Btrfs: remove tree_search() in extent_map.c
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
4b4e25f2 39#include "compat.h"
39279cc3
CM
40#include "ctree.h"
41#include "disk-io.h"
42#include "transaction.h"
43#include "btrfs_inode.h"
44#include "ioctl.h"
45#include "print-tree.h"
0b86a832 46#include "volumes.h"
e6dcd2dc 47#include "ordered-data.h"
95819c05 48#include "xattr.h"
e02119d5 49#include "tree-log.h"
c8b97818 50#include "compression.h"
b4ce94de 51#include "locking.h"
39279cc3
CM
52
53struct btrfs_iget_args {
54 u64 ino;
55 struct btrfs_root *root;
56};
57
6e1d5dcc
AD
58static const struct inode_operations btrfs_dir_inode_operations;
59static const struct inode_operations btrfs_symlink_inode_operations;
60static const struct inode_operations btrfs_dir_ro_inode_operations;
61static const struct inode_operations btrfs_special_inode_operations;
62static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
63static const struct address_space_operations btrfs_aops;
64static const struct address_space_operations btrfs_symlink_aops;
828c0950 65static const struct file_operations btrfs_dir_file_operations;
d1310b2e 66static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
67
68static struct kmem_cache *btrfs_inode_cachep;
69struct kmem_cache *btrfs_trans_handle_cachep;
70struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
71struct kmem_cache *btrfs_path_cachep;
72
73#define S_SHIFT 12
74static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82};
83
7b128766 84static void btrfs_truncate(struct inode *inode);
c8b97818 85static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
86static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
7b128766 90
f34f57a3
YZ
91static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
92 struct inode *inode, struct inode *dir)
0279b4cd
JO
93{
94 int err;
95
f34f57a3 96 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 97 if (!err)
f34f57a3 98 err = btrfs_xattr_security_init(trans, inode, dir);
0279b4cd
JO
99 return err;
100}
101
c8b97818
CM
102/*
103 * this does all the hard work for inserting an inline extent into
104 * the btree. The caller should have done a btrfs_drop_extents so that
105 * no overlapping inline items exist in the btree
106 */
d397712b 107static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
108 struct btrfs_root *root, struct inode *inode,
109 u64 start, size_t size, size_t compressed_size,
110 struct page **compressed_pages)
111{
112 struct btrfs_key key;
113 struct btrfs_path *path;
114 struct extent_buffer *leaf;
115 struct page *page = NULL;
116 char *kaddr;
117 unsigned long ptr;
118 struct btrfs_file_extent_item *ei;
119 int err = 0;
120 int ret;
121 size_t cur_size = size;
122 size_t datasize;
123 unsigned long offset;
124 int use_compress = 0;
125
126 if (compressed_size && compressed_pages) {
127 use_compress = 1;
128 cur_size = compressed_size;
129 }
130
d397712b
CM
131 path = btrfs_alloc_path();
132 if (!path)
c8b97818
CM
133 return -ENOMEM;
134
b9473439 135 path->leave_spinning = 1;
c8b97818
CM
136 btrfs_set_trans_block_group(trans, inode);
137
138 key.objectid = inode->i_ino;
139 key.offset = start;
140 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
141 datasize = btrfs_file_extent_calc_inline_size(cur_size);
142
143 inode_add_bytes(inode, size);
144 ret = btrfs_insert_empty_item(trans, root, path, &key,
145 datasize);
146 BUG_ON(ret);
147 if (ret) {
148 err = ret;
c8b97818
CM
149 goto fail;
150 }
151 leaf = path->nodes[0];
152 ei = btrfs_item_ptr(leaf, path->slots[0],
153 struct btrfs_file_extent_item);
154 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156 btrfs_set_file_extent_encryption(leaf, ei, 0);
157 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159 ptr = btrfs_file_extent_inline_start(ei);
160
161 if (use_compress) {
162 struct page *cpage;
163 int i = 0;
d397712b 164 while (compressed_size > 0) {
c8b97818 165 cpage = compressed_pages[i];
5b050f04 166 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
167 PAGE_CACHE_SIZE);
168
b9473439 169 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 170 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 171 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
172
173 i++;
174 ptr += cur_size;
175 compressed_size -= cur_size;
176 }
177 btrfs_set_file_extent_compression(leaf, ei,
178 BTRFS_COMPRESS_ZLIB);
179 } else {
180 page = find_get_page(inode->i_mapping,
181 start >> PAGE_CACHE_SHIFT);
182 btrfs_set_file_extent_compression(leaf, ei, 0);
183 kaddr = kmap_atomic(page, KM_USER0);
184 offset = start & (PAGE_CACHE_SIZE - 1);
185 write_extent_buffer(leaf, kaddr + offset, ptr, size);
186 kunmap_atomic(kaddr, KM_USER0);
187 page_cache_release(page);
188 }
189 btrfs_mark_buffer_dirty(leaf);
190 btrfs_free_path(path);
191
c2167754
YZ
192 /*
193 * we're an inline extent, so nobody can
194 * extend the file past i_size without locking
195 * a page we already have locked.
196 *
197 * We must do any isize and inode updates
198 * before we unlock the pages. Otherwise we
199 * could end up racing with unlink.
200 */
c8b97818
CM
201 BTRFS_I(inode)->disk_i_size = inode->i_size;
202 btrfs_update_inode(trans, root, inode);
c2167754 203
c8b97818
CM
204 return 0;
205fail:
206 btrfs_free_path(path);
207 return err;
208}
209
210
211/*
212 * conditionally insert an inline extent into the file. This
213 * does the checks required to make sure the data is small enough
214 * to fit as an inline extent.
215 */
7f366cfe 216static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
217 struct btrfs_root *root,
218 struct inode *inode, u64 start, u64 end,
219 size_t compressed_size,
220 struct page **compressed_pages)
221{
222 u64 isize = i_size_read(inode);
223 u64 actual_end = min(end + 1, isize);
224 u64 inline_len = actual_end - start;
225 u64 aligned_end = (end + root->sectorsize - 1) &
226 ~((u64)root->sectorsize - 1);
227 u64 hint_byte;
228 u64 data_len = inline_len;
229 int ret;
230
231 if (compressed_size)
232 data_len = compressed_size;
233
234 if (start > 0 ||
70b99e69 235 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
236 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
237 (!compressed_size &&
238 (actual_end & (root->sectorsize - 1)) == 0) ||
239 end + 1 < isize ||
240 data_len > root->fs_info->max_inline) {
241 return 1;
242 }
243
920bbbfb 244 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 245 &hint_byte, 1);
c8b97818
CM
246 BUG_ON(ret);
247
248 if (isize > actual_end)
249 inline_len = min_t(u64, isize, actual_end);
250 ret = insert_inline_extent(trans, root, inode, start,
251 inline_len, compressed_size,
252 compressed_pages);
253 BUG_ON(ret);
a1ed835e 254 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
255 return 0;
256}
257
771ed689
CM
258struct async_extent {
259 u64 start;
260 u64 ram_size;
261 u64 compressed_size;
262 struct page **pages;
263 unsigned long nr_pages;
264 struct list_head list;
265};
266
267struct async_cow {
268 struct inode *inode;
269 struct btrfs_root *root;
270 struct page *locked_page;
271 u64 start;
272 u64 end;
273 struct list_head extents;
274 struct btrfs_work work;
275};
276
277static noinline int add_async_extent(struct async_cow *cow,
278 u64 start, u64 ram_size,
279 u64 compressed_size,
280 struct page **pages,
281 unsigned long nr_pages)
282{
283 struct async_extent *async_extent;
284
285 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
286 async_extent->start = start;
287 async_extent->ram_size = ram_size;
288 async_extent->compressed_size = compressed_size;
289 async_extent->pages = pages;
290 async_extent->nr_pages = nr_pages;
291 list_add_tail(&async_extent->list, &cow->extents);
292 return 0;
293}
294
d352ac68 295/*
771ed689
CM
296 * we create compressed extents in two phases. The first
297 * phase compresses a range of pages that have already been
298 * locked (both pages and state bits are locked).
c8b97818 299 *
771ed689
CM
300 * This is done inside an ordered work queue, and the compression
301 * is spread across many cpus. The actual IO submission is step
302 * two, and the ordered work queue takes care of making sure that
303 * happens in the same order things were put onto the queue by
304 * writepages and friends.
c8b97818 305 *
771ed689
CM
306 * If this code finds it can't get good compression, it puts an
307 * entry onto the work queue to write the uncompressed bytes. This
308 * makes sure that both compressed inodes and uncompressed inodes
309 * are written in the same order that pdflush sent them down.
d352ac68 310 */
771ed689
CM
311static noinline int compress_file_range(struct inode *inode,
312 struct page *locked_page,
313 u64 start, u64 end,
314 struct async_cow *async_cow,
315 int *num_added)
b888db2b
CM
316{
317 struct btrfs_root *root = BTRFS_I(inode)->root;
318 struct btrfs_trans_handle *trans;
db94535d 319 u64 num_bytes;
c8b97818
CM
320 u64 orig_start;
321 u64 disk_num_bytes;
db94535d 322 u64 blocksize = root->sectorsize;
c8b97818 323 u64 actual_end;
42dc7bab 324 u64 isize = i_size_read(inode);
e6dcd2dc 325 int ret = 0;
c8b97818
CM
326 struct page **pages = NULL;
327 unsigned long nr_pages;
328 unsigned long nr_pages_ret = 0;
329 unsigned long total_compressed = 0;
330 unsigned long total_in = 0;
331 unsigned long max_compressed = 128 * 1024;
771ed689 332 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
333 int i;
334 int will_compress;
b888db2b 335
c8b97818
CM
336 orig_start = start;
337
42dc7bab 338 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
339again:
340 will_compress = 0;
341 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
342 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 343
f03d9301
CM
344 /*
345 * we don't want to send crud past the end of i_size through
346 * compression, that's just a waste of CPU time. So, if the
347 * end of the file is before the start of our current
348 * requested range of bytes, we bail out to the uncompressed
349 * cleanup code that can deal with all of this.
350 *
351 * It isn't really the fastest way to fix things, but this is a
352 * very uncommon corner.
353 */
354 if (actual_end <= start)
355 goto cleanup_and_bail_uncompressed;
356
c8b97818
CM
357 total_compressed = actual_end - start;
358
359 /* we want to make sure that amount of ram required to uncompress
360 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
361 * of a compressed extent to 128k. This is a crucial number
362 * because it also controls how easily we can spread reads across
363 * cpus for decompression.
364 *
365 * We also want to make sure the amount of IO required to do
366 * a random read is reasonably small, so we limit the size of
367 * a compressed extent to 128k.
c8b97818
CM
368 */
369 total_compressed = min(total_compressed, max_uncompressed);
db94535d 370 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 371 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
372 disk_num_bytes = num_bytes;
373 total_in = 0;
374 ret = 0;
db94535d 375
771ed689
CM
376 /*
377 * we do compression for mount -o compress and when the
378 * inode has not been flagged as nocompress. This flag can
379 * change at any time if we discover bad compression ratios.
c8b97818 380 */
6cbff00f 381 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
c8b97818
CM
382 btrfs_test_opt(root, COMPRESS)) {
383 WARN_ON(pages);
cfbc246e 384 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 385
c8b97818
CM
386 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
387 total_compressed, pages,
388 nr_pages, &nr_pages_ret,
389 &total_in,
390 &total_compressed,
391 max_compressed);
392
393 if (!ret) {
394 unsigned long offset = total_compressed &
395 (PAGE_CACHE_SIZE - 1);
396 struct page *page = pages[nr_pages_ret - 1];
397 char *kaddr;
398
399 /* zero the tail end of the last page, we might be
400 * sending it down to disk
401 */
402 if (offset) {
403 kaddr = kmap_atomic(page, KM_USER0);
404 memset(kaddr + offset, 0,
405 PAGE_CACHE_SIZE - offset);
406 kunmap_atomic(kaddr, KM_USER0);
407 }
408 will_compress = 1;
409 }
410 }
411 if (start == 0) {
771ed689
CM
412 trans = btrfs_join_transaction(root, 1);
413 BUG_ON(!trans);
414 btrfs_set_trans_block_group(trans, inode);
415
c8b97818 416 /* lets try to make an inline extent */
771ed689 417 if (ret || total_in < (actual_end - start)) {
c8b97818 418 /* we didn't compress the entire range, try
771ed689 419 * to make an uncompressed inline extent.
c8b97818
CM
420 */
421 ret = cow_file_range_inline(trans, root, inode,
422 start, end, 0, NULL);
423 } else {
771ed689 424 /* try making a compressed inline extent */
c8b97818
CM
425 ret = cow_file_range_inline(trans, root, inode,
426 start, end,
427 total_compressed, pages);
428 }
429 if (ret == 0) {
771ed689
CM
430 /*
431 * inline extent creation worked, we don't need
432 * to create any more async work items. Unlock
433 * and free up our temp pages.
434 */
c8b97818 435 extent_clear_unlock_delalloc(inode,
a791e35e
CM
436 &BTRFS_I(inode)->io_tree,
437 start, end, NULL,
438 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 439 EXTENT_CLEAR_DELALLOC |
32c00aff 440 EXTENT_CLEAR_ACCOUNTING |
a791e35e 441 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
442
443 btrfs_end_transaction(trans, root);
c8b97818
CM
444 goto free_pages_out;
445 }
c2167754 446 btrfs_end_transaction(trans, root);
c8b97818
CM
447 }
448
449 if (will_compress) {
450 /*
451 * we aren't doing an inline extent round the compressed size
452 * up to a block size boundary so the allocator does sane
453 * things
454 */
455 total_compressed = (total_compressed + blocksize - 1) &
456 ~(blocksize - 1);
457
458 /*
459 * one last check to make sure the compression is really a
460 * win, compare the page count read with the blocks on disk
461 */
462 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
463 ~(PAGE_CACHE_SIZE - 1);
464 if (total_compressed >= total_in) {
465 will_compress = 0;
466 } else {
467 disk_num_bytes = total_compressed;
468 num_bytes = total_in;
469 }
470 }
471 if (!will_compress && pages) {
472 /*
473 * the compression code ran but failed to make things smaller,
474 * free any pages it allocated and our page pointer array
475 */
476 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 477 WARN_ON(pages[i]->mapping);
c8b97818
CM
478 page_cache_release(pages[i]);
479 }
480 kfree(pages);
481 pages = NULL;
482 total_compressed = 0;
483 nr_pages_ret = 0;
484
485 /* flag the file so we don't compress in the future */
a555f810
CM
486 if (!btrfs_test_opt(root, FORCE_COMPRESS))
487 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
c8b97818 488 }
771ed689
CM
489 if (will_compress) {
490 *num_added += 1;
c8b97818 491
771ed689
CM
492 /* the async work queues will take care of doing actual
493 * allocation on disk for these compressed pages,
494 * and will submit them to the elevator.
495 */
496 add_async_extent(async_cow, start, num_bytes,
497 total_compressed, pages, nr_pages_ret);
179e29e4 498
42dc7bab 499 if (start + num_bytes < end && start + num_bytes < actual_end) {
771ed689
CM
500 start += num_bytes;
501 pages = NULL;
502 cond_resched();
503 goto again;
504 }
505 } else {
f03d9301 506cleanup_and_bail_uncompressed:
771ed689
CM
507 /*
508 * No compression, but we still need to write the pages in
509 * the file we've been given so far. redirty the locked
510 * page if it corresponds to our extent and set things up
511 * for the async work queue to run cow_file_range to do
512 * the normal delalloc dance
513 */
514 if (page_offset(locked_page) >= start &&
515 page_offset(locked_page) <= end) {
516 __set_page_dirty_nobuffers(locked_page);
517 /* unlocked later on in the async handlers */
518 }
519 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
520 *num_added += 1;
521 }
3b951516 522
771ed689
CM
523out:
524 return 0;
525
526free_pages_out:
527 for (i = 0; i < nr_pages_ret; i++) {
528 WARN_ON(pages[i]->mapping);
529 page_cache_release(pages[i]);
530 }
d397712b 531 kfree(pages);
771ed689
CM
532
533 goto out;
534}
535
536/*
537 * phase two of compressed writeback. This is the ordered portion
538 * of the code, which only gets called in the order the work was
539 * queued. We walk all the async extents created by compress_file_range
540 * and send them down to the disk.
541 */
542static noinline int submit_compressed_extents(struct inode *inode,
543 struct async_cow *async_cow)
544{
545 struct async_extent *async_extent;
546 u64 alloc_hint = 0;
547 struct btrfs_trans_handle *trans;
548 struct btrfs_key ins;
549 struct extent_map *em;
550 struct btrfs_root *root = BTRFS_I(inode)->root;
551 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
552 struct extent_io_tree *io_tree;
f5a84ee3 553 int ret = 0;
771ed689
CM
554
555 if (list_empty(&async_cow->extents))
556 return 0;
557
771ed689 558
d397712b 559 while (!list_empty(&async_cow->extents)) {
771ed689
CM
560 async_extent = list_entry(async_cow->extents.next,
561 struct async_extent, list);
562 list_del(&async_extent->list);
c8b97818 563
771ed689
CM
564 io_tree = &BTRFS_I(inode)->io_tree;
565
f5a84ee3 566retry:
771ed689
CM
567 /* did the compression code fall back to uncompressed IO? */
568 if (!async_extent->pages) {
569 int page_started = 0;
570 unsigned long nr_written = 0;
571
572 lock_extent(io_tree, async_extent->start,
d397712b
CM
573 async_extent->start +
574 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
575
576 /* allocate blocks */
f5a84ee3
JB
577 ret = cow_file_range(inode, async_cow->locked_page,
578 async_extent->start,
579 async_extent->start +
580 async_extent->ram_size - 1,
581 &page_started, &nr_written, 0);
771ed689
CM
582
583 /*
584 * if page_started, cow_file_range inserted an
585 * inline extent and took care of all the unlocking
586 * and IO for us. Otherwise, we need to submit
587 * all those pages down to the drive.
588 */
f5a84ee3 589 if (!page_started && !ret)
771ed689
CM
590 extent_write_locked_range(io_tree,
591 inode, async_extent->start,
d397712b 592 async_extent->start +
771ed689
CM
593 async_extent->ram_size - 1,
594 btrfs_get_extent,
595 WB_SYNC_ALL);
596 kfree(async_extent);
597 cond_resched();
598 continue;
599 }
600
601 lock_extent(io_tree, async_extent->start,
602 async_extent->start + async_extent->ram_size - 1,
603 GFP_NOFS);
771ed689 604
c2167754 605 trans = btrfs_join_transaction(root, 1);
771ed689
CM
606 ret = btrfs_reserve_extent(trans, root,
607 async_extent->compressed_size,
608 async_extent->compressed_size,
609 0, alloc_hint,
610 (u64)-1, &ins, 1);
c2167754
YZ
611 btrfs_end_transaction(trans, root);
612
f5a84ee3
JB
613 if (ret) {
614 int i;
615 for (i = 0; i < async_extent->nr_pages; i++) {
616 WARN_ON(async_extent->pages[i]->mapping);
617 page_cache_release(async_extent->pages[i]);
618 }
619 kfree(async_extent->pages);
620 async_extent->nr_pages = 0;
621 async_extent->pages = NULL;
622 unlock_extent(io_tree, async_extent->start,
623 async_extent->start +
624 async_extent->ram_size - 1, GFP_NOFS);
625 goto retry;
626 }
627
c2167754
YZ
628 /*
629 * here we're doing allocation and writeback of the
630 * compressed pages
631 */
632 btrfs_drop_extent_cache(inode, async_extent->start,
633 async_extent->start +
634 async_extent->ram_size - 1, 0);
635
771ed689
CM
636 em = alloc_extent_map(GFP_NOFS);
637 em->start = async_extent->start;
638 em->len = async_extent->ram_size;
445a6944 639 em->orig_start = em->start;
c8b97818 640
771ed689
CM
641 em->block_start = ins.objectid;
642 em->block_len = ins.offset;
643 em->bdev = root->fs_info->fs_devices->latest_bdev;
644 set_bit(EXTENT_FLAG_PINNED, &em->flags);
645 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
646
d397712b 647 while (1) {
890871be 648 write_lock(&em_tree->lock);
771ed689 649 ret = add_extent_mapping(em_tree, em);
890871be 650 write_unlock(&em_tree->lock);
771ed689
CM
651 if (ret != -EEXIST) {
652 free_extent_map(em);
653 break;
654 }
655 btrfs_drop_extent_cache(inode, async_extent->start,
656 async_extent->start +
657 async_extent->ram_size - 1, 0);
658 }
659
660 ret = btrfs_add_ordered_extent(inode, async_extent->start,
661 ins.objectid,
662 async_extent->ram_size,
663 ins.offset,
664 BTRFS_ORDERED_COMPRESSED);
665 BUG_ON(ret);
666
771ed689
CM
667 /*
668 * clear dirty, set writeback and unlock the pages.
669 */
670 extent_clear_unlock_delalloc(inode,
a791e35e
CM
671 &BTRFS_I(inode)->io_tree,
672 async_extent->start,
673 async_extent->start +
674 async_extent->ram_size - 1,
675 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
676 EXTENT_CLEAR_UNLOCK |
a3429ab7 677 EXTENT_CLEAR_DELALLOC |
a791e35e 678 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
679
680 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
681 async_extent->start,
682 async_extent->ram_size,
683 ins.objectid,
684 ins.offset, async_extent->pages,
685 async_extent->nr_pages);
771ed689
CM
686
687 BUG_ON(ret);
771ed689
CM
688 alloc_hint = ins.objectid + ins.offset;
689 kfree(async_extent);
690 cond_resched();
691 }
692
771ed689
CM
693 return 0;
694}
695
696/*
697 * when extent_io.c finds a delayed allocation range in the file,
698 * the call backs end up in this code. The basic idea is to
699 * allocate extents on disk for the range, and create ordered data structs
700 * in ram to track those extents.
701 *
702 * locked_page is the page that writepage had locked already. We use
703 * it to make sure we don't do extra locks or unlocks.
704 *
705 * *page_started is set to one if we unlock locked_page and do everything
706 * required to start IO on it. It may be clean and already done with
707 * IO when we return.
708 */
709static noinline int cow_file_range(struct inode *inode,
710 struct page *locked_page,
711 u64 start, u64 end, int *page_started,
712 unsigned long *nr_written,
713 int unlock)
714{
715 struct btrfs_root *root = BTRFS_I(inode)->root;
716 struct btrfs_trans_handle *trans;
717 u64 alloc_hint = 0;
718 u64 num_bytes;
719 unsigned long ram_size;
720 u64 disk_num_bytes;
721 u64 cur_alloc_size;
722 u64 blocksize = root->sectorsize;
723 u64 actual_end;
42dc7bab 724 u64 isize = i_size_read(inode);
771ed689
CM
725 struct btrfs_key ins;
726 struct extent_map *em;
727 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
728 int ret = 0;
729
730 trans = btrfs_join_transaction(root, 1);
731 BUG_ON(!trans);
732 btrfs_set_trans_block_group(trans, inode);
733
42dc7bab 734 actual_end = min_t(u64, isize, end + 1);
771ed689
CM
735
736 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
737 num_bytes = max(blocksize, num_bytes);
738 disk_num_bytes = num_bytes;
739 ret = 0;
740
741 if (start == 0) {
742 /* lets try to make an inline extent */
743 ret = cow_file_range_inline(trans, root, inode,
744 start, end, 0, NULL);
745 if (ret == 0) {
746 extent_clear_unlock_delalloc(inode,
a791e35e
CM
747 &BTRFS_I(inode)->io_tree,
748 start, end, NULL,
749 EXTENT_CLEAR_UNLOCK_PAGE |
750 EXTENT_CLEAR_UNLOCK |
751 EXTENT_CLEAR_DELALLOC |
32c00aff 752 EXTENT_CLEAR_ACCOUNTING |
a791e35e
CM
753 EXTENT_CLEAR_DIRTY |
754 EXTENT_SET_WRITEBACK |
755 EXTENT_END_WRITEBACK);
c2167754 756
771ed689
CM
757 *nr_written = *nr_written +
758 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
759 *page_started = 1;
760 ret = 0;
761 goto out;
762 }
763 }
764
765 BUG_ON(disk_num_bytes >
766 btrfs_super_total_bytes(&root->fs_info->super_copy));
767
b917b7c3
CM
768
769 read_lock(&BTRFS_I(inode)->extent_tree.lock);
770 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
771 start, num_bytes);
772 if (em) {
6346c939
JB
773 /*
774 * if block start isn't an actual block number then find the
775 * first block in this inode and use that as a hint. If that
776 * block is also bogus then just don't worry about it.
