs_header_owner(leaf),
66d7e7f0 4365 ino, extent_offset, 0);
39279cc3
CM
4366 BUG_ON(ret);
4367 }
85e21bac 4368
8082510e
YZ
4369 if (found_type == BTRFS_INODE_ITEM_KEY)
4370 break;
4371
4372 if (path->slots[0] == 0 ||
4373 path->slots[0] != pending_del_slot) {
8082510e
YZ
4374 if (pending_del_nr) {
4375 ret = btrfs_del_items(trans, root, path,
4376 pending_del_slot,
4377 pending_del_nr);
79787eaa
JM
4378 if (ret) {
4379 btrfs_abort_transaction(trans,
4380 root, ret);
4381 goto error;
4382 }
8082510e
YZ
4383 pending_del_nr = 0;
4384 }
b3b4aa74 4385 btrfs_release_path(path);
85e21bac 4386 goto search_again;
8082510e
YZ
4387 } else {
4388 path->slots[0]--;
85e21bac 4389 }
39279cc3 4390 }
8082510e 4391out:
85e21bac
CM
4392 if (pending_del_nr) {
4393 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4394 pending_del_nr);
79787eaa
JM
4395 if (ret)
4396 btrfs_abort_transaction(trans, root, ret);
85e21bac 4397 }
79787eaa 4398error:
dac5705c
FM
4399 if (last_size != (u64)-1 &&
4400 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4401 btrfs_ordered_update_i_size(inode, last_size, NULL);
39279cc3 4402 btrfs_free_path(path);
8082510e 4403 return err;
39279cc3
CM
4404}
4405
4406/*
2aaa6655
JB
4407 * btrfs_truncate_page - read, zero a chunk and write a page
4408 * @inode - inode that we're zeroing
4409 * @from - the offset to start zeroing
4410 * @len - the length to zero, 0 to zero the entire range respective to the
4411 * offset
4412 * @front - zero up to the offset instead of from the offset on
4413 *
4414 * This will find the page for the "from" offset and cow the page and zero the
4415 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4416 */
2aaa6655
JB
4417int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4418 int front)
39279cc3 4419{
2aaa6655 4420 struct address_space *mapping = inode->i_mapping;
db94535d 4421 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4422 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4423 struct btrfs_ordered_extent *ordered;
2ac55d41 4424 struct extent_state *cached_state = NULL;
e6dcd2dc 4425 char *kaddr;
db94535d 4426 u32 blocksize = root->sectorsize;
39279cc3
CM
4427 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4428 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4429 struct page *page;
3b16a4e3 4430 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4431 int ret = 0;
a52d9a80 4432 u64 page_start;
e6dcd2dc 4433 u64 page_end;
39279cc3 4434
2aaa6655
JB
4435 if ((offset & (blocksize - 1)) == 0 &&
4436 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4437 goto out;
0ca1f7ce 4438 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4439 if (ret)
4440 goto out;
39279cc3 4441
211c17f5 4442again:
3b16a4e3 4443 page = find_or_create_page(mapping, index, mask);
5d5e103a 4444 if (!page) {
0ca1f7ce 4445 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4446 ret = -ENOMEM;
39279cc3 4447 goto out;
5d5e103a 4448 }
e6dcd2dc
CM
4449
4450 page_start = page_offset(page);
4451 page_end = page_start + PAGE_CACHE_SIZE - 1;
4452
39279cc3 4453 if (!PageUptodate(page)) {
9ebefb18 4454 ret = btrfs_readpage(NULL, page);
39279cc3 4455 lock_page(page);
211c17f5
CM
4456 if (page->mapping != mapping) {
4457 unlock_page(page);
4458 page_cache_release(page);
4459 goto again;
4460 }
39279cc3
CM
4461 if (!PageUptodate(page)) {
4462 ret = -EIO;
89642229 4463 goto out_unlock;
39279cc3
CM
4464 }
4465 }
211c17f5 4466 wait_on_page_writeback(page);
e6dcd2dc 4467
d0082371 4468 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4469 set_page_extent_mapped(page);
4470
4471 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4472 if (ordered) {
2ac55d41
JB
4473 unlock_extent_cached(io_tree, page_start, page_end,
4474 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4475 unlock_page(page);
4476 page_cache_release(page);
eb84ae03 4477 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4478 btrfs_put_ordered_extent(ordered);
4479 goto again;
4480 }
4481
2ac55d41 4482 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4483 EXTENT_DIRTY | EXTENT_DELALLOC |
4484 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4485 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4486
2ac55d41
JB
4487 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4488 &cached_state);
9ed74f2d 4489 if (ret) {
2ac55d41
JB
4490 unlock_extent_cached(io_tree, page_start, page_end,
4491 &cached_state, GFP_NOFS);
9ed74f2d
JB
4492 goto out_unlock;
4493 }
4494
e6dcd2dc 4495 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4496 if (!len)
4497 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4498 kaddr = kmap(page);
2aaa6655
JB
4499 if (front)
4500 memset(kaddr, 0, offset);
4501 else
4502 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4503 flush_dcache_page(page);
4504 kunmap(page);
4505 }
247e743c 4506 ClearPageChecked(page);
e6dcd2dc 4507 set_page_dirty(page);
2ac55d41
JB
4508 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4509 GFP_NOFS);
39279cc3 4510
89642229 4511out_unlock:
5d5e103a 4512 if (ret)
0ca1f7ce 4513 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4514 unlock_page(page);
4515 page_cache_release(page);
4516out:
4517 return ret;
4518}
4519
16e7549f
JB
4520static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4521 u64 offset, u64 len)
4522{
4523 struct btrfs_trans_handle *trans;
4524 int ret;
4525
4526 /*
4527 * Still need to make sure the inode looks like it's been updated so
4528 * that any holes get logged if we fsync.
4529 */
4530 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4531 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4532 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4533 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4534 return 0;
4535 }
4536
4537 /*
4538 * 1 - for the one we're dropping
4539 * 1 - for the one we're adding
4540 * 1 - for updating the inode.
4541 */
4542 trans = btrfs_start_transaction(root, 3);
4543 if (IS_ERR(trans))
4544 return PTR_ERR(trans);
4545
4546 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4547 if (ret) {
4548 btrfs_abort_transaction(trans, root, ret);
4549 btrfs_end_transaction(trans, root);
4550 return ret;
4551 }
4552
4553 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4554 0, 0, len, 0, len, 0, 0, 0);
4555 if (ret)
4556 btrfs_abort_transaction(trans, root, ret);
4557 else
4558 btrfs_update_inode(trans, root, inode);
4559 btrfs_end_transaction(trans, root);
4560 return ret;
4561}
4562
695a0d0d
JB
4563/*
4564 * This function puts in dummy file extents for the area we're creating a hole
4565 * for. So if we are truncating this file to a larger size we need to insert
4566 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4567 * the range between oldsize and size
4568 */
a41ad394 4569int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4570{
9036c102
YZ
4571 struct btrfs_root *root = BTRFS_I(inode)->root;
4572 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4573 struct extent_map *em = NULL;
2ac55d41 4574 struct extent_state *cached_state = NULL;
5dc562c5 4575 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4576 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4577 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4578 u64 last_byte;
4579 u64 cur_offset;
4580 u64 hole_size;
9ed74f2d 4581 int err = 0;
39279cc3 4582
a71754fc
JB
4583 /*
4584 * If our size started in the middle of a page we need to zero out the
4585 * rest of the page before we expand the i_size, otherwise we could
4586 * expose stale data.
4587 */
4588 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4589 if (err)
4590 return err;
4591
9036c102
YZ
4592 if (size <= hole_start)
4593 return 0;
4594
9036c102
YZ
4595 while (1) {
4596 struct btrfs_ordered_extent *ordered;
fa7c1494 4597
2ac55d41 4598 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4599 &cached_state);
fa7c1494
MX
4600 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4601 block_end - hole_start);
9036c102
YZ
4602 if (!ordered)
4603 break;
2ac55d41
JB
4604 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4605 &cached_state, GFP_NOFS);
fa7c1494 4606 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4607 btrfs_put_ordered_extent(ordered);
4608 }
39279cc3 4609
9036c102
YZ
4610 cur_offset = hole_start;
4611 while (1) {
4612 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4613 block_end - cur_offset, 0);
79787eaa
JM
4614 if (IS_ERR(em)) {
4615 err = PTR_ERR(em);
f2767956 4616 em = NULL;
79787eaa
JM
4617 break;
4618 }
9036c102 4619 last_byte = min(extent_map_end(em), block_end);
fda2832f 4620 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4621 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4622 struct extent_map *hole_em;
9036c102 4623 hole_size = last_byte - cur_offset;
9ed74f2d 4624
16e7549f
JB
4625 err = maybe_insert_hole(root, inode, cur_offset,
4626 hole_size);
4627 if (err)
3893e33b 4628 break;
5dc562c5
JB
4629 btrfs_drop_extent_cache(inode, cur_offset,
4630 cur_offset + hole_size - 1, 0);
4631 hole_em = alloc_extent_map();
4632 if (!hole_em) {
4633 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4634 &BTRFS_I(inode)->runtime_flags);
4635 goto next;
4636 }
4637 hole_em->start = cur_offset;
4638 hole_em->len = hole_size;
4639 hole_em->orig_start = cur_offset;
8082510e 4640
5dc562c5
JB
4641 hole_em->block_start = EXTENT_MAP_HOLE;
4642 hole_em->block_len = 0;
b4939680 4643 hole_em->orig_block_len = 0;
cc95bef6 4644 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4645 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4646 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4647 hole_em->generation = root->fs_info->generation;
8082510e 4648
5dc562c5
JB
4649 while (1) {
4650 write_lock(&em_tree->lock);
09a2a8f9 4651 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4652 write_unlock(&em_tree->lock);
4653 if (err != -EEXIST)
4654 break;
4655 btrfs_drop_extent_cache(inode, cur_offset,
4656 cur_offset +
4657 hole_size - 1, 0);
4658 }
4659 free_extent_map(hole_em);
9036c102 4660 }
16e7549f 4661next:
9036c102 4662 free_extent_map(em);
a22285a6 4663 em = NULL;
9036c102 4664 cur_offset = last_byte;
8082510e 4665 if (cur_offset >= block_end)
9036c102
YZ
4666 break;
4667 }
a22285a6 4668 free_extent_map(em);
2ac55d41
JB
4669 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4670 GFP_NOFS);
9036c102
YZ
4671 return err;
4672}
39279cc3 4673
9ea24bbe
FM
4674static int wait_snapshoting_atomic_t(atomic_t *a)
4675{
4676 schedule();
4677 return 0;
4678}
4679
4680static void wait_for_snapshot_creation(struct btrfs_root *root)
4681{
4682 while (true) {
4683 int ret;
4684
4685 ret = btrfs_start_write_no_snapshoting(root);
4686 if (ret)
4687 break;
4688 wait_on_atomic_t(&root->will_be_snapshoted,
4689 wait_snapshoting_atomic_t,
4690 TASK_UNINTERRUPTIBLE);
4691 }
4692}
4693
3972f260 4694static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4695{
f4a2f4c5
MX
4696 struct btrfs_root *root = BTRFS_I(inode)->root;
4697 struct btrfs_trans_handle *trans;
a41ad394 4698 loff_t oldsize = i_size_read(inode);
3972f260
ES
4699 loff_t newsize = attr->ia_size;
4700 int mask = attr->ia_valid;
8082510e
YZ
4701 int ret;
4702
3972f260
ES
4703 /*
4704 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4705 * special case where we need to update the times despite not having
4706 * these flags set. For all other operations the VFS set these flags
4707 * explicitly if it wants a timestamp update.
4708 */
dff6efc3
CH
4709 if (newsize != oldsize) {
4710 inode_inc_iversion(inode);
4711 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4712 inode->i_ctime = inode->i_mtime =
4713 current_fs_time(inode->i_sb);
4714 }
3972f260 4715
a41ad394 4716 if (newsize > oldsize) {
7caef267 4717 truncate_pagecache(inode, newsize);
9ea24bbe
FM
4718 /*
4719 * Don't do an expanding truncate while snapshoting is ongoing.
4720 * This is to ensure the snapshot captures a fully consistent
4721 * state of this file - if the snapshot captures this expanding
4722 * truncation, it must capture all writes that happened before
4723 * this truncation.
4724 */
4725 wait_for_snapshot_creation(root);
a41ad394 4726 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4727 if (ret) {
4728 btrfs_end_write_no_snapshoting(root);
8082510e 4729 return ret;
9ea24bbe 4730 }
8082510e 4731
f4a2f4c5 4732 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4733 if (IS_ERR(trans)) {
4734 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4735 return PTR_ERR(trans);
9ea24bbe 4736 }
f4a2f4c5
MX
4737
4738 i_size_write(inode, newsize);
4739 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4740 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4741 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4742 btrfs_end_transaction(trans, root);
a41ad394 4743 } else {
8082510e 4744
a41ad394
JB
4745 /*
4746 * We're truncating a file that used to have good data down to
4747 * zero. Make sure it gets into the ordered flush list so that
4748 * any new writes get down to disk quickly.
4749 */
4750 if (newsize == 0)
72ac3c0d
JB
4751 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4752 &BTRFS_I(inode)->runtime_flags);
8082510e 4753
f3fe820c
JB
4754 /*
4755 * 1 for the orphan item we're going to add
4756 * 1 for the orphan item deletion.
4757 */
4758 trans = btrfs_start_transaction(root, 2);
4759 if (IS_ERR(trans))
4760 return PTR_ERR(trans);
4761
4762 /*
4763 * We need to do this in case we fail at _any_ point during the
4764 * actual truncate. Once we do the truncate_setsize we could
4765 * invalidate pages which forces any outstanding ordered io to
4766 * be instantly completed which will give us extents that need
4767 * to be truncated. If we fail to get an orphan inode down we
4768 * could have left over extents that were never meant to live,
4769 * so we need to garuntee from this point on that everything
4770 * will be consistent.
4771 */
4772 ret = btrfs_orphan_add(trans, inode);
4773 btrfs_end_transaction(trans, root);
4774 if (ret)
4775 return ret;
4776
a41ad394
JB
4777 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4778 truncate_setsize(inode, newsize);
2e60a51e
MX
4779
4780 /* Disable nonlocked read DIO to avoid the end less truncate */
4781 btrfs_inode_block_unlocked_dio(inode);
4782 inode_dio_wait(inode);
4783 btrfs_inode_resume_unlocked_dio(inode);
4784
a41ad394 4785 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4786 if (ret && inode->i_nlink) {
4787 int err;
4788
4789 /*
4790 * failed to truncate, disk_i_size is only adjusted down
4791 * as we remove extents, so it should represent the true
4792 * size of the inode, so reset the in memory size and
4793 * delete our orphan entry.
4794 */
4795 trans = btrfs_join_transaction(root);
4796 if (IS_ERR(trans)) {
4797 btrfs_orphan_del(NULL, inode);
4798 return ret;
4799 }
4800 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4801 err = btrfs_orphan_del(trans, inode);
4802 if (err)
4803 btrfs_abort_transaction(trans, root, err);
4804 btrfs_end_transaction(trans, root);
4805 }
8082510e
YZ
4806 }
4807
a41ad394 4808 return ret;
8082510e
YZ
4809}
4810
9036c102
YZ
4811static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4812{
4813 struct inode *inode = dentry->d_inode;
b83cc969 4814 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4815 int err;
39279cc3 4816
b83cc969
LZ
4817 if (btrfs_root_readonly(root))
4818 return -EROFS;
4819
9036c102
YZ
4820 err = inode_change_ok(inode, attr);
4821 if (err)
4822 return err;
2bf5a725 4823
5a3f23d5 4824 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4825 err = btrfs_setsize(inode, attr);
8082510e
YZ
4826 if (err)
4827 return err;
39279cc3 4828 }
9036c102 4829
1025774c
CH
4830 if (attr->ia_valid) {
4831 setattr_copy(inode, attr);
0c4d2d95 4832 inode_inc_iversion(inode);
22c44fe6 4833 err = btrfs_dirty_inode(inode);
1025774c 4834
22c44fe6 4835 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 4836 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 4837 }
33268eaf 4838
39279cc3
CM
4839 return err;
4840}
61295eb8 4841
131e404a
FDBM
4842/*
4843 * While truncating the inode pages during eviction, we get the VFS calling
4844 * btrfs_invalidatepage() against each page of the inode. This is slow because
4845 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4846 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4847 * extent_state structures over and over, wasting lots of time.
4848 *
4849 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4850 * those expensive operations on a per page basis and do only the ordered io
4851 * finishing, while we release here the extent_map and extent_state structures,
4852 * without the excessive merging and splitting.
4853 */
4854static void evict_inode_truncate_pages(struct inode *inode)
4855{
4856 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4857 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4858 struct rb_node *node;
4859
4860 ASSERT(inode->i_state & I_FREEING);
91b0abe3 4861 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
4862
4863 write_lock(&map_tree->lock);
4864 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4865 struct extent_map *em;
4866
4867 node = rb_first(&map_tree->map);
4868 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4869 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4870 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4871 remove_extent_mapping(map_tree, em);
4872 free_extent_map(em);
7064dd5c
FM
4873 if (need_resched()) {
4874 write_unlock(&map_tree->lock);
4875 cond_resched();
4876 write_lock(&map_tree->lock);
4877 }
131e404a
FDBM
4878 }
4879 write_unlock(&map_tree->lock);
4880
4881 spin_lock(&io_tree->lock);
4882 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4883 struct extent_state *state;
4884 struct extent_state *cached_state = NULL;
4885
4886 node = rb_first(&io_tree->state);
4887 state = rb_entry(node, struct extent_state, rb_node);
4888 atomic_inc(&state->refs);
4889 spin_unlock(&io_tree->lock);
4890
4891 lock_extent_bits(io_tree, state->start, state->end,
4892 0, &cached_state);
4893 clear_extent_bit(io_tree, state->start, state->end,
4894 EXTENT_LOCKED | EXTENT_DIRTY |
4895 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4896 EXTENT_DEFRAG, 1, 1,
4897 &cached_state, GFP_NOFS);
4898 free_extent_state(state);
4899
7064dd5c 4900 cond_resched();
131e404a
FDBM
4901 spin_lock(&io_tree->lock);
4902 }
4903 spin_unlock(&io_tree->lock);
4904}
4905
bd555975 4906void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4907{
4908 struct btrfs_trans_handle *trans;
4909 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4910 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4911 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4912 int ret;
4913
1abe9b8a 4914 trace_btrfs_inode_evict(inode);
4915
131e404a
FDBM
4916 evict_inode_truncate_pages(inode);
4917
69e9c6c6
SB
4918 if (inode->i_nlink &&
4919 ((btrfs_root_refs(&root->root_item) != 0 &&
4920 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4921 btrfs_is_free_space_inode(inode)))
bd555975
AV
4922 goto no_delete;
4923
39279cc3 4924 if (is_bad_inode(inode)) {
7b128766 4925 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4926 goto no_delete;
4927 }
bd555975 4928 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4929 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4930
f612496b
MX
4931 btrfs_free_io_failure_record(inode, 0, (u64)-1);
4932
c71bf099 4933 if (root->fs_info->log_root_recovering) {
6bf02314 4934 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4935 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4936 goto no_delete;
4937 }
4938
76dda93c 4939 if (inode->i_nlink > 0) {
69e9c6c6
SB
4940 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4941 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
4942 goto no_delete;
4943 }
4944
0e8c36a9
MX
4945 ret = btrfs_commit_inode_delayed_inode(inode);
4946 if (ret) {
4947 btrfs_orphan_del(NULL, inode);
4948 goto no_delete;
4949 }
4950
66d8f3dd 4951 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4952 if (!rsv) {
4953 btrfs_orphan_del(NULL, inode);
4954 goto no_delete;
4955 }
4a338542 4956 rsv->size = min_size;
ca7e70f5 4957 rsv->failfast = 1;
726c35fa 4958 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4959
dbe674a9 4960 btrfs_i_size_write(inode, 0);
5f39d397 4961
4289a667 4962 /*
8407aa46
MX
4963 * This is a bit simpler than btrfs_truncate since we've already
4964 * reserved our space for our orphan item in the unlink, so we just
4965 * need to reserve some slack space in case we add bytes and update
4966 * inode item when doing the truncate.
4289a667 4967 */
8082510e 4968 while (1) {
08e007d2
MX
4969 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4970 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4971
4972 /*
4973 * Try and steal from the global reserve since we will
4974 * likely not use this space anyway, we want to try as
4975 * hard as possible to get this to work.
4976 */
4977 if (ret)
4978 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4979
d68fc57b 4980 if (ret) {
c2cf52eb
SK
4981 btrfs_warn(root->fs_info,
4982 "Could not get space for a delete, will truncate on mount %d",
4983 ret);
4289a667
JB
4984 btrfs_orphan_del(NULL, inode);
4985 btrfs_free_block_rsv(root, rsv);
4986 goto no_delete;
d68fc57b 4987 }
7b128766 4988
0e8c36a9 4989 trans = btrfs_join_transaction(root);
4289a667
JB
4990 if (IS_ERR(trans)) {
4991 btrfs_orphan_del(NULL, inode);
4992 btrfs_free_block_rsv(root, rsv);
4993 goto no_delete;
d68fc57b 4994 }
7b128766 4995
4289a667
JB
4996 trans->block_rsv = rsv;
4997
d68fc57b 4998 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4999 if (ret != -ENOSPC)
8082510e 5000 break;
85e21bac 5001
8407aa46 5002 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5003 btrfs_end_transaction(trans, root);
5004 trans = NULL;
b53d3f5d 5005 btrfs_btree_balance_dirty(root);
8082510e 5006 }
5f39d397 5007
4289a667
JB
5008 btrfs_free_block_rsv(root, rsv);
5009
4ef31a45
JB
5010 /*
5011 * Errors here aren't a big deal, it just means we leave orphan items
5012 * in the tree. They will be cleaned up on the next mount.
