Btrfs: convert all bug_ons in free-space-cache.c
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
4b4e25f2 46#include "compat.h"
39279cc3
CM
47#include "ctree.h"
48#include "disk-io.h"
49#include "transaction.h"
50#include "btrfs_inode.h"
39279cc3 51#include "print-tree.h"
e6dcd2dc 52#include "ordered-data.h"
95819c05 53#include "xattr.h"
e02119d5 54#include "tree-log.h"
4a54c8c1 55#include "volumes.h"
c8b97818 56#include "compression.h"
b4ce94de 57#include "locking.h"
dc89e982 58#include "free-space-cache.h"
581bb050 59#include "inode-map.h"
38c227d8 60#include "backref.h"
f23b5a59 61#include "hash.h"
39279cc3
CM
62
63struct btrfs_iget_args {
64 u64 ino;
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
d397712b 128static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
129 struct btrfs_root *root, struct inode *inode,
130 u64 start, size_t size, size_t compressed_size,
fe3f566c 131 int compress_type,
c8b97818
CM
132 struct page **compressed_pages)
133{
134 struct btrfs_key key;
135 struct btrfs_path *path;
136 struct extent_buffer *leaf;
137 struct page *page = NULL;
138 char *kaddr;
139 unsigned long ptr;
140 struct btrfs_file_extent_item *ei;
141 int err = 0;
142 int ret;
143 size_t cur_size = size;
144 size_t datasize;
145 unsigned long offset;
c8b97818 146
fe3f566c 147 if (compressed_size && compressed_pages)
c8b97818 148 cur_size = compressed_size;
c8b97818 149
d397712b
CM
150 path = btrfs_alloc_path();
151 if (!path)
c8b97818
CM
152 return -ENOMEM;
153
b9473439 154 path->leave_spinning = 1;
c8b97818 155
33345d01 156 key.objectid = btrfs_ino(inode);
c8b97818
CM
157 key.offset = start;
158 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
159 datasize = btrfs_file_extent_calc_inline_size(cur_size);
160
161 inode_add_bytes(inode, size);
162 ret = btrfs_insert_empty_item(trans, root, path, &key,
163 datasize);
c8b97818
CM
164 if (ret) {
165 err = ret;
c8b97818
CM
166 goto fail;
167 }
168 leaf = path->nodes[0];
169 ei = btrfs_item_ptr(leaf, path->slots[0],
170 struct btrfs_file_extent_item);
171 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
172 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
173 btrfs_set_file_extent_encryption(leaf, ei, 0);
174 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
175 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
176 ptr = btrfs_file_extent_inline_start(ei);
177
261507a0 178 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
179 struct page *cpage;
180 int i = 0;
d397712b 181 while (compressed_size > 0) {
c8b97818 182 cpage = compressed_pages[i];
5b050f04 183 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
184 PAGE_CACHE_SIZE);
185
7ac687d9 186 kaddr = kmap_atomic(cpage);
c8b97818 187 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 188 kunmap_atomic(kaddr);
c8b97818
CM
189
190 i++;
191 ptr += cur_size;
192 compressed_size -= cur_size;
193 }
194 btrfs_set_file_extent_compression(leaf, ei,
261507a0 195 compress_type);
c8b97818
CM
196 } else {
197 page = find_get_page(inode->i_mapping,
198 start >> PAGE_CACHE_SHIFT);
199 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 200 kaddr = kmap_atomic(page);
c8b97818
CM
201 offset = start & (PAGE_CACHE_SIZE - 1);
202 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 203 kunmap_atomic(kaddr);
c8b97818
CM
204 page_cache_release(page);
205 }
206 btrfs_mark_buffer_dirty(leaf);
207 btrfs_free_path(path);
208
c2167754
YZ
209 /*
210 * we're an inline extent, so nobody can
211 * extend the file past i_size without locking
212 * a page we already have locked.
213 *
214 * We must do any isize and inode updates
215 * before we unlock the pages. Otherwise we
216 * could end up racing with unlink.
217 */
c8b97818 218 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 219 ret = btrfs_update_inode(trans, root, inode);
c2167754 220
79787eaa 221 return ret;
c8b97818
CM
222fail:
223 btrfs_free_path(path);
224 return err;
225}
226
227
228/*
229 * conditionally insert an inline extent into the file. This
230 * does the checks required to make sure the data is small enough
231 * to fit as an inline extent.
232 */
00361589
JB
233static noinline int cow_file_range_inline(struct btrfs_root *root,
234 struct inode *inode, u64 start,
235 u64 end, size_t compressed_size,
236 int compress_type,
237 struct page **compressed_pages)
c8b97818 238{
00361589 239 struct btrfs_trans_handle *trans;
c8b97818
CM
240 u64 isize = i_size_read(inode);
241 u64 actual_end = min(end + 1, isize);
242 u64 inline_len = actual_end - start;
fda2832f 243 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
244 u64 data_len = inline_len;
245 int ret;
246
247 if (compressed_size)
248 data_len = compressed_size;
249
250 if (start > 0 ||
70b99e69 251 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
252 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
253 (!compressed_size &&
254 (actual_end & (root->sectorsize - 1)) == 0) ||
255 end + 1 < isize ||
256 data_len > root->fs_info->max_inline) {
257 return 1;
258 }
259
00361589
JB
260 trans = btrfs_join_transaction(root);
261 if (IS_ERR(trans))
262 return PTR_ERR(trans);
263 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
264
2671485d 265 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
00361589
JB
266 if (ret) {
267 btrfs_abort_transaction(trans, root, ret);
268 goto out;
269 }
c8b97818
CM
270
271 if (isize > actual_end)
272 inline_len = min_t(u64, isize, actual_end);
273 ret = insert_inline_extent(trans, root, inode, start,
274 inline_len, compressed_size,
fe3f566c 275 compress_type, compressed_pages);
2adcac1a 276 if (ret && ret != -ENOSPC) {
79787eaa 277 btrfs_abort_transaction(trans, root, ret);
00361589 278 goto out;
2adcac1a 279 } else if (ret == -ENOSPC) {
00361589
JB
280 ret = 1;
281 goto out;
79787eaa 282 }
2adcac1a 283
bdc20e67 284 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 285 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 286 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589
JB
287out:
288 btrfs_end_transaction(trans, root);
289 return ret;
c8b97818
CM
290}
291
771ed689
CM
292struct async_extent {
293 u64 start;
294 u64 ram_size;
295 u64 compressed_size;
296 struct page **pages;
297 unsigned long nr_pages;
261507a0 298 int compress_type;
771ed689
CM
299 struct list_head list;
300};
301
302struct async_cow {
303 struct inode *inode;
304 struct btrfs_root *root;
305 struct page *locked_page;
306 u64 start;
307 u64 end;
308 struct list_head extents;
309 struct btrfs_work work;
310};
311
312static noinline int add_async_extent(struct async_cow *cow,
313 u64 start, u64 ram_size,
314 u64 compressed_size,
315 struct page **pages,
261507a0
LZ
316 unsigned long nr_pages,
317 int compress_type)
771ed689
CM
318{
319 struct async_extent *async_extent;
320
321 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 322 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
323 async_extent->start = start;
324 async_extent->ram_size = ram_size;
325 async_extent->compressed_size = compressed_size;
326 async_extent->pages = pages;
327 async_extent->nr_pages = nr_pages;
261507a0 328 async_extent->compress_type = compress_type;
771ed689
CM
329 list_add_tail(&async_extent->list, &cow->extents);
330 return 0;
331}
332
d352ac68 333/*
771ed689
CM
334 * we create compressed extents in two phases. The first
335 * phase compresses a range of pages that have already been
336 * locked (both pages and state bits are locked).
c8b97818 337 *
771ed689
CM
338 * This is done inside an ordered work queue, and the compression
339 * is spread across many cpus. The actual IO submission is step
340 * two, and the ordered work queue takes care of making sure that
341 * happens in the same order things were put onto the queue by
342 * writepages and friends.
c8b97818 343 *
771ed689
CM
344 * If this code finds it can't get good compression, it puts an
345 * entry onto the work queue to write the uncompressed bytes. This
346 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
347 * are written in the same order that the flusher thread sent them
348 * down.
d352ac68 349 */
771ed689
CM
350static noinline int compress_file_range(struct inode *inode,
351 struct page *locked_page,
352 u64 start, u64 end,
353 struct async_cow *async_cow,
354 int *num_added)
b888db2b
CM
355{
356 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 357 u64 num_bytes;
db94535d 358 u64 blocksize = root->sectorsize;
c8b97818 359 u64 actual_end;
42dc7bab 360 u64 isize = i_size_read(inode);
e6dcd2dc 361 int ret = 0;
c8b97818
CM
362 struct page **pages = NULL;
363 unsigned long nr_pages;
364 unsigned long nr_pages_ret = 0;
365 unsigned long total_compressed = 0;
366 unsigned long total_in = 0;
367 unsigned long max_compressed = 128 * 1024;
771ed689 368 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
369 int i;
370 int will_compress;
261507a0 371 int compress_type = root->fs_info->compress_type;
4adaa611 372 int redirty = 0;
b888db2b 373
4cb13e5d
LB
374 /* if this is a small write inside eof, kick off a defrag */
375 if ((end - start + 1) < 16 * 1024 &&
376 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
377 btrfs_add_inode_defrag(NULL, inode);
378
42dc7bab 379 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
380again:
381 will_compress = 0;
382 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
383 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 384
f03d9301
CM
385 /*
386 * we don't want to send crud past the end of i_size through
387 * compression, that's just a waste of CPU time. So, if the
388 * end of the file is before the start of our current
389 * requested range of bytes, we bail out to the uncompressed
390 * cleanup code that can deal with all of this.
391 *
392 * It isn't really the fastest way to fix things, but this is a
393 * very uncommon corner.
394 */
395 if (actual_end <= start)
396 goto cleanup_and_bail_uncompressed;
397
c8b97818
CM
398 total_compressed = actual_end - start;
399
400 /* we want to make sure that amount of ram required to uncompress
401 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
402 * of a compressed extent to 128k. This is a crucial number
403 * because it also controls how easily we can spread reads across
404 * cpus for decompression.
405 *
406 * We also want to make sure the amount of IO required to do
407 * a random read is reasonably small, so we limit the size of
408 * a compressed extent to 128k.
c8b97818
CM
409 */
410 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 411 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 412 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
413 total_in = 0;
414 ret = 0;
db94535d 415
771ed689
CM
416 /*
417 * we do compression for mount -o compress and when the
418 * inode has not been flagged as nocompress. This flag can
419 * change at any time if we discover bad compression ratios.
c8b97818 420 */
6cbff00f 421 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 422 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
423 (BTRFS_I(inode)->force_compress) ||
424 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 425 WARN_ON(pages);
cfbc246e 426 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
427 if (!pages) {
428 /* just bail out to the uncompressed code */
429 goto cont;
430 }
c8b97818 431
261507a0
LZ
432 if (BTRFS_I(inode)->force_compress)
433 compress_type = BTRFS_I(inode)->force_compress;
434
4adaa611
CM
435 /*
436 * we need to call clear_page_dirty_for_io on each
437 * page in the range. Otherwise applications with the file
438 * mmap'd can wander in and change the page contents while
439 * we are compressing them.
440 *
441 * If the compression fails for any reason, we set the pages
442 * dirty again later on.
443 */
444 extent_range_clear_dirty_for_io(inode, start, end);
445 redirty = 1;
261507a0
LZ
446 ret = btrfs_compress_pages(compress_type,
447 inode->i_mapping, start,
448 total_compressed, pages,
449 nr_pages, &nr_pages_ret,
450 &total_in,
451 &total_compressed,
452 max_compressed);
c8b97818
CM
453
454 if (!ret) {
455 unsigned long offset = total_compressed &
456 (PAGE_CACHE_SIZE - 1);
457 struct page *page = pages[nr_pages_ret - 1];
458 char *kaddr;
459
460 /* zero the tail end of the last page, we might be
461 * sending it down to disk
462 */
463 if (offset) {
7ac687d9 464 kaddr = kmap_atomic(page);
c8b97818
CM
465 memset(kaddr + offset, 0,
466 PAGE_CACHE_SIZE - offset);
7ac687d9 467 kunmap_atomic(kaddr);
c8b97818
CM
468 }
469 will_compress = 1;
470 }
471 }
560f7d75 472cont:
c8b97818
CM
473 if (start == 0) {
474 /* lets try to make an inline extent */
771ed689 475 if (ret || total_in < (actual_end - start)) {
c8b97818 476 /* we didn't compress the entire range, try
771ed689 477 * to make an uncompressed inline extent.
c8b97818 478 */
00361589
JB
479 ret = cow_file_range_inline(root, inode, start, end,
480 0, 0, NULL);
c8b97818 481 } else {
771ed689 482 /* try making a compressed inline extent */
00361589 483 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
484 total_compressed,
485 compress_type, pages);
c8b97818 486 }
79787eaa 487 if (ret <= 0) {
151a41bc
JB
488 unsigned long clear_flags = EXTENT_DELALLOC |
489 EXTENT_DEFRAG;
490 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
491
771ed689 492 /*
79787eaa
JM
493 * inline extent creation worked or returned error,
494 * we don't need to create any more async work items.
495 * Unlock and free up our temp pages.
771ed689 496 */
c2790a2e 497 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 498 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
499 PAGE_CLEAR_DIRTY |
500 PAGE_SET_WRITEBACK |
501 PAGE_END_WRITEBACK);
c8b97818
CM
502 goto free_pages_out;
503 }
504 }
505
506 if (will_compress) {
507 /*
508 * we aren't doing an inline extent round the compressed size
509 * up to a block size boundary so the allocator does sane
510 * things
511 */
fda2832f 512 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
513
514 /*
515 * one last check to make sure the compression is really a
516 * win, compare the page count read with the blocks on disk
517 */
fda2832f 518 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
519 if (total_compressed >= total_in) {
520 will_compress = 0;
521 } else {
c8b97818
CM
522 num_bytes = total_in;
523 }
524 }
525 if (!will_compress && pages) {
526 /*
527 * the compression code ran but failed to make things smaller,
528 * free any pages it allocated and our page pointer array
529 */
530 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 531 WARN_ON(pages[i]->mapping);
c8b97818
CM
532 page_cache_release(pages[i]);
533 }
534 kfree(pages);
535 pages = NULL;
536 total_compressed = 0;
537 nr_pages_ret = 0;
538
539 /* flag the file so we don't compress in the future */
1e701a32
CM
540 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
541 !(BTRFS_I(inode)->force_compress)) {
a555f810 542 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 543 }
c8b97818 544 }
771ed689
CM
545 if (will_compress) {
546 *num_added += 1;
c8b97818 547
771ed689
CM
548 /* the async work queues will take care of doing actual
549 * allocation on disk for these compressed pages,
550 * and will submit them to the elevator.
551 */
552 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
553 total_compressed, pages, nr_pages_ret,
554 compress_type);
179e29e4 555
24ae6365 556 if (start + num_bytes < end) {
771ed689
CM
557 start += num_bytes;
558 pages = NULL;
559 cond_resched();
560 goto again;
561 }
562 } else {
f03d9301 563cleanup_and_bail_uncompressed:
771ed689
CM
564 /*
565 * No compression, but we still need to write the pages in
566 * the file we've been given so far. redirty the locked
567 * page if it corresponds to our extent and set things up
568 * for the async work queue to run cow_file_range to do
569 * the normal delalloc dance
570 */
571 if (page_offset(locked_page) >= start &&
572 page_offset(locked_page) <= end) {
573 __set_page_dirty_nobuffers(locked_page);
574 /* unlocked later on in the async handlers */
575 }
4adaa611
CM
576 if (redirty)
577 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
578 add_async_extent(async_cow, start, end - start + 1,
579 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
580 *num_added += 1;
581 }
3b951516 582
771ed689 583out:
79787eaa 584 return ret;
771ed689
CM
585
586free_pages_out:
587 for (i = 0; i < nr_pages_ret; i++) {
588 WARN_ON(pages[i]->mapping);
589 page_cache_release(pages[i]);
590 }
d397712b 591 kfree(pages);
771ed689
CM
592
593 goto out;
594}
595
596/*
597 * phase two of compressed writeback. This is the ordered portion
598 * of the code, which only gets called in the order the work was
599 * queued. We walk all the async extents created by compress_file_range
600 * and send them down to the disk.
601 */
602static noinline int submit_compressed_extents(struct inode *inode,
603 struct async_cow *async_cow)
604{
605 struct async_extent *async_extent;
606 u64 alloc_hint = 0;
771ed689
CM
607 struct btrfs_key ins;
608 struct extent_map *em;
609 struct btrfs_root *root = BTRFS_I(inode)->root;
610 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
611 struct extent_io_tree *io_tree;
f5a84ee3 612 int ret = 0;
771ed689
CM
613
614 if (list_empty(&async_cow->extents))
615 return 0;
616
3e04e7f1 617again:
d397712b 618 while (!list_empty(&async_cow->extents)) {
771ed689
CM
619 async_extent = list_entry(async_cow->extents.next,
620 struct async_extent, list);
621 list_del(&async_extent->list);
c8b97818 622
771ed689
CM
623 io_tree = &BTRFS_I(inode)->io_tree;
624
f5a84ee3 625retry:
771ed689
CM
626 /* did the compression code fall back to uncompressed IO? */
627 if (!async_extent->pages) {
628 int page_started = 0;
629 unsigned long nr_written = 0;
630
631 lock_extent(io_tree, async_extent->start,
2ac55d41 632 async_extent->start +
d0082371 633 async_extent->ram_size - 1);
771ed689
CM
634
635 /* allocate blocks */
f5a84ee3
JB
636 ret = cow_file_range(inode, async_cow->locked_page,
637 async_extent->start,
638 async_extent->start +
639 async_extent->ram_size - 1,
640 &page_started, &nr_written, 0);
771ed689 641
79787eaa
JM
642 /* JDM XXX */
643
771ed689
CM
644 /*
645 * if page_started, cow_file_range inserted an
646 * inline extent and took care of all the unlocking
647 * and IO for us. Otherwise, we need to submit
648 * all those pages down to the drive.
649 */
f5a84ee3 650 if (!page_started && !ret)
771ed689
CM
651 extent_write_locked_range(io_tree,
652 inode, async_extent->start,
d397712b 653 async_extent->start +
771ed689
CM
654 async_extent->ram_size - 1,
655 btrfs_get_extent,
656 WB_SYNC_ALL);
3e04e7f1
JB
657 else if (ret)
658 unlock_page(async_cow->locked_page);
771ed689
CM
659 kfree(async_extent);
660 cond_resched();
661 continue;
662 }
663
664 lock_extent(io_tree, async_extent->start,
d0082371 665 async_extent->start + async_extent->ram_size - 1);
771ed689 666
00361589 667 ret = btrfs_reserve_extent(root,
771ed689
CM
668 async_extent->compressed_size,
669 async_extent->compressed_size,
81c9ad23 670 0, alloc_hint, &ins, 1);
f5a84ee3
JB
671 if (ret) {
672 int i;
3e04e7f1 673
f5a84ee3
JB
674 for (i = 0; i < async_extent->nr_pages; i++) {
675 WARN_ON(async_extent->pages[i]->mapping);
676 page_cache_release(async_extent->pages[i]);
677 }
678 kfree(async_extent->pages);
679 async_extent->nr_pages = 0;
680 async_extent->pages = NULL;
3e04e7f1 681
fdf8e2ea
JB
682 if (ret == -ENOSPC) {
683 unlock_extent(io_tree, async_extent->start,
684 async_extent->start +
685 async_extent->ram_size - 1);
79787eaa 686 goto retry;
fdf8e2ea 687 }
3e04e7f1 688 goto out_free;
f5a84ee3
JB
689 }
690
c2167754
YZ
691 /*
692 * here we're doing allocation and writeback of the
693 * compressed pages
694 */
695 btrfs_drop_extent_cache(inode, async_extent->start,
696 async_extent->start +
697 async_extent->ram_size - 1, 0);
698
172ddd60 699 em = alloc_extent_map();
b9aa55be
LB
700 if (!em) {
701 ret = -ENOMEM;
3e04e7f1 702 goto out_free_reserve;
b9aa55be 703 }
771ed689
CM
704 em->start = async_extent->start;
705 em->len = async_extent->ram_size;
445a6944 706 em->orig_start = em->start;
2ab28f32
JB
707 em->mod_start = em->start;
708 em->mod_len = em->len;
c8b97818 709
771ed689
CM
710 em->block_start = ins.objectid;
711 em->block_len = ins.offset;
b4939680 712 em->orig_block_len = ins.offset;
cc95bef6 713 em->ram_bytes = async_extent->ram_size;
771ed689 714 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 715 em->compress_type = async_extent->compress_type;
771ed689
CM
716 set_bit(EXTENT_FLAG_PINNED, &em->flags);
717 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 718 em->generation = -1;
771ed689 719
d397712b 720 while (1) {
890871be 721 write_lock(&em_tree->lock);
09a2a8f9 722 ret = add_extent_mapping(em_tree, em, 1);
890871be 723 write_unlock(&em_tree->lock);
771ed689
CM
724 if (ret != -EEXIST) {
725 free_extent_map(em);
726 break;
727 }
728 btrfs_drop_extent_cache(inode, async_extent->start,
729 async_extent->start +
730 async_extent->ram_size - 1, 0);
731 }
732
3e04e7f1
JB
733 if (ret)
734 goto out_free_reserve;
735
261507a0
LZ
736 ret = btrfs_add_ordered_extent_compress(inode,
737 async_extent->start,
738 ins.objectid,
739 async_extent->ram_size,
740 ins.offset,
741 BTRFS_ORDERED_COMPRESSED,
742 async_extent->compress_type);
3e04e7f1
JB
743 if (ret)
744 goto out_free_reserve;
771ed689 745
771ed689
CM
746 /*
747 * clear dirty, set writeback and unlock the pages.
748 */
c2790a2e 749 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
750 async_extent->start +
751 async_extent->ram_size - 1,
151a41bc
JB
752 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
753 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 754 PAGE_SET_WRITEBACK);
771ed689 755 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
756 async_extent->start,
757 async_extent->ram_size,
758 ins.objectid,
759 ins.offset, async_extent->pages,
760 async_extent->nr_pages);
771ed689
CM
761 alloc_hint = ins.objectid + ins.offset;
762 kfree(async_extent);
3e04e7f1
JB
763 if (ret)
764 goto out;
771ed689
CM
765 cond_resched();
766 }
79787eaa
JM
767 ret = 0;
768out:
769 return ret;
3e04e7f1
JB
770out_free_reserve:
771 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 772out_free:
c2790a2e 773 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
774 async_extent->start +
775 async_extent->ram_size - 1,
c2790a2e 776 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
777 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
778 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
779 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 780 kfree(async_extent);
3e04e7f1 781 goto again;
771ed689
CM
782}
783
4b46fce2
JB
784static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
785 u64 num_bytes)
786{
787 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
788 struct extent_map *em;
789 u64 alloc_hint = 0;
790
791 read_lock(&em_tree->lock);
792 em = search_extent_mapping(em_tree, start, num_bytes);
793 if (em) {
794 /*
795 * if block start isn't an actual block number then find the
796 * first block in this inode and use that as a hint. If that
797 * block is also bogus then just don't worry about it.
798 */
799 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
800 free_extent_map(em);
801 em = search_extent_mapping(em_tree, 0, 0);
802 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
803 alloc_hint = em->block_start;
804 if (em)
805 free_extent_map(em);
806 } else {
807 alloc_hint = em->block_start;
808 free_extent_map(em);
809 }
810 }
811 read_unlock(&em_tree->lock);
812
813 return alloc_hint;
814}
815
771ed689
CM
816/*
817 * when extent_io.c finds a delayed allocation range in the file,
818 * the call backs end up in this code. The basic idea is to
819 * allocate extents on disk for the range, and create ordered data structs
820 * in ram to track those extents.
821 *
822 * locked_page is the page that writepage had locked already. We use
823 * it to make sure we don't do extra locks or unlocks.
824 *
825 * *page_started is set to one if we unlock locked_page and do everything
826 * required to start IO on it. It may be clean and already done with
827 * IO when we return.
828 */
00361589
JB
829static noinline int cow_file_range(struct inode *inode,
830 struct page *locked_page,
831 u64 start, u64 end, int *page_started,
832 unsigned long *nr_written,
833 int unlock)
771ed689 834{
00361589 835 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
836 u64 alloc_hint = 0;
837 u64 num_bytes;
838 unsigned long ram_size;
839 u64 disk_num_bytes;
840 u64 cur_alloc_size;
841 u64 blocksize = root->sectorsize;
771ed689
CM
842 struct btrfs_key ins;
843 struct extent_map *em;
844 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
845 int ret = 0;
846
83eea1f1 847 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 848
fda2832f 849 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
850 num_bytes = max(blocksize, num_bytes);
851 disk_num_bytes = num_bytes;
771ed689 852
4cb5300b 853 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
854 if (num_bytes < 64 * 1024 &&
855 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 856 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 857
771ed689
CM
858 if (start == 0) {
859 /* lets try to make an inline extent */
00361589
JB
860 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
861 NULL);
771ed689 862 if (ret == 0) {
c2790a2e
JB
863 extent_clear_unlock_delalloc(inode, start, end, NULL,
864 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 865 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
866 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
867 PAGE_END_WRITEBACK);
c2167754 868
771ed689
CM
869 *nr_written = *nr_written +
870 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
871 *page_started = 1;
771ed689 872 goto out;
79787eaa 873 } else if (ret < 0) {
79787eaa 874 goto out_unlock;
771ed689
CM
875 }
876 }
877
878 BUG_ON(disk_num_bytes >
6c41761f 879 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 880
4b46fce2 881 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
882 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
883
d397712b 884 while (disk_num_bytes > 0) {
a791e35e
CM
885 unsigned long op;
886
287a0ab9 887 cur_alloc_size = disk_num_bytes;
00361589 888 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 889 root->sectorsize, 0, alloc_hint,
81c9ad23 890 &ins, 1);
00361589 891 if (ret < 0)
79787eaa 892 goto out_unlock;
d397712b 893
172ddd60 894 em = alloc_extent_map();
b9aa55be
LB
895 if (!em) {
896 ret = -ENOMEM;
ace68bac 897 goto out_reserve;
b9aa55be 898 }
e6dcd2dc 899 em->start = start;
445a6944 900 em->orig_start = em->start;
771ed689
CM
901 ram_size = ins.offset;
902 em->len = ins.offset;
2ab28f32
JB
903 em->mod_start = em->start;
904 em->mod_len = em->len;
c8b97818 905
e6dcd2dc 906 em->block_start = ins.objectid;
c8b97818 907 em->block_len = ins.offset;
b4939680 908 em->orig_block_len = ins.offset;
cc95bef6 909 em->ram_bytes = ram_size;
e6dcd2dc 910 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 911 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 912 em->generation = -1;
c8b97818 913
d397712b 914 while (1) {
890871be 915 write_lock(&em_tree->lock);
09a2a8f9 916 ret = add_extent_mapping(em_tree, em, 1);
890871be 917 write_unlock(&em_tree->lock);
e6dcd2dc
CM
918 if (ret != -EEXIST) {
919 free_extent_map(em);
920 break;
921 }
922 btrfs_drop_extent_cache(inode, start,
c8b97818 923 start + ram_size - 1, 0);
e6dcd2dc 924 }
ace68bac
LB
925 if (ret)
926 goto out_reserve;
e6dcd2dc 927
98d20f67 928 cur_alloc_size = ins.offset;
e6dcd2dc 929 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 930 ram_size, cur_alloc_size, 0);
ace68bac
LB
931 if (ret)
932 goto out_reserve;
c8b97818 933
17d217fe
YZ
934 if (root->root_key.objectid ==
935 BTRFS_DATA_RELOC_TREE_OBJECTID) {
936 ret = btrfs_reloc_clone_csums(inode, start,
937 cur_alloc_size);
00361589 938 if (ret)
ace68bac 939 goto out_reserve;
17d217fe
YZ
940 }
941
d397712b 942 if (disk_num_bytes < cur_alloc_size)
3b951516 943 break;
d397712b 944
c8b97818
CM
945 /* we're not doing compressed IO, don't unlock the first
946 * page (which the caller expects to stay locked), don't
947 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
948 *
949 * Do set the Private2 bit so we know this page was properly
950 * setup for writepage
c8b97818 951 */
c2790a2e
JB
952 op = unlock ? PAGE_UNLOCK : 0;
953 op |= PAGE_SET_PRIVATE2;
a791e35e 954
c2790a2e
JB
955 extent_clear_unlock_delalloc(inode, start,
956 start + ram_size - 1, locked_page,
957 EXTENT_LOCKED | EXTENT_DELALLOC,
958 op);
c8b97818 959 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
960 num_bytes -= cur_alloc_size;
961 alloc_hint = ins.objectid + ins.offset;
962 start += cur_alloc_size;
b888db2b 963 }
79787eaa 964out:
be20aa9d 965 return ret;
b7d5b0a8 966
ace68bac
LB
967out_reserve:
968 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 969out_unlock:
c2790a2e 970 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
971 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
972 EXTENT_DELALLOC | EXTENT_DEFRAG,
973 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
974 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 975 goto out;
771ed689 976}
c8b97818 977
771ed689
CM
978/*
979 * work queue call back to started compression on a file and pages
980 */
981static noinline void async_cow_start(struct btrfs_work *work)
982{
983 struct async_cow *async_cow;
984 int num_added = 0;
985 async_cow = container_of(work, struct async_cow, work);
986
987 compress_file_range(async_cow->inode, async_cow->locked_page,
988 async_cow->start, async_cow->end, async_cow,
989 &num_added);
8180ef88 990 if (num_added == 0) {
cb77fcd8 991 btrfs_add_delayed_iput(async_cow->inode);
771ed689 992 async_cow->inode = NULL;
8180ef88 993 }
771ed689
CM
994}
995
996/*
997 * work queue call back to submit previously compressed pages
998 */
999static noinline void async_cow_submit(struct btrfs_work *work)
1000{
1001 struct async_cow *async_cow;
1002 struct btrfs_root *root;
1003 unsigned long nr_pages;
1004
1005 async_cow = container_of(work, struct async_cow, work);
1006
1007 root = async_cow->root;
1008 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1009 PAGE_CACHE_SHIFT;
1010
66657b31 1011 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1012 5 * 1024 * 1024 &&
771ed689
CM
1013 waitqueue_active(&root->fs_info->async_submit_wait))
1014 wake_up(&root->fs_info->async_submit_wait);
1015
d397712b 1016 if (async_cow->inode)
771ed689 1017 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1018}
c8b97818 1019
771ed689
CM
1020static noinline void async_cow_free(struct btrfs_work *work)
1021{
1022 struct async_cow *async_cow;
1023 async_cow = container_of(work, struct async_cow, work);
8180ef88 1024 if (async_cow->inode)
cb77fcd8 1025 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1026 kfree(async_cow);
1027}
1028
1029static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1030 u64 start, u64 end, int *page_started,
1031 unsigned long *nr_written)
1032{
1033 struct async_cow *async_cow;
1034 struct btrfs_root *root = BTRFS_I(inode)->root;
1035 unsigned long nr_pages;
1036 u64 cur_end;
287082b0 1037 int limit = 10 * 1024 * 1024;
771ed689 1038
a3429ab7
CM
1039 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1040 1, 0, NULL, GFP_NOFS);
d397712b 1041 while (start < end) {
771ed689 1042 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1043 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1044 async_cow->inode = igrab(inode);
771ed689
CM
1045 async_cow->root = root;
1046 async_cow->locked_page = locked_page;
1047 async_cow->start = start;
1048
6cbff00f 1049 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1050 cur_end = end;
1051 else
1052 cur_end = min(end, start + 512 * 1024 - 1);
1053
1054 async_cow->end = cur_end;
1055 INIT_LIST_HEAD(&async_cow->extents);
1056
1057 async_cow->work.func = async_cow_start;
1058 async_cow->work.ordered_func = async_cow_submit;
1059 async_cow->work.ordered_free = async_cow_free;
1060 async_cow->work.flags = 0;
1061
771ed689
CM
1062 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1063 PAGE_CACHE_SHIFT;
1064 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1065
1066 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1067 &async_cow->work);
1068
1069 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1070 wait_event(root->fs_info->async_submit_wait,
1071 (atomic_read(&root->fs_info->async_delalloc_pages) <
1072 limit));
1073 }
1074
d397712b 1075 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1076 atomic_read(&root->fs_info->async_delalloc_pages)) {
1077 wait_event(root->fs_info->async_submit_wait,
1078 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1079 0));
1080 }
1081
1082 *nr_written += nr_pages;
1083 start = cur_end + 1;
1084 }
1085 *page_started = 1;
1086 return 0;
be20aa9d
CM
1087}
1088
d397712b 1089static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1090 u64 bytenr, u64 num_bytes)
1091{
1092 int ret;
1093 struct btrfs_ordered_sum *sums;
1094 LIST_HEAD(list);
1095
07d400a6 1096 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1097 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1098 if (ret == 0 && list_empty(&list))
1099 return 0;
1100
1101 while (!list_empty(&list)) {
1102 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1103 list_del(&sums->list);
1104 kfree(sums);
1105 }
1106 return 1;
1107}
1108
d352ac68
CM
1109/*
1110 * when nowcow writeback call back. This checks for snapshots or COW copies
1111 * of the extents that exist in the file, and COWs the file as required.
