Btrfs: use a slab for the free space entries
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
dc89e982 53#include "free-space-cache.h"
39279cc3
CM
54
55struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58};
59
6e1d5dcc
AD
60static const struct inode_operations btrfs_dir_inode_operations;
61static const struct inode_operations btrfs_symlink_inode_operations;
62static const struct inode_operations btrfs_dir_ro_inode_operations;
63static const struct inode_operations btrfs_special_inode_operations;
64static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
65static const struct address_space_operations btrfs_aops;
66static const struct address_space_operations btrfs_symlink_aops;
828c0950 67static const struct file_operations btrfs_dir_file_operations;
d1310b2e 68static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
69
70static struct kmem_cache *btrfs_inode_cachep;
71struct kmem_cache *btrfs_trans_handle_cachep;
72struct kmem_cache *btrfs_transaction_cachep;
39279cc3 73struct kmem_cache *btrfs_path_cachep;
dc89e982 74struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
75
76#define S_SHIFT 12
77static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85};
86
7b128766 87static void btrfs_truncate(struct inode *inode);
c8b97818 88static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
89static noinline int cow_file_range(struct inode *inode,
90 struct page *locked_page,
91 u64 start, u64 end, int *page_started,
92 unsigned long *nr_written, int unlock);
7b128766 93
f34f57a3
YZ
94static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
95 struct inode *inode, struct inode *dir)
0279b4cd
JO
96{
97 int err;
98
f34f57a3 99 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 100 if (!err)
f34f57a3 101 err = btrfs_xattr_security_init(trans, inode, dir);
0279b4cd
JO
102 return err;
103}
104
c8b97818
CM
105/*
106 * this does all the hard work for inserting an inline extent into
107 * the btree. The caller should have done a btrfs_drop_extents so that
108 * no overlapping inline items exist in the btree
109 */
d397712b 110static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
111 struct btrfs_root *root, struct inode *inode,
112 u64 start, size_t size, size_t compressed_size,
113 struct page **compressed_pages)
114{
115 struct btrfs_key key;
116 struct btrfs_path *path;
117 struct extent_buffer *leaf;
118 struct page *page = NULL;
119 char *kaddr;
120 unsigned long ptr;
121 struct btrfs_file_extent_item *ei;
122 int err = 0;
123 int ret;
124 size_t cur_size = size;
125 size_t datasize;
126 unsigned long offset;
261507a0 127 int compress_type = BTRFS_COMPRESS_NONE;
c8b97818
CM
128
129 if (compressed_size && compressed_pages) {
261507a0 130 compress_type = root->fs_info->compress_type;
c8b97818
CM
131 cur_size = compressed_size;
132 }
133
d397712b
CM
134 path = btrfs_alloc_path();
135 if (!path)
c8b97818
CM
136 return -ENOMEM;
137
b9473439 138 path->leave_spinning = 1;
c8b97818
CM
139 btrfs_set_trans_block_group(trans, inode);
140
141 key.objectid = inode->i_ino;
142 key.offset = start;
143 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
144 datasize = btrfs_file_extent_calc_inline_size(cur_size);
145
146 inode_add_bytes(inode, size);
147 ret = btrfs_insert_empty_item(trans, root, path, &key,
148 datasize);
149 BUG_ON(ret);
150 if (ret) {
151 err = ret;
c8b97818
CM
152 goto fail;
153 }
154 leaf = path->nodes[0];
155 ei = btrfs_item_ptr(leaf, path->slots[0],
156 struct btrfs_file_extent_item);
157 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
158 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
159 btrfs_set_file_extent_encryption(leaf, ei, 0);
160 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
161 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
162 ptr = btrfs_file_extent_inline_start(ei);
163
261507a0 164 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
165 struct page *cpage;
166 int i = 0;
d397712b 167 while (compressed_size > 0) {
c8b97818 168 cpage = compressed_pages[i];
5b050f04 169 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
170 PAGE_CACHE_SIZE);
171
b9473439 172 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 173 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 174 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
175
176 i++;
177 ptr += cur_size;
178 compressed_size -= cur_size;
179 }
180 btrfs_set_file_extent_compression(leaf, ei,
261507a0 181 compress_type);
c8b97818
CM
182 } else {
183 page = find_get_page(inode->i_mapping,
184 start >> PAGE_CACHE_SHIFT);
185 btrfs_set_file_extent_compression(leaf, ei, 0);
186 kaddr = kmap_atomic(page, KM_USER0);
187 offset = start & (PAGE_CACHE_SIZE - 1);
188 write_extent_buffer(leaf, kaddr + offset, ptr, size);
189 kunmap_atomic(kaddr, KM_USER0);
190 page_cache_release(page);
191 }
192 btrfs_mark_buffer_dirty(leaf);
193 btrfs_free_path(path);
194
c2167754
YZ
195 /*
196 * we're an inline extent, so nobody can
197 * extend the file past i_size without locking
198 * a page we already have locked.
199 *
200 * We must do any isize and inode updates
201 * before we unlock the pages. Otherwise we
202 * could end up racing with unlink.
203 */
c8b97818
CM
204 BTRFS_I(inode)->disk_i_size = inode->i_size;
205 btrfs_update_inode(trans, root, inode);
c2167754 206
c8b97818
CM
207 return 0;
208fail:
209 btrfs_free_path(path);
210 return err;
211}
212
213
214/*
215 * conditionally insert an inline extent into the file. This
216 * does the checks required to make sure the data is small enough
217 * to fit as an inline extent.
218 */
7f366cfe 219static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
220 struct btrfs_root *root,
221 struct inode *inode, u64 start, u64 end,
222 size_t compressed_size,
223 struct page **compressed_pages)
224{
225 u64 isize = i_size_read(inode);
226 u64 actual_end = min(end + 1, isize);
227 u64 inline_len = actual_end - start;
228 u64 aligned_end = (end + root->sectorsize - 1) &
229 ~((u64)root->sectorsize - 1);
230 u64 hint_byte;
231 u64 data_len = inline_len;
232 int ret;
233
234 if (compressed_size)
235 data_len = compressed_size;
236
237 if (start > 0 ||
70b99e69 238 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
239 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
240 (!compressed_size &&
241 (actual_end & (root->sectorsize - 1)) == 0) ||
242 end + 1 < isize ||
243 data_len > root->fs_info->max_inline) {
244 return 1;
245 }
246
920bbbfb 247 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 248 &hint_byte, 1);
c8b97818
CM
249 BUG_ON(ret);
250
251 if (isize > actual_end)
252 inline_len = min_t(u64, isize, actual_end);
253 ret = insert_inline_extent(trans, root, inode, start,
254 inline_len, compressed_size,
255 compressed_pages);
256 BUG_ON(ret);
0ca1f7ce 257 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 258 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
259 return 0;
260}
261
771ed689
CM
262struct async_extent {
263 u64 start;
264 u64 ram_size;
265 u64 compressed_size;
266 struct page **pages;
267 unsigned long nr_pages;
261507a0 268 int compress_type;
771ed689
CM
269 struct list_head list;
270};
271
272struct async_cow {
273 struct inode *inode;
274 struct btrfs_root *root;
275 struct page *locked_page;
276 u64 start;
277 u64 end;
278 struct list_head extents;
279 struct btrfs_work work;
280};
281
282static noinline int add_async_extent(struct async_cow *cow,
283 u64 start, u64 ram_size,
284 u64 compressed_size,
285 struct page **pages,
261507a0
LZ
286 unsigned long nr_pages,
287 int compress_type)
771ed689
CM
288{
289 struct async_extent *async_extent;
290
291 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
292 async_extent->start = start;
293 async_extent->ram_size = ram_size;
294 async_extent->compressed_size = compressed_size;
295 async_extent->pages = pages;
296 async_extent->nr_pages = nr_pages;
261507a0 297 async_extent->compress_type = compress_type;
771ed689
CM
298 list_add_tail(&async_extent->list, &cow->extents);
299 return 0;
300}
301
d352ac68 302/*
771ed689
CM
303 * we create compressed extents in two phases. The first
304 * phase compresses a range of pages that have already been
305 * locked (both pages and state bits are locked).
c8b97818 306 *
771ed689
CM
307 * This is done inside an ordered work queue, and the compression
308 * is spread across many cpus. The actual IO submission is step
309 * two, and the ordered work queue takes care of making sure that
310 * happens in the same order things were put onto the queue by
311 * writepages and friends.
c8b97818 312 *
771ed689
CM
313 * If this code finds it can't get good compression, it puts an
314 * entry onto the work queue to write the uncompressed bytes. This
315 * makes sure that both compressed inodes and uncompressed inodes
316 * are written in the same order that pdflush sent them down.
d352ac68 317 */
771ed689
CM
318static noinline int compress_file_range(struct inode *inode,
319 struct page *locked_page,
320 u64 start, u64 end,
321 struct async_cow *async_cow,
322 int *num_added)
b888db2b
CM
323{
324 struct btrfs_root *root = BTRFS_I(inode)->root;
325 struct btrfs_trans_handle *trans;
db94535d 326 u64 num_bytes;
db94535d 327 u64 blocksize = root->sectorsize;
c8b97818 328 u64 actual_end;
42dc7bab 329 u64 isize = i_size_read(inode);
e6dcd2dc 330 int ret = 0;
c8b97818
CM
331 struct page **pages = NULL;
332 unsigned long nr_pages;
333 unsigned long nr_pages_ret = 0;
334 unsigned long total_compressed = 0;
335 unsigned long total_in = 0;
336 unsigned long max_compressed = 128 * 1024;
771ed689 337 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
338 int i;
339 int will_compress;
261507a0 340 int compress_type = root->fs_info->compress_type;
b888db2b 341
42dc7bab 342 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
343again:
344 will_compress = 0;
345 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
346 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 347
f03d9301
CM
348 /*
349 * we don't want to send crud past the end of i_size through
350 * compression, that's just a waste of CPU time. So, if the
351 * end of the file is before the start of our current
352 * requested range of bytes, we bail out to the uncompressed
353 * cleanup code that can deal with all of this.
354 *
355 * It isn't really the fastest way to fix things, but this is a
356 * very uncommon corner.
357 */
358 if (actual_end <= start)
359 goto cleanup_and_bail_uncompressed;
360
c8b97818
CM
361 total_compressed = actual_end - start;
362
363 /* we want to make sure that amount of ram required to uncompress
364 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
365 * of a compressed extent to 128k. This is a crucial number
366 * because it also controls how easily we can spread reads across
367 * cpus for decompression.
368 *
369 * We also want to make sure the amount of IO required to do
370 * a random read is reasonably small, so we limit the size of
371 * a compressed extent to 128k.
c8b97818
CM
372 */
373 total_compressed = min(total_compressed, max_uncompressed);
db94535d 374 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 375 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
376 total_in = 0;
377 ret = 0;
db94535d 378
771ed689
CM
379 /*
380 * we do compression for mount -o compress and when the
381 * inode has not been flagged as nocompress. This flag can
382 * change at any time if we discover bad compression ratios.
c8b97818 383 */
6cbff00f 384 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32
CM
385 (btrfs_test_opt(root, COMPRESS) ||
386 (BTRFS_I(inode)->force_compress))) {
c8b97818 387 WARN_ON(pages);
cfbc246e 388 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 389
261507a0
LZ
390 if (BTRFS_I(inode)->force_compress)
391 compress_type = BTRFS_I(inode)->force_compress;
392
393 ret = btrfs_compress_pages(compress_type,
394 inode->i_mapping, start,
395 total_compressed, pages,
396 nr_pages, &nr_pages_ret,
397 &total_in,
398 &total_compressed,
399 max_compressed);
c8b97818
CM
400
401 if (!ret) {
402 unsigned long offset = total_compressed &
403 (PAGE_CACHE_SIZE - 1);
404 struct page *page = pages[nr_pages_ret - 1];
405 char *kaddr;
406
407 /* zero the tail end of the last page, we might be
408 * sending it down to disk
409 */
410 if (offset) {
411 kaddr = kmap_atomic(page, KM_USER0);
412 memset(kaddr + offset, 0,
413 PAGE_CACHE_SIZE - offset);
414 kunmap_atomic(kaddr, KM_USER0);
415 }
416 will_compress = 1;
417 }
418 }
419 if (start == 0) {
771ed689 420 trans = btrfs_join_transaction(root, 1);
3612b495 421 BUG_ON(IS_ERR(trans));
771ed689 422 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 423 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 424
c8b97818 425 /* lets try to make an inline extent */
771ed689 426 if (ret || total_in < (actual_end - start)) {
c8b97818 427 /* we didn't compress the entire range, try
771ed689 428 * to make an uncompressed inline extent.
c8b97818
CM
429 */
430 ret = cow_file_range_inline(trans, root, inode,
431 start, end, 0, NULL);
432 } else {
771ed689 433 /* try making a compressed inline extent */
c8b97818
CM
434 ret = cow_file_range_inline(trans, root, inode,
435 start, end,
436 total_compressed, pages);
437 }
438 if (ret == 0) {
771ed689
CM
439 /*
440 * inline extent creation worked, we don't need
441 * to create any more async work items. Unlock
442 * and free up our temp pages.
443 */
c8b97818 444 extent_clear_unlock_delalloc(inode,
a791e35e
CM
445 &BTRFS_I(inode)->io_tree,
446 start, end, NULL,
447 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 448 EXTENT_CLEAR_DELALLOC |
a791e35e 449 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
450
451 btrfs_end_transaction(trans, root);
c8b97818
CM
452 goto free_pages_out;
453 }
c2167754 454 btrfs_end_transaction(trans, root);
c8b97818
CM
455 }
456
457 if (will_compress) {
458 /*
459 * we aren't doing an inline extent round the compressed size
460 * up to a block size boundary so the allocator does sane
461 * things
462 */
463 total_compressed = (total_compressed + blocksize - 1) &
464 ~(blocksize - 1);
465
466 /*
467 * one last check to make sure the compression is really a
468 * win, compare the page count read with the blocks on disk
469 */
470 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
471 ~(PAGE_CACHE_SIZE - 1);
472 if (total_compressed >= total_in) {
473 will_compress = 0;
474 } else {
c8b97818
CM
475 num_bytes = total_in;
476 }
477 }
478 if (!will_compress && pages) {
479 /*
480 * the compression code ran but failed to make things smaller,
481 * free any pages it allocated and our page pointer array
482 */
483 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 484 WARN_ON(pages[i]->mapping);
c8b97818
CM
485 page_cache_release(pages[i]);
486 }
487 kfree(pages);
488 pages = NULL;
489 total_compressed = 0;
490 nr_pages_ret = 0;
491
492 /* flag the file so we don't compress in the future */
1e701a32
CM
493 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
494 !(BTRFS_I(inode)->force_compress)) {
a555f810 495 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 496 }
c8b97818 497 }
771ed689
CM
498 if (will_compress) {
499 *num_added += 1;
c8b97818 500
771ed689
CM
501 /* the async work queues will take care of doing actual
502 * allocation on disk for these compressed pages,
503 * and will submit them to the elevator.
504 */
505 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
506 total_compressed, pages, nr_pages_ret,
507 compress_type);
179e29e4 508
24ae6365 509 if (start + num_bytes < end) {
771ed689
CM
510 start += num_bytes;
511 pages = NULL;
512 cond_resched();
513 goto again;
514 }
515 } else {
f03d9301 516cleanup_and_bail_uncompressed:
771ed689
CM
517 /*
518 * No compression, but we still need to write the pages in
519 * the file we've been given so far. redirty the locked
520 * page if it corresponds to our extent and set things up
521 * for the async work queue to run cow_file_range to do
522 * the normal delalloc dance
523 */
524 if (page_offset(locked_page) >= start &&
525 page_offset(locked_page) <= end) {
526 __set_page_dirty_nobuffers(locked_page);
527 /* unlocked later on in the async handlers */
528 }
261507a0
LZ
529 add_async_extent(async_cow, start, end - start + 1,
530 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
531 *num_added += 1;
532 }
3b951516 533
771ed689
CM
534out:
535 return 0;
536
537free_pages_out:
538 for (i = 0; i < nr_pages_ret; i++) {
539 WARN_ON(pages[i]->mapping);
540 page_cache_release(pages[i]);
541 }
d397712b 542 kfree(pages);
771ed689
CM
543
544 goto out;
545}
546
547/*
548 * phase two of compressed writeback. This is the ordered portion
549 * of the code, which only gets called in the order the work was
550 * queued. We walk all the async extents created by compress_file_range
551 * and send them down to the disk.
552 */
553static noinline int submit_compressed_extents(struct inode *inode,
554 struct async_cow *async_cow)
555{
556 struct async_extent *async_extent;
557 u64 alloc_hint = 0;
558 struct btrfs_trans_handle *trans;
559 struct btrfs_key ins;
560 struct extent_map *em;
561 struct btrfs_root *root = BTRFS_I(inode)->root;
562 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
563 struct extent_io_tree *io_tree;
f5a84ee3 564 int ret = 0;
771ed689
CM
565
566 if (list_empty(&async_cow->extents))
567 return 0;
568
771ed689 569
d397712b 570 while (!list_empty(&async_cow->extents)) {
771ed689
CM
571 async_extent = list_entry(async_cow->extents.next,
572 struct async_extent, list);
573 list_del(&async_extent->list);
c8b97818 574
771ed689
CM
575 io_tree = &BTRFS_I(inode)->io_tree;
576
f5a84ee3 577retry:
771ed689
CM
578 /* did the compression code fall back to uncompressed IO? */
579 if (!async_extent->pages) {
580 int page_started = 0;
581 unsigned long nr_written = 0;
582
583 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
584 async_extent->start +
585 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
586
587 /* allocate blocks */
f5a84ee3
JB
588 ret = cow_file_range(inode, async_cow->locked_page,
589 async_extent->start,
590 async_extent->start +
591 async_extent->ram_size - 1,
592 &page_started, &nr_written, 0);
771ed689
CM
593
594 /*
595 * if page_started, cow_file_range inserted an
596 * inline extent and took care of all the unlocking
597 * and IO for us. Otherwise, we need to submit
598 * all those pages down to the drive.
599 */
f5a84ee3 600 if (!page_started && !ret)
771ed689
CM
601 extent_write_locked_range(io_tree,
602 inode, async_extent->start,
d397712b 603 async_extent->start +
771ed689
CM
604 async_extent->ram_size - 1,
605 btrfs_get_extent,
606 WB_SYNC_ALL);
607 kfree(async_extent);
608 cond_resched();
609 continue;
610 }
611
612 lock_extent(io_tree, async_extent->start,
613 async_extent->start + async_extent->ram_size - 1,
614 GFP_NOFS);
771ed689 615
c2167754 616 trans = btrfs_join_transaction(root, 1);
3612b495 617 BUG_ON(IS_ERR(trans));
771ed689
CM
618 ret = btrfs_reserve_extent(trans, root,
619 async_extent->compressed_size,
620 async_extent->compressed_size,
621 0, alloc_hint,
622 (u64)-1, &ins, 1);
c2167754
YZ
623 btrfs_end_transaction(trans, root);
624
f5a84ee3
JB
625 if (ret) {
626 int i;
627 for (i = 0; i < async_extent->nr_pages; i++) {
628 WARN_ON(async_extent->pages[i]->mapping);
629 page_cache_release(async_extent->pages[i]);
630 }
631 kfree(async_extent->pages);
632 async_extent->nr_pages = 0;
633 async_extent->pages = NULL;
634 unlock_extent(io_tree, async_extent->start,
635 async_extent->start +
636 async_extent->ram_size - 1, GFP_NOFS);
637 goto retry;
638 }
639
c2167754
YZ
640 /*
641 * here we're doing allocation and writeback of the
642 * compressed pages
643 */
644 btrfs_drop_extent_cache(inode, async_extent->start,
645 async_extent->start +
646 async_extent->ram_size - 1, 0);
647
771ed689 648 em = alloc_extent_map(GFP_NOFS);
c26a9203 649 BUG_ON(!em);
771ed689
CM
650 em->start = async_extent->start;
651 em->len = async_extent->ram_size;
445a6944 652 em->orig_start = em->start;
c8b97818 653
771ed689
CM
654 em->block_start = ins.objectid;
655 em->block_len = ins.offset;
656 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 657 em->compress_type = async_extent->compress_type;
771ed689
CM
658 set_bit(EXTENT_FLAG_PINNED, &em->flags);
659 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
660
d397712b 661 while (1) {
890871be 662 write_lock(&em_tree->lock);
771ed689 663 ret = add_extent_mapping(em_tree, em);
890871be 664 write_unlock(&em_tree->lock);
771ed689
CM
665 if (ret != -EEXIST) {
666 free_extent_map(em);
667 break;
668 }
669 btrfs_drop_extent_cache(inode, async_extent->start,
670 async_extent->start +
671 async_extent->ram_size - 1, 0);
672 }
673
261507a0
LZ
674 ret = btrfs_add_ordered_extent_compress(inode,
675 async_extent->start,
676 ins.objectid,
677 async_extent->ram_size,
678 ins.offset,
679 BTRFS_ORDERED_COMPRESSED,
680 async_extent->compress_type);
771ed689
CM
681 BUG_ON(ret);
682
771ed689
CM
683 /*
684 * clear dirty, set writeback and unlock the pages.
685 */
686 extent_clear_unlock_delalloc(inode,
a791e35e
CM
687 &BTRFS_I(inode)->io_tree,
688 async_extent->start,
689 async_extent->start +
690 async_extent->ram_size - 1,
691 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
692 EXTENT_CLEAR_UNLOCK |
a3429ab7 693 EXTENT_CLEAR_DELALLOC |
a791e35e 694 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
695
696 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
697 async_extent->start,
698 async_extent->ram_size,
699 ins.objectid,
700 ins.offset, async_extent->pages,
701 async_extent->nr_pages);
771ed689
CM
702
703 BUG_ON(ret);
771ed689
CM
704 alloc_hint = ins.objectid + ins.offset;
705 kfree(async_extent);
706 cond_resched();
707 }
708
771ed689
CM
709 return 0;
710}
711
4b46fce2
JB
712static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
713 u64 num_bytes)
714{
715 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
716 struct extent_map *em;
717 u64 alloc_hint = 0;
718
719 read_lock(&em_tree->lock);
720 em = search_extent_mapping(em_tree, start, num_bytes);
721 if (em) {
722 /*
723 * if block start isn't an actual block number then find the
724 * first block in this inode and use that as a hint. If that
725 * block is also bogus then just don't worry about it.
726 */
727 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
728 free_extent_map(em);
729 em = search_extent_mapping(em_tree, 0, 0);
730 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
731 alloc_hint = em->block_start;
732 if (em)
733 free_extent_map(em);
734 } else {
735 alloc_hint = em->block_start;
736 free_extent_map(em);
737 }
738 }
739 read_unlock(&em_tree->lock);
740
741 return alloc_hint;
742}
743
771ed689
CM
744/*
745 * when extent_io.c finds a delayed allocation range in the file,
746 * the call backs end up in this code. The basic idea is to
747 * allocate extents on disk for the range, and create ordered data structs
748 * in ram to track those extents.
749 *
750 * locked_page is the page that writepage had locked already. We use
751 * it to make sure we don't do extra locks or unlocks.
752 *
753 * *page_started is set to one if we unlock locked_page and do everything
754 * required to start IO on it. It may be clean and already done with
755 * IO when we return.
756 */
757static noinline int cow_file_range(struct inode *inode,
758 struct page *locked_page,
759 u64 start, u64 end, int *page_started,
760 unsigned long *nr_written,
761 int unlock)
762{
763 struct btrfs_root *root = BTRFS_I(inode)->root;
764 struct btrfs_trans_handle *trans;
765 u64 alloc_hint = 0;
766 u64 num_bytes;
767 unsigned long ram_size;
768 u64 disk_num_bytes;
769 u64 cur_alloc_size;
770 u64 blocksize = root->sectorsize;
771ed689
CM
771 struct btrfs_key ins;
772 struct extent_map *em;
773 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
774 int ret = 0;
775
0cb59c99 776 BUG_ON(root == root->fs_info->tree_root);
771ed689 777 trans = btrfs_join_transaction(root, 1);
3612b495 778 BUG_ON(IS_ERR(trans));
771ed689 779 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 780 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 781
771ed689
CM
782 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
783 num_bytes = max(blocksize, num_bytes);
784 disk_num_bytes = num_bytes;
785 ret = 0;
786
787 if (start == 0) {
788 /* lets try to make an inline extent */
789 ret = cow_file_range_inline(trans, root, inode,
790 start, end, 0, NULL);
791 if (ret == 0) {
792 extent_clear_unlock_delalloc(inode,
a791e35e
CM
793 &BTRFS_I(inode)->io_tree,
794 start, end, NULL,
795 EXTENT_CLEAR_UNLOCK_PAGE |
796 EXTENT_CLEAR_UNLOCK |
797 EXTENT_CLEAR_DELALLOC |
798 EXTENT_CLEAR_DIRTY |
799 EXTENT_SET_WRITEBACK |
800 EXTENT_END_WRITEBACK);
c2167754 801
771ed689
CM
802 *nr_written = *nr_written +
803 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
804 *page_started = 1;
805 ret = 0;
806 goto out;
807 }
808 }
809
810 BUG_ON(disk_num_bytes >
811 btrfs_super_total_bytes(&root->fs_info->super_copy));
812
4b46fce2 813 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
814 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
815
d397712b 816 while (disk_num_bytes > 0) {
a791e35e
CM
817 unsigned long op;
818
287a0ab9 819 cur_alloc_size = disk_num_bytes;
e6dcd2dc 820 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 821 root->sectorsize, 0, alloc_hint,
e6dcd2dc 822 (u64)-1, &ins, 1);
d397712b
CM
823 BUG_ON(ret);
824
e6dcd2dc 825 em = alloc_extent_map(GFP_NOFS);
c26a9203 826 BUG_ON(!em);
e6dcd2dc 827 em->start = start;
445a6944 828 em->orig_start = em->start;
771ed689
CM
829 ram_size = ins.offset;
830 em->len = ins.offset;
c8b97818 831
e6dcd2dc 832 em->block_start = ins.objectid;
c8b97818 833 em->block_len = ins.offset;
e6dcd2dc 834 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 835 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 836
d397712b 837 while (1) {
890871be 838 write_lock(&em_tree->lock);
e6dcd2dc 839 ret = add_extent_mapping(em_tree, em);
890871be 840 write_unlock(&em_tree->lock);
e6dcd2dc
CM
841 if (ret != -EEXIST) {
842 free_extent_map(em);
843 break;
844 }
845 btrfs_drop_extent_cache(inode, start,
c8b97818 846 start + ram_size - 1, 0);
e6dcd2dc
CM
847 }
848
98d20f67 849 cur_alloc_size = ins.offset;
e6dcd2dc 850 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 851 ram_size, cur_alloc_size, 0);
e6dcd2dc 852 BUG_ON(ret);
c8b97818 853
17d217fe
YZ
854 if (root->root_key.objectid ==
855 BTRFS_DATA_RELOC_TREE_OBJECTID) {
856 ret = btrfs_reloc_clone_csums(inode, start,
857 cur_alloc_size);
858 BUG_ON(ret);
859 }
860
d397712b 861 if (disk_num_bytes < cur_alloc_size)
3b951516 862 break;
d397712b 863
c8b97818
CM
864 /* we're not doing compressed IO, don't unlock the first
865 * page (which the caller expects to stay locked), don't
866 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
867 *
868 * Do set the Private2 bit so we know this page was properly
869 * setup for writepage
c8b97818 870 */
a791e35e
CM
871 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
872 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
873 EXTENT_SET_PRIVATE2;
874
c8b97818
CM
875 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
876 start, start + ram_size - 1,
a791e35e 877 locked_page, op);
c8b97818 878 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
879 num_bytes -= cur_alloc_size;
880 alloc_hint = ins.objectid + ins.offset;
881 start += cur_alloc_size;
b888db2b 882 }
b888db2b 883out:
771ed689 884 ret = 0;
b888db2b 885 btrfs_end_transaction(trans, root);
c8b97818 886
be20aa9d 887 return ret;
771ed689 888}
c8b97818 889
771ed689
CM
890/*
891 * work queue call back to started compression on a file and pages
892 */
893static noinline void async_cow_start(struct btrfs_work *work)
894{
895 struct async_cow *async_cow;
896 int num_added = 0;
897 async_cow = container_of(work, struct async_cow, work);
898
899 compress_file_range(async_cow->inode, async_cow->locked_page,
900 async_cow->start, async_cow->end, async_cow,
901 &num_added);
902 if (num_added == 0)
903 async_cow->inode = NULL;
904}
905
906/*
907 * work queue call back to submit previously compressed pages
908 */
909static noinline void async_cow_submit(struct btrfs_work *work)
910{
911 struct async_cow *async_cow;
912 struct btrfs_root *root;
913 unsigned long nr_pages;
914
915 async_cow = container_of(work, struct async_cow, work);
916
917 root = async_cow->root;
918 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
919 PAGE_CACHE_SHIFT;
920
921 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
922
923 if (atomic_read(&root->fs_info->async_delalloc_pages) <
924 5 * 1042 * 1024 &&
925 waitqueue_active(&root->fs_info->async_submit_wait))
926 wake_up(&root->fs_info->async_submit_wait);
927
d397712b 928 if (async_cow->inode)
771ed689 929 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 930}
c8b97818 931
771ed689
CM
932static noinline void async_cow_free(struct btrfs_work *work)
933{
934 struct async_cow *async_cow;
935 async_cow = container_of(work, struct async_cow, work);
936 kfree(async_cow);
937}
938
939static int cow_file_range_async(struct inode *inode, struct page *locked_page,
940 u64 start, u64 end, int *page_started,
941 unsigned long *nr_written)
942{
943 struct async_cow *async_cow;
944 struct btrfs_root *root = BTRFS_I(inode)->root;
945 unsigned long nr_pages;
946 u64 cur_end;
947 int limit = 10 * 1024 * 1042;
948
a3429ab7
CM
949 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
950 1, 0, NULL, GFP_NOFS);
d397712b 951 while (start < end) {
771ed689
CM
952 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
953 async_cow->inode = inode;
954 async_cow->root = root;
955 async_cow->locked_page = locked_page;
956 async_cow->start = start;
957
6cbff00f 958 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
959 cur_end = end;
960 else
961 cur_end = min(end, start + 512 * 1024 - 1);
962
963 async_cow->end = cur_end;
964 INIT_LIST_HEAD(&async_cow->extents);
965
966 async_cow->work.func = async_cow_start;
967 async_cow->work.ordered_func = async_cow_submit;
968 async_cow->work.ordered_free = async_cow_free;
969 async_cow->work.flags = 0;
970
771ed689
CM
971 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
972 PAGE_CACHE_SHIFT;
973 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
974
975 btrfs_queue_worker(&root->fs_info->delalloc_workers,
976 &async_cow->work);
977
978 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
979 wait_event(root->fs_info->async_submit_wait,
980 (atomic_read(&root->fs_info->async_delalloc_pages) <
981 limit));
982 }
983
d397712b 984 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
985 atomic_read(&root->fs_info->async_delalloc_pages)) {
986 wait_event(root->fs_info->async_submit_wait,
987 (atomic_read(&root->fs_info->async_delalloc_pages) ==
988 0));
989 }
990
991 *nr_written += nr_pages;
992 start = cur_end + 1;
993 }
994 *page_started = 1;
995 return 0;
be20aa9d
CM
996}
997
d397712b 998static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
999 u64 bytenr, u64 num_bytes)
1000{
1001 int ret;
1002 struct btrfs_ordered_sum *sums;
1003 LIST_HEAD(list);
1004
07d400a6
YZ
1005 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1006 bytenr + num_bytes - 1, &list);
17d217fe
YZ
1007 if (ret == 0 && list_empty(&list))
1008 return 0;
1009
1010 while (!list_empty(&list)) {
1011 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1012 list_del(&sums->list);
1013 kfree(sums);
1014 }
1015 return 1;
1016}
1017
d352ac68
CM
1018/*
1019 * when nowcow writeback call back. This checks for snapshots or COW copies
1020 * of the extents that exist in the file, and COWs the file as required.