5013 */
8082510e 5014 if (ret == 0) {
4289a667 5015 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5016 btrfs_orphan_del(trans, inode);
5017 } else {
5018 btrfs_orphan_del(NULL, inode);
8082510e 5019 }
54aa1f4d 5020
4289a667 5021 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5022 if (!(root == root->fs_info->tree_root ||
5023 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5024 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5025
54aa1f4d 5026 btrfs_end_transaction(trans, root);
b53d3f5d 5027 btrfs_btree_balance_dirty(root);
39279cc3 5028no_delete:
89042e5a 5029 btrfs_remove_delayed_node(inode);
dbd5768f 5030 clear_inode(inode);
8082510e 5031 return;
39279cc3
CM
5032}
5033
5034/*
5035 * this returns the key found in the dir entry in the location pointer.
5036 * If no dir entries were found, location->objectid is 0.
5037 */
5038static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5039 struct btrfs_key *location)
5040{
5041 const char *name = dentry->d_name.name;
5042 int namelen = dentry->d_name.len;
5043 struct btrfs_dir_item *di;
5044 struct btrfs_path *path;
5045 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5046 int ret = 0;
39279cc3
CM
5047
5048 path = btrfs_alloc_path();
d8926bb3
MF
5049 if (!path)
5050 return -ENOMEM;
3954401f 5051
33345d01 5052 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5053 namelen, 0);
0d9f7f3e
Y
5054 if (IS_ERR(di))
5055 ret = PTR_ERR(di);
d397712b 5056
c704005d 5057 if (IS_ERR_OR_NULL(di))
3954401f 5058 goto out_err;
d397712b 5059
5f39d397 5060 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5061out:
39279cc3
CM
5062 btrfs_free_path(path);
5063 return ret;
3954401f
CM
5064out_err:
5065 location->objectid = 0;
5066 goto out;
39279cc3
CM
5067}
5068
5069/*
5070 * when we hit a tree root in a directory, the btrfs part of the inode
5071 * needs to be changed to reflect the root directory of the tree root. This
5072 * is kind of like crossing a mount point.
5073 */
5074static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5075 struct inode *dir,
5076 struct dentry *dentry,
5077 struct btrfs_key *location,
5078 struct btrfs_root **sub_root)
39279cc3 5079{
4df27c4d
YZ
5080 struct btrfs_path *path;
5081 struct btrfs_root *new_root;
5082 struct btrfs_root_ref *ref;
5083 struct extent_buffer *leaf;
1d4c08e0 5084 struct btrfs_key key;
4df27c4d
YZ
5085 int ret;
5086 int err = 0;
39279cc3 5087
4df27c4d
YZ
5088 path = btrfs_alloc_path();
5089 if (!path) {
5090 err = -ENOMEM;
5091 goto out;
5092 }
39279cc3 5093
4df27c4d 5094 err = -ENOENT;
1d4c08e0
DS
5095 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5096 key.type = BTRFS_ROOT_REF_KEY;
5097 key.offset = location->objectid;
5098
5099 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5100 0, 0);
4df27c4d
YZ
5101 if (ret) {
5102 if (ret < 0)
5103 err = ret;
5104 goto out;
5105 }
39279cc3 5106
4df27c4d
YZ
5107 leaf = path->nodes[0];
5108 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5109 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5110 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5111 goto out;
39279cc3 5112
4df27c4d
YZ
5113 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5114 (unsigned long)(ref + 1),
5115 dentry->d_name.len);
5116 if (ret)
5117 goto out;
5118
b3b4aa74 5119 btrfs_release_path(path);
4df27c4d
YZ
5120
5121 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5122 if (IS_ERR(new_root)) {
5123 err = PTR_ERR(new_root);
5124 goto out;
5125 }
5126
4df27c4d
YZ
5127 *sub_root = new_root;
5128 location->objectid = btrfs_root_dirid(&new_root->root_item);
5129 location->type = BTRFS_INODE_ITEM_KEY;
5130 location->offset = 0;
5131 err = 0;
5132out:
5133 btrfs_free_path(path);
5134 return err;
39279cc3
CM
5135}
5136
5d4f98a2
YZ
5137static void inode_tree_add(struct inode *inode)
5138{
5139 struct btrfs_root *root = BTRFS_I(inode)->root;
5140 struct btrfs_inode *entry;
03e860bd
FNP
5141 struct rb_node **p;
5142 struct rb_node *parent;
cef21937 5143 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5144 u64 ino = btrfs_ino(inode);
5d4f98a2 5145
1d3382cb 5146 if (inode_unhashed(inode))
76dda93c 5147 return;
e1409cef 5148 parent = NULL;
5d4f98a2 5149 spin_lock(&root->inode_lock);
e1409cef 5150 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5151 while (*p) {
5152 parent = *p;
5153 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5154
33345d01 5155 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5156 p = &parent->rb_left;
33345d01 5157 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5158 p = &parent->rb_right;
5d4f98a2
YZ
5159 else {
5160 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5161 (I_WILL_FREE | I_FREEING)));
cef21937 5162 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5163 RB_CLEAR_NODE(parent);
5164 spin_unlock(&root->inode_lock);
cef21937 5165 return;
5d4f98a2
YZ
5166 }
5167 }
cef21937
FDBM
5168 rb_link_node(new, parent, p);
5169 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5170 spin_unlock(&root->inode_lock);
5171}
5172
5173static void inode_tree_del(struct inode *inode)
5174{
5175 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5176 int empty = 0;
5d4f98a2 5177
03e860bd 5178 spin_lock(&root->inode_lock);
5d4f98a2 5179 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5180 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5181 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5182 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5183 }
03e860bd 5184 spin_unlock(&root->inode_lock);
76dda93c 5185
69e9c6c6 5186 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5187 synchronize_srcu(&root->fs_info->subvol_srcu);
5188 spin_lock(&root->inode_lock);
5189 empty = RB_EMPTY_ROOT(&root->inode_tree);
5190 spin_unlock(&root->inode_lock);
5191 if (empty)
5192 btrfs_add_dead_root(root);
5193 }
5194}
5195
143bede5 5196void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5197{
5198 struct rb_node *node;
5199 struct rb_node *prev;
5200 struct btrfs_inode *entry;
5201 struct inode *inode;
5202 u64 objectid = 0;
5203
7813b3db
LB
5204 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5205 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5206
5207 spin_lock(&root->inode_lock);
5208again:
5209 node = root->inode_tree.rb_node;
5210 prev = NULL;
5211 while (node) {
5212 prev = node;
5213 entry = rb_entry(node, struct btrfs_inode, rb_node);
5214
33345d01 5215 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5216 node = node->rb_left;
33345d01 5217 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5218 node = node->rb_right;
5219 else
5220 break;
5221 }
5222 if (!node) {
5223 while (prev) {
5224 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5225 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5226 node = prev;
5227 break;
5228 }
5229 prev = rb_next(prev);
5230 }
5231 }
5232 while (node) {
5233 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5234 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5235 inode = igrab(&entry->vfs_inode);
5236 if (inode) {
5237 spin_unlock(&root->inode_lock);
5238 if (atomic_read(&inode->i_count) > 1)
5239 d_prune_aliases(inode);
5240 /*
45321ac5 5241 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5242 * the inode cache when its usage count
5243 * hits zero.
5244 */
5245 iput(inode);
5246 cond_resched();
5247 spin_lock(&root->inode_lock);
5248 goto again;
5249 }
5250
5251 if (cond_resched_lock(&root->inode_lock))
5252 goto again;
5253
5254 node = rb_next(node);
5255 }
5256 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5257}
5258
e02119d5
CM
5259static int btrfs_init_locked_inode(struct inode *inode, void *p)
5260{
5261 struct btrfs_iget_args *args = p;
90d3e592
CM
5262 inode->i_ino = args->location->objectid;
5263 memcpy(&BTRFS_I(inode)->location, args->location,
5264 sizeof(*args->location));
e02119d5 5265 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5266 return 0;
5267}
5268
5269static int btrfs_find_actor(struct inode *inode, void *opaque)
5270{
5271 struct btrfs_iget_args *args = opaque;
90d3e592 5272 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5273 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5274}
5275
5d4f98a2 5276static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5277 struct btrfs_key *location,
5d4f98a2 5278 struct btrfs_root *root)
39279cc3
CM
5279{
5280 struct inode *inode;
5281 struct btrfs_iget_args args;
90d3e592 5282 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5283
90d3e592 5284 args.location = location;
39279cc3
CM
5285 args.root = root;
5286
778ba82b 5287 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5288 btrfs_init_locked_inode,
5289 (void *)&args);
5290 return inode;
5291}
5292
1a54ef8c
BR
5293/* Get an inode object given its location and corresponding root.
5294 * Returns in *is_new if the inode was read from disk
5295 */
5296struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5297 struct btrfs_root *root, int *new)
1a54ef8c
BR
5298{
5299 struct inode *inode;
5300
90d3e592 5301 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5302 if (!inode)
5d4f98a2 5303 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5304
5305 if (inode->i_state & I_NEW) {
1a54ef8c 5306 btrfs_read_locked_inode(inode);
1748f843
MF
5307 if (!is_bad_inode(inode)) {
5308 inode_tree_add(inode);
5309 unlock_new_inode(inode);
5310 if (new)
5311 *new = 1;
5312 } else {
e0b6d65b
ST
5313 unlock_new_inode(inode);
5314 iput(inode);
5315 inode = ERR_PTR(-ESTALE);
1748f843
MF
5316 }
5317 }
5318
1a54ef8c
BR
5319 return inode;
5320}
5321
4df27c4d
YZ
5322static struct inode *new_simple_dir(struct super_block *s,
5323 struct btrfs_key *key,
5324 struct btrfs_root *root)
5325{
5326 struct inode *inode = new_inode(s);
5327
5328 if (!inode)
5329 return ERR_PTR(-ENOMEM);
5330
4df27c4d
YZ
5331 BTRFS_I(inode)->root = root;
5332 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5333 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5334
5335 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5336 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5337 inode->i_fop = &simple_dir_operations;
5338 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
9cc97d64 5339 inode->i_mtime = CURRENT_TIME;
5340 inode->i_atime = inode->i_mtime;
5341 inode->i_ctime = inode->i_mtime;
5342 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5343
5344 return inode;
5345}
5346
3de4586c 5347struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5348{
d397712b 5349 struct inode *inode;
4df27c4d 5350 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5351 struct btrfs_root *sub_root = root;
5352 struct btrfs_key location;
76dda93c 5353 int index;
b4aff1f8 5354 int ret = 0;
39279cc3
CM
5355
5356 if (dentry->d_name.len > BTRFS_NAME_LEN)
5357 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5358
39e3c955 5359 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5360 if (ret < 0)
5361 return ERR_PTR(ret);
5f39d397 5362
4df27c4d 5363 if (location.objectid == 0)
5662344b 5364 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5365
5366 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5367 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5368 return inode;
5369 }
5370
5371 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5372
76dda93c 5373 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5374 ret = fixup_tree_root_location(root, dir, dentry,
5375 &location, &sub_root);
5376 if (ret < 0) {
5377 if (ret != -ENOENT)
5378 inode = ERR_PTR(ret);
5379 else
5380 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5381 } else {
73f73415 5382 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5383 }
76dda93c
YZ
5384 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5385
34d19bad 5386 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5387 down_read(&root->fs_info->cleanup_work_sem);
5388 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5389 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5390 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5391 if (ret) {
5392 iput(inode);
66b4ffd1 5393 inode = ERR_PTR(ret);
01cd3367 5394 }
c71bf099
YZ
5395 }
5396
3de4586c
CM
5397 return inode;
5398}
5399
fe15ce44 5400static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5401{
5402 struct btrfs_root *root;
848cce0d 5403 struct inode *inode = dentry->d_inode;
76dda93c 5404
848cce0d
LZ
5405 if (!inode && !IS_ROOT(dentry))
5406 inode = dentry->d_parent->d_inode;
76dda93c 5407
848cce0d
LZ
5408 if (inode) {
5409 root = BTRFS_I(inode)->root;
efefb143
YZ
5410 if (btrfs_root_refs(&root->root_item) == 0)
5411 return 1;
848cce0d
LZ
5412
5413 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5414 return 1;
efefb143 5415 }
76dda93c
YZ
5416 return 0;
5417}
5418
b4aff1f8
JB
5419static void btrfs_dentry_release(struct dentry *dentry)
5420{
944a4515 5421 kfree(dentry->d_fsdata);
b4aff1f8
JB
5422}
5423
3de4586c 5424static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5425 unsigned int flags)
3de4586c 5426{
5662344b 5427 struct inode *inode;
a66e7cc6 5428
5662344b
TI
5429 inode = btrfs_lookup_dentry(dir, dentry);
5430 if (IS_ERR(inode)) {
5431 if (PTR_ERR(inode) == -ENOENT)
5432 inode = NULL;
5433 else
5434 return ERR_CAST(inode);
5435 }
5436
41d28bca 5437 return d_splice_alias(inode, dentry);
39279cc3
CM
5438}
5439
16cdcec7 5440unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5441 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5442};
5443
9cdda8d3 5444static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5445{
9cdda8d3 5446 struct inode *inode = file_inode(file);
39279cc3
CM
5447 struct btrfs_root *root = BTRFS_I(inode)->root;
5448 struct btrfs_item *item;
5449 struct btrfs_dir_item *di;
5450 struct btrfs_key key;
5f39d397 5451 struct btrfs_key found_key;
39279cc3 5452 struct btrfs_path *path;
16cdcec7
MX
5453 struct list_head ins_list;
5454 struct list_head del_list;
39279cc3 5455 int ret;
5f39d397 5456 struct extent_buffer *leaf;
39279cc3 5457 int slot;
39279cc3
CM
5458 unsigned char d_type;
5459 int over = 0;
5460 u32 di_cur;
5461 u32 di_total;
5462 u32 di_len;
5463 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5464 char tmp_name[32];
5465 char *name_ptr;
5466 int name_len;
9cdda8d3 5467 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5468
5469 /* FIXME, use a real flag for deciding about the key type */
5470 if (root->fs_info->tree_root == root)
5471 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5472
9cdda8d3
AV
5473 if (!dir_emit_dots(file, ctx))
5474 return 0;
5475
49593bfa 5476 path = btrfs_alloc_path();
16cdcec7
MX
5477 if (!path)
5478 return -ENOMEM;
ff5714cc 5479
026fd317 5480 path->reada = 1;
49593bfa 5481
16cdcec7
MX
5482 if (key_type == BTRFS_DIR_INDEX_KEY) {
5483 INIT_LIST_HEAD(&ins_list);
5484 INIT_LIST_HEAD(&del_list);
5485 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5486 }
5487
962a298f 5488 key.type = key_type;
9cdda8d3 5489 key.offset = ctx->pos;
33345d01 5490 key.objectid = btrfs_ino(inode);
5f39d397 5491
39279cc3
CM
5492 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5493 if (ret < 0)
5494 goto err;
49593bfa
DW
5495
5496 while (1) {
5f39d397 5497 leaf = path->nodes[0];
39279cc3 5498 slot = path->slots[0];
b9e03af0
LZ
5499 if (slot >= btrfs_header_nritems(leaf)) {
5500 ret = btrfs_next_leaf(root, path);
5501 if (ret < 0)
5502 goto err;
5503 else if (ret > 0)
5504 break;
5505 continue;
39279cc3 5506 }
3de4586c 5507
dd3cc16b 5508 item = btrfs_item_nr(slot);
5f39d397
CM
5509 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5510
5511 if (found_key.objectid != key.objectid)
39279cc3 5512 break;
962a298f 5513 if (found_key.type != key_type)
39279cc3 5514 break;
9cdda8d3 5515 if (found_key.offset < ctx->pos)
b9e03af0 5516 goto next;
16cdcec7
MX
5517 if (key_type == BTRFS_DIR_INDEX_KEY &&
5518 btrfs_should_delete_dir_index(&del_list,
5519 found_key.offset))
5520 goto next;
5f39d397 5521
9cdda8d3 5522 ctx->pos = found_key.offset;
16cdcec7 5523 is_curr = 1;
49593bfa 5524
39279cc3
CM
5525 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5526 di_cur = 0;
5f39d397 5527 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5528
5529 while (di_cur < di_total) {
5f39d397
CM
5530 struct btrfs_key location;
5531
22a94d44
JB
5532 if (verify_dir_item(root, leaf, di))
5533 break;
5534
5f39d397 5535 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5536 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5537 name_ptr = tmp_name;
5538 } else {
5539 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5540 if (!name_ptr) {
5541 ret = -ENOMEM;
5542 goto err;
5543 }
5f39d397
CM
5544 }
5545 read_extent_buffer(leaf, name_ptr,
5546 (unsigned long)(di + 1), name_len);
5547
5548 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5549 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5550
fede766f 5551
3de4586c 5552 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5553 * skip it.
5554 *
5555 * In contrast to old kernels, we insert the snapshot's
5556 * dir item and dir index after it has been created, so
5557 * we won't find a reference to our own snapshot. We
5558 * still keep the following code for backward
5559 * compatibility.
3de4586c
CM
5560 */
5561 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5562 location.objectid == root->root_key.objectid) {
5563 over = 0;
5564 goto skip;
5565 }
9cdda8d3
AV
5566 over = !dir_emit(ctx, name_ptr, name_len,
5567 location.objectid, d_type);
5f39d397 5568
3de4586c 5569skip:
5f39d397
CM
5570 if (name_ptr != tmp_name)
5571 kfree(name_ptr);
5572
39279cc3
CM
5573 if (over)
5574 goto nopos;
5103e947 5575 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5576 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5577 di_cur += di_len;
5578 di = (struct btrfs_dir_item *)((char *)di + di_len);
5579 }
b9e03af0
LZ
5580next:
5581 path->slots[0]++;
39279cc3 5582 }
49593bfa 5583
16cdcec7
MX
5584 if (key_type == BTRFS_DIR_INDEX_KEY) {
5585 if (is_curr)
9cdda8d3
AV
5586 ctx->pos++;
5587 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5588 if (ret)
5589 goto nopos;
5590 }
5591
49593bfa 5592 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5593 ctx->pos++;
5594
5595 /*
5596 * Stop new entries from being returned after we return the last
5597 * entry.
5598 *
5599 * New directory entries are assigned a strictly increasing
5600 * offset. This means that new entries created during readdir
5601 * are *guaranteed* to be seen in the future by that readdir.
5602 * This has broken buggy programs which operate on names as
5603 * they're returned by readdir. Until we re-use freed offsets
5604 * we have this hack to stop new entries from being returned
5605 * under the assumption that they'll never reach this huge
5606 * offset.
5607 *
5608 * This is being careful not to overflow 32bit loff_t unless the
5609 * last entry requires it because doing so has broken 32bit apps
5610 * in the past.
5611 */
5612 if (key_type == BTRFS_DIR_INDEX_KEY) {
5613 if (ctx->pos >= INT_MAX)
5614 ctx->pos = LLONG_MAX;
5615 else
5616 ctx->pos = INT_MAX;
5617 }
39279cc3
CM
5618nopos:
5619 ret = 0;
5620err:
16cdcec7
MX
5621 if (key_type == BTRFS_DIR_INDEX_KEY)
5622 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5623 btrfs_free_path(path);
39279cc3
CM
5624 return ret;
5625}
5626
a9185b41 5627int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5628{
5629 struct btrfs_root *root = BTRFS_I(inode)->root;
5630 struct btrfs_trans_handle *trans;
5631 int ret = 0;
0af3d00b 5632 bool nolock = false;
39279cc3 5633
72ac3c0d 5634 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5635 return 0;
5636
83eea1f1 5637 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5638 nolock = true;
0af3d00b 5639
a9185b41 5640 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5641 if (nolock)
7a7eaa40 5642 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5643 else
7a7eaa40 5644 trans = btrfs_join_transaction(root);
3612b495
TI
5645 if (IS_ERR(trans))
5646 return PTR_ERR(trans);
a698d075 5647 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5648 }
5649 return ret;
5650}
5651
5652/*
54aa1f4d 5653 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5654 * inode changes. But, it is most likely to find the inode in cache.
5655 * FIXME, needs more benchmarking...there are no reasons other than performance
5656 * to keep or drop this code.
5657 */
48a3b636 5658static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5659{
5660 struct btrfs_root *root = BTRFS_I(inode)->root;
5661 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5662 int ret;
5663
72ac3c0d 5664 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5665 return 0;
39279cc3 5666
7a7eaa40 5667 trans = btrfs_join_transaction(root);
22c44fe6
JB
5668 if (IS_ERR(trans))
5669 return PTR_ERR(trans);
8929ecfa
YZ
5670
5671 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5672 if (ret && ret == -ENOSPC) {
5673 /* whoops, lets try again with the full transaction */
5674 btrfs_end_transaction(trans, root);
5675 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5676 if (IS_ERR(trans))
5677 return PTR_ERR(trans);
8929ecfa 5678
94b60442 5679 ret = btrfs_update_inode(trans, root, inode);
94b60442 5680 }
39279cc3 5681 btrfs_end_transaction(trans, root);
16cdcec7
MX
5682 if (BTRFS_I(inode)->delayed_node)
5683 btrfs_balance_delayed_items(root);
22c44fe6
JB
5684
5685 return ret;
5686}
5687
5688/*
5689 * This is a copy of file_update_time. We need this so we can return error on
5690 * ENOSPC for updating the inode in the case of file write and mmap writes.