1112 *
1113 * If no cow copies or snapshots exist, we write directly to the existing
1114 * blocks on disk
1115 */
7f366cfe
CM
1116static noinline int run_delalloc_nocow(struct inode *inode,
1117 struct page *locked_page,
771ed689
CM
1118 u64 start, u64 end, int *page_started, int force,
1119 unsigned long *nr_written)
be20aa9d 1120{
be20aa9d 1121 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1122 struct btrfs_trans_handle *trans;
be20aa9d 1123 struct extent_buffer *leaf;
be20aa9d 1124 struct btrfs_path *path;
80ff3856 1125 struct btrfs_file_extent_item *fi;
be20aa9d 1126 struct btrfs_key found_key;
80ff3856
YZ
1127 u64 cow_start;
1128 u64 cur_offset;
1129 u64 extent_end;
5d4f98a2 1130 u64 extent_offset;
80ff3856
YZ
1131 u64 disk_bytenr;
1132 u64 num_bytes;
b4939680 1133 u64 disk_num_bytes;
cc95bef6 1134 u64 ram_bytes;
80ff3856 1135 int extent_type;
79787eaa 1136 int ret, err;
d899e052 1137 int type;
80ff3856
YZ
1138 int nocow;
1139 int check_prev = 1;
82d5902d 1140 bool nolock;
33345d01 1141 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1142
1143 path = btrfs_alloc_path();
17ca04af 1144 if (!path) {
c2790a2e
JB
1145 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1146 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1147 EXTENT_DO_ACCOUNTING |
1148 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1149 PAGE_CLEAR_DIRTY |
1150 PAGE_SET_WRITEBACK |
1151 PAGE_END_WRITEBACK);
d8926bb3 1152 return -ENOMEM;
17ca04af 1153 }
82d5902d 1154
83eea1f1 1155 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1156
1157 if (nolock)
7a7eaa40 1158 trans = btrfs_join_transaction_nolock(root);
82d5902d 1159 else
7a7eaa40 1160 trans = btrfs_join_transaction(root);
ff5714cc 1161
79787eaa 1162 if (IS_ERR(trans)) {
c2790a2e
JB
1163 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1164 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1165 EXTENT_DO_ACCOUNTING |
1166 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1167 PAGE_CLEAR_DIRTY |
1168 PAGE_SET_WRITEBACK |
1169 PAGE_END_WRITEBACK);
79787eaa
JM
1170 btrfs_free_path(path);
1171 return PTR_ERR(trans);
1172 }
1173
74b21075 1174 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1175
80ff3856
YZ
1176 cow_start = (u64)-1;
1177 cur_offset = start;
1178 while (1) {
33345d01 1179 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1180 cur_offset, 0);
79787eaa
JM
1181 if (ret < 0) {
1182 btrfs_abort_transaction(trans, root, ret);
1183 goto error;
1184 }
80ff3856
YZ
1185 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1186 leaf = path->nodes[0];
1187 btrfs_item_key_to_cpu(leaf, &found_key,
1188 path->slots[0] - 1);
33345d01 1189 if (found_key.objectid == ino &&
80ff3856
YZ
1190 found_key.type == BTRFS_EXTENT_DATA_KEY)
1191 path->slots[0]--;
1192 }
1193 check_prev = 0;
1194next_slot:
1195 leaf = path->nodes[0];
1196 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1197 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1198 if (ret < 0) {
1199 btrfs_abort_transaction(trans, root, ret);
1200 goto error;
1201 }
80ff3856
YZ
1202 if (ret > 0)
1203 break;
1204 leaf = path->nodes[0];
1205 }
be20aa9d 1206
80ff3856
YZ
1207 nocow = 0;
1208 disk_bytenr = 0;
17d217fe 1209 num_bytes = 0;
80ff3856
YZ
1210 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1211
33345d01 1212 if (found_key.objectid > ino ||
80ff3856
YZ
1213 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1214 found_key.offset > end)
1215 break;
1216
1217 if (found_key.offset > cur_offset) {
1218 extent_end = found_key.offset;
e9061e21 1219 extent_type = 0;
80ff3856
YZ
1220 goto out_check;
1221 }
1222
1223 fi = btrfs_item_ptr(leaf, path->slots[0],
1224 struct btrfs_file_extent_item);
1225 extent_type = btrfs_file_extent_type(leaf, fi);
1226
cc95bef6 1227 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1228 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1229 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1230 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1231 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1232 extent_end = found_key.offset +
1233 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1234 disk_num_bytes =
1235 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1236 if (extent_end <= start) {
1237 path->slots[0]++;
1238 goto next_slot;
1239 }
17d217fe
YZ
1240 if (disk_bytenr == 0)
1241 goto out_check;
80ff3856
YZ
1242 if (btrfs_file_extent_compression(leaf, fi) ||
1243 btrfs_file_extent_encryption(leaf, fi) ||
1244 btrfs_file_extent_other_encoding(leaf, fi))
1245 goto out_check;
d899e052
YZ
1246 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1247 goto out_check;
d2fb3437 1248 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1249 goto out_check;
33345d01 1250 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1251 found_key.offset -
1252 extent_offset, disk_bytenr))
17d217fe 1253 goto out_check;
5d4f98a2 1254 disk_bytenr += extent_offset;
17d217fe
YZ
1255 disk_bytenr += cur_offset - found_key.offset;
1256 num_bytes = min(end + 1, extent_end) - cur_offset;
1257 /*
1258 * force cow if csum exists in the range.
1259 * this ensure that csum for a given extent are
1260 * either valid or do not exist.
1261 */
1262 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1263 goto out_check;
80ff3856
YZ
1264 nocow = 1;
1265 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1266 extent_end = found_key.offset +
1267 btrfs_file_extent_inline_len(leaf, fi);
1268 extent_end = ALIGN(extent_end, root->sectorsize);
1269 } else {
1270 BUG_ON(1);
1271 }
1272out_check:
1273 if (extent_end <= start) {
1274 path->slots[0]++;
1275 goto next_slot;
1276 }
1277 if (!nocow) {
1278 if (cow_start == (u64)-1)
1279 cow_start = cur_offset;
1280 cur_offset = extent_end;
1281 if (cur_offset > end)
1282 break;
1283 path->slots[0]++;
1284 goto next_slot;
7ea394f1
YZ
1285 }
1286
b3b4aa74 1287 btrfs_release_path(path);
80ff3856 1288 if (cow_start != (u64)-1) {
00361589
JB
1289 ret = cow_file_range(inode, locked_page,
1290 cow_start, found_key.offset - 1,
1291 page_started, nr_written, 1);
79787eaa
JM
1292 if (ret) {
1293 btrfs_abort_transaction(trans, root, ret);
1294 goto error;
1295 }
80ff3856 1296 cow_start = (u64)-1;
7ea394f1 1297 }
80ff3856 1298
d899e052
YZ
1299 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1300 struct extent_map *em;
1301 struct extent_map_tree *em_tree;
1302 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1303 em = alloc_extent_map();
79787eaa 1304 BUG_ON(!em); /* -ENOMEM */
d899e052 1305 em->start = cur_offset;
70c8a91c 1306 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1307 em->len = num_bytes;
1308 em->block_len = num_bytes;
1309 em->block_start = disk_bytenr;
b4939680 1310 em->orig_block_len = disk_num_bytes;
cc95bef6 1311 em->ram_bytes = ram_bytes;
d899e052 1312 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1313 em->mod_start = em->start;
1314 em->mod_len = em->len;
d899e052 1315 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1316 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1317 em->generation = -1;
d899e052 1318 while (1) {
890871be 1319 write_lock(&em_tree->lock);
09a2a8f9 1320 ret = add_extent_mapping(em_tree, em, 1);
890871be 1321 write_unlock(&em_tree->lock);
d899e052
YZ
1322 if (ret != -EEXIST) {
1323 free_extent_map(em);
1324 break;
1325 }
1326 btrfs_drop_extent_cache(inode, em->start,
1327 em->start + em->len - 1, 0);
1328 }
1329 type = BTRFS_ORDERED_PREALLOC;
1330 } else {
1331 type = BTRFS_ORDERED_NOCOW;
1332 }
80ff3856
YZ
1333
1334 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1335 num_bytes, num_bytes, type);
79787eaa 1336 BUG_ON(ret); /* -ENOMEM */
771ed689 1337
efa56464
YZ
1338 if (root->root_key.objectid ==
1339 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1340 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1341 num_bytes);
79787eaa
JM
1342 if (ret) {
1343 btrfs_abort_transaction(trans, root, ret);
1344 goto error;
1345 }
efa56464
YZ
1346 }
1347
c2790a2e
JB
1348 extent_clear_unlock_delalloc(inode, cur_offset,
1349 cur_offset + num_bytes - 1,
1350 locked_page, EXTENT_LOCKED |
1351 EXTENT_DELALLOC, PAGE_UNLOCK |
1352 PAGE_SET_PRIVATE2);
80ff3856
YZ
1353 cur_offset = extent_end;
1354 if (cur_offset > end)
1355 break;
be20aa9d 1356 }
b3b4aa74 1357 btrfs_release_path(path);
80ff3856 1358
17ca04af 1359 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1360 cow_start = cur_offset;
17ca04af
JB
1361 cur_offset = end;
1362 }
1363
80ff3856 1364 if (cow_start != (u64)-1) {
00361589
JB
1365 ret = cow_file_range(inode, locked_page, cow_start, end,
1366 page_started, nr_written, 1);
79787eaa
JM
1367 if (ret) {
1368 btrfs_abort_transaction(trans, root, ret);
1369 goto error;
1370 }
80ff3856
YZ
1371 }
1372
79787eaa 1373error:
a698d075 1374 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1375 if (!ret)
1376 ret = err;
1377
17ca04af 1378 if (ret && cur_offset < end)
c2790a2e
JB
1379 extent_clear_unlock_delalloc(inode, cur_offset, end,
1380 locked_page, EXTENT_LOCKED |
151a41bc
JB
1381 EXTENT_DELALLOC | EXTENT_DEFRAG |
1382 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1383 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1384 PAGE_SET_WRITEBACK |
1385 PAGE_END_WRITEBACK);
7ea394f1 1386 btrfs_free_path(path);
79787eaa 1387 return ret;
be20aa9d
CM
1388}
1389
d352ac68
CM
1390/*
1391 * extent_io.c call back to do delayed allocation processing
1392 */
c8b97818 1393static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1394 u64 start, u64 end, int *page_started,
1395 unsigned long *nr_written)
be20aa9d 1396{
be20aa9d 1397 int ret;
7f366cfe 1398 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1399
7ddf5a42 1400 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1401 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1402 page_started, 1, nr_written);
7ddf5a42 1403 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1404 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1405 page_started, 0, nr_written);
7ddf5a42
JB
1406 } else if (!btrfs_test_opt(root, COMPRESS) &&
1407 !(BTRFS_I(inode)->force_compress) &&
1408 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1409 ret = cow_file_range(inode, locked_page, start, end,
1410 page_started, nr_written, 1);
7ddf5a42
JB
1411 } else {
1412 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1413 &BTRFS_I(inode)->runtime_flags);
771ed689 1414 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1415 page_started, nr_written);
7ddf5a42 1416 }
b888db2b
CM
1417 return ret;
1418}
1419
1bf85046
JM
1420static void btrfs_split_extent_hook(struct inode *inode,
1421 struct extent_state *orig, u64 split)
9ed74f2d 1422{
0ca1f7ce 1423 /* not delalloc, ignore it */
9ed74f2d 1424 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1425 return;
9ed74f2d 1426
9e0baf60
JB
1427 spin_lock(&BTRFS_I(inode)->lock);
1428 BTRFS_I(inode)->outstanding_extents++;
1429 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1430}
1431
1432/*
1433 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1434 * extents so we can keep track of new extents that are just merged onto old
1435 * extents, such as when we are doing sequential writes, so we can properly
1436 * account for the metadata space we'll need.
1437 */
1bf85046
JM
1438static void btrfs_merge_extent_hook(struct inode *inode,
1439 struct extent_state *new,
1440 struct extent_state *other)
9ed74f2d 1441{
9ed74f2d
JB
1442 /* not delalloc, ignore it */
1443 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1444 return;
9ed74f2d 1445
9e0baf60
JB
1446 spin_lock(&BTRFS_I(inode)->lock);
1447 BTRFS_I(inode)->outstanding_extents--;
1448 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1449}
1450
eb73c1b7
MX
1451static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1452 struct inode *inode)
1453{
1454 spin_lock(&root->delalloc_lock);
1455 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1456 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1457 &root->delalloc_inodes);
1458 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1459 &BTRFS_I(inode)->runtime_flags);
1460 root->nr_delalloc_inodes++;
1461 if (root->nr_delalloc_inodes == 1) {
1462 spin_lock(&root->fs_info->delalloc_root_lock);
1463 BUG_ON(!list_empty(&root->delalloc_root));
1464 list_add_tail(&root->delalloc_root,
1465 &root->fs_info->delalloc_roots);
1466 spin_unlock(&root->fs_info->delalloc_root_lock);
1467 }
1468 }
1469 spin_unlock(&root->delalloc_lock);
1470}
1471
1472static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1473 struct inode *inode)
1474{
1475 spin_lock(&root->delalloc_lock);
1476 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1477 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1478 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1479 &BTRFS_I(inode)->runtime_flags);
1480 root->nr_delalloc_inodes--;
1481 if (!root->nr_delalloc_inodes) {
1482 spin_lock(&root->fs_info->delalloc_root_lock);
1483 BUG_ON(list_empty(&root->delalloc_root));
1484 list_del_init(&root->delalloc_root);
1485 spin_unlock(&root->fs_info->delalloc_root_lock);
1486 }
1487 }
1488 spin_unlock(&root->delalloc_lock);
1489}
1490
d352ac68
CM
1491/*
1492 * extent_io.c set_bit_hook, used to track delayed allocation
1493 * bytes in this file, and to maintain the list of inodes that
1494 * have pending delalloc work to be done.
1495 */
1bf85046 1496static void btrfs_set_bit_hook(struct inode *inode,
41074888 1497 struct extent_state *state, unsigned long *bits)
291d673e 1498{
9ed74f2d 1499
75eff68e
CM
1500 /*
1501 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1502 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1503 * bit, which is only set or cleared with irqs on
1504 */
0ca1f7ce 1505 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1506 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1507 u64 len = state->end + 1 - state->start;
83eea1f1 1508 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1509
9e0baf60 1510 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1511 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1512 } else {
1513 spin_lock(&BTRFS_I(inode)->lock);
1514 BTRFS_I(inode)->outstanding_extents++;
1515 spin_unlock(&BTRFS_I(inode)->lock);
1516 }
287a0ab9 1517
963d678b
MX
1518 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1519 root->fs_info->delalloc_batch);
df0af1a5 1520 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1521 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5 1522 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1523 &BTRFS_I(inode)->runtime_flags))
1524 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1525 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1526 }
291d673e
CM
1527}
1528
d352ac68
CM
1529/*
1530 * extent_io.c clear_bit_hook, see set_bit_hook for why
1531 */
1bf85046 1532static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1533 struct extent_state *state,
1534 unsigned long *bits)
291d673e 1535{
75eff68e
CM
1536 /*
1537 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1538 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1539 * bit, which is only set or cleared with irqs on
1540 */
0ca1f7ce 1541 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1542 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1543 u64 len = state->end + 1 - state->start;
83eea1f1 1544 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1545
9e0baf60 1546 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1547 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1548 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1549 spin_lock(&BTRFS_I(inode)->lock);
1550 BTRFS_I(inode)->outstanding_extents--;
1551 spin_unlock(&BTRFS_I(inode)->lock);
1552 }
0ca1f7ce
YZ
1553
1554 if (*bits & EXTENT_DO_ACCOUNTING)
1555 btrfs_delalloc_release_metadata(inode, len);
1556
0cb59c99 1557 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1558 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1559 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1560
963d678b
MX
1561 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1562 root->fs_info->delalloc_batch);
df0af1a5 1563 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1564 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1565 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1566 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1567 &BTRFS_I(inode)->runtime_flags))
1568 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1569 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1570 }
291d673e
CM
1571}
1572
d352ac68
CM
1573/*
1574 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1575 * we don't create bios that span stripes or chunks
1576 */
64a16701 1577int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1578 size_t size, struct bio *bio,
1579 unsigned long bio_flags)
239b14b3
CM
1580{
1581 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1582 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1583 u64 length = 0;
1584 u64 map_length;
239b14b3
CM
1585 int ret;
1586
771ed689
CM
1587 if (bio_flags & EXTENT_BIO_COMPRESSED)
1588 return 0;
1589
f2d8d74d 1590 length = bio->bi_size;
239b14b3 1591 map_length = length;
64a16701 1592 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1593 &map_length, NULL, 0);
3ec706c8 1594 /* Will always return 0 with map_multi == NULL */
3444a972 1595 BUG_ON(ret < 0);
d397712b 1596 if (map_length < length + size)
239b14b3 1597 return 1;
3444a972 1598 return 0;
239b14b3
CM
1599}
1600
d352ac68
CM
1601/*
1602 * in order to insert checksums into the metadata in large chunks,
1603 * we wait until bio submission time. All the pages in the bio are
1604 * checksummed and sums are attached onto the ordered extent record.
1605 *
1606 * At IO completion time the cums attached on the ordered extent record
1607 * are inserted into the btree
1608 */
d397712b
CM
1609static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1610 struct bio *bio, int mirror_num,
eaf25d93
CM
1611 unsigned long bio_flags,
1612 u64 bio_offset)
065631f6 1613{
065631f6 1614 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1615 int ret = 0;
e015640f 1616
d20f7043 1617 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1618 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1619 return 0;
1620}
e015640f 1621
4a69a410
CM
1622/*
1623 * in order to insert checksums into the metadata in large chunks,
1624 * we wait until bio submission time. All the pages in the bio are
1625 * checksummed and sums are attached onto the ordered extent record.
1626 *
1627 * At IO completion time the cums attached on the ordered extent record
1628 * are inserted into the btree
1629 */
b2950863 1630static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1631 int mirror_num, unsigned long bio_flags,
1632 u64 bio_offset)
4a69a410
CM
1633{
1634 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1635 int ret;
1636
1637 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1638 if (ret)
1639 bio_endio(bio, ret);
1640 return ret;
44b8bd7e
CM
1641}
1642
d352ac68 1643/*
cad321ad
CM
1644 * extent_io.c submission hook. This does the right thing for csum calculation
1645 * on write, or reading the csums from the tree before a read
d352ac68 1646 */
b2950863 1647static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1648 int mirror_num, unsigned long bio_flags,
1649 u64 bio_offset)
44b8bd7e
CM
1650{
1651 struct btrfs_root *root = BTRFS_I(inode)->root;
1652 int ret = 0;
19b9bdb0 1653 int skip_sum;
0417341e 1654 int metadata = 0;
b812ce28 1655 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1656
6cbff00f 1657 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1658
83eea1f1 1659 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1660 metadata = 2;
1661
7b6d91da 1662 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1663 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1664 if (ret)
61891923 1665 goto out;
5fd02043 1666
d20f7043 1667 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1668 ret = btrfs_submit_compressed_read(inode, bio,
1669 mirror_num,
1670 bio_flags);
1671 goto out;
c2db1073
TI
1672 } else if (!skip_sum) {
1673 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1674 if (ret)
61891923 1675 goto out;
c2db1073 1676 }
4d1b5fb4 1677 goto mapit;
b812ce28 1678 } else if (async && !skip_sum) {
17d217fe
YZ
1679 /* csum items have already been cloned */
1680 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1681 goto mapit;
19b9bdb0 1682 /* we're doing a write, do the async checksumming */
61891923 1683 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1684 inode, rw, bio, mirror_num,
eaf25d93
CM
1685 bio_flags, bio_offset,
1686 __btrfs_submit_bio_start,
4a69a410 1687 __btrfs_submit_bio_done);
61891923 1688 goto out;
b812ce28
JB
1689 } else if (!skip_sum) {
1690 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1691 if (ret)
1692 goto out;
19b9bdb0
CM
1693 }
1694
0b86a832 1695mapit:
61891923
SB
1696 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1697
1698out:
1699 if (ret < 0)
1700 bio_endio(bio, ret);
1701 return ret;
065631f6 1702}
6885f308 1703
d352ac68
CM
1704/*
1705 * given a list of ordered sums record them in the inode. This happens
1706 * at IO completion time based on sums calculated at bio submission time.
1707 */
ba1da2f4 1708static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1709 struct inode *inode, u64 file_offset,
1710 struct list_head *list)
1711{
e6dcd2dc
CM
1712 struct btrfs_ordered_sum *sum;
1713
c6e30871 1714 list_for_each_entry(sum, list, list) {
39847c4d 1715 trans->adding_csums = 1;
d20f7043
CM
1716 btrfs_csum_file_blocks(trans,
1717 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1718 trans->adding_csums = 0;
e6dcd2dc
CM
1719 }
1720 return 0;
1721}
1722
2ac55d41
JB
1723int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1724 struct extent_state **cached_state)
ea8c2819 1725{
6c1500f2 1726 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1727 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1728 cached_state, GFP_NOFS);
ea8c2819
CM
1729}
1730
d352ac68 1731/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1732struct btrfs_writepage_fixup {
1733 struct page *page;
1734 struct btrfs_work work;
1735};
1736
b2950863 1737static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1738{
1739 struct btrfs_writepage_fixup *fixup;
1740 struct btrfs_ordered_extent *ordered;
2ac55d41 1741 struct extent_state *cached_state = NULL;
247e743c
CM
1742 struct page *page;
1743 struct inode *inode;
1744 u64 page_start;
1745 u64 page_end;
87826df0 1746 int ret;
247e743c
CM
1747
1748 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1749 page = fixup->page;
4a096752 1750again:
247e743c
CM
1751 lock_page(page);
1752 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1753 ClearPageChecked(page);
1754 goto out_page;
1755 }
1756
1757 inode = page->mapping->host;
1758 page_start = page_offset(page);
1759 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1760
2ac55d41 1761 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1762 &cached_state);
4a096752
CM
1763
1764 /* already ordered? We're done */
8b62b72b 1765 if (PagePrivate2(page))
247e743c 1766 goto out;
4a096752
CM
1767
1768 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1769 if (ordered) {
2ac55d41
JB
1770 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1771 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1772 unlock_page(page);
1773 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1774 btrfs_put_ordered_extent(ordered);
4a096752
CM
1775 goto again;
1776 }
247e743c 1777
87826df0
JM
1778 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1779 if (ret) {
1780 mapping_set_error(page->mapping, ret);
1781 end_extent_writepage(page, ret, page_start, page_end);
1782 ClearPageChecked(page);
1783 goto out;
1784 }
1785
2ac55d41 1786 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1787 ClearPageChecked(page);
87826df0 1788 set_page_dirty(page);
247e743c 1789out:
2ac55d41
JB
1790 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1791 &cached_state, GFP_NOFS);
247e743c
CM
1792out_page:
1793 unlock_page(page);
1794 page_cache_release(page);
b897abec 1795 kfree(fixup);
247e743c
CM
1796}
1797
1798/*
1799 * There are a few paths in the higher layers of the kernel that directly
1800 * set the page dirty bit without asking the filesystem if it is a
1801 * good idea. This causes problems because we want to make sure COW
1802 * properly happens and the data=ordered rules are followed.
1803 *
c8b97818 1804 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1805 * hasn't been properly setup for IO. We kick off an async process
1806 * to fix it up. The async helper will wait for ordered extents, set
1807 * the delalloc bit and make it safe to write the page.
1808 */
b2950863 1809static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1810{
1811 struct inode *inode = page->mapping->host;
1812 struct btrfs_writepage_fixup *fixup;
1813 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1814
8b62b72b
CM
1815 /* this page is properly in the ordered list */
1816 if (TestClearPagePrivate2(page))
247e743c
CM
1817 return 0;
1818
1819 if (PageChecked(page))
1820 return -EAGAIN;
1821
1822 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1823 if (!fixup)
1824 return -EAGAIN;
f421950f 1825
247e743c
CM
1826 SetPageChecked(page);
1827 page_cache_get(page);
1828 fixup->work.func = btrfs_writepage_fixup_worker;
1829 fixup->page = page;
1830 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1831 return -EBUSY;
247e743c
CM
1832}
1833
d899e052
YZ
1834static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1835 struct inode *inode, u64 file_pos,
1836 u64 disk_bytenr, u64 disk_num_bytes,
1837 u64 num_bytes, u64 ram_bytes,
1838 u8 compression, u8 encryption,
1839 u16 other_encoding, int extent_type)
1840{
1841 struct btrfs_root *root = BTRFS_I(inode)->root;
1842 struct btrfs_file_extent_item *fi;
1843 struct btrfs_path *path;
1844 struct extent_buffer *leaf;
1845 struct btrfs_key ins;
d899e052
YZ
1846 int ret;
1847
1848 path = btrfs_alloc_path();
d8926bb3
MF
1849 if (!path)
1850 return -ENOMEM;
d899e052 1851
b9473439 1852 path->leave_spinning = 1;
a1ed835e
CM
1853
1854 /*
1855 * we may be replacing one extent in the tree with another.
1856 * The new extent is pinned in the extent map, and we don't want
1857 * to drop it from the cache until it is completely in the btree.
1858 *
1859 * So, tell btrfs_drop_extents to leave this extent in the cache.
1860 * the caller is expected to unpin it and allow it to be merged
1861 * with the others.
1862 */
5dc562c5 1863 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1864 file_pos + num_bytes, 0);
79787eaa
JM
1865 if (ret)
1866 goto out;
d899e052 1867
33345d01 1868 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1869 ins.offset = file_pos;
1870 ins.type = BTRFS_EXTENT_DATA_KEY;
1871 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1872 if (ret)
1873 goto out;
d899e052
YZ
1874 leaf = path->nodes[0];
1875 fi = btrfs_item_ptr(leaf, path->slots[0],
1876 struct btrfs_file_extent_item);
1877 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1878 btrfs_set_file_extent_type(leaf, fi, extent_type);
1879 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1880 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1881 btrfs_set_file_extent_offset(leaf, fi, 0);
1882 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1883 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1884 btrfs_set_file_extent_compression(leaf, fi, compression);
1885 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1886 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1887
d899e052 1888 btrfs_mark_buffer_dirty(leaf);
ce195332 1889 btrfs_release_path(path);
d899e052
YZ
1890
1891 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1892
1893 ins.objectid = disk_bytenr;
1894 ins.offset = disk_num_bytes;
1895 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1896 ret = btrfs_alloc_reserved_file_extent(trans, root,
1897 root->root_key.objectid,
33345d01 1898 btrfs_ino(inode), file_pos, &ins);
79787eaa 1899out:
d899e052 1900 btrfs_free_path(path);
b9473439 1901
79787eaa 1902 return ret;
d899e052
YZ
1903}
1904
38c227d8
LB
1905/* snapshot-aware defrag */
1906struct sa_defrag_extent_backref {
1907 struct rb_node node;
1908 struct old_sa_defrag_extent *old;
1909 u64 root_id;
1910 u64 inum;
1911 u64 file_pos;
1912 u64 extent_offset;
1913 u64 num_bytes;
1914 u64 generation;
1915};
1916
1917struct old_sa_defrag_extent {
1918 struct list_head list;
1919 struct new_sa_defrag_extent *new;
1920
1921 u64 extent_offset;
1922 u64 bytenr;
1923 u64 offset;
1924 u64 len;
1925 int count;
1926};
1927
1928struct new_sa_defrag_extent {
1929 struct rb_root root;
1930 struct list_head head;
1931 struct btrfs_path *path;
1932 struct inode *inode;
1933 u64 file_pos;
1934 u64 len;
1935 u64 bytenr;
1936 u64 disk_len;
1937 u8 compress_type;
1938};
1939
1940static int backref_comp(struct sa_defrag_extent_backref *b1,
1941 struct sa_defrag_extent_backref *b2)
1942{
1943 if (b1->root_id < b2->root_id)
1944 return -1;
1945 else if (b1->root_id > b2->root_id)
1946 return 1;
1947
1948 if (b1->inum < b2->inum)
1949 return -1;
1950 else if (b1->inum > b2->inum)
1951 return 1;
1952
1953 if (b1->file_pos < b2->file_pos)
1954 return -1;
1955 else if (b1->file_pos > b2->file_pos)
1956 return 1;
1957
1958 /*
1959 * [------------------------------] ===> (a range of space)
1960 * |<--->| |<---->| =============> (fs/file tree A)
1961 * |<---------------------------->| ===> (fs/file tree B)
1962 *
1963 * A range of space can refer to two file extents in one tree while
1964 * refer to only one file extent in another tree.
1965 *
1966 * So we may process a disk offset more than one time(two extents in A)
1967 * and locate at the same extent(one extent in B), then insert two same
1968 * backrefs(both refer to the extent in B).
1969 */
1970 return 0;
1971}
1972
1973static void backref_insert(struct rb_root *root,
1974 struct sa_defrag_extent_backref *backref)
1975{
1976 struct rb_node **p = &root->rb_node;
1977 struct rb_node *parent = NULL;
1978 struct sa_defrag_extent_backref *entry;
1979 int ret;
1980
1981 while (*p) {
1982 parent = *p;
1983 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
1984
1985 ret = backref_comp(backref, entry);
1986 if (ret < 0)
1987 p = &(*p)->rb_left;
1988 else
1989 p = &(*p)->rb_right;
1990 }
1991
1992 rb_link_node(&backref->node, parent, p);
1993 rb_insert_color(&backref->node, root);
1994}
1995
1996/*
1997 * Note the backref might has changed, and in this case we just return 0.
1998 */
1999static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2000 void *ctx)
2001{
2002 struct btrfs_file_extent_item *extent;
2003 struct btrfs_fs_info *fs_info;
2004 struct old_sa_defrag_extent *old = ctx;
2005 struct new_sa_defrag_extent *new = old->new;
2006 struct btrfs_path *path = new->path;
2007 struct btrfs_key key;
2008 struct btrfs_root *root;
2009 struct sa_defrag_extent_backref *backref;
2010 struct extent_buffer *leaf;
2011 struct inode *inode = new->inode;
2012 int slot;
2013 int ret;
2014 u64 extent_offset;
2015 u64 num_bytes;
2016
2017 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2018 inum == btrfs_ino(inode))
2019 return 0;
2020
2021 key.objectid = root_id;
2022 key.type = BTRFS_ROOT_ITEM_KEY;
2023 key.offset = (u64)-1;
2024
2025 fs_info = BTRFS_I(inode)->root->fs_info;
2026 root = btrfs_read_fs_root_no_name(fs_info, &key);
2027 if (IS_ERR(root)) {
2028 if (PTR_ERR(root) == -ENOENT)
2029 return 0;
2030 WARN_ON(1);
2031 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2032 inum, offset, root_id);
2033 return PTR_ERR(root);
2034 }
2035
2036 key.objectid = inum;
2037 key.type = BTRFS_EXTENT_DATA_KEY;
2038 if (offset > (u64)-1 << 32)
2039 key.offset = 0;
2040 else
2041 key.offset = offset;
2042
2043 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2044 if (ret < 0) {
2045 WARN_ON(1);
2046 return ret;
2047 }
50f1319c 2048 ret = 0;
38c227d8
LB
2049
2050 while (1) {
2051 cond_resched();
2052
2053 leaf = path->nodes[0];
2054 slot = path->slots[0];
2055
2056 if (slot >= btrfs_header_nritems(leaf)) {
2057 ret = btrfs_next_leaf(root, path);
2058 if (ret < 0) {
2059 goto out;
2060 } else if (ret > 0) {
2061 ret = 0;
2062 goto out;
2063 }
2064 continue;
2065 }
2066
2067 path->slots[0]++;
2068
2069 btrfs_item_key_to_cpu(leaf, &key, slot);
2070
2071 if (key.objectid > inum)
2072 goto out;
2073
2074 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2075 continue;
2076
2077 extent = btrfs_item_ptr(leaf, slot,
2078 struct btrfs_file_extent_item);
2079
2080 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2081 continue;
2082
e68afa49
LB
2083 /*
2084 * 'offset' refers to the exact key.offset,
2085 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2086 * (key.offset - extent_offset).
2087 */
2088 if (key.offset != offset)
38c227d8
LB
2089 continue;
2090
e68afa49 2091 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2092 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2093
38c227d8
LB
2094 if (extent_offset >= old->extent_offset + old->offset +
2095 old->len || extent_offset + num_bytes <=
2096 old->extent_offset + old->offset)
2097 continue;
38c227d8
LB
2098 break;
2099 }
2100
2101 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2102 if (!backref) {
2103 ret = -ENOENT;
2104 goto out;
2105 }
2106
2107 backref->root_id = root_id;
2108 backref->inum = inum;
e68afa49 2109 backref->file_pos = offset;
38c227d8
LB
2110 backref->num_bytes = num_bytes;
2111 backref->extent_offset = extent_offset;
2112 backref->generation = btrfs_file_extent_generation(leaf, extent);
2113 backref->old = old;
2114 backref_insert(&new->root, backref);
2115 old->count++;
2116out:
2117 btrfs_release_path(path);
2118 WARN_ON(ret);
2119 return ret;
2120}
2121
2122static noinline bool record_extent_backrefs(struct btrfs_path *path,
2123 struct new_sa_defrag_extent *new)
2124{
2125 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2126 struct old_sa_defrag_extent *old, *tmp;
2127 int ret;
2128
2129 new->path = path;
2130
2131 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2132 ret = iterate_inodes_from_logical(old->bytenr +
2133 old->extent_offset, fs_info,
38c227d8
LB
2134 path, record_one_backref,
2135 old);
2136 BUG_ON(ret < 0 && ret != -ENOENT);
2137
2138 /* no backref to be processed for this extent */
2139 if (!old->count) {
2140 list_del(&old->list);
2141 kfree(old);
2142 }
2143 }
2144
2145 if (list_empty(&new->head))
2146 return false;
2147
2148 return true;
2149}
2150
2151static int relink_is_mergable(struct extent_buffer *leaf,
2152 struct btrfs_file_extent_item *fi,
116e0024 2153 struct new_sa_defrag_extent *new)
38c227d8 2154{
116e0024 2155 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2156 return 0;
2157
2158 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2159 return 0;
2160
116e0024
LB
2161 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2162 return 0;
2163
2164 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2165 btrfs_file_extent_other_encoding(leaf, fi))
2166 return 0;
2167
2168 return 1;
2169}
2170
2171/*
2172 * Note the backref might has changed, and in this case we just return 0.
