Btrfs: use the global reserve when truncating the free space cache inode
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
4b4e25f2 41#include "compat.h"
39279cc3
CM
42#include "ctree.h"
43#include "disk-io.h"
44#include "transaction.h"
45#include "btrfs_inode.h"
46#include "ioctl.h"
47#include "print-tree.h"
0b86a832 48#include "volumes.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
c8b97818 52#include "compression.h"
b4ce94de 53#include "locking.h"
dc89e982 54#include "free-space-cache.h"
581bb050 55#include "inode-map.h"
39279cc3
CM
56
57struct btrfs_iget_args {
58 u64 ino;
59 struct btrfs_root *root;
60};
61
6e1d5dcc
AD
62static const struct inode_operations btrfs_dir_inode_operations;
63static const struct inode_operations btrfs_symlink_inode_operations;
64static const struct inode_operations btrfs_dir_ro_inode_operations;
65static const struct inode_operations btrfs_special_inode_operations;
66static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
67static const struct address_space_operations btrfs_aops;
68static const struct address_space_operations btrfs_symlink_aops;
828c0950 69static const struct file_operations btrfs_dir_file_operations;
d1310b2e 70static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
71
72static struct kmem_cache *btrfs_inode_cachep;
73struct kmem_cache *btrfs_trans_handle_cachep;
74struct kmem_cache *btrfs_transaction_cachep;
39279cc3 75struct kmem_cache *btrfs_path_cachep;
dc89e982 76struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
77
78#define S_SHIFT 12
79static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87};
88
a41ad394
JB
89static int btrfs_setsize(struct inode *inode, loff_t newsize);
90static int btrfs_truncate(struct inode *inode);
c8b97818 91static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
92static noinline int cow_file_range(struct inode *inode,
93 struct page *locked_page,
94 u64 start, u64 end, int *page_started,
95 unsigned long *nr_written, int unlock);
7b128766 96
f34f57a3 97static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
98 struct inode *inode, struct inode *dir,
99 const struct qstr *qstr)
0279b4cd
JO
100{
101 int err;
102
f34f57a3 103 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 104 if (!err)
2a7dba39 105 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
106 return err;
107}
108
c8b97818
CM
109/*
110 * this does all the hard work for inserting an inline extent into
111 * the btree. The caller should have done a btrfs_drop_extents so that
112 * no overlapping inline items exist in the btree
113 */
d397712b 114static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
115 struct btrfs_root *root, struct inode *inode,
116 u64 start, size_t size, size_t compressed_size,
fe3f566c 117 int compress_type,
c8b97818
CM
118 struct page **compressed_pages)
119{
120 struct btrfs_key key;
121 struct btrfs_path *path;
122 struct extent_buffer *leaf;
123 struct page *page = NULL;
124 char *kaddr;
125 unsigned long ptr;
126 struct btrfs_file_extent_item *ei;
127 int err = 0;
128 int ret;
129 size_t cur_size = size;
130 size_t datasize;
131 unsigned long offset;
c8b97818 132
fe3f566c 133 if (compressed_size && compressed_pages)
c8b97818 134 cur_size = compressed_size;
c8b97818 135
d397712b
CM
136 path = btrfs_alloc_path();
137 if (!path)
c8b97818
CM
138 return -ENOMEM;
139
b9473439 140 path->leave_spinning = 1;
c8b97818 141
33345d01 142 key.objectid = btrfs_ino(inode);
c8b97818
CM
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
c8b97818
CM
153 goto fail;
154 }
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
164
261507a0 165 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
166 struct page *cpage;
167 int i = 0;
d397712b 168 while (compressed_size > 0) {
c8b97818 169 cpage = compressed_pages[i];
5b050f04 170 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
171 PAGE_CACHE_SIZE);
172
b9473439 173 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 175 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
176
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
180 }
181 btrfs_set_file_extent_compression(leaf, ei,
261507a0 182 compress_type);
c8b97818
CM
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
192 }
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
195
c2167754
YZ
196 /*
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
200 *
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
204 */
c8b97818
CM
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
c2167754 207
c8b97818
CM
208 return 0;
209fail:
210 btrfs_free_path(path);
211 return err;
212}
213
214
215/*
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
219 */
7f366cfe 220static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
fe3f566c 223 size_t compressed_size, int compress_type,
c8b97818
CM
224 struct page **compressed_pages)
225{
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
70b99e69 239 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
920bbbfb 248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 249 &hint_byte, 1);
c8b97818
CM
250 BUG_ON(ret);
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
fe3f566c 256 compress_type, compressed_pages);
c8b97818 257 BUG_ON(ret);
0ca1f7ce 258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
260 return 0;
261}
262
771ed689
CM
263struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
261507a0 269 int compress_type;
771ed689
CM
270 struct list_head list;
271};
272
273struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
281};
282
283static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
261507a0
LZ
287 unsigned long nr_pages,
288 int compress_type)
771ed689
CM
289{
290 struct async_extent *async_extent;
291
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 293 BUG_ON(!async_extent);
771ed689
CM
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
261507a0 299 async_extent->compress_type = compress_type;
771ed689
CM
300 list_add_tail(&async_extent->list, &cow->extents);
301 return 0;
302}
303
d352ac68 304/*
771ed689
CM
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
c8b97818 308 *
771ed689
CM
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
c8b97818 314 *
771ed689
CM
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
d352ac68 319 */
771ed689
CM
320static noinline int compress_file_range(struct inode *inode,
321 struct page *locked_page,
322 u64 start, u64 end,
323 struct async_cow *async_cow,
324 int *num_added)
b888db2b
CM
325{
326 struct btrfs_root *root = BTRFS_I(inode)->root;
327 struct btrfs_trans_handle *trans;
db94535d 328 u64 num_bytes;
db94535d 329 u64 blocksize = root->sectorsize;
c8b97818 330 u64 actual_end;
42dc7bab 331 u64 isize = i_size_read(inode);
e6dcd2dc 332 int ret = 0;
c8b97818
CM
333 struct page **pages = NULL;
334 unsigned long nr_pages;
335 unsigned long nr_pages_ret = 0;
336 unsigned long total_compressed = 0;
337 unsigned long total_in = 0;
338 unsigned long max_compressed = 128 * 1024;
771ed689 339 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
340 int i;
341 int will_compress;
261507a0 342 int compress_type = root->fs_info->compress_type;
b888db2b 343
4cb5300b
CM
344 /* if this is a small write inside eof, kick off a defragbot */
345 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346 btrfs_add_inode_defrag(NULL, inode);
347
42dc7bab 348 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
349again:
350 will_compress = 0;
351 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 353
f03d9301
CM
354 /*
355 * we don't want to send crud past the end of i_size through
356 * compression, that's just a waste of CPU time. So, if the
357 * end of the file is before the start of our current
358 * requested range of bytes, we bail out to the uncompressed
359 * cleanup code that can deal with all of this.
360 *
361 * It isn't really the fastest way to fix things, but this is a
362 * very uncommon corner.
363 */
364 if (actual_end <= start)
365 goto cleanup_and_bail_uncompressed;
366
c8b97818
CM
367 total_compressed = actual_end - start;
368
369 /* we want to make sure that amount of ram required to uncompress
370 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
371 * of a compressed extent to 128k. This is a crucial number
372 * because it also controls how easily we can spread reads across
373 * cpus for decompression.
374 *
375 * We also want to make sure the amount of IO required to do
376 * a random read is reasonably small, so we limit the size of
377 * a compressed extent to 128k.
c8b97818
CM
378 */
379 total_compressed = min(total_compressed, max_uncompressed);
db94535d 380 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 381 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
382 total_in = 0;
383 ret = 0;
db94535d 384
771ed689
CM
385 /*
386 * we do compression for mount -o compress and when the
387 * inode has not been flagged as nocompress. This flag can
388 * change at any time if we discover bad compression ratios.
c8b97818 389 */
6cbff00f 390 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 391 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
392 (BTRFS_I(inode)->force_compress) ||
393 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 394 WARN_ON(pages);
cfbc246e 395 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
396 if (!pages) {
397 /* just bail out to the uncompressed code */
398 goto cont;
399 }
c8b97818 400
261507a0
LZ
401 if (BTRFS_I(inode)->force_compress)
402 compress_type = BTRFS_I(inode)->force_compress;
403
404 ret = btrfs_compress_pages(compress_type,
405 inode->i_mapping, start,
406 total_compressed, pages,
407 nr_pages, &nr_pages_ret,
408 &total_in,
409 &total_compressed,
410 max_compressed);
c8b97818
CM
411
412 if (!ret) {
413 unsigned long offset = total_compressed &
414 (PAGE_CACHE_SIZE - 1);
415 struct page *page = pages[nr_pages_ret - 1];
416 char *kaddr;
417
418 /* zero the tail end of the last page, we might be
419 * sending it down to disk
420 */
421 if (offset) {
422 kaddr = kmap_atomic(page, KM_USER0);
423 memset(kaddr + offset, 0,
424 PAGE_CACHE_SIZE - offset);
425 kunmap_atomic(kaddr, KM_USER0);
426 }
427 will_compress = 1;
428 }
429 }
560f7d75 430cont:
c8b97818 431 if (start == 0) {
7a7eaa40 432 trans = btrfs_join_transaction(root);
3612b495 433 BUG_ON(IS_ERR(trans));
0ca1f7ce 434 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 435
c8b97818 436 /* lets try to make an inline extent */
771ed689 437 if (ret || total_in < (actual_end - start)) {
c8b97818 438 /* we didn't compress the entire range, try
771ed689 439 * to make an uncompressed inline extent.
c8b97818
CM
440 */
441 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 442 start, end, 0, 0, NULL);
c8b97818 443 } else {
771ed689 444 /* try making a compressed inline extent */
c8b97818
CM
445 ret = cow_file_range_inline(trans, root, inode,
446 start, end,
fe3f566c
LZ
447 total_compressed,
448 compress_type, pages);
c8b97818
CM
449 }
450 if (ret == 0) {
771ed689
CM
451 /*
452 * inline extent creation worked, we don't need
453 * to create any more async work items. Unlock
454 * and free up our temp pages.
455 */
c8b97818 456 extent_clear_unlock_delalloc(inode,
a791e35e
CM
457 &BTRFS_I(inode)->io_tree,
458 start, end, NULL,
459 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 460 EXTENT_CLEAR_DELALLOC |
a791e35e 461 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
462
463 btrfs_end_transaction(trans, root);
c8b97818
CM
464 goto free_pages_out;
465 }
c2167754 466 btrfs_end_transaction(trans, root);
c8b97818
CM
467 }
468
469 if (will_compress) {
470 /*
471 * we aren't doing an inline extent round the compressed size
472 * up to a block size boundary so the allocator does sane
473 * things
474 */
475 total_compressed = (total_compressed + blocksize - 1) &
476 ~(blocksize - 1);
477
478 /*
479 * one last check to make sure the compression is really a
480 * win, compare the page count read with the blocks on disk
481 */
482 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
483 ~(PAGE_CACHE_SIZE - 1);
484 if (total_compressed >= total_in) {
485 will_compress = 0;
486 } else {
c8b97818
CM
487 num_bytes = total_in;
488 }
489 }
490 if (!will_compress && pages) {
491 /*
492 * the compression code ran but failed to make things smaller,
493 * free any pages it allocated and our page pointer array
494 */
495 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 496 WARN_ON(pages[i]->mapping);
c8b97818
CM
497 page_cache_release(pages[i]);
498 }
499 kfree(pages);
500 pages = NULL;
501 total_compressed = 0;
502 nr_pages_ret = 0;
503
504 /* flag the file so we don't compress in the future */
1e701a32
CM
505 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
506 !(BTRFS_I(inode)->force_compress)) {
a555f810 507 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 508 }
c8b97818 509 }
771ed689
CM
510 if (will_compress) {
511 *num_added += 1;
c8b97818 512
771ed689
CM
513 /* the async work queues will take care of doing actual
514 * allocation on disk for these compressed pages,
515 * and will submit them to the elevator.
516 */
517 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
518 total_compressed, pages, nr_pages_ret,
519 compress_type);
179e29e4 520
24ae6365 521 if (start + num_bytes < end) {
771ed689
CM
522 start += num_bytes;
523 pages = NULL;
524 cond_resched();
525 goto again;
526 }
527 } else {
f03d9301 528cleanup_and_bail_uncompressed:
771ed689
CM
529 /*
530 * No compression, but we still need to write the pages in
531 * the file we've been given so far. redirty the locked
532 * page if it corresponds to our extent and set things up
533 * for the async work queue to run cow_file_range to do
534 * the normal delalloc dance
535 */
536 if (page_offset(locked_page) >= start &&
537 page_offset(locked_page) <= end) {
538 __set_page_dirty_nobuffers(locked_page);
539 /* unlocked later on in the async handlers */
540 }
261507a0
LZ
541 add_async_extent(async_cow, start, end - start + 1,
542 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
543 *num_added += 1;
544 }
3b951516 545
771ed689
CM
546out:
547 return 0;
548
549free_pages_out:
550 for (i = 0; i < nr_pages_ret; i++) {
551 WARN_ON(pages[i]->mapping);
552 page_cache_release(pages[i]);
553 }
d397712b 554 kfree(pages);
771ed689
CM
555
556 goto out;
557}
558
559/*
560 * phase two of compressed writeback. This is the ordered portion
561 * of the code, which only gets called in the order the work was
562 * queued. We walk all the async extents created by compress_file_range
563 * and send them down to the disk.
564 */
565static noinline int submit_compressed_extents(struct inode *inode,
566 struct async_cow *async_cow)
567{
568 struct async_extent *async_extent;
569 u64 alloc_hint = 0;
570 struct btrfs_trans_handle *trans;
571 struct btrfs_key ins;
572 struct extent_map *em;
573 struct btrfs_root *root = BTRFS_I(inode)->root;
574 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
575 struct extent_io_tree *io_tree;
f5a84ee3 576 int ret = 0;
771ed689
CM
577
578 if (list_empty(&async_cow->extents))
579 return 0;
580
771ed689 581
d397712b 582 while (!list_empty(&async_cow->extents)) {
771ed689
CM
583 async_extent = list_entry(async_cow->extents.next,
584 struct async_extent, list);
585 list_del(&async_extent->list);
c8b97818 586
771ed689
CM
587 io_tree = &BTRFS_I(inode)->io_tree;
588
f5a84ee3 589retry:
771ed689
CM
590 /* did the compression code fall back to uncompressed IO? */
591 if (!async_extent->pages) {
592 int page_started = 0;
593 unsigned long nr_written = 0;
594
595 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
596 async_extent->start +
597 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
598
599 /* allocate blocks */
f5a84ee3
JB
600 ret = cow_file_range(inode, async_cow->locked_page,
601 async_extent->start,
602 async_extent->start +
603 async_extent->ram_size - 1,
604 &page_started, &nr_written, 0);
771ed689
CM
605
606 /*
607 * if page_started, cow_file_range inserted an
608 * inline extent and took care of all the unlocking
609 * and IO for us. Otherwise, we need to submit
610 * all those pages down to the drive.
611 */
f5a84ee3 612 if (!page_started && !ret)
771ed689
CM
613 extent_write_locked_range(io_tree,
614 inode, async_extent->start,
d397712b 615 async_extent->start +
771ed689
CM
616 async_extent->ram_size - 1,
617 btrfs_get_extent,
618 WB_SYNC_ALL);
619 kfree(async_extent);
620 cond_resched();
621 continue;
622 }
623
624 lock_extent(io_tree, async_extent->start,
625 async_extent->start + async_extent->ram_size - 1,
626 GFP_NOFS);
771ed689 627
7a7eaa40 628 trans = btrfs_join_transaction(root);
3612b495 629 BUG_ON(IS_ERR(trans));
74b21075 630 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689
CM
631 ret = btrfs_reserve_extent(trans, root,
632 async_extent->compressed_size,
633 async_extent->compressed_size,
634 0, alloc_hint,
635 (u64)-1, &ins, 1);
c2167754
YZ
636 btrfs_end_transaction(trans, root);
637
f5a84ee3
JB
638 if (ret) {
639 int i;
640 for (i = 0; i < async_extent->nr_pages; i++) {
641 WARN_ON(async_extent->pages[i]->mapping);
642 page_cache_release(async_extent->pages[i]);
643 }
644 kfree(async_extent->pages);
645 async_extent->nr_pages = 0;
646 async_extent->pages = NULL;
647 unlock_extent(io_tree, async_extent->start,
648 async_extent->start +
649 async_extent->ram_size - 1, GFP_NOFS);
650 goto retry;
651 }
652
c2167754
YZ
653 /*
654 * here we're doing allocation and writeback of the
655 * compressed pages
656 */
657 btrfs_drop_extent_cache(inode, async_extent->start,
658 async_extent->start +
659 async_extent->ram_size - 1, 0);
660
172ddd60 661 em = alloc_extent_map();
c26a9203 662 BUG_ON(!em);
771ed689
CM
663 em->start = async_extent->start;
664 em->len = async_extent->ram_size;
445a6944 665 em->orig_start = em->start;
c8b97818 666
771ed689
CM
667 em->block_start = ins.objectid;
668 em->block_len = ins.offset;
669 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 670 em->compress_type = async_extent->compress_type;
771ed689
CM
671 set_bit(EXTENT_FLAG_PINNED, &em->flags);
672 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
673
d397712b 674 while (1) {
890871be 675 write_lock(&em_tree->lock);
771ed689 676 ret = add_extent_mapping(em_tree, em);
890871be 677 write_unlock(&em_tree->lock);
771ed689
CM
678 if (ret != -EEXIST) {
679 free_extent_map(em);
680 break;
681 }
682 btrfs_drop_extent_cache(inode, async_extent->start,
683 async_extent->start +
684 async_extent->ram_size - 1, 0);
685 }
686
261507a0
LZ
687 ret = btrfs_add_ordered_extent_compress(inode,
688 async_extent->start,
689 ins.objectid,
690 async_extent->ram_size,
691 ins.offset,
692 BTRFS_ORDERED_COMPRESSED,
693 async_extent->compress_type);
771ed689
CM
694 BUG_ON(ret);
695
771ed689
CM
696 /*
697 * clear dirty, set writeback and unlock the pages.
698 */
699 extent_clear_unlock_delalloc(inode,
a791e35e
CM
700 &BTRFS_I(inode)->io_tree,
701 async_extent->start,
702 async_extent->start +
703 async_extent->ram_size - 1,
704 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
705 EXTENT_CLEAR_UNLOCK |
a3429ab7 706 EXTENT_CLEAR_DELALLOC |
a791e35e 707 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
708
709 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
710 async_extent->start,
711 async_extent->ram_size,
712 ins.objectid,
713 ins.offset, async_extent->pages,
714 async_extent->nr_pages);
771ed689
CM
715
716 BUG_ON(ret);
771ed689
CM
717 alloc_hint = ins.objectid + ins.offset;
718 kfree(async_extent);
719 cond_resched();
720 }
721
771ed689
CM
722 return 0;
723}
724
4b46fce2
JB
725static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
726 u64 num_bytes)
727{
728 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
729 struct extent_map *em;
730 u64 alloc_hint = 0;
731
732 read_lock(&em_tree->lock);
733 em = search_extent_mapping(em_tree, start, num_bytes);
734 if (em) {
735 /*
736 * if block start isn't an actual block number then find the
737 * first block in this inode and use that as a hint. If that
738 * block is also bogus then just don't worry about it.
739 */
740 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
741 free_extent_map(em);
742 em = search_extent_mapping(em_tree, 0, 0);
743 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
744 alloc_hint = em->block_start;
745 if (em)
746 free_extent_map(em);
747 } else {
748 alloc_hint = em->block_start;
749 free_extent_map(em);
750 }
751 }
752 read_unlock(&em_tree->lock);
753
754 return alloc_hint;
755}
756
771ed689
CM
757/*
758 * when extent_io.c finds a delayed allocation range in the file,
759 * the call backs end up in this code. The basic idea is to
760 * allocate extents on disk for the range, and create ordered data structs
761 * in ram to track those extents.
762 *
763 * locked_page is the page that writepage had locked already. We use
764 * it to make sure we don't do extra locks or unlocks.
765 *
766 * *page_started is set to one if we unlock locked_page and do everything
767 * required to start IO on it. It may be clean and already done with
768 * IO when we return.
769 */
770static noinline int cow_file_range(struct inode *inode,
771 struct page *locked_page,
772 u64 start, u64 end, int *page_started,
773 unsigned long *nr_written,
774 int unlock)
775{
776 struct btrfs_root *root = BTRFS_I(inode)->root;
777 struct btrfs_trans_handle *trans;
778 u64 alloc_hint = 0;
779 u64 num_bytes;
780 unsigned long ram_size;
781 u64 disk_num_bytes;
782 u64 cur_alloc_size;
783 u64 blocksize = root->sectorsize;
771ed689
CM
784 struct btrfs_key ins;
785 struct extent_map *em;
786 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
787 int ret = 0;
788
2cf8572d 789 BUG_ON(btrfs_is_free_space_inode(root, inode));
7a7eaa40 790 trans = btrfs_join_transaction(root);
3612b495 791 BUG_ON(IS_ERR(trans));
0ca1f7ce 792 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 793
771ed689
CM
794 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
795 num_bytes = max(blocksize, num_bytes);
796 disk_num_bytes = num_bytes;
797 ret = 0;
798
4cb5300b
CM
799 /* if this is a small write inside eof, kick off defrag */
800 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
801 btrfs_add_inode_defrag(trans, inode);
802
771ed689
CM
803 if (start == 0) {
804 /* lets try to make an inline extent */
805 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 806 start, end, 0, 0, NULL);
771ed689
CM
807 if (ret == 0) {
808 extent_clear_unlock_delalloc(inode,
a791e35e
CM
809 &BTRFS_I(inode)->io_tree,
810 start, end, NULL,
811 EXTENT_CLEAR_UNLOCK_PAGE |
812 EXTENT_CLEAR_UNLOCK |
813 EXTENT_CLEAR_DELALLOC |
814 EXTENT_CLEAR_DIRTY |
815 EXTENT_SET_WRITEBACK |
816 EXTENT_END_WRITEBACK);
c2167754 817
771ed689
CM
818 *nr_written = *nr_written +
819 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
820 *page_started = 1;
821 ret = 0;
822 goto out;
823 }
824 }
825
826 BUG_ON(disk_num_bytes >
827 btrfs_super_total_bytes(&root->fs_info->super_copy));
828
4b46fce2 829 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
830 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
831
d397712b 832 while (disk_num_bytes > 0) {
a791e35e
CM
833 unsigned long op;
834
287a0ab9 835 cur_alloc_size = disk_num_bytes;
e6dcd2dc 836 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 837 root->sectorsize, 0, alloc_hint,
e6dcd2dc 838 (u64)-1, &ins, 1);
d397712b
CM
839 BUG_ON(ret);
840
172ddd60 841 em = alloc_extent_map();
c26a9203 842 BUG_ON(!em);
e6dcd2dc 843 em->start = start;
445a6944 844 em->orig_start = em->start;
771ed689
CM
845 ram_size = ins.offset;
846 em->len = ins.offset;
c8b97818 847
e6dcd2dc 848 em->block_start = ins.objectid;
c8b97818 849 em->block_len = ins.offset;
e6dcd2dc 850 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 851 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 852
d397712b 853 while (1) {
890871be 854 write_lock(&em_tree->lock);
e6dcd2dc 855 ret = add_extent_mapping(em_tree, em);
890871be 856 write_unlock(&em_tree->lock);
e6dcd2dc
CM
857 if (ret != -EEXIST) {
858 free_extent_map(em);
859 break;
860 }
861 btrfs_drop_extent_cache(inode, start,
c8b97818 862 start + ram_size - 1, 0);
e6dcd2dc
CM
863 }
864
98d20f67 865 cur_alloc_size = ins.offset;
e6dcd2dc 866 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 867 ram_size, cur_alloc_size, 0);
e6dcd2dc 868 BUG_ON(ret);
c8b97818 869
17d217fe
YZ
870 if (root->root_key.objectid ==
871 BTRFS_DATA_RELOC_TREE_OBJECTID) {
872 ret = btrfs_reloc_clone_csums(inode, start,
873 cur_alloc_size);
874 BUG_ON(ret);
875 }
876
d397712b 877 if (disk_num_bytes < cur_alloc_size)
3b951516 878 break;
d397712b 879
c8b97818
CM
880 /* we're not doing compressed IO, don't unlock the first
881 * page (which the caller expects to stay locked), don't
882 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
883 *
884 * Do set the Private2 bit so we know this page was properly
885 * setup for writepage
c8b97818 886 */
a791e35e
CM
887 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
888 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
889 EXTENT_SET_PRIVATE2;
890
c8b97818
CM
891 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
892 start, start + ram_size - 1,
a791e35e 893 locked_page, op);
c8b97818 894 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
895 num_bytes -= cur_alloc_size;
896 alloc_hint = ins.objectid + ins.offset;
897 start += cur_alloc_size;
b888db2b 898 }
b888db2b 899out:
771ed689 900 ret = 0;
b888db2b 901 btrfs_end_transaction(trans, root);
c8b97818 902
be20aa9d 903 return ret;
771ed689 904}
c8b97818 905
771ed689
CM
906/*
907 * work queue call back to started compression on a file and pages
908 */
909static noinline void async_cow_start(struct btrfs_work *work)
910{
911 struct async_cow *async_cow;
912 int num_added = 0;
913 async_cow = container_of(work, struct async_cow, work);
914
915 compress_file_range(async_cow->inode, async_cow->locked_page,
916 async_cow->start, async_cow->end, async_cow,
917 &num_added);
918 if (num_added == 0)
919 async_cow->inode = NULL;
920}
921
922/*
923 * work queue call back to submit previously compressed pages
924 */
925static noinline void async_cow_submit(struct btrfs_work *work)
926{
927 struct async_cow *async_cow;
928 struct btrfs_root *root;
929 unsigned long nr_pages;
930
931 async_cow = container_of(work, struct async_cow, work);
932
933 root = async_cow->root;
934 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
935 PAGE_CACHE_SHIFT;
936
937 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
938
939 if (atomic_read(&root->fs_info->async_delalloc_pages) <
940 5 * 1042 * 1024 &&
941 waitqueue_active(&root->fs_info->async_submit_wait))
942 wake_up(&root->fs_info->async_submit_wait);
943
d397712b 944 if (async_cow->inode)
771ed689 945 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 946}
c8b97818 947
771ed689
CM
948static noinline void async_cow_free(struct btrfs_work *work)
949{
950 struct async_cow *async_cow;
951 async_cow = container_of(work, struct async_cow, work);
952 kfree(async_cow);
953}
954
955static int cow_file_range_async(struct inode *inode, struct page *locked_page,
956 u64 start, u64 end, int *page_started,
957 unsigned long *nr_written)
958{
959 struct async_cow *async_cow;
960 struct btrfs_root *root = BTRFS_I(inode)->root;
961 unsigned long nr_pages;
962 u64 cur_end;
963 int limit = 10 * 1024 * 1042;
964
a3429ab7
CM
965 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
966 1, 0, NULL, GFP_NOFS);
d397712b 967 while (start < end) {
771ed689 968 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
8d413713 969 BUG_ON(!async_cow);
771ed689
CM
970 async_cow->inode = inode;
971 async_cow->root = root;
972 async_cow->locked_page = locked_page;
973 async_cow->start = start;
974
6cbff00f 975 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
976 cur_end = end;
977 else
978 cur_end = min(end, start + 512 * 1024 - 1);
979
980 async_cow->end = cur_end;
981 INIT_LIST_HEAD(&async_cow->extents);
982
983 async_cow->work.func = async_cow_start;
984 async_cow->work.ordered_func = async_cow_submit;
985 async_cow->work.ordered_free = async_cow_free;
986 async_cow->work.flags = 0;
987
771ed689
CM
988 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
989 PAGE_CACHE_SHIFT;
990 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
991
992 btrfs_queue_worker(&root->fs_info->delalloc_workers,
993 &async_cow->work);
994
995 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
996 wait_event(root->fs_info->async_submit_wait,
997 (atomic_read(&root->fs_info->async_delalloc_pages) <
998 limit));
999 }
1000
d397712b 1001 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1002 atomic_read(&root->fs_info->async_delalloc_pages)) {
1003 wait_event(root->fs_info->async_submit_wait,
1004 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1005 0));
1006 }
1007
1008 *nr_written += nr_pages;
1009 start = cur_end + 1;
1010 }
1011 *page_started = 1;
1012 return 0;
be20aa9d
CM
1013}
1014
d397712b 1015static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1016 u64 bytenr, u64 num_bytes)
1017{
1018 int ret;
1019 struct btrfs_ordered_sum *sums;
1020 LIST_HEAD(list);
1021
07d400a6 1022 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1023 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1024 if (ret == 0 && list_empty(&list))
1025 return 0;
1026
1027 while (!list_empty(&list)) {
1028 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1029 list_del(&sums->list);
1030 kfree(sums);
1031 }
1032 return 1;
1033}
1034
d352ac68
CM
1035/*
1036 * when nowcow writeback call back. This checks for snapshots or COW copies
1037 * of the extents that exist in the file, and COWs the file as required.