5691 */
e41f941a
JB
5692static int btrfs_update_time(struct inode *inode, struct timespec *now,
5693 int flags)
22c44fe6 5694{
2bc55652
AB
5695 struct btrfs_root *root = BTRFS_I(inode)->root;
5696
5697 if (btrfs_root_readonly(root))
5698 return -EROFS;
5699
e41f941a 5700 if (flags & S_VERSION)
22c44fe6 5701 inode_inc_iversion(inode);
e41f941a
JB
5702 if (flags & S_CTIME)
5703 inode->i_ctime = *now;
5704 if (flags & S_MTIME)
5705 inode->i_mtime = *now;
5706 if (flags & S_ATIME)
5707 inode->i_atime = *now;
5708 return btrfs_dirty_inode(inode);
39279cc3
CM
5709}
5710
d352ac68
CM
5711/*
5712 * find the highest existing sequence number in a directory
5713 * and then set the in-memory index_cnt variable to reflect
5714 * free sequence numbers
5715 */
aec7477b
JB
5716static int btrfs_set_inode_index_count(struct inode *inode)
5717{
5718 struct btrfs_root *root = BTRFS_I(inode)->root;
5719 struct btrfs_key key, found_key;
5720 struct btrfs_path *path;
5721 struct extent_buffer *leaf;
5722 int ret;
5723
33345d01 5724 key.objectid = btrfs_ino(inode);
962a298f 5725 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5726 key.offset = (u64)-1;
5727
5728 path = btrfs_alloc_path();
5729 if (!path)
5730 return -ENOMEM;
5731
5732 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5733 if (ret < 0)
5734 goto out;
5735 /* FIXME: we should be able to handle this */
5736 if (ret == 0)
5737 goto out;
5738 ret = 0;
5739
5740 /*
5741 * MAGIC NUMBER EXPLANATION:
5742 * since we search a directory based on f_pos we have to start at 2
5743 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5744 * else has to start at 2
5745 */
5746 if (path->slots[0] == 0) {
5747 BTRFS_I(inode)->index_cnt = 2;
5748 goto out;
5749 }
5750
5751 path->slots[0]--;
5752
5753 leaf = path->nodes[0];
5754 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5755
33345d01 5756 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 5757 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
5758 BTRFS_I(inode)->index_cnt = 2;
5759 goto out;
5760 }
5761
5762 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5763out:
5764 btrfs_free_path(path);
5765 return ret;
5766}
5767
d352ac68
CM
5768/*
5769 * helper to find a free sequence number in a given directory. This current
5770 * code is very simple, later versions will do smarter things in the btree
5771 */
3de4586c 5772int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5773{
5774 int ret = 0;
5775
5776 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5777 ret = btrfs_inode_delayed_dir_index_count(dir);
5778 if (ret) {
5779 ret = btrfs_set_inode_index_count(dir);
5780 if (ret)
5781 return ret;
5782 }
aec7477b
JB
5783 }
5784
00e4e6b3 5785 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5786 BTRFS_I(dir)->index_cnt++;
5787
5788 return ret;
5789}
5790
b0d5d10f
CM
5791static int btrfs_insert_inode_locked(struct inode *inode)
5792{
5793 struct btrfs_iget_args args;
5794 args.location = &BTRFS_I(inode)->location;
5795 args.root = BTRFS_I(inode)->root;
5796
5797 return insert_inode_locked4(inode,
5798 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5799 btrfs_find_actor, &args);
5800}
5801
39279cc3
CM
5802static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5803 struct btrfs_root *root,
aec7477b 5804 struct inode *dir,
9c58309d 5805 const char *name, int name_len,
175a4eb7
AV
5806 u64 ref_objectid, u64 objectid,
5807 umode_t mode, u64 *index)
39279cc3
CM
5808{
5809 struct inode *inode;
5f39d397 5810 struct btrfs_inode_item *inode_item;
39279cc3 5811 struct btrfs_key *location;
5f39d397 5812 struct btrfs_path *path;
9c58309d
CM
5813 struct btrfs_inode_ref *ref;
5814 struct btrfs_key key[2];
5815 u32 sizes[2];
ef3b9af5 5816 int nitems = name ? 2 : 1;
9c58309d 5817 unsigned long ptr;
39279cc3 5818 int ret;
39279cc3 5819
5f39d397 5820 path = btrfs_alloc_path();
d8926bb3
MF
5821 if (!path)
5822 return ERR_PTR(-ENOMEM);
5f39d397 5823
39279cc3 5824 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5825 if (!inode) {
5826 btrfs_free_path(path);
39279cc3 5827 return ERR_PTR(-ENOMEM);
8fb27640 5828 }
39279cc3 5829
5762b5c9
FM
5830 /*
5831 * O_TMPFILE, set link count to 0, so that after this point,
5832 * we fill in an inode item with the correct link count.
5833 */
5834 if (!name)
5835 set_nlink(inode, 0);
5836
581bb050
LZ
5837 /*
5838 * we have to initialize this early, so we can reclaim the inode
5839 * number if we fail afterwards in this function.
5840 */
5841 inode->i_ino = objectid;
5842
ef3b9af5 5843 if (dir && name) {
1abe9b8a 5844 trace_btrfs_inode_request(dir);
5845
3de4586c 5846 ret = btrfs_set_inode_index(dir, index);
09771430 5847 if (ret) {
8fb27640 5848 btrfs_free_path(path);
09771430 5849 iput(inode);
aec7477b 5850 return ERR_PTR(ret);
09771430 5851 }
ef3b9af5
FM
5852 } else if (dir) {
5853 *index = 0;
aec7477b
JB
5854 }
5855 /*
5856 * index_cnt is ignored for everything but a dir,
5857 * btrfs_get_inode_index_count has an explanation for the magic
5858 * number
5859 */
5860 BTRFS_I(inode)->index_cnt = 2;
67de1176 5861 BTRFS_I(inode)->dir_index = *index;
39279cc3 5862 BTRFS_I(inode)->root = root;
e02119d5 5863 BTRFS_I(inode)->generation = trans->transid;
76195853 5864 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5865
5dc562c5
JB
5866 /*
5867 * We could have gotten an inode number from somebody who was fsynced
5868 * and then removed in this same transaction, so let's just set full
5869 * sync since it will be a full sync anyway and this will blow away the
5870 * old info in the log.
5871 */
5872 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5873
9c58309d 5874 key[0].objectid = objectid;
962a298f 5875 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
5876 key[0].offset = 0;
5877
9c58309d 5878 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
5879
5880 if (name) {
5881 /*
5882 * Start new inodes with an inode_ref. This is slightly more
5883 * efficient for small numbers of hard links since they will
5884 * be packed into one item. Extended refs will kick in if we
5885 * add more hard links than can fit in the ref item.
5886 */
5887 key[1].objectid = objectid;
962a298f 5888 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
5889 key[1].offset = ref_objectid;
5890
5891 sizes[1] = name_len + sizeof(*ref);
5892 }
9c58309d 5893
b0d5d10f
CM
5894 location = &BTRFS_I(inode)->location;
5895 location->objectid = objectid;
5896 location->offset = 0;
962a298f 5897 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
5898
5899 ret = btrfs_insert_inode_locked(inode);
5900 if (ret < 0)
5901 goto fail;
5902
b9473439 5903 path->leave_spinning = 1;
ef3b9af5 5904 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 5905 if (ret != 0)
b0d5d10f 5906 goto fail_unlock;
5f39d397 5907
ecc11fab 5908 inode_init_owner(inode, dir, mode);
a76a3cd4 5909 inode_set_bytes(inode, 0);
9cc97d64 5910
5911 inode->i_mtime = CURRENT_TIME;
5912 inode->i_atime = inode->i_mtime;
5913 inode->i_ctime = inode->i_mtime;
5914 BTRFS_I(inode)->i_otime = inode->i_mtime;
5915
5f39d397
CM
5916 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5917 struct btrfs_inode_item);
293f7e07
LZ
5918 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5919 sizeof(*inode_item));
e02119d5 5920 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 5921
ef3b9af5
FM
5922 if (name) {
5923 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5924 struct btrfs_inode_ref);
5925 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5926 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5927 ptr = (unsigned long)(ref + 1);
5928 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5929 }
9c58309d 5930
5f39d397
CM
5931 btrfs_mark_buffer_dirty(path->nodes[0]);
5932 btrfs_free_path(path);
5933
6cbff00f
CH
5934 btrfs_inherit_iflags(inode, dir);
5935
569254b0 5936 if (S_ISREG(mode)) {
94272164
CM
5937 if (btrfs_test_opt(root, NODATASUM))
5938 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5939 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5940 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5941 BTRFS_INODE_NODATASUM;
94272164
CM
5942 }
5943
5d4f98a2 5944 inode_tree_add(inode);
1abe9b8a 5945
5946 trace_btrfs_inode_new(inode);
1973f0fa 5947 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5948
8ea05e3a
AB
5949 btrfs_update_root_times(trans, root);
5950
63541927
FDBM
5951 ret = btrfs_inode_inherit_props(trans, inode, dir);
5952 if (ret)
5953 btrfs_err(root->fs_info,
5954 "error inheriting props for ino %llu (root %llu): %d",
5955 btrfs_ino(inode), root->root_key.objectid, ret);
5956
39279cc3 5957 return inode;
b0d5d10f
CM
5958
5959fail_unlock:
5960 unlock_new_inode(inode);
5f39d397 5961fail:
ef3b9af5 5962 if (dir && name)
aec7477b 5963 BTRFS_I(dir)->index_cnt--;
5f39d397 5964 btrfs_free_path(path);
09771430 5965 iput(inode);
5f39d397 5966 return ERR_PTR(ret);
39279cc3
CM
5967}
5968
5969static inline u8 btrfs_inode_type(struct inode *inode)
5970{
5971 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5972}
5973
d352ac68
CM
5974/*
5975 * utility function to add 'inode' into 'parent_inode' with
5976 * a give name and a given sequence number.
5977 * if 'add_backref' is true, also insert a backref from the
5978 * inode to the parent directory.
5979 */
e02119d5
CM
5980int btrfs_add_link(struct btrfs_trans_handle *trans,
5981 struct inode *parent_inode, struct inode *inode,
5982 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5983{
4df27c4d 5984 int ret = 0;
39279cc3 5985 struct btrfs_key key;
e02119d5 5986 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5987 u64 ino = btrfs_ino(inode);
5988 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5989
33345d01 5990 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5991 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5992 } else {
33345d01 5993 key.objectid = ino;
962a298f 5994 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
5995 key.offset = 0;
5996 }
5997
33345d01 5998 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5999 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6000 key.objectid, root->root_key.objectid,
33345d01 6001 parent_ino, index, name, name_len);
4df27c4d 6002 } else if (add_backref) {
33345d01
LZ
6003 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6004 parent_ino, index);
4df27c4d 6005 }
39279cc3 6006
79787eaa
JM
6007 /* Nothing to clean up yet */
6008 if (ret)
6009 return ret;
4df27c4d 6010
79787eaa
JM
6011 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6012 parent_inode, &key,
6013 btrfs_inode_type(inode), index);
9c52057c 6014 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6015 goto fail_dir_item;
6016 else if (ret) {
6017 btrfs_abort_transaction(trans, root, ret);
6018 return ret;
39279cc3 6019 }
79787eaa
JM
6020
6021 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6022 name_len * 2);
0c4d2d95 6023 inode_inc_iversion(parent_inode);
79787eaa
JM
6024 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6025 ret = btrfs_update_inode(trans, root, parent_inode);
6026 if (ret)
6027 btrfs_abort_transaction(trans, root, ret);
39279cc3 6028 return ret;
fe66a05a
CM
6029
6030fail_dir_item:
6031 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6032 u64 local_index;
6033 int err;
6034 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6035 key.objectid, root->root_key.objectid,
6036 parent_ino, &local_index, name, name_len);
6037
6038 } else if (add_backref) {
6039 u64 local_index;
6040 int err;
6041
6042 err = btrfs_del_inode_ref(trans, root, name, name_len,
6043 ino, parent_ino, &local_index);
6044 }
6045 return ret;
39279cc3
CM
6046}
6047
6048static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6049 struct inode *dir, struct dentry *dentry,
6050 struct inode *inode, int backref, u64 index)
39279cc3 6051{
a1b075d2
JB
6052 int err = btrfs_add_link(trans, dir, inode,
6053 dentry->d_name.name, dentry->d_name.len,
6054 backref, index);
39279cc3
CM
6055 if (err > 0)
6056 err = -EEXIST;
6057 return err;
6058}
6059
618e21d5 6060static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6061 umode_t mode, dev_t rdev)
618e21d5
JB
6062{
6063 struct btrfs_trans_handle *trans;
6064 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6065 struct inode *inode = NULL;
618e21d5
JB
6066 int err;
6067 int drop_inode = 0;
6068 u64 objectid;
00e4e6b3 6069 u64 index = 0;
618e21d5
JB
6070
6071 if (!new_valid_dev(rdev))
6072 return -EINVAL;
6073
9ed74f2d
JB
6074 /*
6075 * 2 for inode item and ref
6076 * 2 for dir items
6077 * 1 for xattr if selinux is on
6078 */
a22285a6
YZ
6079 trans = btrfs_start_transaction(root, 5);
6080 if (IS_ERR(trans))
6081 return PTR_ERR(trans);
1832a6d5 6082
581bb050
LZ
6083 err = btrfs_find_free_ino(root, &objectid);
6084 if (err)
6085 goto out_unlock;
6086
aec7477b 6087 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6088 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6089 mode, &index);
7cf96da3
TI
6090 if (IS_ERR(inode)) {
6091 err = PTR_ERR(inode);
618e21d5 6092 goto out_unlock;
7cf96da3 6093 }
618e21d5 6094
ad19db71
CS
6095 /*
6096 * If the active LSM wants to access the inode during
6097 * d_instantiate it needs these. Smack checks to see
6098 * if the filesystem supports xattrs by looking at the
6099 * ops vector.
6100 */
ad19db71 6101 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6102 init_special_inode(inode, inode->i_mode, rdev);
6103
6104 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6105 if (err)
b0d5d10f
CM
6106 goto out_unlock_inode;
6107
6108 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6109 if (err) {
6110 goto out_unlock_inode;
6111 } else {
1b4ab1bb 6112 btrfs_update_inode(trans, root, inode);
b0d5d10f 6113 unlock_new_inode(inode);
08c422c2 6114 d_instantiate(dentry, inode);
618e21d5 6115 }
b0d5d10f 6116
618e21d5 6117out_unlock:
7ad85bb7 6118 btrfs_end_transaction(trans, root);
c581afc8 6119 btrfs_balance_delayed_items(root);
b53d3f5d 6120 btrfs_btree_balance_dirty(root);
618e21d5
JB
6121 if (drop_inode) {
6122 inode_dec_link_count(inode);
6123 iput(inode);
6124 }
618e21d5 6125 return err;
b0d5d10f
CM
6126
6127out_unlock_inode:
6128 drop_inode = 1;
6129 unlock_new_inode(inode);
6130 goto out_unlock;
6131
618e21d5
JB
6132}
6133
39279cc3 6134static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6135 umode_t mode, bool excl)
39279cc3
CM
6136{
6137 struct btrfs_trans_handle *trans;
6138 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6139 struct inode *inode = NULL;
43baa579 6140 int drop_inode_on_err = 0;
a22285a6 6141 int err;
39279cc3 6142 u64 objectid;
00e4e6b3 6143 u64 index = 0;
39279cc3 6144
9ed74f2d
JB
6145 /*
6146 * 2 for inode item and ref
6147 * 2 for dir items
6148 * 1 for xattr if selinux is on
6149 */
a22285a6
YZ
6150 trans = btrfs_start_transaction(root, 5);
6151 if (IS_ERR(trans))
6152 return PTR_ERR(trans);
9ed74f2d 6153
581bb050
LZ
6154 err = btrfs_find_free_ino(root, &objectid);
6155 if (err)
6156 goto out_unlock;
6157
aec7477b 6158 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6159 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6160 mode, &index);
7cf96da3
TI
6161 if (IS_ERR(inode)) {
6162 err = PTR_ERR(inode);
39279cc3 6163 goto out_unlock;
7cf96da3 6164 }
43baa579 6165 drop_inode_on_err = 1;
ad19db71
CS
6166 /*
6167 * If the active LSM wants to access the inode during
6168 * d_instantiate it needs these. Smack checks to see
6169 * if the filesystem supports xattrs by looking at the
6170 * ops vector.
6171 */
6172 inode->i_fop = &btrfs_file_operations;
6173 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f
CM
6174 inode->i_mapping->a_ops = &btrfs_aops;
6175 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6176
6177 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6178 if (err)
6179 goto out_unlock_inode;
6180
6181 err = btrfs_update_inode(trans, root, inode);
6182 if (err)
6183 goto out_unlock_inode;
ad19db71 6184
a1b075d2 6185 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6186 if (err)
b0d5d10f 6187 goto out_unlock_inode;
43baa579 6188
43baa579 6189 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6190 unlock_new_inode(inode);
43baa579
FB
6191 d_instantiate(dentry, inode);
6192
39279cc3 6193out_unlock:
7ad85bb7 6194 btrfs_end_transaction(trans, root);
43baa579 6195 if (err && drop_inode_on_err) {
39279cc3
CM
6196 inode_dec_link_count(inode);
6197 iput(inode);
6198 }
c581afc8 6199 btrfs_balance_delayed_items(root);
b53d3f5d 6200 btrfs_btree_balance_dirty(root);
39279cc3 6201 return err;
b0d5d10f
CM
6202
6203out_unlock_inode:
6204 unlock_new_inode(inode);
6205 goto out_unlock;
6206
39279cc3
CM
6207}
6208
6209static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6210 struct dentry *dentry)
6211{
6212 struct btrfs_trans_handle *trans;
6213 struct btrfs_root *root = BTRFS_I(dir)->root;
6214 struct inode *inode = old_dentry->d_inode;
00e4e6b3 6215 u64 index;
39279cc3
CM
6216 int err;
6217 int drop_inode = 0;
6218
4a8be425
TH
6219 /* do not allow sys_link's with other subvols of the same device */
6220 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6221 return -EXDEV;
4a8be425 6222
f186373f 6223 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6224 return -EMLINK;
4a8be425 6225
3de4586c 6226 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6227 if (err)
6228 goto fail;
6229
a22285a6 6230 /*
7e6b6465 6231 * 2 items for inode and inode ref
a22285a6 6232 * 2 items for dir items
7e6b6465 6233 * 1 item for parent inode
a22285a6 6234 */
7e6b6465 6235 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6236 if (IS_ERR(trans)) {
6237 err = PTR_ERR(trans);
6238 goto fail;
6239 }
5f39d397 6240
67de1176
MX
6241 /* There are several dir indexes for this inode, clear the cache. */
6242 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6243 inc_nlink(inode);
0c4d2d95 6244 inode_inc_iversion(inode);
3153495d 6245 inode->i_ctime = CURRENT_TIME;
7de9c6ee 6246 ihold(inode);
e9976151 6247 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6248
a1b075d2 6249 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6250
a5719521 6251 if (err) {
54aa1f4d 6252 drop_inode = 1;
a5719521 6253 } else {
10d9f309 6254 struct dentry *parent = dentry->d_parent;
a5719521 6255 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6256 if (err)
6257 goto fail;
ef3b9af5
FM
6258 if (inode->i_nlink == 1) {
6259 /*
6260 * If new hard link count is 1, it's a file created
6261 * with open(2) O_TMPFILE flag.
6262 */
6263 err = btrfs_orphan_del(trans, inode);
6264 if (err)
6265 goto fail;
6266 }
08c422c2 6267 d_instantiate(dentry, inode);
6a912213 6268 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6269 }
39279cc3 6270
7ad85bb7 6271 btrfs_end_transaction(trans, root);
c581afc8 6272 btrfs_balance_delayed_items(root);
1832a6d5 6273fail:
39279cc3
CM
6274 if (drop_inode) {
6275 inode_dec_link_count(inode);
6276 iput(inode);
6277 }
b53d3f5d 6278 btrfs_btree_balance_dirty(root);
39279cc3
CM
6279 return err;
6280}
6281
18bb1db3 6282static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6283{
b9d86667 6284 struct inode *inode = NULL;
39279cc3
CM
6285 struct btrfs_trans_handle *trans;
6286 struct btrfs_root *root = BTRFS_I(dir)->root;
6287 int err = 0;
6288 int drop_on_err = 0;
b9d86667 6289 u64 objectid = 0;
00e4e6b3 6290 u64 index = 0;
39279cc3 6291
9ed74f2d
JB
6292 /*
6293 * 2 items for inode and ref
6294 * 2 items for dir items
6295 * 1 for xattr if selinux is on
6296 */
a22285a6
YZ
6297 trans = btrfs_start_transaction(root, 5);
6298 if (IS_ERR(trans))
6299 return PTR_ERR(trans);
39279cc3 6300
581bb050
LZ
6301 err = btrfs_find_free_ino(root, &objectid);
6302 if (err)
6303 goto out_fail;
6304
aec7477b 6305 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6306 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6307 S_IFDIR | mode, &index);
39279cc3
CM
6308 if (IS_ERR(inode)) {
6309 err = PTR_ERR(inode);
6310 goto out_fail;
6311 }
5f39d397 6312
39279cc3 6313 drop_on_err = 1;
b0d5d10f
CM
6314 /* these must be set before we unlock the inode */
6315 inode->i_op = &btrfs_dir_inode_operations;
6316 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6317
2a7dba39 6318 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6319 if (err)
b0d5d10f 6320 goto out_fail_inode;
39279cc3 6321
dbe674a9 6322 btrfs_i_size_write(inode, 0);
39279cc3
CM
6323 err = btrfs_update_inode(trans, root, inode);
6324 if (err)
b0d5d10f 6325 goto out_fail_inode;
5f39d397 6326
a1b075d2
JB
6327 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6328 dentry->d_name.len, 0, index);
39279cc3 6329 if (err)
b0d5d10f 6330 goto out_fail_inode;
5f39d397 6331
39279cc3 6332 d_instantiate(dentry, inode);
b0d5d10f
CM
6333 /*
6334 * mkdir is special. We're unlocking after we call d_instantiate
6335 * to avoid a race with nfsd calling d_instantiate.