1021 *
1022 * If no cow copies or snapshots exist, we write directly to the existing
1023 * blocks on disk
1024 */
7f366cfe
CM
1025static noinline int run_delalloc_nocow(struct inode *inode,
1026 struct page *locked_page,
771ed689
CM
1027 u64 start, u64 end, int *page_started, int force,
1028 unsigned long *nr_written)
be20aa9d 1029{
be20aa9d 1030 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1031 struct btrfs_trans_handle *trans;
be20aa9d 1032 struct extent_buffer *leaf;
be20aa9d 1033 struct btrfs_path *path;
80ff3856 1034 struct btrfs_file_extent_item *fi;
be20aa9d 1035 struct btrfs_key found_key;
80ff3856
YZ
1036 u64 cow_start;
1037 u64 cur_offset;
1038 u64 extent_end;
5d4f98a2 1039 u64 extent_offset;
80ff3856
YZ
1040 u64 disk_bytenr;
1041 u64 num_bytes;
1042 int extent_type;
1043 int ret;
d899e052 1044 int type;
80ff3856
YZ
1045 int nocow;
1046 int check_prev = 1;
0cb59c99 1047 bool nolock = false;
be20aa9d
CM
1048
1049 path = btrfs_alloc_path();
1050 BUG_ON(!path);
0cb59c99
JB
1051 if (root == root->fs_info->tree_root) {
1052 nolock = true;
1053 trans = btrfs_join_transaction_nolock(root, 1);
1054 } else {
1055 trans = btrfs_join_transaction(root, 1);
1056 }
3612b495 1057 BUG_ON(IS_ERR(trans));
be20aa9d 1058
80ff3856
YZ
1059 cow_start = (u64)-1;
1060 cur_offset = start;
1061 while (1) {
1062 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1063 cur_offset, 0);
1064 BUG_ON(ret < 0);
1065 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1066 leaf = path->nodes[0];
1067 btrfs_item_key_to_cpu(leaf, &found_key,
1068 path->slots[0] - 1);
1069 if (found_key.objectid == inode->i_ino &&
1070 found_key.type == BTRFS_EXTENT_DATA_KEY)
1071 path->slots[0]--;
1072 }
1073 check_prev = 0;
1074next_slot:
1075 leaf = path->nodes[0];
1076 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1077 ret = btrfs_next_leaf(root, path);
1078 if (ret < 0)
1079 BUG_ON(1);
1080 if (ret > 0)
1081 break;
1082 leaf = path->nodes[0];
1083 }
be20aa9d 1084
80ff3856
YZ
1085 nocow = 0;
1086 disk_bytenr = 0;
17d217fe 1087 num_bytes = 0;
80ff3856
YZ
1088 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1089
1090 if (found_key.objectid > inode->i_ino ||
1091 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1092 found_key.offset > end)
1093 break;
1094
1095 if (found_key.offset > cur_offset) {
1096 extent_end = found_key.offset;
e9061e21 1097 extent_type = 0;
80ff3856
YZ
1098 goto out_check;
1099 }
1100
1101 fi = btrfs_item_ptr(leaf, path->slots[0],
1102 struct btrfs_file_extent_item);
1103 extent_type = btrfs_file_extent_type(leaf, fi);
1104
d899e052
YZ
1105 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1106 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1107 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1108 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1109 extent_end = found_key.offset +
1110 btrfs_file_extent_num_bytes(leaf, fi);
1111 if (extent_end <= start) {
1112 path->slots[0]++;
1113 goto next_slot;
1114 }
17d217fe
YZ
1115 if (disk_bytenr == 0)
1116 goto out_check;
80ff3856
YZ
1117 if (btrfs_file_extent_compression(leaf, fi) ||
1118 btrfs_file_extent_encryption(leaf, fi) ||
1119 btrfs_file_extent_other_encoding(leaf, fi))
1120 goto out_check;
d899e052
YZ
1121 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1122 goto out_check;
d2fb3437 1123 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1124 goto out_check;
17d217fe 1125 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1126 found_key.offset -
1127 extent_offset, disk_bytenr))
17d217fe 1128 goto out_check;
5d4f98a2 1129 disk_bytenr += extent_offset;
17d217fe
YZ
1130 disk_bytenr += cur_offset - found_key.offset;
1131 num_bytes = min(end + 1, extent_end) - cur_offset;
1132 /*
1133 * force cow if csum exists in the range.
1134 * this ensure that csum for a given extent are
1135 * either valid or do not exist.
1136 */
1137 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1138 goto out_check;
80ff3856
YZ
1139 nocow = 1;
1140 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1141 extent_end = found_key.offset +
1142 btrfs_file_extent_inline_len(leaf, fi);
1143 extent_end = ALIGN(extent_end, root->sectorsize);
1144 } else {
1145 BUG_ON(1);
1146 }
1147out_check:
1148 if (extent_end <= start) {
1149 path->slots[0]++;
1150 goto next_slot;
1151 }
1152 if (!nocow) {
1153 if (cow_start == (u64)-1)
1154 cow_start = cur_offset;
1155 cur_offset = extent_end;
1156 if (cur_offset > end)
1157 break;
1158 path->slots[0]++;
1159 goto next_slot;
7ea394f1
YZ
1160 }
1161
1162 btrfs_release_path(root, path);
80ff3856
YZ
1163 if (cow_start != (u64)-1) {
1164 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1165 found_key.offset - 1, page_started,
1166 nr_written, 1);
80ff3856
YZ
1167 BUG_ON(ret);
1168 cow_start = (u64)-1;
7ea394f1 1169 }
80ff3856 1170
d899e052
YZ
1171 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1172 struct extent_map *em;
1173 struct extent_map_tree *em_tree;
1174 em_tree = &BTRFS_I(inode)->extent_tree;
1175 em = alloc_extent_map(GFP_NOFS);
c26a9203 1176 BUG_ON(!em);
d899e052 1177 em->start = cur_offset;
445a6944 1178 em->orig_start = em->start;
d899e052
YZ
1179 em->len = num_bytes;
1180 em->block_len = num_bytes;
1181 em->block_start = disk_bytenr;
1182 em->bdev = root->fs_info->fs_devices->latest_bdev;
1183 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1184 while (1) {
890871be 1185 write_lock(&em_tree->lock);
d899e052 1186 ret = add_extent_mapping(em_tree, em);
890871be 1187 write_unlock(&em_tree->lock);
d899e052
YZ
1188 if (ret != -EEXIST) {
1189 free_extent_map(em);
1190 break;
1191 }
1192 btrfs_drop_extent_cache(inode, em->start,
1193 em->start + em->len - 1, 0);
1194 }
1195 type = BTRFS_ORDERED_PREALLOC;
1196 } else {
1197 type = BTRFS_ORDERED_NOCOW;
1198 }
80ff3856
YZ
1199
1200 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1201 num_bytes, num_bytes, type);
1202 BUG_ON(ret);
771ed689 1203
efa56464
YZ
1204 if (root->root_key.objectid ==
1205 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1206 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1207 num_bytes);
1208 BUG_ON(ret);
1209 }
1210
d899e052 1211 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1212 cur_offset, cur_offset + num_bytes - 1,
1213 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1214 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1215 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1216 cur_offset = extent_end;
1217 if (cur_offset > end)
1218 break;
be20aa9d 1219 }
80ff3856
YZ
1220 btrfs_release_path(root, path);
1221
1222 if (cur_offset <= end && cow_start == (u64)-1)
1223 cow_start = cur_offset;
1224 if (cow_start != (u64)-1) {
1225 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1226 page_started, nr_written, 1);
80ff3856
YZ
1227 BUG_ON(ret);
1228 }
1229
0cb59c99
JB
1230 if (nolock) {
1231 ret = btrfs_end_transaction_nolock(trans, root);
1232 BUG_ON(ret);
1233 } else {
1234 ret = btrfs_end_transaction(trans, root);
1235 BUG_ON(ret);
1236 }
7ea394f1 1237 btrfs_free_path(path);
80ff3856 1238 return 0;
be20aa9d
CM
1239}
1240
d352ac68
CM
1241/*
1242 * extent_io.c call back to do delayed allocation processing
1243 */
c8b97818 1244static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1245 u64 start, u64 end, int *page_started,
1246 unsigned long *nr_written)
be20aa9d 1247{
be20aa9d 1248 int ret;
7f366cfe 1249 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1250
6cbff00f 1251 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1252 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1253 page_started, 1, nr_written);
6cbff00f 1254 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1255 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1256 page_started, 0, nr_written);
1e701a32
CM
1257 else if (!btrfs_test_opt(root, COMPRESS) &&
1258 !(BTRFS_I(inode)->force_compress))
7f366cfe
CM
1259 ret = cow_file_range(inode, locked_page, start, end,
1260 page_started, nr_written, 1);
be20aa9d 1261 else
771ed689 1262 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1263 page_started, nr_written);
b888db2b
CM
1264 return ret;
1265}
1266
9ed74f2d 1267static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1268 struct extent_state *orig, u64 split)
9ed74f2d 1269{
0ca1f7ce 1270 /* not delalloc, ignore it */
9ed74f2d
JB
1271 if (!(orig->state & EXTENT_DELALLOC))
1272 return 0;
1273
0ca1f7ce 1274 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1275 return 0;
1276}
1277
1278/*
1279 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1280 * extents so we can keep track of new extents that are just merged onto old
1281 * extents, such as when we are doing sequential writes, so we can properly
1282 * account for the metadata space we'll need.
1283 */
1284static int btrfs_merge_extent_hook(struct inode *inode,
1285 struct extent_state *new,
1286 struct extent_state *other)
1287{
9ed74f2d
JB
1288 /* not delalloc, ignore it */
1289 if (!(other->state & EXTENT_DELALLOC))
1290 return 0;
1291
0ca1f7ce 1292 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1293 return 0;
1294}
1295
d352ac68
CM
1296/*
1297 * extent_io.c set_bit_hook, used to track delayed allocation
1298 * bytes in this file, and to maintain the list of inodes that
1299 * have pending delalloc work to be done.
1300 */
0ca1f7ce
YZ
1301static int btrfs_set_bit_hook(struct inode *inode,
1302 struct extent_state *state, int *bits)
291d673e 1303{
9ed74f2d 1304
75eff68e
CM
1305 /*
1306 * set_bit and clear bit hooks normally require _irqsave/restore
1307 * but in this case, we are only testeing for the DELALLOC
1308 * bit, which is only set or cleared with irqs on
1309 */
0ca1f7ce 1310 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1311 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1312 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1313 int do_list = (root->root_key.objectid !=
1314 BTRFS_ROOT_TREE_OBJECTID);
9ed74f2d 1315
0ca1f7ce
YZ
1316 if (*bits & EXTENT_FIRST_DELALLOC)
1317 *bits &= ~EXTENT_FIRST_DELALLOC;
1318 else
1319 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1320
75eff68e 1321 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1322 BTRFS_I(inode)->delalloc_bytes += len;
1323 root->fs_info->delalloc_bytes += len;
0cb59c99 1324 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1325 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1326 &root->fs_info->delalloc_inodes);
1327 }
75eff68e 1328 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1329 }
1330 return 0;
1331}
1332
d352ac68
CM
1333/*
1334 * extent_io.c clear_bit_hook, see set_bit_hook for why
1335 */
9ed74f2d 1336static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1337 struct extent_state *state, int *bits)
291d673e 1338{
75eff68e
CM
1339 /*
1340 * set_bit and clear bit hooks normally require _irqsave/restore
1341 * but in this case, we are only testeing for the DELALLOC
1342 * bit, which is only set or cleared with irqs on
1343 */
0ca1f7ce 1344 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1345 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1346 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1347 int do_list = (root->root_key.objectid !=
1348 BTRFS_ROOT_TREE_OBJECTID);
bcbfce8a 1349
0ca1f7ce
YZ
1350 if (*bits & EXTENT_FIRST_DELALLOC)
1351 *bits &= ~EXTENT_FIRST_DELALLOC;
1352 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1353 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1354
1355 if (*bits & EXTENT_DO_ACCOUNTING)
1356 btrfs_delalloc_release_metadata(inode, len);
1357
0cb59c99
JB
1358 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1359 && do_list)
0ca1f7ce 1360 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1361
75eff68e 1362 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1363 root->fs_info->delalloc_bytes -= len;
1364 BTRFS_I(inode)->delalloc_bytes -= len;
1365
0cb59c99 1366 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1367 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1368 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1369 }
75eff68e 1370 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1371 }
1372 return 0;
1373}
1374
d352ac68
CM
1375/*
1376 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1377 * we don't create bios that span stripes or chunks
1378 */
239b14b3 1379int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1380 size_t size, struct bio *bio,
1381 unsigned long bio_flags)
239b14b3
CM
1382{
1383 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1384 struct btrfs_mapping_tree *map_tree;
a62b9401 1385 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1386 u64 length = 0;
1387 u64 map_length;
239b14b3
CM
1388 int ret;
1389
771ed689
CM
1390 if (bio_flags & EXTENT_BIO_COMPRESSED)
1391 return 0;
1392
f2d8d74d 1393 length = bio->bi_size;
239b14b3
CM
1394 map_tree = &root->fs_info->mapping_tree;
1395 map_length = length;
cea9e445 1396 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1397 &map_length, NULL, 0);
cea9e445 1398
d397712b 1399 if (map_length < length + size)
239b14b3 1400 return 1;
411fc6bc 1401 return ret;
239b14b3
CM
1402}
1403
d352ac68
CM
1404/*
1405 * in order to insert checksums into the metadata in large chunks,
1406 * we wait until bio submission time. All the pages in the bio are
1407 * checksummed and sums are attached onto the ordered extent record.
1408 *
1409 * At IO completion time the cums attached on the ordered extent record
1410 * are inserted into the btree
1411 */
d397712b
CM
1412static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1413 struct bio *bio, int mirror_num,
eaf25d93
CM
1414 unsigned long bio_flags,
1415 u64 bio_offset)
065631f6 1416{
065631f6 1417 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1418 int ret = 0;
e015640f 1419
d20f7043 1420 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1421 BUG_ON(ret);
4a69a410
CM
1422 return 0;
1423}
e015640f 1424
4a69a410
CM
1425/*
1426 * in order to insert checksums into the metadata in large chunks,
1427 * we wait until bio submission time. All the pages in the bio are
1428 * checksummed and sums are attached onto the ordered extent record.
1429 *
1430 * At IO completion time the cums attached on the ordered extent record
1431 * are inserted into the btree
1432 */
b2950863 1433static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1434 int mirror_num, unsigned long bio_flags,
1435 u64 bio_offset)
4a69a410
CM
1436{
1437 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1438 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1439}
1440
d352ac68 1441/*
cad321ad
CM
1442 * extent_io.c submission hook. This does the right thing for csum calculation
1443 * on write, or reading the csums from the tree before a read
d352ac68 1444 */
b2950863 1445static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1446 int mirror_num, unsigned long bio_flags,
1447 u64 bio_offset)
44b8bd7e
CM
1448{
1449 struct btrfs_root *root = BTRFS_I(inode)->root;
1450 int ret = 0;
19b9bdb0 1451 int skip_sum;
44b8bd7e 1452
6cbff00f 1453 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1454
0cb59c99
JB
1455 if (root == root->fs_info->tree_root)
1456 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1457 else
1458 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1459 BUG_ON(ret);
065631f6 1460
7b6d91da 1461 if (!(rw & REQ_WRITE)) {
d20f7043 1462 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1463 return btrfs_submit_compressed_read(inode, bio,
1464 mirror_num, bio_flags);
d20f7043
CM
1465 } else if (!skip_sum)
1466 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1467 goto mapit;
19b9bdb0 1468 } else if (!skip_sum) {
17d217fe
YZ
1469 /* csum items have already been cloned */
1470 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1471 goto mapit;
19b9bdb0
CM
1472 /* we're doing a write, do the async checksumming */
1473 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1474 inode, rw, bio, mirror_num,
eaf25d93
CM
1475 bio_flags, bio_offset,
1476 __btrfs_submit_bio_start,
4a69a410 1477 __btrfs_submit_bio_done);
19b9bdb0
CM
1478 }
1479
0b86a832 1480mapit:
8b712842 1481 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1482}
6885f308 1483
d352ac68
CM
1484/*
1485 * given a list of ordered sums record them in the inode. This happens
1486 * at IO completion time based on sums calculated at bio submission time.
1487 */
ba1da2f4 1488static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1489 struct inode *inode, u64 file_offset,
1490 struct list_head *list)
1491{
e6dcd2dc
CM
1492 struct btrfs_ordered_sum *sum;
1493
1494 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1495
1496 list_for_each_entry(sum, list, list) {
d20f7043
CM
1497 btrfs_csum_file_blocks(trans,
1498 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1499 }
1500 return 0;
1501}
1502
2ac55d41
JB
1503int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1504 struct extent_state **cached_state)
ea8c2819 1505{
d397712b 1506 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1507 WARN_ON(1);
ea8c2819 1508 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1509 cached_state, GFP_NOFS);
ea8c2819
CM
1510}
1511
d352ac68 1512/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1513struct btrfs_writepage_fixup {
1514 struct page *page;
1515 struct btrfs_work work;
1516};
1517
b2950863 1518static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1519{
1520 struct btrfs_writepage_fixup *fixup;
1521 struct btrfs_ordered_extent *ordered;
2ac55d41 1522 struct extent_state *cached_state = NULL;
247e743c
CM
1523 struct page *page;
1524 struct inode *inode;
1525 u64 page_start;
1526 u64 page_end;
1527
1528 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1529 page = fixup->page;
4a096752 1530again:
247e743c
CM
1531 lock_page(page);
1532 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1533 ClearPageChecked(page);
1534 goto out_page;
1535 }
1536
1537 inode = page->mapping->host;
1538 page_start = page_offset(page);
1539 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1540
2ac55d41
JB
1541 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1542 &cached_state, GFP_NOFS);
4a096752
CM
1543
1544 /* already ordered? We're done */
8b62b72b 1545 if (PagePrivate2(page))
247e743c 1546 goto out;
4a096752
CM
1547
1548 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1549 if (ordered) {
2ac55d41
JB
1550 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1551 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1552 unlock_page(page);
1553 btrfs_start_ordered_extent(inode, ordered, 1);
1554 goto again;
1555 }
247e743c 1556
0ca1f7ce 1557 BUG();
2ac55d41 1558 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1559 ClearPageChecked(page);
1560out:
2ac55d41
JB
1561 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1562 &cached_state, GFP_NOFS);
247e743c
CM
1563out_page:
1564 unlock_page(page);
1565 page_cache_release(page);
b897abec 1566 kfree(fixup);
247e743c
CM
1567}
1568
1569/*
1570 * There are a few paths in the higher layers of the kernel that directly
1571 * set the page dirty bit without asking the filesystem if it is a
1572 * good idea. This causes problems because we want to make sure COW
1573 * properly happens and the data=ordered rules are followed.
1574 *
c8b97818 1575 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1576 * hasn't been properly setup for IO. We kick off an async process
1577 * to fix it up. The async helper will wait for ordered extents, set
1578 * the delalloc bit and make it safe to write the page.
1579 */
b2950863 1580static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1581{
1582 struct inode *inode = page->mapping->host;
1583 struct btrfs_writepage_fixup *fixup;
1584 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1585
8b62b72b
CM
1586 /* this page is properly in the ordered list */
1587 if (TestClearPagePrivate2(page))
247e743c
CM
1588 return 0;
1589
1590 if (PageChecked(page))
1591 return -EAGAIN;
1592
1593 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1594 if (!fixup)
1595 return -EAGAIN;
f421950f 1596
247e743c
CM
1597 SetPageChecked(page);
1598 page_cache_get(page);
1599 fixup->work.func = btrfs_writepage_fixup_worker;
1600 fixup->page = page;
1601 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1602 return -EAGAIN;
1603}
1604
d899e052
YZ
1605static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1606 struct inode *inode, u64 file_pos,
1607 u64 disk_bytenr, u64 disk_num_bytes,
1608 u64 num_bytes, u64 ram_bytes,
1609 u8 compression, u8 encryption,
1610 u16 other_encoding, int extent_type)
1611{
1612 struct btrfs_root *root = BTRFS_I(inode)->root;
1613 struct btrfs_file_extent_item *fi;
1614 struct btrfs_path *path;
1615 struct extent_buffer *leaf;
1616 struct btrfs_key ins;
1617 u64 hint;
1618 int ret;
1619
1620 path = btrfs_alloc_path();
1621 BUG_ON(!path);
1622
b9473439 1623 path->leave_spinning = 1;
a1ed835e
CM
1624
1625 /*
1626 * we may be replacing one extent in the tree with another.
1627 * The new extent is pinned in the extent map, and we don't want
1628 * to drop it from the cache until it is completely in the btree.
1629 *
1630 * So, tell btrfs_drop_extents to leave this extent in the cache.
1631 * the caller is expected to unpin it and allow it to be merged
1632 * with the others.
1633 */
920bbbfb
YZ
1634 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1635 &hint, 0);
d899e052
YZ
1636 BUG_ON(ret);
1637
1638 ins.objectid = inode->i_ino;
1639 ins.offset = file_pos;
1640 ins.type = BTRFS_EXTENT_DATA_KEY;
1641 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1642 BUG_ON(ret);
1643 leaf = path->nodes[0];
1644 fi = btrfs_item_ptr(leaf, path->slots[0],
1645 struct btrfs_file_extent_item);
1646 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1647 btrfs_set_file_extent_type(leaf, fi, extent_type);
1648 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1649 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1650 btrfs_set_file_extent_offset(leaf, fi, 0);
1651 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1652 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1653 btrfs_set_file_extent_compression(leaf, fi, compression);
1654 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1655 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1656
1657 btrfs_unlock_up_safe(path, 1);
1658 btrfs_set_lock_blocking(leaf);
1659
d899e052
YZ
1660 btrfs_mark_buffer_dirty(leaf);
1661
1662 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1663
1664 ins.objectid = disk_bytenr;
1665 ins.offset = disk_num_bytes;
1666 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1667 ret = btrfs_alloc_reserved_file_extent(trans, root,
1668 root->root_key.objectid,
1669 inode->i_ino, file_pos, &ins);
d899e052 1670 BUG_ON(ret);
d899e052 1671 btrfs_free_path(path);
b9473439 1672
d899e052
YZ
1673 return 0;
1674}
1675
5d13a98f
CM
1676/*
1677 * helper function for btrfs_finish_ordered_io, this
1678 * just reads in some of the csum leaves to prime them into ram
1679 * before we start the transaction. It limits the amount of btree
1680 * reads required while inside the transaction.
1681 */
d352ac68
CM
1682/* as ordered data IO finishes, this gets called so we can finish
1683 * an ordered extent if the range of bytes in the file it covers are
1684 * fully written.
1685 */
211f90e6 1686static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1687{
e6dcd2dc 1688 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1689 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1690 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1691 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1692 struct extent_state *cached_state = NULL;
261507a0 1693 int compress_type = 0;
e6dcd2dc 1694 int ret;
0cb59c99 1695 bool nolock = false;
e6dcd2dc 1696
5a1a3df1
JB
1697 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1698 end - start + 1);
ba1da2f4 1699 if (!ret)
e6dcd2dc 1700 return 0;
e6dcd2dc 1701 BUG_ON(!ordered_extent);
efd049fb 1702
0cb59c99
JB
1703 nolock = (root == root->fs_info->tree_root);
1704
c2167754
YZ
1705 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1706 BUG_ON(!list_empty(&ordered_extent->list));
1707 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1708 if (!ret) {
0cb59c99
JB
1709 if (nolock)
1710 trans = btrfs_join_transaction_nolock(root, 1);
1711 else
1712 trans = btrfs_join_transaction(root, 1);
3612b495 1713 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1714 btrfs_set_trans_block_group(trans, inode);
1715 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1716 ret = btrfs_update_inode(trans, root, inode);
1717 BUG_ON(ret);
c2167754
YZ
1718 }
1719 goto out;
1720 }
e6dcd2dc 1721
2ac55d41
JB
1722 lock_extent_bits(io_tree, ordered_extent->file_offset,
1723 ordered_extent->file_offset + ordered_extent->len - 1,
1724 0, &cached_state, GFP_NOFS);
e6dcd2dc 1725
0cb59c99
JB
1726 if (nolock)
1727 trans = btrfs_join_transaction_nolock(root, 1);
1728 else
1729 trans = btrfs_join_transaction(root, 1);
3612b495 1730 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1731 btrfs_set_trans_block_group(trans, inode);
1732 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1733
c8b97818 1734 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1735 compress_type = ordered_extent->compress_type;
d899e052 1736 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1737 BUG_ON(compress_type);
920bbbfb 1738 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1739 ordered_extent->file_offset,
1740 ordered_extent->file_offset +
1741 ordered_extent->len);
1742 BUG_ON(ret);
1743 } else {
0af3d00b 1744 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1745 ret = insert_reserved_file_extent(trans, inode,
1746 ordered_extent->file_offset,
1747 ordered_extent->start,
1748 ordered_extent->disk_len,
1749 ordered_extent->len,
1750 ordered_extent->len,
261507a0 1751 compress_type, 0, 0,
d899e052 1752 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1753 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1754 ordered_extent->file_offset,
1755 ordered_extent->len);
d899e052
YZ
1756 BUG_ON(ret);
1757 }
2ac55d41
JB
1758 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1759 ordered_extent->file_offset +
1760 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1761
e6dcd2dc
CM
1762 add_pending_csums(trans, inode, ordered_extent->file_offset,
1763 &ordered_extent->list);
1764
c2167754
YZ
1765 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1766 ret = btrfs_update_inode(trans, root, inode);
1767 BUG_ON(ret);
c2167754 1768out:
0cb59c99
JB
1769 if (nolock) {
1770 if (trans)
1771 btrfs_end_transaction_nolock(trans, root);
1772 } else {
1773 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1774 if (trans)
1775 btrfs_end_transaction(trans, root);
1776 }
1777
e6dcd2dc
CM
1778 /* once for us */
1779 btrfs_put_ordered_extent(ordered_extent);
1780 /* once for the tree */
1781 btrfs_put_ordered_extent(ordered_extent);
1782
e6dcd2dc
CM
1783 return 0;
1784}
1785
b2950863 1786static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1787 struct extent_state *state, int uptodate)
1788{
8b62b72b 1789 ClearPagePrivate2(page);
211f90e6
CM
1790 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1791}
1792
d352ac68
CM
1793/*
1794 * When IO fails, either with EIO or csum verification fails, we
1795 * try other mirrors that might have a good copy of the data. This
1796 * io_failure_record is used to record state as we go through all the
1797 * mirrors. If another mirror has good data, the page is set up to date
1798 * and things continue. If a good mirror can't be found, the original
1799 * bio end_io callback is called to indicate things have failed.