777 */
778 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
779 free_extent_map(em);
780 em = search_extent_mapping(em_tree, 0, 0);
781 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
782 alloc_hint = em->block_start;
783 if (em)
784 free_extent_map(em);
785 } else {
786 alloc_hint = em->block_start;
787 free_extent_map(em);
788 }
b917b7c3
CM
789 }
790 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
771ed689
CM
791 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
792
d397712b 793 while (disk_num_bytes > 0) {
a791e35e
CM
794 unsigned long op;
795
c8b97818 796 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
e6dcd2dc 797 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 798 root->sectorsize, 0, alloc_hint,
e6dcd2dc 799 (u64)-1, &ins, 1);
d397712b
CM
800 BUG_ON(ret);
801
e6dcd2dc
CM
802 em = alloc_extent_map(GFP_NOFS);
803 em->start = start;
445a6944 804 em->orig_start = em->start;
771ed689
CM
805 ram_size = ins.offset;
806 em->len = ins.offset;
c8b97818 807
e6dcd2dc 808 em->block_start = ins.objectid;
c8b97818 809 em->block_len = ins.offset;
e6dcd2dc 810 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 811 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 812
d397712b 813 while (1) {
890871be 814 write_lock(&em_tree->lock);
e6dcd2dc 815 ret = add_extent_mapping(em_tree, em);
890871be 816 write_unlock(&em_tree->lock);
e6dcd2dc
CM
817 if (ret != -EEXIST) {
818 free_extent_map(em);
819 break;
820 }
821 btrfs_drop_extent_cache(inode, start,
c8b97818 822 start + ram_size - 1, 0);
e6dcd2dc
CM
823 }
824
98d20f67 825 cur_alloc_size = ins.offset;
e6dcd2dc 826 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 827 ram_size, cur_alloc_size, 0);
e6dcd2dc 828 BUG_ON(ret);
c8b97818 829
17d217fe
YZ
830 if (root->root_key.objectid ==
831 BTRFS_DATA_RELOC_TREE_OBJECTID) {
832 ret = btrfs_reloc_clone_csums(inode, start,
833 cur_alloc_size);
834 BUG_ON(ret);
835 }
836
d397712b 837 if (disk_num_bytes < cur_alloc_size)
3b951516 838 break;
d397712b 839
c8b97818
CM
840 /* we're not doing compressed IO, don't unlock the first
841 * page (which the caller expects to stay locked), don't
842 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
843 *
844 * Do set the Private2 bit so we know this page was properly
845 * setup for writepage
c8b97818 846 */
a791e35e
CM
847 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
848 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
849 EXTENT_SET_PRIVATE2;
850
c8b97818
CM
851 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
852 start, start + ram_size - 1,
a791e35e 853 locked_page, op);
c8b97818 854 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
855 num_bytes -= cur_alloc_size;
856 alloc_hint = ins.objectid + ins.offset;
857 start += cur_alloc_size;
b888db2b 858 }
b888db2b 859out:
771ed689 860 ret = 0;
b888db2b 861 btrfs_end_transaction(trans, root);
c8b97818 862
be20aa9d 863 return ret;
771ed689 864}
c8b97818 865
771ed689
CM
866/*
867 * work queue call back to started compression on a file and pages
868 */
869static noinline void async_cow_start(struct btrfs_work *work)
870{
871 struct async_cow *async_cow;
872 int num_added = 0;
873 async_cow = container_of(work, struct async_cow, work);
874
875 compress_file_range(async_cow->inode, async_cow->locked_page,
876 async_cow->start, async_cow->end, async_cow,
877 &num_added);
878 if (num_added == 0)
879 async_cow->inode = NULL;
880}
881
882/*
883 * work queue call back to submit previously compressed pages
884 */
885static noinline void async_cow_submit(struct btrfs_work *work)
886{
887 struct async_cow *async_cow;
888 struct btrfs_root *root;
889 unsigned long nr_pages;
890
891 async_cow = container_of(work, struct async_cow, work);
892
893 root = async_cow->root;
894 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
895 PAGE_CACHE_SHIFT;
896
897 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
898
899 if (atomic_read(&root->fs_info->async_delalloc_pages) <
900 5 * 1042 * 1024 &&
901 waitqueue_active(&root->fs_info->async_submit_wait))
902 wake_up(&root->fs_info->async_submit_wait);
903
d397712b 904 if (async_cow->inode)
771ed689 905 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 906}
c8b97818 907
771ed689
CM
908static noinline void async_cow_free(struct btrfs_work *work)
909{
910 struct async_cow *async_cow;
911 async_cow = container_of(work, struct async_cow, work);
912 kfree(async_cow);
913}
914
915static int cow_file_range_async(struct inode *inode, struct page *locked_page,
916 u64 start, u64 end, int *page_started,
917 unsigned long *nr_written)
918{
919 struct async_cow *async_cow;
920 struct btrfs_root *root = BTRFS_I(inode)->root;
921 unsigned long nr_pages;
922 u64 cur_end;
923 int limit = 10 * 1024 * 1042;
924
a3429ab7
CM
925 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
926 1, 0, NULL, GFP_NOFS);
d397712b 927 while (start < end) {
771ed689
CM
928 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
929 async_cow->inode = inode;
930 async_cow->root = root;
931 async_cow->locked_page = locked_page;
932 async_cow->start = start;
933
6cbff00f 934 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
935 cur_end = end;
936 else
937 cur_end = min(end, start + 512 * 1024 - 1);
938
939 async_cow->end = cur_end;
940 INIT_LIST_HEAD(&async_cow->extents);
941
942 async_cow->work.func = async_cow_start;
943 async_cow->work.ordered_func = async_cow_submit;
944 async_cow->work.ordered_free = async_cow_free;
945 async_cow->work.flags = 0;
946
771ed689
CM
947 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
948 PAGE_CACHE_SHIFT;
949 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
950
951 btrfs_queue_worker(&root->fs_info->delalloc_workers,
952 &async_cow->work);
953
954 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
955 wait_event(root->fs_info->async_submit_wait,
956 (atomic_read(&root->fs_info->async_delalloc_pages) <
957 limit));
958 }
959
d397712b 960 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
961 atomic_read(&root->fs_info->async_delalloc_pages)) {
962 wait_event(root->fs_info->async_submit_wait,
963 (atomic_read(&root->fs_info->async_delalloc_pages) ==
964 0));
965 }
966
967 *nr_written += nr_pages;
968 start = cur_end + 1;
969 }
970 *page_started = 1;
971 return 0;
be20aa9d
CM
972}
973
d397712b 974static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
975 u64 bytenr, u64 num_bytes)
976{
977 int ret;
978 struct btrfs_ordered_sum *sums;
979 LIST_HEAD(list);
980
07d400a6
YZ
981 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
982 bytenr + num_bytes - 1, &list);
17d217fe
YZ
983 if (ret == 0 && list_empty(&list))
984 return 0;
985
986 while (!list_empty(&list)) {
987 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
988 list_del(&sums->list);
989 kfree(sums);
990 }
991 return 1;
992}
993
d352ac68
CM
994/*
995 * when nowcow writeback call back. This checks for snapshots or COW copies
996 * of the extents that exist in the file, and COWs the file as required.
997 *
998 * If no cow copies or snapshots exist, we write directly to the existing
999 * blocks on disk
1000 */
7f366cfe
CM
1001static noinline int run_delalloc_nocow(struct inode *inode,
1002 struct page *locked_page,
771ed689
CM
1003 u64 start, u64 end, int *page_started, int force,
1004 unsigned long *nr_written)
be20aa9d 1005{
be20aa9d 1006 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1007 struct btrfs_trans_handle *trans;
be20aa9d 1008 struct extent_buffer *leaf;
be20aa9d 1009 struct btrfs_path *path;
80ff3856 1010 struct btrfs_file_extent_item *fi;
be20aa9d 1011 struct btrfs_key found_key;
80ff3856
YZ
1012 u64 cow_start;
1013 u64 cur_offset;
1014 u64 extent_end;
5d4f98a2 1015 u64 extent_offset;
80ff3856
YZ
1016 u64 disk_bytenr;
1017 u64 num_bytes;
1018 int extent_type;
1019 int ret;
d899e052 1020 int type;
80ff3856
YZ
1021 int nocow;
1022 int check_prev = 1;
be20aa9d
CM
1023
1024 path = btrfs_alloc_path();
1025 BUG_ON(!path);
7ea394f1
YZ
1026 trans = btrfs_join_transaction(root, 1);
1027 BUG_ON(!trans);
be20aa9d 1028
80ff3856
YZ
1029 cow_start = (u64)-1;
1030 cur_offset = start;
1031 while (1) {
1032 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1033 cur_offset, 0);
1034 BUG_ON(ret < 0);
1035 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1036 leaf = path->nodes[0];
1037 btrfs_item_key_to_cpu(leaf, &found_key,
1038 path->slots[0] - 1);
1039 if (found_key.objectid == inode->i_ino &&
1040 found_key.type == BTRFS_EXTENT_DATA_KEY)
1041 path->slots[0]--;
1042 }
1043 check_prev = 0;
1044next_slot:
1045 leaf = path->nodes[0];
1046 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1047 ret = btrfs_next_leaf(root, path);
1048 if (ret < 0)
1049 BUG_ON(1);
1050 if (ret > 0)
1051 break;
1052 leaf = path->nodes[0];
1053 }
be20aa9d 1054
80ff3856
YZ
1055 nocow = 0;
1056 disk_bytenr = 0;
17d217fe 1057 num_bytes = 0;
80ff3856
YZ
1058 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1059
1060 if (found_key.objectid > inode->i_ino ||
1061 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1062 found_key.offset > end)
1063 break;
1064
1065 if (found_key.offset > cur_offset) {
1066 extent_end = found_key.offset;
e9061e21 1067 extent_type = 0;
80ff3856
YZ
1068 goto out_check;
1069 }
1070
1071 fi = btrfs_item_ptr(leaf, path->slots[0],
1072 struct btrfs_file_extent_item);
1073 extent_type = btrfs_file_extent_type(leaf, fi);
1074
d899e052
YZ
1075 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1076 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1077 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1078 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1079 extent_end = found_key.offset +
1080 btrfs_file_extent_num_bytes(leaf, fi);
1081 if (extent_end <= start) {
1082 path->slots[0]++;
1083 goto next_slot;
1084 }
17d217fe
YZ
1085 if (disk_bytenr == 0)
1086 goto out_check;
80ff3856
YZ
1087 if (btrfs_file_extent_compression(leaf, fi) ||
1088 btrfs_file_extent_encryption(leaf, fi) ||
1089 btrfs_file_extent_other_encoding(leaf, fi))
1090 goto out_check;
d899e052
YZ
1091 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1092 goto out_check;
d2fb3437 1093 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1094 goto out_check;
17d217fe 1095 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1096 found_key.offset -
1097 extent_offset, disk_bytenr))
17d217fe 1098 goto out_check;
5d4f98a2 1099 disk_bytenr += extent_offset;
17d217fe
YZ
1100 disk_bytenr += cur_offset - found_key.offset;
1101 num_bytes = min(end + 1, extent_end) - cur_offset;
1102 /*
1103 * force cow if csum exists in the range.
1104 * this ensure that csum for a given extent are
1105 * either valid or do not exist.
1106 */
1107 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1108 goto out_check;
80ff3856
YZ
1109 nocow = 1;
1110 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1111 extent_end = found_key.offset +
1112 btrfs_file_extent_inline_len(leaf, fi);
1113 extent_end = ALIGN(extent_end, root->sectorsize);
1114 } else {
1115 BUG_ON(1);
1116 }
1117out_check:
1118 if (extent_end <= start) {
1119 path->slots[0]++;
1120 goto next_slot;
1121 }
1122 if (!nocow) {
1123 if (cow_start == (u64)-1)
1124 cow_start = cur_offset;
1125 cur_offset = extent_end;
1126 if (cur_offset > end)
1127 break;
1128 path->slots[0]++;
1129 goto next_slot;
7ea394f1
YZ
1130 }
1131
1132 btrfs_release_path(root, path);
80ff3856
YZ
1133 if (cow_start != (u64)-1) {
1134 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1135 found_key.offset - 1, page_started,
1136 nr_written, 1);
80ff3856
YZ
1137 BUG_ON(ret);
1138 cow_start = (u64)-1;
7ea394f1 1139 }
80ff3856 1140
d899e052
YZ
1141 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1142 struct extent_map *em;
1143 struct extent_map_tree *em_tree;
1144 em_tree = &BTRFS_I(inode)->extent_tree;
1145 em = alloc_extent_map(GFP_NOFS);
1146 em->start = cur_offset;
445a6944 1147 em->orig_start = em->start;
d899e052
YZ
1148 em->len = num_bytes;
1149 em->block_len = num_bytes;
1150 em->block_start = disk_bytenr;
1151 em->bdev = root->fs_info->fs_devices->latest_bdev;
1152 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1153 while (1) {
890871be 1154 write_lock(&em_tree->lock);
d899e052 1155 ret = add_extent_mapping(em_tree, em);
890871be 1156 write_unlock(&em_tree->lock);
d899e052
YZ
1157 if (ret != -EEXIST) {
1158 free_extent_map(em);
1159 break;
1160 }
1161 btrfs_drop_extent_cache(inode, em->start,
1162 em->start + em->len - 1, 0);
1163 }
1164 type = BTRFS_ORDERED_PREALLOC;
1165 } else {
1166 type = BTRFS_ORDERED_NOCOW;
1167 }
80ff3856
YZ
1168
1169 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1170 num_bytes, num_bytes, type);
1171 BUG_ON(ret);
771ed689 1172
d899e052 1173 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1174 cur_offset, cur_offset + num_bytes - 1,
1175 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1176 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1177 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1178 cur_offset = extent_end;
1179 if (cur_offset > end)
1180 break;
be20aa9d 1181 }
80ff3856
YZ
1182 btrfs_release_path(root, path);
1183
1184 if (cur_offset <= end && cow_start == (u64)-1)
1185 cow_start = cur_offset;
1186 if (cow_start != (u64)-1) {
1187 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1188 page_started, nr_written, 1);
80ff3856
YZ
1189 BUG_ON(ret);
1190 }
1191
1192 ret = btrfs_end_transaction(trans, root);
1193 BUG_ON(ret);
7ea394f1 1194 btrfs_free_path(path);
80ff3856 1195 return 0;
be20aa9d
CM
1196}
1197
d352ac68
CM
1198/*
1199 * extent_io.c call back to do delayed allocation processing
1200 */
c8b97818 1201static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1202 u64 start, u64 end, int *page_started,
1203 unsigned long *nr_written)
be20aa9d 1204{
be20aa9d 1205 int ret;
7f366cfe 1206 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1207
6cbff00f 1208 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1209 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1210 page_started, 1, nr_written);
6cbff00f 1211 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1212 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1213 page_started, 0, nr_written);
7f366cfe
CM
1214 else if (!btrfs_test_opt(root, COMPRESS))
1215 ret = cow_file_range(inode, locked_page, start, end,
1216 page_started, nr_written, 1);
be20aa9d 1217 else
771ed689 1218 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1219 page_started, nr_written);
b888db2b
CM
1220 return ret;
1221}
1222
9ed74f2d
JB
1223static int btrfs_split_extent_hook(struct inode *inode,
1224 struct extent_state *orig, u64 split)
1225{
1226 struct btrfs_root *root = BTRFS_I(inode)->root;
1227 u64 size;
1228
1229 if (!(orig->state & EXTENT_DELALLOC))
1230 return 0;
1231
1232 size = orig->end - orig->start + 1;
1233 if (size > root->fs_info->max_extent) {
1234 u64 num_extents;
1235 u64 new_size;
1236
1237 new_size = orig->end - split + 1;
1238 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1239 root->fs_info->max_extent);
1240
1241 /*
32c00aff
JB
1242 * if we break a large extent up then leave oustanding_extents
1243 * be, since we've already accounted for the large extent.
9ed74f2d
JB
1244 */
1245 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1246 root->fs_info->max_extent) < num_extents)
1247 return 0;
1248 }
1249
32c00aff
JB
1250 spin_lock(&BTRFS_I(inode)->accounting_lock);
1251 BTRFS_I(inode)->outstanding_extents++;
1252 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1253
1254 return 0;
1255}
1256
1257/*
1258 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1259 * extents so we can keep track of new extents that are just merged onto old
1260 * extents, such as when we are doing sequential writes, so we can properly
1261 * account for the metadata space we'll need.
1262 */
1263static int btrfs_merge_extent_hook(struct inode *inode,
1264 struct extent_state *new,
1265 struct extent_state *other)
1266{
1267 struct btrfs_root *root = BTRFS_I(inode)->root;
1268 u64 new_size, old_size;
1269 u64 num_extents;
1270
1271 /* not delalloc, ignore it */
1272 if (!(other->state & EXTENT_DELALLOC))
1273 return 0;
1274
1275 old_size = other->end - other->start + 1;
1276 if (new->start < other->start)
1277 new_size = other->end - new->start + 1;
1278 else
1279 new_size = new->end - other->start + 1;
1280
1281 /* we're not bigger than the max, unreserve the space and go */
1282 if (new_size <= root->fs_info->max_extent) {
32c00aff
JB
1283 spin_lock(&BTRFS_I(inode)->accounting_lock);
1284 BTRFS_I(inode)->outstanding_extents--;
1285 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1286 return 0;
1287 }
1288
1289 /*
1290 * If we grew by another max_extent, just return, we want to keep that
1291 * reserved amount.
1292 */
1293 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1294 root->fs_info->max_extent);
1295 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1296 root->fs_info->max_extent) > num_extents)
1297 return 0;
1298
32c00aff
JB
1299 spin_lock(&BTRFS_I(inode)->accounting_lock);
1300 BTRFS_I(inode)->outstanding_extents--;
1301 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1302
1303 return 0;
1304}
1305
d352ac68
CM
1306/*
1307 * extent_io.c set_bit_hook, used to track delayed allocation
1308 * bytes in this file, and to maintain the list of inodes that
1309 * have pending delalloc work to be done.
1310 */
b2950863 1311static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1312 unsigned long old, unsigned long bits)
291d673e 1313{
9ed74f2d 1314
75eff68e
CM
1315 /*
1316 * set_bit and clear bit hooks normally require _irqsave/restore
1317 * but in this case, we are only testeing for the DELALLOC
1318 * bit, which is only set or cleared with irqs on
1319 */
b0c68f8b 1320 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1321 struct btrfs_root *root = BTRFS_I(inode)->root;
9ed74f2d 1322
32c00aff
JB
1323 spin_lock(&BTRFS_I(inode)->accounting_lock);
1324 BTRFS_I(inode)->outstanding_extents++;
1325 spin_unlock(&BTRFS_I(inode)->accounting_lock);
6a63209f 1326 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
75eff68e 1327 spin_lock(&root->fs_info->delalloc_lock);
9069218d 1328 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
291d673e 1329 root->fs_info->delalloc_bytes += end - start + 1;
ea8c2819
CM
1330 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1331 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1332 &root->fs_info->delalloc_inodes);
1333 }
75eff68e 1334 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1335 }
1336 return 0;
1337}
1338
d352ac68
CM
1339/*
1340 * extent_io.c clear_bit_hook, see set_bit_hook for why
1341 */
9ed74f2d
JB
1342static int btrfs_clear_bit_hook(struct inode *inode,
1343 struct extent_state *state, unsigned long bits)
291d673e 1344{
75eff68e
CM
1345 /*
1346 * set_bit and clear bit hooks normally require _irqsave/restore
1347 * but in this case, we are only testeing for the DELALLOC
1348 * bit, which is only set or cleared with irqs on
1349 */
9ed74f2d 1350 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1351 struct btrfs_root *root = BTRFS_I(inode)->root;
bcbfce8a 1352
32c00aff
JB
1353 if (bits & EXTENT_DO_ACCOUNTING) {
1354 spin_lock(&BTRFS_I(inode)->accounting_lock);
1355 BTRFS_I(inode)->outstanding_extents--;
1356 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1357 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1358 }
9ed74f2d 1359
75eff68e 1360 spin_lock(&root->fs_info->delalloc_lock);
9ed74f2d
JB
1361 if (state->end - state->start + 1 >
1362 root->fs_info->delalloc_bytes) {
d397712b
CM
1363 printk(KERN_INFO "btrfs warning: delalloc account "
1364 "%llu %llu\n",
9ed74f2d
JB
1365 (unsigned long long)
1366 state->end - state->start + 1,
d397712b
CM
1367 (unsigned long long)
1368 root->fs_info->delalloc_bytes);
6a63209f 1369 btrfs_delalloc_free_space(root, inode, (u64)-1);
b0c68f8b 1370 root->fs_info->delalloc_bytes = 0;
9069218d 1371 BTRFS_I(inode)->delalloc_bytes = 0;
b0c68f8b 1372 } else {
6a63209f 1373 btrfs_delalloc_free_space(root, inode,
9ed74f2d
JB
1374 state->end -
1375 state->start + 1);
1376 root->fs_info->delalloc_bytes -= state->end -
1377 state->start + 1;
1378 BTRFS_I(inode)->delalloc_bytes -= state->end -
1379 state->start + 1;
b0c68f8b 1380 }
ea8c2819
CM
1381 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1382 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1383 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1384 }
75eff68e 1385 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1386 }
1387 return 0;
1388}
1389
d352ac68
CM
1390/*
1391 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1392 * we don't create bios that span stripes or chunks
1393 */
239b14b3 1394int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1395 size_t size, struct bio *bio,
1396 unsigned long bio_flags)
239b14b3
CM
1397{
1398 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1399 struct btrfs_mapping_tree *map_tree;
a62b9401 1400 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1401 u64 length = 0;
1402 u64 map_length;
239b14b3
CM
1403 int ret;
1404
771ed689
CM
1405 if (bio_flags & EXTENT_BIO_COMPRESSED)
1406 return 0;
1407
f2d8d74d 1408 length = bio->bi_size;
239b14b3
CM
1409 map_tree = &root->fs_info->mapping_tree;
1410 map_length = length;
cea9e445 1411 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1412 &map_length, NULL, 0);
cea9e445 1413
d397712b 1414 if (map_length < length + size)
239b14b3 1415 return 1;
239b14b3
CM
1416 return 0;
1417}
1418
d352ac68
CM
1419/*
1420 * in order to insert checksums into the metadata in large chunks,
1421 * we wait until bio submission time. All the pages in the bio are
1422 * checksummed and sums are attached onto the ordered extent record.
1423 *
1424 * At IO completion time the cums attached on the ordered extent record
1425 * are inserted into the btree
1426 */
d397712b
CM
1427static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1428 struct bio *bio, int mirror_num,
1429 unsigned long bio_flags)
065631f6 1430{
065631f6 1431 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1432 int ret = 0;
e015640f 1433
d20f7043 1434 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1435 BUG_ON(ret);
4a69a410
CM
1436 return 0;
1437}
e015640f 1438
4a69a410
CM
1439/*
1440 * in order to insert checksums into the metadata in large chunks,
1441 * we wait until bio submission time. All the pages in the bio are
1442 * checksummed and sums are attached onto the ordered extent record.
1443 *
1444 * At IO completion time the cums attached on the ordered extent record
1445 * are inserted into the btree
1446 */
b2950863 1447static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
4a69a410
CM
1448 int mirror_num, unsigned long bio_flags)
1449{
1450 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1451 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1452}
1453
d352ac68 1454/*
cad321ad
CM
1455 * extent_io.c submission hook. This does the right thing for csum calculation
1456 * on write, or reading the csums from the tree before a read
d352ac68 1457 */
b2950863 1458static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
c8b97818 1459 int mirror_num, unsigned long bio_flags)
44b8bd7e
CM
1460{
1461 struct btrfs_root *root = BTRFS_I(inode)->root;
1462 int ret = 0;
19b9bdb0 1463 int skip_sum;
44b8bd7e 1464
6cbff00f 1465 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1466
e6dcd2dc
CM
1467 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1468 BUG_ON(ret);
065631f6 1469
4d1b5fb4 1470 if (!(rw & (1 << BIO_RW))) {
d20f7043 1471 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1472 return btrfs_submit_compressed_read(inode, bio,
1473 mirror_num, bio_flags);
d20f7043
CM
1474 } else if (!skip_sum)
1475 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1476 goto mapit;
19b9bdb0 1477 } else if (!skip_sum) {
17d217fe
YZ
1478 /* csum items have already been cloned */
1479 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1480 goto mapit;
19b9bdb0
CM
1481 /* we're doing a write, do the async checksumming */
1482 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1483 inode, rw, bio, mirror_num,
4a69a410
CM
1484 bio_flags, __btrfs_submit_bio_start,
1485 __btrfs_submit_bio_done);
19b9bdb0
CM
1486 }
1487
0b86a832 1488mapit:
8b712842 1489 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1490}
6885f308 1491
d352ac68
CM
1492/*
1493 * given a list of ordered sums record them in the inode. This happens
1494 * at IO completion time based on sums calculated at bio submission time.
1495 */
ba1da2f4 1496static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1497 struct inode *inode, u64 file_offset,
1498 struct list_head *list)
1499{
e6dcd2dc
CM
1500 struct btrfs_ordered_sum *sum;
1501
1502 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1503
1504 list_for_each_entry(sum, list, list) {
d20f7043
CM
1505 btrfs_csum_file_blocks(trans,
1506 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1507 }
1508 return 0;
1509}
1510
ea8c2819
CM
1511int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1512{
d397712b 1513 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1514 WARN_ON(1);
ea8c2819
CM
1515 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1516 GFP_NOFS);
1517}
1518
d352ac68 1519/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1520struct btrfs_writepage_fixup {
1521 struct page *page;
1522 struct btrfs_work work;
1523};
1524
b2950863 1525static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1526{
1527 struct btrfs_writepage_fixup *fixup;
1528 struct btrfs_ordered_extent *ordered;
1529 struct page *page;
1530 struct inode *inode;
1531 u64 page_start;
1532 u64 page_end;
1533
1534 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1535 page = fixup->page;
4a096752 1536again:
247e743c
CM
1537 lock_page(page);
1538 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1539 ClearPageChecked(page);
1540 goto out_page;
1541 }
1542
1543 inode = page->mapping->host;
1544 page_start = page_offset(page);
1545 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1546
1547 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
4a096752
CM
1548
1549 /* already ordered? We're done */
8b62b72b 1550 if (PagePrivate2(page))
247e743c 1551 goto out;
4a096752
CM
1552
1553 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1554 if (ordered) {
1555 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1556 page_end, GFP_NOFS);
1557 unlock_page(page);
1558 btrfs_start_ordered_extent(inode, ordered, 1);
1559 goto again;
1560 }
247e743c 1561
ea8c2819 1562 btrfs_set_extent_delalloc(inode, page_start, page_end);
247e743c
CM
1563 ClearPageChecked(page);
1564out:
1565 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1566out_page:
1567 unlock_page(page);
1568 page_cache_release(page);
1569}
1570
1571/*
1572 * There are a few paths in the higher layers of the kernel that directly
1573 * set the page dirty bit without asking the filesystem if it is a
1574 * good idea. This causes problems because we want to make sure COW
1575 * properly happens and the data=ordered rules are followed.