2173 */
2174static noinline int relink_extent_backref(struct btrfs_path *path,
2175 struct sa_defrag_extent_backref *prev,
2176 struct sa_defrag_extent_backref *backref)
2177{
2178 struct btrfs_file_extent_item *extent;
2179 struct btrfs_file_extent_item *item;
2180 struct btrfs_ordered_extent *ordered;
2181 struct btrfs_trans_handle *trans;
2182 struct btrfs_fs_info *fs_info;
2183 struct btrfs_root *root;
2184 struct btrfs_key key;
2185 struct extent_buffer *leaf;
2186 struct old_sa_defrag_extent *old = backref->old;
2187 struct new_sa_defrag_extent *new = old->new;
2188 struct inode *src_inode = new->inode;
2189 struct inode *inode;
2190 struct extent_state *cached = NULL;
2191 int ret = 0;
2192 u64 start;
2193 u64 len;
2194 u64 lock_start;
2195 u64 lock_end;
2196 bool merge = false;
2197 int index;
2198
2199 if (prev && prev->root_id == backref->root_id &&
2200 prev->inum == backref->inum &&
2201 prev->file_pos + prev->num_bytes == backref->file_pos)
2202 merge = true;
2203
2204 /* step 1: get root */
2205 key.objectid = backref->root_id;
2206 key.type = BTRFS_ROOT_ITEM_KEY;
2207 key.offset = (u64)-1;
2208
2209 fs_info = BTRFS_I(src_inode)->root->fs_info;
2210 index = srcu_read_lock(&fs_info->subvol_srcu);
2211
2212 root = btrfs_read_fs_root_no_name(fs_info, &key);
2213 if (IS_ERR(root)) {
2214 srcu_read_unlock(&fs_info->subvol_srcu, index);
2215 if (PTR_ERR(root) == -ENOENT)
2216 return 0;
2217 return PTR_ERR(root);
2218 }
38c227d8
LB
2219
2220 /* step 2: get inode */
2221 key.objectid = backref->inum;
2222 key.type = BTRFS_INODE_ITEM_KEY;
2223 key.offset = 0;
2224
2225 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2226 if (IS_ERR(inode)) {
2227 srcu_read_unlock(&fs_info->subvol_srcu, index);
2228 return 0;
2229 }
2230
2231 srcu_read_unlock(&fs_info->subvol_srcu, index);
2232
2233 /* step 3: relink backref */
2234 lock_start = backref->file_pos;
2235 lock_end = backref->file_pos + backref->num_bytes - 1;
2236 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2237 0, &cached);
2238
2239 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2240 if (ordered) {
2241 btrfs_put_ordered_extent(ordered);
2242 goto out_unlock;
2243 }
2244
2245 trans = btrfs_join_transaction(root);
2246 if (IS_ERR(trans)) {
2247 ret = PTR_ERR(trans);
2248 goto out_unlock;
2249 }
2250
2251 key.objectid = backref->inum;
2252 key.type = BTRFS_EXTENT_DATA_KEY;
2253 key.offset = backref->file_pos;
2254
2255 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2256 if (ret < 0) {
2257 goto out_free_path;
2258 } else if (ret > 0) {
2259 ret = 0;
2260 goto out_free_path;
2261 }
2262
2263 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2264 struct btrfs_file_extent_item);
2265
2266 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2267 backref->generation)
2268 goto out_free_path;
2269
2270 btrfs_release_path(path);
2271
2272 start = backref->file_pos;
2273 if (backref->extent_offset < old->extent_offset + old->offset)
2274 start += old->extent_offset + old->offset -
2275 backref->extent_offset;
2276
2277 len = min(backref->extent_offset + backref->num_bytes,
2278 old->extent_offset + old->offset + old->len);
2279 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2280
2281 ret = btrfs_drop_extents(trans, root, inode, start,
2282 start + len, 1);
2283 if (ret)
2284 goto out_free_path;
2285again:
2286 key.objectid = btrfs_ino(inode);
2287 key.type = BTRFS_EXTENT_DATA_KEY;
2288 key.offset = start;
2289
a09a0a70 2290 path->leave_spinning = 1;
38c227d8
LB
2291 if (merge) {
2292 struct btrfs_file_extent_item *fi;
2293 u64 extent_len;
2294 struct btrfs_key found_key;
2295
2296 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2297 if (ret < 0)
2298 goto out_free_path;
2299
2300 path->slots[0]--;
2301 leaf = path->nodes[0];
2302 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2303
2304 fi = btrfs_item_ptr(leaf, path->slots[0],
2305 struct btrfs_file_extent_item);
2306 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2307
116e0024
LB
2308 if (extent_len + found_key.offset == start &&
2309 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2310 btrfs_set_file_extent_num_bytes(leaf, fi,
2311 extent_len + len);
2312 btrfs_mark_buffer_dirty(leaf);
2313 inode_add_bytes(inode, len);
2314
2315 ret = 1;
2316 goto out_free_path;
2317 } else {
2318 merge = false;
2319 btrfs_release_path(path);
2320 goto again;
2321 }
2322 }
2323
2324 ret = btrfs_insert_empty_item(trans, root, path, &key,
2325 sizeof(*extent));
2326 if (ret) {
2327 btrfs_abort_transaction(trans, root, ret);
2328 goto out_free_path;
2329 }
2330
2331 leaf = path->nodes[0];
2332 item = btrfs_item_ptr(leaf, path->slots[0],
2333 struct btrfs_file_extent_item);
2334 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2335 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2336 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2337 btrfs_set_file_extent_num_bytes(leaf, item, len);
2338 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2339 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2340 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2341 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2342 btrfs_set_file_extent_encryption(leaf, item, 0);
2343 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2344
2345 btrfs_mark_buffer_dirty(leaf);
2346 inode_add_bytes(inode, len);
a09a0a70 2347 btrfs_release_path(path);
38c227d8
LB
2348
2349 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2350 new->disk_len, 0,
2351 backref->root_id, backref->inum,
2352 new->file_pos, 0); /* start - extent_offset */
2353 if (ret) {
2354 btrfs_abort_transaction(trans, root, ret);
2355 goto out_free_path;
2356 }
2357
2358 ret = 1;
2359out_free_path:
2360 btrfs_release_path(path);
a09a0a70 2361 path->leave_spinning = 0;
38c227d8
LB
2362 btrfs_end_transaction(trans, root);
2363out_unlock:
2364 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2365 &cached, GFP_NOFS);
2366 iput(inode);
2367 return ret;
2368}
2369
2370static void relink_file_extents(struct new_sa_defrag_extent *new)
2371{
2372 struct btrfs_path *path;
2373 struct old_sa_defrag_extent *old, *tmp;
2374 struct sa_defrag_extent_backref *backref;
2375 struct sa_defrag_extent_backref *prev = NULL;
2376 struct inode *inode;
2377 struct btrfs_root *root;
2378 struct rb_node *node;
2379 int ret;
2380
2381 inode = new->inode;
2382 root = BTRFS_I(inode)->root;
2383
2384 path = btrfs_alloc_path();
2385 if (!path)
2386 return;
2387
2388 if (!record_extent_backrefs(path, new)) {
2389 btrfs_free_path(path);
2390 goto out;
2391 }
2392 btrfs_release_path(path);
2393
2394 while (1) {
2395 node = rb_first(&new->root);
2396 if (!node)
2397 break;
2398 rb_erase(node, &new->root);
2399
2400 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2401
2402 ret = relink_extent_backref(path, prev, backref);
2403 WARN_ON(ret < 0);
2404
2405 kfree(prev);
2406
2407 if (ret == 1)
2408 prev = backref;
2409 else
2410 prev = NULL;
2411 cond_resched();
2412 }
2413 kfree(prev);
2414
2415 btrfs_free_path(path);
2416
2417 list_for_each_entry_safe(old, tmp, &new->head, list) {
2418 list_del(&old->list);
2419 kfree(old);
2420 }
2421out:
2422 atomic_dec(&root->fs_info->defrag_running);
2423 wake_up(&root->fs_info->transaction_wait);
2424
2425 kfree(new);
2426}
2427
2428static struct new_sa_defrag_extent *
2429record_old_file_extents(struct inode *inode,
2430 struct btrfs_ordered_extent *ordered)
2431{
2432 struct btrfs_root *root = BTRFS_I(inode)->root;
2433 struct btrfs_path *path;
2434 struct btrfs_key key;
2435 struct old_sa_defrag_extent *old, *tmp;
2436 struct new_sa_defrag_extent *new;
2437 int ret;
2438
2439 new = kmalloc(sizeof(*new), GFP_NOFS);
2440 if (!new)
2441 return NULL;
2442
2443 new->inode = inode;
2444 new->file_pos = ordered->file_offset;
2445 new->len = ordered->len;
2446 new->bytenr = ordered->start;
2447 new->disk_len = ordered->disk_len;
2448 new->compress_type = ordered->compress_type;
2449 new->root = RB_ROOT;
2450 INIT_LIST_HEAD(&new->head);
2451
2452 path = btrfs_alloc_path();
2453 if (!path)
2454 goto out_kfree;
2455
2456 key.objectid = btrfs_ino(inode);
2457 key.type = BTRFS_EXTENT_DATA_KEY;
2458 key.offset = new->file_pos;
2459
2460 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2461 if (ret < 0)
2462 goto out_free_path;
2463 if (ret > 0 && path->slots[0] > 0)
2464 path->slots[0]--;
2465
2466 /* find out all the old extents for the file range */
2467 while (1) {
2468 struct btrfs_file_extent_item *extent;
2469 struct extent_buffer *l;
2470 int slot;
2471 u64 num_bytes;
2472 u64 offset;
2473 u64 end;
2474 u64 disk_bytenr;
2475 u64 extent_offset;
2476
2477 l = path->nodes[0];
2478 slot = path->slots[0];
2479
2480 if (slot >= btrfs_header_nritems(l)) {
2481 ret = btrfs_next_leaf(root, path);
2482 if (ret < 0)
2483 goto out_free_list;
2484 else if (ret > 0)
2485 break;
2486 continue;
2487 }
2488
2489 btrfs_item_key_to_cpu(l, &key, slot);
2490
2491 if (key.objectid != btrfs_ino(inode))
2492 break;
2493 if (key.type != BTRFS_EXTENT_DATA_KEY)
2494 break;
2495 if (key.offset >= new->file_pos + new->len)
2496 break;
2497
2498 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2499
2500 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2501 if (key.offset + num_bytes < new->file_pos)
2502 goto next;
2503
2504 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2505 if (!disk_bytenr)
2506 goto next;
2507
2508 extent_offset = btrfs_file_extent_offset(l, extent);
2509
2510 old = kmalloc(sizeof(*old), GFP_NOFS);
2511 if (!old)
2512 goto out_free_list;
2513
2514 offset = max(new->file_pos, key.offset);
2515 end = min(new->file_pos + new->len, key.offset + num_bytes);
2516
2517 old->bytenr = disk_bytenr;
2518 old->extent_offset = extent_offset;
2519 old->offset = offset - key.offset;
2520 old->len = end - offset;
2521 old->new = new;
2522 old->count = 0;
2523 list_add_tail(&old->list, &new->head);
2524next:
2525 path->slots[0]++;
2526 cond_resched();
2527 }
2528
2529 btrfs_free_path(path);
2530 atomic_inc(&root->fs_info->defrag_running);
2531
2532 return new;
2533
2534out_free_list:
2535 list_for_each_entry_safe(old, tmp, &new->head, list) {
2536 list_del(&old->list);
2537 kfree(old);
2538 }
2539out_free_path:
2540 btrfs_free_path(path);
2541out_kfree:
2542 kfree(new);
2543 return NULL;
2544}
2545
5d13a98f
CM
2546/*
2547 * helper function for btrfs_finish_ordered_io, this
2548 * just reads in some of the csum leaves to prime them into ram
2549 * before we start the transaction. It limits the amount of btree
2550 * reads required while inside the transaction.
2551 */
d352ac68
CM
2552/* as ordered data IO finishes, this gets called so we can finish
2553 * an ordered extent if the range of bytes in the file it covers are
2554 * fully written.
2555 */
5fd02043 2556static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2557{
5fd02043 2558 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2559 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2560 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2561 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2562 struct extent_state *cached_state = NULL;
38c227d8 2563 struct new_sa_defrag_extent *new = NULL;
261507a0 2564 int compress_type = 0;
e6dcd2dc 2565 int ret;
82d5902d 2566 bool nolock;
e6dcd2dc 2567
83eea1f1 2568 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2569
5fd02043
JB
2570 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2571 ret = -EIO;
2572 goto out;
2573 }
2574
c2167754 2575 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2576 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2577 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2578 if (nolock)
2579 trans = btrfs_join_transaction_nolock(root);
2580 else
2581 trans = btrfs_join_transaction(root);
2582 if (IS_ERR(trans)) {
2583 ret = PTR_ERR(trans);
2584 trans = NULL;
2585 goto out;
c2167754 2586 }
6c760c07
JB
2587 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2588 ret = btrfs_update_inode_fallback(trans, root, inode);
2589 if (ret) /* -ENOMEM or corruption */
2590 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2591 goto out;
2592 }
e6dcd2dc 2593
2ac55d41
JB
2594 lock_extent_bits(io_tree, ordered_extent->file_offset,
2595 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2596 0, &cached_state);
e6dcd2dc 2597
38c227d8
LB
2598 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2599 ordered_extent->file_offset + ordered_extent->len - 1,
2600 EXTENT_DEFRAG, 1, cached_state);
2601 if (ret) {
2602 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2603 if (last_snapshot >= BTRFS_I(inode)->generation)
2604 /* the inode is shared */
2605 new = record_old_file_extents(inode, ordered_extent);
2606
2607 clear_extent_bit(io_tree, ordered_extent->file_offset,
2608 ordered_extent->file_offset + ordered_extent->len - 1,
2609 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2610 }
2611
0cb59c99 2612 if (nolock)
7a7eaa40 2613 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2614 else
7a7eaa40 2615 trans = btrfs_join_transaction(root);
79787eaa
JM
2616 if (IS_ERR(trans)) {
2617 ret = PTR_ERR(trans);
2618 trans = NULL;
2619 goto out_unlock;
2620 }
0ca1f7ce 2621 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2622
c8b97818 2623 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2624 compress_type = ordered_extent->compress_type;
d899e052 2625 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2626 BUG_ON(compress_type);
920bbbfb 2627 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2628 ordered_extent->file_offset,
2629 ordered_extent->file_offset +
2630 ordered_extent->len);
d899e052 2631 } else {
0af3d00b 2632 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2633 ret = insert_reserved_file_extent(trans, inode,
2634 ordered_extent->file_offset,
2635 ordered_extent->start,
2636 ordered_extent->disk_len,
2637 ordered_extent->len,
2638 ordered_extent->len,
261507a0 2639 compress_type, 0, 0,
d899e052 2640 BTRFS_FILE_EXTENT_REG);
d899e052 2641 }
5dc562c5
JB
2642 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2643 ordered_extent->file_offset, ordered_extent->len,
2644 trans->transid);
79787eaa
JM
2645 if (ret < 0) {
2646 btrfs_abort_transaction(trans, root, ret);
5fd02043 2647 goto out_unlock;
79787eaa 2648 }
2ac55d41 2649
e6dcd2dc
CM
2650 add_pending_csums(trans, inode, ordered_extent->file_offset,
2651 &ordered_extent->list);
2652
6c760c07
JB
2653 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2654 ret = btrfs_update_inode_fallback(trans, root, inode);
2655 if (ret) { /* -ENOMEM or corruption */
2656 btrfs_abort_transaction(trans, root, ret);
2657 goto out_unlock;
1ef30be1
JB
2658 }
2659 ret = 0;
5fd02043
JB
2660out_unlock:
2661 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2662 ordered_extent->file_offset +
2663 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2664out:
5b0e95bf 2665 if (root != root->fs_info->tree_root)
0cb59c99 2666 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2667 if (trans)
2668 btrfs_end_transaction(trans, root);
0cb59c99 2669
0bec9ef5 2670 if (ret) {
5fd02043
JB
2671 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2672 ordered_extent->file_offset +
2673 ordered_extent->len - 1, NULL, GFP_NOFS);
2674
0bec9ef5
JB
2675 /*
2676 * If the ordered extent had an IOERR or something else went
2677 * wrong we need to return the space for this ordered extent
2678 * back to the allocator.
2679 */
2680 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2681 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2682 btrfs_free_reserved_extent(root, ordered_extent->start,
2683 ordered_extent->disk_len);
2684 }
2685
2686
5fd02043 2687 /*
8bad3c02
LB
2688 * This needs to be done to make sure anybody waiting knows we are done
2689 * updating everything for this ordered extent.
5fd02043
JB
2690 */
2691 btrfs_remove_ordered_extent(inode, ordered_extent);
2692
38c227d8
LB
2693 /* for snapshot-aware defrag */
2694 if (new)
2695 relink_file_extents(new);
2696
e6dcd2dc
CM
2697 /* once for us */
2698 btrfs_put_ordered_extent(ordered_extent);
2699 /* once for the tree */
2700 btrfs_put_ordered_extent(ordered_extent);
2701
5fd02043
JB
2702 return ret;
2703}
2704
2705static void finish_ordered_fn(struct btrfs_work *work)
2706{
2707 struct btrfs_ordered_extent *ordered_extent;
2708 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2709 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2710}
2711
b2950863 2712static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2713 struct extent_state *state, int uptodate)
2714{
5fd02043
JB
2715 struct inode *inode = page->mapping->host;
2716 struct btrfs_root *root = BTRFS_I(inode)->root;
2717 struct btrfs_ordered_extent *ordered_extent = NULL;
2718 struct btrfs_workers *workers;
2719
1abe9b8a 2720 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2721
8b62b72b 2722 ClearPagePrivate2(page);
5fd02043
JB
2723 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2724 end - start + 1, uptodate))
2725 return 0;
2726
2727 ordered_extent->work.func = finish_ordered_fn;
2728 ordered_extent->work.flags = 0;
2729
83eea1f1 2730 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2731 workers = &root->fs_info->endio_freespace_worker;
2732 else
2733 workers = &root->fs_info->endio_write_workers;
2734 btrfs_queue_worker(workers, &ordered_extent->work);
2735
2736 return 0;
211f90e6
CM
2737}
2738
d352ac68
CM
2739/*
2740 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2741 * if there's a match, we allow the bio to finish. If not, the code in
2742 * extent_io.c will try to find good copies for us.
d352ac68 2743 */
facc8a22
MX
2744static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2745 u64 phy_offset, struct page *page,
2746 u64 start, u64 end, int mirror)
07157aac 2747{
4eee4fa4 2748 size_t offset = start - page_offset(page);
07157aac 2749 struct inode *inode = page->mapping->host;
d1310b2e 2750 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2751 char *kaddr;
ff79f819 2752 struct btrfs_root *root = BTRFS_I(inode)->root;
facc8a22 2753 u32 csum_expected;
ff79f819 2754 u32 csum = ~(u32)0;
c2cf52eb
SK
2755 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2756 DEFAULT_RATELIMIT_BURST);
d1310b2e 2757
d20f7043
CM
2758 if (PageChecked(page)) {
2759 ClearPageChecked(page);
2760 goto good;
2761 }
6cbff00f
CH
2762
2763 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2764 goto good;
17d217fe
YZ
2765
2766 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2767 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2768 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2769 GFP_NOFS);
b6cda9bc 2770 return 0;
17d217fe 2771 }
d20f7043 2772
facc8a22
MX
2773 phy_offset >>= inode->i_sb->s_blocksize_bits;
2774 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
d397712b 2775
facc8a22 2776 kaddr = kmap_atomic(page);
b0496686 2777 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2778 btrfs_csum_final(csum, (char *)&csum);
facc8a22 2779 if (csum != csum_expected)
07157aac 2780 goto zeroit;
d397712b 2781
7ac687d9 2782 kunmap_atomic(kaddr);
d20f7043 2783good:
07157aac
CM
2784 return 0;
2785
2786zeroit:
c2cf52eb 2787 if (__ratelimit(&_rs))
facc8a22 2788 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c 2789 btrfs_ino(page->mapping->host), start, csum, csum_expected);
db94535d
CM
2790 memset(kaddr + offset, 1, end - start + 1);
2791 flush_dcache_page(page);
7ac687d9 2792 kunmap_atomic(kaddr);
facc8a22 2793 if (csum_expected == 0)
3b951516 2794 return 0;
7e38326f 2795 return -EIO;
07157aac 2796}
b888db2b 2797
24bbcf04
YZ
2798struct delayed_iput {
2799 struct list_head list;
2800 struct inode *inode;
2801};
2802
79787eaa
JM
2803/* JDM: If this is fs-wide, why can't we add a pointer to
2804 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2805void btrfs_add_delayed_iput(struct inode *inode)
2806{
2807 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2808 struct delayed_iput *delayed;
2809
2810 if (atomic_add_unless(&inode->i_count, -1, 1))
2811 return;
2812
2813 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2814 delayed->inode = inode;
2815
2816 spin_lock(&fs_info->delayed_iput_lock);
2817 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2818 spin_unlock(&fs_info->delayed_iput_lock);
2819}
2820
2821void btrfs_run_delayed_iputs(struct btrfs_root *root)
2822{
2823 LIST_HEAD(list);
2824 struct btrfs_fs_info *fs_info = root->fs_info;
2825 struct delayed_iput *delayed;
2826 int empty;
2827
2828 spin_lock(&fs_info->delayed_iput_lock);
2829 empty = list_empty(&fs_info->delayed_iputs);
2830 spin_unlock(&fs_info->delayed_iput_lock);
2831 if (empty)
2832 return;
2833
24bbcf04
YZ
2834 spin_lock(&fs_info->delayed_iput_lock);
2835 list_splice_init(&fs_info->delayed_iputs, &list);
2836 spin_unlock(&fs_info->delayed_iput_lock);
2837
2838 while (!list_empty(&list)) {
2839 delayed = list_entry(list.next, struct delayed_iput, list);
2840 list_del(&delayed->list);
2841 iput(delayed->inode);
2842 kfree(delayed);
2843 }
24bbcf04
YZ
2844}
2845
d68fc57b 2846/*
42b2aa86 2847 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2848 * files in the subvolume, it removes orphan item and frees block_rsv
2849 * structure.
2850 */
2851void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2852 struct btrfs_root *root)
2853{
90290e19 2854 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2855 int ret;
2856
8a35d95f 2857 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2858 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2859 return;
2860
90290e19 2861 spin_lock(&root->orphan_lock);
8a35d95f 2862 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2863 spin_unlock(&root->orphan_lock);
2864 return;
2865 }
2866
2867 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2868 spin_unlock(&root->orphan_lock);
2869 return;
2870 }
2871
2872 block_rsv = root->orphan_block_rsv;
2873 root->orphan_block_rsv = NULL;
2874 spin_unlock(&root->orphan_lock);
2875
d68fc57b
YZ
2876 if (root->orphan_item_inserted &&
2877 btrfs_root_refs(&root->root_item) > 0) {
2878 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2879 root->root_key.objectid);
4ef31a45
JB
2880 if (ret)
2881 btrfs_abort_transaction(trans, root, ret);
2882 else
2883 root->orphan_item_inserted = 0;
d68fc57b
YZ
2884 }
2885
90290e19
JB
2886 if (block_rsv) {
2887 WARN_ON(block_rsv->size > 0);
2888 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2889 }
2890}
2891
7b128766
JB
2892/*
2893 * This creates an orphan entry for the given inode in case something goes
2894 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2895 *
2896 * NOTE: caller of this function should reserve 5 units of metadata for
2897 * this function.
7b128766
JB
2898 */
2899int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2900{
2901 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2902 struct btrfs_block_rsv *block_rsv = NULL;
2903 int reserve = 0;
2904 int insert = 0;
2905 int ret;
7b128766 2906
d68fc57b 2907 if (!root->orphan_block_rsv) {
66d8f3dd 2908 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2909 if (!block_rsv)
2910 return -ENOMEM;
d68fc57b 2911 }
7b128766 2912
d68fc57b
YZ
2913 spin_lock(&root->orphan_lock);
2914 if (!root->orphan_block_rsv) {
2915 root->orphan_block_rsv = block_rsv;
2916 } else if (block_rsv) {
2917 btrfs_free_block_rsv(root, block_rsv);
2918 block_rsv = NULL;
7b128766 2919 }
7b128766 2920
8a35d95f
JB
2921 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2922 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2923#if 0
2924 /*
2925 * For proper ENOSPC handling, we should do orphan
2926 * cleanup when mounting. But this introduces backward
2927 * compatibility issue.
2928 */
2929 if (!xchg(&root->orphan_item_inserted, 1))
2930 insert = 2;
2931 else
2932 insert = 1;
2933#endif
2934 insert = 1;
321f0e70 2935 atomic_inc(&root->orphan_inodes);
7b128766
JB
2936 }
2937
72ac3c0d
JB
2938 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2939 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2940 reserve = 1;
d68fc57b 2941 spin_unlock(&root->orphan_lock);
7b128766 2942
d68fc57b
YZ
2943 /* grab metadata reservation from transaction handle */
2944 if (reserve) {
2945 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2946 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2947 }
7b128766 2948
d68fc57b
YZ
2949 /* insert an orphan item to track this unlinked/truncated file */
2950 if (insert >= 1) {
33345d01 2951 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 2952 if (ret) {
4ef31a45
JB
2953 if (reserve) {
2954 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2955 &BTRFS_I(inode)->runtime_flags);
2956 btrfs_orphan_release_metadata(inode);
2957 }
2958 if (ret != -EEXIST) {
e8e7cff6
JB
2959 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2960 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
2961 btrfs_abort_transaction(trans, root, ret);
2962 return ret;
2963 }
79787eaa
JM
2964 }
2965 ret = 0;
d68fc57b
YZ
2966 }
2967
2968 /* insert an orphan item to track subvolume contains orphan files */
2969 if (insert >= 2) {
2970 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2971 root->root_key.objectid);
79787eaa
JM
2972 if (ret && ret != -EEXIST) {
2973 btrfs_abort_transaction(trans, root, ret);
2974 return ret;
2975 }
d68fc57b
YZ
2976 }
2977 return 0;
7b128766
JB
2978}
2979
2980/*
2981 * We have done the truncate/delete so we can go ahead and remove the orphan
2982 * item for this particular inode.
2983 */
48a3b636
ES
2984static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
2985 struct inode *inode)
7b128766
JB
2986{
2987 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2988 int delete_item = 0;
2989 int release_rsv = 0;
7b128766
JB
2990 int ret = 0;
2991
d68fc57b 2992 spin_lock(&root->orphan_lock);
8a35d95f
JB
2993 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2994 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2995 delete_item = 1;
7b128766 2996
72ac3c0d
JB
2997 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2998 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2999 release_rsv = 1;
d68fc57b 3000 spin_unlock(&root->orphan_lock);
7b128766 3001
4ef31a45 3002 if (trans && delete_item)
33345d01 3003 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
7b128766 3004
8a35d95f 3005 if (release_rsv) {
d68fc57b 3006 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
3007 atomic_dec(&root->orphan_inodes);
3008 }
7b128766 3009
4ef31a45 3010 return ret;
7b128766
JB
3011}
3012
3013/*
3014 * this cleans up any orphans that may be left on the list from the last use
3015 * of this root.
3016 */
66b4ffd1 3017int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3018{
3019 struct btrfs_path *path;
3020 struct extent_buffer *leaf;
7b128766
JB
3021 struct btrfs_key key, found_key;
3022 struct btrfs_trans_handle *trans;
3023 struct inode *inode;
8f6d7f4f 3024 u64 last_objectid = 0;
7b128766
JB
3025 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3026
d68fc57b 3027 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3028 return 0;
c71bf099
YZ
3029
3030 path = btrfs_alloc_path();
66b4ffd1
JB
3031 if (!path) {
3032 ret = -ENOMEM;
3033 goto out;
3034 }
7b128766
JB
3035 path->reada = -1;
3036
3037 key.objectid = BTRFS_ORPHAN_OBJECTID;
3038 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3039 key.offset = (u64)-1;
3040
7b128766
JB
3041 while (1) {
3042 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3043 if (ret < 0)
3044 goto out;
7b128766
JB
3045
3046 /*
3047 * if ret == 0 means we found what we were searching for, which
25985edc 3048 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3049 * find the key and see if we have stuff that matches
3050 */
3051 if (ret > 0) {
66b4ffd1 3052 ret = 0;
7b128766
JB
3053 if (path->slots[0] == 0)
3054 break;
3055 path->slots[0]--;
3056 }
3057
3058 /* pull out the item */
3059 leaf = path->nodes[0];
7b128766
JB
3060 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3061
3062 /* make sure the item matches what we want */
3063 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3064 break;
3065 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3066 break;
3067
3068 /* release the path since we're done with it */
b3b4aa74 3069 btrfs_release_path(path);
7b128766
JB
3070
3071 /*
3072 * this is where we are basically btrfs_lookup, without the
3073 * crossing root thing. we store the inode number in the
3074 * offset of the orphan item.
3075 */
8f6d7f4f
JB
3076
3077 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3078 btrfs_err(root->fs_info,
3079 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3080 ret = -EINVAL;
3081 goto out;
3082 }
3083
3084 last_objectid = found_key.offset;
3085
5d4f98a2
YZ
3086 found_key.objectid = found_key.offset;
3087 found_key.type = BTRFS_INODE_ITEM_KEY;
3088 found_key.offset = 0;
73f73415 3089 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
3090 ret = PTR_RET(inode);
3091 if (ret && ret != -ESTALE)
66b4ffd1 3092 goto out;
7b128766 3093
f8e9e0b0
AJ
3094 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3095 struct btrfs_root *dead_root;
3096 struct btrfs_fs_info *fs_info = root->fs_info;
3097 int is_dead_root = 0;
3098
3099 /*
3100 * this is an orphan in the tree root. Currently these
3101 * could come from 2 sources:
3102 * a) a snapshot deletion in progress
3103 * b) a free space cache inode
3104 * We need to distinguish those two, as the snapshot
3105 * orphan must not get deleted.
3106 * find_dead_roots already ran before us, so if this
3107 * is a snapshot deletion, we should find the root
3108 * in the dead_roots list
3109 */
3110 spin_lock(&fs_info->trans_lock);
3111 list_for_each_entry(dead_root, &fs_info->dead_roots,
3112 root_list) {
3113 if (dead_root->root_key.objectid ==
3114 found_key.objectid) {
3115 is_dead_root = 1;
3116 break;
3117 }
3118 }
3119 spin_unlock(&fs_info->trans_lock);
3120 if (is_dead_root) {
3121 /* prevent this orphan from being found again */
3122 key.offset = found_key.objectid - 1;
3123 continue;
3124 }
3125 }
7b128766 3126 /*
a8c9e576
JB
3127 * Inode is already gone but the orphan item is still there,
3128 * kill the orphan item.
7b128766 3129 */
a8c9e576
JB
3130 if (ret == -ESTALE) {
3131 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3132 if (IS_ERR(trans)) {
3133 ret = PTR_ERR(trans);
3134 goto out;
3135 }
c2cf52eb
SK
3136 btrfs_debug(root->fs_info, "auto deleting %Lu",
3137 found_key.objectid);
a8c9e576
JB
3138 ret = btrfs_del_orphan_item(trans, root,
3139 found_key.objectid);
5b21f2ed 3140 btrfs_end_transaction(trans, root);
4ef31a45
JB
3141 if (ret)
3142 goto out;
7b128766
JB
3143 continue;
3144 }
3145
a8c9e576
JB
3146 /*
3147 * add this inode to the orphan list so btrfs_orphan_del does
3148 * the proper thing when we hit it
3149 */
8a35d95f
JB
3150 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3151 &BTRFS_I(inode)->runtime_flags);
925396ec 3152 atomic_inc(&root->orphan_inodes);
a8c9e576 3153
7b128766
JB
3154 /* if we have links, this was a truncate, lets do that */
3155 if (inode->i_nlink) {
a41ad394
JB
3156 if (!S_ISREG(inode->i_mode)) {
3157 WARN_ON(1);
3158 iput(inode);
3159 continue;
3160 }
7b128766 3161 nr_truncate++;
f3fe820c
JB
3162
3163 /* 1 for the orphan item deletion. */
3164 trans = btrfs_start_transaction(root, 1);
3165 if (IS_ERR(trans)) {
c69b26b0 3166 iput(inode);
f3fe820c
JB
3167 ret = PTR_ERR(trans);
3168 goto out;
3169 }
3170 ret = btrfs_orphan_add(trans, inode);
3171 btrfs_end_transaction(trans, root);
c69b26b0
JB
3172 if (ret) {
3173 iput(inode);
f3fe820c 3174 goto out;
c69b26b0 3175 }
f3fe820c 3176
66b4ffd1 3177 ret = btrfs_truncate(inode);
4a7d0f68
JB
3178 if (ret)
3179 btrfs_orphan_del(NULL, inode);
7b128766
JB
3180 } else {
3181 nr_unlink++;
3182 }
3183
3184 /* this will do delete_inode and everything for us */
3185 iput(inode);
66b4ffd1
JB
3186 if (ret)
3187 goto out;
7b128766 3188 }
3254c876
MX
3189 /* release the path since we're done with it */
3190 btrfs_release_path(path);
3191
d68fc57b
YZ
3192 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3193
3194 if (root->orphan_block_rsv)
3195 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3196 (u64)-1);
3197
3198 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 3199 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3200 if (!IS_ERR(trans))
3201 btrfs_end_transaction(trans, root);
d68fc57b 3202 }
7b128766
JB
3203
3204 if (nr_unlink)
4884b476 3205 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3206 if (nr_truncate)
4884b476 3207 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3208
3209out:
3210 if (ret)
c2cf52eb
SK
3211 btrfs_crit(root->fs_info,
3212 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3213 btrfs_free_path(path);
3214 return ret;
7b128766
JB
3215}
3216
46a53cca
CM
3217/*
3218 * very simple check to peek ahead in the leaf looking for xattrs. If we
3219 * don't find any xattrs, we know there can't be any acls.
3220 *
3221 * slot is the slot the inode is in, objectid is the objectid of the inode
3222 */
3223static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3224 int slot, u64 objectid)
3225{
3226 u32 nritems = btrfs_header_nritems(leaf);
3227 struct btrfs_key found_key;
f23b5a59
JB
3228 static u64 xattr_access = 0;
3229 static u64 xattr_default = 0;
46a53cca
CM
3230 int scanned = 0;
3231
f23b5a59
JB
3232 if (!xattr_access) {
3233 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3234 strlen(POSIX_ACL_XATTR_ACCESS));
3235 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3236 strlen(POSIX_ACL_XATTR_DEFAULT));
3237 }
3238
46a53cca
CM
3239 slot++;
3240 while (slot < nritems) {
3241 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3242
3243 /* we found a different objectid, there must not be acls */
3244 if (found_key.objectid != objectid)
3245 return 0;
3246
3247 /* we found an xattr, assume we've got an acl */
f23b5a59
JB
3248 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3249 if (found_key.offset == xattr_access ||
3250 found_key.offset == xattr_default)
3251 return 1;
3252 }
46a53cca
CM
3253
3254 /*
3255 * we found a key greater than an xattr key, there can't
3256 * be any acls later on
3257 */
3258 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3259 return 0;
3260
3261 slot++;
3262 scanned++;
3263
3264 /*
3265 * it goes inode, inode backrefs, xattrs, extents,
3266 * so if there are a ton of hard links to an inode there can
3267 * be a lot of backrefs. Don't waste time searching too hard,
3268 * this is just an optimization
3269 */
3270 if (scanned >= 8)
3271 break;
3272 }
3273 /* we hit the end of the leaf before we found an xattr or
3274 * something larger than an xattr. We have to assume the inode
3275 * has acls
3276 */
3277 return 1;
3278}
3279
d352ac68
CM
3280/*
3281 * read an inode from the btree into the in-memory inode
3282 */
5d4f98a2 3283static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3284{
3285 struct btrfs_path *path;
5f39d397 3286 struct extent_buffer *leaf;
39279cc3 3287 struct btrfs_inode_item *inode_item;
0b86a832 3288 struct btrfs_timespec *tspec;
39279cc3
CM
3289 struct btrfs_root *root = BTRFS_I(inode)->root;
3290 struct btrfs_key location;
46a53cca 3291 int maybe_acls;
618e21d5 3292 u32 rdev;
39279cc3 3293 int ret;
2f7e33d4
MX
3294 bool filled = false;
3295
3296 ret = btrfs_fill_inode(inode, &rdev);
3297 if (!ret)
3298 filled = true;
39279cc3
CM
3299
3300 path = btrfs_alloc_path();
1748f843
MF
3301 if (!path)
3302 goto make_bad;
3303
d90c7321 3304 path->leave_spinning = 1;
39279cc3 3305 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3306
39279cc3 3307 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3308 if (ret)
39279cc3 3309 goto make_bad;
39279cc3 3310
5f39d397 3311 leaf = path->nodes[0];
2f7e33d4
MX
3312
3313 if (filled)
3314 goto cache_acl;
3315
5f39d397
CM
3316 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3317 struct btrfs_inode_item);
5f39d397 3318 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3319 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3320 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3321 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3322 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3323
3324 tspec = btrfs_inode_atime(inode_item);
3325 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3326 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3327
3328 tspec = btrfs_inode_mtime(inode_item);
3329 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3330 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3331
3332 tspec = btrfs_inode_ctime(inode_item);
3333 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3334 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3335
a76a3cd4 3336 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3337 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3338 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3339
3340 /*
3341 * If we were modified in the current generation and evicted from memory
3342 * and then re-read we need to do a full sync since we don't have any
3343 * idea about which extents were modified before we were evicted from
3344 * cache.