1800 */
7e38326f
CM
1801struct io_failure_record {
1802 struct page *page;
1803 u64 start;
1804 u64 len;
1805 u64 logical;
d20f7043 1806 unsigned long bio_flags;
7e38326f
CM
1807 int last_mirror;
1808};
1809
b2950863 1810static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1811 struct page *page, u64 start, u64 end,
1812 struct extent_state *state)
7e38326f
CM
1813{
1814 struct io_failure_record *failrec = NULL;
1815 u64 private;
1816 struct extent_map *em;
1817 struct inode *inode = page->mapping->host;
1818 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1819 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1820 struct bio *bio;
1821 int num_copies;
1822 int ret;
1259ab75 1823 int rw;
7e38326f
CM
1824 u64 logical;
1825
1826 ret = get_state_private(failure_tree, start, &private);
1827 if (ret) {
7e38326f
CM
1828 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1829 if (!failrec)
1830 return -ENOMEM;
1831 failrec->start = start;
1832 failrec->len = end - start + 1;
1833 failrec->last_mirror = 0;
d20f7043 1834 failrec->bio_flags = 0;
7e38326f 1835
890871be 1836 read_lock(&em_tree->lock);
3b951516
CM
1837 em = lookup_extent_mapping(em_tree, start, failrec->len);
1838 if (em->start > start || em->start + em->len < start) {
1839 free_extent_map(em);
1840 em = NULL;
1841 }
890871be 1842 read_unlock(&em_tree->lock);
7e38326f
CM
1843
1844 if (!em || IS_ERR(em)) {
1845 kfree(failrec);
1846 return -EIO;
1847 }
1848 logical = start - em->start;
1849 logical = em->block_start + logical;
d20f7043
CM
1850 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1851 logical = em->block_start;
1852 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1853 extent_set_compress_type(&failrec->bio_flags,
1854 em->compress_type);
d20f7043 1855 }
7e38326f
CM
1856 failrec->logical = logical;
1857 free_extent_map(em);
1858 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1859 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1860 set_state_private(failure_tree, start,
1861 (u64)(unsigned long)failrec);
7e38326f 1862 } else {
587f7704 1863 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1864 }
1865 num_copies = btrfs_num_copies(
1866 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1867 failrec->logical, failrec->len);
1868 failrec->last_mirror++;
1869 if (!state) {
cad321ad 1870 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1871 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1872 failrec->start,
1873 EXTENT_LOCKED);
1874 if (state && state->start != failrec->start)
1875 state = NULL;
cad321ad 1876 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1877 }
1878 if (!state || failrec->last_mirror > num_copies) {
1879 set_state_private(failure_tree, failrec->start, 0);
1880 clear_extent_bits(failure_tree, failrec->start,
1881 failrec->start + failrec->len - 1,
1882 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1883 kfree(failrec);
1884 return -EIO;
1885 }
1886 bio = bio_alloc(GFP_NOFS, 1);
1887 bio->bi_private = state;
1888 bio->bi_end_io = failed_bio->bi_end_io;
1889 bio->bi_sector = failrec->logical >> 9;
1890 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1891 bio->bi_size = 0;
d20f7043 1892
7e38326f 1893 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1894 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1895 rw = WRITE;
1896 else
1897 rw = READ;
1898
1899 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1900 failrec->last_mirror,
eaf25d93 1901 failrec->bio_flags, 0);
1259ab75
CM
1902 return 0;
1903}
1904
d352ac68
CM
1905/*
1906 * each time an IO finishes, we do a fast check in the IO failure tree
1907 * to see if we need to process or clean up an io_failure_record
1908 */
b2950863 1909static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1910{
1911 u64 private;
1912 u64 private_failure;
1913 struct io_failure_record *failure;
1914 int ret;
1915
1916 private = 0;
1917 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1918 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1919 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1920 start, &private_failure);
1921 if (ret == 0) {
1922 failure = (struct io_failure_record *)(unsigned long)
1923 private_failure;
1924 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1925 failure->start, 0);
1926 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1927 failure->start,
1928 failure->start + failure->len - 1,
1929 EXTENT_DIRTY | EXTENT_LOCKED,
1930 GFP_NOFS);
1931 kfree(failure);
1932 }
1933 }
7e38326f
CM
1934 return 0;
1935}
1936
d352ac68
CM
1937/*
1938 * when reads are done, we need to check csums to verify the data is correct
1939 * if there's a match, we allow the bio to finish. If not, we go through
1940 * the io_failure_record routines to find good copies
1941 */
b2950863 1942static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1943 struct extent_state *state)
07157aac 1944{
35ebb934 1945 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1946 struct inode *inode = page->mapping->host;
d1310b2e 1947 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1948 char *kaddr;
aadfeb6e 1949 u64 private = ~(u32)0;
07157aac 1950 int ret;
ff79f819
CM
1951 struct btrfs_root *root = BTRFS_I(inode)->root;
1952 u32 csum = ~(u32)0;
d1310b2e 1953
d20f7043
CM
1954 if (PageChecked(page)) {
1955 ClearPageChecked(page);
1956 goto good;
1957 }
6cbff00f
CH
1958
1959 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1960 return 0;
1961
1962 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1963 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1964 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1965 GFP_NOFS);
b6cda9bc 1966 return 0;
17d217fe 1967 }
d20f7043 1968
c2e639f0 1969 if (state && state->start == start) {
70dec807
CM
1970 private = state->private;
1971 ret = 0;
1972 } else {
1973 ret = get_state_private(io_tree, start, &private);
1974 }
9ab86c8e 1975 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1976 if (ret)
07157aac 1977 goto zeroit;
d397712b 1978
ff79f819
CM
1979 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1980 btrfs_csum_final(csum, (char *)&csum);
d397712b 1981 if (csum != private)
07157aac 1982 goto zeroit;
d397712b 1983
9ab86c8e 1984 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1985good:
7e38326f
CM
1986 /* if the io failure tree for this inode is non-empty,
1987 * check to see if we've recovered from a failed IO
1988 */
1259ab75 1989 btrfs_clean_io_failures(inode, start);
07157aac
CM
1990 return 0;
1991
1992zeroit:
193f284d
CM
1993 if (printk_ratelimit()) {
1994 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1995 "private %llu\n", page->mapping->host->i_ino,
1996 (unsigned long long)start, csum,
1997 (unsigned long long)private);
1998 }
db94535d
CM
1999 memset(kaddr + offset, 1, end - start + 1);
2000 flush_dcache_page(page);
9ab86c8e 2001 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2002 if (private == 0)
2003 return 0;
7e38326f 2004 return -EIO;
07157aac 2005}
b888db2b 2006
24bbcf04
YZ
2007struct delayed_iput {
2008 struct list_head list;
2009 struct inode *inode;
2010};
2011
2012void btrfs_add_delayed_iput(struct inode *inode)
2013{
2014 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2015 struct delayed_iput *delayed;
2016
2017 if (atomic_add_unless(&inode->i_count, -1, 1))
2018 return;
2019
2020 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2021 delayed->inode = inode;
2022
2023 spin_lock(&fs_info->delayed_iput_lock);
2024 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2025 spin_unlock(&fs_info->delayed_iput_lock);
2026}
2027
2028void btrfs_run_delayed_iputs(struct btrfs_root *root)
2029{
2030 LIST_HEAD(list);
2031 struct btrfs_fs_info *fs_info = root->fs_info;
2032 struct delayed_iput *delayed;
2033 int empty;
2034
2035 spin_lock(&fs_info->delayed_iput_lock);
2036 empty = list_empty(&fs_info->delayed_iputs);
2037 spin_unlock(&fs_info->delayed_iput_lock);
2038 if (empty)
2039 return;
2040
2041 down_read(&root->fs_info->cleanup_work_sem);
2042 spin_lock(&fs_info->delayed_iput_lock);
2043 list_splice_init(&fs_info->delayed_iputs, &list);
2044 spin_unlock(&fs_info->delayed_iput_lock);
2045
2046 while (!list_empty(&list)) {
2047 delayed = list_entry(list.next, struct delayed_iput, list);
2048 list_del(&delayed->list);
2049 iput(delayed->inode);
2050 kfree(delayed);
2051 }
2052 up_read(&root->fs_info->cleanup_work_sem);
2053}
2054
d68fc57b
YZ
2055/*
2056 * calculate extra metadata reservation when snapshotting a subvolume
2057 * contains orphan files.
2058 */
2059void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2060 struct btrfs_pending_snapshot *pending,
2061 u64 *bytes_to_reserve)
2062{
2063 struct btrfs_root *root;
2064 struct btrfs_block_rsv *block_rsv;
2065 u64 num_bytes;
2066 int index;
2067
2068 root = pending->root;
2069 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2070 return;
2071
2072 block_rsv = root->orphan_block_rsv;
2073
2074 /* orphan block reservation for the snapshot */
2075 num_bytes = block_rsv->size;
2076
2077 /*
2078 * after the snapshot is created, COWing tree blocks may use more
2079 * space than it frees. So we should make sure there is enough
2080 * reserved space.
2081 */
2082 index = trans->transid & 0x1;
2083 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2084 num_bytes += block_rsv->size -
2085 (block_rsv->reserved + block_rsv->freed[index]);
2086 }
2087
2088 *bytes_to_reserve += num_bytes;
2089}
2090
2091void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2092 struct btrfs_pending_snapshot *pending)
2093{
2094 struct btrfs_root *root = pending->root;
2095 struct btrfs_root *snap = pending->snap;
2096 struct btrfs_block_rsv *block_rsv;
2097 u64 num_bytes;
2098 int index;
2099 int ret;
2100
2101 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2102 return;
2103
2104 /* refill source subvolume's orphan block reservation */
2105 block_rsv = root->orphan_block_rsv;
2106 index = trans->transid & 0x1;
2107 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2108 num_bytes = block_rsv->size -
2109 (block_rsv->reserved + block_rsv->freed[index]);
2110 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2111 root->orphan_block_rsv,
2112 num_bytes);
2113 BUG_ON(ret);
2114 }
2115
2116 /* setup orphan block reservation for the snapshot */
2117 block_rsv = btrfs_alloc_block_rsv(snap);
2118 BUG_ON(!block_rsv);
2119
2120 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2121 snap->orphan_block_rsv = block_rsv;
2122
2123 num_bytes = root->orphan_block_rsv->size;
2124 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2125 block_rsv, num_bytes);
2126 BUG_ON(ret);
2127
2128#if 0
2129 /* insert orphan item for the snapshot */
2130 WARN_ON(!root->orphan_item_inserted);
2131 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2132 snap->root_key.objectid);
2133 BUG_ON(ret);
2134 snap->orphan_item_inserted = 1;
2135#endif
2136}
2137
2138enum btrfs_orphan_cleanup_state {
2139 ORPHAN_CLEANUP_STARTED = 1,
2140 ORPHAN_CLEANUP_DONE = 2,
2141};
2142
2143/*
2144 * This is called in transaction commmit time. If there are no orphan
2145 * files in the subvolume, it removes orphan item and frees block_rsv
2146 * structure.
2147 */
2148void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2149 struct btrfs_root *root)
2150{
2151 int ret;
2152
2153 if (!list_empty(&root->orphan_list) ||
2154 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2155 return;
2156
2157 if (root->orphan_item_inserted &&
2158 btrfs_root_refs(&root->root_item) > 0) {
2159 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2160 root->root_key.objectid);
2161 BUG_ON(ret);
2162 root->orphan_item_inserted = 0;
2163 }
2164
2165 if (root->orphan_block_rsv) {
2166 WARN_ON(root->orphan_block_rsv->size > 0);
2167 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2168 root->orphan_block_rsv = NULL;
2169 }
2170}
2171
7b128766
JB
2172/*
2173 * This creates an orphan entry for the given inode in case something goes
2174 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2175 *
2176 * NOTE: caller of this function should reserve 5 units of metadata for
2177 * this function.
7b128766
JB
2178 */
2179int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2180{
2181 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2182 struct btrfs_block_rsv *block_rsv = NULL;
2183 int reserve = 0;
2184 int insert = 0;
2185 int ret;
7b128766 2186
d68fc57b
YZ
2187 if (!root->orphan_block_rsv) {
2188 block_rsv = btrfs_alloc_block_rsv(root);
2189 BUG_ON(!block_rsv);
2190 }
7b128766 2191
d68fc57b
YZ
2192 spin_lock(&root->orphan_lock);
2193 if (!root->orphan_block_rsv) {
2194 root->orphan_block_rsv = block_rsv;
2195 } else if (block_rsv) {
2196 btrfs_free_block_rsv(root, block_rsv);
2197 block_rsv = NULL;
7b128766 2198 }
7b128766 2199
d68fc57b
YZ
2200 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2201 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2202#if 0
2203 /*
2204 * For proper ENOSPC handling, we should do orphan
2205 * cleanup when mounting. But this introduces backward
2206 * compatibility issue.
2207 */
2208 if (!xchg(&root->orphan_item_inserted, 1))
2209 insert = 2;
2210 else
2211 insert = 1;
2212#endif
2213 insert = 1;
2214 } else {
2215 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
7b128766
JB
2216 }
2217
d68fc57b
YZ
2218 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2219 BTRFS_I(inode)->orphan_meta_reserved = 1;
2220 reserve = 1;
2221 }
2222 spin_unlock(&root->orphan_lock);
7b128766 2223
d68fc57b
YZ
2224 if (block_rsv)
2225 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2226
d68fc57b
YZ
2227 /* grab metadata reservation from transaction handle */
2228 if (reserve) {
2229 ret = btrfs_orphan_reserve_metadata(trans, inode);
2230 BUG_ON(ret);
2231 }
7b128766 2232
d68fc57b
YZ
2233 /* insert an orphan item to track this unlinked/truncated file */
2234 if (insert >= 1) {
2235 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2236 BUG_ON(ret);
2237 }
2238
2239 /* insert an orphan item to track subvolume contains orphan files */
2240 if (insert >= 2) {
2241 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2242 root->root_key.objectid);
2243 BUG_ON(ret);
2244 }
2245 return 0;
7b128766
JB
2246}
2247
2248/*
2249 * We have done the truncate/delete so we can go ahead and remove the orphan
2250 * item for this particular inode.
2251 */
2252int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2253{
2254 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2255 int delete_item = 0;
2256 int release_rsv = 0;
7b128766
JB
2257 int ret = 0;
2258
d68fc57b
YZ
2259 spin_lock(&root->orphan_lock);
2260 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2261 list_del_init(&BTRFS_I(inode)->i_orphan);
2262 delete_item = 1;
7b128766
JB
2263 }
2264
d68fc57b
YZ
2265 if (BTRFS_I(inode)->orphan_meta_reserved) {
2266 BTRFS_I(inode)->orphan_meta_reserved = 0;
2267 release_rsv = 1;
7b128766 2268 }
d68fc57b 2269 spin_unlock(&root->orphan_lock);
7b128766 2270
d68fc57b
YZ
2271 if (trans && delete_item) {
2272 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2273 BUG_ON(ret);
2274 }
7b128766 2275
d68fc57b
YZ
2276 if (release_rsv)
2277 btrfs_orphan_release_metadata(inode);
7b128766 2278
d68fc57b 2279 return 0;
7b128766
JB
2280}
2281
2282/*
2283 * this cleans up any orphans that may be left on the list from the last use
2284 * of this root.
2285 */
2286void btrfs_orphan_cleanup(struct btrfs_root *root)
2287{
2288 struct btrfs_path *path;
2289 struct extent_buffer *leaf;
7b128766
JB
2290 struct btrfs_key key, found_key;
2291 struct btrfs_trans_handle *trans;
2292 struct inode *inode;
2293 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2294
d68fc57b 2295 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
7b128766 2296 return;
c71bf099
YZ
2297
2298 path = btrfs_alloc_path();
2299 BUG_ON(!path);
7b128766
JB
2300 path->reada = -1;
2301
2302 key.objectid = BTRFS_ORPHAN_OBJECTID;
2303 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2304 key.offset = (u64)-1;
2305
7b128766
JB
2306 while (1) {
2307 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2308 if (ret < 0) {
2309 printk(KERN_ERR "Error searching slot for orphan: %d"
2310 "\n", ret);
2311 break;
2312 }
2313
2314 /*
2315 * if ret == 0 means we found what we were searching for, which
2316 * is weird, but possible, so only screw with path if we didnt
2317 * find the key and see if we have stuff that matches
2318 */
2319 if (ret > 0) {
2320 if (path->slots[0] == 0)
2321 break;
2322 path->slots[0]--;
2323 }
2324
2325 /* pull out the item */
2326 leaf = path->nodes[0];
7b128766
JB
2327 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2328
2329 /* make sure the item matches what we want */
2330 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2331 break;
2332 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2333 break;
2334
2335 /* release the path since we're done with it */
2336 btrfs_release_path(root, path);
2337
2338 /*
2339 * this is where we are basically btrfs_lookup, without the
2340 * crossing root thing. we store the inode number in the
2341 * offset of the orphan item.
2342 */
5d4f98a2
YZ
2343 found_key.objectid = found_key.offset;
2344 found_key.type = BTRFS_INODE_ITEM_KEY;
2345 found_key.offset = 0;
73f73415 2346 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
d68fc57b 2347 BUG_ON(IS_ERR(inode));
7b128766 2348
7b128766
JB
2349 /*
2350 * add this inode to the orphan list so btrfs_orphan_del does
2351 * the proper thing when we hit it
2352 */
d68fc57b 2353 spin_lock(&root->orphan_lock);
7b128766 2354 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2355 spin_unlock(&root->orphan_lock);
7b128766
JB
2356
2357 /*
2358 * if this is a bad inode, means we actually succeeded in
2359 * removing the inode, but not the orphan record, which means
2360 * we need to manually delete the orphan since iput will just
2361 * do a destroy_inode
2362 */
2363 if (is_bad_inode(inode)) {
a22285a6 2364 trans = btrfs_start_transaction(root, 0);
98d5dc13 2365 BUG_ON(IS_ERR(trans));
7b128766 2366 btrfs_orphan_del(trans, inode);
5b21f2ed 2367 btrfs_end_transaction(trans, root);
7b128766
JB
2368 iput(inode);
2369 continue;
2370 }
2371
2372 /* if we have links, this was a truncate, lets do that */
2373 if (inode->i_nlink) {
2374 nr_truncate++;
2375 btrfs_truncate(inode);
2376 } else {
2377 nr_unlink++;
2378 }
2379
2380 /* this will do delete_inode and everything for us */
2381 iput(inode);
2382 }
d68fc57b
YZ
2383 btrfs_free_path(path);
2384
2385 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2386
2387 if (root->orphan_block_rsv)
2388 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2389 (u64)-1);
2390
2391 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2392 trans = btrfs_join_transaction(root, 1);
3612b495 2393 BUG_ON(IS_ERR(trans));
d68fc57b
YZ
2394 btrfs_end_transaction(trans, root);
2395 }
7b128766
JB
2396
2397 if (nr_unlink)
2398 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2399 if (nr_truncate)
2400 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
7b128766
JB
2401}
2402
46a53cca
CM
2403/*
2404 * very simple check to peek ahead in the leaf looking for xattrs. If we
2405 * don't find any xattrs, we know there can't be any acls.
2406 *
2407 * slot is the slot the inode is in, objectid is the objectid of the inode
2408 */
2409static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2410 int slot, u64 objectid)
2411{
2412 u32 nritems = btrfs_header_nritems(leaf);
2413 struct btrfs_key found_key;
2414 int scanned = 0;
2415
2416 slot++;
2417 while (slot < nritems) {
2418 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2419
2420 /* we found a different objectid, there must not be acls */
2421 if (found_key.objectid != objectid)
2422 return 0;
2423
2424 /* we found an xattr, assume we've got an acl */
2425 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2426 return 1;
2427
2428 /*
2429 * we found a key greater than an xattr key, there can't
2430 * be any acls later on
2431 */
2432 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2433 return 0;
2434
2435 slot++;
2436 scanned++;
2437
2438 /*
2439 * it goes inode, inode backrefs, xattrs, extents,
2440 * so if there are a ton of hard links to an inode there can
2441 * be a lot of backrefs. Don't waste time searching too hard,
2442 * this is just an optimization
2443 */
2444 if (scanned >= 8)
2445 break;
2446 }
2447 /* we hit the end of the leaf before we found an xattr or
2448 * something larger than an xattr. We have to assume the inode
2449 * has acls
2450 */
2451 return 1;
2452}
2453
d352ac68
CM
2454/*
2455 * read an inode from the btree into the in-memory inode
2456 */
5d4f98a2 2457static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2458{
2459 struct btrfs_path *path;
5f39d397 2460 struct extent_buffer *leaf;
39279cc3 2461 struct btrfs_inode_item *inode_item;
0b86a832 2462 struct btrfs_timespec *tspec;
39279cc3
CM
2463 struct btrfs_root *root = BTRFS_I(inode)->root;
2464 struct btrfs_key location;
46a53cca 2465 int maybe_acls;
39279cc3 2466 u64 alloc_group_block;
618e21d5 2467 u32 rdev;
39279cc3
CM
2468 int ret;
2469
2470 path = btrfs_alloc_path();
2471 BUG_ON(!path);
39279cc3 2472 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2473
39279cc3 2474 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2475 if (ret)
39279cc3 2476 goto make_bad;
39279cc3 2477
5f39d397
CM
2478 leaf = path->nodes[0];
2479 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2480 struct btrfs_inode_item);
2481
2482 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2483 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2484 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2485 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2486 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2487
2488 tspec = btrfs_inode_atime(inode_item);
2489 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2490 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2491
2492 tspec = btrfs_inode_mtime(inode_item);
2493 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2494 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2495
2496 tspec = btrfs_inode_ctime(inode_item);
2497 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2498 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2499
a76a3cd4 2500 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2501 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2502 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2503 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2504 inode->i_rdev = 0;
5f39d397
CM
2505 rdev = btrfs_inode_rdev(leaf, inode_item);
2506
aec7477b 2507 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2508 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2509
5f39d397 2510 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2511
46a53cca
CM
2512 /*
2513 * try to precache a NULL acl entry for files that don't have
2514 * any xattrs or acls
2515 */
2516 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2517 if (!maybe_acls)
2518 cache_no_acl(inode);
46a53cca 2519
d2fb3437
YZ
2520 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2521 alloc_group_block, 0);
39279cc3
CM
2522 btrfs_free_path(path);
2523 inode_item = NULL;
2524
39279cc3 2525 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2526 case S_IFREG:
2527 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2528 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2529 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2530 inode->i_fop = &btrfs_file_operations;
2531 inode->i_op = &btrfs_file_inode_operations;
2532 break;
2533 case S_IFDIR:
2534 inode->i_fop = &btrfs_dir_file_operations;
2535 if (root == root->fs_info->tree_root)
2536 inode->i_op = &btrfs_dir_ro_inode_operations;
2537 else
2538 inode->i_op = &btrfs_dir_inode_operations;
2539 break;
2540 case S_IFLNK:
2541 inode->i_op = &btrfs_symlink_inode_operations;
2542 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2543 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2544 break;
618e21d5 2545 default:
0279b4cd 2546 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2547 init_special_inode(inode, inode->i_mode, rdev);
2548 break;
39279cc3 2549 }
6cbff00f
CH
2550
2551 btrfs_update_iflags(inode);
39279cc3
CM
2552 return;
2553
2554make_bad:
39279cc3 2555 btrfs_free_path(path);
39279cc3
CM
2556 make_bad_inode(inode);
2557}
2558
d352ac68
CM
2559/*
2560 * given a leaf and an inode, copy the inode fields into the leaf
2561 */
e02119d5
CM
2562static void fill_inode_item(struct btrfs_trans_handle *trans,
2563 struct extent_buffer *leaf,
5f39d397 2564 struct btrfs_inode_item *item,
39279cc3
CM
2565 struct inode *inode)
2566{
5f39d397
CM
2567 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2568 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2569 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2570 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2571 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2572
2573 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2574 inode->i_atime.tv_sec);
2575 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2576 inode->i_atime.tv_nsec);
2577
2578 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2579 inode->i_mtime.tv_sec);
2580 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2581 inode->i_mtime.tv_nsec);
2582
2583 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2584 inode->i_ctime.tv_sec);
2585 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2586 inode->i_ctime.tv_nsec);
2587
a76a3cd4 2588 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2589 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2590 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2591 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2592 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2593 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2594 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2595}
2596
d352ac68
CM
2597/*
2598 * copy everything in the in-memory inode into the btree.
2599 */
d397712b
CM
2600noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2601 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2602{
2603 struct btrfs_inode_item *inode_item;
2604 struct btrfs_path *path;
5f39d397 2605 struct extent_buffer *leaf;
39279cc3
CM
2606 int ret;
2607
2608 path = btrfs_alloc_path();
2609 BUG_ON(!path);
b9473439 2610 path->leave_spinning = 1;
39279cc3
CM
2611 ret = btrfs_lookup_inode(trans, root, path,
2612 &BTRFS_I(inode)->location, 1);
2613 if (ret) {
2614 if (ret > 0)
2615 ret = -ENOENT;
2616 goto failed;
2617 }
2618
b4ce94de 2619 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2620 leaf = path->nodes[0];
2621 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2622 struct btrfs_inode_item);
2623
e02119d5 2624 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2625 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2626 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2627 ret = 0;
2628failed:
39279cc3
CM
2629 btrfs_free_path(path);
2630 return ret;
2631}
2632
2633
d352ac68
CM
2634/*
2635 * unlink helper that gets used here in inode.c and in the tree logging
2636 * recovery code. It remove a link in a directory with a given name, and
2637 * also drops the back refs in the inode to the directory
2638 */
e02119d5
CM
2639int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2640 struct btrfs_root *root,
2641 struct inode *dir, struct inode *inode,
2642 const char *name, int name_len)
39279cc3
CM
2643{
2644 struct btrfs_path *path;
39279cc3 2645 int ret = 0;
5f39d397 2646 struct extent_buffer *leaf;
39279cc3 2647 struct btrfs_dir_item *di;
5f39d397 2648 struct btrfs_key key;
aec7477b 2649 u64 index;
39279cc3
CM
2650
2651 path = btrfs_alloc_path();
54aa1f4d
CM
2652 if (!path) {
2653 ret = -ENOMEM;
554233a6 2654 goto out;
54aa1f4d
CM
2655 }
2656
b9473439 2657 path->leave_spinning = 1;
39279cc3
CM
2658 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2659 name, name_len, -1);
2660 if (IS_ERR(di)) {
2661 ret = PTR_ERR(di);
2662 goto err;
2663 }
2664 if (!di) {
2665 ret = -ENOENT;
2666 goto err;
2667 }
5f39d397
CM
2668 leaf = path->nodes[0];
2669 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2670 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2671 if (ret)
2672 goto err;
39279cc3
CM
2673 btrfs_release_path(root, path);
2674
aec7477b 2675 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2676 inode->i_ino,
2677 dir->i_ino, &index);
aec7477b 2678 if (ret) {
d397712b 2679 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2680 "inode %lu parent %lu\n", name_len, name,
e02119d5 2681 inode->i_ino, dir->i_ino);
aec7477b
JB
2682 goto err;
2683 }
2684
39279cc3 2685 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2686 index, name, name_len, -1);
39279cc3
CM
2687 if (IS_ERR(di)) {
2688 ret = PTR_ERR(di);
2689 goto err;
2690 }
2691 if (!di) {
2692 ret = -ENOENT;
2693 goto err;
2694 }
2695 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2696 btrfs_release_path(root, path);
39279cc3 2697
e02119d5
CM
2698 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2699 inode, dir->i_ino);
49eb7e46 2700 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2701
2702 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2703 dir, index);
6418c961
CM
2704 if (ret == -ENOENT)
2705 ret = 0;
39279cc3
CM
2706err:
2707 btrfs_free_path(path);
e02119d5
CM
2708 if (ret)
2709 goto out;
2710
2711 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2712 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2713 btrfs_update_inode(trans, root, dir);
2714 btrfs_drop_nlink(inode);
2715 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2716out:
39279cc3
CM
2717 return ret;
2718}
2719
a22285a6
YZ
2720/* helper to check if there is any shared block in the path */
2721static int check_path_shared(struct btrfs_root *root,
2722 struct btrfs_path *path)
39279cc3 2723{
a22285a6
YZ
2724 struct extent_buffer *eb;
2725 int level;
0e4dcbef 2726 u64 refs = 1;
5df6a9f6 2727
a22285a6 2728 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2729 int ret;
2730
a22285a6
YZ
2731 if (!path->nodes[level])
2732 break;
2733 eb = path->nodes[level];
2734 if (!btrfs_block_can_be_shared(root, eb))
2735 continue;
2736 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2737 &refs, NULL);
2738 if (refs > 1)
2739 return 1;
5df6a9f6 2740 }
dedefd72 2741 return 0;
39279cc3
CM
2742}
2743
a22285a6
YZ
2744/*
2745 * helper to start transaction for unlink and rmdir.
2746 *
2747 * unlink and rmdir are special in btrfs, they do not always free space.
2748 * so in enospc case, we should make sure they will free space before
2749 * allowing them to use the global metadata reservation.