1038 *
1039 * If no cow copies or snapshots exist, we write directly to the existing
1040 * blocks on disk
1041 */
7f366cfe
CM
1042static noinline int run_delalloc_nocow(struct inode *inode,
1043 struct page *locked_page,
771ed689
CM
1044 u64 start, u64 end, int *page_started, int force,
1045 unsigned long *nr_written)
be20aa9d 1046{
be20aa9d 1047 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1048 struct btrfs_trans_handle *trans;
be20aa9d 1049 struct extent_buffer *leaf;
be20aa9d 1050 struct btrfs_path *path;
80ff3856 1051 struct btrfs_file_extent_item *fi;
be20aa9d 1052 struct btrfs_key found_key;
80ff3856
YZ
1053 u64 cow_start;
1054 u64 cur_offset;
1055 u64 extent_end;
5d4f98a2 1056 u64 extent_offset;
80ff3856
YZ
1057 u64 disk_bytenr;
1058 u64 num_bytes;
1059 int extent_type;
1060 int ret;
d899e052 1061 int type;
80ff3856
YZ
1062 int nocow;
1063 int check_prev = 1;
82d5902d 1064 bool nolock;
33345d01 1065 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1066
1067 path = btrfs_alloc_path();
d8926bb3
MF
1068 if (!path)
1069 return -ENOMEM;
82d5902d 1070
2cf8572d 1071 nolock = btrfs_is_free_space_inode(root, inode);
82d5902d
LZ
1072
1073 if (nolock)
7a7eaa40 1074 trans = btrfs_join_transaction_nolock(root);
82d5902d 1075 else
7a7eaa40 1076 trans = btrfs_join_transaction(root);
ff5714cc 1077
3612b495 1078 BUG_ON(IS_ERR(trans));
74b21075 1079 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1080
80ff3856
YZ
1081 cow_start = (u64)-1;
1082 cur_offset = start;
1083 while (1) {
33345d01 1084 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856
YZ
1085 cur_offset, 0);
1086 BUG_ON(ret < 0);
1087 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1088 leaf = path->nodes[0];
1089 btrfs_item_key_to_cpu(leaf, &found_key,
1090 path->slots[0] - 1);
33345d01 1091 if (found_key.objectid == ino &&
80ff3856
YZ
1092 found_key.type == BTRFS_EXTENT_DATA_KEY)
1093 path->slots[0]--;
1094 }
1095 check_prev = 0;
1096next_slot:
1097 leaf = path->nodes[0];
1098 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1099 ret = btrfs_next_leaf(root, path);
1100 if (ret < 0)
1101 BUG_ON(1);
1102 if (ret > 0)
1103 break;
1104 leaf = path->nodes[0];
1105 }
be20aa9d 1106
80ff3856
YZ
1107 nocow = 0;
1108 disk_bytenr = 0;
17d217fe 1109 num_bytes = 0;
80ff3856
YZ
1110 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1111
33345d01 1112 if (found_key.objectid > ino ||
80ff3856
YZ
1113 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1114 found_key.offset > end)
1115 break;
1116
1117 if (found_key.offset > cur_offset) {
1118 extent_end = found_key.offset;
e9061e21 1119 extent_type = 0;
80ff3856
YZ
1120 goto out_check;
1121 }
1122
1123 fi = btrfs_item_ptr(leaf, path->slots[0],
1124 struct btrfs_file_extent_item);
1125 extent_type = btrfs_file_extent_type(leaf, fi);
1126
d899e052
YZ
1127 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1128 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1129 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1130 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1131 extent_end = found_key.offset +
1132 btrfs_file_extent_num_bytes(leaf, fi);
1133 if (extent_end <= start) {
1134 path->slots[0]++;
1135 goto next_slot;
1136 }
17d217fe
YZ
1137 if (disk_bytenr == 0)
1138 goto out_check;
80ff3856
YZ
1139 if (btrfs_file_extent_compression(leaf, fi) ||
1140 btrfs_file_extent_encryption(leaf, fi) ||
1141 btrfs_file_extent_other_encoding(leaf, fi))
1142 goto out_check;
d899e052
YZ
1143 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1144 goto out_check;
d2fb3437 1145 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1146 goto out_check;
33345d01 1147 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1148 found_key.offset -
1149 extent_offset, disk_bytenr))
17d217fe 1150 goto out_check;
5d4f98a2 1151 disk_bytenr += extent_offset;
17d217fe
YZ
1152 disk_bytenr += cur_offset - found_key.offset;
1153 num_bytes = min(end + 1, extent_end) - cur_offset;
1154 /*
1155 * force cow if csum exists in the range.
1156 * this ensure that csum for a given extent are
1157 * either valid or do not exist.
1158 */
1159 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1160 goto out_check;
80ff3856
YZ
1161 nocow = 1;
1162 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1163 extent_end = found_key.offset +
1164 btrfs_file_extent_inline_len(leaf, fi);
1165 extent_end = ALIGN(extent_end, root->sectorsize);
1166 } else {
1167 BUG_ON(1);
1168 }
1169out_check:
1170 if (extent_end <= start) {
1171 path->slots[0]++;
1172 goto next_slot;
1173 }
1174 if (!nocow) {
1175 if (cow_start == (u64)-1)
1176 cow_start = cur_offset;
1177 cur_offset = extent_end;
1178 if (cur_offset > end)
1179 break;
1180 path->slots[0]++;
1181 goto next_slot;
7ea394f1
YZ
1182 }
1183
b3b4aa74 1184 btrfs_release_path(path);
80ff3856
YZ
1185 if (cow_start != (u64)-1) {
1186 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1187 found_key.offset - 1, page_started,
1188 nr_written, 1);
80ff3856
YZ
1189 BUG_ON(ret);
1190 cow_start = (u64)-1;
7ea394f1 1191 }
80ff3856 1192
d899e052
YZ
1193 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1194 struct extent_map *em;
1195 struct extent_map_tree *em_tree;
1196 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1197 em = alloc_extent_map();
c26a9203 1198 BUG_ON(!em);
d899e052 1199 em->start = cur_offset;
445a6944 1200 em->orig_start = em->start;
d899e052
YZ
1201 em->len = num_bytes;
1202 em->block_len = num_bytes;
1203 em->block_start = disk_bytenr;
1204 em->bdev = root->fs_info->fs_devices->latest_bdev;
1205 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1206 while (1) {
890871be 1207 write_lock(&em_tree->lock);
d899e052 1208 ret = add_extent_mapping(em_tree, em);
890871be 1209 write_unlock(&em_tree->lock);
d899e052
YZ
1210 if (ret != -EEXIST) {
1211 free_extent_map(em);
1212 break;
1213 }
1214 btrfs_drop_extent_cache(inode, em->start,
1215 em->start + em->len - 1, 0);
1216 }
1217 type = BTRFS_ORDERED_PREALLOC;
1218 } else {
1219 type = BTRFS_ORDERED_NOCOW;
1220 }
80ff3856
YZ
1221
1222 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1223 num_bytes, num_bytes, type);
1224 BUG_ON(ret);
771ed689 1225
efa56464
YZ
1226 if (root->root_key.objectid ==
1227 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1228 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1229 num_bytes);
1230 BUG_ON(ret);
1231 }
1232
d899e052 1233 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1234 cur_offset, cur_offset + num_bytes - 1,
1235 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1236 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1237 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1238 cur_offset = extent_end;
1239 if (cur_offset > end)
1240 break;
be20aa9d 1241 }
b3b4aa74 1242 btrfs_release_path(path);
80ff3856
YZ
1243
1244 if (cur_offset <= end && cow_start == (u64)-1)
1245 cow_start = cur_offset;
1246 if (cow_start != (u64)-1) {
1247 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1248 page_started, nr_written, 1);
80ff3856
YZ
1249 BUG_ON(ret);
1250 }
1251
0cb59c99
JB
1252 if (nolock) {
1253 ret = btrfs_end_transaction_nolock(trans, root);
1254 BUG_ON(ret);
1255 } else {
1256 ret = btrfs_end_transaction(trans, root);
1257 BUG_ON(ret);
1258 }
7ea394f1 1259 btrfs_free_path(path);
80ff3856 1260 return 0;
be20aa9d
CM
1261}
1262
d352ac68
CM
1263/*
1264 * extent_io.c call back to do delayed allocation processing
1265 */
c8b97818 1266static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1267 u64 start, u64 end, int *page_started,
1268 unsigned long *nr_written)
be20aa9d 1269{
be20aa9d 1270 int ret;
7f366cfe 1271 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1272
6cbff00f 1273 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1274 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1275 page_started, 1, nr_written);
6cbff00f 1276 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1277 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1278 page_started, 0, nr_written);
1e701a32 1279 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1280 !(BTRFS_I(inode)->force_compress) &&
1281 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1282 ret = cow_file_range(inode, locked_page, start, end,
1283 page_started, nr_written, 1);
be20aa9d 1284 else
771ed689 1285 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1286 page_started, nr_written);
b888db2b
CM
1287 return ret;
1288}
1289
1bf85046
JM
1290static void btrfs_split_extent_hook(struct inode *inode,
1291 struct extent_state *orig, u64 split)
9ed74f2d 1292{
0ca1f7ce 1293 /* not delalloc, ignore it */
9ed74f2d 1294 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1295 return;
9ed74f2d 1296
9e0baf60
JB
1297 spin_lock(&BTRFS_I(inode)->lock);
1298 BTRFS_I(inode)->outstanding_extents++;
1299 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1300}
1301
1302/*
1303 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1304 * extents so we can keep track of new extents that are just merged onto old
1305 * extents, such as when we are doing sequential writes, so we can properly
1306 * account for the metadata space we'll need.
1307 */
1bf85046
JM
1308static void btrfs_merge_extent_hook(struct inode *inode,
1309 struct extent_state *new,
1310 struct extent_state *other)
9ed74f2d 1311{
9ed74f2d
JB
1312 /* not delalloc, ignore it */
1313 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1314 return;
9ed74f2d 1315
9e0baf60
JB
1316 spin_lock(&BTRFS_I(inode)->lock);
1317 BTRFS_I(inode)->outstanding_extents--;
1318 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1319}
1320
d352ac68
CM
1321/*
1322 * extent_io.c set_bit_hook, used to track delayed allocation
1323 * bytes in this file, and to maintain the list of inodes that
1324 * have pending delalloc work to be done.
1325 */
1bf85046
JM
1326static void btrfs_set_bit_hook(struct inode *inode,
1327 struct extent_state *state, int *bits)
291d673e 1328{
9ed74f2d 1329
75eff68e
CM
1330 /*
1331 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1332 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1333 * bit, which is only set or cleared with irqs on
1334 */
0ca1f7ce 1335 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1336 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1337 u64 len = state->end + 1 - state->start;
2cf8572d 1338 bool do_list = !btrfs_is_free_space_inode(root, inode);
9ed74f2d 1339
9e0baf60 1340 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1341 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1342 } else {
1343 spin_lock(&BTRFS_I(inode)->lock);
1344 BTRFS_I(inode)->outstanding_extents++;
1345 spin_unlock(&BTRFS_I(inode)->lock);
1346 }
287a0ab9 1347
75eff68e 1348 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1349 BTRFS_I(inode)->delalloc_bytes += len;
1350 root->fs_info->delalloc_bytes += len;
0cb59c99 1351 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1352 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1353 &root->fs_info->delalloc_inodes);
1354 }
75eff68e 1355 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1356 }
291d673e
CM
1357}
1358
d352ac68
CM
1359/*
1360 * extent_io.c clear_bit_hook, see set_bit_hook for why
1361 */
1bf85046
JM
1362static void btrfs_clear_bit_hook(struct inode *inode,
1363 struct extent_state *state, int *bits)
291d673e 1364{
75eff68e
CM
1365 /*
1366 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1367 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1368 * bit, which is only set or cleared with irqs on
1369 */
0ca1f7ce 1370 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1371 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1372 u64 len = state->end + 1 - state->start;
2cf8572d 1373 bool do_list = !btrfs_is_free_space_inode(root, inode);
bcbfce8a 1374
9e0baf60 1375 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1376 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1377 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1378 spin_lock(&BTRFS_I(inode)->lock);
1379 BTRFS_I(inode)->outstanding_extents--;
1380 spin_unlock(&BTRFS_I(inode)->lock);
1381 }
0ca1f7ce
YZ
1382
1383 if (*bits & EXTENT_DO_ACCOUNTING)
1384 btrfs_delalloc_release_metadata(inode, len);
1385
0cb59c99
JB
1386 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1387 && do_list)
0ca1f7ce 1388 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1389
75eff68e 1390 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1391 root->fs_info->delalloc_bytes -= len;
1392 BTRFS_I(inode)->delalloc_bytes -= len;
1393
0cb59c99 1394 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1395 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1396 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1397 }
75eff68e 1398 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1399 }
291d673e
CM
1400}
1401
d352ac68
CM
1402/*
1403 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1404 * we don't create bios that span stripes or chunks
1405 */
239b14b3 1406int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1407 size_t size, struct bio *bio,
1408 unsigned long bio_flags)
239b14b3
CM
1409{
1410 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1411 struct btrfs_mapping_tree *map_tree;
a62b9401 1412 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1413 u64 length = 0;
1414 u64 map_length;
239b14b3
CM
1415 int ret;
1416
771ed689
CM
1417 if (bio_flags & EXTENT_BIO_COMPRESSED)
1418 return 0;
1419
f2d8d74d 1420 length = bio->bi_size;
239b14b3
CM
1421 map_tree = &root->fs_info->mapping_tree;
1422 map_length = length;
cea9e445 1423 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1424 &map_length, NULL, 0);
cea9e445 1425
d397712b 1426 if (map_length < length + size)
239b14b3 1427 return 1;
411fc6bc 1428 return ret;
239b14b3
CM
1429}
1430
d352ac68
CM
1431/*
1432 * in order to insert checksums into the metadata in large chunks,
1433 * we wait until bio submission time. All the pages in the bio are
1434 * checksummed and sums are attached onto the ordered extent record.
1435 *
1436 * At IO completion time the cums attached on the ordered extent record
1437 * are inserted into the btree
1438 */
d397712b
CM
1439static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1440 struct bio *bio, int mirror_num,
eaf25d93
CM
1441 unsigned long bio_flags,
1442 u64 bio_offset)
065631f6 1443{
065631f6 1444 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1445 int ret = 0;
e015640f 1446
d20f7043 1447 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1448 BUG_ON(ret);
4a69a410
CM
1449 return 0;
1450}
e015640f 1451
4a69a410
CM
1452/*
1453 * in order to insert checksums into the metadata in large chunks,
1454 * we wait until bio submission time. All the pages in the bio are
1455 * checksummed and sums are attached onto the ordered extent record.
1456 *
1457 * At IO completion time the cums attached on the ordered extent record
1458 * are inserted into the btree
1459 */
b2950863 1460static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1461 int mirror_num, unsigned long bio_flags,
1462 u64 bio_offset)
4a69a410
CM
1463{
1464 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1465 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1466}
1467
d352ac68 1468/*
cad321ad
CM
1469 * extent_io.c submission hook. This does the right thing for csum calculation
1470 * on write, or reading the csums from the tree before a read
d352ac68 1471 */
b2950863 1472static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1473 int mirror_num, unsigned long bio_flags,
1474 u64 bio_offset)
44b8bd7e
CM
1475{
1476 struct btrfs_root *root = BTRFS_I(inode)->root;
1477 int ret = 0;
19b9bdb0 1478 int skip_sum;
44b8bd7e 1479
6cbff00f 1480 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1481
2cf8572d 1482 if (btrfs_is_free_space_inode(root, inode))
0cb59c99
JB
1483 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1484 else
1485 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1486 BUG_ON(ret);
065631f6 1487
7b6d91da 1488 if (!(rw & REQ_WRITE)) {
d20f7043 1489 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1490 return btrfs_submit_compressed_read(inode, bio,
1491 mirror_num, bio_flags);
c2db1073
TI
1492 } else if (!skip_sum) {
1493 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1494 if (ret)
1495 return ret;
1496 }
4d1b5fb4 1497 goto mapit;
19b9bdb0 1498 } else if (!skip_sum) {
17d217fe
YZ
1499 /* csum items have already been cloned */
1500 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1501 goto mapit;
19b9bdb0
CM
1502 /* we're doing a write, do the async checksumming */
1503 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1504 inode, rw, bio, mirror_num,
eaf25d93
CM
1505 bio_flags, bio_offset,
1506 __btrfs_submit_bio_start,
4a69a410 1507 __btrfs_submit_bio_done);
19b9bdb0
CM
1508 }
1509
0b86a832 1510mapit:
8b712842 1511 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1512}
6885f308 1513
d352ac68
CM
1514/*
1515 * given a list of ordered sums record them in the inode. This happens
1516 * at IO completion time based on sums calculated at bio submission time.
1517 */
ba1da2f4 1518static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1519 struct inode *inode, u64 file_offset,
1520 struct list_head *list)
1521{
e6dcd2dc
CM
1522 struct btrfs_ordered_sum *sum;
1523
c6e30871 1524 list_for_each_entry(sum, list, list) {
d20f7043
CM
1525 btrfs_csum_file_blocks(trans,
1526 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1527 }
1528 return 0;
1529}
1530
2ac55d41
JB
1531int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1532 struct extent_state **cached_state)
ea8c2819 1533{
d397712b 1534 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1535 WARN_ON(1);
ea8c2819 1536 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1537 cached_state, GFP_NOFS);
ea8c2819
CM
1538}
1539
d352ac68 1540/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1541struct btrfs_writepage_fixup {
1542 struct page *page;
1543 struct btrfs_work work;
1544};
1545
b2950863 1546static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1547{
1548 struct btrfs_writepage_fixup *fixup;
1549 struct btrfs_ordered_extent *ordered;
2ac55d41 1550 struct extent_state *cached_state = NULL;
247e743c
CM
1551 struct page *page;
1552 struct inode *inode;
1553 u64 page_start;
1554 u64 page_end;
1555
1556 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1557 page = fixup->page;
4a096752 1558again:
247e743c
CM
1559 lock_page(page);
1560 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1561 ClearPageChecked(page);
1562 goto out_page;
1563 }
1564
1565 inode = page->mapping->host;
1566 page_start = page_offset(page);
1567 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1568
2ac55d41
JB
1569 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1570 &cached_state, GFP_NOFS);
4a096752
CM
1571
1572 /* already ordered? We're done */
8b62b72b 1573 if (PagePrivate2(page))
247e743c 1574 goto out;
4a096752
CM
1575
1576 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1577 if (ordered) {
2ac55d41
JB
1578 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1579 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1580 unlock_page(page);
1581 btrfs_start_ordered_extent(inode, ordered, 1);
1582 goto again;
1583 }
247e743c 1584
0ca1f7ce 1585 BUG();
2ac55d41 1586 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1587 ClearPageChecked(page);
1588out:
2ac55d41
JB
1589 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1590 &cached_state, GFP_NOFS);
247e743c
CM
1591out_page:
1592 unlock_page(page);
1593 page_cache_release(page);
b897abec 1594 kfree(fixup);
247e743c
CM
1595}
1596
1597/*
1598 * There are a few paths in the higher layers of the kernel that directly
1599 * set the page dirty bit without asking the filesystem if it is a
1600 * good idea. This causes problems because we want to make sure COW
1601 * properly happens and the data=ordered rules are followed.
1602 *
c8b97818 1603 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1604 * hasn't been properly setup for IO. We kick off an async process
1605 * to fix it up. The async helper will wait for ordered extents, set
1606 * the delalloc bit and make it safe to write the page.
1607 */
b2950863 1608static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1609{
1610 struct inode *inode = page->mapping->host;
1611 struct btrfs_writepage_fixup *fixup;
1612 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1613
8b62b72b
CM
1614 /* this page is properly in the ordered list */
1615 if (TestClearPagePrivate2(page))
247e743c
CM
1616 return 0;
1617
1618 if (PageChecked(page))
1619 return -EAGAIN;
1620
1621 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1622 if (!fixup)
1623 return -EAGAIN;
f421950f 1624
247e743c
CM
1625 SetPageChecked(page);
1626 page_cache_get(page);
1627 fixup->work.func = btrfs_writepage_fixup_worker;
1628 fixup->page = page;
1629 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1630 return -EAGAIN;
1631}
1632
d899e052
YZ
1633static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1634 struct inode *inode, u64 file_pos,
1635 u64 disk_bytenr, u64 disk_num_bytes,
1636 u64 num_bytes, u64 ram_bytes,
1637 u8 compression, u8 encryption,
1638 u16 other_encoding, int extent_type)
1639{
1640 struct btrfs_root *root = BTRFS_I(inode)->root;
1641 struct btrfs_file_extent_item *fi;
1642 struct btrfs_path *path;
1643 struct extent_buffer *leaf;
1644 struct btrfs_key ins;
1645 u64 hint;
1646 int ret;
1647
1648 path = btrfs_alloc_path();
d8926bb3
MF
1649 if (!path)
1650 return -ENOMEM;
d899e052 1651
b9473439 1652 path->leave_spinning = 1;
a1ed835e
CM
1653
1654 /*
1655 * we may be replacing one extent in the tree with another.
1656 * The new extent is pinned in the extent map, and we don't want
1657 * to drop it from the cache until it is completely in the btree.
1658 *
1659 * So, tell btrfs_drop_extents to leave this extent in the cache.
1660 * the caller is expected to unpin it and allow it to be merged
1661 * with the others.
1662 */
920bbbfb
YZ
1663 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1664 &hint, 0);
d899e052
YZ
1665 BUG_ON(ret);
1666
33345d01 1667 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1668 ins.offset = file_pos;
1669 ins.type = BTRFS_EXTENT_DATA_KEY;
1670 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1671 BUG_ON(ret);
1672 leaf = path->nodes[0];
1673 fi = btrfs_item_ptr(leaf, path->slots[0],
1674 struct btrfs_file_extent_item);
1675 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1676 btrfs_set_file_extent_type(leaf, fi, extent_type);
1677 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1678 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1679 btrfs_set_file_extent_offset(leaf, fi, 0);
1680 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1681 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1682 btrfs_set_file_extent_compression(leaf, fi, compression);
1683 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1684 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1685
1686 btrfs_unlock_up_safe(path, 1);
1687 btrfs_set_lock_blocking(leaf);
1688
d899e052
YZ
1689 btrfs_mark_buffer_dirty(leaf);
1690
1691 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1692
1693 ins.objectid = disk_bytenr;
1694 ins.offset = disk_num_bytes;
1695 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1696 ret = btrfs_alloc_reserved_file_extent(trans, root,
1697 root->root_key.objectid,
33345d01 1698 btrfs_ino(inode), file_pos, &ins);
d899e052 1699 BUG_ON(ret);
d899e052 1700 btrfs_free_path(path);
b9473439 1701
d899e052
YZ
1702 return 0;
1703}
1704
5d13a98f
CM
1705/*
1706 * helper function for btrfs_finish_ordered_io, this
1707 * just reads in some of the csum leaves to prime them into ram
1708 * before we start the transaction. It limits the amount of btree
1709 * reads required while inside the transaction.
1710 */
d352ac68
CM
1711/* as ordered data IO finishes, this gets called so we can finish
1712 * an ordered extent if the range of bytes in the file it covers are
1713 * fully written.
1714 */
211f90e6 1715static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1716{
e6dcd2dc 1717 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1718 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1719 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1720 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1721 struct extent_state *cached_state = NULL;
261507a0 1722 int compress_type = 0;
e6dcd2dc 1723 int ret;
82d5902d 1724 bool nolock;
e6dcd2dc 1725
5a1a3df1
JB
1726 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1727 end - start + 1);
ba1da2f4 1728 if (!ret)
e6dcd2dc 1729 return 0;
e6dcd2dc 1730 BUG_ON(!ordered_extent);
efd049fb 1731
2cf8572d 1732 nolock = btrfs_is_free_space_inode(root, inode);
0cb59c99 1733
c2167754
YZ
1734 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1735 BUG_ON(!list_empty(&ordered_extent->list));
1736 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1737 if (!ret) {
0cb59c99 1738 if (nolock)
7a7eaa40 1739 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1740 else
7a7eaa40 1741 trans = btrfs_join_transaction(root);
3612b495 1742 BUG_ON(IS_ERR(trans));
0ca1f7ce 1743 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1744 ret = btrfs_update_inode(trans, root, inode);
1745 BUG_ON(ret);
c2167754
YZ
1746 }
1747 goto out;
1748 }
e6dcd2dc 1749
2ac55d41
JB
1750 lock_extent_bits(io_tree, ordered_extent->file_offset,
1751 ordered_extent->file_offset + ordered_extent->len - 1,
1752 0, &cached_state, GFP_NOFS);
e6dcd2dc 1753
0cb59c99 1754 if (nolock)
7a7eaa40 1755 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1756 else
7a7eaa40 1757 trans = btrfs_join_transaction(root);
3612b495 1758 BUG_ON(IS_ERR(trans));
0ca1f7ce 1759 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1760
c8b97818 1761 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1762 compress_type = ordered_extent->compress_type;
d899e052 1763 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1764 BUG_ON(compress_type);
920bbbfb 1765 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1766 ordered_extent->file_offset,
1767 ordered_extent->file_offset +
1768 ordered_extent->len);
1769 BUG_ON(ret);
1770 } else {
0af3d00b 1771 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1772 ret = insert_reserved_file_extent(trans, inode,
1773 ordered_extent->file_offset,
1774 ordered_extent->start,
1775 ordered_extent->disk_len,
1776 ordered_extent->len,
1777 ordered_extent->len,
261507a0 1778 compress_type, 0, 0,
d899e052 1779 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1780 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1781 ordered_extent->file_offset,
1782 ordered_extent->len);
d899e052
YZ
1783 BUG_ON(ret);
1784 }
2ac55d41
JB
1785 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1786 ordered_extent->file_offset +
1787 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1788
e6dcd2dc
CM
1789 add_pending_csums(trans, inode, ordered_extent->file_offset,
1790 &ordered_extent->list);
1791
1ef30be1 1792 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
a39f7521 1793 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1ef30be1
JB
1794 ret = btrfs_update_inode(trans, root, inode);
1795 BUG_ON(ret);
1796 }
1797 ret = 0;
c2167754 1798out:
5b0e95bf
JB
1799 if (root != root->fs_info->tree_root)
1800 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1801 if (trans) {
1802 if (nolock)
0cb59c99 1803 btrfs_end_transaction_nolock(trans, root);
5b0e95bf 1804 else
0cb59c99
JB
1805 btrfs_end_transaction(trans, root);
1806 }
1807
e6dcd2dc
CM
1808 /* once for us */
1809 btrfs_put_ordered_extent(ordered_extent);
1810 /* once for the tree */
1811 btrfs_put_ordered_extent(ordered_extent);
1812
e6dcd2dc
CM
1813 return 0;
1814}
1815
b2950863 1816static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1817 struct extent_state *state, int uptodate)
1818{
1abe9b8a 1819 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1820
8b62b72b 1821 ClearPagePrivate2(page);
211f90e6
CM
1822 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1823}
1824
d352ac68
CM
1825/*
1826 * When IO fails, either with EIO or csum verification fails, we
1827 * try other mirrors that might have a good copy of the data. This
1828 * io_failure_record is used to record state as we go through all the
1829 * mirrors. If another mirror has good data, the page is set up to date
1830 * and things continue. If a good mirror can't be found, the original
1831 * bio end_io callback is called to indicate things have failed.