3345 */
3346 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3347 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3348 &BTRFS_I(inode)->runtime_flags);
3349
0c4d2d95 3350 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3351 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3352 inode->i_rdev = 0;
5f39d397
CM
3353 rdev = btrfs_inode_rdev(leaf, inode_item);
3354
aec7477b 3355 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3356 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 3357cache_acl:
46a53cca
CM
3358 /*
3359 * try to precache a NULL acl entry for files that don't have
3360 * any xattrs or acls
3361 */
33345d01
LZ
3362 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3363 btrfs_ino(inode));
72c04902
AV
3364 if (!maybe_acls)
3365 cache_no_acl(inode);
46a53cca 3366
39279cc3 3367 btrfs_free_path(path);
39279cc3 3368
39279cc3 3369 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3370 case S_IFREG:
3371 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3372 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3373 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3374 inode->i_fop = &btrfs_file_operations;
3375 inode->i_op = &btrfs_file_inode_operations;
3376 break;
3377 case S_IFDIR:
3378 inode->i_fop = &btrfs_dir_file_operations;
3379 if (root == root->fs_info->tree_root)
3380 inode->i_op = &btrfs_dir_ro_inode_operations;
3381 else
3382 inode->i_op = &btrfs_dir_inode_operations;
3383 break;
3384 case S_IFLNK:
3385 inode->i_op = &btrfs_symlink_inode_operations;
3386 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3387 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3388 break;
618e21d5 3389 default:
0279b4cd 3390 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3391 init_special_inode(inode, inode->i_mode, rdev);
3392 break;
39279cc3 3393 }
6cbff00f
CH
3394
3395 btrfs_update_iflags(inode);
39279cc3
CM
3396 return;
3397
3398make_bad:
39279cc3 3399 btrfs_free_path(path);
39279cc3
CM
3400 make_bad_inode(inode);
3401}
3402
d352ac68
CM
3403/*
3404 * given a leaf and an inode, copy the inode fields into the leaf
3405 */
e02119d5
CM
3406static void fill_inode_item(struct btrfs_trans_handle *trans,
3407 struct extent_buffer *leaf,
5f39d397 3408 struct btrfs_inode_item *item,
39279cc3
CM
3409 struct inode *inode)
3410{
51fab693
LB
3411 struct btrfs_map_token token;
3412
3413 btrfs_init_map_token(&token);
5f39d397 3414
51fab693
LB
3415 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3416 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3417 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3418 &token);
3419 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3420 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3421
51fab693
LB
3422 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3423 inode->i_atime.tv_sec, &token);
3424 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3425 inode->i_atime.tv_nsec, &token);
5f39d397 3426
51fab693
LB
3427 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3428 inode->i_mtime.tv_sec, &token);
3429 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3430 inode->i_mtime.tv_nsec, &token);
5f39d397 3431
51fab693
LB
3432 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3433 inode->i_ctime.tv_sec, &token);
3434 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3435 inode->i_ctime.tv_nsec, &token);
5f39d397 3436
51fab693
LB
3437 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3438 &token);
3439 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3440 &token);
3441 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3442 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3443 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3444 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3445 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3446}
3447
d352ac68
CM
3448/*
3449 * copy everything in the in-memory inode into the btree.
3450 */
2115133f 3451static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3452 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3453{
3454 struct btrfs_inode_item *inode_item;
3455 struct btrfs_path *path;
5f39d397 3456 struct extent_buffer *leaf;
39279cc3
CM
3457 int ret;
3458
3459 path = btrfs_alloc_path();
16cdcec7
MX
3460 if (!path)
3461 return -ENOMEM;
3462
b9473439 3463 path->leave_spinning = 1;
16cdcec7
MX
3464 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3465 1);
39279cc3
CM
3466 if (ret) {
3467 if (ret > 0)
3468 ret = -ENOENT;
3469 goto failed;
3470 }
3471
b4ce94de 3472 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
3473 leaf = path->nodes[0];
3474 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3475 struct btrfs_inode_item);
39279cc3 3476
e02119d5 3477 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3478 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3479 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3480 ret = 0;
3481failed:
39279cc3
CM
3482 btrfs_free_path(path);
3483 return ret;
3484}
3485
2115133f
CM
3486/*
3487 * copy everything in the in-memory inode into the btree.
3488 */
3489noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3490 struct btrfs_root *root, struct inode *inode)
3491{
3492 int ret;
3493
3494 /*
3495 * If the inode is a free space inode, we can deadlock during commit
3496 * if we put it into the delayed code.
3497 *
3498 * The data relocation inode should also be directly updated
3499 * without delay
3500 */
83eea1f1 3501 if (!btrfs_is_free_space_inode(inode)
2115133f 3502 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3503 btrfs_update_root_times(trans, root);
3504
2115133f
CM
3505 ret = btrfs_delayed_update_inode(trans, root, inode);
3506 if (!ret)
3507 btrfs_set_inode_last_trans(trans, inode);
3508 return ret;
3509 }
3510
3511 return btrfs_update_inode_item(trans, root, inode);
3512}
3513
be6aef60
JB
3514noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3515 struct btrfs_root *root,
3516 struct inode *inode)
2115133f
CM
3517{
3518 int ret;
3519
3520 ret = btrfs_update_inode(trans, root, inode);
3521 if (ret == -ENOSPC)
3522 return btrfs_update_inode_item(trans, root, inode);
3523 return ret;
3524}
3525
d352ac68
CM
3526/*
3527 * unlink helper that gets used here in inode.c and in the tree logging
3528 * recovery code. It remove a link in a directory with a given name, and
3529 * also drops the back refs in the inode to the directory
3530 */
92986796
AV
3531static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3532 struct btrfs_root *root,
3533 struct inode *dir, struct inode *inode,
3534 const char *name, int name_len)
39279cc3
CM
3535{
3536 struct btrfs_path *path;
39279cc3 3537 int ret = 0;
5f39d397 3538 struct extent_buffer *leaf;
39279cc3 3539 struct btrfs_dir_item *di;
5f39d397 3540 struct btrfs_key key;
aec7477b 3541 u64 index;
33345d01
LZ
3542 u64 ino = btrfs_ino(inode);
3543 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3544
3545 path = btrfs_alloc_path();
54aa1f4d
CM
3546 if (!path) {
3547 ret = -ENOMEM;
554233a6 3548 goto out;
54aa1f4d
CM
3549 }
3550
b9473439 3551 path->leave_spinning = 1;
33345d01 3552 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3553 name, name_len, -1);
3554 if (IS_ERR(di)) {
3555 ret = PTR_ERR(di);
3556 goto err;
3557 }
3558 if (!di) {
3559 ret = -ENOENT;
3560 goto err;
3561 }
5f39d397
CM
3562 leaf = path->nodes[0];
3563 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3564 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3565 if (ret)
3566 goto err;
b3b4aa74 3567 btrfs_release_path(path);
39279cc3 3568
33345d01
LZ
3569 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3570 dir_ino, &index);
aec7477b 3571 if (ret) {
c2cf52eb
SK
3572 btrfs_info(root->fs_info,
3573 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3574 name_len, name, ino, dir_ino);
79787eaa 3575 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3576 goto err;
3577 }
3578
16cdcec7 3579 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3580 if (ret) {
3581 btrfs_abort_transaction(trans, root, ret);
39279cc3 3582 goto err;
79787eaa 3583 }
39279cc3 3584
e02119d5 3585 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3586 inode, dir_ino);
79787eaa
JM
3587 if (ret != 0 && ret != -ENOENT) {
3588 btrfs_abort_transaction(trans, root, ret);
3589 goto err;
3590 }
e02119d5
CM
3591
3592 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3593 dir, index);
6418c961
CM
3594 if (ret == -ENOENT)
3595 ret = 0;
d4e3991b
ZB
3596 else if (ret)
3597 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3598err:
3599 btrfs_free_path(path);
e02119d5
CM
3600 if (ret)
3601 goto out;
3602
3603 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3604 inode_inc_iversion(inode);
3605 inode_inc_iversion(dir);
e02119d5 3606 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3607 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3608out:
39279cc3
CM
3609 return ret;
3610}
3611
92986796
AV
3612int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3613 struct btrfs_root *root,
3614 struct inode *dir, struct inode *inode,
3615 const char *name, int name_len)
3616{
3617 int ret;
3618 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3619 if (!ret) {
3620 btrfs_drop_nlink(inode);
3621 ret = btrfs_update_inode(trans, root, inode);
3622 }
3623 return ret;
3624}
39279cc3 3625
a22285a6
YZ
3626/*
3627 * helper to start transaction for unlink and rmdir.
3628 *
d52be818
JB
3629 * unlink and rmdir are special in btrfs, they do not always free space, so
3630 * if we cannot make our reservations the normal way try and see if there is
3631 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3632 * allow the unlink to occur.
a22285a6 3633 */
d52be818 3634static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3635{
39279cc3 3636 struct btrfs_trans_handle *trans;
a22285a6 3637 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3638 int ret;
3639
e70bea5f
JB
3640 /*
3641 * 1 for the possible orphan item
3642 * 1 for the dir item
3643 * 1 for the dir index
3644 * 1 for the inode ref
e70bea5f
JB
3645 * 1 for the inode
3646 */
6e137ed3 3647 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3648 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3649 return trans;
4df27c4d 3650
d52be818
JB
3651 if (PTR_ERR(trans) == -ENOSPC) {
3652 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3653
d52be818
JB
3654 trans = btrfs_start_transaction(root, 0);
3655 if (IS_ERR(trans))
3656 return trans;
3657 ret = btrfs_cond_migrate_bytes(root->fs_info,
3658 &root->fs_info->trans_block_rsv,
3659 num_bytes, 5);
3660 if (ret) {
3661 btrfs_end_transaction(trans, root);
3662 return ERR_PTR(ret);
a22285a6 3663 }
5a77d76c 3664 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3665 trans->bytes_reserved = num_bytes;
a22285a6 3666 }
d52be818 3667 return trans;
a22285a6
YZ
3668}
3669
3670static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3671{
3672 struct btrfs_root *root = BTRFS_I(dir)->root;
3673 struct btrfs_trans_handle *trans;
3674 struct inode *inode = dentry->d_inode;
3675 int ret;
a22285a6 3676
d52be818 3677 trans = __unlink_start_trans(dir);
a22285a6
YZ
3678 if (IS_ERR(trans))
3679 return PTR_ERR(trans);
5f39d397 3680
12fcfd22
CM
3681 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3682
e02119d5
CM
3683 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3684 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3685 if (ret)
3686 goto out;
7b128766 3687
a22285a6 3688 if (inode->i_nlink == 0) {
7b128766 3689 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3690 if (ret)
3691 goto out;
a22285a6 3692 }
7b128766 3693
b532402e 3694out:
d52be818 3695 btrfs_end_transaction(trans, root);
b53d3f5d 3696 btrfs_btree_balance_dirty(root);
39279cc3
CM
3697 return ret;
3698}
3699
4df27c4d
YZ
3700int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3701 struct btrfs_root *root,
3702 struct inode *dir, u64 objectid,
3703 const char *name, int name_len)
3704{
3705 struct btrfs_path *path;
3706 struct extent_buffer *leaf;
3707 struct btrfs_dir_item *di;
3708 struct btrfs_key key;
3709 u64 index;
3710 int ret;
33345d01 3711 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3712
3713 path = btrfs_alloc_path();
3714 if (!path)
3715 return -ENOMEM;
3716
33345d01 3717 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3718 name, name_len, -1);
79787eaa
JM
3719 if (IS_ERR_OR_NULL(di)) {
3720 if (!di)
3721 ret = -ENOENT;
3722 else
3723 ret = PTR_ERR(di);
3724 goto out;
3725 }
4df27c4d
YZ
3726
3727 leaf = path->nodes[0];
3728 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3729 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3730 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3731 if (ret) {
3732 btrfs_abort_transaction(trans, root, ret);
3733 goto out;
3734 }
b3b4aa74 3735 btrfs_release_path(path);
4df27c4d
YZ
3736
3737 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3738 objectid, root->root_key.objectid,
33345d01 3739 dir_ino, &index, name, name_len);
4df27c4d 3740 if (ret < 0) {
79787eaa
JM
3741 if (ret != -ENOENT) {
3742 btrfs_abort_transaction(trans, root, ret);
3743 goto out;
3744 }
33345d01 3745 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3746 name, name_len);
79787eaa
JM
3747 if (IS_ERR_OR_NULL(di)) {
3748 if (!di)
3749 ret = -ENOENT;
3750 else
3751 ret = PTR_ERR(di);
3752 btrfs_abort_transaction(trans, root, ret);
3753 goto out;
3754 }
4df27c4d
YZ
3755
3756 leaf = path->nodes[0];
3757 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3758 btrfs_release_path(path);
4df27c4d
YZ
3759 index = key.offset;
3760 }
945d8962 3761 btrfs_release_path(path);
4df27c4d 3762
16cdcec7 3763 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3764 if (ret) {
3765 btrfs_abort_transaction(trans, root, ret);
3766 goto out;
3767 }
4df27c4d
YZ
3768
3769 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3770 inode_inc_iversion(dir);
4df27c4d 3771 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3772 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3773 if (ret)
3774 btrfs_abort_transaction(trans, root, ret);
3775out:
71d7aed0 3776 btrfs_free_path(path);
79787eaa 3777 return ret;
4df27c4d
YZ
3778}
3779
39279cc3
CM
3780static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3781{
3782 struct inode *inode = dentry->d_inode;
1832a6d5 3783 int err = 0;
39279cc3 3784 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3785 struct btrfs_trans_handle *trans;
39279cc3 3786
b3ae244e 3787 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3788 return -ENOTEMPTY;
b3ae244e
DS
3789 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3790 return -EPERM;
134d4512 3791
d52be818 3792 trans = __unlink_start_trans(dir);
a22285a6 3793 if (IS_ERR(trans))
5df6a9f6 3794 return PTR_ERR(trans);
5df6a9f6 3795
33345d01 3796 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3797 err = btrfs_unlink_subvol(trans, root, dir,
3798 BTRFS_I(inode)->location.objectid,
3799 dentry->d_name.name,
3800 dentry->d_name.len);
3801 goto out;
3802 }
3803
7b128766
JB
3804 err = btrfs_orphan_add(trans, inode);
3805 if (err)
4df27c4d 3806 goto out;
7b128766 3807
39279cc3 3808 /* now the directory is empty */
e02119d5
CM
3809 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3810 dentry->d_name.name, dentry->d_name.len);
d397712b 3811 if (!err)
dbe674a9 3812 btrfs_i_size_write(inode, 0);
4df27c4d 3813out:
d52be818 3814 btrfs_end_transaction(trans, root);
b53d3f5d 3815 btrfs_btree_balance_dirty(root);
3954401f 3816
39279cc3
CM
3817 return err;
3818}
3819
39279cc3
CM
3820/*
3821 * this can truncate away extent items, csum items and directory items.
3822 * It starts at a high offset and removes keys until it can't find
d352ac68 3823 * any higher than new_size
39279cc3
CM
3824 *
3825 * csum items that cross the new i_size are truncated to the new size
3826 * as well.
7b128766
JB
3827 *
3828 * min_type is the minimum key type to truncate down to. If set to 0, this
3829 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3830 */
8082510e
YZ
3831int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3832 struct btrfs_root *root,
3833 struct inode *inode,
3834 u64 new_size, u32 min_type)
39279cc3 3835{
39279cc3 3836 struct btrfs_path *path;
5f39d397 3837 struct extent_buffer *leaf;
39279cc3 3838 struct btrfs_file_extent_item *fi;
8082510e
YZ
3839 struct btrfs_key key;
3840 struct btrfs_key found_key;
39279cc3 3841 u64 extent_start = 0;
db94535d 3842 u64 extent_num_bytes = 0;
5d4f98a2 3843 u64 extent_offset = 0;
39279cc3 3844 u64 item_end = 0;
8082510e 3845 u32 found_type = (u8)-1;
39279cc3
CM
3846 int found_extent;
3847 int del_item;
85e21bac
CM
3848 int pending_del_nr = 0;
3849 int pending_del_slot = 0;
179e29e4 3850 int extent_type = -1;
8082510e
YZ
3851 int ret;
3852 int err = 0;
33345d01 3853 u64 ino = btrfs_ino(inode);
8082510e
YZ
3854
3855 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3856
0eb0e19c
MF
3857 path = btrfs_alloc_path();
3858 if (!path)
3859 return -ENOMEM;
3860 path->reada = -1;
3861
5dc562c5
JB
3862 /*
3863 * We want to drop from the next block forward in case this new size is
3864 * not block aligned since we will be keeping the last block of the
3865 * extent just the way it is.
3866 */
0af3d00b 3867 if (root->ref_cows || root == root->fs_info->tree_root)
fda2832f
QW
3868 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3869 root->sectorsize), (u64)-1, 0);
8082510e 3870
16cdcec7
MX
3871 /*
3872 * This function is also used to drop the items in the log tree before
3873 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3874 * it is used to drop the loged items. So we shouldn't kill the delayed
3875 * items.
3876 */
3877 if (min_type == 0 && root == BTRFS_I(inode)->root)
3878 btrfs_kill_delayed_inode_items(inode);
3879
33345d01 3880 key.objectid = ino;
39279cc3 3881 key.offset = (u64)-1;
5f39d397
CM
3882 key.type = (u8)-1;
3883
85e21bac 3884search_again:
b9473439 3885 path->leave_spinning = 1;
85e21bac 3886 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3887 if (ret < 0) {
3888 err = ret;
3889 goto out;
3890 }
d397712b 3891
85e21bac 3892 if (ret > 0) {
e02119d5
CM
3893 /* there are no items in the tree for us to truncate, we're
3894 * done
3895 */
8082510e
YZ
3896 if (path->slots[0] == 0)
3897 goto out;
85e21bac
CM
3898 path->slots[0]--;
3899 }
3900
d397712b 3901 while (1) {
39279cc3 3902 fi = NULL;
5f39d397
CM
3903 leaf = path->nodes[0];
3904 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3905 found_type = btrfs_key_type(&found_key);
39279cc3 3906
33345d01 3907 if (found_key.objectid != ino)
39279cc3 3908 break;
5f39d397 3909
85e21bac 3910 if (found_type < min_type)
39279cc3
CM
3911 break;
3912
5f39d397 3913 item_end = found_key.offset;
39279cc3 3914 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3915 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3916 struct btrfs_file_extent_item);
179e29e4
CM
3917 extent_type = btrfs_file_extent_type(leaf, fi);
3918 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3919 item_end +=
db94535d 3920 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3921 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3922 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3923 fi);
39279cc3 3924 }
008630c1 3925 item_end--;
39279cc3 3926 }
8082510e
YZ
3927 if (found_type > min_type) {
3928 del_item = 1;
3929 } else {
3930 if (item_end < new_size)
b888db2b 3931 break;
8082510e
YZ
3932 if (found_key.offset >= new_size)
3933 del_item = 1;
3934 else
3935 del_item = 0;
39279cc3 3936 }
39279cc3 3937 found_extent = 0;
39279cc3 3938 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3939 if (found_type != BTRFS_EXTENT_DATA_KEY)
3940 goto delete;
3941
3942 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3943 u64 num_dec;
db94535d 3944 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3945 if (!del_item) {
db94535d
CM
3946 u64 orig_num_bytes =
3947 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
3948 extent_num_bytes = ALIGN(new_size -
3949 found_key.offset,
3950 root->sectorsize);
db94535d
CM
3951 btrfs_set_file_extent_num_bytes(leaf, fi,
3952 extent_num_bytes);
3953 num_dec = (orig_num_bytes -
9069218d 3954 extent_num_bytes);
e02119d5 3955 if (root->ref_cows && extent_start != 0)
a76a3cd4 3956 inode_sub_bytes(inode, num_dec);
5f39d397 3957 btrfs_mark_buffer_dirty(leaf);
39279cc3 3958 } else {
db94535d
CM
3959 extent_num_bytes =
3960 btrfs_file_extent_disk_num_bytes(leaf,
3961 fi);
5d4f98a2
YZ
3962 extent_offset = found_key.offset -
3963 btrfs_file_extent_offset(leaf, fi);
3964
39279cc3 3965 /* FIXME blocksize != 4096 */
9069218d 3966 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3967 if (extent_start != 0) {
3968 found_extent = 1;
e02119d5 3969 if (root->ref_cows)
a76a3cd4 3970 inode_sub_bytes(inode, num_dec);
e02119d5 3971 }
39279cc3 3972 }
9069218d 3973 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3974 /*
3975 * we can't truncate inline items that have had
3976 * special encodings
3977 */
3978 if (!del_item &&
3979 btrfs_file_extent_compression(leaf, fi) == 0 &&
3980 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3981 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3982 u32 size = new_size - found_key.offset;
3983
3984 if (root->ref_cows) {
a76a3cd4
YZ
3985 inode_sub_bytes(inode, item_end + 1 -
3986 new_size);
e02119d5
CM
3987 }
3988 size =
3989 btrfs_file_extent_calc_inline_size(size);
afe5fea7 3990 btrfs_truncate_item(root, path, size, 1);
e02119d5 3991 } else if (root->ref_cows) {
a76a3cd4
YZ
3992 inode_sub_bytes(inode, item_end + 1 -
3993 found_key.offset);
9069218d 3994 }
39279cc3 3995 }
179e29e4 3996delete:
39279cc3 3997 if (del_item) {
85e21bac
CM
3998 if (!pending_del_nr) {
3999 /* no pending yet, add ourselves */
4000 pending_del_slot = path->slots[0];
4001 pending_del_nr = 1;
4002 } else if (pending_del_nr &&
4003 path->slots[0] + 1 == pending_del_slot) {
4004 /* hop on the pending chunk */
4005 pending_del_nr++;
4006 pending_del_slot = path->slots[0];
4007 } else {
d397712b 4008 BUG();
85e21bac 4009 }
39279cc3
CM
4010 } else {
4011 break;
4012 }
0af3d00b
JB
4013 if (found_extent && (root->ref_cows ||
4014 root == root->fs_info->tree_root)) {
b9473439 4015 btrfs_set_path_blocking(path);
39279cc3 4016 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4017 extent_num_bytes, 0,
4018 btrfs_header_owner(leaf),
66d7e7f0 4019 ino, extent_offset, 0);
39279cc3
CM
4020 BUG_ON(ret);
4021 }
85e21bac 4022
8082510e
YZ
4023 if (found_type == BTRFS_INODE_ITEM_KEY)
4024 break;
4025
4026 if (path->slots[0] == 0 ||
4027 path->slots[0] != pending_del_slot) {
8082510e
YZ
4028 if (pending_del_nr) {
4029 ret = btrfs_del_items(trans, root, path,
4030 pending_del_slot,
4031 pending_del_nr);
79787eaa
JM
4032 if (ret) {
4033 btrfs_abort_transaction(trans,
4034 root, ret);
4035 goto error;
4036 }
8082510e
YZ
4037 pending_del_nr = 0;
4038 }
b3b4aa74 4039 btrfs_release_path(path);
85e21bac 4040 goto search_again;
8082510e
YZ
4041 } else {
4042 path->slots[0]--;
85e21bac 4043 }
39279cc3 4044 }
8082510e 4045out:
85e21bac
CM
4046 if (pending_del_nr) {
4047 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4048 pending_del_nr);
79787eaa
JM
4049 if (ret)
4050 btrfs_abort_transaction(trans, root, ret);
85e21bac 4051 }
79787eaa 4052error:
39279cc3 4053 btrfs_free_path(path);
8082510e 4054 return err;
39279cc3
CM
4055}
4056
4057/*
2aaa6655
JB
4058 * btrfs_truncate_page - read, zero a chunk and write a page
4059 * @inode - inode that we're zeroing
4060 * @from - the offset to start zeroing
4061 * @len - the length to zero, 0 to zero the entire range respective to the
4062 * offset
4063 * @front - zero up to the offset instead of from the offset on
4064 *
4065 * This will find the page for the "from" offset and cow the page and zero the
4066 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4067 */
2aaa6655
JB
4068int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4069 int front)
39279cc3 4070{
2aaa6655 4071 struct address_space *mapping = inode->i_mapping;
db94535d 4072 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4073 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4074 struct btrfs_ordered_extent *ordered;
2ac55d41 4075 struct extent_state *cached_state = NULL;
e6dcd2dc 4076 char *kaddr;
db94535d 4077 u32 blocksize = root->sectorsize;
39279cc3
CM
4078 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4079 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4080 struct page *page;
3b16a4e3 4081 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4082 int ret = 0;
a52d9a80 4083 u64 page_start;
e6dcd2dc 4084 u64 page_end;
39279cc3 4085
2aaa6655
JB
4086 if ((offset & (blocksize - 1)) == 0 &&
4087 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4088 goto out;
0ca1f7ce 4089 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4090 if (ret)
4091 goto out;
39279cc3 4092
211c17f5 4093again:
3b16a4e3 4094 page = find_or_create_page(mapping, index, mask);
5d5e103a 4095 if (!page) {
0ca1f7ce 4096 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4097 ret = -ENOMEM;
39279cc3 4098 goto out;
5d5e103a 4099 }
e6dcd2dc
CM
4100
4101 page_start = page_offset(page);
4102 page_end = page_start + PAGE_CACHE_SIZE - 1;
4103
39279cc3 4104 if (!PageUptodate(page)) {
9ebefb18 4105 ret = btrfs_readpage(NULL, page);
39279cc3 4106 lock_page(page);
211c17f5
CM
4107 if (page->mapping != mapping) {
4108 unlock_page(page);
4109 page_cache_release(page);
4110 goto again;
4111 }
39279cc3
CM
4112 if (!PageUptodate(page)) {
4113 ret = -EIO;
89642229 4114 goto out_unlock;
39279cc3
CM
4115 }
4116 }
211c17f5 4117 wait_on_page_writeback(page);
e6dcd2dc 4118
d0082371 4119 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4120 set_page_extent_mapped(page);
4121
4122 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4123 if (ordered) {
2ac55d41
JB
4124 unlock_extent_cached(io_tree, page_start, page_end,
4125 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4126 unlock_page(page);
4127 page_cache_release(page);
eb84ae03 4128 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4129 btrfs_put_ordered_extent(ordered);
4130 goto again;
4131 }
4132
2ac55d41 4133 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4134 EXTENT_DIRTY | EXTENT_DELALLOC |
4135 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4136 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4137
2ac55d41
JB
4138 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4139 &cached_state);
9ed74f2d 4140 if (ret) {
2ac55d41
JB
4141 unlock_extent_cached(io_tree, page_start, page_end,
4142 &cached_state, GFP_NOFS);
9ed74f2d
JB
4143 goto out_unlock;
4144 }
4145
e6dcd2dc 4146 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4147 if (!len)
4148 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4149 kaddr = kmap(page);
2aaa6655
JB
4150 if (front)
4151 memset(kaddr, 0, offset);
4152 else
4153 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4154 flush_dcache_page(page);
4155 kunmap(page);
4156 }
247e743c 4157 ClearPageChecked(page);
e6dcd2dc 4158 set_page_dirty(page);
2ac55d41
JB
4159 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4160 GFP_NOFS);
39279cc3 4161
89642229 4162out_unlock:
5d5e103a 4163 if (ret)
0ca1f7ce 4164 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4165 unlock_page(page);
4166 page_cache_release(page);
4167out:
4168 return ret;
4169}
4170
695a0d0d
JB
4171/*
4172 * This function puts in dummy file extents for the area we're creating a hole
4173 * for. So if we are truncating this file to a larger size we need to insert
4174 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4175 * the range between oldsize and size
4176 */
a41ad394 4177int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4178{
9036c102
YZ
4179 struct btrfs_trans_handle *trans;
4180 struct btrfs_root *root = BTRFS_I(inode)->root;
4181 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4182 struct extent_map *em = NULL;
2ac55d41 4183 struct extent_state *cached_state = NULL;
5dc562c5 4184 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4185 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4186 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4187 u64 last_byte;
4188 u64 cur_offset;
4189 u64 hole_size;
9ed74f2d 4190 int err = 0;
39279cc3 4191
a71754fc
JB
4192 /*
4193 * If our size started in the middle of a page we need to zero out the
4194 * rest of the page before we expand the i_size, otherwise we could
4195 * expose stale data.
4196 */
4197 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4198 if (err)
4199 return err;
4200
9036c102
YZ
4201 if (size <= hole_start)
4202 return 0;
4203
9036c102
YZ
4204 while (1) {
4205 struct btrfs_ordered_extent *ordered;
4206 btrfs_wait_ordered_range(inode, hole_start,
4207 block_end - hole_start);
2ac55d41 4208 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4209 &cached_state);
9036c102
YZ
4210 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4211 if (!ordered)
4212 break;
2ac55d41
JB
4213 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4214 &cached_state, GFP_NOFS);
9036c102
YZ
4215 btrfs_put_ordered_extent(ordered);
4216 }
39279cc3 4217
9036c102
YZ
4218 cur_offset = hole_start;
4219 while (1) {
4220 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4221 block_end - cur_offset, 0);
79787eaa
JM
4222 if (IS_ERR(em)) {
4223 err = PTR_ERR(em);
f2767956 4224 em = NULL;
79787eaa
JM
4225 break;
4226 }
9036c102 4227 last_byte = min(extent_map_end(em), block_end);
fda2832f 4228 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4229 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4230 struct extent_map *hole_em;
9036c102 4231 hole_size = last_byte - cur_offset;
9ed74f2d 4232
3642320e 4233 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
4234 if (IS_ERR(trans)) {
4235 err = PTR_ERR(trans);
9ed74f2d 4236 break;
a22285a6 4237 }
8082510e 4238
5dc562c5
JB
4239 err = btrfs_drop_extents(trans, root, inode,
4240 cur_offset,
2671485d 4241 cur_offset + hole_size, 1);
5b397377 4242 if (err) {
79787eaa 4243 btrfs_abort_transaction(trans, root, err);
5b397377 4244 btrfs_end_transaction(trans, root);
3893e33b 4245 break;
5b397377 4246 }
8082510e 4247
9036c102 4248 err = btrfs_insert_file_extent(trans, root,
33345d01 4249 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
4250 0, hole_size, 0, hole_size,
4251 0, 0, 0);
5b397377 4252 if (err) {
79787eaa 4253 btrfs_abort_transaction(trans, root, err);
5b397377 4254 btrfs_end_transaction(trans, root);
3893e33b 4255 break;
5b397377 4256 }
8082510e 4257
5dc562c5
JB
4258 btrfs_drop_extent_cache(inode, cur_offset,
4259 cur_offset + hole_size - 1, 0);
4260 hole_em = alloc_extent_map();
4261 if (!hole_em) {
4262 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4263 &BTRFS_I(inode)->runtime_flags);
4264 goto next;
4265 }
4266 hole_em->start = cur_offset;
4267 hole_em->len = hole_size;
4268 hole_em->orig_start = cur_offset;
8082510e 4269
5dc562c5
JB
4270 hole_em->block_start = EXTENT_MAP_HOLE;
4271 hole_em->block_len = 0;
b4939680 4272 hole_em->orig_block_len = 0;
cc95bef6 4273 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4274 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4275 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4276 hole_em->generation = trans->transid;
8082510e 4277
5dc562c5
JB
4278 while (1) {
4279 write_lock(&em_tree->lock);
09a2a8f9 4280 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4281 write_unlock(&em_tree->lock);
4282 if (err != -EEXIST)
4283 break;
4284 btrfs_drop_extent_cache(inode, cur_offset,
4285 cur_offset +
4286 hole_size - 1, 0);
4287 }
4288 free_extent_map(hole_em);
4289next:
3642320e 4290 btrfs_update_inode(trans, root, inode);
8082510e 4291 btrfs_end_transaction(trans, root);
9036c102
YZ
4292 }
4293 free_extent_map(em);
a22285a6 4294 em = NULL;
9036c102 4295 cur_offset = last_byte;
8082510e 4296 if (cur_offset >= block_end)
9036c102
YZ
4297 break;
4298 }
1832a6d5 4299
a22285a6 4300 free_extent_map(em);
2ac55d41
JB
4301 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4302 GFP_NOFS);
9036c102
YZ
4303 return err;
4304}
39279cc3 4305
3972f260 4306static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4307{
f4a2f4c5
MX
4308 struct btrfs_root *root = BTRFS_I(inode)->root;
4309 struct btrfs_trans_handle *trans;
a41ad394 4310 loff_t oldsize = i_size_read(inode);
3972f260
ES
4311 loff_t newsize = attr->ia_size;
4312 int mask = attr->ia_valid;
8082510e
YZ
4313 int ret;
4314
3972f260
ES
4315 /*
4316 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4317 * special case where we need to update the times despite not having
4318 * these flags set. For all other operations the VFS set these flags
4319 * explicitly if it wants a timestamp update.
4320 */
4321 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4322 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4323
a41ad394 4324 if (newsize > oldsize) {
a41ad394
JB
4325 truncate_pagecache(inode, oldsize, newsize);
4326 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4327 if (ret)
8082510e 4328 return ret;
8082510e 4329
f4a2f4c5
MX
4330 trans = btrfs_start_transaction(root, 1);
4331 if (IS_ERR(trans))
4332 return PTR_ERR(trans);
4333
4334 i_size_write(inode, newsize);
4335 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4336 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4337 btrfs_end_transaction(trans, root);
a41ad394 4338 } else {
8082510e 4339
a41ad394
JB
4340 /*
4341 * We're truncating a file that used to have good data down to
4342 * zero. Make sure it gets into the ordered flush list so that
4343 * any new writes get down to disk quickly.
4344 */
4345 if (newsize == 0)
72ac3c0d
JB
4346 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4347 &BTRFS_I(inode)->runtime_flags);
8082510e 4348
f3fe820c
JB
4349 /*
4350 * 1 for the orphan item we're going to add
4351 * 1 for the orphan item deletion.
4352 */
4353 trans = btrfs_start_transaction(root, 2);
4354 if (IS_ERR(trans))
4355 return PTR_ERR(trans);
4356
4357 /*
4358 * We need to do this in case we fail at _any_ point during the
4359 * actual truncate. Once we do the truncate_setsize we could
4360 * invalidate pages which forces any outstanding ordered io to
4361 * be instantly completed which will give us extents that need
4362 * to be truncated. If we fail to get an orphan inode down we
4363 * could have left over extents that were never meant to live,
4364 * so we need to garuntee from this point on that everything
4365 * will be consistent.