6336 */
6337 unlock_new_inode(inode);
39279cc3 6338 drop_on_err = 0;
39279cc3
CM
6339
6340out_fail:
7ad85bb7 6341 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6342 if (drop_on_err) {
6343 inode_dec_link_count(inode);
39279cc3 6344 iput(inode);
c7cfb8a5 6345 }
c581afc8 6346 btrfs_balance_delayed_items(root);
b53d3f5d 6347 btrfs_btree_balance_dirty(root);
39279cc3 6348 return err;
b0d5d10f
CM
6349
6350out_fail_inode:
6351 unlock_new_inode(inode);
6352 goto out_fail;
39279cc3
CM
6353}
6354
e6c4efd8
QW
6355/* Find next extent map of a given extent map, caller needs to ensure locks */
6356static struct extent_map *next_extent_map(struct extent_map *em)
6357{
6358 struct rb_node *next;
6359
6360 next = rb_next(&em->rb_node);
6361 if (!next)
6362 return NULL;
6363 return container_of(next, struct extent_map, rb_node);
6364}
6365
6366static struct extent_map *prev_extent_map(struct extent_map *em)
6367{
6368 struct rb_node *prev;
6369
6370 prev = rb_prev(&em->rb_node);
6371 if (!prev)
6372 return NULL;
6373 return container_of(prev, struct extent_map, rb_node);
6374}
6375
d352ac68 6376/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6377 * the existing extent is the nearest extent to map_start,
d352ac68 6378 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6379 * the best fitted new extent into the tree.
d352ac68 6380 */
3b951516
CM
6381static int merge_extent_mapping(struct extent_map_tree *em_tree,
6382 struct extent_map *existing,
e6dcd2dc 6383 struct extent_map *em,
51f395ad 6384 u64 map_start)
3b951516 6385{
e6c4efd8
QW
6386 struct extent_map *prev;
6387 struct extent_map *next;
6388 u64 start;
6389 u64 end;
3b951516 6390 u64 start_diff;
3b951516 6391
e6dcd2dc 6392 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6393
6394 if (existing->start > map_start) {
6395 next = existing;
6396 prev = prev_extent_map(next);
6397 } else {
6398 prev = existing;
6399 next = next_extent_map(prev);
6400 }
6401
6402 start = prev ? extent_map_end(prev) : em->start;
6403 start = max_t(u64, start, em->start);
6404 end = next ? next->start : extent_map_end(em);
6405 end = min_t(u64, end, extent_map_end(em));
6406 start_diff = start - em->start;
6407 em->start = start;
6408 em->len = end - start;
c8b97818
CM
6409 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6410 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6411 em->block_start += start_diff;
c8b97818
CM
6412 em->block_len -= start_diff;
6413 }
09a2a8f9 6414 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6415}
6416
c8b97818
CM
6417static noinline int uncompress_inline(struct btrfs_path *path,
6418 struct inode *inode, struct page *page,
6419 size_t pg_offset, u64 extent_offset,
6420 struct btrfs_file_extent_item *item)
6421{
6422 int ret;
6423 struct extent_buffer *leaf = path->nodes[0];
6424 char *tmp;
6425 size_t max_size;
6426 unsigned long inline_size;
6427 unsigned long ptr;
261507a0 6428 int compress_type;
c8b97818
CM
6429
6430 WARN_ON(pg_offset != 0);
261507a0 6431 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6432 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6433 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6434 btrfs_item_nr(path->slots[0]));
c8b97818 6435 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6436 if (!tmp)
6437 return -ENOMEM;
c8b97818
CM
6438 ptr = btrfs_file_extent_inline_start(item);
6439
6440 read_extent_buffer(leaf, tmp, ptr, inline_size);
6441
5b050f04 6442 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6443 ret = btrfs_decompress(compress_type, tmp, page,
6444 extent_offset, inline_size, max_size);
c8b97818 6445 kfree(tmp);
166ae5a4 6446 return ret;
c8b97818
CM
6447}
6448
d352ac68
CM
6449/*
6450 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6451 * the ugly parts come from merging extents from the disk with the in-ram
6452 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6453 * where the in-ram extents might be locked pending data=ordered completion.
6454 *
6455 * This also copies inline extents directly into the page.
6456 */
d397712b 6457
a52d9a80 6458struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6459 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6460 int create)
6461{
6462 int ret;
6463 int err = 0;
a52d9a80
CM
6464 u64 extent_start = 0;
6465 u64 extent_end = 0;
33345d01 6466 u64 objectid = btrfs_ino(inode);
a52d9a80 6467 u32 found_type;
f421950f 6468 struct btrfs_path *path = NULL;
a52d9a80
CM
6469 struct btrfs_root *root = BTRFS_I(inode)->root;
6470 struct btrfs_file_extent_item *item;
5f39d397
CM
6471 struct extent_buffer *leaf;
6472 struct btrfs_key found_key;
a52d9a80
CM
6473 struct extent_map *em = NULL;
6474 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6475 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6476 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6477 const bool new_inline = !page || create;
a52d9a80 6478
a52d9a80 6479again:
890871be 6480 read_lock(&em_tree->lock);
d1310b2e 6481 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6482 if (em)
6483 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6484 read_unlock(&em_tree->lock);
d1310b2e 6485
a52d9a80 6486 if (em) {
e1c4b745
CM
6487 if (em->start > start || em->start + em->len <= start)
6488 free_extent_map(em);
6489 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6490 free_extent_map(em);
6491 else
6492 goto out;
a52d9a80 6493 }
172ddd60 6494 em = alloc_extent_map();
a52d9a80 6495 if (!em) {
d1310b2e
CM
6496 err = -ENOMEM;
6497 goto out;
a52d9a80 6498 }
e6dcd2dc 6499 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6500 em->start = EXTENT_MAP_HOLE;
445a6944 6501 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6502 em->len = (u64)-1;
c8b97818 6503 em->block_len = (u64)-1;
f421950f
CM
6504
6505 if (!path) {
6506 path = btrfs_alloc_path();
026fd317
JB
6507 if (!path) {
6508 err = -ENOMEM;
6509 goto out;
6510 }
6511 /*
6512 * Chances are we'll be called again, so go ahead and do
6513 * readahead
6514 */
6515 path->reada = 1;
f421950f
CM
6516 }
6517
179e29e4
CM
6518 ret = btrfs_lookup_file_extent(trans, root, path,
6519 objectid, start, trans != NULL);
a52d9a80
CM
6520 if (ret < 0) {
6521 err = ret;
6522 goto out;
6523 }
6524
6525 if (ret != 0) {
6526 if (path->slots[0] == 0)
6527 goto not_found;
6528 path->slots[0]--;
6529 }
6530
5f39d397
CM
6531 leaf = path->nodes[0];
6532 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6533 struct btrfs_file_extent_item);
a52d9a80 6534 /* are we inside the extent that was found? */
5f39d397 6535 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6536 found_type = found_key.type;
5f39d397 6537 if (found_key.objectid != objectid ||
a52d9a80 6538 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6539 /*
6540 * If we backup past the first extent we want to move forward
6541 * and see if there is an extent in front of us, otherwise we'll
6542 * say there is a hole for our whole search range which can
6543 * cause problems.
6544 */
6545 extent_end = start;
6546 goto next;
a52d9a80
CM
6547 }
6548
5f39d397
CM
6549 found_type = btrfs_file_extent_type(leaf, item);
6550 extent_start = found_key.offset;
d899e052
YZ
6551 if (found_type == BTRFS_FILE_EXTENT_REG ||
6552 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6553 extent_end = extent_start +
db94535d 6554 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6555 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6556 size_t size;
514ac8ad 6557 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6558 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6559 }
25a50341 6560next:
9036c102
YZ
6561 if (start >= extent_end) {
6562 path->slots[0]++;
6563 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6564 ret = btrfs_next_leaf(root, path);
6565 if (ret < 0) {
6566 err = ret;
6567 goto out;
a52d9a80 6568 }
9036c102
YZ
6569 if (ret > 0)
6570 goto not_found;
6571 leaf = path->nodes[0];
a52d9a80 6572 }
9036c102
YZ
6573 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6574 if (found_key.objectid != objectid ||
6575 found_key.type != BTRFS_EXTENT_DATA_KEY)
6576 goto not_found;
6577 if (start + len <= found_key.offset)
6578 goto not_found;
e2eca69d
WS
6579 if (start > found_key.offset)
6580 goto next;
9036c102 6581 em->start = start;
70c8a91c 6582 em->orig_start = start;
9036c102
YZ
6583 em->len = found_key.offset - start;
6584 goto not_found_em;
6585 }
6586
7ffbb598
FM
6587 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6588
d899e052
YZ
6589 if (found_type == BTRFS_FILE_EXTENT_REG ||
6590 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6591 goto insert;
6592 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6593 unsigned long ptr;
a52d9a80 6594 char *map;
3326d1b0
CM
6595 size_t size;
6596 size_t extent_offset;
6597 size_t copy_size;
a52d9a80 6598
7ffbb598 6599 if (new_inline)
689f9346 6600 goto out;
5f39d397 6601
514ac8ad 6602 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6603 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6604 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6605 size - extent_offset);
3326d1b0 6606 em->start = extent_start + extent_offset;
fda2832f 6607 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6608 em->orig_block_len = em->len;
70c8a91c 6609 em->orig_start = em->start;
689f9346 6610 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6611 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6612 if (btrfs_file_extent_compression(leaf, item) !=
6613 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6614 ret = uncompress_inline(path, inode, page,
6615 pg_offset,
6616 extent_offset, item);
166ae5a4
ZB
6617 if (ret) {
6618 err = ret;
6619 goto out;
6620 }
c8b97818
CM
6621 } else {
6622 map = kmap(page);
6623 read_extent_buffer(leaf, map + pg_offset, ptr,
6624 copy_size);
93c82d57
CM
6625 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6626 memset(map + pg_offset + copy_size, 0,
6627 PAGE_CACHE_SIZE - pg_offset -
6628 copy_size);
6629 }
c8b97818
CM
6630 kunmap(page);
6631 }
179e29e4
CM
6632 flush_dcache_page(page);
6633 } else if (create && PageUptodate(page)) {
6bf7e080 6634 BUG();
179e29e4
CM
6635 if (!trans) {
6636 kunmap(page);
6637 free_extent_map(em);
6638 em = NULL;
ff5714cc 6639
b3b4aa74 6640 btrfs_release_path(path);
7a7eaa40 6641 trans = btrfs_join_transaction(root);
ff5714cc 6642
3612b495
TI
6643 if (IS_ERR(trans))
6644 return ERR_CAST(trans);
179e29e4
CM
6645 goto again;
6646 }
c8b97818 6647 map = kmap(page);
70dec807 6648 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6649 copy_size);
c8b97818 6650 kunmap(page);
179e29e4 6651 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6652 }
d1310b2e 6653 set_extent_uptodate(io_tree, em->start,
507903b8 6654 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6655 goto insert;
a52d9a80
CM
6656 }
6657not_found:
6658 em->start = start;
70c8a91c 6659 em->orig_start = start;
d1310b2e 6660 em->len = len;
a52d9a80 6661not_found_em:
5f39d397 6662 em->block_start = EXTENT_MAP_HOLE;
9036c102 6663 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6664insert:
b3b4aa74 6665 btrfs_release_path(path);
d1310b2e 6666 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6667 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6668 em->start, em->len, start, len);
a52d9a80
CM
6669 err = -EIO;
6670 goto out;
6671 }
d1310b2e
CM
6672
6673 err = 0;
890871be 6674 write_lock(&em_tree->lock);
09a2a8f9 6675 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6676 /* it is possible that someone inserted the extent into the tree
6677 * while we had the lock dropped. It is also possible that
6678 * an overlapping map exists in the tree
6679 */
a52d9a80 6680 if (ret == -EEXIST) {
3b951516 6681 struct extent_map *existing;
e6dcd2dc
CM
6682
6683 ret = 0;
6684
e6c4efd8
QW
6685 existing = search_extent_mapping(em_tree, start, len);
6686 /*
6687 * existing will always be non-NULL, since there must be
6688 * extent causing the -EEXIST.
6689 */
6690 if (start >= extent_map_end(existing) ||
32be3a1a 6691 start <= existing->start) {
e6c4efd8
QW
6692 /*
6693 * The existing extent map is the one nearest to
6694 * the [start, start + len) range which overlaps
6695 */
6696 err = merge_extent_mapping(em_tree, existing,
6697 em, start);
e1c4b745 6698 free_extent_map(existing);
e6c4efd8 6699 if (err) {
3b951516
CM
6700 free_extent_map(em);
6701 em = NULL;
6702 }
6703 } else {
6704 free_extent_map(em);
6705 em = existing;
e6dcd2dc 6706 err = 0;
a52d9a80 6707 }
a52d9a80 6708 }
890871be 6709 write_unlock(&em_tree->lock);
a52d9a80 6710out:
1abe9b8a 6711
4cd8587c 6712 trace_btrfs_get_extent(root, em);
1abe9b8a 6713
f421950f
CM
6714 if (path)
6715 btrfs_free_path(path);
a52d9a80
CM
6716 if (trans) {
6717 ret = btrfs_end_transaction(trans, root);
d397712b 6718 if (!err)
a52d9a80
CM
6719 err = ret;
6720 }
a52d9a80
CM
6721 if (err) {
6722 free_extent_map(em);
a52d9a80
CM
6723 return ERR_PTR(err);
6724 }
79787eaa 6725 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6726 return em;
6727}
6728
ec29ed5b
CM
6729struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6730 size_t pg_offset, u64 start, u64 len,
6731 int create)
6732{
6733 struct extent_map *em;
6734 struct extent_map *hole_em = NULL;
6735 u64 range_start = start;
6736 u64 end;
6737 u64 found;
6738 u64 found_end;
6739 int err = 0;
6740
6741 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6742 if (IS_ERR(em))
6743 return em;
6744 if (em) {
6745 /*
f9e4fb53
LB
6746 * if our em maps to
6747 * - a hole or
6748 * - a pre-alloc extent,
6749 * there might actually be delalloc bytes behind it.
ec29ed5b 6750 */
f9e4fb53
LB
6751 if (em->block_start != EXTENT_MAP_HOLE &&
6752 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6753 return em;
6754 else
6755 hole_em = em;
6756 }
6757
6758 /* check to see if we've wrapped (len == -1 or similar) */
6759 end = start + len;
6760 if (end < start)
6761 end = (u64)-1;
6762 else
6763 end -= 1;
6764
6765 em = NULL;
6766
6767 /* ok, we didn't find anything, lets look for delalloc */
6768 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6769 end, len, EXTENT_DELALLOC, 1);
6770 found_end = range_start + found;
6771 if (found_end < range_start)
6772 found_end = (u64)-1;
6773
6774 /*
6775 * we didn't find anything useful, return
6776 * the original results from get_extent()
6777 */
6778 if (range_start > end || found_end <= start) {
6779 em = hole_em;
6780 hole_em = NULL;
6781 goto out;
6782 }
6783
6784 /* adjust the range_start to make sure it doesn't
6785 * go backwards from the start they passed in
6786 */
67871254 6787 range_start = max(start, range_start);
ec29ed5b
CM
6788 found = found_end - range_start;
6789
6790 if (found > 0) {
6791 u64 hole_start = start;
6792 u64 hole_len = len;
6793
172ddd60 6794 em = alloc_extent_map();
ec29ed5b
CM
6795 if (!em) {
6796 err = -ENOMEM;
6797 goto out;
6798 }
6799 /*
6800 * when btrfs_get_extent can't find anything it
6801 * returns one huge hole
6802 *
6803 * make sure what it found really fits our range, and
6804 * adjust to make sure it is based on the start from
6805 * the caller
6806 */
6807 if (hole_em) {
6808 u64 calc_end = extent_map_end(hole_em);
6809
6810 if (calc_end <= start || (hole_em->start > end)) {
6811 free_extent_map(hole_em);
6812 hole_em = NULL;
6813 } else {
6814 hole_start = max(hole_em->start, start);
6815 hole_len = calc_end - hole_start;
6816 }
6817 }
6818 em->bdev = NULL;
6819 if (hole_em && range_start > hole_start) {
6820 /* our hole starts before our delalloc, so we
6821 * have to return just the parts of the hole
6822 * that go until the delalloc starts
6823 */
6824 em->len = min(hole_len,
6825 range_start - hole_start);
6826 em->start = hole_start;
6827 em->orig_start = hole_start;
6828 /*
6829 * don't adjust block start at all,
6830 * it is fixed at EXTENT_MAP_HOLE
6831 */
6832 em->block_start = hole_em->block_start;
6833 em->block_len = hole_len;
f9e4fb53
LB
6834 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6835 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6836 } else {
6837 em->start = range_start;
6838 em->len = found;
6839 em->orig_start = range_start;
6840 em->block_start = EXTENT_MAP_DELALLOC;
6841 em->block_len = found;
6842 }
6843 } else if (hole_em) {
6844 return hole_em;
6845 }
6846out:
6847
6848 free_extent_map(hole_em);
6849 if (err) {
6850 free_extent_map(em);
6851 return ERR_PTR(err);
6852 }
6853 return em;
6854}
6855
4b46fce2
JB
6856static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6857 u64 start, u64 len)
6858{
6859 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6860 struct extent_map *em;
4b46fce2
JB
6861 struct btrfs_key ins;
6862 u64 alloc_hint;
6863 int ret;
4b46fce2 6864
4b46fce2 6865 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6866 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 6867 alloc_hint, &ins, 1, 1);
00361589
JB
6868 if (ret)
6869 return ERR_PTR(ret);
4b46fce2 6870
70c8a91c 6871 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6872 ins.offset, ins.offset, ins.offset, 0);
00361589 6873 if (IS_ERR(em)) {
e570fd27 6874 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
6875 return em;
6876 }
4b46fce2
JB
6877
6878 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6879 ins.offset, ins.offset, 0);
6880 if (ret) {
e570fd27 6881 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
6882 free_extent_map(em);
6883 return ERR_PTR(ret);
4b46fce2 6884 }
00361589 6885
4b46fce2
JB
6886 return em;
6887}
6888
46bfbb5c
CM
6889/*
6890 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6891 * block must be cow'd
6892 */
00361589 6893noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6894 u64 *orig_start, u64 *orig_block_len,
6895 u64 *ram_bytes)
46bfbb5c 6896{
00361589 6897 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6898 struct btrfs_path *path;
6899 int ret;
6900 struct extent_buffer *leaf;
6901 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 6902 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
6903 struct btrfs_file_extent_item *fi;
6904 struct btrfs_key key;
6905 u64 disk_bytenr;
6906 u64 backref_offset;
6907 u64 extent_end;
6908 u64 num_bytes;
6909 int slot;
6910 int found_type;
7ee9e440 6911 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6912
46bfbb5c
CM
6913 path = btrfs_alloc_path();
6914 if (!path)
6915 return -ENOMEM;
6916
00361589 6917 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6918 offset, 0);
6919 if (ret < 0)
6920 goto out;
6921
6922 slot = path->slots[0];
6923 if (ret == 1) {
6924 if (slot == 0) {
6925 /* can't find the item, must cow */
6926 ret = 0;
6927 goto out;
6928 }
6929 slot--;
6930 }
6931 ret = 0;
6932 leaf = path->nodes[0];
6933 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6934 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6935 key.type != BTRFS_EXTENT_DATA_KEY) {
6936 /* not our file or wrong item type, must cow */
6937 goto out;
6938 }
6939
6940 if (key.offset > offset) {
6941 /* Wrong offset, must cow */
6942 goto out;
6943 }
6944
6945 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6946 found_type = btrfs_file_extent_type(leaf, fi);
6947 if (found_type != BTRFS_FILE_EXTENT_REG &&
6948 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6949 /* not a regular extent, must cow */
6950 goto out;
6951 }
7ee9e440
JB
6952
6953 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6954 goto out;
6955
e77751aa
MX
6956 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6957 if (extent_end <= offset)
6958 goto out;
6959
46bfbb5c 6960 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6961 if (disk_bytenr == 0)
6962 goto out;
6963
6964 if (btrfs_file_extent_compression(leaf, fi) ||
6965 btrfs_file_extent_encryption(leaf, fi) ||
6966 btrfs_file_extent_other_encoding(leaf, fi))
6967 goto out;
6968
46bfbb5c
CM
6969 backref_offset = btrfs_file_extent_offset(leaf, fi);
6970
7ee9e440
JB
6971 if (orig_start) {
6972 *orig_start = key.offset - backref_offset;
6973 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6974 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6975 }
eb384b55 6976
46bfbb5c
CM
6977 if (btrfs_extent_readonly(root, disk_bytenr))
6978 goto out;
7b2b7085
MX
6979
6980 num_bytes = min(offset + *len, extent_end) - offset;
6981 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6982 u64 range_end;
6983
6984 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6985 ret = test_range_bit(io_tree, offset, range_end,
6986 EXTENT_DELALLOC, 0, NULL);
6987 if (ret) {
6988 ret = -EAGAIN;
6989 goto out;
6990 }
6991 }
6992
1bda19eb 6993 btrfs_release_path(path);
46bfbb5c
CM
6994
6995 /*
6996 * look for other files referencing this extent, if we
6997 * find any we must cow
6998 */
00361589
JB
6999 trans = btrfs_join_transaction(root);
7000 if (IS_ERR(trans)) {
7001 ret = 0;
46bfbb5c 7002 goto out;
00361589
JB
7003 }
7004
7005 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7006 key.offset - backref_offset, disk_bytenr);
7007 btrfs_end_transaction(trans, root);
7008 if (ret) {
7009 ret = 0;
7010 goto out;
7011 }
46bfbb5c
CM
7012
7013 /*
7014 * adjust disk_bytenr and num_bytes to cover just the bytes
7015 * in this extent we are about to write. If there
7016 * are any csums in that range we have to cow in order
7017 * to keep the csums correct
7018 */
7019 disk_bytenr += backref_offset;
7020 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7021 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7022 goto out;
7023 /*
7024 * all of the above have passed, it is safe to overwrite this extent
7025 * without cow
7026 */
eb384b55 7027 *len = num_bytes;
46bfbb5c
CM
7028 ret = 1;
7029out:
7030 btrfs_free_path(path);
7031 return ret;
7032}
7033
fc4adbff
AG
7034bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7035{
7036 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7037 int found = false;
7038 void **pagep = NULL;
7039 struct page *page = NULL;
7040 int start_idx;
7041 int end_idx;
7042
7043 start_idx = start >> PAGE_CACHE_SHIFT;
7044
7045 /*
7046 * end is the last byte in the last page. end == start is legal
7047 */
7048 end_idx = end >> PAGE_CACHE_SHIFT;
7049
7050 rcu_read_lock();
7051
7052 /* Most of the code in this while loop is lifted from
7053 * find_get_page. It's been modified to begin searching from a
7054 * page and return just the first page found in that range. If the
7055 * found idx is less than or equal to the end idx then we know that
7056 * a page exists. If no pages are found or if those pages are
7057 * outside of the range then we're fine (yay!) */
7058 while (page == NULL &&
7059 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7060 page = radix_tree_deref_slot(pagep);
7061 if (unlikely(!page))
7062 break;
7063
7064 if (radix_tree_exception(page)) {
809f9016
FM
7065 if (radix_tree_deref_retry(page)) {
7066 page = NULL;
fc4adbff 7067 continue;
809f9016 7068 }
fc4adbff
AG
7069 /*
7070 * Otherwise, shmem/tmpfs must be storing a swap entry
7071 * here as an exceptional entry: so return it without
7072 * attempting to raise page count.