1576 *
c8b97818 1577 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1578 * hasn't been properly setup for IO. We kick off an async process
1579 * to fix it up. The async helper will wait for ordered extents, set
1580 * the delalloc bit and make it safe to write the page.
1581 */
b2950863 1582static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1583{
1584 struct inode *inode = page->mapping->host;
1585 struct btrfs_writepage_fixup *fixup;
1586 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1587
8b62b72b
CM
1588 /* this page is properly in the ordered list */
1589 if (TestClearPagePrivate2(page))
247e743c
CM
1590 return 0;
1591
1592 if (PageChecked(page))
1593 return -EAGAIN;
1594
1595 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1596 if (!fixup)
1597 return -EAGAIN;
f421950f 1598
247e743c
CM
1599 SetPageChecked(page);
1600 page_cache_get(page);
1601 fixup->work.func = btrfs_writepage_fixup_worker;
1602 fixup->page = page;
1603 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1604 return -EAGAIN;
1605}
1606
d899e052
YZ
1607static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1608 struct inode *inode, u64 file_pos,
1609 u64 disk_bytenr, u64 disk_num_bytes,
1610 u64 num_bytes, u64 ram_bytes,
1611 u8 compression, u8 encryption,
1612 u16 other_encoding, int extent_type)
1613{
1614 struct btrfs_root *root = BTRFS_I(inode)->root;
1615 struct btrfs_file_extent_item *fi;
1616 struct btrfs_path *path;
1617 struct extent_buffer *leaf;
1618 struct btrfs_key ins;
1619 u64 hint;
1620 int ret;
1621
1622 path = btrfs_alloc_path();
1623 BUG_ON(!path);
1624
b9473439 1625 path->leave_spinning = 1;
a1ed835e
CM
1626
1627 /*
1628 * we may be replacing one extent in the tree with another.
1629 * The new extent is pinned in the extent map, and we don't want
1630 * to drop it from the cache until it is completely in the btree.
1631 *
1632 * So, tell btrfs_drop_extents to leave this extent in the cache.
1633 * the caller is expected to unpin it and allow it to be merged
1634 * with the others.
1635 */
920bbbfb
YZ
1636 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1637 &hint, 0);
d899e052
YZ
1638 BUG_ON(ret);
1639
1640 ins.objectid = inode->i_ino;
1641 ins.offset = file_pos;
1642 ins.type = BTRFS_EXTENT_DATA_KEY;
1643 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1644 BUG_ON(ret);
1645 leaf = path->nodes[0];
1646 fi = btrfs_item_ptr(leaf, path->slots[0],
1647 struct btrfs_file_extent_item);
1648 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1649 btrfs_set_file_extent_type(leaf, fi, extent_type);
1650 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1651 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1652 btrfs_set_file_extent_offset(leaf, fi, 0);
1653 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1654 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1655 btrfs_set_file_extent_compression(leaf, fi, compression);
1656 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1657 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1658
1659 btrfs_unlock_up_safe(path, 1);
1660 btrfs_set_lock_blocking(leaf);
1661
d899e052
YZ
1662 btrfs_mark_buffer_dirty(leaf);
1663
1664 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1665
1666 ins.objectid = disk_bytenr;
1667 ins.offset = disk_num_bytes;
1668 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1669 ret = btrfs_alloc_reserved_file_extent(trans, root,
1670 root->root_key.objectid,
1671 inode->i_ino, file_pos, &ins);
d899e052 1672 BUG_ON(ret);
d899e052 1673 btrfs_free_path(path);
b9473439 1674
d899e052
YZ
1675 return 0;
1676}
1677
5d13a98f
CM
1678/*
1679 * helper function for btrfs_finish_ordered_io, this
1680 * just reads in some of the csum leaves to prime them into ram
1681 * before we start the transaction. It limits the amount of btree
1682 * reads required while inside the transaction.
1683 */
1684static noinline void reada_csum(struct btrfs_root *root,
1685 struct btrfs_path *path,
1686 struct btrfs_ordered_extent *ordered_extent)
1687{
1688 struct btrfs_ordered_sum *sum;
1689 u64 bytenr;
1690
1691 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1692 list);
1693 bytenr = sum->sums[0].bytenr;
1694
1695 /*
1696 * we don't care about the results, the point of this search is
1697 * just to get the btree leaves into ram
1698 */
1699 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1700}
1701
d352ac68
CM
1702/* as ordered data IO finishes, this gets called so we can finish
1703 * an ordered extent if the range of bytes in the file it covers are
1704 * fully written.
1705 */
211f90e6 1706static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1707{
e6dcd2dc
CM
1708 struct btrfs_root *root = BTRFS_I(inode)->root;
1709 struct btrfs_trans_handle *trans;
5d13a98f 1710 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1711 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
b7ec40d7 1712 struct btrfs_path *path;
d899e052 1713 int compressed = 0;
e6dcd2dc
CM
1714 int ret;
1715
1716 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
ba1da2f4 1717 if (!ret)
e6dcd2dc 1718 return 0;
e6dcd2dc 1719
b7ec40d7
CM
1720 /*
1721 * before we join the transaction, try to do some of our IO.
1722 * This will limit the amount of IO that we have to do with
1723 * the transaction running. We're unlikely to need to do any
1724 * IO if the file extents are new, the disk_i_size checks
1725 * covers the most common case.
1726 */
1727 if (start < BTRFS_I(inode)->disk_i_size) {
1728 path = btrfs_alloc_path();
1729 if (path) {
1730 ret = btrfs_lookup_file_extent(NULL, root, path,
1731 inode->i_ino,
1732 start, 0);
5d13a98f
CM
1733 ordered_extent = btrfs_lookup_ordered_extent(inode,
1734 start);
1735 if (!list_empty(&ordered_extent->list)) {
1736 btrfs_release_path(root, path);
1737 reada_csum(root, path, ordered_extent);
1738 }
b7ec40d7
CM
1739 btrfs_free_path(path);
1740 }
1741 }
1742
5d13a98f
CM
1743 if (!ordered_extent)
1744 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
e6dcd2dc 1745 BUG_ON(!ordered_extent);
c2167754
YZ
1746 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1747 BUG_ON(!list_empty(&ordered_extent->list));
1748 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1749 if (!ret) {
1750 trans = btrfs_join_transaction(root, 1);
1751 ret = btrfs_update_inode(trans, root, inode);
1752 BUG_ON(ret);
1753 btrfs_end_transaction(trans, root);
1754 }
1755 goto out;
1756 }
e6dcd2dc
CM
1757
1758 lock_extent(io_tree, ordered_extent->file_offset,
1759 ordered_extent->file_offset + ordered_extent->len - 1,
1760 GFP_NOFS);
1761
c2167754
YZ
1762 trans = btrfs_join_transaction(root, 1);
1763
c8b97818 1764 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1765 compressed = 1;
1766 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1767 BUG_ON(compressed);
920bbbfb 1768 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1769 ordered_extent->file_offset,
1770 ordered_extent->file_offset +
1771 ordered_extent->len);
1772 BUG_ON(ret);
1773 } else {
1774 ret = insert_reserved_file_extent(trans, inode,
1775 ordered_extent->file_offset,
1776 ordered_extent->start,
1777 ordered_extent->disk_len,
1778 ordered_extent->len,
1779 ordered_extent->len,
1780 compressed, 0, 0,
1781 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1782 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1783 ordered_extent->file_offset,
1784 ordered_extent->len);
d899e052
YZ
1785 BUG_ON(ret);
1786 }
e6dcd2dc
CM
1787 unlock_extent(io_tree, ordered_extent->file_offset,
1788 ordered_extent->file_offset + ordered_extent->len - 1,
1789 GFP_NOFS);
1790 add_pending_csums(trans, inode, ordered_extent->file_offset,
1791 &ordered_extent->list);
1792
c2167754
YZ
1793 /* this also removes the ordered extent from the tree */
1794 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1795 ret = btrfs_update_inode(trans, root, inode);
1796 BUG_ON(ret);
1797 btrfs_end_transaction(trans, root);
1798out:
e6dcd2dc
CM
1799 /* once for us */
1800 btrfs_put_ordered_extent(ordered_extent);
1801 /* once for the tree */
1802 btrfs_put_ordered_extent(ordered_extent);
1803
e6dcd2dc
CM
1804 return 0;
1805}
1806
b2950863 1807static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1808 struct extent_state *state, int uptodate)
1809{
8b62b72b 1810 ClearPagePrivate2(page);
211f90e6
CM
1811 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1812}
1813
d352ac68
CM
1814/*
1815 * When IO fails, either with EIO or csum verification fails, we
1816 * try other mirrors that might have a good copy of the data. This
1817 * io_failure_record is used to record state as we go through all the
1818 * mirrors. If another mirror has good data, the page is set up to date
1819 * and things continue. If a good mirror can't be found, the original
1820 * bio end_io callback is called to indicate things have failed.
1821 */
7e38326f
CM
1822struct io_failure_record {
1823 struct page *page;
1824 u64 start;
1825 u64 len;
1826 u64 logical;
d20f7043 1827 unsigned long bio_flags;
7e38326f
CM
1828 int last_mirror;
1829};
1830
b2950863 1831static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1832 struct page *page, u64 start, u64 end,
1833 struct extent_state *state)
7e38326f
CM
1834{
1835 struct io_failure_record *failrec = NULL;
1836 u64 private;
1837 struct extent_map *em;
1838 struct inode *inode = page->mapping->host;
1839 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1840 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1841 struct bio *bio;
1842 int num_copies;
1843 int ret;
1259ab75 1844 int rw;
7e38326f
CM
1845 u64 logical;
1846
1847 ret = get_state_private(failure_tree, start, &private);
1848 if (ret) {
7e38326f
CM
1849 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1850 if (!failrec)
1851 return -ENOMEM;
1852 failrec->start = start;
1853 failrec->len = end - start + 1;
1854 failrec->last_mirror = 0;
d20f7043 1855 failrec->bio_flags = 0;
7e38326f 1856
890871be 1857 read_lock(&em_tree->lock);
3b951516
CM
1858 em = lookup_extent_mapping(em_tree, start, failrec->len);
1859 if (em->start > start || em->start + em->len < start) {
1860 free_extent_map(em);
1861 em = NULL;
1862 }
890871be 1863 read_unlock(&em_tree->lock);
7e38326f
CM
1864
1865 if (!em || IS_ERR(em)) {
1866 kfree(failrec);
1867 return -EIO;
1868 }
1869 logical = start - em->start;
1870 logical = em->block_start + logical;
d20f7043
CM
1871 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1872 logical = em->block_start;
1873 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1874 }
7e38326f
CM
1875 failrec->logical = logical;
1876 free_extent_map(em);
1877 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1878 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1879 set_state_private(failure_tree, start,
1880 (u64)(unsigned long)failrec);
7e38326f 1881 } else {
587f7704 1882 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1883 }
1884 num_copies = btrfs_num_copies(
1885 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1886 failrec->logical, failrec->len);
1887 failrec->last_mirror++;
1888 if (!state) {
cad321ad 1889 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1890 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1891 failrec->start,
1892 EXTENT_LOCKED);
1893 if (state && state->start != failrec->start)
1894 state = NULL;
cad321ad 1895 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1896 }
1897 if (!state || failrec->last_mirror > num_copies) {
1898 set_state_private(failure_tree, failrec->start, 0);
1899 clear_extent_bits(failure_tree, failrec->start,
1900 failrec->start + failrec->len - 1,
1901 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1902 kfree(failrec);
1903 return -EIO;
1904 }
1905 bio = bio_alloc(GFP_NOFS, 1);
1906 bio->bi_private = state;
1907 bio->bi_end_io = failed_bio->bi_end_io;
1908 bio->bi_sector = failrec->logical >> 9;
1909 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1910 bio->bi_size = 0;
d20f7043 1911
7e38326f 1912 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1259ab75
CM
1913 if (failed_bio->bi_rw & (1 << BIO_RW))
1914 rw = WRITE;
1915 else
1916 rw = READ;
1917
1918 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1919 failrec->last_mirror,
d20f7043 1920 failrec->bio_flags);
1259ab75
CM
1921 return 0;
1922}
1923
d352ac68
CM
1924/*
1925 * each time an IO finishes, we do a fast check in the IO failure tree
1926 * to see if we need to process or clean up an io_failure_record
1927 */
b2950863 1928static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1929{
1930 u64 private;
1931 u64 private_failure;
1932 struct io_failure_record *failure;
1933 int ret;
1934
1935 private = 0;
1936 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1937 (u64)-1, 1, EXTENT_DIRTY)) {
1938 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1939 start, &private_failure);
1940 if (ret == 0) {
1941 failure = (struct io_failure_record *)(unsigned long)
1942 private_failure;
1943 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1944 failure->start, 0);
1945 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1946 failure->start,
1947 failure->start + failure->len - 1,
1948 EXTENT_DIRTY | EXTENT_LOCKED,
1949 GFP_NOFS);
1950 kfree(failure);
1951 }
1952 }
7e38326f
CM
1953 return 0;
1954}
1955
d352ac68
CM
1956/*
1957 * when reads are done, we need to check csums to verify the data is correct
1958 * if there's a match, we allow the bio to finish. If not, we go through
1959 * the io_failure_record routines to find good copies
1960 */
b2950863 1961static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1962 struct extent_state *state)
07157aac 1963{
35ebb934 1964 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1965 struct inode *inode = page->mapping->host;
d1310b2e 1966 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1967 char *kaddr;
aadfeb6e 1968 u64 private = ~(u32)0;
07157aac 1969 int ret;
ff79f819
CM
1970 struct btrfs_root *root = BTRFS_I(inode)->root;
1971 u32 csum = ~(u32)0;
d1310b2e 1972
d20f7043
CM
1973 if (PageChecked(page)) {
1974 ClearPageChecked(page);
1975 goto good;
1976 }
6cbff00f
CH
1977
1978 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1979 return 0;
1980
1981 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1982 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1983 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1984 GFP_NOFS);
b6cda9bc 1985 return 0;
17d217fe 1986 }
d20f7043 1987
c2e639f0 1988 if (state && state->start == start) {
70dec807
CM
1989 private = state->private;
1990 ret = 0;
1991 } else {
1992 ret = get_state_private(io_tree, start, &private);
1993 }
9ab86c8e 1994 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1995 if (ret)
07157aac 1996 goto zeroit;
d397712b 1997
ff79f819
CM
1998 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1999 btrfs_csum_final(csum, (char *)&csum);
d397712b 2000 if (csum != private)
07157aac 2001 goto zeroit;
d397712b 2002
9ab86c8e 2003 kunmap_atomic(kaddr, KM_USER0);
d20f7043 2004good:
7e38326f
CM
2005 /* if the io failure tree for this inode is non-empty,
2006 * check to see if we've recovered from a failed IO
2007 */
1259ab75 2008 btrfs_clean_io_failures(inode, start);
07157aac
CM
2009 return 0;
2010
2011zeroit:
193f284d
CM
2012 if (printk_ratelimit()) {
2013 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2014 "private %llu\n", page->mapping->host->i_ino,
2015 (unsigned long long)start, csum,
2016 (unsigned long long)private);
2017 }
db94535d
CM
2018 memset(kaddr + offset, 1, end - start + 1);
2019 flush_dcache_page(page);
9ab86c8e 2020 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2021 if (private == 0)
2022 return 0;
7e38326f 2023 return -EIO;
07157aac 2024}
b888db2b 2025
24bbcf04
YZ
2026struct delayed_iput {
2027 struct list_head list;
2028 struct inode *inode;
2029};
2030
2031void btrfs_add_delayed_iput(struct inode *inode)
2032{
2033 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2034 struct delayed_iput *delayed;
2035
2036 if (atomic_add_unless(&inode->i_count, -1, 1))
2037 return;
2038
2039 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2040 delayed->inode = inode;
2041
2042 spin_lock(&fs_info->delayed_iput_lock);
2043 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2044 spin_unlock(&fs_info->delayed_iput_lock);
2045}
2046
2047void btrfs_run_delayed_iputs(struct btrfs_root *root)
2048{
2049 LIST_HEAD(list);
2050 struct btrfs_fs_info *fs_info = root->fs_info;
2051 struct delayed_iput *delayed;
2052 int empty;
2053
2054 spin_lock(&fs_info->delayed_iput_lock);
2055 empty = list_empty(&fs_info->delayed_iputs);
2056 spin_unlock(&fs_info->delayed_iput_lock);
2057 if (empty)
2058 return;
2059
2060 down_read(&root->fs_info->cleanup_work_sem);
2061 spin_lock(&fs_info->delayed_iput_lock);
2062 list_splice_init(&fs_info->delayed_iputs, &list);
2063 spin_unlock(&fs_info->delayed_iput_lock);
2064
2065 while (!list_empty(&list)) {
2066 delayed = list_entry(list.next, struct delayed_iput, list);
2067 list_del(&delayed->list);
2068 iput(delayed->inode);
2069 kfree(delayed);
2070 }
2071 up_read(&root->fs_info->cleanup_work_sem);
2072}
2073
7b128766
JB
2074/*
2075 * This creates an orphan entry for the given inode in case something goes
2076 * wrong in the middle of an unlink/truncate.
2077 */
2078int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2079{
2080 struct btrfs_root *root = BTRFS_I(inode)->root;
2081 int ret = 0;
2082
bcc63abb 2083 spin_lock(&root->list_lock);
7b128766
JB
2084
2085 /* already on the orphan list, we're good */
2086 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2087 spin_unlock(&root->list_lock);
7b128766
JB
2088 return 0;
2089 }
2090
2091 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2092
bcc63abb 2093 spin_unlock(&root->list_lock);
7b128766
JB
2094
2095 /*
2096 * insert an orphan item to track this unlinked/truncated file
2097 */
2098 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2099
2100 return ret;
2101}
2102
2103/*
2104 * We have done the truncate/delete so we can go ahead and remove the orphan
2105 * item for this particular inode.
2106 */
2107int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2108{
2109 struct btrfs_root *root = BTRFS_I(inode)->root;
2110 int ret = 0;
2111
bcc63abb 2112 spin_lock(&root->list_lock);
7b128766
JB
2113
2114 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2115 spin_unlock(&root->list_lock);
7b128766
JB
2116 return 0;
2117 }
2118
2119 list_del_init(&BTRFS_I(inode)->i_orphan);
2120 if (!trans) {
bcc63abb 2121 spin_unlock(&root->list_lock);
7b128766
JB
2122 return 0;
2123 }
2124
bcc63abb 2125 spin_unlock(&root->list_lock);
7b128766
JB
2126
2127 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2128
2129 return ret;
2130}
2131
2132/*
2133 * this cleans up any orphans that may be left on the list from the last use
2134 * of this root.
2135 */
2136void btrfs_orphan_cleanup(struct btrfs_root *root)
2137{
2138 struct btrfs_path *path;
2139 struct extent_buffer *leaf;
2140 struct btrfs_item *item;
2141 struct btrfs_key key, found_key;
2142 struct btrfs_trans_handle *trans;
2143 struct inode *inode;
2144 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2145
c71bf099 2146 if (!xchg(&root->clean_orphans, 0))
7b128766 2147 return;
c71bf099
YZ
2148
2149 path = btrfs_alloc_path();
2150 BUG_ON(!path);
7b128766
JB
2151 path->reada = -1;
2152
2153 key.objectid = BTRFS_ORPHAN_OBJECTID;
2154 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2155 key.offset = (u64)-1;
2156
7b128766
JB
2157 while (1) {
2158 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2159 if (ret < 0) {
2160 printk(KERN_ERR "Error searching slot for orphan: %d"
2161 "\n", ret);
2162 break;
2163 }
2164
2165 /*
2166 * if ret == 0 means we found what we were searching for, which
2167 * is weird, but possible, so only screw with path if we didnt
2168 * find the key and see if we have stuff that matches
2169 */
2170 if (ret > 0) {
2171 if (path->slots[0] == 0)
2172 break;
2173 path->slots[0]--;
2174 }
2175
2176 /* pull out the item */
2177 leaf = path->nodes[0];
2178 item = btrfs_item_nr(leaf, path->slots[0]);
2179 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2180
2181 /* make sure the item matches what we want */
2182 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2183 break;
2184 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2185 break;
2186
2187 /* release the path since we're done with it */
2188 btrfs_release_path(root, path);
2189
2190 /*
2191 * this is where we are basically btrfs_lookup, without the
2192 * crossing root thing. we store the inode number in the
2193 * offset of the orphan item.
2194 */
5d4f98a2
YZ
2195 found_key.objectid = found_key.offset;
2196 found_key.type = BTRFS_INODE_ITEM_KEY;
2197 found_key.offset = 0;
2198 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2199 if (IS_ERR(inode))
7b128766
JB
2200 break;
2201
7b128766
JB
2202 /*
2203 * add this inode to the orphan list so btrfs_orphan_del does
2204 * the proper thing when we hit it
2205 */
bcc63abb 2206 spin_lock(&root->list_lock);
7b128766 2207 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
bcc63abb 2208 spin_unlock(&root->list_lock);
7b128766
JB
2209
2210 /*
2211 * if this is a bad inode, means we actually succeeded in
2212 * removing the inode, but not the orphan record, which means
2213 * we need to manually delete the orphan since iput will just
2214 * do a destroy_inode
2215 */
2216 if (is_bad_inode(inode)) {
5b21f2ed 2217 trans = btrfs_start_transaction(root, 1);
7b128766 2218 btrfs_orphan_del(trans, inode);
5b21f2ed 2219 btrfs_end_transaction(trans, root);
7b128766
JB
2220 iput(inode);
2221 continue;
2222 }
2223
2224 /* if we have links, this was a truncate, lets do that */
2225 if (inode->i_nlink) {
2226 nr_truncate++;
2227 btrfs_truncate(inode);
2228 } else {
2229 nr_unlink++;
2230 }
2231
2232 /* this will do delete_inode and everything for us */
2233 iput(inode);
2234 }
2235
2236 if (nr_unlink)
2237 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2238 if (nr_truncate)
2239 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2240
2241 btrfs_free_path(path);
7b128766
JB
2242}
2243
46a53cca
CM
2244/*
2245 * very simple check to peek ahead in the leaf looking for xattrs. If we
2246 * don't find any xattrs, we know there can't be any acls.
