Btrfs: introduce grab/put functions for the root of the fs/file tree
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
4b4e25f2 44#include "compat.h"
39279cc3
CM
45#include "ctree.h"
46#include "disk-io.h"
47#include "transaction.h"
48#include "btrfs_inode.h"
39279cc3 49#include "print-tree.h"
e6dcd2dc 50#include "ordered-data.h"
95819c05 51#include "xattr.h"
e02119d5 52#include "tree-log.h"
4a54c8c1 53#include "volumes.h"
c8b97818 54#include "compression.h"
b4ce94de 55#include "locking.h"
dc89e982 56#include "free-space-cache.h"
581bb050 57#include "inode-map.h"
38c227d8 58#include "backref.h"
39279cc3
CM
59
60struct btrfs_iget_args {
61 u64 ino;
62 struct btrfs_root *root;
63};
64
6e1d5dcc
AD
65static const struct inode_operations btrfs_dir_inode_operations;
66static const struct inode_operations btrfs_symlink_inode_operations;
67static const struct inode_operations btrfs_dir_ro_inode_operations;
68static const struct inode_operations btrfs_special_inode_operations;
69static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
70static const struct address_space_operations btrfs_aops;
71static const struct address_space_operations btrfs_symlink_aops;
828c0950 72static const struct file_operations btrfs_dir_file_operations;
d1310b2e 73static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
74
75static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 76static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
77struct kmem_cache *btrfs_trans_handle_cachep;
78struct kmem_cache *btrfs_transaction_cachep;
39279cc3 79struct kmem_cache *btrfs_path_cachep;
dc89e982 80struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
81
82#define S_SHIFT 12
83static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
84 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
85 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
86 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
87 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
88 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
89 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
90 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
91};
92
3972f260 93static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 94static int btrfs_truncate(struct inode *inode);
5fd02043 95static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
96static noinline int cow_file_range(struct inode *inode,
97 struct page *locked_page,
98 u64 start, u64 end, int *page_started,
99 unsigned long *nr_written, int unlock);
70c8a91c
JB
100static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
101 u64 len, u64 orig_start,
102 u64 block_start, u64 block_len,
cc95bef6
JB
103 u64 orig_block_len, u64 ram_bytes,
104 int type);
7b128766 105
48a3b636
ES
106static int btrfs_dirty_inode(struct inode *inode);
107
f34f57a3 108static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
109 struct inode *inode, struct inode *dir,
110 const struct qstr *qstr)
0279b4cd
JO
111{
112 int err;
113
f34f57a3 114 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 115 if (!err)
2a7dba39 116 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
117 return err;
118}
119
c8b97818
CM
120/*
121 * this does all the hard work for inserting an inline extent into
122 * the btree. The caller should have done a btrfs_drop_extents so that
123 * no overlapping inline items exist in the btree
124 */
d397712b 125static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
126 struct btrfs_root *root, struct inode *inode,
127 u64 start, size_t size, size_t compressed_size,
fe3f566c 128 int compress_type,
c8b97818
CM
129 struct page **compressed_pages)
130{
131 struct btrfs_key key;
132 struct btrfs_path *path;
133 struct extent_buffer *leaf;
134 struct page *page = NULL;
135 char *kaddr;
136 unsigned long ptr;
137 struct btrfs_file_extent_item *ei;
138 int err = 0;
139 int ret;
140 size_t cur_size = size;
141 size_t datasize;
142 unsigned long offset;
c8b97818 143
fe3f566c 144 if (compressed_size && compressed_pages)
c8b97818 145 cur_size = compressed_size;
c8b97818 146
d397712b
CM
147 path = btrfs_alloc_path();
148 if (!path)
c8b97818
CM
149 return -ENOMEM;
150
b9473439 151 path->leave_spinning = 1;
c8b97818 152
33345d01 153 key.objectid = btrfs_ino(inode);
c8b97818
CM
154 key.offset = start;
155 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
156 datasize = btrfs_file_extent_calc_inline_size(cur_size);
157
158 inode_add_bytes(inode, size);
159 ret = btrfs_insert_empty_item(trans, root, path, &key,
160 datasize);
c8b97818
CM
161 if (ret) {
162 err = ret;
c8b97818
CM
163 goto fail;
164 }
165 leaf = path->nodes[0];
166 ei = btrfs_item_ptr(leaf, path->slots[0],
167 struct btrfs_file_extent_item);
168 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
169 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
170 btrfs_set_file_extent_encryption(leaf, ei, 0);
171 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
172 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
173 ptr = btrfs_file_extent_inline_start(ei);
174
261507a0 175 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
176 struct page *cpage;
177 int i = 0;
d397712b 178 while (compressed_size > 0) {
c8b97818 179 cpage = compressed_pages[i];
5b050f04 180 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
181 PAGE_CACHE_SIZE);
182
7ac687d9 183 kaddr = kmap_atomic(cpage);
c8b97818 184 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 185 kunmap_atomic(kaddr);
c8b97818
CM
186
187 i++;
188 ptr += cur_size;
189 compressed_size -= cur_size;
190 }
191 btrfs_set_file_extent_compression(leaf, ei,
261507a0 192 compress_type);
c8b97818
CM
193 } else {
194 page = find_get_page(inode->i_mapping,
195 start >> PAGE_CACHE_SHIFT);
196 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 197 kaddr = kmap_atomic(page);
c8b97818
CM
198 offset = start & (PAGE_CACHE_SIZE - 1);
199 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 200 kunmap_atomic(kaddr);
c8b97818
CM
201 page_cache_release(page);
202 }
203 btrfs_mark_buffer_dirty(leaf);
204 btrfs_free_path(path);
205
c2167754
YZ
206 /*
207 * we're an inline extent, so nobody can
208 * extend the file past i_size without locking
209 * a page we already have locked.