7073 */
6fdef6d4 7074 page = NULL;
fc4adbff
AG
7075 break; /* TODO: Is this relevant for this use case? */
7076 }
7077
91405151
FM
7078 if (!page_cache_get_speculative(page)) {
7079 page = NULL;
fc4adbff 7080 continue;
91405151 7081 }
fc4adbff
AG
7082
7083 /*
7084 * Has the page moved?
7085 * This is part of the lockless pagecache protocol. See
7086 * include/linux/pagemap.h for details.
7087 */
7088 if (unlikely(page != *pagep)) {
7089 page_cache_release(page);
7090 page = NULL;
7091 }
7092 }
7093
7094 if (page) {
7095 if (page->index <= end_idx)
7096 found = true;
7097 page_cache_release(page);
7098 }
7099
7100 rcu_read_unlock();
7101 return found;
7102}
7103
eb838e73
JB
7104static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7105 struct extent_state **cached_state, int writing)
7106{
7107 struct btrfs_ordered_extent *ordered;
7108 int ret = 0;
7109
7110 while (1) {
7111 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7112 0, cached_state);
7113 /*
7114 * We're concerned with the entire range that we're going to be
7115 * doing DIO to, so we need to make sure theres no ordered
7116 * extents in this range.
7117 */
7118 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7119 lockend - lockstart + 1);
7120
7121 /*
7122 * We need to make sure there are no buffered pages in this
7123 * range either, we could have raced between the invalidate in
7124 * generic_file_direct_write and locking the extent. The
7125 * invalidate needs to happen so that reads after a write do not
7126 * get stale data.
7127 */
fc4adbff
AG
7128 if (!ordered &&
7129 (!writing ||
7130 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7131 break;
7132
7133 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7134 cached_state, GFP_NOFS);
7135
7136 if (ordered) {
7137 btrfs_start_ordered_extent(inode, ordered, 1);
7138 btrfs_put_ordered_extent(ordered);
7139 } else {
7140 /* Screw you mmap */
728404da 7141 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
075bdbdb
FM
7142 if (ret)
7143 break;
7144 ret = filemap_fdatawait_range(inode->i_mapping,
7145 lockstart,
7146 lockend);
eb838e73
JB
7147 if (ret)
7148 break;
7149
7150 /*
7151 * If we found a page that couldn't be invalidated just
7152 * fall back to buffered.
7153 */
7154 ret = invalidate_inode_pages2_range(inode->i_mapping,
7155 lockstart >> PAGE_CACHE_SHIFT,
7156 lockend >> PAGE_CACHE_SHIFT);
7157 if (ret)
7158 break;
7159 }
7160
7161 cond_resched();
7162 }
7163
7164 return ret;
7165}
7166
69ffb543
JB
7167static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7168 u64 len, u64 orig_start,
7169 u64 block_start, u64 block_len,
cc95bef6
JB
7170 u64 orig_block_len, u64 ram_bytes,
7171 int type)
69ffb543
JB
7172{
7173 struct extent_map_tree *em_tree;
7174 struct extent_map *em;
7175 struct btrfs_root *root = BTRFS_I(inode)->root;
7176 int ret;
7177
7178 em_tree = &BTRFS_I(inode)->extent_tree;
7179 em = alloc_extent_map();
7180 if (!em)
7181 return ERR_PTR(-ENOMEM);
7182
7183 em->start = start;
7184 em->orig_start = orig_start;
2ab28f32
JB
7185 em->mod_start = start;
7186 em->mod_len = len;
69ffb543
JB
7187 em->len = len;
7188 em->block_len = block_len;
7189 em->block_start = block_start;
7190 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7191 em->orig_block_len = orig_block_len;
cc95bef6 7192 em->ram_bytes = ram_bytes;
70c8a91c 7193 em->generation = -1;
69ffb543
JB
7194 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7195 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7196 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7197
7198 do {
7199 btrfs_drop_extent_cache(inode, em->start,
7200 em->start + em->len - 1, 0);
7201 write_lock(&em_tree->lock);
09a2a8f9 7202 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7203 write_unlock(&em_tree->lock);
7204 } while (ret == -EEXIST);
7205
7206 if (ret) {
7207 free_extent_map(em);
7208 return ERR_PTR(ret);
7209 }
7210
7211 return em;
7212}
7213
7214
4b46fce2
JB
7215static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7216 struct buffer_head *bh_result, int create)
7217{
7218 struct extent_map *em;
7219 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7220 struct extent_state *cached_state = NULL;
4b46fce2 7221 u64 start = iblock << inode->i_blkbits;
eb838e73 7222 u64 lockstart, lockend;
4b46fce2 7223 u64 len = bh_result->b_size;
3e05bde8 7224 u64 orig_len = len;
eb838e73 7225 int unlock_bits = EXTENT_LOCKED;
0934856d 7226 int ret = 0;
eb838e73 7227
172a5049 7228 if (create)
3266789f 7229 unlock_bits |= EXTENT_DIRTY;
172a5049 7230 else
c329861d 7231 len = min_t(u64, len, root->sectorsize);
eb838e73 7232
c329861d
JB
7233 lockstart = start;
7234 lockend = start + len - 1;
7235
eb838e73
JB
7236 /*
7237 * If this errors out it's because we couldn't invalidate pagecache for
7238 * this range and we need to fallback to buffered.
7239 */
7240 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7241 return -ENOTBLK;
7242
4b46fce2 7243 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7244 if (IS_ERR(em)) {
7245 ret = PTR_ERR(em);
7246 goto unlock_err;
7247 }
4b46fce2
JB
7248
7249 /*
7250 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7251 * io. INLINE is special, and we could probably kludge it in here, but
7252 * it's still buffered so for safety lets just fall back to the generic
7253 * buffered path.
7254 *
7255 * For COMPRESSED we _have_ to read the entire extent in so we can
7256 * decompress it, so there will be buffering required no matter what we
7257 * do, so go ahead and fallback to buffered.
7258 *
7259 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7260 * to buffered IO. Don't blame me, this is the price we pay for using
7261 * the generic code.
7262 */
7263 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7264 em->block_start == EXTENT_MAP_INLINE) {
7265 free_extent_map(em);
eb838e73
JB
7266 ret = -ENOTBLK;
7267 goto unlock_err;
4b46fce2
JB
7268 }
7269
7270 /* Just a good old fashioned hole, return */
7271 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7272 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7273 free_extent_map(em);
eb838e73 7274 goto unlock_err;
4b46fce2
JB
7275 }
7276
7277 /*
7278 * We don't allocate a new extent in the following cases
7279 *
7280 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7281 * existing extent.
7282 * 2) The extent is marked as PREALLOC. We're good to go here and can
7283 * just use the extent.
7284 *
7285 */
46bfbb5c 7286 if (!create) {
eb838e73
JB
7287 len = min(len, em->len - (start - em->start));
7288 lockstart = start + len;
7289 goto unlock;
46bfbb5c 7290 }
4b46fce2
JB
7291
7292 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7293 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7294 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7295 int type;
eb384b55 7296 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7297
7298 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7299 type = BTRFS_ORDERED_PREALLOC;
7300 else
7301 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7302 len = min(len, em->len - (start - em->start));
4b46fce2 7303 block_start = em->block_start + (start - em->start);
46bfbb5c 7304
00361589 7305 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 7306 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
7307 if (type == BTRFS_ORDERED_PREALLOC) {
7308 free_extent_map(em);
7309 em = create_pinned_em(inode, start, len,
7310 orig_start,
b4939680 7311 block_start, len,
cc95bef6
JB
7312 orig_block_len,
7313 ram_bytes, type);
555e1286
FM
7314 if (IS_ERR(em)) {
7315 ret = PTR_ERR(em);
69ffb543 7316 goto unlock_err;
555e1286 7317 }
69ffb543
JB
7318 }
7319
46bfbb5c
CM
7320 ret = btrfs_add_ordered_extent_dio(inode, start,
7321 block_start, len, len, type);
46bfbb5c
CM
7322 if (ret) {
7323 free_extent_map(em);
eb838e73 7324 goto unlock_err;
46bfbb5c
CM
7325 }
7326 goto unlock;
4b46fce2 7327 }
4b46fce2 7328 }
00361589 7329
46bfbb5c
CM
7330 /*
7331 * this will cow the extent, reset the len in case we changed
7332 * it above
7333 */
7334 len = bh_result->b_size;
70c8a91c
JB
7335 free_extent_map(em);
7336 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7337 if (IS_ERR(em)) {
7338 ret = PTR_ERR(em);
7339 goto unlock_err;
7340 }
46bfbb5c
CM
7341 len = min(len, em->len - (start - em->start));
7342unlock:
4b46fce2
JB
7343 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7344 inode->i_blkbits;
46bfbb5c 7345 bh_result->b_size = len;
4b46fce2
JB
7346 bh_result->b_bdev = em->bdev;
7347 set_buffer_mapped(bh_result);
c3473e83
JB
7348 if (create) {
7349 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7350 set_buffer_new(bh_result);
7351
7352 /*
7353 * Need to update the i_size under the extent lock so buffered
7354 * readers will get the updated i_size when we unlock.
7355 */
7356 if (start + len > i_size_read(inode))
7357 i_size_write(inode, start + len);
0934856d 7358
3e05bde8
JB
7359 if (len < orig_len) {
7360 spin_lock(&BTRFS_I(inode)->lock);
7361 BTRFS_I(inode)->outstanding_extents++;
7362 spin_unlock(&BTRFS_I(inode)->lock);
7363 }
3266789f 7364 btrfs_free_reserved_data_space(inode, len);
c3473e83 7365 }
4b46fce2 7366
eb838e73
JB
7367 /*
7368 * In the case of write we need to clear and unlock the entire range,
7369 * in the case of read we need to unlock only the end area that we
7370 * aren't using if there is any left over space.
7371 */
24c03fa5 7372 if (lockstart < lockend) {
0934856d
MX
7373 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7374 lockend, unlock_bits, 1, 0,
7375 &cached_state, GFP_NOFS);
24c03fa5 7376 } else {
eb838e73 7377 free_extent_state(cached_state);
24c03fa5 7378 }
eb838e73 7379
4b46fce2
JB
7380 free_extent_map(em);
7381
7382 return 0;
eb838e73
JB
7383
7384unlock_err:
eb838e73
JB
7385 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7386 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7387 return ret;
4b46fce2
JB
7388}
7389
8b110e39
MX
7390static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7391 int rw, int mirror_num)
7392{
7393 struct btrfs_root *root = BTRFS_I(inode)->root;
7394 int ret;
7395
7396 BUG_ON(rw & REQ_WRITE);
7397
7398 bio_get(bio);
7399
7400 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7401 BTRFS_WQ_ENDIO_DIO_REPAIR);
7402 if (ret)
7403 goto err;
7404
7405 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7406err:
7407 bio_put(bio);
7408 return ret;
7409}
7410
7411static int btrfs_check_dio_repairable(struct inode *inode,
7412 struct bio *failed_bio,
7413 struct io_failure_record *failrec,
7414 int failed_mirror)
7415{
7416 int num_copies;
7417
7418 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7419 failrec->logical, failrec->len);
7420 if (num_copies == 1) {
7421 /*
7422 * we only have a single copy of the data, so don't bother with
7423 * all the retry and error correction code that follows. no
7424 * matter what the error is, it is very likely to persist.
7425 */
7426 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7427 num_copies, failrec->this_mirror, failed_mirror);
7428 return 0;
7429 }
7430
7431 failrec->failed_mirror = failed_mirror;
7432 failrec->this_mirror++;
7433 if (failrec->this_mirror == failed_mirror)
7434 failrec->this_mirror++;
7435
7436 if (failrec->this_mirror > num_copies) {
7437 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7438 num_copies, failrec->this_mirror, failed_mirror);
7439 return 0;
7440 }
7441
7442 return 1;
7443}
7444
7445static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7446 struct page *page, u64 start, u64 end,
7447 int failed_mirror, bio_end_io_t *repair_endio,
7448 void *repair_arg)
7449{
7450 struct io_failure_record *failrec;
7451 struct bio *bio;
7452 int isector;
7453 int read_mode;
7454 int ret;
7455
7456 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7457
7458 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7459 if (ret)
7460 return ret;
7461
7462 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7463 failed_mirror);
7464 if (!ret) {
7465 free_io_failure(inode, failrec);
7466 return -EIO;
7467 }
7468
7469 if (failed_bio->bi_vcnt > 1)
7470 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7471 else
7472 read_mode = READ_SYNC;
7473
7474 isector = start - btrfs_io_bio(failed_bio)->logical;
7475 isector >>= inode->i_sb->s_blocksize_bits;
7476 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7477 0, isector, repair_endio, repair_arg);
7478 if (!bio) {
7479 free_io_failure(inode, failrec);
7480 return -EIO;
7481 }
7482
7483 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7484 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7485 read_mode, failrec->this_mirror, failrec->in_validation);
7486
7487 ret = submit_dio_repair_bio(inode, bio, read_mode,
7488 failrec->this_mirror);
7489 if (ret) {
7490 free_io_failure(inode, failrec);
7491 bio_put(bio);
7492 }
7493
7494 return ret;
7495}
7496
7497struct btrfs_retry_complete {
7498 struct completion done;
7499 struct inode *inode;
7500 u64 start;
7501 int uptodate;
7502};
7503
7504static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7505{
7506 struct btrfs_retry_complete *done = bio->bi_private;
7507 struct bio_vec *bvec;
7508 int i;
7509
7510 if (err)
7511 goto end;
7512
7513 done->uptodate = 1;
7514 bio_for_each_segment_all(bvec, bio, i)
7515 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7516end:
7517 complete(&done->done);
7518 bio_put(bio);
7519}
7520
7521static int __btrfs_correct_data_nocsum(struct inode *inode,
7522 struct btrfs_io_bio *io_bio)
4b46fce2 7523{
2c30c71b 7524 struct bio_vec *bvec;
8b110e39 7525 struct btrfs_retry_complete done;
4b46fce2 7526 u64 start;
2c30c71b 7527 int i;
c1dc0896 7528 int ret;
4b46fce2 7529
8b110e39
MX
7530 start = io_bio->logical;
7531 done.inode = inode;
7532
7533 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7534try_again:
7535 done.uptodate = 0;
7536 done.start = start;
7537 init_completion(&done.done);
7538
7539 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7540 start + bvec->bv_len - 1,
7541 io_bio->mirror_num,
7542 btrfs_retry_endio_nocsum, &done);
7543 if (ret)
7544 return ret;
7545
7546 wait_for_completion(&done.done);
7547
7548 if (!done.uptodate) {
7549 /* We might have another mirror, so try again */
7550 goto try_again;
7551 }
7552
7553 start += bvec->bv_len;
7554 }
7555
7556 return 0;
7557}
7558
7559static void btrfs_retry_endio(struct bio *bio, int err)
7560{
7561 struct btrfs_retry_complete *done = bio->bi_private;
7562 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7563 struct bio_vec *bvec;
7564 int uptodate;
7565 int ret;
7566 int i;
7567
7568 if (err)
7569 goto end;
7570
7571 uptodate = 1;
7572 bio_for_each_segment_all(bvec, bio, i) {
7573 ret = __readpage_endio_check(done->inode, io_bio, i,
7574 bvec->bv_page, 0,
7575 done->start, bvec->bv_len);
7576 if (!ret)
7577 clean_io_failure(done->inode, done->start,
7578 bvec->bv_page, 0);
7579 else
7580 uptodate = 0;
7581 }
7582
7583 done->uptodate = uptodate;
7584end:
7585 complete(&done->done);
7586 bio_put(bio);
7587}
7588
7589static int __btrfs_subio_endio_read(struct inode *inode,
7590 struct btrfs_io_bio *io_bio, int err)
7591{
7592 struct bio_vec *bvec;
7593 struct btrfs_retry_complete done;
7594 u64 start;
7595 u64 offset = 0;
7596 int i;
7597 int ret;
dc380aea 7598
8b110e39 7599 err = 0;
c1dc0896 7600 start = io_bio->logical;
8b110e39
MX
7601 done.inode = inode;
7602
c1dc0896 7603 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
dc380aea
MX
7604 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7605 0, start, bvec->bv_len);
8b110e39
MX
7606 if (likely(!ret))
7607 goto next;
7608try_again:
7609 done.uptodate = 0;
7610 done.start = start;
7611 init_completion(&done.done);
7612
7613 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7614 start + bvec->bv_len - 1,
7615 io_bio->mirror_num,
7616 btrfs_retry_endio, &done);
7617 if (ret) {
7618 err = ret;
7619 goto next;
7620 }
7621
7622 wait_for_completion(&done.done);
7623
7624 if (!done.uptodate) {
7625 /* We might have another mirror, so try again */
7626 goto try_again;
7627 }
7628next:
7629 offset += bvec->bv_len;
4b46fce2 7630 start += bvec->bv_len;
2c30c71b 7631 }
c1dc0896
MX
7632
7633 return err;
7634}
7635
8b110e39
MX
7636static int btrfs_subio_endio_read(struct inode *inode,
7637 struct btrfs_io_bio *io_bio, int err)
7638{
7639 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7640
7641 if (skip_csum) {
7642 if (unlikely(err))
7643 return __btrfs_correct_data_nocsum(inode, io_bio);
7644 else
7645 return 0;
7646 } else {
7647 return __btrfs_subio_endio_read(inode, io_bio, err);
7648 }
7649}
7650
c1dc0896
MX
7651static void btrfs_endio_direct_read(struct bio *bio, int err)
7652{
7653 struct btrfs_dio_private *dip = bio->bi_private;
7654 struct inode *inode = dip->inode;
7655 struct bio *dio_bio;
7656 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7657
8b110e39
MX
7658 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7659 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 7660
4b46fce2 7661 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 7662 dip->logical_offset + dip->bytes - 1);
9be3395b 7663 dio_bio = dip->dio_bio;
4b46fce2 7664
4b46fce2 7665 kfree(dip);
c0da7aa1
JB
7666
7667 /* If we had a csum failure make sure to clear the uptodate flag */
7668 if (err)
9be3395b
CM
7669 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7670 dio_end_io(dio_bio, err);
23ea8e5a
MX
7671
7672 if (io_bio->end_io)
7673 io_bio->end_io(io_bio, err);
9be3395b 7674 bio_put(bio);
4b46fce2
JB
7675}
7676
7677static void btrfs_endio_direct_write(struct bio *bio, int err)
7678{
7679 struct btrfs_dio_private *dip = bio->bi_private;
7680 struct inode *inode = dip->inode;
7681 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 7682 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
7683 u64 ordered_offset = dip->logical_offset;
7684 u64 ordered_bytes = dip->bytes;
9be3395b 7685 struct bio *dio_bio;
4b46fce2
JB
7686 int ret;
7687
7688 if (err)
7689 goto out_done;
163cf09c
CM
7690again:
7691 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7692 &ordered_offset,
5fd02043 7693 ordered_bytes, !err);
4b46fce2 7694 if (!ret)
163cf09c 7695 goto out_test;
4b46fce2 7696
9e0af237
LB
7697 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7698 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
7699 btrfs_queue_work(root->fs_info->endio_write_workers,
7700 &ordered->work);
163cf09c
CM
7701out_test:
7702 /*
7703 * our bio might span multiple ordered extents. If we haven't
7704 * completed the accounting for the whole dio, go back and try again
7705 */
7706 if (ordered_offset < dip->logical_offset + dip->bytes) {
7707 ordered_bytes = dip->logical_offset + dip->bytes -
7708 ordered_offset;
5fd02043 7709 ordered = NULL;
163cf09c
CM
7710 goto again;
7711 }
4b46fce2 7712out_done:
9be3395b 7713 dio_bio = dip->dio_bio;
4b46fce2 7714
4b46fce2 7715 kfree(dip);
c0da7aa1
JB
7716
7717 /* If we had an error make sure to clear the uptodate flag */
7718 if (err)
9be3395b
CM
7719 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7720 dio_end_io(dio_bio, err);
7721 bio_put(bio);
4b46fce2
JB
7722}
7723
eaf25d93
CM
7724static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7725 struct bio *bio, int mirror_num,
7726 unsigned long bio_flags, u64 offset)
7727{
7728 int ret;
7729 struct btrfs_root *root = BTRFS_I(inode)->root;
7730 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 7731 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7732 return 0;
7733}
7734
e65e1535
MX
7735static void btrfs_end_dio_bio(struct bio *bio, int err)
7736{
7737 struct btrfs_dio_private *dip = bio->bi_private;
7738
8b110e39
MX
7739 if (err)
7740 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7741 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7742 btrfs_ino(dip->inode), bio->bi_rw,
7743 (unsigned long long)bio->bi_iter.bi_sector,
7744 bio->bi_iter.bi_size, err);
7745
7746 if (dip->subio_endio)
7747 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
7748
7749 if (err) {
e65e1535
MX
7750 dip->errors = 1;
7751
7752 /*
7753 * before atomic variable goto zero, we must make sure
7754 * dip->errors is perceived to be set.
7755 */
4e857c58 7756 smp_mb__before_atomic();
e65e1535
MX
7757 }
7758
7759 /* if there are more bios still pending for this dio, just exit */
7760 if (!atomic_dec_and_test(&dip->pending_bios))
7761 goto out;
7762
9be3395b 7763 if (dip->errors) {
e65e1535 7764 bio_io_error(dip->orig_bio);
9be3395b
CM
7765 } else {
7766 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
7767 bio_endio(dip->orig_bio, 0);
7768 }
7769out:
7770 bio_put(bio);
7771}
7772
7773static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7774 u64 first_sector, gfp_t gfp_flags)
7775{
7776 int nr_vecs = bio_get_nr_vecs(bdev);
7777 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7778}
7779
c1dc0896
MX
7780static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7781 struct inode *inode,
7782 struct btrfs_dio_private *dip,
7783 struct bio *bio,
7784 u64 file_offset)
7785{
7786 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7787 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7788 int ret;
7789
7790 /*
7791 * We load all the csum data we need when we submit
7792 * the first bio to reduce the csum tree search and
7793 * contention.
