Btrfs: check to see if root_list is empty before adding it to dead roots
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
4b4e25f2 46#include "compat.h"
39279cc3
CM
47#include "ctree.h"
48#include "disk-io.h"
49#include "transaction.h"
50#include "btrfs_inode.h"
39279cc3 51#include "print-tree.h"
e6dcd2dc 52#include "ordered-data.h"
95819c05 53#include "xattr.h"
e02119d5 54#include "tree-log.h"
4a54c8c1 55#include "volumes.h"
c8b97818 56#include "compression.h"
b4ce94de 57#include "locking.h"
dc89e982 58#include "free-space-cache.h"
581bb050 59#include "inode-map.h"
38c227d8 60#include "backref.h"
f23b5a59 61#include "hash.h"
39279cc3
CM
62
63struct btrfs_iget_args {
64 u64 ino;
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
d397712b 128static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
129 struct btrfs_root *root, struct inode *inode,
130 u64 start, size_t size, size_t compressed_size,
fe3f566c 131 int compress_type,
c8b97818
CM
132 struct page **compressed_pages)
133{
134 struct btrfs_key key;
135 struct btrfs_path *path;
136 struct extent_buffer *leaf;
137 struct page *page = NULL;
138 char *kaddr;
139 unsigned long ptr;
140 struct btrfs_file_extent_item *ei;
141 int err = 0;
142 int ret;
143 size_t cur_size = size;
144 size_t datasize;
145 unsigned long offset;
c8b97818 146
fe3f566c 147 if (compressed_size && compressed_pages)
c8b97818 148 cur_size = compressed_size;
c8b97818 149
d397712b
CM
150 path = btrfs_alloc_path();
151 if (!path)
c8b97818
CM
152 return -ENOMEM;
153
b9473439 154 path->leave_spinning = 1;
c8b97818 155
33345d01 156 key.objectid = btrfs_ino(inode);
c8b97818
CM
157 key.offset = start;
158 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
159 datasize = btrfs_file_extent_calc_inline_size(cur_size);
160
161 inode_add_bytes(inode, size);
162 ret = btrfs_insert_empty_item(trans, root, path, &key,
163 datasize);
c8b97818
CM
164 if (ret) {
165 err = ret;
c8b97818
CM
166 goto fail;
167 }
168 leaf = path->nodes[0];
169 ei = btrfs_item_ptr(leaf, path->slots[0],
170 struct btrfs_file_extent_item);
171 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
172 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
173 btrfs_set_file_extent_encryption(leaf, ei, 0);
174 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
175 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
176 ptr = btrfs_file_extent_inline_start(ei);
177
261507a0 178 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
179 struct page *cpage;
180 int i = 0;
d397712b 181 while (compressed_size > 0) {
c8b97818 182 cpage = compressed_pages[i];
5b050f04 183 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
184 PAGE_CACHE_SIZE);
185
7ac687d9 186 kaddr = kmap_atomic(cpage);
c8b97818 187 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 188 kunmap_atomic(kaddr);
c8b97818
CM
189
190 i++;
191 ptr += cur_size;
192 compressed_size -= cur_size;
193 }
194 btrfs_set_file_extent_compression(leaf, ei,
261507a0 195 compress_type);
c8b97818
CM
196 } else {
197 page = find_get_page(inode->i_mapping,
198 start >> PAGE_CACHE_SHIFT);
199 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 200 kaddr = kmap_atomic(page);
c8b97818
CM
201 offset = start & (PAGE_CACHE_SIZE - 1);
202 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 203 kunmap_atomic(kaddr);
c8b97818
CM
204 page_cache_release(page);
205 }
206 btrfs_mark_buffer_dirty(leaf);
207 btrfs_free_path(path);
208
c2167754
YZ
209 /*
210 * we're an inline extent, so nobody can
211 * extend the file past i_size without locking
212 * a page we already have locked.
213 *
214 * We must do any isize and inode updates
215 * before we unlock the pages. Otherwise we
216 * could end up racing with unlink.
217 */
c8b97818 218 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 219 ret = btrfs_update_inode(trans, root, inode);
c2167754 220
79787eaa 221 return ret;
c8b97818
CM
222fail:
223 btrfs_free_path(path);
224 return err;
225}
226
227
228/*
229 * conditionally insert an inline extent into the file. This
230 * does the checks required to make sure the data is small enough
231 * to fit as an inline extent.
232 */
7f366cfe 233static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
234 struct btrfs_root *root,
235 struct inode *inode, u64 start, u64 end,
fe3f566c 236 size_t compressed_size, int compress_type,
c8b97818
CM
237 struct page **compressed_pages)
238{
239 u64 isize = i_size_read(inode);
240 u64 actual_end = min(end + 1, isize);
241 u64 inline_len = actual_end - start;
fda2832f 242 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
243 u64 data_len = inline_len;
244 int ret;
245
246 if (compressed_size)
247 data_len = compressed_size;
248
249 if (start > 0 ||
70b99e69 250 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
251 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
252 (!compressed_size &&
253 (actual_end & (root->sectorsize - 1)) == 0) ||
254 end + 1 < isize ||
255 data_len > root->fs_info->max_inline) {
256 return 1;
257 }
258
2671485d 259 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
79787eaa
JM
260 if (ret)
261 return ret;
c8b97818
CM
262
263 if (isize > actual_end)
264 inline_len = min_t(u64, isize, actual_end);
265 ret = insert_inline_extent(trans, root, inode, start,
266 inline_len, compressed_size,
fe3f566c 267 compress_type, compressed_pages);
2adcac1a 268 if (ret && ret != -ENOSPC) {
79787eaa
JM
269 btrfs_abort_transaction(trans, root, ret);
270 return ret;
2adcac1a
JB
271 } else if (ret == -ENOSPC) {
272 return 1;
79787eaa 273 }
2adcac1a 274
bdc20e67 275 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 276 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 277 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
278 return 0;
279}
280
771ed689
CM
281struct async_extent {
282 u64 start;
283 u64 ram_size;
284 u64 compressed_size;
285 struct page **pages;
286 unsigned long nr_pages;
261507a0 287 int compress_type;
771ed689
CM
288 struct list_head list;
289};
290
291struct async_cow {
292 struct inode *inode;
293 struct btrfs_root *root;
294 struct page *locked_page;
295 u64 start;
296 u64 end;
297 struct list_head extents;
298 struct btrfs_work work;
299};
300
301static noinline int add_async_extent(struct async_cow *cow,
302 u64 start, u64 ram_size,
303 u64 compressed_size,
304 struct page **pages,
261507a0
LZ
305 unsigned long nr_pages,
306 int compress_type)
771ed689
CM
307{
308 struct async_extent *async_extent;
309
310 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 311 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
312 async_extent->start = start;
313 async_extent->ram_size = ram_size;
314 async_extent->compressed_size = compressed_size;
315 async_extent->pages = pages;
316 async_extent->nr_pages = nr_pages;
261507a0 317 async_extent->compress_type = compress_type;
771ed689
CM
318 list_add_tail(&async_extent->list, &cow->extents);
319 return 0;
320}
321
d352ac68 322/*
771ed689
CM
323 * we create compressed extents in two phases. The first
324 * phase compresses a range of pages that have already been
325 * locked (both pages and state bits are locked).
c8b97818 326 *
771ed689
CM
327 * This is done inside an ordered work queue, and the compression
328 * is spread across many cpus. The actual IO submission is step
329 * two, and the ordered work queue takes care of making sure that
330 * happens in the same order things were put onto the queue by
331 * writepages and friends.
c8b97818 332 *
771ed689
CM
333 * If this code finds it can't get good compression, it puts an
334 * entry onto the work queue to write the uncompressed bytes. This
335 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
336 * are written in the same order that the flusher thread sent them
337 * down.
d352ac68 338 */
771ed689
CM
339static noinline int compress_file_range(struct inode *inode,
340 struct page *locked_page,
341 u64 start, u64 end,
342 struct async_cow *async_cow,
343 int *num_added)
b888db2b
CM
344{
345 struct btrfs_root *root = BTRFS_I(inode)->root;
346 struct btrfs_trans_handle *trans;
db94535d 347 u64 num_bytes;
db94535d 348 u64 blocksize = root->sectorsize;
c8b97818 349 u64 actual_end;
42dc7bab 350 u64 isize = i_size_read(inode);
e6dcd2dc 351 int ret = 0;
c8b97818
CM
352 struct page **pages = NULL;
353 unsigned long nr_pages;
354 unsigned long nr_pages_ret = 0;
355 unsigned long total_compressed = 0;
356 unsigned long total_in = 0;
357 unsigned long max_compressed = 128 * 1024;
771ed689 358 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
359 int i;
360 int will_compress;
261507a0 361 int compress_type = root->fs_info->compress_type;
4adaa611 362 int redirty = 0;
b888db2b 363
4cb13e5d
LB
364 /* if this is a small write inside eof, kick off a defrag */
365 if ((end - start + 1) < 16 * 1024 &&
366 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
367 btrfs_add_inode_defrag(NULL, inode);
368
42dc7bab 369 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
370again:
371 will_compress = 0;
372 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
373 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 374
f03d9301
CM
375 /*
376 * we don't want to send crud past the end of i_size through
377 * compression, that's just a waste of CPU time. So, if the
378 * end of the file is before the start of our current
379 * requested range of bytes, we bail out to the uncompressed
380 * cleanup code that can deal with all of this.
381 *
382 * It isn't really the fastest way to fix things, but this is a
383 * very uncommon corner.
384 */
385 if (actual_end <= start)
386 goto cleanup_and_bail_uncompressed;
387
c8b97818
CM
388 total_compressed = actual_end - start;
389
390 /* we want to make sure that amount of ram required to uncompress
391 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
392 * of a compressed extent to 128k. This is a crucial number
393 * because it also controls how easily we can spread reads across
394 * cpus for decompression.
395 *
396 * We also want to make sure the amount of IO required to do
397 * a random read is reasonably small, so we limit the size of
398 * a compressed extent to 128k.
c8b97818
CM
399 */
400 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 401 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 402 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
403 total_in = 0;
404 ret = 0;
db94535d 405
771ed689
CM
406 /*
407 * we do compression for mount -o compress and when the
408 * inode has not been flagged as nocompress. This flag can
409 * change at any time if we discover bad compression ratios.
c8b97818 410 */
6cbff00f 411 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 412 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
413 (BTRFS_I(inode)->force_compress) ||
414 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 415 WARN_ON(pages);
cfbc246e 416 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
417 if (!pages) {
418 /* just bail out to the uncompressed code */
419 goto cont;
420 }
c8b97818 421
261507a0
LZ
422 if (BTRFS_I(inode)->force_compress)
423 compress_type = BTRFS_I(inode)->force_compress;
424
4adaa611
CM
425 /*
426 * we need to call clear_page_dirty_for_io on each
427 * page in the range. Otherwise applications with the file
428 * mmap'd can wander in and change the page contents while
429 * we are compressing them.
430 *
431 * If the compression fails for any reason, we set the pages
432 * dirty again later on.
433 */
434 extent_range_clear_dirty_for_io(inode, start, end);
435 redirty = 1;
261507a0
LZ
436 ret = btrfs_compress_pages(compress_type,
437 inode->i_mapping, start,
438 total_compressed, pages,
439 nr_pages, &nr_pages_ret,
440 &total_in,
441 &total_compressed,
442 max_compressed);
c8b97818
CM
443
444 if (!ret) {
445 unsigned long offset = total_compressed &
446 (PAGE_CACHE_SIZE - 1);
447 struct page *page = pages[nr_pages_ret - 1];
448 char *kaddr;
449
450 /* zero the tail end of the last page, we might be
451 * sending it down to disk
452 */
453 if (offset) {
7ac687d9 454 kaddr = kmap_atomic(page);
c8b97818
CM
455 memset(kaddr + offset, 0,
456 PAGE_CACHE_SIZE - offset);
7ac687d9 457 kunmap_atomic(kaddr);
c8b97818
CM
458 }
459 will_compress = 1;
460 }
461 }
560f7d75 462cont:
c8b97818 463 if (start == 0) {
7a7eaa40 464 trans = btrfs_join_transaction(root);
79787eaa
JM
465 if (IS_ERR(trans)) {
466 ret = PTR_ERR(trans);
467 trans = NULL;
468 goto cleanup_and_out;
469 }
0ca1f7ce 470 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 471
c8b97818 472 /* lets try to make an inline extent */
771ed689 473 if (ret || total_in < (actual_end - start)) {
c8b97818 474 /* we didn't compress the entire range, try
771ed689 475 * to make an uncompressed inline extent.
c8b97818
CM
476 */
477 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 478 start, end, 0, 0, NULL);
c8b97818 479 } else {
771ed689 480 /* try making a compressed inline extent */
c8b97818
CM
481 ret = cow_file_range_inline(trans, root, inode,
482 start, end,
fe3f566c
LZ
483 total_compressed,
484 compress_type, pages);
c8b97818 485 }
79787eaa 486 if (ret <= 0) {
771ed689 487 /*
79787eaa
JM
488 * inline extent creation worked or returned error,
489 * we don't need to create any more async work items.
490 * Unlock and free up our temp pages.
771ed689 491 */
c8b97818 492 extent_clear_unlock_delalloc(inode,
a791e35e
CM
493 &BTRFS_I(inode)->io_tree,
494 start, end, NULL,
495 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 496 EXTENT_CLEAR_DELALLOC |
a791e35e 497 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
498
499 btrfs_end_transaction(trans, root);
c8b97818
CM
500 goto free_pages_out;
501 }
c2167754 502 btrfs_end_transaction(trans, root);
c8b97818
CM
503 }
504
505 if (will_compress) {
506 /*
507 * we aren't doing an inline extent round the compressed size
508 * up to a block size boundary so the allocator does sane
509 * things
510 */
fda2832f 511 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
512
513 /*
514 * one last check to make sure the compression is really a
515 * win, compare the page count read with the blocks on disk
516 */
fda2832f 517 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
518 if (total_compressed >= total_in) {
519 will_compress = 0;
520 } else {
c8b97818
CM
521 num_bytes = total_in;
522 }
523 }
524 if (!will_compress && pages) {
525 /*
526 * the compression code ran but failed to make things smaller,
527 * free any pages it allocated and our page pointer array
528 */
529 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 530 WARN_ON(pages[i]->mapping);
c8b97818
CM
531 page_cache_release(pages[i]);
532 }
533 kfree(pages);
534 pages = NULL;
535 total_compressed = 0;
536 nr_pages_ret = 0;
537
538 /* flag the file so we don't compress in the future */
1e701a32
CM
539 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
540 !(BTRFS_I(inode)->force_compress)) {
a555f810 541 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 542 }
c8b97818 543 }
771ed689
CM
544 if (will_compress) {
545 *num_added += 1;
c8b97818 546
771ed689
CM
547 /* the async work queues will take care of doing actual
548 * allocation on disk for these compressed pages,
549 * and will submit them to the elevator.
550 */
551 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
552 total_compressed, pages, nr_pages_ret,
553 compress_type);
179e29e4 554
24ae6365 555 if (start + num_bytes < end) {
771ed689
CM
556 start += num_bytes;
557 pages = NULL;
558 cond_resched();
559 goto again;
560 }
561 } else {
f03d9301 562cleanup_and_bail_uncompressed:
771ed689
CM
563 /*
564 * No compression, but we still need to write the pages in
565 * the file we've been given so far. redirty the locked
566 * page if it corresponds to our extent and set things up
567 * for the async work queue to run cow_file_range to do
568 * the normal delalloc dance
569 */
570 if (page_offset(locked_page) >= start &&
571 page_offset(locked_page) <= end) {
572 __set_page_dirty_nobuffers(locked_page);
573 /* unlocked later on in the async handlers */
574 }
4adaa611
CM
575 if (redirty)
576 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
577 add_async_extent(async_cow, start, end - start + 1,
578 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
579 *num_added += 1;
580 }
3b951516 581
771ed689 582out:
79787eaa 583 return ret;
771ed689
CM
584
585free_pages_out:
586 for (i = 0; i < nr_pages_ret; i++) {
587 WARN_ON(pages[i]->mapping);
588 page_cache_release(pages[i]);
589 }
d397712b 590 kfree(pages);
771ed689
CM
591
592 goto out;
79787eaa
JM
593
594cleanup_and_out:
595 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
596 start, end, NULL,
597 EXTENT_CLEAR_UNLOCK_PAGE |
598 EXTENT_CLEAR_DIRTY |
599 EXTENT_CLEAR_DELALLOC |
600 EXTENT_SET_WRITEBACK |
601 EXTENT_END_WRITEBACK);
602 if (!trans || IS_ERR(trans))
603 btrfs_error(root->fs_info, ret, "Failed to join transaction");
604 else
605 btrfs_abort_transaction(trans, root, ret);
606 goto free_pages_out;
771ed689
CM
607}
608
609/*
610 * phase two of compressed writeback. This is the ordered portion
611 * of the code, which only gets called in the order the work was
612 * queued. We walk all the async extents created by compress_file_range
613 * and send them down to the disk.
614 */
615static noinline int submit_compressed_extents(struct inode *inode,
616 struct async_cow *async_cow)
617{
618 struct async_extent *async_extent;
619 u64 alloc_hint = 0;
620 struct btrfs_trans_handle *trans;
621 struct btrfs_key ins;
622 struct extent_map *em;
623 struct btrfs_root *root = BTRFS_I(inode)->root;
624 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
625 struct extent_io_tree *io_tree;
f5a84ee3 626 int ret = 0;
771ed689
CM
627
628 if (list_empty(&async_cow->extents))
629 return 0;
630
3e04e7f1 631again:
d397712b 632 while (!list_empty(&async_cow->extents)) {
771ed689
CM
633 async_extent = list_entry(async_cow->extents.next,
634 struct async_extent, list);
635 list_del(&async_extent->list);
c8b97818 636
771ed689
CM
637 io_tree = &BTRFS_I(inode)->io_tree;
638
f5a84ee3 639retry:
771ed689
CM
640 /* did the compression code fall back to uncompressed IO? */
641 if (!async_extent->pages) {
642 int page_started = 0;
643 unsigned long nr_written = 0;
644
645 lock_extent(io_tree, async_extent->start,
2ac55d41 646 async_extent->start +
d0082371 647 async_extent->ram_size - 1);
771ed689
CM
648
649 /* allocate blocks */
f5a84ee3
JB
650 ret = cow_file_range(inode, async_cow->locked_page,
651 async_extent->start,
652 async_extent->start +
653 async_extent->ram_size - 1,
654 &page_started, &nr_written, 0);
771ed689 655
79787eaa
JM
656 /* JDM XXX */
657
771ed689
CM
658 /*
659 * if page_started, cow_file_range inserted an
660 * inline extent and took care of all the unlocking
661 * and IO for us. Otherwise, we need to submit
662 * all those pages down to the drive.
663 */
f5a84ee3 664 if (!page_started && !ret)
771ed689
CM
665 extent_write_locked_range(io_tree,
666 inode, async_extent->start,
d397712b 667 async_extent->start +
771ed689
CM
668 async_extent->ram_size - 1,
669 btrfs_get_extent,
670 WB_SYNC_ALL);
3e04e7f1
JB
671 else if (ret)
672 unlock_page(async_cow->locked_page);
771ed689
CM
673 kfree(async_extent);
674 cond_resched();
675 continue;
676 }
677
678 lock_extent(io_tree, async_extent->start,
d0082371 679 async_extent->start + async_extent->ram_size - 1);
771ed689 680
7a7eaa40 681 trans = btrfs_join_transaction(root);
79787eaa
JM
682 if (IS_ERR(trans)) {
683 ret = PTR_ERR(trans);
684 } else {
685 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
686 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
687 async_extent->compressed_size,
688 async_extent->compressed_size,
81c9ad23 689 0, alloc_hint, &ins, 1);
962197ba 690 if (ret && ret != -ENOSPC)
79787eaa
JM
691 btrfs_abort_transaction(trans, root, ret);
692 btrfs_end_transaction(trans, root);
693 }
c2167754 694
f5a84ee3
JB
695 if (ret) {
696 int i;
3e04e7f1 697
f5a84ee3
JB
698 for (i = 0; i < async_extent->nr_pages; i++) {
699 WARN_ON(async_extent->pages[i]->mapping);
700 page_cache_release(async_extent->pages[i]);
701 }
702 kfree(async_extent->pages);
703 async_extent->nr_pages = 0;
704 async_extent->pages = NULL;
3e04e7f1 705
fdf8e2ea
JB
706 if (ret == -ENOSPC) {
707 unlock_extent(io_tree, async_extent->start,
708 async_extent->start +
709 async_extent->ram_size - 1);
79787eaa 710 goto retry;
fdf8e2ea 711 }
3e04e7f1 712 goto out_free;
f5a84ee3
JB
713 }
714
c2167754
YZ
715 /*
716 * here we're doing allocation and writeback of the
717 * compressed pages
718 */
719 btrfs_drop_extent_cache(inode, async_extent->start,
720 async_extent->start +
721 async_extent->ram_size - 1, 0);
722
172ddd60 723 em = alloc_extent_map();
b9aa55be
LB
724 if (!em) {
725 ret = -ENOMEM;
3e04e7f1 726 goto out_free_reserve;
b9aa55be 727 }
771ed689
CM
728 em->start = async_extent->start;
729 em->len = async_extent->ram_size;
445a6944 730 em->orig_start = em->start;
2ab28f32
JB
731 em->mod_start = em->start;
732 em->mod_len = em->len;
c8b97818 733
771ed689
CM
734 em->block_start = ins.objectid;
735 em->block_len = ins.offset;
b4939680 736 em->orig_block_len = ins.offset;
cc95bef6 737 em->ram_bytes = async_extent->ram_size;
771ed689 738 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 739 em->compress_type = async_extent->compress_type;
771ed689
CM
740 set_bit(EXTENT_FLAG_PINNED, &em->flags);
741 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 742 em->generation = -1;
771ed689 743
d397712b 744 while (1) {
890871be 745 write_lock(&em_tree->lock);
09a2a8f9 746 ret = add_extent_mapping(em_tree, em, 1);
890871be 747 write_unlock(&em_tree->lock);
771ed689
CM
748 if (ret != -EEXIST) {
749 free_extent_map(em);
750 break;
751 }
752 btrfs_drop_extent_cache(inode, async_extent->start,
753 async_extent->start +
754 async_extent->ram_size - 1, 0);
755 }
756
3e04e7f1
JB
757 if (ret)
758 goto out_free_reserve;
759
261507a0
LZ
760 ret = btrfs_add_ordered_extent_compress(inode,
761 async_extent->start,
762 ins.objectid,
763 async_extent->ram_size,
764 ins.offset,
765 BTRFS_ORDERED_COMPRESSED,
766 async_extent->compress_type);
3e04e7f1
JB
767 if (ret)
768 goto out_free_reserve;
771ed689 769
771ed689
CM
770 /*
771 * clear dirty, set writeback and unlock the pages.
772 */
773 extent_clear_unlock_delalloc(inode,
a791e35e
CM
774 &BTRFS_I(inode)->io_tree,
775 async_extent->start,
776 async_extent->start +
777 async_extent->ram_size - 1,
778 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
779 EXTENT_CLEAR_UNLOCK |
a3429ab7 780 EXTENT_CLEAR_DELALLOC |
a791e35e 781 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
782
783 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
784 async_extent->start,
785 async_extent->ram_size,
786 ins.objectid,
787 ins.offset, async_extent->pages,
788 async_extent->nr_pages);
771ed689
CM
789 alloc_hint = ins.objectid + ins.offset;
790 kfree(async_extent);
3e04e7f1
JB
791 if (ret)
792 goto out;
771ed689
CM
793 cond_resched();
794 }
79787eaa
JM
795 ret = 0;
796out:
797 return ret;
3e04e7f1
JB
798out_free_reserve:
799 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 800out_free:
3e04e7f1
JB
801 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
802 async_extent->start,
803 async_extent->start +
804 async_extent->ram_size - 1,
805 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
806 EXTENT_CLEAR_UNLOCK |
807 EXTENT_CLEAR_DELALLOC |
808 EXTENT_CLEAR_DIRTY |
809 EXTENT_SET_WRITEBACK |
810 EXTENT_END_WRITEBACK);
79787eaa 811 kfree(async_extent);
3e04e7f1 812 goto again;
771ed689
CM
813}
814
4b46fce2
JB
815static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
816 u64 num_bytes)
817{
818 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
819 struct extent_map *em;
820 u64 alloc_hint = 0;
821
822 read_lock(&em_tree->lock);
823 em = search_extent_mapping(em_tree, start, num_bytes);
824 if (em) {
825 /*
826 * if block start isn't an actual block number then find the
827 * first block in this inode and use that as a hint. If that
828 * block is also bogus then just don't worry about it.
829 */
830 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
831 free_extent_map(em);
832 em = search_extent_mapping(em_tree, 0, 0);
833 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
834 alloc_hint = em->block_start;
835 if (em)
836 free_extent_map(em);
837 } else {
838 alloc_hint = em->block_start;
839 free_extent_map(em);
840 }
841 }
842 read_unlock(&em_tree->lock);
843
844 return alloc_hint;
845}
846
771ed689
CM
847/*
848 * when extent_io.c finds a delayed allocation range in the file,
849 * the call backs end up in this code. The basic idea is to
850 * allocate extents on disk for the range, and create ordered data structs
851 * in ram to track those extents.
852 *
853 * locked_page is the page that writepage had locked already. We use
854 * it to make sure we don't do extra locks or unlocks.
855 *
856 * *page_started is set to one if we unlock locked_page and do everything
857 * required to start IO on it. It may be clean and already done with
858 * IO when we return.
859 */
b7d5b0a8
MX
860static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
861 struct inode *inode,
862 struct btrfs_root *root,
863 struct page *locked_page,
864 u64 start, u64 end, int *page_started,
865 unsigned long *nr_written,
866 int unlock)
771ed689 867{
771ed689
CM
868 u64 alloc_hint = 0;
869 u64 num_bytes;
870 unsigned long ram_size;
871 u64 disk_num_bytes;
872 u64 cur_alloc_size;
873 u64 blocksize = root->sectorsize;
771ed689
CM
874 struct btrfs_key ins;
875 struct extent_map *em;
876 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
877 int ret = 0;
878
83eea1f1 879 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 880
fda2832f 881 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
882 num_bytes = max(blocksize, num_bytes);
883 disk_num_bytes = num_bytes;
771ed689 884
4cb5300b 885 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
886 if (num_bytes < 64 * 1024 &&
887 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
888 btrfs_add_inode_defrag(trans, inode);
889
771ed689
CM
890 if (start == 0) {
891 /* lets try to make an inline extent */
892 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 893 start, end, 0, 0, NULL);
771ed689
CM
894 if (ret == 0) {
895 extent_clear_unlock_delalloc(inode,
a791e35e
CM
896 &BTRFS_I(inode)->io_tree,
897 start, end, NULL,
898 EXTENT_CLEAR_UNLOCK_PAGE |
899 EXTENT_CLEAR_UNLOCK |
900 EXTENT_CLEAR_DELALLOC |
901 EXTENT_CLEAR_DIRTY |
902 EXTENT_SET_WRITEBACK |
903 EXTENT_END_WRITEBACK);
c2167754 904
771ed689
CM
905 *nr_written = *nr_written +
906 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
907 *page_started = 1;
771ed689 908 goto out;
79787eaa
JM
909 } else if (ret < 0) {
910 btrfs_abort_transaction(trans, root, ret);
911 goto out_unlock;
771ed689
CM
912 }
913 }
914
915 BUG_ON(disk_num_bytes >
6c41761f 916 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 917
4b46fce2 918 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
919 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
920
d397712b 921 while (disk_num_bytes > 0) {
a791e35e
CM
922 unsigned long op;
923
287a0ab9 924 cur_alloc_size = disk_num_bytes;
e6dcd2dc 925 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 926 root->sectorsize, 0, alloc_hint,
81c9ad23 927 &ins, 1);
79787eaa
JM
928 if (ret < 0) {
929 btrfs_abort_transaction(trans, root, ret);
930 goto out_unlock;
931 }
d397712b 932
172ddd60 933 em = alloc_extent_map();
b9aa55be
LB
934 if (!em) {
935 ret = -ENOMEM;
ace68bac 936 goto out_reserve;
b9aa55be 937 }
e6dcd2dc 938 em->start = start;
445a6944 939 em->orig_start = em->start;
771ed689
CM
940 ram_size = ins.offset;
941 em->len = ins.offset;
2ab28f32
JB
942 em->mod_start = em->start;
943 em->mod_len = em->len;
c8b97818 944
e6dcd2dc 945 em->block_start = ins.objectid;
c8b97818 946 em->block_len = ins.offset;
b4939680 947 em->orig_block_len = ins.offset;
cc95bef6 948 em->ram_bytes = ram_size;
e6dcd2dc 949 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 950 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 951 em->generation = -1;
c8b97818 952
d397712b 953 while (1) {
890871be 954 write_lock(&em_tree->lock);
09a2a8f9 955 ret = add_extent_mapping(em_tree, em, 1);
890871be 956 write_unlock(&em_tree->lock);
e6dcd2dc
CM
957 if (ret != -EEXIST) {
958 free_extent_map(em);
959 break;
960 }
961 btrfs_drop_extent_cache(inode, start,
c8b97818 962 start + ram_size - 1, 0);
e6dcd2dc 963 }
ace68bac
LB
964 if (ret)
965 goto out_reserve;
e6dcd2dc 966
98d20f67 967 cur_alloc_size = ins.offset;
e6dcd2dc 968 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 969 ram_size, cur_alloc_size, 0);
ace68bac
LB
970 if (ret)
971 goto out_reserve;
c8b97818 972
17d217fe
YZ
973 if (root->root_key.objectid ==
974 BTRFS_DATA_RELOC_TREE_OBJECTID) {
975 ret = btrfs_reloc_clone_csums(inode, start,
976 cur_alloc_size);
79787eaa
JM
977 if (ret) {
978 btrfs_abort_transaction(trans, root, ret);
ace68bac 979 goto out_reserve;
79787eaa 980 }
17d217fe
YZ
981 }
982
d397712b 983 if (disk_num_bytes < cur_alloc_size)
3b951516 984 break;
d397712b 985
c8b97818
CM
986 /* we're not doing compressed IO, don't unlock the first
987 * page (which the caller expects to stay locked), don't
988 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
989 *
990 * Do set the Private2 bit so we know this page was properly
991 * setup for writepage
c8b97818 992 */
a791e35e
CM
993 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
994 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
995 EXTENT_SET_PRIVATE2;
996
c8b97818
CM
997 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
998 start, start + ram_size - 1,
a791e35e 999 locked_page, op);
c8b97818 1000 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1001 num_bytes -= cur_alloc_size;
1002 alloc_hint = ins.objectid + ins.offset;
1003 start += cur_alloc_size;
b888db2b 1004 }
79787eaa 1005out:
be20aa9d 1006 return ret;
b7d5b0a8 1007
ace68bac
LB
1008out_reserve:
1009 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa
JM
1010out_unlock:
1011 extent_clear_unlock_delalloc(inode,
1012 &BTRFS_I(inode)->io_tree,
beb42dd7 1013 start, end, locked_page,
79787eaa
JM
1014 EXTENT_CLEAR_UNLOCK_PAGE |
1015 EXTENT_CLEAR_UNLOCK |
1016 EXTENT_CLEAR_DELALLOC |
1017 EXTENT_CLEAR_DIRTY |
1018 EXTENT_SET_WRITEBACK |
1019 EXTENT_END_WRITEBACK);
1020
1021 goto out;
771ed689 1022}
c8b97818 1023
b7d5b0a8
MX
1024static noinline int cow_file_range(struct inode *inode,
1025 struct page *locked_page,
1026 u64 start, u64 end, int *page_started,
1027 unsigned long *nr_written,
1028 int unlock)
1029{
1030 struct btrfs_trans_handle *trans;
1031 struct btrfs_root *root = BTRFS_I(inode)->root;
1032 int ret;
1033
1034 trans = btrfs_join_transaction(root);
1035 if (IS_ERR(trans)) {
1036 extent_clear_unlock_delalloc(inode,
1037 &BTRFS_I(inode)->io_tree,
1038 start, end, locked_page,
1039 EXTENT_CLEAR_UNLOCK_PAGE |
1040 EXTENT_CLEAR_UNLOCK |
1041 EXTENT_CLEAR_DELALLOC |
1042 EXTENT_CLEAR_DIRTY |
1043 EXTENT_SET_WRITEBACK |
1044 EXTENT_END_WRITEBACK);
1045 return PTR_ERR(trans);
1046 }
1047 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1048
1049 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1050 page_started, nr_written, unlock);
1051
1052 btrfs_end_transaction(trans, root);
1053
1054 return ret;
1055}
1056
771ed689
CM
1057/*
1058 * work queue call back to started compression on a file and pages
1059 */
1060static noinline void async_cow_start(struct btrfs_work *work)
1061{
1062 struct async_cow *async_cow;
1063 int num_added = 0;
1064 async_cow = container_of(work, struct async_cow, work);
1065
1066 compress_file_range(async_cow->inode, async_cow->locked_page,
1067 async_cow->start, async_cow->end, async_cow,
1068 &num_added);
8180ef88 1069 if (num_added == 0) {
cb77fcd8 1070 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1071 async_cow->inode = NULL;
8180ef88 1072 }
771ed689
CM
1073}
1074
1075/*
1076 * work queue call back to submit previously compressed pages
1077 */
1078static noinline void async_cow_submit(struct btrfs_work *work)
1079{
1080 struct async_cow *async_cow;
1081 struct btrfs_root *root;
1082 unsigned long nr_pages;
1083
1084 async_cow = container_of(work, struct async_cow, work);
1085
1086 root = async_cow->root;
1087 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1088 PAGE_CACHE_SHIFT;
1089
66657b31 1090 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1091 5 * 1024 * 1024 &&
771ed689
CM
1092 waitqueue_active(&root->fs_info->async_submit_wait))
1093 wake_up(&root->fs_info->async_submit_wait);
1094
d397712b 1095 if (async_cow->inode)
771ed689 1096 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1097}
c8b97818 1098
771ed689
CM
1099static noinline void async_cow_free(struct btrfs_work *work)
1100{
1101 struct async_cow *async_cow;
1102 async_cow = container_of(work, struct async_cow, work);
8180ef88 1103 if (async_cow->inode)
cb77fcd8 1104 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1105 kfree(async_cow);
1106}
1107
1108static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1109 u64 start, u64 end, int *page_started,
1110 unsigned long *nr_written)
1111{
1112 struct async_cow *async_cow;
1113 struct btrfs_root *root = BTRFS_I(inode)->root;
1114 unsigned long nr_pages;
1115 u64 cur_end;
287082b0 1116 int limit = 10 * 1024 * 1024;
771ed689 1117
a3429ab7
CM
1118 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1119 1, 0, NULL, GFP_NOFS);
d397712b 1120 while (start < end) {
771ed689 1121 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1122 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1123 async_cow->inode = igrab(inode);
771ed689
CM
1124 async_cow->root = root;
1125 async_cow->locked_page = locked_page;
1126 async_cow->start = start;
1127
6cbff00f 1128 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1129 cur_end = end;
1130 else
1131 cur_end = min(end, start + 512 * 1024 - 1);
1132
1133 async_cow->end = cur_end;
1134 INIT_LIST_HEAD(&async_cow->extents);
1135
1136 async_cow->work.func = async_cow_start;
1137 async_cow->work.ordered_func = async_cow_submit;
1138 async_cow->work.ordered_free = async_cow_free;
1139 async_cow->work.flags = 0;
1140
771ed689
CM
1141 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1142 PAGE_CACHE_SHIFT;
1143 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1144
1145 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1146 &async_cow->work);
1147
1148 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1149 wait_event(root->fs_info->async_submit_wait,
1150 (atomic_read(&root->fs_info->async_delalloc_pages) <
1151 limit));
1152 }
1153
d397712b 1154 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1155 atomic_read(&root->fs_info->async_delalloc_pages)) {
1156 wait_event(root->fs_info->async_submit_wait,
1157 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1158 0));
1159 }
1160
1161 *nr_written += nr_pages;
1162 start = cur_end + 1;
1163 }
1164 *page_started = 1;
1165 return 0;
be20aa9d
CM
1166}
1167
d397712b 1168static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1169 u64 bytenr, u64 num_bytes)
1170{
1171 int ret;
1172 struct btrfs_ordered_sum *sums;
1173 LIST_HEAD(list);
1174
07d400a6 1175 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1176 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1177 if (ret == 0 && list_empty(&list))
1178 return 0;
1179
1180 while (!list_empty(&list)) {
1181 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1182 list_del(&sums->list);
1183 kfree(sums);
1184 }
1185 return 1;
1186}
1187
d352ac68
CM
1188/*
1189 * when nowcow writeback call back. This checks for snapshots or COW copies
1190 * of the extents that exist in the file, and COWs the file as required.