1832 */
7e38326f
CM
1833struct io_failure_record {
1834 struct page *page;
1835 u64 start;
1836 u64 len;
1837 u64 logical;
d20f7043 1838 unsigned long bio_flags;
7e38326f
CM
1839 int last_mirror;
1840};
1841
b2950863 1842static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1843 struct page *page, u64 start, u64 end,
1844 struct extent_state *state)
7e38326f
CM
1845{
1846 struct io_failure_record *failrec = NULL;
1847 u64 private;
1848 struct extent_map *em;
1849 struct inode *inode = page->mapping->host;
1850 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1851 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1852 struct bio *bio;
1853 int num_copies;
1854 int ret;
1259ab75 1855 int rw;
7e38326f
CM
1856 u64 logical;
1857
1858 ret = get_state_private(failure_tree, start, &private);
1859 if (ret) {
7e38326f
CM
1860 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1861 if (!failrec)
1862 return -ENOMEM;
1863 failrec->start = start;
1864 failrec->len = end - start + 1;
1865 failrec->last_mirror = 0;
d20f7043 1866 failrec->bio_flags = 0;
7e38326f 1867
890871be 1868 read_lock(&em_tree->lock);
3b951516
CM
1869 em = lookup_extent_mapping(em_tree, start, failrec->len);
1870 if (em->start > start || em->start + em->len < start) {
1871 free_extent_map(em);
1872 em = NULL;
1873 }
890871be 1874 read_unlock(&em_tree->lock);
7e38326f 1875
c704005d 1876 if (IS_ERR_OR_NULL(em)) {
7e38326f
CM
1877 kfree(failrec);
1878 return -EIO;
1879 }
1880 logical = start - em->start;
1881 logical = em->block_start + logical;
d20f7043
CM
1882 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1883 logical = em->block_start;
1884 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1885 extent_set_compress_type(&failrec->bio_flags,
1886 em->compress_type);
d20f7043 1887 }
7e38326f
CM
1888 failrec->logical = logical;
1889 free_extent_map(em);
1890 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1891 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1892 set_state_private(failure_tree, start,
1893 (u64)(unsigned long)failrec);
7e38326f 1894 } else {
587f7704 1895 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1896 }
1897 num_copies = btrfs_num_copies(
1898 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1899 failrec->logical, failrec->len);
1900 failrec->last_mirror++;
1901 if (!state) {
cad321ad 1902 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1903 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1904 failrec->start,
1905 EXTENT_LOCKED);
1906 if (state && state->start != failrec->start)
1907 state = NULL;
cad321ad 1908 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1909 }
1910 if (!state || failrec->last_mirror > num_copies) {
1911 set_state_private(failure_tree, failrec->start, 0);
1912 clear_extent_bits(failure_tree, failrec->start,
1913 failrec->start + failrec->len - 1,
1914 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1915 kfree(failrec);
1916 return -EIO;
1917 }
1918 bio = bio_alloc(GFP_NOFS, 1);
1919 bio->bi_private = state;
1920 bio->bi_end_io = failed_bio->bi_end_io;
1921 bio->bi_sector = failrec->logical >> 9;
1922 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1923 bio->bi_size = 0;
d20f7043 1924
7e38326f 1925 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1926 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1927 rw = WRITE;
1928 else
1929 rw = READ;
1930
c2db1073 1931 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1932 failrec->last_mirror,
eaf25d93 1933 failrec->bio_flags, 0);
c2db1073 1934 return ret;
1259ab75
CM
1935}
1936
d352ac68
CM
1937/*
1938 * each time an IO finishes, we do a fast check in the IO failure tree
1939 * to see if we need to process or clean up an io_failure_record
1940 */
b2950863 1941static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1942{
1943 u64 private;
1944 u64 private_failure;
1945 struct io_failure_record *failure;
1946 int ret;
1947
1948 private = 0;
1949 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1950 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1951 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1952 start, &private_failure);
1953 if (ret == 0) {
1954 failure = (struct io_failure_record *)(unsigned long)
1955 private_failure;
1956 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1957 failure->start, 0);
1958 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1959 failure->start,
1960 failure->start + failure->len - 1,
1961 EXTENT_DIRTY | EXTENT_LOCKED,
1962 GFP_NOFS);
1963 kfree(failure);
1964 }
1965 }
7e38326f
CM
1966 return 0;
1967}
1968
d352ac68
CM
1969/*
1970 * when reads are done, we need to check csums to verify the data is correct
1971 * if there's a match, we allow the bio to finish. If not, we go through
1972 * the io_failure_record routines to find good copies
1973 */
b2950863 1974static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1975 struct extent_state *state)
07157aac 1976{
35ebb934 1977 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1978 struct inode *inode = page->mapping->host;
d1310b2e 1979 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1980 char *kaddr;
aadfeb6e 1981 u64 private = ~(u32)0;
07157aac 1982 int ret;
ff79f819
CM
1983 struct btrfs_root *root = BTRFS_I(inode)->root;
1984 u32 csum = ~(u32)0;
d1310b2e 1985
d20f7043
CM
1986 if (PageChecked(page)) {
1987 ClearPageChecked(page);
1988 goto good;
1989 }
6cbff00f
CH
1990
1991 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 1992 goto good;
17d217fe
YZ
1993
1994 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1995 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1996 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1997 GFP_NOFS);
b6cda9bc 1998 return 0;
17d217fe 1999 }
d20f7043 2000
c2e639f0 2001 if (state && state->start == start) {
70dec807
CM
2002 private = state->private;
2003 ret = 0;
2004 } else {
2005 ret = get_state_private(io_tree, start, &private);
2006 }
9ab86c8e 2007 kaddr = kmap_atomic(page, KM_USER0);
d397712b 2008 if (ret)
07157aac 2009 goto zeroit;
d397712b 2010
ff79f819
CM
2011 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2012 btrfs_csum_final(csum, (char *)&csum);
d397712b 2013 if (csum != private)
07157aac 2014 goto zeroit;
d397712b 2015
9ab86c8e 2016 kunmap_atomic(kaddr, KM_USER0);
d20f7043 2017good:
7e38326f
CM
2018 /* if the io failure tree for this inode is non-empty,
2019 * check to see if we've recovered from a failed IO
2020 */
1259ab75 2021 btrfs_clean_io_failures(inode, start);
07157aac
CM
2022 return 0;
2023
2024zeroit:
945d8962 2025 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2026 "private %llu\n",
2027 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2028 (unsigned long long)start, csum,
2029 (unsigned long long)private);
db94535d
CM
2030 memset(kaddr + offset, 1, end - start + 1);
2031 flush_dcache_page(page);
9ab86c8e 2032 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2033 if (private == 0)
2034 return 0;
7e38326f 2035 return -EIO;
07157aac 2036}
b888db2b 2037
24bbcf04
YZ
2038struct delayed_iput {
2039 struct list_head list;
2040 struct inode *inode;
2041};
2042
2043void btrfs_add_delayed_iput(struct inode *inode)
2044{
2045 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2046 struct delayed_iput *delayed;
2047
2048 if (atomic_add_unless(&inode->i_count, -1, 1))
2049 return;
2050
2051 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2052 delayed->inode = inode;
2053
2054 spin_lock(&fs_info->delayed_iput_lock);
2055 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2056 spin_unlock(&fs_info->delayed_iput_lock);
2057}
2058
2059void btrfs_run_delayed_iputs(struct btrfs_root *root)
2060{
2061 LIST_HEAD(list);
2062 struct btrfs_fs_info *fs_info = root->fs_info;
2063 struct delayed_iput *delayed;
2064 int empty;
2065
2066 spin_lock(&fs_info->delayed_iput_lock);
2067 empty = list_empty(&fs_info->delayed_iputs);
2068 spin_unlock(&fs_info->delayed_iput_lock);
2069 if (empty)
2070 return;
2071
2072 down_read(&root->fs_info->cleanup_work_sem);
2073 spin_lock(&fs_info->delayed_iput_lock);
2074 list_splice_init(&fs_info->delayed_iputs, &list);
2075 spin_unlock(&fs_info->delayed_iput_lock);
2076
2077 while (!list_empty(&list)) {
2078 delayed = list_entry(list.next, struct delayed_iput, list);
2079 list_del(&delayed->list);
2080 iput(delayed->inode);
2081 kfree(delayed);
2082 }
2083 up_read(&root->fs_info->cleanup_work_sem);
2084}
2085
d68fc57b
YZ
2086enum btrfs_orphan_cleanup_state {
2087 ORPHAN_CLEANUP_STARTED = 1,
2088 ORPHAN_CLEANUP_DONE = 2,
2089};
2090
2091/*
2092 * This is called in transaction commmit time. If there are no orphan
2093 * files in the subvolume, it removes orphan item and frees block_rsv
2094 * structure.
2095 */
2096void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2097 struct btrfs_root *root)
2098{
2099 int ret;
2100
2101 if (!list_empty(&root->orphan_list) ||
2102 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2103 return;
2104
2105 if (root->orphan_item_inserted &&
2106 btrfs_root_refs(&root->root_item) > 0) {
2107 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2108 root->root_key.objectid);
2109 BUG_ON(ret);
2110 root->orphan_item_inserted = 0;
2111 }
2112
2113 if (root->orphan_block_rsv) {
2114 WARN_ON(root->orphan_block_rsv->size > 0);
2115 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2116 root->orphan_block_rsv = NULL;
2117 }
2118}
2119
7b128766
JB
2120/*
2121 * This creates an orphan entry for the given inode in case something goes
2122 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2123 *
2124 * NOTE: caller of this function should reserve 5 units of metadata for
2125 * this function.
7b128766
JB
2126 */
2127int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2128{
2129 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2130 struct btrfs_block_rsv *block_rsv = NULL;
2131 int reserve = 0;
2132 int insert = 0;
2133 int ret;
7b128766 2134
d68fc57b
YZ
2135 if (!root->orphan_block_rsv) {
2136 block_rsv = btrfs_alloc_block_rsv(root);
b532402e
TI
2137 if (!block_rsv)
2138 return -ENOMEM;
d68fc57b 2139 }
7b128766 2140
d68fc57b
YZ
2141 spin_lock(&root->orphan_lock);
2142 if (!root->orphan_block_rsv) {
2143 root->orphan_block_rsv = block_rsv;
2144 } else if (block_rsv) {
2145 btrfs_free_block_rsv(root, block_rsv);
2146 block_rsv = NULL;
7b128766 2147 }
7b128766 2148
d68fc57b
YZ
2149 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2150 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2151#if 0
2152 /*
2153 * For proper ENOSPC handling, we should do orphan
2154 * cleanup when mounting. But this introduces backward
2155 * compatibility issue.
2156 */
2157 if (!xchg(&root->orphan_item_inserted, 1))
2158 insert = 2;
2159 else
2160 insert = 1;
2161#endif
2162 insert = 1;
7b128766
JB
2163 }
2164
d68fc57b
YZ
2165 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2166 BTRFS_I(inode)->orphan_meta_reserved = 1;
2167 reserve = 1;
2168 }
2169 spin_unlock(&root->orphan_lock);
7b128766 2170
d68fc57b
YZ
2171 /* grab metadata reservation from transaction handle */
2172 if (reserve) {
2173 ret = btrfs_orphan_reserve_metadata(trans, inode);
2174 BUG_ON(ret);
2175 }
7b128766 2176
d68fc57b
YZ
2177 /* insert an orphan item to track this unlinked/truncated file */
2178 if (insert >= 1) {
33345d01 2179 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2180 BUG_ON(ret);
2181 }
2182
2183 /* insert an orphan item to track subvolume contains orphan files */
2184 if (insert >= 2) {
2185 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2186 root->root_key.objectid);
2187 BUG_ON(ret);
2188 }
2189 return 0;
7b128766
JB
2190}
2191
2192/*
2193 * We have done the truncate/delete so we can go ahead and remove the orphan
2194 * item for this particular inode.
2195 */
2196int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2197{
2198 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2199 int delete_item = 0;
2200 int release_rsv = 0;
7b128766
JB
2201 int ret = 0;
2202
d68fc57b
YZ
2203 spin_lock(&root->orphan_lock);
2204 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2205 list_del_init(&BTRFS_I(inode)->i_orphan);
2206 delete_item = 1;
7b128766
JB
2207 }
2208
d68fc57b
YZ
2209 if (BTRFS_I(inode)->orphan_meta_reserved) {
2210 BTRFS_I(inode)->orphan_meta_reserved = 0;
2211 release_rsv = 1;
7b128766 2212 }
d68fc57b 2213 spin_unlock(&root->orphan_lock);
7b128766 2214
d68fc57b 2215 if (trans && delete_item) {
33345d01 2216 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2217 BUG_ON(ret);
2218 }
7b128766 2219
d68fc57b
YZ
2220 if (release_rsv)
2221 btrfs_orphan_release_metadata(inode);
7b128766 2222
d68fc57b 2223 return 0;
7b128766
JB
2224}
2225
2226/*
2227 * this cleans up any orphans that may be left on the list from the last use
2228 * of this root.
2229 */
66b4ffd1 2230int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2231{
2232 struct btrfs_path *path;
2233 struct extent_buffer *leaf;
7b128766
JB
2234 struct btrfs_key key, found_key;
2235 struct btrfs_trans_handle *trans;
2236 struct inode *inode;
8f6d7f4f 2237 u64 last_objectid = 0;
7b128766
JB
2238 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2239
d68fc57b 2240 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2241 return 0;
c71bf099
YZ
2242
2243 path = btrfs_alloc_path();
66b4ffd1
JB
2244 if (!path) {
2245 ret = -ENOMEM;
2246 goto out;
2247 }
7b128766
JB
2248 path->reada = -1;
2249
2250 key.objectid = BTRFS_ORPHAN_OBJECTID;
2251 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2252 key.offset = (u64)-1;
2253
7b128766
JB
2254 while (1) {
2255 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2256 if (ret < 0)
2257 goto out;
7b128766
JB
2258
2259 /*
2260 * if ret == 0 means we found what we were searching for, which
25985edc 2261 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2262 * find the key and see if we have stuff that matches
2263 */
2264 if (ret > 0) {
66b4ffd1 2265 ret = 0;
7b128766
JB
2266 if (path->slots[0] == 0)
2267 break;
2268 path->slots[0]--;
2269 }
2270
2271 /* pull out the item */
2272 leaf = path->nodes[0];
7b128766
JB
2273 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2274
2275 /* make sure the item matches what we want */
2276 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2277 break;
2278 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2279 break;
2280
2281 /* release the path since we're done with it */
b3b4aa74 2282 btrfs_release_path(path);
7b128766
JB
2283
2284 /*
2285 * this is where we are basically btrfs_lookup, without the
2286 * crossing root thing. we store the inode number in the
2287 * offset of the orphan item.
2288 */
8f6d7f4f
JB
2289
2290 if (found_key.offset == last_objectid) {
2291 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2292 "stopping orphan cleanup\n");
2293 ret = -EINVAL;
2294 goto out;
2295 }
2296
2297 last_objectid = found_key.offset;
2298
5d4f98a2
YZ
2299 found_key.objectid = found_key.offset;
2300 found_key.type = BTRFS_INODE_ITEM_KEY;
2301 found_key.offset = 0;
73f73415 2302 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2303 ret = PTR_RET(inode);
2304 if (ret && ret != -ESTALE)
66b4ffd1 2305 goto out;
7b128766
JB
2306
2307 /*
a8c9e576
JB
2308 * Inode is already gone but the orphan item is still there,
2309 * kill the orphan item.
7b128766 2310 */
a8c9e576
JB
2311 if (ret == -ESTALE) {
2312 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2313 if (IS_ERR(trans)) {
2314 ret = PTR_ERR(trans);
2315 goto out;
2316 }
a8c9e576
JB
2317 ret = btrfs_del_orphan_item(trans, root,
2318 found_key.objectid);
2319 BUG_ON(ret);
5b21f2ed 2320 btrfs_end_transaction(trans, root);
7b128766
JB
2321 continue;
2322 }
2323
a8c9e576
JB
2324 /*
2325 * add this inode to the orphan list so btrfs_orphan_del does
2326 * the proper thing when we hit it
2327 */
2328 spin_lock(&root->orphan_lock);
2329 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2330 spin_unlock(&root->orphan_lock);
2331
7b128766
JB
2332 /* if we have links, this was a truncate, lets do that */
2333 if (inode->i_nlink) {
a41ad394
JB
2334 if (!S_ISREG(inode->i_mode)) {
2335 WARN_ON(1);
2336 iput(inode);
2337 continue;
2338 }
7b128766 2339 nr_truncate++;
66b4ffd1 2340 ret = btrfs_truncate(inode);
7b128766
JB
2341 } else {
2342 nr_unlink++;
2343 }
2344
2345 /* this will do delete_inode and everything for us */
2346 iput(inode);
66b4ffd1
JB
2347 if (ret)
2348 goto out;
7b128766 2349 }
d68fc57b
YZ
2350 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2351
2352 if (root->orphan_block_rsv)
2353 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2354 (u64)-1);
2355
2356 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2357 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2358 if (!IS_ERR(trans))
2359 btrfs_end_transaction(trans, root);
d68fc57b 2360 }
7b128766
JB
2361
2362 if (nr_unlink)
2363 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2364 if (nr_truncate)
2365 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2366
2367out:
2368 if (ret)
2369 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2370 btrfs_free_path(path);
2371 return ret;
7b128766
JB
2372}
2373
46a53cca
CM
2374/*
2375 * very simple check to peek ahead in the leaf looking for xattrs. If we
2376 * don't find any xattrs, we know there can't be any acls.
2377 *
2378 * slot is the slot the inode is in, objectid is the objectid of the inode
2379 */
2380static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2381 int slot, u64 objectid)
2382{
2383 u32 nritems = btrfs_header_nritems(leaf);
2384 struct btrfs_key found_key;
2385 int scanned = 0;
2386
2387 slot++;
2388 while (slot < nritems) {
2389 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2390
2391 /* we found a different objectid, there must not be acls */
2392 if (found_key.objectid != objectid)
2393 return 0;
2394
2395 /* we found an xattr, assume we've got an acl */
2396 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2397 return 1;
2398
2399 /*
2400 * we found a key greater than an xattr key, there can't
2401 * be any acls later on
2402 */
2403 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2404 return 0;
2405
2406 slot++;
2407 scanned++;
2408
2409 /*
2410 * it goes inode, inode backrefs, xattrs, extents,
2411 * so if there are a ton of hard links to an inode there can
2412 * be a lot of backrefs. Don't waste time searching too hard,
2413 * this is just an optimization
2414 */
2415 if (scanned >= 8)
2416 break;
2417 }
2418 /* we hit the end of the leaf before we found an xattr or
2419 * something larger than an xattr. We have to assume the inode
2420 * has acls
2421 */
2422 return 1;
2423}
2424
d352ac68
CM
2425/*
2426 * read an inode from the btree into the in-memory inode
2427 */
5d4f98a2 2428static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2429{
2430 struct btrfs_path *path;
5f39d397 2431 struct extent_buffer *leaf;
39279cc3 2432 struct btrfs_inode_item *inode_item;
0b86a832 2433 struct btrfs_timespec *tspec;
39279cc3
CM
2434 struct btrfs_root *root = BTRFS_I(inode)->root;
2435 struct btrfs_key location;
46a53cca 2436 int maybe_acls;
618e21d5 2437 u32 rdev;
39279cc3 2438 int ret;
2f7e33d4
MX
2439 bool filled = false;
2440
2441 ret = btrfs_fill_inode(inode, &rdev);
2442 if (!ret)
2443 filled = true;
39279cc3
CM
2444
2445 path = btrfs_alloc_path();
1748f843
MF
2446 if (!path)
2447 goto make_bad;
2448
d90c7321 2449 path->leave_spinning = 1;
39279cc3 2450 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2451
39279cc3 2452 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2453 if (ret)
39279cc3 2454 goto make_bad;
39279cc3 2455
5f39d397 2456 leaf = path->nodes[0];
2f7e33d4
MX
2457
2458 if (filled)
2459 goto cache_acl;
2460
5f39d397
CM
2461 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2462 struct btrfs_inode_item);
5f39d397
CM
2463 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2464 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2465 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2466 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2467 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2468
2469 tspec = btrfs_inode_atime(inode_item);
2470 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2471 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2472
2473 tspec = btrfs_inode_mtime(inode_item);
2474 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2475 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2476
2477 tspec = btrfs_inode_ctime(inode_item);
2478 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2479 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2480
a76a3cd4 2481 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2482 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2483 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2484 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2485 inode->i_rdev = 0;
5f39d397
CM
2486 rdev = btrfs_inode_rdev(leaf, inode_item);
2487
aec7477b 2488 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2489 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2490cache_acl:
46a53cca
CM
2491 /*
2492 * try to precache a NULL acl entry for files that don't have
2493 * any xattrs or acls
2494 */
33345d01
LZ
2495 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2496 btrfs_ino(inode));
72c04902
AV
2497 if (!maybe_acls)
2498 cache_no_acl(inode);
46a53cca 2499
39279cc3 2500 btrfs_free_path(path);
39279cc3 2501
39279cc3 2502 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2503 case S_IFREG:
2504 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2505 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2506 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2507 inode->i_fop = &btrfs_file_operations;
2508 inode->i_op = &btrfs_file_inode_operations;
2509 break;
2510 case S_IFDIR:
2511 inode->i_fop = &btrfs_dir_file_operations;
2512 if (root == root->fs_info->tree_root)
2513 inode->i_op = &btrfs_dir_ro_inode_operations;
2514 else
2515 inode->i_op = &btrfs_dir_inode_operations;
2516 break;
2517 case S_IFLNK:
2518 inode->i_op = &btrfs_symlink_inode_operations;
2519 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2520 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2521 break;
618e21d5 2522 default:
0279b4cd 2523 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2524 init_special_inode(inode, inode->i_mode, rdev);
2525 break;
39279cc3 2526 }
6cbff00f
CH
2527
2528 btrfs_update_iflags(inode);
39279cc3
CM
2529 return;
2530
2531make_bad:
39279cc3 2532 btrfs_free_path(path);
39279cc3
CM
2533 make_bad_inode(inode);
2534}
2535
d352ac68
CM
2536/*
2537 * given a leaf and an inode, copy the inode fields into the leaf
2538 */
e02119d5
CM
2539static void fill_inode_item(struct btrfs_trans_handle *trans,
2540 struct extent_buffer *leaf,
5f39d397 2541 struct btrfs_inode_item *item,
39279cc3
CM
2542 struct inode *inode)
2543{
5f39d397
CM
2544 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2545 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2546 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2547 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2548 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2549
2550 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2551 inode->i_atime.tv_sec);
2552 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2553 inode->i_atime.tv_nsec);
2554
2555 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2556 inode->i_mtime.tv_sec);
2557 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2558 inode->i_mtime.tv_nsec);
2559
2560 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2561 inode->i_ctime.tv_sec);
2562 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2563 inode->i_ctime.tv_nsec);
2564
a76a3cd4 2565 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2566 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2567 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2568 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2569 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2570 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2571 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2572}
2573
d352ac68
CM
2574/*
2575 * copy everything in the in-memory inode into the btree.
2576 */
d397712b
CM
2577noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2578 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2579{
2580 struct btrfs_inode_item *inode_item;
2581 struct btrfs_path *path;
5f39d397 2582 struct extent_buffer *leaf;
39279cc3
CM
2583 int ret;
2584
16cdcec7 2585 /*
149e2d76
MX
2586 * If the inode is a free space inode, we can deadlock during commit
2587 * if we put it into the delayed code.
2588 *
2589 * The data relocation inode should also be directly updated
2590 * without delay
16cdcec7 2591 */
2cf8572d 2592 if (!btrfs_is_free_space_inode(root, inode)
149e2d76 2593 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
16cdcec7
MX
2594 ret = btrfs_delayed_update_inode(trans, root, inode);
2595 if (!ret)
2596 btrfs_set_inode_last_trans(trans, inode);
2597 return ret;
2598 }
2599
39279cc3 2600 path = btrfs_alloc_path();
16cdcec7
MX
2601 if (!path)
2602 return -ENOMEM;
2603
b9473439 2604 path->leave_spinning = 1;
16cdcec7
MX
2605 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2606 1);
39279cc3
CM
2607 if (ret) {
2608 if (ret > 0)
2609 ret = -ENOENT;
2610 goto failed;
2611 }
2612
b4ce94de 2613 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2614 leaf = path->nodes[0];
2615 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2616 struct btrfs_inode_item);
39279cc3 2617
e02119d5 2618 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2619 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2620 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2621 ret = 0;
2622failed:
39279cc3
CM
2623 btrfs_free_path(path);
2624 return ret;
2625}
2626
d352ac68
CM
2627/*
2628 * unlink helper that gets used here in inode.c and in the tree logging
2629 * recovery code. It remove a link in a directory with a given name, and
2630 * also drops the back refs in the inode to the directory
2631 */
92986796
AV
2632static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2633 struct btrfs_root *root,
2634 struct inode *dir, struct inode *inode,
2635 const char *name, int name_len)
39279cc3
CM
2636{
2637 struct btrfs_path *path;
39279cc3 2638 int ret = 0;
5f39d397 2639 struct extent_buffer *leaf;
39279cc3 2640 struct btrfs_dir_item *di;
5f39d397 2641 struct btrfs_key key;
aec7477b 2642 u64 index;
33345d01
LZ
2643 u64 ino = btrfs_ino(inode);
2644 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2645
2646 path = btrfs_alloc_path();
54aa1f4d
CM
2647 if (!path) {
2648 ret = -ENOMEM;
554233a6 2649 goto out;
54aa1f4d
CM
2650 }
2651
b9473439 2652 path->leave_spinning = 1;
33345d01 2653 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2654 name, name_len, -1);
2655 if (IS_ERR(di)) {
2656 ret = PTR_ERR(di);
2657 goto err;
2658 }
2659 if (!di) {
2660 ret = -ENOENT;
2661 goto err;
2662 }
5f39d397
CM
2663 leaf = path->nodes[0];
2664 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2665 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2666 if (ret)
2667 goto err;
b3b4aa74 2668 btrfs_release_path(path);
39279cc3 2669
33345d01
LZ
2670 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2671 dir_ino, &index);
aec7477b 2672 if (ret) {
d397712b 2673 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2674 "inode %llu parent %llu\n", name_len, name,
2675 (unsigned long long)ino, (unsigned long long)dir_ino);
aec7477b
JB
2676 goto err;
2677 }
2678
16cdcec7
MX
2679 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2680 if (ret)
39279cc3 2681 goto err;
39279cc3 2682
e02119d5 2683 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2684 inode, dir_ino);
49eb7e46 2685 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2686
2687 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2688 dir, index);
6418c961
CM
2689 if (ret == -ENOENT)
2690 ret = 0;
39279cc3
CM
2691err:
2692 btrfs_free_path(path);
e02119d5
CM
2693 if (ret)
2694 goto out;
2695
2696 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2697 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2698 btrfs_update_inode(trans, root, dir);
e02119d5 2699out:
39279cc3
CM
2700 return ret;
2701}
2702
92986796
AV
2703int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2704 struct btrfs_root *root,
2705 struct inode *dir, struct inode *inode,
2706 const char *name, int name_len)
2707{
2708 int ret;
2709 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2710 if (!ret) {
2711 btrfs_drop_nlink(inode);
2712 ret = btrfs_update_inode(trans, root, inode);
2713 }
2714 return ret;
2715}
2716
2717
a22285a6
YZ
2718/* helper to check if there is any shared block in the path */
2719static int check_path_shared(struct btrfs_root *root,
2720 struct btrfs_path *path)
39279cc3 2721{
a22285a6
YZ
2722 struct extent_buffer *eb;
2723 int level;
0e4dcbef 2724 u64 refs = 1;
5df6a9f6 2725
a22285a6 2726 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2727 int ret;
2728
a22285a6
YZ
2729 if (!path->nodes[level])
2730 break;
2731 eb = path->nodes[level];
2732 if (!btrfs_block_can_be_shared(root, eb))
2733 continue;
2734 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2735 &refs, NULL);
2736 if (refs > 1)
2737 return 1;
5df6a9f6 2738 }
dedefd72 2739 return 0;
39279cc3
CM
2740}
2741
a22285a6
YZ
2742/*
2743 * helper to start transaction for unlink and rmdir.
2744 *
2745 * unlink and rmdir are special in btrfs, they do not always free space.
2746 * so in enospc case, we should make sure they will free space before
2747 * allowing them to use the global metadata reservation.
2748 */
2749static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2750 struct dentry *dentry)
4df27c4d 2751{
39279cc3 2752 struct btrfs_trans_handle *trans;
a22285a6 2753 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2754 struct btrfs_path *path;
a22285a6 2755 struct btrfs_inode_ref *ref;
4df27c4d 2756 struct btrfs_dir_item *di;
7b128766 2757 struct inode *inode = dentry->d_inode;
4df27c4d 2758 u64 index;
a22285a6
YZ
2759 int check_link = 1;
2760 int err = -ENOSPC;
4df27c4d 2761 int ret;
33345d01
LZ
2762 u64 ino = btrfs_ino(inode);
2763 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2764
e70bea5f
JB
2765 /*
2766 * 1 for the possible orphan item
2767 * 1 for the dir item
2768 * 1 for the dir index
2769 * 1 for the inode ref
2770 * 1 for the inode ref in the tree log
2771 * 2 for the dir entries in the log
2772 * 1 for the inode
2773 */
2774 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2775 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2776 return trans;
4df27c4d 2777
33345d01 2778 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2779 return ERR_PTR(-ENOSPC);
4df27c4d 2780
a22285a6
YZ
2781 /* check if there is someone else holds reference */
2782 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2783 return ERR_PTR(-ENOSPC);
4df27c4d 2784
a22285a6
YZ
2785 if (atomic_read(&inode->i_count) > 2)
2786 return ERR_PTR(-ENOSPC);
4df27c4d 2787
a22285a6
YZ
2788 if (xchg(&root->fs_info->enospc_unlink, 1))
2789 return ERR_PTR(-ENOSPC);
2790
2791 path = btrfs_alloc_path();
2792 if (!path) {
2793 root->fs_info->enospc_unlink = 0;
2794 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2795 }
2796
3880a1b4
JB
2797 /* 1 for the orphan item */
2798 trans = btrfs_start_transaction(root, 1);
5df6a9f6 2799 if (IS_ERR(trans)) {
a22285a6
YZ
2800 btrfs_free_path(path);
2801 root->fs_info->enospc_unlink = 0;
2802 return trans;
2803 }
4df27c4d 2804
a22285a6
YZ
2805 path->skip_locking = 1;
2806 path->search_commit_root = 1;
4df27c4d 2807
a22285a6
YZ
2808 ret = btrfs_lookup_inode(trans, root, path,
2809 &BTRFS_I(dir)->location, 0);
2810 if (ret < 0) {
2811 err = ret;
2812 goto out;
2813 }
2814 if (ret == 0) {
2815 if (check_path_shared(root, path))
2816 goto out;
2817 } else {
2818 check_link = 0;
5df6a9f6 2819 }
b3b4aa74 2820 btrfs_release_path(path);
a22285a6
YZ
2821
2822 ret = btrfs_lookup_inode(trans, root, path,
2823 &BTRFS_I(inode)->location, 0);
2824 if (ret < 0) {
2825 err = ret;
2826 goto out;
2827 }
2828 if (ret == 0) {
2829 if (check_path_shared(root, path))
2830 goto out;
2831 } else {
2832 check_link = 0;
2833 }
b3b4aa74 2834 btrfs_release_path(path);
a22285a6
YZ
2835
2836 if (ret == 0 && S_ISREG(inode->i_mode)) {
2837 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2838 ino, (u64)-1, 0);
a22285a6
YZ
2839 if (ret < 0) {
2840 err = ret;
2841 goto out;
2842 }
2843 BUG_ON(ret == 0);
2844 if (check_path_shared(root, path))
2845 goto out;
b3b4aa74 2846 btrfs_release_path(path);
a22285a6
YZ
2847 }
2848
2849 if (!check_link) {
2850 err = 0;
2851 goto out;
2852 }
2853
33345d01 2854 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2855 dentry->d_name.name, dentry->d_name.len, 0);
2856 if (IS_ERR(di)) {
2857 err = PTR_ERR(di);
2858 goto out;
2859 }
2860 if (di) {
2861 if (check_path_shared(root, path))
2862 goto out;
2863 } else {
2864 err = 0;
2865 goto out;
2866 }
b3b4aa74 2867 btrfs_release_path(path);
a22285a6
YZ
2868
2869 ref = btrfs_lookup_inode_ref(trans, root, path,
2870 dentry->d_name.name, dentry->d_name.len,
33345d01 2871 ino, dir_ino, 0);
a22285a6
YZ
2872 if (IS_ERR(ref)) {
2873 err = PTR_ERR(ref);
2874 goto out;
2875 }
2876 BUG_ON(!ref);
2877 if (check_path_shared(root, path))
2878 goto out;
2879 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 2880 btrfs_release_path(path);
a22285a6 2881
16cdcec7
MX
2882 /*
2883 * This is a commit root search, if we can lookup inode item and other
2884 * relative items in the commit root, it means the transaction of
2885 * dir/file creation has been committed, and the dir index item that we
2886 * delay to insert has also been inserted into the commit root. So
2887 * we needn't worry about the delayed insertion of the dir index item
2888 * here.