7794 */
7795 if (dip->logical_offset == file_offset) {
7796 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7797 file_offset);
7798 if (ret)
7799 return ret;
7800 }
7801
7802 if (bio == dip->orig_bio)
7803 return 0;
7804
7805 file_offset -= dip->logical_offset;
7806 file_offset >>= inode->i_sb->s_blocksize_bits;
7807 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7808
7809 return 0;
7810}
7811
e65e1535
MX
7812static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7813 int rw, u64 file_offset, int skip_sum,
c329861d 7814 int async_submit)
e65e1535 7815{
facc8a22 7816 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
7817 int write = rw & REQ_WRITE;
7818 struct btrfs_root *root = BTRFS_I(inode)->root;
7819 int ret;
7820
b812ce28
JB
7821 if (async_submit)
7822 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7823
e65e1535 7824 bio_get(bio);
5fd02043
JB
7825
7826 if (!write) {
bfebd8b5
DS
7827 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7828 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
7829 if (ret)
7830 goto err;
7831 }
e65e1535 7832
1ae39938
JB
7833 if (skip_sum)
7834 goto map;
7835
7836 if (write && async_submit) {
e65e1535
MX
7837 ret = btrfs_wq_submit_bio(root->fs_info,
7838 inode, rw, bio, 0, 0,
7839 file_offset,
7840 __btrfs_submit_bio_start_direct_io,
7841 __btrfs_submit_bio_done);
7842 goto err;
1ae39938
JB
7843 } else if (write) {
7844 /*
7845 * If we aren't doing async submit, calculate the csum of the
7846 * bio now.
7847 */
7848 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7849 if (ret)
7850 goto err;
23ea8e5a 7851 } else {
c1dc0896
MX
7852 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
7853 file_offset);
c2db1073
TI
7854 if (ret)
7855 goto err;
7856 }
1ae39938
JB
7857map:
7858 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
7859err:
7860 bio_put(bio);
7861 return ret;
7862}
7863
7864static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7865 int skip_sum)
7866{
7867 struct inode *inode = dip->inode;
7868 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
7869 struct bio *bio;
7870 struct bio *orig_bio = dip->orig_bio;
7871 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 7872 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
7873 u64 file_offset = dip->logical_offset;
7874 u64 submit_len = 0;
7875 u64 map_length;
7876 int nr_pages = 0;
23ea8e5a 7877 int ret;
1ae39938 7878 int async_submit = 0;
e65e1535 7879
4f024f37 7880 map_length = orig_bio->bi_iter.bi_size;
53b381b3 7881 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 7882 &map_length, NULL, 0);
7a5c3c9b 7883 if (ret)
e65e1535 7884 return -EIO;
facc8a22 7885
4f024f37 7886 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 7887 bio = orig_bio;
c1dc0896 7888 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
7889 goto submit;
7890 }
7891
53b381b3 7892 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 7893 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
7894 async_submit = 0;
7895 else
7896 async_submit = 1;
7897
02f57c7a
JB
7898 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7899 if (!bio)
7900 return -ENOMEM;
7a5c3c9b 7901
02f57c7a
JB
7902 bio->bi_private = dip;
7903 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 7904 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
7905 atomic_inc(&dip->pending_bios);
7906
e65e1535 7907 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
ee39b432 7908 if (map_length < submit_len + bvec->bv_len ||
e65e1535 7909 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
ee39b432 7910 bvec->bv_offset) < bvec->bv_len) {
e65e1535
MX
7911 /*
7912 * inc the count before we submit the bio so
7913 * we know the end IO handler won't happen before
7914 * we inc the count. Otherwise, the dip might get freed
7915 * before we're done setting it up
7916 */
7917 atomic_inc(&dip->pending_bios);
7918 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7919 file_offset, skip_sum,
c329861d 7920 async_submit);
e65e1535
MX
7921 if (ret) {
7922 bio_put(bio);
7923 atomic_dec(&dip->pending_bios);
7924 goto out_err;
7925 }
7926
e65e1535
MX
7927 start_sector += submit_len >> 9;
7928 file_offset += submit_len;
7929
7930 submit_len = 0;
7931 nr_pages = 0;
7932
7933 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7934 start_sector, GFP_NOFS);
7935 if (!bio)
7936 goto out_err;
7937 bio->bi_private = dip;
7938 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 7939 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 7940
4f024f37 7941 map_length = orig_bio->bi_iter.bi_size;
53b381b3 7942 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7943 start_sector << 9,
e65e1535
MX
7944 &map_length, NULL, 0);
7945 if (ret) {
7946 bio_put(bio);
7947 goto out_err;
7948 }
7949 } else {
7950 submit_len += bvec->bv_len;
67871254 7951 nr_pages++;
e65e1535
MX
7952 bvec++;
7953 }
7954 }
7955
02f57c7a 7956submit:
e65e1535 7957 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7958 async_submit);
e65e1535
MX
7959 if (!ret)
7960 return 0;
7961
7962 bio_put(bio);
7963out_err:
7964 dip->errors = 1;
7965 /*
7966 * before atomic variable goto zero, we must
7967 * make sure dip->errors is perceived to be set.
7968 */
4e857c58 7969 smp_mb__before_atomic();
e65e1535
MX
7970 if (atomic_dec_and_test(&dip->pending_bios))
7971 bio_io_error(dip->orig_bio);
7972
7973 /* bio_end_io() will handle error, so we needn't return it */
7974 return 0;
7975}
7976
9be3395b
CM
7977static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7978 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7979{
7980 struct btrfs_root *root = BTRFS_I(inode)->root;
7981 struct btrfs_dio_private *dip;
9be3395b 7982 struct bio *io_bio;
23ea8e5a 7983 struct btrfs_io_bio *btrfs_bio;
4b46fce2 7984 int skip_sum;
7b6d91da 7985 int write = rw & REQ_WRITE;
4b46fce2
JB
7986 int ret = 0;
7987
7988 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7989
9be3395b 7990 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7991 if (!io_bio) {
7992 ret = -ENOMEM;
7993 goto free_ordered;
7994 }
7995
c1dc0896 7996 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
7997 if (!dip) {
7998 ret = -ENOMEM;
9be3395b 7999 goto free_io_bio;
4b46fce2 8000 }
4b46fce2 8001
9be3395b 8002 dip->private = dio_bio->bi_private;
4b46fce2
JB
8003 dip->inode = inode;
8004 dip->logical_offset = file_offset;
4f024f37
KO
8005 dip->bytes = dio_bio->bi_iter.bi_size;
8006 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8007 io_bio->bi_private = dip;
9be3395b
CM
8008 dip->orig_bio = io_bio;
8009 dip->dio_bio = dio_bio;
e65e1535 8010 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8011 btrfs_bio = btrfs_io_bio(io_bio);
8012 btrfs_bio->logical = file_offset;
4b46fce2 8013
c1dc0896 8014 if (write) {
9be3395b 8015 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8016 } else {
9be3395b 8017 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8018 dip->subio_endio = btrfs_subio_endio_read;
8019 }
4b46fce2 8020
e65e1535
MX
8021 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8022 if (!ret)
eaf25d93 8023 return;
9be3395b 8024
23ea8e5a
MX
8025 if (btrfs_bio->end_io)
8026 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b
CM
8027free_io_bio:
8028 bio_put(io_bio);
8029
4b46fce2
JB
8030free_ordered:
8031 /*
8032 * If this is a write, we need to clean up the reserved space and kill
8033 * the ordered extent.
8034 */
8035 if (write) {
8036 struct btrfs_ordered_extent *ordered;
955256f2 8037 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
8038 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
8039 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
8040 btrfs_free_reserved_extent(root, ordered->start,
e570fd27 8041 ordered->disk_len, 1);
4b46fce2
JB
8042 btrfs_put_ordered_extent(ordered);
8043 btrfs_put_ordered_extent(ordered);
8044 }
9be3395b 8045 bio_endio(dio_bio, ret);
4b46fce2
JB
8046}
8047
5a5f79b5 8048static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
28060d5d 8049 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8050{
8051 int seg;
a1b75f7d 8052 int i;
5a5f79b5
CM
8053 unsigned blocksize_mask = root->sectorsize - 1;
8054 ssize_t retval = -EINVAL;
5a5f79b5
CM
8055
8056 if (offset & blocksize_mask)
8057 goto out;
8058
28060d5d
AV
8059 if (iov_iter_alignment(iter) & blocksize_mask)
8060 goto out;
a1b75f7d 8061
28060d5d
AV
8062 /* If this is a write we don't need to check anymore */
8063 if (rw & WRITE)
8064 return 0;
8065 /*
8066 * Check to make sure we don't have duplicate iov_base's in this
8067 * iovec, if so return EINVAL, otherwise we'll get csum errors
8068 * when reading back.
8069 */
8070 for (seg = 0; seg < iter->nr_segs; seg++) {
8071 for (i = seg + 1; i < iter->nr_segs; i++) {
8072 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8073 goto out;
8074 }
5a5f79b5
CM
8075 }
8076 retval = 0;
8077out:
8078 return retval;
8079}
eb838e73 8080
16432985 8081static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 8082 struct iov_iter *iter, loff_t offset)
16432985 8083{
4b46fce2
JB
8084 struct file *file = iocb->ki_filp;
8085 struct inode *inode = file->f_mapping->host;
0934856d 8086 size_t count = 0;
2e60a51e 8087 int flags = 0;
38851cc1
MX
8088 bool wakeup = true;
8089 bool relock = false;
0934856d 8090 ssize_t ret;
4b46fce2 8091
28060d5d 8092 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
5a5f79b5 8093 return 0;
3f7c579c 8094
38851cc1 8095 atomic_inc(&inode->i_dio_count);
4e857c58 8096 smp_mb__after_atomic();
38851cc1 8097
0e267c44 8098 /*
41bd9ca4
MX
8099 * The generic stuff only does filemap_write_and_wait_range, which
8100 * isn't enough if we've written compressed pages to this area, so
8101 * we need to flush the dirty pages again to make absolutely sure
8102 * that any outstanding dirty pages are on disk.
0e267c44 8103 */
a6cbcd4a 8104 count = iov_iter_count(iter);
41bd9ca4
MX
8105 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8106 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8107 filemap_fdatawrite_range(inode->i_mapping, offset,
8108 offset + count - 1);
0e267c44 8109
0934856d 8110 if (rw & WRITE) {
38851cc1
MX
8111 /*
8112 * If the write DIO is beyond the EOF, we need update
8113 * the isize, but it is protected by i_mutex. So we can
8114 * not unlock the i_mutex at this case.
8115 */
8116 if (offset + count <= inode->i_size) {
8117 mutex_unlock(&inode->i_mutex);
8118 relock = true;
8119 }
0934856d
MX
8120 ret = btrfs_delalloc_reserve_space(inode, count);
8121 if (ret)
38851cc1 8122 goto out;
ee39b432
DS
8123 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8124 &BTRFS_I(inode)->runtime_flags)) {
38851cc1
MX
8125 inode_dio_done(inode);
8126 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8127 wakeup = false;
0934856d
MX
8128 }
8129
8130 ret = __blockdev_direct_IO(rw, iocb, inode,
8131 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
31b14039 8132 iter, offset, btrfs_get_blocks_direct, NULL,
2e60a51e 8133 btrfs_submit_direct, flags);
0934856d
MX
8134 if (rw & WRITE) {
8135 if (ret < 0 && ret != -EIOCBQUEUED)
8136 btrfs_delalloc_release_space(inode, count);
172a5049 8137 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
8138 btrfs_delalloc_release_space(inode,
8139 count - (size_t)ret);
0934856d 8140 }
38851cc1 8141out:
2e60a51e
MX
8142 if (wakeup)
8143 inode_dio_done(inode);
38851cc1
MX
8144 if (relock)
8145 mutex_lock(&inode->i_mutex);
0934856d
MX
8146
8147 return ret;
16432985
CM
8148}
8149
05dadc09
TI
8150#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8151
1506fcc8
YS
8152static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8153 __u64 start, __u64 len)
8154{
05dadc09
TI
8155 int ret;
8156
8157 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8158 if (ret)
8159 return ret;
8160
ec29ed5b 8161 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8162}
8163
a52d9a80 8164int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8165{
d1310b2e
CM
8166 struct extent_io_tree *tree;
8167 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8168 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8169}
1832a6d5 8170
a52d9a80 8171static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8172{
d1310b2e 8173 struct extent_io_tree *tree;
b888db2b
CM
8174
8175
8176 if (current->flags & PF_MEMALLOC) {
8177 redirty_page_for_writepage(wbc, page);
8178 unlock_page(page);
8179 return 0;
8180 }
d1310b2e 8181 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 8182 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
8183}
8184
48a3b636
ES
8185static int btrfs_writepages(struct address_space *mapping,
8186 struct writeback_control *wbc)
b293f02e 8187{
d1310b2e 8188 struct extent_io_tree *tree;
771ed689 8189
d1310b2e 8190 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8191 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8192}
8193
3ab2fb5a
CM
8194static int
8195btrfs_readpages(struct file *file, struct address_space *mapping,
8196 struct list_head *pages, unsigned nr_pages)
8197{
d1310b2e
CM
8198 struct extent_io_tree *tree;
8199 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8200 return extent_readpages(tree, mapping, pages, nr_pages,
8201 btrfs_get_extent);
8202}
e6dcd2dc 8203static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8204{
d1310b2e
CM
8205 struct extent_io_tree *tree;
8206 struct extent_map_tree *map;
a52d9a80 8207 int ret;
8c2383c3 8208
d1310b2e
CM
8209 tree = &BTRFS_I(page->mapping->host)->io_tree;
8210 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8211 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8212 if (ret == 1) {
8213 ClearPagePrivate(page);
8214 set_page_private(page, 0);
8215 page_cache_release(page);
39279cc3 8216 }
a52d9a80 8217 return ret;
39279cc3
CM
8218}
8219
e6dcd2dc
CM
8220static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8221{
98509cfc
CM
8222 if (PageWriteback(page) || PageDirty(page))
8223 return 0;
b335b003 8224 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8225}
8226
d47992f8
LC
8227static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8228 unsigned int length)
39279cc3 8229{
5fd02043 8230 struct inode *inode = page->mapping->host;
d1310b2e 8231 struct extent_io_tree *tree;
e6dcd2dc 8232 struct btrfs_ordered_extent *ordered;
2ac55d41 8233 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8234 u64 page_start = page_offset(page);
8235 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 8236 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8237
8b62b72b
CM
8238 /*
8239 * we have the page locked, so new writeback can't start,
8240 * and the dirty bit won't be cleared while we are here.
8241 *
8242 * Wait for IO on this page so that we can safely clear
8243 * the PagePrivate2 bit and do ordered accounting
8244 */
e6dcd2dc 8245 wait_on_page_writeback(page);
8b62b72b 8246
5fd02043 8247 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8248 if (offset) {
8249 btrfs_releasepage(page, GFP_NOFS);
8250 return;
8251 }
131e404a
FDBM
8252
8253 if (!inode_evicting)
8254 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8255 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 8256 if (ordered) {
eb84ae03
CM
8257 /*
8258 * IO on this page will never be started, so we need
8259 * to account for any ordered extents now
8260 */
131e404a
FDBM
8261 if (!inode_evicting)
8262 clear_extent_bit(tree, page_start, page_end,
8263 EXTENT_DIRTY | EXTENT_DELALLOC |
8264 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8265 EXTENT_DEFRAG, 1, 0, &cached_state,
8266 GFP_NOFS);
8b62b72b
CM
8267 /*
8268 * whoever cleared the private bit is responsible
8269 * for the finish_ordered_io
8270 */
77cef2ec
JB
8271 if (TestClearPagePrivate2(page)) {
8272 struct btrfs_ordered_inode_tree *tree;
8273 u64 new_len;
8274
8275 tree = &BTRFS_I(inode)->ordered_tree;
8276
8277 spin_lock_irq(&tree->lock);
8278 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8279 new_len = page_start - ordered->file_offset;
8280 if (new_len < ordered->truncated_len)
8281 ordered->truncated_len = new_len;
8282 spin_unlock_irq(&tree->lock);
8283
8284 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8285 page_start,
8286 PAGE_CACHE_SIZE, 1))
8287 btrfs_finish_ordered_io(ordered);
8b62b72b 8288 }
e6dcd2dc 8289 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8290 if (!inode_evicting) {
8291 cached_state = NULL;
8292 lock_extent_bits(tree, page_start, page_end, 0,
8293 &cached_state);
8294 }
8295 }
8296
8297 if (!inode_evicting) {
8298 clear_extent_bit(tree, page_start, page_end,
8299 EXTENT_LOCKED | EXTENT_DIRTY |
8300 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8301 EXTENT_DEFRAG, 1, 1,
8302 &cached_state, GFP_NOFS);
8303
8304 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8305 }
e6dcd2dc 8306
4a096752 8307 ClearPageChecked(page);
9ad6b7bc 8308 if (PagePrivate(page)) {
9ad6b7bc
CM
8309 ClearPagePrivate(page);
8310 set_page_private(page, 0);
8311 page_cache_release(page);
8312 }
39279cc3
CM
8313}
8314
9ebefb18
CM
8315/*
8316 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8317 * called from a page fault handler when a page is first dirtied. Hence we must
8318 * be careful to check for EOF conditions here. We set the page up correctly
8319 * for a written page which means we get ENOSPC checking when writing into
8320 * holes and correct delalloc and unwritten extent mapping on filesystems that
8321 * support these features.
8322 *
8323 * We are not allowed to take the i_mutex here so we have to play games to
8324 * protect against truncate races as the page could now be beyond EOF. Because
8325 * vmtruncate() writes the inode size before removing pages, once we have the
8326 * page lock we can determine safely if the page is beyond EOF. If it is not
8327 * beyond EOF, then the page is guaranteed safe against truncation until we
8328 * unlock the page.
8329 */
c2ec175c 8330int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8331{
c2ec175c 8332 struct page *page = vmf->page;
496ad9aa 8333 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8334 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8335 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8336 struct btrfs_ordered_extent *ordered;
2ac55d41 8337 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8338 char *kaddr;
8339 unsigned long zero_start;
9ebefb18 8340 loff_t size;
1832a6d5 8341 int ret;
9998eb70 8342 int reserved = 0;
a52d9a80 8343 u64 page_start;
e6dcd2dc 8344 u64 page_end;
9ebefb18 8345
b2b5ef5c 8346 sb_start_pagefault(inode->i_sb);
0ca1f7ce 8347 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 8348 if (!ret) {
e41f941a 8349 ret = file_update_time(vma->vm_file);
9998eb70
CM
8350 reserved = 1;
8351 }
56a76f82
NP
8352 if (ret) {
8353 if (ret == -ENOMEM)
8354 ret = VM_FAULT_OOM;
8355 else /* -ENOSPC, -EIO, etc */
8356 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8357 if (reserved)
8358 goto out;
8359 goto out_noreserve;
56a76f82 8360 }
1832a6d5 8361
56a76f82 8362 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8363again:
9ebefb18 8364 lock_page(page);
9ebefb18 8365 size = i_size_read(inode);
e6dcd2dc
CM
8366 page_start = page_offset(page);
8367 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 8368
9ebefb18 8369 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8370 (page_start >= size)) {
9ebefb18
CM
8371 /* page got truncated out from underneath us */
8372 goto out_unlock;
8373 }
e6dcd2dc
CM
8374 wait_on_page_writeback(page);
8375
d0082371 8376 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
8377 set_page_extent_mapped(page);
8378
eb84ae03
CM
8379 /*
8380 * we can't set the delalloc bits if there are pending ordered
8381 * extents. Drop our locks and wait for them to finish
8382 */
e6dcd2dc
CM
8383 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8384 if (ordered) {
2ac55d41
JB
8385 unlock_extent_cached(io_tree, page_start, page_end,
8386 &cached_state, GFP_NOFS);
e6dcd2dc 8387 unlock_page(page);
eb84ae03 8388 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8389 btrfs_put_ordered_extent(ordered);
8390 goto again;
8391 }
8392
fbf19087
JB
8393 /*
8394 * XXX - page_mkwrite gets called every time the page is dirtied, even
8395 * if it was already dirty, so for space accounting reasons we need to
8396 * clear any delalloc bits for the range we are fixing to save. There
8397 * is probably a better way to do this, but for now keep consistent with
8398 * prepare_pages in the normal write path.
8399 */
2ac55d41 8400 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
8401 EXTENT_DIRTY | EXTENT_DELALLOC |
8402 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 8403 0, 0, &cached_state, GFP_NOFS);
fbf19087 8404
2ac55d41
JB
8405 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8406 &cached_state);
9ed74f2d 8407 if (ret) {
2ac55d41
JB
8408 unlock_extent_cached(io_tree, page_start, page_end,
8409 &cached_state, GFP_NOFS);
9ed74f2d
JB
8410 ret = VM_FAULT_SIGBUS;
8411 goto out_unlock;
8412 }
e6dcd2dc 8413 ret = 0;
9ebefb18
CM
8414
8415 /* page is wholly or partially inside EOF */
a52d9a80 8416 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 8417 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 8418 else
e6dcd2dc 8419 zero_start = PAGE_CACHE_SIZE;
9ebefb18 8420
e6dcd2dc
CM
8421 if (zero_start != PAGE_CACHE_SIZE) {
8422 kaddr = kmap(page);
8423 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8424 flush_dcache_page(page);
8425 kunmap(page);
8426 }
247e743c 8427 ClearPageChecked(page);
e6dcd2dc 8428 set_page_dirty(page);
50a9b214 8429 SetPageUptodate(page);
5a3f23d5 8430
257c62e1
CM
8431 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8432 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8433 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8434
2ac55d41 8435 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
8436
8437out_unlock:
b2b5ef5c
JK
8438 if (!ret) {
8439 sb_end_pagefault(inode->i_sb);
50a9b214 8440 return VM_FAULT_LOCKED;
b2b5ef5c 8441 }
9ebefb18 8442 unlock_page(page);
1832a6d5 8443out:
ec39e180 8444 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 8445out_noreserve:
b2b5ef5c 8446 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
8447 return ret;
8448}
8449
a41ad394 8450static int btrfs_truncate(struct inode *inode)
39279cc3
CM
8451{
8452 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8453 struct btrfs_block_rsv *rsv;
a71754fc 8454 int ret = 0;
3893e33b 8455 int err = 0;
39279cc3 8456 struct btrfs_trans_handle *trans;
dbe674a9 8457 u64 mask = root->sectorsize - 1;
07127184 8458 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 8459
0ef8b726
JB
8460 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8461 (u64)-1);
8462 if (ret)
8463 return ret;
39279cc3 8464
fcb80c2a
JB
8465 /*
8466 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8467 * 3 things going on here
8468 *
8469 * 1) We need to reserve space for our orphan item and the space to
8470 * delete our orphan item. Lord knows we don't want to have a dangling
8471 * orphan item because we didn't reserve space to remove it.