1191 *
1192 * If no cow copies or snapshots exist, we write directly to the existing
1193 * blocks on disk
1194 */
7f366cfe
CM
1195static noinline int run_delalloc_nocow(struct inode *inode,
1196 struct page *locked_page,
771ed689
CM
1197 u64 start, u64 end, int *page_started, int force,
1198 unsigned long *nr_written)
be20aa9d 1199{
be20aa9d 1200 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1201 struct btrfs_trans_handle *trans;
be20aa9d 1202 struct extent_buffer *leaf;
be20aa9d 1203 struct btrfs_path *path;
80ff3856 1204 struct btrfs_file_extent_item *fi;
be20aa9d 1205 struct btrfs_key found_key;
80ff3856
YZ
1206 u64 cow_start;
1207 u64 cur_offset;
1208 u64 extent_end;
5d4f98a2 1209 u64 extent_offset;
80ff3856
YZ
1210 u64 disk_bytenr;
1211 u64 num_bytes;
b4939680 1212 u64 disk_num_bytes;
cc95bef6 1213 u64 ram_bytes;
80ff3856 1214 int extent_type;
79787eaa 1215 int ret, err;
d899e052 1216 int type;
80ff3856
YZ
1217 int nocow;
1218 int check_prev = 1;
82d5902d 1219 bool nolock;
33345d01 1220 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1221
1222 path = btrfs_alloc_path();
17ca04af
JB
1223 if (!path) {
1224 extent_clear_unlock_delalloc(inode,
1225 &BTRFS_I(inode)->io_tree,
1226 start, end, locked_page,
1227 EXTENT_CLEAR_UNLOCK_PAGE |
1228 EXTENT_CLEAR_UNLOCK |
1229 EXTENT_CLEAR_DELALLOC |
1230 EXTENT_CLEAR_DIRTY |
1231 EXTENT_SET_WRITEBACK |
1232 EXTENT_END_WRITEBACK);
d8926bb3 1233 return -ENOMEM;
17ca04af 1234 }
82d5902d 1235
83eea1f1 1236 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1237
1238 if (nolock)
7a7eaa40 1239 trans = btrfs_join_transaction_nolock(root);
82d5902d 1240 else
7a7eaa40 1241 trans = btrfs_join_transaction(root);
ff5714cc 1242
79787eaa 1243 if (IS_ERR(trans)) {
17ca04af
JB
1244 extent_clear_unlock_delalloc(inode,
1245 &BTRFS_I(inode)->io_tree,
1246 start, end, locked_page,
1247 EXTENT_CLEAR_UNLOCK_PAGE |
1248 EXTENT_CLEAR_UNLOCK |
1249 EXTENT_CLEAR_DELALLOC |
1250 EXTENT_CLEAR_DIRTY |
1251 EXTENT_SET_WRITEBACK |
1252 EXTENT_END_WRITEBACK);
79787eaa
JM
1253 btrfs_free_path(path);
1254 return PTR_ERR(trans);
1255 }
1256
74b21075 1257 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1258
80ff3856
YZ
1259 cow_start = (u64)-1;
1260 cur_offset = start;
1261 while (1) {
33345d01 1262 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1263 cur_offset, 0);
79787eaa
JM
1264 if (ret < 0) {
1265 btrfs_abort_transaction(trans, root, ret);
1266 goto error;
1267 }
80ff3856
YZ
1268 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1269 leaf = path->nodes[0];
1270 btrfs_item_key_to_cpu(leaf, &found_key,
1271 path->slots[0] - 1);
33345d01 1272 if (found_key.objectid == ino &&
80ff3856
YZ
1273 found_key.type == BTRFS_EXTENT_DATA_KEY)
1274 path->slots[0]--;
1275 }
1276 check_prev = 0;
1277next_slot:
1278 leaf = path->nodes[0];
1279 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1280 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1281 if (ret < 0) {
1282 btrfs_abort_transaction(trans, root, ret);
1283 goto error;
1284 }
80ff3856
YZ
1285 if (ret > 0)
1286 break;
1287 leaf = path->nodes[0];
1288 }
be20aa9d 1289
80ff3856
YZ
1290 nocow = 0;
1291 disk_bytenr = 0;
17d217fe 1292 num_bytes = 0;
80ff3856
YZ
1293 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1294
33345d01 1295 if (found_key.objectid > ino ||
80ff3856
YZ
1296 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1297 found_key.offset > end)
1298 break;
1299
1300 if (found_key.offset > cur_offset) {
1301 extent_end = found_key.offset;
e9061e21 1302 extent_type = 0;
80ff3856
YZ
1303 goto out_check;
1304 }
1305
1306 fi = btrfs_item_ptr(leaf, path->slots[0],
1307 struct btrfs_file_extent_item);
1308 extent_type = btrfs_file_extent_type(leaf, fi);
1309
cc95bef6 1310 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1311 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1312 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1313 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1314 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1315 extent_end = found_key.offset +
1316 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1317 disk_num_bytes =
1318 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1319 if (extent_end <= start) {
1320 path->slots[0]++;
1321 goto next_slot;
1322 }
17d217fe
YZ
1323 if (disk_bytenr == 0)
1324 goto out_check;
80ff3856
YZ
1325 if (btrfs_file_extent_compression(leaf, fi) ||
1326 btrfs_file_extent_encryption(leaf, fi) ||
1327 btrfs_file_extent_other_encoding(leaf, fi))
1328 goto out_check;
d899e052
YZ
1329 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1330 goto out_check;
d2fb3437 1331 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1332 goto out_check;
33345d01 1333 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1334 found_key.offset -
1335 extent_offset, disk_bytenr))
17d217fe 1336 goto out_check;
5d4f98a2 1337 disk_bytenr += extent_offset;
17d217fe
YZ
1338 disk_bytenr += cur_offset - found_key.offset;
1339 num_bytes = min(end + 1, extent_end) - cur_offset;
1340 /*
1341 * force cow if csum exists in the range.
1342 * this ensure that csum for a given extent are
1343 * either valid or do not exist.
1344 */
1345 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1346 goto out_check;
80ff3856
YZ
1347 nocow = 1;
1348 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1349 extent_end = found_key.offset +
1350 btrfs_file_extent_inline_len(leaf, fi);
1351 extent_end = ALIGN(extent_end, root->sectorsize);
1352 } else {
1353 BUG_ON(1);
1354 }
1355out_check:
1356 if (extent_end <= start) {
1357 path->slots[0]++;
1358 goto next_slot;
1359 }
1360 if (!nocow) {
1361 if (cow_start == (u64)-1)
1362 cow_start = cur_offset;
1363 cur_offset = extent_end;
1364 if (cur_offset > end)
1365 break;
1366 path->slots[0]++;
1367 goto next_slot;
7ea394f1
YZ
1368 }
1369
b3b4aa74 1370 btrfs_release_path(path);
80ff3856 1371 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1372 ret = __cow_file_range(trans, inode, root, locked_page,
1373 cow_start, found_key.offset - 1,
1374 page_started, nr_written, 1);
79787eaa
JM
1375 if (ret) {
1376 btrfs_abort_transaction(trans, root, ret);
1377 goto error;
1378 }
80ff3856 1379 cow_start = (u64)-1;
7ea394f1 1380 }
80ff3856 1381
d899e052
YZ
1382 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1383 struct extent_map *em;
1384 struct extent_map_tree *em_tree;
1385 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1386 em = alloc_extent_map();
79787eaa 1387 BUG_ON(!em); /* -ENOMEM */
d899e052 1388 em->start = cur_offset;
70c8a91c 1389 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1390 em->len = num_bytes;
1391 em->block_len = num_bytes;
1392 em->block_start = disk_bytenr;
b4939680 1393 em->orig_block_len = disk_num_bytes;
cc95bef6 1394 em->ram_bytes = ram_bytes;
d899e052 1395 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1396 em->mod_start = em->start;
1397 em->mod_len = em->len;
d899e052 1398 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1399 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1400 em->generation = -1;
d899e052 1401 while (1) {
890871be 1402 write_lock(&em_tree->lock);
09a2a8f9 1403 ret = add_extent_mapping(em_tree, em, 1);
890871be 1404 write_unlock(&em_tree->lock);
d899e052
YZ
1405 if (ret != -EEXIST) {
1406 free_extent_map(em);
1407 break;
1408 }
1409 btrfs_drop_extent_cache(inode, em->start,
1410 em->start + em->len - 1, 0);
1411 }
1412 type = BTRFS_ORDERED_PREALLOC;
1413 } else {
1414 type = BTRFS_ORDERED_NOCOW;
1415 }
80ff3856
YZ
1416
1417 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1418 num_bytes, num_bytes, type);
79787eaa 1419 BUG_ON(ret); /* -ENOMEM */
771ed689 1420
efa56464
YZ
1421 if (root->root_key.objectid ==
1422 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1423 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1424 num_bytes);
79787eaa
JM
1425 if (ret) {
1426 btrfs_abort_transaction(trans, root, ret);
1427 goto error;
1428 }
efa56464
YZ
1429 }
1430
d899e052 1431 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1432 cur_offset, cur_offset + num_bytes - 1,
1433 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1434 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1435 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1436 cur_offset = extent_end;
1437 if (cur_offset > end)
1438 break;
be20aa9d 1439 }
b3b4aa74 1440 btrfs_release_path(path);
80ff3856 1441
17ca04af 1442 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1443 cow_start = cur_offset;
17ca04af
JB
1444 cur_offset = end;
1445 }
1446
80ff3856 1447 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1448 ret = __cow_file_range(trans, inode, root, locked_page,
1449 cow_start, end,
1450 page_started, nr_written, 1);
79787eaa
JM
1451 if (ret) {
1452 btrfs_abort_transaction(trans, root, ret);
1453 goto error;
1454 }
80ff3856
YZ
1455 }
1456
79787eaa 1457error:
a698d075 1458 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1459 if (!ret)
1460 ret = err;
1461
17ca04af
JB
1462 if (ret && cur_offset < end)
1463 extent_clear_unlock_delalloc(inode,
1464 &BTRFS_I(inode)->io_tree,
1465 cur_offset, end, locked_page,
1466 EXTENT_CLEAR_UNLOCK_PAGE |
1467 EXTENT_CLEAR_UNLOCK |
1468 EXTENT_CLEAR_DELALLOC |
1469 EXTENT_CLEAR_DIRTY |
1470 EXTENT_SET_WRITEBACK |
1471 EXTENT_END_WRITEBACK);
1472
7ea394f1 1473 btrfs_free_path(path);
79787eaa 1474 return ret;
be20aa9d
CM
1475}
1476
d352ac68
CM
1477/*
1478 * extent_io.c call back to do delayed allocation processing
1479 */
c8b97818 1480static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1481 u64 start, u64 end, int *page_started,
1482 unsigned long *nr_written)
be20aa9d 1483{
be20aa9d 1484 int ret;
7f366cfe 1485 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1486
7ddf5a42 1487 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1488 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1489 page_started, 1, nr_written);
7ddf5a42 1490 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1491 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1492 page_started, 0, nr_written);
7ddf5a42
JB
1493 } else if (!btrfs_test_opt(root, COMPRESS) &&
1494 !(BTRFS_I(inode)->force_compress) &&
1495 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1496 ret = cow_file_range(inode, locked_page, start, end,
1497 page_started, nr_written, 1);
7ddf5a42
JB
1498 } else {
1499 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1500 &BTRFS_I(inode)->runtime_flags);
771ed689 1501 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1502 page_started, nr_written);
7ddf5a42 1503 }
b888db2b
CM
1504 return ret;
1505}
1506
1bf85046
JM
1507static void btrfs_split_extent_hook(struct inode *inode,
1508 struct extent_state *orig, u64 split)
9ed74f2d 1509{
0ca1f7ce 1510 /* not delalloc, ignore it */
9ed74f2d 1511 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1512 return;
9ed74f2d 1513
9e0baf60
JB
1514 spin_lock(&BTRFS_I(inode)->lock);
1515 BTRFS_I(inode)->outstanding_extents++;
1516 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1517}
1518
1519/*
1520 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1521 * extents so we can keep track of new extents that are just merged onto old
1522 * extents, such as when we are doing sequential writes, so we can properly
1523 * account for the metadata space we'll need.
1524 */
1bf85046
JM
1525static void btrfs_merge_extent_hook(struct inode *inode,
1526 struct extent_state *new,
1527 struct extent_state *other)
9ed74f2d 1528{
9ed74f2d
JB
1529 /* not delalloc, ignore it */
1530 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1531 return;
9ed74f2d 1532
9e0baf60
JB
1533 spin_lock(&BTRFS_I(inode)->lock);
1534 BTRFS_I(inode)->outstanding_extents--;
1535 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1536}
1537
eb73c1b7
MX
1538static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1539 struct inode *inode)
1540{
1541 spin_lock(&root->delalloc_lock);
1542 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1543 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1544 &root->delalloc_inodes);
1545 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1546 &BTRFS_I(inode)->runtime_flags);
1547 root->nr_delalloc_inodes++;
1548 if (root->nr_delalloc_inodes == 1) {
1549 spin_lock(&root->fs_info->delalloc_root_lock);
1550 BUG_ON(!list_empty(&root->delalloc_root));
1551 list_add_tail(&root->delalloc_root,
1552 &root->fs_info->delalloc_roots);
1553 spin_unlock(&root->fs_info->delalloc_root_lock);
1554 }
1555 }
1556 spin_unlock(&root->delalloc_lock);
1557}
1558
1559static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1560 struct inode *inode)
1561{
1562 spin_lock(&root->delalloc_lock);
1563 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1564 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1565 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1566 &BTRFS_I(inode)->runtime_flags);
1567 root->nr_delalloc_inodes--;
1568 if (!root->nr_delalloc_inodes) {
1569 spin_lock(&root->fs_info->delalloc_root_lock);
1570 BUG_ON(list_empty(&root->delalloc_root));
1571 list_del_init(&root->delalloc_root);
1572 spin_unlock(&root->fs_info->delalloc_root_lock);
1573 }
1574 }
1575 spin_unlock(&root->delalloc_lock);
1576}
1577
d352ac68
CM
1578/*
1579 * extent_io.c set_bit_hook, used to track delayed allocation
1580 * bytes in this file, and to maintain the list of inodes that
1581 * have pending delalloc work to be done.
1582 */
1bf85046 1583static void btrfs_set_bit_hook(struct inode *inode,
41074888 1584 struct extent_state *state, unsigned long *bits)
291d673e 1585{
9ed74f2d 1586
75eff68e
CM
1587 /*
1588 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1589 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1590 * bit, which is only set or cleared with irqs on
1591 */
0ca1f7ce 1592 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1593 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1594 u64 len = state->end + 1 - state->start;
83eea1f1 1595 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1596
9e0baf60 1597 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1598 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1599 } else {
1600 spin_lock(&BTRFS_I(inode)->lock);
1601 BTRFS_I(inode)->outstanding_extents++;
1602 spin_unlock(&BTRFS_I(inode)->lock);
1603 }
287a0ab9 1604
963d678b
MX
1605 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1606 root->fs_info->delalloc_batch);
df0af1a5 1607 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1608 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5 1609 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1610 &BTRFS_I(inode)->runtime_flags))
1611 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1612 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1613 }
291d673e
CM
1614}
1615
d352ac68
CM
1616/*
1617 * extent_io.c clear_bit_hook, see set_bit_hook for why
1618 */
1bf85046 1619static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1620 struct extent_state *state,
1621 unsigned long *bits)
291d673e 1622{
75eff68e
CM
1623 /*
1624 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1625 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1626 * bit, which is only set or cleared with irqs on
1627 */
0ca1f7ce 1628 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1629 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1630 u64 len = state->end + 1 - state->start;
83eea1f1 1631 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1632
9e0baf60 1633 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1634 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1635 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1636 spin_lock(&BTRFS_I(inode)->lock);
1637 BTRFS_I(inode)->outstanding_extents--;
1638 spin_unlock(&BTRFS_I(inode)->lock);
1639 }
0ca1f7ce
YZ
1640
1641 if (*bits & EXTENT_DO_ACCOUNTING)
1642 btrfs_delalloc_release_metadata(inode, len);
1643
0cb59c99 1644 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1645 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1646 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1647
963d678b
MX
1648 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1649 root->fs_info->delalloc_batch);
df0af1a5 1650 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1651 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1652 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1653 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1654 &BTRFS_I(inode)->runtime_flags))
1655 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1656 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1657 }
291d673e
CM
1658}
1659
d352ac68
CM
1660/*
1661 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1662 * we don't create bios that span stripes or chunks
1663 */
64a16701 1664int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1665 size_t size, struct bio *bio,
1666 unsigned long bio_flags)
239b14b3
CM
1667{
1668 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1669 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1670 u64 length = 0;
1671 u64 map_length;
239b14b3
CM
1672 int ret;
1673
771ed689
CM
1674 if (bio_flags & EXTENT_BIO_COMPRESSED)
1675 return 0;
1676
f2d8d74d 1677 length = bio->bi_size;
239b14b3 1678 map_length = length;
64a16701 1679 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1680 &map_length, NULL, 0);
3ec706c8 1681 /* Will always return 0 with map_multi == NULL */
3444a972 1682 BUG_ON(ret < 0);
d397712b 1683 if (map_length < length + size)
239b14b3 1684 return 1;
3444a972 1685 return 0;
239b14b3
CM
1686}
1687
d352ac68
CM
1688/*
1689 * in order to insert checksums into the metadata in large chunks,
1690 * we wait until bio submission time. All the pages in the bio are
1691 * checksummed and sums are attached onto the ordered extent record.
1692 *
1693 * At IO completion time the cums attached on the ordered extent record
1694 * are inserted into the btree
1695 */
d397712b
CM
1696static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1697 struct bio *bio, int mirror_num,
eaf25d93
CM
1698 unsigned long bio_flags,
1699 u64 bio_offset)
065631f6 1700{
065631f6 1701 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1702 int ret = 0;
e015640f 1703
d20f7043 1704 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1705 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1706 return 0;
1707}
e015640f 1708
4a69a410
CM
1709/*
1710 * in order to insert checksums into the metadata in large chunks,
1711 * we wait until bio submission time. All the pages in the bio are
1712 * checksummed and sums are attached onto the ordered extent record.
1713 *
1714 * At IO completion time the cums attached on the ordered extent record
1715 * are inserted into the btree
1716 */
b2950863 1717static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1718 int mirror_num, unsigned long bio_flags,
1719 u64 bio_offset)
4a69a410
CM
1720{
1721 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1722 int ret;
1723
1724 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1725 if (ret)
1726 bio_endio(bio, ret);
1727 return ret;
44b8bd7e
CM
1728}
1729
d352ac68 1730/*
cad321ad
CM
1731 * extent_io.c submission hook. This does the right thing for csum calculation
1732 * on write, or reading the csums from the tree before a read
d352ac68 1733 */
b2950863 1734static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1735 int mirror_num, unsigned long bio_flags,
1736 u64 bio_offset)
44b8bd7e
CM
1737{
1738 struct btrfs_root *root = BTRFS_I(inode)->root;
1739 int ret = 0;
19b9bdb0 1740 int skip_sum;
0417341e 1741 int metadata = 0;
b812ce28 1742 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1743
6cbff00f 1744 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1745
83eea1f1 1746 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1747 metadata = 2;
1748
7b6d91da 1749 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1750 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1751 if (ret)
61891923 1752 goto out;
5fd02043 1753
d20f7043 1754 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1755 ret = btrfs_submit_compressed_read(inode, bio,
1756 mirror_num,
1757 bio_flags);
1758 goto out;
c2db1073
TI
1759 } else if (!skip_sum) {
1760 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1761 if (ret)
61891923 1762 goto out;
c2db1073 1763 }
4d1b5fb4 1764 goto mapit;
b812ce28 1765 } else if (async && !skip_sum) {
17d217fe
YZ
1766 /* csum items have already been cloned */
1767 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1768 goto mapit;
19b9bdb0 1769 /* we're doing a write, do the async checksumming */
61891923 1770 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1771 inode, rw, bio, mirror_num,
eaf25d93
CM
1772 bio_flags, bio_offset,
1773 __btrfs_submit_bio_start,
4a69a410 1774 __btrfs_submit_bio_done);
61891923 1775 goto out;
b812ce28
JB
1776 } else if (!skip_sum) {
1777 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1778 if (ret)
1779 goto out;
19b9bdb0
CM
1780 }
1781
0b86a832 1782mapit:
61891923
SB
1783 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1784
1785out:
1786 if (ret < 0)
1787 bio_endio(bio, ret);
1788 return ret;
065631f6 1789}
6885f308 1790
d352ac68
CM
1791/*
1792 * given a list of ordered sums record them in the inode. This happens
1793 * at IO completion time based on sums calculated at bio submission time.
1794 */
ba1da2f4 1795static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1796 struct inode *inode, u64 file_offset,
1797 struct list_head *list)
1798{
e6dcd2dc
CM
1799 struct btrfs_ordered_sum *sum;
1800
c6e30871 1801 list_for_each_entry(sum, list, list) {
39847c4d 1802 trans->adding_csums = 1;
d20f7043
CM
1803 btrfs_csum_file_blocks(trans,
1804 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1805 trans->adding_csums = 0;
e6dcd2dc
CM
1806 }
1807 return 0;
1808}
1809
2ac55d41
JB
1810int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1811 struct extent_state **cached_state)
ea8c2819 1812{
6c1500f2 1813 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1814 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1815 cached_state, GFP_NOFS);
ea8c2819
CM
1816}
1817
d352ac68 1818/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1819struct btrfs_writepage_fixup {
1820 struct page *page;
1821 struct btrfs_work work;
1822};
1823
b2950863 1824static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1825{
1826 struct btrfs_writepage_fixup *fixup;
1827 struct btrfs_ordered_extent *ordered;
2ac55d41 1828 struct extent_state *cached_state = NULL;
247e743c
CM
1829 struct page *page;
1830 struct inode *inode;
1831 u64 page_start;
1832 u64 page_end;
87826df0 1833 int ret;
247e743c
CM
1834
1835 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1836 page = fixup->page;
4a096752 1837again:
247e743c
CM
1838 lock_page(page);
1839 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1840 ClearPageChecked(page);
1841 goto out_page;
1842 }
1843
1844 inode = page->mapping->host;
1845 page_start = page_offset(page);
1846 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1847
2ac55d41 1848 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1849 &cached_state);
4a096752
CM
1850
1851 /* already ordered? We're done */
8b62b72b 1852 if (PagePrivate2(page))
247e743c 1853 goto out;
4a096752
CM
1854
1855 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1856 if (ordered) {
2ac55d41
JB
1857 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1858 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1859 unlock_page(page);
1860 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1861 btrfs_put_ordered_extent(ordered);
4a096752
CM
1862 goto again;
1863 }
247e743c 1864
87826df0
JM
1865 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1866 if (ret) {
1867 mapping_set_error(page->mapping, ret);
1868 end_extent_writepage(page, ret, page_start, page_end);
1869 ClearPageChecked(page);
1870 goto out;
1871 }
1872
2ac55d41 1873 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1874 ClearPageChecked(page);
87826df0 1875 set_page_dirty(page);
247e743c 1876out:
2ac55d41
JB
1877 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1878 &cached_state, GFP_NOFS);
247e743c
CM
1879out_page:
1880 unlock_page(page);
1881 page_cache_release(page);
b897abec 1882 kfree(fixup);
247e743c
CM
1883}
1884
1885/*
1886 * There are a few paths in the higher layers of the kernel that directly
1887 * set the page dirty bit without asking the filesystem if it is a
1888 * good idea. This causes problems because we want to make sure COW
1889 * properly happens and the data=ordered rules are followed.
1890 *
c8b97818 1891 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1892 * hasn't been properly setup for IO. We kick off an async process
1893 * to fix it up. The async helper will wait for ordered extents, set
1894 * the delalloc bit and make it safe to write the page.
1895 */
b2950863 1896static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1897{
1898 struct inode *inode = page->mapping->host;
1899 struct btrfs_writepage_fixup *fixup;
1900 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1901
8b62b72b
CM
1902 /* this page is properly in the ordered list */
1903 if (TestClearPagePrivate2(page))
247e743c
CM
1904 return 0;
1905
1906 if (PageChecked(page))
1907 return -EAGAIN;
1908
1909 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1910 if (!fixup)
1911 return -EAGAIN;
f421950f 1912
247e743c
CM
1913 SetPageChecked(page);
1914 page_cache_get(page);
1915 fixup->work.func = btrfs_writepage_fixup_worker;
1916 fixup->page = page;
1917 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1918 return -EBUSY;
247e743c
CM
1919}
1920
d899e052
YZ
1921static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1922 struct inode *inode, u64 file_pos,
1923 u64 disk_bytenr, u64 disk_num_bytes,
1924 u64 num_bytes, u64 ram_bytes,
1925 u8 compression, u8 encryption,
1926 u16 other_encoding, int extent_type)
1927{
1928 struct btrfs_root *root = BTRFS_I(inode)->root;
1929 struct btrfs_file_extent_item *fi;
1930 struct btrfs_path *path;
1931 struct extent_buffer *leaf;
1932 struct btrfs_key ins;
d899e052
YZ
1933 int ret;
1934
1935 path = btrfs_alloc_path();
d8926bb3
MF
1936 if (!path)
1937 return -ENOMEM;
d899e052 1938
b9473439 1939 path->leave_spinning = 1;
a1ed835e
CM
1940
1941 /*
1942 * we may be replacing one extent in the tree with another.
1943 * The new extent is pinned in the extent map, and we don't want
1944 * to drop it from the cache until it is completely in the btree.
1945 *
1946 * So, tell btrfs_drop_extents to leave this extent in the cache.
1947 * the caller is expected to unpin it and allow it to be merged
1948 * with the others.
1949 */
5dc562c5 1950 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1951 file_pos + num_bytes, 0);
79787eaa
JM
1952 if (ret)
1953 goto out;
d899e052 1954
33345d01 1955 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1956 ins.offset = file_pos;
1957 ins.type = BTRFS_EXTENT_DATA_KEY;
1958 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1959 if (ret)
1960 goto out;
d899e052
YZ
1961 leaf = path->nodes[0];
1962 fi = btrfs_item_ptr(leaf, path->slots[0],
1963 struct btrfs_file_extent_item);
1964 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1965 btrfs_set_file_extent_type(leaf, fi, extent_type);
1966 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1967 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1968 btrfs_set_file_extent_offset(leaf, fi, 0);
1969 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1970 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1971 btrfs_set_file_extent_compression(leaf, fi, compression);
1972 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1973 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1974
d899e052 1975 btrfs_mark_buffer_dirty(leaf);
ce195332 1976 btrfs_release_path(path);
d899e052
YZ
1977
1978 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1979
1980 ins.objectid = disk_bytenr;
1981 ins.offset = disk_num_bytes;
1982 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1983 ret = btrfs_alloc_reserved_file_extent(trans, root,
1984 root->root_key.objectid,
33345d01 1985 btrfs_ino(inode), file_pos, &ins);
79787eaa 1986out:
d899e052 1987 btrfs_free_path(path);
b9473439 1988
79787eaa 1989 return ret;
d899e052
YZ
1990}
1991
38c227d8
LB
1992/* snapshot-aware defrag */
1993struct sa_defrag_extent_backref {
1994 struct rb_node node;
1995 struct old_sa_defrag_extent *old;
1996 u64 root_id;
1997 u64 inum;
1998 u64 file_pos;
1999 u64 extent_offset;
2000 u64 num_bytes;
2001 u64 generation;
2002};
2003
2004struct old_sa_defrag_extent {
2005 struct list_head list;
2006 struct new_sa_defrag_extent *new;
2007
2008 u64 extent_offset;
2009 u64 bytenr;
2010 u64 offset;
2011 u64 len;
2012 int count;
2013};
2014
2015struct new_sa_defrag_extent {
2016 struct rb_root root;
2017 struct list_head head;
2018 struct btrfs_path *path;
2019 struct inode *inode;
2020 u64 file_pos;
2021 u64 len;
2022 u64 bytenr;
2023 u64 disk_len;
2024 u8 compress_type;
2025};
2026
2027static int backref_comp(struct sa_defrag_extent_backref *b1,
2028 struct sa_defrag_extent_backref *b2)
2029{
2030 if (b1->root_id < b2->root_id)
2031 return -1;
2032 else if (b1->root_id > b2->root_id)
2033 return 1;
2034
2035 if (b1->inum < b2->inum)
2036 return -1;
2037 else if (b1->inum > b2->inum)
2038 return 1;
2039
2040 if (b1->file_pos < b2->file_pos)
2041 return -1;
2042 else if (b1->file_pos > b2->file_pos)
2043 return 1;
2044
2045 /*
2046 * [------------------------------] ===> (a range of space)
2047 * |<--->| |<---->| =============> (fs/file tree A)
2048 * |<---------------------------->| ===> (fs/file tree B)
2049 *
2050 * A range of space can refer to two file extents in one tree while
2051 * refer to only one file extent in another tree.
2052 *
2053 * So we may process a disk offset more than one time(two extents in A)
2054 * and locate at the same extent(one extent in B), then insert two same
2055 * backrefs(both refer to the extent in B).
2056 */
2057 return 0;
2058}
2059
2060static void backref_insert(struct rb_root *root,
2061 struct sa_defrag_extent_backref *backref)
2062{
2063 struct rb_node **p = &root->rb_node;
2064 struct rb_node *parent = NULL;
2065 struct sa_defrag_extent_backref *entry;
2066 int ret;
2067
2068 while (*p) {
2069 parent = *p;
2070 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2071
2072 ret = backref_comp(backref, entry);
2073 if (ret < 0)
2074 p = &(*p)->rb_left;
2075 else
2076 p = &(*p)->rb_right;
2077 }
2078
2079 rb_link_node(&backref->node, parent, p);
2080 rb_insert_color(&backref->node, root);
2081}
2082
2083/*
2084 * Note the backref might has changed, and in this case we just return 0.
2085 */
2086static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2087 void *ctx)
2088{
2089 struct btrfs_file_extent_item *extent;
2090 struct btrfs_fs_info *fs_info;
2091 struct old_sa_defrag_extent *old = ctx;
2092 struct new_sa_defrag_extent *new = old->new;
2093 struct btrfs_path *path = new->path;
2094 struct btrfs_key key;
2095 struct btrfs_root *root;
2096 struct sa_defrag_extent_backref *backref;
2097 struct extent_buffer *leaf;
2098 struct inode *inode = new->inode;
2099 int slot;
2100 int ret;
2101 u64 extent_offset;
2102 u64 num_bytes;
2103
2104 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2105 inum == btrfs_ino(inode))
2106 return 0;
2107
2108 key.objectid = root_id;
2109 key.type = BTRFS_ROOT_ITEM_KEY;
2110 key.offset = (u64)-1;
2111
2112 fs_info = BTRFS_I(inode)->root->fs_info;
2113 root = btrfs_read_fs_root_no_name(fs_info, &key);
2114 if (IS_ERR(root)) {
2115 if (PTR_ERR(root) == -ENOENT)
2116 return 0;
2117 WARN_ON(1);
2118 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2119 inum, offset, root_id);
2120 return PTR_ERR(root);
2121 }
2122
2123 key.objectid = inum;
2124 key.type = BTRFS_EXTENT_DATA_KEY;
2125 if (offset > (u64)-1 << 32)
2126 key.offset = 0;
2127 else
2128 key.offset = offset;
2129
2130 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2131 if (ret < 0) {
2132 WARN_ON(1);
2133 return ret;
2134 }
2135
2136 while (1) {
2137 cond_resched();
2138
2139 leaf = path->nodes[0];
2140 slot = path->slots[0];
2141
2142 if (slot >= btrfs_header_nritems(leaf)) {
2143 ret = btrfs_next_leaf(root, path);
2144 if (ret < 0) {
2145 goto out;
2146 } else if (ret > 0) {
2147 ret = 0;
2148 goto out;
2149 }
2150 continue;
2151 }
2152
2153 path->slots[0]++;
2154
2155 btrfs_item_key_to_cpu(leaf, &key, slot);
2156
2157 if (key.objectid > inum)
2158 goto out;
2159
2160 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2161 continue;
2162
2163 extent = btrfs_item_ptr(leaf, slot,
2164 struct btrfs_file_extent_item);
2165
2166 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2167 continue;
2168
e68afa49
LB
2169 /*
2170 * 'offset' refers to the exact key.offset,
2171 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2172 * (key.offset - extent_offset).
2173 */
2174 if (key.offset != offset)
38c227d8
LB
2175 continue;
2176
e68afa49 2177 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2178 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2179
38c227d8
LB
2180 if (extent_offset >= old->extent_offset + old->offset +
2181 old->len || extent_offset + num_bytes <=
2182 old->extent_offset + old->offset)
2183 continue;
2184
e68afa49 2185 ret = 0;
38c227d8
LB
2186 break;
2187 }
2188
2189 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2190 if (!backref) {
2191 ret = -ENOENT;
2192 goto out;
2193 }
2194
2195 backref->root_id = root_id;
2196 backref->inum = inum;
e68afa49 2197 backref->file_pos = offset;
38c227d8
LB
2198 backref->num_bytes = num_bytes;
2199 backref->extent_offset = extent_offset;
2200 backref->generation = btrfs_file_extent_generation(leaf, extent);
2201 backref->old = old;
2202 backref_insert(&new->root, backref);
2203 old->count++;
2204out:
2205 btrfs_release_path(path);
2206 WARN_ON(ret);
2207 return ret;
2208}
2209
2210static noinline bool record_extent_backrefs(struct btrfs_path *path,
2211 struct new_sa_defrag_extent *new)
2212{
2213 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2214 struct old_sa_defrag_extent *old, *tmp;
2215 int ret;
2216
2217 new->path = path;
2218
2219 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2220 ret = iterate_inodes_from_logical(old->bytenr +
2221 old->extent_offset, fs_info,
38c227d8
LB
2222 path, record_one_backref,
2223 old);
2224 BUG_ON(ret < 0 && ret != -ENOENT);
2225
2226 /* no backref to be processed for this extent */
2227 if (!old->count) {
2228 list_del(&old->list);
2229 kfree(old);
2230 }
2231 }
2232
2233 if (list_empty(&new->head))
2234 return false;
2235
2236 return true;
2237}
2238
2239static int relink_is_mergable(struct extent_buffer *leaf,
2240 struct btrfs_file_extent_item *fi,
2241 u64 disk_bytenr)
2242{
2243 if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr)
2244 return 0;
2245
2246 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2247 return 0;
2248
2249 if (btrfs_file_extent_compression(leaf, fi) ||
2250 btrfs_file_extent_encryption(leaf, fi) ||
2251 btrfs_file_extent_other_encoding(leaf, fi))
2252 return 0;
2253
2254 return 1;
2255}
2256
2257/*
2258 * Note the backref might has changed, and in this case we just return 0.