2247 *
2248 * slot is the slot the inode is in, objectid is the objectid of the inode
2249 */
2250static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2251 int slot, u64 objectid)
2252{
2253 u32 nritems = btrfs_header_nritems(leaf);
2254 struct btrfs_key found_key;
2255 int scanned = 0;
2256
2257 slot++;
2258 while (slot < nritems) {
2259 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2260
2261 /* we found a different objectid, there must not be acls */
2262 if (found_key.objectid != objectid)
2263 return 0;
2264
2265 /* we found an xattr, assume we've got an acl */
2266 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2267 return 1;
2268
2269 /*
2270 * we found a key greater than an xattr key, there can't
2271 * be any acls later on
2272 */
2273 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2274 return 0;
2275
2276 slot++;
2277 scanned++;
2278
2279 /*
2280 * it goes inode, inode backrefs, xattrs, extents,
2281 * so if there are a ton of hard links to an inode there can
2282 * be a lot of backrefs. Don't waste time searching too hard,
2283 * this is just an optimization
2284 */
2285 if (scanned >= 8)
2286 break;
2287 }
2288 /* we hit the end of the leaf before we found an xattr or
2289 * something larger than an xattr. We have to assume the inode
2290 * has acls
2291 */
2292 return 1;
2293}
2294
d352ac68
CM
2295/*
2296 * read an inode from the btree into the in-memory inode
2297 */
5d4f98a2 2298static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2299{
2300 struct btrfs_path *path;
5f39d397 2301 struct extent_buffer *leaf;
39279cc3 2302 struct btrfs_inode_item *inode_item;
0b86a832 2303 struct btrfs_timespec *tspec;
39279cc3
CM
2304 struct btrfs_root *root = BTRFS_I(inode)->root;
2305 struct btrfs_key location;
46a53cca 2306 int maybe_acls;
39279cc3 2307 u64 alloc_group_block;
618e21d5 2308 u32 rdev;
39279cc3
CM
2309 int ret;
2310
2311 path = btrfs_alloc_path();
2312 BUG_ON(!path);
39279cc3 2313 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2314
39279cc3 2315 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2316 if (ret)
39279cc3 2317 goto make_bad;
39279cc3 2318
5f39d397
CM
2319 leaf = path->nodes[0];
2320 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2321 struct btrfs_inode_item);
2322
2323 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2324 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2325 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2326 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2327 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2328
2329 tspec = btrfs_inode_atime(inode_item);
2330 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2331 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2332
2333 tspec = btrfs_inode_mtime(inode_item);
2334 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2335 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2336
2337 tspec = btrfs_inode_ctime(inode_item);
2338 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2339 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2340
a76a3cd4 2341 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2342 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2343 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2344 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2345 inode->i_rdev = 0;
5f39d397
CM
2346 rdev = btrfs_inode_rdev(leaf, inode_item);
2347
aec7477b 2348 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2349 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2350
5f39d397 2351 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2352
46a53cca
CM
2353 /*
2354 * try to precache a NULL acl entry for files that don't have
2355 * any xattrs or acls
2356 */
2357 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2358 if (!maybe_acls)
2359 cache_no_acl(inode);
46a53cca 2360
d2fb3437
YZ
2361 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2362 alloc_group_block, 0);
39279cc3
CM
2363 btrfs_free_path(path);
2364 inode_item = NULL;
2365
39279cc3 2366 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2367 case S_IFREG:
2368 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2369 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2370 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2371 inode->i_fop = &btrfs_file_operations;
2372 inode->i_op = &btrfs_file_inode_operations;
2373 break;
2374 case S_IFDIR:
2375 inode->i_fop = &btrfs_dir_file_operations;
2376 if (root == root->fs_info->tree_root)
2377 inode->i_op = &btrfs_dir_ro_inode_operations;
2378 else
2379 inode->i_op = &btrfs_dir_inode_operations;
2380 break;
2381 case S_IFLNK:
2382 inode->i_op = &btrfs_symlink_inode_operations;
2383 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2384 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2385 break;
618e21d5 2386 default:
0279b4cd 2387 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2388 init_special_inode(inode, inode->i_mode, rdev);
2389 break;
39279cc3 2390 }
6cbff00f
CH
2391
2392 btrfs_update_iflags(inode);
39279cc3
CM
2393 return;
2394
2395make_bad:
39279cc3 2396 btrfs_free_path(path);
39279cc3
CM
2397 make_bad_inode(inode);
2398}
2399
d352ac68
CM
2400/*
2401 * given a leaf and an inode, copy the inode fields into the leaf
2402 */
e02119d5
CM
2403static void fill_inode_item(struct btrfs_trans_handle *trans,
2404 struct extent_buffer *leaf,
5f39d397 2405 struct btrfs_inode_item *item,
39279cc3
CM
2406 struct inode *inode)
2407{
5f39d397
CM
2408 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2409 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2410 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2411 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2412 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2413
2414 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2415 inode->i_atime.tv_sec);
2416 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2417 inode->i_atime.tv_nsec);
2418
2419 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2420 inode->i_mtime.tv_sec);
2421 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2422 inode->i_mtime.tv_nsec);
2423
2424 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2425 inode->i_ctime.tv_sec);
2426 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2427 inode->i_ctime.tv_nsec);
2428
a76a3cd4 2429 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2430 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2431 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2432 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2433 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2434 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2435 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2436}
2437
d352ac68
CM
2438/*
2439 * copy everything in the in-memory inode into the btree.
2440 */
d397712b
CM
2441noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2442 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2443{
2444 struct btrfs_inode_item *inode_item;
2445 struct btrfs_path *path;
5f39d397 2446 struct extent_buffer *leaf;
39279cc3
CM
2447 int ret;
2448
2449 path = btrfs_alloc_path();
2450 BUG_ON(!path);
b9473439 2451 path->leave_spinning = 1;
39279cc3
CM
2452 ret = btrfs_lookup_inode(trans, root, path,
2453 &BTRFS_I(inode)->location, 1);
2454 if (ret) {
2455 if (ret > 0)
2456 ret = -ENOENT;
2457 goto failed;
2458 }
2459
b4ce94de 2460 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2461 leaf = path->nodes[0];
2462 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2463 struct btrfs_inode_item);
2464
e02119d5 2465 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2466 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2467 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2468 ret = 0;
2469failed:
39279cc3
CM
2470 btrfs_free_path(path);
2471 return ret;
2472}
2473
2474
d352ac68
CM
2475/*
2476 * unlink helper that gets used here in inode.c and in the tree logging
2477 * recovery code. It remove a link in a directory with a given name, and
2478 * also drops the back refs in the inode to the directory
2479 */
e02119d5
CM
2480int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2481 struct btrfs_root *root,
2482 struct inode *dir, struct inode *inode,
2483 const char *name, int name_len)
39279cc3
CM
2484{
2485 struct btrfs_path *path;
39279cc3 2486 int ret = 0;
5f39d397 2487 struct extent_buffer *leaf;
39279cc3 2488 struct btrfs_dir_item *di;
5f39d397 2489 struct btrfs_key key;
aec7477b 2490 u64 index;
39279cc3
CM
2491
2492 path = btrfs_alloc_path();
54aa1f4d
CM
2493 if (!path) {
2494 ret = -ENOMEM;
2495 goto err;
2496 }
2497
b9473439 2498 path->leave_spinning = 1;
39279cc3
CM
2499 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2500 name, name_len, -1);
2501 if (IS_ERR(di)) {
2502 ret = PTR_ERR(di);
2503 goto err;
2504 }
2505 if (!di) {
2506 ret = -ENOENT;
2507 goto err;
2508 }
5f39d397
CM
2509 leaf = path->nodes[0];
2510 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2511 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2512 if (ret)
2513 goto err;
39279cc3
CM
2514 btrfs_release_path(root, path);
2515
aec7477b 2516 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2517 inode->i_ino,
2518 dir->i_ino, &index);
aec7477b 2519 if (ret) {
d397712b 2520 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2521 "inode %lu parent %lu\n", name_len, name,
e02119d5 2522 inode->i_ino, dir->i_ino);
aec7477b
JB
2523 goto err;
2524 }
2525
39279cc3 2526 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2527 index, name, name_len, -1);
39279cc3
CM
2528 if (IS_ERR(di)) {
2529 ret = PTR_ERR(di);
2530 goto err;
2531 }
2532 if (!di) {
2533 ret = -ENOENT;
2534 goto err;
2535 }
2536 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2537 btrfs_release_path(root, path);
39279cc3 2538
e02119d5
CM
2539 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2540 inode, dir->i_ino);
49eb7e46 2541 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2542
2543 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2544 dir, index);
2545 BUG_ON(ret);
39279cc3
CM
2546err:
2547 btrfs_free_path(path);
e02119d5
CM
2548 if (ret)
2549 goto out;
2550
2551 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2552 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2553 btrfs_update_inode(trans, root, dir);
2554 btrfs_drop_nlink(inode);
2555 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2556out:
39279cc3
CM
2557 return ret;
2558}
2559
2560static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2561{
2562 struct btrfs_root *root;
2563 struct btrfs_trans_handle *trans;
7b128766 2564 struct inode *inode = dentry->d_inode;
39279cc3 2565 int ret;
1832a6d5 2566 unsigned long nr = 0;
39279cc3
CM
2567
2568 root = BTRFS_I(dir)->root;
1832a6d5 2569
5df6a9f6
JB
2570 /*
2571 * 5 items for unlink inode
2572 * 1 for orphan
2573 */
2574 ret = btrfs_reserve_metadata_space(root, 6);
2575 if (ret)
2576 return ret;
2577
39279cc3 2578 trans = btrfs_start_transaction(root, 1);
5df6a9f6
JB
2579 if (IS_ERR(trans)) {
2580 btrfs_unreserve_metadata_space(root, 6);
2581 return PTR_ERR(trans);
2582 }
5f39d397 2583
39279cc3 2584 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2585
2586 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2587
e02119d5
CM
2588 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2589 dentry->d_name.name, dentry->d_name.len);
7b128766
JB
2590
2591 if (inode->i_nlink == 0)
2592 ret = btrfs_orphan_add(trans, inode);
2593
d3c2fdcf 2594 nr = trans->blocks_used;
5f39d397 2595
89ce8a63 2596 btrfs_end_transaction_throttle(trans, root);
5df6a9f6 2597 btrfs_unreserve_metadata_space(root, 6);
d3c2fdcf 2598 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2599 return ret;
2600}
2601
4df27c4d
YZ
2602int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2603 struct btrfs_root *root,
2604 struct inode *dir, u64 objectid,
2605 const char *name, int name_len)
2606{
2607 struct btrfs_path *path;
2608 struct extent_buffer *leaf;
2609 struct btrfs_dir_item *di;
2610 struct btrfs_key key;
2611 u64 index;
2612 int ret;
2613
2614 path = btrfs_alloc_path();
2615 if (!path)
2616 return -ENOMEM;
2617
2618 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2619 name, name_len, -1);
2620 BUG_ON(!di || IS_ERR(di));
2621
2622 leaf = path->nodes[0];
2623 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2624 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2625 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2626 BUG_ON(ret);
2627 btrfs_release_path(root, path);
2628
2629 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2630 objectid, root->root_key.objectid,
2631 dir->i_ino, &index, name, name_len);
2632 if (ret < 0) {
2633 BUG_ON(ret != -ENOENT);
2634 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2635 name, name_len);
2636 BUG_ON(!di || IS_ERR(di));
2637
2638 leaf = path->nodes[0];
2639 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2640 btrfs_release_path(root, path);
2641 index = key.offset;
2642 }
2643
2644 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2645 index, name, name_len, -1);
2646 BUG_ON(!di || IS_ERR(di));
2647
2648 leaf = path->nodes[0];
2649 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2650 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2651 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2652 BUG_ON(ret);
2653 btrfs_release_path(root, path);
2654
2655 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2656 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2657 ret = btrfs_update_inode(trans, root, dir);
2658 BUG_ON(ret);
2659 dir->i_sb->s_dirt = 1;
2660
2661 btrfs_free_path(path);
2662 return 0;
2663}
2664
39279cc3
CM
2665static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2666{
2667 struct inode *inode = dentry->d_inode;
1832a6d5 2668 int err = 0;
39279cc3
CM
2669 int ret;
2670 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2671 struct btrfs_trans_handle *trans;
1832a6d5 2672 unsigned long nr = 0;
39279cc3 2673
3394e160 2674 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 2675 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2676 return -ENOTEMPTY;
2677
5df6a9f6
JB
2678 ret = btrfs_reserve_metadata_space(root, 5);
2679 if (ret)
2680 return ret;
2681
39279cc3 2682 trans = btrfs_start_transaction(root, 1);
5df6a9f6
JB
2683 if (IS_ERR(trans)) {
2684 btrfs_unreserve_metadata_space(root, 5);
2685 return PTR_ERR(trans);
2686 }
2687
39279cc3 2688 btrfs_set_trans_block_group(trans, dir);
39279cc3 2689
4df27c4d
YZ
2690 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2691 err = btrfs_unlink_subvol(trans, root, dir,
2692 BTRFS_I(inode)->location.objectid,
2693 dentry->d_name.name,
2694 dentry->d_name.len);
2695 goto out;
2696 }
2697
7b128766
JB
2698 err = btrfs_orphan_add(trans, inode);
2699 if (err)
4df27c4d 2700 goto out;
7b128766 2701
39279cc3 2702 /* now the directory is empty */
e02119d5
CM
2703 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2704 dentry->d_name.name, dentry->d_name.len);
d397712b 2705 if (!err)
dbe674a9 2706 btrfs_i_size_write(inode, 0);
4df27c4d 2707out:
d3c2fdcf 2708 nr = trans->blocks_used;
89ce8a63 2709 ret = btrfs_end_transaction_throttle(trans, root);
5df6a9f6 2710 btrfs_unreserve_metadata_space(root, 5);
d3c2fdcf 2711 btrfs_btree_balance_dirty(root, nr);
3954401f 2712
39279cc3
CM
2713 if (ret && !err)
2714 err = ret;
2715 return err;
2716}
2717
d20f7043 2718#if 0
323ac95b
CM
2719/*
2720 * when truncating bytes in a file, it is possible to avoid reading
2721 * the leaves that contain only checksum items. This can be the
2722 * majority of the IO required to delete a large file, but it must
2723 * be done carefully.
2724 *
2725 * The keys in the level just above the leaves are checked to make sure
2726 * the lowest key in a given leaf is a csum key, and starts at an offset
2727 * after the new size.
2728 *
2729 * Then the key for the next leaf is checked to make sure it also has
2730 * a checksum item for the same file. If it does, we know our target leaf
2731 * contains only checksum items, and it can be safely freed without reading
2732 * it.
2733 *
2734 * This is just an optimization targeted at large files. It may do
2735 * nothing. It will return 0 unless things went badly.
2736 */
2737static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2738 struct btrfs_root *root,
2739 struct btrfs_path *path,
2740 struct inode *inode, u64 new_size)
2741{
2742 struct btrfs_key key;
2743 int ret;
2744 int nritems;
2745 struct btrfs_key found_key;
2746 struct btrfs_key other_key;
5b84e8d6
YZ
2747 struct btrfs_leaf_ref *ref;
2748 u64 leaf_gen;
2749 u64 leaf_start;
323ac95b
CM
2750
2751 path->lowest_level = 1;
2752 key.objectid = inode->i_ino;
2753 key.type = BTRFS_CSUM_ITEM_KEY;
2754 key.offset = new_size;
2755again:
2756 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2757 if (ret < 0)
2758 goto out;
2759
2760 if (path->nodes[1] == NULL) {
2761 ret = 0;
2762 goto out;
2763 }
2764 ret = 0;
2765 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2766 nritems = btrfs_header_nritems(path->nodes[1]);
2767
2768 if (!nritems)
2769 goto out;
2770
2771 if (path->slots[1] >= nritems)
2772 goto next_node;
2773
2774 /* did we find a key greater than anything we want to delete? */
2775 if (found_key.objectid > inode->i_ino ||
2776 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2777 goto out;
2778
2779 /* we check the next key in the node to make sure the leave contains
2780 * only checksum items. This comparison doesn't work if our
2781 * leaf is the last one in the node
2782 */
2783 if (path->slots[1] + 1 >= nritems) {
2784next_node:
2785 /* search forward from the last key in the node, this
2786 * will bring us into the next node in the tree
2787 */
2788 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2789
2790 /* unlikely, but we inc below, so check to be safe */
2791 if (found_key.offset == (u64)-1)
2792 goto out;
2793
2794 /* search_forward needs a path with locks held, do the
2795 * search again for the original key. It is possible
2796 * this will race with a balance and return a path that
2797 * we could modify, but this drop is just an optimization
2798 * and is allowed to miss some leaves.
2799 */
2800 btrfs_release_path(root, path);
2801 found_key.offset++;
2802
2803 /* setup a max key for search_forward */
2804 other_key.offset = (u64)-1;
2805 other_key.type = key.type;
2806 other_key.objectid = key.objectid;
2807
2808 path->keep_locks = 1;
2809 ret = btrfs_search_forward(root, &found_key, &other_key,
2810 path, 0, 0);
2811 path->keep_locks = 0;
2812 if (ret || found_key.objectid != key.objectid ||
2813 found_key.type != key.type) {
2814 ret = 0;
2815 goto out;
2816 }
2817
2818 key.offset = found_key.offset;
2819 btrfs_release_path(root, path);
2820 cond_resched();
2821 goto again;
2822 }
2823
2824 /* we know there's one more slot after us in the tree,
2825 * read that key so we can verify it is also a checksum item
2826 */
2827 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2828
2829 if (found_key.objectid < inode->i_ino)
2830 goto next_key;
2831
2832 if (found_key.type != key.type || found_key.offset < new_size)
2833 goto next_key;
2834
2835 /*
2836 * if the key for the next leaf isn't a csum key from this objectid,
2837 * we can't be sure there aren't good items inside this leaf.
2838 * Bail out
2839 */
2840 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2841 goto out;
2842
5b84e8d6
YZ
2843 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2844 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
2845 /*
2846 * it is safe to delete this leaf, it contains only
2847 * csum items from this inode at an offset >= new_size
2848 */
5b84e8d6 2849 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
2850 BUG_ON(ret);
2851
5b84e8d6
YZ
2852 if (root->ref_cows && leaf_gen < trans->transid) {
2853 ref = btrfs_alloc_leaf_ref(root, 0);
2854 if (ref) {
2855 ref->root_gen = root->root_key.offset;
2856 ref->bytenr = leaf_start;
2857 ref->owner = 0;
2858 ref->generation = leaf_gen;
2859 ref->nritems = 0;
2860
bd56b302
CM
2861 btrfs_sort_leaf_ref(ref);
2862
5b84e8d6
YZ
2863 ret = btrfs_add_leaf_ref(root, ref, 0);
2864 WARN_ON(ret);
2865 btrfs_free_leaf_ref(root, ref);
2866 } else {
2867 WARN_ON(1);
2868 }
2869 }
323ac95b
CM
2870next_key:
2871 btrfs_release_path(root, path);
2872
2873 if (other_key.objectid == inode->i_ino &&
2874 other_key.type == key.type && other_key.offset > key.offset) {
2875 key.offset = other_key.offset;
2876 cond_resched();
2877 goto again;
2878 }
2879 ret = 0;
2880out:
2881 /* fixup any changes we've made to the path */
2882 path->lowest_level = 0;
2883 path->keep_locks = 0;
2884 btrfs_release_path(root, path);
2885 return ret;
2886}
2887
d20f7043
CM
2888#endif
2889
39279cc3
CM
2890/*
2891 * this can truncate away extent items, csum items and directory items.
2892 * It starts at a high offset and removes keys until it can't find
d352ac68 2893 * any higher than new_size
39279cc3
CM
2894 *
2895 * csum items that cross the new i_size are truncated to the new size
2896 * as well.
7b128766
JB
2897 *
2898 * min_type is the minimum key type to truncate down to. If set to 0, this
2899 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2900 */
8082510e
YZ
2901int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2902 struct btrfs_root *root,
2903 struct inode *inode,
2904 u64 new_size, u32 min_type)
39279cc3 2905{
39279cc3 2906 struct btrfs_path *path;
5f39d397 2907 struct extent_buffer *leaf;
39279cc3 2908 struct btrfs_file_extent_item *fi;
8082510e
YZ
2909 struct btrfs_key key;
2910 struct btrfs_key found_key;
39279cc3 2911 u64 extent_start = 0;
db94535d 2912 u64 extent_num_bytes = 0;
5d4f98a2 2913 u64 extent_offset = 0;
39279cc3 2914 u64 item_end = 0;
8082510e
YZ
2915 u64 mask = root->sectorsize - 1;
2916 u32 found_type = (u8)-1;
39279cc3
CM
2917 int found_extent;
2918 int del_item;
85e21bac
CM
2919 int pending_del_nr = 0;
2920 int pending_del_slot = 0;
179e29e4 2921 int extent_type = -1;
771ed689 2922 int encoding;
8082510e
YZ
2923 int ret;
2924 int err = 0;
2925
2926 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 2927
e02119d5 2928 if (root->ref_cows)
5b21f2ed 2929 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 2930
39279cc3
CM
2931 path = btrfs_alloc_path();
2932 BUG_ON(!path);
33c17ad5 2933 path->reada = -1;
5f39d397 2934
39279cc3
CM
2935 key.objectid = inode->i_ino;
2936 key.offset = (u64)-1;
5f39d397
CM
2937 key.type = (u8)-1;
2938
85e21bac 2939search_again:
b9473439 2940 path->leave_spinning = 1;
85e21bac 2941 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
2942 if (ret < 0) {
2943 err = ret;
2944 goto out;
2945 }
d397712b 2946
85e21bac 2947 if (ret > 0) {
e02119d5
CM
2948 /* there are no items in the tree for us to truncate, we're
2949 * done
2950 */
8082510e
YZ
2951 if (path->slots[0] == 0)
2952 goto out;
85e21bac
CM
2953 path->slots[0]--;
2954 }
2955
d397712b 2956 while (1) {
39279cc3 2957 fi = NULL;
5f39d397
CM
2958 leaf = path->nodes[0];
2959 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2960 found_type = btrfs_key_type(&found_key);
771ed689 2961 encoding = 0;
39279cc3 2962
5f39d397 2963 if (found_key.objectid != inode->i_ino)
39279cc3 2964 break;
5f39d397 2965
85e21bac 2966 if (found_type < min_type)
39279cc3
CM
2967 break;
2968
5f39d397 2969 item_end = found_key.offset;
39279cc3 2970 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 2971 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 2972 struct btrfs_file_extent_item);
179e29e4 2973 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
2974 encoding = btrfs_file_extent_compression(leaf, fi);
2975 encoding |= btrfs_file_extent_encryption(leaf, fi);
2976 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2977
179e29e4 2978 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 2979 item_end +=
db94535d 2980 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 2981 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 2982 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 2983 fi);
39279cc3 2984 }
008630c1 2985 item_end--;
39279cc3 2986 }
8082510e
YZ
2987 if (found_type > min_type) {
2988 del_item = 1;
2989 } else {
2990 if (item_end < new_size)
b888db2b 2991 break;
8082510e
YZ
2992 if (found_key.offset >= new_size)
2993 del_item = 1;
2994 else
2995 del_item = 0;
39279cc3 2996 }
39279cc3 2997 found_extent = 0;
39279cc3 2998 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
2999 if (found_type != BTRFS_EXTENT_DATA_KEY)
3000 goto delete;
3001
3002 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3003 u64 num_dec;
db94535d 3004 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3005 if (!del_item && !encoding) {
db94535d
CM
3006 u64 orig_num_bytes =
3007 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3008 extent_num_bytes = new_size -
5f39d397 3009 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3010 extent_num_bytes = extent_num_bytes &
3011 ~((u64)root->sectorsize - 1);
db94535d
CM
3012 btrfs_set_file_extent_num_bytes(leaf, fi,
3013 extent_num_bytes);
3014 num_dec = (orig_num_bytes -
9069218d 3015 extent_num_bytes);
e02119d5 3016 if (root->ref_cows && extent_start != 0)
a76a3cd4 3017 inode_sub_bytes(inode, num_dec);
5f39d397 3018 btrfs_mark_buffer_dirty(leaf);
39279cc3 3019 } else {
db94535d
CM
3020 extent_num_bytes =
3021 btrfs_file_extent_disk_num_bytes(leaf,
3022 fi);
5d4f98a2
YZ
3023 extent_offset = found_key.offset -
3024 btrfs_file_extent_offset(leaf, fi);
3025
39279cc3 3026 /* FIXME blocksize != 4096 */
9069218d 3027 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3028 if (extent_start != 0) {
3029 found_extent = 1;
e02119d5 3030 if (root->ref_cows)
a76a3cd4 3031 inode_sub_bytes(inode, num_dec);
e02119d5 3032 }
39279cc3 3033 }
9069218d 3034 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3035 /*
3036 * we can't truncate inline items that have had
3037 * special encodings
3038 */
3039 if (!del_item &&
3040 btrfs_file_extent_compression(leaf, fi) == 0 &&
3041 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3042 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3043 u32 size = new_size - found_key.offset;
3044
3045 if (root->ref_cows) {
a76a3cd4
YZ
3046 inode_sub_bytes(inode, item_end + 1 -
3047 new_size);
e02119d5
CM
3048 }
3049 size =
3050 btrfs_file_extent_calc_inline_size(size);
9069218d 3051 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3052 size, 1);
9069218d 3053 BUG_ON(ret);
e02119d5 3054 } else if (root->ref_cows) {
a76a3cd4
YZ
3055 inode_sub_bytes(inode, item_end + 1 -
3056 found_key.offset);
9069218d 3057 }
39279cc3 3058 }
179e29e4 3059delete:
39279cc3 3060 if (del_item) {
85e21bac
CM
3061 if (!pending_del_nr) {
3062 /* no pending yet, add ourselves */
3063 pending_del_slot = path->slots[0];
3064 pending_del_nr = 1;
3065 } else if (pending_del_nr &&
3066 path->slots[0] + 1 == pending_del_slot) {
3067 /* hop on the pending chunk */
3068 pending_del_nr++;
3069 pending_del_slot = path->slots[0];
3070 } else {
d397712b 3071 BUG();
85e21bac 3072 }
39279cc3
CM
3073 } else {
3074 break;
3075 }
5d4f98a2 3076 if (found_extent && root->ref_cows) {
b9473439 3077 btrfs_set_path_blocking(path);
39279cc3 3078 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3079 extent_num_bytes, 0,
3080 btrfs_header_owner(leaf),
3081 inode->i_ino, extent_offset);
39279cc3
CM
3082 BUG_ON(ret);
3083 }
85e21bac 3084
8082510e
YZ
3085 if (found_type == BTRFS_INODE_ITEM_KEY)
3086 break;
3087
3088 if (path->slots[0] == 0 ||
3089 path->slots[0] != pending_del_slot) {
3090 if (root->ref_cows) {
3091 err = -EAGAIN;
3092 goto out;
3093 }
3094 if (pending_del_nr) {
3095 ret = btrfs_del_items(trans, root, path,
3096 pending_del_slot,
3097 pending_del_nr);
3098 BUG_ON(ret);
3099 pending_del_nr = 0;
3100 }
85e21bac
CM
3101 btrfs_release_path(root, path);
3102 goto search_again;
8082510e
YZ
3103 } else {
3104 path->slots[0]--;
85e21bac 3105 }
39279cc3 3106 }
8082510e 3107out:
85e21bac
CM
3108 if (pending_del_nr) {
3109 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3110 pending_del_nr);
3111 }
39279cc3 3112 btrfs_free_path(path);
8082510e 3113 return err;
39279cc3
CM
3114}
3115
3116/*
3117 * taken from block_truncate_page, but does cow as it zeros out
3118 * any bytes left in the last page in the file.