210 *
211 * We must do any isize and inode updates
212 * before we unlock the pages. Otherwise we
213 * could end up racing with unlink.
214 */
c8b97818 215 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 216 ret = btrfs_update_inode(trans, root, inode);
c2167754 217
79787eaa 218 return ret;
c8b97818
CM
219fail:
220 btrfs_free_path(path);
221 return err;
222}
223
224
225/*
226 * conditionally insert an inline extent into the file. This
227 * does the checks required to make sure the data is small enough
228 * to fit as an inline extent.
229 */
7f366cfe 230static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
231 struct btrfs_root *root,
232 struct inode *inode, u64 start, u64 end,
fe3f566c 233 size_t compressed_size, int compress_type,
c8b97818
CM
234 struct page **compressed_pages)
235{
236 u64 isize = i_size_read(inode);
237 u64 actual_end = min(end + 1, isize);
238 u64 inline_len = actual_end - start;
fda2832f 239 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
240 u64 data_len = inline_len;
241 int ret;
242
243 if (compressed_size)
244 data_len = compressed_size;
245
246 if (start > 0 ||
70b99e69 247 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
248 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
249 (!compressed_size &&
250 (actual_end & (root->sectorsize - 1)) == 0) ||
251 end + 1 < isize ||
252 data_len > root->fs_info->max_inline) {
253 return 1;
254 }
255
2671485d 256 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
79787eaa
JM
257 if (ret)
258 return ret;
c8b97818
CM
259
260 if (isize > actual_end)
261 inline_len = min_t(u64, isize, actual_end);
262 ret = insert_inline_extent(trans, root, inode, start,
263 inline_len, compressed_size,
fe3f566c 264 compress_type, compressed_pages);
2adcac1a 265 if (ret && ret != -ENOSPC) {
79787eaa
JM
266 btrfs_abort_transaction(trans, root, ret);
267 return ret;
2adcac1a
JB
268 } else if (ret == -ENOSPC) {
269 return 1;
79787eaa 270 }
2adcac1a 271
bdc20e67 272 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 273 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 274 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
275 return 0;
276}
277
771ed689
CM
278struct async_extent {
279 u64 start;
280 u64 ram_size;
281 u64 compressed_size;
282 struct page **pages;
283 unsigned long nr_pages;
261507a0 284 int compress_type;
771ed689
CM
285 struct list_head list;
286};
287
288struct async_cow {
289 struct inode *inode;
290 struct btrfs_root *root;
291 struct page *locked_page;
292 u64 start;
293 u64 end;
294 struct list_head extents;
295 struct btrfs_work work;
296};
297
298static noinline int add_async_extent(struct async_cow *cow,
299 u64 start, u64 ram_size,
300 u64 compressed_size,
301 struct page **pages,
261507a0
LZ
302 unsigned long nr_pages,
303 int compress_type)
771ed689
CM
304{
305 struct async_extent *async_extent;
306
307 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 308 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
309 async_extent->start = start;
310 async_extent->ram_size = ram_size;
311 async_extent->compressed_size = compressed_size;
312 async_extent->pages = pages;
313 async_extent->nr_pages = nr_pages;
261507a0 314 async_extent->compress_type = compress_type;
771ed689
CM
315 list_add_tail(&async_extent->list, &cow->extents);
316 return 0;
317}
318
d352ac68 319/*
771ed689
CM
320 * we create compressed extents in two phases. The first
321 * phase compresses a range of pages that have already been
322 * locked (both pages and state bits are locked).
c8b97818 323 *
771ed689
CM
324 * This is done inside an ordered work queue, and the compression
325 * is spread across many cpus. The actual IO submission is step
326 * two, and the ordered work queue takes care of making sure that
327 * happens in the same order things were put onto the queue by
328 * writepages and friends.
c8b97818 329 *
771ed689
CM
330 * If this code finds it can't get good compression, it puts an
331 * entry onto the work queue to write the uncompressed bytes. This
332 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
333 * are written in the same order that the flusher thread sent them
334 * down.
d352ac68 335 */
771ed689
CM
336static noinline int compress_file_range(struct inode *inode,
337 struct page *locked_page,
338 u64 start, u64 end,
339 struct async_cow *async_cow,
340 int *num_added)
b888db2b
CM
341{
342 struct btrfs_root *root = BTRFS_I(inode)->root;
343 struct btrfs_trans_handle *trans;
db94535d 344 u64 num_bytes;
db94535d 345 u64 blocksize = root->sectorsize;
c8b97818 346 u64 actual_end;
42dc7bab 347 u64 isize = i_size_read(inode);
e6dcd2dc 348 int ret = 0;
c8b97818
CM
349 struct page **pages = NULL;
350 unsigned long nr_pages;
351 unsigned long nr_pages_ret = 0;
352 unsigned long total_compressed = 0;
353 unsigned long total_in = 0;
354 unsigned long max_compressed = 128 * 1024;
771ed689 355 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
356 int i;
357 int will_compress;
261507a0 358 int compress_type = root->fs_info->compress_type;
4adaa611 359 int redirty = 0;
b888db2b 360
4cb13e5d
LB
361 /* if this is a small write inside eof, kick off a defrag */
362 if ((end - start + 1) < 16 * 1024 &&
363 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
364 btrfs_add_inode_defrag(NULL, inode);
365
42dc7bab 366 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
367again:
368 will_compress = 0;
369 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
370 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 371
f03d9301
CM
372 /*
373 * we don't want to send crud past the end of i_size through
374 * compression, that's just a waste of CPU time. So, if the
375 * end of the file is before the start of our current
376 * requested range of bytes, we bail out to the uncompressed
377 * cleanup code that can deal with all of this.
378 *
379 * It isn't really the fastest way to fix things, but this is a
380 * very uncommon corner.