2259 */
2260static noinline int relink_extent_backref(struct btrfs_path *path,
2261 struct sa_defrag_extent_backref *prev,
2262 struct sa_defrag_extent_backref *backref)
2263{
2264 struct btrfs_file_extent_item *extent;
2265 struct btrfs_file_extent_item *item;
2266 struct btrfs_ordered_extent *ordered;
2267 struct btrfs_trans_handle *trans;
2268 struct btrfs_fs_info *fs_info;
2269 struct btrfs_root *root;
2270 struct btrfs_key key;
2271 struct extent_buffer *leaf;
2272 struct old_sa_defrag_extent *old = backref->old;
2273 struct new_sa_defrag_extent *new = old->new;
2274 struct inode *src_inode = new->inode;
2275 struct inode *inode;
2276 struct extent_state *cached = NULL;
2277 int ret = 0;
2278 u64 start;
2279 u64 len;
2280 u64 lock_start;
2281 u64 lock_end;
2282 bool merge = false;
2283 int index;
2284
2285 if (prev && prev->root_id == backref->root_id &&
2286 prev->inum == backref->inum &&
2287 prev->file_pos + prev->num_bytes == backref->file_pos)
2288 merge = true;
2289
2290 /* step 1: get root */
2291 key.objectid = backref->root_id;
2292 key.type = BTRFS_ROOT_ITEM_KEY;
2293 key.offset = (u64)-1;
2294
2295 fs_info = BTRFS_I(src_inode)->root->fs_info;
2296 index = srcu_read_lock(&fs_info->subvol_srcu);
2297
2298 root = btrfs_read_fs_root_no_name(fs_info, &key);
2299 if (IS_ERR(root)) {
2300 srcu_read_unlock(&fs_info->subvol_srcu, index);
2301 if (PTR_ERR(root) == -ENOENT)
2302 return 0;
2303 return PTR_ERR(root);
2304 }
38c227d8
LB
2305
2306 /* step 2: get inode */
2307 key.objectid = backref->inum;
2308 key.type = BTRFS_INODE_ITEM_KEY;
2309 key.offset = 0;
2310
2311 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2312 if (IS_ERR(inode)) {
2313 srcu_read_unlock(&fs_info->subvol_srcu, index);
2314 return 0;
2315 }
2316
2317 srcu_read_unlock(&fs_info->subvol_srcu, index);
2318
2319 /* step 3: relink backref */
2320 lock_start = backref->file_pos;
2321 lock_end = backref->file_pos + backref->num_bytes - 1;
2322 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2323 0, &cached);
2324
2325 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2326 if (ordered) {
2327 btrfs_put_ordered_extent(ordered);
2328 goto out_unlock;
2329 }
2330
2331 trans = btrfs_join_transaction(root);
2332 if (IS_ERR(trans)) {
2333 ret = PTR_ERR(trans);
2334 goto out_unlock;
2335 }
2336
2337 key.objectid = backref->inum;
2338 key.type = BTRFS_EXTENT_DATA_KEY;
2339 key.offset = backref->file_pos;
2340
2341 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2342 if (ret < 0) {
2343 goto out_free_path;
2344 } else if (ret > 0) {
2345 ret = 0;
2346 goto out_free_path;
2347 }
2348
2349 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2350 struct btrfs_file_extent_item);
2351
2352 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2353 backref->generation)
2354 goto out_free_path;
2355
2356 btrfs_release_path(path);
2357
2358 start = backref->file_pos;
2359 if (backref->extent_offset < old->extent_offset + old->offset)
2360 start += old->extent_offset + old->offset -
2361 backref->extent_offset;
2362
2363 len = min(backref->extent_offset + backref->num_bytes,
2364 old->extent_offset + old->offset + old->len);
2365 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2366
2367 ret = btrfs_drop_extents(trans, root, inode, start,
2368 start + len, 1);
2369 if (ret)
2370 goto out_free_path;
2371again:
2372 key.objectid = btrfs_ino(inode);
2373 key.type = BTRFS_EXTENT_DATA_KEY;
2374 key.offset = start;
2375
a09a0a70 2376 path->leave_spinning = 1;
38c227d8
LB
2377 if (merge) {
2378 struct btrfs_file_extent_item *fi;
2379 u64 extent_len;
2380 struct btrfs_key found_key;
2381
2382 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2383 if (ret < 0)
2384 goto out_free_path;
2385
2386 path->slots[0]--;
2387 leaf = path->nodes[0];
2388 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2389
2390 fi = btrfs_item_ptr(leaf, path->slots[0],
2391 struct btrfs_file_extent_item);
2392 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2393
2394 if (relink_is_mergable(leaf, fi, new->bytenr) &&
2395 extent_len + found_key.offset == start) {
2396 btrfs_set_file_extent_num_bytes(leaf, fi,
2397 extent_len + len);
2398 btrfs_mark_buffer_dirty(leaf);
2399 inode_add_bytes(inode, len);
2400
2401 ret = 1;
2402 goto out_free_path;
2403 } else {
2404 merge = false;
2405 btrfs_release_path(path);
2406 goto again;
2407 }
2408 }
2409
2410 ret = btrfs_insert_empty_item(trans, root, path, &key,
2411 sizeof(*extent));
2412 if (ret) {
2413 btrfs_abort_transaction(trans, root, ret);
2414 goto out_free_path;
2415 }
2416
2417 leaf = path->nodes[0];
2418 item = btrfs_item_ptr(leaf, path->slots[0],
2419 struct btrfs_file_extent_item);
2420 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2421 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2422 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2423 btrfs_set_file_extent_num_bytes(leaf, item, len);
2424 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2425 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2426 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2427 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2428 btrfs_set_file_extent_encryption(leaf, item, 0);
2429 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2430
2431 btrfs_mark_buffer_dirty(leaf);
2432 inode_add_bytes(inode, len);
a09a0a70 2433 btrfs_release_path(path);
38c227d8
LB
2434
2435 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2436 new->disk_len, 0,
2437 backref->root_id, backref->inum,
2438 new->file_pos, 0); /* start - extent_offset */
2439 if (ret) {
2440 btrfs_abort_transaction(trans, root, ret);
2441 goto out_free_path;
2442 }
2443
2444 ret = 1;
2445out_free_path:
2446 btrfs_release_path(path);
a09a0a70 2447 path->leave_spinning = 0;
38c227d8
LB
2448 btrfs_end_transaction(trans, root);
2449out_unlock:
2450 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2451 &cached, GFP_NOFS);
2452 iput(inode);
2453 return ret;
2454}
2455
2456static void relink_file_extents(struct new_sa_defrag_extent *new)
2457{
2458 struct btrfs_path *path;
2459 struct old_sa_defrag_extent *old, *tmp;
2460 struct sa_defrag_extent_backref *backref;
2461 struct sa_defrag_extent_backref *prev = NULL;
2462 struct inode *inode;
2463 struct btrfs_root *root;
2464 struct rb_node *node;
2465 int ret;
2466
2467 inode = new->inode;
2468 root = BTRFS_I(inode)->root;
2469
2470 path = btrfs_alloc_path();
2471 if (!path)
2472 return;
2473
2474 if (!record_extent_backrefs(path, new)) {
2475 btrfs_free_path(path);
2476 goto out;
2477 }
2478 btrfs_release_path(path);
2479
2480 while (1) {
2481 node = rb_first(&new->root);
2482 if (!node)
2483 break;
2484 rb_erase(node, &new->root);
2485
2486 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2487
2488 ret = relink_extent_backref(path, prev, backref);
2489 WARN_ON(ret < 0);
2490
2491 kfree(prev);
2492
2493 if (ret == 1)
2494 prev = backref;
2495 else
2496 prev = NULL;
2497 cond_resched();
2498 }
2499 kfree(prev);
2500
2501 btrfs_free_path(path);
2502
2503 list_for_each_entry_safe(old, tmp, &new->head, list) {
2504 list_del(&old->list);
2505 kfree(old);
2506 }
2507out:
2508 atomic_dec(&root->fs_info->defrag_running);
2509 wake_up(&root->fs_info->transaction_wait);
2510
2511 kfree(new);
2512}
2513
2514static struct new_sa_defrag_extent *
2515record_old_file_extents(struct inode *inode,
2516 struct btrfs_ordered_extent *ordered)
2517{
2518 struct btrfs_root *root = BTRFS_I(inode)->root;
2519 struct btrfs_path *path;
2520 struct btrfs_key key;
2521 struct old_sa_defrag_extent *old, *tmp;
2522 struct new_sa_defrag_extent *new;
2523 int ret;
2524
2525 new = kmalloc(sizeof(*new), GFP_NOFS);
2526 if (!new)
2527 return NULL;
2528
2529 new->inode = inode;
2530 new->file_pos = ordered->file_offset;
2531 new->len = ordered->len;
2532 new->bytenr = ordered->start;
2533 new->disk_len = ordered->disk_len;
2534 new->compress_type = ordered->compress_type;
2535 new->root = RB_ROOT;
2536 INIT_LIST_HEAD(&new->head);
2537
2538 path = btrfs_alloc_path();
2539 if (!path)
2540 goto out_kfree;
2541
2542 key.objectid = btrfs_ino(inode);
2543 key.type = BTRFS_EXTENT_DATA_KEY;
2544 key.offset = new->file_pos;
2545
2546 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2547 if (ret < 0)
2548 goto out_free_path;
2549 if (ret > 0 && path->slots[0] > 0)
2550 path->slots[0]--;
2551
2552 /* find out all the old extents for the file range */
2553 while (1) {
2554 struct btrfs_file_extent_item *extent;
2555 struct extent_buffer *l;
2556 int slot;
2557 u64 num_bytes;
2558 u64 offset;
2559 u64 end;
2560 u64 disk_bytenr;
2561 u64 extent_offset;
2562
2563 l = path->nodes[0];
2564 slot = path->slots[0];
2565
2566 if (slot >= btrfs_header_nritems(l)) {
2567 ret = btrfs_next_leaf(root, path);
2568 if (ret < 0)
2569 goto out_free_list;
2570 else if (ret > 0)
2571 break;
2572 continue;
2573 }
2574
2575 btrfs_item_key_to_cpu(l, &key, slot);
2576
2577 if (key.objectid != btrfs_ino(inode))
2578 break;
2579 if (key.type != BTRFS_EXTENT_DATA_KEY)
2580 break;
2581 if (key.offset >= new->file_pos + new->len)
2582 break;
2583
2584 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2585
2586 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2587 if (key.offset + num_bytes < new->file_pos)
2588 goto next;
2589
2590 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2591 if (!disk_bytenr)
2592 goto next;
2593
2594 extent_offset = btrfs_file_extent_offset(l, extent);
2595
2596 old = kmalloc(sizeof(*old), GFP_NOFS);
2597 if (!old)
2598 goto out_free_list;
2599
2600 offset = max(new->file_pos, key.offset);
2601 end = min(new->file_pos + new->len, key.offset + num_bytes);
2602
2603 old->bytenr = disk_bytenr;
2604 old->extent_offset = extent_offset;
2605 old->offset = offset - key.offset;
2606 old->len = end - offset;
2607 old->new = new;
2608 old->count = 0;
2609 list_add_tail(&old->list, &new->head);
2610next:
2611 path->slots[0]++;
2612 cond_resched();
2613 }
2614
2615 btrfs_free_path(path);
2616 atomic_inc(&root->fs_info->defrag_running);
2617
2618 return new;
2619
2620out_free_list:
2621 list_for_each_entry_safe(old, tmp, &new->head, list) {
2622 list_del(&old->list);
2623 kfree(old);
2624 }
2625out_free_path:
2626 btrfs_free_path(path);
2627out_kfree:
2628 kfree(new);
2629 return NULL;
2630}
2631
5d13a98f
CM
2632/*
2633 * helper function for btrfs_finish_ordered_io, this
2634 * just reads in some of the csum leaves to prime them into ram
2635 * before we start the transaction. It limits the amount of btree
2636 * reads required while inside the transaction.
2637 */
d352ac68
CM
2638/* as ordered data IO finishes, this gets called so we can finish
2639 * an ordered extent if the range of bytes in the file it covers are
2640 * fully written.
2641 */
5fd02043 2642static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2643{
5fd02043 2644 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2645 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2646 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2647 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2648 struct extent_state *cached_state = NULL;
38c227d8 2649 struct new_sa_defrag_extent *new = NULL;
261507a0 2650 int compress_type = 0;
e6dcd2dc 2651 int ret;
82d5902d 2652 bool nolock;
e6dcd2dc 2653
83eea1f1 2654 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2655
5fd02043
JB
2656 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2657 ret = -EIO;
2658 goto out;
2659 }
2660
c2167754 2661 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2662 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2663 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2664 if (nolock)
2665 trans = btrfs_join_transaction_nolock(root);
2666 else
2667 trans = btrfs_join_transaction(root);
2668 if (IS_ERR(trans)) {
2669 ret = PTR_ERR(trans);
2670 trans = NULL;
2671 goto out;
c2167754 2672 }
6c760c07
JB
2673 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2674 ret = btrfs_update_inode_fallback(trans, root, inode);
2675 if (ret) /* -ENOMEM or corruption */
2676 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2677 goto out;
2678 }
e6dcd2dc 2679
2ac55d41
JB
2680 lock_extent_bits(io_tree, ordered_extent->file_offset,
2681 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2682 0, &cached_state);
e6dcd2dc 2683
38c227d8
LB
2684 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2685 ordered_extent->file_offset + ordered_extent->len - 1,
2686 EXTENT_DEFRAG, 1, cached_state);
2687 if (ret) {
2688 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2689 if (last_snapshot >= BTRFS_I(inode)->generation)
2690 /* the inode is shared */
2691 new = record_old_file_extents(inode, ordered_extent);
2692
2693 clear_extent_bit(io_tree, ordered_extent->file_offset,
2694 ordered_extent->file_offset + ordered_extent->len - 1,
2695 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2696 }
2697
0cb59c99 2698 if (nolock)
7a7eaa40 2699 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2700 else
7a7eaa40 2701 trans = btrfs_join_transaction(root);
79787eaa
JM
2702 if (IS_ERR(trans)) {
2703 ret = PTR_ERR(trans);
2704 trans = NULL;
2705 goto out_unlock;
2706 }
0ca1f7ce 2707 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2708
c8b97818 2709 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2710 compress_type = ordered_extent->compress_type;
d899e052 2711 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2712 BUG_ON(compress_type);
920bbbfb 2713 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2714 ordered_extent->file_offset,
2715 ordered_extent->file_offset +
2716 ordered_extent->len);
d899e052 2717 } else {
0af3d00b 2718 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2719 ret = insert_reserved_file_extent(trans, inode,
2720 ordered_extent->file_offset,
2721 ordered_extent->start,
2722 ordered_extent->disk_len,
2723 ordered_extent->len,
2724 ordered_extent->len,
261507a0 2725 compress_type, 0, 0,
d899e052 2726 BTRFS_FILE_EXTENT_REG);
d899e052 2727 }
5dc562c5
JB
2728 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2729 ordered_extent->file_offset, ordered_extent->len,
2730 trans->transid);
79787eaa
JM
2731 if (ret < 0) {
2732 btrfs_abort_transaction(trans, root, ret);
5fd02043 2733 goto out_unlock;
79787eaa 2734 }
2ac55d41 2735
e6dcd2dc
CM
2736 add_pending_csums(trans, inode, ordered_extent->file_offset,
2737 &ordered_extent->list);
2738
6c760c07
JB
2739 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2740 ret = btrfs_update_inode_fallback(trans, root, inode);
2741 if (ret) { /* -ENOMEM or corruption */
2742 btrfs_abort_transaction(trans, root, ret);
2743 goto out_unlock;
1ef30be1
JB
2744 }
2745 ret = 0;
5fd02043
JB
2746out_unlock:
2747 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2748 ordered_extent->file_offset +
2749 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2750out:
5b0e95bf 2751 if (root != root->fs_info->tree_root)
0cb59c99 2752 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2753 if (trans)
2754 btrfs_end_transaction(trans, root);
0cb59c99 2755
0bec9ef5 2756 if (ret) {
5fd02043
JB
2757 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2758 ordered_extent->file_offset +
2759 ordered_extent->len - 1, NULL, GFP_NOFS);
2760
0bec9ef5
JB
2761 /*
2762 * If the ordered extent had an IOERR or something else went
2763 * wrong we need to return the space for this ordered extent
2764 * back to the allocator.
2765 */
2766 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2767 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2768 btrfs_free_reserved_extent(root, ordered_extent->start,
2769 ordered_extent->disk_len);
2770 }
2771
2772
5fd02043 2773 /*
8bad3c02
LB
2774 * This needs to be done to make sure anybody waiting knows we are done
2775 * updating everything for this ordered extent.
5fd02043
JB
2776 */
2777 btrfs_remove_ordered_extent(inode, ordered_extent);
2778
38c227d8
LB
2779 /* for snapshot-aware defrag */
2780 if (new)
2781 relink_file_extents(new);
2782
e6dcd2dc
CM
2783 /* once for us */
2784 btrfs_put_ordered_extent(ordered_extent);
2785 /* once for the tree */
2786 btrfs_put_ordered_extent(ordered_extent);
2787
5fd02043
JB
2788 return ret;
2789}
2790
2791static void finish_ordered_fn(struct btrfs_work *work)
2792{
2793 struct btrfs_ordered_extent *ordered_extent;
2794 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2795 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2796}
2797
b2950863 2798static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2799 struct extent_state *state, int uptodate)
2800{
5fd02043
JB
2801 struct inode *inode = page->mapping->host;
2802 struct btrfs_root *root = BTRFS_I(inode)->root;
2803 struct btrfs_ordered_extent *ordered_extent = NULL;
2804 struct btrfs_workers *workers;
2805
1abe9b8a 2806 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2807
8b62b72b 2808 ClearPagePrivate2(page);
5fd02043
JB
2809 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2810 end - start + 1, uptodate))
2811 return 0;
2812
2813 ordered_extent->work.func = finish_ordered_fn;
2814 ordered_extent->work.flags = 0;
2815
83eea1f1 2816 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2817 workers = &root->fs_info->endio_freespace_worker;
2818 else
2819 workers = &root->fs_info->endio_write_workers;
2820 btrfs_queue_worker(workers, &ordered_extent->work);
2821
2822 return 0;
211f90e6
CM
2823}
2824
d352ac68
CM
2825/*
2826 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2827 * if there's a match, we allow the bio to finish. If not, the code in
2828 * extent_io.c will try to find good copies for us.
d352ac68 2829 */
b2950863 2830static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 2831 struct extent_state *state, int mirror)
07157aac 2832{
4eee4fa4 2833 size_t offset = start - page_offset(page);
07157aac 2834 struct inode *inode = page->mapping->host;
d1310b2e 2835 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2836 char *kaddr;
aadfeb6e 2837 u64 private = ~(u32)0;
07157aac 2838 int ret;
ff79f819
CM
2839 struct btrfs_root *root = BTRFS_I(inode)->root;
2840 u32 csum = ~(u32)0;
c2cf52eb
SK
2841 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2842 DEFAULT_RATELIMIT_BURST);
d1310b2e 2843
d20f7043
CM
2844 if (PageChecked(page)) {
2845 ClearPageChecked(page);
2846 goto good;
2847 }
6cbff00f
CH
2848
2849 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2850 goto good;
17d217fe
YZ
2851
2852 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2853 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2854 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2855 GFP_NOFS);
b6cda9bc 2856 return 0;
17d217fe 2857 }
d20f7043 2858
c2e639f0 2859 if (state && state->start == start) {
70dec807
CM
2860 private = state->private;
2861 ret = 0;
2862 } else {
2863 ret = get_state_private(io_tree, start, &private);
2864 }
7ac687d9 2865 kaddr = kmap_atomic(page);
d397712b 2866 if (ret)
07157aac 2867 goto zeroit;
d397712b 2868
b0496686 2869 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2870 btrfs_csum_final(csum, (char *)&csum);
d397712b 2871 if (csum != private)
07157aac 2872 goto zeroit;
d397712b 2873
7ac687d9 2874 kunmap_atomic(kaddr);
d20f7043 2875good:
07157aac
CM
2876 return 0;
2877
2878zeroit:
c2cf52eb
SK
2879 if (__ratelimit(&_rs))
2880 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u private %llu",
2881 (unsigned long long)btrfs_ino(page->mapping->host),
2882 (unsigned long long)start, csum,
2883 (unsigned long long)private);
db94535d
CM
2884 memset(kaddr + offset, 1, end - start + 1);
2885 flush_dcache_page(page);
7ac687d9 2886 kunmap_atomic(kaddr);
3b951516
CM
2887 if (private == 0)
2888 return 0;
7e38326f 2889 return -EIO;
07157aac 2890}
b888db2b 2891
24bbcf04
YZ
2892struct delayed_iput {
2893 struct list_head list;
2894 struct inode *inode;
2895};
2896
79787eaa
JM
2897/* JDM: If this is fs-wide, why can't we add a pointer to
2898 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2899void btrfs_add_delayed_iput(struct inode *inode)
2900{
2901 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2902 struct delayed_iput *delayed;
2903
2904 if (atomic_add_unless(&inode->i_count, -1, 1))
2905 return;
2906
2907 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2908 delayed->inode = inode;
2909
2910 spin_lock(&fs_info->delayed_iput_lock);
2911 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2912 spin_unlock(&fs_info->delayed_iput_lock);
2913}
2914
2915void btrfs_run_delayed_iputs(struct btrfs_root *root)
2916{
2917 LIST_HEAD(list);
2918 struct btrfs_fs_info *fs_info = root->fs_info;
2919 struct delayed_iput *delayed;
2920 int empty;
2921
2922 spin_lock(&fs_info->delayed_iput_lock);
2923 empty = list_empty(&fs_info->delayed_iputs);
2924 spin_unlock(&fs_info->delayed_iput_lock);
2925 if (empty)
2926 return;
2927
24bbcf04
YZ
2928 spin_lock(&fs_info->delayed_iput_lock);
2929 list_splice_init(&fs_info->delayed_iputs, &list);
2930 spin_unlock(&fs_info->delayed_iput_lock);
2931
2932 while (!list_empty(&list)) {
2933 delayed = list_entry(list.next, struct delayed_iput, list);
2934 list_del(&delayed->list);
2935 iput(delayed->inode);
2936 kfree(delayed);
2937 }
24bbcf04
YZ
2938}
2939
d68fc57b 2940/*
42b2aa86 2941 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2942 * files in the subvolume, it removes orphan item and frees block_rsv
2943 * structure.
2944 */
2945void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2946 struct btrfs_root *root)
2947{
90290e19 2948 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2949 int ret;
2950
8a35d95f 2951 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2952 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2953 return;
2954
90290e19 2955 spin_lock(&root->orphan_lock);
8a35d95f 2956 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2957 spin_unlock(&root->orphan_lock);
2958 return;
2959 }
2960
2961 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2962 spin_unlock(&root->orphan_lock);
2963 return;
2964 }
2965
2966 block_rsv = root->orphan_block_rsv;
2967 root->orphan_block_rsv = NULL;
2968 spin_unlock(&root->orphan_lock);
2969
d68fc57b
YZ
2970 if (root->orphan_item_inserted &&
2971 btrfs_root_refs(&root->root_item) > 0) {
2972 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2973 root->root_key.objectid);
2974 BUG_ON(ret);
2975 root->orphan_item_inserted = 0;
2976 }
2977
90290e19
JB
2978 if (block_rsv) {
2979 WARN_ON(block_rsv->size > 0);
2980 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2981 }
2982}
2983
7b128766
JB
2984/*
2985 * This creates an orphan entry for the given inode in case something goes
2986 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2987 *
2988 * NOTE: caller of this function should reserve 5 units of metadata for
2989 * this function.
7b128766
JB
2990 */
2991int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2992{
2993 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2994 struct btrfs_block_rsv *block_rsv = NULL;
2995 int reserve = 0;
2996 int insert = 0;
2997 int ret;
7b128766 2998
d68fc57b 2999 if (!root->orphan_block_rsv) {
66d8f3dd 3000 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3001 if (!block_rsv)
3002 return -ENOMEM;
d68fc57b 3003 }
7b128766 3004
d68fc57b
YZ
3005 spin_lock(&root->orphan_lock);
3006 if (!root->orphan_block_rsv) {
3007 root->orphan_block_rsv = block_rsv;
3008 } else if (block_rsv) {
3009 btrfs_free_block_rsv(root, block_rsv);
3010 block_rsv = NULL;
7b128766 3011 }
7b128766 3012
8a35d95f
JB
3013 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3014 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3015#if 0
3016 /*
3017 * For proper ENOSPC handling, we should do orphan
3018 * cleanup when mounting. But this introduces backward
3019 * compatibility issue.
3020 */
3021 if (!xchg(&root->orphan_item_inserted, 1))
3022 insert = 2;
3023 else
3024 insert = 1;
3025#endif
3026 insert = 1;
321f0e70 3027 atomic_inc(&root->orphan_inodes);
7b128766
JB
3028 }
3029
72ac3c0d
JB
3030 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3031 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3032 reserve = 1;
d68fc57b 3033 spin_unlock(&root->orphan_lock);
7b128766 3034
d68fc57b
YZ
3035 /* grab metadata reservation from transaction handle */
3036 if (reserve) {
3037 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3038 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3039 }
7b128766 3040
d68fc57b
YZ
3041 /* insert an orphan item to track this unlinked/truncated file */
3042 if (insert >= 1) {
33345d01 3043 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 3044 if (ret && ret != -EEXIST) {
8a35d95f
JB
3045 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3046 &BTRFS_I(inode)->runtime_flags);
79787eaa
JM
3047 btrfs_abort_transaction(trans, root, ret);
3048 return ret;
3049 }
3050 ret = 0;
d68fc57b
YZ
3051 }
3052
3053 /* insert an orphan item to track subvolume contains orphan files */
3054 if (insert >= 2) {
3055 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3056 root->root_key.objectid);
79787eaa
JM
3057 if (ret && ret != -EEXIST) {
3058 btrfs_abort_transaction(trans, root, ret);
3059 return ret;
3060 }
d68fc57b
YZ
3061 }
3062 return 0;
7b128766
JB
3063}
3064
3065/*
3066 * We have done the truncate/delete so we can go ahead and remove the orphan
3067 * item for this particular inode.
3068 */
48a3b636
ES
3069static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3070 struct inode *inode)
7b128766
JB
3071{
3072 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3073 int delete_item = 0;
3074 int release_rsv = 0;
7b128766
JB
3075 int ret = 0;
3076
d68fc57b 3077 spin_lock(&root->orphan_lock);
8a35d95f
JB
3078 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3079 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3080 delete_item = 1;
7b128766 3081
72ac3c0d
JB
3082 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3083 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3084 release_rsv = 1;
d68fc57b 3085 spin_unlock(&root->orphan_lock);
7b128766 3086
d68fc57b 3087 if (trans && delete_item) {
33345d01 3088 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 3089 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 3090 }
7b128766 3091
8a35d95f 3092 if (release_rsv) {
d68fc57b 3093 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
3094 atomic_dec(&root->orphan_inodes);
3095 }
7b128766 3096
d68fc57b 3097 return 0;
7b128766
JB
3098}
3099
3100/*
3101 * this cleans up any orphans that may be left on the list from the last use
3102 * of this root.
3103 */
66b4ffd1 3104int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3105{
3106 struct btrfs_path *path;
3107 struct extent_buffer *leaf;
7b128766
JB
3108 struct btrfs_key key, found_key;
3109 struct btrfs_trans_handle *trans;
3110 struct inode *inode;
8f6d7f4f 3111 u64 last_objectid = 0;
7b128766
JB
3112 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3113
d68fc57b 3114 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3115 return 0;
c71bf099
YZ
3116
3117 path = btrfs_alloc_path();
66b4ffd1
JB
3118 if (!path) {
3119 ret = -ENOMEM;
3120 goto out;
3121 }
7b128766
JB
3122 path->reada = -1;
3123
3124 key.objectid = BTRFS_ORPHAN_OBJECTID;
3125 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3126 key.offset = (u64)-1;
3127
7b128766
JB
3128 while (1) {
3129 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3130 if (ret < 0)
3131 goto out;
7b128766
JB
3132
3133 /*
3134 * if ret == 0 means we found what we were searching for, which
25985edc 3135 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3136 * find the key and see if we have stuff that matches
3137 */
3138 if (ret > 0) {
66b4ffd1 3139 ret = 0;
7b128766
JB
3140 if (path->slots[0] == 0)
3141 break;
3142 path->slots[0]--;
3143 }
3144
3145 /* pull out the item */
3146 leaf = path->nodes[0];
7b128766
JB
3147 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3148
3149 /* make sure the item matches what we want */
3150 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3151 break;
3152 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3153 break;
3154
3155 /* release the path since we're done with it */
b3b4aa74 3156 btrfs_release_path(path);
7b128766
JB
3157
3158 /*
3159 * this is where we are basically btrfs_lookup, without the
3160 * crossing root thing. we store the inode number in the
3161 * offset of the orphan item.
3162 */
8f6d7f4f
JB
3163
3164 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3165 btrfs_err(root->fs_info,
3166 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3167 ret = -EINVAL;
3168 goto out;
3169 }
3170
3171 last_objectid = found_key.offset;
3172
5d4f98a2
YZ
3173 found_key.objectid = found_key.offset;
3174 found_key.type = BTRFS_INODE_ITEM_KEY;
3175 found_key.offset = 0;
73f73415 3176 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
3177 ret = PTR_RET(inode);
3178 if (ret && ret != -ESTALE)
66b4ffd1 3179 goto out;
7b128766 3180
f8e9e0b0
AJ
3181 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3182 struct btrfs_root *dead_root;
3183 struct btrfs_fs_info *fs_info = root->fs_info;
3184 int is_dead_root = 0;
3185
3186 /*
3187 * this is an orphan in the tree root. Currently these
3188 * could come from 2 sources:
3189 * a) a snapshot deletion in progress
3190 * b) a free space cache inode
3191 * We need to distinguish those two, as the snapshot
3192 * orphan must not get deleted.
3193 * find_dead_roots already ran before us, so if this
3194 * is a snapshot deletion, we should find the root
3195 * in the dead_roots list
3196 */
3197 spin_lock(&fs_info->trans_lock);
3198 list_for_each_entry(dead_root, &fs_info->dead_roots,
3199 root_list) {
3200 if (dead_root->root_key.objectid ==
3201 found_key.objectid) {
3202 is_dead_root = 1;
3203 break;
3204 }
3205 }
3206 spin_unlock(&fs_info->trans_lock);
3207 if (is_dead_root) {
3208 /* prevent this orphan from being found again */
3209 key.offset = found_key.objectid - 1;
3210 continue;
3211 }
3212 }
7b128766 3213 /*
a8c9e576
JB
3214 * Inode is already gone but the orphan item is still there,
3215 * kill the orphan item.
7b128766 3216 */
a8c9e576
JB
3217 if (ret == -ESTALE) {
3218 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3219 if (IS_ERR(trans)) {
3220 ret = PTR_ERR(trans);
3221 goto out;
3222 }
c2cf52eb
SK
3223 btrfs_debug(root->fs_info, "auto deleting %Lu",
3224 found_key.objectid);
a8c9e576
JB
3225 ret = btrfs_del_orphan_item(trans, root,
3226 found_key.objectid);
79787eaa 3227 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 3228 btrfs_end_transaction(trans, root);
7b128766
JB
3229 continue;
3230 }
3231
a8c9e576
JB
3232 /*
3233 * add this inode to the orphan list so btrfs_orphan_del does
3234 * the proper thing when we hit it
3235 */
8a35d95f
JB
3236 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3237 &BTRFS_I(inode)->runtime_flags);
925396ec 3238 atomic_inc(&root->orphan_inodes);
a8c9e576 3239
7b128766
JB
3240 /* if we have links, this was a truncate, lets do that */
3241 if (inode->i_nlink) {
a41ad394
JB
3242 if (!S_ISREG(inode->i_mode)) {
3243 WARN_ON(1);
3244 iput(inode);
3245 continue;
3246 }
7b128766 3247 nr_truncate++;
f3fe820c
JB
3248
3249 /* 1 for the orphan item deletion. */
3250 trans = btrfs_start_transaction(root, 1);
3251 if (IS_ERR(trans)) {
c69b26b0 3252 iput(inode);
f3fe820c
JB
3253 ret = PTR_ERR(trans);
3254 goto out;
3255 }
3256 ret = btrfs_orphan_add(trans, inode);
3257 btrfs_end_transaction(trans, root);
c69b26b0
JB
3258 if (ret) {
3259 iput(inode);
f3fe820c 3260 goto out;
c69b26b0 3261 }
f3fe820c 3262
66b4ffd1 3263 ret = btrfs_truncate(inode);
4a7d0f68
JB
3264 if (ret)
3265 btrfs_orphan_del(NULL, inode);
7b128766
JB
3266 } else {
3267 nr_unlink++;
3268 }
3269
3270 /* this will do delete_inode and everything for us */
3271 iput(inode);
66b4ffd1
JB
3272 if (ret)
3273 goto out;
7b128766 3274 }
3254c876
MX
3275 /* release the path since we're done with it */
3276 btrfs_release_path(path);
3277
d68fc57b
YZ
3278 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3279
3280 if (root->orphan_block_rsv)
3281 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3282 (u64)-1);
3283
3284 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 3285 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3286 if (!IS_ERR(trans))
3287 btrfs_end_transaction(trans, root);
d68fc57b 3288 }
7b128766
JB
3289
3290 if (nr_unlink)
4884b476 3291 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3292 if (nr_truncate)
4884b476 3293 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3294
3295out:
3296 if (ret)
c2cf52eb
SK
3297 btrfs_crit(root->fs_info,
3298 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3299 btrfs_free_path(path);
3300 return ret;
7b128766
JB
3301}
3302
46a53cca
CM
3303/*
3304 * very simple check to peek ahead in the leaf looking for xattrs. If we
3305 * don't find any xattrs, we know there can't be any acls.
3306 *
3307 * slot is the slot the inode is in, objectid is the objectid of the inode
3308 */
3309static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3310 int slot, u64 objectid)
3311{
3312 u32 nritems = btrfs_header_nritems(leaf);
3313 struct btrfs_key found_key;
f23b5a59
JB
3314 static u64 xattr_access = 0;
3315 static u64 xattr_default = 0;
46a53cca
CM
3316 int scanned = 0;
3317
f23b5a59
JB
3318 if (!xattr_access) {
3319 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3320 strlen(POSIX_ACL_XATTR_ACCESS));
3321 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3322 strlen(POSIX_ACL_XATTR_DEFAULT));
3323 }
3324
46a53cca
CM
3325 slot++;
3326 while (slot < nritems) {
3327 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3328
3329 /* we found a different objectid, there must not be acls */
3330 if (found_key.objectid != objectid)
3331 return 0;
3332
3333 /* we found an xattr, assume we've got an acl */
f23b5a59
JB
3334 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3335 if (found_key.offset == xattr_access ||
3336 found_key.offset == xattr_default)
3337 return 1;
3338 }
46a53cca
CM
3339
3340 /*
3341 * we found a key greater than an xattr key, there can't
3342 * be any acls later on
3343 */
3344 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3345 return 0;
3346
3347 slot++;
3348 scanned++;
3349
3350 /*
3351 * it goes inode, inode backrefs, xattrs, extents,
3352 * so if there are a ton of hard links to an inode there can
3353 * be a lot of backrefs. Don't waste time searching too hard,
3354 * this is just an optimization
3355 */
3356 if (scanned >= 8)
3357 break;
3358 }
3359 /* we hit the end of the leaf before we found an xattr or
3360 * something larger than an xattr. We have to assume the inode
3361 * has acls
3362 */
3363 return 1;
3364}
3365
d352ac68
CM
3366/*
3367 * read an inode from the btree into the in-memory inode
3368 */
5d4f98a2 3369static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3370{
3371 struct btrfs_path *path;
5f39d397 3372 struct extent_buffer *leaf;
39279cc3 3373 struct btrfs_inode_item *inode_item;
0b86a832 3374 struct btrfs_timespec *tspec;
39279cc3
CM
3375 struct btrfs_root *root = BTRFS_I(inode)->root;
3376 struct btrfs_key location;
46a53cca 3377 int maybe_acls;
618e21d5 3378 u32 rdev;
39279cc3 3379 int ret;
2f7e33d4
MX
3380 bool filled = false;
3381
3382 ret = btrfs_fill_inode(inode, &rdev);
3383 if (!ret)
3384 filled = true;
39279cc3
CM
3385
3386 path = btrfs_alloc_path();
1748f843
MF
3387 if (!path)
3388 goto make_bad;
3389
d90c7321 3390 path->leave_spinning = 1;
39279cc3 3391 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3392
39279cc3 3393 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3394 if (ret)
39279cc3 3395 goto make_bad;
39279cc3 3396
5f39d397 3397 leaf = path->nodes[0];
2f7e33d4
MX
3398
3399 if (filled)
3400 goto cache_acl;
3401
5f39d397
CM
3402 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3403 struct btrfs_inode_item);
5f39d397 3404 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3405 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3406 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3407 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3408 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3409
3410 tspec = btrfs_inode_atime(inode_item);
3411 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3412 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3413
3414 tspec = btrfs_inode_mtime(inode_item);
3415 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3416 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3417
3418 tspec = btrfs_inode_ctime(inode_item);
3419 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3420 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3421
a76a3cd4 3422 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3423 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3424 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3425
3426 /*
3427 * If we were modified in the current generation and evicted from memory
3428 * and then re-read we need to do a full sync since we don't have any
3429 * idea about which extents were modified before we were evicted from
3430 * cache.