2889 */
33345d01 2890 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
2891 dentry->d_name.name, dentry->d_name.len, 0);
2892 if (IS_ERR(di)) {
2893 err = PTR_ERR(di);
2894 goto out;
2895 }
2896 BUG_ON(ret == -ENOENT);
2897 if (check_path_shared(root, path))
2898 goto out;
2899
2900 err = 0;
2901out:
2902 btrfs_free_path(path);
3880a1b4
JB
2903 /* Migrate the orphan reservation over */
2904 if (!err)
2905 err = btrfs_block_rsv_migrate(trans->block_rsv,
2906 &root->fs_info->global_block_rsv,
5a77d76c 2907 trans->bytes_reserved);
3880a1b4 2908
a22285a6
YZ
2909 if (err) {
2910 btrfs_end_transaction(trans, root);
2911 root->fs_info->enospc_unlink = 0;
2912 return ERR_PTR(err);
2913 }
2914
2915 trans->block_rsv = &root->fs_info->global_block_rsv;
2916 return trans;
2917}
2918
2919static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2920 struct btrfs_root *root)
2921{
2922 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
5a77d76c
JB
2923 btrfs_block_rsv_release(root, trans->block_rsv,
2924 trans->bytes_reserved);
2925 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
2926 BUG_ON(!root->fs_info->enospc_unlink);
2927 root->fs_info->enospc_unlink = 0;
2928 }
2929 btrfs_end_transaction_throttle(trans, root);
2930}
2931
2932static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2933{
2934 struct btrfs_root *root = BTRFS_I(dir)->root;
2935 struct btrfs_trans_handle *trans;
2936 struct inode *inode = dentry->d_inode;
2937 int ret;
2938 unsigned long nr = 0;
2939
2940 trans = __unlink_start_trans(dir, dentry);
2941 if (IS_ERR(trans))
2942 return PTR_ERR(trans);
5f39d397 2943
12fcfd22
CM
2944 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2945
e02119d5
CM
2946 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2947 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
2948 if (ret)
2949 goto out;
7b128766 2950
a22285a6 2951 if (inode->i_nlink == 0) {
7b128766 2952 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
2953 if (ret)
2954 goto out;
a22285a6 2955 }
7b128766 2956
b532402e 2957out:
d3c2fdcf 2958 nr = trans->blocks_used;
a22285a6 2959 __unlink_end_trans(trans, root);
d3c2fdcf 2960 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2961 return ret;
2962}
2963
4df27c4d
YZ
2964int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2965 struct btrfs_root *root,
2966 struct inode *dir, u64 objectid,
2967 const char *name, int name_len)
2968{
2969 struct btrfs_path *path;
2970 struct extent_buffer *leaf;
2971 struct btrfs_dir_item *di;
2972 struct btrfs_key key;
2973 u64 index;
2974 int ret;
33345d01 2975 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
2976
2977 path = btrfs_alloc_path();
2978 if (!path)
2979 return -ENOMEM;
2980
33345d01 2981 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 2982 name, name_len, -1);
c704005d 2983 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
2984
2985 leaf = path->nodes[0];
2986 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2987 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2988 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2989 BUG_ON(ret);
b3b4aa74 2990 btrfs_release_path(path);
4df27c4d
YZ
2991
2992 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2993 objectid, root->root_key.objectid,
33345d01 2994 dir_ino, &index, name, name_len);
4df27c4d
YZ
2995 if (ret < 0) {
2996 BUG_ON(ret != -ENOENT);
33345d01 2997 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 2998 name, name_len);
c704005d 2999 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
3000
3001 leaf = path->nodes[0];
3002 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3003 btrfs_release_path(path);
4df27c4d
YZ
3004 index = key.offset;
3005 }
945d8962 3006 btrfs_release_path(path);
4df27c4d 3007
16cdcec7 3008 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4df27c4d 3009 BUG_ON(ret);
4df27c4d
YZ
3010
3011 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3012 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3013 ret = btrfs_update_inode(trans, root, dir);
3014 BUG_ON(ret);
4df27c4d 3015
71d7aed0 3016 btrfs_free_path(path);
4df27c4d
YZ
3017 return 0;
3018}
3019
39279cc3
CM
3020static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3021{
3022 struct inode *inode = dentry->d_inode;
1832a6d5 3023 int err = 0;
39279cc3 3024 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3025 struct btrfs_trans_handle *trans;
1832a6d5 3026 unsigned long nr = 0;
39279cc3 3027
3394e160 3028 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 3029 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3030 return -ENOTEMPTY;
3031
a22285a6
YZ
3032 trans = __unlink_start_trans(dir, dentry);
3033 if (IS_ERR(trans))
5df6a9f6 3034 return PTR_ERR(trans);
5df6a9f6 3035
33345d01 3036 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3037 err = btrfs_unlink_subvol(trans, root, dir,
3038 BTRFS_I(inode)->location.objectid,
3039 dentry->d_name.name,
3040 dentry->d_name.len);
3041 goto out;
3042 }
3043
7b128766
JB
3044 err = btrfs_orphan_add(trans, inode);
3045 if (err)
4df27c4d 3046 goto out;
7b128766 3047
39279cc3 3048 /* now the directory is empty */
e02119d5
CM
3049 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3050 dentry->d_name.name, dentry->d_name.len);
d397712b 3051 if (!err)
dbe674a9 3052 btrfs_i_size_write(inode, 0);
4df27c4d 3053out:
d3c2fdcf 3054 nr = trans->blocks_used;
a22285a6 3055 __unlink_end_trans(trans, root);
d3c2fdcf 3056 btrfs_btree_balance_dirty(root, nr);
3954401f 3057
39279cc3
CM
3058 return err;
3059}
3060
39279cc3
CM
3061/*
3062 * this can truncate away extent items, csum items and directory items.
3063 * It starts at a high offset and removes keys until it can't find
d352ac68 3064 * any higher than new_size
39279cc3
CM
3065 *
3066 * csum items that cross the new i_size are truncated to the new size
3067 * as well.
7b128766
JB
3068 *
3069 * min_type is the minimum key type to truncate down to. If set to 0, this
3070 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3071 */
8082510e
YZ
3072int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3073 struct btrfs_root *root,
3074 struct inode *inode,
3075 u64 new_size, u32 min_type)
39279cc3 3076{
39279cc3 3077 struct btrfs_path *path;
5f39d397 3078 struct extent_buffer *leaf;
39279cc3 3079 struct btrfs_file_extent_item *fi;
8082510e
YZ
3080 struct btrfs_key key;
3081 struct btrfs_key found_key;
39279cc3 3082 u64 extent_start = 0;
db94535d 3083 u64 extent_num_bytes = 0;
5d4f98a2 3084 u64 extent_offset = 0;
39279cc3 3085 u64 item_end = 0;
8082510e
YZ
3086 u64 mask = root->sectorsize - 1;
3087 u32 found_type = (u8)-1;
39279cc3
CM
3088 int found_extent;
3089 int del_item;
85e21bac
CM
3090 int pending_del_nr = 0;
3091 int pending_del_slot = 0;
179e29e4 3092 int extent_type = -1;
771ed689 3093 int encoding;
8082510e
YZ
3094 int ret;
3095 int err = 0;
33345d01 3096 u64 ino = btrfs_ino(inode);
8082510e
YZ
3097
3098 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3099
0eb0e19c
MF
3100 path = btrfs_alloc_path();
3101 if (!path)
3102 return -ENOMEM;
3103 path->reada = -1;
3104
0af3d00b 3105 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3106 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3107
16cdcec7
MX
3108 /*
3109 * This function is also used to drop the items in the log tree before
3110 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3111 * it is used to drop the loged items. So we shouldn't kill the delayed
3112 * items.
3113 */
3114 if (min_type == 0 && root == BTRFS_I(inode)->root)
3115 btrfs_kill_delayed_inode_items(inode);
3116
33345d01 3117 key.objectid = ino;
39279cc3 3118 key.offset = (u64)-1;
5f39d397
CM
3119 key.type = (u8)-1;
3120
85e21bac 3121search_again:
b9473439 3122 path->leave_spinning = 1;
85e21bac 3123 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3124 if (ret < 0) {
3125 err = ret;
3126 goto out;
3127 }
d397712b 3128
85e21bac 3129 if (ret > 0) {
e02119d5
CM
3130 /* there are no items in the tree for us to truncate, we're
3131 * done
3132 */
8082510e
YZ
3133 if (path->slots[0] == 0)
3134 goto out;
85e21bac
CM
3135 path->slots[0]--;
3136 }
3137
d397712b 3138 while (1) {
39279cc3 3139 fi = NULL;
5f39d397
CM
3140 leaf = path->nodes[0];
3141 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3142 found_type = btrfs_key_type(&found_key);
771ed689 3143 encoding = 0;
39279cc3 3144
33345d01 3145 if (found_key.objectid != ino)
39279cc3 3146 break;
5f39d397 3147
85e21bac 3148 if (found_type < min_type)
39279cc3
CM
3149 break;
3150
5f39d397 3151 item_end = found_key.offset;
39279cc3 3152 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3153 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3154 struct btrfs_file_extent_item);
179e29e4 3155 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3156 encoding = btrfs_file_extent_compression(leaf, fi);
3157 encoding |= btrfs_file_extent_encryption(leaf, fi);
3158 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3159
179e29e4 3160 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3161 item_end +=
db94535d 3162 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3163 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3164 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3165 fi);
39279cc3 3166 }
008630c1 3167 item_end--;
39279cc3 3168 }
8082510e
YZ
3169 if (found_type > min_type) {
3170 del_item = 1;
3171 } else {
3172 if (item_end < new_size)
b888db2b 3173 break;
8082510e
YZ
3174 if (found_key.offset >= new_size)
3175 del_item = 1;
3176 else
3177 del_item = 0;
39279cc3 3178 }
39279cc3 3179 found_extent = 0;
39279cc3 3180 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3181 if (found_type != BTRFS_EXTENT_DATA_KEY)
3182 goto delete;
3183
3184 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3185 u64 num_dec;
db94535d 3186 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3187 if (!del_item && !encoding) {
db94535d
CM
3188 u64 orig_num_bytes =
3189 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3190 extent_num_bytes = new_size -
5f39d397 3191 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3192 extent_num_bytes = extent_num_bytes &
3193 ~((u64)root->sectorsize - 1);
db94535d
CM
3194 btrfs_set_file_extent_num_bytes(leaf, fi,
3195 extent_num_bytes);
3196 num_dec = (orig_num_bytes -
9069218d 3197 extent_num_bytes);
e02119d5 3198 if (root->ref_cows && extent_start != 0)
a76a3cd4 3199 inode_sub_bytes(inode, num_dec);
5f39d397 3200 btrfs_mark_buffer_dirty(leaf);
39279cc3 3201 } else {
db94535d
CM
3202 extent_num_bytes =
3203 btrfs_file_extent_disk_num_bytes(leaf,
3204 fi);
5d4f98a2
YZ
3205 extent_offset = found_key.offset -
3206 btrfs_file_extent_offset(leaf, fi);
3207
39279cc3 3208 /* FIXME blocksize != 4096 */
9069218d 3209 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3210 if (extent_start != 0) {
3211 found_extent = 1;
e02119d5 3212 if (root->ref_cows)
a76a3cd4 3213 inode_sub_bytes(inode, num_dec);
e02119d5 3214 }
39279cc3 3215 }
9069218d 3216 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3217 /*
3218 * we can't truncate inline items that have had
3219 * special encodings
3220 */
3221 if (!del_item &&
3222 btrfs_file_extent_compression(leaf, fi) == 0 &&
3223 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3224 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3225 u32 size = new_size - found_key.offset;
3226
3227 if (root->ref_cows) {
a76a3cd4
YZ
3228 inode_sub_bytes(inode, item_end + 1 -
3229 new_size);
e02119d5
CM
3230 }
3231 size =
3232 btrfs_file_extent_calc_inline_size(size);
9069218d 3233 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3234 size, 1);
e02119d5 3235 } else if (root->ref_cows) {
a76a3cd4
YZ
3236 inode_sub_bytes(inode, item_end + 1 -
3237 found_key.offset);
9069218d 3238 }
39279cc3 3239 }
179e29e4 3240delete:
39279cc3 3241 if (del_item) {
85e21bac
CM
3242 if (!pending_del_nr) {
3243 /* no pending yet, add ourselves */
3244 pending_del_slot = path->slots[0];
3245 pending_del_nr = 1;
3246 } else if (pending_del_nr &&
3247 path->slots[0] + 1 == pending_del_slot) {
3248 /* hop on the pending chunk */
3249 pending_del_nr++;
3250 pending_del_slot = path->slots[0];
3251 } else {
d397712b 3252 BUG();
85e21bac 3253 }
39279cc3
CM
3254 } else {
3255 break;
3256 }
0af3d00b
JB
3257 if (found_extent && (root->ref_cows ||
3258 root == root->fs_info->tree_root)) {
b9473439 3259 btrfs_set_path_blocking(path);
39279cc3 3260 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3261 extent_num_bytes, 0,
3262 btrfs_header_owner(leaf),
33345d01 3263 ino, extent_offset);
39279cc3
CM
3264 BUG_ON(ret);
3265 }
85e21bac 3266
8082510e
YZ
3267 if (found_type == BTRFS_INODE_ITEM_KEY)
3268 break;
3269
3270 if (path->slots[0] == 0 ||
3271 path->slots[0] != pending_del_slot) {
82d5902d
LZ
3272 if (root->ref_cows &&
3273 BTRFS_I(inode)->location.objectid !=
3274 BTRFS_FREE_INO_OBJECTID) {
8082510e
YZ
3275 err = -EAGAIN;
3276 goto out;
3277 }
3278 if (pending_del_nr) {
3279 ret = btrfs_del_items(trans, root, path,
3280 pending_del_slot,
3281 pending_del_nr);
3282 BUG_ON(ret);
3283 pending_del_nr = 0;
3284 }
b3b4aa74 3285 btrfs_release_path(path);
85e21bac 3286 goto search_again;
8082510e
YZ
3287 } else {
3288 path->slots[0]--;
85e21bac 3289 }
39279cc3 3290 }
8082510e 3291out:
85e21bac
CM
3292 if (pending_del_nr) {
3293 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3294 pending_del_nr);
d68fc57b 3295 BUG_ON(ret);
85e21bac 3296 }
39279cc3 3297 btrfs_free_path(path);
8082510e 3298 return err;
39279cc3
CM
3299}
3300
3301/*
3302 * taken from block_truncate_page, but does cow as it zeros out
3303 * any bytes left in the last page in the file.
3304 */
3305static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3306{
3307 struct inode *inode = mapping->host;
db94535d 3308 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3309 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3310 struct btrfs_ordered_extent *ordered;
2ac55d41 3311 struct extent_state *cached_state = NULL;
e6dcd2dc 3312 char *kaddr;
db94535d 3313 u32 blocksize = root->sectorsize;
39279cc3
CM
3314 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3315 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3316 struct page *page;
3b16a4e3 3317 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3318 int ret = 0;
a52d9a80 3319 u64 page_start;
e6dcd2dc 3320 u64 page_end;
39279cc3
CM
3321
3322 if ((offset & (blocksize - 1)) == 0)
3323 goto out;
0ca1f7ce 3324 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3325 if (ret)
3326 goto out;
39279cc3
CM
3327
3328 ret = -ENOMEM;
211c17f5 3329again:
3b16a4e3 3330 page = find_or_create_page(mapping, index, mask);
5d5e103a 3331 if (!page) {
0ca1f7ce 3332 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3333 goto out;
5d5e103a 3334 }
e6dcd2dc
CM
3335
3336 page_start = page_offset(page);
3337 page_end = page_start + PAGE_CACHE_SIZE - 1;
3338
39279cc3 3339 if (!PageUptodate(page)) {
9ebefb18 3340 ret = btrfs_readpage(NULL, page);
39279cc3 3341 lock_page(page);
211c17f5
CM
3342 if (page->mapping != mapping) {
3343 unlock_page(page);
3344 page_cache_release(page);
3345 goto again;
3346 }
39279cc3
CM
3347 if (!PageUptodate(page)) {
3348 ret = -EIO;
89642229 3349 goto out_unlock;
39279cc3
CM
3350 }
3351 }
211c17f5 3352 wait_on_page_writeback(page);
e6dcd2dc 3353
2ac55d41
JB
3354 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3355 GFP_NOFS);
e6dcd2dc
CM
3356 set_page_extent_mapped(page);
3357
3358 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3359 if (ordered) {
2ac55d41
JB
3360 unlock_extent_cached(io_tree, page_start, page_end,
3361 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3362 unlock_page(page);
3363 page_cache_release(page);
eb84ae03 3364 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3365 btrfs_put_ordered_extent(ordered);
3366 goto again;
3367 }
3368
2ac55d41 3369 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3370 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3371 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3372
2ac55d41
JB
3373 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3374 &cached_state);
9ed74f2d 3375 if (ret) {
2ac55d41
JB
3376 unlock_extent_cached(io_tree, page_start, page_end,
3377 &cached_state, GFP_NOFS);
9ed74f2d
JB
3378 goto out_unlock;
3379 }
3380
e6dcd2dc
CM
3381 ret = 0;
3382 if (offset != PAGE_CACHE_SIZE) {
3383 kaddr = kmap(page);
3384 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3385 flush_dcache_page(page);
3386 kunmap(page);
3387 }
247e743c 3388 ClearPageChecked(page);
e6dcd2dc 3389 set_page_dirty(page);
2ac55d41
JB
3390 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3391 GFP_NOFS);
39279cc3 3392
89642229 3393out_unlock:
5d5e103a 3394 if (ret)
0ca1f7ce 3395 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3396 unlock_page(page);
3397 page_cache_release(page);
3398out:
3399 return ret;
3400}
3401
695a0d0d
JB
3402/*
3403 * This function puts in dummy file extents for the area we're creating a hole
3404 * for. So if we are truncating this file to a larger size we need to insert
3405 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3406 * the range between oldsize and size
3407 */
a41ad394 3408int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3409{
9036c102
YZ
3410 struct btrfs_trans_handle *trans;
3411 struct btrfs_root *root = BTRFS_I(inode)->root;
3412 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3413 struct extent_map *em = NULL;
2ac55d41 3414 struct extent_state *cached_state = NULL;
9036c102 3415 u64 mask = root->sectorsize - 1;
a41ad394 3416 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3417 u64 block_end = (size + mask) & ~mask;
3418 u64 last_byte;
3419 u64 cur_offset;
3420 u64 hole_size;
9ed74f2d 3421 int err = 0;
39279cc3 3422
9036c102
YZ
3423 if (size <= hole_start)
3424 return 0;
3425
9036c102
YZ
3426 while (1) {
3427 struct btrfs_ordered_extent *ordered;
3428 btrfs_wait_ordered_range(inode, hole_start,
3429 block_end - hole_start);
2ac55d41
JB
3430 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3431 &cached_state, GFP_NOFS);
9036c102
YZ
3432 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3433 if (!ordered)
3434 break;
2ac55d41
JB
3435 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3436 &cached_state, GFP_NOFS);
9036c102
YZ
3437 btrfs_put_ordered_extent(ordered);
3438 }
39279cc3 3439
9036c102
YZ
3440 cur_offset = hole_start;
3441 while (1) {
3442 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3443 block_end - cur_offset, 0);
c704005d 3444 BUG_ON(IS_ERR_OR_NULL(em));
9036c102
YZ
3445 last_byte = min(extent_map_end(em), block_end);
3446 last_byte = (last_byte + mask) & ~mask;
8082510e 3447 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3448 u64 hint_byte = 0;
9036c102 3449 hole_size = last_byte - cur_offset;
9ed74f2d 3450
a22285a6
YZ
3451 trans = btrfs_start_transaction(root, 2);
3452 if (IS_ERR(trans)) {
3453 err = PTR_ERR(trans);
9ed74f2d 3454 break;
a22285a6 3455 }
8082510e
YZ
3456
3457 err = btrfs_drop_extents(trans, inode, cur_offset,
3458 cur_offset + hole_size,
3459 &hint_byte, 1);
5b397377
MX
3460 if (err) {
3461 btrfs_end_transaction(trans, root);
3893e33b 3462 break;
5b397377 3463 }
8082510e 3464
9036c102 3465 err = btrfs_insert_file_extent(trans, root,
33345d01 3466 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3467 0, hole_size, 0, hole_size,
3468 0, 0, 0);
5b397377
MX
3469 if (err) {
3470 btrfs_end_transaction(trans, root);
3893e33b 3471 break;
5b397377 3472 }
8082510e 3473
9036c102
YZ
3474 btrfs_drop_extent_cache(inode, hole_start,
3475 last_byte - 1, 0);
8082510e
YZ
3476
3477 btrfs_end_transaction(trans, root);
9036c102
YZ
3478 }
3479 free_extent_map(em);
a22285a6 3480 em = NULL;
9036c102 3481 cur_offset = last_byte;
8082510e 3482 if (cur_offset >= block_end)
9036c102
YZ
3483 break;
3484 }
1832a6d5 3485
a22285a6 3486 free_extent_map(em);
2ac55d41
JB
3487 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3488 GFP_NOFS);
9036c102
YZ
3489 return err;
3490}
39279cc3 3491
a41ad394 3492static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3493{
a41ad394 3494 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3495 int ret;
3496
a41ad394 3497 if (newsize == oldsize)
8082510e
YZ
3498 return 0;
3499
a41ad394
JB
3500 if (newsize > oldsize) {
3501 i_size_write(inode, newsize);
3502 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3503 truncate_pagecache(inode, oldsize, newsize);
3504 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3505 if (ret) {
a41ad394 3506 btrfs_setsize(inode, oldsize);
8082510e
YZ
3507 return ret;
3508 }
3509
930f028a 3510 mark_inode_dirty(inode);
a41ad394 3511 } else {
8082510e 3512
a41ad394
JB
3513 /*
3514 * We're truncating a file that used to have good data down to
3515 * zero. Make sure it gets into the ordered flush list so that
3516 * any new writes get down to disk quickly.
3517 */
3518 if (newsize == 0)
3519 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3520
a41ad394
JB
3521 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3522 truncate_setsize(inode, newsize);
3523 ret = btrfs_truncate(inode);
8082510e
YZ
3524 }
3525
a41ad394 3526 return ret;
8082510e
YZ
3527}
3528
9036c102
YZ
3529static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3530{
3531 struct inode *inode = dentry->d_inode;
b83cc969 3532 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3533 int err;
39279cc3 3534
b83cc969
LZ
3535 if (btrfs_root_readonly(root))
3536 return -EROFS;
3537
9036c102
YZ
3538 err = inode_change_ok(inode, attr);
3539 if (err)
3540 return err;
2bf5a725 3541
5a3f23d5 3542 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3543 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3544 if (err)
3545 return err;
39279cc3 3546 }
9036c102 3547
1025774c
CH
3548 if (attr->ia_valid) {
3549 setattr_copy(inode, attr);
3550 mark_inode_dirty(inode);
3551
3552 if (attr->ia_valid & ATTR_MODE)
3553 err = btrfs_acl_chmod(inode);
3554 }
33268eaf 3555
39279cc3
CM
3556 return err;
3557}
61295eb8 3558
bd555975 3559void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3560{
3561 struct btrfs_trans_handle *trans;
3562 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3563 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3564 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
d3c2fdcf 3565 unsigned long nr;
39279cc3
CM
3566 int ret;
3567
1abe9b8a 3568 trace_btrfs_inode_evict(inode);
3569
39279cc3 3570 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3571 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
2cf8572d 3572 btrfs_is_free_space_inode(root, inode)))
bd555975
AV
3573 goto no_delete;
3574
39279cc3 3575 if (is_bad_inode(inode)) {
7b128766 3576 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3577 goto no_delete;
3578 }
bd555975 3579 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3580 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3581
c71bf099
YZ
3582 if (root->fs_info->log_root_recovering) {
3583 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3584 goto no_delete;
3585 }
3586
76dda93c
YZ
3587 if (inode->i_nlink > 0) {
3588 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3589 goto no_delete;
3590 }
3591
4289a667
JB
3592 rsv = btrfs_alloc_block_rsv(root);
3593 if (!rsv) {
3594 btrfs_orphan_del(NULL, inode);
3595 goto no_delete;
3596 }
4a338542 3597 rsv->size = min_size;
726c35fa 3598 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3599
dbe674a9 3600 btrfs_i_size_write(inode, 0);
5f39d397 3601
4289a667
JB
3602 /*
3603 * This is a bit simpler than btrfs_truncate since
3604 *
3605 * 1) We've already reserved our space for our orphan item in the
3606 * unlink.
3607 * 2) We're going to delete the inode item, so we don't need to update
3608 * it at all.
3609 *
3610 * So we just need to reserve some slack space in case we add bytes when
3611 * doing the truncate.
3612 */
8082510e 3613 while (1) {
36ba022a 3614 ret = btrfs_block_rsv_refill(root, rsv, min_size);
726c35fa
JB
3615
3616 /*
3617 * Try and steal from the global reserve since we will
3618 * likely not use this space anyway, we want to try as
3619 * hard as possible to get this to work.
3620 */
3621 if (ret)
3622 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3623
d68fc57b 3624 if (ret) {
4289a667 3625 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3626 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3627 btrfs_orphan_del(NULL, inode);
3628 btrfs_free_block_rsv(root, rsv);
3629 goto no_delete;
3630 }
3631
3632 trans = btrfs_start_transaction(root, 0);
3633 if (IS_ERR(trans)) {
3634 btrfs_orphan_del(NULL, inode);
3635 btrfs_free_block_rsv(root, rsv);
3636 goto no_delete;
d68fc57b 3637 }
7b128766 3638
4289a667
JB
3639 trans->block_rsv = rsv;
3640
d68fc57b 3641 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3642 if (ret != -EAGAIN)
3643 break;
85e21bac 3644
8082510e
YZ
3645 nr = trans->blocks_used;
3646 btrfs_end_transaction(trans, root);
3647 trans = NULL;
3648 btrfs_btree_balance_dirty(root, nr);
3649 }
5f39d397 3650
4289a667
JB
3651 btrfs_free_block_rsv(root, rsv);
3652
8082510e 3653 if (ret == 0) {
4289a667 3654 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3655 ret = btrfs_orphan_del(trans, inode);
3656 BUG_ON(ret);
3657 }
54aa1f4d 3658
4289a667 3659 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3660 if (!(root == root->fs_info->tree_root ||
3661 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3662 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3663
d3c2fdcf 3664 nr = trans->blocks_used;
54aa1f4d 3665 btrfs_end_transaction(trans, root);
d3c2fdcf 3666 btrfs_btree_balance_dirty(root, nr);
39279cc3 3667no_delete:
bd555975 3668 end_writeback(inode);
8082510e 3669 return;
39279cc3
CM
3670}
3671
3672/*
3673 * this returns the key found in the dir entry in the location pointer.
3674 * If no dir entries were found, location->objectid is 0.
3675 */
3676static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3677 struct btrfs_key *location)
3678{
3679 const char *name = dentry->d_name.name;
3680 int namelen = dentry->d_name.len;
3681 struct btrfs_dir_item *di;
3682 struct btrfs_path *path;
3683 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3684 int ret = 0;
39279cc3
CM
3685
3686 path = btrfs_alloc_path();
d8926bb3
MF
3687 if (!path)
3688 return -ENOMEM;
3954401f 3689
33345d01 3690 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3691 namelen, 0);
0d9f7f3e
Y
3692 if (IS_ERR(di))
3693 ret = PTR_ERR(di);
d397712b 3694
c704005d 3695 if (IS_ERR_OR_NULL(di))
3954401f 3696 goto out_err;
d397712b 3697
5f39d397 3698 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3699out:
39279cc3
CM
3700 btrfs_free_path(path);
3701 return ret;
3954401f
CM
3702out_err:
3703 location->objectid = 0;
3704 goto out;
39279cc3
CM
3705}
3706
3707/*
3708 * when we hit a tree root in a directory, the btrfs part of the inode
3709 * needs to be changed to reflect the root directory of the tree root. This
3710 * is kind of like crossing a mount point.
3711 */
3712static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3713 struct inode *dir,
3714 struct dentry *dentry,
3715 struct btrfs_key *location,
3716 struct btrfs_root **sub_root)
39279cc3 3717{
4df27c4d
YZ
3718 struct btrfs_path *path;
3719 struct btrfs_root *new_root;
3720 struct btrfs_root_ref *ref;
3721 struct extent_buffer *leaf;
3722 int ret;
3723 int err = 0;
39279cc3 3724
4df27c4d
YZ
3725 path = btrfs_alloc_path();
3726 if (!path) {
3727 err = -ENOMEM;
3728 goto out;
3729 }
39279cc3 3730
4df27c4d
YZ
3731 err = -ENOENT;
3732 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3733 BTRFS_I(dir)->root->root_key.objectid,
3734 location->objectid);
3735 if (ret) {
3736 if (ret < 0)
3737 err = ret;
3738 goto out;
3739 }
39279cc3 3740
4df27c4d
YZ
3741 leaf = path->nodes[0];
3742 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3743 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3744 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3745 goto out;
39279cc3 3746
4df27c4d
YZ
3747 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3748 (unsigned long)(ref + 1),
3749 dentry->d_name.len);
3750 if (ret)
3751 goto out;
3752
b3b4aa74 3753 btrfs_release_path(path);
4df27c4d
YZ
3754
3755 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3756 if (IS_ERR(new_root)) {
3757 err = PTR_ERR(new_root);
3758 goto out;
3759 }
3760
3761 if (btrfs_root_refs(&new_root->root_item) == 0) {
3762 err = -ENOENT;
3763 goto out;
3764 }
3765
3766 *sub_root = new_root;
3767 location->objectid = btrfs_root_dirid(&new_root->root_item);
3768 location->type = BTRFS_INODE_ITEM_KEY;
3769 location->offset = 0;
3770 err = 0;
3771out:
3772 btrfs_free_path(path);
3773 return err;
39279cc3
CM
3774}
3775
5d4f98a2
YZ
3776static void inode_tree_add(struct inode *inode)
3777{
3778 struct btrfs_root *root = BTRFS_I(inode)->root;
3779 struct btrfs_inode *entry;
03e860bd
FNP
3780 struct rb_node **p;
3781 struct rb_node *parent;
33345d01 3782 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3783again:
3784 p = &root->inode_tree.rb_node;
3785 parent = NULL;
5d4f98a2 3786
1d3382cb 3787 if (inode_unhashed(inode))
76dda93c
YZ
3788 return;
3789
5d4f98a2
YZ
3790 spin_lock(&root->inode_lock);
3791 while (*p) {
3792 parent = *p;
3793 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3794
33345d01 3795 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3796 p = &parent->rb_left;
33345d01 3797 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3798 p = &parent->rb_right;
5d4f98a2
YZ
3799 else {
3800 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3801 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3802 rb_erase(parent, &root->inode_tree);
3803 RB_CLEAR_NODE(parent);
3804 spin_unlock(&root->inode_lock);
3805 goto again;
5d4f98a2
YZ
3806 }
3807 }
3808 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3809 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3810 spin_unlock(&root->inode_lock);
3811}
3812
3813static void inode_tree_del(struct inode *inode)
3814{
3815 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3816 int empty = 0;
5d4f98a2 3817
03e860bd 3818 spin_lock(&root->inode_lock);
5d4f98a2 3819 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3820 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3821 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3822 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3823 }
03e860bd 3824 spin_unlock(&root->inode_lock);
76dda93c 3825
0af3d00b
JB
3826 /*
3827 * Free space cache has inodes in the tree root, but the tree root has a
3828 * root_refs of 0, so this could end up dropping the tree root as a
3829 * snapshot, so we need the extra !root->fs_info->tree_root check to
3830 * make sure we don't drop it.