381 */
382 if (actual_end <= start)
383 goto cleanup_and_bail_uncompressed;
384
c8b97818
CM
385 total_compressed = actual_end - start;
386
387 /* we want to make sure that amount of ram required to uncompress
388 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
389 * of a compressed extent to 128k. This is a crucial number
390 * because it also controls how easily we can spread reads across
391 * cpus for decompression.
392 *
393 * We also want to make sure the amount of IO required to do
394 * a random read is reasonably small, so we limit the size of
395 * a compressed extent to 128k.
c8b97818
CM
396 */
397 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 398 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 399 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
400 total_in = 0;
401 ret = 0;
db94535d 402
771ed689
CM
403 /*
404 * we do compression for mount -o compress and when the
405 * inode has not been flagged as nocompress. This flag can
406 * change at any time if we discover bad compression ratios.
c8b97818 407 */
6cbff00f 408 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 409 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
410 (BTRFS_I(inode)->force_compress) ||
411 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 412 WARN_ON(pages);
cfbc246e 413 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
414 if (!pages) {
415 /* just bail out to the uncompressed code */
416 goto cont;
417 }
c8b97818 418
261507a0
LZ
419 if (BTRFS_I(inode)->force_compress)
420 compress_type = BTRFS_I(inode)->force_compress;
421
4adaa611
CM
422 /*
423 * we need to call clear_page_dirty_for_io on each
424 * page in the range. Otherwise applications with the file
425 * mmap'd can wander in and change the page contents while
426 * we are compressing them.
427 *
428 * If the compression fails for any reason, we set the pages
429 * dirty again later on.
430 */
431 extent_range_clear_dirty_for_io(inode, start, end);
432 redirty = 1;
261507a0
LZ
433 ret = btrfs_compress_pages(compress_type,
434 inode->i_mapping, start,
435 total_compressed, pages,
436 nr_pages, &nr_pages_ret,
437 &total_in,
438 &total_compressed,
439 max_compressed);
c8b97818
CM
440
441 if (!ret) {
442 unsigned long offset = total_compressed &
443 (PAGE_CACHE_SIZE - 1);
444 struct page *page = pages[nr_pages_ret - 1];
445 char *kaddr;
446
447 /* zero the tail end of the last page, we might be
448 * sending it down to disk
449 */
450 if (offset) {
7ac687d9 451 kaddr = kmap_atomic(page);
c8b97818
CM
452 memset(kaddr + offset, 0,
453 PAGE_CACHE_SIZE - offset);
7ac687d9 454 kunmap_atomic(kaddr);
c8b97818
CM
455 }
456 will_compress = 1;
457 }
458 }
560f7d75 459cont:
c8b97818 460 if (start == 0) {
7a7eaa40 461 trans = btrfs_join_transaction(root);
79787eaa
JM
462 if (IS_ERR(trans)) {
463 ret = PTR_ERR(trans);
464 trans = NULL;
465 goto cleanup_and_out;
466 }
0ca1f7ce 467 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 468
c8b97818 469 /* lets try to make an inline extent */
771ed689 470 if (ret || total_in < (actual_end - start)) {
c8b97818 471 /* we didn't compress the entire range, try
771ed689 472 * to make an uncompressed inline extent.
c8b97818
CM
473 */
474 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 475 start, end, 0, 0, NULL);
c8b97818 476 } else {
771ed689 477 /* try making a compressed inline extent */
c8b97818
CM
478 ret = cow_file_range_inline(trans, root, inode,
479 start, end,
fe3f566c
LZ
480 total_compressed,
481 compress_type, pages);
c8b97818 482 }
79787eaa 483 if (ret <= 0) {
771ed689 484 /*
79787eaa
JM
485 * inline extent creation worked or returned error,
486 * we don't need to create any more async work items.
487 * Unlock and free up our temp pages.
771ed689 488 */
c8b97818 489 extent_clear_unlock_delalloc(inode,
a791e35e
CM
490 &BTRFS_I(inode)->io_tree,
491 start, end, NULL,
492 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 493 EXTENT_CLEAR_DELALLOC |
a791e35e 494 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
495
496 btrfs_end_transaction(trans, root);
c8b97818
CM
497 goto free_pages_out;
498 }
c2167754 499 btrfs_end_transaction(trans, root);
c8b97818
CM
500 }
501
502 if (will_compress) {
503 /*
504 * we aren't doing an inline extent round the compressed size
505 * up to a block size boundary so the allocator does sane
506 * things
507 */
fda2832f 508 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
509
510 /*
511 * one last check to make sure the compression is really a
512 * win, compare the page count read with the blocks on disk
513 */
fda2832f 514 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
515 if (total_compressed >= total_in) {
516 will_compress = 0;
517 } else {
c8b97818
CM
518 num_bytes = total_in;
519 }
520 }
521 if (!will_compress && pages) {
522 /*
523 * the compression code ran but failed to make things smaller,
524 * free any pages it allocated and our page pointer array
525 */
526 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 527 WARN_ON(pages[i]->mapping);
c8b97818
CM
528 page_cache_release(pages[i]);
529 }
530 kfree(pages);
531 pages = NULL;
532 total_compressed = 0;
533 nr_pages_ret = 0;
534
535 /* flag the file so we don't compress in the future */
1e701a32
CM
536 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
537 !(BTRFS_I(inode)->force_compress)) {
a555f810 538 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 539 }
c8b97818 540 }
771ed689
CM
541 if (will_compress) {
542 *num_added += 1;
c8b97818 543
771ed689
CM
544 /* the async work queues will take care of doing actual
545 * allocation on disk for these compressed pages,
546 * and will submit them to the elevator.