3431 */
3432 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3433 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3434 &BTRFS_I(inode)->runtime_flags);
3435
0c4d2d95 3436 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3437 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3438 inode->i_rdev = 0;
5f39d397
CM
3439 rdev = btrfs_inode_rdev(leaf, inode_item);
3440
aec7477b 3441 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3442 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 3443cache_acl:
46a53cca
CM
3444 /*
3445 * try to precache a NULL acl entry for files that don't have
3446 * any xattrs or acls
3447 */
33345d01
LZ
3448 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3449 btrfs_ino(inode));
72c04902
AV
3450 if (!maybe_acls)
3451 cache_no_acl(inode);
46a53cca 3452
39279cc3 3453 btrfs_free_path(path);
39279cc3 3454
39279cc3 3455 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3456 case S_IFREG:
3457 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3458 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3459 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3460 inode->i_fop = &btrfs_file_operations;
3461 inode->i_op = &btrfs_file_inode_operations;
3462 break;
3463 case S_IFDIR:
3464 inode->i_fop = &btrfs_dir_file_operations;
3465 if (root == root->fs_info->tree_root)
3466 inode->i_op = &btrfs_dir_ro_inode_operations;
3467 else
3468 inode->i_op = &btrfs_dir_inode_operations;
3469 break;
3470 case S_IFLNK:
3471 inode->i_op = &btrfs_symlink_inode_operations;
3472 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3473 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3474 break;
618e21d5 3475 default:
0279b4cd 3476 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3477 init_special_inode(inode, inode->i_mode, rdev);
3478 break;
39279cc3 3479 }
6cbff00f
CH
3480
3481 btrfs_update_iflags(inode);
39279cc3
CM
3482 return;
3483
3484make_bad:
39279cc3 3485 btrfs_free_path(path);
39279cc3
CM
3486 make_bad_inode(inode);
3487}
3488
d352ac68
CM
3489/*
3490 * given a leaf and an inode, copy the inode fields into the leaf
3491 */
e02119d5
CM
3492static void fill_inode_item(struct btrfs_trans_handle *trans,
3493 struct extent_buffer *leaf,
5f39d397 3494 struct btrfs_inode_item *item,
39279cc3
CM
3495 struct inode *inode)
3496{
51fab693
LB
3497 struct btrfs_map_token token;
3498
3499 btrfs_init_map_token(&token);
5f39d397 3500
51fab693
LB
3501 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3502 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3503 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3504 &token);
3505 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3506 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3507
51fab693
LB
3508 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3509 inode->i_atime.tv_sec, &token);
3510 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3511 inode->i_atime.tv_nsec, &token);
5f39d397 3512
51fab693
LB
3513 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3514 inode->i_mtime.tv_sec, &token);
3515 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3516 inode->i_mtime.tv_nsec, &token);
5f39d397 3517
51fab693
LB
3518 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3519 inode->i_ctime.tv_sec, &token);
3520 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3521 inode->i_ctime.tv_nsec, &token);
5f39d397 3522
51fab693
LB
3523 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3524 &token);
3525 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3526 &token);
3527 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3528 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3529 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3530 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3531 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3532}
3533
d352ac68
CM
3534/*
3535 * copy everything in the in-memory inode into the btree.
3536 */
2115133f 3537static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3538 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3539{
3540 struct btrfs_inode_item *inode_item;
3541 struct btrfs_path *path;
5f39d397 3542 struct extent_buffer *leaf;
39279cc3
CM
3543 int ret;
3544
3545 path = btrfs_alloc_path();
16cdcec7
MX
3546 if (!path)
3547 return -ENOMEM;
3548
b9473439 3549 path->leave_spinning = 1;
16cdcec7
MX
3550 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3551 1);
39279cc3
CM
3552 if (ret) {
3553 if (ret > 0)
3554 ret = -ENOENT;
3555 goto failed;
3556 }
3557
b4ce94de 3558 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
3559 leaf = path->nodes[0];
3560 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3561 struct btrfs_inode_item);
39279cc3 3562
e02119d5 3563 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3564 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3565 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3566 ret = 0;
3567failed:
39279cc3
CM
3568 btrfs_free_path(path);
3569 return ret;
3570}
3571
2115133f
CM
3572/*
3573 * copy everything in the in-memory inode into the btree.
3574 */
3575noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3576 struct btrfs_root *root, struct inode *inode)
3577{
3578 int ret;
3579
3580 /*
3581 * If the inode is a free space inode, we can deadlock during commit
3582 * if we put it into the delayed code.
3583 *
3584 * The data relocation inode should also be directly updated
3585 * without delay
3586 */
83eea1f1 3587 if (!btrfs_is_free_space_inode(inode)
2115133f 3588 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3589 btrfs_update_root_times(trans, root);
3590
2115133f
CM
3591 ret = btrfs_delayed_update_inode(trans, root, inode);
3592 if (!ret)
3593 btrfs_set_inode_last_trans(trans, inode);
3594 return ret;
3595 }
3596
3597 return btrfs_update_inode_item(trans, root, inode);
3598}
3599
be6aef60
JB
3600noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3601 struct btrfs_root *root,
3602 struct inode *inode)
2115133f
CM
3603{
3604 int ret;
3605
3606 ret = btrfs_update_inode(trans, root, inode);
3607 if (ret == -ENOSPC)
3608 return btrfs_update_inode_item(trans, root, inode);
3609 return ret;
3610}
3611
d352ac68
CM
3612/*
3613 * unlink helper that gets used here in inode.c and in the tree logging
3614 * recovery code. It remove a link in a directory with a given name, and
3615 * also drops the back refs in the inode to the directory
3616 */
92986796
AV
3617static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3618 struct btrfs_root *root,
3619 struct inode *dir, struct inode *inode,
3620 const char *name, int name_len)
39279cc3
CM
3621{
3622 struct btrfs_path *path;
39279cc3 3623 int ret = 0;
5f39d397 3624 struct extent_buffer *leaf;
39279cc3 3625 struct btrfs_dir_item *di;
5f39d397 3626 struct btrfs_key key;
aec7477b 3627 u64 index;
33345d01
LZ
3628 u64 ino = btrfs_ino(inode);
3629 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3630
3631 path = btrfs_alloc_path();
54aa1f4d
CM
3632 if (!path) {
3633 ret = -ENOMEM;
554233a6 3634 goto out;
54aa1f4d
CM
3635 }
3636
b9473439 3637 path->leave_spinning = 1;
33345d01 3638 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3639 name, name_len, -1);
3640 if (IS_ERR(di)) {
3641 ret = PTR_ERR(di);
3642 goto err;
3643 }
3644 if (!di) {
3645 ret = -ENOENT;
3646 goto err;
3647 }
5f39d397
CM
3648 leaf = path->nodes[0];
3649 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3650 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3651 if (ret)
3652 goto err;
b3b4aa74 3653 btrfs_release_path(path);
39279cc3 3654
33345d01
LZ
3655 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3656 dir_ino, &index);
aec7477b 3657 if (ret) {
c2cf52eb
SK
3658 btrfs_info(root->fs_info,
3659 "failed to delete reference to %.*s, inode %llu parent %llu",
3660 name_len, name,
3661 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 3662 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3663 goto err;
3664 }
3665
16cdcec7 3666 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3667 if (ret) {
3668 btrfs_abort_transaction(trans, root, ret);
39279cc3 3669 goto err;
79787eaa 3670 }
39279cc3 3671
e02119d5 3672 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3673 inode, dir_ino);
79787eaa
JM
3674 if (ret != 0 && ret != -ENOENT) {
3675 btrfs_abort_transaction(trans, root, ret);
3676 goto err;
3677 }
e02119d5
CM
3678
3679 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3680 dir, index);
6418c961
CM
3681 if (ret == -ENOENT)
3682 ret = 0;
d4e3991b
ZB
3683 else if (ret)
3684 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3685err:
3686 btrfs_free_path(path);
e02119d5
CM
3687 if (ret)
3688 goto out;
3689
3690 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3691 inode_inc_iversion(inode);
3692 inode_inc_iversion(dir);
e02119d5 3693 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3694 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3695out:
39279cc3
CM
3696 return ret;
3697}
3698
92986796
AV
3699int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3700 struct btrfs_root *root,
3701 struct inode *dir, struct inode *inode,
3702 const char *name, int name_len)
3703{
3704 int ret;
3705 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3706 if (!ret) {
3707 btrfs_drop_nlink(inode);
3708 ret = btrfs_update_inode(trans, root, inode);
3709 }
3710 return ret;
3711}
39279cc3 3712
a22285a6
YZ
3713/*
3714 * helper to start transaction for unlink and rmdir.
3715 *
d52be818
JB
3716 * unlink and rmdir are special in btrfs, they do not always free space, so
3717 * if we cannot make our reservations the normal way try and see if there is
3718 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3719 * allow the unlink to occur.
a22285a6 3720 */
d52be818 3721static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3722{
39279cc3 3723 struct btrfs_trans_handle *trans;
a22285a6 3724 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3725 int ret;
3726
e70bea5f
JB
3727 /*
3728 * 1 for the possible orphan item
3729 * 1 for the dir item
3730 * 1 for the dir index
3731 * 1 for the inode ref
e70bea5f
JB
3732 * 1 for the inode
3733 */
6e137ed3 3734 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3735 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3736 return trans;
4df27c4d 3737
d52be818
JB
3738 if (PTR_ERR(trans) == -ENOSPC) {
3739 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3740
d52be818
JB
3741 trans = btrfs_start_transaction(root, 0);
3742 if (IS_ERR(trans))
3743 return trans;
3744 ret = btrfs_cond_migrate_bytes(root->fs_info,
3745 &root->fs_info->trans_block_rsv,
3746 num_bytes, 5);
3747 if (ret) {
3748 btrfs_end_transaction(trans, root);
3749 return ERR_PTR(ret);
a22285a6 3750 }
5a77d76c 3751 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3752 trans->bytes_reserved = num_bytes;
a22285a6 3753 }
d52be818 3754 return trans;
a22285a6
YZ
3755}
3756
3757static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3758{
3759 struct btrfs_root *root = BTRFS_I(dir)->root;
3760 struct btrfs_trans_handle *trans;
3761 struct inode *inode = dentry->d_inode;
3762 int ret;
a22285a6 3763
d52be818 3764 trans = __unlink_start_trans(dir);
a22285a6
YZ
3765 if (IS_ERR(trans))
3766 return PTR_ERR(trans);
5f39d397 3767
12fcfd22
CM
3768 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3769
e02119d5
CM
3770 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3771 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3772 if (ret)
3773 goto out;
7b128766 3774
a22285a6 3775 if (inode->i_nlink == 0) {
7b128766 3776 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3777 if (ret)
3778 goto out;
a22285a6 3779 }
7b128766 3780
b532402e 3781out:
d52be818 3782 btrfs_end_transaction(trans, root);
b53d3f5d 3783 btrfs_btree_balance_dirty(root);
39279cc3
CM
3784 return ret;
3785}
3786
4df27c4d
YZ
3787int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3788 struct btrfs_root *root,
3789 struct inode *dir, u64 objectid,
3790 const char *name, int name_len)
3791{
3792 struct btrfs_path *path;
3793 struct extent_buffer *leaf;
3794 struct btrfs_dir_item *di;
3795 struct btrfs_key key;
3796 u64 index;
3797 int ret;
33345d01 3798 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3799
3800 path = btrfs_alloc_path();
3801 if (!path)
3802 return -ENOMEM;
3803
33345d01 3804 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3805 name, name_len, -1);
79787eaa
JM
3806 if (IS_ERR_OR_NULL(di)) {
3807 if (!di)
3808 ret = -ENOENT;
3809 else
3810 ret = PTR_ERR(di);
3811 goto out;
3812 }
4df27c4d
YZ
3813
3814 leaf = path->nodes[0];
3815 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3816 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3817 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3818 if (ret) {
3819 btrfs_abort_transaction(trans, root, ret);
3820 goto out;
3821 }
b3b4aa74 3822 btrfs_release_path(path);
4df27c4d
YZ
3823
3824 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3825 objectid, root->root_key.objectid,
33345d01 3826 dir_ino, &index, name, name_len);
4df27c4d 3827 if (ret < 0) {
79787eaa
JM
3828 if (ret != -ENOENT) {
3829 btrfs_abort_transaction(trans, root, ret);
3830 goto out;
3831 }
33345d01 3832 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3833 name, name_len);
79787eaa
JM
3834 if (IS_ERR_OR_NULL(di)) {
3835 if (!di)
3836 ret = -ENOENT;
3837 else
3838 ret = PTR_ERR(di);
3839 btrfs_abort_transaction(trans, root, ret);
3840 goto out;
3841 }
4df27c4d
YZ
3842
3843 leaf = path->nodes[0];
3844 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3845 btrfs_release_path(path);
4df27c4d
YZ
3846 index = key.offset;
3847 }
945d8962 3848 btrfs_release_path(path);
4df27c4d 3849
16cdcec7 3850 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3851 if (ret) {
3852 btrfs_abort_transaction(trans, root, ret);
3853 goto out;
3854 }
4df27c4d
YZ
3855
3856 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3857 inode_inc_iversion(dir);
4df27c4d 3858 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3859 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3860 if (ret)
3861 btrfs_abort_transaction(trans, root, ret);
3862out:
71d7aed0 3863 btrfs_free_path(path);
79787eaa 3864 return ret;
4df27c4d
YZ
3865}
3866
39279cc3
CM
3867static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3868{
3869 struct inode *inode = dentry->d_inode;
1832a6d5 3870 int err = 0;
39279cc3 3871 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3872 struct btrfs_trans_handle *trans;
39279cc3 3873
b3ae244e 3874 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3875 return -ENOTEMPTY;
b3ae244e
DS
3876 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3877 return -EPERM;
134d4512 3878
d52be818 3879 trans = __unlink_start_trans(dir);
a22285a6 3880 if (IS_ERR(trans))
5df6a9f6 3881 return PTR_ERR(trans);
5df6a9f6 3882
33345d01 3883 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3884 err = btrfs_unlink_subvol(trans, root, dir,
3885 BTRFS_I(inode)->location.objectid,
3886 dentry->d_name.name,
3887 dentry->d_name.len);
3888 goto out;
3889 }
3890
7b128766
JB
3891 err = btrfs_orphan_add(trans, inode);
3892 if (err)
4df27c4d 3893 goto out;
7b128766 3894
39279cc3 3895 /* now the directory is empty */
e02119d5
CM
3896 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3897 dentry->d_name.name, dentry->d_name.len);
d397712b 3898 if (!err)
dbe674a9 3899 btrfs_i_size_write(inode, 0);
4df27c4d 3900out:
d52be818 3901 btrfs_end_transaction(trans, root);
b53d3f5d 3902 btrfs_btree_balance_dirty(root);
3954401f 3903
39279cc3
CM
3904 return err;
3905}
3906
39279cc3
CM
3907/*
3908 * this can truncate away extent items, csum items and directory items.
3909 * It starts at a high offset and removes keys until it can't find
d352ac68 3910 * any higher than new_size
39279cc3
CM
3911 *
3912 * csum items that cross the new i_size are truncated to the new size
3913 * as well.
7b128766
JB
3914 *
3915 * min_type is the minimum key type to truncate down to. If set to 0, this
3916 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3917 */
8082510e
YZ
3918int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3919 struct btrfs_root *root,
3920 struct inode *inode,
3921 u64 new_size, u32 min_type)
39279cc3 3922{
39279cc3 3923 struct btrfs_path *path;
5f39d397 3924 struct extent_buffer *leaf;
39279cc3 3925 struct btrfs_file_extent_item *fi;
8082510e
YZ
3926 struct btrfs_key key;
3927 struct btrfs_key found_key;
39279cc3 3928 u64 extent_start = 0;
db94535d 3929 u64 extent_num_bytes = 0;
5d4f98a2 3930 u64 extent_offset = 0;
39279cc3 3931 u64 item_end = 0;
8082510e 3932 u32 found_type = (u8)-1;
39279cc3
CM
3933 int found_extent;
3934 int del_item;
85e21bac
CM
3935 int pending_del_nr = 0;
3936 int pending_del_slot = 0;
179e29e4 3937 int extent_type = -1;
8082510e
YZ
3938 int ret;
3939 int err = 0;
33345d01 3940 u64 ino = btrfs_ino(inode);
8082510e
YZ
3941
3942 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3943
0eb0e19c
MF
3944 path = btrfs_alloc_path();
3945 if (!path)
3946 return -ENOMEM;
3947 path->reada = -1;
3948
5dc562c5
JB
3949 /*
3950 * We want to drop from the next block forward in case this new size is
3951 * not block aligned since we will be keeping the last block of the
3952 * extent just the way it is.
3953 */
0af3d00b 3954 if (root->ref_cows || root == root->fs_info->tree_root)
fda2832f
QW
3955 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3956 root->sectorsize), (u64)-1, 0);
8082510e 3957
16cdcec7
MX
3958 /*
3959 * This function is also used to drop the items in the log tree before
3960 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3961 * it is used to drop the loged items. So we shouldn't kill the delayed
3962 * items.
3963 */
3964 if (min_type == 0 && root == BTRFS_I(inode)->root)
3965 btrfs_kill_delayed_inode_items(inode);
3966
33345d01 3967 key.objectid = ino;
39279cc3 3968 key.offset = (u64)-1;
5f39d397
CM
3969 key.type = (u8)-1;
3970
85e21bac 3971search_again:
b9473439 3972 path->leave_spinning = 1;
85e21bac 3973 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3974 if (ret < 0) {
3975 err = ret;
3976 goto out;
3977 }
d397712b 3978
85e21bac 3979 if (ret > 0) {
e02119d5
CM
3980 /* there are no items in the tree for us to truncate, we're
3981 * done
3982 */
8082510e
YZ
3983 if (path->slots[0] == 0)
3984 goto out;
85e21bac
CM
3985 path->slots[0]--;
3986 }
3987
d397712b 3988 while (1) {
39279cc3 3989 fi = NULL;
5f39d397
CM
3990 leaf = path->nodes[0];
3991 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3992 found_type = btrfs_key_type(&found_key);
39279cc3 3993
33345d01 3994 if (found_key.objectid != ino)
39279cc3 3995 break;
5f39d397 3996
85e21bac 3997 if (found_type < min_type)
39279cc3
CM
3998 break;
3999
5f39d397 4000 item_end = found_key.offset;
39279cc3 4001 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4002 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4003 struct btrfs_file_extent_item);
179e29e4
CM
4004 extent_type = btrfs_file_extent_type(leaf, fi);
4005 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4006 item_end +=
db94535d 4007 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4008 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4009 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 4010 fi);
39279cc3 4011 }
008630c1 4012 item_end--;
39279cc3 4013 }
8082510e
YZ
4014 if (found_type > min_type) {
4015 del_item = 1;
4016 } else {
4017 if (item_end < new_size)
b888db2b 4018 break;
8082510e
YZ
4019 if (found_key.offset >= new_size)
4020 del_item = 1;
4021 else
4022 del_item = 0;
39279cc3 4023 }
39279cc3 4024 found_extent = 0;
39279cc3 4025 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4026 if (found_type != BTRFS_EXTENT_DATA_KEY)
4027 goto delete;
4028
4029 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4030 u64 num_dec;
db94535d 4031 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4032 if (!del_item) {
db94535d
CM
4033 u64 orig_num_bytes =
4034 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4035 extent_num_bytes = ALIGN(new_size -
4036 found_key.offset,
4037 root->sectorsize);
db94535d
CM
4038 btrfs_set_file_extent_num_bytes(leaf, fi,
4039 extent_num_bytes);
4040 num_dec = (orig_num_bytes -
9069218d 4041 extent_num_bytes);
e02119d5 4042 if (root->ref_cows && extent_start != 0)
a76a3cd4 4043 inode_sub_bytes(inode, num_dec);
5f39d397 4044 btrfs_mark_buffer_dirty(leaf);
39279cc3 4045 } else {
db94535d
CM
4046 extent_num_bytes =
4047 btrfs_file_extent_disk_num_bytes(leaf,
4048 fi);
5d4f98a2
YZ
4049 extent_offset = found_key.offset -
4050 btrfs_file_extent_offset(leaf, fi);
4051
39279cc3 4052 /* FIXME blocksize != 4096 */
9069218d 4053 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4054 if (extent_start != 0) {
4055 found_extent = 1;
e02119d5 4056 if (root->ref_cows)
a76a3cd4 4057 inode_sub_bytes(inode, num_dec);
e02119d5 4058 }
39279cc3 4059 }
9069218d 4060 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4061 /*
4062 * we can't truncate inline items that have had
4063 * special encodings
4064 */
4065 if (!del_item &&
4066 btrfs_file_extent_compression(leaf, fi) == 0 &&
4067 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4068 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4069 u32 size = new_size - found_key.offset;
4070
4071 if (root->ref_cows) {
a76a3cd4
YZ
4072 inode_sub_bytes(inode, item_end + 1 -
4073 new_size);
e02119d5
CM
4074 }
4075 size =
4076 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4077 btrfs_truncate_item(root, path, size, 1);
e02119d5 4078 } else if (root->ref_cows) {
a76a3cd4
YZ
4079 inode_sub_bytes(inode, item_end + 1 -
4080 found_key.offset);
9069218d 4081 }
39279cc3 4082 }
179e29e4 4083delete:
39279cc3 4084 if (del_item) {
85e21bac
CM
4085 if (!pending_del_nr) {
4086 /* no pending yet, add ourselves */
4087 pending_del_slot = path->slots[0];
4088 pending_del_nr = 1;
4089 } else if (pending_del_nr &&
4090 path->slots[0] + 1 == pending_del_slot) {
4091 /* hop on the pending chunk */
4092 pending_del_nr++;
4093 pending_del_slot = path->slots[0];
4094 } else {
d397712b 4095 BUG();
85e21bac 4096 }
39279cc3
CM
4097 } else {
4098 break;
4099 }
0af3d00b
JB
4100 if (found_extent && (root->ref_cows ||
4101 root == root->fs_info->tree_root)) {
b9473439 4102 btrfs_set_path_blocking(path);
39279cc3 4103 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4104 extent_num_bytes, 0,
4105 btrfs_header_owner(leaf),
66d7e7f0 4106 ino, extent_offset, 0);
39279cc3
CM
4107 BUG_ON(ret);
4108 }
85e21bac 4109
8082510e
YZ
4110 if (found_type == BTRFS_INODE_ITEM_KEY)
4111 break;
4112
4113 if (path->slots[0] == 0 ||
4114 path->slots[0] != pending_del_slot) {
8082510e
YZ
4115 if (pending_del_nr) {
4116 ret = btrfs_del_items(trans, root, path,
4117 pending_del_slot,
4118 pending_del_nr);
79787eaa
JM
4119 if (ret) {
4120 btrfs_abort_transaction(trans,
4121 root, ret);
4122 goto error;
4123 }
8082510e
YZ
4124 pending_del_nr = 0;
4125 }
b3b4aa74 4126 btrfs_release_path(path);
85e21bac 4127 goto search_again;
8082510e
YZ
4128 } else {
4129 path->slots[0]--;
85e21bac 4130 }
39279cc3 4131 }
8082510e 4132out:
85e21bac
CM
4133 if (pending_del_nr) {
4134 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4135 pending_del_nr);
79787eaa
JM
4136 if (ret)
4137 btrfs_abort_transaction(trans, root, ret);
85e21bac 4138 }
79787eaa 4139error:
39279cc3 4140 btrfs_free_path(path);
8082510e 4141 return err;
39279cc3
CM
4142}
4143
4144/*
2aaa6655
JB
4145 * btrfs_truncate_page - read, zero a chunk and write a page
4146 * @inode - inode that we're zeroing
4147 * @from - the offset to start zeroing
4148 * @len - the length to zero, 0 to zero the entire range respective to the
4149 * offset
4150 * @front - zero up to the offset instead of from the offset on
4151 *
4152 * This will find the page for the "from" offset and cow the page and zero the
4153 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4154 */
2aaa6655
JB
4155int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4156 int front)
39279cc3 4157{
2aaa6655 4158 struct address_space *mapping = inode->i_mapping;
db94535d 4159 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4160 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4161 struct btrfs_ordered_extent *ordered;
2ac55d41 4162 struct extent_state *cached_state = NULL;
e6dcd2dc 4163 char *kaddr;
db94535d 4164 u32 blocksize = root->sectorsize;
39279cc3
CM
4165 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4166 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4167 struct page *page;
3b16a4e3 4168 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4169 int ret = 0;
a52d9a80 4170 u64 page_start;
e6dcd2dc 4171 u64 page_end;
39279cc3 4172
2aaa6655
JB
4173 if ((offset & (blocksize - 1)) == 0 &&
4174 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4175 goto out;
0ca1f7ce 4176 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4177 if (ret)
4178 goto out;
39279cc3 4179
211c17f5 4180again:
3b16a4e3 4181 page = find_or_create_page(mapping, index, mask);
5d5e103a 4182 if (!page) {
0ca1f7ce 4183 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4184 ret = -ENOMEM;
39279cc3 4185 goto out;
5d5e103a 4186 }
e6dcd2dc
CM
4187
4188 page_start = page_offset(page);
4189 page_end = page_start + PAGE_CACHE_SIZE - 1;
4190
39279cc3 4191 if (!PageUptodate(page)) {
9ebefb18 4192 ret = btrfs_readpage(NULL, page);
39279cc3 4193 lock_page(page);
211c17f5
CM
4194 if (page->mapping != mapping) {
4195 unlock_page(page);
4196 page_cache_release(page);
4197 goto again;
4198 }
39279cc3
CM
4199 if (!PageUptodate(page)) {
4200 ret = -EIO;
89642229 4201 goto out_unlock;
39279cc3
CM
4202 }
4203 }
211c17f5 4204 wait_on_page_writeback(page);
e6dcd2dc 4205
d0082371 4206 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4207 set_page_extent_mapped(page);
4208
4209 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4210 if (ordered) {
2ac55d41
JB
4211 unlock_extent_cached(io_tree, page_start, page_end,
4212 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4213 unlock_page(page);
4214 page_cache_release(page);
eb84ae03 4215 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4216 btrfs_put_ordered_extent(ordered);
4217 goto again;
4218 }
4219
2ac55d41 4220 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4221 EXTENT_DIRTY | EXTENT_DELALLOC |
4222 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4223 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4224
2ac55d41
JB
4225 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4226 &cached_state);
9ed74f2d 4227 if (ret) {
2ac55d41
JB
4228 unlock_extent_cached(io_tree, page_start, page_end,
4229 &cached_state, GFP_NOFS);
9ed74f2d
JB
4230 goto out_unlock;
4231 }
4232
e6dcd2dc 4233 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4234 if (!len)
4235 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4236 kaddr = kmap(page);
2aaa6655
JB
4237 if (front)
4238 memset(kaddr, 0, offset);
4239 else
4240 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4241 flush_dcache_page(page);
4242 kunmap(page);
4243 }
247e743c 4244 ClearPageChecked(page);
e6dcd2dc 4245 set_page_dirty(page);
2ac55d41
JB
4246 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4247 GFP_NOFS);
39279cc3 4248
89642229 4249out_unlock:
5d5e103a 4250 if (ret)
0ca1f7ce 4251 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4252 unlock_page(page);
4253 page_cache_release(page);
4254out:
4255 return ret;
4256}
4257
695a0d0d
JB
4258/*
4259 * This function puts in dummy file extents for the area we're creating a hole
4260 * for. So if we are truncating this file to a larger size we need to insert
4261 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4262 * the range between oldsize and size
4263 */
a41ad394 4264int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4265{
9036c102
YZ
4266 struct btrfs_trans_handle *trans;
4267 struct btrfs_root *root = BTRFS_I(inode)->root;
4268 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4269 struct extent_map *em = NULL;
2ac55d41 4270 struct extent_state *cached_state = NULL;
5dc562c5 4271 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4272 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4273 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4274 u64 last_byte;
4275 u64 cur_offset;
4276 u64 hole_size;
9ed74f2d 4277 int err = 0;
39279cc3 4278
a71754fc
JB
4279 /*
4280 * If our size started in the middle of a page we need to zero out the
4281 * rest of the page before we expand the i_size, otherwise we could
4282 * expose stale data.
4283 */
4284 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4285 if (err)
4286 return err;
4287
9036c102
YZ
4288 if (size <= hole_start)
4289 return 0;
4290
9036c102
YZ
4291 while (1) {
4292 struct btrfs_ordered_extent *ordered;
4293 btrfs_wait_ordered_range(inode, hole_start,
4294 block_end - hole_start);
2ac55d41 4295 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4296 &cached_state);
9036c102
YZ
4297 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4298 if (!ordered)
4299 break;
2ac55d41
JB
4300 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4301 &cached_state, GFP_NOFS);
9036c102
YZ
4302 btrfs_put_ordered_extent(ordered);
4303 }
39279cc3 4304
9036c102
YZ
4305 cur_offset = hole_start;
4306 while (1) {
4307 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4308 block_end - cur_offset, 0);
79787eaa
JM
4309 if (IS_ERR(em)) {
4310 err = PTR_ERR(em);
f2767956 4311 em = NULL;
79787eaa
JM
4312 break;
4313 }
9036c102 4314 last_byte = min(extent_map_end(em), block_end);
fda2832f 4315 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4316 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4317 struct extent_map *hole_em;
9036c102 4318 hole_size = last_byte - cur_offset;
9ed74f2d 4319
3642320e 4320 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
4321 if (IS_ERR(trans)) {
4322 err = PTR_ERR(trans);
9ed74f2d 4323 break;
a22285a6 4324 }
8082510e 4325
5dc562c5
JB
4326 err = btrfs_drop_extents(trans, root, inode,
4327 cur_offset,
2671485d 4328 cur_offset + hole_size, 1);
5b397377 4329 if (err) {
79787eaa 4330 btrfs_abort_transaction(trans, root, err);
5b397377 4331 btrfs_end_transaction(trans, root);
3893e33b 4332 break;
5b397377 4333 }
8082510e 4334
9036c102 4335 err = btrfs_insert_file_extent(trans, root,
33345d01 4336 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
4337 0, hole_size, 0, hole_size,
4338 0, 0, 0);
5b397377 4339 if (err) {
79787eaa 4340 btrfs_abort_transaction(trans, root, err);
5b397377 4341 btrfs_end_transaction(trans, root);
3893e33b 4342 break;
5b397377 4343 }
8082510e 4344
5dc562c5
JB
4345 btrfs_drop_extent_cache(inode, cur_offset,
4346 cur_offset + hole_size - 1, 0);
4347 hole_em = alloc_extent_map();
4348 if (!hole_em) {
4349 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4350 &BTRFS_I(inode)->runtime_flags);
4351 goto next;
4352 }
4353 hole_em->start = cur_offset;
4354 hole_em->len = hole_size;
4355 hole_em->orig_start = cur_offset;
8082510e 4356
5dc562c5
JB
4357 hole_em->block_start = EXTENT_MAP_HOLE;
4358 hole_em->block_len = 0;
b4939680 4359 hole_em->orig_block_len = 0;
cc95bef6 4360 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4361 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4362 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4363 hole_em->generation = trans->transid;
8082510e 4364
5dc562c5
JB
4365 while (1) {
4366 write_lock(&em_tree->lock);
09a2a8f9 4367 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4368 write_unlock(&em_tree->lock);
4369 if (err != -EEXIST)
4370 break;
4371 btrfs_drop_extent_cache(inode, cur_offset,
4372 cur_offset +
4373 hole_size - 1, 0);
4374 }
4375 free_extent_map(hole_em);
4376next:
3642320e 4377 btrfs_update_inode(trans, root, inode);
8082510e 4378 btrfs_end_transaction(trans, root);
9036c102
YZ
4379 }
4380 free_extent_map(em);
a22285a6 4381 em = NULL;
9036c102 4382 cur_offset = last_byte;
8082510e 4383 if (cur_offset >= block_end)
9036c102
YZ
4384 break;
4385 }
1832a6d5 4386
a22285a6 4387 free_extent_map(em);
2ac55d41
JB
4388 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4389 GFP_NOFS);
9036c102
YZ
4390 return err;
4391}
39279cc3 4392
3972f260 4393static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4394{
f4a2f4c5
MX
4395 struct btrfs_root *root = BTRFS_I(inode)->root;
4396 struct btrfs_trans_handle *trans;
a41ad394 4397 loff_t oldsize = i_size_read(inode);
3972f260
ES
4398 loff_t newsize = attr->ia_size;
4399 int mask = attr->ia_valid;
8082510e
YZ
4400 int ret;
4401
3972f260
ES
4402 /*
4403 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4404 * special case where we need to update the times despite not having
4405 * these flags set. For all other operations the VFS set these flags
4406 * explicitly if it wants a timestamp update.
4407 */
4408 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4409 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4410
a41ad394 4411 if (newsize > oldsize) {
a41ad394
JB
4412 truncate_pagecache(inode, oldsize, newsize);
4413 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4414 if (ret)
8082510e 4415 return ret;
8082510e 4416
f4a2f4c5
MX
4417 trans = btrfs_start_transaction(root, 1);
4418 if (IS_ERR(trans))
4419 return PTR_ERR(trans);
4420
4421 i_size_write(inode, newsize);
4422 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4423 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4424 btrfs_end_transaction(trans, root);
a41ad394 4425 } else {
8082510e 4426
a41ad394
JB
4427 /*
4428 * We're truncating a file that used to have good data down to
4429 * zero. Make sure it gets into the ordered flush list so that
4430 * any new writes get down to disk quickly.
4431 */
4432 if (newsize == 0)
72ac3c0d
JB
4433 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4434 &BTRFS_I(inode)->runtime_flags);
8082510e 4435
f3fe820c
JB
4436 /*
4437 * 1 for the orphan item we're going to add
4438 * 1 for the orphan item deletion.
4439 */
4440 trans = btrfs_start_transaction(root, 2);
4441 if (IS_ERR(trans))
4442 return PTR_ERR(trans);
4443
4444 /*
4445 * We need to do this in case we fail at _any_ point during the
4446 * actual truncate. Once we do the truncate_setsize we could
4447 * invalidate pages which forces any outstanding ordered io to
4448 * be instantly completed which will give us extents that need
4449 * to be truncated. If we fail to get an orphan inode down we
4450 * could have left over extents that were never meant to live,
4451 * so we need to garuntee from this point on that everything
4452 * will be consistent.