3119 */
3120static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3121{
3122 struct inode *inode = mapping->host;
db94535d 3123 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3124 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3125 struct btrfs_ordered_extent *ordered;
3126 char *kaddr;
db94535d 3127 u32 blocksize = root->sectorsize;
39279cc3
CM
3128 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3129 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3130 struct page *page;
39279cc3 3131 int ret = 0;
a52d9a80 3132 u64 page_start;
e6dcd2dc 3133 u64 page_end;
39279cc3
CM
3134
3135 if ((offset & (blocksize - 1)) == 0)
3136 goto out;
5d5e103a
JB
3137 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3138 if (ret)
3139 goto out;
3140
3141 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3142 if (ret)
3143 goto out;
39279cc3
CM
3144
3145 ret = -ENOMEM;
211c17f5 3146again:
39279cc3 3147 page = grab_cache_page(mapping, index);
5d5e103a
JB
3148 if (!page) {
3149 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3150 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
39279cc3 3151 goto out;
5d5e103a 3152 }
e6dcd2dc
CM
3153
3154 page_start = page_offset(page);
3155 page_end = page_start + PAGE_CACHE_SIZE - 1;
3156
39279cc3 3157 if (!PageUptodate(page)) {
9ebefb18 3158 ret = btrfs_readpage(NULL, page);
39279cc3 3159 lock_page(page);
211c17f5
CM
3160 if (page->mapping != mapping) {
3161 unlock_page(page);
3162 page_cache_release(page);
3163 goto again;
3164 }
39279cc3
CM
3165 if (!PageUptodate(page)) {
3166 ret = -EIO;
89642229 3167 goto out_unlock;
39279cc3
CM
3168 }
3169 }
211c17f5 3170 wait_on_page_writeback(page);
e6dcd2dc
CM
3171
3172 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3173 set_page_extent_mapped(page);
3174
3175 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3176 if (ordered) {
3177 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3178 unlock_page(page);
3179 page_cache_release(page);
eb84ae03 3180 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3181 btrfs_put_ordered_extent(ordered);
3182 goto again;
3183 }
3184
5d5e103a
JB
3185 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
3186 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3187 GFP_NOFS);
3188
9ed74f2d
JB
3189 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3190 if (ret) {
3191 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3192 goto out_unlock;
3193 }
3194
e6dcd2dc
CM
3195 ret = 0;
3196 if (offset != PAGE_CACHE_SIZE) {
3197 kaddr = kmap(page);
3198 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3199 flush_dcache_page(page);
3200 kunmap(page);
3201 }
247e743c 3202 ClearPageChecked(page);
e6dcd2dc
CM
3203 set_page_dirty(page);
3204 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
39279cc3 3205
89642229 3206out_unlock:
5d5e103a
JB
3207 if (ret)
3208 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3209 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
39279cc3
CM
3210 unlock_page(page);
3211 page_cache_release(page);
3212out:
3213 return ret;
3214}
3215
9036c102 3216int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 3217{
9036c102
YZ
3218 struct btrfs_trans_handle *trans;
3219 struct btrfs_root *root = BTRFS_I(inode)->root;
3220 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3221 struct extent_map *em;
3222 u64 mask = root->sectorsize - 1;
3223 u64 hole_start = (inode->i_size + mask) & ~mask;
3224 u64 block_end = (size + mask) & ~mask;
3225 u64 last_byte;
3226 u64 cur_offset;
3227 u64 hole_size;
9ed74f2d 3228 int err = 0;
39279cc3 3229
9036c102
YZ
3230 if (size <= hole_start)
3231 return 0;
3232
9036c102
YZ
3233 while (1) {
3234 struct btrfs_ordered_extent *ordered;
3235 btrfs_wait_ordered_range(inode, hole_start,
3236 block_end - hole_start);
3237 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3238 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3239 if (!ordered)
3240 break;
3241 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3242 btrfs_put_ordered_extent(ordered);
3243 }
39279cc3 3244
9036c102
YZ
3245 cur_offset = hole_start;
3246 while (1) {
3247 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3248 block_end - cur_offset, 0);
3249 BUG_ON(IS_ERR(em) || !em);
3250 last_byte = min(extent_map_end(em), block_end);
3251 last_byte = (last_byte + mask) & ~mask;
8082510e 3252 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3253 u64 hint_byte = 0;
9036c102 3254 hole_size = last_byte - cur_offset;
9ed74f2d 3255
8082510e 3256 err = btrfs_reserve_metadata_space(root, 2);
9ed74f2d
JB
3257 if (err)
3258 break;
3259
8082510e
YZ
3260 trans = btrfs_start_transaction(root, 1);
3261 btrfs_set_trans_block_group(trans, inode);
3262
3263 err = btrfs_drop_extents(trans, inode, cur_offset,
3264 cur_offset + hole_size,
3265 &hint_byte, 1);
3266 BUG_ON(err);
3267
9036c102
YZ
3268 err = btrfs_insert_file_extent(trans, root,
3269 inode->i_ino, cur_offset, 0,
3270 0, hole_size, 0, hole_size,
3271 0, 0, 0);
8082510e
YZ
3272 BUG_ON(err);
3273
9036c102
YZ
3274 btrfs_drop_extent_cache(inode, hole_start,
3275 last_byte - 1, 0);
8082510e
YZ
3276
3277 btrfs_end_transaction(trans, root);
3278 btrfs_unreserve_metadata_space(root, 2);
9036c102
YZ
3279 }
3280 free_extent_map(em);
3281 cur_offset = last_byte;
8082510e 3282 if (cur_offset >= block_end)
9036c102
YZ
3283 break;
3284 }
1832a6d5 3285
9036c102
YZ
3286 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3287 return err;
3288}
39279cc3 3289
8082510e
YZ
3290static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3291{
3292 struct btrfs_root *root = BTRFS_I(inode)->root;
3293 struct btrfs_trans_handle *trans;
3294 unsigned long nr;
3295 int ret;
3296
3297 if (attr->ia_size == inode->i_size)
3298 return 0;
3299
3300 if (attr->ia_size > inode->i_size) {
3301 unsigned long limit;
3302 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3303 if (attr->ia_size > inode->i_sb->s_maxbytes)
3304 return -EFBIG;
3305 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3306 send_sig(SIGXFSZ, current, 0);
3307 return -EFBIG;
3308 }
3309 }
3310
3311 ret = btrfs_reserve_metadata_space(root, 1);
3312 if (ret)
3313 return ret;
3314
3315 trans = btrfs_start_transaction(root, 1);
3316 btrfs_set_trans_block_group(trans, inode);
3317
3318 ret = btrfs_orphan_add(trans, inode);
3319 BUG_ON(ret);
3320
3321 nr = trans->blocks_used;
3322 btrfs_end_transaction(trans, root);
3323 btrfs_unreserve_metadata_space(root, 1);
3324 btrfs_btree_balance_dirty(root, nr);
3325
3326 if (attr->ia_size > inode->i_size) {
3327 ret = btrfs_cont_expand(inode, attr->ia_size);
3328 if (ret) {
3329 btrfs_truncate(inode);
3330 return ret;
3331 }
3332
3333 i_size_write(inode, attr->ia_size);
3334 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3335
3336 trans = btrfs_start_transaction(root, 1);
3337 btrfs_set_trans_block_group(trans, inode);
3338
3339 ret = btrfs_update_inode(trans, root, inode);
3340 BUG_ON(ret);
3341 if (inode->i_nlink > 0) {
3342 ret = btrfs_orphan_del(trans, inode);
3343 BUG_ON(ret);
3344 }
3345 nr = trans->blocks_used;
3346 btrfs_end_transaction(trans, root);
3347 btrfs_btree_balance_dirty(root, nr);
3348 return 0;
3349 }
3350
3351 /*
3352 * We're truncating a file that used to have good data down to
3353 * zero. Make sure it gets into the ordered flush list so that
3354 * any new writes get down to disk quickly.
3355 */
3356 if (attr->ia_size == 0)
3357 BTRFS_I(inode)->ordered_data_close = 1;
3358
3359 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3360 ret = vmtruncate(inode, attr->ia_size);
3361 BUG_ON(ret);
3362
3363 return 0;
3364}
3365
9036c102
YZ
3366static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3367{
3368 struct inode *inode = dentry->d_inode;
3369 int err;
39279cc3 3370
9036c102
YZ
3371 err = inode_change_ok(inode, attr);
3372 if (err)
3373 return err;
2bf5a725 3374
5a3f23d5 3375 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
8082510e
YZ
3376 err = btrfs_setattr_size(inode, attr);
3377 if (err)
3378 return err;
39279cc3 3379 }
8082510e 3380 attr->ia_valid &= ~ATTR_SIZE;
9036c102 3381
8082510e
YZ
3382 if (attr->ia_valid)
3383 err = inode_setattr(inode, attr);
33268eaf
JB
3384
3385 if (!err && ((attr->ia_valid & ATTR_MODE)))
3386 err = btrfs_acl_chmod(inode);
39279cc3
CM
3387 return err;
3388}
61295eb8 3389
39279cc3
CM
3390void btrfs_delete_inode(struct inode *inode)
3391{
3392 struct btrfs_trans_handle *trans;
3393 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3394 unsigned long nr;
39279cc3
CM
3395 int ret;
3396
3397 truncate_inode_pages(&inode->i_data, 0);
3398 if (is_bad_inode(inode)) {
7b128766 3399 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3400 goto no_delete;
3401 }
4a096752 3402 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3403
c71bf099
YZ
3404 if (root->fs_info->log_root_recovering) {
3405 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3406 goto no_delete;
3407 }
3408
76dda93c
YZ
3409 if (inode->i_nlink > 0) {
3410 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3411 goto no_delete;
3412 }
3413
dbe674a9 3414 btrfs_i_size_write(inode, 0);
5f39d397 3415
8082510e
YZ
3416 while (1) {
3417 trans = btrfs_start_transaction(root, 1);
3418 btrfs_set_trans_block_group(trans, inode);
3419 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
7b128766 3420
8082510e
YZ
3421 if (ret != -EAGAIN)
3422 break;
85e21bac 3423
8082510e
YZ
3424 nr = trans->blocks_used;
3425 btrfs_end_transaction(trans, root);
3426 trans = NULL;
3427 btrfs_btree_balance_dirty(root, nr);
3428 }
5f39d397 3429
8082510e
YZ
3430 if (ret == 0) {
3431 ret = btrfs_orphan_del(trans, inode);
3432 BUG_ON(ret);
3433 }
54aa1f4d 3434
d3c2fdcf 3435 nr = trans->blocks_used;
54aa1f4d 3436 btrfs_end_transaction(trans, root);
d3c2fdcf 3437 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3438no_delete:
3439 clear_inode(inode);
8082510e 3440 return;
39279cc3
CM
3441}
3442
3443/*
3444 * this returns the key found in the dir entry in the location pointer.
3445 * If no dir entries were found, location->objectid is 0.
3446 */
3447static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3448 struct btrfs_key *location)
3449{
3450 const char *name = dentry->d_name.name;
3451 int namelen = dentry->d_name.len;
3452 struct btrfs_dir_item *di;
3453 struct btrfs_path *path;
3454 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3455 int ret = 0;
39279cc3
CM
3456
3457 path = btrfs_alloc_path();
3458 BUG_ON(!path);
3954401f 3459
39279cc3
CM
3460 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3461 namelen, 0);
0d9f7f3e
Y
3462 if (IS_ERR(di))
3463 ret = PTR_ERR(di);
d397712b
CM
3464
3465 if (!di || IS_ERR(di))
3954401f 3466 goto out_err;
d397712b 3467
5f39d397 3468 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3469out:
39279cc3
CM
3470 btrfs_free_path(path);
3471 return ret;
3954401f
CM
3472out_err:
3473 location->objectid = 0;
3474 goto out;
39279cc3
CM
3475}
3476
3477/*
3478 * when we hit a tree root in a directory, the btrfs part of the inode
3479 * needs to be changed to reflect the root directory of the tree root. This
3480 * is kind of like crossing a mount point.
3481 */
3482static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3483 struct inode *dir,
3484 struct dentry *dentry,
3485 struct btrfs_key *location,
3486 struct btrfs_root **sub_root)
39279cc3 3487{
4df27c4d
YZ
3488 struct btrfs_path *path;
3489 struct btrfs_root *new_root;
3490 struct btrfs_root_ref *ref;
3491 struct extent_buffer *leaf;
3492 int ret;
3493 int err = 0;
39279cc3 3494
4df27c4d
YZ
3495 path = btrfs_alloc_path();
3496 if (!path) {
3497 err = -ENOMEM;
3498 goto out;
3499 }
39279cc3 3500
4df27c4d
YZ
3501 err = -ENOENT;
3502 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3503 BTRFS_I(dir)->root->root_key.objectid,
3504 location->objectid);
3505 if (ret) {
3506 if (ret < 0)
3507 err = ret;
3508 goto out;
3509 }
39279cc3 3510
4df27c4d
YZ
3511 leaf = path->nodes[0];
3512 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3513 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3514 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3515 goto out;
39279cc3 3516
4df27c4d
YZ
3517 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3518 (unsigned long)(ref + 1),
3519 dentry->d_name.len);
3520 if (ret)
3521 goto out;
3522
3523 btrfs_release_path(root->fs_info->tree_root, path);
3524
3525 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3526 if (IS_ERR(new_root)) {
3527 err = PTR_ERR(new_root);
3528 goto out;
3529 }
3530
3531 if (btrfs_root_refs(&new_root->root_item) == 0) {
3532 err = -ENOENT;
3533 goto out;
3534 }
3535
3536 *sub_root = new_root;
3537 location->objectid = btrfs_root_dirid(&new_root->root_item);
3538 location->type = BTRFS_INODE_ITEM_KEY;
3539 location->offset = 0;
3540 err = 0;
3541out:
3542 btrfs_free_path(path);
3543 return err;
39279cc3
CM
3544}
3545
5d4f98a2
YZ
3546static void inode_tree_add(struct inode *inode)
3547{
3548 struct btrfs_root *root = BTRFS_I(inode)->root;
3549 struct btrfs_inode *entry;
03e860bd
FNP
3550 struct rb_node **p;
3551 struct rb_node *parent;
03e860bd
FNP
3552again:
3553 p = &root->inode_tree.rb_node;
3554 parent = NULL;
5d4f98a2 3555
76dda93c
YZ
3556 if (hlist_unhashed(&inode->i_hash))
3557 return;
3558
5d4f98a2
YZ
3559 spin_lock(&root->inode_lock);
3560 while (*p) {
3561 parent = *p;
3562 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3563
3564 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3565 p = &parent->rb_left;
5d4f98a2 3566 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3567 p = &parent->rb_right;
5d4f98a2
YZ
3568 else {
3569 WARN_ON(!(entry->vfs_inode.i_state &
3570 (I_WILL_FREE | I_FREEING | I_CLEAR)));
03e860bd
FNP
3571 rb_erase(parent, &root->inode_tree);
3572 RB_CLEAR_NODE(parent);
3573 spin_unlock(&root->inode_lock);
3574 goto again;
5d4f98a2
YZ
3575 }
3576 }
3577 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3578 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3579 spin_unlock(&root->inode_lock);
3580}
3581
3582static void inode_tree_del(struct inode *inode)
3583{
3584 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3585 int empty = 0;
5d4f98a2 3586
03e860bd 3587 spin_lock(&root->inode_lock);
5d4f98a2 3588 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3589 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3590 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3591 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3592 }
03e860bd 3593 spin_unlock(&root->inode_lock);
76dda93c
YZ
3594
3595 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3596 synchronize_srcu(&root->fs_info->subvol_srcu);
3597 spin_lock(&root->inode_lock);
3598 empty = RB_EMPTY_ROOT(&root->inode_tree);
3599 spin_unlock(&root->inode_lock);
3600 if (empty)
3601 btrfs_add_dead_root(root);
3602 }
3603}
3604
3605int btrfs_invalidate_inodes(struct btrfs_root *root)
3606{
3607 struct rb_node *node;
3608 struct rb_node *prev;
3609 struct btrfs_inode *entry;
3610 struct inode *inode;
3611 u64 objectid = 0;
3612
3613 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3614
3615 spin_lock(&root->inode_lock);
3616again:
3617 node = root->inode_tree.rb_node;
3618 prev = NULL;
3619 while (node) {
3620 prev = node;
3621 entry = rb_entry(node, struct btrfs_inode, rb_node);
3622
3623 if (objectid < entry->vfs_inode.i_ino)
3624 node = node->rb_left;
3625 else if (objectid > entry->vfs_inode.i_ino)
3626 node = node->rb_right;
3627 else
3628 break;
3629 }
3630 if (!node) {
3631 while (prev) {
3632 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3633 if (objectid <= entry->vfs_inode.i_ino) {
3634 node = prev;
3635 break;
3636 }
3637 prev = rb_next(prev);
3638 }
3639 }
3640 while (node) {
3641 entry = rb_entry(node, struct btrfs_inode, rb_node);
3642 objectid = entry->vfs_inode.i_ino + 1;
3643 inode = igrab(&entry->vfs_inode);
3644 if (inode) {
3645 spin_unlock(&root->inode_lock);
3646 if (atomic_read(&inode->i_count) > 1)
3647 d_prune_aliases(inode);
3648 /*
3649 * btrfs_drop_inode will remove it from
3650 * the inode cache when its usage count
3651 * hits zero.
3652 */
3653 iput(inode);
3654 cond_resched();
3655 spin_lock(&root->inode_lock);
3656 goto again;
3657 }
3658
3659 if (cond_resched_lock(&root->inode_lock))
3660 goto again;
3661
3662 node = rb_next(node);
3663 }
3664 spin_unlock(&root->inode_lock);
3665 return 0;
5d4f98a2
YZ
3666}
3667
e02119d5 3668static noinline void init_btrfs_i(struct inode *inode)
39279cc3 3669{
e02119d5
CM
3670 struct btrfs_inode *bi = BTRFS_I(inode);
3671
e02119d5 3672 bi->generation = 0;
c3027eb5 3673 bi->sequence = 0;
e02119d5 3674 bi->last_trans = 0;
257c62e1 3675 bi->last_sub_trans = 0;
e02119d5
CM
3676 bi->logged_trans = 0;
3677 bi->delalloc_bytes = 0;
6a63209f 3678 bi->reserved_bytes = 0;
e02119d5
CM
3679 bi->disk_i_size = 0;
3680 bi->flags = 0;
3681 bi->index_cnt = (u64)-1;
12fcfd22 3682 bi->last_unlink_trans = 0;
2757495c 3683 bi->ordered_data_close = 0;
d1310b2e
CM
3684 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3685 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
b888db2b 3686 inode->i_mapping, GFP_NOFS);
7e38326f
CM
3687 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3688 inode->i_mapping, GFP_NOFS);
ea8c2819 3689 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
5a3f23d5 3690 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
5d4f98a2 3691 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
ba1da2f4 3692 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
e02119d5
CM
3693 mutex_init(&BTRFS_I(inode)->log_mutex);
3694}
3695
3696static int btrfs_init_locked_inode(struct inode *inode, void *p)
3697{
3698 struct btrfs_iget_args *args = p;
3699 inode->i_ino = args->ino;
3700 init_btrfs_i(inode);
3701 BTRFS_I(inode)->root = args->root;
6a63209f 3702 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3703 return 0;
3704}
3705
3706static int btrfs_find_actor(struct inode *inode, void *opaque)
3707{
3708 struct btrfs_iget_args *args = opaque;
d397712b
CM
3709 return args->ino == inode->i_ino &&
3710 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3711}
3712
5d4f98a2
YZ
3713static struct inode *btrfs_iget_locked(struct super_block *s,
3714 u64 objectid,
3715 struct btrfs_root *root)
39279cc3
CM
3716{
3717 struct inode *inode;
3718 struct btrfs_iget_args args;
3719 args.ino = objectid;
3720 args.root = root;
3721
3722 inode = iget5_locked(s, objectid, btrfs_find_actor,
3723 btrfs_init_locked_inode,
3724 (void *)&args);
3725 return inode;
3726}
3727
1a54ef8c
BR
3728/* Get an inode object given its location and corresponding root.
3729 * Returns in *is_new if the inode was read from disk
3730 */
3731struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5d4f98a2 3732 struct btrfs_root *root)
1a54ef8c
BR
3733{
3734 struct inode *inode;
3735
3736 inode = btrfs_iget_locked(s, location->objectid, root);
3737 if (!inode)
5d4f98a2 3738 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3739
3740 if (inode->i_state & I_NEW) {
3741 BTRFS_I(inode)->root = root;
3742 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3743 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
3744
3745 inode_tree_add(inode);
1a54ef8c 3746 unlock_new_inode(inode);
1a54ef8c
BR
3747 }
3748
3749 return inode;
3750}
3751
4df27c4d
YZ
3752static struct inode *new_simple_dir(struct super_block *s,
3753 struct btrfs_key *key,
3754 struct btrfs_root *root)
3755{
3756 struct inode *inode = new_inode(s);
3757
3758 if (!inode)
3759 return ERR_PTR(-ENOMEM);
3760
3761 init_btrfs_i(inode);
3762
3763 BTRFS_I(inode)->root = root;
3764 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3765 BTRFS_I(inode)->dummy_inode = 1;
3766
3767 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3768 inode->i_op = &simple_dir_inode_operations;
3769 inode->i_fop = &simple_dir_operations;
3770 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3771 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3772
3773 return inode;
3774}
3775
3de4586c 3776struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3777{
d397712b 3778 struct inode *inode;
4df27c4d 3779 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3780 struct btrfs_root *sub_root = root;
3781 struct btrfs_key location;
76dda93c 3782 int index;
5d4f98a2 3783 int ret;
39279cc3 3784
76dda93c
YZ
3785 dentry->d_op = &btrfs_dentry_operations;
3786
39279cc3
CM
3787 if (dentry->d_name.len > BTRFS_NAME_LEN)
3788 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3789
39279cc3 3790 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 3791
39279cc3
CM
3792 if (ret < 0)
3793 return ERR_PTR(ret);
5f39d397 3794
4df27c4d
YZ
3795 if (location.objectid == 0)
3796 return NULL;
3797
3798 if (location.type == BTRFS_INODE_ITEM_KEY) {
3799 inode = btrfs_iget(dir->i_sb, &location, root);
6c090a11
JB
3800 if (unlikely(root->clean_orphans) &&
3801 !(inode->i_sb->s_flags & MS_RDONLY)) {
3802 down_read(&root->fs_info->cleanup_work_sem);
3803 btrfs_orphan_cleanup(root);
3804 up_read(&root->fs_info->cleanup_work_sem);
3805 }
4df27c4d
YZ
3806 return inode;
3807 }
3808
3809 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3810
76dda93c 3811 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3812 ret = fixup_tree_root_location(root, dir, dentry,
3813 &location, &sub_root);
3814 if (ret < 0) {
3815 if (ret != -ENOENT)
3816 inode = ERR_PTR(ret);
3817 else
3818 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3819 } else {
5d4f98a2 3820 inode = btrfs_iget(dir->i_sb, &location, sub_root);
39279cc3 3821 }
76dda93c
YZ
3822 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3823
c71bf099
YZ
3824 if (root != sub_root) {
3825 down_read(&root->fs_info->cleanup_work_sem);
3826 if (!(inode->i_sb->s_flags & MS_RDONLY))
3827 btrfs_orphan_cleanup(sub_root);
3828 up_read(&root->fs_info->cleanup_work_sem);
3829 }
3830
3de4586c
CM
3831 return inode;
3832}
3833
76dda93c
YZ
3834static int btrfs_dentry_delete(struct dentry *dentry)
3835{
3836 struct btrfs_root *root;
3837
efefb143
YZ
3838 if (!dentry->d_inode && !IS_ROOT(dentry))
3839 dentry = dentry->d_parent;
76dda93c 3840
efefb143
YZ
3841 if (dentry->d_inode) {
3842 root = BTRFS_I(dentry->d_inode)->root;
3843 if (btrfs_root_refs(&root->root_item) == 0)
3844 return 1;
3845 }
76dda93c
YZ
3846 return 0;
3847}
3848
3de4586c
CM
3849static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3850 struct nameidata *nd)
3851{
3852 struct inode *inode;
3853
3de4586c
CM
3854 inode = btrfs_lookup_dentry(dir, dentry);
3855 if (IS_ERR(inode))
3856 return ERR_CAST(inode);
7b128766 3857
39279cc3
CM
3858 return d_splice_alias(inode, dentry);
3859}
3860
39279cc3
CM
3861static unsigned char btrfs_filetype_table[] = {
3862 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3863};
3864
cbdf5a24
DW
3865static int btrfs_real_readdir(struct file *filp, void *dirent,
3866 filldir_t filldir)
39279cc3 3867{
6da6abae 3868 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
3869 struct btrfs_root *root = BTRFS_I(inode)->root;
3870 struct btrfs_item *item;
3871 struct btrfs_dir_item *di;
3872 struct btrfs_key key;
5f39d397 3873 struct btrfs_key found_key;
39279cc3
CM
3874 struct btrfs_path *path;
3875 int ret;
3876 u32 nritems;
5f39d397 3877 struct extent_buffer *leaf;
39279cc3
CM
3878 int slot;
3879 int advance;
3880 unsigned char d_type;
3881 int over = 0;
3882 u32 di_cur;
3883 u32 di_total;
3884 u32 di_len;
3885 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
3886 char tmp_name[32];
3887 char *name_ptr;
3888 int name_len;
39279cc3
CM
3889
3890 /* FIXME, use a real flag for deciding about the key type */
3891 if (root->fs_info->tree_root == root)
3892 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 3893
3954401f
CM
3894 /* special case for "." */
3895 if (filp->f_pos == 0) {
3896 over = filldir(dirent, ".", 1,
3897 1, inode->i_ino,
3898 DT_DIR);
3899 if (over)
3900 return 0;
3901 filp->f_pos = 1;
3902 }
3954401f
CM
3903 /* special case for .., just use the back ref */
3904 if (filp->f_pos == 1) {
5ecc7e5d 3905 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 3906 over = filldir(dirent, "..", 2,
5ecc7e5d 3907 2, pino, DT_DIR);
3954401f 3908 if (over)
49593bfa 3909 return 0;
3954401f
CM
3910 filp->f_pos = 2;
3911 }
49593bfa
DW
3912 path = btrfs_alloc_path();
3913 path->reada = 2;
3914
39279cc3
CM
3915 btrfs_set_key_type(&key, key_type);
3916 key.offset = filp->f_pos;
49593bfa 3917 key.objectid = inode->i_ino;
5f39d397 3918
39279cc3
CM
3919 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3920 if (ret < 0)
3921 goto err;
3922 advance = 0;
49593bfa
DW
3923
3924 while (1) {
5f39d397
CM
3925 leaf = path->nodes[0];
3926 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3927 slot = path->slots[0];
3928 if (advance || slot >= nritems) {
49593bfa 3929 if (slot >= nritems - 1) {
39279cc3
CM
3930 ret = btrfs_next_leaf(root, path);
3931 if (ret)
3932 break;
5f39d397
CM
3933 leaf = path->nodes[0];
3934 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3935 slot = path->slots[0];
3936 } else {
3937 slot++;
3938 path->slots[0]++;
3939 }
3940 }
3de4586c 3941
39279cc3 3942 advance = 1;
5f39d397
CM
3943 item = btrfs_item_nr(leaf, slot);
3944 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3945
3946 if (found_key.objectid != key.objectid)
39279cc3 3947 break;
5f39d397 3948 if (btrfs_key_type(&found_key) != key_type)
39279cc3 3949 break;
5f39d397 3950 if (found_key.offset < filp->f_pos)
39279cc3 3951 continue;
5f39d397
CM
3952
3953 filp->f_pos = found_key.offset;
49593bfa 3954
39279cc3
CM
3955 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3956 di_cur = 0;
5f39d397 3957 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
3958
3959 while (di_cur < di_total) {
5f39d397
CM
3960 struct btrfs_key location;
3961
3962 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 3963 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
3964 name_ptr = tmp_name;
3965 } else {
3966 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
3967 if (!name_ptr) {
3968 ret = -ENOMEM;
3969 goto err;
3970 }
5f39d397
CM
3971 }
3972 read_extent_buffer(leaf, name_ptr,
3973 (unsigned long)(di + 1), name_len);
3974
3975 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3976 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
3977
3978 /* is this a reference to our own snapshot? If so
3979 * skip it
3980 */
3981 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3982 location.objectid == root->root_key.objectid) {
3983 over = 0;
3984 goto skip;
3985 }
5f39d397 3986 over = filldir(dirent, name_ptr, name_len,
49593bfa 3987 found_key.offset, location.objectid,
39279cc3 3988 d_type);
5f39d397 3989
3de4586c 3990skip:
5f39d397
CM
3991 if (name_ptr != tmp_name)
3992 kfree(name_ptr);
3993
39279cc3
CM
3994 if (over)
3995 goto nopos;
5103e947 3996 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 3997 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
3998 di_cur += di_len;
3999 di = (struct btrfs_dir_item *)((char *)di + di_len);
4000 }
4001 }
49593bfa
DW
4002
4003 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4004 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4005 /*
4006 * 32-bit glibc will use getdents64, but then strtol -
4007 * so the last number we can serve is this.