2750 */
2751static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2752 struct dentry *dentry)
4df27c4d 2753{
39279cc3 2754 struct btrfs_trans_handle *trans;
a22285a6 2755 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2756 struct btrfs_path *path;
a22285a6 2757 struct btrfs_inode_ref *ref;
4df27c4d 2758 struct btrfs_dir_item *di;
7b128766 2759 struct inode *inode = dentry->d_inode;
4df27c4d 2760 u64 index;
a22285a6
YZ
2761 int check_link = 1;
2762 int err = -ENOSPC;
4df27c4d
YZ
2763 int ret;
2764
a22285a6
YZ
2765 trans = btrfs_start_transaction(root, 10);
2766 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2767 return trans;
4df27c4d 2768
a22285a6
YZ
2769 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2770 return ERR_PTR(-ENOSPC);
4df27c4d 2771
a22285a6
YZ
2772 /* check if there is someone else holds reference */
2773 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2774 return ERR_PTR(-ENOSPC);
4df27c4d 2775
a22285a6
YZ
2776 if (atomic_read(&inode->i_count) > 2)
2777 return ERR_PTR(-ENOSPC);
4df27c4d 2778
a22285a6
YZ
2779 if (xchg(&root->fs_info->enospc_unlink, 1))
2780 return ERR_PTR(-ENOSPC);
2781
2782 path = btrfs_alloc_path();
2783 if (!path) {
2784 root->fs_info->enospc_unlink = 0;
2785 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2786 }
2787
a22285a6 2788 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2789 if (IS_ERR(trans)) {
a22285a6
YZ
2790 btrfs_free_path(path);
2791 root->fs_info->enospc_unlink = 0;
2792 return trans;
2793 }
4df27c4d 2794
a22285a6
YZ
2795 path->skip_locking = 1;
2796 path->search_commit_root = 1;
4df27c4d 2797
a22285a6
YZ
2798 ret = btrfs_lookup_inode(trans, root, path,
2799 &BTRFS_I(dir)->location, 0);
2800 if (ret < 0) {
2801 err = ret;
2802 goto out;
2803 }
2804 if (ret == 0) {
2805 if (check_path_shared(root, path))
2806 goto out;
2807 } else {
2808 check_link = 0;
5df6a9f6 2809 }
a22285a6
YZ
2810 btrfs_release_path(root, path);
2811
2812 ret = btrfs_lookup_inode(trans, root, path,
2813 &BTRFS_I(inode)->location, 0);
2814 if (ret < 0) {
2815 err = ret;
2816 goto out;
2817 }
2818 if (ret == 0) {
2819 if (check_path_shared(root, path))
2820 goto out;
2821 } else {
2822 check_link = 0;
2823 }
2824 btrfs_release_path(root, path);
2825
2826 if (ret == 0 && S_ISREG(inode->i_mode)) {
2827 ret = btrfs_lookup_file_extent(trans, root, path,
2828 inode->i_ino, (u64)-1, 0);
2829 if (ret < 0) {
2830 err = ret;
2831 goto out;
2832 }
2833 BUG_ON(ret == 0);
2834 if (check_path_shared(root, path))
2835 goto out;
2836 btrfs_release_path(root, path);
2837 }
2838
2839 if (!check_link) {
2840 err = 0;
2841 goto out;
2842 }
2843
2844 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2845 dentry->d_name.name, dentry->d_name.len, 0);
2846 if (IS_ERR(di)) {
2847 err = PTR_ERR(di);
2848 goto out;
2849 }
2850 if (di) {
2851 if (check_path_shared(root, path))
2852 goto out;
2853 } else {
2854 err = 0;
2855 goto out;
2856 }
2857 btrfs_release_path(root, path);
2858
2859 ref = btrfs_lookup_inode_ref(trans, root, path,
2860 dentry->d_name.name, dentry->d_name.len,
2861 inode->i_ino, dir->i_ino, 0);
2862 if (IS_ERR(ref)) {
2863 err = PTR_ERR(ref);
2864 goto out;
2865 }
2866 BUG_ON(!ref);
2867 if (check_path_shared(root, path))
2868 goto out;
2869 index = btrfs_inode_ref_index(path->nodes[0], ref);
2870 btrfs_release_path(root, path);
2871
2872 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2873 dentry->d_name.name, dentry->d_name.len, 0);
2874 if (IS_ERR(di)) {
2875 err = PTR_ERR(di);
2876 goto out;
2877 }
2878 BUG_ON(ret == -ENOENT);
2879 if (check_path_shared(root, path))
2880 goto out;
2881
2882 err = 0;
2883out:
2884 btrfs_free_path(path);
2885 if (err) {
2886 btrfs_end_transaction(trans, root);
2887 root->fs_info->enospc_unlink = 0;
2888 return ERR_PTR(err);
2889 }
2890
2891 trans->block_rsv = &root->fs_info->global_block_rsv;
2892 return trans;
2893}
2894
2895static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2896 struct btrfs_root *root)
2897{
2898 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2899 BUG_ON(!root->fs_info->enospc_unlink);
2900 root->fs_info->enospc_unlink = 0;
2901 }
2902 btrfs_end_transaction_throttle(trans, root);
2903}
2904
2905static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2906{
2907 struct btrfs_root *root = BTRFS_I(dir)->root;
2908 struct btrfs_trans_handle *trans;
2909 struct inode *inode = dentry->d_inode;
2910 int ret;
2911 unsigned long nr = 0;
2912
2913 trans = __unlink_start_trans(dir, dentry);
2914 if (IS_ERR(trans))
2915 return PTR_ERR(trans);
5f39d397 2916
39279cc3 2917 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2918
2919 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2920
e02119d5
CM
2921 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2922 dentry->d_name.name, dentry->d_name.len);
a22285a6 2923 BUG_ON(ret);
7b128766 2924
a22285a6 2925 if (inode->i_nlink == 0) {
7b128766 2926 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
2927 BUG_ON(ret);
2928 }
7b128766 2929
d3c2fdcf 2930 nr = trans->blocks_used;
a22285a6 2931 __unlink_end_trans(trans, root);
d3c2fdcf 2932 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2933 return ret;
2934}
2935
4df27c4d
YZ
2936int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2937 struct btrfs_root *root,
2938 struct inode *dir, u64 objectid,
2939 const char *name, int name_len)
2940{
2941 struct btrfs_path *path;
2942 struct extent_buffer *leaf;
2943 struct btrfs_dir_item *di;
2944 struct btrfs_key key;
2945 u64 index;
2946 int ret;
2947
2948 path = btrfs_alloc_path();
2949 if (!path)
2950 return -ENOMEM;
2951
2952 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2953 name, name_len, -1);
2954 BUG_ON(!di || IS_ERR(di));
2955
2956 leaf = path->nodes[0];
2957 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2958 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2959 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2960 BUG_ON(ret);
2961 btrfs_release_path(root, path);
2962
2963 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2964 objectid, root->root_key.objectid,
2965 dir->i_ino, &index, name, name_len);
2966 if (ret < 0) {
2967 BUG_ON(ret != -ENOENT);
2968 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2969 name, name_len);
2970 BUG_ON(!di || IS_ERR(di));
2971
2972 leaf = path->nodes[0];
2973 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2974 btrfs_release_path(root, path);
2975 index = key.offset;
2976 }
2977
2978 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2979 index, name, name_len, -1);
2980 BUG_ON(!di || IS_ERR(di));
2981
2982 leaf = path->nodes[0];
2983 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2984 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2985 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2986 BUG_ON(ret);
2987 btrfs_release_path(root, path);
2988
2989 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2990 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2991 ret = btrfs_update_inode(trans, root, dir);
2992 BUG_ON(ret);
4df27c4d
YZ
2993
2994 btrfs_free_path(path);
2995 return 0;
2996}
2997
39279cc3
CM
2998static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2999{
3000 struct inode *inode = dentry->d_inode;
1832a6d5 3001 int err = 0;
39279cc3 3002 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3003 struct btrfs_trans_handle *trans;
1832a6d5 3004 unsigned long nr = 0;
39279cc3 3005
3394e160 3006 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 3007 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3008 return -ENOTEMPTY;
3009
a22285a6
YZ
3010 trans = __unlink_start_trans(dir, dentry);
3011 if (IS_ERR(trans))
5df6a9f6 3012 return PTR_ERR(trans);
5df6a9f6 3013
39279cc3 3014 btrfs_set_trans_block_group(trans, dir);
39279cc3 3015
4df27c4d
YZ
3016 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3017 err = btrfs_unlink_subvol(trans, root, dir,
3018 BTRFS_I(inode)->location.objectid,
3019 dentry->d_name.name,
3020 dentry->d_name.len);
3021 goto out;
3022 }
3023
7b128766
JB
3024 err = btrfs_orphan_add(trans, inode);
3025 if (err)
4df27c4d 3026 goto out;
7b128766 3027
39279cc3 3028 /* now the directory is empty */
e02119d5
CM
3029 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3030 dentry->d_name.name, dentry->d_name.len);
d397712b 3031 if (!err)
dbe674a9 3032 btrfs_i_size_write(inode, 0);
4df27c4d 3033out:
d3c2fdcf 3034 nr = trans->blocks_used;
a22285a6 3035 __unlink_end_trans(trans, root);
d3c2fdcf 3036 btrfs_btree_balance_dirty(root, nr);
3954401f 3037
39279cc3
CM
3038 return err;
3039}
3040
d20f7043 3041#if 0
323ac95b
CM
3042/*
3043 * when truncating bytes in a file, it is possible to avoid reading
3044 * the leaves that contain only checksum items. This can be the
3045 * majority of the IO required to delete a large file, but it must
3046 * be done carefully.
3047 *
3048 * The keys in the level just above the leaves are checked to make sure
3049 * the lowest key in a given leaf is a csum key, and starts at an offset
3050 * after the new size.
3051 *
3052 * Then the key for the next leaf is checked to make sure it also has
3053 * a checksum item for the same file. If it does, we know our target leaf
3054 * contains only checksum items, and it can be safely freed without reading
3055 * it.
3056 *
3057 * This is just an optimization targeted at large files. It may do
3058 * nothing. It will return 0 unless things went badly.
3059 */
3060static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3061 struct btrfs_root *root,
3062 struct btrfs_path *path,
3063 struct inode *inode, u64 new_size)
3064{
3065 struct btrfs_key key;
3066 int ret;
3067 int nritems;
3068 struct btrfs_key found_key;
3069 struct btrfs_key other_key;
5b84e8d6
YZ
3070 struct btrfs_leaf_ref *ref;
3071 u64 leaf_gen;
3072 u64 leaf_start;
323ac95b
CM
3073
3074 path->lowest_level = 1;
3075 key.objectid = inode->i_ino;
3076 key.type = BTRFS_CSUM_ITEM_KEY;
3077 key.offset = new_size;
3078again:
3079 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3080 if (ret < 0)
3081 goto out;
3082
3083 if (path->nodes[1] == NULL) {
3084 ret = 0;
3085 goto out;
3086 }
3087 ret = 0;
3088 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3089 nritems = btrfs_header_nritems(path->nodes[1]);
3090
3091 if (!nritems)
3092 goto out;
3093
3094 if (path->slots[1] >= nritems)
3095 goto next_node;
3096
3097 /* did we find a key greater than anything we want to delete? */
3098 if (found_key.objectid > inode->i_ino ||
3099 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3100 goto out;
3101
3102 /* we check the next key in the node to make sure the leave contains
3103 * only checksum items. This comparison doesn't work if our
3104 * leaf is the last one in the node
3105 */
3106 if (path->slots[1] + 1 >= nritems) {
3107next_node:
3108 /* search forward from the last key in the node, this
3109 * will bring us into the next node in the tree
3110 */
3111 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3112
3113 /* unlikely, but we inc below, so check to be safe */
3114 if (found_key.offset == (u64)-1)
3115 goto out;
3116
3117 /* search_forward needs a path with locks held, do the
3118 * search again for the original key. It is possible
3119 * this will race with a balance and return a path that
3120 * we could modify, but this drop is just an optimization
3121 * and is allowed to miss some leaves.
3122 */
3123 btrfs_release_path(root, path);
3124 found_key.offset++;
3125
3126 /* setup a max key for search_forward */
3127 other_key.offset = (u64)-1;
3128 other_key.type = key.type;
3129 other_key.objectid = key.objectid;
3130
3131 path->keep_locks = 1;
3132 ret = btrfs_search_forward(root, &found_key, &other_key,
3133 path, 0, 0);
3134 path->keep_locks = 0;
3135 if (ret || found_key.objectid != key.objectid ||
3136 found_key.type != key.type) {
3137 ret = 0;
3138 goto out;
3139 }
3140
3141 key.offset = found_key.offset;
3142 btrfs_release_path(root, path);
3143 cond_resched();
3144 goto again;
3145 }
3146
3147 /* we know there's one more slot after us in the tree,
3148 * read that key so we can verify it is also a checksum item
3149 */
3150 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3151
3152 if (found_key.objectid < inode->i_ino)
3153 goto next_key;
3154
3155 if (found_key.type != key.type || found_key.offset < new_size)
3156 goto next_key;
3157
3158 /*
3159 * if the key for the next leaf isn't a csum key from this objectid,
3160 * we can't be sure there aren't good items inside this leaf.
3161 * Bail out
3162 */
3163 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3164 goto out;
3165
5b84e8d6
YZ
3166 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3167 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
3168 /*
3169 * it is safe to delete this leaf, it contains only
3170 * csum items from this inode at an offset >= new_size
3171 */
5b84e8d6 3172 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
3173 BUG_ON(ret);
3174
5b84e8d6
YZ
3175 if (root->ref_cows && leaf_gen < trans->transid) {
3176 ref = btrfs_alloc_leaf_ref(root, 0);
3177 if (ref) {
3178 ref->root_gen = root->root_key.offset;
3179 ref->bytenr = leaf_start;
3180 ref->owner = 0;
3181 ref->generation = leaf_gen;
3182 ref->nritems = 0;
3183
bd56b302
CM
3184 btrfs_sort_leaf_ref(ref);
3185
5b84e8d6
YZ
3186 ret = btrfs_add_leaf_ref(root, ref, 0);
3187 WARN_ON(ret);
3188 btrfs_free_leaf_ref(root, ref);
3189 } else {
3190 WARN_ON(1);
3191 }
3192 }
323ac95b
CM
3193next_key:
3194 btrfs_release_path(root, path);
3195
3196 if (other_key.objectid == inode->i_ino &&
3197 other_key.type == key.type && other_key.offset > key.offset) {
3198 key.offset = other_key.offset;
3199 cond_resched();
3200 goto again;
3201 }
3202 ret = 0;
3203out:
3204 /* fixup any changes we've made to the path */
3205 path->lowest_level = 0;
3206 path->keep_locks = 0;
3207 btrfs_release_path(root, path);
3208 return ret;
3209}
3210
d20f7043
CM
3211#endif
3212
39279cc3
CM
3213/*
3214 * this can truncate away extent items, csum items and directory items.
3215 * It starts at a high offset and removes keys until it can't find
d352ac68 3216 * any higher than new_size
39279cc3
CM
3217 *
3218 * csum items that cross the new i_size are truncated to the new size
3219 * as well.
7b128766
JB
3220 *
3221 * min_type is the minimum key type to truncate down to. If set to 0, this
3222 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3223 */
8082510e
YZ
3224int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3225 struct btrfs_root *root,
3226 struct inode *inode,
3227 u64 new_size, u32 min_type)
39279cc3 3228{
39279cc3 3229 struct btrfs_path *path;
5f39d397 3230 struct extent_buffer *leaf;
39279cc3 3231 struct btrfs_file_extent_item *fi;
8082510e
YZ
3232 struct btrfs_key key;
3233 struct btrfs_key found_key;
39279cc3 3234 u64 extent_start = 0;
db94535d 3235 u64 extent_num_bytes = 0;
5d4f98a2 3236 u64 extent_offset = 0;
39279cc3 3237 u64 item_end = 0;
8082510e
YZ
3238 u64 mask = root->sectorsize - 1;
3239 u32 found_type = (u8)-1;
39279cc3
CM
3240 int found_extent;
3241 int del_item;
85e21bac
CM
3242 int pending_del_nr = 0;
3243 int pending_del_slot = 0;
179e29e4 3244 int extent_type = -1;
771ed689 3245 int encoding;
8082510e
YZ
3246 int ret;
3247 int err = 0;
3248
3249 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3250
0af3d00b 3251 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3252 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3253
39279cc3
CM
3254 path = btrfs_alloc_path();
3255 BUG_ON(!path);
33c17ad5 3256 path->reada = -1;
5f39d397 3257
39279cc3
CM
3258 key.objectid = inode->i_ino;
3259 key.offset = (u64)-1;
5f39d397
CM
3260 key.type = (u8)-1;
3261
85e21bac 3262search_again:
b9473439 3263 path->leave_spinning = 1;
85e21bac 3264 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3265 if (ret < 0) {
3266 err = ret;
3267 goto out;
3268 }
d397712b 3269
85e21bac 3270 if (ret > 0) {
e02119d5
CM
3271 /* there are no items in the tree for us to truncate, we're
3272 * done
3273 */
8082510e
YZ
3274 if (path->slots[0] == 0)
3275 goto out;
85e21bac
CM
3276 path->slots[0]--;
3277 }
3278
d397712b 3279 while (1) {
39279cc3 3280 fi = NULL;
5f39d397
CM
3281 leaf = path->nodes[0];
3282 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3283 found_type = btrfs_key_type(&found_key);
771ed689 3284 encoding = 0;
39279cc3 3285
5f39d397 3286 if (found_key.objectid != inode->i_ino)
39279cc3 3287 break;
5f39d397 3288
85e21bac 3289 if (found_type < min_type)
39279cc3
CM
3290 break;
3291
5f39d397 3292 item_end = found_key.offset;
39279cc3 3293 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3294 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3295 struct btrfs_file_extent_item);
179e29e4 3296 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3297 encoding = btrfs_file_extent_compression(leaf, fi);
3298 encoding |= btrfs_file_extent_encryption(leaf, fi);
3299 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3300
179e29e4 3301 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3302 item_end +=
db94535d 3303 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3304 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3305 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3306 fi);
39279cc3 3307 }
008630c1 3308 item_end--;
39279cc3 3309 }
8082510e
YZ
3310 if (found_type > min_type) {
3311 del_item = 1;
3312 } else {
3313 if (item_end < new_size)
b888db2b 3314 break;
8082510e
YZ
3315 if (found_key.offset >= new_size)
3316 del_item = 1;
3317 else
3318 del_item = 0;
39279cc3 3319 }
39279cc3 3320 found_extent = 0;
39279cc3 3321 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3322 if (found_type != BTRFS_EXTENT_DATA_KEY)
3323 goto delete;
3324
3325 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3326 u64 num_dec;
db94535d 3327 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3328 if (!del_item && !encoding) {
db94535d
CM
3329 u64 orig_num_bytes =
3330 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3331 extent_num_bytes = new_size -
5f39d397 3332 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3333 extent_num_bytes = extent_num_bytes &
3334 ~((u64)root->sectorsize - 1);
db94535d
CM
3335 btrfs_set_file_extent_num_bytes(leaf, fi,
3336 extent_num_bytes);
3337 num_dec = (orig_num_bytes -
9069218d 3338 extent_num_bytes);
e02119d5 3339 if (root->ref_cows && extent_start != 0)
a76a3cd4 3340 inode_sub_bytes(inode, num_dec);
5f39d397 3341 btrfs_mark_buffer_dirty(leaf);
39279cc3 3342 } else {
db94535d
CM
3343 extent_num_bytes =
3344 btrfs_file_extent_disk_num_bytes(leaf,
3345 fi);
5d4f98a2
YZ
3346 extent_offset = found_key.offset -
3347 btrfs_file_extent_offset(leaf, fi);
3348
39279cc3 3349 /* FIXME blocksize != 4096 */
9069218d 3350 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3351 if (extent_start != 0) {
3352 found_extent = 1;
e02119d5 3353 if (root->ref_cows)
a76a3cd4 3354 inode_sub_bytes(inode, num_dec);
e02119d5 3355 }
39279cc3 3356 }
9069218d 3357 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3358 /*
3359 * we can't truncate inline items that have had
3360 * special encodings
3361 */
3362 if (!del_item &&
3363 btrfs_file_extent_compression(leaf, fi) == 0 &&
3364 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3365 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3366 u32 size = new_size - found_key.offset;
3367
3368 if (root->ref_cows) {
a76a3cd4
YZ
3369 inode_sub_bytes(inode, item_end + 1 -
3370 new_size);
e02119d5
CM
3371 }
3372 size =
3373 btrfs_file_extent_calc_inline_size(size);
9069218d 3374 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3375 size, 1);
9069218d 3376 BUG_ON(ret);
e02119d5 3377 } else if (root->ref_cows) {
a76a3cd4
YZ
3378 inode_sub_bytes(inode, item_end + 1 -
3379 found_key.offset);
9069218d 3380 }
39279cc3 3381 }
179e29e4 3382delete:
39279cc3 3383 if (del_item) {
85e21bac
CM
3384 if (!pending_del_nr) {
3385 /* no pending yet, add ourselves */
3386 pending_del_slot = path->slots[0];
3387 pending_del_nr = 1;
3388 } else if (pending_del_nr &&
3389 path->slots[0] + 1 == pending_del_slot) {
3390 /* hop on the pending chunk */
3391 pending_del_nr++;
3392 pending_del_slot = path->slots[0];
3393 } else {
d397712b 3394 BUG();
85e21bac 3395 }
39279cc3
CM
3396 } else {
3397 break;
3398 }
0af3d00b
JB
3399 if (found_extent && (root->ref_cows ||
3400 root == root->fs_info->tree_root)) {
b9473439 3401 btrfs_set_path_blocking(path);
39279cc3 3402 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3403 extent_num_bytes, 0,
3404 btrfs_header_owner(leaf),
3405 inode->i_ino, extent_offset);
39279cc3
CM
3406 BUG_ON(ret);
3407 }
85e21bac 3408
8082510e
YZ
3409 if (found_type == BTRFS_INODE_ITEM_KEY)
3410 break;
3411
3412 if (path->slots[0] == 0 ||
3413 path->slots[0] != pending_del_slot) {
3414 if (root->ref_cows) {
3415 err = -EAGAIN;
3416 goto out;
3417 }
3418 if (pending_del_nr) {
3419 ret = btrfs_del_items(trans, root, path,
3420 pending_del_slot,
3421 pending_del_nr);
3422 BUG_ON(ret);
3423 pending_del_nr = 0;
3424 }
85e21bac
CM
3425 btrfs_release_path(root, path);
3426 goto search_again;
8082510e
YZ
3427 } else {
3428 path->slots[0]--;
85e21bac 3429 }
39279cc3 3430 }
8082510e 3431out:
85e21bac
CM
3432 if (pending_del_nr) {
3433 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3434 pending_del_nr);
d68fc57b 3435 BUG_ON(ret);
85e21bac 3436 }
39279cc3 3437 btrfs_free_path(path);
8082510e 3438 return err;
39279cc3
CM
3439}
3440
3441/*
3442 * taken from block_truncate_page, but does cow as it zeros out
3443 * any bytes left in the last page in the file.
3444 */
3445static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3446{
3447 struct inode *inode = mapping->host;
db94535d 3448 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3449 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3450 struct btrfs_ordered_extent *ordered;
2ac55d41 3451 struct extent_state *cached_state = NULL;
e6dcd2dc 3452 char *kaddr;
db94535d 3453 u32 blocksize = root->sectorsize;
39279cc3
CM
3454 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3455 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3456 struct page *page;
39279cc3 3457 int ret = 0;
a52d9a80 3458 u64 page_start;
e6dcd2dc 3459 u64 page_end;
39279cc3
CM
3460
3461 if ((offset & (blocksize - 1)) == 0)
3462 goto out;
0ca1f7ce 3463 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3464 if (ret)
3465 goto out;
39279cc3
CM
3466
3467 ret = -ENOMEM;
211c17f5 3468again:
39279cc3 3469 page = grab_cache_page(mapping, index);
5d5e103a 3470 if (!page) {
0ca1f7ce 3471 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3472 goto out;
5d5e103a 3473 }
e6dcd2dc
CM
3474
3475 page_start = page_offset(page);
3476 page_end = page_start + PAGE_CACHE_SIZE - 1;
3477
39279cc3 3478 if (!PageUptodate(page)) {
9ebefb18 3479 ret = btrfs_readpage(NULL, page);
39279cc3 3480 lock_page(page);
211c17f5
CM
3481 if (page->mapping != mapping) {
3482 unlock_page(page);
3483 page_cache_release(page);
3484 goto again;
3485 }
39279cc3
CM
3486 if (!PageUptodate(page)) {
3487 ret = -EIO;
89642229 3488 goto out_unlock;
39279cc3
CM
3489 }
3490 }
211c17f5 3491 wait_on_page_writeback(page);
e6dcd2dc 3492
2ac55d41
JB
3493 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3494 GFP_NOFS);
e6dcd2dc
CM
3495 set_page_extent_mapped(page);
3496
3497 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3498 if (ordered) {
2ac55d41
JB
3499 unlock_extent_cached(io_tree, page_start, page_end,
3500 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3501 unlock_page(page);
3502 page_cache_release(page);
eb84ae03 3503 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3504 btrfs_put_ordered_extent(ordered);
3505 goto again;
3506 }
3507
2ac55d41 3508 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3509 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3510 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3511
2ac55d41
JB
3512 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3513 &cached_state);
9ed74f2d 3514 if (ret) {
2ac55d41
JB
3515 unlock_extent_cached(io_tree, page_start, page_end,
3516 &cached_state, GFP_NOFS);
9ed74f2d
JB
3517 goto out_unlock;
3518 }
3519
e6dcd2dc
CM
3520 ret = 0;
3521 if (offset != PAGE_CACHE_SIZE) {
3522 kaddr = kmap(page);
3523 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3524 flush_dcache_page(page);
3525 kunmap(page);
3526 }
247e743c 3527 ClearPageChecked(page);
e6dcd2dc 3528 set_page_dirty(page);
2ac55d41
JB
3529 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3530 GFP_NOFS);
39279cc3 3531
89642229 3532out_unlock:
5d5e103a 3533 if (ret)
0ca1f7ce 3534 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3535 unlock_page(page);
3536 page_cache_release(page);
3537out:
3538 return ret;
3539}
3540
9036c102 3541int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 3542{
9036c102
YZ
3543 struct btrfs_trans_handle *trans;
3544 struct btrfs_root *root = BTRFS_I(inode)->root;
3545 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3546 struct extent_map *em = NULL;
2ac55d41 3547 struct extent_state *cached_state = NULL;
9036c102
YZ
3548 u64 mask = root->sectorsize - 1;
3549 u64 hole_start = (inode->i_size + mask) & ~mask;
3550 u64 block_end = (size + mask) & ~mask;
3551 u64 last_byte;
3552 u64 cur_offset;
3553 u64 hole_size;
9ed74f2d 3554 int err = 0;
39279cc3 3555
9036c102
YZ
3556 if (size <= hole_start)
3557 return 0;
3558
9036c102
YZ
3559 while (1) {
3560 struct btrfs_ordered_extent *ordered;
3561 btrfs_wait_ordered_range(inode, hole_start,
3562 block_end - hole_start);
2ac55d41
JB
3563 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3564 &cached_state, GFP_NOFS);
9036c102
YZ
3565 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3566 if (!ordered)
3567 break;
2ac55d41
JB
3568 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3569 &cached_state, GFP_NOFS);
9036c102
YZ
3570 btrfs_put_ordered_extent(ordered);
3571 }
39279cc3 3572
9036c102
YZ
3573 cur_offset = hole_start;
3574 while (1) {
3575 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3576 block_end - cur_offset, 0);
3577 BUG_ON(IS_ERR(em) || !em);
3578 last_byte = min(extent_map_end(em), block_end);
3579 last_byte = (last_byte + mask) & ~mask;
8082510e 3580 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3581 u64 hint_byte = 0;
9036c102 3582 hole_size = last_byte - cur_offset;
9ed74f2d 3583
a22285a6
YZ
3584 trans = btrfs_start_transaction(root, 2);
3585 if (IS_ERR(trans)) {
3586 err = PTR_ERR(trans);
9ed74f2d 3587 break;
a22285a6 3588 }
8082510e
YZ
3589 btrfs_set_trans_block_group(trans, inode);
3590
3591 err = btrfs_drop_extents(trans, inode, cur_offset,
3592 cur_offset + hole_size,
3593 &hint_byte, 1);
3594 BUG_ON(err);
3595
9036c102
YZ
3596 err = btrfs_insert_file_extent(trans, root,
3597 inode->i_ino, cur_offset, 0,
3598 0, hole_size, 0, hole_size,
3599 0, 0, 0);
8082510e
YZ
3600 BUG_ON(err);
3601
9036c102
YZ
3602 btrfs_drop_extent_cache(inode, hole_start,
3603 last_byte - 1, 0);
8082510e
YZ
3604
3605 btrfs_end_transaction(trans, root);
9036c102
YZ
3606 }
3607 free_extent_map(em);
a22285a6 3608 em = NULL;
9036c102 3609 cur_offset = last_byte;
8082510e 3610 if (cur_offset >= block_end)
9036c102
YZ
3611 break;
3612 }
1832a6d5 3613
a22285a6 3614 free_extent_map(em);
2ac55d41
JB
3615 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3616 GFP_NOFS);
9036c102
YZ
3617 return err;
3618}
39279cc3 3619
8082510e
YZ
3620static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3621{
3622 struct btrfs_root *root = BTRFS_I(inode)->root;
3623 struct btrfs_trans_handle *trans;
3624 unsigned long nr;
3625 int ret;
3626
3627 if (attr->ia_size == inode->i_size)
3628 return 0;
3629
3630 if (attr->ia_size > inode->i_size) {
3631 unsigned long limit;
3632 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3633 if (attr->ia_size > inode->i_sb->s_maxbytes)
3634 return -EFBIG;
3635 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3636 send_sig(SIGXFSZ, current, 0);
3637 return -EFBIG;
3638 }
3639 }
3640
d68fc57b
YZ
3641 trans = btrfs_start_transaction(root, 5);
3642 if (IS_ERR(trans))
3643 return PTR_ERR(trans);
8082510e 3644
8082510e
YZ
3645 btrfs_set_trans_block_group(trans, inode);
3646
3647 ret = btrfs_orphan_add(trans, inode);
3648 BUG_ON(ret);
3649
3650 nr = trans->blocks_used;
3651 btrfs_end_transaction(trans, root);
8082510e
YZ
3652 btrfs_btree_balance_dirty(root, nr);
3653
3654 if (attr->ia_size > inode->i_size) {
3655 ret = btrfs_cont_expand(inode, attr->ia_size);
3656 if (ret) {
3657 btrfs_truncate(inode);
3658 return ret;
3659 }
3660
3661 i_size_write(inode, attr->ia_size);
3662 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3663
d68fc57b
YZ
3664 trans = btrfs_start_transaction(root, 0);
3665 BUG_ON(IS_ERR(trans));
8082510e 3666 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3667 trans->block_rsv = root->orphan_block_rsv;
3668 BUG_ON(!trans->block_rsv);
8082510e
YZ
3669
3670 ret = btrfs_update_inode(trans, root, inode);
3671 BUG_ON(ret);
3672 if (inode->i_nlink > 0) {
3673 ret = btrfs_orphan_del(trans, inode);
3674 BUG_ON(ret);
3675 }
3676 nr = trans->blocks_used;
3677 btrfs_end_transaction(trans, root);
3678 btrfs_btree_balance_dirty(root, nr);
3679 return 0;
3680 }
3681
3682 /*
3683 * We're truncating a file that used to have good data down to
3684 * zero. Make sure it gets into the ordered flush list so that
3685 * any new writes get down to disk quickly.