4453 */
4454 ret = btrfs_orphan_add(trans, inode);
4455 btrfs_end_transaction(trans, root);
4456 if (ret)
4457 return ret;
4458
a41ad394
JB
4459 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4460 truncate_setsize(inode, newsize);
2e60a51e
MX
4461
4462 /* Disable nonlocked read DIO to avoid the end less truncate */
4463 btrfs_inode_block_unlocked_dio(inode);
4464 inode_dio_wait(inode);
4465 btrfs_inode_resume_unlocked_dio(inode);
4466
a41ad394 4467 ret = btrfs_truncate(inode);
f3fe820c
JB
4468 if (ret && inode->i_nlink)
4469 btrfs_orphan_del(NULL, inode);
8082510e
YZ
4470 }
4471
a41ad394 4472 return ret;
8082510e
YZ
4473}
4474
9036c102
YZ
4475static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4476{
4477 struct inode *inode = dentry->d_inode;
b83cc969 4478 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4479 int err;
39279cc3 4480
b83cc969
LZ
4481 if (btrfs_root_readonly(root))
4482 return -EROFS;
4483
9036c102
YZ
4484 err = inode_change_ok(inode, attr);
4485 if (err)
4486 return err;
2bf5a725 4487
5a3f23d5 4488 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4489 err = btrfs_setsize(inode, attr);
8082510e
YZ
4490 if (err)
4491 return err;
39279cc3 4492 }
9036c102 4493
1025774c
CH
4494 if (attr->ia_valid) {
4495 setattr_copy(inode, attr);
0c4d2d95 4496 inode_inc_iversion(inode);
22c44fe6 4497 err = btrfs_dirty_inode(inode);
1025774c 4498
22c44fe6 4499 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
4500 err = btrfs_acl_chmod(inode);
4501 }
33268eaf 4502
39279cc3
CM
4503 return err;
4504}
61295eb8 4505
bd555975 4506void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4507{
4508 struct btrfs_trans_handle *trans;
4509 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4510 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4511 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4512 int ret;
4513
1abe9b8a 4514 trace_btrfs_inode_evict(inode);
4515
39279cc3 4516 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 4517 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 4518 btrfs_is_free_space_inode(inode)))
bd555975
AV
4519 goto no_delete;
4520
39279cc3 4521 if (is_bad_inode(inode)) {
7b128766 4522 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4523 goto no_delete;
4524 }
bd555975 4525 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4526 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4527
c71bf099 4528 if (root->fs_info->log_root_recovering) {
6bf02314 4529 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4530 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4531 goto no_delete;
4532 }
4533
76dda93c
YZ
4534 if (inode->i_nlink > 0) {
4535 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
4536 goto no_delete;
4537 }
4538
0e8c36a9
MX
4539 ret = btrfs_commit_inode_delayed_inode(inode);
4540 if (ret) {
4541 btrfs_orphan_del(NULL, inode);
4542 goto no_delete;
4543 }
4544
66d8f3dd 4545 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4546 if (!rsv) {
4547 btrfs_orphan_del(NULL, inode);
4548 goto no_delete;
4549 }
4a338542 4550 rsv->size = min_size;
ca7e70f5 4551 rsv->failfast = 1;
726c35fa 4552 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4553
dbe674a9 4554 btrfs_i_size_write(inode, 0);
5f39d397 4555
4289a667 4556 /*
8407aa46
MX
4557 * This is a bit simpler than btrfs_truncate since we've already
4558 * reserved our space for our orphan item in the unlink, so we just
4559 * need to reserve some slack space in case we add bytes and update
4560 * inode item when doing the truncate.
4289a667 4561 */
8082510e 4562 while (1) {
08e007d2
MX
4563 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4564 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4565
4566 /*
4567 * Try and steal from the global reserve since we will
4568 * likely not use this space anyway, we want to try as
4569 * hard as possible to get this to work.
4570 */
4571 if (ret)
4572 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4573
d68fc57b 4574 if (ret) {
c2cf52eb
SK
4575 btrfs_warn(root->fs_info,
4576 "Could not get space for a delete, will truncate on mount %d",
4577 ret);
4289a667
JB
4578 btrfs_orphan_del(NULL, inode);
4579 btrfs_free_block_rsv(root, rsv);
4580 goto no_delete;
d68fc57b 4581 }
7b128766 4582
0e8c36a9 4583 trans = btrfs_join_transaction(root);
4289a667
JB
4584 if (IS_ERR(trans)) {
4585 btrfs_orphan_del(NULL, inode);
4586 btrfs_free_block_rsv(root, rsv);
4587 goto no_delete;
d68fc57b 4588 }
7b128766 4589
4289a667
JB
4590 trans->block_rsv = rsv;
4591
d68fc57b 4592 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4593 if (ret != -ENOSPC)
8082510e 4594 break;
85e21bac 4595
8407aa46 4596 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4597 btrfs_end_transaction(trans, root);
4598 trans = NULL;
b53d3f5d 4599 btrfs_btree_balance_dirty(root);
8082510e 4600 }
5f39d397 4601
4289a667
JB
4602 btrfs_free_block_rsv(root, rsv);
4603
8082510e 4604 if (ret == 0) {
4289a667 4605 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
4606 ret = btrfs_orphan_del(trans, inode);
4607 BUG_ON(ret);
4608 }
54aa1f4d 4609
4289a667 4610 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4611 if (!(root == root->fs_info->tree_root ||
4612 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4613 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4614
54aa1f4d 4615 btrfs_end_transaction(trans, root);
b53d3f5d 4616 btrfs_btree_balance_dirty(root);
39279cc3 4617no_delete:
89042e5a 4618 btrfs_remove_delayed_node(inode);
dbd5768f 4619 clear_inode(inode);
8082510e 4620 return;
39279cc3
CM
4621}
4622
4623/*
4624 * this returns the key found in the dir entry in the location pointer.
4625 * If no dir entries were found, location->objectid is 0.
4626 */
4627static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4628 struct btrfs_key *location)
4629{
4630 const char *name = dentry->d_name.name;
4631 int namelen = dentry->d_name.len;
4632 struct btrfs_dir_item *di;
4633 struct btrfs_path *path;
4634 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4635 int ret = 0;
39279cc3
CM
4636
4637 path = btrfs_alloc_path();
d8926bb3
MF
4638 if (!path)
4639 return -ENOMEM;
3954401f 4640
33345d01 4641 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4642 namelen, 0);
0d9f7f3e
Y
4643 if (IS_ERR(di))
4644 ret = PTR_ERR(di);
d397712b 4645
c704005d 4646 if (IS_ERR_OR_NULL(di))
3954401f 4647 goto out_err;
d397712b 4648
5f39d397 4649 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4650out:
39279cc3
CM
4651 btrfs_free_path(path);
4652 return ret;
3954401f
CM
4653out_err:
4654 location->objectid = 0;
4655 goto out;
39279cc3
CM
4656}
4657
4658/*
4659 * when we hit a tree root in a directory, the btrfs part of the inode
4660 * needs to be changed to reflect the root directory of the tree root. This
4661 * is kind of like crossing a mount point.
4662 */
4663static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4664 struct inode *dir,
4665 struct dentry *dentry,
4666 struct btrfs_key *location,
4667 struct btrfs_root **sub_root)
39279cc3 4668{
4df27c4d
YZ
4669 struct btrfs_path *path;
4670 struct btrfs_root *new_root;
4671 struct btrfs_root_ref *ref;
4672 struct extent_buffer *leaf;
4673 int ret;
4674 int err = 0;
39279cc3 4675
4df27c4d
YZ
4676 path = btrfs_alloc_path();
4677 if (!path) {
4678 err = -ENOMEM;
4679 goto out;
4680 }
39279cc3 4681
4df27c4d
YZ
4682 err = -ENOENT;
4683 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4684 BTRFS_I(dir)->root->root_key.objectid,
4685 location->objectid);
4686 if (ret) {
4687 if (ret < 0)
4688 err = ret;
4689 goto out;
4690 }
39279cc3 4691
4df27c4d
YZ
4692 leaf = path->nodes[0];
4693 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4694 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4695 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4696 goto out;
39279cc3 4697
4df27c4d
YZ
4698 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4699 (unsigned long)(ref + 1),
4700 dentry->d_name.len);
4701 if (ret)
4702 goto out;
4703
b3b4aa74 4704 btrfs_release_path(path);
4df27c4d
YZ
4705
4706 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4707 if (IS_ERR(new_root)) {
4708 err = PTR_ERR(new_root);
4709 goto out;
4710 }
4711
4df27c4d
YZ
4712 *sub_root = new_root;
4713 location->objectid = btrfs_root_dirid(&new_root->root_item);
4714 location->type = BTRFS_INODE_ITEM_KEY;
4715 location->offset = 0;
4716 err = 0;
4717out:
4718 btrfs_free_path(path);
4719 return err;
39279cc3
CM
4720}
4721
5d4f98a2
YZ
4722static void inode_tree_add(struct inode *inode)
4723{
4724 struct btrfs_root *root = BTRFS_I(inode)->root;
4725 struct btrfs_inode *entry;
03e860bd
FNP
4726 struct rb_node **p;
4727 struct rb_node *parent;
33345d01 4728 u64 ino = btrfs_ino(inode);
5d4f98a2 4729
1d3382cb 4730 if (inode_unhashed(inode))
76dda93c 4731 return;
e1409cef
MX
4732again:
4733 parent = NULL;
5d4f98a2 4734 spin_lock(&root->inode_lock);
e1409cef 4735 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4736 while (*p) {
4737 parent = *p;
4738 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4739
33345d01 4740 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4741 p = &parent->rb_left;
33345d01 4742 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4743 p = &parent->rb_right;
5d4f98a2
YZ
4744 else {
4745 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4746 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
4747 rb_erase(parent, &root->inode_tree);
4748 RB_CLEAR_NODE(parent);
4749 spin_unlock(&root->inode_lock);
4750 goto again;
5d4f98a2
YZ
4751 }
4752 }
4753 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4754 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4755 spin_unlock(&root->inode_lock);
4756}
4757
4758static void inode_tree_del(struct inode *inode)
4759{
4760 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4761 int empty = 0;
5d4f98a2 4762
03e860bd 4763 spin_lock(&root->inode_lock);
5d4f98a2 4764 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4765 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4766 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4767 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4768 }
03e860bd 4769 spin_unlock(&root->inode_lock);
76dda93c 4770
0af3d00b
JB
4771 /*
4772 * Free space cache has inodes in the tree root, but the tree root has a
4773 * root_refs of 0, so this could end up dropping the tree root as a
4774 * snapshot, so we need the extra !root->fs_info->tree_root check to
4775 * make sure we don't drop it.
4776 */
4777 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4778 root != root->fs_info->tree_root) {
76dda93c
YZ
4779 synchronize_srcu(&root->fs_info->subvol_srcu);
4780 spin_lock(&root->inode_lock);
4781 empty = RB_EMPTY_ROOT(&root->inode_tree);
4782 spin_unlock(&root->inode_lock);
4783 if (empty)
4784 btrfs_add_dead_root(root);
4785 }
4786}
4787
143bede5 4788void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4789{
4790 struct rb_node *node;
4791 struct rb_node *prev;
4792 struct btrfs_inode *entry;
4793 struct inode *inode;
4794 u64 objectid = 0;
4795
4796 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4797
4798 spin_lock(&root->inode_lock);
4799again:
4800 node = root->inode_tree.rb_node;
4801 prev = NULL;
4802 while (node) {
4803 prev = node;
4804 entry = rb_entry(node, struct btrfs_inode, rb_node);
4805
33345d01 4806 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4807 node = node->rb_left;
33345d01 4808 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4809 node = node->rb_right;
4810 else
4811 break;
4812 }
4813 if (!node) {
4814 while (prev) {
4815 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4816 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4817 node = prev;
4818 break;
4819 }
4820 prev = rb_next(prev);
4821 }
4822 }
4823 while (node) {
4824 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4825 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4826 inode = igrab(&entry->vfs_inode);
4827 if (inode) {
4828 spin_unlock(&root->inode_lock);
4829 if (atomic_read(&inode->i_count) > 1)
4830 d_prune_aliases(inode);
4831 /*
45321ac5 4832 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4833 * the inode cache when its usage count
4834 * hits zero.
4835 */
4836 iput(inode);
4837 cond_resched();
4838 spin_lock(&root->inode_lock);
4839 goto again;
4840 }
4841
4842 if (cond_resched_lock(&root->inode_lock))
4843 goto again;
4844
4845 node = rb_next(node);
4846 }
4847 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4848}
4849
e02119d5
CM
4850static int btrfs_init_locked_inode(struct inode *inode, void *p)
4851{
4852 struct btrfs_iget_args *args = p;
4853 inode->i_ino = args->ino;
e02119d5 4854 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4855 return 0;
4856}
4857
4858static int btrfs_find_actor(struct inode *inode, void *opaque)
4859{
4860 struct btrfs_iget_args *args = opaque;
33345d01 4861 return args->ino == btrfs_ino(inode) &&
d397712b 4862 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4863}
4864
5d4f98a2
YZ
4865static struct inode *btrfs_iget_locked(struct super_block *s,
4866 u64 objectid,
4867 struct btrfs_root *root)
39279cc3
CM
4868{
4869 struct inode *inode;
4870 struct btrfs_iget_args args;
4871 args.ino = objectid;
4872 args.root = root;
4873
4874 inode = iget5_locked(s, objectid, btrfs_find_actor,
4875 btrfs_init_locked_inode,
4876 (void *)&args);
4877 return inode;
4878}
4879
1a54ef8c
BR
4880/* Get an inode object given its location and corresponding root.
4881 * Returns in *is_new if the inode was read from disk
4882 */
4883struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4884 struct btrfs_root *root, int *new)
1a54ef8c
BR
4885{
4886 struct inode *inode;
4887
4888 inode = btrfs_iget_locked(s, location->objectid, root);
4889 if (!inode)
5d4f98a2 4890 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4891
4892 if (inode->i_state & I_NEW) {
4893 BTRFS_I(inode)->root = root;
4894 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4895 btrfs_read_locked_inode(inode);
1748f843
MF
4896 if (!is_bad_inode(inode)) {
4897 inode_tree_add(inode);
4898 unlock_new_inode(inode);
4899 if (new)
4900 *new = 1;
4901 } else {
e0b6d65b
ST
4902 unlock_new_inode(inode);
4903 iput(inode);
4904 inode = ERR_PTR(-ESTALE);
1748f843
MF
4905 }
4906 }
4907
1a54ef8c
BR
4908 return inode;
4909}
4910
4df27c4d
YZ
4911static struct inode *new_simple_dir(struct super_block *s,
4912 struct btrfs_key *key,
4913 struct btrfs_root *root)
4914{
4915 struct inode *inode = new_inode(s);
4916
4917 if (!inode)
4918 return ERR_PTR(-ENOMEM);
4919
4df27c4d
YZ
4920 BTRFS_I(inode)->root = root;
4921 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4922 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4923
4924 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4925 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4926 inode->i_fop = &simple_dir_operations;
4927 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4928 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4929
4930 return inode;
4931}
4932
3de4586c 4933struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4934{
d397712b 4935 struct inode *inode;
4df27c4d 4936 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4937 struct btrfs_root *sub_root = root;
4938 struct btrfs_key location;
76dda93c 4939 int index;
b4aff1f8 4940 int ret = 0;
39279cc3
CM
4941
4942 if (dentry->d_name.len > BTRFS_NAME_LEN)
4943 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4944
39e3c955 4945 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
4946 if (ret < 0)
4947 return ERR_PTR(ret);
5f39d397 4948
4df27c4d
YZ
4949 if (location.objectid == 0)
4950 return NULL;
4951
4952 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4953 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4954 return inode;
4955 }
4956
4957 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4958
76dda93c 4959 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4960 ret = fixup_tree_root_location(root, dir, dentry,
4961 &location, &sub_root);
4962 if (ret < 0) {
4963 if (ret != -ENOENT)
4964 inode = ERR_PTR(ret);
4965 else
4966 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4967 } else {
73f73415 4968 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4969 }
76dda93c
YZ
4970 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4971
34d19bad 4972 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4973 down_read(&root->fs_info->cleanup_work_sem);
4974 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4975 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4976 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
4977 if (ret) {
4978 iput(inode);
66b4ffd1 4979 inode = ERR_PTR(ret);
01cd3367 4980 }
c71bf099
YZ
4981 }
4982
3de4586c
CM
4983 return inode;
4984}
4985
fe15ce44 4986static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4987{
4988 struct btrfs_root *root;
848cce0d 4989 struct inode *inode = dentry->d_inode;
76dda93c 4990
848cce0d
LZ
4991 if (!inode && !IS_ROOT(dentry))
4992 inode = dentry->d_parent->d_inode;
76dda93c 4993
848cce0d
LZ
4994 if (inode) {
4995 root = BTRFS_I(inode)->root;
efefb143
YZ
4996 if (btrfs_root_refs(&root->root_item) == 0)
4997 return 1;
848cce0d
LZ
4998
4999 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5000 return 1;
efefb143 5001 }
76dda93c
YZ
5002 return 0;
5003}
5004
b4aff1f8
JB
5005static void btrfs_dentry_release(struct dentry *dentry)
5006{
5007 if (dentry->d_fsdata)
5008 kfree(dentry->d_fsdata);
5009}
5010
3de4586c 5011static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5012 unsigned int flags)
3de4586c 5013{
a66e7cc6
JB
5014 struct dentry *ret;
5015
5016 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
a66e7cc6 5017 return ret;
39279cc3
CM
5018}
5019
16cdcec7 5020unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5021 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5022};
5023
9cdda8d3 5024static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5025{
9cdda8d3 5026 struct inode *inode = file_inode(file);
39279cc3
CM
5027 struct btrfs_root *root = BTRFS_I(inode)->root;
5028 struct btrfs_item *item;
5029 struct btrfs_dir_item *di;
5030 struct btrfs_key key;
5f39d397 5031 struct btrfs_key found_key;
39279cc3 5032 struct btrfs_path *path;
16cdcec7
MX
5033 struct list_head ins_list;
5034 struct list_head del_list;
39279cc3 5035 int ret;
5f39d397 5036 struct extent_buffer *leaf;
39279cc3 5037 int slot;
39279cc3
CM
5038 unsigned char d_type;
5039 int over = 0;
5040 u32 di_cur;
5041 u32 di_total;
5042 u32 di_len;
5043 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5044 char tmp_name[32];
5045 char *name_ptr;
5046 int name_len;
9cdda8d3 5047 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5048
5049 /* FIXME, use a real flag for deciding about the key type */
5050 if (root->fs_info->tree_root == root)
5051 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5052
9cdda8d3
AV
5053 if (!dir_emit_dots(file, ctx))
5054 return 0;
5055
49593bfa 5056 path = btrfs_alloc_path();
16cdcec7
MX
5057 if (!path)
5058 return -ENOMEM;
ff5714cc 5059
026fd317 5060 path->reada = 1;
49593bfa 5061
16cdcec7
MX
5062 if (key_type == BTRFS_DIR_INDEX_KEY) {
5063 INIT_LIST_HEAD(&ins_list);
5064 INIT_LIST_HEAD(&del_list);
5065 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5066 }
5067
39279cc3 5068 btrfs_set_key_type(&key, key_type);
9cdda8d3 5069 key.offset = ctx->pos;
33345d01 5070 key.objectid = btrfs_ino(inode);
5f39d397 5071
39279cc3
CM
5072 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5073 if (ret < 0)
5074 goto err;
49593bfa
DW
5075
5076 while (1) {
5f39d397 5077 leaf = path->nodes[0];
39279cc3 5078 slot = path->slots[0];
b9e03af0
LZ
5079 if (slot >= btrfs_header_nritems(leaf)) {
5080 ret = btrfs_next_leaf(root, path);
5081 if (ret < 0)
5082 goto err;
5083 else if (ret > 0)
5084 break;
5085 continue;
39279cc3 5086 }
3de4586c 5087
5f39d397
CM
5088 item = btrfs_item_nr(leaf, slot);
5089 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5090
5091 if (found_key.objectid != key.objectid)
39279cc3 5092 break;
5f39d397 5093 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5094 break;
9cdda8d3 5095 if (found_key.offset < ctx->pos)
b9e03af0 5096 goto next;
16cdcec7
MX
5097 if (key_type == BTRFS_DIR_INDEX_KEY &&
5098 btrfs_should_delete_dir_index(&del_list,
5099 found_key.offset))
5100 goto next;
5f39d397 5101
9cdda8d3 5102 ctx->pos = found_key.offset;
16cdcec7 5103 is_curr = 1;
49593bfa 5104
39279cc3
CM
5105 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5106 di_cur = 0;
5f39d397 5107 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5108
5109 while (di_cur < di_total) {
5f39d397
CM
5110 struct btrfs_key location;
5111
22a94d44
JB
5112 if (verify_dir_item(root, leaf, di))
5113 break;
5114
5f39d397 5115 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5116 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5117 name_ptr = tmp_name;
5118 } else {
5119 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5120 if (!name_ptr) {
5121 ret = -ENOMEM;
5122 goto err;
5123 }
5f39d397
CM
5124 }
5125 read_extent_buffer(leaf, name_ptr,
5126 (unsigned long)(di + 1), name_len);
5127
5128 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5129 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5130
fede766f 5131
3de4586c 5132 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5133 * skip it.
5134 *
5135 * In contrast to old kernels, we insert the snapshot's
5136 * dir item and dir index after it has been created, so
5137 * we won't find a reference to our own snapshot. We
5138 * still keep the following code for backward
5139 * compatibility.
3de4586c
CM
5140 */
5141 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5142 location.objectid == root->root_key.objectid) {
5143 over = 0;
5144 goto skip;
5145 }
9cdda8d3
AV
5146 over = !dir_emit(ctx, name_ptr, name_len,
5147 location.objectid, d_type);
5f39d397 5148
3de4586c 5149skip:
5f39d397
CM
5150 if (name_ptr != tmp_name)
5151 kfree(name_ptr);
5152
39279cc3
CM
5153 if (over)
5154 goto nopos;
5103e947 5155 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5156 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5157 di_cur += di_len;
5158 di = (struct btrfs_dir_item *)((char *)di + di_len);
5159 }
b9e03af0
LZ
5160next:
5161 path->slots[0]++;
39279cc3 5162 }
49593bfa 5163
16cdcec7
MX
5164 if (key_type == BTRFS_DIR_INDEX_KEY) {
5165 if (is_curr)
9cdda8d3
AV
5166 ctx->pos++;
5167 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5168 if (ret)
5169 goto nopos;
5170 }
5171
49593bfa 5172 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 5173 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
5174 /*
5175 * 32-bit glibc will use getdents64, but then strtol -
5176 * so the last number we can serve is this.
5177 */
9cdda8d3 5178 ctx->pos = 0x7fffffff;
5e591a07 5179 else
9cdda8d3 5180 ctx->pos++;
39279cc3
CM
5181nopos:
5182 ret = 0;
5183err:
16cdcec7
MX
5184 if (key_type == BTRFS_DIR_INDEX_KEY)
5185 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5186 btrfs_free_path(path);
39279cc3
CM
5187 return ret;
5188}
5189
a9185b41 5190int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5191{
5192 struct btrfs_root *root = BTRFS_I(inode)->root;
5193 struct btrfs_trans_handle *trans;
5194 int ret = 0;
0af3d00b 5195 bool nolock = false;
39279cc3 5196
72ac3c0d 5197 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5198 return 0;
5199
83eea1f1 5200 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5201 nolock = true;
0af3d00b 5202
a9185b41 5203 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5204 if (nolock)
7a7eaa40 5205 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5206 else
7a7eaa40 5207 trans = btrfs_join_transaction(root);
3612b495
TI
5208 if (IS_ERR(trans))
5209 return PTR_ERR(trans);
a698d075 5210 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5211 }
5212 return ret;
5213}
5214
5215/*
54aa1f4d 5216 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5217 * inode changes. But, it is most likely to find the inode in cache.
5218 * FIXME, needs more benchmarking...there are no reasons other than performance
5219 * to keep or drop this code.
5220 */
48a3b636 5221static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5222{
5223 struct btrfs_root *root = BTRFS_I(inode)->root;
5224 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5225 int ret;
5226
72ac3c0d 5227 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5228 return 0;
39279cc3 5229
7a7eaa40 5230 trans = btrfs_join_transaction(root);
22c44fe6
JB
5231 if (IS_ERR(trans))
5232 return PTR_ERR(trans);
8929ecfa
YZ
5233
5234 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5235 if (ret && ret == -ENOSPC) {
5236 /* whoops, lets try again with the full transaction */
5237 btrfs_end_transaction(trans, root);
5238 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5239 if (IS_ERR(trans))
5240 return PTR_ERR(trans);
8929ecfa 5241
94b60442 5242 ret = btrfs_update_inode(trans, root, inode);
94b60442 5243 }
39279cc3 5244 btrfs_end_transaction(trans, root);
16cdcec7
MX
5245 if (BTRFS_I(inode)->delayed_node)
5246 btrfs_balance_delayed_items(root);
22c44fe6
JB
5247
5248 return ret;
5249}
5250
5251/*
5252 * This is a copy of file_update_time. We need this so we can return error on
5253 * ENOSPC for updating the inode in the case of file write and mmap writes.
5254 */
e41f941a
JB
5255static int btrfs_update_time(struct inode *inode, struct timespec *now,
5256 int flags)
22c44fe6 5257{
2bc55652
AB
5258 struct btrfs_root *root = BTRFS_I(inode)->root;
5259
5260 if (btrfs_root_readonly(root))
5261 return -EROFS;
5262
e41f941a 5263 if (flags & S_VERSION)
22c44fe6 5264 inode_inc_iversion(inode);
e41f941a
JB
5265 if (flags & S_CTIME)
5266 inode->i_ctime = *now;
5267 if (flags & S_MTIME)
5268 inode->i_mtime = *now;
5269 if (flags & S_ATIME)
5270 inode->i_atime = *now;
5271 return btrfs_dirty_inode(inode);
39279cc3
CM
5272}
5273
d352ac68
CM
5274/*
5275 * find the highest existing sequence number in a directory
5276 * and then set the in-memory index_cnt variable to reflect
5277 * free sequence numbers
5278 */
aec7477b
JB
5279static int btrfs_set_inode_index_count(struct inode *inode)
5280{
5281 struct btrfs_root *root = BTRFS_I(inode)->root;
5282 struct btrfs_key key, found_key;
5283 struct btrfs_path *path;
5284 struct extent_buffer *leaf;
5285 int ret;
5286
33345d01 5287 key.objectid = btrfs_ino(inode);
aec7477b
JB
5288 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5289 key.offset = (u64)-1;
5290
5291 path = btrfs_alloc_path();
5292 if (!path)
5293 return -ENOMEM;
5294
5295 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5296 if (ret < 0)
5297 goto out;
5298 /* FIXME: we should be able to handle this */
5299 if (ret == 0)
5300 goto out;
5301 ret = 0;
5302
5303 /*
5304 * MAGIC NUMBER EXPLANATION:
5305 * since we search a directory based on f_pos we have to start at 2
5306 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5307 * else has to start at 2
5308 */
5309 if (path->slots[0] == 0) {
5310 BTRFS_I(inode)->index_cnt = 2;
5311 goto out;
5312 }
5313
5314 path->slots[0]--;
5315
5316 leaf = path->nodes[0];
5317 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5318
33345d01 5319 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5320 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5321 BTRFS_I(inode)->index_cnt = 2;
5322 goto out;
5323 }
5324
5325 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5326out:
5327 btrfs_free_path(path);
5328 return ret;
5329}
5330
d352ac68
CM
5331/*
5332 * helper to find a free sequence number in a given directory. This current
5333 * code is very simple, later versions will do smarter things in the btree
5334 */
3de4586c 5335int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5336{
5337 int ret = 0;
5338
5339 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5340 ret = btrfs_inode_delayed_dir_index_count(dir);
5341 if (ret) {
5342 ret = btrfs_set_inode_index_count(dir);
5343 if (ret)
5344 return ret;
5345 }
aec7477b
JB
5346 }
5347
00e4e6b3 5348 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5349 BTRFS_I(dir)->index_cnt++;
5350
5351 return ret;
5352}
5353
39279cc3
CM
5354static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5355 struct btrfs_root *root,
aec7477b 5356 struct inode *dir,
9c58309d 5357 const char *name, int name_len,
175a4eb7
AV
5358 u64 ref_objectid, u64 objectid,
5359 umode_t mode, u64 *index)
39279cc3
CM
5360{
5361 struct inode *inode;
5f39d397 5362 struct btrfs_inode_item *inode_item;
39279cc3 5363 struct btrfs_key *location;
5f39d397 5364 struct btrfs_path *path;
9c58309d
CM
5365 struct btrfs_inode_ref *ref;
5366 struct btrfs_key key[2];
5367 u32 sizes[2];
5368 unsigned long ptr;
39279cc3
CM
5369 int ret;
5370 int owner;
5371
5f39d397 5372 path = btrfs_alloc_path();
d8926bb3
MF
5373 if (!path)
5374 return ERR_PTR(-ENOMEM);
5f39d397 5375
39279cc3 5376 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5377 if (!inode) {
5378 btrfs_free_path(path);
39279cc3 5379 return ERR_PTR(-ENOMEM);
8fb27640 5380 }
39279cc3 5381
581bb050
LZ
5382 /*
5383 * we have to initialize this early, so we can reclaim the inode
5384 * number if we fail afterwards in this function.
5385 */
5386 inode->i_ino = objectid;
5387
aec7477b 5388 if (dir) {
1abe9b8a 5389 trace_btrfs_inode_request(dir);
5390
3de4586c 5391 ret = btrfs_set_inode_index(dir, index);
09771430 5392 if (ret) {
8fb27640 5393 btrfs_free_path(path);
09771430 5394 iput(inode);
aec7477b 5395 return ERR_PTR(ret);
09771430 5396 }
aec7477b
JB
5397 }
5398 /*
5399 * index_cnt is ignored for everything but a dir,
5400 * btrfs_get_inode_index_count has an explanation for the magic
5401 * number
5402 */
5403 BTRFS_I(inode)->index_cnt = 2;
39279cc3 5404 BTRFS_I(inode)->root = root;
e02119d5 5405 BTRFS_I(inode)->generation = trans->transid;
76195853 5406 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5407
5dc562c5
JB
5408 /*
5409 * We could have gotten an inode number from somebody who was fsynced
5410 * and then removed in this same transaction, so let's just set full
5411 * sync since it will be a full sync anyway and this will blow away the
5412 * old info in the log.
5413 */
5414 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5415
569254b0 5416 if (S_ISDIR(mode))
39279cc3
CM
5417 owner = 0;
5418 else
5419 owner = 1;
9c58309d
CM
5420
5421 key[0].objectid = objectid;
5422 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5423 key[0].offset = 0;
5424
f186373f
MF
5425 /*
5426 * Start new inodes with an inode_ref. This is slightly more
5427 * efficient for small numbers of hard links since they will
5428 * be packed into one item. Extended refs will kick in if we
5429 * add more hard links than can fit in the ref item.
5430 */
9c58309d
CM
5431 key[1].objectid = objectid;
5432 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5433 key[1].offset = ref_objectid;
5434
5435 sizes[0] = sizeof(struct btrfs_inode_item);
5436 sizes[1] = name_len + sizeof(*ref);
5437
b9473439 5438 path->leave_spinning = 1;
9c58309d
CM
5439 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5440 if (ret != 0)
5f39d397
CM
5441 goto fail;
5442
ecc11fab 5443 inode_init_owner(inode, dir, mode);
a76a3cd4 5444 inode_set_bytes(inode, 0);
39279cc3 5445 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5446 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5447 struct btrfs_inode_item);
293f7e07
LZ
5448 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5449 sizeof(*inode_item));
e02119d5 5450 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
5451
5452 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5453 struct btrfs_inode_ref);
5454 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 5455 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
5456 ptr = (unsigned long)(ref + 1);
5457 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5458
5f39d397
CM
5459 btrfs_mark_buffer_dirty(path->nodes[0]);
5460 btrfs_free_path(path);
5461
39279cc3
CM
5462 location = &BTRFS_I(inode)->location;
5463 location->objectid = objectid;
39279cc3
CM
5464 location->offset = 0;
5465 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5466
6cbff00f
CH
5467 btrfs_inherit_iflags(inode, dir);
5468
569254b0 5469 if (S_ISREG(mode)) {
94272164
CM
5470 if (btrfs_test_opt(root, NODATASUM))
5471 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5472 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5473 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5474 BTRFS_INODE_NODATASUM;
94272164
CM
5475 }
5476
39279cc3 5477 insert_inode_hash(inode);
5d4f98a2 5478 inode_tree_add(inode);
1abe9b8a 5479
5480 trace_btrfs_inode_new(inode);
1973f0fa 5481 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5482
8ea05e3a
AB
5483 btrfs_update_root_times(trans, root);
5484
39279cc3 5485 return inode;
5f39d397 5486fail:
aec7477b
JB
5487 if (dir)
5488 BTRFS_I(dir)->index_cnt--;
5f39d397 5489 btrfs_free_path(path);
09771430 5490 iput(inode);
5f39d397 5491 return ERR_PTR(ret);
39279cc3
CM
5492}
5493
5494static inline u8 btrfs_inode_type(struct inode *inode)
5495{
5496 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5497}
5498
d352ac68
CM
5499/*
5500 * utility function to add 'inode' into 'parent_inode' with
5501 * a give name and a given sequence number.
5502 * if 'add_backref' is true, also insert a backref from the
5503 * inode to the parent directory.
5504 */
e02119d5
CM
5505int btrfs_add_link(struct btrfs_trans_handle *trans,
5506 struct inode *parent_inode, struct inode *inode,
5507 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5508{
4df27c4d 5509 int ret = 0;
39279cc3 5510 struct btrfs_key key;
e02119d5 5511 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5512 u64 ino = btrfs_ino(inode);
5513 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5514
33345d01 5515 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5516 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5517 } else {
33345d01 5518 key.objectid = ino;
4df27c4d
YZ
5519 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5520 key.offset = 0;
5521 }
5522
33345d01 5523 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5524 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5525 key.objectid, root->root_key.objectid,
33345d01 5526 parent_ino, index, name, name_len);
4df27c4d 5527 } else if (add_backref) {
33345d01
LZ
5528 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5529 parent_ino, index);
4df27c4d 5530 }
39279cc3 5531
79787eaa
JM
5532 /* Nothing to clean up yet */
5533 if (ret)
5534 return ret;
4df27c4d 5535
79787eaa
JM
5536 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5537 parent_inode, &key,
5538 btrfs_inode_type(inode), index);
9c52057c 5539 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5540 goto fail_dir_item;
5541 else if (ret) {
5542 btrfs_abort_transaction(trans, root, ret);
5543 return ret;
39279cc3 5544 }
79787eaa
JM
5545
5546 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5547 name_len * 2);
0c4d2d95 5548 inode_inc_iversion(parent_inode);
79787eaa
JM
5549 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5550 ret = btrfs_update_inode(trans, root, parent_inode);
5551 if (ret)
5552 btrfs_abort_transaction(trans, root, ret);
39279cc3 5553 return ret;
fe66a05a
CM
5554
5555fail_dir_item:
5556 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5557 u64 local_index;
5558 int err;
5559 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5560 key.objectid, root->root_key.objectid,
5561 parent_ino, &local_index, name, name_len);
5562
5563 } else if (add_backref) {
5564 u64 local_index;
5565 int err;
5566
5567 err = btrfs_del_inode_ref(trans, root, name, name_len,
5568 ino, parent_ino, &local_index);
5569 }
5570 return ret;
39279cc3
CM
5571}
5572
5573static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5574 struct inode *dir, struct dentry *dentry,
5575 struct inode *inode, int backref, u64 index)
39279cc3 5576{
a1b075d2
JB
5577 int err = btrfs_add_link(trans, dir, inode,
5578 dentry->d_name.name, dentry->d_name.len,
5579 backref, index);
39279cc3
CM
5580 if (err > 0)
5581 err = -EEXIST;
5582 return err;
5583}
5584
618e21d5 5585static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5586 umode_t mode, dev_t rdev)
618e21d5
JB
5587{
5588 struct btrfs_trans_handle *trans;
5589 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5590 struct inode *inode = NULL;
618e21d5
JB
5591 int err;
5592 int drop_inode = 0;
5593 u64 objectid;
00e4e6b3 5594 u64 index = 0;
618e21d5
JB
5595
5596 if (!new_valid_dev(rdev))
5597 return -EINVAL;
5598
9ed74f2d
JB
5599 /*
5600 * 2 for inode item and ref
5601 * 2 for dir items
5602 * 1 for xattr if selinux is on
5603 */
a22285a6
YZ
5604 trans = btrfs_start_transaction(root, 5);
5605 if (IS_ERR(trans))
5606 return PTR_ERR(trans);
1832a6d5 5607
581bb050
LZ
5608 err = btrfs_find_free_ino(root, &objectid);
5609 if (err)
5610 goto out_unlock;
5611
aec7477b 5612 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5613 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5614 mode, &index);
7cf96da3
TI
5615 if (IS_ERR(inode)) {
5616 err = PTR_ERR(inode);
618e21d5 5617 goto out_unlock;
7cf96da3 5618 }
618e21d5 5619
2a7dba39 5620 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5621 if (err) {
5622 drop_inode = 1;
5623 goto out_unlock;
5624 }
5625
ad19db71
CS
5626 /*
5627 * If the active LSM wants to access the inode during
5628 * d_instantiate it needs these. Smack checks to see
5629 * if the filesystem supports xattrs by looking at the
5630 * ops vector.