547 */
548 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
549 total_compressed, pages, nr_pages_ret,
550 compress_type);
179e29e4 551
24ae6365 552 if (start + num_bytes < end) {
771ed689
CM
553 start += num_bytes;
554 pages = NULL;
555 cond_resched();
556 goto again;
557 }
558 } else {
f03d9301 559cleanup_and_bail_uncompressed:
771ed689
CM
560 /*
561 * No compression, but we still need to write the pages in
562 * the file we've been given so far. redirty the locked
563 * page if it corresponds to our extent and set things up
564 * for the async work queue to run cow_file_range to do
565 * the normal delalloc dance
566 */
567 if (page_offset(locked_page) >= start &&
568 page_offset(locked_page) <= end) {
569 __set_page_dirty_nobuffers(locked_page);
570 /* unlocked later on in the async handlers */
571 }
4adaa611
CM
572 if (redirty)
573 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
574 add_async_extent(async_cow, start, end - start + 1,
575 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
576 *num_added += 1;
577 }
3b951516 578
771ed689 579out:
79787eaa 580 return ret;
771ed689
CM
581
582free_pages_out:
583 for (i = 0; i < nr_pages_ret; i++) {
584 WARN_ON(pages[i]->mapping);
585 page_cache_release(pages[i]);
586 }
d397712b 587 kfree(pages);
771ed689
CM
588
589 goto out;
79787eaa
JM
590
591cleanup_and_out:
592 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
593 start, end, NULL,
594 EXTENT_CLEAR_UNLOCK_PAGE |
595 EXTENT_CLEAR_DIRTY |
596 EXTENT_CLEAR_DELALLOC |
597 EXTENT_SET_WRITEBACK |
598 EXTENT_END_WRITEBACK);
599 if (!trans || IS_ERR(trans))
600 btrfs_error(root->fs_info, ret, "Failed to join transaction");
601 else
602 btrfs_abort_transaction(trans, root, ret);
603 goto free_pages_out;
771ed689
CM
604}
605
606/*
607 * phase two of compressed writeback. This is the ordered portion
608 * of the code, which only gets called in the order the work was
609 * queued. We walk all the async extents created by compress_file_range
610 * and send them down to the disk.
611 */
612static noinline int submit_compressed_extents(struct inode *inode,
613 struct async_cow *async_cow)
614{
615 struct async_extent *async_extent;
616 u64 alloc_hint = 0;
617 struct btrfs_trans_handle *trans;
618 struct btrfs_key ins;
619 struct extent_map *em;
620 struct btrfs_root *root = BTRFS_I(inode)->root;
621 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
622 struct extent_io_tree *io_tree;
f5a84ee3 623 int ret = 0;
771ed689
CM
624
625 if (list_empty(&async_cow->extents))
626 return 0;
627
3e04e7f1 628again:
d397712b 629 while (!list_empty(&async_cow->extents)) {
771ed689
CM
630 async_extent = list_entry(async_cow->extents.next,
631 struct async_extent, list);
632 list_del(&async_extent->list);
c8b97818 633
771ed689
CM
634 io_tree = &BTRFS_I(inode)->io_tree;
635
f5a84ee3 636retry:
771ed689
CM
637 /* did the compression code fall back to uncompressed IO? */
638 if (!async_extent->pages) {
639 int page_started = 0;
640 unsigned long nr_written = 0;
641
642 lock_extent(io_tree, async_extent->start,
2ac55d41 643 async_extent->start +
d0082371 644 async_extent->ram_size - 1);
771ed689
CM
645
646 /* allocate blocks */
f5a84ee3
JB
647 ret = cow_file_range(inode, async_cow->locked_page,
648 async_extent->start,
649 async_extent->start +
650 async_extent->ram_size - 1,
651 &page_started, &nr_written, 0);
771ed689 652
79787eaa
JM
653 /* JDM XXX */
654
771ed689
CM
655 /*
656 * if page_started, cow_file_range inserted an
657 * inline extent and took care of all the unlocking
658 * and IO for us. Otherwise, we need to submit
659 * all those pages down to the drive.
660 */
f5a84ee3 661 if (!page_started && !ret)
771ed689
CM
662 extent_write_locked_range(io_tree,
663 inode, async_extent->start,
d397712b 664 async_extent->start +
771ed689
CM
665 async_extent->ram_size - 1,
666 btrfs_get_extent,
667 WB_SYNC_ALL);
3e04e7f1
JB
668 else if (ret)
669 unlock_page(async_cow->locked_page);
771ed689
CM
670 kfree(async_extent);
671 cond_resched();
672 continue;
673 }
674
675 lock_extent(io_tree, async_extent->start,
d0082371 676 async_extent->start + async_extent->ram_size - 1);
771ed689 677
7a7eaa40 678 trans = btrfs_join_transaction(root);
79787eaa
JM
679 if (IS_ERR(trans)) {
680 ret = PTR_ERR(trans);
681 } else {
682 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
683 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
684 async_extent->compressed_size,
685 async_extent->compressed_size,
81c9ad23 686 0, alloc_hint, &ins, 1);
962197ba 687 if (ret && ret != -ENOSPC)
79787eaa
JM
688 btrfs_abort_transaction(trans, root, ret);
689 btrfs_end_transaction(trans, root);
690 }
c2167754 691
f5a84ee3
JB
692 if (ret) {
693 int i;
3e04e7f1 694
f5a84ee3
JB
695 for (i = 0; i < async_extent->nr_pages; i++) {
696 WARN_ON(async_extent->pages[i]->mapping);
697 page_cache_release(async_extent->pages[i]);