3831 */
3832 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3833 root != root->fs_info->tree_root) {
76dda93c
YZ
3834 synchronize_srcu(&root->fs_info->subvol_srcu);
3835 spin_lock(&root->inode_lock);
3836 empty = RB_EMPTY_ROOT(&root->inode_tree);
3837 spin_unlock(&root->inode_lock);
3838 if (empty)
3839 btrfs_add_dead_root(root);
3840 }
3841}
3842
3843int btrfs_invalidate_inodes(struct btrfs_root *root)
3844{
3845 struct rb_node *node;
3846 struct rb_node *prev;
3847 struct btrfs_inode *entry;
3848 struct inode *inode;
3849 u64 objectid = 0;
3850
3851 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3852
3853 spin_lock(&root->inode_lock);
3854again:
3855 node = root->inode_tree.rb_node;
3856 prev = NULL;
3857 while (node) {
3858 prev = node;
3859 entry = rb_entry(node, struct btrfs_inode, rb_node);
3860
33345d01 3861 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 3862 node = node->rb_left;
33345d01 3863 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
3864 node = node->rb_right;
3865 else
3866 break;
3867 }
3868 if (!node) {
3869 while (prev) {
3870 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 3871 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
3872 node = prev;
3873 break;
3874 }
3875 prev = rb_next(prev);
3876 }
3877 }
3878 while (node) {
3879 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 3880 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
3881 inode = igrab(&entry->vfs_inode);
3882 if (inode) {
3883 spin_unlock(&root->inode_lock);
3884 if (atomic_read(&inode->i_count) > 1)
3885 d_prune_aliases(inode);
3886 /*
45321ac5 3887 * btrfs_drop_inode will have it removed from
76dda93c
YZ
3888 * the inode cache when its usage count
3889 * hits zero.
3890 */
3891 iput(inode);
3892 cond_resched();
3893 spin_lock(&root->inode_lock);
3894 goto again;
3895 }
3896
3897 if (cond_resched_lock(&root->inode_lock))
3898 goto again;
3899
3900 node = rb_next(node);
3901 }
3902 spin_unlock(&root->inode_lock);
3903 return 0;
5d4f98a2
YZ
3904}
3905
e02119d5
CM
3906static int btrfs_init_locked_inode(struct inode *inode, void *p)
3907{
3908 struct btrfs_iget_args *args = p;
3909 inode->i_ino = args->ino;
e02119d5 3910 BTRFS_I(inode)->root = args->root;
6a63209f 3911 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3912 return 0;
3913}
3914
3915static int btrfs_find_actor(struct inode *inode, void *opaque)
3916{
3917 struct btrfs_iget_args *args = opaque;
33345d01 3918 return args->ino == btrfs_ino(inode) &&
d397712b 3919 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3920}
3921
5d4f98a2
YZ
3922static struct inode *btrfs_iget_locked(struct super_block *s,
3923 u64 objectid,
3924 struct btrfs_root *root)
39279cc3
CM
3925{
3926 struct inode *inode;
3927 struct btrfs_iget_args args;
3928 args.ino = objectid;
3929 args.root = root;
3930
3931 inode = iget5_locked(s, objectid, btrfs_find_actor,
3932 btrfs_init_locked_inode,
3933 (void *)&args);
3934 return inode;
3935}
3936
1a54ef8c
BR
3937/* Get an inode object given its location and corresponding root.
3938 * Returns in *is_new if the inode was read from disk
3939 */
3940struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 3941 struct btrfs_root *root, int *new)
1a54ef8c
BR
3942{
3943 struct inode *inode;
3944
3945 inode = btrfs_iget_locked(s, location->objectid, root);
3946 if (!inode)
5d4f98a2 3947 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3948
3949 if (inode->i_state & I_NEW) {
3950 BTRFS_I(inode)->root = root;
3951 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3952 btrfs_read_locked_inode(inode);
1748f843
MF
3953 if (!is_bad_inode(inode)) {
3954 inode_tree_add(inode);
3955 unlock_new_inode(inode);
3956 if (new)
3957 *new = 1;
3958 } else {
e0b6d65b
ST
3959 unlock_new_inode(inode);
3960 iput(inode);
3961 inode = ERR_PTR(-ESTALE);
1748f843
MF
3962 }
3963 }
3964
1a54ef8c
BR
3965 return inode;
3966}
3967
4df27c4d
YZ
3968static struct inode *new_simple_dir(struct super_block *s,
3969 struct btrfs_key *key,
3970 struct btrfs_root *root)
3971{
3972 struct inode *inode = new_inode(s);
3973
3974 if (!inode)
3975 return ERR_PTR(-ENOMEM);
3976
4df27c4d
YZ
3977 BTRFS_I(inode)->root = root;
3978 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3979 BTRFS_I(inode)->dummy_inode = 1;
3980
3981 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3982 inode->i_op = &simple_dir_inode_operations;
3983 inode->i_fop = &simple_dir_operations;
3984 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3985 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3986
3987 return inode;
3988}
3989
3de4586c 3990struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3991{
d397712b 3992 struct inode *inode;
4df27c4d 3993 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3994 struct btrfs_root *sub_root = root;
3995 struct btrfs_key location;
76dda93c 3996 int index;
b4aff1f8 3997 int ret = 0;
39279cc3
CM
3998
3999 if (dentry->d_name.len > BTRFS_NAME_LEN)
4000 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4001
b4aff1f8
JB
4002 if (unlikely(d_need_lookup(dentry))) {
4003 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4004 kfree(dentry->d_fsdata);
4005 dentry->d_fsdata = NULL;
a66e7cc6
JB
4006 /* This thing is hashed, drop it for now */
4007 d_drop(dentry);
b4aff1f8
JB
4008 } else {
4009 ret = btrfs_inode_by_name(dir, dentry, &location);
4010 }
5f39d397 4011
39279cc3
CM
4012 if (ret < 0)
4013 return ERR_PTR(ret);
5f39d397 4014
4df27c4d
YZ
4015 if (location.objectid == 0)
4016 return NULL;
4017
4018 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4019 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4020 return inode;
4021 }
4022
4023 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4024
76dda93c 4025 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4026 ret = fixup_tree_root_location(root, dir, dentry,
4027 &location, &sub_root);
4028 if (ret < 0) {
4029 if (ret != -ENOENT)
4030 inode = ERR_PTR(ret);
4031 else
4032 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4033 } else {
73f73415 4034 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4035 }
76dda93c
YZ
4036 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4037
34d19bad 4038 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4039 down_read(&root->fs_info->cleanup_work_sem);
4040 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4041 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4042 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4043 if (ret)
4044 inode = ERR_PTR(ret);
c71bf099
YZ
4045 }
4046
3de4586c
CM
4047 return inode;
4048}
4049
fe15ce44 4050static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4051{
4052 struct btrfs_root *root;
4053
efefb143
YZ
4054 if (!dentry->d_inode && !IS_ROOT(dentry))
4055 dentry = dentry->d_parent;
76dda93c 4056
efefb143
YZ
4057 if (dentry->d_inode) {
4058 root = BTRFS_I(dentry->d_inode)->root;
4059 if (btrfs_root_refs(&root->root_item) == 0)
4060 return 1;
4061 }
76dda93c
YZ
4062 return 0;
4063}
4064
b4aff1f8
JB
4065static void btrfs_dentry_release(struct dentry *dentry)
4066{
4067 if (dentry->d_fsdata)
4068 kfree(dentry->d_fsdata);
4069}
4070
3de4586c
CM
4071static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4072 struct nameidata *nd)
4073{
a66e7cc6
JB
4074 struct dentry *ret;
4075
4076 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4077 if (unlikely(d_need_lookup(dentry))) {
4078 spin_lock(&dentry->d_lock);
4079 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4080 spin_unlock(&dentry->d_lock);
4081 }
4082 return ret;
39279cc3
CM
4083}
4084
16cdcec7 4085unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4086 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4087};
4088
cbdf5a24
DW
4089static int btrfs_real_readdir(struct file *filp, void *dirent,
4090 filldir_t filldir)
39279cc3 4091{
6da6abae 4092 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4093 struct btrfs_root *root = BTRFS_I(inode)->root;
4094 struct btrfs_item *item;
4095 struct btrfs_dir_item *di;
4096 struct btrfs_key key;
5f39d397 4097 struct btrfs_key found_key;
39279cc3 4098 struct btrfs_path *path;
16cdcec7
MX
4099 struct list_head ins_list;
4100 struct list_head del_list;
b4aff1f8 4101 struct qstr q;
39279cc3 4102 int ret;
5f39d397 4103 struct extent_buffer *leaf;
39279cc3 4104 int slot;
39279cc3
CM
4105 unsigned char d_type;
4106 int over = 0;
4107 u32 di_cur;
4108 u32 di_total;
4109 u32 di_len;
4110 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4111 char tmp_name[32];
4112 char *name_ptr;
4113 int name_len;
16cdcec7 4114 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4115
4116 /* FIXME, use a real flag for deciding about the key type */
4117 if (root->fs_info->tree_root == root)
4118 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4119
3954401f
CM
4120 /* special case for "." */
4121 if (filp->f_pos == 0) {
3765fefa
HS
4122 over = filldir(dirent, ".", 1,
4123 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4124 if (over)
4125 return 0;
4126 filp->f_pos = 1;
4127 }
3954401f
CM
4128 /* special case for .., just use the back ref */
4129 if (filp->f_pos == 1) {
5ecc7e5d 4130 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4131 over = filldir(dirent, "..", 2,
3765fefa 4132 filp->f_pos, pino, DT_DIR);
3954401f 4133 if (over)
49593bfa 4134 return 0;
3954401f
CM
4135 filp->f_pos = 2;
4136 }
49593bfa 4137 path = btrfs_alloc_path();
16cdcec7
MX
4138 if (!path)
4139 return -ENOMEM;
ff5714cc 4140
026fd317 4141 path->reada = 1;
49593bfa 4142
16cdcec7
MX
4143 if (key_type == BTRFS_DIR_INDEX_KEY) {
4144 INIT_LIST_HEAD(&ins_list);
4145 INIT_LIST_HEAD(&del_list);
4146 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4147 }
4148
39279cc3
CM
4149 btrfs_set_key_type(&key, key_type);
4150 key.offset = filp->f_pos;
33345d01 4151 key.objectid = btrfs_ino(inode);
5f39d397 4152
39279cc3
CM
4153 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4154 if (ret < 0)
4155 goto err;
49593bfa
DW
4156
4157 while (1) {
5f39d397 4158 leaf = path->nodes[0];
39279cc3 4159 slot = path->slots[0];
b9e03af0
LZ
4160 if (slot >= btrfs_header_nritems(leaf)) {
4161 ret = btrfs_next_leaf(root, path);
4162 if (ret < 0)
4163 goto err;
4164 else if (ret > 0)
4165 break;
4166 continue;
39279cc3 4167 }
3de4586c 4168
5f39d397
CM
4169 item = btrfs_item_nr(leaf, slot);
4170 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4171
4172 if (found_key.objectid != key.objectid)
39279cc3 4173 break;
5f39d397 4174 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4175 break;
5f39d397 4176 if (found_key.offset < filp->f_pos)
b9e03af0 4177 goto next;
16cdcec7
MX
4178 if (key_type == BTRFS_DIR_INDEX_KEY &&
4179 btrfs_should_delete_dir_index(&del_list,
4180 found_key.offset))
4181 goto next;
5f39d397
CM
4182
4183 filp->f_pos = found_key.offset;
16cdcec7 4184 is_curr = 1;
49593bfa 4185
39279cc3
CM
4186 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4187 di_cur = 0;
5f39d397 4188 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4189
4190 while (di_cur < di_total) {
5f39d397 4191 struct btrfs_key location;
b4aff1f8 4192 struct dentry *tmp;
5f39d397 4193
22a94d44
JB
4194 if (verify_dir_item(root, leaf, di))
4195 break;
4196
5f39d397 4197 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4198 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4199 name_ptr = tmp_name;
4200 } else {
4201 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4202 if (!name_ptr) {
4203 ret = -ENOMEM;
4204 goto err;
4205 }
5f39d397
CM
4206 }
4207 read_extent_buffer(leaf, name_ptr,
4208 (unsigned long)(di + 1), name_len);
4209
4210 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4211 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4212
b4aff1f8
JB
4213 q.name = name_ptr;
4214 q.len = name_len;
4215 q.hash = full_name_hash(q.name, q.len);
4216 tmp = d_lookup(filp->f_dentry, &q);
4217 if (!tmp) {
4218 struct btrfs_key *newkey;
4219
4220 newkey = kzalloc(sizeof(struct btrfs_key),
4221 GFP_NOFS);
4222 if (!newkey)
4223 goto no_dentry;
4224 tmp = d_alloc(filp->f_dentry, &q);
4225 if (!tmp) {
4226 kfree(newkey);
4227 dput(tmp);
4228 goto no_dentry;
4229 }
4230 memcpy(newkey, &location,
4231 sizeof(struct btrfs_key));
4232 tmp->d_fsdata = newkey;
4233 tmp->d_flags |= DCACHE_NEED_LOOKUP;
4234 d_rehash(tmp);
4235 dput(tmp);
4236 } else {
4237 dput(tmp);
4238 }
4239no_dentry:
3de4586c
CM
4240 /* is this a reference to our own snapshot? If so
4241 * skip it
4242 */
4243 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4244 location.objectid == root->root_key.objectid) {
4245 over = 0;
4246 goto skip;
4247 }
5f39d397 4248 over = filldir(dirent, name_ptr, name_len,
49593bfa 4249 found_key.offset, location.objectid,
39279cc3 4250 d_type);
5f39d397 4251
3de4586c 4252skip:
5f39d397
CM
4253 if (name_ptr != tmp_name)
4254 kfree(name_ptr);
4255
39279cc3
CM
4256 if (over)
4257 goto nopos;
5103e947 4258 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4259 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4260 di_cur += di_len;
4261 di = (struct btrfs_dir_item *)((char *)di + di_len);
4262 }
b9e03af0
LZ
4263next:
4264 path->slots[0]++;
39279cc3 4265 }
49593bfa 4266
16cdcec7
MX
4267 if (key_type == BTRFS_DIR_INDEX_KEY) {
4268 if (is_curr)
4269 filp->f_pos++;
4270 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4271 &ins_list);
4272 if (ret)
4273 goto nopos;
4274 }
4275
49593bfa 4276 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4277 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4278 /*
4279 * 32-bit glibc will use getdents64, but then strtol -
4280 * so the last number we can serve is this.
4281 */
4282 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4283 else
4284 filp->f_pos++;
39279cc3
CM
4285nopos:
4286 ret = 0;
4287err:
16cdcec7
MX
4288 if (key_type == BTRFS_DIR_INDEX_KEY)
4289 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4290 btrfs_free_path(path);
39279cc3
CM
4291 return ret;
4292}
4293
a9185b41 4294int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4295{
4296 struct btrfs_root *root = BTRFS_I(inode)->root;
4297 struct btrfs_trans_handle *trans;
4298 int ret = 0;
0af3d00b 4299 bool nolock = false;
39279cc3 4300
8929ecfa 4301 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4302 return 0;
4303
2cf8572d 4304 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
82d5902d 4305 nolock = true;
0af3d00b 4306
a9185b41 4307 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4308 if (nolock)
7a7eaa40 4309 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4310 else
7a7eaa40 4311 trans = btrfs_join_transaction(root);
3612b495
TI
4312 if (IS_ERR(trans))
4313 return PTR_ERR(trans);
0af3d00b
JB
4314 if (nolock)
4315 ret = btrfs_end_transaction_nolock(trans, root);
4316 else
4317 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4318 }
4319 return ret;
4320}
4321
4322/*
54aa1f4d 4323 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4324 * inode changes. But, it is most likely to find the inode in cache.
4325 * FIXME, needs more benchmarking...there are no reasons other than performance
4326 * to keep or drop this code.
4327 */
aa385729 4328void btrfs_dirty_inode(struct inode *inode, int flags)
39279cc3
CM
4329{
4330 struct btrfs_root *root = BTRFS_I(inode)->root;
4331 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4332 int ret;
4333
4334 if (BTRFS_I(inode)->dummy_inode)
4335 return;
39279cc3 4336
7a7eaa40 4337 trans = btrfs_join_transaction(root);
3612b495 4338 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
4339
4340 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4341 if (ret && ret == -ENOSPC) {
4342 /* whoops, lets try again with the full transaction */
4343 btrfs_end_transaction(trans, root);
4344 trans = btrfs_start_transaction(root, 1);
9aeead73 4345 if (IS_ERR(trans)) {
7a36ddec 4346 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4347 "dirty inode %llu error %ld\n",
4348 (unsigned long long)btrfs_ino(inode),
4349 PTR_ERR(trans));
9aeead73
CM
4350 return;
4351 }
8929ecfa 4352
94b60442
CM
4353 ret = btrfs_update_inode(trans, root, inode);
4354 if (ret) {
7a36ddec 4355 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4356 "dirty inode %llu error %d\n",
4357 (unsigned long long)btrfs_ino(inode),
4358 ret);
94b60442
CM
4359 }
4360 }
39279cc3 4361 btrfs_end_transaction(trans, root);
16cdcec7
MX
4362 if (BTRFS_I(inode)->delayed_node)
4363 btrfs_balance_delayed_items(root);
39279cc3
CM
4364}
4365
d352ac68
CM
4366/*
4367 * find the highest existing sequence number in a directory
4368 * and then set the in-memory index_cnt variable to reflect
4369 * free sequence numbers
4370 */
aec7477b
JB
4371static int btrfs_set_inode_index_count(struct inode *inode)
4372{
4373 struct btrfs_root *root = BTRFS_I(inode)->root;
4374 struct btrfs_key key, found_key;
4375 struct btrfs_path *path;
4376 struct extent_buffer *leaf;
4377 int ret;
4378
33345d01 4379 key.objectid = btrfs_ino(inode);
aec7477b
JB
4380 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4381 key.offset = (u64)-1;
4382
4383 path = btrfs_alloc_path();
4384 if (!path)
4385 return -ENOMEM;
4386
4387 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4388 if (ret < 0)
4389 goto out;
4390 /* FIXME: we should be able to handle this */
4391 if (ret == 0)
4392 goto out;
4393 ret = 0;
4394
4395 /*
4396 * MAGIC NUMBER EXPLANATION:
4397 * since we search a directory based on f_pos we have to start at 2
4398 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4399 * else has to start at 2
4400 */
4401 if (path->slots[0] == 0) {
4402 BTRFS_I(inode)->index_cnt = 2;
4403 goto out;
4404 }
4405
4406 path->slots[0]--;
4407
4408 leaf = path->nodes[0];
4409 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4410
33345d01 4411 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4412 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4413 BTRFS_I(inode)->index_cnt = 2;
4414 goto out;
4415 }
4416
4417 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4418out:
4419 btrfs_free_path(path);
4420 return ret;
4421}
4422
d352ac68
CM
4423/*
4424 * helper to find a free sequence number in a given directory. This current
4425 * code is very simple, later versions will do smarter things in the btree
4426 */
3de4586c 4427int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4428{
4429 int ret = 0;
4430
4431 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4432 ret = btrfs_inode_delayed_dir_index_count(dir);
4433 if (ret) {
4434 ret = btrfs_set_inode_index_count(dir);
4435 if (ret)
4436 return ret;
4437 }
aec7477b
JB
4438 }
4439
00e4e6b3 4440 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4441 BTRFS_I(dir)->index_cnt++;
4442
4443 return ret;
4444}
4445
39279cc3
CM
4446static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4447 struct btrfs_root *root,
aec7477b 4448 struct inode *dir,
9c58309d 4449 const char *name, int name_len,
d82a6f1d
JB
4450 u64 ref_objectid, u64 objectid, int mode,
4451 u64 *index)
39279cc3
CM
4452{
4453 struct inode *inode;
5f39d397 4454 struct btrfs_inode_item *inode_item;
39279cc3 4455 struct btrfs_key *location;
5f39d397 4456 struct btrfs_path *path;
9c58309d
CM
4457 struct btrfs_inode_ref *ref;
4458 struct btrfs_key key[2];
4459 u32 sizes[2];
4460 unsigned long ptr;
39279cc3
CM
4461 int ret;
4462 int owner;
4463
5f39d397 4464 path = btrfs_alloc_path();
d8926bb3
MF
4465 if (!path)
4466 return ERR_PTR(-ENOMEM);
5f39d397 4467
39279cc3 4468 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4469 if (!inode) {
4470 btrfs_free_path(path);
39279cc3 4471 return ERR_PTR(-ENOMEM);
8fb27640 4472 }
39279cc3 4473
581bb050
LZ
4474 /*
4475 * we have to initialize this early, so we can reclaim the inode
4476 * number if we fail afterwards in this function.
4477 */
4478 inode->i_ino = objectid;
4479
aec7477b 4480 if (dir) {
1abe9b8a 4481 trace_btrfs_inode_request(dir);
4482
3de4586c 4483 ret = btrfs_set_inode_index(dir, index);
09771430 4484 if (ret) {
8fb27640 4485 btrfs_free_path(path);
09771430 4486 iput(inode);
aec7477b 4487 return ERR_PTR(ret);
09771430 4488 }
aec7477b
JB
4489 }
4490 /*
4491 * index_cnt is ignored for everything but a dir,
4492 * btrfs_get_inode_index_count has an explanation for the magic
4493 * number
4494 */
4495 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4496 BTRFS_I(inode)->root = root;
e02119d5 4497 BTRFS_I(inode)->generation = trans->transid;
76195853 4498 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4499 btrfs_set_inode_space_info(root, inode);
b888db2b 4500
569254b0 4501 if (S_ISDIR(mode))
39279cc3
CM
4502 owner = 0;
4503 else
4504 owner = 1;
9c58309d
CM
4505
4506 key[0].objectid = objectid;
4507 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4508 key[0].offset = 0;
4509
4510 key[1].objectid = objectid;
4511 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4512 key[1].offset = ref_objectid;
4513
4514 sizes[0] = sizeof(struct btrfs_inode_item);
4515 sizes[1] = name_len + sizeof(*ref);
4516
b9473439 4517 path->leave_spinning = 1;
9c58309d
CM
4518 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4519 if (ret != 0)
5f39d397
CM
4520 goto fail;
4521
ecc11fab 4522 inode_init_owner(inode, dir, mode);
a76a3cd4 4523 inode_set_bytes(inode, 0);
39279cc3 4524 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4525 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4526 struct btrfs_inode_item);
e02119d5 4527 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4528
4529 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4530 struct btrfs_inode_ref);
4531 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4532 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4533 ptr = (unsigned long)(ref + 1);
4534 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4535
5f39d397
CM
4536 btrfs_mark_buffer_dirty(path->nodes[0]);
4537 btrfs_free_path(path);
4538
39279cc3
CM
4539 location = &BTRFS_I(inode)->location;
4540 location->objectid = objectid;
39279cc3
CM
4541 location->offset = 0;
4542 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4543
6cbff00f
CH
4544 btrfs_inherit_iflags(inode, dir);
4545
569254b0 4546 if (S_ISREG(mode)) {
94272164
CM
4547 if (btrfs_test_opt(root, NODATASUM))
4548 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4549 if (btrfs_test_opt(root, NODATACOW) ||
4550 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4551 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4552 }
4553
39279cc3 4554 insert_inode_hash(inode);
5d4f98a2 4555 inode_tree_add(inode);
1abe9b8a 4556
4557 trace_btrfs_inode_new(inode);
1973f0fa 4558 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4559
39279cc3 4560 return inode;
5f39d397 4561fail:
aec7477b
JB
4562 if (dir)
4563 BTRFS_I(dir)->index_cnt--;
5f39d397 4564 btrfs_free_path(path);
09771430 4565 iput(inode);
5f39d397 4566 return ERR_PTR(ret);
39279cc3
CM
4567}
4568
4569static inline u8 btrfs_inode_type(struct inode *inode)
4570{
4571 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4572}
4573
d352ac68
CM
4574/*
4575 * utility function to add 'inode' into 'parent_inode' with
4576 * a give name and a given sequence number.
4577 * if 'add_backref' is true, also insert a backref from the
4578 * inode to the parent directory.
4579 */
e02119d5
CM
4580int btrfs_add_link(struct btrfs_trans_handle *trans,
4581 struct inode *parent_inode, struct inode *inode,
4582 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4583{
4df27c4d 4584 int ret = 0;
39279cc3 4585 struct btrfs_key key;
e02119d5 4586 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4587 u64 ino = btrfs_ino(inode);
4588 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4589
33345d01 4590 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4591 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4592 } else {
33345d01 4593 key.objectid = ino;
4df27c4d
YZ
4594 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4595 key.offset = 0;
4596 }
4597
33345d01 4598 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4599 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4600 key.objectid, root->root_key.objectid,
33345d01 4601 parent_ino, index, name, name_len);
4df27c4d 4602 } else if (add_backref) {
33345d01
LZ
4603 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4604 parent_ino, index);
4df27c4d 4605 }
39279cc3 4606
39279cc3 4607 if (ret == 0) {
4df27c4d 4608 ret = btrfs_insert_dir_item(trans, root, name, name_len,
16cdcec7 4609 parent_inode, &key,
4df27c4d
YZ
4610 btrfs_inode_type(inode), index);
4611 BUG_ON(ret);
4612
dbe674a9 4613 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4614 name_len * 2);
79c44584 4615 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4616 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4617 }
4618 return ret;
4619}
4620
4621static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4622 struct inode *dir, struct dentry *dentry,
4623 struct inode *inode, int backref, u64 index)
39279cc3 4624{
a1b075d2
JB
4625 int err = btrfs_add_link(trans, dir, inode,
4626 dentry->d_name.name, dentry->d_name.len,
4627 backref, index);
39279cc3
CM
4628 if (!err) {
4629 d_instantiate(dentry, inode);
4630 return 0;
4631 }
4632 if (err > 0)
4633 err = -EEXIST;
4634 return err;
4635}
4636
618e21d5
JB
4637static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4638 int mode, dev_t rdev)
4639{
4640 struct btrfs_trans_handle *trans;
4641 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4642 struct inode *inode = NULL;
618e21d5
JB
4643 int err;
4644 int drop_inode = 0;
4645 u64 objectid;
1832a6d5 4646 unsigned long nr = 0;
00e4e6b3 4647 u64 index = 0;
618e21d5
JB
4648
4649 if (!new_valid_dev(rdev))
4650 return -EINVAL;
4651
9ed74f2d
JB
4652 /*
4653 * 2 for inode item and ref
4654 * 2 for dir items
4655 * 1 for xattr if selinux is on
4656 */
a22285a6
YZ
4657 trans = btrfs_start_transaction(root, 5);
4658 if (IS_ERR(trans))
4659 return PTR_ERR(trans);
1832a6d5 4660
581bb050
LZ
4661 err = btrfs_find_free_ino(root, &objectid);
4662 if (err)
4663 goto out_unlock;
4664
aec7477b 4665 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4666 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4667 mode, &index);
7cf96da3
TI
4668 if (IS_ERR(inode)) {
4669 err = PTR_ERR(inode);
618e21d5 4670 goto out_unlock;
7cf96da3 4671 }
618e21d5 4672
2a7dba39 4673 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4674 if (err) {
4675 drop_inode = 1;
4676 goto out_unlock;
4677 }
4678
a1b075d2 4679 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4680 if (err)
4681 drop_inode = 1;
4682 else {
4683 inode->i_op = &btrfs_special_inode_operations;
4684 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4685 btrfs_update_inode(trans, root, inode);
618e21d5 4686 }
618e21d5 4687out_unlock:
d3c2fdcf 4688 nr = trans->blocks_used;
89ce8a63 4689 btrfs_end_transaction_throttle(trans, root);
a22285a6 4690 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4691 if (drop_inode) {
4692 inode_dec_link_count(inode);
4693 iput(inode);
4694 }
618e21d5
JB
4695 return err;
4696}
4697
39279cc3
CM
4698static int btrfs_create(struct inode *dir, struct dentry *dentry,
4699 int mode, struct nameidata *nd)
4700{
4701 struct btrfs_trans_handle *trans;
4702 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4703 struct inode *inode = NULL;
39279cc3 4704 int drop_inode = 0;
a22285a6 4705 int err;
1832a6d5 4706 unsigned long nr = 0;
39279cc3 4707 u64 objectid;
00e4e6b3 4708 u64 index = 0;
39279cc3 4709
9ed74f2d
JB
4710 /*
4711 * 2 for inode item and ref
4712 * 2 for dir items
4713 * 1 for xattr if selinux is on
4714 */
a22285a6
YZ
4715 trans = btrfs_start_transaction(root, 5);
4716 if (IS_ERR(trans))
4717 return PTR_ERR(trans);
9ed74f2d 4718
581bb050
LZ
4719 err = btrfs_find_free_ino(root, &objectid);
4720 if (err)
4721 goto out_unlock;
4722
aec7477b 4723 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4724 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4725 mode, &index);
7cf96da3
TI
4726 if (IS_ERR(inode)) {
4727 err = PTR_ERR(inode);
39279cc3 4728 goto out_unlock;
7cf96da3 4729 }
39279cc3 4730
2a7dba39 4731 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4732 if (err) {
4733 drop_inode = 1;
4734 goto out_unlock;
4735 }
4736
a1b075d2 4737 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4738 if (err)
4739 drop_inode = 1;
4740 else {
4741 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4742 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4743 inode->i_fop = &btrfs_file_operations;
4744 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4745 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4746 }
39279cc3 4747out_unlock:
d3c2fdcf 4748 nr = trans->blocks_used;
ab78c84d 4749 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4750 if (drop_inode) {
4751 inode_dec_link_count(inode);
4752 iput(inode);
4753 }
d3c2fdcf 4754 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4755 return err;
4756}
4757
4758static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4759 struct dentry *dentry)
4760{
4761 struct btrfs_trans_handle *trans;
4762 struct btrfs_root *root = BTRFS_I(dir)->root;
4763 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4764 u64 index;
1832a6d5 4765 unsigned long nr = 0;
39279cc3
CM
4766 int err;
4767 int drop_inode = 0;
4768
4a8be425
TH
4769 /* do not allow sys_link's with other subvols of the same device */
4770 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4771 return -EXDEV;
4a8be425 4772
c055e99e
AV
4773 if (inode->i_nlink == ~0U)
4774 return -EMLINK;
4a8be425 4775
3de4586c 4776 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4777 if (err)
4778 goto fail;
4779
a22285a6 4780 /*
7e6b6465 4781 * 2 items for inode and inode ref
a22285a6 4782 * 2 items for dir items
7e6b6465 4783 * 1 item for parent inode
a22285a6 4784 */
7e6b6465 4785 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4786 if (IS_ERR(trans)) {
4787 err = PTR_ERR(trans);
4788 goto fail;
4789 }
5f39d397 4790
3153495d
MX
4791 btrfs_inc_nlink(inode);
4792 inode->i_ctime = CURRENT_TIME;
7de9c6ee 4793 ihold(inode);
aec7477b 4794
a1b075d2 4795 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4796
a5719521 4797 if (err) {
54aa1f4d 4798 drop_inode = 1;
a5719521 4799 } else {
10d9f309 4800 struct dentry *parent = dentry->d_parent;
a5719521
YZ
4801 err = btrfs_update_inode(trans, root, inode);
4802 BUG_ON(err);
6a912213 4803 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 4804 }
39279cc3 4805
d3c2fdcf 4806 nr = trans->blocks_used;
ab78c84d 4807 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4808fail:
39279cc3
CM
4809 if (drop_inode) {
4810 inode_dec_link_count(inode);
4811 iput(inode);
4812 }
d3c2fdcf 4813 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4814 return err;
4815}
4816
39279cc3
CM
4817static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4818{
b9d86667 4819 struct inode *inode = NULL;
39279cc3
CM
4820 struct btrfs_trans_handle *trans;
4821 struct btrfs_root *root = BTRFS_I(dir)->root;
4822 int err = 0;
4823 int drop_on_err = 0;
b9d86667 4824 u64 objectid = 0;
00e4e6b3 4825 u64 index = 0;
d3c2fdcf 4826 unsigned long nr = 1;
39279cc3 4827
9ed74f2d
JB
4828 /*
4829 * 2 items for inode and ref
4830 * 2 items for dir items
4831 * 1 for xattr if selinux is on
4832 */
a22285a6
YZ
4833 trans = btrfs_start_transaction(root, 5);
4834 if (IS_ERR(trans))
4835 return PTR_ERR(trans);
39279cc3 4836
581bb050
LZ
4837 err = btrfs_find_free_ino(root, &objectid);
4838 if (err)
4839 goto out_fail;
4840
aec7477b 4841 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4842 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4843 S_IFDIR | mode, &index);
39279cc3
CM
4844 if (IS_ERR(inode)) {
4845 err = PTR_ERR(inode);
4846 goto out_fail;
4847 }
5f39d397 4848
39279cc3 4849 drop_on_err = 1;
33268eaf 4850
2a7dba39 4851 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4852 if (err)
4853 goto out_fail;
4854
39279cc3
CM
4855 inode->i_op = &btrfs_dir_inode_operations;
4856 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 4857
dbe674a9 4858 btrfs_i_size_write(inode, 0);
39279cc3
CM
4859 err = btrfs_update_inode(trans, root, inode);
4860 if (err)
4861 goto out_fail;
5f39d397 4862
a1b075d2
JB
4863 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4864 dentry->d_name.len, 0, index);
39279cc3
CM
4865 if (err)
4866 goto out_fail;
5f39d397 4867
39279cc3
CM
4868 d_instantiate(dentry, inode);
4869 drop_on_err = 0;
39279cc3
CM
4870
4871out_fail:
d3c2fdcf 4872 nr = trans->blocks_used;
ab78c84d 4873 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4874 if (drop_on_err)
4875 iput(inode);
d3c2fdcf 4876 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4877 return err;
4878}
4879
d352ac68
CM
4880/* helper for btfs_get_extent. Given an existing extent in the tree,
4881 * and an extent that you want to insert, deal with overlap and insert
4882 * the new extent into the tree.