5631 */
5632
5633 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5634 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5635 if (err)
5636 drop_inode = 1;
5637 else {
618e21d5 5638 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5639 btrfs_update_inode(trans, root, inode);
08c422c2 5640 d_instantiate(dentry, inode);
618e21d5 5641 }
618e21d5 5642out_unlock:
7ad85bb7 5643 btrfs_end_transaction(trans, root);
b53d3f5d 5644 btrfs_btree_balance_dirty(root);
618e21d5
JB
5645 if (drop_inode) {
5646 inode_dec_link_count(inode);
5647 iput(inode);
5648 }
618e21d5
JB
5649 return err;
5650}
5651
39279cc3 5652static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5653 umode_t mode, bool excl)
39279cc3
CM
5654{
5655 struct btrfs_trans_handle *trans;
5656 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5657 struct inode *inode = NULL;
43baa579 5658 int drop_inode_on_err = 0;
a22285a6 5659 int err;
39279cc3 5660 u64 objectid;
00e4e6b3 5661 u64 index = 0;
39279cc3 5662
9ed74f2d
JB
5663 /*
5664 * 2 for inode item and ref
5665 * 2 for dir items
5666 * 1 for xattr if selinux is on
5667 */
a22285a6
YZ
5668 trans = btrfs_start_transaction(root, 5);
5669 if (IS_ERR(trans))
5670 return PTR_ERR(trans);
9ed74f2d 5671
581bb050
LZ
5672 err = btrfs_find_free_ino(root, &objectid);
5673 if (err)
5674 goto out_unlock;
5675
aec7477b 5676 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5677 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5678 mode, &index);
7cf96da3
TI
5679 if (IS_ERR(inode)) {
5680 err = PTR_ERR(inode);
39279cc3 5681 goto out_unlock;
7cf96da3 5682 }
43baa579 5683 drop_inode_on_err = 1;
39279cc3 5684
2a7dba39 5685 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5686 if (err)
33268eaf 5687 goto out_unlock;
33268eaf 5688
9185aa58
FB
5689 err = btrfs_update_inode(trans, root, inode);
5690 if (err)
5691 goto out_unlock;
5692
ad19db71
CS
5693 /*
5694 * If the active LSM wants to access the inode during
5695 * d_instantiate it needs these. Smack checks to see
5696 * if the filesystem supports xattrs by looking at the
5697 * ops vector.
5698 */
5699 inode->i_fop = &btrfs_file_operations;
5700 inode->i_op = &btrfs_file_inode_operations;
5701
a1b075d2 5702 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5703 if (err)
43baa579
FB
5704 goto out_unlock;
5705
5706 inode->i_mapping->a_ops = &btrfs_aops;
5707 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5708 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5709 d_instantiate(dentry, inode);
5710
39279cc3 5711out_unlock:
7ad85bb7 5712 btrfs_end_transaction(trans, root);
43baa579 5713 if (err && drop_inode_on_err) {
39279cc3
CM
5714 inode_dec_link_count(inode);
5715 iput(inode);
5716 }
b53d3f5d 5717 btrfs_btree_balance_dirty(root);
39279cc3
CM
5718 return err;
5719}
5720
5721static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5722 struct dentry *dentry)
5723{
5724 struct btrfs_trans_handle *trans;
5725 struct btrfs_root *root = BTRFS_I(dir)->root;
5726 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5727 u64 index;
39279cc3
CM
5728 int err;
5729 int drop_inode = 0;
5730
4a8be425
TH
5731 /* do not allow sys_link's with other subvols of the same device */
5732 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5733 return -EXDEV;
4a8be425 5734
f186373f 5735 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5736 return -EMLINK;
4a8be425 5737
3de4586c 5738 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5739 if (err)
5740 goto fail;
5741
a22285a6 5742 /*
7e6b6465 5743 * 2 items for inode and inode ref
a22285a6 5744 * 2 items for dir items
7e6b6465 5745 * 1 item for parent inode
a22285a6 5746 */
7e6b6465 5747 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5748 if (IS_ERR(trans)) {
5749 err = PTR_ERR(trans);
5750 goto fail;
5751 }
5f39d397 5752
3153495d 5753 btrfs_inc_nlink(inode);
0c4d2d95 5754 inode_inc_iversion(inode);
3153495d 5755 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5756 ihold(inode);
e9976151 5757 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5758
a1b075d2 5759 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5760
a5719521 5761 if (err) {
54aa1f4d 5762 drop_inode = 1;
a5719521 5763 } else {
10d9f309 5764 struct dentry *parent = dentry->d_parent;
a5719521 5765 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5766 if (err)
5767 goto fail;
08c422c2 5768 d_instantiate(dentry, inode);
6a912213 5769 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5770 }
39279cc3 5771
7ad85bb7 5772 btrfs_end_transaction(trans, root);
1832a6d5 5773fail:
39279cc3
CM
5774 if (drop_inode) {
5775 inode_dec_link_count(inode);
5776 iput(inode);
5777 }
b53d3f5d 5778 btrfs_btree_balance_dirty(root);
39279cc3
CM
5779 return err;
5780}
5781
18bb1db3 5782static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5783{
b9d86667 5784 struct inode *inode = NULL;
39279cc3
CM
5785 struct btrfs_trans_handle *trans;
5786 struct btrfs_root *root = BTRFS_I(dir)->root;
5787 int err = 0;
5788 int drop_on_err = 0;
b9d86667 5789 u64 objectid = 0;
00e4e6b3 5790 u64 index = 0;
39279cc3 5791
9ed74f2d
JB
5792 /*
5793 * 2 items for inode and ref
5794 * 2 items for dir items
5795 * 1 for xattr if selinux is on
5796 */
a22285a6
YZ
5797 trans = btrfs_start_transaction(root, 5);
5798 if (IS_ERR(trans))
5799 return PTR_ERR(trans);
39279cc3 5800
581bb050
LZ
5801 err = btrfs_find_free_ino(root, &objectid);
5802 if (err)
5803 goto out_fail;
5804
aec7477b 5805 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5806 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5807 S_IFDIR | mode, &index);
39279cc3
CM
5808 if (IS_ERR(inode)) {
5809 err = PTR_ERR(inode);
5810 goto out_fail;
5811 }
5f39d397 5812
39279cc3 5813 drop_on_err = 1;
33268eaf 5814
2a7dba39 5815 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5816 if (err)
5817 goto out_fail;
5818
39279cc3
CM
5819 inode->i_op = &btrfs_dir_inode_operations;
5820 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5821
dbe674a9 5822 btrfs_i_size_write(inode, 0);
39279cc3
CM
5823 err = btrfs_update_inode(trans, root, inode);
5824 if (err)
5825 goto out_fail;
5f39d397 5826
a1b075d2
JB
5827 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5828 dentry->d_name.len, 0, index);
39279cc3
CM
5829 if (err)
5830 goto out_fail;
5f39d397 5831
39279cc3
CM
5832 d_instantiate(dentry, inode);
5833 drop_on_err = 0;
39279cc3
CM
5834
5835out_fail:
7ad85bb7 5836 btrfs_end_transaction(trans, root);
39279cc3
CM
5837 if (drop_on_err)
5838 iput(inode);
b53d3f5d 5839 btrfs_btree_balance_dirty(root);
39279cc3
CM
5840 return err;
5841}
5842
d352ac68
CM
5843/* helper for btfs_get_extent. Given an existing extent in the tree,
5844 * and an extent that you want to insert, deal with overlap and insert
5845 * the new extent into the tree.
5846 */
3b951516
CM
5847static int merge_extent_mapping(struct extent_map_tree *em_tree,
5848 struct extent_map *existing,
e6dcd2dc
CM
5849 struct extent_map *em,
5850 u64 map_start, u64 map_len)
3b951516
CM
5851{
5852 u64 start_diff;
3b951516 5853
e6dcd2dc
CM
5854 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5855 start_diff = map_start - em->start;
5856 em->start = map_start;
5857 em->len = map_len;
c8b97818
CM
5858 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5859 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5860 em->block_start += start_diff;
c8b97818
CM
5861 em->block_len -= start_diff;
5862 }
09a2a8f9 5863 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
5864}
5865
c8b97818
CM
5866static noinline int uncompress_inline(struct btrfs_path *path,
5867 struct inode *inode, struct page *page,
5868 size_t pg_offset, u64 extent_offset,
5869 struct btrfs_file_extent_item *item)
5870{
5871 int ret;
5872 struct extent_buffer *leaf = path->nodes[0];
5873 char *tmp;
5874 size_t max_size;
5875 unsigned long inline_size;
5876 unsigned long ptr;
261507a0 5877 int compress_type;
c8b97818
CM
5878
5879 WARN_ON(pg_offset != 0);
261507a0 5880 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5881 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5882 inline_size = btrfs_file_extent_inline_item_len(leaf,
5883 btrfs_item_nr(leaf, path->slots[0]));
5884 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5885 if (!tmp)
5886 return -ENOMEM;
c8b97818
CM
5887 ptr = btrfs_file_extent_inline_start(item);
5888
5889 read_extent_buffer(leaf, tmp, ptr, inline_size);
5890
5b050f04 5891 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5892 ret = btrfs_decompress(compress_type, tmp, page,
5893 extent_offset, inline_size, max_size);
c8b97818 5894 if (ret) {
7ac687d9 5895 char *kaddr = kmap_atomic(page);
c8b97818
CM
5896 unsigned long copy_size = min_t(u64,
5897 PAGE_CACHE_SIZE - pg_offset,
5898 max_size - extent_offset);
5899 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5900 kunmap_atomic(kaddr);
c8b97818
CM
5901 }
5902 kfree(tmp);
5903 return 0;
5904}
5905
d352ac68
CM
5906/*
5907 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5908 * the ugly parts come from merging extents from the disk with the in-ram
5909 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5910 * where the in-ram extents might be locked pending data=ordered completion.
5911 *
5912 * This also copies inline extents directly into the page.
5913 */
d397712b 5914
a52d9a80 5915struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5916 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5917 int create)
5918{
5919 int ret;
5920 int err = 0;
db94535d 5921 u64 bytenr;
a52d9a80
CM
5922 u64 extent_start = 0;
5923 u64 extent_end = 0;
33345d01 5924 u64 objectid = btrfs_ino(inode);
a52d9a80 5925 u32 found_type;
f421950f 5926 struct btrfs_path *path = NULL;
a52d9a80
CM
5927 struct btrfs_root *root = BTRFS_I(inode)->root;
5928 struct btrfs_file_extent_item *item;
5f39d397
CM
5929 struct extent_buffer *leaf;
5930 struct btrfs_key found_key;
a52d9a80
CM
5931 struct extent_map *em = NULL;
5932 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5933 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5934 struct btrfs_trans_handle *trans = NULL;
261507a0 5935 int compress_type;
a52d9a80 5936
a52d9a80 5937again:
890871be 5938 read_lock(&em_tree->lock);
d1310b2e 5939 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5940 if (em)
5941 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5942 read_unlock(&em_tree->lock);
d1310b2e 5943
a52d9a80 5944 if (em) {
e1c4b745
CM
5945 if (em->start > start || em->start + em->len <= start)
5946 free_extent_map(em);
5947 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5948 free_extent_map(em);
5949 else
5950 goto out;
a52d9a80 5951 }
172ddd60 5952 em = alloc_extent_map();
a52d9a80 5953 if (!em) {
d1310b2e
CM
5954 err = -ENOMEM;
5955 goto out;
a52d9a80 5956 }
e6dcd2dc 5957 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5958 em->start = EXTENT_MAP_HOLE;
445a6944 5959 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5960 em->len = (u64)-1;
c8b97818 5961 em->block_len = (u64)-1;
f421950f
CM
5962
5963 if (!path) {
5964 path = btrfs_alloc_path();
026fd317
JB
5965 if (!path) {
5966 err = -ENOMEM;
5967 goto out;
5968 }
5969 /*
5970 * Chances are we'll be called again, so go ahead and do
5971 * readahead
5972 */
5973 path->reada = 1;
f421950f
CM
5974 }
5975
179e29e4
CM
5976 ret = btrfs_lookup_file_extent(trans, root, path,
5977 objectid, start, trans != NULL);
a52d9a80
CM
5978 if (ret < 0) {
5979 err = ret;
5980 goto out;
5981 }
5982
5983 if (ret != 0) {
5984 if (path->slots[0] == 0)
5985 goto not_found;
5986 path->slots[0]--;
5987 }
5988
5f39d397
CM
5989 leaf = path->nodes[0];
5990 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5991 struct btrfs_file_extent_item);
a52d9a80 5992 /* are we inside the extent that was found? */
5f39d397
CM
5993 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5994 found_type = btrfs_key_type(&found_key);
5995 if (found_key.objectid != objectid ||
a52d9a80
CM
5996 found_type != BTRFS_EXTENT_DATA_KEY) {
5997 goto not_found;
5998 }
5999
5f39d397
CM
6000 found_type = btrfs_file_extent_type(leaf, item);
6001 extent_start = found_key.offset;
261507a0 6002 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
6003 if (found_type == BTRFS_FILE_EXTENT_REG ||
6004 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6005 extent_end = extent_start +
db94535d 6006 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6007 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6008 size_t size;
6009 size = btrfs_file_extent_inline_len(leaf, item);
fda2832f 6010 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102
YZ
6011 }
6012
6013 if (start >= extent_end) {
6014 path->slots[0]++;
6015 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6016 ret = btrfs_next_leaf(root, path);
6017 if (ret < 0) {
6018 err = ret;
6019 goto out;
a52d9a80 6020 }
9036c102
YZ
6021 if (ret > 0)
6022 goto not_found;
6023 leaf = path->nodes[0];
a52d9a80 6024 }
9036c102
YZ
6025 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6026 if (found_key.objectid != objectid ||
6027 found_key.type != BTRFS_EXTENT_DATA_KEY)
6028 goto not_found;
6029 if (start + len <= found_key.offset)
6030 goto not_found;
6031 em->start = start;
70c8a91c 6032 em->orig_start = start;
9036c102
YZ
6033 em->len = found_key.offset - start;
6034 goto not_found_em;
6035 }
6036
cc95bef6 6037 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
d899e052
YZ
6038 if (found_type == BTRFS_FILE_EXTENT_REG ||
6039 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
6040 em->start = extent_start;
6041 em->len = extent_end - extent_start;
ff5b7ee3
YZ
6042 em->orig_start = extent_start -
6043 btrfs_file_extent_offset(leaf, item);
b4939680
JB
6044 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6045 item);
db94535d
CM
6046 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6047 if (bytenr == 0) {
5f39d397 6048 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
6049 goto insert;
6050 }
261507a0 6051 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 6052 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 6053 em->compress_type = compress_type;
c8b97818 6054 em->block_start = bytenr;
b4939680 6055 em->block_len = em->orig_block_len;
c8b97818
CM
6056 } else {
6057 bytenr += btrfs_file_extent_offset(leaf, item);
6058 em->block_start = bytenr;
6059 em->block_len = em->len;
d899e052
YZ
6060 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6061 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 6062 }
a52d9a80
CM
6063 goto insert;
6064 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6065 unsigned long ptr;
a52d9a80 6066 char *map;
3326d1b0
CM
6067 size_t size;
6068 size_t extent_offset;
6069 size_t copy_size;
a52d9a80 6070
689f9346 6071 em->block_start = EXTENT_MAP_INLINE;
c8b97818 6072 if (!page || create) {
689f9346 6073 em->start = extent_start;
9036c102 6074 em->len = extent_end - extent_start;
689f9346
Y
6075 goto out;
6076 }
5f39d397 6077
9036c102
YZ
6078 size = btrfs_file_extent_inline_len(leaf, item);
6079 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6080 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6081 size - extent_offset);
3326d1b0 6082 em->start = extent_start + extent_offset;
fda2832f 6083 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6084 em->orig_block_len = em->len;
70c8a91c 6085 em->orig_start = em->start;
261507a0 6086 if (compress_type) {
c8b97818 6087 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
6088 em->compress_type = compress_type;
6089 }
689f9346 6090 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6091 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6092 if (btrfs_file_extent_compression(leaf, item) !=
6093 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6094 ret = uncompress_inline(path, inode, page,
6095 pg_offset,
6096 extent_offset, item);
79787eaa 6097 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
6098 } else {
6099 map = kmap(page);
6100 read_extent_buffer(leaf, map + pg_offset, ptr,
6101 copy_size);
93c82d57
CM
6102 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6103 memset(map + pg_offset + copy_size, 0,
6104 PAGE_CACHE_SIZE - pg_offset -
6105 copy_size);
6106 }
c8b97818
CM
6107 kunmap(page);
6108 }
179e29e4
CM
6109 flush_dcache_page(page);
6110 } else if (create && PageUptodate(page)) {
6bf7e080 6111 BUG();
179e29e4
CM
6112 if (!trans) {
6113 kunmap(page);
6114 free_extent_map(em);
6115 em = NULL;
ff5714cc 6116
b3b4aa74 6117 btrfs_release_path(path);
7a7eaa40 6118 trans = btrfs_join_transaction(root);
ff5714cc 6119
3612b495
TI
6120 if (IS_ERR(trans))
6121 return ERR_CAST(trans);
179e29e4
CM
6122 goto again;
6123 }
c8b97818 6124 map = kmap(page);
70dec807 6125 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6126 copy_size);
c8b97818 6127 kunmap(page);
179e29e4 6128 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6129 }
d1310b2e 6130 set_extent_uptodate(io_tree, em->start,
507903b8 6131 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
6132 goto insert;
6133 } else {
31b1a2bd 6134 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
6135 }
6136not_found:
6137 em->start = start;
70c8a91c 6138 em->orig_start = start;
d1310b2e 6139 em->len = len;
a52d9a80 6140not_found_em:
5f39d397 6141 em->block_start = EXTENT_MAP_HOLE;
9036c102 6142 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6143insert:
b3b4aa74 6144 btrfs_release_path(path);
d1310b2e 6145 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb
SK
6146 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6147 (unsigned long long)em->start,
6148 (unsigned long long)em->len,
6149 (unsigned long long)start,
6150 (unsigned long long)len);
a52d9a80
CM
6151 err = -EIO;
6152 goto out;
6153 }
d1310b2e
CM
6154
6155 err = 0;
890871be 6156 write_lock(&em_tree->lock);
09a2a8f9 6157 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6158 /* it is possible that someone inserted the extent into the tree
6159 * while we had the lock dropped. It is also possible that
6160 * an overlapping map exists in the tree
6161 */
a52d9a80 6162 if (ret == -EEXIST) {
3b951516 6163 struct extent_map *existing;
e6dcd2dc
CM
6164
6165 ret = 0;
6166
3b951516 6167 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6168 if (existing && (existing->start > start ||
6169 existing->start + existing->len <= start)) {
6170 free_extent_map(existing);
6171 existing = NULL;
6172 }
3b951516
CM
6173 if (!existing) {
6174 existing = lookup_extent_mapping(em_tree, em->start,
6175 em->len);
6176 if (existing) {
6177 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6178 em, start,
6179 root->sectorsize);
3b951516
CM
6180 free_extent_map(existing);
6181 if (err) {
6182 free_extent_map(em);
6183 em = NULL;
6184 }
6185 } else {
6186 err = -EIO;
3b951516
CM
6187 free_extent_map(em);
6188 em = NULL;
6189 }
6190 } else {
6191 free_extent_map(em);
6192 em = existing;
e6dcd2dc 6193 err = 0;
a52d9a80 6194 }
a52d9a80 6195 }
890871be 6196 write_unlock(&em_tree->lock);
a52d9a80 6197out:
1abe9b8a 6198
f0bd95ea
TI
6199 if (em)
6200 trace_btrfs_get_extent(root, em);
1abe9b8a 6201
f421950f
CM
6202 if (path)
6203 btrfs_free_path(path);
a52d9a80
CM
6204 if (trans) {
6205 ret = btrfs_end_transaction(trans, root);
d397712b 6206 if (!err)
a52d9a80
CM
6207 err = ret;
6208 }
a52d9a80
CM
6209 if (err) {
6210 free_extent_map(em);
a52d9a80
CM
6211 return ERR_PTR(err);
6212 }
79787eaa 6213 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6214 return em;
6215}
6216
ec29ed5b
CM
6217struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6218 size_t pg_offset, u64 start, u64 len,
6219 int create)
6220{
6221 struct extent_map *em;
6222 struct extent_map *hole_em = NULL;
6223 u64 range_start = start;
6224 u64 end;
6225 u64 found;
6226 u64 found_end;
6227 int err = 0;
6228
6229 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6230 if (IS_ERR(em))
6231 return em;
6232 if (em) {
6233 /*
f9e4fb53
LB
6234 * if our em maps to
6235 * - a hole or
6236 * - a pre-alloc extent,
6237 * there might actually be delalloc bytes behind it.
ec29ed5b 6238 */
f9e4fb53
LB
6239 if (em->block_start != EXTENT_MAP_HOLE &&
6240 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6241 return em;
6242 else
6243 hole_em = em;
6244 }
6245
6246 /* check to see if we've wrapped (len == -1 or similar) */
6247 end = start + len;
6248 if (end < start)
6249 end = (u64)-1;
6250 else
6251 end -= 1;
6252
6253 em = NULL;
6254
6255 /* ok, we didn't find anything, lets look for delalloc */
6256 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6257 end, len, EXTENT_DELALLOC, 1);
6258 found_end = range_start + found;
6259 if (found_end < range_start)
6260 found_end = (u64)-1;
6261
6262 /*
6263 * we didn't find anything useful, return
6264 * the original results from get_extent()
6265 */
6266 if (range_start > end || found_end <= start) {
6267 em = hole_em;
6268 hole_em = NULL;
6269 goto out;
6270 }
6271
6272 /* adjust the range_start to make sure it doesn't
6273 * go backwards from the start they passed in
6274 */
6275 range_start = max(start,range_start);
6276 found = found_end - range_start;
6277
6278 if (found > 0) {
6279 u64 hole_start = start;
6280 u64 hole_len = len;
6281
172ddd60 6282 em = alloc_extent_map();
ec29ed5b
CM
6283 if (!em) {
6284 err = -ENOMEM;
6285 goto out;
6286 }
6287 /*
6288 * when btrfs_get_extent can't find anything it
6289 * returns one huge hole
6290 *
6291 * make sure what it found really fits our range, and
6292 * adjust to make sure it is based on the start from
6293 * the caller
6294 */
6295 if (hole_em) {
6296 u64 calc_end = extent_map_end(hole_em);
6297
6298 if (calc_end <= start || (hole_em->start > end)) {
6299 free_extent_map(hole_em);
6300 hole_em = NULL;
6301 } else {
6302 hole_start = max(hole_em->start, start);
6303 hole_len = calc_end - hole_start;
6304 }
6305 }
6306 em->bdev = NULL;
6307 if (hole_em && range_start > hole_start) {
6308 /* our hole starts before our delalloc, so we
6309 * have to return just the parts of the hole
6310 * that go until the delalloc starts
6311 */
6312 em->len = min(hole_len,
6313 range_start - hole_start);
6314 em->start = hole_start;
6315 em->orig_start = hole_start;
6316 /*
6317 * don't adjust block start at all,
6318 * it is fixed at EXTENT_MAP_HOLE
6319 */
6320 em->block_start = hole_em->block_start;
6321 em->block_len = hole_len;
f9e4fb53
LB
6322 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6323 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6324 } else {
6325 em->start = range_start;
6326 em->len = found;
6327 em->orig_start = range_start;
6328 em->block_start = EXTENT_MAP_DELALLOC;
6329 em->block_len = found;
6330 }
6331 } else if (hole_em) {
6332 return hole_em;
6333 }
6334out:
6335
6336 free_extent_map(hole_em);
6337 if (err) {
6338 free_extent_map(em);
6339 return ERR_PTR(err);
6340 }
6341 return em;
6342}
6343
4b46fce2
JB
6344static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6345 u64 start, u64 len)
6346{
6347 struct btrfs_root *root = BTRFS_I(inode)->root;
6348 struct btrfs_trans_handle *trans;
70c8a91c 6349 struct extent_map *em;
4b46fce2
JB
6350 struct btrfs_key ins;
6351 u64 alloc_hint;
6352 int ret;
4b46fce2 6353
7a7eaa40 6354 trans = btrfs_join_transaction(root);
3612b495
TI
6355 if (IS_ERR(trans))
6356 return ERR_CAST(trans);
4b46fce2
JB
6357
6358 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
6359
6360 alloc_hint = get_extent_allocation_hint(inode, start, len);
6361 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 6362 alloc_hint, &ins, 1);
4b46fce2
JB
6363 if (ret) {
6364 em = ERR_PTR(ret);
6365 goto out;
6366 }
6367
70c8a91c 6368 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6369 ins.offset, ins.offset, ins.offset, 0);
70c8a91c
JB
6370 if (IS_ERR(em))
6371 goto out;
4b46fce2
JB
6372
6373 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6374 ins.offset, ins.offset, 0);
6375 if (ret) {
6376 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6377 em = ERR_PTR(ret);
6378 }
6379out:
6380 btrfs_end_transaction(trans, root);
6381 return em;
6382}
6383
46bfbb5c
CM
6384/*
6385 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6386 * block must be cow'd
6387 */
7ee9e440
JB
6388noinline int can_nocow_extent(struct btrfs_trans_handle *trans,
6389 struct inode *inode, u64 offset, u64 *len,
6390 u64 *orig_start, u64 *orig_block_len,
6391 u64 *ram_bytes)
46bfbb5c
CM
6392{
6393 struct btrfs_path *path;
6394 int ret;
6395 struct extent_buffer *leaf;
6396 struct btrfs_root *root = BTRFS_I(inode)->root;
6397 struct btrfs_file_extent_item *fi;
6398 struct btrfs_key key;
6399 u64 disk_bytenr;
6400 u64 backref_offset;
6401 u64 extent_end;
6402 u64 num_bytes;
6403 int slot;
6404 int found_type;
7ee9e440 6405 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
46bfbb5c
CM
6406 path = btrfs_alloc_path();
6407 if (!path)
6408 return -ENOMEM;
6409
33345d01 6410 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
6411 offset, 0);
6412 if (ret < 0)
6413 goto out;
6414
6415 slot = path->slots[0];
6416 if (ret == 1) {
6417 if (slot == 0) {
6418 /* can't find the item, must cow */
6419 ret = 0;
6420 goto out;
6421 }
6422 slot--;
6423 }
6424 ret = 0;
6425 leaf = path->nodes[0];
6426 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6427 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6428 key.type != BTRFS_EXTENT_DATA_KEY) {
6429 /* not our file or wrong item type, must cow */
6430 goto out;
6431 }
6432
6433 if (key.offset > offset) {
6434 /* Wrong offset, must cow */
6435 goto out;
6436 }
6437
6438 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6439 found_type = btrfs_file_extent_type(leaf, fi);
6440 if (found_type != BTRFS_FILE_EXTENT_REG &&
6441 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6442 /* not a regular extent, must cow */
6443 goto out;
6444 }
7ee9e440
JB
6445
6446 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6447 goto out;
6448
46bfbb5c 6449 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6450 if (disk_bytenr == 0)
6451 goto out;
6452
6453 if (btrfs_file_extent_compression(leaf, fi) ||
6454 btrfs_file_extent_encryption(leaf, fi) ||
6455 btrfs_file_extent_other_encoding(leaf, fi))
6456 goto out;
6457
46bfbb5c
CM
6458 backref_offset = btrfs_file_extent_offset(leaf, fi);
6459
7ee9e440
JB
6460 if (orig_start) {
6461 *orig_start = key.offset - backref_offset;
6462 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6463 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6464 }
eb384b55 6465
46bfbb5c 6466 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
46bfbb5c
CM
6467
6468 if (btrfs_extent_readonly(root, disk_bytenr))
6469 goto out;
6470
6471 /*
6472 * look for other files referencing this extent, if we
6473 * find any we must cow
6474 */
33345d01 6475 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
6476 key.offset - backref_offset, disk_bytenr))
6477 goto out;
6478
6479 /*
6480 * adjust disk_bytenr and num_bytes to cover just the bytes
6481 * in this extent we are about to write. If there
6482 * are any csums in that range we have to cow in order
6483 * to keep the csums correct
6484 */
6485 disk_bytenr += backref_offset;
6486 disk_bytenr += offset - key.offset;
eb384b55 6487 num_bytes = min(offset + *len, extent_end) - offset;
46bfbb5c
CM
6488 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6489 goto out;
6490 /*
6491 * all of the above have passed, it is safe to overwrite this extent
6492 * without cow
6493 */
eb384b55 6494 *len = num_bytes;
46bfbb5c
CM
6495 ret = 1;
6496out:
6497 btrfs_free_path(path);
6498 return ret;
6499}
6500
eb838e73
JB
6501static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6502 struct extent_state **cached_state, int writing)
6503{
6504 struct btrfs_ordered_extent *ordered;
6505 int ret = 0;
6506
6507 while (1) {
6508 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6509 0, cached_state);
6510 /*
6511 * We're concerned with the entire range that we're going to be
6512 * doing DIO to, so we need to make sure theres no ordered
6513 * extents in this range.
6514 */
6515 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6516 lockend - lockstart + 1);
6517
6518 /*
6519 * We need to make sure there are no buffered pages in this
6520 * range either, we could have raced between the invalidate in
6521 * generic_file_direct_write and locking the extent. The
6522 * invalidate needs to happen so that reads after a write do not
6523 * get stale data.
6524 */
6525 if (!ordered && (!writing ||
6526 !test_range_bit(&BTRFS_I(inode)->io_tree,
6527 lockstart, lockend, EXTENT_UPTODATE, 0,
6528 *cached_state)))
6529 break;
6530
6531 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6532 cached_state, GFP_NOFS);
6533
6534 if (ordered) {
6535 btrfs_start_ordered_extent(inode, ordered, 1);
6536 btrfs_put_ordered_extent(ordered);
6537 } else {
6538 /* Screw you mmap */
6539 ret = filemap_write_and_wait_range(inode->i_mapping,
6540 lockstart,
6541 lockend);
6542 if (ret)
6543 break;
6544
6545 /*
6546 * If we found a page that couldn't be invalidated just
6547 * fall back to buffered.
6548 */
6549 ret = invalidate_inode_pages2_range(inode->i_mapping,
6550 lockstart >> PAGE_CACHE_SHIFT,
6551 lockend >> PAGE_CACHE_SHIFT);
6552 if (ret)
6553 break;
6554 }
6555
6556 cond_resched();
6557 }
6558
6559 return ret;
6560}
6561
69ffb543
JB
6562static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6563 u64 len, u64 orig_start,
6564 u64 block_start, u64 block_len,
cc95bef6
JB
6565 u64 orig_block_len, u64 ram_bytes,
6566 int type)
69ffb543
JB
6567{
6568 struct extent_map_tree *em_tree;
6569 struct extent_map *em;
6570 struct btrfs_root *root = BTRFS_I(inode)->root;
6571 int ret;
6572
6573 em_tree = &BTRFS_I(inode)->extent_tree;
6574 em = alloc_extent_map();
6575 if (!em)
6576 return ERR_PTR(-ENOMEM);
6577
6578 em->start = start;
6579 em->orig_start = orig_start;
2ab28f32
JB
6580 em->mod_start = start;
6581 em->mod_len = len;
69ffb543
JB
6582 em->len = len;
6583 em->block_len = block_len;
6584 em->block_start = block_start;
6585 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6586 em->orig_block_len = orig_block_len;
cc95bef6 6587 em->ram_bytes = ram_bytes;
70c8a91c 6588 em->generation = -1;
69ffb543
JB
6589 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6590 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6591 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6592
6593 do {
6594 btrfs_drop_extent_cache(inode, em->start,
6595 em->start + em->len - 1, 0);
6596 write_lock(&em_tree->lock);
09a2a8f9 6597 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6598 write_unlock(&em_tree->lock);
6599 } while (ret == -EEXIST);
6600
6601 if (ret) {
6602 free_extent_map(em);
6603 return ERR_PTR(ret);
6604 }
6605
6606 return em;
6607}
6608
6609
4b46fce2
JB
6610static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6611 struct buffer_head *bh_result, int create)
6612{
6613 struct extent_map *em;
6614 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6615 struct extent_state *cached_state = NULL;
4b46fce2 6616 u64 start = iblock << inode->i_blkbits;
eb838e73 6617 u64 lockstart, lockend;
4b46fce2 6618 u64 len = bh_result->b_size;
46bfbb5c 6619 struct btrfs_trans_handle *trans;
eb838e73 6620 int unlock_bits = EXTENT_LOCKED;
0934856d 6621 int ret = 0;
eb838e73 6622
172a5049 6623 if (create)
eb838e73 6624 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6625 else
c329861d 6626 len = min_t(u64, len, root->sectorsize);
eb838e73 6627
c329861d
JB
6628 lockstart = start;
6629 lockend = start + len - 1;
6630
eb838e73
JB
6631 /*
6632 * If this errors out it's because we couldn't invalidate pagecache for
6633 * this range and we need to fallback to buffered.
6634 */
6635 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6636 return -ENOTBLK;
6637
4b46fce2 6638 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6639 if (IS_ERR(em)) {
6640 ret = PTR_ERR(em);
6641 goto unlock_err;
6642 }
4b46fce2
JB
6643
6644 /*
6645 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6646 * io. INLINE is special, and we could probably kludge it in here, but
6647 * it's still buffered so for safety lets just fall back to the generic
6648 * buffered path.
6649 *
6650 * For COMPRESSED we _have_ to read the entire extent in so we can
6651 * decompress it, so there will be buffering required no matter what we
6652 * do, so go ahead and fallback to buffered.
6653 *
6654 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6655 * to buffered IO. Don't blame me, this is the price we pay for using
6656 * the generic code.