698 }
699 kfree(async_extent->pages);
700 async_extent->nr_pages = 0;
701 async_extent->pages = NULL;
3e04e7f1 702
79787eaa
JM
703 if (ret == -ENOSPC)
704 goto retry;
3e04e7f1 705 goto out_free;
f5a84ee3
JB
706 }
707
c2167754
YZ
708 /*
709 * here we're doing allocation and writeback of the
710 * compressed pages
711 */
712 btrfs_drop_extent_cache(inode, async_extent->start,
713 async_extent->start +
714 async_extent->ram_size - 1, 0);
715
172ddd60 716 em = alloc_extent_map();
b9aa55be
LB
717 if (!em) {
718 ret = -ENOMEM;
3e04e7f1 719 goto out_free_reserve;
b9aa55be 720 }
771ed689
CM
721 em->start = async_extent->start;
722 em->len = async_extent->ram_size;
445a6944 723 em->orig_start = em->start;
2ab28f32
JB
724 em->mod_start = em->start;
725 em->mod_len = em->len;
c8b97818 726
771ed689
CM
727 em->block_start = ins.objectid;
728 em->block_len = ins.offset;
b4939680 729 em->orig_block_len = ins.offset;
cc95bef6 730 em->ram_bytes = async_extent->ram_size;
771ed689 731 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 732 em->compress_type = async_extent->compress_type;
771ed689
CM
733 set_bit(EXTENT_FLAG_PINNED, &em->flags);
734 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 735 em->generation = -1;
771ed689 736
d397712b 737 while (1) {
890871be 738 write_lock(&em_tree->lock);
09a2a8f9 739 ret = add_extent_mapping(em_tree, em, 1);
890871be 740 write_unlock(&em_tree->lock);
771ed689
CM
741 if (ret != -EEXIST) {
742 free_extent_map(em);
743 break;
744 }
745 btrfs_drop_extent_cache(inode, async_extent->start,
746 async_extent->start +
747 async_extent->ram_size - 1, 0);
748 }
749
3e04e7f1
JB
750 if (ret)
751 goto out_free_reserve;
752
261507a0
LZ
753 ret = btrfs_add_ordered_extent_compress(inode,
754 async_extent->start,
755 ins.objectid,
756 async_extent->ram_size,
757 ins.offset,
758 BTRFS_ORDERED_COMPRESSED,
759 async_extent->compress_type);
3e04e7f1
JB
760 if (ret)
761 goto out_free_reserve;
771ed689 762
771ed689
CM
763 /*
764 * clear dirty, set writeback and unlock the pages.
765 */
766 extent_clear_unlock_delalloc(inode,
a791e35e
CM
767 &BTRFS_I(inode)->io_tree,
768 async_extent->start,
769 async_extent->start +
770 async_extent->ram_size - 1,
771 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
772 EXTENT_CLEAR_UNLOCK |
a3429ab7 773 EXTENT_CLEAR_DELALLOC |
a791e35e 774 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
775
776 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
777 async_extent->start,
778 async_extent->ram_size,
779 ins.objectid,
780 ins.offset, async_extent->pages,
781 async_extent->nr_pages);
771ed689
CM
782 alloc_hint = ins.objectid + ins.offset;
783 kfree(async_extent);
3e04e7f1
JB
784 if (ret)
785 goto out;
771ed689
CM
786 cond_resched();
787 }
79787eaa
JM
788 ret = 0;
789out:
790 return ret;
3e04e7f1
JB
791out_free_reserve:
792 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 793out_free:
3e04e7f1
JB
794 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
795 async_extent->start,
796 async_extent->start +
797 async_extent->ram_size - 1,
798 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
799 EXTENT_CLEAR_UNLOCK |
800 EXTENT_CLEAR_DELALLOC |
801 EXTENT_CLEAR_DIRTY |
802 EXTENT_SET_WRITEBACK |
803 EXTENT_END_WRITEBACK);
79787eaa 804 kfree(async_extent);
3e04e7f1 805 goto again;
771ed689
CM
806}
807
4b46fce2
JB
808static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
809 u64 num_bytes)
810{
811 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
812 struct extent_map *em;
813 u64 alloc_hint = 0;
814
815 read_lock(&em_tree->lock);
816 em = search_extent_mapping(em_tree, start, num_bytes);
817 if (em) {
818 /*
819 * if block start isn't an actual block number then find the
820 * first block in this inode and use that as a hint. If that
821 * block is also bogus then just don't worry about it.
822 */
823 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
824 free_extent_map(em);
825 em = search_extent_mapping(em_tree, 0, 0);
826 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
827 alloc_hint = em->block_start;
828 if (em)
829 free_extent_map(em);
830 } else {
831 alloc_hint = em->block_start;
832 free_extent_map(em);
833 }
834 }
835 read_unlock(&em_tree->lock);
836
837 return alloc_hint;
838}
839
771ed689
CM
840/*
841 * when extent_io.c finds a delayed allocation range in the file,
842 * the call backs end up in this code. The basic idea is to
843 * allocate extents on disk for the range, and create ordered data structs
844 * in ram to track those extents.
845 *
846 * locked_page is the page that writepage had locked already. We use
847 * it to make sure we don't do extra locks or unlocks.
848 *
849 * *page_started is set to one if we unlock locked_page and do everything
850 * required to start IO on it. It may be clean and already done with
851 * IO when we return.