3686 */
3687 if (attr->ia_size == 0)
3688 BTRFS_I(inode)->ordered_data_close = 1;
3689
3690 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3691 ret = vmtruncate(inode, attr->ia_size);
3692 BUG_ON(ret);
3693
3694 return 0;
3695}
3696
9036c102
YZ
3697static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3698{
3699 struct inode *inode = dentry->d_inode;
b83cc969 3700 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3701 int err;
39279cc3 3702
b83cc969
LZ
3703 if (btrfs_root_readonly(root))
3704 return -EROFS;
3705
9036c102
YZ
3706 err = inode_change_ok(inode, attr);
3707 if (err)
3708 return err;
2bf5a725 3709
5a3f23d5 3710 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
8082510e
YZ
3711 err = btrfs_setattr_size(inode, attr);
3712 if (err)
3713 return err;
39279cc3 3714 }
9036c102 3715
1025774c
CH
3716 if (attr->ia_valid) {
3717 setattr_copy(inode, attr);
3718 mark_inode_dirty(inode);
3719
3720 if (attr->ia_valid & ATTR_MODE)
3721 err = btrfs_acl_chmod(inode);
3722 }
33268eaf 3723
39279cc3
CM
3724 return err;
3725}
61295eb8 3726
bd555975 3727void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3728{
3729 struct btrfs_trans_handle *trans;
3730 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3731 unsigned long nr;
39279cc3
CM
3732 int ret;
3733
3734 truncate_inode_pages(&inode->i_data, 0);
0af3d00b
JB
3735 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3736 root == root->fs_info->tree_root))
bd555975
AV
3737 goto no_delete;
3738
39279cc3 3739 if (is_bad_inode(inode)) {
7b128766 3740 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3741 goto no_delete;
3742 }
bd555975 3743 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3744 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3745
c71bf099
YZ
3746 if (root->fs_info->log_root_recovering) {
3747 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3748 goto no_delete;
3749 }
3750
76dda93c
YZ
3751 if (inode->i_nlink > 0) {
3752 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3753 goto no_delete;
3754 }
3755
dbe674a9 3756 btrfs_i_size_write(inode, 0);
5f39d397 3757
8082510e 3758 while (1) {
d68fc57b
YZ
3759 trans = btrfs_start_transaction(root, 0);
3760 BUG_ON(IS_ERR(trans));
8082510e 3761 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3762 trans->block_rsv = root->orphan_block_rsv;
3763
3764 ret = btrfs_block_rsv_check(trans, root,
3765 root->orphan_block_rsv, 0, 5);
3766 if (ret) {
3767 BUG_ON(ret != -EAGAIN);
3768 ret = btrfs_commit_transaction(trans, root);
3769 BUG_ON(ret);
3770 continue;
3771 }
7b128766 3772
d68fc57b 3773 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3774 if (ret != -EAGAIN)
3775 break;
85e21bac 3776
8082510e
YZ
3777 nr = trans->blocks_used;
3778 btrfs_end_transaction(trans, root);
3779 trans = NULL;
3780 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3781
8082510e 3782 }
5f39d397 3783
8082510e
YZ
3784 if (ret == 0) {
3785 ret = btrfs_orphan_del(trans, inode);
3786 BUG_ON(ret);
3787 }
54aa1f4d 3788
d3c2fdcf 3789 nr = trans->blocks_used;
54aa1f4d 3790 btrfs_end_transaction(trans, root);
d3c2fdcf 3791 btrfs_btree_balance_dirty(root, nr);
39279cc3 3792no_delete:
bd555975 3793 end_writeback(inode);
8082510e 3794 return;
39279cc3
CM
3795}
3796
3797/*
3798 * this returns the key found in the dir entry in the location pointer.
3799 * If no dir entries were found, location->objectid is 0.
3800 */
3801static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3802 struct btrfs_key *location)
3803{
3804 const char *name = dentry->d_name.name;
3805 int namelen = dentry->d_name.len;
3806 struct btrfs_dir_item *di;
3807 struct btrfs_path *path;
3808 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3809 int ret = 0;
39279cc3
CM
3810
3811 path = btrfs_alloc_path();
3812 BUG_ON(!path);
3954401f 3813
39279cc3
CM
3814 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3815 namelen, 0);
0d9f7f3e
Y
3816 if (IS_ERR(di))
3817 ret = PTR_ERR(di);
d397712b
CM
3818
3819 if (!di || IS_ERR(di))
3954401f 3820 goto out_err;
d397712b 3821
5f39d397 3822 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3823out:
39279cc3
CM
3824 btrfs_free_path(path);
3825 return ret;
3954401f
CM
3826out_err:
3827 location->objectid = 0;
3828 goto out;
39279cc3
CM
3829}
3830
3831/*
3832 * when we hit a tree root in a directory, the btrfs part of the inode
3833 * needs to be changed to reflect the root directory of the tree root. This
3834 * is kind of like crossing a mount point.
3835 */
3836static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3837 struct inode *dir,
3838 struct dentry *dentry,
3839 struct btrfs_key *location,
3840 struct btrfs_root **sub_root)
39279cc3 3841{
4df27c4d
YZ
3842 struct btrfs_path *path;
3843 struct btrfs_root *new_root;
3844 struct btrfs_root_ref *ref;
3845 struct extent_buffer *leaf;
3846 int ret;
3847 int err = 0;
39279cc3 3848
4df27c4d
YZ
3849 path = btrfs_alloc_path();
3850 if (!path) {
3851 err = -ENOMEM;
3852 goto out;
3853 }
39279cc3 3854
4df27c4d
YZ
3855 err = -ENOENT;
3856 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3857 BTRFS_I(dir)->root->root_key.objectid,
3858 location->objectid);
3859 if (ret) {
3860 if (ret < 0)
3861 err = ret;
3862 goto out;
3863 }
39279cc3 3864
4df27c4d
YZ
3865 leaf = path->nodes[0];
3866 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3867 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3868 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3869 goto out;
39279cc3 3870
4df27c4d
YZ
3871 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3872 (unsigned long)(ref + 1),
3873 dentry->d_name.len);
3874 if (ret)
3875 goto out;
3876
3877 btrfs_release_path(root->fs_info->tree_root, path);
3878
3879 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3880 if (IS_ERR(new_root)) {
3881 err = PTR_ERR(new_root);
3882 goto out;
3883 }
3884
3885 if (btrfs_root_refs(&new_root->root_item) == 0) {
3886 err = -ENOENT;
3887 goto out;
3888 }
3889
3890 *sub_root = new_root;
3891 location->objectid = btrfs_root_dirid(&new_root->root_item);
3892 location->type = BTRFS_INODE_ITEM_KEY;
3893 location->offset = 0;
3894 err = 0;
3895out:
3896 btrfs_free_path(path);
3897 return err;
39279cc3
CM
3898}
3899
5d4f98a2
YZ
3900static void inode_tree_add(struct inode *inode)
3901{
3902 struct btrfs_root *root = BTRFS_I(inode)->root;
3903 struct btrfs_inode *entry;
03e860bd
FNP
3904 struct rb_node **p;
3905 struct rb_node *parent;
03e860bd
FNP
3906again:
3907 p = &root->inode_tree.rb_node;
3908 parent = NULL;
5d4f98a2 3909
1d3382cb 3910 if (inode_unhashed(inode))
76dda93c
YZ
3911 return;
3912
5d4f98a2
YZ
3913 spin_lock(&root->inode_lock);
3914 while (*p) {
3915 parent = *p;
3916 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3917
3918 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3919 p = &parent->rb_left;
5d4f98a2 3920 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3921 p = &parent->rb_right;
5d4f98a2
YZ
3922 else {
3923 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3924 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3925 rb_erase(parent, &root->inode_tree);
3926 RB_CLEAR_NODE(parent);
3927 spin_unlock(&root->inode_lock);
3928 goto again;
5d4f98a2
YZ
3929 }
3930 }
3931 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3932 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3933 spin_unlock(&root->inode_lock);
3934}
3935
3936static void inode_tree_del(struct inode *inode)
3937{
3938 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3939 int empty = 0;
5d4f98a2 3940
03e860bd 3941 spin_lock(&root->inode_lock);
5d4f98a2 3942 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3943 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3944 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3945 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3946 }
03e860bd 3947 spin_unlock(&root->inode_lock);
76dda93c 3948
0af3d00b
JB
3949 /*
3950 * Free space cache has inodes in the tree root, but the tree root has a
3951 * root_refs of 0, so this could end up dropping the tree root as a
3952 * snapshot, so we need the extra !root->fs_info->tree_root check to
3953 * make sure we don't drop it.
3954 */
3955 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3956 root != root->fs_info->tree_root) {
76dda93c
YZ
3957 synchronize_srcu(&root->fs_info->subvol_srcu);
3958 spin_lock(&root->inode_lock);
3959 empty = RB_EMPTY_ROOT(&root->inode_tree);
3960 spin_unlock(&root->inode_lock);
3961 if (empty)
3962 btrfs_add_dead_root(root);
3963 }
3964}
3965
3966int btrfs_invalidate_inodes(struct btrfs_root *root)
3967{
3968 struct rb_node *node;
3969 struct rb_node *prev;
3970 struct btrfs_inode *entry;
3971 struct inode *inode;
3972 u64 objectid = 0;
3973
3974 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3975
3976 spin_lock(&root->inode_lock);
3977again:
3978 node = root->inode_tree.rb_node;
3979 prev = NULL;
3980 while (node) {
3981 prev = node;
3982 entry = rb_entry(node, struct btrfs_inode, rb_node);
3983
3984 if (objectid < entry->vfs_inode.i_ino)
3985 node = node->rb_left;
3986 else if (objectid > entry->vfs_inode.i_ino)
3987 node = node->rb_right;
3988 else
3989 break;
3990 }
3991 if (!node) {
3992 while (prev) {
3993 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3994 if (objectid <= entry->vfs_inode.i_ino) {
3995 node = prev;
3996 break;
3997 }
3998 prev = rb_next(prev);
3999 }
4000 }
4001 while (node) {
4002 entry = rb_entry(node, struct btrfs_inode, rb_node);
4003 objectid = entry->vfs_inode.i_ino + 1;
4004 inode = igrab(&entry->vfs_inode);
4005 if (inode) {
4006 spin_unlock(&root->inode_lock);
4007 if (atomic_read(&inode->i_count) > 1)
4008 d_prune_aliases(inode);
4009 /*
45321ac5 4010 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4011 * the inode cache when its usage count
4012 * hits zero.
4013 */
4014 iput(inode);
4015 cond_resched();
4016 spin_lock(&root->inode_lock);
4017 goto again;
4018 }
4019
4020 if (cond_resched_lock(&root->inode_lock))
4021 goto again;
4022
4023 node = rb_next(node);
4024 }
4025 spin_unlock(&root->inode_lock);
4026 return 0;
5d4f98a2
YZ
4027}
4028
e02119d5
CM
4029static int btrfs_init_locked_inode(struct inode *inode, void *p)
4030{
4031 struct btrfs_iget_args *args = p;
4032 inode->i_ino = args->ino;
e02119d5 4033 BTRFS_I(inode)->root = args->root;
6a63209f 4034 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
4035 return 0;
4036}
4037
4038static int btrfs_find_actor(struct inode *inode, void *opaque)
4039{
4040 struct btrfs_iget_args *args = opaque;
d397712b
CM
4041 return args->ino == inode->i_ino &&
4042 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4043}
4044
5d4f98a2
YZ
4045static struct inode *btrfs_iget_locked(struct super_block *s,
4046 u64 objectid,
4047 struct btrfs_root *root)
39279cc3
CM
4048{
4049 struct inode *inode;
4050 struct btrfs_iget_args args;
4051 args.ino = objectid;
4052 args.root = root;
4053
4054 inode = iget5_locked(s, objectid, btrfs_find_actor,
4055 btrfs_init_locked_inode,
4056 (void *)&args);
4057 return inode;
4058}
4059
1a54ef8c
BR
4060/* Get an inode object given its location and corresponding root.
4061 * Returns in *is_new if the inode was read from disk
4062 */
4063struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4064 struct btrfs_root *root, int *new)
1a54ef8c
BR
4065{
4066 struct inode *inode;
4067
4068 inode = btrfs_iget_locked(s, location->objectid, root);
4069 if (!inode)
5d4f98a2 4070 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4071
4072 if (inode->i_state & I_NEW) {
4073 BTRFS_I(inode)->root = root;
4074 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4075 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
4076
4077 inode_tree_add(inode);
1a54ef8c 4078 unlock_new_inode(inode);
73f73415
JB
4079 if (new)
4080 *new = 1;
1a54ef8c
BR
4081 }
4082
4083 return inode;
4084}
4085
4df27c4d
YZ
4086static struct inode *new_simple_dir(struct super_block *s,
4087 struct btrfs_key *key,
4088 struct btrfs_root *root)
4089{
4090 struct inode *inode = new_inode(s);
4091
4092 if (!inode)
4093 return ERR_PTR(-ENOMEM);
4094
4df27c4d
YZ
4095 BTRFS_I(inode)->root = root;
4096 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4097 BTRFS_I(inode)->dummy_inode = 1;
4098
4099 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4100 inode->i_op = &simple_dir_inode_operations;
4101 inode->i_fop = &simple_dir_operations;
4102 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4103 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4104
4105 return inode;
4106}
4107
3de4586c 4108struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4109{
d397712b 4110 struct inode *inode;
4df27c4d 4111 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4112 struct btrfs_root *sub_root = root;
4113 struct btrfs_key location;
76dda93c 4114 int index;
5d4f98a2 4115 int ret;
39279cc3
CM
4116
4117 if (dentry->d_name.len > BTRFS_NAME_LEN)
4118 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4119
39279cc3 4120 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4121
39279cc3
CM
4122 if (ret < 0)
4123 return ERR_PTR(ret);
5f39d397 4124
4df27c4d
YZ
4125 if (location.objectid == 0)
4126 return NULL;
4127
4128 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4129 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4130 return inode;
4131 }
4132
4133 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4134
76dda93c 4135 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4136 ret = fixup_tree_root_location(root, dir, dentry,
4137 &location, &sub_root);
4138 if (ret < 0) {
4139 if (ret != -ENOENT)
4140 inode = ERR_PTR(ret);
4141 else
4142 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4143 } else {
73f73415 4144 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4145 }
76dda93c
YZ
4146 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4147
34d19bad 4148 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4149 down_read(&root->fs_info->cleanup_work_sem);
4150 if (!(inode->i_sb->s_flags & MS_RDONLY))
4151 btrfs_orphan_cleanup(sub_root);
4152 up_read(&root->fs_info->cleanup_work_sem);
4153 }
4154
3de4586c
CM
4155 return inode;
4156}
4157
fe15ce44 4158static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4159{
4160 struct btrfs_root *root;
4161
efefb143
YZ
4162 if (!dentry->d_inode && !IS_ROOT(dentry))
4163 dentry = dentry->d_parent;
76dda93c 4164
efefb143
YZ
4165 if (dentry->d_inode) {
4166 root = BTRFS_I(dentry->d_inode)->root;
4167 if (btrfs_root_refs(&root->root_item) == 0)
4168 return 1;
4169 }
76dda93c
YZ
4170 return 0;
4171}
4172
3de4586c
CM
4173static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4174 struct nameidata *nd)
4175{
4176 struct inode *inode;
4177
3de4586c
CM
4178 inode = btrfs_lookup_dentry(dir, dentry);
4179 if (IS_ERR(inode))
4180 return ERR_CAST(inode);
7b128766 4181
39279cc3
CM
4182 return d_splice_alias(inode, dentry);
4183}
4184
39279cc3
CM
4185static unsigned char btrfs_filetype_table[] = {
4186 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4187};
4188
cbdf5a24
DW
4189static int btrfs_real_readdir(struct file *filp, void *dirent,
4190 filldir_t filldir)
39279cc3 4191{
6da6abae 4192 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4193 struct btrfs_root *root = BTRFS_I(inode)->root;
4194 struct btrfs_item *item;
4195 struct btrfs_dir_item *di;
4196 struct btrfs_key key;
5f39d397 4197 struct btrfs_key found_key;
39279cc3
CM
4198 struct btrfs_path *path;
4199 int ret;
4200 u32 nritems;
5f39d397 4201 struct extent_buffer *leaf;
39279cc3
CM
4202 int slot;
4203 int advance;
4204 unsigned char d_type;
4205 int over = 0;
4206 u32 di_cur;
4207 u32 di_total;
4208 u32 di_len;
4209 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4210 char tmp_name[32];
4211 char *name_ptr;
4212 int name_len;
39279cc3
CM
4213
4214 /* FIXME, use a real flag for deciding about the key type */
4215 if (root->fs_info->tree_root == root)
4216 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4217
3954401f
CM
4218 /* special case for "." */
4219 if (filp->f_pos == 0) {
4220 over = filldir(dirent, ".", 1,
4221 1, inode->i_ino,
4222 DT_DIR);
4223 if (over)
4224 return 0;
4225 filp->f_pos = 1;
4226 }
3954401f
CM
4227 /* special case for .., just use the back ref */
4228 if (filp->f_pos == 1) {
5ecc7e5d 4229 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4230 over = filldir(dirent, "..", 2,
5ecc7e5d 4231 2, pino, DT_DIR);
3954401f 4232 if (over)
49593bfa 4233 return 0;
3954401f
CM
4234 filp->f_pos = 2;
4235 }
49593bfa
DW
4236 path = btrfs_alloc_path();
4237 path->reada = 2;
4238
39279cc3
CM
4239 btrfs_set_key_type(&key, key_type);
4240 key.offset = filp->f_pos;
49593bfa 4241 key.objectid = inode->i_ino;
5f39d397 4242
39279cc3
CM
4243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4244 if (ret < 0)
4245 goto err;
4246 advance = 0;
49593bfa
DW
4247
4248 while (1) {
5f39d397
CM
4249 leaf = path->nodes[0];
4250 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4251 slot = path->slots[0];
4252 if (advance || slot >= nritems) {
49593bfa 4253 if (slot >= nritems - 1) {
39279cc3
CM
4254 ret = btrfs_next_leaf(root, path);
4255 if (ret)
4256 break;
5f39d397
CM
4257 leaf = path->nodes[0];
4258 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4259 slot = path->slots[0];
4260 } else {
4261 slot++;
4262 path->slots[0]++;
4263 }
4264 }
3de4586c 4265
39279cc3 4266 advance = 1;
5f39d397
CM
4267 item = btrfs_item_nr(leaf, slot);
4268 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4269
4270 if (found_key.objectid != key.objectid)
39279cc3 4271 break;
5f39d397 4272 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4273 break;
5f39d397 4274 if (found_key.offset < filp->f_pos)
39279cc3 4275 continue;
5f39d397
CM
4276
4277 filp->f_pos = found_key.offset;
49593bfa 4278
39279cc3
CM
4279 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4280 di_cur = 0;
5f39d397 4281 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4282
4283 while (di_cur < di_total) {
5f39d397
CM
4284 struct btrfs_key location;
4285
4286 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4287 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4288 name_ptr = tmp_name;
4289 } else {
4290 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4291 if (!name_ptr) {
4292 ret = -ENOMEM;
4293 goto err;
4294 }
5f39d397
CM
4295 }
4296 read_extent_buffer(leaf, name_ptr,
4297 (unsigned long)(di + 1), name_len);
4298
4299 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4300 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4301
4302 /* is this a reference to our own snapshot? If so
4303 * skip it
4304 */
4305 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4306 location.objectid == root->root_key.objectid) {
4307 over = 0;
4308 goto skip;
4309 }
5f39d397 4310 over = filldir(dirent, name_ptr, name_len,
49593bfa 4311 found_key.offset, location.objectid,
39279cc3 4312 d_type);
5f39d397 4313
3de4586c 4314skip:
5f39d397
CM
4315 if (name_ptr != tmp_name)
4316 kfree(name_ptr);
4317
39279cc3
CM
4318 if (over)
4319 goto nopos;
5103e947 4320 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4321 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4322 di_cur += di_len;
4323 di = (struct btrfs_dir_item *)((char *)di + di_len);
4324 }
4325 }
49593bfa
DW
4326
4327 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4328 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4329 /*
4330 * 32-bit glibc will use getdents64, but then strtol -
4331 * so the last number we can serve is this.
4332 */
4333 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4334 else
4335 filp->f_pos++;
39279cc3
CM
4336nopos:
4337 ret = 0;
4338err:
39279cc3 4339 btrfs_free_path(path);
39279cc3
CM
4340 return ret;
4341}
4342
a9185b41 4343int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4344{
4345 struct btrfs_root *root = BTRFS_I(inode)->root;
4346 struct btrfs_trans_handle *trans;
4347 int ret = 0;
0af3d00b 4348 bool nolock = false;
39279cc3 4349
8929ecfa 4350 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4351 return 0;
4352
0af3d00b
JB
4353 smp_mb();
4354 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4355
a9185b41 4356 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b
JB
4357 if (nolock)
4358 trans = btrfs_join_transaction_nolock(root, 1);
4359 else
4360 trans = btrfs_join_transaction(root, 1);
3612b495
TI
4361 if (IS_ERR(trans))
4362 return PTR_ERR(trans);
39279cc3 4363 btrfs_set_trans_block_group(trans, inode);
0af3d00b
JB
4364 if (nolock)
4365 ret = btrfs_end_transaction_nolock(trans, root);
4366 else
4367 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4368 }
4369 return ret;
4370}
4371
4372/*
54aa1f4d 4373 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4374 * inode changes. But, it is most likely to find the inode in cache.
4375 * FIXME, needs more benchmarking...there are no reasons other than performance
4376 * to keep or drop this code.
4377 */
4378void btrfs_dirty_inode(struct inode *inode)
4379{
4380 struct btrfs_root *root = BTRFS_I(inode)->root;
4381 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4382 int ret;
4383
4384 if (BTRFS_I(inode)->dummy_inode)
4385 return;
39279cc3 4386
f9295749 4387 trans = btrfs_join_transaction(root, 1);
3612b495 4388 BUG_ON(IS_ERR(trans));
39279cc3 4389 btrfs_set_trans_block_group(trans, inode);
8929ecfa
YZ
4390
4391 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4392 if (ret && ret == -ENOSPC) {
4393 /* whoops, lets try again with the full transaction */
4394 btrfs_end_transaction(trans, root);
4395 trans = btrfs_start_transaction(root, 1);
9aeead73
CM
4396 if (IS_ERR(trans)) {
4397 if (printk_ratelimit()) {
4398 printk(KERN_ERR "btrfs: fail to "
4399 "dirty inode %lu error %ld\n",
4400 inode->i_ino, PTR_ERR(trans));
4401 }
4402 return;
4403 }
94b60442 4404 btrfs_set_trans_block_group(trans, inode);
8929ecfa 4405
94b60442
CM
4406 ret = btrfs_update_inode(trans, root, inode);
4407 if (ret) {
9aeead73
CM
4408 if (printk_ratelimit()) {
4409 printk(KERN_ERR "btrfs: fail to "
4410 "dirty inode %lu error %d\n",
4411 inode->i_ino, ret);
4412 }
94b60442
CM
4413 }
4414 }
39279cc3 4415 btrfs_end_transaction(trans, root);
39279cc3
CM
4416}
4417
d352ac68
CM
4418/*
4419 * find the highest existing sequence number in a directory
4420 * and then set the in-memory index_cnt variable to reflect
4421 * free sequence numbers
4422 */
aec7477b
JB
4423static int btrfs_set_inode_index_count(struct inode *inode)
4424{
4425 struct btrfs_root *root = BTRFS_I(inode)->root;
4426 struct btrfs_key key, found_key;
4427 struct btrfs_path *path;
4428 struct extent_buffer *leaf;
4429 int ret;
4430
4431 key.objectid = inode->i_ino;
4432 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4433 key.offset = (u64)-1;
4434
4435 path = btrfs_alloc_path();
4436 if (!path)
4437 return -ENOMEM;
4438
4439 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4440 if (ret < 0)
4441 goto out;
4442 /* FIXME: we should be able to handle this */
4443 if (ret == 0)
4444 goto out;
4445 ret = 0;
4446
4447 /*
4448 * MAGIC NUMBER EXPLANATION:
4449 * since we search a directory based on f_pos we have to start at 2
4450 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4451 * else has to start at 2
4452 */
4453 if (path->slots[0] == 0) {
4454 BTRFS_I(inode)->index_cnt = 2;
4455 goto out;
4456 }
4457
4458 path->slots[0]--;
4459
4460 leaf = path->nodes[0];
4461 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4462
4463 if (found_key.objectid != inode->i_ino ||
4464 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4465 BTRFS_I(inode)->index_cnt = 2;
4466 goto out;
4467 }
4468
4469 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4470out:
4471 btrfs_free_path(path);
4472 return ret;
4473}
4474
d352ac68
CM
4475/*
4476 * helper to find a free sequence number in a given directory. This current
4477 * code is very simple, later versions will do smarter things in the btree
4478 */
3de4586c 4479int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4480{
4481 int ret = 0;
4482
4483 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4484 ret = btrfs_set_inode_index_count(dir);
d397712b 4485 if (ret)
aec7477b
JB
4486 return ret;
4487 }
4488
00e4e6b3 4489 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4490 BTRFS_I(dir)->index_cnt++;
4491
4492 return ret;
4493}
4494
39279cc3
CM
4495static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4496 struct btrfs_root *root,
aec7477b 4497 struct inode *dir,
9c58309d 4498 const char *name, int name_len,
d2fb3437
YZ
4499 u64 ref_objectid, u64 objectid,
4500 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4501{
4502 struct inode *inode;
5f39d397 4503 struct btrfs_inode_item *inode_item;
39279cc3 4504 struct btrfs_key *location;
5f39d397 4505 struct btrfs_path *path;
9c58309d
CM
4506 struct btrfs_inode_ref *ref;
4507 struct btrfs_key key[2];
4508 u32 sizes[2];
4509 unsigned long ptr;
39279cc3
CM
4510 int ret;
4511 int owner;
4512
5f39d397
CM
4513 path = btrfs_alloc_path();
4514 BUG_ON(!path);
4515
39279cc3
CM
4516 inode = new_inode(root->fs_info->sb);
4517 if (!inode)
4518 return ERR_PTR(-ENOMEM);
4519
aec7477b 4520 if (dir) {
3de4586c 4521 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4522 if (ret) {
4523 iput(inode);
aec7477b 4524 return ERR_PTR(ret);
09771430 4525 }
aec7477b
JB
4526 }
4527 /*
4528 * index_cnt is ignored for everything but a dir,
4529 * btrfs_get_inode_index_count has an explanation for the magic
4530 * number
4531 */
4532 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4533 BTRFS_I(inode)->root = root;
e02119d5 4534 BTRFS_I(inode)->generation = trans->transid;
76195853 4535 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4536 btrfs_set_inode_space_info(root, inode);
b888db2b 4537
39279cc3
CM
4538 if (mode & S_IFDIR)
4539 owner = 0;
4540 else
4541 owner = 1;
d2fb3437
YZ
4542 BTRFS_I(inode)->block_group =
4543 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4544
4545 key[0].objectid = objectid;
4546 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4547 key[0].offset = 0;
4548
4549 key[1].objectid = objectid;
4550 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4551 key[1].offset = ref_objectid;
4552
4553 sizes[0] = sizeof(struct btrfs_inode_item);
4554 sizes[1] = name_len + sizeof(*ref);
4555
b9473439 4556 path->leave_spinning = 1;
9c58309d
CM
4557 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4558 if (ret != 0)
5f39d397
CM
4559 goto fail;
4560
ecc11fab 4561 inode_init_owner(inode, dir, mode);
39279cc3 4562 inode->i_ino = objectid;
a76a3cd4 4563 inode_set_bytes(inode, 0);
39279cc3 4564 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4565 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4566 struct btrfs_inode_item);
e02119d5 4567 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4568
4569 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4570 struct btrfs_inode_ref);
4571 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4572 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4573 ptr = (unsigned long)(ref + 1);
4574 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4575
5f39d397
CM
4576 btrfs_mark_buffer_dirty(path->nodes[0]);
4577 btrfs_free_path(path);
4578
39279cc3
CM
4579 location = &BTRFS_I(inode)->location;
4580 location->objectid = objectid;
39279cc3
CM
4581 location->offset = 0;
4582 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4583
6cbff00f
CH
4584 btrfs_inherit_iflags(inode, dir);
4585
94272164
CM
4586 if ((mode & S_IFREG)) {
4587 if (btrfs_test_opt(root, NODATASUM))
4588 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4589 if (btrfs_test_opt(root, NODATACOW))
4590 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4591 }
4592
39279cc3 4593 insert_inode_hash(inode);
5d4f98a2 4594 inode_tree_add(inode);
39279cc3 4595 return inode;
5f39d397 4596fail:
aec7477b
JB
4597 if (dir)
4598 BTRFS_I(dir)->index_cnt--;
5f39d397 4599 btrfs_free_path(path);
09771430 4600 iput(inode);
5f39d397 4601 return ERR_PTR(ret);
39279cc3
CM
4602}
4603
4604static inline u8 btrfs_inode_type(struct inode *inode)
4605{
4606 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4607}
4608
d352ac68
CM
4609/*
4610 * utility function to add 'inode' into 'parent_inode' with
4611 * a give name and a given sequence number.
4612 * if 'add_backref' is true, also insert a backref from the
4613 * inode to the parent directory.