6657 */
6658 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6659 em->block_start == EXTENT_MAP_INLINE) {
6660 free_extent_map(em);
eb838e73
JB
6661 ret = -ENOTBLK;
6662 goto unlock_err;
4b46fce2
JB
6663 }
6664
6665 /* Just a good old fashioned hole, return */
6666 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6667 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6668 free_extent_map(em);
eb838e73 6669 goto unlock_err;
4b46fce2
JB
6670 }
6671
6672 /*
6673 * We don't allocate a new extent in the following cases
6674 *
6675 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6676 * existing extent.
6677 * 2) The extent is marked as PREALLOC. We're good to go here and can
6678 * just use the extent.
6679 *
6680 */
46bfbb5c 6681 if (!create) {
eb838e73
JB
6682 len = min(len, em->len - (start - em->start));
6683 lockstart = start + len;
6684 goto unlock;
46bfbb5c 6685 }
4b46fce2
JB
6686
6687 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6688 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6689 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6690 int type;
6691 int ret;
eb384b55 6692 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
6693
6694 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6695 type = BTRFS_ORDERED_PREALLOC;
6696 else
6697 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6698 len = min(len, em->len - (start - em->start));
4b46fce2 6699 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
6700
6701 /*
6702 * we're not going to log anything, but we do need
6703 * to make sure the current transaction stays open
6704 * while we look for nocow cross refs
6705 */
7a7eaa40 6706 trans = btrfs_join_transaction(root);
3612b495 6707 if (IS_ERR(trans))
46bfbb5c
CM
6708 goto must_cow;
6709
7ee9e440
JB
6710 if (can_nocow_extent(trans, inode, start, &len, &orig_start,
6711 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
6712 if (type == BTRFS_ORDERED_PREALLOC) {
6713 free_extent_map(em);
6714 em = create_pinned_em(inode, start, len,
6715 orig_start,
b4939680 6716 block_start, len,
cc95bef6
JB
6717 orig_block_len,
6718 ram_bytes, type);
69ffb543
JB
6719 if (IS_ERR(em)) {
6720 btrfs_end_transaction(trans, root);
6721 goto unlock_err;
6722 }
6723 }
6724
46bfbb5c
CM
6725 ret = btrfs_add_ordered_extent_dio(inode, start,
6726 block_start, len, len, type);
6727 btrfs_end_transaction(trans, root);
6728 if (ret) {
6729 free_extent_map(em);
eb838e73 6730 goto unlock_err;
46bfbb5c
CM
6731 }
6732 goto unlock;
4b46fce2 6733 }
46bfbb5c 6734 btrfs_end_transaction(trans, root);
4b46fce2 6735 }
46bfbb5c
CM
6736must_cow:
6737 /*
6738 * this will cow the extent, reset the len in case we changed
6739 * it above
6740 */
6741 len = bh_result->b_size;
70c8a91c
JB
6742 free_extent_map(em);
6743 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6744 if (IS_ERR(em)) {
6745 ret = PTR_ERR(em);
6746 goto unlock_err;
6747 }
46bfbb5c
CM
6748 len = min(len, em->len - (start - em->start));
6749unlock:
4b46fce2
JB
6750 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6751 inode->i_blkbits;
46bfbb5c 6752 bh_result->b_size = len;
4b46fce2
JB
6753 bh_result->b_bdev = em->bdev;
6754 set_buffer_mapped(bh_result);
c3473e83
JB
6755 if (create) {
6756 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6757 set_buffer_new(bh_result);
6758
6759 /*
6760 * Need to update the i_size under the extent lock so buffered
6761 * readers will get the updated i_size when we unlock.
6762 */
6763 if (start + len > i_size_read(inode))
6764 i_size_write(inode, start + len);
0934856d 6765
172a5049
MX
6766 spin_lock(&BTRFS_I(inode)->lock);
6767 BTRFS_I(inode)->outstanding_extents++;
6768 spin_unlock(&BTRFS_I(inode)->lock);
6769
0934856d
MX
6770 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6771 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6772 &cached_state, GFP_NOFS);
6773 BUG_ON(ret);
c3473e83 6774 }
4b46fce2 6775
eb838e73
JB
6776 /*
6777 * In the case of write we need to clear and unlock the entire range,
6778 * in the case of read we need to unlock only the end area that we
6779 * aren't using if there is any left over space.
6780 */
24c03fa5 6781 if (lockstart < lockend) {
0934856d
MX
6782 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6783 lockend, unlock_bits, 1, 0,
6784 &cached_state, GFP_NOFS);
24c03fa5 6785 } else {
eb838e73 6786 free_extent_state(cached_state);
24c03fa5 6787 }
eb838e73 6788
4b46fce2
JB
6789 free_extent_map(em);
6790
6791 return 0;
eb838e73
JB
6792
6793unlock_err:
eb838e73
JB
6794 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6795 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6796 return ret;
4b46fce2
JB
6797}
6798
6799struct btrfs_dio_private {
6800 struct inode *inode;
6801 u64 logical_offset;
6802 u64 disk_bytenr;
6803 u64 bytes;
4b46fce2 6804 void *private;
e65e1535
MX
6805
6806 /* number of bios pending for this dio */
6807 atomic_t pending_bios;
6808
6809 /* IO errors */
6810 int errors;
6811
9be3395b 6812 /* orig_bio is our btrfs_io_bio */
e65e1535 6813 struct bio *orig_bio;
9be3395b
CM
6814
6815 /* dio_bio came from fs/direct-io.c */
6816 struct bio *dio_bio;
4b46fce2
JB
6817};
6818
6819static void btrfs_endio_direct_read(struct bio *bio, int err)
6820{
e65e1535 6821 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6822 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6823 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6824 struct inode *inode = dip->inode;
6825 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 6826 struct bio *dio_bio;
4b46fce2 6827 u64 start;
4b46fce2
JB
6828
6829 start = dip->logical_offset;
6830 do {
6831 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6832 struct page *page = bvec->bv_page;
6833 char *kaddr;
6834 u32 csum = ~(u32)0;
c329861d 6835 u64 private = ~(u32)0;
4b46fce2
JB
6836 unsigned long flags;
6837
c329861d
JB
6838 if (get_state_private(&BTRFS_I(inode)->io_tree,
6839 start, &private))
6840 goto failed;
4b46fce2 6841 local_irq_save(flags);
7ac687d9 6842 kaddr = kmap_atomic(page);
b0496686 6843 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
6844 csum, bvec->bv_len);
6845 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6846 kunmap_atomic(kaddr);
4b46fce2
JB
6847 local_irq_restore(flags);
6848
6849 flush_dcache_page(bvec->bv_page);
c329861d
JB
6850 if (csum != private) {
6851failed:
c2cf52eb
SK
6852 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u private %u",
6853 (unsigned long long)btrfs_ino(inode),
6854 (unsigned long long)start,
6855 csum, (unsigned)private);
4b46fce2
JB
6856 err = -EIO;
6857 }
6858 }
6859
6860 start += bvec->bv_len;
4b46fce2
JB
6861 bvec++;
6862 } while (bvec <= bvec_end);
6863
6864 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6865 dip->logical_offset + dip->bytes - 1);
9be3395b 6866 dio_bio = dip->dio_bio;
4b46fce2 6867
4b46fce2 6868 kfree(dip);
c0da7aa1
JB
6869
6870 /* If we had a csum failure make sure to clear the uptodate flag */
6871 if (err)
9be3395b
CM
6872 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6873 dio_end_io(dio_bio, err);
6874 bio_put(bio);
4b46fce2
JB
6875}
6876
6877static void btrfs_endio_direct_write(struct bio *bio, int err)
6878{
6879 struct btrfs_dio_private *dip = bio->bi_private;
6880 struct inode *inode = dip->inode;
6881 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6882 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6883 u64 ordered_offset = dip->logical_offset;
6884 u64 ordered_bytes = dip->bytes;
9be3395b 6885 struct bio *dio_bio;
4b46fce2
JB
6886 int ret;
6887
6888 if (err)
6889 goto out_done;
163cf09c
CM
6890again:
6891 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6892 &ordered_offset,
5fd02043 6893 ordered_bytes, !err);
4b46fce2 6894 if (!ret)
163cf09c 6895 goto out_test;
4b46fce2 6896
5fd02043
JB
6897 ordered->work.func = finish_ordered_fn;
6898 ordered->work.flags = 0;
6899 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6900 &ordered->work);
163cf09c
CM
6901out_test:
6902 /*
6903 * our bio might span multiple ordered extents. If we haven't
6904 * completed the accounting for the whole dio, go back and try again
6905 */
6906 if (ordered_offset < dip->logical_offset + dip->bytes) {
6907 ordered_bytes = dip->logical_offset + dip->bytes -
6908 ordered_offset;
5fd02043 6909 ordered = NULL;
163cf09c
CM
6910 goto again;
6911 }
4b46fce2 6912out_done:
9be3395b 6913 dio_bio = dip->dio_bio;
4b46fce2 6914
4b46fce2 6915 kfree(dip);
c0da7aa1
JB
6916
6917 /* If we had an error make sure to clear the uptodate flag */
6918 if (err)
9be3395b
CM
6919 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6920 dio_end_io(dio_bio, err);
6921 bio_put(bio);
4b46fce2
JB
6922}
6923
eaf25d93
CM
6924static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6925 struct bio *bio, int mirror_num,
6926 unsigned long bio_flags, u64 offset)
6927{
6928 int ret;
6929 struct btrfs_root *root = BTRFS_I(inode)->root;
6930 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6931 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6932 return 0;
6933}
6934
e65e1535
MX
6935static void btrfs_end_dio_bio(struct bio *bio, int err)
6936{
6937 struct btrfs_dio_private *dip = bio->bi_private;
6938
6939 if (err) {
33345d01 6940 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6941 "sector %#Lx len %u err no %d\n",
33345d01 6942 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6943 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6944 dip->errors = 1;
6945
6946 /*
6947 * before atomic variable goto zero, we must make sure
6948 * dip->errors is perceived to be set.
6949 */
6950 smp_mb__before_atomic_dec();
6951 }
6952
6953 /* if there are more bios still pending for this dio, just exit */
6954 if (!atomic_dec_and_test(&dip->pending_bios))
6955 goto out;
6956
9be3395b 6957 if (dip->errors) {
e65e1535 6958 bio_io_error(dip->orig_bio);
9be3395b
CM
6959 } else {
6960 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
6961 bio_endio(dip->orig_bio, 0);
6962 }
6963out:
6964 bio_put(bio);
6965}
6966
6967static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6968 u64 first_sector, gfp_t gfp_flags)
6969{
6970 int nr_vecs = bio_get_nr_vecs(bdev);
6971 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6972}
6973
6974static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6975 int rw, u64 file_offset, int skip_sum,
c329861d 6976 int async_submit)
e65e1535
MX
6977{
6978 int write = rw & REQ_WRITE;
6979 struct btrfs_root *root = BTRFS_I(inode)->root;
6980 int ret;
6981
b812ce28
JB
6982 if (async_submit)
6983 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6984
e65e1535 6985 bio_get(bio);
5fd02043
JB
6986
6987 if (!write) {
6988 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6989 if (ret)
6990 goto err;
6991 }
e65e1535 6992
1ae39938
JB
6993 if (skip_sum)
6994 goto map;
6995
6996 if (write && async_submit) {
e65e1535
MX
6997 ret = btrfs_wq_submit_bio(root->fs_info,
6998 inode, rw, bio, 0, 0,
6999 file_offset,
7000 __btrfs_submit_bio_start_direct_io,
7001 __btrfs_submit_bio_done);
7002 goto err;
1ae39938
JB
7003 } else if (write) {
7004 /*
7005 * If we aren't doing async submit, calculate the csum of the
7006 * bio now.
7007 */
7008 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7009 if (ret)
7010 goto err;
c2db1073 7011 } else if (!skip_sum) {
c329861d 7012 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
c2db1073
TI
7013 if (ret)
7014 goto err;
7015 }
e65e1535 7016
1ae39938
JB
7017map:
7018 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
7019err:
7020 bio_put(bio);
7021 return ret;
7022}
7023
7024static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7025 int skip_sum)
7026{
7027 struct inode *inode = dip->inode;
7028 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
7029 struct bio *bio;
7030 struct bio *orig_bio = dip->orig_bio;
7031 struct bio_vec *bvec = orig_bio->bi_io_vec;
7032 u64 start_sector = orig_bio->bi_sector;
7033 u64 file_offset = dip->logical_offset;
7034 u64 submit_len = 0;
7035 u64 map_length;
7036 int nr_pages = 0;
e65e1535 7037 int ret = 0;
1ae39938 7038 int async_submit = 0;
e65e1535 7039
e65e1535 7040 map_length = orig_bio->bi_size;
53b381b3 7041 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535
MX
7042 &map_length, NULL, 0);
7043 if (ret) {
64728bbb 7044 bio_put(orig_bio);
e65e1535
MX
7045 return -EIO;
7046 }
02f57c7a
JB
7047 if (map_length >= orig_bio->bi_size) {
7048 bio = orig_bio;
7049 goto submit;
7050 }
7051
53b381b3
DW
7052 /* async crcs make it difficult to collect full stripe writes. */
7053 if (btrfs_get_alloc_profile(root, 1) &
7054 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7055 async_submit = 0;
7056 else
7057 async_submit = 1;
7058
02f57c7a
JB
7059 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7060 if (!bio)
7061 return -ENOMEM;
7062 bio->bi_private = dip;
7063 bio->bi_end_io = btrfs_end_dio_bio;
7064 atomic_inc(&dip->pending_bios);
7065
e65e1535
MX
7066 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7067 if (unlikely(map_length < submit_len + bvec->bv_len ||
7068 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7069 bvec->bv_offset) < bvec->bv_len)) {
7070 /*
7071 * inc the count before we submit the bio so
7072 * we know the end IO handler won't happen before
7073 * we inc the count. Otherwise, the dip might get freed
7074 * before we're done setting it up
7075 */
7076 atomic_inc(&dip->pending_bios);
7077 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7078 file_offset, skip_sum,
c329861d 7079 async_submit);
e65e1535
MX
7080 if (ret) {
7081 bio_put(bio);
7082 atomic_dec(&dip->pending_bios);
7083 goto out_err;
7084 }
7085
e65e1535
MX
7086 start_sector += submit_len >> 9;
7087 file_offset += submit_len;
7088
7089 submit_len = 0;
7090 nr_pages = 0;
7091
7092 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7093 start_sector, GFP_NOFS);
7094 if (!bio)
7095 goto out_err;
7096 bio->bi_private = dip;
7097 bio->bi_end_io = btrfs_end_dio_bio;
7098
7099 map_length = orig_bio->bi_size;
53b381b3 7100 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7101 start_sector << 9,
e65e1535
MX
7102 &map_length, NULL, 0);
7103 if (ret) {
7104 bio_put(bio);
7105 goto out_err;
7106 }
7107 } else {
7108 submit_len += bvec->bv_len;
7109 nr_pages ++;
7110 bvec++;
7111 }
7112 }
7113
02f57c7a 7114submit:
e65e1535 7115 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7116 async_submit);
e65e1535
MX
7117 if (!ret)
7118 return 0;
7119
7120 bio_put(bio);
7121out_err:
7122 dip->errors = 1;
7123 /*
7124 * before atomic variable goto zero, we must
7125 * make sure dip->errors is perceived to be set.
7126 */
7127 smp_mb__before_atomic_dec();
7128 if (atomic_dec_and_test(&dip->pending_bios))
7129 bio_io_error(dip->orig_bio);
7130
7131 /* bio_end_io() will handle error, so we needn't return it */
7132 return 0;
7133}
7134
9be3395b
CM
7135static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7136 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7137{
7138 struct btrfs_root *root = BTRFS_I(inode)->root;
7139 struct btrfs_dio_private *dip;
9be3395b 7140 struct bio *io_bio;
4b46fce2 7141 int skip_sum;
7b6d91da 7142 int write = rw & REQ_WRITE;
4b46fce2
JB
7143 int ret = 0;
7144
7145 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7146
9be3395b
CM
7147 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7148
7149 if (!io_bio) {
7150 ret = -ENOMEM;
7151 goto free_ordered;
7152 }
7153
4b46fce2
JB
7154 dip = kmalloc(sizeof(*dip), GFP_NOFS);
7155 if (!dip) {
7156 ret = -ENOMEM;
9be3395b 7157 goto free_io_bio;
4b46fce2 7158 }
4b46fce2 7159
9be3395b 7160 dip->private = dio_bio->bi_private;
4b46fce2
JB
7161 dip->inode = inode;
7162 dip->logical_offset = file_offset;
e6da5d2e 7163 dip->bytes = dio_bio->bi_size;
9be3395b
CM
7164 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7165 io_bio->bi_private = dip;
e65e1535 7166 dip->errors = 0;
9be3395b
CM
7167 dip->orig_bio = io_bio;
7168 dip->dio_bio = dio_bio;
e65e1535 7169 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7170
7171 if (write)
9be3395b 7172 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7173 else
9be3395b 7174 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7175
e65e1535
MX
7176 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7177 if (!ret)
eaf25d93 7178 return;
9be3395b
CM
7179
7180free_io_bio:
7181 bio_put(io_bio);
7182
4b46fce2
JB
7183free_ordered:
7184 /*
7185 * If this is a write, we need to clean up the reserved space and kill
7186 * the ordered extent.
7187 */
7188 if (write) {
7189 struct btrfs_ordered_extent *ordered;
955256f2 7190 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7191 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7192 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7193 btrfs_free_reserved_extent(root, ordered->start,
7194 ordered->disk_len);
7195 btrfs_put_ordered_extent(ordered);
7196 btrfs_put_ordered_extent(ordered);
7197 }
9be3395b 7198 bio_endio(dio_bio, ret);
4b46fce2
JB
7199}
7200
5a5f79b5
CM
7201static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7202 const struct iovec *iov, loff_t offset,
7203 unsigned long nr_segs)
7204{
7205 int seg;
a1b75f7d 7206 int i;
5a5f79b5
CM
7207 size_t size;
7208 unsigned long addr;
7209 unsigned blocksize_mask = root->sectorsize - 1;
7210 ssize_t retval = -EINVAL;
7211 loff_t end = offset;
7212
7213 if (offset & blocksize_mask)
7214 goto out;
7215
7216 /* Check the memory alignment. Blocks cannot straddle pages */
7217 for (seg = 0; seg < nr_segs; seg++) {
7218 addr = (unsigned long)iov[seg].iov_base;
7219 size = iov[seg].iov_len;
7220 end += size;
a1b75f7d 7221 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 7222 goto out;
a1b75f7d
JB
7223
7224 /* If this is a write we don't need to check anymore */
7225 if (rw & WRITE)
7226 continue;
7227
7228 /*
7229 * Check to make sure we don't have duplicate iov_base's in this
7230 * iovec, if so return EINVAL, otherwise we'll get csum errors
7231 * when reading back.
7232 */
7233 for (i = seg + 1; i < nr_segs; i++) {
7234 if (iov[seg].iov_base == iov[i].iov_base)
7235 goto out;
7236 }
5a5f79b5
CM
7237 }
7238 retval = 0;
7239out:
7240 return retval;
7241}
eb838e73 7242
16432985
CM
7243static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7244 const struct iovec *iov, loff_t offset,
7245 unsigned long nr_segs)
7246{
4b46fce2
JB
7247 struct file *file = iocb->ki_filp;
7248 struct inode *inode = file->f_mapping->host;
0934856d 7249 size_t count = 0;
2e60a51e 7250 int flags = 0;
38851cc1
MX
7251 bool wakeup = true;
7252 bool relock = false;
0934856d 7253 ssize_t ret;
4b46fce2 7254
5a5f79b5 7255 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 7256 offset, nr_segs))
5a5f79b5 7257 return 0;
3f7c579c 7258
38851cc1
MX
7259 atomic_inc(&inode->i_dio_count);
7260 smp_mb__after_atomic_inc();
7261
0e267c44
JB
7262 /*
7263 * The generic stuff only does filemap_write_and_wait_range, which isn't
7264 * enough if we've written compressed pages to this area, so we need to
7265 * call btrfs_wait_ordered_range to make absolutely sure that any
7266 * outstanding dirty pages are on disk.
7267 */
7268 count = iov_length(iov, nr_segs);
7269 btrfs_wait_ordered_range(inode, offset, count);
7270
0934856d 7271 if (rw & WRITE) {
38851cc1
MX
7272 /*
7273 * If the write DIO is beyond the EOF, we need update
7274 * the isize, but it is protected by i_mutex. So we can
7275 * not unlock the i_mutex at this case.
7276 */
7277 if (offset + count <= inode->i_size) {
7278 mutex_unlock(&inode->i_mutex);
7279 relock = true;
7280 }
0934856d
MX
7281 ret = btrfs_delalloc_reserve_space(inode, count);
7282 if (ret)
38851cc1
MX
7283 goto out;
7284 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7285 &BTRFS_I(inode)->runtime_flags))) {
7286 inode_dio_done(inode);
7287 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7288 wakeup = false;
0934856d
MX
7289 }
7290
7291 ret = __blockdev_direct_IO(rw, iocb, inode,
7292 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7293 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
2e60a51e 7294 btrfs_submit_direct, flags);
0934856d
MX
7295 if (rw & WRITE) {
7296 if (ret < 0 && ret != -EIOCBQUEUED)
7297 btrfs_delalloc_release_space(inode, count);
172a5049 7298 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7299 btrfs_delalloc_release_space(inode,
7300 count - (size_t)ret);
172a5049
MX
7301 else
7302 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7303 }
38851cc1 7304out:
2e60a51e
MX
7305 if (wakeup)
7306 inode_dio_done(inode);
38851cc1
MX
7307 if (relock)
7308 mutex_lock(&inode->i_mutex);
0934856d
MX
7309
7310 return ret;
16432985
CM
7311}
7312
05dadc09
TI
7313#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7314
1506fcc8
YS
7315static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7316 __u64 start, __u64 len)
7317{
05dadc09
TI
7318 int ret;
7319
7320 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7321 if (ret)
7322 return ret;
7323
ec29ed5b 7324 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7325}
7326
a52d9a80 7327int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7328{
d1310b2e
CM
7329 struct extent_io_tree *tree;
7330 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7331 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7332}
1832a6d5 7333
a52d9a80 7334static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7335{
d1310b2e 7336 struct extent_io_tree *tree;
b888db2b
CM
7337
7338
7339 if (current->flags & PF_MEMALLOC) {
7340 redirty_page_for_writepage(wbc, page);
7341 unlock_page(page);
7342 return 0;
7343 }
d1310b2e 7344 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7345 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7346}
7347
48a3b636
ES
7348static int btrfs_writepages(struct address_space *mapping,
7349 struct writeback_control *wbc)
b293f02e 7350{
d1310b2e 7351 struct extent_io_tree *tree;
771ed689 7352
d1310b2e 7353 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7354 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7355}
7356
3ab2fb5a
CM
7357static int
7358btrfs_readpages(struct file *file, struct address_space *mapping,
7359 struct list_head *pages, unsigned nr_pages)
7360{
d1310b2e
CM
7361 struct extent_io_tree *tree;
7362 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7363 return extent_readpages(tree, mapping, pages, nr_pages,
7364 btrfs_get_extent);
7365}
e6dcd2dc 7366static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7367{
d1310b2e
CM
7368 struct extent_io_tree *tree;
7369 struct extent_map_tree *map;
a52d9a80 7370 int ret;
8c2383c3 7371
d1310b2e
CM
7372 tree = &BTRFS_I(page->mapping->host)->io_tree;
7373 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7374 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7375 if (ret == 1) {
7376 ClearPagePrivate(page);
7377 set_page_private(page, 0);
7378 page_cache_release(page);
39279cc3 7379 }
a52d9a80 7380 return ret;
39279cc3
CM
7381}
7382
e6dcd2dc
CM
7383static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7384{
98509cfc
CM
7385 if (PageWriteback(page) || PageDirty(page))
7386 return 0;
b335b003 7387 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7388}
7389
d47992f8
LC
7390static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7391 unsigned int length)
39279cc3 7392{
5fd02043 7393 struct inode *inode = page->mapping->host;
d1310b2e 7394 struct extent_io_tree *tree;
e6dcd2dc 7395 struct btrfs_ordered_extent *ordered;
2ac55d41 7396 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7397 u64 page_start = page_offset(page);
7398 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 7399
8b62b72b
CM
7400 /*
7401 * we have the page locked, so new writeback can't start,
7402 * and the dirty bit won't be cleared while we are here.
7403 *
7404 * Wait for IO on this page so that we can safely clear
7405 * the PagePrivate2 bit and do ordered accounting
7406 */
e6dcd2dc 7407 wait_on_page_writeback(page);
8b62b72b 7408
5fd02043 7409 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7410 if (offset) {
7411 btrfs_releasepage(page, GFP_NOFS);
7412 return;
7413 }
d0082371 7414 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
4eee4fa4 7415 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
e6dcd2dc 7416 if (ordered) {
eb84ae03
CM
7417 /*
7418 * IO on this page will never be started, so we need
7419 * to account for any ordered extents now
7420 */
e6dcd2dc
CM
7421 clear_extent_bit(tree, page_start, page_end,
7422 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7423 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7424 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
7425 /*
7426 * whoever cleared the private bit is responsible
7427 * for the finish_ordered_io
7428 */
5fd02043
JB
7429 if (TestClearPagePrivate2(page) &&
7430 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
7431 PAGE_CACHE_SIZE, 1)) {
7432 btrfs_finish_ordered_io(ordered);
8b62b72b 7433 }
e6dcd2dc 7434 btrfs_put_ordered_extent(ordered);
2ac55d41 7435 cached_state = NULL;
d0082371 7436 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7437 }
7438 clear_extent_bit(tree, page_start, page_end,
32c00aff 7439 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7440 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7441 &cached_state, GFP_NOFS);
e6dcd2dc
CM
7442 __btrfs_releasepage(page, GFP_NOFS);
7443
4a096752 7444 ClearPageChecked(page);
9ad6b7bc 7445 if (PagePrivate(page)) {
9ad6b7bc
CM
7446 ClearPagePrivate(page);
7447 set_page_private(page, 0);
7448 page_cache_release(page);
7449 }
39279cc3
CM
7450}
7451
9ebefb18
CM
7452/*
7453 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7454 * called from a page fault handler when a page is first dirtied. Hence we must
7455 * be careful to check for EOF conditions here. We set the page up correctly
7456 * for a written page which means we get ENOSPC checking when writing into
7457 * holes and correct delalloc and unwritten extent mapping on filesystems that
7458 * support these features.
7459 *
7460 * We are not allowed to take the i_mutex here so we have to play games to
7461 * protect against truncate races as the page could now be beyond EOF. Because
7462 * vmtruncate() writes the inode size before removing pages, once we have the
7463 * page lock we can determine safely if the page is beyond EOF. If it is not
7464 * beyond EOF, then the page is guaranteed safe against truncation until we
7465 * unlock the page.
7466 */
c2ec175c 7467int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7468{
c2ec175c 7469 struct page *page = vmf->page;
496ad9aa 7470 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7471 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7472 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7473 struct btrfs_ordered_extent *ordered;
2ac55d41 7474 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7475 char *kaddr;
7476 unsigned long zero_start;
9ebefb18 7477 loff_t size;
1832a6d5 7478 int ret;
9998eb70 7479 int reserved = 0;
a52d9a80 7480 u64 page_start;
e6dcd2dc 7481 u64 page_end;
9ebefb18 7482
b2b5ef5c 7483 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7484 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7485 if (!ret) {
e41f941a 7486 ret = file_update_time(vma->vm_file);
9998eb70
CM
7487 reserved = 1;
7488 }
56a76f82
NP
7489 if (ret) {
7490 if (ret == -ENOMEM)
7491 ret = VM_FAULT_OOM;
7492 else /* -ENOSPC, -EIO, etc */
7493 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7494 if (reserved)
7495 goto out;
7496 goto out_noreserve;
56a76f82 7497 }
1832a6d5 7498
56a76f82 7499 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7500again:
9ebefb18 7501 lock_page(page);
9ebefb18 7502 size = i_size_read(inode);
e6dcd2dc
CM
7503 page_start = page_offset(page);
7504 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7505
9ebefb18 7506 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7507 (page_start >= size)) {
9ebefb18
CM
7508 /* page got truncated out from underneath us */
7509 goto out_unlock;
7510 }
e6dcd2dc
CM
7511 wait_on_page_writeback(page);
7512
d0082371 7513 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7514 set_page_extent_mapped(page);
7515
eb84ae03
CM
7516 /*
7517 * we can't set the delalloc bits if there are pending ordered
7518 * extents. Drop our locks and wait for them to finish
7519 */
e6dcd2dc
CM
7520 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7521 if (ordered) {
2ac55d41
JB
7522 unlock_extent_cached(io_tree, page_start, page_end,
7523 &cached_state, GFP_NOFS);
e6dcd2dc 7524 unlock_page(page);
eb84ae03 7525 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7526 btrfs_put_ordered_extent(ordered);
7527 goto again;
7528 }
7529
fbf19087
JB
7530 /*
7531 * XXX - page_mkwrite gets called every time the page is dirtied, even
7532 * if it was already dirty, so for space accounting reasons we need to
7533 * clear any delalloc bits for the range we are fixing to save. There
7534 * is probably a better way to do this, but for now keep consistent with
7535 * prepare_pages in the normal write path.
7536 */
2ac55d41 7537 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7538 EXTENT_DIRTY | EXTENT_DELALLOC |
7539 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7540 0, 0, &cached_state, GFP_NOFS);
fbf19087 7541
2ac55d41
JB
7542 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7543 &cached_state);
9ed74f2d 7544 if (ret) {
2ac55d41
JB
7545 unlock_extent_cached(io_tree, page_start, page_end,
7546 &cached_state, GFP_NOFS);
9ed74f2d
JB
7547 ret = VM_FAULT_SIGBUS;
7548 goto out_unlock;
7549 }
e6dcd2dc 7550 ret = 0;
9ebefb18
CM
7551
7552 /* page is wholly or partially inside EOF */
a52d9a80 7553 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7554 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7555 else
e6dcd2dc 7556 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7557
e6dcd2dc
CM
7558 if (zero_start != PAGE_CACHE_SIZE) {
7559 kaddr = kmap(page);
7560 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7561 flush_dcache_page(page);
7562 kunmap(page);
7563 }
247e743c 7564 ClearPageChecked(page);
e6dcd2dc 7565 set_page_dirty(page);
50a9b214 7566 SetPageUptodate(page);
5a3f23d5 7567
257c62e1
CM
7568 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7569 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7570 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7571
2ac55d41 7572 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7573
7574out_unlock:
b2b5ef5c
JK
7575 if (!ret) {
7576 sb_end_pagefault(inode->i_sb);
50a9b214 7577 return VM_FAULT_LOCKED;
b2b5ef5c 7578 }
9ebefb18 7579 unlock_page(page);
1832a6d5 7580out:
ec39e180 7581 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7582out_noreserve:
b2b5ef5c 7583 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7584 return ret;
7585}
7586
a41ad394 7587static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7588{
7589 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7590 struct btrfs_block_rsv *rsv;
a71754fc 7591 int ret = 0;
3893e33b 7592 int err = 0;
39279cc3 7593 struct btrfs_trans_handle *trans;
dbe674a9 7594 u64 mask = root->sectorsize - 1;
07127184 7595 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7596
4a096752 7597 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 7598 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 7599
fcb80c2a
JB
7600 /*
7601 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7602 * 3 things going on here
7603 *
7604 * 1) We need to reserve space for our orphan item and the space to
7605 * delete our orphan item. Lord knows we don't want to have a dangling
7606 * orphan item because we didn't reserve space to remove it.
7607 *
7608 * 2) We need to reserve space to update our inode.
7609 *
7610 * 3) We need to have something to cache all the space that is going to
7611 * be free'd up by the truncate operation, but also have some slack
7612 * space reserved in case it uses space during the truncate (thank you
7613 * very much snapshotting).
7614 *
7615 * And we need these to all be seperate. The fact is we can use alot of
7616 * space doing the truncate, and we have no earthly idea how much space
7617 * we will use, so we need the truncate reservation to be seperate so it
7618 * doesn't end up using space reserved for updating the inode or
7619 * removing the orphan item. We also need to be able to stop the
7620 * transaction and start a new one, which means we need to be able to
7621 * update the inode several times, and we have no idea of knowing how
7622 * many times that will be, so we can't just reserve 1 item for the
7623 * entirety of the opration, so that has to be done seperately as well.
7624 * Then there is the orphan item, which does indeed need to be held on
7625 * to for the whole operation, and we need nobody to touch this reserved
7626 * space except the orphan code.
7627 *
7628 * So that leaves us with
7629 *
7630 * 1) root->orphan_block_rsv - for the orphan deletion.
7631 * 2) rsv - for the truncate reservation, which we will steal from the
7632 * transaction reservation.
7633 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7634 * updating the inode.
7635 */
66d8f3dd 7636 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7637 if (!rsv)
7638 return -ENOMEM;
4a338542 7639 rsv->size = min_size;
ca7e70f5 7640 rsv->failfast = 1;
f0cd846e 7641
907cbceb 7642 /*
07127184 7643 * 1 for the truncate slack space
907cbceb
JB
7644 * 1 for updating the inode.
7645 */
f3fe820c 7646 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7647 if (IS_ERR(trans)) {
7648 err = PTR_ERR(trans);
7649 goto out;
7650 }
f0cd846e 7651
907cbceb
JB
7652 /* Migrate the slack space for the truncate to our reserve */
7653 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7654 min_size);
fcb80c2a 7655 BUG_ON(ret);
f0cd846e 7656
5a3f23d5
CM
7657 /*
7658 * setattr is responsible for setting the ordered_data_close flag,
7659 * but that is only tested during the last file release. That
7660 * could happen well after the next commit, leaving a great big
7661 * window where new writes may get lost if someone chooses to write
7662 * to this file after truncating to zero
7663 *
7664 * The inode doesn't have any dirty data here, and so if we commit
7665 * this is a noop. If someone immediately starts writing to the inode
7666 * it is very likely we'll catch some of their writes in this
7667 * transaction, and the commit will find this file on the ordered
7668 * data list with good things to send down.
7669 *
7670 * This is a best effort solution, there is still a window where
7671 * using truncate to replace the contents of the file will
7672 * end up with a zero length file after a crash.
7673 */
72ac3c0d
JB
7674 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7675 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7676 btrfs_add_ordered_operation(trans, root, inode);
7677
5dc562c5
JB
7678 /*
7679 * So if we truncate and then write and fsync we normally would just
7680 * write the extents that changed, which is a problem if we need to
7681 * first truncate that entire inode. So set this flag so we write out
7682 * all of the extents in the inode to the sync log so we're completely
7683 * safe.
7684 */
7685 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7686 trans->block_rsv = rsv;
907cbceb 7687
8082510e
YZ
7688 while (1) {
7689 ret = btrfs_truncate_inode_items(trans, root, inode,
7690 inode->i_size,
7691 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7692 if (ret != -ENOSPC) {
3893e33b 7693 err = ret;
8082510e 7694 break;
3893e33b 7695 }
39279cc3 7696
fcb80c2a 7697 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7698 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7699 if (ret) {
7700 err = ret;
7701 break;
7702 }
ca7e70f5 7703
8082510e 7704 btrfs_end_transaction(trans, root);
b53d3f5d 7705 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7706
7707 trans = btrfs_start_transaction(root, 2);
7708 if (IS_ERR(trans)) {
7709 ret = err = PTR_ERR(trans);
7710 trans = NULL;
7711 break;
7712 }
7713
7714 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7715 rsv, min_size);
7716 BUG_ON(ret); /* shouldn't happen */
7717 trans->block_rsv = rsv;
8082510e
YZ
7718 }
7719
7720 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7721 trans->block_rsv = root->orphan_block_rsv;
8082510e 7722 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7723 if (ret)
7724 err = ret;
8082510e
YZ
7725 }
7726
917c16b2
CM
7727 if (trans) {
7728 trans->block_rsv = &root->fs_info->trans_block_rsv;
7729 ret = btrfs_update_inode(trans, root, inode);
7730 if (ret && !err)
7731 err = ret;
7b128766 7732
7ad85bb7 7733 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7734 btrfs_btree_balance_dirty(root);
917c16b2 7735 }
fcb80c2a
JB
7736
7737out:
7738 btrfs_free_block_rsv(root, rsv);
7739
3893e33b
JB
7740 if (ret && !err)
7741 err = ret;
a41ad394 7742
3893e33b 7743 return err;
39279cc3
CM
7744}
7745
d352ac68
CM
7746/*
7747 * create a new subvolume directory/inode (helper for the ioctl).