852 */
b7d5b0a8
MX
853static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
854 struct inode *inode,
855 struct btrfs_root *root,
856 struct page *locked_page,
857 u64 start, u64 end, int *page_started,
858 unsigned long *nr_written,
859 int unlock)
771ed689 860{
771ed689
CM
861 u64 alloc_hint = 0;
862 u64 num_bytes;
863 unsigned long ram_size;
864 u64 disk_num_bytes;
865 u64 cur_alloc_size;
866 u64 blocksize = root->sectorsize;
771ed689
CM
867 struct btrfs_key ins;
868 struct extent_map *em;
869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
870 int ret = 0;
871
83eea1f1 872 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 873
fda2832f 874 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
875 num_bytes = max(blocksize, num_bytes);
876 disk_num_bytes = num_bytes;
771ed689 877
4cb5300b 878 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
879 if (num_bytes < 64 * 1024 &&
880 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
881 btrfs_add_inode_defrag(trans, inode);
882
771ed689
CM
883 if (start == 0) {
884 /* lets try to make an inline extent */
885 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 886 start, end, 0, 0, NULL);
771ed689
CM
887 if (ret == 0) {
888 extent_clear_unlock_delalloc(inode,
a791e35e
CM
889 &BTRFS_I(inode)->io_tree,
890 start, end, NULL,
891 EXTENT_CLEAR_UNLOCK_PAGE |
892 EXTENT_CLEAR_UNLOCK |
893 EXTENT_CLEAR_DELALLOC |
894 EXTENT_CLEAR_DIRTY |
895 EXTENT_SET_WRITEBACK |
896 EXTENT_END_WRITEBACK);
c2167754 897
771ed689
CM
898 *nr_written = *nr_written +
899 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
900 *page_started = 1;
771ed689 901 goto out;
79787eaa
JM
902 } else if (ret < 0) {
903 btrfs_abort_transaction(trans, root, ret);
904 goto out_unlock;
771ed689
CM
905 }
906 }
907
908 BUG_ON(disk_num_bytes >
6c41761f 909 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 910
4b46fce2 911 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
912 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
913
d397712b 914 while (disk_num_bytes > 0) {
a791e35e
CM
915 unsigned long op;
916
287a0ab9 917 cur_alloc_size = disk_num_bytes;
e6dcd2dc 918 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 919 root->sectorsize, 0, alloc_hint,
81c9ad23 920 &ins, 1);
79787eaa
JM
921 if (ret < 0) {
922 btrfs_abort_transaction(trans, root, ret);
923 goto out_unlock;
924 }
d397712b 925
172ddd60 926 em = alloc_extent_map();
b9aa55be
LB
927 if (!em) {
928 ret = -ENOMEM;
ace68bac 929 goto out_reserve;
b9aa55be 930 }
e6dcd2dc 931 em->start = start;
445a6944 932 em->orig_start = em->start;
771ed689
CM
933 ram_size = ins.offset;
934 em->len = ins.offset;
2ab28f32
JB
935 em->mod_start = em->start;
936 em->mod_len = em->len;
c8b97818 937
e6dcd2dc 938 em->block_start = ins.objectid;
c8b97818 939 em->block_len = ins.offset;
b4939680 940 em->orig_block_len = ins.offset;
cc95bef6 941 em->ram_bytes = ram_size;
e6dcd2dc 942 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 943 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 944 em->generation = -1;
c8b97818 945
d397712b 946 while (1) {
890871be 947 write_lock(&em_tree->lock);
09a2a8f9 948 ret = add_extent_mapping(em_tree, em, 1);
890871be 949 write_unlock(&em_tree->lock);
e6dcd2dc
CM
950 if (ret != -EEXIST) {
951 free_extent_map(em);
952 break;
953 }
954 btrfs_drop_extent_cache(inode, start,
c8b97818 955 start + ram_size - 1, 0);
e6dcd2dc 956 }
ace68bac
LB
957 if (ret)
958 goto out_reserve;
e6dcd2dc 959
98d20f67 960 cur_alloc_size = ins.offset;
e6dcd2dc 961 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 962 ram_size, cur_alloc_size, 0);
ace68bac
LB
963 if (ret)
964 goto out_reserve;
c8b97818 965
17d217fe
YZ
966 if (root->root_key.objectid ==
967 BTRFS_DATA_RELOC_TREE_OBJECTID) {
968 ret = btrfs_reloc_clone_csums(inode, start,
969 cur_alloc_size);
79787eaa
JM
970 if (ret) {
971 btrfs_abort_transaction(trans, root, ret);
ace68bac 972 goto out_reserve;
79787eaa 973 }
17d217fe
YZ
974 }
975
d397712b 976 if (disk_num_bytes < cur_alloc_size)
3b951516 977 break;
d397712b 978
c8b97818
CM
979 /* we're not doing compressed IO, don't unlock the first
980 * page (which the caller expects to stay locked), don't
981 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
982 *
983 * Do set the Private2 bit so we know this page was properly
984 * setup for writepage
c8b97818 985 */
a791e35e
CM
986 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
987 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
988 EXTENT_SET_PRIVATE2;
989
c8b97818
CM
990 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
991 start, start + ram_size - 1,
a791e35e 992 locked_page, op);
c8b97818 993 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
994 num_bytes -= cur_alloc_size;
995 alloc_hint = ins.objectid + ins.offset;
996 start += cur_alloc_size;
b888db2b 997 }
79787eaa 998out:
be20aa9d 999 return ret;
b7d5b0a8 1000
ace68bac
LB
1001out_reserve:
1002 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa
JM
1003out_unlock:
1004 extent_clear_unlock_delalloc(inode,
1005 &BTRFS_I(inode)->io_tree,
beb42dd7 1006 start, end, locked_page,
79787eaa
JM
1007 EXTENT_CLEAR_UNLOCK_PAGE |
1008 EXTENT_CLEAR_UNLOCK |
1009 EXTENT_CLEAR_DELALLOC |
1010 EXTENT_CLEAR_DIRTY |
1011 EXTENT_SET_WRITEBACK |
1012 EXTENT_END_WRITEBACK);
1013
1014 goto out;
771ed689 1015}
c8b97818 1016