4883 */
3b951516
CM
4884static int merge_extent_mapping(struct extent_map_tree *em_tree,
4885 struct extent_map *existing,
e6dcd2dc
CM
4886 struct extent_map *em,
4887 u64 map_start, u64 map_len)
3b951516
CM
4888{
4889 u64 start_diff;
3b951516 4890
e6dcd2dc
CM
4891 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4892 start_diff = map_start - em->start;
4893 em->start = map_start;
4894 em->len = map_len;
c8b97818
CM
4895 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4896 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4897 em->block_start += start_diff;
c8b97818
CM
4898 em->block_len -= start_diff;
4899 }
e6dcd2dc 4900 return add_extent_mapping(em_tree, em);
3b951516
CM
4901}
4902
c8b97818
CM
4903static noinline int uncompress_inline(struct btrfs_path *path,
4904 struct inode *inode, struct page *page,
4905 size_t pg_offset, u64 extent_offset,
4906 struct btrfs_file_extent_item *item)
4907{
4908 int ret;
4909 struct extent_buffer *leaf = path->nodes[0];
4910 char *tmp;
4911 size_t max_size;
4912 unsigned long inline_size;
4913 unsigned long ptr;
261507a0 4914 int compress_type;
c8b97818
CM
4915
4916 WARN_ON(pg_offset != 0);
261507a0 4917 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4918 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4919 inline_size = btrfs_file_extent_inline_item_len(leaf,
4920 btrfs_item_nr(leaf, path->slots[0]));
4921 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
4922 if (!tmp)
4923 return -ENOMEM;
c8b97818
CM
4924 ptr = btrfs_file_extent_inline_start(item);
4925
4926 read_extent_buffer(leaf, tmp, ptr, inline_size);
4927
5b050f04 4928 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4929 ret = btrfs_decompress(compress_type, tmp, page,
4930 extent_offset, inline_size, max_size);
c8b97818
CM
4931 if (ret) {
4932 char *kaddr = kmap_atomic(page, KM_USER0);
4933 unsigned long copy_size = min_t(u64,
4934 PAGE_CACHE_SIZE - pg_offset,
4935 max_size - extent_offset);
4936 memset(kaddr + pg_offset, 0, copy_size);
4937 kunmap_atomic(kaddr, KM_USER0);
4938 }
4939 kfree(tmp);
4940 return 0;
4941}
4942
d352ac68
CM
4943/*
4944 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4945 * the ugly parts come from merging extents from the disk with the in-ram
4946 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4947 * where the in-ram extents might be locked pending data=ordered completion.
4948 *
4949 * This also copies inline extents directly into the page.
4950 */
d397712b 4951
a52d9a80 4952struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4953 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4954 int create)
4955{
4956 int ret;
4957 int err = 0;
db94535d 4958 u64 bytenr;
a52d9a80
CM
4959 u64 extent_start = 0;
4960 u64 extent_end = 0;
33345d01 4961 u64 objectid = btrfs_ino(inode);
a52d9a80 4962 u32 found_type;
f421950f 4963 struct btrfs_path *path = NULL;
a52d9a80
CM
4964 struct btrfs_root *root = BTRFS_I(inode)->root;
4965 struct btrfs_file_extent_item *item;
5f39d397
CM
4966 struct extent_buffer *leaf;
4967 struct btrfs_key found_key;
a52d9a80
CM
4968 struct extent_map *em = NULL;
4969 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4970 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4971 struct btrfs_trans_handle *trans = NULL;
261507a0 4972 int compress_type;
a52d9a80 4973
a52d9a80 4974again:
890871be 4975 read_lock(&em_tree->lock);
d1310b2e 4976 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4977 if (em)
4978 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4979 read_unlock(&em_tree->lock);
d1310b2e 4980
a52d9a80 4981 if (em) {
e1c4b745
CM
4982 if (em->start > start || em->start + em->len <= start)
4983 free_extent_map(em);
4984 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4985 free_extent_map(em);
4986 else
4987 goto out;
a52d9a80 4988 }
172ddd60 4989 em = alloc_extent_map();
a52d9a80 4990 if (!em) {
d1310b2e
CM
4991 err = -ENOMEM;
4992 goto out;
a52d9a80 4993 }
e6dcd2dc 4994 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4995 em->start = EXTENT_MAP_HOLE;
445a6944 4996 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4997 em->len = (u64)-1;
c8b97818 4998 em->block_len = (u64)-1;
f421950f
CM
4999
5000 if (!path) {
5001 path = btrfs_alloc_path();
026fd317
JB
5002 if (!path) {
5003 err = -ENOMEM;
5004 goto out;
5005 }
5006 /*
5007 * Chances are we'll be called again, so go ahead and do
5008 * readahead
5009 */
5010 path->reada = 1;
f421950f
CM
5011 }
5012
179e29e4
CM
5013 ret = btrfs_lookup_file_extent(trans, root, path,
5014 objectid, start, trans != NULL);
a52d9a80
CM
5015 if (ret < 0) {
5016 err = ret;
5017 goto out;
5018 }
5019
5020 if (ret != 0) {
5021 if (path->slots[0] == 0)
5022 goto not_found;
5023 path->slots[0]--;
5024 }
5025
5f39d397
CM
5026 leaf = path->nodes[0];
5027 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5028 struct btrfs_file_extent_item);
a52d9a80 5029 /* are we inside the extent that was found? */
5f39d397
CM
5030 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5031 found_type = btrfs_key_type(&found_key);
5032 if (found_key.objectid != objectid ||
a52d9a80
CM
5033 found_type != BTRFS_EXTENT_DATA_KEY) {
5034 goto not_found;
5035 }
5036
5f39d397
CM
5037 found_type = btrfs_file_extent_type(leaf, item);
5038 extent_start = found_key.offset;
261507a0 5039 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5040 if (found_type == BTRFS_FILE_EXTENT_REG ||
5041 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5042 extent_end = extent_start +
db94535d 5043 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5044 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5045 size_t size;
5046 size = btrfs_file_extent_inline_len(leaf, item);
5047 extent_end = (extent_start + size + root->sectorsize - 1) &
5048 ~((u64)root->sectorsize - 1);
5049 }
5050
5051 if (start >= extent_end) {
5052 path->slots[0]++;
5053 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5054 ret = btrfs_next_leaf(root, path);
5055 if (ret < 0) {
5056 err = ret;
5057 goto out;
a52d9a80 5058 }
9036c102
YZ
5059 if (ret > 0)
5060 goto not_found;
5061 leaf = path->nodes[0];
a52d9a80 5062 }
9036c102
YZ
5063 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5064 if (found_key.objectid != objectid ||
5065 found_key.type != BTRFS_EXTENT_DATA_KEY)
5066 goto not_found;
5067 if (start + len <= found_key.offset)
5068 goto not_found;
5069 em->start = start;
5070 em->len = found_key.offset - start;
5071 goto not_found_em;
5072 }
5073
d899e052
YZ
5074 if (found_type == BTRFS_FILE_EXTENT_REG ||
5075 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5076 em->start = extent_start;
5077 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5078 em->orig_start = extent_start -
5079 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5080 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5081 if (bytenr == 0) {
5f39d397 5082 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5083 goto insert;
5084 }
261507a0 5085 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5086 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5087 em->compress_type = compress_type;
c8b97818
CM
5088 em->block_start = bytenr;
5089 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5090 item);
5091 } else {
5092 bytenr += btrfs_file_extent_offset(leaf, item);
5093 em->block_start = bytenr;
5094 em->block_len = em->len;
d899e052
YZ
5095 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5096 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5097 }
a52d9a80
CM
5098 goto insert;
5099 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5100 unsigned long ptr;
a52d9a80 5101 char *map;
3326d1b0
CM
5102 size_t size;
5103 size_t extent_offset;
5104 size_t copy_size;
a52d9a80 5105
689f9346 5106 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5107 if (!page || create) {
689f9346 5108 em->start = extent_start;
9036c102 5109 em->len = extent_end - extent_start;
689f9346
Y
5110 goto out;
5111 }
5f39d397 5112
9036c102
YZ
5113 size = btrfs_file_extent_inline_len(leaf, item);
5114 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5115 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5116 size - extent_offset);
3326d1b0 5117 em->start = extent_start + extent_offset;
70dec807
CM
5118 em->len = (copy_size + root->sectorsize - 1) &
5119 ~((u64)root->sectorsize - 1);
ff5b7ee3 5120 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5121 if (compress_type) {
c8b97818 5122 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5123 em->compress_type = compress_type;
5124 }
689f9346 5125 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5126 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5127 if (btrfs_file_extent_compression(leaf, item) !=
5128 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5129 ret = uncompress_inline(path, inode, page,
5130 pg_offset,
5131 extent_offset, item);
5132 BUG_ON(ret);
5133 } else {
5134 map = kmap(page);
5135 read_extent_buffer(leaf, map + pg_offset, ptr,
5136 copy_size);
93c82d57
CM
5137 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5138 memset(map + pg_offset + copy_size, 0,
5139 PAGE_CACHE_SIZE - pg_offset -
5140 copy_size);
5141 }
c8b97818
CM
5142 kunmap(page);
5143 }
179e29e4
CM
5144 flush_dcache_page(page);
5145 } else if (create && PageUptodate(page)) {
0ca1f7ce 5146 WARN_ON(1);
179e29e4
CM
5147 if (!trans) {
5148 kunmap(page);
5149 free_extent_map(em);
5150 em = NULL;
ff5714cc 5151
b3b4aa74 5152 btrfs_release_path(path);
7a7eaa40 5153 trans = btrfs_join_transaction(root);
ff5714cc 5154
3612b495
TI
5155 if (IS_ERR(trans))
5156 return ERR_CAST(trans);
179e29e4
CM
5157 goto again;
5158 }
c8b97818 5159 map = kmap(page);
70dec807 5160 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5161 copy_size);
c8b97818 5162 kunmap(page);
179e29e4 5163 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5164 }
d1310b2e 5165 set_extent_uptodate(io_tree, em->start,
507903b8 5166 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5167 goto insert;
5168 } else {
d397712b 5169 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5170 WARN_ON(1);
5171 }
5172not_found:
5173 em->start = start;
d1310b2e 5174 em->len = len;
a52d9a80 5175not_found_em:
5f39d397 5176 em->block_start = EXTENT_MAP_HOLE;
9036c102 5177 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5178insert:
b3b4aa74 5179 btrfs_release_path(path);
d1310b2e 5180 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5181 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5182 "[%llu %llu]\n", (unsigned long long)em->start,
5183 (unsigned long long)em->len,
5184 (unsigned long long)start,
5185 (unsigned long long)len);
a52d9a80
CM
5186 err = -EIO;
5187 goto out;
5188 }
d1310b2e
CM
5189
5190 err = 0;
890871be 5191 write_lock(&em_tree->lock);
a52d9a80 5192 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5193 /* it is possible that someone inserted the extent into the tree
5194 * while we had the lock dropped. It is also possible that
5195 * an overlapping map exists in the tree
5196 */
a52d9a80 5197 if (ret == -EEXIST) {
3b951516 5198 struct extent_map *existing;
e6dcd2dc
CM
5199
5200 ret = 0;
5201
3b951516 5202 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5203 if (existing && (existing->start > start ||
5204 existing->start + existing->len <= start)) {
5205 free_extent_map(existing);
5206 existing = NULL;
5207 }
3b951516
CM
5208 if (!existing) {
5209 existing = lookup_extent_mapping(em_tree, em->start,
5210 em->len);
5211 if (existing) {
5212 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5213 em, start,
5214 root->sectorsize);
3b951516
CM
5215 free_extent_map(existing);
5216 if (err) {
5217 free_extent_map(em);
5218 em = NULL;
5219 }
5220 } else {
5221 err = -EIO;
3b951516
CM
5222 free_extent_map(em);
5223 em = NULL;
5224 }
5225 } else {
5226 free_extent_map(em);
5227 em = existing;
e6dcd2dc 5228 err = 0;
a52d9a80 5229 }
a52d9a80 5230 }
890871be 5231 write_unlock(&em_tree->lock);
a52d9a80 5232out:
1abe9b8a 5233
5234 trace_btrfs_get_extent(root, em);
5235
f421950f
CM
5236 if (path)
5237 btrfs_free_path(path);
a52d9a80
CM
5238 if (trans) {
5239 ret = btrfs_end_transaction(trans, root);
d397712b 5240 if (!err)
a52d9a80
CM
5241 err = ret;
5242 }
a52d9a80
CM
5243 if (err) {
5244 free_extent_map(em);
a52d9a80
CM
5245 return ERR_PTR(err);
5246 }
5247 return em;
5248}
5249
ec29ed5b
CM
5250struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5251 size_t pg_offset, u64 start, u64 len,
5252 int create)
5253{
5254 struct extent_map *em;
5255 struct extent_map *hole_em = NULL;
5256 u64 range_start = start;
5257 u64 end;
5258 u64 found;
5259 u64 found_end;
5260 int err = 0;
5261
5262 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5263 if (IS_ERR(em))
5264 return em;
5265 if (em) {
5266 /*
5267 * if our em maps to a hole, there might
5268 * actually be delalloc bytes behind it
5269 */
5270 if (em->block_start != EXTENT_MAP_HOLE)
5271 return em;
5272 else
5273 hole_em = em;
5274 }
5275
5276 /* check to see if we've wrapped (len == -1 or similar) */
5277 end = start + len;
5278 if (end < start)
5279 end = (u64)-1;
5280 else
5281 end -= 1;
5282
5283 em = NULL;
5284
5285 /* ok, we didn't find anything, lets look for delalloc */
5286 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5287 end, len, EXTENT_DELALLOC, 1);
5288 found_end = range_start + found;
5289 if (found_end < range_start)
5290 found_end = (u64)-1;
5291
5292 /*
5293 * we didn't find anything useful, return
5294 * the original results from get_extent()
5295 */
5296 if (range_start > end || found_end <= start) {
5297 em = hole_em;
5298 hole_em = NULL;
5299 goto out;
5300 }
5301
5302 /* adjust the range_start to make sure it doesn't
5303 * go backwards from the start they passed in
5304 */
5305 range_start = max(start,range_start);
5306 found = found_end - range_start;
5307
5308 if (found > 0) {
5309 u64 hole_start = start;
5310 u64 hole_len = len;
5311
172ddd60 5312 em = alloc_extent_map();
ec29ed5b
CM
5313 if (!em) {
5314 err = -ENOMEM;
5315 goto out;
5316 }
5317 /*
5318 * when btrfs_get_extent can't find anything it
5319 * returns one huge hole
5320 *
5321 * make sure what it found really fits our range, and
5322 * adjust to make sure it is based on the start from
5323 * the caller
5324 */
5325 if (hole_em) {
5326 u64 calc_end = extent_map_end(hole_em);
5327
5328 if (calc_end <= start || (hole_em->start > end)) {
5329 free_extent_map(hole_em);
5330 hole_em = NULL;
5331 } else {
5332 hole_start = max(hole_em->start, start);
5333 hole_len = calc_end - hole_start;
5334 }
5335 }
5336 em->bdev = NULL;
5337 if (hole_em && range_start > hole_start) {
5338 /* our hole starts before our delalloc, so we
5339 * have to return just the parts of the hole
5340 * that go until the delalloc starts
5341 */
5342 em->len = min(hole_len,
5343 range_start - hole_start);
5344 em->start = hole_start;
5345 em->orig_start = hole_start;
5346 /*
5347 * don't adjust block start at all,
5348 * it is fixed at EXTENT_MAP_HOLE
5349 */
5350 em->block_start = hole_em->block_start;
5351 em->block_len = hole_len;
5352 } else {
5353 em->start = range_start;
5354 em->len = found;
5355 em->orig_start = range_start;
5356 em->block_start = EXTENT_MAP_DELALLOC;
5357 em->block_len = found;
5358 }
5359 } else if (hole_em) {
5360 return hole_em;
5361 }
5362out:
5363
5364 free_extent_map(hole_em);
5365 if (err) {
5366 free_extent_map(em);
5367 return ERR_PTR(err);
5368 }
5369 return em;
5370}
5371
4b46fce2 5372static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5373 struct extent_map *em,
4b46fce2
JB
5374 u64 start, u64 len)
5375{
5376 struct btrfs_root *root = BTRFS_I(inode)->root;
5377 struct btrfs_trans_handle *trans;
4b46fce2
JB
5378 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5379 struct btrfs_key ins;
5380 u64 alloc_hint;
5381 int ret;
16d299ac 5382 bool insert = false;
4b46fce2 5383
16d299ac
JB
5384 /*
5385 * Ok if the extent map we looked up is a hole and is for the exact
5386 * range we want, there is no reason to allocate a new one, however if
5387 * it is not right then we need to free this one and drop the cache for
5388 * our range.
5389 */
5390 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5391 em->len != len) {
5392 free_extent_map(em);
5393 em = NULL;
5394 insert = true;
5395 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5396 }
4b46fce2 5397
7a7eaa40 5398 trans = btrfs_join_transaction(root);
3612b495
TI
5399 if (IS_ERR(trans))
5400 return ERR_CAST(trans);
4b46fce2 5401
4cb5300b
CM
5402 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5403 btrfs_add_inode_defrag(trans, inode);
5404
4b46fce2
JB
5405 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5406
5407 alloc_hint = get_extent_allocation_hint(inode, start, len);
5408 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5409 alloc_hint, (u64)-1, &ins, 1);
5410 if (ret) {
5411 em = ERR_PTR(ret);
5412 goto out;
5413 }
5414
4b46fce2 5415 if (!em) {
172ddd60 5416 em = alloc_extent_map();
16d299ac
JB
5417 if (!em) {
5418 em = ERR_PTR(-ENOMEM);
5419 goto out;
5420 }
4b46fce2
JB
5421 }
5422
5423 em->start = start;
5424 em->orig_start = em->start;
5425 em->len = ins.offset;
5426
5427 em->block_start = ins.objectid;
5428 em->block_len = ins.offset;
5429 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5430
5431 /*
5432 * We need to do this because if we're using the original em we searched
5433 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5434 */
5435 em->flags = 0;
4b46fce2
JB
5436 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5437
16d299ac 5438 while (insert) {
4b46fce2
JB
5439 write_lock(&em_tree->lock);
5440 ret = add_extent_mapping(em_tree, em);
5441 write_unlock(&em_tree->lock);
5442 if (ret != -EEXIST)
5443 break;
5444 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5445 }
5446
5447 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5448 ins.offset, ins.offset, 0);
5449 if (ret) {
5450 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5451 em = ERR_PTR(ret);
5452 }
5453out:
5454 btrfs_end_transaction(trans, root);
5455 return em;
5456}
5457
46bfbb5c
CM
5458/*
5459 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5460 * block must be cow'd
5461 */
5462static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5463 struct inode *inode, u64 offset, u64 len)
5464{
5465 struct btrfs_path *path;
5466 int ret;
5467 struct extent_buffer *leaf;
5468 struct btrfs_root *root = BTRFS_I(inode)->root;
5469 struct btrfs_file_extent_item *fi;
5470 struct btrfs_key key;
5471 u64 disk_bytenr;
5472 u64 backref_offset;
5473 u64 extent_end;
5474 u64 num_bytes;
5475 int slot;
5476 int found_type;
5477
5478 path = btrfs_alloc_path();
5479 if (!path)
5480 return -ENOMEM;
5481
33345d01 5482 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5483 offset, 0);
5484 if (ret < 0)
5485 goto out;
5486
5487 slot = path->slots[0];
5488 if (ret == 1) {
5489 if (slot == 0) {
5490 /* can't find the item, must cow */
5491 ret = 0;
5492 goto out;
5493 }
5494 slot--;
5495 }
5496 ret = 0;
5497 leaf = path->nodes[0];
5498 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5499 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5500 key.type != BTRFS_EXTENT_DATA_KEY) {
5501 /* not our file or wrong item type, must cow */
5502 goto out;
5503 }
5504
5505 if (key.offset > offset) {
5506 /* Wrong offset, must cow */
5507 goto out;
5508 }
5509
5510 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5511 found_type = btrfs_file_extent_type(leaf, fi);
5512 if (found_type != BTRFS_FILE_EXTENT_REG &&
5513 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5514 /* not a regular extent, must cow */
5515 goto out;
5516 }
5517 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5518 backref_offset = btrfs_file_extent_offset(leaf, fi);
5519
5520 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5521 if (extent_end < offset + len) {
5522 /* extent doesn't include our full range, must cow */
5523 goto out;
5524 }
5525
5526 if (btrfs_extent_readonly(root, disk_bytenr))
5527 goto out;
5528
5529 /*
5530 * look for other files referencing this extent, if we
5531 * find any we must cow
5532 */
33345d01 5533 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5534 key.offset - backref_offset, disk_bytenr))
5535 goto out;
5536
5537 /*
5538 * adjust disk_bytenr and num_bytes to cover just the bytes
5539 * in this extent we are about to write. If there
5540 * are any csums in that range we have to cow in order
5541 * to keep the csums correct
5542 */
5543 disk_bytenr += backref_offset;
5544 disk_bytenr += offset - key.offset;
5545 num_bytes = min(offset + len, extent_end) - offset;
5546 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5547 goto out;
5548 /*
5549 * all of the above have passed, it is safe to overwrite this extent
5550 * without cow
5551 */
5552 ret = 1;
5553out:
5554 btrfs_free_path(path);
5555 return ret;
5556}
5557
4b46fce2
JB
5558static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5559 struct buffer_head *bh_result, int create)
5560{
5561 struct extent_map *em;
5562 struct btrfs_root *root = BTRFS_I(inode)->root;
5563 u64 start = iblock << inode->i_blkbits;
5564 u64 len = bh_result->b_size;
46bfbb5c 5565 struct btrfs_trans_handle *trans;
4b46fce2
JB
5566
5567 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5568 if (IS_ERR(em))
5569 return PTR_ERR(em);
5570
5571 /*
5572 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5573 * io. INLINE is special, and we could probably kludge it in here, but
5574 * it's still buffered so for safety lets just fall back to the generic
5575 * buffered path.
5576 *
5577 * For COMPRESSED we _have_ to read the entire extent in so we can
5578 * decompress it, so there will be buffering required no matter what we
5579 * do, so go ahead and fallback to buffered.
5580 *
5581 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5582 * to buffered IO. Don't blame me, this is the price we pay for using
5583 * the generic code.
5584 */
5585 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5586 em->block_start == EXTENT_MAP_INLINE) {
5587 free_extent_map(em);
5588 return -ENOTBLK;
5589 }
5590
5591 /* Just a good old fashioned hole, return */
5592 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5593 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5594 free_extent_map(em);
5595 /* DIO will do one hole at a time, so just unlock a sector */
5596 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5597 start + root->sectorsize - 1, GFP_NOFS);
5598 return 0;
5599 }
5600
5601 /*
5602 * We don't allocate a new extent in the following cases
5603 *
5604 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5605 * existing extent.
5606 * 2) The extent is marked as PREALLOC. We're good to go here and can
5607 * just use the extent.