4366 */
4367 ret = btrfs_orphan_add(trans, inode);
4368 btrfs_end_transaction(trans, root);
4369 if (ret)
4370 return ret;
4371
a41ad394
JB
4372 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4373 truncate_setsize(inode, newsize);
2e60a51e
MX
4374
4375 /* Disable nonlocked read DIO to avoid the end less truncate */
4376 btrfs_inode_block_unlocked_dio(inode);
4377 inode_dio_wait(inode);
4378 btrfs_inode_resume_unlocked_dio(inode);
4379
a41ad394 4380 ret = btrfs_truncate(inode);
f3fe820c
JB
4381 if (ret && inode->i_nlink)
4382 btrfs_orphan_del(NULL, inode);
8082510e
YZ
4383 }
4384
a41ad394 4385 return ret;
8082510e
YZ
4386}
4387
9036c102
YZ
4388static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4389{
4390 struct inode *inode = dentry->d_inode;
b83cc969 4391 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4392 int err;
39279cc3 4393
b83cc969
LZ
4394 if (btrfs_root_readonly(root))
4395 return -EROFS;
4396
9036c102
YZ
4397 err = inode_change_ok(inode, attr);
4398 if (err)
4399 return err;
2bf5a725 4400
5a3f23d5 4401 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4402 err = btrfs_setsize(inode, attr);
8082510e
YZ
4403 if (err)
4404 return err;
39279cc3 4405 }
9036c102 4406
1025774c
CH
4407 if (attr->ia_valid) {
4408 setattr_copy(inode, attr);
0c4d2d95 4409 inode_inc_iversion(inode);
22c44fe6 4410 err = btrfs_dirty_inode(inode);
1025774c 4411
22c44fe6 4412 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
4413 err = btrfs_acl_chmod(inode);
4414 }
33268eaf 4415
39279cc3
CM
4416 return err;
4417}
61295eb8 4418
bd555975 4419void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4420{
4421 struct btrfs_trans_handle *trans;
4422 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4423 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4424 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4425 int ret;
4426
1abe9b8a 4427 trace_btrfs_inode_evict(inode);
4428
39279cc3 4429 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 4430 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 4431 btrfs_is_free_space_inode(inode)))
bd555975
AV
4432 goto no_delete;
4433
39279cc3 4434 if (is_bad_inode(inode)) {
7b128766 4435 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4436 goto no_delete;
4437 }
bd555975 4438 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4439 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4440
c71bf099 4441 if (root->fs_info->log_root_recovering) {
6bf02314 4442 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4443 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4444 goto no_delete;
4445 }
4446
76dda93c
YZ
4447 if (inode->i_nlink > 0) {
4448 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
4449 goto no_delete;
4450 }
4451
0e8c36a9
MX
4452 ret = btrfs_commit_inode_delayed_inode(inode);
4453 if (ret) {
4454 btrfs_orphan_del(NULL, inode);
4455 goto no_delete;
4456 }
4457
66d8f3dd 4458 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4459 if (!rsv) {
4460 btrfs_orphan_del(NULL, inode);
4461 goto no_delete;
4462 }
4a338542 4463 rsv->size = min_size;
ca7e70f5 4464 rsv->failfast = 1;
726c35fa 4465 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4466
dbe674a9 4467 btrfs_i_size_write(inode, 0);
5f39d397 4468
4289a667 4469 /*
8407aa46
MX
4470 * This is a bit simpler than btrfs_truncate since we've already
4471 * reserved our space for our orphan item in the unlink, so we just
4472 * need to reserve some slack space in case we add bytes and update
4473 * inode item when doing the truncate.
4289a667 4474 */
8082510e 4475 while (1) {
08e007d2
MX
4476 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4477 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4478
4479 /*
4480 * Try and steal from the global reserve since we will
4481 * likely not use this space anyway, we want to try as
4482 * hard as possible to get this to work.
4483 */
4484 if (ret)
4485 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4486
d68fc57b 4487 if (ret) {
c2cf52eb
SK
4488 btrfs_warn(root->fs_info,
4489 "Could not get space for a delete, will truncate on mount %d",
4490 ret);
4289a667
JB
4491 btrfs_orphan_del(NULL, inode);
4492 btrfs_free_block_rsv(root, rsv);
4493 goto no_delete;
d68fc57b 4494 }
7b128766 4495
0e8c36a9 4496 trans = btrfs_join_transaction(root);
4289a667
JB
4497 if (IS_ERR(trans)) {
4498 btrfs_orphan_del(NULL, inode);
4499 btrfs_free_block_rsv(root, rsv);
4500 goto no_delete;
d68fc57b 4501 }
7b128766 4502
4289a667
JB
4503 trans->block_rsv = rsv;
4504
d68fc57b 4505 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4506 if (ret != -ENOSPC)
8082510e 4507 break;
85e21bac 4508
8407aa46 4509 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4510 btrfs_end_transaction(trans, root);
4511 trans = NULL;
b53d3f5d 4512 btrfs_btree_balance_dirty(root);
8082510e 4513 }
5f39d397 4514
4289a667
JB
4515 btrfs_free_block_rsv(root, rsv);
4516
4ef31a45
JB
4517 /*
4518 * Errors here aren't a big deal, it just means we leave orphan items
4519 * in the tree. They will be cleaned up on the next mount.
4520 */
8082510e 4521 if (ret == 0) {
4289a667 4522 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
4523 btrfs_orphan_del(trans, inode);
4524 } else {
4525 btrfs_orphan_del(NULL, inode);
8082510e 4526 }
54aa1f4d 4527
4289a667 4528 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4529 if (!(root == root->fs_info->tree_root ||
4530 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4531 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4532
54aa1f4d 4533 btrfs_end_transaction(trans, root);
b53d3f5d 4534 btrfs_btree_balance_dirty(root);
39279cc3 4535no_delete:
89042e5a 4536 btrfs_remove_delayed_node(inode);
dbd5768f 4537 clear_inode(inode);
8082510e 4538 return;
39279cc3
CM
4539}
4540
4541/*
4542 * this returns the key found in the dir entry in the location pointer.
4543 * If no dir entries were found, location->objectid is 0.
4544 */
4545static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4546 struct btrfs_key *location)
4547{
4548 const char *name = dentry->d_name.name;
4549 int namelen = dentry->d_name.len;
4550 struct btrfs_dir_item *di;
4551 struct btrfs_path *path;
4552 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4553 int ret = 0;
39279cc3
CM
4554
4555 path = btrfs_alloc_path();
d8926bb3
MF
4556 if (!path)
4557 return -ENOMEM;
3954401f 4558
33345d01 4559 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4560 namelen, 0);
0d9f7f3e
Y
4561 if (IS_ERR(di))
4562 ret = PTR_ERR(di);
d397712b 4563
c704005d 4564 if (IS_ERR_OR_NULL(di))
3954401f 4565 goto out_err;
d397712b 4566
5f39d397 4567 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4568out:
39279cc3
CM
4569 btrfs_free_path(path);
4570 return ret;
3954401f
CM
4571out_err:
4572 location->objectid = 0;
4573 goto out;
39279cc3
CM
4574}
4575
4576/*
4577 * when we hit a tree root in a directory, the btrfs part of the inode
4578 * needs to be changed to reflect the root directory of the tree root. This
4579 * is kind of like crossing a mount point.
4580 */
4581static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4582 struct inode *dir,
4583 struct dentry *dentry,
4584 struct btrfs_key *location,
4585 struct btrfs_root **sub_root)
39279cc3 4586{
4df27c4d
YZ
4587 struct btrfs_path *path;
4588 struct btrfs_root *new_root;
4589 struct btrfs_root_ref *ref;
4590 struct extent_buffer *leaf;
4591 int ret;
4592 int err = 0;
39279cc3 4593
4df27c4d
YZ
4594 path = btrfs_alloc_path();
4595 if (!path) {
4596 err = -ENOMEM;
4597 goto out;
4598 }
39279cc3 4599
4df27c4d
YZ
4600 err = -ENOENT;
4601 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4602 BTRFS_I(dir)->root->root_key.objectid,
4603 location->objectid);
4604 if (ret) {
4605 if (ret < 0)
4606 err = ret;
4607 goto out;
4608 }
39279cc3 4609
4df27c4d
YZ
4610 leaf = path->nodes[0];
4611 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4612 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4613 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4614 goto out;
39279cc3 4615
4df27c4d
YZ
4616 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4617 (unsigned long)(ref + 1),
4618 dentry->d_name.len);
4619 if (ret)
4620 goto out;
4621
b3b4aa74 4622 btrfs_release_path(path);
4df27c4d
YZ
4623
4624 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4625 if (IS_ERR(new_root)) {
4626 err = PTR_ERR(new_root);
4627 goto out;
4628 }
4629
4df27c4d
YZ
4630 *sub_root = new_root;
4631 location->objectid = btrfs_root_dirid(&new_root->root_item);
4632 location->type = BTRFS_INODE_ITEM_KEY;
4633 location->offset = 0;
4634 err = 0;
4635out:
4636 btrfs_free_path(path);
4637 return err;
39279cc3
CM
4638}
4639
5d4f98a2
YZ
4640static void inode_tree_add(struct inode *inode)
4641{
4642 struct btrfs_root *root = BTRFS_I(inode)->root;
4643 struct btrfs_inode *entry;
03e860bd
FNP
4644 struct rb_node **p;
4645 struct rb_node *parent;
33345d01 4646 u64 ino = btrfs_ino(inode);
5d4f98a2 4647
1d3382cb 4648 if (inode_unhashed(inode))
76dda93c 4649 return;
e1409cef
MX
4650again:
4651 parent = NULL;
5d4f98a2 4652 spin_lock(&root->inode_lock);
e1409cef 4653 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4654 while (*p) {
4655 parent = *p;
4656 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4657
33345d01 4658 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4659 p = &parent->rb_left;
33345d01 4660 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4661 p = &parent->rb_right;
5d4f98a2
YZ
4662 else {
4663 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4664 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
4665 rb_erase(parent, &root->inode_tree);
4666 RB_CLEAR_NODE(parent);
4667 spin_unlock(&root->inode_lock);
4668 goto again;
5d4f98a2
YZ
4669 }
4670 }
4671 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4672 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4673 spin_unlock(&root->inode_lock);
4674}
4675
4676static void inode_tree_del(struct inode *inode)
4677{
4678 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4679 int empty = 0;
5d4f98a2 4680
03e860bd 4681 spin_lock(&root->inode_lock);
5d4f98a2 4682 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4683 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4684 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4685 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4686 }
03e860bd 4687 spin_unlock(&root->inode_lock);
76dda93c 4688
0af3d00b
JB
4689 /*
4690 * Free space cache has inodes in the tree root, but the tree root has a
4691 * root_refs of 0, so this could end up dropping the tree root as a
4692 * snapshot, so we need the extra !root->fs_info->tree_root check to
4693 * make sure we don't drop it.
4694 */
4695 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4696 root != root->fs_info->tree_root) {
76dda93c
YZ
4697 synchronize_srcu(&root->fs_info->subvol_srcu);
4698 spin_lock(&root->inode_lock);
4699 empty = RB_EMPTY_ROOT(&root->inode_tree);
4700 spin_unlock(&root->inode_lock);
4701 if (empty)
4702 btrfs_add_dead_root(root);
4703 }
4704}
4705
143bede5 4706void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4707{
4708 struct rb_node *node;
4709 struct rb_node *prev;
4710 struct btrfs_inode *entry;
4711 struct inode *inode;
4712 u64 objectid = 0;
4713
4714 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4715
4716 spin_lock(&root->inode_lock);
4717again:
4718 node = root->inode_tree.rb_node;
4719 prev = NULL;
4720 while (node) {
4721 prev = node;
4722 entry = rb_entry(node, struct btrfs_inode, rb_node);
4723
33345d01 4724 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4725 node = node->rb_left;
33345d01 4726 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4727 node = node->rb_right;
4728 else
4729 break;
4730 }
4731 if (!node) {
4732 while (prev) {
4733 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4734 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4735 node = prev;
4736 break;
4737 }
4738 prev = rb_next(prev);
4739 }
4740 }
4741 while (node) {
4742 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4743 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4744 inode = igrab(&entry->vfs_inode);
4745 if (inode) {
4746 spin_unlock(&root->inode_lock);
4747 if (atomic_read(&inode->i_count) > 1)
4748 d_prune_aliases(inode);
4749 /*
45321ac5 4750 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4751 * the inode cache when its usage count
4752 * hits zero.
4753 */
4754 iput(inode);
4755 cond_resched();
4756 spin_lock(&root->inode_lock);
4757 goto again;
4758 }
4759
4760 if (cond_resched_lock(&root->inode_lock))
4761 goto again;
4762
4763 node = rb_next(node);
4764 }
4765 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4766}
4767
e02119d5
CM
4768static int btrfs_init_locked_inode(struct inode *inode, void *p)
4769{
4770 struct btrfs_iget_args *args = p;
4771 inode->i_ino = args->ino;
e02119d5 4772 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4773 return 0;
4774}
4775
4776static int btrfs_find_actor(struct inode *inode, void *opaque)
4777{
4778 struct btrfs_iget_args *args = opaque;
33345d01 4779 return args->ino == btrfs_ino(inode) &&
d397712b 4780 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4781}
4782
5d4f98a2
YZ
4783static struct inode *btrfs_iget_locked(struct super_block *s,
4784 u64 objectid,
4785 struct btrfs_root *root)
39279cc3
CM
4786{
4787 struct inode *inode;
4788 struct btrfs_iget_args args;
4789 args.ino = objectid;
4790 args.root = root;
4791
4792 inode = iget5_locked(s, objectid, btrfs_find_actor,
4793 btrfs_init_locked_inode,
4794 (void *)&args);
4795 return inode;
4796}
4797
1a54ef8c
BR
4798/* Get an inode object given its location and corresponding root.
4799 * Returns in *is_new if the inode was read from disk
4800 */
4801struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4802 struct btrfs_root *root, int *new)
1a54ef8c
BR
4803{
4804 struct inode *inode;
4805
4806 inode = btrfs_iget_locked(s, location->objectid, root);
4807 if (!inode)
5d4f98a2 4808 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4809
4810 if (inode->i_state & I_NEW) {
4811 BTRFS_I(inode)->root = root;
4812 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4813 btrfs_read_locked_inode(inode);
1748f843
MF
4814 if (!is_bad_inode(inode)) {
4815 inode_tree_add(inode);
4816 unlock_new_inode(inode);
4817 if (new)
4818 *new = 1;
4819 } else {
e0b6d65b
ST
4820 unlock_new_inode(inode);
4821 iput(inode);
4822 inode = ERR_PTR(-ESTALE);
1748f843
MF
4823 }
4824 }
4825
1a54ef8c
BR
4826 return inode;
4827}
4828
4df27c4d
YZ
4829static struct inode *new_simple_dir(struct super_block *s,
4830 struct btrfs_key *key,
4831 struct btrfs_root *root)
4832{
4833 struct inode *inode = new_inode(s);
4834
4835 if (!inode)
4836 return ERR_PTR(-ENOMEM);
4837
4df27c4d
YZ
4838 BTRFS_I(inode)->root = root;
4839 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4840 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4841
4842 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4843 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4844 inode->i_fop = &simple_dir_operations;
4845 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4846 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4847
4848 return inode;
4849}
4850
3de4586c 4851struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4852{
d397712b 4853 struct inode *inode;
4df27c4d 4854 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4855 struct btrfs_root *sub_root = root;
4856 struct btrfs_key location;
76dda93c 4857 int index;
b4aff1f8 4858 int ret = 0;
39279cc3
CM
4859
4860 if (dentry->d_name.len > BTRFS_NAME_LEN)
4861 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4862
39e3c955 4863 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
4864 if (ret < 0)
4865 return ERR_PTR(ret);
5f39d397 4866
4df27c4d
YZ
4867 if (location.objectid == 0)
4868 return NULL;
4869
4870 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4871 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4872 return inode;
4873 }
4874
4875 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4876
76dda93c 4877 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4878 ret = fixup_tree_root_location(root, dir, dentry,
4879 &location, &sub_root);
4880 if (ret < 0) {
4881 if (ret != -ENOENT)
4882 inode = ERR_PTR(ret);
4883 else
4884 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4885 } else {
73f73415 4886 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4887 }
76dda93c
YZ
4888 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4889
34d19bad 4890 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4891 down_read(&root->fs_info->cleanup_work_sem);
4892 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4893 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4894 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
4895 if (ret) {
4896 iput(inode);
66b4ffd1 4897 inode = ERR_PTR(ret);
01cd3367 4898 }
c71bf099
YZ
4899 }
4900
3de4586c
CM
4901 return inode;
4902}
4903
fe15ce44 4904static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4905{
4906 struct btrfs_root *root;
848cce0d 4907 struct inode *inode = dentry->d_inode;
76dda93c 4908
848cce0d
LZ
4909 if (!inode && !IS_ROOT(dentry))
4910 inode = dentry->d_parent->d_inode;
76dda93c 4911
848cce0d
LZ
4912 if (inode) {
4913 root = BTRFS_I(inode)->root;
efefb143
YZ
4914 if (btrfs_root_refs(&root->root_item) == 0)
4915 return 1;
848cce0d
LZ
4916
4917 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4918 return 1;
efefb143 4919 }
76dda93c
YZ
4920 return 0;
4921}
4922
b4aff1f8
JB
4923static void btrfs_dentry_release(struct dentry *dentry)
4924{
4925 if (dentry->d_fsdata)
4926 kfree(dentry->d_fsdata);
4927}
4928
3de4586c 4929static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 4930 unsigned int flags)
3de4586c 4931{
a66e7cc6
JB
4932 struct dentry *ret;
4933
4934 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
a66e7cc6 4935 return ret;
39279cc3
CM
4936}
4937
16cdcec7 4938unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4939 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4940};
4941
9cdda8d3 4942static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 4943{
9cdda8d3 4944 struct inode *inode = file_inode(file);
39279cc3
CM
4945 struct btrfs_root *root = BTRFS_I(inode)->root;
4946 struct btrfs_item *item;
4947 struct btrfs_dir_item *di;
4948 struct btrfs_key key;
5f39d397 4949 struct btrfs_key found_key;
39279cc3 4950 struct btrfs_path *path;
16cdcec7
MX
4951 struct list_head ins_list;
4952 struct list_head del_list;
39279cc3 4953 int ret;
5f39d397 4954 struct extent_buffer *leaf;
39279cc3 4955 int slot;
39279cc3
CM
4956 unsigned char d_type;
4957 int over = 0;
4958 u32 di_cur;
4959 u32 di_total;
4960 u32 di_len;
4961 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4962 char tmp_name[32];
4963 char *name_ptr;
4964 int name_len;
9cdda8d3 4965 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
4966
4967 /* FIXME, use a real flag for deciding about the key type */
4968 if (root->fs_info->tree_root == root)
4969 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4970
9cdda8d3
AV
4971 if (!dir_emit_dots(file, ctx))
4972 return 0;
4973
49593bfa 4974 path = btrfs_alloc_path();
16cdcec7
MX
4975 if (!path)
4976 return -ENOMEM;
ff5714cc 4977
026fd317 4978 path->reada = 1;
49593bfa 4979
16cdcec7
MX
4980 if (key_type == BTRFS_DIR_INDEX_KEY) {
4981 INIT_LIST_HEAD(&ins_list);
4982 INIT_LIST_HEAD(&del_list);
4983 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4984 }
4985
39279cc3 4986 btrfs_set_key_type(&key, key_type);
9cdda8d3 4987 key.offset = ctx->pos;
33345d01 4988 key.objectid = btrfs_ino(inode);
5f39d397 4989
39279cc3
CM
4990 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4991 if (ret < 0)
4992 goto err;
49593bfa
DW
4993
4994 while (1) {
5f39d397 4995 leaf = path->nodes[0];
39279cc3 4996 slot = path->slots[0];
b9e03af0
LZ
4997 if (slot >= btrfs_header_nritems(leaf)) {
4998 ret = btrfs_next_leaf(root, path);
4999 if (ret < 0)
5000 goto err;
5001 else if (ret > 0)
5002 break;
5003 continue;
39279cc3 5004 }
3de4586c 5005
5f39d397
CM
5006 item = btrfs_item_nr(leaf, slot);
5007 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5008
5009 if (found_key.objectid != key.objectid)
39279cc3 5010 break;
5f39d397 5011 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5012 break;
9cdda8d3 5013 if (found_key.offset < ctx->pos)
b9e03af0 5014 goto next;
16cdcec7
MX
5015 if (key_type == BTRFS_DIR_INDEX_KEY &&
5016 btrfs_should_delete_dir_index(&del_list,
5017 found_key.offset))
5018 goto next;
5f39d397 5019
9cdda8d3 5020 ctx->pos = found_key.offset;
16cdcec7 5021 is_curr = 1;
49593bfa 5022
39279cc3
CM
5023 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5024 di_cur = 0;
5f39d397 5025 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5026
5027 while (di_cur < di_total) {
5f39d397
CM
5028 struct btrfs_key location;
5029
22a94d44
JB
5030 if (verify_dir_item(root, leaf, di))
5031 break;
5032
5f39d397 5033 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5034 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5035 name_ptr = tmp_name;
5036 } else {
5037 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5038 if (!name_ptr) {
5039 ret = -ENOMEM;
5040 goto err;
5041 }
5f39d397
CM
5042 }
5043 read_extent_buffer(leaf, name_ptr,
5044 (unsigned long)(di + 1), name_len);
5045
5046 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5047 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5048
fede766f 5049
3de4586c 5050 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5051 * skip it.
5052 *
5053 * In contrast to old kernels, we insert the snapshot's
5054 * dir item and dir index after it has been created, so
5055 * we won't find a reference to our own snapshot. We
5056 * still keep the following code for backward
5057 * compatibility.
3de4586c
CM
5058 */
5059 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5060 location.objectid == root->root_key.objectid) {
5061 over = 0;
5062 goto skip;
5063 }
9cdda8d3
AV
5064 over = !dir_emit(ctx, name_ptr, name_len,
5065 location.objectid, d_type);
5f39d397 5066
3de4586c 5067skip:
5f39d397
CM
5068 if (name_ptr != tmp_name)
5069 kfree(name_ptr);
5070
39279cc3
CM
5071 if (over)
5072 goto nopos;
5103e947 5073 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5074 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5075 di_cur += di_len;
5076 di = (struct btrfs_dir_item *)((char *)di + di_len);
5077 }
b9e03af0
LZ
5078next:
5079 path->slots[0]++;
39279cc3 5080 }
49593bfa 5081
16cdcec7
MX
5082 if (key_type == BTRFS_DIR_INDEX_KEY) {
5083 if (is_curr)
9cdda8d3
AV
5084 ctx->pos++;
5085 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5086 if (ret)
5087 goto nopos;
5088 }
5089
49593bfa 5090 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5091 ctx->pos++;
5092
5093 /*
5094 * Stop new entries from being returned after we return the last
5095 * entry.
5096 *
5097 * New directory entries are assigned a strictly increasing
5098 * offset. This means that new entries created during readdir
5099 * are *guaranteed* to be seen in the future by that readdir.
5100 * This has broken buggy programs which operate on names as
5101 * they're returned by readdir. Until we re-use freed offsets
5102 * we have this hack to stop new entries from being returned
5103 * under the assumption that they'll never reach this huge
5104 * offset.
5105 *
5106 * This is being careful not to overflow 32bit loff_t unless the
5107 * last entry requires it because doing so has broken 32bit apps
5108 * in the past.
5109 */
5110 if (key_type == BTRFS_DIR_INDEX_KEY) {
5111 if (ctx->pos >= INT_MAX)
5112 ctx->pos = LLONG_MAX;
5113 else
5114 ctx->pos = INT_MAX;
5115 }
39279cc3
CM
5116nopos:
5117 ret = 0;
5118err:
16cdcec7
MX
5119 if (key_type == BTRFS_DIR_INDEX_KEY)
5120 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5121 btrfs_free_path(path);
39279cc3
CM
5122 return ret;
5123}
5124
a9185b41 5125int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5126{
5127 struct btrfs_root *root = BTRFS_I(inode)->root;
5128 struct btrfs_trans_handle *trans;
5129 int ret = 0;
0af3d00b 5130 bool nolock = false;
39279cc3 5131
72ac3c0d 5132 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5133 return 0;
5134
83eea1f1 5135 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5136 nolock = true;
0af3d00b 5137
a9185b41 5138 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5139 if (nolock)
7a7eaa40 5140 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5141 else
7a7eaa40 5142 trans = btrfs_join_transaction(root);
3612b495
TI
5143 if (IS_ERR(trans))
5144 return PTR_ERR(trans);
a698d075 5145 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5146 }
5147 return ret;
5148}
5149
5150/*
54aa1f4d 5151 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5152 * inode changes. But, it is most likely to find the inode in cache.
5153 * FIXME, needs more benchmarking...there are no reasons other than performance
5154 * to keep or drop this code.
5155 */
48a3b636 5156static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5157{
5158 struct btrfs_root *root = BTRFS_I(inode)->root;
5159 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5160 int ret;
5161
72ac3c0d 5162 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5163 return 0;
39279cc3 5164
7a7eaa40 5165 trans = btrfs_join_transaction(root);
22c44fe6
JB
5166 if (IS_ERR(trans))
5167 return PTR_ERR(trans);
8929ecfa
YZ
5168
5169 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5170 if (ret && ret == -ENOSPC) {
5171 /* whoops, lets try again with the full transaction */
5172 btrfs_end_transaction(trans, root);
5173 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5174 if (IS_ERR(trans))
5175 return PTR_ERR(trans);
8929ecfa 5176
94b60442 5177 ret = btrfs_update_inode(trans, root, inode);
94b60442 5178 }
39279cc3 5179 btrfs_end_transaction(trans, root);
16cdcec7
MX
5180 if (BTRFS_I(inode)->delayed_node)
5181 btrfs_balance_delayed_items(root);
22c44fe6
JB
5182
5183 return ret;
5184}
5185
5186/*
5187 * This is a copy of file_update_time. We need this so we can return error on
5188 * ENOSPC for updating the inode in the case of file write and mmap writes.
5189 */
e41f941a
JB
5190static int btrfs_update_time(struct inode *inode, struct timespec *now,
5191 int flags)
22c44fe6 5192{
2bc55652
AB
5193 struct btrfs_root *root = BTRFS_I(inode)->root;
5194
5195 if (btrfs_root_readonly(root))
5196 return -EROFS;
5197
e41f941a 5198 if (flags & S_VERSION)
22c44fe6 5199 inode_inc_iversion(inode);
e41f941a
JB
5200 if (flags & S_CTIME)
5201 inode->i_ctime = *now;
5202 if (flags & S_MTIME)
5203 inode->i_mtime = *now;
5204 if (flags & S_ATIME)
5205 inode->i_atime = *now;
5206 return btrfs_dirty_inode(inode);
39279cc3
CM
5207}
5208
d352ac68
CM
5209/*
5210 * find the highest existing sequence number in a directory
5211 * and then set the in-memory index_cnt variable to reflect
5212 * free sequence numbers
5213 */
aec7477b
JB
5214static int btrfs_set_inode_index_count(struct inode *inode)
5215{
5216 struct btrfs_root *root = BTRFS_I(inode)->root;
5217 struct btrfs_key key, found_key;
5218 struct btrfs_path *path;
5219 struct extent_buffer *leaf;
5220 int ret;
5221
33345d01 5222 key.objectid = btrfs_ino(inode);
aec7477b
JB
5223 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5224 key.offset = (u64)-1;
5225
5226 path = btrfs_alloc_path();
5227 if (!path)
5228 return -ENOMEM;
5229
5230 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5231 if (ret < 0)
5232 goto out;
5233 /* FIXME: we should be able to handle this */
5234 if (ret == 0)
5235 goto out;
5236 ret = 0;
5237
5238 /*
5239 * MAGIC NUMBER EXPLANATION:
5240 * since we search a directory based on f_pos we have to start at 2
5241 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5242 * else has to start at 2
5243 */
5244 if (path->slots[0] == 0) {
5245 BTRFS_I(inode)->index_cnt = 2;
5246 goto out;
5247 }
5248
5249 path->slots[0]--;
5250
5251 leaf = path->nodes[0];
5252 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5253
33345d01 5254 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5255 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5256 BTRFS_I(inode)->index_cnt = 2;
5257 goto out;
5258 }
5259
5260 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5261out:
5262 btrfs_free_path(path);
5263 return ret;
5264}
5265
d352ac68
CM
5266/*
5267 * helper to find a free sequence number in a given directory. This current
5268 * code is very simple, later versions will do smarter things in the btree
5269 */
3de4586c 5270int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5271{
5272 int ret = 0;
5273
5274 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5275 ret = btrfs_inode_delayed_dir_index_count(dir);
5276 if (ret) {
5277 ret = btrfs_set_inode_index_count(dir);
5278 if (ret)
5279 return ret;
5280 }
aec7477b
JB
5281 }
5282
00e4e6b3 5283 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5284 BTRFS_I(dir)->index_cnt++;
5285
5286 return ret;
5287}
5288
39279cc3
CM
5289static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5290 struct btrfs_root *root,
aec7477b 5291 struct inode *dir,
9c58309d 5292 const char *name, int name_len,
175a4eb7
AV
5293 u64 ref_objectid, u64 objectid,
5294 umode_t mode, u64 *index)
39279cc3
CM
5295{
5296 struct inode *inode;
5f39d397 5297 struct btrfs_inode_item *inode_item;
39279cc3 5298 struct btrfs_key *location;
5f39d397 5299 struct btrfs_path *path;
9c58309d
CM
5300 struct btrfs_inode_ref *ref;
5301 struct btrfs_key key[2];
5302 u32 sizes[2];
5303 unsigned long ptr;
39279cc3
CM
5304 int ret;
5305 int owner;
5306
5f39d397 5307 path = btrfs_alloc_path();
d8926bb3
MF
5308 if (!path)
5309 return ERR_PTR(-ENOMEM);
5f39d397 5310
39279cc3 5311 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5312 if (!inode) {
5313 btrfs_free_path(path);
39279cc3 5314 return ERR_PTR(-ENOMEM);
8fb27640 5315 }
39279cc3 5316
581bb050
LZ
5317 /*
5318 * we have to initialize this early, so we can reclaim the inode
5319 * number if we fail afterwards in this function.
5320 */
5321 inode->i_ino = objectid;
5322
aec7477b 5323 if (dir) {
1abe9b8a 5324 trace_btrfs_inode_request(dir);
5325
3de4586c 5326 ret = btrfs_set_inode_index(dir, index);
09771430 5327 if (ret) {
8fb27640 5328 btrfs_free_path(path);
09771430 5329 iput(inode);
aec7477b 5330 return ERR_PTR(ret);
09771430 5331 }
aec7477b
JB
5332 }
5333 /*
5334 * index_cnt is ignored for everything but a dir,
5335 * btrfs_get_inode_index_count has an explanation for the magic
5336 * number
5337 */
5338 BTRFS_I(inode)->index_cnt = 2;
39279cc3 5339 BTRFS_I(inode)->root = root;
e02119d5 5340 BTRFS_I(inode)->generation = trans->transid;
76195853 5341 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5342
5dc562c5
JB
5343 /*
5344 * We could have gotten an inode number from somebody who was fsynced
5345 * and then removed in this same transaction, so let's just set full
5346 * sync since it will be a full sync anyway and this will blow away the
5347 * old info in the log.
5348 */
5349 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5350
569254b0 5351 if (S_ISDIR(mode))
39279cc3
CM
5352 owner = 0;
5353 else
5354 owner = 1;
9c58309d
CM
5355
5356 key[0].objectid = objectid;
5357 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5358 key[0].offset = 0;
5359
f186373f
MF
5360 /*
5361 * Start new inodes with an inode_ref. This is slightly more
5362 * efficient for small numbers of hard links since they will
5363 * be packed into one item. Extended refs will kick in if we
5364 * add more hard links than can fit in the ref item.
5365 */
9c58309d
CM
5366 key[1].objectid = objectid;
5367 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5368 key[1].offset = ref_objectid;
5369
5370 sizes[0] = sizeof(struct btrfs_inode_item);
5371 sizes[1] = name_len + sizeof(*ref);
5372
b9473439 5373 path->leave_spinning = 1;
9c58309d
CM
5374 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5375 if (ret != 0)
5f39d397
CM
5376 goto fail;
5377
ecc11fab 5378 inode_init_owner(inode, dir, mode);
a76a3cd4 5379 inode_set_bytes(inode, 0);
39279cc3 5380 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5381 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5382 struct btrfs_inode_item);
293f7e07
LZ
5383 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5384 sizeof(*inode_item));
e02119d5 5385 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
5386
5387 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5388 struct btrfs_inode_ref);
5389 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 5390 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
5391 ptr = (unsigned long)(ref + 1);
5392 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5393
5f39d397
CM
5394 btrfs_mark_buffer_dirty(path->nodes[0]);
5395 btrfs_free_path(path);
5396
39279cc3
CM
5397 location = &BTRFS_I(inode)->location;
5398 location->objectid = objectid;
39279cc3
CM
5399 location->offset = 0;
5400 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5401
6cbff00f
CH
5402 btrfs_inherit_iflags(inode, dir);
5403
569254b0 5404 if (S_ISREG(mode)) {
94272164
CM
5405 if (btrfs_test_opt(root, NODATASUM))
5406 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5407 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5408 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5409 BTRFS_INODE_NODATASUM;
94272164
CM
5410 }
5411
39279cc3 5412 insert_inode_hash(inode);
5d4f98a2 5413 inode_tree_add(inode);
1abe9b8a 5414
5415 trace_btrfs_inode_new(inode);
1973f0fa 5416 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5417
8ea05e3a
AB
5418 btrfs_update_root_times(trans, root);
5419
39279cc3 5420 return inode;
5f39d397 5421fail:
aec7477b
JB
5422 if (dir)
5423 BTRFS_I(dir)->index_cnt--;
5f39d397 5424 btrfs_free_path(path);
09771430 5425 iput(inode);
5f39d397 5426 return ERR_PTR(ret);
39279cc3
CM
5427}
5428
5429static inline u8 btrfs_inode_type(struct inode *inode)
5430{
5431 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5432}
5433
d352ac68
CM
5434/*
5435 * utility function to add 'inode' into 'parent_inode' with
5436 * a give name and a given sequence number.
5437 * if 'add_backref' is true, also insert a backref from the
5438 * inode to the parent directory.
5439 */
e02119d5
CM
5440int btrfs_add_link(struct btrfs_trans_handle *trans,
5441 struct inode *parent_inode, struct inode *inode,
5442 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5443{
4df27c4d 5444 int ret = 0;
39279cc3 5445 struct btrfs_key key;
e02119d5 5446 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5447 u64 ino = btrfs_ino(inode);
5448 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5449
33345d01 5450 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5451 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5452 } else {
33345d01 5453 key.objectid = ino;
4df27c4d
YZ
5454 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5455 key.offset = 0;
5456 }
5457
33345d01 5458 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5459 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5460 key.objectid, root->root_key.objectid,
33345d01 5461 parent_ino, index, name, name_len);
4df27c4d 5462 } else if (add_backref) {
33345d01
LZ
5463 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5464 parent_ino, index);
4df27c4d 5465 }
39279cc3 5466
79787eaa
JM
5467 /* Nothing to clean up yet */
5468 if (ret)
5469 return ret;
4df27c4d 5470
79787eaa
JM
5471 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5472 parent_inode, &key,
5473 btrfs_inode_type(inode), index);
9c52057c 5474 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5475 goto fail_dir_item;
5476 else if (ret) {
5477 btrfs_abort_transaction(trans, root, ret);
5478 return ret;
39279cc3 5479 }
79787eaa
JM
5480
5481 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5482 name_len * 2);
0c4d2d95 5483 inode_inc_iversion(parent_inode);
79787eaa
JM
5484 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5485 ret = btrfs_update_inode(trans, root, parent_inode);
5486 if (ret)
5487 btrfs_abort_transaction(trans, root, ret);
39279cc3 5488 return ret;
fe66a05a
CM
5489
5490fail_dir_item:
5491 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5492 u64 local_index;
5493 int err;
5494 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5495 key.objectid, root->root_key.objectid,
5496 parent_ino, &local_index, name, name_len);
5497
5498 } else if (add_backref) {
5499 u64 local_index;
5500 int err;
5501
5502 err = btrfs_del_inode_ref(trans, root, name, name_len,
5503 ino, parent_ino, &local_index);
5504 }
5505 return ret;
39279cc3
CM
5506}
5507
5508static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5509 struct inode *dir, struct dentry *dentry,
5510 struct inode *inode, int backref, u64 index)
39279cc3 5511{
a1b075d2
JB
5512 int err = btrfs_add_link(trans, dir, inode,
5513 dentry->d_name.name, dentry->d_name.len,
5514 backref, index);
39279cc3
CM
5515 if (err > 0)
5516 err = -EEXIST;
5517 return err;
5518}
5519
618e21d5 5520static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5521 umode_t mode, dev_t rdev)
618e21d5
JB
5522{
5523 struct btrfs_trans_handle *trans;
5524 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5525 struct inode *inode = NULL;
618e21d5
JB
5526 int err;
5527 int drop_inode = 0;
5528 u64 objectid;
00e4e6b3 5529 u64 index = 0;
618e21d5
JB
5530
5531 if (!new_valid_dev(rdev))
5532 return -EINVAL;
5533
9ed74f2d
JB
5534 /*
5535 * 2 for inode item and ref
5536 * 2 for dir items
5537 * 1 for xattr if selinux is on
5538 */
a22285a6
YZ
5539 trans = btrfs_start_transaction(root, 5);
5540 if (IS_ERR(trans))
5541 return PTR_ERR(trans);
1832a6d5 5542
581bb050
LZ
5543 err = btrfs_find_free_ino(root, &objectid);
5544 if (err)
5545 goto out_unlock;
5546
aec7477b 5547 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5548 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5549 mode, &index);
7cf96da3
TI
5550 if (IS_ERR(inode)) {
5551 err = PTR_ERR(inode);
618e21d5 5552 goto out_unlock;
7cf96da3 5553 }
618e21d5 5554
2a7dba39 5555 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5556 if (err) {
5557 drop_inode = 1;
5558 goto out_unlock;
5559 }
5560
ad19db71
CS
5561 /*
5562 * If the active LSM wants to access the inode during
5563 * d_instantiate it needs these. Smack checks to see
5564 * if the filesystem supports xattrs by looking at the
5565 * ops vector.