4008 */
4009 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4010 else
4011 filp->f_pos++;
39279cc3
CM
4012nopos:
4013 ret = 0;
4014err:
39279cc3 4015 btrfs_free_path(path);
39279cc3
CM
4016 return ret;
4017}
4018
4019int btrfs_write_inode(struct inode *inode, int wait)
4020{
4021 struct btrfs_root *root = BTRFS_I(inode)->root;
4022 struct btrfs_trans_handle *trans;
4023 int ret = 0;
4024
c146afad 4025 if (root->fs_info->btree_inode == inode)
4ca8b41e
CM
4026 return 0;
4027
39279cc3 4028 if (wait) {
f9295749 4029 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
4030 btrfs_set_trans_block_group(trans, inode);
4031 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4032 }
4033 return ret;
4034}
4035
4036/*
54aa1f4d 4037 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4038 * inode changes. But, it is most likely to find the inode in cache.
4039 * FIXME, needs more benchmarking...there are no reasons other than performance
4040 * to keep or drop this code.
4041 */
4042void btrfs_dirty_inode(struct inode *inode)
4043{
4044 struct btrfs_root *root = BTRFS_I(inode)->root;
4045 struct btrfs_trans_handle *trans;
4046
f9295749 4047 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
4048 btrfs_set_trans_block_group(trans, inode);
4049 btrfs_update_inode(trans, root, inode);
4050 btrfs_end_transaction(trans, root);
39279cc3
CM
4051}
4052
d352ac68
CM
4053/*
4054 * find the highest existing sequence number in a directory
4055 * and then set the in-memory index_cnt variable to reflect
4056 * free sequence numbers
4057 */
aec7477b
JB
4058static int btrfs_set_inode_index_count(struct inode *inode)
4059{
4060 struct btrfs_root *root = BTRFS_I(inode)->root;
4061 struct btrfs_key key, found_key;
4062 struct btrfs_path *path;
4063 struct extent_buffer *leaf;
4064 int ret;
4065
4066 key.objectid = inode->i_ino;
4067 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4068 key.offset = (u64)-1;
4069
4070 path = btrfs_alloc_path();
4071 if (!path)
4072 return -ENOMEM;
4073
4074 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4075 if (ret < 0)
4076 goto out;
4077 /* FIXME: we should be able to handle this */
4078 if (ret == 0)
4079 goto out;
4080 ret = 0;
4081
4082 /*
4083 * MAGIC NUMBER EXPLANATION:
4084 * since we search a directory based on f_pos we have to start at 2
4085 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4086 * else has to start at 2
4087 */
4088 if (path->slots[0] == 0) {
4089 BTRFS_I(inode)->index_cnt = 2;
4090 goto out;
4091 }
4092
4093 path->slots[0]--;
4094
4095 leaf = path->nodes[0];
4096 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4097
4098 if (found_key.objectid != inode->i_ino ||
4099 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4100 BTRFS_I(inode)->index_cnt = 2;
4101 goto out;
4102 }
4103
4104 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4105out:
4106 btrfs_free_path(path);
4107 return ret;
4108}
4109
d352ac68
CM
4110/*
4111 * helper to find a free sequence number in a given directory. This current
4112 * code is very simple, later versions will do smarter things in the btree
4113 */
3de4586c 4114int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4115{
4116 int ret = 0;
4117
4118 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4119 ret = btrfs_set_inode_index_count(dir);
d397712b 4120 if (ret)
aec7477b
JB
4121 return ret;
4122 }
4123
00e4e6b3 4124 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4125 BTRFS_I(dir)->index_cnt++;
4126
4127 return ret;
4128}
4129
39279cc3
CM
4130static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4131 struct btrfs_root *root,
aec7477b 4132 struct inode *dir,
9c58309d 4133 const char *name, int name_len,
d2fb3437
YZ
4134 u64 ref_objectid, u64 objectid,
4135 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4136{
4137 struct inode *inode;
5f39d397 4138 struct btrfs_inode_item *inode_item;
39279cc3 4139 struct btrfs_key *location;
5f39d397 4140 struct btrfs_path *path;
9c58309d
CM
4141 struct btrfs_inode_ref *ref;
4142 struct btrfs_key key[2];
4143 u32 sizes[2];
4144 unsigned long ptr;
39279cc3
CM
4145 int ret;
4146 int owner;
4147
5f39d397
CM
4148 path = btrfs_alloc_path();
4149 BUG_ON(!path);
4150
39279cc3
CM
4151 inode = new_inode(root->fs_info->sb);
4152 if (!inode)
4153 return ERR_PTR(-ENOMEM);
4154
aec7477b 4155 if (dir) {
3de4586c 4156 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4157 if (ret) {
4158 iput(inode);
aec7477b 4159 return ERR_PTR(ret);
09771430 4160 }
aec7477b
JB
4161 }
4162 /*
4163 * index_cnt is ignored for everything but a dir,
4164 * btrfs_get_inode_index_count has an explanation for the magic
4165 * number
4166 */
e02119d5 4167 init_btrfs_i(inode);
aec7477b 4168 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4169 BTRFS_I(inode)->root = root;
e02119d5 4170 BTRFS_I(inode)->generation = trans->transid;
6a63209f 4171 btrfs_set_inode_space_info(root, inode);
b888db2b 4172
39279cc3
CM
4173 if (mode & S_IFDIR)
4174 owner = 0;
4175 else
4176 owner = 1;
d2fb3437
YZ
4177 BTRFS_I(inode)->block_group =
4178 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4179
4180 key[0].objectid = objectid;
4181 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4182 key[0].offset = 0;
4183
4184 key[1].objectid = objectid;
4185 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4186 key[1].offset = ref_objectid;
4187
4188 sizes[0] = sizeof(struct btrfs_inode_item);
4189 sizes[1] = name_len + sizeof(*ref);
4190
b9473439 4191 path->leave_spinning = 1;
9c58309d
CM
4192 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4193 if (ret != 0)
5f39d397
CM
4194 goto fail;
4195
79683f2d 4196 inode->i_uid = current_fsuid();
8c087b51 4197
42f15d77 4198 if (dir && (dir->i_mode & S_ISGID)) {
8c087b51
CB
4199 inode->i_gid = dir->i_gid;
4200 if (S_ISDIR(mode))
4201 mode |= S_ISGID;
4202 } else
4203 inode->i_gid = current_fsgid();
4204
39279cc3
CM
4205 inode->i_mode = mode;
4206 inode->i_ino = objectid;
a76a3cd4 4207 inode_set_bytes(inode, 0);
39279cc3 4208 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4209 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4210 struct btrfs_inode_item);
e02119d5 4211 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4212
4213 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4214 struct btrfs_inode_ref);
4215 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4216 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4217 ptr = (unsigned long)(ref + 1);
4218 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4219
5f39d397
CM
4220 btrfs_mark_buffer_dirty(path->nodes[0]);
4221 btrfs_free_path(path);
4222
39279cc3
CM
4223 location = &BTRFS_I(inode)->location;
4224 location->objectid = objectid;
39279cc3
CM
4225 location->offset = 0;
4226 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4227
6cbff00f
CH
4228 btrfs_inherit_iflags(inode, dir);
4229
94272164
CM
4230 if ((mode & S_IFREG)) {
4231 if (btrfs_test_opt(root, NODATASUM))
4232 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4233 if (btrfs_test_opt(root, NODATACOW))
4234 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4235 }
4236
39279cc3 4237 insert_inode_hash(inode);
5d4f98a2 4238 inode_tree_add(inode);
39279cc3 4239 return inode;
5f39d397 4240fail:
aec7477b
JB
4241 if (dir)
4242 BTRFS_I(dir)->index_cnt--;
5f39d397 4243 btrfs_free_path(path);
09771430 4244 iput(inode);
5f39d397 4245 return ERR_PTR(ret);
39279cc3
CM
4246}
4247
4248static inline u8 btrfs_inode_type(struct inode *inode)
4249{
4250 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4251}
4252
d352ac68
CM
4253/*
4254 * utility function to add 'inode' into 'parent_inode' with
4255 * a give name and a given sequence number.
4256 * if 'add_backref' is true, also insert a backref from the
4257 * inode to the parent directory.
4258 */
e02119d5
CM
4259int btrfs_add_link(struct btrfs_trans_handle *trans,
4260 struct inode *parent_inode, struct inode *inode,
4261 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4262{
4df27c4d 4263 int ret = 0;
39279cc3 4264 struct btrfs_key key;
e02119d5 4265 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4266
4df27c4d
YZ
4267 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4268 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4269 } else {
4270 key.objectid = inode->i_ino;
4271 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4272 key.offset = 0;
4273 }
4274
4275 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4276 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4277 key.objectid, root->root_key.objectid,
4278 parent_inode->i_ino,
4279 index, name, name_len);
4280 } else if (add_backref) {
4281 ret = btrfs_insert_inode_ref(trans, root,
4282 name, name_len, inode->i_ino,
4283 parent_inode->i_ino, index);
4284 }
39279cc3 4285
39279cc3 4286 if (ret == 0) {
4df27c4d
YZ
4287 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4288 parent_inode->i_ino, &key,
4289 btrfs_inode_type(inode), index);
4290 BUG_ON(ret);
4291
dbe674a9 4292 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4293 name_len * 2);
79c44584 4294 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4295 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4296 }
4297 return ret;
4298}
4299
4300static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
9c58309d 4301 struct dentry *dentry, struct inode *inode,
00e4e6b3 4302 int backref, u64 index)
39279cc3 4303{
e02119d5
CM
4304 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4305 inode, dentry->d_name.name,
4306 dentry->d_name.len, backref, index);
39279cc3
CM
4307 if (!err) {
4308 d_instantiate(dentry, inode);
4309 return 0;
4310 }
4311 if (err > 0)
4312 err = -EEXIST;
4313 return err;
4314}
4315
618e21d5
JB
4316static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4317 int mode, dev_t rdev)
4318{
4319 struct btrfs_trans_handle *trans;
4320 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4321 struct inode *inode = NULL;
618e21d5
JB
4322 int err;
4323 int drop_inode = 0;
4324 u64 objectid;
1832a6d5 4325 unsigned long nr = 0;
00e4e6b3 4326 u64 index = 0;
618e21d5
JB
4327
4328 if (!new_valid_dev(rdev))
4329 return -EINVAL;
4330
9ed74f2d
JB
4331 /*
4332 * 2 for inode item and ref
4333 * 2 for dir items
4334 * 1 for xattr if selinux is on
4335 */
4336 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4337 if (err)
9ed74f2d 4338 return err;
1832a6d5 4339
618e21d5 4340 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4341 if (!trans)
4342 goto fail;
618e21d5
JB
4343 btrfs_set_trans_block_group(trans, dir);
4344
4345 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4346 if (err) {
4347 err = -ENOSPC;
4348 goto out_unlock;
4349 }
4350
aec7477b 4351 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4352 dentry->d_name.len,
4353 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3 4354 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4355 err = PTR_ERR(inode);
4356 if (IS_ERR(inode))
4357 goto out_unlock;
4358
f34f57a3 4359 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4360 if (err) {
4361 drop_inode = 1;
4362 goto out_unlock;
4363 }
4364
618e21d5 4365 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4366 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
618e21d5
JB
4367 if (err)
4368 drop_inode = 1;
4369 else {
4370 inode->i_op = &btrfs_special_inode_operations;
4371 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4372 btrfs_update_inode(trans, root, inode);
618e21d5 4373 }
618e21d5
JB
4374 btrfs_update_inode_block_group(trans, inode);
4375 btrfs_update_inode_block_group(trans, dir);
4376out_unlock:
d3c2fdcf 4377 nr = trans->blocks_used;
89ce8a63 4378 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4379fail:
9ed74f2d 4380 btrfs_unreserve_metadata_space(root, 5);
618e21d5
JB
4381 if (drop_inode) {
4382 inode_dec_link_count(inode);
4383 iput(inode);
4384 }
d3c2fdcf 4385 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4386 return err;
4387}
4388
39279cc3
CM
4389static int btrfs_create(struct inode *dir, struct dentry *dentry,
4390 int mode, struct nameidata *nd)
4391{
4392 struct btrfs_trans_handle *trans;
4393 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4394 struct inode *inode = NULL;
39279cc3
CM
4395 int err;
4396 int drop_inode = 0;
1832a6d5 4397 unsigned long nr = 0;
39279cc3 4398 u64 objectid;
00e4e6b3 4399 u64 index = 0;
39279cc3 4400
9ed74f2d
JB
4401 /*
4402 * 2 for inode item and ref
4403 * 2 for dir items
4404 * 1 for xattr if selinux is on
4405 */
4406 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4407 if (err)
9ed74f2d
JB
4408 return err;
4409
39279cc3 4410 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4411 if (!trans)
4412 goto fail;
39279cc3
CM
4413 btrfs_set_trans_block_group(trans, dir);
4414
4415 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4416 if (err) {
4417 err = -ENOSPC;
4418 goto out_unlock;
4419 }
4420
aec7477b 4421 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4422 dentry->d_name.len,
4423 dentry->d_parent->d_inode->i_ino,
00e4e6b3
CM
4424 objectid, BTRFS_I(dir)->block_group, mode,
4425 &index);
39279cc3
CM
4426 err = PTR_ERR(inode);
4427 if (IS_ERR(inode))
4428 goto out_unlock;
4429
f34f57a3 4430 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4431 if (err) {
4432 drop_inode = 1;
4433 goto out_unlock;
4434 }
4435
39279cc3 4436 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4437 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
4438 if (err)
4439 drop_inode = 1;
4440 else {
4441 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4442 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4443 inode->i_fop = &btrfs_file_operations;
4444 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4445 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4446 }
39279cc3
CM
4447 btrfs_update_inode_block_group(trans, inode);
4448 btrfs_update_inode_block_group(trans, dir);
4449out_unlock:
d3c2fdcf 4450 nr = trans->blocks_used;
ab78c84d 4451 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4452fail:
9ed74f2d 4453 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4454 if (drop_inode) {
4455 inode_dec_link_count(inode);
4456 iput(inode);
4457 }
d3c2fdcf 4458 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4459 return err;
4460}
4461
4462static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4463 struct dentry *dentry)
4464{
4465 struct btrfs_trans_handle *trans;
4466 struct btrfs_root *root = BTRFS_I(dir)->root;
4467 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4468 u64 index;
1832a6d5 4469 unsigned long nr = 0;
39279cc3
CM
4470 int err;
4471 int drop_inode = 0;
4472
4473 if (inode->i_nlink == 0)
4474 return -ENOENT;
4475
4a8be425
TH
4476 /* do not allow sys_link's with other subvols of the same device */
4477 if (root->objectid != BTRFS_I(inode)->root->objectid)
4478 return -EPERM;
4479
9ed74f2d
JB
4480 /*
4481 * 1 item for inode ref
4482 * 2 items for dir items
4483 */
4484 err = btrfs_reserve_metadata_space(root, 3);
1832a6d5 4485 if (err)
9ed74f2d
JB
4486 return err;
4487
4488 btrfs_inc_nlink(inode);
4489
3de4586c 4490 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4491 if (err)
4492 goto fail;
4493
39279cc3 4494 trans = btrfs_start_transaction(root, 1);
5f39d397 4495
39279cc3
CM
4496 btrfs_set_trans_block_group(trans, dir);
4497 atomic_inc(&inode->i_count);
aec7477b 4498
00e4e6b3 4499 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
5f39d397 4500
a5719521 4501 if (err) {
54aa1f4d 4502 drop_inode = 1;
a5719521
YZ
4503 } else {
4504 btrfs_update_inode_block_group(trans, dir);
4505 err = btrfs_update_inode(trans, root, inode);
4506 BUG_ON(err);
4507 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4508 }
39279cc3 4509
d3c2fdcf 4510 nr = trans->blocks_used;
ab78c84d 4511 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4512fail:
9ed74f2d 4513 btrfs_unreserve_metadata_space(root, 3);
39279cc3
CM
4514 if (drop_inode) {
4515 inode_dec_link_count(inode);
4516 iput(inode);
4517 }
d3c2fdcf 4518 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4519 return err;
4520}
4521
39279cc3
CM
4522static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4523{
b9d86667 4524 struct inode *inode = NULL;
39279cc3
CM
4525 struct btrfs_trans_handle *trans;
4526 struct btrfs_root *root = BTRFS_I(dir)->root;
4527 int err = 0;
4528 int drop_on_err = 0;
b9d86667 4529 u64 objectid = 0;
00e4e6b3 4530 u64 index = 0;
d3c2fdcf 4531 unsigned long nr = 1;
39279cc3 4532
9ed74f2d
JB
4533 /*
4534 * 2 items for inode and ref
4535 * 2 items for dir items
4536 * 1 for xattr if selinux is on
4537 */
4538 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4539 if (err)
9ed74f2d 4540 return err;
1832a6d5 4541
39279cc3 4542 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4543 if (!trans) {
4544 err = -ENOMEM;
39279cc3
CM
4545 goto out_unlock;
4546 }
9ed74f2d 4547 btrfs_set_trans_block_group(trans, dir);
39279cc3
CM
4548
4549 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4550 if (err) {
4551 err = -ENOSPC;
4552 goto out_unlock;
4553 }
4554
aec7477b 4555 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4556 dentry->d_name.len,
4557 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
4558 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4559 &index);
39279cc3
CM
4560 if (IS_ERR(inode)) {
4561 err = PTR_ERR(inode);
4562 goto out_fail;
4563 }
5f39d397 4564
39279cc3 4565 drop_on_err = 1;
33268eaf 4566
f34f57a3 4567 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4568 if (err)
4569 goto out_fail;
4570
39279cc3
CM
4571 inode->i_op = &btrfs_dir_inode_operations;
4572 inode->i_fop = &btrfs_dir_file_operations;
4573 btrfs_set_trans_block_group(trans, inode);
4574
dbe674a9 4575 btrfs_i_size_write(inode, 0);
39279cc3
CM
4576 err = btrfs_update_inode(trans, root, inode);
4577 if (err)
4578 goto out_fail;
5f39d397 4579
e02119d5
CM
4580 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4581 inode, dentry->d_name.name,
4582 dentry->d_name.len, 0, index);
39279cc3
CM
4583 if (err)
4584 goto out_fail;
5f39d397 4585
39279cc3
CM
4586 d_instantiate(dentry, inode);
4587 drop_on_err = 0;
39279cc3
CM
4588 btrfs_update_inode_block_group(trans, inode);
4589 btrfs_update_inode_block_group(trans, dir);
4590
4591out_fail:
d3c2fdcf 4592 nr = trans->blocks_used;
ab78c84d 4593 btrfs_end_transaction_throttle(trans, root);
5f39d397 4594
39279cc3 4595out_unlock:
9ed74f2d 4596 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4597 if (drop_on_err)
4598 iput(inode);
d3c2fdcf 4599 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4600 return err;
4601}
4602
d352ac68
CM
4603/* helper for btfs_get_extent. Given an existing extent in the tree,
4604 * and an extent that you want to insert, deal with overlap and insert
4605 * the new extent into the tree.
4606 */
3b951516
CM
4607static int merge_extent_mapping(struct extent_map_tree *em_tree,
4608 struct extent_map *existing,
e6dcd2dc
CM
4609 struct extent_map *em,
4610 u64 map_start, u64 map_len)
3b951516
CM
4611{
4612 u64 start_diff;
3b951516 4613
e6dcd2dc
CM
4614 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4615 start_diff = map_start - em->start;
4616 em->start = map_start;
4617 em->len = map_len;
c8b97818
CM
4618 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4619 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4620 em->block_start += start_diff;
c8b97818
CM
4621 em->block_len -= start_diff;
4622 }
e6dcd2dc 4623 return add_extent_mapping(em_tree, em);
3b951516
CM
4624}
4625
c8b97818
CM
4626static noinline int uncompress_inline(struct btrfs_path *path,
4627 struct inode *inode, struct page *page,
4628 size_t pg_offset, u64 extent_offset,
4629 struct btrfs_file_extent_item *item)
4630{
4631 int ret;
4632 struct extent_buffer *leaf = path->nodes[0];
4633 char *tmp;
4634 size_t max_size;
4635 unsigned long inline_size;
4636 unsigned long ptr;
4637
4638 WARN_ON(pg_offset != 0);
4639 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4640 inline_size = btrfs_file_extent_inline_item_len(leaf,
4641 btrfs_item_nr(leaf, path->slots[0]));
4642 tmp = kmalloc(inline_size, GFP_NOFS);
4643 ptr = btrfs_file_extent_inline_start(item);
4644
4645 read_extent_buffer(leaf, tmp, ptr, inline_size);
4646
5b050f04 4647 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
4648 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4649 inline_size, max_size);
4650 if (ret) {
4651 char *kaddr = kmap_atomic(page, KM_USER0);
4652 unsigned long copy_size = min_t(u64,
4653 PAGE_CACHE_SIZE - pg_offset,
4654 max_size - extent_offset);
4655 memset(kaddr + pg_offset, 0, copy_size);
4656 kunmap_atomic(kaddr, KM_USER0);
4657 }
4658 kfree(tmp);
4659 return 0;
4660}
4661
d352ac68
CM
4662/*
4663 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4664 * the ugly parts come from merging extents from the disk with the in-ram
4665 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4666 * where the in-ram extents might be locked pending data=ordered completion.
4667 *
4668 * This also copies inline extents directly into the page.