4614 */
e02119d5
CM
4615int btrfs_add_link(struct btrfs_trans_handle *trans,
4616 struct inode *parent_inode, struct inode *inode,
4617 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4618{
4df27c4d 4619 int ret = 0;
39279cc3 4620 struct btrfs_key key;
e02119d5 4621 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4622
4df27c4d
YZ
4623 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4624 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4625 } else {
4626 key.objectid = inode->i_ino;
4627 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4628 key.offset = 0;
4629 }
4630
4631 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4632 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4633 key.objectid, root->root_key.objectid,
4634 parent_inode->i_ino,
4635 index, name, name_len);
4636 } else if (add_backref) {
4637 ret = btrfs_insert_inode_ref(trans, root,
4638 name, name_len, inode->i_ino,
4639 parent_inode->i_ino, index);
4640 }
39279cc3 4641
39279cc3 4642 if (ret == 0) {
4df27c4d
YZ
4643 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4644 parent_inode->i_ino, &key,
4645 btrfs_inode_type(inode), index);
4646 BUG_ON(ret);
4647
dbe674a9 4648 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4649 name_len * 2);
79c44584 4650 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4651 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4652 }
4653 return ret;
4654}
4655
4656static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4657 struct inode *dir, struct dentry *dentry,
4658 struct inode *inode, int backref, u64 index)
39279cc3 4659{
a1b075d2
JB
4660 int err = btrfs_add_link(trans, dir, inode,
4661 dentry->d_name.name, dentry->d_name.len,
4662 backref, index);
39279cc3
CM
4663 if (!err) {
4664 d_instantiate(dentry, inode);
4665 return 0;
4666 }
4667 if (err > 0)
4668 err = -EEXIST;
4669 return err;
4670}
4671
618e21d5
JB
4672static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4673 int mode, dev_t rdev)
4674{
4675 struct btrfs_trans_handle *trans;
4676 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4677 struct inode *inode = NULL;
618e21d5
JB
4678 int err;
4679 int drop_inode = 0;
4680 u64 objectid;
1832a6d5 4681 unsigned long nr = 0;
00e4e6b3 4682 u64 index = 0;
618e21d5
JB
4683
4684 if (!new_valid_dev(rdev))
4685 return -EINVAL;
4686
a22285a6
YZ
4687 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4688 if (err)
4689 return err;
4690
9ed74f2d
JB
4691 /*
4692 * 2 for inode item and ref
4693 * 2 for dir items
4694 * 1 for xattr if selinux is on
4695 */
a22285a6
YZ
4696 trans = btrfs_start_transaction(root, 5);
4697 if (IS_ERR(trans))
4698 return PTR_ERR(trans);
1832a6d5 4699
618e21d5
JB
4700 btrfs_set_trans_block_group(trans, dir);
4701
aec7477b 4702 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4703 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3 4704 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4705 err = PTR_ERR(inode);
4706 if (IS_ERR(inode))
4707 goto out_unlock;
4708
f34f57a3 4709 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4710 if (err) {
4711 drop_inode = 1;
4712 goto out_unlock;
4713 }
4714
618e21d5 4715 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4716 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4717 if (err)
4718 drop_inode = 1;
4719 else {
4720 inode->i_op = &btrfs_special_inode_operations;
4721 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4722 btrfs_update_inode(trans, root, inode);
618e21d5 4723 }
618e21d5
JB
4724 btrfs_update_inode_block_group(trans, inode);
4725 btrfs_update_inode_block_group(trans, dir);
4726out_unlock:
d3c2fdcf 4727 nr = trans->blocks_used;
89ce8a63 4728 btrfs_end_transaction_throttle(trans, root);
a22285a6 4729 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4730 if (drop_inode) {
4731 inode_dec_link_count(inode);
4732 iput(inode);
4733 }
618e21d5
JB
4734 return err;
4735}
4736
39279cc3
CM
4737static int btrfs_create(struct inode *dir, struct dentry *dentry,
4738 int mode, struct nameidata *nd)
4739{
4740 struct btrfs_trans_handle *trans;
4741 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4742 struct inode *inode = NULL;
39279cc3 4743 int drop_inode = 0;
a22285a6 4744 int err;
1832a6d5 4745 unsigned long nr = 0;
39279cc3 4746 u64 objectid;
00e4e6b3 4747 u64 index = 0;
39279cc3 4748
a22285a6
YZ
4749 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4750 if (err)
4751 return err;
9ed74f2d
JB
4752 /*
4753 * 2 for inode item and ref
4754 * 2 for dir items
4755 * 1 for xattr if selinux is on
4756 */
a22285a6
YZ
4757 trans = btrfs_start_transaction(root, 5);
4758 if (IS_ERR(trans))
4759 return PTR_ERR(trans);
9ed74f2d 4760
39279cc3
CM
4761 btrfs_set_trans_block_group(trans, dir);
4762
aec7477b 4763 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2
JB
4764 dentry->d_name.len, dir->i_ino, objectid,
4765 BTRFS_I(dir)->block_group, mode, &index);
39279cc3
CM
4766 err = PTR_ERR(inode);
4767 if (IS_ERR(inode))
4768 goto out_unlock;
4769
f34f57a3 4770 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4771 if (err) {
4772 drop_inode = 1;
4773 goto out_unlock;
4774 }
4775
39279cc3 4776 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4777 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4778 if (err)
4779 drop_inode = 1;
4780 else {
4781 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4782 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4783 inode->i_fop = &btrfs_file_operations;
4784 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4785 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4786 }
39279cc3
CM
4787 btrfs_update_inode_block_group(trans, inode);
4788 btrfs_update_inode_block_group(trans, dir);
4789out_unlock:
d3c2fdcf 4790 nr = trans->blocks_used;
ab78c84d 4791 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4792 if (drop_inode) {
4793 inode_dec_link_count(inode);
4794 iput(inode);
4795 }
d3c2fdcf 4796 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4797 return err;
4798}
4799
4800static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4801 struct dentry *dentry)
4802{
4803 struct btrfs_trans_handle *trans;
4804 struct btrfs_root *root = BTRFS_I(dir)->root;
4805 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4806 u64 index;
1832a6d5 4807 unsigned long nr = 0;
39279cc3
CM
4808 int err;
4809 int drop_inode = 0;
4810
4811 if (inode->i_nlink == 0)
4812 return -ENOENT;
4813
4a8be425
TH
4814 /* do not allow sys_link's with other subvols of the same device */
4815 if (root->objectid != BTRFS_I(inode)->root->objectid)
4816 return -EPERM;
4817
9ed74f2d 4818 btrfs_inc_nlink(inode);
bc1cbf1f 4819 inode->i_ctime = CURRENT_TIME;
9ed74f2d 4820
3de4586c 4821 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4822 if (err)
4823 goto fail;
4824
a22285a6 4825 /*
7e6b6465 4826 * 2 items for inode and inode ref
a22285a6 4827 * 2 items for dir items
7e6b6465 4828 * 1 item for parent inode
a22285a6 4829 */
7e6b6465 4830 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4831 if (IS_ERR(trans)) {
4832 err = PTR_ERR(trans);
4833 goto fail;
4834 }
5f39d397 4835
39279cc3 4836 btrfs_set_trans_block_group(trans, dir);
7de9c6ee 4837 ihold(inode);
aec7477b 4838
a1b075d2 4839 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4840
a5719521 4841 if (err) {
54aa1f4d 4842 drop_inode = 1;
a5719521 4843 } else {
6a912213 4844 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4845 btrfs_update_inode_block_group(trans, dir);
4846 err = btrfs_update_inode(trans, root, inode);
4847 BUG_ON(err);
6a912213
JB
4848 btrfs_log_new_name(trans, inode, NULL, parent);
4849 dput(parent);
a5719521 4850 }
39279cc3 4851
d3c2fdcf 4852 nr = trans->blocks_used;
ab78c84d 4853 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4854fail:
39279cc3
CM
4855 if (drop_inode) {
4856 inode_dec_link_count(inode);
4857 iput(inode);
4858 }
d3c2fdcf 4859 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4860 return err;
4861}
4862
39279cc3
CM
4863static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4864{
b9d86667 4865 struct inode *inode = NULL;
39279cc3
CM
4866 struct btrfs_trans_handle *trans;
4867 struct btrfs_root *root = BTRFS_I(dir)->root;
4868 int err = 0;
4869 int drop_on_err = 0;
b9d86667 4870 u64 objectid = 0;
00e4e6b3 4871 u64 index = 0;
d3c2fdcf 4872 unsigned long nr = 1;
39279cc3 4873
a22285a6
YZ
4874 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4875 if (err)
4876 return err;
4877
9ed74f2d
JB
4878 /*
4879 * 2 items for inode and ref
4880 * 2 items for dir items
4881 * 1 for xattr if selinux is on
4882 */
a22285a6
YZ
4883 trans = btrfs_start_transaction(root, 5);
4884 if (IS_ERR(trans))
4885 return PTR_ERR(trans);
9ed74f2d 4886 btrfs_set_trans_block_group(trans, dir);
39279cc3 4887
aec7477b 4888 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4889 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
4890 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4891 &index);
39279cc3
CM
4892 if (IS_ERR(inode)) {
4893 err = PTR_ERR(inode);
4894 goto out_fail;
4895 }
5f39d397 4896
39279cc3 4897 drop_on_err = 1;
33268eaf 4898
f34f57a3 4899 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4900 if (err)
4901 goto out_fail;
4902
39279cc3
CM
4903 inode->i_op = &btrfs_dir_inode_operations;
4904 inode->i_fop = &btrfs_dir_file_operations;
4905 btrfs_set_trans_block_group(trans, inode);
4906
dbe674a9 4907 btrfs_i_size_write(inode, 0);
39279cc3
CM
4908 err = btrfs_update_inode(trans, root, inode);
4909 if (err)
4910 goto out_fail;
5f39d397 4911
a1b075d2
JB
4912 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4913 dentry->d_name.len, 0, index);
39279cc3
CM
4914 if (err)
4915 goto out_fail;
5f39d397 4916
39279cc3
CM
4917 d_instantiate(dentry, inode);
4918 drop_on_err = 0;
39279cc3
CM
4919 btrfs_update_inode_block_group(trans, inode);
4920 btrfs_update_inode_block_group(trans, dir);
4921
4922out_fail:
d3c2fdcf 4923 nr = trans->blocks_used;
ab78c84d 4924 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4925 if (drop_on_err)
4926 iput(inode);
d3c2fdcf 4927 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4928 return err;
4929}
4930
d352ac68
CM
4931/* helper for btfs_get_extent. Given an existing extent in the tree,
4932 * and an extent that you want to insert, deal with overlap and insert
4933 * the new extent into the tree.
4934 */
3b951516
CM
4935static int merge_extent_mapping(struct extent_map_tree *em_tree,
4936 struct extent_map *existing,
e6dcd2dc
CM
4937 struct extent_map *em,
4938 u64 map_start, u64 map_len)
3b951516
CM
4939{
4940 u64 start_diff;
3b951516 4941
e6dcd2dc
CM
4942 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4943 start_diff = map_start - em->start;
4944 em->start = map_start;
4945 em->len = map_len;
c8b97818
CM
4946 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4947 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4948 em->block_start += start_diff;
c8b97818
CM
4949 em->block_len -= start_diff;
4950 }
e6dcd2dc 4951 return add_extent_mapping(em_tree, em);
3b951516
CM
4952}
4953
c8b97818
CM
4954static noinline int uncompress_inline(struct btrfs_path *path,
4955 struct inode *inode, struct page *page,
4956 size_t pg_offset, u64 extent_offset,
4957 struct btrfs_file_extent_item *item)
4958{
4959 int ret;
4960 struct extent_buffer *leaf = path->nodes[0];
4961 char *tmp;
4962 size_t max_size;
4963 unsigned long inline_size;
4964 unsigned long ptr;
261507a0 4965 int compress_type;
c8b97818
CM
4966
4967 WARN_ON(pg_offset != 0);
261507a0 4968 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4969 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4970 inline_size = btrfs_file_extent_inline_item_len(leaf,
4971 btrfs_item_nr(leaf, path->slots[0]));
4972 tmp = kmalloc(inline_size, GFP_NOFS);
4973 ptr = btrfs_file_extent_inline_start(item);
4974
4975 read_extent_buffer(leaf, tmp, ptr, inline_size);
4976
5b050f04 4977 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4978 ret = btrfs_decompress(compress_type, tmp, page,
4979 extent_offset, inline_size, max_size);
c8b97818
CM
4980 if (ret) {
4981 char *kaddr = kmap_atomic(page, KM_USER0);
4982 unsigned long copy_size = min_t(u64,
4983 PAGE_CACHE_SIZE - pg_offset,
4984 max_size - extent_offset);
4985 memset(kaddr + pg_offset, 0, copy_size);
4986 kunmap_atomic(kaddr, KM_USER0);
4987 }
4988 kfree(tmp);
4989 return 0;
4990}
4991
d352ac68
CM
4992/*
4993 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4994 * the ugly parts come from merging extents from the disk with the in-ram
4995 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4996 * where the in-ram extents might be locked pending data=ordered completion.
4997 *
4998 * This also copies inline extents directly into the page.
4999 */
d397712b 5000
a52d9a80 5001struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5002 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5003 int create)
5004{
5005 int ret;
5006 int err = 0;
db94535d 5007 u64 bytenr;
a52d9a80
CM
5008 u64 extent_start = 0;
5009 u64 extent_end = 0;
5010 u64 objectid = inode->i_ino;
5011 u32 found_type;
f421950f 5012 struct btrfs_path *path = NULL;
a52d9a80
CM
5013 struct btrfs_root *root = BTRFS_I(inode)->root;
5014 struct btrfs_file_extent_item *item;
5f39d397
CM
5015 struct extent_buffer *leaf;
5016 struct btrfs_key found_key;
a52d9a80
CM
5017 struct extent_map *em = NULL;
5018 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5019 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5020 struct btrfs_trans_handle *trans = NULL;
261507a0 5021 int compress_type;
a52d9a80 5022
a52d9a80 5023again:
890871be 5024 read_lock(&em_tree->lock);
d1310b2e 5025 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5026 if (em)
5027 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5028 read_unlock(&em_tree->lock);
d1310b2e 5029
a52d9a80 5030 if (em) {
e1c4b745
CM
5031 if (em->start > start || em->start + em->len <= start)
5032 free_extent_map(em);
5033 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5034 free_extent_map(em);
5035 else
5036 goto out;
a52d9a80 5037 }
d1310b2e 5038 em = alloc_extent_map(GFP_NOFS);
a52d9a80 5039 if (!em) {
d1310b2e
CM
5040 err = -ENOMEM;
5041 goto out;
a52d9a80 5042 }
e6dcd2dc 5043 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5044 em->start = EXTENT_MAP_HOLE;
445a6944 5045 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5046 em->len = (u64)-1;
c8b97818 5047 em->block_len = (u64)-1;
f421950f
CM
5048
5049 if (!path) {
5050 path = btrfs_alloc_path();
5051 BUG_ON(!path);
5052 }
5053
179e29e4
CM
5054 ret = btrfs_lookup_file_extent(trans, root, path,
5055 objectid, start, trans != NULL);
a52d9a80
CM
5056 if (ret < 0) {
5057 err = ret;
5058 goto out;
5059 }
5060
5061 if (ret != 0) {
5062 if (path->slots[0] == 0)
5063 goto not_found;
5064 path->slots[0]--;
5065 }
5066
5f39d397
CM
5067 leaf = path->nodes[0];
5068 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5069 struct btrfs_file_extent_item);
a52d9a80 5070 /* are we inside the extent that was found? */
5f39d397
CM
5071 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5072 found_type = btrfs_key_type(&found_key);
5073 if (found_key.objectid != objectid ||
a52d9a80
CM
5074 found_type != BTRFS_EXTENT_DATA_KEY) {
5075 goto not_found;
5076 }
5077
5f39d397
CM
5078 found_type = btrfs_file_extent_type(leaf, item);
5079 extent_start = found_key.offset;
261507a0 5080 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5081 if (found_type == BTRFS_FILE_EXTENT_REG ||
5082 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5083 extent_end = extent_start +
db94535d 5084 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5085 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5086 size_t size;
5087 size = btrfs_file_extent_inline_len(leaf, item);
5088 extent_end = (extent_start + size + root->sectorsize - 1) &
5089 ~((u64)root->sectorsize - 1);
5090 }
5091
5092 if (start >= extent_end) {
5093 path->slots[0]++;
5094 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5095 ret = btrfs_next_leaf(root, path);
5096 if (ret < 0) {
5097 err = ret;
5098 goto out;
a52d9a80 5099 }
9036c102
YZ
5100 if (ret > 0)
5101 goto not_found;
5102 leaf = path->nodes[0];
a52d9a80 5103 }
9036c102
YZ
5104 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5105 if (found_key.objectid != objectid ||
5106 found_key.type != BTRFS_EXTENT_DATA_KEY)
5107 goto not_found;
5108 if (start + len <= found_key.offset)
5109 goto not_found;
5110 em->start = start;
5111 em->len = found_key.offset - start;
5112 goto not_found_em;
5113 }
5114
d899e052
YZ
5115 if (found_type == BTRFS_FILE_EXTENT_REG ||
5116 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5117 em->start = extent_start;
5118 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5119 em->orig_start = extent_start -
5120 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5121 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5122 if (bytenr == 0) {
5f39d397 5123 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5124 goto insert;
5125 }
261507a0 5126 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5127 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5128 em->compress_type = compress_type;
c8b97818
CM
5129 em->block_start = bytenr;
5130 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5131 item);
5132 } else {
5133 bytenr += btrfs_file_extent_offset(leaf, item);
5134 em->block_start = bytenr;
5135 em->block_len = em->len;
d899e052
YZ
5136 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5137 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5138 }
a52d9a80
CM
5139 goto insert;
5140 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5141 unsigned long ptr;
a52d9a80 5142 char *map;
3326d1b0
CM
5143 size_t size;
5144 size_t extent_offset;
5145 size_t copy_size;
a52d9a80 5146
689f9346 5147 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5148 if (!page || create) {
689f9346 5149 em->start = extent_start;
9036c102 5150 em->len = extent_end - extent_start;
689f9346
Y
5151 goto out;
5152 }
5f39d397 5153
9036c102
YZ
5154 size = btrfs_file_extent_inline_len(leaf, item);
5155 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5156 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5157 size - extent_offset);
3326d1b0 5158 em->start = extent_start + extent_offset;
70dec807
CM
5159 em->len = (copy_size + root->sectorsize - 1) &
5160 ~((u64)root->sectorsize - 1);
ff5b7ee3 5161 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5162 if (compress_type) {
c8b97818 5163 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5164 em->compress_type = compress_type;
5165 }
689f9346 5166 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5167 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5168 if (btrfs_file_extent_compression(leaf, item) !=
5169 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5170 ret = uncompress_inline(path, inode, page,
5171 pg_offset,
5172 extent_offset, item);
5173 BUG_ON(ret);
5174 } else {
5175 map = kmap(page);
5176 read_extent_buffer(leaf, map + pg_offset, ptr,
5177 copy_size);
93c82d57
CM
5178 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5179 memset(map + pg_offset + copy_size, 0,
5180 PAGE_CACHE_SIZE - pg_offset -
5181 copy_size);
5182 }
c8b97818
CM
5183 kunmap(page);
5184 }
179e29e4
CM
5185 flush_dcache_page(page);
5186 } else if (create && PageUptodate(page)) {
0ca1f7ce 5187 WARN_ON(1);
179e29e4
CM
5188 if (!trans) {
5189 kunmap(page);
5190 free_extent_map(em);
5191 em = NULL;
5192 btrfs_release_path(root, path);
f9295749 5193 trans = btrfs_join_transaction(root, 1);
3612b495
TI
5194 if (IS_ERR(trans))
5195 return ERR_CAST(trans);
179e29e4
CM
5196 goto again;
5197 }
c8b97818 5198 map = kmap(page);
70dec807 5199 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5200 copy_size);
c8b97818 5201 kunmap(page);
179e29e4 5202 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5203 }
d1310b2e
CM
5204 set_extent_uptodate(io_tree, em->start,
5205 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
5206 goto insert;
5207 } else {
d397712b 5208 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5209 WARN_ON(1);
5210 }
5211not_found:
5212 em->start = start;
d1310b2e 5213 em->len = len;
a52d9a80 5214not_found_em:
5f39d397 5215 em->block_start = EXTENT_MAP_HOLE;
9036c102 5216 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
5217insert:
5218 btrfs_release_path(root, path);
d1310b2e 5219 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5220 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5221 "[%llu %llu]\n", (unsigned long long)em->start,
5222 (unsigned long long)em->len,
5223 (unsigned long long)start,
5224 (unsigned long long)len);
a52d9a80
CM
5225 err = -EIO;
5226 goto out;
5227 }
d1310b2e
CM
5228
5229 err = 0;
890871be 5230 write_lock(&em_tree->lock);
a52d9a80 5231 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5232 /* it is possible that someone inserted the extent into the tree
5233 * while we had the lock dropped. It is also possible that
5234 * an overlapping map exists in the tree
5235 */
a52d9a80 5236 if (ret == -EEXIST) {
3b951516 5237 struct extent_map *existing;
e6dcd2dc
CM
5238
5239 ret = 0;
5240
3b951516 5241 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5242 if (existing && (existing->start > start ||
5243 existing->start + existing->len <= start)) {
5244 free_extent_map(existing);
5245 existing = NULL;
5246 }
3b951516
CM
5247 if (!existing) {
5248 existing = lookup_extent_mapping(em_tree, em->start,
5249 em->len);
5250 if (existing) {
5251 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5252 em, start,
5253 root->sectorsize);
3b951516
CM
5254 free_extent_map(existing);
5255 if (err) {
5256 free_extent_map(em);
5257 em = NULL;
5258 }
5259 } else {
5260 err = -EIO;
3b951516
CM
5261 free_extent_map(em);
5262 em = NULL;
5263 }
5264 } else {
5265 free_extent_map(em);
5266 em = existing;
e6dcd2dc 5267 err = 0;
a52d9a80 5268 }
a52d9a80 5269 }
890871be 5270 write_unlock(&em_tree->lock);
a52d9a80 5271out:
f421950f
CM
5272 if (path)
5273 btrfs_free_path(path);
a52d9a80
CM
5274 if (trans) {
5275 ret = btrfs_end_transaction(trans, root);
d397712b 5276 if (!err)
a52d9a80
CM
5277 err = ret;
5278 }
a52d9a80
CM
5279 if (err) {
5280 free_extent_map(em);
a52d9a80
CM
5281 return ERR_PTR(err);
5282 }
5283 return em;
5284}
5285
ec29ed5b
CM
5286struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5287 size_t pg_offset, u64 start, u64 len,
5288 int create)
5289{
5290 struct extent_map *em;
5291 struct extent_map *hole_em = NULL;
5292 u64 range_start = start;
5293 u64 end;
5294 u64 found;
5295 u64 found_end;
5296 int err = 0;
5297
5298 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5299 if (IS_ERR(em))
5300 return em;
5301 if (em) {
5302 /*
5303 * if our em maps to a hole, there might
5304 * actually be delalloc bytes behind it
5305 */
5306 if (em->block_start != EXTENT_MAP_HOLE)
5307 return em;
5308 else
5309 hole_em = em;
5310 }
5311
5312 /* check to see if we've wrapped (len == -1 or similar) */
5313 end = start + len;
5314 if (end < start)
5315 end = (u64)-1;
5316 else
5317 end -= 1;
5318
5319 em = NULL;
5320
5321 /* ok, we didn't find anything, lets look for delalloc */
5322 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5323 end, len, EXTENT_DELALLOC, 1);
5324 found_end = range_start + found;
5325 if (found_end < range_start)
5326 found_end = (u64)-1;
5327
5328 /*
5329 * we didn't find anything useful, return
5330 * the original results from get_extent()
5331 */
5332 if (range_start > end || found_end <= start) {
5333 em = hole_em;
5334 hole_em = NULL;
5335 goto out;
5336 }
5337
5338 /* adjust the range_start to make sure it doesn't
5339 * go backwards from the start they passed in
5340 */
5341 range_start = max(start,range_start);
5342 found = found_end - range_start;
5343
5344 if (found > 0) {
5345 u64 hole_start = start;
5346 u64 hole_len = len;
5347
5348 em = alloc_extent_map(GFP_NOFS);
5349 if (!em) {
5350 err = -ENOMEM;
5351 goto out;
5352 }
5353 /*
5354 * when btrfs_get_extent can't find anything it
5355 * returns one huge hole
5356 *
5357 * make sure what it found really fits our range, and
5358 * adjust to make sure it is based on the start from
5359 * the caller
5360 */
5361 if (hole_em) {
5362 u64 calc_end = extent_map_end(hole_em);
5363
5364 if (calc_end <= start || (hole_em->start > end)) {
5365 free_extent_map(hole_em);
5366 hole_em = NULL;
5367 } else {
5368 hole_start = max(hole_em->start, start);
5369 hole_len = calc_end - hole_start;
5370 }
5371 }
5372 em->bdev = NULL;
5373 if (hole_em && range_start > hole_start) {
5374 /* our hole starts before our delalloc, so we
5375 * have to return just the parts of the hole
5376 * that go until the delalloc starts
5377 */
5378 em->len = min(hole_len,
5379 range_start - hole_start);
5380 em->start = hole_start;
5381 em->orig_start = hole_start;
5382 /*
5383 * don't adjust block start at all,
5384 * it is fixed at EXTENT_MAP_HOLE
5385 */
5386 em->block_start = hole_em->block_start;
5387 em->block_len = hole_len;
5388 } else {
5389 em->start = range_start;
5390 em->len = found;
5391 em->orig_start = range_start;
5392 em->block_start = EXTENT_MAP_DELALLOC;
5393 em->block_len = found;
5394 }
5395 } else if (hole_em) {
5396 return hole_em;
5397 }
5398out:
5399
5400 free_extent_map(hole_em);
5401 if (err) {
5402 free_extent_map(em);
5403 return ERR_PTR(err);
5404 }
5405 return em;
5406}
5407
4b46fce2
JB
5408static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5409 u64 start, u64 len)
5410{
5411 struct btrfs_root *root = BTRFS_I(inode)->root;
5412 struct btrfs_trans_handle *trans;
5413 struct extent_map *em;
5414 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5415 struct btrfs_key ins;
5416 u64 alloc_hint;
5417 int ret;
5418
5419 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5420
5421 trans = btrfs_join_transaction(root, 0);
3612b495
TI
5422 if (IS_ERR(trans))
5423 return ERR_CAST(trans);
4b46fce2
JB
5424
5425 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5426
5427 alloc_hint = get_extent_allocation_hint(inode, start, len);
5428 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5429 alloc_hint, (u64)-1, &ins, 1);
5430 if (ret) {
5431 em = ERR_PTR(ret);
5432 goto out;
5433 }
5434
5435 em = alloc_extent_map(GFP_NOFS);
5436 if (!em) {
5437 em = ERR_PTR(-ENOMEM);
5438 goto out;
5439 }
5440
5441 em->start = start;
5442 em->orig_start = em->start;
5443 em->len = ins.offset;
5444
5445 em->block_start = ins.objectid;
5446 em->block_len = ins.offset;
5447 em->bdev = root->fs_info->fs_devices->latest_bdev;
5448 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5449
5450 while (1) {
5451 write_lock(&em_tree->lock);
5452 ret = add_extent_mapping(em_tree, em);
5453 write_unlock(&em_tree->lock);
5454 if (ret != -EEXIST)
5455 break;
5456 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5457 }
5458
5459 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5460 ins.offset, ins.offset, 0);
5461 if (ret) {
5462 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5463 em = ERR_PTR(ret);
5464 }
5465out:
5466 btrfs_end_transaction(trans, root);
5467 return em;
5468}
5469
46bfbb5c
CM
5470/*
5471 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5472 * block must be cow'd
5473 */
5474static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5475 struct inode *inode, u64 offset, u64 len)
5476{
5477 struct btrfs_path *path;
5478 int ret;
5479 struct extent_buffer *leaf;
5480 struct btrfs_root *root = BTRFS_I(inode)->root;
5481 struct btrfs_file_extent_item *fi;
5482 struct btrfs_key key;
5483 u64 disk_bytenr;
5484 u64 backref_offset;
5485 u64 extent_end;
5486 u64 num_bytes;
5487 int slot;
5488 int found_type;
5489
5490 path = btrfs_alloc_path();
5491 if (!path)
5492 return -ENOMEM;
5493
5494 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5495 offset, 0);
5496 if (ret < 0)
5497 goto out;
5498
5499 slot = path->slots[0];
5500 if (ret == 1) {
5501 if (slot == 0) {
5502 /* can't find the item, must cow */
5503 ret = 0;
5504 goto out;
5505 }
5506 slot--;
5507 }
5508 ret = 0;
5509 leaf = path->nodes[0];
5510 btrfs_item_key_to_cpu(leaf, &key, slot);
5511 if (key.objectid != inode->i_ino ||
5512 key.type != BTRFS_EXTENT_DATA_KEY) {
5513 /* not our file or wrong item type, must cow */
5514 goto out;
5515 }
5516
5517 if (key.offset > offset) {
5518 /* Wrong offset, must cow */
5519 goto out;
5520 }
5521
5522 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5523 found_type = btrfs_file_extent_type(leaf, fi);
5524 if (found_type != BTRFS_FILE_EXTENT_REG &&
5525 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5526 /* not a regular extent, must cow */
5527 goto out;
5528 }
5529 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5530 backref_offset = btrfs_file_extent_offset(leaf, fi);
5531
5532 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5533 if (extent_end < offset + len) {
5534 /* extent doesn't include our full range, must cow */
5535 goto out;
5536 }
5537
5538 if (btrfs_extent_readonly(root, disk_bytenr))
5539 goto out;
5540
5541 /*
5542 * look for other files referencing this extent, if we
5543 * find any we must cow
5544 */
5545 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5546 key.offset - backref_offset, disk_bytenr))
5547 goto out;
5548
5549 /*
5550 * adjust disk_bytenr and num_bytes to cover just the bytes
5551 * in this extent we are about to write. If there
5552 * are any csums in that range we have to cow in order
5553 * to keep the csums correct
5554 */
5555 disk_bytenr += backref_offset;
5556 disk_bytenr += offset - key.offset;
5557 num_bytes = min(offset + len, extent_end) - offset;
5558 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5559 goto out;
5560 /*
5561 * all of the above have passed, it is safe to overwrite this extent
5562 * without cow
5563 */
5564 ret = 1;
5565out:
5566 btrfs_free_path(path);
5567 return ret;
5568}
5569
4b46fce2
JB
5570static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5571 struct buffer_head *bh_result, int create)
5572{
5573 struct extent_map *em;
5574 struct btrfs_root *root = BTRFS_I(inode)->root;
5575 u64 start = iblock << inode->i_blkbits;
5576 u64 len = bh_result->b_size;
46bfbb5c 5577 struct btrfs_trans_handle *trans;
4b46fce2
JB
5578
5579 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5580 if (IS_ERR(em))
5581 return PTR_ERR(em);
5582
5583 /*
5584 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5585 * io. INLINE is special, and we could probably kludge it in here, but
5586 * it's still buffered so for safety lets just fall back to the generic
5587 * buffered path.
5588 *
5589 * For COMPRESSED we _have_ to read the entire extent in so we can
5590 * decompress it, so there will be buffering required no matter what we
5591 * do, so go ahead and fallback to buffered.
5592 *
5593 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5594 * to buffered IO. Don't blame me, this is the price we pay for using
5595 * the generic code.
5596 */
5597 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5598 em->block_start == EXTENT_MAP_INLINE) {
5599 free_extent_map(em);
5600 return -ENOTBLK;
5601 }
5602
5603 /* Just a good old fashioned hole, return */
5604 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5605 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5606 free_extent_map(em);
5607 /* DIO will do one hole at a time, so just unlock a sector */
5608 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5609 start + root->sectorsize - 1, GFP_NOFS);
5610 return 0;
5611 }
5612
5613 /*
5614 * We don't allocate a new extent in the following cases
5615 *
5616 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5617 * existing extent.
5618 * 2) The extent is marked as PREALLOC. We're good to go here and can
5619 * just use the extent.