b7d5b0a8
MX
1017static noinline int cow_file_range(struct inode *inode,
1018 struct page *locked_page,
1019 u64 start, u64 end, int *page_started,
1020 unsigned long *nr_written,
1021 int unlock)
1022{
1023 struct btrfs_trans_handle *trans;
1024 struct btrfs_root *root = BTRFS_I(inode)->root;
1025 int ret;
1026
1027 trans = btrfs_join_transaction(root);
1028 if (IS_ERR(trans)) {
1029 extent_clear_unlock_delalloc(inode,
1030 &BTRFS_I(inode)->io_tree,
1031 start, end, locked_page,
1032 EXTENT_CLEAR_UNLOCK_PAGE |
1033 EXTENT_CLEAR_UNLOCK |
1034 EXTENT_CLEAR_DELALLOC |
1035 EXTENT_CLEAR_DIRTY |
1036 EXTENT_SET_WRITEBACK |
1037 EXTENT_END_WRITEBACK);
1038 return PTR_ERR(trans);
1039 }
1040 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1041
1042 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1043 page_started, nr_written, unlock);
1044
1045 btrfs_end_transaction(trans, root);
1046
1047 return ret;
1048}
1049
771ed689
CM
1050/*
1051 * work queue call back to started compression on a file and pages
1052 */
1053static noinline void async_cow_start(struct btrfs_work *work)
1054{
1055 struct async_cow *async_cow;
1056 int num_added = 0;
1057 async_cow = container_of(work, struct async_cow, work);
1058
1059 compress_file_range(async_cow->inode, async_cow->locked_page,
1060 async_cow->start, async_cow->end, async_cow,
1061 &num_added);
8180ef88 1062 if (num_added == 0) {
cb77fcd8 1063 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1064 async_cow->inode = NULL;
8180ef88 1065 }
771ed689
CM
1066}
1067
1068/*
1069 * work queue call back to submit previously compressed pages
1070 */
1071static noinline void async_cow_submit(struct btrfs_work *work)
1072{
1073 struct async_cow *async_cow;
1074 struct btrfs_root *root;
1075 unsigned long nr_pages;
1076
1077 async_cow = container_of(work, struct async_cow, work);
1078
1079 root = async_cow->root;
1080 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1081 PAGE_CACHE_SHIFT;
1082
66657b31 1083 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1084 5 * 1024 * 1024 &&
771ed689
CM
1085 waitqueue_active(&root->fs_info->async_submit_wait))
1086 wake_up(&root->fs_info->async_submit_wait);
1087
d397712b 1088 if (async_cow->inode)
771ed689 1089 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1090}
c8b97818 1091
771ed689
CM
1092static noinline void async_cow_free(struct btrfs_work *work)
1093{
1094 struct async_cow *async_cow;
1095 async_cow = container_of(work, struct async_cow, work);
8180ef88 1096 if (async_cow->inode)
cb77fcd8 1097 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1098 kfree(async_cow);
1099}
1100
1101static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1102 u64 start, u64 end, int *page_started,
1103 unsigned long *nr_written)
1104{
1105 struct async_cow *async_cow;
1106 struct btrfs_root *root = BTRFS_I(inode)->root;
1107 unsigned long nr_pages;
1108 u64 cur_end;
287082b0 1109 int limit = 10 * 1024 * 1024;
771ed689 1110
a3429ab7
CM
1111 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1112 1, 0, NULL, GFP_NOFS);
d397712b 1113 while (start < end) {
771ed689 1114 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1115 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1116 async_cow->inode = igrab(inode);
771ed689
CM
1117 async_cow->root = root;
1118 async_cow->locked_page = locked_page;
1119 async_cow->start = start;
1120
6cbff00f 1121 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1122 cur_end = end;
1123 else
1124 cur_end = min(end, start + 512 * 1024 - 1);
1125
1126 async_cow->end = cur_end;
1127 INIT_LIST_HEAD(&async_cow->extents);
1128
1129 async_cow->work.func = async_cow_start;
1130 async_cow->work.ordered_func = async_cow_submit;
1131 async_cow->work.ordered_free = async_cow_free;
1132 async_cow->work.flags = 0;
1133
771ed689
CM
1134 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1135 PAGE_CACHE_SHIFT;
1136 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1137
1138 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1139 &async_cow->work);
1140
1141 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1142 wait_event(root->fs_info->async_submit_wait,
1143 (atomic_read(&root->fs_info->async_delalloc_pages) <
1144 limit));
1145 }
1146
d397712b 1147 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1148 atomic_read(&root->fs_info->async_delalloc_pages)) {
1149 wait_event(root->fs_info->async_submit_wait,
1150 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1151 0));
1152 }
1153
1154 *nr_written += nr_pages;
1155 start = cur_end + 1;
1156 }
1157 *page_started = 1;
1158 return 0;
be20aa9d
CM
1159}
1160
d397712b 1161static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1162 u64 bytenr, u64 num_bytes)
1163{
1164 int ret;
1165 struct btrfs_ordered_sum *sums;
1166 LIST_HEAD(list);
1167
07d400a6 1168 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1169 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1170 if (ret == 0 && list_empty(&list))
1171 return 0;
1172
1173 while (!list_empty(&list)) {
1174 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1175 list_del(&sums->list);
1176 kfree(sums);
1177 }
1178 return 1;
1179}
1180
d352ac68
CM
1181/*
1182 * when nowcow writeback call back. This checks for snapshots or COW copies
1183 * of the extents that exist in the file, and COWs the file as required.