5608 *
5609 */
46bfbb5c
CM
5610 if (!create) {
5611 len = em->len - (start - em->start);
4b46fce2 5612 goto map;
46bfbb5c 5613 }
4b46fce2
JB
5614
5615 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5616 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5617 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5618 int type;
5619 int ret;
46bfbb5c 5620 u64 block_start;
4b46fce2
JB
5621
5622 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5623 type = BTRFS_ORDERED_PREALLOC;
5624 else
5625 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5626 len = min(len, em->len - (start - em->start));
4b46fce2 5627 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5628
5629 /*
5630 * we're not going to log anything, but we do need
5631 * to make sure the current transaction stays open
5632 * while we look for nocow cross refs
5633 */
7a7eaa40 5634 trans = btrfs_join_transaction(root);
3612b495 5635 if (IS_ERR(trans))
46bfbb5c
CM
5636 goto must_cow;
5637
5638 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5639 ret = btrfs_add_ordered_extent_dio(inode, start,
5640 block_start, len, len, type);
5641 btrfs_end_transaction(trans, root);
5642 if (ret) {
5643 free_extent_map(em);
5644 return ret;
5645 }
5646 goto unlock;
4b46fce2 5647 }
46bfbb5c 5648 btrfs_end_transaction(trans, root);
4b46fce2 5649 }
46bfbb5c
CM
5650must_cow:
5651 /*
5652 * this will cow the extent, reset the len in case we changed
5653 * it above
5654 */
5655 len = bh_result->b_size;
16d299ac 5656 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5657 if (IS_ERR(em))
5658 return PTR_ERR(em);
5659 len = min(len, em->len - (start - em->start));
5660unlock:
4845e44f
CM
5661 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5662 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5663 0, NULL, GFP_NOFS);
4b46fce2
JB
5664map:
5665 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5666 inode->i_blkbits;
46bfbb5c 5667 bh_result->b_size = len;
4b46fce2
JB
5668 bh_result->b_bdev = em->bdev;
5669 set_buffer_mapped(bh_result);
5670 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5671 set_buffer_new(bh_result);
5672
5673 free_extent_map(em);
5674
5675 return 0;
5676}
5677
5678struct btrfs_dio_private {
5679 struct inode *inode;
5680 u64 logical_offset;
5681 u64 disk_bytenr;
5682 u64 bytes;
5683 u32 *csums;
5684 void *private;
e65e1535
MX
5685
5686 /* number of bios pending for this dio */
5687 atomic_t pending_bios;
5688
5689 /* IO errors */
5690 int errors;
5691
5692 struct bio *orig_bio;
4b46fce2
JB
5693};
5694
5695static void btrfs_endio_direct_read(struct bio *bio, int err)
5696{
e65e1535 5697 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5698 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5699 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5700 struct inode *inode = dip->inode;
5701 struct btrfs_root *root = BTRFS_I(inode)->root;
5702 u64 start;
5703 u32 *private = dip->csums;
5704
5705 start = dip->logical_offset;
5706 do {
5707 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5708 struct page *page = bvec->bv_page;
5709 char *kaddr;
5710 u32 csum = ~(u32)0;
5711 unsigned long flags;
5712
5713 local_irq_save(flags);
5714 kaddr = kmap_atomic(page, KM_IRQ0);
5715 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5716 csum, bvec->bv_len);
5717 btrfs_csum_final(csum, (char *)&csum);
5718 kunmap_atomic(kaddr, KM_IRQ0);
5719 local_irq_restore(flags);
5720
5721 flush_dcache_page(bvec->bv_page);
5722 if (csum != *private) {
33345d01 5723 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5724 " %llu csum %u private %u\n",
33345d01
LZ
5725 (unsigned long long)btrfs_ino(inode),
5726 (unsigned long long)start,
4b46fce2
JB
5727 csum, *private);
5728 err = -EIO;
5729 }
5730 }
5731
5732 start += bvec->bv_len;
5733 private++;
5734 bvec++;
5735 } while (bvec <= bvec_end);
5736
5737 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5738 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5739 bio->bi_private = dip->private;
5740
5741 kfree(dip->csums);
5742 kfree(dip);
c0da7aa1
JB
5743
5744 /* If we had a csum failure make sure to clear the uptodate flag */
5745 if (err)
5746 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5747 dio_end_io(bio, err);
5748}
5749
5750static void btrfs_endio_direct_write(struct bio *bio, int err)
5751{
5752 struct btrfs_dio_private *dip = bio->bi_private;
5753 struct inode *inode = dip->inode;
5754 struct btrfs_root *root = BTRFS_I(inode)->root;
5755 struct btrfs_trans_handle *trans;
5756 struct btrfs_ordered_extent *ordered = NULL;
5757 struct extent_state *cached_state = NULL;
163cf09c
CM
5758 u64 ordered_offset = dip->logical_offset;
5759 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5760 int ret;
5761
5762 if (err)
5763 goto out_done;
163cf09c
CM
5764again:
5765 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5766 &ordered_offset,
5767 ordered_bytes);
4b46fce2 5768 if (!ret)
163cf09c 5769 goto out_test;
4b46fce2
JB
5770
5771 BUG_ON(!ordered);
5772
7a7eaa40 5773 trans = btrfs_join_transaction(root);
3612b495 5774 if (IS_ERR(trans)) {
4b46fce2
JB
5775 err = -ENOMEM;
5776 goto out;
5777 }
5778 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5779
5780 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5781 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5782 if (!ret)
f0dd9592 5783 err = btrfs_update_inode(trans, root, inode);
4b46fce2
JB
5784 goto out;
5785 }
5786
5787 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5788 ordered->file_offset + ordered->len - 1, 0,
5789 &cached_state, GFP_NOFS);
5790
5791 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5792 ret = btrfs_mark_extent_written(trans, inode,
5793 ordered->file_offset,
5794 ordered->file_offset +
5795 ordered->len);
5796 if (ret) {
5797 err = ret;
5798 goto out_unlock;
5799 }
5800 } else {
5801 ret = insert_reserved_file_extent(trans, inode,
5802 ordered->file_offset,
5803 ordered->start,
5804 ordered->disk_len,
5805 ordered->len,
5806 ordered->len,
5807 0, 0, 0,
5808 BTRFS_FILE_EXTENT_REG);
5809 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5810 ordered->file_offset, ordered->len);
5811 if (ret) {
5812 err = ret;
5813 WARN_ON(1);
5814 goto out_unlock;
5815 }
5816 }
5817
5818 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1 5819 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
a39f7521 5820 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1ef30be1
JB
5821 btrfs_update_inode(trans, root, inode);
5822 ret = 0;
4b46fce2
JB
5823out_unlock:
5824 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5825 ordered->file_offset + ordered->len - 1,
5826 &cached_state, GFP_NOFS);
5827out:
5828 btrfs_delalloc_release_metadata(inode, ordered->len);
5829 btrfs_end_transaction(trans, root);
163cf09c 5830 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5831 btrfs_put_ordered_extent(ordered);
5832 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5833
5834out_test:
5835 /*
5836 * our bio might span multiple ordered extents. If we haven't
5837 * completed the accounting for the whole dio, go back and try again
5838 */
5839 if (ordered_offset < dip->logical_offset + dip->bytes) {
5840 ordered_bytes = dip->logical_offset + dip->bytes -
5841 ordered_offset;
5842 goto again;
5843 }
4b46fce2
JB
5844out_done:
5845 bio->bi_private = dip->private;
5846
5847 kfree(dip->csums);
5848 kfree(dip);
c0da7aa1
JB
5849
5850 /* If we had an error make sure to clear the uptodate flag */
5851 if (err)
5852 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5853 dio_end_io(bio, err);
5854}
5855
eaf25d93
CM
5856static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5857 struct bio *bio, int mirror_num,
5858 unsigned long bio_flags, u64 offset)
5859{
5860 int ret;
5861 struct btrfs_root *root = BTRFS_I(inode)->root;
5862 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5863 BUG_ON(ret);
5864 return 0;
5865}
5866
e65e1535
MX
5867static void btrfs_end_dio_bio(struct bio *bio, int err)
5868{
5869 struct btrfs_dio_private *dip = bio->bi_private;
5870
5871 if (err) {
33345d01 5872 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 5873 "sector %#Lx len %u err no %d\n",
33345d01 5874 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 5875 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5876 dip->errors = 1;
5877
5878 /*
5879 * before atomic variable goto zero, we must make sure
5880 * dip->errors is perceived to be set.
5881 */
5882 smp_mb__before_atomic_dec();
5883 }
5884
5885 /* if there are more bios still pending for this dio, just exit */
5886 if (!atomic_dec_and_test(&dip->pending_bios))
5887 goto out;
5888
5889 if (dip->errors)
5890 bio_io_error(dip->orig_bio);
5891 else {
5892 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5893 bio_endio(dip->orig_bio, 0);
5894 }
5895out:
5896 bio_put(bio);
5897}
5898
5899static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5900 u64 first_sector, gfp_t gfp_flags)
5901{
5902 int nr_vecs = bio_get_nr_vecs(bdev);
5903 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5904}
5905
5906static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5907 int rw, u64 file_offset, int skip_sum,
1ae39938 5908 u32 *csums, int async_submit)
e65e1535
MX
5909{
5910 int write = rw & REQ_WRITE;
5911 struct btrfs_root *root = BTRFS_I(inode)->root;
5912 int ret;
5913
5914 bio_get(bio);
5915 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5916 if (ret)
5917 goto err;
5918
1ae39938
JB
5919 if (skip_sum)
5920 goto map;
5921
5922 if (write && async_submit) {
e65e1535
MX
5923 ret = btrfs_wq_submit_bio(root->fs_info,
5924 inode, rw, bio, 0, 0,
5925 file_offset,
5926 __btrfs_submit_bio_start_direct_io,
5927 __btrfs_submit_bio_done);
5928 goto err;
1ae39938
JB
5929 } else if (write) {
5930 /*
5931 * If we aren't doing async submit, calculate the csum of the
5932 * bio now.
5933 */
5934 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5935 if (ret)
5936 goto err;
c2db1073
TI
5937 } else if (!skip_sum) {
5938 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 5939 file_offset, csums);
c2db1073
TI
5940 if (ret)
5941 goto err;
5942 }
e65e1535 5943
1ae39938
JB
5944map:
5945 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
5946err:
5947 bio_put(bio);
5948 return ret;
5949}
5950
5951static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5952 int skip_sum)
5953{
5954 struct inode *inode = dip->inode;
5955 struct btrfs_root *root = BTRFS_I(inode)->root;
5956 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5957 struct bio *bio;
5958 struct bio *orig_bio = dip->orig_bio;
5959 struct bio_vec *bvec = orig_bio->bi_io_vec;
5960 u64 start_sector = orig_bio->bi_sector;
5961 u64 file_offset = dip->logical_offset;
5962 u64 submit_len = 0;
5963 u64 map_length;
5964 int nr_pages = 0;
5965 u32 *csums = dip->csums;
5966 int ret = 0;
1ae39938 5967 int async_submit = 0;
98bc3149 5968 int write = rw & REQ_WRITE;
e65e1535 5969
e65e1535
MX
5970 map_length = orig_bio->bi_size;
5971 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5972 &map_length, NULL, 0);
5973 if (ret) {
64728bbb 5974 bio_put(orig_bio);
e65e1535
MX
5975 return -EIO;
5976 }
5977
02f57c7a
JB
5978 if (map_length >= orig_bio->bi_size) {
5979 bio = orig_bio;
5980 goto submit;
5981 }
5982
1ae39938 5983 async_submit = 1;
02f57c7a
JB
5984 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5985 if (!bio)
5986 return -ENOMEM;
5987 bio->bi_private = dip;
5988 bio->bi_end_io = btrfs_end_dio_bio;
5989 atomic_inc(&dip->pending_bios);
5990
e65e1535
MX
5991 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5992 if (unlikely(map_length < submit_len + bvec->bv_len ||
5993 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5994 bvec->bv_offset) < bvec->bv_len)) {
5995 /*
5996 * inc the count before we submit the bio so
5997 * we know the end IO handler won't happen before
5998 * we inc the count. Otherwise, the dip might get freed
5999 * before we're done setting it up
6000 */
6001 atomic_inc(&dip->pending_bios);
6002 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6003 file_offset, skip_sum,
1ae39938 6004 csums, async_submit);
e65e1535
MX
6005 if (ret) {
6006 bio_put(bio);
6007 atomic_dec(&dip->pending_bios);
6008 goto out_err;
6009 }
6010
98bc3149
JB
6011 /* Write's use the ordered csums */
6012 if (!write && !skip_sum)
e65e1535
MX
6013 csums = csums + nr_pages;
6014 start_sector += submit_len >> 9;
6015 file_offset += submit_len;
6016
6017 submit_len = 0;
6018 nr_pages = 0;
6019
6020 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6021 start_sector, GFP_NOFS);
6022 if (!bio)
6023 goto out_err;
6024 bio->bi_private = dip;
6025 bio->bi_end_io = btrfs_end_dio_bio;
6026
6027 map_length = orig_bio->bi_size;
6028 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6029 &map_length, NULL, 0);
6030 if (ret) {
6031 bio_put(bio);
6032 goto out_err;
6033 }
6034 } else {
6035 submit_len += bvec->bv_len;
6036 nr_pages ++;
6037 bvec++;
6038 }
6039 }
6040
02f57c7a 6041submit:
e65e1535 6042 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6043 csums, async_submit);
e65e1535
MX
6044 if (!ret)
6045 return 0;
6046
6047 bio_put(bio);
6048out_err:
6049 dip->errors = 1;
6050 /*
6051 * before atomic variable goto zero, we must
6052 * make sure dip->errors is perceived to be set.
6053 */
6054 smp_mb__before_atomic_dec();
6055 if (atomic_dec_and_test(&dip->pending_bios))
6056 bio_io_error(dip->orig_bio);
6057
6058 /* bio_end_io() will handle error, so we needn't return it */
6059 return 0;
6060}
6061
4b46fce2
JB
6062static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6063 loff_t file_offset)
6064{
6065 struct btrfs_root *root = BTRFS_I(inode)->root;
6066 struct btrfs_dio_private *dip;
6067 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6068 int skip_sum;
7b6d91da 6069 int write = rw & REQ_WRITE;
4b46fce2
JB
6070 int ret = 0;
6071
6072 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6073
6074 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6075 if (!dip) {
6076 ret = -ENOMEM;
6077 goto free_ordered;
6078 }
6079 dip->csums = NULL;
6080
98bc3149
JB
6081 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6082 if (!write && !skip_sum) {
4b46fce2
JB
6083 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6084 if (!dip->csums) {
b4966b77 6085 kfree(dip);
4b46fce2
JB
6086 ret = -ENOMEM;
6087 goto free_ordered;
6088 }
6089 }
6090
6091 dip->private = bio->bi_private;
6092 dip->inode = inode;
6093 dip->logical_offset = file_offset;
6094
4b46fce2
JB
6095 dip->bytes = 0;
6096 do {
6097 dip->bytes += bvec->bv_len;
6098 bvec++;
6099 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6100
46bfbb5c 6101 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6102 bio->bi_private = dip;
e65e1535
MX
6103 dip->errors = 0;
6104 dip->orig_bio = bio;
6105 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6106
6107 if (write)
6108 bio->bi_end_io = btrfs_endio_direct_write;
6109 else
6110 bio->bi_end_io = btrfs_endio_direct_read;
6111
e65e1535
MX
6112 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6113 if (!ret)
eaf25d93 6114 return;
4b46fce2
JB
6115free_ordered:
6116 /*
6117 * If this is a write, we need to clean up the reserved space and kill
6118 * the ordered extent.
6119 */
6120 if (write) {
6121 struct btrfs_ordered_extent *ordered;
955256f2 6122 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6123 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6124 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6125 btrfs_free_reserved_extent(root, ordered->start,
6126 ordered->disk_len);
6127 btrfs_put_ordered_extent(ordered);
6128 btrfs_put_ordered_extent(ordered);
6129 }
6130 bio_endio(bio, ret);
6131}
6132
5a5f79b5
CM
6133static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6134 const struct iovec *iov, loff_t offset,
6135 unsigned long nr_segs)
6136{
6137 int seg;
a1b75f7d 6138 int i;
5a5f79b5
CM
6139 size_t size;
6140 unsigned long addr;
6141 unsigned blocksize_mask = root->sectorsize - 1;
6142 ssize_t retval = -EINVAL;
6143 loff_t end = offset;
6144
6145 if (offset & blocksize_mask)
6146 goto out;
6147
6148 /* Check the memory alignment. Blocks cannot straddle pages */
6149 for (seg = 0; seg < nr_segs; seg++) {
6150 addr = (unsigned long)iov[seg].iov_base;
6151 size = iov[seg].iov_len;
6152 end += size;
a1b75f7d 6153 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6154 goto out;
a1b75f7d
JB
6155
6156 /* If this is a write we don't need to check anymore */
6157 if (rw & WRITE)
6158 continue;
6159
6160 /*
6161 * Check to make sure we don't have duplicate iov_base's in this
6162 * iovec, if so return EINVAL, otherwise we'll get csum errors
6163 * when reading back.
6164 */
6165 for (i = seg + 1; i < nr_segs; i++) {
6166 if (iov[seg].iov_base == iov[i].iov_base)
6167 goto out;
6168 }
5a5f79b5
CM
6169 }
6170 retval = 0;
6171out:
6172 return retval;
6173}
16432985
CM
6174static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6175 const struct iovec *iov, loff_t offset,
6176 unsigned long nr_segs)
6177{
4b46fce2
JB
6178 struct file *file = iocb->ki_filp;
6179 struct inode *inode = file->f_mapping->host;
6180 struct btrfs_ordered_extent *ordered;
4845e44f 6181 struct extent_state *cached_state = NULL;
4b46fce2
JB
6182 u64 lockstart, lockend;
6183 ssize_t ret;
4845e44f
CM
6184 int writing = rw & WRITE;
6185 int write_bits = 0;
3f7c579c 6186 size_t count = iov_length(iov, nr_segs);
4b46fce2 6187
5a5f79b5
CM
6188 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6189 offset, nr_segs)) {
6190 return 0;
6191 }
6192
4b46fce2 6193 lockstart = offset;
3f7c579c
CM
6194 lockend = offset + count - 1;
6195
6196 if (writing) {
6197 ret = btrfs_delalloc_reserve_space(inode, count);
6198 if (ret)
6199 goto out;
6200 }
4845e44f 6201
4b46fce2 6202 while (1) {
4845e44f
CM
6203 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6204 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6205 /*
6206 * We're concerned with the entire range that we're going to be
6207 * doing DIO to, so we need to make sure theres no ordered
6208 * extents in this range.
6209 */
6210 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6211 lockend - lockstart + 1);
6212 if (!ordered)
6213 break;
4845e44f
CM
6214 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6215 &cached_state, GFP_NOFS);
4b46fce2
JB
6216 btrfs_start_ordered_extent(inode, ordered, 1);
6217 btrfs_put_ordered_extent(ordered);
6218 cond_resched();
6219 }
6220
4845e44f
CM
6221 /*
6222 * we don't use btrfs_set_extent_delalloc because we don't want
6223 * the dirty or uptodate bits
6224 */
6225 if (writing) {
6226 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6227 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6228 EXTENT_DELALLOC, 0, NULL, &cached_state,
6229 GFP_NOFS);
6230 if (ret) {
6231 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6232 lockend, EXTENT_LOCKED | write_bits,
6233 1, 0, &cached_state, GFP_NOFS);
6234 goto out;
6235 }
6236 }
6237
6238 free_extent_state(cached_state);
6239 cached_state = NULL;
6240
5a5f79b5
CM
6241 ret = __blockdev_direct_IO(rw, iocb, inode,
6242 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6243 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6244 btrfs_submit_direct, 0);
4b46fce2
JB
6245
6246 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6247 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6248 offset + iov_length(iov, nr_segs) - 1,
6249 EXTENT_LOCKED | write_bits, 1, 0,
6250 &cached_state, GFP_NOFS);
4b46fce2
JB
6251 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6252 /*
6253 * We're falling back to buffered, unlock the section we didn't
6254 * do IO on.
6255 */
4845e44f
CM
6256 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6257 offset + iov_length(iov, nr_segs) - 1,
6258 EXTENT_LOCKED | write_bits, 1, 0,
6259 &cached_state, GFP_NOFS);
4b46fce2 6260 }
4845e44f
CM
6261out:
6262 free_extent_state(cached_state);
4b46fce2 6263 return ret;
16432985
CM
6264}
6265
1506fcc8
YS
6266static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6267 __u64 start, __u64 len)
6268{
ec29ed5b 6269 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6270}
6271
a52d9a80 6272int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6273{
d1310b2e
CM
6274 struct extent_io_tree *tree;
6275 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6276 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6277}
1832a6d5 6278
a52d9a80 6279static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6280{
d1310b2e 6281 struct extent_io_tree *tree;
b888db2b
CM
6282
6283
6284 if (current->flags & PF_MEMALLOC) {
6285 redirty_page_for_writepage(wbc, page);
6286 unlock_page(page);
6287 return 0;
6288 }
d1310b2e 6289 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6290 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6291}
6292
f421950f
CM
6293int btrfs_writepages(struct address_space *mapping,
6294 struct writeback_control *wbc)
b293f02e 6295{
d1310b2e 6296 struct extent_io_tree *tree;
771ed689 6297
d1310b2e 6298 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6299 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6300}
6301
3ab2fb5a
CM
6302static int
6303btrfs_readpages(struct file *file, struct address_space *mapping,
6304 struct list_head *pages, unsigned nr_pages)
6305{
d1310b2e
CM
6306 struct extent_io_tree *tree;
6307 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6308 return extent_readpages(tree, mapping, pages, nr_pages,
6309 btrfs_get_extent);
6310}
e6dcd2dc 6311static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6312{
d1310b2e
CM
6313 struct extent_io_tree *tree;
6314 struct extent_map_tree *map;
a52d9a80 6315 int ret;
8c2383c3 6316
d1310b2e
CM
6317 tree = &BTRFS_I(page->mapping->host)->io_tree;
6318 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6319 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6320 if (ret == 1) {
6321 ClearPagePrivate(page);
6322 set_page_private(page, 0);
6323 page_cache_release(page);
39279cc3 6324 }
a52d9a80 6325 return ret;
39279cc3
CM
6326}
6327
e6dcd2dc
CM
6328static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6329{
98509cfc
CM
6330 if (PageWriteback(page) || PageDirty(page))
6331 return 0;
b335b003 6332 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6333}
6334
a52d9a80 6335static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6336{
d1310b2e 6337 struct extent_io_tree *tree;
e6dcd2dc 6338 struct btrfs_ordered_extent *ordered;
2ac55d41 6339 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6340 u64 page_start = page_offset(page);
6341 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6342
8b62b72b
CM
6343
6344 /*
6345 * we have the page locked, so new writeback can't start,
6346 * and the dirty bit won't be cleared while we are here.
6347 *
6348 * Wait for IO on this page so that we can safely clear
6349 * the PagePrivate2 bit and do ordered accounting
6350 */
e6dcd2dc 6351 wait_on_page_writeback(page);
8b62b72b 6352
d1310b2e 6353 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6354 if (offset) {
6355 btrfs_releasepage(page, GFP_NOFS);
6356 return;
6357 }
2ac55d41
JB
6358 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6359 GFP_NOFS);
e6dcd2dc
CM
6360 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6361 page_offset(page));
6362 if (ordered) {
eb84ae03
CM
6363 /*
6364 * IO on this page will never be started, so we need
6365 * to account for any ordered extents now
6366 */
e6dcd2dc
CM
6367 clear_extent_bit(tree, page_start, page_end,
6368 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6369 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6370 &cached_state, GFP_NOFS);
8b62b72b
CM
6371 /*
6372 * whoever cleared the private bit is responsible
6373 * for the finish_ordered_io
6374 */
6375 if (TestClearPagePrivate2(page)) {
6376 btrfs_finish_ordered_io(page->mapping->host,
6377 page_start, page_end);
6378 }
e6dcd2dc 6379 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6380 cached_state = NULL;
6381 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6382 GFP_NOFS);
e6dcd2dc
CM
6383 }
6384 clear_extent_bit(tree, page_start, page_end,
32c00aff 6385 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6386 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6387 __btrfs_releasepage(page, GFP_NOFS);
6388
4a096752 6389 ClearPageChecked(page);
9ad6b7bc 6390 if (PagePrivate(page)) {
9ad6b7bc
CM
6391 ClearPagePrivate(page);
6392 set_page_private(page, 0);
6393 page_cache_release(page);
6394 }
39279cc3
CM
6395}
6396
9ebefb18
CM
6397/*
6398 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6399 * called from a page fault handler when a page is first dirtied. Hence we must
6400 * be careful to check for EOF conditions here. We set the page up correctly
6401 * for a written page which means we get ENOSPC checking when writing into
6402 * holes and correct delalloc and unwritten extent mapping on filesystems that
6403 * support these features.
6404 *
6405 * We are not allowed to take the i_mutex here so we have to play games to
6406 * protect against truncate races as the page could now be beyond EOF. Because
6407 * vmtruncate() writes the inode size before removing pages, once we have the
6408 * page lock we can determine safely if the page is beyond EOF. If it is not
6409 * beyond EOF, then the page is guaranteed safe against truncation until we
6410 * unlock the page.
6411 */
c2ec175c 6412int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6413{
c2ec175c 6414 struct page *page = vmf->page;
6da6abae 6415 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6416 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6417 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6418 struct btrfs_ordered_extent *ordered;
2ac55d41 6419 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6420 char *kaddr;
6421 unsigned long zero_start;
9ebefb18 6422 loff_t size;
1832a6d5 6423 int ret;
a52d9a80 6424 u64 page_start;
e6dcd2dc 6425 u64 page_end;
9ebefb18 6426
0ca1f7ce 6427 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6428 if (ret) {
6429 if (ret == -ENOMEM)
6430 ret = VM_FAULT_OOM;
6431 else /* -ENOSPC, -EIO, etc */
6432 ret = VM_FAULT_SIGBUS;
1832a6d5 6433 goto out;
56a76f82 6434 }
1832a6d5 6435
56a76f82 6436 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6437again:
9ebefb18 6438 lock_page(page);
9ebefb18 6439 size = i_size_read(inode);
e6dcd2dc
CM
6440 page_start = page_offset(page);
6441 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6442
9ebefb18 6443 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6444 (page_start >= size)) {
9ebefb18
CM
6445 /* page got truncated out from underneath us */
6446 goto out_unlock;
6447 }
e6dcd2dc
CM
6448 wait_on_page_writeback(page);
6449
2ac55d41
JB
6450 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6451 GFP_NOFS);
e6dcd2dc
CM
6452 set_page_extent_mapped(page);
6453
eb84ae03
CM
6454 /*
6455 * we can't set the delalloc bits if there are pending ordered
6456 * extents. Drop our locks and wait for them to finish
6457 */
e6dcd2dc
CM
6458 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6459 if (ordered) {
2ac55d41
JB
6460 unlock_extent_cached(io_tree, page_start, page_end,
6461 &cached_state, GFP_NOFS);
e6dcd2dc 6462 unlock_page(page);
eb84ae03 6463 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6464 btrfs_put_ordered_extent(ordered);
6465 goto again;
6466 }
6467
fbf19087
JB
6468 /*
6469 * XXX - page_mkwrite gets called every time the page is dirtied, even
6470 * if it was already dirty, so for space accounting reasons we need to
6471 * clear any delalloc bits for the range we are fixing to save. There
6472 * is probably a better way to do this, but for now keep consistent with
6473 * prepare_pages in the normal write path.
6474 */
2ac55d41 6475 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6476 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6477 0, 0, &cached_state, GFP_NOFS);
fbf19087 6478
2ac55d41
JB
6479 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6480 &cached_state);
9ed74f2d 6481 if (ret) {
2ac55d41
JB
6482 unlock_extent_cached(io_tree, page_start, page_end,
6483 &cached_state, GFP_NOFS);
9ed74f2d
JB
6484 ret = VM_FAULT_SIGBUS;
6485 goto out_unlock;
6486 }
e6dcd2dc 6487 ret = 0;
9ebefb18
CM
6488
6489 /* page is wholly or partially inside EOF */
a52d9a80 6490 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6491 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6492 else
e6dcd2dc 6493 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6494
e6dcd2dc
CM
6495 if (zero_start != PAGE_CACHE_SIZE) {
6496 kaddr = kmap(page);
6497 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6498 flush_dcache_page(page);
6499 kunmap(page);
6500 }
247e743c 6501 ClearPageChecked(page);
e6dcd2dc 6502 set_page_dirty(page);
50a9b214 6503 SetPageUptodate(page);
5a3f23d5 6504
257c62e1
CM
6505 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6506 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6507
2ac55d41 6508 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6509
6510out_unlock:
50a9b214
CM
6511 if (!ret)
6512 return VM_FAULT_LOCKED;
9ebefb18 6513 unlock_page(page);
0ca1f7ce 6514 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6515out:
9ebefb18
CM
6516 return ret;
6517}
6518
a41ad394 6519static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6520{
6521 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6522 struct btrfs_block_rsv *rsv;
39279cc3 6523 int ret;
3893e33b 6524 int err = 0;
39279cc3 6525 struct btrfs_trans_handle *trans;
d3c2fdcf 6526 unsigned long nr;
dbe674a9 6527 u64 mask = root->sectorsize - 1;
07127184 6528 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6529
5d5e103a
JB
6530 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6531 if (ret)
a41ad394 6532 return ret;
8082510e 6533
4a096752 6534 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6535 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6536
fcb80c2a
JB
6537 /*
6538 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6539 * 3 things going on here
6540 *
6541 * 1) We need to reserve space for our orphan item and the space to
6542 * delete our orphan item. Lord knows we don't want to have a dangling
6543 * orphan item because we didn't reserve space to remove it.
6544 *
6545 * 2) We need to reserve space to update our inode.
6546 *
6547 * 3) We need to have something to cache all the space that is going to
6548 * be free'd up by the truncate operation, but also have some slack
6549 * space reserved in case it uses space during the truncate (thank you
6550 * very much snapshotting).
6551 *
6552 * And we need these to all be seperate. The fact is we can use alot of
6553 * space doing the truncate, and we have no earthly idea how much space
6554 * we will use, so we need the truncate reservation to be seperate so it
6555 * doesn't end up using space reserved for updating the inode or
6556 * removing the orphan item. We also need to be able to stop the
6557 * transaction and start a new one, which means we need to be able to
6558 * update the inode several times, and we have no idea of knowing how
6559 * many times that will be, so we can't just reserve 1 item for the
6560 * entirety of the opration, so that has to be done seperately as well.
6561 * Then there is the orphan item, which does indeed need to be held on
6562 * to for the whole operation, and we need nobody to touch this reserved
6563 * space except the orphan code.
6564 *
6565 * So that leaves us with
6566 *
6567 * 1) root->orphan_block_rsv - for the orphan deletion.
6568 * 2) rsv - for the truncate reservation, which we will steal from the
6569 * transaction reservation.
6570 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6571 * updating the inode.
6572 */
6573 rsv = btrfs_alloc_block_rsv(root);
6574 if (!rsv)
6575 return -ENOMEM;
4a338542 6576 rsv->size = min_size;
f0cd846e 6577
907cbceb 6578 /*
07127184 6579 * 1 for the truncate slack space
907cbceb
JB
6580 * 1 for the orphan item we're going to add
6581 * 1 for the orphan item deletion
6582 * 1 for updating the inode.
6583 */
07127184 6584 trans = btrfs_start_transaction(root, 4);
fcb80c2a
JB
6585 if (IS_ERR(trans)) {
6586 err = PTR_ERR(trans);
6587 goto out;
6588 }
f0cd846e 6589
907cbceb
JB
6590 /* Migrate the slack space for the truncate to our reserve */
6591 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6592 min_size);
fcb80c2a 6593 BUG_ON(ret);
f0cd846e
JB
6594
6595 ret = btrfs_orphan_add(trans, inode);
6596 if (ret) {
6597 btrfs_end_transaction(trans, root);
fcb80c2a 6598 goto out;
f0cd846e
JB
6599 }
6600
5a3f23d5
CM
6601 /*
6602 * setattr is responsible for setting the ordered_data_close flag,
6603 * but that is only tested during the last file release. That
6604 * could happen well after the next commit, leaving a great big
6605 * window where new writes may get lost if someone chooses to write
6606 * to this file after truncating to zero
6607 *
6608 * The inode doesn't have any dirty data here, and so if we commit
6609 * this is a noop. If someone immediately starts writing to the inode
6610 * it is very likely we'll catch some of their writes in this
6611 * transaction, and the commit will find this file on the ordered
6612 * data list with good things to send down.
6613 *
6614 * This is a best effort solution, there is still a window where
6615 * using truncate to replace the contents of the file will
6616 * end up with a zero length file after a crash.
6617 */
6618 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6619 btrfs_add_ordered_operation(trans, root, inode);
6620
8082510e 6621 while (1) {
36ba022a 6622 ret = btrfs_block_rsv_refill(root, rsv, min_size);
907cbceb
JB
6623 if (ret) {
6624 /*
6625 * This can only happen with the original transaction we
6626 * started above, every other time we shouldn't have a
6627 * transaction started yet.