7748 */
d2fb3437 7749int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7750 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7751{
39279cc3 7752 struct inode *inode;
76dda93c 7753 int err;
00e4e6b3 7754 u64 index = 0;
39279cc3 7755
12fc9d09
FA
7756 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7757 new_dirid, new_dirid,
7758 S_IFDIR | (~current_umask() & S_IRWXUGO),
7759 &index);
54aa1f4d 7760 if (IS_ERR(inode))
f46b5a66 7761 return PTR_ERR(inode);
39279cc3
CM
7762 inode->i_op = &btrfs_dir_inode_operations;
7763 inode->i_fop = &btrfs_dir_file_operations;
7764
bfe86848 7765 set_nlink(inode, 1);
dbe674a9 7766 btrfs_i_size_write(inode, 0);
3b96362c 7767
76dda93c 7768 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7769
76dda93c 7770 iput(inode);
ce598979 7771 return err;
39279cc3
CM
7772}
7773
39279cc3
CM
7774struct inode *btrfs_alloc_inode(struct super_block *sb)
7775{
7776 struct btrfs_inode *ei;
2ead6ae7 7777 struct inode *inode;
39279cc3
CM
7778
7779 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7780 if (!ei)
7781 return NULL;
2ead6ae7
YZ
7782
7783 ei->root = NULL;
2ead6ae7 7784 ei->generation = 0;
15ee9bc7 7785 ei->last_trans = 0;
257c62e1 7786 ei->last_sub_trans = 0;
e02119d5 7787 ei->logged_trans = 0;
2ead6ae7 7788 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7789 ei->disk_i_size = 0;
7790 ei->flags = 0;
7709cde3 7791 ei->csum_bytes = 0;
2ead6ae7
YZ
7792 ei->index_cnt = (u64)-1;
7793 ei->last_unlink_trans = 0;
46d8bc34 7794 ei->last_log_commit = 0;
2ead6ae7 7795
9e0baf60
JB
7796 spin_lock_init(&ei->lock);
7797 ei->outstanding_extents = 0;
7798 ei->reserved_extents = 0;
2ead6ae7 7799
72ac3c0d 7800 ei->runtime_flags = 0;
261507a0 7801 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7802
16cdcec7
MX
7803 ei->delayed_node = NULL;
7804
2ead6ae7 7805 inode = &ei->vfs_inode;
a8067e02 7806 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7807 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7808 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7809 ei->io_tree.track_uptodate = 1;
7810 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7811 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7812 mutex_init(&ei->log_mutex);
f248679e 7813 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7814 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7815 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7816 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7817 RB_CLEAR_NODE(&ei->rb_node);
7818
7819 return inode;
39279cc3
CM
7820}
7821
fa0d7e3d
NP
7822static void btrfs_i_callback(struct rcu_head *head)
7823{
7824 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7825 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7826}
7827
39279cc3
CM
7828void btrfs_destroy_inode(struct inode *inode)
7829{
e6dcd2dc 7830 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7831 struct btrfs_root *root = BTRFS_I(inode)->root;
7832
b3d9b7a3 7833 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7834 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7835 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7836 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7837 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7838 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7839
a6dbd429
JB
7840 /*
7841 * This can happen where we create an inode, but somebody else also
7842 * created the same inode and we need to destroy the one we already
7843 * created.
7844 */
7845 if (!root)
7846 goto free;
7847
5a3f23d5
CM
7848 /*
7849 * Make sure we're properly removed from the ordered operation
7850 * lists.
7851 */
7852 smp_mb();
7853 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
199c2a9c 7854 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 7855 list_del_init(&BTRFS_I(inode)->ordered_operations);
199c2a9c 7856 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
7857 }
7858
8a35d95f
JB
7859 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7860 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb
SK
7861 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7862 (unsigned long long)btrfs_ino(inode));
8a35d95f 7863 atomic_dec(&root->orphan_inodes);
7b128766 7864 }
7b128766 7865
d397712b 7866 while (1) {
e6dcd2dc
CM
7867 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7868 if (!ordered)
7869 break;
7870 else {
c2cf52eb
SK
7871 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
7872 (unsigned long long)ordered->file_offset,
7873 (unsigned long long)ordered->len);
e6dcd2dc
CM
7874 btrfs_remove_ordered_extent(inode, ordered);
7875 btrfs_put_ordered_extent(ordered);
7876 btrfs_put_ordered_extent(ordered);
7877 }
7878 }
5d4f98a2 7879 inode_tree_del(inode);
5b21f2ed 7880 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7881free:
fa0d7e3d 7882 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7883}
7884
45321ac5 7885int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7886{
7887 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7888
6379ef9f
NA
7889 if (root == NULL)
7890 return 1;
7891
fa6ac876 7892 /* the snap/subvol tree is on deleting */
0af3d00b 7893 if (btrfs_root_refs(&root->root_item) == 0 &&
fa6ac876 7894 root != root->fs_info->tree_root)
45321ac5 7895 return 1;
76dda93c 7896 else
45321ac5 7897 return generic_drop_inode(inode);
76dda93c
YZ
7898}
7899
0ee0fda0 7900static void init_once(void *foo)
39279cc3
CM
7901{
7902 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7903
7904 inode_init_once(&ei->vfs_inode);
7905}
7906
7907void btrfs_destroy_cachep(void)
7908{
8c0a8537
KS
7909 /*
7910 * Make sure all delayed rcu free inodes are flushed before we
7911 * destroy cache.
7912 */
7913 rcu_barrier();
39279cc3
CM
7914 if (btrfs_inode_cachep)
7915 kmem_cache_destroy(btrfs_inode_cachep);
7916 if (btrfs_trans_handle_cachep)
7917 kmem_cache_destroy(btrfs_trans_handle_cachep);
7918 if (btrfs_transaction_cachep)
7919 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7920 if (btrfs_path_cachep)
7921 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7922 if (btrfs_free_space_cachep)
7923 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7924 if (btrfs_delalloc_work_cachep)
7925 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
7926}
7927
7928int btrfs_init_cachep(void)
7929{
837e1972 7930 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
7931 sizeof(struct btrfs_inode), 0,
7932 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7933 if (!btrfs_inode_cachep)
7934 goto fail;
9601e3f6 7935
837e1972 7936 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
7937 sizeof(struct btrfs_trans_handle), 0,
7938 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7939 if (!btrfs_trans_handle_cachep)
7940 goto fail;
9601e3f6 7941
837e1972 7942 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
7943 sizeof(struct btrfs_transaction), 0,
7944 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7945 if (!btrfs_transaction_cachep)
7946 goto fail;
9601e3f6 7947
837e1972 7948 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
7949 sizeof(struct btrfs_path), 0,
7950 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7951 if (!btrfs_path_cachep)
7952 goto fail;
9601e3f6 7953
837e1972 7954 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
7955 sizeof(struct btrfs_free_space), 0,
7956 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7957 if (!btrfs_free_space_cachep)
7958 goto fail;
7959
8ccf6f19
MX
7960 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7961 sizeof(struct btrfs_delalloc_work), 0,
7962 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7963 NULL);
7964 if (!btrfs_delalloc_work_cachep)
7965 goto fail;
7966
39279cc3
CM
7967 return 0;
7968fail:
7969 btrfs_destroy_cachep();
7970 return -ENOMEM;
7971}
7972
7973static int btrfs_getattr(struct vfsmount *mnt,
7974 struct dentry *dentry, struct kstat *stat)
7975{
df0af1a5 7976 u64 delalloc_bytes;
39279cc3 7977 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7978 u32 blocksize = inode->i_sb->s_blocksize;
7979
39279cc3 7980 generic_fillattr(inode, stat);
0ee5dc67 7981 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7982 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
7983
7984 spin_lock(&BTRFS_I(inode)->lock);
7985 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
7986 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 7987 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 7988 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7989 return 0;
7990}
7991
d397712b
CM
7992static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7993 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7994{
7995 struct btrfs_trans_handle *trans;
7996 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7997 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7998 struct inode *new_inode = new_dentry->d_inode;
7999 struct inode *old_inode = old_dentry->d_inode;
8000 struct timespec ctime = CURRENT_TIME;
00e4e6b3 8001 u64 index = 0;
4df27c4d 8002 u64 root_objectid;
39279cc3 8003 int ret;
33345d01 8004 u64 old_ino = btrfs_ino(old_inode);
39279cc3 8005
33345d01 8006 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8007 return -EPERM;
8008
4df27c4d 8009 /* we only allow rename subvolume link between subvolumes */
33345d01 8010 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8011 return -EXDEV;
8012
33345d01
LZ
8013 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8014 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8015 return -ENOTEMPTY;
5f39d397 8016
4df27c4d
YZ
8017 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8018 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8019 return -ENOTEMPTY;
9c52057c
CM
8020
8021
8022 /* check for collisions, even if the name isn't there */
8023 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
8024 new_dentry->d_name.name,
8025 new_dentry->d_name.len);
8026
8027 if (ret) {
8028 if (ret == -EEXIST) {
8029 /* we shouldn't get
8030 * eexist without a new_inode */
8031 if (!new_inode) {
8032 WARN_ON(1);
8033 return ret;
8034 }
8035 } else {
8036 /* maybe -EOVERFLOW */
8037 return ret;
8038 }
8039 }
8040 ret = 0;
8041
5a3f23d5
CM
8042 /*
8043 * we're using rename to replace one file with another.
8044 * and the replacement file is large. Start IO on it now so
8045 * we don't add too much work to the end of the transaction
8046 */
4baf8c92 8047 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
8048 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8049 filemap_flush(old_inode->i_mapping);
8050
76dda93c 8051 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8052 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8053 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8054 /*
8055 * We want to reserve the absolute worst case amount of items. So if
8056 * both inodes are subvols and we need to unlink them then that would
8057 * require 4 item modifications, but if they are both normal inodes it
8058 * would require 5 item modifications, so we'll assume their normal
8059 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8060 * should cover the worst case number of items we'll modify.
8061 */
6e137ed3 8062 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8063 if (IS_ERR(trans)) {
8064 ret = PTR_ERR(trans);
8065 goto out_notrans;
8066 }
76dda93c 8067
4df27c4d
YZ
8068 if (dest != root)
8069 btrfs_record_root_in_trans(trans, dest);
5f39d397 8070
a5719521
YZ
8071 ret = btrfs_set_inode_index(new_dir, &index);
8072 if (ret)
8073 goto out_fail;
5a3f23d5 8074
33345d01 8075 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8076 /* force full log commit if subvolume involved. */
8077 root->fs_info->last_trans_log_full_commit = trans->transid;
8078 } else {
a5719521
YZ
8079 ret = btrfs_insert_inode_ref(trans, dest,
8080 new_dentry->d_name.name,
8081 new_dentry->d_name.len,
33345d01
LZ
8082 old_ino,
8083 btrfs_ino(new_dir), index);
a5719521
YZ
8084 if (ret)
8085 goto out_fail;
4df27c4d
YZ
8086 /*
8087 * this is an ugly little race, but the rename is required
8088 * to make sure that if we crash, the inode is either at the
8089 * old name or the new one. pinning the log transaction lets
8090 * us make sure we don't allow a log commit to come in after
8091 * we unlink the name but before we add the new name back in.
8092 */
8093 btrfs_pin_log_trans(root);
8094 }
5a3f23d5
CM
8095 /*
8096 * make sure the inode gets flushed if it is replacing
8097 * something.
8098 */
33345d01 8099 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 8100 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 8101
0c4d2d95
JB
8102 inode_inc_iversion(old_dir);
8103 inode_inc_iversion(new_dir);
8104 inode_inc_iversion(old_inode);
39279cc3
CM
8105 old_dir->i_ctime = old_dir->i_mtime = ctime;
8106 new_dir->i_ctime = new_dir->i_mtime = ctime;
8107 old_inode->i_ctime = ctime;
5f39d397 8108
12fcfd22
CM
8109 if (old_dentry->d_parent != new_dentry->d_parent)
8110 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8111
33345d01 8112 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8113 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8114 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8115 old_dentry->d_name.name,
8116 old_dentry->d_name.len);
8117 } else {
92986796
AV
8118 ret = __btrfs_unlink_inode(trans, root, old_dir,
8119 old_dentry->d_inode,
8120 old_dentry->d_name.name,
8121 old_dentry->d_name.len);
8122 if (!ret)
8123 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8124 }
79787eaa
JM
8125 if (ret) {
8126 btrfs_abort_transaction(trans, root, ret);
8127 goto out_fail;
8128 }
39279cc3
CM
8129
8130 if (new_inode) {
0c4d2d95 8131 inode_inc_iversion(new_inode);
39279cc3 8132 new_inode->i_ctime = CURRENT_TIME;
33345d01 8133 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8134 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8135 root_objectid = BTRFS_I(new_inode)->location.objectid;
8136 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8137 root_objectid,
8138 new_dentry->d_name.name,
8139 new_dentry->d_name.len);
8140 BUG_ON(new_inode->i_nlink == 0);
8141 } else {
8142 ret = btrfs_unlink_inode(trans, dest, new_dir,
8143 new_dentry->d_inode,
8144 new_dentry->d_name.name,
8145 new_dentry->d_name.len);
8146 }
79787eaa 8147 if (!ret && new_inode->i_nlink == 0) {
e02119d5 8148 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 8149 BUG_ON(ret);
7b128766 8150 }
79787eaa
JM
8151 if (ret) {
8152 btrfs_abort_transaction(trans, root, ret);
8153 goto out_fail;
8154 }
39279cc3 8155 }
aec7477b 8156
4df27c4d
YZ
8157 ret = btrfs_add_link(trans, new_dir, old_inode,
8158 new_dentry->d_name.name,
a5719521 8159 new_dentry->d_name.len, 0, index);
79787eaa
JM
8160 if (ret) {
8161 btrfs_abort_transaction(trans, root, ret);
8162 goto out_fail;
8163 }
39279cc3 8164
33345d01 8165 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8166 struct dentry *parent = new_dentry->d_parent;
6a912213 8167 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8168 btrfs_end_log_trans(root);
8169 }
39279cc3 8170out_fail:
7ad85bb7 8171 btrfs_end_transaction(trans, root);
b44c59a8 8172out_notrans:
33345d01 8173 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8174 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8175
39279cc3
CM
8176 return ret;
8177}
8178
8ccf6f19
MX
8179static void btrfs_run_delalloc_work(struct btrfs_work *work)
8180{
8181 struct btrfs_delalloc_work *delalloc_work;
8182
8183 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8184 work);
8185 if (delalloc_work->wait)
8186 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8187 else
8188 filemap_flush(delalloc_work->inode->i_mapping);
8189
8190 if (delalloc_work->delay_iput)
8191 btrfs_add_delayed_iput(delalloc_work->inode);
8192 else
8193 iput(delalloc_work->inode);
8194 complete(&delalloc_work->completion);
8195}
8196
8197struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8198 int wait, int delay_iput)
8199{
8200 struct btrfs_delalloc_work *work;
8201
8202 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8203 if (!work)
8204 return NULL;
8205
8206 init_completion(&work->completion);
8207 INIT_LIST_HEAD(&work->list);
8208 work->inode = inode;
8209 work->wait = wait;
8210 work->delay_iput = delay_iput;
8211 work->work.func = btrfs_run_delalloc_work;
8212
8213 return work;
8214}
8215
8216void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8217{
8218 wait_for_completion(&work->completion);
8219 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8220}
8221
d352ac68
CM
8222/*
8223 * some fairly slow code that needs optimization. This walks the list
8224 * of all the inodes with pending delalloc and forces them to disk.
8225 */
eb73c1b7 8226static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 8227{
ea8c2819 8228 struct btrfs_inode *binode;
5b21f2ed 8229 struct inode *inode;
8ccf6f19
MX
8230 struct btrfs_delalloc_work *work, *next;
8231 struct list_head works;
1eafa6c7 8232 struct list_head splice;
8ccf6f19 8233 int ret = 0;
ea8c2819 8234
8ccf6f19 8235 INIT_LIST_HEAD(&works);
1eafa6c7 8236 INIT_LIST_HEAD(&splice);
63607cc8 8237
eb73c1b7
MX
8238 spin_lock(&root->delalloc_lock);
8239 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8240 while (!list_empty(&splice)) {
8241 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8242 delalloc_inodes);
1eafa6c7 8243
eb73c1b7
MX
8244 list_move_tail(&binode->delalloc_inodes,
8245 &root->delalloc_inodes);
5b21f2ed 8246 inode = igrab(&binode->vfs_inode);
df0af1a5 8247 if (!inode) {
eb73c1b7 8248 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8249 continue;
df0af1a5 8250 }
eb73c1b7 8251 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8252
8253 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8254 if (unlikely(!work)) {
8255 ret = -ENOMEM;
8256 goto out;
5b21f2ed 8257 }
1eafa6c7
MX
8258 list_add_tail(&work->list, &works);
8259 btrfs_queue_worker(&root->fs_info->flush_workers,
8260 &work->work);
8261
5b21f2ed 8262 cond_resched();
eb73c1b7 8263 spin_lock(&root->delalloc_lock);
ea8c2819 8264 }
eb73c1b7 8265 spin_unlock(&root->delalloc_lock);
8c8bee1d 8266
1eafa6c7
MX
8267 list_for_each_entry_safe(work, next, &works, list) {
8268 list_del_init(&work->list);
8269 btrfs_wait_and_free_delalloc_work(work);
8270 }
eb73c1b7
MX
8271 return 0;
8272out:
8273 list_for_each_entry_safe(work, next, &works, list) {
8274 list_del_init(&work->list);
8275 btrfs_wait_and_free_delalloc_work(work);
8276 }
8277
8278 if (!list_empty_careful(&splice)) {
8279 spin_lock(&root->delalloc_lock);
8280 list_splice_tail(&splice, &root->delalloc_inodes);
8281 spin_unlock(&root->delalloc_lock);
8282 }
8283 return ret;
8284}
1eafa6c7 8285
eb73c1b7
MX
8286int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8287{
8288 int ret;
1eafa6c7 8289
eb73c1b7
MX
8290 if (root->fs_info->sb->s_flags & MS_RDONLY)
8291 return -EROFS;
8292
8293 ret = __start_delalloc_inodes(root, delay_iput);
8294 /*
8295 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
8296 * we have to make sure the IO is actually started and that
8297 * ordered extents get created before we return
8298 */
8299 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8300 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8301 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8302 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8303 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8304 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8305 }
8306 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
8307 return ret;
8308}
8309
8310int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info,
8311 int delay_iput)
8312{
8313 struct btrfs_root *root;
8314 struct list_head splice;
8315 int ret;
8316
8317 if (fs_info->sb->s_flags & MS_RDONLY)
8318 return -EROFS;
8319
8320 INIT_LIST_HEAD(&splice);
8321
8322 spin_lock(&fs_info->delalloc_root_lock);
8323 list_splice_init(&fs_info->delalloc_roots, &splice);
8324 while (!list_empty(&splice)) {
8325 root = list_first_entry(&splice, struct btrfs_root,
8326 delalloc_root);
8327 root = btrfs_grab_fs_root(root);
8328 BUG_ON(!root);
8329 list_move_tail(&root->delalloc_root,
8330 &fs_info->delalloc_roots);
8331 spin_unlock(&fs_info->delalloc_root_lock);
8332
8333 ret = __start_delalloc_inodes(root, delay_iput);
8334 btrfs_put_fs_root(root);
8335 if (ret)
8336 goto out;
8337
8338 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 8339 }
eb73c1b7 8340 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8341
eb73c1b7
MX
8342 atomic_inc(&fs_info->async_submit_draining);
8343 while (atomic_read(&fs_info->nr_async_submits) ||
8344 atomic_read(&fs_info->async_delalloc_pages)) {
8345 wait_event(fs_info->async_submit_wait,
8346 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8347 atomic_read(&fs_info->async_delalloc_pages) == 0));
8348 }
8349 atomic_dec(&fs_info->async_submit_draining);
8350 return 0;
8351out:
1eafa6c7 8352 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
8353 spin_lock(&fs_info->delalloc_root_lock);
8354 list_splice_tail(&splice, &fs_info->delalloc_roots);
8355 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8356 }
8ccf6f19 8357 return ret;
ea8c2819
CM
8358}
8359
39279cc3
CM
8360static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8361 const char *symname)
8362{
8363 struct btrfs_trans_handle *trans;
8364 struct btrfs_root *root = BTRFS_I(dir)->root;
8365 struct btrfs_path *path;
8366 struct btrfs_key key;
1832a6d5 8367 struct inode *inode = NULL;
39279cc3
CM
8368 int err;
8369 int drop_inode = 0;
8370 u64 objectid;
00e4e6b3 8371 u64 index = 0 ;
39279cc3
CM
8372 int name_len;
8373 int datasize;
5f39d397 8374 unsigned long ptr;
39279cc3 8375 struct btrfs_file_extent_item *ei;
5f39d397 8376 struct extent_buffer *leaf;
39279cc3
CM
8377
8378 name_len = strlen(symname) + 1;
8379 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8380 return -ENAMETOOLONG;
1832a6d5 8381
9ed74f2d
JB
8382 /*
8383 * 2 items for inode item and ref
8384 * 2 items for dir items
8385 * 1 item for xattr if selinux is on
8386 */
a22285a6
YZ
8387 trans = btrfs_start_transaction(root, 5);
8388 if (IS_ERR(trans))
8389 return PTR_ERR(trans);
1832a6d5 8390
581bb050
LZ
8391 err = btrfs_find_free_ino(root, &objectid);
8392 if (err)
8393 goto out_unlock;
8394
aec7477b 8395 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8396 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8397 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8398 if (IS_ERR(inode)) {
8399 err = PTR_ERR(inode);
39279cc3 8400 goto out_unlock;
7cf96da3 8401 }
39279cc3 8402
2a7dba39 8403 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8404 if (err) {
8405 drop_inode = 1;
8406 goto out_unlock;
8407 }
8408
ad19db71
CS
8409 /*
8410 * If the active LSM wants to access the inode during
8411 * d_instantiate it needs these. Smack checks to see
8412 * if the filesystem supports xattrs by looking at the
8413 * ops vector.
8414 */
8415 inode->i_fop = &btrfs_file_operations;
8416 inode->i_op = &btrfs_file_inode_operations;
8417
a1b075d2 8418 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8419 if (err)
8420 drop_inode = 1;
8421 else {
8422 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8423 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8424 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8425 }
39279cc3
CM
8426 if (drop_inode)
8427 goto out_unlock;
8428
8429 path = btrfs_alloc_path();
d8926bb3
MF
8430 if (!path) {
8431 err = -ENOMEM;
8432 drop_inode = 1;
8433 goto out_unlock;
8434 }
33345d01 8435 key.objectid = btrfs_ino(inode);
39279cc3 8436 key.offset = 0;
39279cc3
CM
8437 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8438 datasize = btrfs_file_extent_calc_inline_size(name_len);
8439 err = btrfs_insert_empty_item(trans, root, path, &key,
8440 datasize);
54aa1f4d
CM
8441 if (err) {
8442 drop_inode = 1;
b0839166 8443 btrfs_free_path(path);
54aa1f4d
CM
8444 goto out_unlock;
8445 }
5f39d397
CM
8446 leaf = path->nodes[0];
8447 ei = btrfs_item_ptr(leaf, path->slots[0],
8448 struct btrfs_file_extent_item);
8449 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8450 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8451 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8452 btrfs_set_file_extent_encryption(leaf, ei, 0);
8453 btrfs_set_file_extent_compression(leaf, ei, 0);
8454 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8455 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8456
39279cc3 8457 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8458 write_extent_buffer(leaf, symname, ptr, name_len);
8459 btrfs_mark_buffer_dirty(leaf);
39279cc3 8460 btrfs_free_path(path);
5f39d397 8461
39279cc3
CM
8462 inode->i_op = &btrfs_symlink_inode_operations;
8463 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8464 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8465 inode_set_bytes(inode, name_len);
dbe674a9 8466 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
8467 err = btrfs_update_inode(trans, root, inode);
8468 if (err)
8469 drop_inode = 1;
39279cc3
CM
8470
8471out_unlock:
08c422c2
AV
8472 if (!err)
8473 d_instantiate(dentry, inode);
7ad85bb7 8474 btrfs_end_transaction(trans, root);
39279cc3
CM
8475 if (drop_inode) {
8476 inode_dec_link_count(inode);
8477 iput(inode);
8478 }
b53d3f5d 8479 btrfs_btree_balance_dirty(root);
39279cc3
CM
8480 return err;
8481}
16432985 8482
0af3d00b
JB
8483static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8484 u64 start, u64 num_bytes, u64 min_size,
8485 loff_t actual_len, u64 *alloc_hint,
8486 struct btrfs_trans_handle *trans)
d899e052 8487{
5dc562c5
JB
8488 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8489 struct extent_map *em;
d899e052
YZ
8490 struct btrfs_root *root = BTRFS_I(inode)->root;
8491 struct btrfs_key ins;
d899e052 8492 u64 cur_offset = start;
55a61d1d 8493 u64 i_size;
154ea289 8494 u64 cur_bytes;
d899e052 8495 int ret = 0;
0af3d00b 8496 bool own_trans = true;
d899e052 8497
0af3d00b
JB
8498 if (trans)
8499 own_trans = false;
d899e052 8500 while (num_bytes > 0) {
0af3d00b
JB
8501 if (own_trans) {
8502 trans = btrfs_start_transaction(root, 3);
8503 if (IS_ERR(trans)) {
8504 ret = PTR_ERR(trans);
8505 break;
8506 }
5a303d5d
YZ
8507 }
8508
154ea289
CM
8509 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8510 cur_bytes = max(cur_bytes, min_size);
8511 ret = btrfs_reserve_extent(trans, root, cur_bytes,
24542bf7 8512 min_size, 0, *alloc_hint, &ins, 1);
5a303d5d 8513 if (ret) {
0af3d00b
JB
8514 if (own_trans)
8515 btrfs_end_transaction(trans, root);
a22285a6 8516 break;
d899e052 8517 }
5a303d5d 8518
d899e052
YZ
8519 ret = insert_reserved_file_extent(trans, inode,
8520 cur_offset, ins.objectid,
8521 ins.offset, ins.offset,
920bbbfb 8522 ins.offset, 0, 0, 0,
d899e052 8523 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
8524 if (ret) {
8525 btrfs_abort_transaction(trans, root, ret);
8526 if (own_trans)
8527 btrfs_end_transaction(trans, root);
8528 break;
8529 }
a1ed835e
CM
8530 btrfs_drop_extent_cache(inode, cur_offset,
8531 cur_offset + ins.offset -1, 0);
5a303d5d 8532
5dc562c5
JB
8533 em = alloc_extent_map();
8534 if (!em) {
8535 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8536 &BTRFS_I(inode)->runtime_flags);
8537 goto next;
8538 }
8539
8540 em->start = cur_offset;
8541 em->orig_start = cur_offset;
8542 em->len = ins.offset;
8543 em->block_start = ins.objectid;
8544 em->block_len = ins.offset;
b4939680 8545 em->orig_block_len = ins.offset;
cc95bef6 8546 em->ram_bytes = ins.offset;
5dc562c5
JB
8547 em->bdev = root->fs_info->fs_devices->latest_bdev;
8548 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8549 em->generation = trans->transid;
8550
8551 while (1) {
8552 write_lock(&em_tree->lock);
09a2a8f9 8553 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8554 write_unlock(&em_tree->lock);
8555 if (ret != -EEXIST)
8556 break;
8557 btrfs_drop_extent_cache(inode, cur_offset,
8558 cur_offset + ins.offset - 1,
8559 0);
8560 }
8561 free_extent_map(em);
8562next:
d899e052
YZ
8563 num_bytes -= ins.offset;
8564 cur_offset += ins.offset;
efa56464 8565 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8566
0c4d2d95 8567 inode_inc_iversion(inode);
d899e052 8568 inode->i_ctime = CURRENT_TIME;
6cbff00f 8569 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8570 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8571 (actual_len > inode->i_size) &&
8572 (cur_offset > inode->i_size)) {
d1ea6a61 8573 if (cur_offset > actual_len)
55a61d1d 8574 i_size = actual_len;
d1ea6a61 8575 else
55a61d1d
JB
8576 i_size = cur_offset;
8577 i_size_write(inode, i_size);
8578 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8579 }
8580
d899e052 8581 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8582
8583 if (ret) {
8584 btrfs_abort_transaction(trans, root, ret);
8585 if (own_trans)
8586 btrfs_end_transaction(trans, root);
8587 break;
8588 }
d899e052 8589
0af3d00b
JB
8590 if (own_trans)
8591 btrfs_end_transaction(trans, root);
5a303d5d 8592 }
d899e052
YZ
8593 return ret;
8594}
8595
0af3d00b
JB
8596int btrfs_prealloc_file_range(struct inode *inode, int mode,
8597 u64 start, u64 num_bytes, u64 min_size,
8598 loff_t actual_len, u64 *alloc_hint)
8599{
8600 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8601 min_size, actual_len, alloc_hint,
8602 NULL);
8603}
8604
8605int btrfs_prealloc_file_range_trans(struct inode *inode,
8606 struct btrfs_trans_handle *trans, int mode,
8607 u64 start, u64 num_bytes, u64 min_size,
8608 loff_t actual_len, u64 *alloc_hint)
8609{
8610 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8611 min_size, actual_len, alloc_hint, trans);
8612}
8613
e6dcd2dc
CM
8614static int btrfs_set_page_dirty(struct page *page)
8615{
e6dcd2dc
CM
8616 return __set_page_dirty_nobuffers(page);
8617}
8618
10556cb2 8619static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8620{
b83cc969 8621 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8622 umode_t mode = inode->i_mode;
b83cc969 8623
cb6db4e5
JM
8624 if (mask & MAY_WRITE &&
8625 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8626 if (btrfs_root_readonly(root))
8627 return -EROFS;
8628 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8629 return -EACCES;
8630 }
2830ba7f 8631 return generic_permission(inode, mask);
fdebe2bd 8632}
39279cc3 8633
6e1d5dcc 8634static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 8635 .getattr = btrfs_getattr,
39279cc3
CM
8636 .lookup = btrfs_lookup,
8637 .create = btrfs_create,
8638 .unlink = btrfs_unlink,
8639 .link = btrfs_link,
8640 .mkdir = btrfs_mkdir,
8641 .rmdir = btrfs_rmdir,
8642 .rename = btrfs_rename,
8643 .symlink = btrfs_symlink,
8644 .setattr = btrfs_setattr,
618e21d5 8645 .mknod = btrfs_mknod,
95819c05
CH
8646 .setxattr = btrfs_setxattr,
8647 .getxattr = btrfs_getxattr,
5103e947 8648 .listxattr = btrfs_listxattr,
95819c05 8649 .removexattr = btrfs_removexattr,
fdebe2bd 8650 .permission = btrfs_permission,
4e34e719 8651 .get_acl = btrfs_get_acl,
39279cc3 8652};
6e1d5dcc 8653static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 8654 .lookup = btrfs_lookup,
fdebe2bd 8655 .permission = btrfs_permission,
4e34e719 8656 .get_acl = btrfs_get_acl,
39279cc3 8657};
76dda93c 8658
828c0950 8659static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
8660 .llseek = generic_file_llseek,
8661 .read = generic_read_dir,
9cdda8d3 8662 .iterate = btrfs_real_readdir,
34287aa3 8663 .unlocked_ioctl = btrfs_ioctl,
39279cc3 8664#ifdef CONFIG_COMPAT
34287aa3 8665 .compat_ioctl = btrfs_ioctl,
39279cc3 8666#endif
6bf13c0c 8667 .release = btrfs_release_file,
e02119d5 8668 .fsync = btrfs_sync_file,
39279cc3
CM
8669};
8670
d1310b2e 8671static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 8672 .fill_delalloc = run_delalloc_range,
065631f6 8673 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8674 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8675 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8676 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8677 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8678 .set_bit_hook = btrfs_set_bit_hook,
8679 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8680 .merge_extent_hook = btrfs_merge_extent_hook,
8681 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8682};
8683
35054394
CM
8684/*
8685 * btrfs doesn't support the bmap operation because swapfiles
8686 * use bmap to make a mapping of extents in the file. They assume
8687 * these extents won't change over the life of the file and they
8688 * use the bmap result to do IO directly to the drive.
8689 *
8690 * the btrfs bmap call would return logical addresses that aren't
8691 * suitable for IO and they also will change frequently as COW
8692 * operations happen. So, swapfile + btrfs == corruption.
8693 *
8694 * For now we're avoiding this by dropping bmap.
8695 */
7f09410b 8696static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8697 .readpage = btrfs_readpage,
8698 .writepage = btrfs_writepage,
b293f02e 8699 .writepages = btrfs_writepages,
3ab2fb5a 8700 .readpages = btrfs_readpages,
16432985 8701 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8702 .invalidatepage = btrfs_invalidatepage,
8703 .releasepage = btrfs_releasepage,
e6dcd2dc 8704 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8705 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8706};
8707
7f09410b 8708static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8709 .readpage = btrfs_readpage,
8710 .writepage = btrfs_writepage,
2bf5a725
CM
8711 .invalidatepage = btrfs_invalidatepage,
8712 .releasepage = btrfs_releasepage,
39279cc3
CM
8713};
8714
6e1d5dcc 8715static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8716 .getattr = btrfs_getattr,
8717 .setattr = btrfs_setattr,
95819c05
CH
8718 .setxattr = btrfs_setxattr,
8719 .getxattr = btrfs_getxattr,
5103e947 8720 .listxattr = btrfs_listxattr,
95819c05 8721 .removexattr = btrfs_removexattr,
fdebe2bd 8722 .permission = btrfs_permission,
1506fcc8 8723 .fiemap = btrfs_fiemap,
4e34e719 8724 .get_acl = btrfs_get_acl,
e41f941a 8725 .update_time = btrfs_update_time,
39279cc3 8726};
6e1d5dcc 8727static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8728 .getattr = btrfs_getattr,
8729 .setattr = btrfs_setattr,
fdebe2bd 8730 .permission = btrfs_permission,
95819c05
CH
8731 .setxattr = btrfs_setxattr,
8732 .getxattr = btrfs_getxattr,
33268eaf 8733 .listxattr = btrfs_listxattr,
95819c05 8734 .removexattr = btrfs_removexattr,
4e34e719 8735 .get_acl = btrfs_get_acl,
e41f941a 8736 .update_time = btrfs_update_time,
618e21d5 8737};
6e1d5dcc 8738static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8739 .readlink = generic_readlink,
8740 .follow_link = page_follow_link_light,
8741 .put_link = page_put_link,
f209561a 8742 .getattr = btrfs_getattr,
22c44fe6 8743 .setattr = btrfs_setattr,
fdebe2bd 8744 .permission = btrfs_permission,
0279b4cd
JO
8745 .setxattr = btrfs_setxattr,
8746 .getxattr = btrfs_getxattr,
8747 .listxattr = btrfs_listxattr,
8748 .removexattr = btrfs_removexattr,
4e34e719 8749 .get_acl = btrfs_get_acl,
e41f941a 8750 .update_time = btrfs_update_time,
39279cc3 8751};
76dda93c 8752
82d339d9 8753const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8754 .d_delete = btrfs_dentry_delete,
b4aff1f8 8755 .d_release = btrfs_dentry_release,
76dda93c 8756};