4669 */
d397712b 4670
a52d9a80 4671struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4672 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4673 int create)
4674{
4675 int ret;
4676 int err = 0;
db94535d 4677 u64 bytenr;
a52d9a80
CM
4678 u64 extent_start = 0;
4679 u64 extent_end = 0;
4680 u64 objectid = inode->i_ino;
4681 u32 found_type;
f421950f 4682 struct btrfs_path *path = NULL;
a52d9a80
CM
4683 struct btrfs_root *root = BTRFS_I(inode)->root;
4684 struct btrfs_file_extent_item *item;
5f39d397
CM
4685 struct extent_buffer *leaf;
4686 struct btrfs_key found_key;
a52d9a80
CM
4687 struct extent_map *em = NULL;
4688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4689 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4690 struct btrfs_trans_handle *trans = NULL;
c8b97818 4691 int compressed;
a52d9a80 4692
a52d9a80 4693again:
890871be 4694 read_lock(&em_tree->lock);
d1310b2e 4695 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4696 if (em)
4697 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4698 read_unlock(&em_tree->lock);
d1310b2e 4699
a52d9a80 4700 if (em) {
e1c4b745
CM
4701 if (em->start > start || em->start + em->len <= start)
4702 free_extent_map(em);
4703 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4704 free_extent_map(em);
4705 else
4706 goto out;
a52d9a80 4707 }
d1310b2e 4708 em = alloc_extent_map(GFP_NOFS);
a52d9a80 4709 if (!em) {
d1310b2e
CM
4710 err = -ENOMEM;
4711 goto out;
a52d9a80 4712 }
e6dcd2dc 4713 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4714 em->start = EXTENT_MAP_HOLE;
445a6944 4715 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4716 em->len = (u64)-1;
c8b97818 4717 em->block_len = (u64)-1;
f421950f
CM
4718
4719 if (!path) {
4720 path = btrfs_alloc_path();
4721 BUG_ON(!path);
4722 }
4723
179e29e4
CM
4724 ret = btrfs_lookup_file_extent(trans, root, path,
4725 objectid, start, trans != NULL);
a52d9a80
CM
4726 if (ret < 0) {
4727 err = ret;
4728 goto out;
4729 }
4730
4731 if (ret != 0) {
4732 if (path->slots[0] == 0)
4733 goto not_found;
4734 path->slots[0]--;
4735 }
4736
5f39d397
CM
4737 leaf = path->nodes[0];
4738 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4739 struct btrfs_file_extent_item);
a52d9a80 4740 /* are we inside the extent that was found? */
5f39d397
CM
4741 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4742 found_type = btrfs_key_type(&found_key);
4743 if (found_key.objectid != objectid ||
a52d9a80
CM
4744 found_type != BTRFS_EXTENT_DATA_KEY) {
4745 goto not_found;
4746 }
4747
5f39d397
CM
4748 found_type = btrfs_file_extent_type(leaf, item);
4749 extent_start = found_key.offset;
c8b97818 4750 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4751 if (found_type == BTRFS_FILE_EXTENT_REG ||
4752 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4753 extent_end = extent_start +
db94535d 4754 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
4755 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4756 size_t size;
4757 size = btrfs_file_extent_inline_len(leaf, item);
4758 extent_end = (extent_start + size + root->sectorsize - 1) &
4759 ~((u64)root->sectorsize - 1);
4760 }
4761
4762 if (start >= extent_end) {
4763 path->slots[0]++;
4764 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4765 ret = btrfs_next_leaf(root, path);
4766 if (ret < 0) {
4767 err = ret;
4768 goto out;
a52d9a80 4769 }
9036c102
YZ
4770 if (ret > 0)
4771 goto not_found;
4772 leaf = path->nodes[0];
a52d9a80 4773 }
9036c102
YZ
4774 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4775 if (found_key.objectid != objectid ||
4776 found_key.type != BTRFS_EXTENT_DATA_KEY)
4777 goto not_found;
4778 if (start + len <= found_key.offset)
4779 goto not_found;
4780 em->start = start;
4781 em->len = found_key.offset - start;
4782 goto not_found_em;
4783 }
4784
d899e052
YZ
4785 if (found_type == BTRFS_FILE_EXTENT_REG ||
4786 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
4787 em->start = extent_start;
4788 em->len = extent_end - extent_start;
ff5b7ee3
YZ
4789 em->orig_start = extent_start -
4790 btrfs_file_extent_offset(leaf, item);
db94535d
CM
4791 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4792 if (bytenr == 0) {
5f39d397 4793 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
4794 goto insert;
4795 }
c8b97818
CM
4796 if (compressed) {
4797 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4798 em->block_start = bytenr;
4799 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4800 item);
4801 } else {
4802 bytenr += btrfs_file_extent_offset(leaf, item);
4803 em->block_start = bytenr;
4804 em->block_len = em->len;
d899e052
YZ
4805 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4806 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 4807 }
a52d9a80
CM
4808 goto insert;
4809 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4810 unsigned long ptr;
a52d9a80 4811 char *map;
3326d1b0
CM
4812 size_t size;
4813 size_t extent_offset;
4814 size_t copy_size;
a52d9a80 4815
689f9346 4816 em->block_start = EXTENT_MAP_INLINE;
c8b97818 4817 if (!page || create) {
689f9346 4818 em->start = extent_start;
9036c102 4819 em->len = extent_end - extent_start;
689f9346
Y
4820 goto out;
4821 }
5f39d397 4822
9036c102
YZ
4823 size = btrfs_file_extent_inline_len(leaf, item);
4824 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 4825 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 4826 size - extent_offset);
3326d1b0 4827 em->start = extent_start + extent_offset;
70dec807
CM
4828 em->len = (copy_size + root->sectorsize - 1) &
4829 ~((u64)root->sectorsize - 1);
ff5b7ee3 4830 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
4831 if (compressed)
4832 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 4833 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 4834 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
4835 if (btrfs_file_extent_compression(leaf, item) ==
4836 BTRFS_COMPRESS_ZLIB) {
4837 ret = uncompress_inline(path, inode, page,
4838 pg_offset,
4839 extent_offset, item);
4840 BUG_ON(ret);
4841 } else {
4842 map = kmap(page);
4843 read_extent_buffer(leaf, map + pg_offset, ptr,
4844 copy_size);
93c82d57
CM
4845 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4846 memset(map + pg_offset + copy_size, 0,
4847 PAGE_CACHE_SIZE - pg_offset -
4848 copy_size);
4849 }
c8b97818
CM
4850 kunmap(page);
4851 }
179e29e4
CM
4852 flush_dcache_page(page);
4853 } else if (create && PageUptodate(page)) {
4854 if (!trans) {
4855 kunmap(page);
4856 free_extent_map(em);
4857 em = NULL;
4858 btrfs_release_path(root, path);
f9295749 4859 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
4860 goto again;
4861 }
c8b97818 4862 map = kmap(page);
70dec807 4863 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 4864 copy_size);
c8b97818 4865 kunmap(page);
179e29e4 4866 btrfs_mark_buffer_dirty(leaf);
a52d9a80 4867 }
d1310b2e
CM
4868 set_extent_uptodate(io_tree, em->start,
4869 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
4870 goto insert;
4871 } else {
d397712b 4872 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
4873 WARN_ON(1);
4874 }
4875not_found:
4876 em->start = start;
d1310b2e 4877 em->len = len;
a52d9a80 4878not_found_em:
5f39d397 4879 em->block_start = EXTENT_MAP_HOLE;
9036c102 4880 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
4881insert:
4882 btrfs_release_path(root, path);
d1310b2e 4883 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
4884 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4885 "[%llu %llu]\n", (unsigned long long)em->start,
4886 (unsigned long long)em->len,
4887 (unsigned long long)start,
4888 (unsigned long long)len);
a52d9a80
CM
4889 err = -EIO;
4890 goto out;
4891 }
d1310b2e
CM
4892
4893 err = 0;
890871be 4894 write_lock(&em_tree->lock);
a52d9a80 4895 ret = add_extent_mapping(em_tree, em);
3b951516
CM
4896 /* it is possible that someone inserted the extent into the tree
4897 * while we had the lock dropped. It is also possible that
4898 * an overlapping map exists in the tree
4899 */
a52d9a80 4900 if (ret == -EEXIST) {
3b951516 4901 struct extent_map *existing;
e6dcd2dc
CM
4902
4903 ret = 0;
4904
3b951516 4905 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
4906 if (existing && (existing->start > start ||
4907 existing->start + existing->len <= start)) {
4908 free_extent_map(existing);
4909 existing = NULL;
4910 }
3b951516
CM
4911 if (!existing) {
4912 existing = lookup_extent_mapping(em_tree, em->start,
4913 em->len);
4914 if (existing) {
4915 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
4916 em, start,
4917 root->sectorsize);
3b951516
CM
4918 free_extent_map(existing);
4919 if (err) {
4920 free_extent_map(em);
4921 em = NULL;
4922 }
4923 } else {
4924 err = -EIO;
3b951516
CM
4925 free_extent_map(em);
4926 em = NULL;
4927 }
4928 } else {
4929 free_extent_map(em);
4930 em = existing;
e6dcd2dc 4931 err = 0;
a52d9a80 4932 }
a52d9a80 4933 }
890871be 4934 write_unlock(&em_tree->lock);
a52d9a80 4935out:
f421950f
CM
4936 if (path)
4937 btrfs_free_path(path);
a52d9a80
CM
4938 if (trans) {
4939 ret = btrfs_end_transaction(trans, root);
d397712b 4940 if (!err)
a52d9a80
CM
4941 err = ret;
4942 }
a52d9a80
CM
4943 if (err) {
4944 free_extent_map(em);
a52d9a80
CM
4945 return ERR_PTR(err);
4946 }
4947 return em;
4948}
4949
16432985
CM
4950static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4951 const struct iovec *iov, loff_t offset,
4952 unsigned long nr_segs)
4953{
e1c4b745 4954 return -EINVAL;
16432985
CM
4955}
4956
1506fcc8
YS
4957static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4958 __u64 start, __u64 len)
4959{
4960 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4961}
4962
a52d9a80 4963int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 4964{
d1310b2e
CM
4965 struct extent_io_tree *tree;
4966 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4967 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 4968}
1832a6d5 4969
a52d9a80 4970static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 4971{
d1310b2e 4972 struct extent_io_tree *tree;
b888db2b
CM
4973
4974
4975 if (current->flags & PF_MEMALLOC) {
4976 redirty_page_for_writepage(wbc, page);
4977 unlock_page(page);
4978 return 0;
4979 }
d1310b2e 4980 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4981 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
4982}
4983
f421950f
CM
4984int btrfs_writepages(struct address_space *mapping,
4985 struct writeback_control *wbc)
b293f02e 4986{
d1310b2e 4987 struct extent_io_tree *tree;
771ed689 4988
d1310b2e 4989 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
4990 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4991}
4992
3ab2fb5a
CM
4993static int
4994btrfs_readpages(struct file *file, struct address_space *mapping,
4995 struct list_head *pages, unsigned nr_pages)
4996{
d1310b2e
CM
4997 struct extent_io_tree *tree;
4998 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
4999 return extent_readpages(tree, mapping, pages, nr_pages,
5000 btrfs_get_extent);
5001}
e6dcd2dc 5002static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 5003{
d1310b2e
CM
5004 struct extent_io_tree *tree;
5005 struct extent_map_tree *map;
a52d9a80 5006 int ret;
8c2383c3 5007
d1310b2e
CM
5008 tree = &BTRFS_I(page->mapping->host)->io_tree;
5009 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 5010 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
5011 if (ret == 1) {
5012 ClearPagePrivate(page);
5013 set_page_private(page, 0);
5014 page_cache_release(page);
39279cc3 5015 }
a52d9a80 5016 return ret;
39279cc3
CM
5017}
5018
e6dcd2dc
CM
5019static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5020{
98509cfc
CM
5021 if (PageWriteback(page) || PageDirty(page))
5022 return 0;
b335b003 5023 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
5024}
5025
a52d9a80 5026static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 5027{
d1310b2e 5028 struct extent_io_tree *tree;
e6dcd2dc
CM
5029 struct btrfs_ordered_extent *ordered;
5030 u64 page_start = page_offset(page);
5031 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 5032
8b62b72b
CM
5033
5034 /*
5035 * we have the page locked, so new writeback can't start,
5036 * and the dirty bit won't be cleared while we are here.
5037 *
5038 * Wait for IO on this page so that we can safely clear
5039 * the PagePrivate2 bit and do ordered accounting
5040 */
e6dcd2dc 5041 wait_on_page_writeback(page);
8b62b72b 5042
d1310b2e 5043 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
5044 if (offset) {
5045 btrfs_releasepage(page, GFP_NOFS);
5046 return;
5047 }
e6dcd2dc
CM
5048 lock_extent(tree, page_start, page_end, GFP_NOFS);
5049 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5050 page_offset(page));
5051 if (ordered) {
eb84ae03
CM
5052 /*
5053 * IO on this page will never be started, so we need
5054 * to account for any ordered extents now
5055 */
e6dcd2dc
CM
5056 clear_extent_bit(tree, page_start, page_end,
5057 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff
JB
5058 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
5059 NULL, GFP_NOFS);
8b62b72b
CM
5060 /*
5061 * whoever cleared the private bit is responsible
5062 * for the finish_ordered_io
5063 */
5064 if (TestClearPagePrivate2(page)) {
5065 btrfs_finish_ordered_io(page->mapping->host,
5066 page_start, page_end);
5067 }
e6dcd2dc
CM
5068 btrfs_put_ordered_extent(ordered);
5069 lock_extent(tree, page_start, page_end, GFP_NOFS);
5070 }
5071 clear_extent_bit(tree, page_start, page_end,
32c00aff
JB
5072 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5073 EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
e6dcd2dc
CM
5074 __btrfs_releasepage(page, GFP_NOFS);
5075
4a096752 5076 ClearPageChecked(page);
9ad6b7bc 5077 if (PagePrivate(page)) {
9ad6b7bc
CM
5078 ClearPagePrivate(page);
5079 set_page_private(page, 0);
5080 page_cache_release(page);
5081 }
39279cc3
CM
5082}
5083
9ebefb18
CM
5084/*
5085 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5086 * called from a page fault handler when a page is first dirtied. Hence we must
5087 * be careful to check for EOF conditions here. We set the page up correctly
5088 * for a written page which means we get ENOSPC checking when writing into
5089 * holes and correct delalloc and unwritten extent mapping on filesystems that
5090 * support these features.
5091 *
5092 * We are not allowed to take the i_mutex here so we have to play games to
5093 * protect against truncate races as the page could now be beyond EOF. Because
5094 * vmtruncate() writes the inode size before removing pages, once we have the
5095 * page lock we can determine safely if the page is beyond EOF. If it is not
5096 * beyond EOF, then the page is guaranteed safe against truncation until we
5097 * unlock the page.
5098 */
c2ec175c 5099int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 5100{
c2ec175c 5101 struct page *page = vmf->page;
6da6abae 5102 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 5103 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
5104 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5105 struct btrfs_ordered_extent *ordered;
5106 char *kaddr;
5107 unsigned long zero_start;
9ebefb18 5108 loff_t size;
1832a6d5 5109 int ret;
a52d9a80 5110 u64 page_start;
e6dcd2dc 5111 u64 page_end;
9ebefb18 5112
6a63209f 5113 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
56a76f82
NP
5114 if (ret) {
5115 if (ret == -ENOMEM)
5116 ret = VM_FAULT_OOM;
5117 else /* -ENOSPC, -EIO, etc */
5118 ret = VM_FAULT_SIGBUS;
1832a6d5 5119 goto out;
56a76f82 5120 }
1832a6d5 5121
9ed74f2d
JB
5122 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
5123 if (ret) {
5124 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5125 ret = VM_FAULT_SIGBUS;
5126 goto out;
5127 }
5128
56a76f82 5129 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 5130again:
9ebefb18 5131 lock_page(page);
9ebefb18 5132 size = i_size_read(inode);
e6dcd2dc
CM
5133 page_start = page_offset(page);
5134 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 5135
9ebefb18 5136 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 5137 (page_start >= size)) {
6a63209f 5138 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ebefb18
CM
5139 /* page got truncated out from underneath us */
5140 goto out_unlock;
5141 }
e6dcd2dc
CM
5142 wait_on_page_writeback(page);
5143
5144 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5145 set_page_extent_mapped(page);
5146
eb84ae03
CM
5147 /*
5148 * we can't set the delalloc bits if there are pending ordered
5149 * extents. Drop our locks and wait for them to finish
5150 */
e6dcd2dc
CM
5151 ordered = btrfs_lookup_ordered_extent(inode, page_start);
5152 if (ordered) {
5153 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5154 unlock_page(page);
eb84ae03 5155 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
5156 btrfs_put_ordered_extent(ordered);
5157 goto again;
5158 }
5159
fbf19087
JB
5160 /*
5161 * XXX - page_mkwrite gets called every time the page is dirtied, even
5162 * if it was already dirty, so for space accounting reasons we need to
5163 * clear any delalloc bits for the range we are fixing to save. There
5164 * is probably a better way to do this, but for now keep consistent with
5165 * prepare_pages in the normal write path.
5166 */
5167 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff
JB
5168 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5169 GFP_NOFS);
fbf19087 5170
9ed74f2d
JB
5171 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
5172 if (ret) {
5173 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5174 ret = VM_FAULT_SIGBUS;
fbf19087 5175 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ed74f2d
JB
5176 goto out_unlock;
5177 }
e6dcd2dc 5178 ret = 0;
9ebefb18
CM
5179
5180 /* page is wholly or partially inside EOF */
a52d9a80 5181 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 5182 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 5183 else
e6dcd2dc 5184 zero_start = PAGE_CACHE_SIZE;
9ebefb18 5185
e6dcd2dc
CM
5186 if (zero_start != PAGE_CACHE_SIZE) {
5187 kaddr = kmap(page);
5188 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5189 flush_dcache_page(page);
5190 kunmap(page);
5191 }
247e743c 5192 ClearPageChecked(page);
e6dcd2dc 5193 set_page_dirty(page);
50a9b214 5194 SetPageUptodate(page);
5a3f23d5 5195
257c62e1
CM
5196 BTRFS_I(inode)->last_trans = root->fs_info->generation;
5197 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5198
e6dcd2dc 5199 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
9ebefb18
CM
5200
5201out_unlock:
9ed74f2d 5202 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
50a9b214
CM
5203 if (!ret)
5204 return VM_FAULT_LOCKED;
9ebefb18 5205 unlock_page(page);
1832a6d5 5206out:
9ebefb18
CM
5207 return ret;
5208}
5209
39279cc3
CM
5210static void btrfs_truncate(struct inode *inode)
5211{
5212 struct btrfs_root *root = BTRFS_I(inode)->root;
5213 int ret;
5214 struct btrfs_trans_handle *trans;
d3c2fdcf 5215 unsigned long nr;
dbe674a9 5216 u64 mask = root->sectorsize - 1;
39279cc3 5217
8082510e
YZ
5218 if (!S_ISREG(inode->i_mode)) {
5219 WARN_ON(1);
39279cc3 5220 return;
8082510e 5221 }
39279cc3 5222
5d5e103a
JB
5223 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5224 if (ret)
5225 return;
8082510e 5226
4a096752 5227 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 5228 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 5229
39279cc3 5230 trans = btrfs_start_transaction(root, 1);
8082510e 5231 btrfs_set_trans_block_group(trans, inode);
5a3f23d5
CM
5232
5233 /*
5234 * setattr is responsible for setting the ordered_data_close flag,
5235 * but that is only tested during the last file release. That
5236 * could happen well after the next commit, leaving a great big
5237 * window where new writes may get lost if someone chooses to write
5238 * to this file after truncating to zero
5239 *
5240 * The inode doesn't have any dirty data here, and so if we commit
5241 * this is a noop. If someone immediately starts writing to the inode
5242 * it is very likely we'll catch some of their writes in this
5243 * transaction, and the commit will find this file on the ordered
5244 * data list with good things to send down.
5245 *
5246 * This is a best effort solution, there is still a window where
5247 * using truncate to replace the contents of the file will
5248 * end up with a zero length file after a crash.
5249 */
5250 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5251 btrfs_add_ordered_operation(trans, root, inode);
5252
8082510e
YZ
5253 while (1) {
5254 ret = btrfs_truncate_inode_items(trans, root, inode,
5255 inode->i_size,
5256 BTRFS_EXTENT_DATA_KEY);
5257 if (ret != -EAGAIN)
5258 break;
39279cc3 5259
8082510e
YZ
5260 ret = btrfs_update_inode(trans, root, inode);
5261 BUG_ON(ret);
5f39d397 5262
8082510e
YZ
5263 nr = trans->blocks_used;
5264 btrfs_end_transaction(trans, root);
5265 btrfs_btree_balance_dirty(root, nr);
5266
5267 trans = btrfs_start_transaction(root, 1);
5268 btrfs_set_trans_block_group(trans, inode);
5269 }
5270
5271 if (ret == 0 && inode->i_nlink > 0) {
5272 ret = btrfs_orphan_del(trans, inode);
5273 BUG_ON(ret);
5274 }
5275
5276 ret = btrfs_update_inode(trans, root, inode);
7b128766
JB
5277 BUG_ON(ret);
5278
7b128766 5279 nr = trans->blocks_used;
89ce8a63 5280 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 5281 BUG_ON(ret);
d3c2fdcf 5282 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5283}
5284
d352ac68
CM
5285/*
5286 * create a new subvolume directory/inode (helper for the ioctl).
5287 */
d2fb3437 5288int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 5289 struct btrfs_root *new_root,
d2fb3437 5290 u64 new_dirid, u64 alloc_hint)
39279cc3 5291{
39279cc3 5292 struct inode *inode;
76dda93c 5293 int err;
00e4e6b3 5294 u64 index = 0;
39279cc3 5295
aec7477b 5296 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 5297 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 5298 if (IS_ERR(inode))
f46b5a66 5299 return PTR_ERR(inode);
39279cc3
CM
5300 inode->i_op = &btrfs_dir_inode_operations;
5301 inode->i_fop = &btrfs_dir_file_operations;
5302
39279cc3 5303 inode->i_nlink = 1;
dbe674a9 5304 btrfs_i_size_write(inode, 0);
3b96362c 5305
76dda93c
YZ
5306 err = btrfs_update_inode(trans, new_root, inode);
5307 BUG_ON(err);
cb8e7090 5308
76dda93c 5309 iput(inode);
cb8e7090 5310 return 0;
39279cc3
CM
5311}
5312
d352ac68
CM
5313/* helper function for file defrag and space balancing. This
5314 * forces readahead on a given range of bytes in an inode
5315 */
edbd8d4e 5316unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
5317 struct file_ra_state *ra, struct file *file,
5318 pgoff_t offset, pgoff_t last_index)
5319{
8e7bf94f 5320 pgoff_t req_size = last_index - offset + 1;
86479a04 5321
86479a04
CM
5322 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5323 return offset + req_size;
86479a04
CM
5324}
5325
39279cc3
CM
5326struct inode *btrfs_alloc_inode(struct super_block *sb)
5327{
5328 struct btrfs_inode *ei;
5329
5330 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5331 if (!ei)
5332 return NULL;
15ee9bc7 5333 ei->last_trans = 0;
257c62e1 5334 ei->last_sub_trans = 0;
e02119d5 5335 ei->logged_trans = 0;
32c00aff
JB
5336 ei->outstanding_extents = 0;
5337 ei->reserved_extents = 0;
a6dbd429 5338 ei->root = NULL;
32c00aff 5339 spin_lock_init(&ei->accounting_lock);
e6dcd2dc 5340 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 5341 INIT_LIST_HEAD(&ei->i_orphan);
5a3f23d5 5342 INIT_LIST_HEAD(&ei->ordered_operations);
39279cc3
CM
5343 return &ei->vfs_inode;
5344}
5345
5346void btrfs_destroy_inode(struct inode *inode)
5347{
e6dcd2dc 5348 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
5349 struct btrfs_root *root = BTRFS_I(inode)->root;
5350
39279cc3
CM
5351 WARN_ON(!list_empty(&inode->i_dentry));
5352 WARN_ON(inode->i_data.nrpages);
5353
a6dbd429
JB
5354 /*
5355 * This can happen where we create an inode, but somebody else also
5356 * created the same inode and we need to destroy the one we already
5357 * created.
5358 */
5359 if (!root)
5360 goto free;
5361
5a3f23d5
CM
5362 /*
5363 * Make sure we're properly removed from the ordered operation
5364 * lists.