5620 *
5621 */
46bfbb5c
CM
5622 if (!create) {
5623 len = em->len - (start - em->start);
4b46fce2 5624 goto map;
46bfbb5c 5625 }
4b46fce2
JB
5626
5627 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5628 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5629 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5630 int type;
5631 int ret;
46bfbb5c 5632 u64 block_start;
4b46fce2
JB
5633
5634 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5635 type = BTRFS_ORDERED_PREALLOC;
5636 else
5637 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5638 len = min(len, em->len - (start - em->start));
4b46fce2 5639 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5640
5641 /*
5642 * we're not going to log anything, but we do need
5643 * to make sure the current transaction stays open
5644 * while we look for nocow cross refs
5645 */
5646 trans = btrfs_join_transaction(root, 0);
3612b495 5647 if (IS_ERR(trans))
46bfbb5c
CM
5648 goto must_cow;
5649
5650 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5651 ret = btrfs_add_ordered_extent_dio(inode, start,
5652 block_start, len, len, type);
5653 btrfs_end_transaction(trans, root);
5654 if (ret) {
5655 free_extent_map(em);
5656 return ret;
5657 }
5658 goto unlock;
4b46fce2 5659 }
46bfbb5c 5660 btrfs_end_transaction(trans, root);
4b46fce2 5661 }
46bfbb5c
CM
5662must_cow:
5663 /*
5664 * this will cow the extent, reset the len in case we changed
5665 * it above
5666 */
5667 len = bh_result->b_size;
5668 free_extent_map(em);
5669 em = btrfs_new_extent_direct(inode, start, len);
5670 if (IS_ERR(em))
5671 return PTR_ERR(em);
5672 len = min(len, em->len - (start - em->start));
5673unlock:
4845e44f
CM
5674 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5675 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5676 0, NULL, GFP_NOFS);
4b46fce2
JB
5677map:
5678 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5679 inode->i_blkbits;
46bfbb5c 5680 bh_result->b_size = len;
4b46fce2
JB
5681 bh_result->b_bdev = em->bdev;
5682 set_buffer_mapped(bh_result);
5683 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5684 set_buffer_new(bh_result);
5685
5686 free_extent_map(em);
5687
5688 return 0;
5689}
5690
5691struct btrfs_dio_private {
5692 struct inode *inode;
5693 u64 logical_offset;
5694 u64 disk_bytenr;
5695 u64 bytes;
5696 u32 *csums;
5697 void *private;
e65e1535
MX
5698
5699 /* number of bios pending for this dio */
5700 atomic_t pending_bios;
5701
5702 /* IO errors */
5703 int errors;
5704
5705 struct bio *orig_bio;
4b46fce2
JB
5706};
5707
5708static void btrfs_endio_direct_read(struct bio *bio, int err)
5709{
e65e1535 5710 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5711 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5712 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5713 struct inode *inode = dip->inode;
5714 struct btrfs_root *root = BTRFS_I(inode)->root;
5715 u64 start;
5716 u32 *private = dip->csums;
5717
5718 start = dip->logical_offset;
5719 do {
5720 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5721 struct page *page = bvec->bv_page;
5722 char *kaddr;
5723 u32 csum = ~(u32)0;
5724 unsigned long flags;
5725
5726 local_irq_save(flags);
5727 kaddr = kmap_atomic(page, KM_IRQ0);
5728 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5729 csum, bvec->bv_len);
5730 btrfs_csum_final(csum, (char *)&csum);
5731 kunmap_atomic(kaddr, KM_IRQ0);
5732 local_irq_restore(flags);
5733
5734 flush_dcache_page(bvec->bv_page);
5735 if (csum != *private) {
5736 printk(KERN_ERR "btrfs csum failed ino %lu off"
5737 " %llu csum %u private %u\n",
5738 inode->i_ino, (unsigned long long)start,
5739 csum, *private);
5740 err = -EIO;
5741 }
5742 }
5743
5744 start += bvec->bv_len;
5745 private++;
5746 bvec++;
5747 } while (bvec <= bvec_end);
5748
5749 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5750 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5751 bio->bi_private = dip->private;
5752
5753 kfree(dip->csums);
5754 kfree(dip);
5755 dio_end_io(bio, err);
5756}
5757
5758static void btrfs_endio_direct_write(struct bio *bio, int err)
5759{
5760 struct btrfs_dio_private *dip = bio->bi_private;
5761 struct inode *inode = dip->inode;
5762 struct btrfs_root *root = BTRFS_I(inode)->root;
5763 struct btrfs_trans_handle *trans;
5764 struct btrfs_ordered_extent *ordered = NULL;
5765 struct extent_state *cached_state = NULL;
163cf09c
CM
5766 u64 ordered_offset = dip->logical_offset;
5767 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5768 int ret;
5769
5770 if (err)
5771 goto out_done;
163cf09c
CM
5772again:
5773 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5774 &ordered_offset,
5775 ordered_bytes);
4b46fce2 5776 if (!ret)
163cf09c 5777 goto out_test;
4b46fce2
JB
5778
5779 BUG_ON(!ordered);
5780
5781 trans = btrfs_join_transaction(root, 1);
3612b495 5782 if (IS_ERR(trans)) {
4b46fce2
JB
5783 err = -ENOMEM;
5784 goto out;
5785 }
5786 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5787
5788 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5789 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5790 if (!ret)
5791 ret = btrfs_update_inode(trans, root, inode);
5792 err = ret;
5793 goto out;
5794 }
5795
5796 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5797 ordered->file_offset + ordered->len - 1, 0,
5798 &cached_state, GFP_NOFS);
5799
5800 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5801 ret = btrfs_mark_extent_written(trans, inode,
5802 ordered->file_offset,
5803 ordered->file_offset +
5804 ordered->len);
5805 if (ret) {
5806 err = ret;
5807 goto out_unlock;
5808 }
5809 } else {
5810 ret = insert_reserved_file_extent(trans, inode,
5811 ordered->file_offset,
5812 ordered->start,
5813 ordered->disk_len,
5814 ordered->len,
5815 ordered->len,
5816 0, 0, 0,
5817 BTRFS_FILE_EXTENT_REG);
5818 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5819 ordered->file_offset, ordered->len);
5820 if (ret) {
5821 err = ret;
5822 WARN_ON(1);
5823 goto out_unlock;
5824 }
5825 }
5826
5827 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5828 btrfs_ordered_update_i_size(inode, 0, ordered);
5829 btrfs_update_inode(trans, root, inode);
5830out_unlock:
5831 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5832 ordered->file_offset + ordered->len - 1,
5833 &cached_state, GFP_NOFS);
5834out:
5835 btrfs_delalloc_release_metadata(inode, ordered->len);
5836 btrfs_end_transaction(trans, root);
163cf09c 5837 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5838 btrfs_put_ordered_extent(ordered);
5839 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5840
5841out_test:
5842 /*
5843 * our bio might span multiple ordered extents. If we haven't
5844 * completed the accounting for the whole dio, go back and try again
5845 */
5846 if (ordered_offset < dip->logical_offset + dip->bytes) {
5847 ordered_bytes = dip->logical_offset + dip->bytes -
5848 ordered_offset;
5849 goto again;
5850 }
4b46fce2
JB
5851out_done:
5852 bio->bi_private = dip->private;
5853
5854 kfree(dip->csums);
5855 kfree(dip);
5856 dio_end_io(bio, err);
5857}
5858
eaf25d93
CM
5859static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5860 struct bio *bio, int mirror_num,
5861 unsigned long bio_flags, u64 offset)
5862{
5863 int ret;
5864 struct btrfs_root *root = BTRFS_I(inode)->root;
5865 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5866 BUG_ON(ret);
5867 return 0;
5868}
5869
e65e1535
MX
5870static void btrfs_end_dio_bio(struct bio *bio, int err)
5871{
5872 struct btrfs_dio_private *dip = bio->bi_private;
5873
5874 if (err) {
5875 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
3dd1462e
JB
5876 "sector %#Lx len %u err no %d\n",
5877 dip->inode->i_ino, bio->bi_rw,
5878 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5879 dip->errors = 1;
5880
5881 /*
5882 * before atomic variable goto zero, we must make sure
5883 * dip->errors is perceived to be set.
5884 */
5885 smp_mb__before_atomic_dec();
5886 }
5887
5888 /* if there are more bios still pending for this dio, just exit */
5889 if (!atomic_dec_and_test(&dip->pending_bios))
5890 goto out;
5891
5892 if (dip->errors)
5893 bio_io_error(dip->orig_bio);
5894 else {
5895 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5896 bio_endio(dip->orig_bio, 0);
5897 }
5898out:
5899 bio_put(bio);
5900}
5901
5902static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5903 u64 first_sector, gfp_t gfp_flags)
5904{
5905 int nr_vecs = bio_get_nr_vecs(bdev);
5906 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5907}
5908
5909static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5910 int rw, u64 file_offset, int skip_sum,
5911 u32 *csums)
5912{
5913 int write = rw & REQ_WRITE;
5914 struct btrfs_root *root = BTRFS_I(inode)->root;
5915 int ret;
5916
5917 bio_get(bio);
5918 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5919 if (ret)
5920 goto err;
5921
5922 if (write && !skip_sum) {
5923 ret = btrfs_wq_submit_bio(root->fs_info,
5924 inode, rw, bio, 0, 0,
5925 file_offset,
5926 __btrfs_submit_bio_start_direct_io,
5927 __btrfs_submit_bio_done);
5928 goto err;
5929 } else if (!skip_sum)
5930 btrfs_lookup_bio_sums_dio(root, inode, bio,
5931 file_offset, csums);
5932
5933 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5934err:
5935 bio_put(bio);
5936 return ret;
5937}
5938
5939static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5940 int skip_sum)
5941{
5942 struct inode *inode = dip->inode;
5943 struct btrfs_root *root = BTRFS_I(inode)->root;
5944 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5945 struct bio *bio;
5946 struct bio *orig_bio = dip->orig_bio;
5947 struct bio_vec *bvec = orig_bio->bi_io_vec;
5948 u64 start_sector = orig_bio->bi_sector;
5949 u64 file_offset = dip->logical_offset;
5950 u64 submit_len = 0;
5951 u64 map_length;
5952 int nr_pages = 0;
5953 u32 *csums = dip->csums;
5954 int ret = 0;
5955
5956 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5957 if (!bio)
5958 return -ENOMEM;
5959 bio->bi_private = dip;
5960 bio->bi_end_io = btrfs_end_dio_bio;
5961 atomic_inc(&dip->pending_bios);
5962
5963 map_length = orig_bio->bi_size;
5964 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5965 &map_length, NULL, 0);
5966 if (ret) {
5967 bio_put(bio);
5968 return -EIO;
5969 }
5970
5971 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5972 if (unlikely(map_length < submit_len + bvec->bv_len ||
5973 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5974 bvec->bv_offset) < bvec->bv_len)) {
5975 /*
5976 * inc the count before we submit the bio so
5977 * we know the end IO handler won't happen before
5978 * we inc the count. Otherwise, the dip might get freed
5979 * before we're done setting it up
5980 */
5981 atomic_inc(&dip->pending_bios);
5982 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5983 file_offset, skip_sum,
5984 csums);
5985 if (ret) {
5986 bio_put(bio);
5987 atomic_dec(&dip->pending_bios);
5988 goto out_err;
5989 }
5990
5991 if (!skip_sum)
5992 csums = csums + nr_pages;
5993 start_sector += submit_len >> 9;
5994 file_offset += submit_len;
5995
5996 submit_len = 0;
5997 nr_pages = 0;
5998
5999 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6000 start_sector, GFP_NOFS);
6001 if (!bio)
6002 goto out_err;
6003 bio->bi_private = dip;
6004 bio->bi_end_io = btrfs_end_dio_bio;
6005
6006 map_length = orig_bio->bi_size;
6007 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6008 &map_length, NULL, 0);
6009 if (ret) {
6010 bio_put(bio);
6011 goto out_err;
6012 }
6013 } else {
6014 submit_len += bvec->bv_len;
6015 nr_pages ++;
6016 bvec++;
6017 }
6018 }
6019
6020 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6021 csums);
6022 if (!ret)
6023 return 0;
6024
6025 bio_put(bio);
6026out_err:
6027 dip->errors = 1;
6028 /*
6029 * before atomic variable goto zero, we must
6030 * make sure dip->errors is perceived to be set.
6031 */
6032 smp_mb__before_atomic_dec();
6033 if (atomic_dec_and_test(&dip->pending_bios))
6034 bio_io_error(dip->orig_bio);
6035
6036 /* bio_end_io() will handle error, so we needn't return it */
6037 return 0;
6038}
6039
4b46fce2
JB
6040static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6041 loff_t file_offset)
6042{
6043 struct btrfs_root *root = BTRFS_I(inode)->root;
6044 struct btrfs_dio_private *dip;
6045 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6046 int skip_sum;
7b6d91da 6047 int write = rw & REQ_WRITE;
4b46fce2
JB
6048 int ret = 0;
6049
6050 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6051
6052 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6053 if (!dip) {
6054 ret = -ENOMEM;
6055 goto free_ordered;
6056 }
6057 dip->csums = NULL;
6058
6059 if (!skip_sum) {
6060 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6061 if (!dip->csums) {
b4966b77 6062 kfree(dip);
4b46fce2
JB
6063 ret = -ENOMEM;
6064 goto free_ordered;
6065 }
6066 }
6067
6068 dip->private = bio->bi_private;
6069 dip->inode = inode;
6070 dip->logical_offset = file_offset;
6071
4b46fce2
JB
6072 dip->bytes = 0;
6073 do {
6074 dip->bytes += bvec->bv_len;
6075 bvec++;
6076 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6077
46bfbb5c 6078 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6079 bio->bi_private = dip;
e65e1535
MX
6080 dip->errors = 0;
6081 dip->orig_bio = bio;
6082 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6083
6084 if (write)
6085 bio->bi_end_io = btrfs_endio_direct_write;
6086 else
6087 bio->bi_end_io = btrfs_endio_direct_read;
6088
e65e1535
MX
6089 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6090 if (!ret)
eaf25d93 6091 return;
4b46fce2
JB
6092free_ordered:
6093 /*
6094 * If this is a write, we need to clean up the reserved space and kill
6095 * the ordered extent.
6096 */
6097 if (write) {
6098 struct btrfs_ordered_extent *ordered;
955256f2 6099 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6100 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6101 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6102 btrfs_free_reserved_extent(root, ordered->start,
6103 ordered->disk_len);
6104 btrfs_put_ordered_extent(ordered);
6105 btrfs_put_ordered_extent(ordered);
6106 }
6107 bio_endio(bio, ret);
6108}
6109
5a5f79b5
CM
6110static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6111 const struct iovec *iov, loff_t offset,
6112 unsigned long nr_segs)
6113{
6114 int seg;
6115 size_t size;
6116 unsigned long addr;
6117 unsigned blocksize_mask = root->sectorsize - 1;
6118 ssize_t retval = -EINVAL;
6119 loff_t end = offset;
6120
6121 if (offset & blocksize_mask)
6122 goto out;
6123
6124 /* Check the memory alignment. Blocks cannot straddle pages */
6125 for (seg = 0; seg < nr_segs; seg++) {
6126 addr = (unsigned long)iov[seg].iov_base;
6127 size = iov[seg].iov_len;
6128 end += size;
6129 if ((addr & blocksize_mask) || (size & blocksize_mask))
6130 goto out;
6131 }
6132 retval = 0;
6133out:
6134 return retval;
6135}
16432985
CM
6136static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6137 const struct iovec *iov, loff_t offset,
6138 unsigned long nr_segs)
6139{
4b46fce2
JB
6140 struct file *file = iocb->ki_filp;
6141 struct inode *inode = file->f_mapping->host;
6142 struct btrfs_ordered_extent *ordered;
4845e44f 6143 struct extent_state *cached_state = NULL;
4b46fce2
JB
6144 u64 lockstart, lockend;
6145 ssize_t ret;
4845e44f
CM
6146 int writing = rw & WRITE;
6147 int write_bits = 0;
3f7c579c 6148 size_t count = iov_length(iov, nr_segs);
4b46fce2 6149
5a5f79b5
CM
6150 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6151 offset, nr_segs)) {
6152 return 0;
6153 }
6154
4b46fce2 6155 lockstart = offset;
3f7c579c
CM
6156 lockend = offset + count - 1;
6157
6158 if (writing) {
6159 ret = btrfs_delalloc_reserve_space(inode, count);
6160 if (ret)
6161 goto out;
6162 }
4845e44f 6163
4b46fce2 6164 while (1) {
4845e44f
CM
6165 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6166 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6167 /*
6168 * We're concerned with the entire range that we're going to be
6169 * doing DIO to, so we need to make sure theres no ordered
6170 * extents in this range.
6171 */
6172 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6173 lockend - lockstart + 1);
6174 if (!ordered)
6175 break;
4845e44f
CM
6176 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6177 &cached_state, GFP_NOFS);
4b46fce2
JB
6178 btrfs_start_ordered_extent(inode, ordered, 1);
6179 btrfs_put_ordered_extent(ordered);
6180 cond_resched();
6181 }
6182
4845e44f
CM
6183 /*
6184 * we don't use btrfs_set_extent_delalloc because we don't want
6185 * the dirty or uptodate bits
6186 */
6187 if (writing) {
6188 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6189 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6190 EXTENT_DELALLOC, 0, NULL, &cached_state,
6191 GFP_NOFS);
6192 if (ret) {
6193 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6194 lockend, EXTENT_LOCKED | write_bits,
6195 1, 0, &cached_state, GFP_NOFS);
6196 goto out;
6197 }
6198 }
6199
6200 free_extent_state(cached_state);
6201 cached_state = NULL;
6202
5a5f79b5
CM
6203 ret = __blockdev_direct_IO(rw, iocb, inode,
6204 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6205 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6206 btrfs_submit_direct, 0);
4b46fce2
JB
6207
6208 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6209 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6210 offset + iov_length(iov, nr_segs) - 1,
6211 EXTENT_LOCKED | write_bits, 1, 0,
6212 &cached_state, GFP_NOFS);
4b46fce2
JB
6213 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6214 /*
6215 * We're falling back to buffered, unlock the section we didn't
6216 * do IO on.
6217 */
4845e44f
CM
6218 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6219 offset + iov_length(iov, nr_segs) - 1,
6220 EXTENT_LOCKED | write_bits, 1, 0,
6221 &cached_state, GFP_NOFS);
4b46fce2 6222 }
4845e44f
CM
6223out:
6224 free_extent_state(cached_state);
4b46fce2 6225 return ret;
16432985
CM
6226}
6227
1506fcc8
YS
6228static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6229 __u64 start, __u64 len)
6230{
ec29ed5b 6231 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6232}
6233
a52d9a80 6234int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6235{
d1310b2e
CM
6236 struct extent_io_tree *tree;
6237 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6238 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6239}
1832a6d5 6240
a52d9a80 6241static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6242{
d1310b2e 6243 struct extent_io_tree *tree;
b888db2b
CM
6244
6245
6246 if (current->flags & PF_MEMALLOC) {
6247 redirty_page_for_writepage(wbc, page);
6248 unlock_page(page);
6249 return 0;
6250 }
d1310b2e 6251 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6252 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6253}
6254
f421950f
CM
6255int btrfs_writepages(struct address_space *mapping,
6256 struct writeback_control *wbc)
b293f02e 6257{
d1310b2e 6258 struct extent_io_tree *tree;
771ed689 6259
d1310b2e 6260 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6261 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6262}
6263
3ab2fb5a
CM
6264static int
6265btrfs_readpages(struct file *file, struct address_space *mapping,
6266 struct list_head *pages, unsigned nr_pages)
6267{
d1310b2e
CM
6268 struct extent_io_tree *tree;
6269 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6270 return extent_readpages(tree, mapping, pages, nr_pages,
6271 btrfs_get_extent);
6272}
e6dcd2dc 6273static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6274{
d1310b2e
CM
6275 struct extent_io_tree *tree;
6276 struct extent_map_tree *map;
a52d9a80 6277 int ret;
8c2383c3 6278
d1310b2e
CM
6279 tree = &BTRFS_I(page->mapping->host)->io_tree;
6280 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6281 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6282 if (ret == 1) {
6283 ClearPagePrivate(page);
6284 set_page_private(page, 0);
6285 page_cache_release(page);
39279cc3 6286 }
a52d9a80 6287 return ret;
39279cc3
CM
6288}
6289
e6dcd2dc
CM
6290static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6291{
98509cfc
CM
6292 if (PageWriteback(page) || PageDirty(page))
6293 return 0;
b335b003 6294 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6295}
6296
a52d9a80 6297static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6298{
d1310b2e 6299 struct extent_io_tree *tree;
e6dcd2dc 6300 struct btrfs_ordered_extent *ordered;
2ac55d41 6301 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6302 u64 page_start = page_offset(page);
6303 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6304
8b62b72b
CM
6305
6306 /*
6307 * we have the page locked, so new writeback can't start,
6308 * and the dirty bit won't be cleared while we are here.
6309 *
6310 * Wait for IO on this page so that we can safely clear
6311 * the PagePrivate2 bit and do ordered accounting
6312 */
e6dcd2dc 6313 wait_on_page_writeback(page);
8b62b72b 6314
d1310b2e 6315 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6316 if (offset) {
6317 btrfs_releasepage(page, GFP_NOFS);
6318 return;
6319 }
2ac55d41
JB
6320 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6321 GFP_NOFS);
e6dcd2dc
CM
6322 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6323 page_offset(page));
6324 if (ordered) {
eb84ae03
CM
6325 /*
6326 * IO on this page will never be started, so we need
6327 * to account for any ordered extents now
6328 */
e6dcd2dc
CM
6329 clear_extent_bit(tree, page_start, page_end,
6330 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6331 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6332 &cached_state, GFP_NOFS);
8b62b72b
CM
6333 /*
6334 * whoever cleared the private bit is responsible
6335 * for the finish_ordered_io
6336 */
6337 if (TestClearPagePrivate2(page)) {
6338 btrfs_finish_ordered_io(page->mapping->host,
6339 page_start, page_end);
6340 }
e6dcd2dc 6341 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6342 cached_state = NULL;
6343 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6344 GFP_NOFS);
e6dcd2dc
CM
6345 }
6346 clear_extent_bit(tree, page_start, page_end,
32c00aff 6347 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6348 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6349 __btrfs_releasepage(page, GFP_NOFS);
6350
4a096752 6351 ClearPageChecked(page);
9ad6b7bc 6352 if (PagePrivate(page)) {
9ad6b7bc
CM
6353 ClearPagePrivate(page);
6354 set_page_private(page, 0);
6355 page_cache_release(page);
6356 }
39279cc3
CM
6357}
6358
9ebefb18
CM
6359/*
6360 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6361 * called from a page fault handler when a page is first dirtied. Hence we must
6362 * be careful to check for EOF conditions here. We set the page up correctly
6363 * for a written page which means we get ENOSPC checking when writing into
6364 * holes and correct delalloc and unwritten extent mapping on filesystems that
6365 * support these features.
6366 *
6367 * We are not allowed to take the i_mutex here so we have to play games to
6368 * protect against truncate races as the page could now be beyond EOF. Because
6369 * vmtruncate() writes the inode size before removing pages, once we have the
6370 * page lock we can determine safely if the page is beyond EOF. If it is not
6371 * beyond EOF, then the page is guaranteed safe against truncation until we
6372 * unlock the page.
6373 */
c2ec175c 6374int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6375{
c2ec175c 6376 struct page *page = vmf->page;
6da6abae 6377 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6378 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6379 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6380 struct btrfs_ordered_extent *ordered;
2ac55d41 6381 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6382 char *kaddr;
6383 unsigned long zero_start;
9ebefb18 6384 loff_t size;
1832a6d5 6385 int ret;
a52d9a80 6386 u64 page_start;
e6dcd2dc 6387 u64 page_end;
9ebefb18 6388
0ca1f7ce 6389 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6390 if (ret) {
6391 if (ret == -ENOMEM)
6392 ret = VM_FAULT_OOM;
6393 else /* -ENOSPC, -EIO, etc */
6394 ret = VM_FAULT_SIGBUS;
1832a6d5 6395 goto out;
56a76f82 6396 }
1832a6d5 6397
56a76f82 6398 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6399again:
9ebefb18 6400 lock_page(page);
9ebefb18 6401 size = i_size_read(inode);
e6dcd2dc
CM
6402 page_start = page_offset(page);
6403 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6404
9ebefb18 6405 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6406 (page_start >= size)) {
9ebefb18
CM
6407 /* page got truncated out from underneath us */
6408 goto out_unlock;
6409 }
e6dcd2dc
CM
6410 wait_on_page_writeback(page);
6411
2ac55d41
JB
6412 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6413 GFP_NOFS);
e6dcd2dc
CM
6414 set_page_extent_mapped(page);
6415
eb84ae03
CM
6416 /*
6417 * we can't set the delalloc bits if there are pending ordered
6418 * extents. Drop our locks and wait for them to finish
6419 */
e6dcd2dc
CM
6420 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6421 if (ordered) {
2ac55d41
JB
6422 unlock_extent_cached(io_tree, page_start, page_end,
6423 &cached_state, GFP_NOFS);
e6dcd2dc 6424 unlock_page(page);
eb84ae03 6425 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6426 btrfs_put_ordered_extent(ordered);
6427 goto again;
6428 }
6429
fbf19087
JB
6430 /*
6431 * XXX - page_mkwrite gets called every time the page is dirtied, even
6432 * if it was already dirty, so for space accounting reasons we need to
6433 * clear any delalloc bits for the range we are fixing to save. There
6434 * is probably a better way to do this, but for now keep consistent with
6435 * prepare_pages in the normal write path.
6436 */
2ac55d41 6437 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6438 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6439 0, 0, &cached_state, GFP_NOFS);
fbf19087 6440
2ac55d41
JB
6441 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6442 &cached_state);
9ed74f2d 6443 if (ret) {
2ac55d41
JB
6444 unlock_extent_cached(io_tree, page_start, page_end,
6445 &cached_state, GFP_NOFS);
9ed74f2d
JB
6446 ret = VM_FAULT_SIGBUS;
6447 goto out_unlock;
6448 }
e6dcd2dc 6449 ret = 0;
9ebefb18
CM
6450
6451 /* page is wholly or partially inside EOF */
a52d9a80 6452 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6453 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6454 else
e6dcd2dc 6455 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6456
e6dcd2dc
CM
6457 if (zero_start != PAGE_CACHE_SIZE) {
6458 kaddr = kmap(page);
6459 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6460 flush_dcache_page(page);
6461 kunmap(page);
6462 }
247e743c 6463 ClearPageChecked(page);
e6dcd2dc 6464 set_page_dirty(page);
50a9b214 6465 SetPageUptodate(page);
5a3f23d5 6466
257c62e1
CM
6467 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6468 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6469
2ac55d41 6470 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6471
6472out_unlock:
50a9b214
CM
6473 if (!ret)
6474 return VM_FAULT_LOCKED;
9ebefb18 6475 unlock_page(page);
0ca1f7ce 6476 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6477out:
9ebefb18
CM
6478 return ret;
6479}
6480
39279cc3
CM
6481static void btrfs_truncate(struct inode *inode)
6482{
6483 struct btrfs_root *root = BTRFS_I(inode)->root;
6484 int ret;
6485 struct btrfs_trans_handle *trans;
d3c2fdcf 6486 unsigned long nr;
dbe674a9 6487 u64 mask = root->sectorsize - 1;
39279cc3 6488
8082510e
YZ
6489 if (!S_ISREG(inode->i_mode)) {
6490 WARN_ON(1);
39279cc3 6491 return;
8082510e 6492 }
39279cc3 6493
5d5e103a
JB
6494 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6495 if (ret)
6496 return;
8082510e 6497
4a096752 6498 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6499 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6500
d68fc57b
YZ
6501 trans = btrfs_start_transaction(root, 0);
6502 BUG_ON(IS_ERR(trans));
8082510e 6503 btrfs_set_trans_block_group(trans, inode);
d68fc57b 6504 trans->block_rsv = root->orphan_block_rsv;
5a3f23d5
CM
6505
6506 /*
6507 * setattr is responsible for setting the ordered_data_close flag,
6508 * but that is only tested during the last file release. That
6509 * could happen well after the next commit, leaving a great big
6510 * window where new writes may get lost if someone chooses to write
6511 * to this file after truncating to zero
6512 *
6513 * The inode doesn't have any dirty data here, and so if we commit
6514 * this is a noop. If someone immediately starts writing to the inode
6515 * it is very likely we'll catch some of their writes in this
6516 * transaction, and the commit will find this file on the ordered
6517 * data list with good things to send down.
6518 *
6519 * This is a best effort solution, there is still a window where
6520 * using truncate to replace the contents of the file will
6521 * end up with a zero length file after a crash.
6522 */
6523 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6524 btrfs_add_ordered_operation(trans, root, inode);
6525
8082510e 6526 while (1) {
d68fc57b
YZ
6527 if (!trans) {
6528 trans = btrfs_start_transaction(root, 0);
6529 BUG_ON(IS_ERR(trans));
6530 btrfs_set_trans_block_group(trans, inode);
6531 trans->block_rsv = root->orphan_block_rsv;
6532 }
6533
6534 ret = btrfs_block_rsv_check(trans, root,
6535 root->orphan_block_rsv, 0, 5);
6536 if (ret) {
6537 BUG_ON(ret != -EAGAIN);
6538 ret = btrfs_commit_transaction(trans, root);
6539 BUG_ON(ret);
6540 trans = NULL;
6541 continue;
6542 }
6543
8082510e
YZ
6544 ret = btrfs_truncate_inode_items(trans, root, inode,
6545 inode->i_size,
6546 BTRFS_EXTENT_DATA_KEY);
6547 if (ret != -EAGAIN)
6548 break;
39279cc3 6549
8082510e
YZ
6550 ret = btrfs_update_inode(trans, root, inode);
6551 BUG_ON(ret);
5f39d397 6552
8082510e
YZ
6553 nr = trans->blocks_used;
6554 btrfs_end_transaction(trans, root);
d68fc57b 6555 trans = NULL;
8082510e 6556 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6557 }
6558
6559 if (ret == 0 && inode->i_nlink > 0) {
6560 ret = btrfs_orphan_del(trans, inode);
6561 BUG_ON(ret);
6562 }
6563
6564 ret = btrfs_update_inode(trans, root, inode);
7b128766
JB
6565 BUG_ON(ret);
6566
7b128766 6567 nr = trans->blocks_used;
89ce8a63 6568 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 6569 BUG_ON(ret);
d3c2fdcf 6570 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
6571}
6572
d352ac68
CM
6573/*
6574 * create a new subvolume directory/inode (helper for the ioctl).