5566 */
5567
5568 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5569 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5570 if (err)
5571 drop_inode = 1;
5572 else {
618e21d5 5573 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5574 btrfs_update_inode(trans, root, inode);
08c422c2 5575 d_instantiate(dentry, inode);
618e21d5 5576 }
618e21d5 5577out_unlock:
7ad85bb7 5578 btrfs_end_transaction(trans, root);
b53d3f5d 5579 btrfs_btree_balance_dirty(root);
618e21d5
JB
5580 if (drop_inode) {
5581 inode_dec_link_count(inode);
5582 iput(inode);
5583 }
618e21d5
JB
5584 return err;
5585}
5586
39279cc3 5587static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5588 umode_t mode, bool excl)
39279cc3
CM
5589{
5590 struct btrfs_trans_handle *trans;
5591 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5592 struct inode *inode = NULL;
43baa579 5593 int drop_inode_on_err = 0;
a22285a6 5594 int err;
39279cc3 5595 u64 objectid;
00e4e6b3 5596 u64 index = 0;
39279cc3 5597
9ed74f2d
JB
5598 /*
5599 * 2 for inode item and ref
5600 * 2 for dir items
5601 * 1 for xattr if selinux is on
5602 */
a22285a6
YZ
5603 trans = btrfs_start_transaction(root, 5);
5604 if (IS_ERR(trans))
5605 return PTR_ERR(trans);
9ed74f2d 5606
581bb050
LZ
5607 err = btrfs_find_free_ino(root, &objectid);
5608 if (err)
5609 goto out_unlock;
5610
aec7477b 5611 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5612 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5613 mode, &index);
7cf96da3
TI
5614 if (IS_ERR(inode)) {
5615 err = PTR_ERR(inode);
39279cc3 5616 goto out_unlock;
7cf96da3 5617 }
43baa579 5618 drop_inode_on_err = 1;
39279cc3 5619
2a7dba39 5620 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5621 if (err)
33268eaf 5622 goto out_unlock;
33268eaf 5623
9185aa58
FB
5624 err = btrfs_update_inode(trans, root, inode);
5625 if (err)
5626 goto out_unlock;
5627
ad19db71
CS
5628 /*
5629 * If the active LSM wants to access the inode during
5630 * d_instantiate it needs these. Smack checks to see
5631 * if the filesystem supports xattrs by looking at the
5632 * ops vector.
5633 */
5634 inode->i_fop = &btrfs_file_operations;
5635 inode->i_op = &btrfs_file_inode_operations;
5636
a1b075d2 5637 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5638 if (err)
43baa579
FB
5639 goto out_unlock;
5640
5641 inode->i_mapping->a_ops = &btrfs_aops;
5642 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5643 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5644 d_instantiate(dentry, inode);
5645
39279cc3 5646out_unlock:
7ad85bb7 5647 btrfs_end_transaction(trans, root);
43baa579 5648 if (err && drop_inode_on_err) {
39279cc3
CM
5649 inode_dec_link_count(inode);
5650 iput(inode);
5651 }
b53d3f5d 5652 btrfs_btree_balance_dirty(root);
39279cc3
CM
5653 return err;
5654}
5655
5656static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5657 struct dentry *dentry)
5658{
5659 struct btrfs_trans_handle *trans;
5660 struct btrfs_root *root = BTRFS_I(dir)->root;
5661 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5662 u64 index;
39279cc3
CM
5663 int err;
5664 int drop_inode = 0;
5665
4a8be425
TH
5666 /* do not allow sys_link's with other subvols of the same device */
5667 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5668 return -EXDEV;
4a8be425 5669
f186373f 5670 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5671 return -EMLINK;
4a8be425 5672
3de4586c 5673 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5674 if (err)
5675 goto fail;
5676
a22285a6 5677 /*
7e6b6465 5678 * 2 items for inode and inode ref
a22285a6 5679 * 2 items for dir items
7e6b6465 5680 * 1 item for parent inode
a22285a6 5681 */
7e6b6465 5682 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5683 if (IS_ERR(trans)) {
5684 err = PTR_ERR(trans);
5685 goto fail;
5686 }
5f39d397 5687
3153495d 5688 btrfs_inc_nlink(inode);
0c4d2d95 5689 inode_inc_iversion(inode);
3153495d 5690 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5691 ihold(inode);
e9976151 5692 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5693
a1b075d2 5694 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5695
a5719521 5696 if (err) {
54aa1f4d 5697 drop_inode = 1;
a5719521 5698 } else {
10d9f309 5699 struct dentry *parent = dentry->d_parent;
a5719521 5700 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5701 if (err)
5702 goto fail;
08c422c2 5703 d_instantiate(dentry, inode);
6a912213 5704 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5705 }
39279cc3 5706
7ad85bb7 5707 btrfs_end_transaction(trans, root);
1832a6d5 5708fail:
39279cc3
CM
5709 if (drop_inode) {
5710 inode_dec_link_count(inode);
5711 iput(inode);
5712 }
b53d3f5d 5713 btrfs_btree_balance_dirty(root);
39279cc3
CM
5714 return err;
5715}
5716
18bb1db3 5717static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5718{
b9d86667 5719 struct inode *inode = NULL;
39279cc3
CM
5720 struct btrfs_trans_handle *trans;
5721 struct btrfs_root *root = BTRFS_I(dir)->root;
5722 int err = 0;
5723 int drop_on_err = 0;
b9d86667 5724 u64 objectid = 0;
00e4e6b3 5725 u64 index = 0;
39279cc3 5726
9ed74f2d
JB
5727 /*
5728 * 2 items for inode and ref
5729 * 2 items for dir items
5730 * 1 for xattr if selinux is on
5731 */
a22285a6
YZ
5732 trans = btrfs_start_transaction(root, 5);
5733 if (IS_ERR(trans))
5734 return PTR_ERR(trans);
39279cc3 5735
581bb050
LZ
5736 err = btrfs_find_free_ino(root, &objectid);
5737 if (err)
5738 goto out_fail;
5739
aec7477b 5740 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5741 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5742 S_IFDIR | mode, &index);
39279cc3
CM
5743 if (IS_ERR(inode)) {
5744 err = PTR_ERR(inode);
5745 goto out_fail;
5746 }
5f39d397 5747
39279cc3 5748 drop_on_err = 1;
33268eaf 5749
2a7dba39 5750 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5751 if (err)
5752 goto out_fail;
5753
39279cc3
CM
5754 inode->i_op = &btrfs_dir_inode_operations;
5755 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5756
dbe674a9 5757 btrfs_i_size_write(inode, 0);
39279cc3
CM
5758 err = btrfs_update_inode(trans, root, inode);
5759 if (err)
5760 goto out_fail;
5f39d397 5761
a1b075d2
JB
5762 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5763 dentry->d_name.len, 0, index);
39279cc3
CM
5764 if (err)
5765 goto out_fail;
5f39d397 5766
39279cc3
CM
5767 d_instantiate(dentry, inode);
5768 drop_on_err = 0;
39279cc3
CM
5769
5770out_fail:
7ad85bb7 5771 btrfs_end_transaction(trans, root);
39279cc3
CM
5772 if (drop_on_err)
5773 iput(inode);
b53d3f5d 5774 btrfs_btree_balance_dirty(root);
39279cc3
CM
5775 return err;
5776}
5777
d352ac68
CM
5778/* helper for btfs_get_extent. Given an existing extent in the tree,
5779 * and an extent that you want to insert, deal with overlap and insert
5780 * the new extent into the tree.
5781 */
3b951516
CM
5782static int merge_extent_mapping(struct extent_map_tree *em_tree,
5783 struct extent_map *existing,
e6dcd2dc
CM
5784 struct extent_map *em,
5785 u64 map_start, u64 map_len)
3b951516
CM
5786{
5787 u64 start_diff;
3b951516 5788
e6dcd2dc
CM
5789 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5790 start_diff = map_start - em->start;
5791 em->start = map_start;
5792 em->len = map_len;
c8b97818
CM
5793 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5794 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5795 em->block_start += start_diff;
c8b97818
CM
5796 em->block_len -= start_diff;
5797 }
09a2a8f9 5798 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
5799}
5800
c8b97818
CM
5801static noinline int uncompress_inline(struct btrfs_path *path,
5802 struct inode *inode, struct page *page,
5803 size_t pg_offset, u64 extent_offset,
5804 struct btrfs_file_extent_item *item)
5805{
5806 int ret;
5807 struct extent_buffer *leaf = path->nodes[0];
5808 char *tmp;
5809 size_t max_size;
5810 unsigned long inline_size;
5811 unsigned long ptr;
261507a0 5812 int compress_type;
c8b97818
CM
5813
5814 WARN_ON(pg_offset != 0);
261507a0 5815 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5816 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5817 inline_size = btrfs_file_extent_inline_item_len(leaf,
5818 btrfs_item_nr(leaf, path->slots[0]));
5819 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5820 if (!tmp)
5821 return -ENOMEM;
c8b97818
CM
5822 ptr = btrfs_file_extent_inline_start(item);
5823
5824 read_extent_buffer(leaf, tmp, ptr, inline_size);
5825
5b050f04 5826 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5827 ret = btrfs_decompress(compress_type, tmp, page,
5828 extent_offset, inline_size, max_size);
c8b97818 5829 if (ret) {
7ac687d9 5830 char *kaddr = kmap_atomic(page);
c8b97818
CM
5831 unsigned long copy_size = min_t(u64,
5832 PAGE_CACHE_SIZE - pg_offset,
5833 max_size - extent_offset);
5834 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5835 kunmap_atomic(kaddr);
c8b97818
CM
5836 }
5837 kfree(tmp);
5838 return 0;
5839}
5840
d352ac68
CM
5841/*
5842 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5843 * the ugly parts come from merging extents from the disk with the in-ram
5844 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5845 * where the in-ram extents might be locked pending data=ordered completion.
5846 *
5847 * This also copies inline extents directly into the page.
5848 */
d397712b 5849
a52d9a80 5850struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5851 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5852 int create)
5853{
5854 int ret;
5855 int err = 0;
db94535d 5856 u64 bytenr;
a52d9a80
CM
5857 u64 extent_start = 0;
5858 u64 extent_end = 0;
33345d01 5859 u64 objectid = btrfs_ino(inode);
a52d9a80 5860 u32 found_type;
f421950f 5861 struct btrfs_path *path = NULL;
a52d9a80
CM
5862 struct btrfs_root *root = BTRFS_I(inode)->root;
5863 struct btrfs_file_extent_item *item;
5f39d397
CM
5864 struct extent_buffer *leaf;
5865 struct btrfs_key found_key;
a52d9a80
CM
5866 struct extent_map *em = NULL;
5867 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5868 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5869 struct btrfs_trans_handle *trans = NULL;
261507a0 5870 int compress_type;
a52d9a80 5871
a52d9a80 5872again:
890871be 5873 read_lock(&em_tree->lock);
d1310b2e 5874 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5875 if (em)
5876 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5877 read_unlock(&em_tree->lock);
d1310b2e 5878
a52d9a80 5879 if (em) {
e1c4b745
CM
5880 if (em->start > start || em->start + em->len <= start)
5881 free_extent_map(em);
5882 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5883 free_extent_map(em);
5884 else
5885 goto out;
a52d9a80 5886 }
172ddd60 5887 em = alloc_extent_map();
a52d9a80 5888 if (!em) {
d1310b2e
CM
5889 err = -ENOMEM;
5890 goto out;
a52d9a80 5891 }
e6dcd2dc 5892 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5893 em->start = EXTENT_MAP_HOLE;
445a6944 5894 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5895 em->len = (u64)-1;
c8b97818 5896 em->block_len = (u64)-1;
f421950f
CM
5897
5898 if (!path) {
5899 path = btrfs_alloc_path();
026fd317
JB
5900 if (!path) {
5901 err = -ENOMEM;
5902 goto out;
5903 }
5904 /*
5905 * Chances are we'll be called again, so go ahead and do
5906 * readahead
5907 */
5908 path->reada = 1;
f421950f
CM
5909 }
5910
179e29e4
CM
5911 ret = btrfs_lookup_file_extent(trans, root, path,
5912 objectid, start, trans != NULL);
a52d9a80
CM
5913 if (ret < 0) {
5914 err = ret;
5915 goto out;
5916 }
5917
5918 if (ret != 0) {
5919 if (path->slots[0] == 0)
5920 goto not_found;
5921 path->slots[0]--;
5922 }
5923
5f39d397
CM
5924 leaf = path->nodes[0];
5925 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5926 struct btrfs_file_extent_item);
a52d9a80 5927 /* are we inside the extent that was found? */
5f39d397
CM
5928 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5929 found_type = btrfs_key_type(&found_key);
5930 if (found_key.objectid != objectid ||
a52d9a80
CM
5931 found_type != BTRFS_EXTENT_DATA_KEY) {
5932 goto not_found;
5933 }
5934
5f39d397
CM
5935 found_type = btrfs_file_extent_type(leaf, item);
5936 extent_start = found_key.offset;
261507a0 5937 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5938 if (found_type == BTRFS_FILE_EXTENT_REG ||
5939 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5940 extent_end = extent_start +
db94535d 5941 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5942 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5943 size_t size;
5944 size = btrfs_file_extent_inline_len(leaf, item);
fda2832f 5945 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102
YZ
5946 }
5947
5948 if (start >= extent_end) {
5949 path->slots[0]++;
5950 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5951 ret = btrfs_next_leaf(root, path);
5952 if (ret < 0) {
5953 err = ret;
5954 goto out;
a52d9a80 5955 }
9036c102
YZ
5956 if (ret > 0)
5957 goto not_found;
5958 leaf = path->nodes[0];
a52d9a80 5959 }
9036c102
YZ
5960 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5961 if (found_key.objectid != objectid ||
5962 found_key.type != BTRFS_EXTENT_DATA_KEY)
5963 goto not_found;
5964 if (start + len <= found_key.offset)
5965 goto not_found;
5966 em->start = start;
70c8a91c 5967 em->orig_start = start;
9036c102
YZ
5968 em->len = found_key.offset - start;
5969 goto not_found_em;
5970 }
5971
cc95bef6 5972 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
d899e052
YZ
5973 if (found_type == BTRFS_FILE_EXTENT_REG ||
5974 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5975 em->start = extent_start;
5976 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5977 em->orig_start = extent_start -
5978 btrfs_file_extent_offset(leaf, item);
b4939680
JB
5979 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
5980 item);
db94535d
CM
5981 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5982 if (bytenr == 0) {
5f39d397 5983 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5984 goto insert;
5985 }
261507a0 5986 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5987 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5988 em->compress_type = compress_type;
c8b97818 5989 em->block_start = bytenr;
b4939680 5990 em->block_len = em->orig_block_len;
c8b97818
CM
5991 } else {
5992 bytenr += btrfs_file_extent_offset(leaf, item);
5993 em->block_start = bytenr;
5994 em->block_len = em->len;
d899e052
YZ
5995 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5996 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5997 }
a52d9a80
CM
5998 goto insert;
5999 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6000 unsigned long ptr;
a52d9a80 6001 char *map;
3326d1b0
CM
6002 size_t size;
6003 size_t extent_offset;
6004 size_t copy_size;
a52d9a80 6005
689f9346 6006 em->block_start = EXTENT_MAP_INLINE;
c8b97818 6007 if (!page || create) {
689f9346 6008 em->start = extent_start;
9036c102 6009 em->len = extent_end - extent_start;
689f9346
Y
6010 goto out;
6011 }
5f39d397 6012
9036c102
YZ
6013 size = btrfs_file_extent_inline_len(leaf, item);
6014 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6015 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6016 size - extent_offset);
3326d1b0 6017 em->start = extent_start + extent_offset;
fda2832f 6018 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6019 em->orig_block_len = em->len;
70c8a91c 6020 em->orig_start = em->start;
261507a0 6021 if (compress_type) {
c8b97818 6022 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
6023 em->compress_type = compress_type;
6024 }
689f9346 6025 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6026 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6027 if (btrfs_file_extent_compression(leaf, item) !=
6028 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6029 ret = uncompress_inline(path, inode, page,
6030 pg_offset,
6031 extent_offset, item);
79787eaa 6032 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
6033 } else {
6034 map = kmap(page);
6035 read_extent_buffer(leaf, map + pg_offset, ptr,
6036 copy_size);
93c82d57
CM
6037 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6038 memset(map + pg_offset + copy_size, 0,
6039 PAGE_CACHE_SIZE - pg_offset -
6040 copy_size);
6041 }
c8b97818
CM
6042 kunmap(page);
6043 }
179e29e4
CM
6044 flush_dcache_page(page);
6045 } else if (create && PageUptodate(page)) {
6bf7e080 6046 BUG();
179e29e4
CM
6047 if (!trans) {
6048 kunmap(page);
6049 free_extent_map(em);
6050 em = NULL;
ff5714cc 6051
b3b4aa74 6052 btrfs_release_path(path);
7a7eaa40 6053 trans = btrfs_join_transaction(root);
ff5714cc 6054
3612b495
TI
6055 if (IS_ERR(trans))
6056 return ERR_CAST(trans);
179e29e4
CM
6057 goto again;
6058 }
c8b97818 6059 map = kmap(page);
70dec807 6060 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6061 copy_size);
c8b97818 6062 kunmap(page);
179e29e4 6063 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6064 }
d1310b2e 6065 set_extent_uptodate(io_tree, em->start,
507903b8 6066 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
6067 goto insert;
6068 } else {
31b1a2bd 6069 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
6070 }
6071not_found:
6072 em->start = start;
70c8a91c 6073 em->orig_start = start;
d1310b2e 6074 em->len = len;
a52d9a80 6075not_found_em:
5f39d397 6076 em->block_start = EXTENT_MAP_HOLE;
9036c102 6077 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6078insert:
b3b4aa74 6079 btrfs_release_path(path);
d1310b2e 6080 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6081 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6082 em->start, em->len, start, len);
a52d9a80
CM
6083 err = -EIO;
6084 goto out;
6085 }
d1310b2e
CM
6086
6087 err = 0;
890871be 6088 write_lock(&em_tree->lock);
09a2a8f9 6089 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6090 /* it is possible that someone inserted the extent into the tree
6091 * while we had the lock dropped. It is also possible that
6092 * an overlapping map exists in the tree
6093 */
a52d9a80 6094 if (ret == -EEXIST) {
3b951516 6095 struct extent_map *existing;
e6dcd2dc
CM
6096
6097 ret = 0;
6098
3b951516 6099 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6100 if (existing && (existing->start > start ||
6101 existing->start + existing->len <= start)) {
6102 free_extent_map(existing);
6103 existing = NULL;
6104 }
3b951516
CM
6105 if (!existing) {
6106 existing = lookup_extent_mapping(em_tree, em->start,
6107 em->len);
6108 if (existing) {
6109 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6110 em, start,
6111 root->sectorsize);
3b951516
CM
6112 free_extent_map(existing);
6113 if (err) {
6114 free_extent_map(em);
6115 em = NULL;
6116 }
6117 } else {
6118 err = -EIO;
3b951516
CM
6119 free_extent_map(em);
6120 em = NULL;
6121 }
6122 } else {
6123 free_extent_map(em);
6124 em = existing;
e6dcd2dc 6125 err = 0;
a52d9a80 6126 }
a52d9a80 6127 }
890871be 6128 write_unlock(&em_tree->lock);
a52d9a80 6129out:
1abe9b8a 6130
f0bd95ea
TI
6131 if (em)
6132 trace_btrfs_get_extent(root, em);
1abe9b8a 6133
f421950f
CM
6134 if (path)
6135 btrfs_free_path(path);
a52d9a80
CM
6136 if (trans) {
6137 ret = btrfs_end_transaction(trans, root);
d397712b 6138 if (!err)
a52d9a80
CM
6139 err = ret;
6140 }
a52d9a80
CM
6141 if (err) {
6142 free_extent_map(em);
a52d9a80
CM
6143 return ERR_PTR(err);
6144 }
79787eaa 6145 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6146 return em;
6147}
6148
ec29ed5b
CM
6149struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6150 size_t pg_offset, u64 start, u64 len,
6151 int create)
6152{
6153 struct extent_map *em;
6154 struct extent_map *hole_em = NULL;
6155 u64 range_start = start;
6156 u64 end;
6157 u64 found;
6158 u64 found_end;
6159 int err = 0;
6160
6161 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6162 if (IS_ERR(em))
6163 return em;
6164 if (em) {
6165 /*
f9e4fb53
LB
6166 * if our em maps to
6167 * - a hole or
6168 * - a pre-alloc extent,
6169 * there might actually be delalloc bytes behind it.
ec29ed5b 6170 */
f9e4fb53
LB
6171 if (em->block_start != EXTENT_MAP_HOLE &&
6172 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6173 return em;
6174 else
6175 hole_em = em;
6176 }
6177
6178 /* check to see if we've wrapped (len == -1 or similar) */
6179 end = start + len;
6180 if (end < start)
6181 end = (u64)-1;
6182 else
6183 end -= 1;
6184
6185 em = NULL;
6186
6187 /* ok, we didn't find anything, lets look for delalloc */
6188 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6189 end, len, EXTENT_DELALLOC, 1);
6190 found_end = range_start + found;
6191 if (found_end < range_start)
6192 found_end = (u64)-1;
6193
6194 /*
6195 * we didn't find anything useful, return
6196 * the original results from get_extent()
6197 */
6198 if (range_start > end || found_end <= start) {
6199 em = hole_em;
6200 hole_em = NULL;
6201 goto out;
6202 }
6203
6204 /* adjust the range_start to make sure it doesn't
6205 * go backwards from the start they passed in
6206 */
6207 range_start = max(start,range_start);
6208 found = found_end - range_start;
6209
6210 if (found > 0) {
6211 u64 hole_start = start;
6212 u64 hole_len = len;
6213
172ddd60 6214 em = alloc_extent_map();
ec29ed5b
CM
6215 if (!em) {
6216 err = -ENOMEM;
6217 goto out;
6218 }
6219 /*
6220 * when btrfs_get_extent can't find anything it
6221 * returns one huge hole
6222 *
6223 * make sure what it found really fits our range, and
6224 * adjust to make sure it is based on the start from
6225 * the caller
6226 */
6227 if (hole_em) {
6228 u64 calc_end = extent_map_end(hole_em);
6229
6230 if (calc_end <= start || (hole_em->start > end)) {
6231 free_extent_map(hole_em);
6232 hole_em = NULL;
6233 } else {
6234 hole_start = max(hole_em->start, start);
6235 hole_len = calc_end - hole_start;
6236 }
6237 }
6238 em->bdev = NULL;
6239 if (hole_em && range_start > hole_start) {
6240 /* our hole starts before our delalloc, so we
6241 * have to return just the parts of the hole
6242 * that go until the delalloc starts
6243 */
6244 em->len = min(hole_len,
6245 range_start - hole_start);
6246 em->start = hole_start;
6247 em->orig_start = hole_start;
6248 /*
6249 * don't adjust block start at all,
6250 * it is fixed at EXTENT_MAP_HOLE
6251 */
6252 em->block_start = hole_em->block_start;
6253 em->block_len = hole_len;
f9e4fb53
LB
6254 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6255 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6256 } else {
6257 em->start = range_start;
6258 em->len = found;
6259 em->orig_start = range_start;
6260 em->block_start = EXTENT_MAP_DELALLOC;
6261 em->block_len = found;
6262 }
6263 } else if (hole_em) {
6264 return hole_em;
6265 }
6266out:
6267
6268 free_extent_map(hole_em);
6269 if (err) {
6270 free_extent_map(em);
6271 return ERR_PTR(err);
6272 }
6273 return em;
6274}
6275
4b46fce2
JB
6276static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6277 u64 start, u64 len)
6278{
6279 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6280 struct extent_map *em;
4b46fce2
JB
6281 struct btrfs_key ins;
6282 u64 alloc_hint;
6283 int ret;
4b46fce2 6284
4b46fce2 6285 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6286 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
81c9ad23 6287 alloc_hint, &ins, 1);
00361589
JB
6288 if (ret)
6289 return ERR_PTR(ret);
4b46fce2 6290
70c8a91c 6291 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6292 ins.offset, ins.offset, ins.offset, 0);
00361589
JB
6293 if (IS_ERR(em)) {
6294 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6295 return em;
6296 }
4b46fce2
JB
6297
6298 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6299 ins.offset, ins.offset, 0);
6300 if (ret) {
6301 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
00361589
JB
6302 free_extent_map(em);
6303 return ERR_PTR(ret);
4b46fce2 6304 }
00361589 6305
4b46fce2
JB
6306 return em;
6307}
6308
46bfbb5c
CM
6309/*
6310 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6311 * block must be cow'd
6312 */
00361589 6313noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6314 u64 *orig_start, u64 *orig_block_len,
6315 u64 *ram_bytes)
46bfbb5c 6316{
00361589 6317 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6318 struct btrfs_path *path;
6319 int ret;
6320 struct extent_buffer *leaf;
6321 struct btrfs_root *root = BTRFS_I(inode)->root;
6322 struct btrfs_file_extent_item *fi;
6323 struct btrfs_key key;
6324 u64 disk_bytenr;
6325 u64 backref_offset;
6326 u64 extent_end;
6327 u64 num_bytes;
6328 int slot;
6329 int found_type;
7ee9e440 6330 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
46bfbb5c
CM
6331 path = btrfs_alloc_path();
6332 if (!path)
6333 return -ENOMEM;
6334
00361589 6335 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6336 offset, 0);
6337 if (ret < 0)
6338 goto out;
6339
6340 slot = path->slots[0];
6341 if (ret == 1) {
6342 if (slot == 0) {
6343 /* can't find the item, must cow */
6344 ret = 0;
6345 goto out;
6346 }
6347 slot--;
6348 }
6349 ret = 0;
6350 leaf = path->nodes[0];
6351 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6352 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6353 key.type != BTRFS_EXTENT_DATA_KEY) {
6354 /* not our file or wrong item type, must cow */
6355 goto out;
6356 }
6357
6358 if (key.offset > offset) {
6359 /* Wrong offset, must cow */
6360 goto out;
6361 }
6362
6363 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6364 found_type = btrfs_file_extent_type(leaf, fi);
6365 if (found_type != BTRFS_FILE_EXTENT_REG &&
6366 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6367 /* not a regular extent, must cow */
6368 goto out;
6369 }
7ee9e440
JB
6370
6371 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6372 goto out;
6373
46bfbb5c 6374 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6375 if (disk_bytenr == 0)
6376 goto out;
6377
6378 if (btrfs_file_extent_compression(leaf, fi) ||
6379 btrfs_file_extent_encryption(leaf, fi) ||
6380 btrfs_file_extent_other_encoding(leaf, fi))
6381 goto out;
6382
46bfbb5c
CM
6383 backref_offset = btrfs_file_extent_offset(leaf, fi);
6384
7ee9e440
JB
6385 if (orig_start) {
6386 *orig_start = key.offset - backref_offset;
6387 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6388 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6389 }
eb384b55 6390
46bfbb5c 6391 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
46bfbb5c
CM
6392
6393 if (btrfs_extent_readonly(root, disk_bytenr))
6394 goto out;
6395
6396 /*
6397 * look for other files referencing this extent, if we
6398 * find any we must cow
6399 */
00361589
JB
6400 trans = btrfs_join_transaction(root);
6401 if (IS_ERR(trans)) {
6402 ret = 0;
46bfbb5c 6403 goto out;
00361589
JB
6404 }
6405
6406 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6407 key.offset - backref_offset, disk_bytenr);
6408 btrfs_end_transaction(trans, root);
6409 if (ret) {
6410 ret = 0;
6411 goto out;
6412 }
46bfbb5c
CM
6413
6414 /*
6415 * adjust disk_bytenr and num_bytes to cover just the bytes
6416 * in this extent we are about to write. If there
6417 * are any csums in that range we have to cow in order
6418 * to keep the csums correct
6419 */
6420 disk_bytenr += backref_offset;
6421 disk_bytenr += offset - key.offset;
eb384b55 6422 num_bytes = min(offset + *len, extent_end) - offset;
46bfbb5c
CM
6423 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6424 goto out;
6425 /*
6426 * all of the above have passed, it is safe to overwrite this extent
6427 * without cow
6428 */
eb384b55 6429 *len = num_bytes;
46bfbb5c
CM
6430 ret = 1;
6431out:
6432 btrfs_free_path(path);
6433 return ret;
6434}
6435
eb838e73
JB
6436static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6437 struct extent_state **cached_state, int writing)
6438{
6439 struct btrfs_ordered_extent *ordered;
6440 int ret = 0;
6441
6442 while (1) {
6443 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6444 0, cached_state);
6445 /*
6446 * We're concerned with the entire range that we're going to be
6447 * doing DIO to, so we need to make sure theres no ordered
6448 * extents in this range.
6449 */
6450 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6451 lockend - lockstart + 1);
6452
6453 /*
6454 * We need to make sure there are no buffered pages in this
6455 * range either, we could have raced between the invalidate in
6456 * generic_file_direct_write and locking the extent. The
6457 * invalidate needs to happen so that reads after a write do not
6458 * get stale data.
6459 */
6460 if (!ordered && (!writing ||
6461 !test_range_bit(&BTRFS_I(inode)->io_tree,
6462 lockstart, lockend, EXTENT_UPTODATE, 0,
6463 *cached_state)))
6464 break;
6465
6466 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6467 cached_state, GFP_NOFS);
6468
6469 if (ordered) {
6470 btrfs_start_ordered_extent(inode, ordered, 1);
6471 btrfs_put_ordered_extent(ordered);
6472 } else {
6473 /* Screw you mmap */
6474 ret = filemap_write_and_wait_range(inode->i_mapping,
6475 lockstart,
6476 lockend);
6477 if (ret)
6478 break;
6479
6480 /*
6481 * If we found a page that couldn't be invalidated just
6482 * fall back to buffered.
6483 */
6484 ret = invalidate_inode_pages2_range(inode->i_mapping,
6485 lockstart >> PAGE_CACHE_SHIFT,
6486 lockend >> PAGE_CACHE_SHIFT);
6487 if (ret)
6488 break;
6489 }
6490
6491 cond_resched();
6492 }
6493
6494 return ret;
6495}
6496
69ffb543
JB
6497static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6498 u64 len, u64 orig_start,
6499 u64 block_start, u64 block_len,
cc95bef6
JB
6500 u64 orig_block_len, u64 ram_bytes,
6501 int type)
69ffb543
JB
6502{
6503 struct extent_map_tree *em_tree;
6504 struct extent_map *em;
6505 struct btrfs_root *root = BTRFS_I(inode)->root;
6506 int ret;
6507
6508 em_tree = &BTRFS_I(inode)->extent_tree;
6509 em = alloc_extent_map();
6510 if (!em)
6511 return ERR_PTR(-ENOMEM);
6512
6513 em->start = start;
6514 em->orig_start = orig_start;
2ab28f32
JB
6515 em->mod_start = start;
6516 em->mod_len = len;
69ffb543
JB
6517 em->len = len;
6518 em->block_len = block_len;
6519 em->block_start = block_start;
6520 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6521 em->orig_block_len = orig_block_len;
cc95bef6 6522 em->ram_bytes = ram_bytes;
70c8a91c 6523 em->generation = -1;
69ffb543
JB
6524 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6525 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6526 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6527
6528 do {
6529 btrfs_drop_extent_cache(inode, em->start,
6530 em->start + em->len - 1, 0);
6531 write_lock(&em_tree->lock);
09a2a8f9 6532 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6533 write_unlock(&em_tree->lock);
6534 } while (ret == -EEXIST);
6535
6536 if (ret) {
6537 free_extent_map(em);
6538 return ERR_PTR(ret);
6539 }
6540
6541 return em;
6542}
6543
6544
4b46fce2
JB
6545static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6546 struct buffer_head *bh_result, int create)
6547{
6548 struct extent_map *em;
6549 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6550 struct extent_state *cached_state = NULL;
4b46fce2 6551 u64 start = iblock << inode->i_blkbits;
eb838e73 6552 u64 lockstart, lockend;
4b46fce2 6553 u64 len = bh_result->b_size;
eb838e73 6554 int unlock_bits = EXTENT_LOCKED;
0934856d 6555 int ret = 0;
eb838e73 6556
172a5049 6557 if (create)
eb838e73 6558 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6559 else
c329861d 6560 len = min_t(u64, len, root->sectorsize);
eb838e73 6561
c329861d
JB
6562 lockstart = start;
6563 lockend = start + len - 1;
6564
eb838e73
JB
6565 /*
6566 * If this errors out it's because we couldn't invalidate pagecache for
6567 * this range and we need to fallback to buffered.
6568 */
6569 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6570 return -ENOTBLK;
6571
4b46fce2 6572 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6573 if (IS_ERR(em)) {
6574 ret = PTR_ERR(em);
6575 goto unlock_err;
6576 }
4b46fce2
JB
6577
6578 /*
6579 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6580 * io. INLINE is special, and we could probably kludge it in here, but
6581 * it's still buffered so for safety lets just fall back to the generic
6582 * buffered path.
6583 *
6584 * For COMPRESSED we _have_ to read the entire extent in so we can
6585 * decompress it, so there will be buffering required no matter what we
6586 * do, so go ahead and fallback to buffered.
6587 *
6588 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6589 * to buffered IO. Don't blame me, this is the price we pay for using
6590 * the generic code.