5365 */
5366 smp_mb();
5367 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5368 spin_lock(&root->fs_info->ordered_extent_lock);
5369 list_del_init(&BTRFS_I(inode)->ordered_operations);
5370 spin_unlock(&root->fs_info->ordered_extent_lock);
5371 }
5372
5373 spin_lock(&root->list_lock);
7b128766 5374 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
5375 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5376 inode->i_ino);
5377 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 5378 }
5a3f23d5 5379 spin_unlock(&root->list_lock);
7b128766 5380
d397712b 5381 while (1) {
e6dcd2dc
CM
5382 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5383 if (!ordered)
5384 break;
5385 else {
d397712b
CM
5386 printk(KERN_ERR "btrfs found ordered "
5387 "extent %llu %llu on inode cleanup\n",
5388 (unsigned long long)ordered->file_offset,
5389 (unsigned long long)ordered->len);
e6dcd2dc
CM
5390 btrfs_remove_ordered_extent(inode, ordered);
5391 btrfs_put_ordered_extent(ordered);
5392 btrfs_put_ordered_extent(ordered);
5393 }
5394 }
5d4f98a2 5395 inode_tree_del(inode);
5b21f2ed 5396 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 5397free:
39279cc3
CM
5398 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5399}
5400
76dda93c
YZ
5401void btrfs_drop_inode(struct inode *inode)
5402{
5403 struct btrfs_root *root = BTRFS_I(inode)->root;
5404
5405 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5406 generic_delete_inode(inode);
5407 else
5408 generic_drop_inode(inode);
5409}
5410
0ee0fda0 5411static void init_once(void *foo)
39279cc3
CM
5412{
5413 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5414
5415 inode_init_once(&ei->vfs_inode);
5416}
5417
5418void btrfs_destroy_cachep(void)
5419{
5420 if (btrfs_inode_cachep)
5421 kmem_cache_destroy(btrfs_inode_cachep);
5422 if (btrfs_trans_handle_cachep)
5423 kmem_cache_destroy(btrfs_trans_handle_cachep);
5424 if (btrfs_transaction_cachep)
5425 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
5426 if (btrfs_path_cachep)
5427 kmem_cache_destroy(btrfs_path_cachep);
5428}
5429
5430int btrfs_init_cachep(void)
5431{
9601e3f6
CH
5432 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5433 sizeof(struct btrfs_inode), 0,
5434 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
5435 if (!btrfs_inode_cachep)
5436 goto fail;
9601e3f6
CH
5437
5438 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5439 sizeof(struct btrfs_trans_handle), 0,
5440 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5441 if (!btrfs_trans_handle_cachep)
5442 goto fail;
9601e3f6
CH
5443
5444 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5445 sizeof(struct btrfs_transaction), 0,
5446 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5447 if (!btrfs_transaction_cachep)
5448 goto fail;
9601e3f6
CH
5449
5450 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5451 sizeof(struct btrfs_path), 0,
5452 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5453 if (!btrfs_path_cachep)
5454 goto fail;
9601e3f6 5455
39279cc3
CM
5456 return 0;
5457fail:
5458 btrfs_destroy_cachep();
5459 return -ENOMEM;
5460}
5461
5462static int btrfs_getattr(struct vfsmount *mnt,
5463 struct dentry *dentry, struct kstat *stat)
5464{
5465 struct inode *inode = dentry->d_inode;
5466 generic_fillattr(inode, stat);
3394e160 5467 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 5468 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
5469 stat->blocks = (inode_get_bytes(inode) +
5470 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
5471 return 0;
5472}
5473
d397712b
CM
5474static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5475 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
5476{
5477 struct btrfs_trans_handle *trans;
5478 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 5479 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
5480 struct inode *new_inode = new_dentry->d_inode;
5481 struct inode *old_inode = old_dentry->d_inode;
5482 struct timespec ctime = CURRENT_TIME;
00e4e6b3 5483 u64 index = 0;
4df27c4d 5484 u64 root_objectid;
39279cc3
CM
5485 int ret;
5486
f679a840
YZ
5487 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5488 return -EPERM;
5489
4df27c4d
YZ
5490 /* we only allow rename subvolume link between subvolumes */
5491 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
5492 return -EXDEV;
5493
4df27c4d
YZ
5494 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5495 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 5496 return -ENOTEMPTY;
5f39d397 5497
4df27c4d
YZ
5498 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5499 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5500 return -ENOTEMPTY;
0660b5af 5501
9ed74f2d 5502 /*
5df6a9f6
JB
5503 * We want to reserve the absolute worst case amount of items. So if
5504 * both inodes are subvols and we need to unlink them then that would
5505 * require 4 item modifications, but if they are both normal inodes it
5506 * would require 5 item modifications, so we'll assume their normal
5507 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5508 * should cover the worst case number of items we'll modify.
9ed74f2d 5509 */
5df6a9f6 5510 ret = btrfs_reserve_metadata_space(root, 11);
1832a6d5 5511 if (ret)
4df27c4d 5512 return ret;
1832a6d5 5513
5a3f23d5
CM
5514 /*
5515 * we're using rename to replace one file with another.
5516 * and the replacement file is large. Start IO on it now so
5517 * we don't add too much work to the end of the transaction
5518 */
4baf8c92 5519 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
5520 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5521 filemap_flush(old_inode->i_mapping);
5522
76dda93c
YZ
5523 /* close the racy window with snapshot create/destroy ioctl */
5524 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5525 down_read(&root->fs_info->subvol_sem);
5526
39279cc3 5527 trans = btrfs_start_transaction(root, 1);
a5719521 5528 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 5529
4df27c4d
YZ
5530 if (dest != root)
5531 btrfs_record_root_in_trans(trans, dest);
5f39d397 5532
a5719521
YZ
5533 ret = btrfs_set_inode_index(new_dir, &index);
5534 if (ret)
5535 goto out_fail;
5a3f23d5 5536
a5719521 5537 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5538 /* force full log commit if subvolume involved. */
5539 root->fs_info->last_trans_log_full_commit = trans->transid;
5540 } else {
a5719521
YZ
5541 ret = btrfs_insert_inode_ref(trans, dest,
5542 new_dentry->d_name.name,
5543 new_dentry->d_name.len,
5544 old_inode->i_ino,
5545 new_dir->i_ino, index);
5546 if (ret)
5547 goto out_fail;
4df27c4d
YZ
5548 /*
5549 * this is an ugly little race, but the rename is required
5550 * to make sure that if we crash, the inode is either at the
5551 * old name or the new one. pinning the log transaction lets
5552 * us make sure we don't allow a log commit to come in after
5553 * we unlink the name but before we add the new name back in.
5554 */
5555 btrfs_pin_log_trans(root);
5556 }
5a3f23d5
CM
5557 /*
5558 * make sure the inode gets flushed if it is replacing
5559 * something.
5560 */
5561 if (new_inode && new_inode->i_size &&
5562 old_inode && S_ISREG(old_inode->i_mode)) {
5563 btrfs_add_ordered_operation(trans, root, old_inode);
5564 }
5565
39279cc3
CM
5566 old_dir->i_ctime = old_dir->i_mtime = ctime;
5567 new_dir->i_ctime = new_dir->i_mtime = ctime;
5568 old_inode->i_ctime = ctime;
5f39d397 5569
12fcfd22
CM
5570 if (old_dentry->d_parent != new_dentry->d_parent)
5571 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5572
4df27c4d
YZ
5573 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5574 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5575 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5576 old_dentry->d_name.name,
5577 old_dentry->d_name.len);
5578 } else {
5579 btrfs_inc_nlink(old_dentry->d_inode);
5580 ret = btrfs_unlink_inode(trans, root, old_dir,
5581 old_dentry->d_inode,
5582 old_dentry->d_name.name,
5583 old_dentry->d_name.len);
5584 }
5585 BUG_ON(ret);
39279cc3
CM
5586
5587 if (new_inode) {
5588 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
5589 if (unlikely(new_inode->i_ino ==
5590 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5591 root_objectid = BTRFS_I(new_inode)->location.objectid;
5592 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5593 root_objectid,
5594 new_dentry->d_name.name,
5595 new_dentry->d_name.len);
5596 BUG_ON(new_inode->i_nlink == 0);
5597 } else {
5598 ret = btrfs_unlink_inode(trans, dest, new_dir,
5599 new_dentry->d_inode,
5600 new_dentry->d_name.name,
5601 new_dentry->d_name.len);
5602 }
5603 BUG_ON(ret);
7b128766 5604 if (new_inode->i_nlink == 0) {
e02119d5 5605 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 5606 BUG_ON(ret);
7b128766 5607 }
39279cc3 5608 }
aec7477b 5609
4df27c4d
YZ
5610 ret = btrfs_add_link(trans, new_dir, old_inode,
5611 new_dentry->d_name.name,
a5719521 5612 new_dentry->d_name.len, 0, index);
4df27c4d 5613 BUG_ON(ret);
39279cc3 5614
4df27c4d
YZ
5615 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5616 btrfs_log_new_name(trans, old_inode, old_dir,
5617 new_dentry->d_parent);
5618 btrfs_end_log_trans(root);
5619 }
39279cc3 5620out_fail:
ab78c84d 5621 btrfs_end_transaction_throttle(trans, root);
4df27c4d 5622
76dda93c
YZ
5623 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5624 up_read(&root->fs_info->subvol_sem);
9ed74f2d 5625
5df6a9f6 5626 btrfs_unreserve_metadata_space(root, 11);
39279cc3
CM
5627 return ret;
5628}
5629
d352ac68
CM
5630/*
5631 * some fairly slow code that needs optimization. This walks the list
5632 * of all the inodes with pending delalloc and forces them to disk.
5633 */
24bbcf04 5634int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
5635{
5636 struct list_head *head = &root->fs_info->delalloc_inodes;
5637 struct btrfs_inode *binode;
5b21f2ed 5638 struct inode *inode;
ea8c2819 5639
c146afad
YZ
5640 if (root->fs_info->sb->s_flags & MS_RDONLY)
5641 return -EROFS;
5642
75eff68e 5643 spin_lock(&root->fs_info->delalloc_lock);
d397712b 5644 while (!list_empty(head)) {
ea8c2819
CM
5645 binode = list_entry(head->next, struct btrfs_inode,
5646 delalloc_inodes);
5b21f2ed
ZY
5647 inode = igrab(&binode->vfs_inode);
5648 if (!inode)
5649 list_del_init(&binode->delalloc_inodes);
75eff68e 5650 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 5651 if (inode) {
8c8bee1d 5652 filemap_flush(inode->i_mapping);
24bbcf04
YZ
5653 if (delay_iput)
5654 btrfs_add_delayed_iput(inode);
5655 else
5656 iput(inode);
5b21f2ed
ZY
5657 }
5658 cond_resched();
75eff68e 5659 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 5660 }
75eff68e 5661 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
5662
5663 /* the filemap_flush will queue IO into the worker threads, but
5664 * we have to make sure the IO is actually started and that
5665 * ordered extents get created before we return
5666 */
5667 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 5668 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 5669 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 5670 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
5671 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5672 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
5673 }
5674 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
5675 return 0;
5676}
5677
39279cc3
CM
5678static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5679 const char *symname)
5680{
5681 struct btrfs_trans_handle *trans;
5682 struct btrfs_root *root = BTRFS_I(dir)->root;
5683 struct btrfs_path *path;
5684 struct btrfs_key key;
1832a6d5 5685 struct inode *inode = NULL;
39279cc3
CM
5686 int err;
5687 int drop_inode = 0;
5688 u64 objectid;
00e4e6b3 5689 u64 index = 0 ;
39279cc3
CM
5690 int name_len;
5691 int datasize;
5f39d397 5692 unsigned long ptr;
39279cc3 5693 struct btrfs_file_extent_item *ei;
5f39d397 5694 struct extent_buffer *leaf;
1832a6d5 5695 unsigned long nr = 0;
39279cc3
CM
5696
5697 name_len = strlen(symname) + 1;
5698 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5699 return -ENAMETOOLONG;
1832a6d5 5700
9ed74f2d
JB
5701 /*
5702 * 2 items for inode item and ref
5703 * 2 items for dir items
5704 * 1 item for xattr if selinux is on
5705 */
5706 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 5707 if (err)
9ed74f2d 5708 return err;
1832a6d5 5709
39279cc3 5710 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
5711 if (!trans)
5712 goto out_fail;
39279cc3
CM
5713 btrfs_set_trans_block_group(trans, dir);
5714
5715 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5716 if (err) {
5717 err = -ENOSPC;
5718 goto out_unlock;
5719 }
5720
aec7477b 5721 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
5722 dentry->d_name.len,
5723 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
5724 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5725 &index);
39279cc3
CM
5726 err = PTR_ERR(inode);
5727 if (IS_ERR(inode))
5728 goto out_unlock;
5729
f34f57a3 5730 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
5731 if (err) {
5732 drop_inode = 1;
5733 goto out_unlock;
5734 }
5735
39279cc3 5736 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 5737 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
5738 if (err)
5739 drop_inode = 1;
5740 else {
5741 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5742 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
5743 inode->i_fop = &btrfs_file_operations;
5744 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 5745 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 5746 }
39279cc3
CM
5747 btrfs_update_inode_block_group(trans, inode);
5748 btrfs_update_inode_block_group(trans, dir);
5749 if (drop_inode)
5750 goto out_unlock;
5751
5752 path = btrfs_alloc_path();
5753 BUG_ON(!path);
5754 key.objectid = inode->i_ino;
5755 key.offset = 0;
39279cc3
CM
5756 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5757 datasize = btrfs_file_extent_calc_inline_size(name_len);
5758 err = btrfs_insert_empty_item(trans, root, path, &key,
5759 datasize);
54aa1f4d
CM
5760 if (err) {
5761 drop_inode = 1;
5762 goto out_unlock;
5763 }
5f39d397
CM
5764 leaf = path->nodes[0];
5765 ei = btrfs_item_ptr(leaf, path->slots[0],
5766 struct btrfs_file_extent_item);
5767 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5768 btrfs_set_file_extent_type(leaf, ei,
39279cc3 5769 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
5770 btrfs_set_file_extent_encryption(leaf, ei, 0);
5771 btrfs_set_file_extent_compression(leaf, ei, 0);
5772 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5773 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5774
39279cc3 5775 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
5776 write_extent_buffer(leaf, symname, ptr, name_len);
5777 btrfs_mark_buffer_dirty(leaf);
39279cc3 5778 btrfs_free_path(path);
5f39d397 5779
39279cc3
CM
5780 inode->i_op = &btrfs_symlink_inode_operations;
5781 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 5782 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 5783 inode_set_bytes(inode, name_len);
dbe674a9 5784 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
5785 err = btrfs_update_inode(trans, root, inode);
5786 if (err)
5787 drop_inode = 1;
39279cc3
CM
5788
5789out_unlock:
d3c2fdcf 5790 nr = trans->blocks_used;
ab78c84d 5791 btrfs_end_transaction_throttle(trans, root);
1832a6d5 5792out_fail:
9ed74f2d 5793 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
5794 if (drop_inode) {
5795 inode_dec_link_count(inode);
5796 iput(inode);
5797 }
d3c2fdcf 5798 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5799 return err;
5800}
16432985 5801
5a303d5d 5802static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
920bbbfb 5803 u64 alloc_hint, int mode)
d899e052 5804{
5a303d5d 5805 struct btrfs_trans_handle *trans;
d899e052
YZ
5806 struct btrfs_root *root = BTRFS_I(inode)->root;
5807 struct btrfs_key ins;
5808 u64 alloc_size;
5809 u64 cur_offset = start;
5810 u64 num_bytes = end - start;
5811 int ret = 0;
5812
d899e052
YZ
5813 while (num_bytes > 0) {
5814 alloc_size = min(num_bytes, root->fs_info->max_extent);
9ed74f2d 5815
3a1abec9
CM
5816 trans = btrfs_start_transaction(root, 1);
5817
d899e052
YZ
5818 ret = btrfs_reserve_extent(trans, root, alloc_size,
5819 root->sectorsize, 0, alloc_hint,
5820 (u64)-1, &ins, 1);
5821 if (ret) {
5822 WARN_ON(1);
3a1abec9 5823 goto stop_trans;
5a303d5d
YZ
5824 }
5825
5826 ret = btrfs_reserve_metadata_space(root, 3);
5827 if (ret) {
5828 btrfs_free_reserved_extent(root, ins.objectid,
5829 ins.offset);
3a1abec9 5830 goto stop_trans;
d899e052 5831 }
5a303d5d 5832
d899e052
YZ
5833 ret = insert_reserved_file_extent(trans, inode,
5834 cur_offset, ins.objectid,
5835 ins.offset, ins.offset,
920bbbfb 5836 ins.offset, 0, 0, 0,
d899e052
YZ
5837 BTRFS_FILE_EXTENT_PREALLOC);
5838 BUG_ON(ret);
a1ed835e
CM
5839 btrfs_drop_extent_cache(inode, cur_offset,
5840 cur_offset + ins.offset -1, 0);
5a303d5d 5841
d899e052
YZ
5842 num_bytes -= ins.offset;
5843 cur_offset += ins.offset;
5844 alloc_hint = ins.objectid + ins.offset;
5a303d5d 5845
d899e052 5846 inode->i_ctime = CURRENT_TIME;
6cbff00f 5847 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 5848 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5a303d5d
YZ
5849 cur_offset > inode->i_size) {
5850 i_size_write(inode, cur_offset);
5851 btrfs_ordered_update_i_size(inode, cur_offset, NULL);
5852 }
5853
d899e052
YZ
5854 ret = btrfs_update_inode(trans, root, inode);
5855 BUG_ON(ret);
d899e052 5856
5a303d5d
YZ
5857 btrfs_end_transaction(trans, root);
5858 btrfs_unreserve_metadata_space(root, 3);
5859 }
d899e052 5860 return ret;
3a1abec9
CM
5861
5862stop_trans:
5863 btrfs_end_transaction(trans, root);
5864 return ret;
5865
d899e052
YZ
5866}
5867
5868static long btrfs_fallocate(struct inode *inode, int mode,
5869 loff_t offset, loff_t len)
5870{
5871 u64 cur_offset;
5872 u64 last_byte;
5873 u64 alloc_start;
5874 u64 alloc_end;
5875 u64 alloc_hint = 0;
e980b50c 5876 u64 locked_end;
d899e052
YZ
5877 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5878 struct extent_map *em;
5879 int ret;
5880
5881 alloc_start = offset & ~mask;
5882 alloc_end = (offset + len + mask) & ~mask;
5883
546888da
CM
5884 /*
5885 * wait for ordered IO before we have any locks. We'll loop again
5886 * below with the locks held.
5887 */
5888 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5889
d899e052
YZ
5890 mutex_lock(&inode->i_mutex);
5891 if (alloc_start > inode->i_size) {
5892 ret = btrfs_cont_expand(inode, alloc_start);
5893 if (ret)
5894 goto out;
5895 }
5896
5a303d5d 5897 ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode,
a970b0a1
JB
5898 alloc_end - alloc_start);
5899 if (ret)
5900 goto out;
5901
e980b50c 5902 locked_end = alloc_end - 1;
d899e052
YZ
5903 while (1) {
5904 struct btrfs_ordered_extent *ordered;
546888da 5905
546888da
CM
5906 /* the extent lock is ordered inside the running
5907 * transaction
5908 */
e980b50c
CM
5909 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5910 GFP_NOFS);
d899e052
YZ
5911 ordered = btrfs_lookup_first_ordered_extent(inode,
5912 alloc_end - 1);
5913 if (ordered &&
5914 ordered->file_offset + ordered->len > alloc_start &&
5915 ordered->file_offset < alloc_end) {
5916 btrfs_put_ordered_extent(ordered);
5917 unlock_extent(&BTRFS_I(inode)->io_tree,
e980b50c 5918 alloc_start, locked_end, GFP_NOFS);
546888da
CM
5919 /*
5920 * we can't wait on the range with the transaction
5921 * running or with the extent lock held
5922 */
d899e052
YZ
5923 btrfs_wait_ordered_range(inode, alloc_start,
5924 alloc_end - alloc_start);
5925 } else {
5926 if (ordered)
5927 btrfs_put_ordered_extent(ordered);
5928 break;
5929 }
5930 }
5931
5932 cur_offset = alloc_start;
5933 while (1) {
5934 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5935 alloc_end - cur_offset, 0);
5936 BUG_ON(IS_ERR(em) || !em);
5937 last_byte = min(extent_map_end(em), alloc_end);
5938 last_byte = (last_byte + mask) & ~mask;
5a303d5d
YZ
5939 if (em->block_start == EXTENT_MAP_HOLE ||
5940 (cur_offset >= inode->i_size &&
5941 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5942 ret = prealloc_file_range(inode,
5943 cur_offset, last_byte,
5944 alloc_hint, mode);
d899e052
YZ
5945 if (ret < 0) {
5946 free_extent_map(em);
5947 break;
5948 }
5949 }
5950 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5951 alloc_hint = em->block_start;
5952 free_extent_map(em);
5953
5954 cur_offset = last_byte;
5955 if (cur_offset >= alloc_end) {
5956 ret = 0;
5957 break;
5958 }
5959 }
e980b50c 5960 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
d899e052 5961 GFP_NOFS);
546888da 5962
5a303d5d
YZ
5963 btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode,
5964 alloc_end - alloc_start);
d899e052
YZ
5965out:
5966 mutex_unlock(&inode->i_mutex);
5967 return ret;
5968}
5969
e6dcd2dc
CM
5970static int btrfs_set_page_dirty(struct page *page)
5971{
e6dcd2dc
CM
5972 return __set_page_dirty_nobuffers(page);
5973}
5974
0ee0fda0 5975static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 5976{
6cbff00f 5977 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 5978 return -EACCES;
33268eaf 5979 return generic_permission(inode, mask, btrfs_check_acl);
fdebe2bd 5980}
39279cc3 5981
6e1d5dcc 5982static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 5983 .getattr = btrfs_getattr,
39279cc3
CM
5984 .lookup = btrfs_lookup,
5985 .create = btrfs_create,
5986 .unlink = btrfs_unlink,
5987 .link = btrfs_link,
5988 .mkdir = btrfs_mkdir,
5989 .rmdir = btrfs_rmdir,
5990 .rename = btrfs_rename,
5991 .symlink = btrfs_symlink,
5992 .setattr = btrfs_setattr,
618e21d5 5993 .mknod = btrfs_mknod,
95819c05
CH
5994 .setxattr = btrfs_setxattr,
5995 .getxattr = btrfs_getxattr,
5103e947 5996 .listxattr = btrfs_listxattr,
95819c05 5997 .removexattr = btrfs_removexattr,
fdebe2bd 5998 .permission = btrfs_permission,
39279cc3 5999};
6e1d5dcc 6000static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 6001 .lookup = btrfs_lookup,
fdebe2bd 6002 .permission = btrfs_permission,
39279cc3 6003};
76dda93c 6004
828c0950 6005static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
6006 .llseek = generic_file_llseek,
6007 .read = generic_read_dir,
cbdf5a24 6008 .readdir = btrfs_real_readdir,
34287aa3 6009 .unlocked_ioctl = btrfs_ioctl,
39279cc3 6010#ifdef CONFIG_COMPAT
34287aa3 6011 .compat_ioctl = btrfs_ioctl,
39279cc3 6012#endif
6bf13c0c 6013 .release = btrfs_release_file,
e02119d5 6014 .fsync = btrfs_sync_file,
39279cc3
CM
6015};
6016
d1310b2e 6017static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 6018 .fill_delalloc = run_delalloc_range,
065631f6 6019 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 6020 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 6021 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 6022 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 6023 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 6024 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
6025 .set_bit_hook = btrfs_set_bit_hook,
6026 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
6027 .merge_extent_hook = btrfs_merge_extent_hook,
6028 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
6029};
6030
35054394
CM
6031/*
6032 * btrfs doesn't support the bmap operation because swapfiles
6033 * use bmap to make a mapping of extents in the file. They assume
6034 * these extents won't change over the life of the file and they
6035 * use the bmap result to do IO directly to the drive.
6036 *
6037 * the btrfs bmap call would return logical addresses that aren't
6038 * suitable for IO and they also will change frequently as COW
6039 * operations happen. So, swapfile + btrfs == corruption.
6040 *
6041 * For now we're avoiding this by dropping bmap.
6042 */
7f09410b 6043static const struct address_space_operations btrfs_aops = {
39279cc3
CM
6044 .readpage = btrfs_readpage,
6045 .writepage = btrfs_writepage,
b293f02e 6046 .writepages = btrfs_writepages,
3ab2fb5a 6047 .readpages = btrfs_readpages,
39279cc3 6048 .sync_page = block_sync_page,
16432985 6049 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
6050 .invalidatepage = btrfs_invalidatepage,
6051 .releasepage = btrfs_releasepage,
e6dcd2dc 6052 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 6053 .error_remove_page = generic_error_remove_page,
39279cc3
CM
6054};
6055
7f09410b 6056static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
6057 .readpage = btrfs_readpage,
6058 .writepage = btrfs_writepage,
2bf5a725
CM
6059 .invalidatepage = btrfs_invalidatepage,
6060 .releasepage = btrfs_releasepage,
39279cc3
CM
6061};
6062
6e1d5dcc 6063static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
6064 .truncate = btrfs_truncate,
6065 .getattr = btrfs_getattr,
6066 .setattr = btrfs_setattr,
95819c05
CH
6067 .setxattr = btrfs_setxattr,
6068 .getxattr = btrfs_getxattr,
5103e947 6069 .listxattr = btrfs_listxattr,
95819c05 6070 .removexattr = btrfs_removexattr,
fdebe2bd 6071 .permission = btrfs_permission,
d899e052 6072 .fallocate = btrfs_fallocate,
1506fcc8 6073 .fiemap = btrfs_fiemap,
39279cc3 6074};
6e1d5dcc 6075static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
6076 .getattr = btrfs_getattr,
6077 .setattr = btrfs_setattr,
fdebe2bd 6078 .permission = btrfs_permission,
95819c05
CH
6079 .setxattr = btrfs_setxattr,
6080 .getxattr = btrfs_getxattr,
33268eaf 6081 .listxattr = btrfs_listxattr,
95819c05 6082 .removexattr = btrfs_removexattr,
618e21d5 6083};
6e1d5dcc 6084static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
6085 .readlink = generic_readlink,
6086 .follow_link = page_follow_link_light,
6087 .put_link = page_put_link,
fdebe2bd 6088 .permission = btrfs_permission,
0279b4cd
JO
6089 .setxattr = btrfs_setxattr,
6090 .getxattr = btrfs_getxattr,
6091 .listxattr = btrfs_listxattr,
6092 .removexattr = btrfs_removexattr,
39279cc3 6093};
76dda93c 6094
82d339d9 6095const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
6096 .d_delete = btrfs_dentry_delete,
6097};