6575 */
d2fb3437 6576int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 6577 struct btrfs_root *new_root,
d2fb3437 6578 u64 new_dirid, u64 alloc_hint)
39279cc3 6579{
39279cc3 6580 struct inode *inode;
76dda93c 6581 int err;
00e4e6b3 6582 u64 index = 0;
39279cc3 6583
aec7477b 6584 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 6585 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 6586 if (IS_ERR(inode))
f46b5a66 6587 return PTR_ERR(inode);
39279cc3
CM
6588 inode->i_op = &btrfs_dir_inode_operations;
6589 inode->i_fop = &btrfs_dir_file_operations;
6590
39279cc3 6591 inode->i_nlink = 1;
dbe674a9 6592 btrfs_i_size_write(inode, 0);
3b96362c 6593
76dda93c
YZ
6594 err = btrfs_update_inode(trans, new_root, inode);
6595 BUG_ON(err);
cb8e7090 6596
76dda93c 6597 iput(inode);
cb8e7090 6598 return 0;
39279cc3
CM
6599}
6600
d352ac68
CM
6601/* helper function for file defrag and space balancing. This
6602 * forces readahead on a given range of bytes in an inode
6603 */
edbd8d4e 6604unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6605 struct file_ra_state *ra, struct file *file,
6606 pgoff_t offset, pgoff_t last_index)
6607{
8e7bf94f 6608 pgoff_t req_size = last_index - offset + 1;
86479a04 6609
86479a04
CM
6610 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6611 return offset + req_size;
86479a04
CM
6612}
6613
39279cc3
CM
6614struct inode *btrfs_alloc_inode(struct super_block *sb)
6615{
6616 struct btrfs_inode *ei;
2ead6ae7 6617 struct inode *inode;
39279cc3
CM
6618
6619 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6620 if (!ei)
6621 return NULL;
2ead6ae7
YZ
6622
6623 ei->root = NULL;
6624 ei->space_info = NULL;
6625 ei->generation = 0;
6626 ei->sequence = 0;
15ee9bc7 6627 ei->last_trans = 0;
257c62e1 6628 ei->last_sub_trans = 0;
e02119d5 6629 ei->logged_trans = 0;
2ead6ae7
YZ
6630 ei->delalloc_bytes = 0;
6631 ei->reserved_bytes = 0;
6632 ei->disk_i_size = 0;
6633 ei->flags = 0;
6634 ei->index_cnt = (u64)-1;
6635 ei->last_unlink_trans = 0;
6636
0ca1f7ce 6637 atomic_set(&ei->outstanding_extents, 0);
57a45ced 6638 atomic_set(&ei->reserved_extents, 0);
2ead6ae7
YZ
6639
6640 ei->ordered_data_close = 0;
d68fc57b 6641 ei->orphan_meta_reserved = 0;
2ead6ae7 6642 ei->dummy_inode = 0;
261507a0 6643 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7
YZ
6644
6645 inode = &ei->vfs_inode;
6646 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6647 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6648 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6649 mutex_init(&ei->log_mutex);
e6dcd2dc 6650 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6651 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6652 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6653 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6654 RB_CLEAR_NODE(&ei->rb_node);
6655
6656 return inode;
39279cc3
CM
6657}
6658
fa0d7e3d
NP
6659static void btrfs_i_callback(struct rcu_head *head)
6660{
6661 struct inode *inode = container_of(head, struct inode, i_rcu);
6662 INIT_LIST_HEAD(&inode->i_dentry);
6663 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6664}
6665
39279cc3
CM
6666void btrfs_destroy_inode(struct inode *inode)
6667{
e6dcd2dc 6668 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6669 struct btrfs_root *root = BTRFS_I(inode)->root;
6670
39279cc3
CM
6671 WARN_ON(!list_empty(&inode->i_dentry));
6672 WARN_ON(inode->i_data.nrpages);
0ca1f7ce 6673 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
57a45ced 6674 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
39279cc3 6675
a6dbd429
JB
6676 /*
6677 * This can happen where we create an inode, but somebody else also
6678 * created the same inode and we need to destroy the one we already
6679 * created.
6680 */
6681 if (!root)
6682 goto free;
6683
5a3f23d5
CM
6684 /*
6685 * Make sure we're properly removed from the ordered operation
6686 * lists.
6687 */
6688 smp_mb();
6689 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6690 spin_lock(&root->fs_info->ordered_extent_lock);
6691 list_del_init(&BTRFS_I(inode)->ordered_operations);
6692 spin_unlock(&root->fs_info->ordered_extent_lock);
6693 }
6694
0af3d00b
JB
6695 if (root == root->fs_info->tree_root) {
6696 struct btrfs_block_group_cache *block_group;
6697
6698 block_group = btrfs_lookup_block_group(root->fs_info,
6699 BTRFS_I(inode)->block_group);
6700 if (block_group && block_group->inode == inode) {
6701 spin_lock(&block_group->lock);
6702 block_group->inode = NULL;
6703 spin_unlock(&block_group->lock);
6704 btrfs_put_block_group(block_group);
6705 } else if (block_group) {
6706 btrfs_put_block_group(block_group);
6707 }
6708 }
6709
d68fc57b 6710 spin_lock(&root->orphan_lock);
7b128766 6711 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
6712 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6713 inode->i_ino);
6714 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6715 }
d68fc57b 6716 spin_unlock(&root->orphan_lock);
7b128766 6717
d397712b 6718 while (1) {
e6dcd2dc
CM
6719 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6720 if (!ordered)
6721 break;
6722 else {
d397712b
CM
6723 printk(KERN_ERR "btrfs found ordered "
6724 "extent %llu %llu on inode cleanup\n",
6725 (unsigned long long)ordered->file_offset,
6726 (unsigned long long)ordered->len);
e6dcd2dc
CM
6727 btrfs_remove_ordered_extent(inode, ordered);
6728 btrfs_put_ordered_extent(ordered);
6729 btrfs_put_ordered_extent(ordered);
6730 }
6731 }
5d4f98a2 6732 inode_tree_del(inode);
5b21f2ed 6733 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6734free:
fa0d7e3d 6735 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6736}
6737
45321ac5 6738int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6739{
6740 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6741
0af3d00b
JB
6742 if (btrfs_root_refs(&root->root_item) == 0 &&
6743 root != root->fs_info->tree_root)
45321ac5 6744 return 1;
76dda93c 6745 else
45321ac5 6746 return generic_drop_inode(inode);
76dda93c
YZ
6747}
6748
0ee0fda0 6749static void init_once(void *foo)
39279cc3
CM
6750{
6751 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6752
6753 inode_init_once(&ei->vfs_inode);
6754}
6755
6756void btrfs_destroy_cachep(void)
6757{
6758 if (btrfs_inode_cachep)
6759 kmem_cache_destroy(btrfs_inode_cachep);
6760 if (btrfs_trans_handle_cachep)
6761 kmem_cache_destroy(btrfs_trans_handle_cachep);
6762 if (btrfs_transaction_cachep)
6763 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6764 if (btrfs_path_cachep)
6765 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6766 if (btrfs_free_space_cachep)
6767 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6768}
6769
6770int btrfs_init_cachep(void)
6771{
9601e3f6
CH
6772 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6773 sizeof(struct btrfs_inode), 0,
6774 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6775 if (!btrfs_inode_cachep)
6776 goto fail;
9601e3f6
CH
6777
6778 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6779 sizeof(struct btrfs_trans_handle), 0,
6780 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6781 if (!btrfs_trans_handle_cachep)
6782 goto fail;
9601e3f6
CH
6783
6784 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6785 sizeof(struct btrfs_transaction), 0,
6786 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6787 if (!btrfs_transaction_cachep)
6788 goto fail;
9601e3f6
CH
6789
6790 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6791 sizeof(struct btrfs_path), 0,
6792 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6793 if (!btrfs_path_cachep)
6794 goto fail;
9601e3f6 6795
dc89e982
JB
6796 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6797 sizeof(struct btrfs_free_space), 0,
6798 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6799 if (!btrfs_free_space_cachep)
6800 goto fail;
6801
39279cc3
CM
6802 return 0;
6803fail:
6804 btrfs_destroy_cachep();
6805 return -ENOMEM;
6806}
6807
6808static int btrfs_getattr(struct vfsmount *mnt,
6809 struct dentry *dentry, struct kstat *stat)
6810{
6811 struct inode *inode = dentry->d_inode;
6812 generic_fillattr(inode, stat);
3394e160 6813 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 6814 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6815 stat->blocks = (inode_get_bytes(inode) +
6816 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6817 return 0;
6818}
6819
d397712b
CM
6820static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6821 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6822{
6823 struct btrfs_trans_handle *trans;
6824 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6825 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6826 struct inode *new_inode = new_dentry->d_inode;
6827 struct inode *old_inode = old_dentry->d_inode;
6828 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6829 u64 index = 0;
4df27c4d 6830 u64 root_objectid;
39279cc3
CM
6831 int ret;
6832
f679a840
YZ
6833 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6834 return -EPERM;
6835
4df27c4d
YZ
6836 /* we only allow rename subvolume link between subvolumes */
6837 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6838 return -EXDEV;
6839
4df27c4d
YZ
6840 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6841 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6842 return -ENOTEMPTY;
5f39d397 6843
4df27c4d
YZ
6844 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6845 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6846 return -ENOTEMPTY;
5a3f23d5
CM
6847 /*
6848 * we're using rename to replace one file with another.
6849 * and the replacement file is large. Start IO on it now so
6850 * we don't add too much work to the end of the transaction
6851 */
4baf8c92 6852 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6853 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6854 filemap_flush(old_inode->i_mapping);
6855
76dda93c
YZ
6856 /* close the racy window with snapshot create/destroy ioctl */
6857 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6858 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6859 /*
6860 * We want to reserve the absolute worst case amount of items. So if
6861 * both inodes are subvols and we need to unlink them then that would
6862 * require 4 item modifications, but if they are both normal inodes it
6863 * would require 5 item modifications, so we'll assume their normal
6864 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6865 * should cover the worst case number of items we'll modify.
6866 */
6867 trans = btrfs_start_transaction(root, 20);
6868 if (IS_ERR(trans))
6869 return PTR_ERR(trans);
76dda93c 6870
a5719521 6871 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 6872
4df27c4d
YZ
6873 if (dest != root)
6874 btrfs_record_root_in_trans(trans, dest);
5f39d397 6875
a5719521
YZ
6876 ret = btrfs_set_inode_index(new_dir, &index);
6877 if (ret)
6878 goto out_fail;
5a3f23d5 6879
a5719521 6880 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6881 /* force full log commit if subvolume involved. */
6882 root->fs_info->last_trans_log_full_commit = trans->transid;
6883 } else {
a5719521
YZ
6884 ret = btrfs_insert_inode_ref(trans, dest,
6885 new_dentry->d_name.name,
6886 new_dentry->d_name.len,
6887 old_inode->i_ino,
6888 new_dir->i_ino, index);
6889 if (ret)
6890 goto out_fail;
4df27c4d
YZ
6891 /*
6892 * this is an ugly little race, but the rename is required
6893 * to make sure that if we crash, the inode is either at the
6894 * old name or the new one. pinning the log transaction lets
6895 * us make sure we don't allow a log commit to come in after
6896 * we unlink the name but before we add the new name back in.
6897 */
6898 btrfs_pin_log_trans(root);
6899 }
5a3f23d5
CM
6900 /*
6901 * make sure the inode gets flushed if it is replacing
6902 * something.
6903 */
6904 if (new_inode && new_inode->i_size &&
6905 old_inode && S_ISREG(old_inode->i_mode)) {
6906 btrfs_add_ordered_operation(trans, root, old_inode);
6907 }
6908
39279cc3
CM
6909 old_dir->i_ctime = old_dir->i_mtime = ctime;
6910 new_dir->i_ctime = new_dir->i_mtime = ctime;
6911 old_inode->i_ctime = ctime;
5f39d397 6912
12fcfd22
CM
6913 if (old_dentry->d_parent != new_dentry->d_parent)
6914 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6915
4df27c4d
YZ
6916 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6917 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6918 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6919 old_dentry->d_name.name,
6920 old_dentry->d_name.len);
6921 } else {
6922 btrfs_inc_nlink(old_dentry->d_inode);
6923 ret = btrfs_unlink_inode(trans, root, old_dir,
6924 old_dentry->d_inode,
6925 old_dentry->d_name.name,
6926 old_dentry->d_name.len);
6927 }
6928 BUG_ON(ret);
39279cc3
CM
6929
6930 if (new_inode) {
6931 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
6932 if (unlikely(new_inode->i_ino ==
6933 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6934 root_objectid = BTRFS_I(new_inode)->location.objectid;
6935 ret = btrfs_unlink_subvol(trans, dest, new_dir,
6936 root_objectid,
6937 new_dentry->d_name.name,
6938 new_dentry->d_name.len);
6939 BUG_ON(new_inode->i_nlink == 0);
6940 } else {
6941 ret = btrfs_unlink_inode(trans, dest, new_dir,
6942 new_dentry->d_inode,
6943 new_dentry->d_name.name,
6944 new_dentry->d_name.len);
6945 }
6946 BUG_ON(ret);
7b128766 6947 if (new_inode->i_nlink == 0) {
e02119d5 6948 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 6949 BUG_ON(ret);
7b128766 6950 }
39279cc3 6951 }
aec7477b 6952
4df27c4d
YZ
6953 ret = btrfs_add_link(trans, new_dir, old_inode,
6954 new_dentry->d_name.name,
a5719521 6955 new_dentry->d_name.len, 0, index);
4df27c4d 6956 BUG_ON(ret);
39279cc3 6957
4df27c4d 6958 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
6959 struct dentry *parent = dget_parent(new_dentry);
6960 btrfs_log_new_name(trans, old_inode, old_dir, parent);
6961 dput(parent);
4df27c4d
YZ
6962 btrfs_end_log_trans(root);
6963 }
39279cc3 6964out_fail:
ab78c84d 6965 btrfs_end_transaction_throttle(trans, root);
4df27c4d 6966
76dda93c
YZ
6967 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6968 up_read(&root->fs_info->subvol_sem);
9ed74f2d 6969
39279cc3
CM
6970 return ret;
6971}
6972
d352ac68
CM
6973/*
6974 * some fairly slow code that needs optimization. This walks the list
6975 * of all the inodes with pending delalloc and forces them to disk.
6976 */
24bbcf04 6977int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
6978{
6979 struct list_head *head = &root->fs_info->delalloc_inodes;
6980 struct btrfs_inode *binode;
5b21f2ed 6981 struct inode *inode;
ea8c2819 6982
c146afad
YZ
6983 if (root->fs_info->sb->s_flags & MS_RDONLY)
6984 return -EROFS;
6985
75eff68e 6986 spin_lock(&root->fs_info->delalloc_lock);
d397712b 6987 while (!list_empty(head)) {
ea8c2819
CM
6988 binode = list_entry(head->next, struct btrfs_inode,
6989 delalloc_inodes);
5b21f2ed
ZY
6990 inode = igrab(&binode->vfs_inode);
6991 if (!inode)
6992 list_del_init(&binode->delalloc_inodes);
75eff68e 6993 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 6994 if (inode) {
8c8bee1d 6995 filemap_flush(inode->i_mapping);
24bbcf04
YZ
6996 if (delay_iput)
6997 btrfs_add_delayed_iput(inode);
6998 else
6999 iput(inode);
5b21f2ed
ZY
7000 }
7001 cond_resched();
75eff68e 7002 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7003 }
75eff68e 7004 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7005
7006 /* the filemap_flush will queue IO into the worker threads, but
7007 * we have to make sure the IO is actually started and that
7008 * ordered extents get created before we return
7009 */
7010 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7011 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7012 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7013 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7014 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7015 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7016 }
7017 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7018 return 0;
7019}
7020
0019f10d
JB
7021int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7022 int sync)
5da9d01b
YZ
7023{
7024 struct btrfs_inode *binode;
7025 struct inode *inode = NULL;
7026
7027 spin_lock(&root->fs_info->delalloc_lock);
7028 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7029 binode = list_entry(root->fs_info->delalloc_inodes.next,
7030 struct btrfs_inode, delalloc_inodes);
7031 inode = igrab(&binode->vfs_inode);
7032 if (inode) {
7033 list_move_tail(&binode->delalloc_inodes,
7034 &root->fs_info->delalloc_inodes);
7035 break;
7036 }
7037
7038 list_del_init(&binode->delalloc_inodes);
7039 cond_resched_lock(&root->fs_info->delalloc_lock);
7040 }
7041 spin_unlock(&root->fs_info->delalloc_lock);
7042
7043 if (inode) {
0019f10d
JB
7044 if (sync) {
7045 filemap_write_and_wait(inode->i_mapping);
7046 /*
7047 * We have to do this because compression doesn't
7048 * actually set PG_writeback until it submits the pages
7049 * for IO, which happens in an async thread, so we could
7050 * race and not actually wait for any writeback pages
7051 * because they've not been submitted yet. Technically
7052 * this could still be the case for the ordered stuff
7053 * since the async thread may not have started to do its
7054 * work yet. If this becomes the case then we need to
7055 * figure out a way to make sure that in writepage we
7056 * wait for any async pages to be submitted before
7057 * returning so that fdatawait does what its supposed to
7058 * do.
7059 */
7060 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7061 } else {
7062 filemap_flush(inode->i_mapping);
7063 }
5da9d01b
YZ
7064 if (delay_iput)
7065 btrfs_add_delayed_iput(inode);
7066 else
7067 iput(inode);
7068 return 1;
7069 }
7070 return 0;
7071}
7072
39279cc3
CM
7073static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7074 const char *symname)
7075{
7076 struct btrfs_trans_handle *trans;
7077 struct btrfs_root *root = BTRFS_I(dir)->root;
7078 struct btrfs_path *path;
7079 struct btrfs_key key;
1832a6d5 7080 struct inode *inode = NULL;
39279cc3
CM
7081 int err;
7082 int drop_inode = 0;
7083 u64 objectid;
00e4e6b3 7084 u64 index = 0 ;
39279cc3
CM
7085 int name_len;
7086 int datasize;
5f39d397 7087 unsigned long ptr;
39279cc3 7088 struct btrfs_file_extent_item *ei;
5f39d397 7089 struct extent_buffer *leaf;
1832a6d5 7090 unsigned long nr = 0;
39279cc3
CM
7091
7092 name_len = strlen(symname) + 1;
7093 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7094 return -ENAMETOOLONG;
1832a6d5 7095
a22285a6
YZ
7096 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7097 if (err)
7098 return err;
9ed74f2d
JB
7099 /*
7100 * 2 items for inode item and ref
7101 * 2 items for dir items
7102 * 1 item for xattr if selinux is on
7103 */
a22285a6
YZ
7104 trans = btrfs_start_transaction(root, 5);
7105 if (IS_ERR(trans))
7106 return PTR_ERR(trans);
1832a6d5 7107
39279cc3
CM
7108 btrfs_set_trans_block_group(trans, dir);
7109
aec7477b 7110 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 7111 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
7112 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7113 &index);
39279cc3
CM
7114 err = PTR_ERR(inode);
7115 if (IS_ERR(inode))
7116 goto out_unlock;
7117
f34f57a3 7118 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
7119 if (err) {
7120 drop_inode = 1;
7121 goto out_unlock;
7122 }
7123
39279cc3 7124 btrfs_set_trans_block_group(trans, inode);
a1b075d2 7125 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7126 if (err)
7127 drop_inode = 1;
7128 else {
7129 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7130 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7131 inode->i_fop = &btrfs_file_operations;
7132 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7133 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7134 }
39279cc3
CM
7135 btrfs_update_inode_block_group(trans, inode);
7136 btrfs_update_inode_block_group(trans, dir);
7137 if (drop_inode)
7138 goto out_unlock;
7139
7140 path = btrfs_alloc_path();
7141 BUG_ON(!path);
7142 key.objectid = inode->i_ino;
7143 key.offset = 0;
39279cc3
CM
7144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7145 datasize = btrfs_file_extent_calc_inline_size(name_len);
7146 err = btrfs_insert_empty_item(trans, root, path, &key,
7147 datasize);
54aa1f4d
CM
7148 if (err) {
7149 drop_inode = 1;
7150 goto out_unlock;
7151 }
5f39d397
CM
7152 leaf = path->nodes[0];
7153 ei = btrfs_item_ptr(leaf, path->slots[0],
7154 struct btrfs_file_extent_item);
7155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7156 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7157 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7158 btrfs_set_file_extent_encryption(leaf, ei, 0);
7159 btrfs_set_file_extent_compression(leaf, ei, 0);
7160 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7161 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7162
39279cc3 7163 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7164 write_extent_buffer(leaf, symname, ptr, name_len);
7165 btrfs_mark_buffer_dirty(leaf);
39279cc3 7166 btrfs_free_path(path);
5f39d397 7167
39279cc3
CM
7168 inode->i_op = &btrfs_symlink_inode_operations;
7169 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7170 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7171 inode_set_bytes(inode, name_len);
dbe674a9 7172 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7173 err = btrfs_update_inode(trans, root, inode);
7174 if (err)
7175 drop_inode = 1;
39279cc3
CM
7176
7177out_unlock:
d3c2fdcf 7178 nr = trans->blocks_used;
ab78c84d 7179 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7180 if (drop_inode) {
7181 inode_dec_link_count(inode);
7182 iput(inode);
7183 }
d3c2fdcf 7184 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7185 return err;
7186}
16432985 7187
0af3d00b
JB
7188static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7189 u64 start, u64 num_bytes, u64 min_size,
7190 loff_t actual_len, u64 *alloc_hint,
7191 struct btrfs_trans_handle *trans)
d899e052 7192{
d899e052
YZ
7193 struct btrfs_root *root = BTRFS_I(inode)->root;
7194 struct btrfs_key ins;
d899e052 7195 u64 cur_offset = start;
55a61d1d 7196 u64 i_size;
d899e052 7197 int ret = 0;
0af3d00b 7198 bool own_trans = true;
d899e052 7199
0af3d00b
JB
7200 if (trans)
7201 own_trans = false;
d899e052 7202 while (num_bytes > 0) {
0af3d00b
JB
7203 if (own_trans) {
7204 trans = btrfs_start_transaction(root, 3);
7205 if (IS_ERR(trans)) {
7206 ret = PTR_ERR(trans);
7207 break;
7208 }
5a303d5d
YZ
7209 }
7210
efa56464
YZ
7211 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7212 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7213 if (ret) {
0af3d00b
JB
7214 if (own_trans)
7215 btrfs_end_transaction(trans, root);
a22285a6 7216 break;
d899e052 7217 }
5a303d5d 7218
d899e052
YZ
7219 ret = insert_reserved_file_extent(trans, inode,
7220 cur_offset, ins.objectid,
7221 ins.offset, ins.offset,
920bbbfb 7222 ins.offset, 0, 0, 0,
d899e052
YZ
7223 BTRFS_FILE_EXTENT_PREALLOC);
7224 BUG_ON(ret);
a1ed835e
CM
7225 btrfs_drop_extent_cache(inode, cur_offset,
7226 cur_offset + ins.offset -1, 0);
5a303d5d 7227
d899e052
YZ
7228 num_bytes -= ins.offset;
7229 cur_offset += ins.offset;
efa56464 7230 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7231
d899e052 7232 inode->i_ctime = CURRENT_TIME;
6cbff00f 7233 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7234 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7235 (actual_len > inode->i_size) &&
7236 (cur_offset > inode->i_size)) {
d1ea6a61 7237 if (cur_offset > actual_len)
55a61d1d 7238 i_size = actual_len;
d1ea6a61 7239 else
55a61d1d
JB
7240 i_size = cur_offset;
7241 i_size_write(inode, i_size);
7242 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7243 }
7244
d899e052
YZ
7245 ret = btrfs_update_inode(trans, root, inode);
7246 BUG_ON(ret);
d899e052 7247
0af3d00b
JB
7248 if (own_trans)
7249 btrfs_end_transaction(trans, root);
5a303d5d 7250 }
d899e052
YZ
7251 return ret;
7252}
7253
0af3d00b
JB
7254int btrfs_prealloc_file_range(struct inode *inode, int mode,
7255 u64 start, u64 num_bytes, u64 min_size,
7256 loff_t actual_len, u64 *alloc_hint)
7257{
7258 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7259 min_size, actual_len, alloc_hint,
7260 NULL);
7261}
7262
7263int btrfs_prealloc_file_range_trans(struct inode *inode,
7264 struct btrfs_trans_handle *trans, int mode,
7265 u64 start, u64 num_bytes, u64 min_size,
7266 loff_t actual_len, u64 *alloc_hint)
7267{
7268 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7269 min_size, actual_len, alloc_hint, trans);
7270}
7271
e6dcd2dc
CM
7272static int btrfs_set_page_dirty(struct page *page)
7273{
e6dcd2dc
CM
7274 return __set_page_dirty_nobuffers(page);
7275}
7276
b74c79e9 7277static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7278{
b83cc969
LZ
7279 struct btrfs_root *root = BTRFS_I(inode)->root;
7280
7281 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7282 return -EROFS;
6cbff00f 7283 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7284 return -EACCES;
b74c79e9 7285 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7286}
39279cc3 7287
6e1d5dcc 7288static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7289 .getattr = btrfs_getattr,
39279cc3
CM
7290 .lookup = btrfs_lookup,
7291 .create = btrfs_create,
7292 .unlink = btrfs_unlink,
7293 .link = btrfs_link,
7294 .mkdir = btrfs_mkdir,
7295 .rmdir = btrfs_rmdir,
7296 .rename = btrfs_rename,
7297 .symlink = btrfs_symlink,
7298 .setattr = btrfs_setattr,
618e21d5 7299 .mknod = btrfs_mknod,
95819c05
CH
7300 .setxattr = btrfs_setxattr,
7301 .getxattr = btrfs_getxattr,
5103e947 7302 .listxattr = btrfs_listxattr,
95819c05 7303 .removexattr = btrfs_removexattr,
fdebe2bd 7304 .permission = btrfs_permission,
39279cc3 7305};
6e1d5dcc 7306static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7307 .lookup = btrfs_lookup,
fdebe2bd 7308 .permission = btrfs_permission,
39279cc3 7309};
76dda93c 7310
828c0950 7311static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7312 .llseek = generic_file_llseek,
7313 .read = generic_read_dir,
cbdf5a24 7314 .readdir = btrfs_real_readdir,
34287aa3 7315 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7316#ifdef CONFIG_COMPAT
34287aa3 7317 .compat_ioctl = btrfs_ioctl,
39279cc3 7318#endif
6bf13c0c 7319 .release = btrfs_release_file,
e02119d5 7320 .fsync = btrfs_sync_file,
39279cc3
CM
7321};
7322
d1310b2e 7323static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7324 .fill_delalloc = run_delalloc_range,
065631f6 7325 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7326 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7327 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7328 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7329 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7330 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7331 .set_bit_hook = btrfs_set_bit_hook,
7332 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7333 .merge_extent_hook = btrfs_merge_extent_hook,
7334 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7335};
7336
35054394
CM
7337/*
7338 * btrfs doesn't support the bmap operation because swapfiles
7339 * use bmap to make a mapping of extents in the file. They assume
7340 * these extents won't change over the life of the file and they
7341 * use the bmap result to do IO directly to the drive.
7342 *
7343 * the btrfs bmap call would return logical addresses that aren't
7344 * suitable for IO and they also will change frequently as COW
7345 * operations happen. So, swapfile + btrfs == corruption.
7346 *
7347 * For now we're avoiding this by dropping bmap.
7348 */
7f09410b 7349static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7350 .readpage = btrfs_readpage,
7351 .writepage = btrfs_writepage,
b293f02e 7352 .writepages = btrfs_writepages,
3ab2fb5a 7353 .readpages = btrfs_readpages,
39279cc3 7354 .sync_page = block_sync_page,
16432985 7355 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7356 .invalidatepage = btrfs_invalidatepage,
7357 .releasepage = btrfs_releasepage,
e6dcd2dc 7358 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7359 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7360};
7361
7f09410b 7362static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7363 .readpage = btrfs_readpage,
7364 .writepage = btrfs_writepage,
2bf5a725
CM
7365 .invalidatepage = btrfs_invalidatepage,
7366 .releasepage = btrfs_releasepage,
39279cc3
CM
7367};
7368
6e1d5dcc 7369static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7370 .truncate = btrfs_truncate,
7371 .getattr = btrfs_getattr,
7372 .setattr = btrfs_setattr,
95819c05
CH
7373 .setxattr = btrfs_setxattr,
7374 .getxattr = btrfs_getxattr,
5103e947 7375 .listxattr = btrfs_listxattr,
95819c05 7376 .removexattr = btrfs_removexattr,
fdebe2bd 7377 .permission = btrfs_permission,
1506fcc8 7378 .fiemap = btrfs_fiemap,
39279cc3 7379};
6e1d5dcc 7380static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7381 .getattr = btrfs_getattr,
7382 .setattr = btrfs_setattr,
fdebe2bd 7383 .permission = btrfs_permission,
95819c05
CH
7384 .setxattr = btrfs_setxattr,
7385 .getxattr = btrfs_getxattr,
33268eaf 7386 .listxattr = btrfs_listxattr,
95819c05 7387 .removexattr = btrfs_removexattr,
618e21d5 7388};
6e1d5dcc 7389static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7390 .readlink = generic_readlink,
7391 .follow_link = page_follow_link_light,
7392 .put_link = page_put_link,
f209561a 7393 .getattr = btrfs_getattr,
fdebe2bd 7394 .permission = btrfs_permission,
0279b4cd
JO
7395 .setxattr = btrfs_setxattr,
7396 .getxattr = btrfs_getxattr,
7397 .listxattr = btrfs_listxattr,
7398 .removexattr = btrfs_removexattr,
39279cc3 7399};
76dda93c 7400
82d339d9 7401const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7402 .d_delete = btrfs_dentry_delete,
7403};