6591 */
6592 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6593 em->block_start == EXTENT_MAP_INLINE) {
6594 free_extent_map(em);
eb838e73
JB
6595 ret = -ENOTBLK;
6596 goto unlock_err;
4b46fce2
JB
6597 }
6598
6599 /* Just a good old fashioned hole, return */
6600 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6601 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6602 free_extent_map(em);
eb838e73 6603 goto unlock_err;
4b46fce2
JB
6604 }
6605
6606 /*
6607 * We don't allocate a new extent in the following cases
6608 *
6609 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6610 * existing extent.
6611 * 2) The extent is marked as PREALLOC. We're good to go here and can
6612 * just use the extent.
6613 *
6614 */
46bfbb5c 6615 if (!create) {
eb838e73
JB
6616 len = min(len, em->len - (start - em->start));
6617 lockstart = start + len;
6618 goto unlock;
46bfbb5c 6619 }
4b46fce2
JB
6620
6621 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6622 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6623 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6624 int type;
6625 int ret;
eb384b55 6626 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
6627
6628 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6629 type = BTRFS_ORDERED_PREALLOC;
6630 else
6631 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6632 len = min(len, em->len - (start - em->start));
4b46fce2 6633 block_start = em->block_start + (start - em->start);
46bfbb5c 6634
00361589 6635 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 6636 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
6637 if (type == BTRFS_ORDERED_PREALLOC) {
6638 free_extent_map(em);
6639 em = create_pinned_em(inode, start, len,
6640 orig_start,
b4939680 6641 block_start, len,
cc95bef6
JB
6642 orig_block_len,
6643 ram_bytes, type);
00361589 6644 if (IS_ERR(em))
69ffb543 6645 goto unlock_err;
69ffb543
JB
6646 }
6647
46bfbb5c
CM
6648 ret = btrfs_add_ordered_extent_dio(inode, start,
6649 block_start, len, len, type);
46bfbb5c
CM
6650 if (ret) {
6651 free_extent_map(em);
eb838e73 6652 goto unlock_err;
46bfbb5c
CM
6653 }
6654 goto unlock;
4b46fce2 6655 }
4b46fce2 6656 }
00361589 6657
46bfbb5c
CM
6658 /*
6659 * this will cow the extent, reset the len in case we changed
6660 * it above
6661 */
6662 len = bh_result->b_size;
70c8a91c
JB
6663 free_extent_map(em);
6664 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6665 if (IS_ERR(em)) {
6666 ret = PTR_ERR(em);
6667 goto unlock_err;
6668 }
46bfbb5c
CM
6669 len = min(len, em->len - (start - em->start));
6670unlock:
4b46fce2
JB
6671 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6672 inode->i_blkbits;
46bfbb5c 6673 bh_result->b_size = len;
4b46fce2
JB
6674 bh_result->b_bdev = em->bdev;
6675 set_buffer_mapped(bh_result);
c3473e83
JB
6676 if (create) {
6677 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6678 set_buffer_new(bh_result);
6679
6680 /*
6681 * Need to update the i_size under the extent lock so buffered
6682 * readers will get the updated i_size when we unlock.
6683 */
6684 if (start + len > i_size_read(inode))
6685 i_size_write(inode, start + len);
0934856d 6686
172a5049
MX
6687 spin_lock(&BTRFS_I(inode)->lock);
6688 BTRFS_I(inode)->outstanding_extents++;
6689 spin_unlock(&BTRFS_I(inode)->lock);
6690
0934856d
MX
6691 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6692 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6693 &cached_state, GFP_NOFS);
6694 BUG_ON(ret);
c3473e83 6695 }
4b46fce2 6696
eb838e73
JB
6697 /*
6698 * In the case of write we need to clear and unlock the entire range,
6699 * in the case of read we need to unlock only the end area that we
6700 * aren't using if there is any left over space.
6701 */
24c03fa5 6702 if (lockstart < lockend) {
0934856d
MX
6703 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6704 lockend, unlock_bits, 1, 0,
6705 &cached_state, GFP_NOFS);
24c03fa5 6706 } else {
eb838e73 6707 free_extent_state(cached_state);
24c03fa5 6708 }
eb838e73 6709
4b46fce2
JB
6710 free_extent_map(em);
6711
6712 return 0;
eb838e73
JB
6713
6714unlock_err:
eb838e73
JB
6715 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6716 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6717 return ret;
4b46fce2
JB
6718}
6719
4b46fce2
JB
6720static void btrfs_endio_direct_read(struct bio *bio, int err)
6721{
e65e1535 6722 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6723 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6724 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6725 struct inode *inode = dip->inode;
6726 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 6727 struct bio *dio_bio;
facc8a22
MX
6728 u32 *csums = (u32 *)dip->csum;
6729 int index = 0;
4b46fce2 6730 u64 start;
4b46fce2
JB
6731
6732 start = dip->logical_offset;
6733 do {
6734 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6735 struct page *page = bvec->bv_page;
6736 char *kaddr;
6737 u32 csum = ~(u32)0;
6738 unsigned long flags;
6739
6740 local_irq_save(flags);
7ac687d9 6741 kaddr = kmap_atomic(page);
b0496686 6742 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
6743 csum, bvec->bv_len);
6744 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6745 kunmap_atomic(kaddr);
4b46fce2
JB
6746 local_irq_restore(flags);
6747
6748 flush_dcache_page(bvec->bv_page);
facc8a22
MX
6749 if (csum != csums[index]) {
6750 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c
GU
6751 btrfs_ino(inode), start, csum,
6752 csums[index]);
4b46fce2
JB
6753 err = -EIO;
6754 }
6755 }
6756
6757 start += bvec->bv_len;
4b46fce2 6758 bvec++;
facc8a22 6759 index++;
4b46fce2
JB
6760 } while (bvec <= bvec_end);
6761
6762 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6763 dip->logical_offset + dip->bytes - 1);
9be3395b 6764 dio_bio = dip->dio_bio;
4b46fce2 6765
4b46fce2 6766 kfree(dip);
c0da7aa1
JB
6767
6768 /* If we had a csum failure make sure to clear the uptodate flag */
6769 if (err)
9be3395b
CM
6770 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6771 dio_end_io(dio_bio, err);
6772 bio_put(bio);
4b46fce2
JB
6773}
6774
6775static void btrfs_endio_direct_write(struct bio *bio, int err)
6776{
6777 struct btrfs_dio_private *dip = bio->bi_private;
6778 struct inode *inode = dip->inode;
6779 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6780 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6781 u64 ordered_offset = dip->logical_offset;
6782 u64 ordered_bytes = dip->bytes;
9be3395b 6783 struct bio *dio_bio;
4b46fce2
JB
6784 int ret;
6785
6786 if (err)
6787 goto out_done;
163cf09c
CM
6788again:
6789 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6790 &ordered_offset,
5fd02043 6791 ordered_bytes, !err);
4b46fce2 6792 if (!ret)
163cf09c 6793 goto out_test;
4b46fce2 6794
5fd02043
JB
6795 ordered->work.func = finish_ordered_fn;
6796 ordered->work.flags = 0;
6797 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6798 &ordered->work);
163cf09c
CM
6799out_test:
6800 /*
6801 * our bio might span multiple ordered extents. If we haven't
6802 * completed the accounting for the whole dio, go back and try again
6803 */
6804 if (ordered_offset < dip->logical_offset + dip->bytes) {
6805 ordered_bytes = dip->logical_offset + dip->bytes -
6806 ordered_offset;
5fd02043 6807 ordered = NULL;
163cf09c
CM
6808 goto again;
6809 }
4b46fce2 6810out_done:
9be3395b 6811 dio_bio = dip->dio_bio;
4b46fce2 6812
4b46fce2 6813 kfree(dip);
c0da7aa1
JB
6814
6815 /* If we had an error make sure to clear the uptodate flag */
6816 if (err)
9be3395b
CM
6817 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6818 dio_end_io(dio_bio, err);
6819 bio_put(bio);
4b46fce2
JB
6820}
6821
eaf25d93
CM
6822static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6823 struct bio *bio, int mirror_num,
6824 unsigned long bio_flags, u64 offset)
6825{
6826 int ret;
6827 struct btrfs_root *root = BTRFS_I(inode)->root;
6828 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6829 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6830 return 0;
6831}
6832
e65e1535
MX
6833static void btrfs_end_dio_bio(struct bio *bio, int err)
6834{
6835 struct btrfs_dio_private *dip = bio->bi_private;
6836
6837 if (err) {
33345d01 6838 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6839 "sector %#Lx len %u err no %d\n",
c1c9ff7c 6840 btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6841 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6842 dip->errors = 1;
6843
6844 /*
6845 * before atomic variable goto zero, we must make sure
6846 * dip->errors is perceived to be set.
6847 */
6848 smp_mb__before_atomic_dec();
6849 }
6850
6851 /* if there are more bios still pending for this dio, just exit */
6852 if (!atomic_dec_and_test(&dip->pending_bios))
6853 goto out;
6854
9be3395b 6855 if (dip->errors) {
e65e1535 6856 bio_io_error(dip->orig_bio);
9be3395b
CM
6857 } else {
6858 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
6859 bio_endio(dip->orig_bio, 0);
6860 }
6861out:
6862 bio_put(bio);
6863}
6864
6865static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6866 u64 first_sector, gfp_t gfp_flags)
6867{
6868 int nr_vecs = bio_get_nr_vecs(bdev);
6869 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6870}
6871
6872static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6873 int rw, u64 file_offset, int skip_sum,
c329861d 6874 int async_submit)
e65e1535 6875{
facc8a22 6876 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
6877 int write = rw & REQ_WRITE;
6878 struct btrfs_root *root = BTRFS_I(inode)->root;
6879 int ret;
6880
b812ce28
JB
6881 if (async_submit)
6882 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6883
e65e1535 6884 bio_get(bio);
5fd02043
JB
6885
6886 if (!write) {
6887 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6888 if (ret)
6889 goto err;
6890 }
e65e1535 6891
1ae39938
JB
6892 if (skip_sum)
6893 goto map;
6894
6895 if (write && async_submit) {
e65e1535
MX
6896 ret = btrfs_wq_submit_bio(root->fs_info,
6897 inode, rw, bio, 0, 0,
6898 file_offset,
6899 __btrfs_submit_bio_start_direct_io,
6900 __btrfs_submit_bio_done);
6901 goto err;
1ae39938
JB
6902 } else if (write) {
6903 /*
6904 * If we aren't doing async submit, calculate the csum of the
6905 * bio now.
6906 */
6907 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6908 if (ret)
6909 goto err;
c2db1073 6910 } else if (!skip_sum) {
facc8a22
MX
6911 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
6912 file_offset);
c2db1073
TI
6913 if (ret)
6914 goto err;
6915 }
e65e1535 6916
1ae39938
JB
6917map:
6918 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6919err:
6920 bio_put(bio);
6921 return ret;
6922}
6923
6924static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6925 int skip_sum)
6926{
6927 struct inode *inode = dip->inode;
6928 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
6929 struct bio *bio;
6930 struct bio *orig_bio = dip->orig_bio;
6931 struct bio_vec *bvec = orig_bio->bi_io_vec;
6932 u64 start_sector = orig_bio->bi_sector;
6933 u64 file_offset = dip->logical_offset;
6934 u64 submit_len = 0;
6935 u64 map_length;
6936 int nr_pages = 0;
e65e1535 6937 int ret = 0;
1ae39938 6938 int async_submit = 0;
e65e1535 6939
e65e1535 6940 map_length = orig_bio->bi_size;
53b381b3 6941 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535
MX
6942 &map_length, NULL, 0);
6943 if (ret) {
64728bbb 6944 bio_put(orig_bio);
e65e1535
MX
6945 return -EIO;
6946 }
facc8a22 6947
02f57c7a
JB
6948 if (map_length >= orig_bio->bi_size) {
6949 bio = orig_bio;
6950 goto submit;
6951 }
6952
53b381b3
DW
6953 /* async crcs make it difficult to collect full stripe writes. */
6954 if (btrfs_get_alloc_profile(root, 1) &
6955 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
6956 async_submit = 0;
6957 else
6958 async_submit = 1;
6959
02f57c7a
JB
6960 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6961 if (!bio)
6962 return -ENOMEM;
6963 bio->bi_private = dip;
6964 bio->bi_end_io = btrfs_end_dio_bio;
6965 atomic_inc(&dip->pending_bios);
6966
e65e1535
MX
6967 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6968 if (unlikely(map_length < submit_len + bvec->bv_len ||
6969 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6970 bvec->bv_offset) < bvec->bv_len)) {
6971 /*
6972 * inc the count before we submit the bio so
6973 * we know the end IO handler won't happen before
6974 * we inc the count. Otherwise, the dip might get freed
6975 * before we're done setting it up
6976 */
6977 atomic_inc(&dip->pending_bios);
6978 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6979 file_offset, skip_sum,
c329861d 6980 async_submit);
e65e1535
MX
6981 if (ret) {
6982 bio_put(bio);
6983 atomic_dec(&dip->pending_bios);
6984 goto out_err;
6985 }
6986
e65e1535
MX
6987 start_sector += submit_len >> 9;
6988 file_offset += submit_len;
6989
6990 submit_len = 0;
6991 nr_pages = 0;
6992
6993 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6994 start_sector, GFP_NOFS);
6995 if (!bio)
6996 goto out_err;
6997 bio->bi_private = dip;
6998 bio->bi_end_io = btrfs_end_dio_bio;
6999
7000 map_length = orig_bio->bi_size;
53b381b3 7001 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7002 start_sector << 9,
e65e1535
MX
7003 &map_length, NULL, 0);
7004 if (ret) {
7005 bio_put(bio);
7006 goto out_err;
7007 }
7008 } else {
7009 submit_len += bvec->bv_len;
7010 nr_pages ++;
7011 bvec++;
7012 }
7013 }
7014
02f57c7a 7015submit:
e65e1535 7016 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7017 async_submit);
e65e1535
MX
7018 if (!ret)
7019 return 0;
7020
7021 bio_put(bio);
7022out_err:
7023 dip->errors = 1;
7024 /*
7025 * before atomic variable goto zero, we must
7026 * make sure dip->errors is perceived to be set.
7027 */
7028 smp_mb__before_atomic_dec();
7029 if (atomic_dec_and_test(&dip->pending_bios))
7030 bio_io_error(dip->orig_bio);
7031
7032 /* bio_end_io() will handle error, so we needn't return it */
7033 return 0;
7034}
7035
9be3395b
CM
7036static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7037 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7038{
7039 struct btrfs_root *root = BTRFS_I(inode)->root;
7040 struct btrfs_dio_private *dip;
9be3395b 7041 struct bio *io_bio;
4b46fce2 7042 int skip_sum;
facc8a22 7043 int sum_len;
7b6d91da 7044 int write = rw & REQ_WRITE;
4b46fce2 7045 int ret = 0;
facc8a22 7046 u16 csum_size;
4b46fce2
JB
7047
7048 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7049
9be3395b 7050 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7051 if (!io_bio) {
7052 ret = -ENOMEM;
7053 goto free_ordered;
7054 }
7055
facc8a22
MX
7056 if (!skip_sum && !write) {
7057 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7058 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7059 sum_len *= csum_size;
7060 } else {
7061 sum_len = 0;
7062 }
7063
7064 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
4b46fce2
JB
7065 if (!dip) {
7066 ret = -ENOMEM;
9be3395b 7067 goto free_io_bio;
4b46fce2 7068 }
4b46fce2 7069
9be3395b 7070 dip->private = dio_bio->bi_private;
4b46fce2
JB
7071 dip->inode = inode;
7072 dip->logical_offset = file_offset;
e6da5d2e 7073 dip->bytes = dio_bio->bi_size;
9be3395b
CM
7074 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7075 io_bio->bi_private = dip;
e65e1535 7076 dip->errors = 0;
9be3395b
CM
7077 dip->orig_bio = io_bio;
7078 dip->dio_bio = dio_bio;
e65e1535 7079 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7080
7081 if (write)
9be3395b 7082 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7083 else
9be3395b 7084 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7085
e65e1535
MX
7086 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7087 if (!ret)
eaf25d93 7088 return;
9be3395b
CM
7089
7090free_io_bio:
7091 bio_put(io_bio);
7092
4b46fce2
JB
7093free_ordered:
7094 /*
7095 * If this is a write, we need to clean up the reserved space and kill
7096 * the ordered extent.
7097 */
7098 if (write) {
7099 struct btrfs_ordered_extent *ordered;
955256f2 7100 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7101 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7102 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7103 btrfs_free_reserved_extent(root, ordered->start,
7104 ordered->disk_len);
7105 btrfs_put_ordered_extent(ordered);
7106 btrfs_put_ordered_extent(ordered);
7107 }
9be3395b 7108 bio_endio(dio_bio, ret);
4b46fce2
JB
7109}
7110
5a5f79b5
CM
7111static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7112 const struct iovec *iov, loff_t offset,
7113 unsigned long nr_segs)
7114{
7115 int seg;
a1b75f7d 7116 int i;
5a5f79b5
CM
7117 size_t size;
7118 unsigned long addr;
7119 unsigned blocksize_mask = root->sectorsize - 1;
7120 ssize_t retval = -EINVAL;
7121 loff_t end = offset;
7122
7123 if (offset & blocksize_mask)
7124 goto out;
7125
7126 /* Check the memory alignment. Blocks cannot straddle pages */
7127 for (seg = 0; seg < nr_segs; seg++) {
7128 addr = (unsigned long)iov[seg].iov_base;
7129 size = iov[seg].iov_len;
7130 end += size;
a1b75f7d 7131 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 7132 goto out;
a1b75f7d
JB
7133
7134 /* If this is a write we don't need to check anymore */
7135 if (rw & WRITE)
7136 continue;
7137
7138 /*
7139 * Check to make sure we don't have duplicate iov_base's in this
7140 * iovec, if so return EINVAL, otherwise we'll get csum errors
7141 * when reading back.
7142 */
7143 for (i = seg + 1; i < nr_segs; i++) {
7144 if (iov[seg].iov_base == iov[i].iov_base)
7145 goto out;
7146 }
5a5f79b5
CM
7147 }
7148 retval = 0;
7149out:
7150 return retval;
7151}
eb838e73 7152
16432985
CM
7153static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7154 const struct iovec *iov, loff_t offset,
7155 unsigned long nr_segs)
7156{
4b46fce2
JB
7157 struct file *file = iocb->ki_filp;
7158 struct inode *inode = file->f_mapping->host;
0934856d 7159 size_t count = 0;
2e60a51e 7160 int flags = 0;
38851cc1
MX
7161 bool wakeup = true;
7162 bool relock = false;
0934856d 7163 ssize_t ret;
4b46fce2 7164
5a5f79b5 7165 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 7166 offset, nr_segs))
5a5f79b5 7167 return 0;
3f7c579c 7168
38851cc1
MX
7169 atomic_inc(&inode->i_dio_count);
7170 smp_mb__after_atomic_inc();
7171
0e267c44
JB
7172 /*
7173 * The generic stuff only does filemap_write_and_wait_range, which isn't
7174 * enough if we've written compressed pages to this area, so we need to
7175 * call btrfs_wait_ordered_range to make absolutely sure that any
7176 * outstanding dirty pages are on disk.
7177 */
7178 count = iov_length(iov, nr_segs);
7179 btrfs_wait_ordered_range(inode, offset, count);
7180
0934856d 7181 if (rw & WRITE) {
38851cc1
MX
7182 /*
7183 * If the write DIO is beyond the EOF, we need update
7184 * the isize, but it is protected by i_mutex. So we can
7185 * not unlock the i_mutex at this case.
7186 */
7187 if (offset + count <= inode->i_size) {
7188 mutex_unlock(&inode->i_mutex);
7189 relock = true;
7190 }
0934856d
MX
7191 ret = btrfs_delalloc_reserve_space(inode, count);
7192 if (ret)
38851cc1
MX
7193 goto out;
7194 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7195 &BTRFS_I(inode)->runtime_flags))) {
7196 inode_dio_done(inode);
7197 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7198 wakeup = false;
0934856d
MX
7199 }
7200
7201 ret = __blockdev_direct_IO(rw, iocb, inode,
7202 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7203 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
2e60a51e 7204 btrfs_submit_direct, flags);
0934856d
MX
7205 if (rw & WRITE) {
7206 if (ret < 0 && ret != -EIOCBQUEUED)
7207 btrfs_delalloc_release_space(inode, count);
172a5049 7208 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7209 btrfs_delalloc_release_space(inode,
7210 count - (size_t)ret);
172a5049
MX
7211 else
7212 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7213 }
38851cc1 7214out:
2e60a51e
MX
7215 if (wakeup)
7216 inode_dio_done(inode);
38851cc1
MX
7217 if (relock)
7218 mutex_lock(&inode->i_mutex);
0934856d
MX
7219
7220 return ret;
16432985
CM
7221}
7222
05dadc09
TI
7223#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7224
1506fcc8
YS
7225static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7226 __u64 start, __u64 len)
7227{
05dadc09
TI
7228 int ret;
7229
7230 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7231 if (ret)
7232 return ret;
7233
ec29ed5b 7234 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7235}
7236
a52d9a80 7237int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7238{
d1310b2e
CM
7239 struct extent_io_tree *tree;
7240 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7241 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7242}
1832a6d5 7243
a52d9a80 7244static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7245{
d1310b2e 7246 struct extent_io_tree *tree;
b888db2b
CM
7247
7248
7249 if (current->flags & PF_MEMALLOC) {
7250 redirty_page_for_writepage(wbc, page);
7251 unlock_page(page);
7252 return 0;
7253 }
d1310b2e 7254 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7255 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7256}
7257
48a3b636
ES
7258static int btrfs_writepages(struct address_space *mapping,
7259 struct writeback_control *wbc)
b293f02e 7260{
d1310b2e 7261 struct extent_io_tree *tree;
771ed689 7262
d1310b2e 7263 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7264 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7265}
7266
3ab2fb5a
CM
7267static int
7268btrfs_readpages(struct file *file, struct address_space *mapping,
7269 struct list_head *pages, unsigned nr_pages)
7270{
d1310b2e
CM
7271 struct extent_io_tree *tree;
7272 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7273 return extent_readpages(tree, mapping, pages, nr_pages,
7274 btrfs_get_extent);
7275}
e6dcd2dc 7276static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7277{
d1310b2e
CM
7278 struct extent_io_tree *tree;
7279 struct extent_map_tree *map;
a52d9a80 7280 int ret;
8c2383c3 7281
d1310b2e
CM
7282 tree = &BTRFS_I(page->mapping->host)->io_tree;
7283 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7284 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7285 if (ret == 1) {
7286 ClearPagePrivate(page);
7287 set_page_private(page, 0);
7288 page_cache_release(page);
39279cc3 7289 }
a52d9a80 7290 return ret;
39279cc3
CM
7291}
7292
e6dcd2dc
CM
7293static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7294{
98509cfc
CM
7295 if (PageWriteback(page) || PageDirty(page))
7296 return 0;
b335b003 7297 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7298}
7299
d47992f8
LC
7300static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7301 unsigned int length)
39279cc3 7302{
5fd02043 7303 struct inode *inode = page->mapping->host;
d1310b2e 7304 struct extent_io_tree *tree;
e6dcd2dc 7305 struct btrfs_ordered_extent *ordered;
2ac55d41 7306 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7307 u64 page_start = page_offset(page);
7308 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 7309
8b62b72b
CM
7310 /*
7311 * we have the page locked, so new writeback can't start,
7312 * and the dirty bit won't be cleared while we are here.
7313 *
7314 * Wait for IO on this page so that we can safely clear
7315 * the PagePrivate2 bit and do ordered accounting
7316 */
e6dcd2dc 7317 wait_on_page_writeback(page);
8b62b72b 7318
5fd02043 7319 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7320 if (offset) {
7321 btrfs_releasepage(page, GFP_NOFS);
7322 return;
7323 }
d0082371 7324 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
4eee4fa4 7325 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
e6dcd2dc 7326 if (ordered) {
eb84ae03
CM
7327 /*
7328 * IO on this page will never be started, so we need
7329 * to account for any ordered extents now
7330 */
e6dcd2dc
CM
7331 clear_extent_bit(tree, page_start, page_end,
7332 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7333 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7334 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
7335 /*
7336 * whoever cleared the private bit is responsible
7337 * for the finish_ordered_io
7338 */
5fd02043
JB
7339 if (TestClearPagePrivate2(page) &&
7340 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
7341 PAGE_CACHE_SIZE, 1)) {
7342 btrfs_finish_ordered_io(ordered);
8b62b72b 7343 }
e6dcd2dc 7344 btrfs_put_ordered_extent(ordered);
2ac55d41 7345 cached_state = NULL;
d0082371 7346 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7347 }
7348 clear_extent_bit(tree, page_start, page_end,
32c00aff 7349 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7350 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7351 &cached_state, GFP_NOFS);
e6dcd2dc
CM
7352 __btrfs_releasepage(page, GFP_NOFS);
7353
4a096752 7354 ClearPageChecked(page);
9ad6b7bc 7355 if (PagePrivate(page)) {
9ad6b7bc
CM
7356 ClearPagePrivate(page);
7357 set_page_private(page, 0);
7358 page_cache_release(page);
7359 }
39279cc3
CM
7360}
7361
9ebefb18
CM
7362/*
7363 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7364 * called from a page fault handler when a page is first dirtied. Hence we must
7365 * be careful to check for EOF conditions here. We set the page up correctly
7366 * for a written page which means we get ENOSPC checking when writing into
7367 * holes and correct delalloc and unwritten extent mapping on filesystems that
7368 * support these features.
7369 *
7370 * We are not allowed to take the i_mutex here so we have to play games to
7371 * protect against truncate races as the page could now be beyond EOF. Because
7372 * vmtruncate() writes the inode size before removing pages, once we have the
7373 * page lock we can determine safely if the page is beyond EOF. If it is not
7374 * beyond EOF, then the page is guaranteed safe against truncation until we
7375 * unlock the page.
7376 */
c2ec175c 7377int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7378{
c2ec175c 7379 struct page *page = vmf->page;
496ad9aa 7380 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7381 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7382 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7383 struct btrfs_ordered_extent *ordered;
2ac55d41 7384 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7385 char *kaddr;
7386 unsigned long zero_start;
9ebefb18 7387 loff_t size;
1832a6d5 7388 int ret;
9998eb70 7389 int reserved = 0;
a52d9a80 7390 u64 page_start;
e6dcd2dc 7391 u64 page_end;
9ebefb18 7392
b2b5ef5c 7393 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7394 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7395 if (!ret) {
e41f941a 7396 ret = file_update_time(vma->vm_file);
9998eb70
CM
7397 reserved = 1;
7398 }
56a76f82
NP
7399 if (ret) {
7400 if (ret == -ENOMEM)
7401 ret = VM_FAULT_OOM;
7402 else /* -ENOSPC, -EIO, etc */
7403 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7404 if (reserved)
7405 goto out;
7406 goto out_noreserve;
56a76f82 7407 }
1832a6d5 7408
56a76f82 7409 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7410again:
9ebefb18 7411 lock_page(page);
9ebefb18 7412 size = i_size_read(inode);
e6dcd2dc
CM
7413 page_start = page_offset(page);
7414 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7415
9ebefb18 7416 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7417 (page_start >= size)) {
9ebefb18
CM
7418 /* page got truncated out from underneath us */
7419 goto out_unlock;
7420 }
e6dcd2dc
CM
7421 wait_on_page_writeback(page);
7422
d0082371 7423 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7424 set_page_extent_mapped(page);
7425
eb84ae03
CM
7426 /*
7427 * we can't set the delalloc bits if there are pending ordered
7428 * extents. Drop our locks and wait for them to finish
7429 */
e6dcd2dc
CM
7430 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7431 if (ordered) {
2ac55d41
JB
7432 unlock_extent_cached(io_tree, page_start, page_end,
7433 &cached_state, GFP_NOFS);
e6dcd2dc 7434 unlock_page(page);
eb84ae03 7435 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7436 btrfs_put_ordered_extent(ordered);
7437 goto again;
7438 }
7439
fbf19087
JB
7440 /*
7441 * XXX - page_mkwrite gets called every time the page is dirtied, even
7442 * if it was already dirty, so for space accounting reasons we need to
7443 * clear any delalloc bits for the range we are fixing to save. There
7444 * is probably a better way to do this, but for now keep consistent with
7445 * prepare_pages in the normal write path.
7446 */
2ac55d41 7447 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7448 EXTENT_DIRTY | EXTENT_DELALLOC |
7449 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7450 0, 0, &cached_state, GFP_NOFS);
fbf19087 7451
2ac55d41
JB
7452 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7453 &cached_state);
9ed74f2d 7454 if (ret) {
2ac55d41
JB
7455 unlock_extent_cached(io_tree, page_start, page_end,
7456 &cached_state, GFP_NOFS);
9ed74f2d
JB
7457 ret = VM_FAULT_SIGBUS;
7458 goto out_unlock;
7459 }
e6dcd2dc 7460 ret = 0;
9ebefb18
CM
7461
7462 /* page is wholly or partially inside EOF */
a52d9a80 7463 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7464 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7465 else
e6dcd2dc 7466 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7467
e6dcd2dc
CM
7468 if (zero_start != PAGE_CACHE_SIZE) {
7469 kaddr = kmap(page);
7470 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7471 flush_dcache_page(page);
7472 kunmap(page);
7473 }
247e743c 7474 ClearPageChecked(page);
e6dcd2dc 7475 set_page_dirty(page);
50a9b214 7476 SetPageUptodate(page);
5a3f23d5 7477
257c62e1
CM
7478 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7479 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7480 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7481
2ac55d41 7482 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7483
7484out_unlock:
b2b5ef5c
JK
7485 if (!ret) {
7486 sb_end_pagefault(inode->i_sb);
50a9b214 7487 return VM_FAULT_LOCKED;
b2b5ef5c 7488 }
9ebefb18 7489 unlock_page(page);
1832a6d5 7490out:
ec39e180 7491 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7492out_noreserve:
b2b5ef5c 7493 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7494 return ret;
7495}
7496
a41ad394 7497static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7498{
7499 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7500 struct btrfs_block_rsv *rsv;
a71754fc 7501 int ret = 0;
3893e33b 7502 int err = 0;
39279cc3 7503 struct btrfs_trans_handle *trans;
dbe674a9 7504 u64 mask = root->sectorsize - 1;
07127184 7505 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7506
4a096752 7507 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 7508 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 7509
fcb80c2a
JB
7510 /*
7511 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7512 * 3 things going on here
7513 *
7514 * 1) We need to reserve space for our orphan item and the space to
7515 * delete our orphan item. Lord knows we don't want to have a dangling
7516 * orphan item because we didn't reserve space to remove it.
7517 *
7518 * 2) We need to reserve space to update our inode.
7519 *
7520 * 3) We need to have something to cache all the space that is going to
7521 * be free'd up by the truncate operation, but also have some slack
7522 * space reserved in case it uses space during the truncate (thank you
7523 * very much snapshotting).
7524 *
7525 * And we need these to all be seperate. The fact is we can use alot of
7526 * space doing the truncate, and we have no earthly idea how much space
7527 * we will use, so we need the truncate reservation to be seperate so it
7528 * doesn't end up using space reserved for updating the inode or
7529 * removing the orphan item. We also need to be able to stop the
7530 * transaction and start a new one, which means we need to be able to
7531 * update the inode several times, and we have no idea of knowing how
7532 * many times that will be, so we can't just reserve 1 item for the
7533 * entirety of the opration, so that has to be done seperately as well.
7534 * Then there is the orphan item, which does indeed need to be held on
7535 * to for the whole operation, and we need nobody to touch this reserved
7536 * space except the orphan code.
7537 *
7538 * So that leaves us with
7539 *
7540 * 1) root->orphan_block_rsv - for the orphan deletion.
7541 * 2) rsv - for the truncate reservation, which we will steal from the
7542 * transaction reservation.
7543 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7544 * updating the inode.
7545 */
66d8f3dd 7546 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7547 if (!rsv)
7548 return -ENOMEM;
4a338542 7549 rsv->size = min_size;
ca7e70f5 7550 rsv->failfast = 1;
f0cd846e 7551
907cbceb 7552 /*
07127184 7553 * 1 for the truncate slack space
907cbceb
JB
7554 * 1 for updating the inode.
7555 */
f3fe820c 7556 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7557 if (IS_ERR(trans)) {
7558 err = PTR_ERR(trans);
7559 goto out;
7560 }
f0cd846e 7561
907cbceb
JB
7562 /* Migrate the slack space for the truncate to our reserve */
7563 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7564 min_size);
fcb80c2a 7565 BUG_ON(ret);
f0cd846e 7566
5a3f23d5
CM
7567 /*
7568 * setattr is responsible for setting the ordered_data_close flag,
7569 * but that is only tested during the last file release. That
7570 * could happen well after the next commit, leaving a great big
7571 * window where new writes may get lost if someone chooses to write
7572 * to this file after truncating to zero
7573 *
7574 * The inode doesn't have any dirty data here, and so if we commit
7575 * this is a noop. If someone immediately starts writing to the inode
7576 * it is very likely we'll catch some of their writes in this
7577 * transaction, and the commit will find this file on the ordered
7578 * data list with good things to send down.
7579 *
7580 * This is a best effort solution, there is still a window where
7581 * using truncate to replace the contents of the file will
7582 * end up with a zero length file after a crash.
7583 */
72ac3c0d
JB
7584 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7585 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7586 btrfs_add_ordered_operation(trans, root, inode);
7587
5dc562c5
JB
7588 /*
7589 * So if we truncate and then write and fsync we normally would just
7590 * write the extents that changed, which is a problem if we need to
7591 * first truncate that entire inode. So set this flag so we write out
7592 * all of the extents in the inode to the sync log so we're completely
7593 * safe.
7594 */
7595 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7596 trans->block_rsv = rsv;
907cbceb 7597
8082510e
YZ
7598 while (1) {
7599 ret = btrfs_truncate_inode_items(trans, root, inode,
7600 inode->i_size,
7601 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7602 if (ret != -ENOSPC) {
3893e33b 7603 err = ret;
8082510e 7604 break;
3893e33b 7605 }
39279cc3 7606
fcb80c2a 7607 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7608 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7609 if (ret) {
7610 err = ret;
7611 break;
7612 }
ca7e70f5 7613
8082510e 7614 btrfs_end_transaction(trans, root);
b53d3f5d 7615 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7616
7617 trans = btrfs_start_transaction(root, 2);
7618 if (IS_ERR(trans)) {
7619 ret = err = PTR_ERR(trans);
7620 trans = NULL;
7621 break;
7622 }
7623
7624 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7625 rsv, min_size);
7626 BUG_ON(ret); /* shouldn't happen */
7627 trans->block_rsv = rsv;
8082510e
YZ
7628 }
7629
7630 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7631 trans->block_rsv = root->orphan_block_rsv;
8082510e 7632 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7633 if (ret)
7634 err = ret;
8082510e
YZ
7635 }
7636
917c16b2
CM
7637 if (trans) {
7638 trans->block_rsv = &root->fs_info->trans_block_rsv;
7639 ret = btrfs_update_inode(trans, root, inode);
7640 if (ret && !err)
7641 err = ret;
7b128766 7642
7ad85bb7 7643 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7644 btrfs_btree_balance_dirty(root);
917c16b2 7645 }
fcb80c2a
JB
7646
7647out:
7648 btrfs_free_block_rsv(root, rsv);
7649
3893e33b
JB
7650 if (ret && !err)
7651 err = ret;
a41ad394 7652
3893e33b 7653 return err;
39279cc3
CM
7654}
7655
d352ac68
CM
7656/*
7657 * create a new subvolume directory/inode (helper for the ioctl).