6628 */
6629 if (ret == -EAGAIN)
6630 goto end_trans;
6631 err = ret;
6632 break;
6633 }
6634
d68fc57b 6635 if (!trans) {
907cbceb
JB
6636 /* Just need the 1 for updating the inode */
6637 trans = btrfs_start_transaction(root, 1);
fcb80c2a
JB
6638 if (IS_ERR(trans)) {
6639 err = PTR_ERR(trans);
6640 goto out;
6641 }
d68fc57b
YZ
6642 }
6643
907cbceb
JB
6644 trans->block_rsv = rsv;
6645
8082510e
YZ
6646 ret = btrfs_truncate_inode_items(trans, root, inode,
6647 inode->i_size,
6648 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6649 if (ret != -EAGAIN) {
6650 err = ret;
8082510e 6651 break;
3893e33b 6652 }
39279cc3 6653
fcb80c2a 6654 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6655 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6656 if (ret) {
6657 err = ret;
6658 break;
6659 }
907cbceb 6660end_trans:
8082510e
YZ
6661 nr = trans->blocks_used;
6662 btrfs_end_transaction(trans, root);
d68fc57b 6663 trans = NULL;
8082510e 6664 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6665 }
6666
6667 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6668 trans->block_rsv = root->orphan_block_rsv;
8082510e 6669 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6670 if (ret)
6671 err = ret;
ded5db9d
JB
6672 } else if (ret && inode->i_nlink > 0) {
6673 /*
6674 * Failed to do the truncate, remove us from the in memory
6675 * orphan list.
6676 */
6677 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6678 }
6679
fcb80c2a 6680 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6681 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6682 if (ret && !err)
6683 err = ret;
7b128766 6684
7b128766 6685 nr = trans->blocks_used;
89ce8a63 6686 ret = btrfs_end_transaction_throttle(trans, root);
fcb80c2a
JB
6687 btrfs_btree_balance_dirty(root, nr);
6688
6689out:
6690 btrfs_free_block_rsv(root, rsv);
6691
3893e33b
JB
6692 if (ret && !err)
6693 err = ret;
a41ad394 6694
3893e33b 6695 return err;
39279cc3
CM
6696}
6697
d352ac68
CM
6698/*
6699 * create a new subvolume directory/inode (helper for the ioctl).
6700 */
d2fb3437 6701int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 6702 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 6703{
39279cc3 6704 struct inode *inode;
76dda93c 6705 int err;
00e4e6b3 6706 u64 index = 0;
39279cc3 6707
aec7477b 6708 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d82a6f1d 6709 new_dirid, S_IFDIR | 0700, &index);
54aa1f4d 6710 if (IS_ERR(inode))
f46b5a66 6711 return PTR_ERR(inode);
39279cc3
CM
6712 inode->i_op = &btrfs_dir_inode_operations;
6713 inode->i_fop = &btrfs_dir_file_operations;
6714
39279cc3 6715 inode->i_nlink = 1;
dbe674a9 6716 btrfs_i_size_write(inode, 0);
3b96362c 6717
76dda93c
YZ
6718 err = btrfs_update_inode(trans, new_root, inode);
6719 BUG_ON(err);
cb8e7090 6720
76dda93c 6721 iput(inode);
cb8e7090 6722 return 0;
39279cc3
CM
6723}
6724
39279cc3
CM
6725struct inode *btrfs_alloc_inode(struct super_block *sb)
6726{
6727 struct btrfs_inode *ei;
2ead6ae7 6728 struct inode *inode;
39279cc3
CM
6729
6730 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6731 if (!ei)
6732 return NULL;
2ead6ae7
YZ
6733
6734 ei->root = NULL;
6735 ei->space_info = NULL;
6736 ei->generation = 0;
6737 ei->sequence = 0;
15ee9bc7 6738 ei->last_trans = 0;
257c62e1 6739 ei->last_sub_trans = 0;
e02119d5 6740 ei->logged_trans = 0;
2ead6ae7 6741 ei->delalloc_bytes = 0;
2ead6ae7
YZ
6742 ei->disk_i_size = 0;
6743 ei->flags = 0;
7709cde3 6744 ei->csum_bytes = 0;
2ead6ae7
YZ
6745 ei->index_cnt = (u64)-1;
6746 ei->last_unlink_trans = 0;
6747
9e0baf60
JB
6748 spin_lock_init(&ei->lock);
6749 ei->outstanding_extents = 0;
6750 ei->reserved_extents = 0;
2ead6ae7
YZ
6751
6752 ei->ordered_data_close = 0;
d68fc57b 6753 ei->orphan_meta_reserved = 0;
2ead6ae7 6754 ei->dummy_inode = 0;
4cb5300b 6755 ei->in_defrag = 0;
261507a0 6756 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6757
16cdcec7
MX
6758 ei->delayed_node = NULL;
6759
2ead6ae7 6760 inode = &ei->vfs_inode;
a8067e02 6761 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
6762 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6763 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
2ead6ae7 6764 mutex_init(&ei->log_mutex);
e6dcd2dc 6765 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6766 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6767 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6768 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6769 RB_CLEAR_NODE(&ei->rb_node);
6770
6771 return inode;
39279cc3
CM
6772}
6773
fa0d7e3d
NP
6774static void btrfs_i_callback(struct rcu_head *head)
6775{
6776 struct inode *inode = container_of(head, struct inode, i_rcu);
6777 INIT_LIST_HEAD(&inode->i_dentry);
6778 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6779}
6780
39279cc3
CM
6781void btrfs_destroy_inode(struct inode *inode)
6782{
e6dcd2dc 6783 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6784 struct btrfs_root *root = BTRFS_I(inode)->root;
6785
39279cc3
CM
6786 WARN_ON(!list_empty(&inode->i_dentry));
6787 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
6788 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6789 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
6790 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6791 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 6792
a6dbd429
JB
6793 /*
6794 * This can happen where we create an inode, but somebody else also
6795 * created the same inode and we need to destroy the one we already
6796 * created.
6797 */
6798 if (!root)
6799 goto free;
6800
5a3f23d5
CM
6801 /*
6802 * Make sure we're properly removed from the ordered operation
6803 * lists.
6804 */
6805 smp_mb();
6806 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6807 spin_lock(&root->fs_info->ordered_extent_lock);
6808 list_del_init(&BTRFS_I(inode)->ordered_operations);
6809 spin_unlock(&root->fs_info->ordered_extent_lock);
6810 }
6811
d68fc57b 6812 spin_lock(&root->orphan_lock);
7b128766 6813 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
33345d01
LZ
6814 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6815 (unsigned long long)btrfs_ino(inode));
8082510e 6816 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6817 }
d68fc57b 6818 spin_unlock(&root->orphan_lock);
7b128766 6819
d397712b 6820 while (1) {
e6dcd2dc
CM
6821 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6822 if (!ordered)
6823 break;
6824 else {
d397712b
CM
6825 printk(KERN_ERR "btrfs found ordered "
6826 "extent %llu %llu on inode cleanup\n",
6827 (unsigned long long)ordered->file_offset,
6828 (unsigned long long)ordered->len);
e6dcd2dc
CM
6829 btrfs_remove_ordered_extent(inode, ordered);
6830 btrfs_put_ordered_extent(ordered);
6831 btrfs_put_ordered_extent(ordered);
6832 }
6833 }
5d4f98a2 6834 inode_tree_del(inode);
5b21f2ed 6835 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6836free:
16cdcec7 6837 btrfs_remove_delayed_node(inode);
fa0d7e3d 6838 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6839}
6840
45321ac5 6841int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6842{
6843 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6844
0af3d00b 6845 if (btrfs_root_refs(&root->root_item) == 0 &&
2cf8572d 6846 !btrfs_is_free_space_inode(root, inode))
45321ac5 6847 return 1;
76dda93c 6848 else
45321ac5 6849 return generic_drop_inode(inode);
76dda93c
YZ
6850}
6851
0ee0fda0 6852static void init_once(void *foo)
39279cc3
CM
6853{
6854 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6855
6856 inode_init_once(&ei->vfs_inode);
6857}
6858
6859void btrfs_destroy_cachep(void)
6860{
6861 if (btrfs_inode_cachep)
6862 kmem_cache_destroy(btrfs_inode_cachep);
6863 if (btrfs_trans_handle_cachep)
6864 kmem_cache_destroy(btrfs_trans_handle_cachep);
6865 if (btrfs_transaction_cachep)
6866 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6867 if (btrfs_path_cachep)
6868 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6869 if (btrfs_free_space_cachep)
6870 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6871}
6872
6873int btrfs_init_cachep(void)
6874{
9601e3f6
CH
6875 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6876 sizeof(struct btrfs_inode), 0,
6877 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6878 if (!btrfs_inode_cachep)
6879 goto fail;
9601e3f6
CH
6880
6881 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6882 sizeof(struct btrfs_trans_handle), 0,
6883 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6884 if (!btrfs_trans_handle_cachep)
6885 goto fail;
9601e3f6
CH
6886
6887 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6888 sizeof(struct btrfs_transaction), 0,
6889 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6890 if (!btrfs_transaction_cachep)
6891 goto fail;
9601e3f6
CH
6892
6893 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6894 sizeof(struct btrfs_path), 0,
6895 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6896 if (!btrfs_path_cachep)
6897 goto fail;
9601e3f6 6898
dc89e982
JB
6899 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6900 sizeof(struct btrfs_free_space), 0,
6901 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6902 if (!btrfs_free_space_cachep)
6903 goto fail;
6904
39279cc3
CM
6905 return 0;
6906fail:
6907 btrfs_destroy_cachep();
6908 return -ENOMEM;
6909}
6910
6911static int btrfs_getattr(struct vfsmount *mnt,
6912 struct dentry *dentry, struct kstat *stat)
6913{
6914 struct inode *inode = dentry->d_inode;
6915 generic_fillattr(inode, stat);
0ee5dc67 6916 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 6917 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6918 stat->blocks = (inode_get_bytes(inode) +
6919 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6920 return 0;
6921}
6922
75e7cb7f
LB
6923/*
6924 * If a file is moved, it will inherit the cow and compression flags of the new
6925 * directory.
6926 */
6927static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6928{
6929 struct btrfs_inode *b_dir = BTRFS_I(dir);
6930 struct btrfs_inode *b_inode = BTRFS_I(inode);
6931
6932 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6933 b_inode->flags |= BTRFS_INODE_NODATACOW;
6934 else
6935 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6936
6937 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6938 b_inode->flags |= BTRFS_INODE_COMPRESS;
6939 else
6940 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6941}
6942
d397712b
CM
6943static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6944 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6945{
6946 struct btrfs_trans_handle *trans;
6947 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6948 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6949 struct inode *new_inode = new_dentry->d_inode;
6950 struct inode *old_inode = old_dentry->d_inode;
6951 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6952 u64 index = 0;
4df27c4d 6953 u64 root_objectid;
39279cc3 6954 int ret;
33345d01 6955 u64 old_ino = btrfs_ino(old_inode);
39279cc3 6956
33345d01 6957 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
6958 return -EPERM;
6959
4df27c4d 6960 /* we only allow rename subvolume link between subvolumes */
33345d01 6961 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6962 return -EXDEV;
6963
33345d01
LZ
6964 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6965 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6966 return -ENOTEMPTY;
5f39d397 6967
4df27c4d
YZ
6968 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6969 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6970 return -ENOTEMPTY;
5a3f23d5
CM
6971 /*
6972 * we're using rename to replace one file with another.
6973 * and the replacement file is large. Start IO on it now so
6974 * we don't add too much work to the end of the transaction
6975 */
4baf8c92 6976 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6977 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6978 filemap_flush(old_inode->i_mapping);
6979
76dda93c 6980 /* close the racy window with snapshot create/destroy ioctl */
33345d01 6981 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 6982 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6983 /*
6984 * We want to reserve the absolute worst case amount of items. So if
6985 * both inodes are subvols and we need to unlink them then that would
6986 * require 4 item modifications, but if they are both normal inodes it
6987 * would require 5 item modifications, so we'll assume their normal
6988 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6989 * should cover the worst case number of items we'll modify.
6990 */
6991 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
6992 if (IS_ERR(trans)) {
6993 ret = PTR_ERR(trans);
6994 goto out_notrans;
6995 }
76dda93c 6996
4df27c4d
YZ
6997 if (dest != root)
6998 btrfs_record_root_in_trans(trans, dest);
5f39d397 6999
a5719521
YZ
7000 ret = btrfs_set_inode_index(new_dir, &index);
7001 if (ret)
7002 goto out_fail;
5a3f23d5 7003
33345d01 7004 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7005 /* force full log commit if subvolume involved. */
7006 root->fs_info->last_trans_log_full_commit = trans->transid;
7007 } else {
a5719521
YZ
7008 ret = btrfs_insert_inode_ref(trans, dest,
7009 new_dentry->d_name.name,
7010 new_dentry->d_name.len,
33345d01
LZ
7011 old_ino,
7012 btrfs_ino(new_dir), index);
a5719521
YZ
7013 if (ret)
7014 goto out_fail;
4df27c4d
YZ
7015 /*
7016 * this is an ugly little race, but the rename is required
7017 * to make sure that if we crash, the inode is either at the
7018 * old name or the new one. pinning the log transaction lets
7019 * us make sure we don't allow a log commit to come in after
7020 * we unlink the name but before we add the new name back in.
7021 */
7022 btrfs_pin_log_trans(root);
7023 }
5a3f23d5
CM
7024 /*
7025 * make sure the inode gets flushed if it is replacing
7026 * something.
7027 */
33345d01 7028 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7029 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7030
39279cc3
CM
7031 old_dir->i_ctime = old_dir->i_mtime = ctime;
7032 new_dir->i_ctime = new_dir->i_mtime = ctime;
7033 old_inode->i_ctime = ctime;
5f39d397 7034
12fcfd22
CM
7035 if (old_dentry->d_parent != new_dentry->d_parent)
7036 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7037
33345d01 7038 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7039 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7040 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7041 old_dentry->d_name.name,
7042 old_dentry->d_name.len);
7043 } else {
92986796
AV
7044 ret = __btrfs_unlink_inode(trans, root, old_dir,
7045 old_dentry->d_inode,
7046 old_dentry->d_name.name,
7047 old_dentry->d_name.len);
7048 if (!ret)
7049 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7050 }
7051 BUG_ON(ret);
39279cc3
CM
7052
7053 if (new_inode) {
7054 new_inode->i_ctime = CURRENT_TIME;
33345d01 7055 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7056 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7057 root_objectid = BTRFS_I(new_inode)->location.objectid;
7058 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7059 root_objectid,
7060 new_dentry->d_name.name,
7061 new_dentry->d_name.len);
7062 BUG_ON(new_inode->i_nlink == 0);
7063 } else {
7064 ret = btrfs_unlink_inode(trans, dest, new_dir,
7065 new_dentry->d_inode,
7066 new_dentry->d_name.name,
7067 new_dentry->d_name.len);
7068 }
7069 BUG_ON(ret);
7b128766 7070 if (new_inode->i_nlink == 0) {
e02119d5 7071 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7072 BUG_ON(ret);
7b128766 7073 }
39279cc3 7074 }
aec7477b 7075
75e7cb7f
LB
7076 fixup_inode_flags(new_dir, old_inode);
7077
4df27c4d
YZ
7078 ret = btrfs_add_link(trans, new_dir, old_inode,
7079 new_dentry->d_name.name,
a5719521 7080 new_dentry->d_name.len, 0, index);
4df27c4d 7081 BUG_ON(ret);
39279cc3 7082
33345d01 7083 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7084 struct dentry *parent = new_dentry->d_parent;
6a912213 7085 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7086 btrfs_end_log_trans(root);
7087 }
39279cc3 7088out_fail:
ab78c84d 7089 btrfs_end_transaction_throttle(trans, root);
b44c59a8 7090out_notrans:
33345d01 7091 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7092 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7093
39279cc3
CM
7094 return ret;
7095}
7096
d352ac68
CM
7097/*
7098 * some fairly slow code that needs optimization. This walks the list
7099 * of all the inodes with pending delalloc and forces them to disk.
7100 */
24bbcf04 7101int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7102{
7103 struct list_head *head = &root->fs_info->delalloc_inodes;
7104 struct btrfs_inode *binode;
5b21f2ed 7105 struct inode *inode;
ea8c2819 7106
c146afad
YZ
7107 if (root->fs_info->sb->s_flags & MS_RDONLY)
7108 return -EROFS;
7109
75eff68e 7110 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7111 while (!list_empty(head)) {
ea8c2819
CM
7112 binode = list_entry(head->next, struct btrfs_inode,
7113 delalloc_inodes);
5b21f2ed
ZY
7114 inode = igrab(&binode->vfs_inode);
7115 if (!inode)
7116 list_del_init(&binode->delalloc_inodes);
75eff68e 7117 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7118 if (inode) {
8c8bee1d 7119 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7120 if (delay_iput)
7121 btrfs_add_delayed_iput(inode);
7122 else
7123 iput(inode);
5b21f2ed
ZY
7124 }
7125 cond_resched();
75eff68e 7126 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7127 }
75eff68e 7128 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7129
7130 /* the filemap_flush will queue IO into the worker threads, but
7131 * we have to make sure the IO is actually started and that
7132 * ordered extents get created before we return
7133 */
7134 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7135 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7136 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7137 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7138 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7139 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7140 }
7141 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7142 return 0;
7143}
7144
39279cc3
CM
7145static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7146 const char *symname)
7147{
7148 struct btrfs_trans_handle *trans;
7149 struct btrfs_root *root = BTRFS_I(dir)->root;
7150 struct btrfs_path *path;
7151 struct btrfs_key key;
1832a6d5 7152 struct inode *inode = NULL;
39279cc3
CM
7153 int err;
7154 int drop_inode = 0;
7155 u64 objectid;
00e4e6b3 7156 u64 index = 0 ;
39279cc3
CM
7157 int name_len;
7158 int datasize;
5f39d397 7159 unsigned long ptr;
39279cc3 7160 struct btrfs_file_extent_item *ei;
5f39d397 7161 struct extent_buffer *leaf;
1832a6d5 7162 unsigned long nr = 0;
39279cc3
CM
7163
7164 name_len = strlen(symname) + 1;
7165 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7166 return -ENAMETOOLONG;
1832a6d5 7167
9ed74f2d
JB
7168 /*
7169 * 2 items for inode item and ref
7170 * 2 items for dir items
7171 * 1 item for xattr if selinux is on
7172 */
a22285a6
YZ
7173 trans = btrfs_start_transaction(root, 5);
7174 if (IS_ERR(trans))
7175 return PTR_ERR(trans);
1832a6d5 7176
581bb050
LZ
7177 err = btrfs_find_free_ino(root, &objectid);
7178 if (err)
7179 goto out_unlock;
7180
aec7477b 7181 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7182 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7183 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7184 if (IS_ERR(inode)) {
7185 err = PTR_ERR(inode);
39279cc3 7186 goto out_unlock;
7cf96da3 7187 }
39279cc3 7188
2a7dba39 7189 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7190 if (err) {
7191 drop_inode = 1;
7192 goto out_unlock;
7193 }
7194
a1b075d2 7195 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7196 if (err)
7197 drop_inode = 1;
7198 else {
7199 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7200 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7201 inode->i_fop = &btrfs_file_operations;
7202 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7203 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7204 }
39279cc3
CM
7205 if (drop_inode)
7206 goto out_unlock;
7207
7208 path = btrfs_alloc_path();
d8926bb3
MF
7209 if (!path) {
7210 err = -ENOMEM;
7211 drop_inode = 1;
7212 goto out_unlock;
7213 }
33345d01 7214 key.objectid = btrfs_ino(inode);
39279cc3 7215 key.offset = 0;
39279cc3
CM
7216 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7217 datasize = btrfs_file_extent_calc_inline_size(name_len);
7218 err = btrfs_insert_empty_item(trans, root, path, &key,
7219 datasize);
54aa1f4d
CM
7220 if (err) {
7221 drop_inode = 1;
b0839166 7222 btrfs_free_path(path);
54aa1f4d
CM
7223 goto out_unlock;
7224 }
5f39d397
CM
7225 leaf = path->nodes[0];
7226 ei = btrfs_item_ptr(leaf, path->slots[0],
7227 struct btrfs_file_extent_item);
7228 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7229 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7230 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7231 btrfs_set_file_extent_encryption(leaf, ei, 0);
7232 btrfs_set_file_extent_compression(leaf, ei, 0);
7233 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7234 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7235
39279cc3 7236 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7237 write_extent_buffer(leaf, symname, ptr, name_len);
7238 btrfs_mark_buffer_dirty(leaf);
39279cc3 7239 btrfs_free_path(path);
5f39d397 7240
39279cc3
CM
7241 inode->i_op = &btrfs_symlink_inode_operations;
7242 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7243 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7244 inode_set_bytes(inode, name_len);
dbe674a9 7245 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7246 err = btrfs_update_inode(trans, root, inode);
7247 if (err)
7248 drop_inode = 1;
39279cc3
CM
7249
7250out_unlock:
d3c2fdcf 7251 nr = trans->blocks_used;
ab78c84d 7252 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7253 if (drop_inode) {
7254 inode_dec_link_count(inode);
7255 iput(inode);
7256 }
d3c2fdcf 7257 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7258 return err;
7259}
16432985 7260
0af3d00b
JB
7261static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7262 u64 start, u64 num_bytes, u64 min_size,
7263 loff_t actual_len, u64 *alloc_hint,
7264 struct btrfs_trans_handle *trans)
d899e052 7265{
d899e052
YZ
7266 struct btrfs_root *root = BTRFS_I(inode)->root;
7267 struct btrfs_key ins;
d899e052 7268 u64 cur_offset = start;
55a61d1d 7269 u64 i_size;
d899e052 7270 int ret = 0;
0af3d00b 7271 bool own_trans = true;
d899e052 7272
0af3d00b
JB
7273 if (trans)
7274 own_trans = false;
d899e052 7275 while (num_bytes > 0) {
0af3d00b
JB
7276 if (own_trans) {
7277 trans = btrfs_start_transaction(root, 3);
7278 if (IS_ERR(trans)) {
7279 ret = PTR_ERR(trans);
7280 break;
7281 }
5a303d5d
YZ
7282 }
7283
efa56464
YZ
7284 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7285 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7286 if (ret) {
0af3d00b
JB
7287 if (own_trans)
7288 btrfs_end_transaction(trans, root);
a22285a6 7289 break;
d899e052 7290 }
5a303d5d 7291
d899e052
YZ
7292 ret = insert_reserved_file_extent(trans, inode,
7293 cur_offset, ins.objectid,
7294 ins.offset, ins.offset,
920bbbfb 7295 ins.offset, 0, 0, 0,
d899e052
YZ
7296 BTRFS_FILE_EXTENT_PREALLOC);
7297 BUG_ON(ret);
a1ed835e
CM
7298 btrfs_drop_extent_cache(inode, cur_offset,
7299 cur_offset + ins.offset -1, 0);
5a303d5d 7300
d899e052
YZ
7301 num_bytes -= ins.offset;
7302 cur_offset += ins.offset;
efa56464 7303 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7304
d899e052 7305 inode->i_ctime = CURRENT_TIME;
6cbff00f 7306 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7307 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7308 (actual_len > inode->i_size) &&
7309 (cur_offset > inode->i_size)) {
d1ea6a61 7310 if (cur_offset > actual_len)
55a61d1d 7311 i_size = actual_len;
d1ea6a61 7312 else
55a61d1d
JB
7313 i_size = cur_offset;
7314 i_size_write(inode, i_size);
7315 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7316 }
7317
d899e052
YZ
7318 ret = btrfs_update_inode(trans, root, inode);
7319 BUG_ON(ret);
d899e052 7320
0af3d00b
JB
7321 if (own_trans)
7322 btrfs_end_transaction(trans, root);
5a303d5d 7323 }
d899e052
YZ
7324 return ret;
7325}
7326
0af3d00b
JB
7327int btrfs_prealloc_file_range(struct inode *inode, int mode,
7328 u64 start, u64 num_bytes, u64 min_size,
7329 loff_t actual_len, u64 *alloc_hint)
7330{
7331 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7332 min_size, actual_len, alloc_hint,
7333 NULL);
7334}
7335
7336int btrfs_prealloc_file_range_trans(struct inode *inode,
7337 struct btrfs_trans_handle *trans, int mode,
7338 u64 start, u64 num_bytes, u64 min_size,
7339 loff_t actual_len, u64 *alloc_hint)
7340{
7341 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7342 min_size, actual_len, alloc_hint, trans);
7343}
7344
e6dcd2dc
CM
7345static int btrfs_set_page_dirty(struct page *page)
7346{
e6dcd2dc
CM
7347 return __set_page_dirty_nobuffers(page);
7348}
7349
10556cb2 7350static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7351{
b83cc969 7352 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7353 umode_t mode = inode->i_mode;
b83cc969 7354
cb6db4e5
JM
7355 if (mask & MAY_WRITE &&
7356 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7357 if (btrfs_root_readonly(root))
7358 return -EROFS;
7359 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7360 return -EACCES;
7361 }
2830ba7f 7362 return generic_permission(inode, mask);
fdebe2bd 7363}
39279cc3 7364
6e1d5dcc 7365static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7366 .getattr = btrfs_getattr,
39279cc3
CM
7367 .lookup = btrfs_lookup,
7368 .create = btrfs_create,
7369 .unlink = btrfs_unlink,
7370 .link = btrfs_link,
7371 .mkdir = btrfs_mkdir,
7372 .rmdir = btrfs_rmdir,
7373 .rename = btrfs_rename,
7374 .symlink = btrfs_symlink,
7375 .setattr = btrfs_setattr,
618e21d5 7376 .mknod = btrfs_mknod,
95819c05
CH
7377 .setxattr = btrfs_setxattr,
7378 .getxattr = btrfs_getxattr,
5103e947 7379 .listxattr = btrfs_listxattr,
95819c05 7380 .removexattr = btrfs_removexattr,
fdebe2bd 7381 .permission = btrfs_permission,
4e34e719 7382 .get_acl = btrfs_get_acl,
39279cc3 7383};
6e1d5dcc 7384static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7385 .lookup = btrfs_lookup,
fdebe2bd 7386 .permission = btrfs_permission,
4e34e719 7387 .get_acl = btrfs_get_acl,
39279cc3 7388};
76dda93c 7389
828c0950 7390static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7391 .llseek = generic_file_llseek,
7392 .read = generic_read_dir,
cbdf5a24 7393 .readdir = btrfs_real_readdir,
34287aa3 7394 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7395#ifdef CONFIG_COMPAT
34287aa3 7396 .compat_ioctl = btrfs_ioctl,
39279cc3 7397#endif
6bf13c0c 7398 .release = btrfs_release_file,
e02119d5 7399 .fsync = btrfs_sync_file,
39279cc3
CM
7400};
7401
d1310b2e 7402static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7403 .fill_delalloc = run_delalloc_range,
065631f6 7404 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7405 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7406 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7407 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7408 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7409 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7410 .set_bit_hook = btrfs_set_bit_hook,
7411 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7412 .merge_extent_hook = btrfs_merge_extent_hook,
7413 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7414};
7415
35054394
CM
7416/*
7417 * btrfs doesn't support the bmap operation because swapfiles
7418 * use bmap to make a mapping of extents in the file. They assume
7419 * these extents won't change over the life of the file and they
7420 * use the bmap result to do IO directly to the drive.
7421 *
7422 * the btrfs bmap call would return logical addresses that aren't
7423 * suitable for IO and they also will change frequently as COW
7424 * operations happen. So, swapfile + btrfs == corruption.
7425 *
7426 * For now we're avoiding this by dropping bmap.
7427 */
7f09410b 7428static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7429 .readpage = btrfs_readpage,
7430 .writepage = btrfs_writepage,
b293f02e 7431 .writepages = btrfs_writepages,
3ab2fb5a 7432 .readpages = btrfs_readpages,
16432985 7433 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7434 .invalidatepage = btrfs_invalidatepage,
7435 .releasepage = btrfs_releasepage,
e6dcd2dc 7436 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7437 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7438};
7439
7f09410b 7440static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7441 .readpage = btrfs_readpage,
7442 .writepage = btrfs_writepage,
2bf5a725
CM
7443 .invalidatepage = btrfs_invalidatepage,
7444 .releasepage = btrfs_releasepage,
39279cc3
CM
7445};
7446
6e1d5dcc 7447static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7448 .getattr = btrfs_getattr,
7449 .setattr = btrfs_setattr,
95819c05
CH
7450 .setxattr = btrfs_setxattr,
7451 .getxattr = btrfs_getxattr,
5103e947 7452 .listxattr = btrfs_listxattr,
95819c05 7453 .removexattr = btrfs_removexattr,
fdebe2bd 7454 .permission = btrfs_permission,
1506fcc8 7455 .fiemap = btrfs_fiemap,
4e34e719 7456 .get_acl = btrfs_get_acl,
39279cc3 7457};
6e1d5dcc 7458static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7459 .getattr = btrfs_getattr,
7460 .setattr = btrfs_setattr,
fdebe2bd 7461 .permission = btrfs_permission,
95819c05
CH
7462 .setxattr = btrfs_setxattr,
7463 .getxattr = btrfs_getxattr,
33268eaf 7464 .listxattr = btrfs_listxattr,
95819c05 7465 .removexattr = btrfs_removexattr,
4e34e719 7466 .get_acl = btrfs_get_acl,
618e21d5 7467};
6e1d5dcc 7468static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7469 .readlink = generic_readlink,
7470 .follow_link = page_follow_link_light,
7471 .put_link = page_put_link,
f209561a 7472 .getattr = btrfs_getattr,
fdebe2bd 7473 .permission = btrfs_permission,
0279b4cd
JO
7474 .setxattr = btrfs_setxattr,
7475 .getxattr = btrfs_getxattr,
7476 .listxattr = btrfs_listxattr,
7477 .removexattr = btrfs_removexattr,
4e34e719 7478 .get_acl = btrfs_get_acl,
39279cc3 7479};
76dda93c 7480
82d339d9 7481const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7482 .d_delete = btrfs_dentry_delete,
b4aff1f8 7483 .d_release = btrfs_dentry_release,
76dda93c 7484};