8472 *
8473 * 2) We need to reserve space to update our inode.
8474 *
8475 * 3) We need to have something to cache all the space that is going to
8476 * be free'd up by the truncate operation, but also have some slack
8477 * space reserved in case it uses space during the truncate (thank you
8478 * very much snapshotting).
8479 *
8480 * And we need these to all be seperate. The fact is we can use alot of
8481 * space doing the truncate, and we have no earthly idea how much space
8482 * we will use, so we need the truncate reservation to be seperate so it
8483 * doesn't end up using space reserved for updating the inode or
8484 * removing the orphan item. We also need to be able to stop the
8485 * transaction and start a new one, which means we need to be able to
8486 * update the inode several times, and we have no idea of knowing how
8487 * many times that will be, so we can't just reserve 1 item for the
8488 * entirety of the opration, so that has to be done seperately as well.
8489 * Then there is the orphan item, which does indeed need to be held on
8490 * to for the whole operation, and we need nobody to touch this reserved
8491 * space except the orphan code.
8492 *
8493 * So that leaves us with
8494 *
8495 * 1) root->orphan_block_rsv - for the orphan deletion.
8496 * 2) rsv - for the truncate reservation, which we will steal from the
8497 * transaction reservation.
8498 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8499 * updating the inode.
8500 */
66d8f3dd 8501 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8502 if (!rsv)
8503 return -ENOMEM;
4a338542 8504 rsv->size = min_size;
ca7e70f5 8505 rsv->failfast = 1;
f0cd846e 8506
907cbceb 8507 /*
07127184 8508 * 1 for the truncate slack space
907cbceb
JB
8509 * 1 for updating the inode.
8510 */
f3fe820c 8511 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
8512 if (IS_ERR(trans)) {
8513 err = PTR_ERR(trans);
8514 goto out;
8515 }
f0cd846e 8516
907cbceb
JB
8517 /* Migrate the slack space for the truncate to our reserve */
8518 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8519 min_size);
fcb80c2a 8520 BUG_ON(ret);
f0cd846e 8521
5dc562c5
JB
8522 /*
8523 * So if we truncate and then write and fsync we normally would just
8524 * write the extents that changed, which is a problem if we need to
8525 * first truncate that entire inode. So set this flag so we write out
8526 * all of the extents in the inode to the sync log so we're completely
8527 * safe.
8528 */
8529 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8530 trans->block_rsv = rsv;
907cbceb 8531
8082510e
YZ
8532 while (1) {
8533 ret = btrfs_truncate_inode_items(trans, root, inode,
8534 inode->i_size,
8535 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 8536 if (ret != -ENOSPC) {
3893e33b 8537 err = ret;
8082510e 8538 break;
3893e33b 8539 }
39279cc3 8540
fcb80c2a 8541 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 8542 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
8543 if (ret) {
8544 err = ret;
8545 break;
8546 }
ca7e70f5 8547
8082510e 8548 btrfs_end_transaction(trans, root);
b53d3f5d 8549 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
8550
8551 trans = btrfs_start_transaction(root, 2);
8552 if (IS_ERR(trans)) {
8553 ret = err = PTR_ERR(trans);
8554 trans = NULL;
8555 break;
8556 }
8557
8558 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8559 rsv, min_size);
8560 BUG_ON(ret); /* shouldn't happen */
8561 trans->block_rsv = rsv;
8082510e
YZ
8562 }
8563
8564 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 8565 trans->block_rsv = root->orphan_block_rsv;
8082510e 8566 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
8567 if (ret)
8568 err = ret;
8082510e
YZ
8569 }
8570
917c16b2
CM
8571 if (trans) {
8572 trans->block_rsv = &root->fs_info->trans_block_rsv;
8573 ret = btrfs_update_inode(trans, root, inode);
8574 if (ret && !err)
8575 err = ret;
7b128766 8576
7ad85bb7 8577 ret = btrfs_end_transaction(trans, root);
b53d3f5d 8578 btrfs_btree_balance_dirty(root);
917c16b2 8579 }
fcb80c2a
JB
8580
8581out:
8582 btrfs_free_block_rsv(root, rsv);
8583
3893e33b
JB
8584 if (ret && !err)
8585 err = ret;
a41ad394 8586
3893e33b 8587 return err;
39279cc3
CM
8588}
8589
d352ac68
CM
8590/*
8591 * create a new subvolume directory/inode (helper for the ioctl).
8592 */
d2fb3437 8593int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8594 struct btrfs_root *new_root,
8595 struct btrfs_root *parent_root,
8596 u64 new_dirid)
39279cc3 8597{
39279cc3 8598 struct inode *inode;
76dda93c 8599 int err;
00e4e6b3 8600 u64 index = 0;
39279cc3 8601
12fc9d09
FA
8602 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8603 new_dirid, new_dirid,
8604 S_IFDIR | (~current_umask() & S_IRWXUGO),
8605 &index);
54aa1f4d 8606 if (IS_ERR(inode))
f46b5a66 8607 return PTR_ERR(inode);
39279cc3
CM
8608 inode->i_op = &btrfs_dir_inode_operations;
8609 inode->i_fop = &btrfs_dir_file_operations;
8610
bfe86848 8611 set_nlink(inode, 1);
dbe674a9 8612 btrfs_i_size_write(inode, 0);
b0d5d10f 8613 unlock_new_inode(inode);
3b96362c 8614
63541927
FDBM
8615 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8616 if (err)
8617 btrfs_err(new_root->fs_info,
351fd353 8618 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8619 new_root->root_key.objectid, err);
8620
76dda93c 8621 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8622
76dda93c 8623 iput(inode);
ce598979 8624 return err;
39279cc3
CM
8625}
8626
39279cc3
CM
8627struct inode *btrfs_alloc_inode(struct super_block *sb)
8628{
8629 struct btrfs_inode *ei;
2ead6ae7 8630 struct inode *inode;
39279cc3
CM
8631
8632 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8633 if (!ei)
8634 return NULL;
2ead6ae7
YZ
8635
8636 ei->root = NULL;
2ead6ae7 8637 ei->generation = 0;
15ee9bc7 8638 ei->last_trans = 0;
257c62e1 8639 ei->last_sub_trans = 0;
e02119d5 8640 ei->logged_trans = 0;
2ead6ae7 8641 ei->delalloc_bytes = 0;
47059d93 8642 ei->defrag_bytes = 0;
2ead6ae7
YZ
8643 ei->disk_i_size = 0;
8644 ei->flags = 0;
7709cde3 8645 ei->csum_bytes = 0;
2ead6ae7 8646 ei->index_cnt = (u64)-1;
67de1176 8647 ei->dir_index = 0;
2ead6ae7 8648 ei->last_unlink_trans = 0;
46d8bc34 8649 ei->last_log_commit = 0;
2ead6ae7 8650
9e0baf60
JB
8651 spin_lock_init(&ei->lock);
8652 ei->outstanding_extents = 0;
8653 ei->reserved_extents = 0;
2ead6ae7 8654
72ac3c0d 8655 ei->runtime_flags = 0;
261507a0 8656 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8657
16cdcec7
MX
8658 ei->delayed_node = NULL;
8659
9cc97d64 8660 ei->i_otime.tv_sec = 0;
8661 ei->i_otime.tv_nsec = 0;
8662
2ead6ae7 8663 inode = &ei->vfs_inode;
a8067e02 8664 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
8665 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8666 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
8667 ei->io_tree.track_uptodate = 1;
8668 ei->io_failure_tree.track_uptodate = 1;
b812ce28 8669 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8670 mutex_init(&ei->log_mutex);
f248679e 8671 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 8672 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8673 INIT_LIST_HEAD(&ei->delalloc_inodes);
2ead6ae7
YZ
8674 RB_CLEAR_NODE(&ei->rb_node);
8675
8676 return inode;
39279cc3
CM
8677}
8678
aaedb55b
JB
8679#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8680void btrfs_test_destroy_inode(struct inode *inode)
8681{
8682 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8683 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8684}
8685#endif
8686
fa0d7e3d
NP
8687static void btrfs_i_callback(struct rcu_head *head)
8688{
8689 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
8690 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8691}
8692
39279cc3
CM
8693void btrfs_destroy_inode(struct inode *inode)
8694{
e6dcd2dc 8695 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
8696 struct btrfs_root *root = BTRFS_I(inode)->root;
8697
b3d9b7a3 8698 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 8699 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
8700 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8701 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
8702 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8703 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 8704 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 8705
a6dbd429
JB
8706 /*
8707 * This can happen where we create an inode, but somebody else also
8708 * created the same inode and we need to destroy the one we already
8709 * created.
8710 */
8711 if (!root)
8712 goto free;
8713
8a35d95f
JB
8714 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8715 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 8716 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 8717 btrfs_ino(inode));
8a35d95f 8718 atomic_dec(&root->orphan_inodes);
7b128766 8719 }
7b128766 8720
d397712b 8721 while (1) {
e6dcd2dc
CM
8722 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8723 if (!ordered)
8724 break;
8725 else {
c2cf52eb 8726 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 8727 ordered->file_offset, ordered->len);
e6dcd2dc
CM
8728 btrfs_remove_ordered_extent(inode, ordered);
8729 btrfs_put_ordered_extent(ordered);
8730 btrfs_put_ordered_extent(ordered);
8731 }
8732 }
5d4f98a2 8733 inode_tree_del(inode);
5b21f2ed 8734 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 8735free:
fa0d7e3d 8736 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
8737}
8738
45321ac5 8739int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8740{
8741 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8742
6379ef9f
NA
8743 if (root == NULL)
8744 return 1;
8745
fa6ac876 8746 /* the snap/subvol tree is on deleting */
69e9c6c6 8747 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8748 return 1;
76dda93c 8749 else
45321ac5 8750 return generic_drop_inode(inode);
76dda93c
YZ
8751}
8752
0ee0fda0 8753static void init_once(void *foo)
39279cc3
CM
8754{
8755 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8756
8757 inode_init_once(&ei->vfs_inode);
8758}
8759
8760void btrfs_destroy_cachep(void)
8761{
8c0a8537
KS
8762 /*
8763 * Make sure all delayed rcu free inodes are flushed before we
8764 * destroy cache.
8765 */
8766 rcu_barrier();
39279cc3
CM
8767 if (btrfs_inode_cachep)
8768 kmem_cache_destroy(btrfs_inode_cachep);
8769 if (btrfs_trans_handle_cachep)
8770 kmem_cache_destroy(btrfs_trans_handle_cachep);
8771 if (btrfs_transaction_cachep)
8772 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
8773 if (btrfs_path_cachep)
8774 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
8775 if (btrfs_free_space_cachep)
8776 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
8777 if (btrfs_delalloc_work_cachep)
8778 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
8779}
8780
8781int btrfs_init_cachep(void)
8782{
837e1972 8783 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
8784 sizeof(struct btrfs_inode), 0,
8785 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
8786 if (!btrfs_inode_cachep)
8787 goto fail;
9601e3f6 8788
837e1972 8789 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
8790 sizeof(struct btrfs_trans_handle), 0,
8791 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8792 if (!btrfs_trans_handle_cachep)
8793 goto fail;
9601e3f6 8794
837e1972 8795 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
8796 sizeof(struct btrfs_transaction), 0,
8797 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8798 if (!btrfs_transaction_cachep)
8799 goto fail;
9601e3f6 8800
837e1972 8801 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
8802 sizeof(struct btrfs_path), 0,
8803 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8804 if (!btrfs_path_cachep)
8805 goto fail;
9601e3f6 8806
837e1972 8807 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
8808 sizeof(struct btrfs_free_space), 0,
8809 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8810 if (!btrfs_free_space_cachep)
8811 goto fail;
8812
8ccf6f19
MX
8813 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8814 sizeof(struct btrfs_delalloc_work), 0,
8815 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8816 NULL);
8817 if (!btrfs_delalloc_work_cachep)
8818 goto fail;
8819
39279cc3
CM
8820 return 0;
8821fail:
8822 btrfs_destroy_cachep();
8823 return -ENOMEM;
8824}
8825
8826static int btrfs_getattr(struct vfsmount *mnt,
8827 struct dentry *dentry, struct kstat *stat)
8828{
df0af1a5 8829 u64 delalloc_bytes;
39279cc3 8830 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
8831 u32 blocksize = inode->i_sb->s_blocksize;
8832
39279cc3 8833 generic_fillattr(inode, stat);
0ee5dc67 8834 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 8835 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
8836
8837 spin_lock(&BTRFS_I(inode)->lock);
8838 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8839 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8840 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8841 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8842 return 0;
8843}
8844
d397712b
CM
8845static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8846 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
8847{
8848 struct btrfs_trans_handle *trans;
8849 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 8850 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
8851 struct inode *new_inode = new_dentry->d_inode;
8852 struct inode *old_inode = old_dentry->d_inode;
8853 struct timespec ctime = CURRENT_TIME;
00e4e6b3 8854 u64 index = 0;
4df27c4d 8855 u64 root_objectid;
39279cc3 8856 int ret;
33345d01 8857 u64 old_ino = btrfs_ino(old_inode);
39279cc3 8858
33345d01 8859 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8860 return -EPERM;
8861
4df27c4d 8862 /* we only allow rename subvolume link between subvolumes */
33345d01 8863 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8864 return -EXDEV;
8865
33345d01
LZ
8866 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8867 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8868 return -ENOTEMPTY;
5f39d397 8869
4df27c4d
YZ
8870 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8871 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8872 return -ENOTEMPTY;
9c52057c
CM
8873
8874
8875 /* check for collisions, even if the name isn't there */
4871c158 8876 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
8877 new_dentry->d_name.name,
8878 new_dentry->d_name.len);
8879
8880 if (ret) {
8881 if (ret == -EEXIST) {
8882 /* we shouldn't get
8883 * eexist without a new_inode */
fae7f21c 8884 if (WARN_ON(!new_inode)) {
9c52057c
CM
8885 return ret;
8886 }
8887 } else {
8888 /* maybe -EOVERFLOW */
8889 return ret;
8890 }
8891 }
8892 ret = 0;
8893
5a3f23d5 8894 /*
8d875f95
CM
8895 * we're using rename to replace one file with another. Start IO on it
8896 * now so we don't add too much work to the end of the transaction
5a3f23d5 8897 */
8d875f95 8898 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
8899 filemap_flush(old_inode->i_mapping);
8900
76dda93c 8901 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8902 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8903 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8904 /*
8905 * We want to reserve the absolute worst case amount of items. So if
8906 * both inodes are subvols and we need to unlink them then that would
8907 * require 4 item modifications, but if they are both normal inodes it
8908 * would require 5 item modifications, so we'll assume their normal
8909 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8910 * should cover the worst case number of items we'll modify.
8911 */
6e137ed3 8912 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8913 if (IS_ERR(trans)) {
8914 ret = PTR_ERR(trans);
8915 goto out_notrans;
8916 }
76dda93c 8917
4df27c4d
YZ
8918 if (dest != root)
8919 btrfs_record_root_in_trans(trans, dest);
5f39d397 8920
a5719521
YZ
8921 ret = btrfs_set_inode_index(new_dir, &index);
8922 if (ret)
8923 goto out_fail;
5a3f23d5 8924
67de1176 8925 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 8926 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 8927 /* force full log commit if subvolume involved. */
995946dd 8928 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 8929 } else {
a5719521
YZ
8930 ret = btrfs_insert_inode_ref(trans, dest,
8931 new_dentry->d_name.name,
8932 new_dentry->d_name.len,
33345d01
LZ
8933 old_ino,
8934 btrfs_ino(new_dir), index);
a5719521
YZ
8935 if (ret)
8936 goto out_fail;
4df27c4d
YZ
8937 /*
8938 * this is an ugly little race, but the rename is required
8939 * to make sure that if we crash, the inode is either at the
8940 * old name or the new one. pinning the log transaction lets
8941 * us make sure we don't allow a log commit to come in after
8942 * we unlink the name but before we add the new name back in.
8943 */
8944 btrfs_pin_log_trans(root);
8945 }
5a3f23d5 8946
0c4d2d95
JB
8947 inode_inc_iversion(old_dir);
8948 inode_inc_iversion(new_dir);
8949 inode_inc_iversion(old_inode);
39279cc3
CM
8950 old_dir->i_ctime = old_dir->i_mtime = ctime;
8951 new_dir->i_ctime = new_dir->i_mtime = ctime;
8952 old_inode->i_ctime = ctime;
5f39d397 8953
12fcfd22
CM
8954 if (old_dentry->d_parent != new_dentry->d_parent)
8955 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8956
33345d01 8957 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8958 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8959 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8960 old_dentry->d_name.name,
8961 old_dentry->d_name.len);
8962 } else {
92986796
AV
8963 ret = __btrfs_unlink_inode(trans, root, old_dir,
8964 old_dentry->d_inode,
8965 old_dentry->d_name.name,
8966 old_dentry->d_name.len);
8967 if (!ret)
8968 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8969 }
79787eaa
JM
8970 if (ret) {
8971 btrfs_abort_transaction(trans, root, ret);
8972 goto out_fail;
8973 }
39279cc3
CM
8974
8975 if (new_inode) {
0c4d2d95 8976 inode_inc_iversion(new_inode);
39279cc3 8977 new_inode->i_ctime = CURRENT_TIME;
33345d01 8978 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8979 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8980 root_objectid = BTRFS_I(new_inode)->location.objectid;
8981 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8982 root_objectid,
8983 new_dentry->d_name.name,
8984 new_dentry->d_name.len);
8985 BUG_ON(new_inode->i_nlink == 0);
8986 } else {
8987 ret = btrfs_unlink_inode(trans, dest, new_dir,
8988 new_dentry->d_inode,
8989 new_dentry->d_name.name,
8990 new_dentry->d_name.len);
8991 }
4ef31a45 8992 if (!ret && new_inode->i_nlink == 0)
e02119d5 8993 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8994 if (ret) {
8995 btrfs_abort_transaction(trans, root, ret);
8996 goto out_fail;
8997 }
39279cc3 8998 }
aec7477b 8999
4df27c4d
YZ
9000 ret = btrfs_add_link(trans, new_dir, old_inode,
9001 new_dentry->d_name.name,
a5719521 9002 new_dentry->d_name.len, 0, index);
79787eaa
JM
9003 if (ret) {
9004 btrfs_abort_transaction(trans, root, ret);
9005 goto out_fail;
9006 }
39279cc3 9007
67de1176
MX
9008 if (old_inode->i_nlink == 1)
9009 BTRFS_I(old_inode)->dir_index = index;
9010
33345d01 9011 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 9012 struct dentry *parent = new_dentry->d_parent;
6a912213 9013 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
9014 btrfs_end_log_trans(root);
9015 }
39279cc3 9016out_fail:
7ad85bb7 9017 btrfs_end_transaction(trans, root);
b44c59a8 9018out_notrans:
33345d01 9019 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9020 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9021
39279cc3
CM
9022 return ret;
9023}
9024
80ace85c
MS
9025static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9026 struct inode *new_dir, struct dentry *new_dentry,
9027 unsigned int flags)
9028{
9029 if (flags & ~RENAME_NOREPLACE)
9030 return -EINVAL;
9031
9032 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9033}
9034
8ccf6f19
MX
9035static void btrfs_run_delalloc_work(struct btrfs_work *work)
9036{
9037 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9038 struct inode *inode;
8ccf6f19
MX
9039
9040 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9041 work);
9f23e289
JB
9042 inode = delalloc_work->inode;
9043 if (delalloc_work->wait) {
9044 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9045 } else {
9046 filemap_flush(inode->i_mapping);
9047 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9048 &BTRFS_I(inode)->runtime_flags))
9049 filemap_flush(inode->i_mapping);
9050 }
8ccf6f19
MX
9051
9052 if (delalloc_work->delay_iput)
9f23e289 9053 btrfs_add_delayed_iput(inode);
8ccf6f19 9054 else
9f23e289 9055 iput(inode);
8ccf6f19
MX
9056 complete(&delalloc_work->completion);
9057}
9058
9059struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9060 int wait, int delay_iput)
9061{
9062 struct btrfs_delalloc_work *work;
9063
9064 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9065 if (!work)
9066 return NULL;
9067
9068 init_completion(&work->completion);
9069 INIT_LIST_HEAD(&work->list);
9070 work->inode = inode;
9071 work->wait = wait;
9072 work->delay_iput = delay_iput;
9e0af237
LB
9073 WARN_ON_ONCE(!inode);
9074 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9075 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9076
9077 return work;
9078}
9079
9080void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9081{
9082 wait_for_completion(&work->completion);
9083 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9084}
9085
d352ac68
CM
9086/*
9087 * some fairly slow code that needs optimization. This walks the list
9088 * of all the inodes with pending delalloc and forces them to disk.