7658 */
d2fb3437 7659int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7660 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7661{
39279cc3 7662 struct inode *inode;
76dda93c 7663 int err;
00e4e6b3 7664 u64 index = 0;
39279cc3 7665
12fc9d09
FA
7666 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7667 new_dirid, new_dirid,
7668 S_IFDIR | (~current_umask() & S_IRWXUGO),
7669 &index);
54aa1f4d 7670 if (IS_ERR(inode))
f46b5a66 7671 return PTR_ERR(inode);
39279cc3
CM
7672 inode->i_op = &btrfs_dir_inode_operations;
7673 inode->i_fop = &btrfs_dir_file_operations;
7674
bfe86848 7675 set_nlink(inode, 1);
dbe674a9 7676 btrfs_i_size_write(inode, 0);
3b96362c 7677
76dda93c 7678 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7679
76dda93c 7680 iput(inode);
ce598979 7681 return err;
39279cc3
CM
7682}
7683
39279cc3
CM
7684struct inode *btrfs_alloc_inode(struct super_block *sb)
7685{
7686 struct btrfs_inode *ei;
2ead6ae7 7687 struct inode *inode;
39279cc3
CM
7688
7689 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7690 if (!ei)
7691 return NULL;
2ead6ae7
YZ
7692
7693 ei->root = NULL;
2ead6ae7 7694 ei->generation = 0;
15ee9bc7 7695 ei->last_trans = 0;
257c62e1 7696 ei->last_sub_trans = 0;
e02119d5 7697 ei->logged_trans = 0;
2ead6ae7 7698 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7699 ei->disk_i_size = 0;
7700 ei->flags = 0;
7709cde3 7701 ei->csum_bytes = 0;
2ead6ae7
YZ
7702 ei->index_cnt = (u64)-1;
7703 ei->last_unlink_trans = 0;
46d8bc34 7704 ei->last_log_commit = 0;
2ead6ae7 7705
9e0baf60
JB
7706 spin_lock_init(&ei->lock);
7707 ei->outstanding_extents = 0;
7708 ei->reserved_extents = 0;
2ead6ae7 7709
72ac3c0d 7710 ei->runtime_flags = 0;
261507a0 7711 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7712
16cdcec7
MX
7713 ei->delayed_node = NULL;
7714
2ead6ae7 7715 inode = &ei->vfs_inode;
a8067e02 7716 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7717 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7718 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7719 ei->io_tree.track_uptodate = 1;
7720 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7721 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7722 mutex_init(&ei->log_mutex);
f248679e 7723 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7724 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7725 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7726 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7727 RB_CLEAR_NODE(&ei->rb_node);
7728
7729 return inode;
39279cc3
CM
7730}
7731
fa0d7e3d
NP
7732static void btrfs_i_callback(struct rcu_head *head)
7733{
7734 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7735 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7736}
7737
39279cc3
CM
7738void btrfs_destroy_inode(struct inode *inode)
7739{
e6dcd2dc 7740 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7741 struct btrfs_root *root = BTRFS_I(inode)->root;
7742
b3d9b7a3 7743 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7744 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7745 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7746 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7747 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7748 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7749
a6dbd429
JB
7750 /*
7751 * This can happen where we create an inode, but somebody else also
7752 * created the same inode and we need to destroy the one we already
7753 * created.
7754 */
7755 if (!root)
7756 goto free;
7757
5a3f23d5
CM
7758 /*
7759 * Make sure we're properly removed from the ordered operation
7760 * lists.
7761 */
7762 smp_mb();
7763 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
199c2a9c 7764 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 7765 list_del_init(&BTRFS_I(inode)->ordered_operations);
199c2a9c 7766 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
7767 }
7768
8a35d95f
JB
7769 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7770 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 7771 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 7772 btrfs_ino(inode));
8a35d95f 7773 atomic_dec(&root->orphan_inodes);
7b128766 7774 }
7b128766 7775
d397712b 7776 while (1) {
e6dcd2dc
CM
7777 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7778 if (!ordered)
7779 break;
7780 else {
c2cf52eb 7781 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 7782 ordered->file_offset, ordered->len);
e6dcd2dc
CM
7783 btrfs_remove_ordered_extent(inode, ordered);
7784 btrfs_put_ordered_extent(ordered);
7785 btrfs_put_ordered_extent(ordered);
7786 }
7787 }
5d4f98a2 7788 inode_tree_del(inode);
5b21f2ed 7789 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7790free:
fa0d7e3d 7791 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7792}
7793
45321ac5 7794int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7795{
7796 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7797
6379ef9f
NA
7798 if (root == NULL)
7799 return 1;
7800
fa6ac876 7801 /* the snap/subvol tree is on deleting */
0af3d00b 7802 if (btrfs_root_refs(&root->root_item) == 0 &&
fa6ac876 7803 root != root->fs_info->tree_root)
45321ac5 7804 return 1;
76dda93c 7805 else
45321ac5 7806 return generic_drop_inode(inode);
76dda93c
YZ
7807}
7808
0ee0fda0 7809static void init_once(void *foo)
39279cc3
CM
7810{
7811 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7812
7813 inode_init_once(&ei->vfs_inode);
7814}
7815
7816void btrfs_destroy_cachep(void)
7817{
8c0a8537
KS
7818 /*
7819 * Make sure all delayed rcu free inodes are flushed before we
7820 * destroy cache.
7821 */
7822 rcu_barrier();
39279cc3
CM
7823 if (btrfs_inode_cachep)
7824 kmem_cache_destroy(btrfs_inode_cachep);
7825 if (btrfs_trans_handle_cachep)
7826 kmem_cache_destroy(btrfs_trans_handle_cachep);
7827 if (btrfs_transaction_cachep)
7828 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7829 if (btrfs_path_cachep)
7830 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7831 if (btrfs_free_space_cachep)
7832 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7833 if (btrfs_delalloc_work_cachep)
7834 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
7835}
7836
7837int btrfs_init_cachep(void)
7838{
837e1972 7839 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
7840 sizeof(struct btrfs_inode), 0,
7841 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7842 if (!btrfs_inode_cachep)
7843 goto fail;
9601e3f6 7844
837e1972 7845 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
7846 sizeof(struct btrfs_trans_handle), 0,
7847 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7848 if (!btrfs_trans_handle_cachep)
7849 goto fail;
9601e3f6 7850
837e1972 7851 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
7852 sizeof(struct btrfs_transaction), 0,
7853 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7854 if (!btrfs_transaction_cachep)
7855 goto fail;
9601e3f6 7856
837e1972 7857 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
7858 sizeof(struct btrfs_path), 0,
7859 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7860 if (!btrfs_path_cachep)
7861 goto fail;
9601e3f6 7862
837e1972 7863 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
7864 sizeof(struct btrfs_free_space), 0,
7865 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7866 if (!btrfs_free_space_cachep)
7867 goto fail;
7868
8ccf6f19
MX
7869 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7870 sizeof(struct btrfs_delalloc_work), 0,
7871 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7872 NULL);
7873 if (!btrfs_delalloc_work_cachep)
7874 goto fail;
7875
39279cc3
CM
7876 return 0;
7877fail:
7878 btrfs_destroy_cachep();
7879 return -ENOMEM;
7880}
7881
7882static int btrfs_getattr(struct vfsmount *mnt,
7883 struct dentry *dentry, struct kstat *stat)
7884{
df0af1a5 7885 u64 delalloc_bytes;
39279cc3 7886 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7887 u32 blocksize = inode->i_sb->s_blocksize;
7888
39279cc3 7889 generic_fillattr(inode, stat);
0ee5dc67 7890 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7891 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
7892
7893 spin_lock(&BTRFS_I(inode)->lock);
7894 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
7895 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 7896 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 7897 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7898 return 0;
7899}
7900
d397712b
CM
7901static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7902 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7903{
7904 struct btrfs_trans_handle *trans;
7905 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7906 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7907 struct inode *new_inode = new_dentry->d_inode;
7908 struct inode *old_inode = old_dentry->d_inode;
7909 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7910 u64 index = 0;
4df27c4d 7911 u64 root_objectid;
39279cc3 7912 int ret;
33345d01 7913 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7914
33345d01 7915 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7916 return -EPERM;
7917
4df27c4d 7918 /* we only allow rename subvolume link between subvolumes */
33345d01 7919 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7920 return -EXDEV;
7921
33345d01
LZ
7922 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7923 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7924 return -ENOTEMPTY;
5f39d397 7925
4df27c4d
YZ
7926 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7927 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7928 return -ENOTEMPTY;
9c52057c
CM
7929
7930
7931 /* check for collisions, even if the name isn't there */
7932 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
7933 new_dentry->d_name.name,
7934 new_dentry->d_name.len);
7935
7936 if (ret) {
7937 if (ret == -EEXIST) {
7938 /* we shouldn't get
7939 * eexist without a new_inode */
7940 if (!new_inode) {
7941 WARN_ON(1);
7942 return ret;
7943 }
7944 } else {
7945 /* maybe -EOVERFLOW */
7946 return ret;
7947 }
7948 }
7949 ret = 0;
7950
5a3f23d5
CM
7951 /*
7952 * we're using rename to replace one file with another.
7953 * and the replacement file is large. Start IO on it now so
7954 * we don't add too much work to the end of the transaction
7955 */
4baf8c92 7956 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7957 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7958 filemap_flush(old_inode->i_mapping);
7959
76dda93c 7960 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7961 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7962 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7963 /*
7964 * We want to reserve the absolute worst case amount of items. So if
7965 * both inodes are subvols and we need to unlink them then that would
7966 * require 4 item modifications, but if they are both normal inodes it
7967 * would require 5 item modifications, so we'll assume their normal
7968 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7969 * should cover the worst case number of items we'll modify.
7970 */
6e137ed3 7971 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
7972 if (IS_ERR(trans)) {
7973 ret = PTR_ERR(trans);
7974 goto out_notrans;
7975 }
76dda93c 7976
4df27c4d
YZ
7977 if (dest != root)
7978 btrfs_record_root_in_trans(trans, dest);
5f39d397 7979
a5719521
YZ
7980 ret = btrfs_set_inode_index(new_dir, &index);
7981 if (ret)
7982 goto out_fail;
5a3f23d5 7983
33345d01 7984 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7985 /* force full log commit if subvolume involved. */
7986 root->fs_info->last_trans_log_full_commit = trans->transid;
7987 } else {
a5719521
YZ
7988 ret = btrfs_insert_inode_ref(trans, dest,
7989 new_dentry->d_name.name,
7990 new_dentry->d_name.len,
33345d01
LZ
7991 old_ino,
7992 btrfs_ino(new_dir), index);
a5719521
YZ
7993 if (ret)
7994 goto out_fail;
4df27c4d
YZ
7995 /*
7996 * this is an ugly little race, but the rename is required
7997 * to make sure that if we crash, the inode is either at the
7998 * old name or the new one. pinning the log transaction lets
7999 * us make sure we don't allow a log commit to come in after
8000 * we unlink the name but before we add the new name back in.
8001 */
8002 btrfs_pin_log_trans(root);
8003 }
5a3f23d5
CM
8004 /*
8005 * make sure the inode gets flushed if it is replacing
8006 * something.
8007 */
33345d01 8008 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 8009 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 8010
0c4d2d95
JB
8011 inode_inc_iversion(old_dir);
8012 inode_inc_iversion(new_dir);
8013 inode_inc_iversion(old_inode);
39279cc3
CM
8014 old_dir->i_ctime = old_dir->i_mtime = ctime;
8015 new_dir->i_ctime = new_dir->i_mtime = ctime;
8016 old_inode->i_ctime = ctime;
5f39d397 8017
12fcfd22
CM
8018 if (old_dentry->d_parent != new_dentry->d_parent)
8019 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8020
33345d01 8021 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8022 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8023 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8024 old_dentry->d_name.name,
8025 old_dentry->d_name.len);
8026 } else {
92986796
AV
8027 ret = __btrfs_unlink_inode(trans, root, old_dir,
8028 old_dentry->d_inode,
8029 old_dentry->d_name.name,
8030 old_dentry->d_name.len);
8031 if (!ret)
8032 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8033 }
79787eaa
JM
8034 if (ret) {
8035 btrfs_abort_transaction(trans, root, ret);
8036 goto out_fail;
8037 }
39279cc3
CM
8038
8039 if (new_inode) {
0c4d2d95 8040 inode_inc_iversion(new_inode);
39279cc3 8041 new_inode->i_ctime = CURRENT_TIME;
33345d01 8042 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8043 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8044 root_objectid = BTRFS_I(new_inode)->location.objectid;
8045 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8046 root_objectid,
8047 new_dentry->d_name.name,
8048 new_dentry->d_name.len);
8049 BUG_ON(new_inode->i_nlink == 0);
8050 } else {
8051 ret = btrfs_unlink_inode(trans, dest, new_dir,
8052 new_dentry->d_inode,
8053 new_dentry->d_name.name,
8054 new_dentry->d_name.len);
8055 }
4ef31a45 8056 if (!ret && new_inode->i_nlink == 0)
e02119d5 8057 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8058 if (ret) {
8059 btrfs_abort_transaction(trans, root, ret);
8060 goto out_fail;
8061 }
39279cc3 8062 }
aec7477b 8063
4df27c4d
YZ
8064 ret = btrfs_add_link(trans, new_dir, old_inode,
8065 new_dentry->d_name.name,
a5719521 8066 new_dentry->d_name.len, 0, index);
79787eaa
JM
8067 if (ret) {
8068 btrfs_abort_transaction(trans, root, ret);
8069 goto out_fail;
8070 }
39279cc3 8071
33345d01 8072 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8073 struct dentry *parent = new_dentry->d_parent;
6a912213 8074 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8075 btrfs_end_log_trans(root);
8076 }
39279cc3 8077out_fail:
7ad85bb7 8078 btrfs_end_transaction(trans, root);
b44c59a8 8079out_notrans:
33345d01 8080 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8081 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8082
39279cc3
CM
8083 return ret;
8084}
8085
8ccf6f19
MX
8086static void btrfs_run_delalloc_work(struct btrfs_work *work)
8087{
8088 struct btrfs_delalloc_work *delalloc_work;
8089
8090 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8091 work);
8092 if (delalloc_work->wait)
8093 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8094 else
8095 filemap_flush(delalloc_work->inode->i_mapping);
8096
8097 if (delalloc_work->delay_iput)
8098 btrfs_add_delayed_iput(delalloc_work->inode);
8099 else
8100 iput(delalloc_work->inode);
8101 complete(&delalloc_work->completion);
8102}
8103
8104struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8105 int wait, int delay_iput)
8106{
8107 struct btrfs_delalloc_work *work;
8108
8109 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8110 if (!work)
8111 return NULL;
8112
8113 init_completion(&work->completion);
8114 INIT_LIST_HEAD(&work->list);
8115 work->inode = inode;
8116 work->wait = wait;
8117 work->delay_iput = delay_iput;
8118 work->work.func = btrfs_run_delalloc_work;
8119
8120 return work;
8121}
8122
8123void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8124{
8125 wait_for_completion(&work->completion);
8126 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8127}
8128
d352ac68
CM
8129/*
8130 * some fairly slow code that needs optimization. This walks the list
8131 * of all the inodes with pending delalloc and forces them to disk.
8132 */
eb73c1b7 8133static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 8134{
ea8c2819 8135 struct btrfs_inode *binode;
5b21f2ed 8136 struct inode *inode;
8ccf6f19
MX
8137 struct btrfs_delalloc_work *work, *next;
8138 struct list_head works;
1eafa6c7 8139 struct list_head splice;
8ccf6f19 8140 int ret = 0;
ea8c2819 8141
8ccf6f19 8142 INIT_LIST_HEAD(&works);
1eafa6c7 8143 INIT_LIST_HEAD(&splice);
63607cc8 8144
eb73c1b7
MX
8145 spin_lock(&root->delalloc_lock);
8146 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8147 while (!list_empty(&splice)) {
8148 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8149 delalloc_inodes);
1eafa6c7 8150
eb73c1b7
MX
8151 list_move_tail(&binode->delalloc_inodes,
8152 &root->delalloc_inodes);
5b21f2ed 8153 inode = igrab(&binode->vfs_inode);
df0af1a5 8154 if (!inode) {
eb73c1b7 8155 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8156 continue;
df0af1a5 8157 }
eb73c1b7 8158 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8159
8160 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8161 if (unlikely(!work)) {
8162 ret = -ENOMEM;
8163 goto out;
5b21f2ed 8164 }
1eafa6c7
MX
8165 list_add_tail(&work->list, &works);
8166 btrfs_queue_worker(&root->fs_info->flush_workers,
8167 &work->work);
8168
5b21f2ed 8169 cond_resched();
eb73c1b7 8170 spin_lock(&root->delalloc_lock);
ea8c2819 8171 }
eb73c1b7 8172 spin_unlock(&root->delalloc_lock);
8c8bee1d 8173
1eafa6c7
MX
8174 list_for_each_entry_safe(work, next, &works, list) {
8175 list_del_init(&work->list);
8176 btrfs_wait_and_free_delalloc_work(work);
8177 }
eb73c1b7
MX
8178 return 0;
8179out:
8180 list_for_each_entry_safe(work, next, &works, list) {
8181 list_del_init(&work->list);
8182 btrfs_wait_and_free_delalloc_work(work);
8183 }
8184
8185 if (!list_empty_careful(&splice)) {
8186 spin_lock(&root->delalloc_lock);
8187 list_splice_tail(&splice, &root->delalloc_inodes);
8188 spin_unlock(&root->delalloc_lock);
8189 }
8190 return ret;
8191}
1eafa6c7 8192
eb73c1b7
MX
8193int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8194{
8195 int ret;
1eafa6c7 8196
eb73c1b7
MX
8197 if (root->fs_info->sb->s_flags & MS_RDONLY)
8198 return -EROFS;
8199
8200 ret = __start_delalloc_inodes(root, delay_iput);
8201 /*
8202 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
8203 * we have to make sure the IO is actually started and that
8204 * ordered extents get created before we return
8205 */
8206 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8207 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8208 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8209 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8210 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8211 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8212 }
8213 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
8214 return ret;
8215}
8216
8217int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info,
8218 int delay_iput)
8219{
8220 struct btrfs_root *root;
8221 struct list_head splice;
8222 int ret;
8223
8224 if (fs_info->sb->s_flags & MS_RDONLY)
8225 return -EROFS;
8226
8227 INIT_LIST_HEAD(&splice);
8228
8229 spin_lock(&fs_info->delalloc_root_lock);
8230 list_splice_init(&fs_info->delalloc_roots, &splice);
8231 while (!list_empty(&splice)) {
8232 root = list_first_entry(&splice, struct btrfs_root,
8233 delalloc_root);
8234 root = btrfs_grab_fs_root(root);
8235 BUG_ON(!root);
8236 list_move_tail(&root->delalloc_root,
8237 &fs_info->delalloc_roots);
8238 spin_unlock(&fs_info->delalloc_root_lock);
8239
8240 ret = __start_delalloc_inodes(root, delay_iput);
8241 btrfs_put_fs_root(root);
8242 if (ret)
8243 goto out;
8244
8245 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 8246 }
eb73c1b7 8247 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8248
eb73c1b7
MX
8249 atomic_inc(&fs_info->async_submit_draining);
8250 while (atomic_read(&fs_info->nr_async_submits) ||
8251 atomic_read(&fs_info->async_delalloc_pages)) {
8252 wait_event(fs_info->async_submit_wait,
8253 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8254 atomic_read(&fs_info->async_delalloc_pages) == 0));
8255 }
8256 atomic_dec(&fs_info->async_submit_draining);
8257 return 0;
8258out:
1eafa6c7 8259 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
8260 spin_lock(&fs_info->delalloc_root_lock);
8261 list_splice_tail(&splice, &fs_info->delalloc_roots);
8262 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8263 }
8ccf6f19 8264 return ret;
ea8c2819
CM
8265}
8266
39279cc3
CM
8267static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8268 const char *symname)
8269{
8270 struct btrfs_trans_handle *trans;
8271 struct btrfs_root *root = BTRFS_I(dir)->root;
8272 struct btrfs_path *path;
8273 struct btrfs_key key;
1832a6d5 8274 struct inode *inode = NULL;
39279cc3
CM
8275 int err;
8276 int drop_inode = 0;
8277 u64 objectid;
00e4e6b3 8278 u64 index = 0 ;
39279cc3
CM
8279 int name_len;
8280 int datasize;
5f39d397 8281 unsigned long ptr;
39279cc3 8282 struct btrfs_file_extent_item *ei;
5f39d397 8283 struct extent_buffer *leaf;
39279cc3
CM
8284
8285 name_len = strlen(symname) + 1;
8286 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8287 return -ENAMETOOLONG;
1832a6d5 8288
9ed74f2d
JB
8289 /*
8290 * 2 items for inode item and ref
8291 * 2 items for dir items
8292 * 1 item for xattr if selinux is on
8293 */
a22285a6
YZ
8294 trans = btrfs_start_transaction(root, 5);
8295 if (IS_ERR(trans))
8296 return PTR_ERR(trans);
1832a6d5 8297
581bb050
LZ
8298 err = btrfs_find_free_ino(root, &objectid);
8299 if (err)
8300 goto out_unlock;
8301
aec7477b 8302 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8303 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8304 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8305 if (IS_ERR(inode)) {
8306 err = PTR_ERR(inode);
39279cc3 8307 goto out_unlock;
7cf96da3 8308 }
39279cc3 8309
2a7dba39 8310 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8311 if (err) {
8312 drop_inode = 1;
8313 goto out_unlock;
8314 }
8315
ad19db71
CS
8316 /*
8317 * If the active LSM wants to access the inode during
8318 * d_instantiate it needs these. Smack checks to see
8319 * if the filesystem supports xattrs by looking at the
8320 * ops vector.
8321 */
8322 inode->i_fop = &btrfs_file_operations;
8323 inode->i_op = &btrfs_file_inode_operations;
8324
a1b075d2 8325 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8326 if (err)
8327 drop_inode = 1;
8328 else {
8329 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8330 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8331 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8332 }
39279cc3
CM
8333 if (drop_inode)
8334 goto out_unlock;
8335
8336 path = btrfs_alloc_path();
d8926bb3
MF
8337 if (!path) {
8338 err = -ENOMEM;
8339 drop_inode = 1;
8340 goto out_unlock;
8341 }
33345d01 8342 key.objectid = btrfs_ino(inode);
39279cc3 8343 key.offset = 0;
39279cc3
CM
8344 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8345 datasize = btrfs_file_extent_calc_inline_size(name_len);
8346 err = btrfs_insert_empty_item(trans, root, path, &key,
8347 datasize);
54aa1f4d
CM
8348 if (err) {
8349 drop_inode = 1;
b0839166 8350 btrfs_free_path(path);
54aa1f4d
CM
8351 goto out_unlock;
8352 }
5f39d397
CM
8353 leaf = path->nodes[0];
8354 ei = btrfs_item_ptr(leaf, path->slots[0],
8355 struct btrfs_file_extent_item);
8356 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8357 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8358 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8359 btrfs_set_file_extent_encryption(leaf, ei, 0);
8360 btrfs_set_file_extent_compression(leaf, ei, 0);
8361 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8362 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8363
39279cc3 8364 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8365 write_extent_buffer(leaf, symname, ptr, name_len);
8366 btrfs_mark_buffer_dirty(leaf);
39279cc3 8367 btrfs_free_path(path);
5f39d397 8368
39279cc3
CM
8369 inode->i_op = &btrfs_symlink_inode_operations;
8370 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8371 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8372 inode_set_bytes(inode, name_len);
dbe674a9 8373 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
8374 err = btrfs_update_inode(trans, root, inode);
8375 if (err)
8376 drop_inode = 1;
39279cc3
CM
8377
8378out_unlock:
08c422c2
AV
8379 if (!err)
8380 d_instantiate(dentry, inode);
7ad85bb7 8381 btrfs_end_transaction(trans, root);
39279cc3
CM
8382 if (drop_inode) {
8383 inode_dec_link_count(inode);
8384 iput(inode);
8385 }
b53d3f5d 8386 btrfs_btree_balance_dirty(root);
39279cc3
CM
8387 return err;
8388}
16432985 8389
0af3d00b
JB
8390static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8391 u64 start, u64 num_bytes, u64 min_size,
8392 loff_t actual_len, u64 *alloc_hint,
8393 struct btrfs_trans_handle *trans)
d899e052 8394{
5dc562c5
JB
8395 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8396 struct extent_map *em;
d899e052
YZ
8397 struct btrfs_root *root = BTRFS_I(inode)->root;
8398 struct btrfs_key ins;
d899e052 8399 u64 cur_offset = start;
55a61d1d 8400 u64 i_size;
154ea289 8401 u64 cur_bytes;
d899e052 8402 int ret = 0;
0af3d00b 8403 bool own_trans = true;
d899e052 8404
0af3d00b
JB
8405 if (trans)
8406 own_trans = false;
d899e052 8407 while (num_bytes > 0) {
0af3d00b
JB
8408 if (own_trans) {
8409 trans = btrfs_start_transaction(root, 3);
8410 if (IS_ERR(trans)) {
8411 ret = PTR_ERR(trans);
8412 break;
8413 }
5a303d5d
YZ
8414 }
8415
154ea289
CM
8416 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8417 cur_bytes = max(cur_bytes, min_size);
00361589
JB
8418 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8419 *alloc_hint, &ins, 1);
5a303d5d 8420 if (ret) {
0af3d00b
JB
8421 if (own_trans)
8422 btrfs_end_transaction(trans, root);
a22285a6 8423 break;
d899e052 8424 }
5a303d5d 8425
d899e052
YZ
8426 ret = insert_reserved_file_extent(trans, inode,
8427 cur_offset, ins.objectid,
8428 ins.offset, ins.offset,
920bbbfb 8429 ins.offset, 0, 0, 0,
d899e052 8430 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
8431 if (ret) {
8432 btrfs_abort_transaction(trans, root, ret);
8433 if (own_trans)
8434 btrfs_end_transaction(trans, root);
8435 break;
8436 }
a1ed835e
CM
8437 btrfs_drop_extent_cache(inode, cur_offset,
8438 cur_offset + ins.offset -1, 0);
5a303d5d 8439
5dc562c5
JB
8440 em = alloc_extent_map();
8441 if (!em) {
8442 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8443 &BTRFS_I(inode)->runtime_flags);
8444 goto next;
8445 }
8446
8447 em->start = cur_offset;
8448 em->orig_start = cur_offset;
8449 em->len = ins.offset;
8450 em->block_start = ins.objectid;
8451 em->block_len = ins.offset;
b4939680 8452 em->orig_block_len = ins.offset;
cc95bef6 8453 em->ram_bytes = ins.offset;
5dc562c5
JB
8454 em->bdev = root->fs_info->fs_devices->latest_bdev;
8455 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8456 em->generation = trans->transid;
8457
8458 while (1) {
8459 write_lock(&em_tree->lock);
09a2a8f9 8460 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8461 write_unlock(&em_tree->lock);
8462 if (ret != -EEXIST)
8463 break;
8464 btrfs_drop_extent_cache(inode, cur_offset,
8465 cur_offset + ins.offset - 1,
8466 0);
8467 }
8468 free_extent_map(em);
8469next:
d899e052
YZ
8470 num_bytes -= ins.offset;
8471 cur_offset += ins.offset;
efa56464 8472 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8473
0c4d2d95 8474 inode_inc_iversion(inode);
d899e052 8475 inode->i_ctime = CURRENT_TIME;
6cbff00f 8476 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8477 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8478 (actual_len > inode->i_size) &&
8479 (cur_offset > inode->i_size)) {
d1ea6a61 8480 if (cur_offset > actual_len)
55a61d1d 8481 i_size = actual_len;
d1ea6a61 8482 else
55a61d1d
JB
8483 i_size = cur_offset;
8484 i_size_write(inode, i_size);
8485 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8486 }
8487
d899e052 8488 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8489
8490 if (ret) {
8491 btrfs_abort_transaction(trans, root, ret);
8492 if (own_trans)
8493 btrfs_end_transaction(trans, root);
8494 break;
8495 }
d899e052 8496
0af3d00b
JB
8497 if (own_trans)
8498 btrfs_end_transaction(trans, root);
5a303d5d 8499 }
d899e052
YZ
8500 return ret;
8501}
8502
0af3d00b
JB
8503int btrfs_prealloc_file_range(struct inode *inode, int mode,
8504 u64 start, u64 num_bytes, u64 min_size,
8505 loff_t actual_len, u64 *alloc_hint)
8506{
8507 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8508 min_size, actual_len, alloc_hint,
8509 NULL);
8510}
8511
8512int btrfs_prealloc_file_range_trans(struct inode *inode,
8513 struct btrfs_trans_handle *trans, int mode,
8514 u64 start, u64 num_bytes, u64 min_size,
8515 loff_t actual_len, u64 *alloc_hint)
8516{
8517 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8518 min_size, actual_len, alloc_hint, trans);
8519}
8520
e6dcd2dc
CM
8521static int btrfs_set_page_dirty(struct page *page)
8522{
e6dcd2dc
CM
8523 return __set_page_dirty_nobuffers(page);
8524}
8525
10556cb2 8526static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8527{
b83cc969 8528 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8529 umode_t mode = inode->i_mode;
b83cc969 8530
cb6db4e5
JM
8531 if (mask & MAY_WRITE &&
8532 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8533 if (btrfs_root_readonly(root))
8534 return -EROFS;
8535 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8536 return -EACCES;
8537 }
2830ba7f 8538 return generic_permission(inode, mask);
fdebe2bd 8539}
39279cc3 8540
6e1d5dcc 8541static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 8542 .getattr = btrfs_getattr,
39279cc3
CM
8543 .lookup = btrfs_lookup,
8544 .create = btrfs_create,
8545 .unlink = btrfs_unlink,
8546 .link = btrfs_link,
8547 .mkdir = btrfs_mkdir,
8548 .rmdir = btrfs_rmdir,
8549 .rename = btrfs_rename,
8550 .symlink = btrfs_symlink,
8551 .setattr = btrfs_setattr,
618e21d5 8552 .mknod = btrfs_mknod,
95819c05
CH
8553 .setxattr = btrfs_setxattr,
8554 .getxattr = btrfs_getxattr,
5103e947 8555 .listxattr = btrfs_listxattr,
95819c05 8556 .removexattr = btrfs_removexattr,
fdebe2bd 8557 .permission = btrfs_permission,
4e34e719 8558 .get_acl = btrfs_get_acl,
39279cc3 8559};
6e1d5dcc 8560static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 8561 .lookup = btrfs_lookup,
fdebe2bd 8562 .permission = btrfs_permission,
4e34e719 8563 .get_acl = btrfs_get_acl,
39279cc3 8564};
76dda93c 8565
828c0950 8566static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
8567 .llseek = generic_file_llseek,
8568 .read = generic_read_dir,
9cdda8d3 8569 .iterate = btrfs_real_readdir,
34287aa3 8570 .unlocked_ioctl = btrfs_ioctl,
39279cc3 8571#ifdef CONFIG_COMPAT
34287aa3 8572 .compat_ioctl = btrfs_ioctl,
39279cc3 8573#endif
6bf13c0c 8574 .release = btrfs_release_file,
e02119d5 8575 .fsync = btrfs_sync_file,
39279cc3
CM
8576};
8577
d1310b2e 8578static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 8579 .fill_delalloc = run_delalloc_range,
065631f6 8580 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8581 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8582 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8583 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8584 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8585 .set_bit_hook = btrfs_set_bit_hook,
8586 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8587 .merge_extent_hook = btrfs_merge_extent_hook,
8588 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8589};
8590
35054394
CM
8591/*
8592 * btrfs doesn't support the bmap operation because swapfiles
8593 * use bmap to make a mapping of extents in the file. They assume
8594 * these extents won't change over the life of the file and they
8595 * use the bmap result to do IO directly to the drive.
8596 *
8597 * the btrfs bmap call would return logical addresses that aren't
8598 * suitable for IO and they also will change frequently as COW
8599 * operations happen. So, swapfile + btrfs == corruption.
8600 *
8601 * For now we're avoiding this by dropping bmap.
8602 */
7f09410b 8603static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8604 .readpage = btrfs_readpage,
8605 .writepage = btrfs_writepage,
b293f02e 8606 .writepages = btrfs_writepages,
3ab2fb5a 8607 .readpages = btrfs_readpages,
16432985 8608 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8609 .invalidatepage = btrfs_invalidatepage,
8610 .releasepage = btrfs_releasepage,
e6dcd2dc 8611 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8612 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8613};
8614
7f09410b 8615static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8616 .readpage = btrfs_readpage,
8617 .writepage = btrfs_writepage,
2bf5a725
CM
8618 .invalidatepage = btrfs_invalidatepage,
8619 .releasepage = btrfs_releasepage,
39279cc3
CM
8620};
8621
6e1d5dcc 8622static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8623 .getattr = btrfs_getattr,
8624 .setattr = btrfs_setattr,
95819c05
CH
8625 .setxattr = btrfs_setxattr,
8626 .getxattr = btrfs_getxattr,
5103e947 8627 .listxattr = btrfs_listxattr,
95819c05 8628 .removexattr = btrfs_removexattr,
fdebe2bd 8629 .permission = btrfs_permission,
1506fcc8 8630 .fiemap = btrfs_fiemap,
4e34e719 8631 .get_acl = btrfs_get_acl,
e41f941a 8632 .update_time = btrfs_update_time,
39279cc3 8633};
6e1d5dcc 8634static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8635 .getattr = btrfs_getattr,
8636 .setattr = btrfs_setattr,
fdebe2bd 8637 .permission = btrfs_permission,
95819c05
CH
8638 .setxattr = btrfs_setxattr,
8639 .getxattr = btrfs_getxattr,
33268eaf 8640 .listxattr = btrfs_listxattr,
95819c05 8641 .removexattr = btrfs_removexattr,
4e34e719 8642 .get_acl = btrfs_get_acl,
e41f941a 8643 .update_time = btrfs_update_time,
618e21d5 8644};
6e1d5dcc 8645static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8646 .readlink = generic_readlink,
8647 .follow_link = page_follow_link_light,
8648 .put_link = page_put_link,
f209561a 8649 .getattr = btrfs_getattr,
22c44fe6 8650 .setattr = btrfs_setattr,
fdebe2bd 8651 .permission = btrfs_permission,
0279b4cd
JO
8652 .setxattr = btrfs_setxattr,
8653 .getxattr = btrfs_getxattr,
8654 .listxattr = btrfs_listxattr,
8655 .removexattr = btrfs_removexattr,
4e34e719 8656 .get_acl = btrfs_get_acl,
e41f941a 8657 .update_time = btrfs_update_time,
39279cc3 8658};
76dda93c 8659
82d339d9 8660const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8661 .d_delete = btrfs_dentry_delete,
b4aff1f8 8662 .d_release = btrfs_dentry_release,
76dda93c 8663};