9089 */
6c255e67
MX
9090static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9091 int nr)
ea8c2819 9092{
ea8c2819 9093 struct btrfs_inode *binode;
5b21f2ed 9094 struct inode *inode;
8ccf6f19
MX
9095 struct btrfs_delalloc_work *work, *next;
9096 struct list_head works;
1eafa6c7 9097 struct list_head splice;
8ccf6f19 9098 int ret = 0;
ea8c2819 9099
8ccf6f19 9100 INIT_LIST_HEAD(&works);
1eafa6c7 9101 INIT_LIST_HEAD(&splice);
63607cc8 9102
573bfb72 9103 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9104 spin_lock(&root->delalloc_lock);
9105 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9106 while (!list_empty(&splice)) {
9107 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9108 delalloc_inodes);
1eafa6c7 9109
eb73c1b7
MX
9110 list_move_tail(&binode->delalloc_inodes,
9111 &root->delalloc_inodes);
5b21f2ed 9112 inode = igrab(&binode->vfs_inode);
df0af1a5 9113 if (!inode) {
eb73c1b7 9114 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9115 continue;
df0af1a5 9116 }
eb73c1b7 9117 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
9118
9119 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
5d99a998 9120 if (!work) {
f4ab9ea7
JB
9121 if (delay_iput)
9122 btrfs_add_delayed_iput(inode);
9123 else
9124 iput(inode);
1eafa6c7 9125 ret = -ENOMEM;
a1ecaabb 9126 goto out;
5b21f2ed 9127 }
1eafa6c7 9128 list_add_tail(&work->list, &works);
a44903ab
QW
9129 btrfs_queue_work(root->fs_info->flush_workers,
9130 &work->work);
6c255e67
MX
9131 ret++;
9132 if (nr != -1 && ret >= nr)
a1ecaabb 9133 goto out;
5b21f2ed 9134 cond_resched();
eb73c1b7 9135 spin_lock(&root->delalloc_lock);
ea8c2819 9136 }
eb73c1b7 9137 spin_unlock(&root->delalloc_lock);
8c8bee1d 9138
a1ecaabb 9139out:
eb73c1b7
MX
9140 list_for_each_entry_safe(work, next, &works, list) {
9141 list_del_init(&work->list);
9142 btrfs_wait_and_free_delalloc_work(work);
9143 }
9144
9145 if (!list_empty_careful(&splice)) {
9146 spin_lock(&root->delalloc_lock);
9147 list_splice_tail(&splice, &root->delalloc_inodes);
9148 spin_unlock(&root->delalloc_lock);
9149 }
573bfb72 9150 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9151 return ret;
9152}
1eafa6c7 9153
eb73c1b7
MX
9154int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9155{
9156 int ret;
1eafa6c7 9157
2c21b4d7 9158 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
9159 return -EROFS;
9160
6c255e67
MX
9161 ret = __start_delalloc_inodes(root, delay_iput, -1);
9162 if (ret > 0)
9163 ret = 0;
eb73c1b7
MX
9164 /*
9165 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
9166 * we have to make sure the IO is actually started and that
9167 * ordered extents get created before we return
9168 */
9169 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 9170 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 9171 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 9172 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
9173 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9174 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
9175 }
9176 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
9177 return ret;
9178}
9179
6c255e67
MX
9180int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9181 int nr)
eb73c1b7
MX
9182{
9183 struct btrfs_root *root;
9184 struct list_head splice;
9185 int ret;
9186
2c21b4d7 9187 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9188 return -EROFS;
9189
9190 INIT_LIST_HEAD(&splice);
9191
573bfb72 9192 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9193 spin_lock(&fs_info->delalloc_root_lock);
9194 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9195 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9196 root = list_first_entry(&splice, struct btrfs_root,
9197 delalloc_root);
9198 root = btrfs_grab_fs_root(root);
9199 BUG_ON(!root);
9200 list_move_tail(&root->delalloc_root,
9201 &fs_info->delalloc_roots);
9202 spin_unlock(&fs_info->delalloc_root_lock);
9203
6c255e67 9204 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 9205 btrfs_put_fs_root(root);
6c255e67 9206 if (ret < 0)
eb73c1b7
MX
9207 goto out;
9208
6c255e67
MX
9209 if (nr != -1) {
9210 nr -= ret;
9211 WARN_ON(nr < 0);
9212 }
eb73c1b7 9213 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9214 }
eb73c1b7 9215 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9216
6c255e67 9217 ret = 0;
eb73c1b7
MX
9218 atomic_inc(&fs_info->async_submit_draining);
9219 while (atomic_read(&fs_info->nr_async_submits) ||
9220 atomic_read(&fs_info->async_delalloc_pages)) {
9221 wait_event(fs_info->async_submit_wait,
9222 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9223 atomic_read(&fs_info->async_delalloc_pages) == 0));
9224 }
9225 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 9226out:
1eafa6c7 9227 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
9228 spin_lock(&fs_info->delalloc_root_lock);
9229 list_splice_tail(&splice, &fs_info->delalloc_roots);
9230 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9231 }
573bfb72 9232 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9233 return ret;
ea8c2819
CM
9234}
9235
39279cc3
CM
9236static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9237 const char *symname)
9238{
9239 struct btrfs_trans_handle *trans;
9240 struct btrfs_root *root = BTRFS_I(dir)->root;
9241 struct btrfs_path *path;
9242 struct btrfs_key key;
1832a6d5 9243 struct inode *inode = NULL;
39279cc3
CM
9244 int err;
9245 int drop_inode = 0;
9246 u64 objectid;
67871254 9247 u64 index = 0;
39279cc3
CM
9248 int name_len;
9249 int datasize;
5f39d397 9250 unsigned long ptr;
39279cc3 9251 struct btrfs_file_extent_item *ei;
5f39d397 9252 struct extent_buffer *leaf;
39279cc3 9253
f06becc4 9254 name_len = strlen(symname);
39279cc3
CM
9255 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9256 return -ENAMETOOLONG;
1832a6d5 9257
9ed74f2d
JB
9258 /*
9259 * 2 items for inode item and ref
9260 * 2 items for dir items
9261 * 1 item for xattr if selinux is on
9262 */
a22285a6
YZ
9263 trans = btrfs_start_transaction(root, 5);
9264 if (IS_ERR(trans))
9265 return PTR_ERR(trans);
1832a6d5 9266
581bb050
LZ
9267 err = btrfs_find_free_ino(root, &objectid);
9268 if (err)
9269 goto out_unlock;
9270
aec7477b 9271 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 9272 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 9273 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9274 if (IS_ERR(inode)) {
9275 err = PTR_ERR(inode);
39279cc3 9276 goto out_unlock;
7cf96da3 9277 }
39279cc3 9278
ad19db71
CS
9279 /*
9280 * If the active LSM wants to access the inode during
9281 * d_instantiate it needs these. Smack checks to see
9282 * if the filesystem supports xattrs by looking at the
9283 * ops vector.
9284 */
9285 inode->i_fop = &btrfs_file_operations;
9286 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f
CM
9287 inode->i_mapping->a_ops = &btrfs_aops;
9288 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9289 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9290
9291 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9292 if (err)
9293 goto out_unlock_inode;
ad19db71 9294
a1b075d2 9295 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 9296 if (err)
b0d5d10f 9297 goto out_unlock_inode;
39279cc3
CM
9298
9299 path = btrfs_alloc_path();
d8926bb3
MF
9300 if (!path) {
9301 err = -ENOMEM;
b0d5d10f 9302 goto out_unlock_inode;
d8926bb3 9303 }
33345d01 9304 key.objectid = btrfs_ino(inode);
39279cc3 9305 key.offset = 0;
962a298f 9306 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9307 datasize = btrfs_file_extent_calc_inline_size(name_len);
9308 err = btrfs_insert_empty_item(trans, root, path, &key,
9309 datasize);
54aa1f4d 9310 if (err) {
b0839166 9311 btrfs_free_path(path);
b0d5d10f 9312 goto out_unlock_inode;
54aa1f4d 9313 }
5f39d397
CM
9314 leaf = path->nodes[0];
9315 ei = btrfs_item_ptr(leaf, path->slots[0],
9316 struct btrfs_file_extent_item);
9317 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9318 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9319 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9320 btrfs_set_file_extent_encryption(leaf, ei, 0);
9321 btrfs_set_file_extent_compression(leaf, ei, 0);
9322 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9323 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9324
39279cc3 9325 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9326 write_extent_buffer(leaf, symname, ptr, name_len);
9327 btrfs_mark_buffer_dirty(leaf);
39279cc3 9328 btrfs_free_path(path);
5f39d397 9329
39279cc3
CM
9330 inode->i_op = &btrfs_symlink_inode_operations;
9331 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 9332 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 9333 inode_set_bytes(inode, name_len);
f06becc4 9334 btrfs_i_size_write(inode, name_len);
54aa1f4d 9335 err = btrfs_update_inode(trans, root, inode);
b0d5d10f 9336 if (err) {
54aa1f4d 9337 drop_inode = 1;
b0d5d10f
CM
9338 goto out_unlock_inode;
9339 }
9340
9341 unlock_new_inode(inode);
9342 d_instantiate(dentry, inode);
39279cc3
CM
9343
9344out_unlock:
7ad85bb7 9345 btrfs_end_transaction(trans, root);
39279cc3
CM
9346 if (drop_inode) {
9347 inode_dec_link_count(inode);
9348 iput(inode);
9349 }
b53d3f5d 9350 btrfs_btree_balance_dirty(root);
39279cc3 9351 return err;
b0d5d10f
CM
9352
9353out_unlock_inode:
9354 drop_inode = 1;
9355 unlock_new_inode(inode);
9356 goto out_unlock;
39279cc3 9357}
16432985 9358
0af3d00b
JB
9359static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9360 u64 start, u64 num_bytes, u64 min_size,
9361 loff_t actual_len, u64 *alloc_hint,
9362 struct btrfs_trans_handle *trans)
d899e052 9363{
5dc562c5
JB
9364 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9365 struct extent_map *em;
d899e052
YZ
9366 struct btrfs_root *root = BTRFS_I(inode)->root;
9367 struct btrfs_key ins;
d899e052 9368 u64 cur_offset = start;
55a61d1d 9369 u64 i_size;
154ea289 9370 u64 cur_bytes;
d899e052 9371 int ret = 0;
0af3d00b 9372 bool own_trans = true;
d899e052 9373
0af3d00b
JB
9374 if (trans)
9375 own_trans = false;
d899e052 9376 while (num_bytes > 0) {
0af3d00b
JB
9377 if (own_trans) {
9378 trans = btrfs_start_transaction(root, 3);
9379 if (IS_ERR(trans)) {
9380 ret = PTR_ERR(trans);
9381 break;
9382 }
5a303d5d
YZ
9383 }
9384
154ea289
CM
9385 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9386 cur_bytes = max(cur_bytes, min_size);
00361589 9387 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 9388 *alloc_hint, &ins, 1, 0);
5a303d5d 9389 if (ret) {
0af3d00b
JB
9390 if (own_trans)
9391 btrfs_end_transaction(trans, root);
a22285a6 9392 break;
d899e052 9393 }
5a303d5d 9394
d899e052
YZ
9395 ret = insert_reserved_file_extent(trans, inode,
9396 cur_offset, ins.objectid,
9397 ins.offset, ins.offset,
920bbbfb 9398 ins.offset, 0, 0, 0,
d899e052 9399 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 9400 if (ret) {
857cc2fc 9401 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 9402 ins.offset, 0);
79787eaa
JM
9403 btrfs_abort_transaction(trans, root, ret);
9404 if (own_trans)
9405 btrfs_end_transaction(trans, root);
9406 break;
9407 }
a1ed835e
CM
9408 btrfs_drop_extent_cache(inode, cur_offset,
9409 cur_offset + ins.offset -1, 0);
5a303d5d 9410
5dc562c5
JB
9411 em = alloc_extent_map();
9412 if (!em) {
9413 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9414 &BTRFS_I(inode)->runtime_flags);
9415 goto next;
9416 }
9417
9418 em->start = cur_offset;
9419 em->orig_start = cur_offset;
9420 em->len = ins.offset;
9421 em->block_start = ins.objectid;
9422 em->block_len = ins.offset;
b4939680 9423 em->orig_block_len = ins.offset;
cc95bef6 9424 em->ram_bytes = ins.offset;
5dc562c5
JB
9425 em->bdev = root->fs_info->fs_devices->latest_bdev;
9426 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9427 em->generation = trans->transid;
9428
9429 while (1) {
9430 write_lock(&em_tree->lock);
09a2a8f9 9431 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9432 write_unlock(&em_tree->lock);
9433 if (ret != -EEXIST)
9434 break;
9435 btrfs_drop_extent_cache(inode, cur_offset,
9436 cur_offset + ins.offset - 1,
9437 0);
9438 }
9439 free_extent_map(em);
9440next:
d899e052
YZ
9441 num_bytes -= ins.offset;
9442 cur_offset += ins.offset;
efa56464 9443 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9444
0c4d2d95 9445 inode_inc_iversion(inode);
d899e052 9446 inode->i_ctime = CURRENT_TIME;
6cbff00f 9447 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9448 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9449 (actual_len > inode->i_size) &&
9450 (cur_offset > inode->i_size)) {
d1ea6a61 9451 if (cur_offset > actual_len)
55a61d1d 9452 i_size = actual_len;
d1ea6a61 9453 else
55a61d1d
JB
9454 i_size = cur_offset;
9455 i_size_write(inode, i_size);
9456 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
9457 }
9458
d899e052 9459 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9460
9461 if (ret) {
9462 btrfs_abort_transaction(trans, root, ret);
9463 if (own_trans)
9464 btrfs_end_transaction(trans, root);
9465 break;
9466 }
d899e052 9467
0af3d00b
JB
9468 if (own_trans)
9469 btrfs_end_transaction(trans, root);
5a303d5d 9470 }
d899e052
YZ
9471 return ret;
9472}
9473
0af3d00b
JB
9474int btrfs_prealloc_file_range(struct inode *inode, int mode,
9475 u64 start, u64 num_bytes, u64 min_size,
9476 loff_t actual_len, u64 *alloc_hint)
9477{
9478 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9479 min_size, actual_len, alloc_hint,
9480 NULL);
9481}
9482
9483int btrfs_prealloc_file_range_trans(struct inode *inode,
9484 struct btrfs_trans_handle *trans, int mode,
9485 u64 start, u64 num_bytes, u64 min_size,
9486 loff_t actual_len, u64 *alloc_hint)
9487{
9488 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9489 min_size, actual_len, alloc_hint, trans);
9490}
9491
e6dcd2dc
CM
9492static int btrfs_set_page_dirty(struct page *page)
9493{
e6dcd2dc
CM
9494 return __set_page_dirty_nobuffers(page);
9495}
9496
10556cb2 9497static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9498{
b83cc969 9499 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9500 umode_t mode = inode->i_mode;
b83cc969 9501
cb6db4e5
JM
9502 if (mask & MAY_WRITE &&
9503 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9504 if (btrfs_root_readonly(root))
9505 return -EROFS;
9506 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9507 return -EACCES;
9508 }
2830ba7f 9509 return generic_permission(inode, mask);
fdebe2bd 9510}
39279cc3 9511
ef3b9af5
FM
9512static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9513{
9514 struct btrfs_trans_handle *trans;
9515 struct btrfs_root *root = BTRFS_I(dir)->root;
9516 struct inode *inode = NULL;
9517 u64 objectid;
9518 u64 index;
9519 int ret = 0;
9520
9521 /*
9522 * 5 units required for adding orphan entry
9523 */
9524 trans = btrfs_start_transaction(root, 5);
9525 if (IS_ERR(trans))
9526 return PTR_ERR(trans);
9527
9528 ret = btrfs_find_free_ino(root, &objectid);
9529 if (ret)
9530 goto out;
9531
9532 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9533 btrfs_ino(dir), objectid, mode, &index);
9534 if (IS_ERR(inode)) {
9535 ret = PTR_ERR(inode);
9536 inode = NULL;
9537 goto out;
9538 }
9539
ef3b9af5
FM
9540 inode->i_fop = &btrfs_file_operations;
9541 inode->i_op = &btrfs_file_inode_operations;
9542
9543 inode->i_mapping->a_ops = &btrfs_aops;
9544 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9545 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9546
b0d5d10f
CM
9547 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9548 if (ret)
9549 goto out_inode;
9550
9551 ret = btrfs_update_inode(trans, root, inode);
9552 if (ret)
9553 goto out_inode;
ef3b9af5
FM
9554 ret = btrfs_orphan_add(trans, inode);
9555 if (ret)
b0d5d10f 9556 goto out_inode;
ef3b9af5 9557
5762b5c9
FM
9558 /*
9559 * We set number of links to 0 in btrfs_new_inode(), and here we set
9560 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9561 * through:
9562 *
9563 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9564 */
9565 set_nlink(inode, 1);
b0d5d10f 9566 unlock_new_inode(inode);
ef3b9af5
FM
9567 d_tmpfile(dentry, inode);
9568 mark_inode_dirty(inode);
9569
9570out:
9571 btrfs_end_transaction(trans, root);
9572 if (ret)
9573 iput(inode);
9574 btrfs_balance_delayed_items(root);
9575 btrfs_btree_balance_dirty(root);
ef3b9af5 9576 return ret;
b0d5d10f
CM
9577
9578out_inode:
9579 unlock_new_inode(inode);
9580 goto out;
9581
ef3b9af5
FM
9582}
9583
b38ef71c
FM
9584/* Inspired by filemap_check_errors() */
9585int btrfs_inode_check_errors(struct inode *inode)
9586{
9587 int ret = 0;
9588
9589 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9590 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9591 ret = -ENOSPC;
9592 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9593 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9594 ret = -EIO;
9595
9596 return ret;
9597}
9598
6e1d5dcc 9599static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 9600 .getattr = btrfs_getattr,
39279cc3
CM
9601 .lookup = btrfs_lookup,
9602 .create = btrfs_create,
9603 .unlink = btrfs_unlink,
9604 .link = btrfs_link,
9605 .mkdir = btrfs_mkdir,
9606 .rmdir = btrfs_rmdir,
80ace85c 9607 .rename2 = btrfs_rename2,
39279cc3
CM
9608 .symlink = btrfs_symlink,
9609 .setattr = btrfs_setattr,
618e21d5 9610 .mknod = btrfs_mknod,
95819c05
CH
9611 .setxattr = btrfs_setxattr,
9612 .getxattr = btrfs_getxattr,
5103e947 9613 .listxattr = btrfs_listxattr,
95819c05 9614 .removexattr = btrfs_removexattr,
fdebe2bd 9615 .permission = btrfs_permission,
4e34e719 9616 .get_acl = btrfs_get_acl,
996a710d 9617 .set_acl = btrfs_set_acl,
93fd63c2 9618 .update_time = btrfs_update_time,
ef3b9af5 9619 .tmpfile = btrfs_tmpfile,
39279cc3 9620};
6e1d5dcc 9621static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 9622 .lookup = btrfs_lookup,
fdebe2bd 9623 .permission = btrfs_permission,
4e34e719 9624 .get_acl = btrfs_get_acl,
996a710d 9625 .set_acl = btrfs_set_acl,
93fd63c2 9626 .update_time = btrfs_update_time,
39279cc3 9627};
76dda93c 9628
828c0950 9629static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
9630 .llseek = generic_file_llseek,
9631 .read = generic_read_dir,
9cdda8d3 9632 .iterate = btrfs_real_readdir,
34287aa3 9633 .unlocked_ioctl = btrfs_ioctl,
39279cc3 9634#ifdef CONFIG_COMPAT
34287aa3 9635 .compat_ioctl = btrfs_ioctl,
39279cc3 9636#endif
6bf13c0c 9637 .release = btrfs_release_file,
e02119d5 9638 .fsync = btrfs_sync_file,
39279cc3
CM
9639};
9640
d1310b2e 9641static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 9642 .fill_delalloc = run_delalloc_range,
065631f6 9643 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 9644 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 9645 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 9646 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 9647 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
9648 .set_bit_hook = btrfs_set_bit_hook,
9649 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
9650 .merge_extent_hook = btrfs_merge_extent_hook,
9651 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
9652};
9653
35054394
CM
9654/*
9655 * btrfs doesn't support the bmap operation because swapfiles
9656 * use bmap to make a mapping of extents in the file. They assume
9657 * these extents won't change over the life of the file and they
9658 * use the bmap result to do IO directly to the drive.
9659 *
9660 * the btrfs bmap call would return logical addresses that aren't
9661 * suitable for IO and they also will change frequently as COW
9662 * operations happen. So, swapfile + btrfs == corruption.
9663 *
9664 * For now we're avoiding this by dropping bmap.
9665 */
7f09410b 9666static const struct address_space_operations btrfs_aops = {
39279cc3
CM
9667 .readpage = btrfs_readpage,
9668 .writepage = btrfs_writepage,
b293f02e 9669 .writepages = btrfs_writepages,
3ab2fb5a 9670 .readpages = btrfs_readpages,
16432985 9671 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
9672 .invalidatepage = btrfs_invalidatepage,
9673 .releasepage = btrfs_releasepage,
e6dcd2dc 9674 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 9675 .error_remove_page = generic_error_remove_page,
39279cc3
CM
9676};
9677
7f09410b 9678static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
9679 .readpage = btrfs_readpage,
9680 .writepage = btrfs_writepage,
2bf5a725
CM
9681 .invalidatepage = btrfs_invalidatepage,
9682 .releasepage = btrfs_releasepage,
39279cc3
CM
9683};
9684
6e1d5dcc 9685static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
9686 .getattr = btrfs_getattr,
9687 .setattr = btrfs_setattr,
95819c05
CH
9688 .setxattr = btrfs_setxattr,
9689 .getxattr = btrfs_getxattr,
5103e947 9690 .listxattr = btrfs_listxattr,
95819c05 9691 .removexattr = btrfs_removexattr,
fdebe2bd 9692 .permission = btrfs_permission,
1506fcc8 9693 .fiemap = btrfs_fiemap,
4e34e719 9694 .get_acl = btrfs_get_acl,
996a710d 9695 .set_acl = btrfs_set_acl,
e41f941a 9696 .update_time = btrfs_update_time,
39279cc3 9697};
6e1d5dcc 9698static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
9699 .getattr = btrfs_getattr,
9700 .setattr = btrfs_setattr,
fdebe2bd 9701 .permission = btrfs_permission,
95819c05
CH
9702 .setxattr = btrfs_setxattr,
9703 .getxattr = btrfs_getxattr,
33268eaf 9704 .listxattr = btrfs_listxattr,
95819c05 9705 .removexattr = btrfs_removexattr,
4e34e719 9706 .get_acl = btrfs_get_acl,
996a710d 9707 .set_acl = btrfs_set_acl,
e41f941a 9708 .update_time = btrfs_update_time,
618e21d5 9709};
6e1d5dcc 9710static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
9711 .readlink = generic_readlink,
9712 .follow_link = page_follow_link_light,
9713 .put_link = page_put_link,
f209561a 9714 .getattr = btrfs_getattr,
22c44fe6 9715 .setattr = btrfs_setattr,
fdebe2bd 9716 .permission = btrfs_permission,
0279b4cd
JO
9717 .setxattr = btrfs_setxattr,
9718 .getxattr = btrfs_getxattr,
9719 .listxattr = btrfs_listxattr,
9720 .removexattr = btrfs_removexattr,
e41f941a 9721 .update_time = btrfs_update_time,
39279cc3 9722};
76dda93c 9723
82d339d9 9724const struct dentry_operations btrfs_dentry_operations = {
76dda93c 9725 .d_delete = btrfs_dentry_delete,
b4aff1f8 9726 .d_release = btrfs_dentry_release,
76dda93c 9727};