1184 *
1185 * If no cow copies or snapshots exist, we write directly to the existing
1186 * blocks on disk
1187 */
7f366cfe
CM
1188static noinline int run_delalloc_nocow(struct inode *inode,
1189 struct page *locked_page,
771ed689
CM
1190 u64 start, u64 end, int *page_started, int force,
1191 unsigned long *nr_written)
be20aa9d 1192{
be20aa9d 1193 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1194 struct btrfs_trans_handle *trans;
be20aa9d 1195 struct extent_buffer *leaf;
be20aa9d 1196 struct btrfs_path *path;
80ff3856 1197 struct btrfs_file_extent_item *fi;
be20aa9d 1198 struct btrfs_key found_key;
80ff3856
YZ
1199 u64 cow_start;
1200 u64 cur_offset;
1201 u64 extent_end;
5d4f98a2 1202 u64 extent_offset;
80ff3856
YZ
1203 u64 disk_bytenr;
1204 u64 num_bytes;
b4939680 1205 u64 disk_num_bytes;
cc95bef6 1206 u64 ram_bytes;
80ff3856 1207 int extent_type;
79787eaa 1208 int ret, err;
d899e052 1209 int type;
80ff3856
YZ
1210 int nocow;
1211 int check_prev = 1;
82d5902d 1212 bool nolock;
33345d01 1213 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1214
1215 path = btrfs_alloc_path();
17ca04af
JB
1216 if (!path) {
1217 extent_clear_unlock_delalloc(inode,
1218 &BTRFS_I(inode)->io_tree,
1219 start, end, locked_page,
1220 EXTENT_CLEAR_UNLOCK_PAGE |
1221 EXTENT_CLEAR_UNLOCK |
1222 EXTENT_CLEAR_DELALLOC |
1223 EXTENT_CLEAR_DIRTY |
1224 EXTENT_SET_WRITEBACK |
1225 EXTENT_END_WRITEBACK);
d8926bb3 1226 return -ENOMEM;
17ca04af 1227 }
82d5902d 1228
83eea1f1 1229 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1230
1231 if (nolock)
7a7eaa40 1232 trans = btrfs_join_transaction_nolock(root);
82d5902d 1233 else
7a7eaa40 1234 trans = btrfs_join_transaction(root);
ff5714cc 1235
79787eaa 1236 if (IS_ERR(trans)) {
17ca04af
JB
1237 extent_clear_unlock_delalloc(inode,
1238 &BTRFS_I(inode)->io_tree,
1239 start, end, locked_page,
1240 EXTENT_CLEAR_UNLOCK_PAGE |
1241 EXTENT_CLEAR_UNLOCK |
1242 EXTENT_CLEAR_DELALLOC |
1243 EXTENT_CLEAR_DIRTY |
1244 EXTENT_SET_WRITEBACK |
1245 EXTENT_END_WRITEBACK);
79787eaa
JM
1246 btrfs_free_path(path);
1247 return PTR_ERR(trans);
1248 }
1249
74b21075 1250 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1251
80ff3856
YZ
1252 cow_start = (u64)-1;
1253 cur_offset = start;
1254 while (1) {
33345d01 1255 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1256 cur_offset, 0);
79787eaa
JM
1257 if (ret < 0) {
1258 btrfs_abort_transaction(trans, root, ret);
1259 goto error;
1260 }
80ff3856
YZ
1261 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1262 leaf = path->nodes[0];
1263 btrfs_item_key_to_cpu(leaf, &found_key,
1264 path->slots[0] - 1);
33345d01 1265 if (found_key.objectid == ino &&
80ff3856
YZ
1266 found_key.type == BTRFS_EXTENT_DATA_KEY)
1267 path->slots[0]--;
1268 }
1269 check_prev = 0;
1270next_slot:
1271 leaf = path->nodes[0];
1272 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1273 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1274 if (ret < 0) {
1275 btrfs_abort_transaction(trans, root, ret);
1276 goto error;
1277 }
80ff3856
YZ
1278 if (ret > 0)
1279 break;
1280 leaf = path->nodes[0];
1281 }
be20aa9d 1282
80ff3856
YZ
1283 nocow = 0;
1284 disk_bytenr = 0;
17d217fe 1285 num_bytes = 0;
80ff3856
YZ
1286 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1287
33345d01 1288 if (found_key.objectid > ino ||
80ff3856
YZ
1289 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1290 found_key.offset > end)
1291 break;
1292
1293 if (found_key.offset > cur_offset) {
1294 extent_end = found_key.offset;
e9061e21 1295 extent_type = 0;
80ff3856
YZ
1296 goto out_check;
1297 }
1298
1299 fi = btrfs_item_ptr(leaf, path->slots[0],
1300 struct btrfs_file_extent_item);
1301 extent_type = btrfs_file_extent_type(leaf, fi);
1302
cc95bef6 1303 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1304 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1305 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1306 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1307 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1308 extent_end = found_key.offset +
1309 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1310 disk_num_bytes =
1311 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1312 if (extent_end <= start) {
1313 path->slots[0]++;
1314 goto next_slot;
1315 }
17d217fe
YZ
1316 if (disk_bytenr == 0)
1317 goto out_check;
80ff3856
YZ
1318 if (btrfs_file_extent_compression(leaf, fi) ||
1319 btrfs_file_extent_encryption(leaf, fi) ||
1320 btrfs_file_extent_other_encoding(leaf, fi))
1321 goto out_check;
d899e052
YZ
1322 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1323 goto out_check;
d2fb3437 1324 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1325 goto out_check;
33345d01 1326 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1327 found_key.offset -
1328 extent_offset, disk_bytenr))
17d217fe 1329 goto out_check;
5d4f98a2 1330 disk_bytenr += extent_offset;
17d217fe
YZ
1331 disk_bytenr += cur_offset - found_key.offset;
1332 num_bytes = min(end + 1, extent_end) - cur_offset;
1333 /*
1334 * force cow if csum exists in the range.
1335 * this ensure that csum for a given extent are
1336 * either valid or do not exist.
1337 */
1338 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1339 goto out_check;
80ff3856
YZ
1340 nocow = 1;
1341 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1342 extent_end = found_key.offset +
1343 btrfs_file_extent_inline_len(leaf, fi);
1344 extent_end = ALIGN(extent_end, root->sectorsize);
1345 } else {
1346 BUG_ON(1);
1347 }
1348out_check:
1349 if (extent_end <= start) {
1350 path->slots[0]++;
1351 goto next_slot;
1352 }
1353 if (!nocow) {
1354 if (cow_start == (u64)-1)
1355 cow_start = cur_offset;
1356 cur_offset = extent_end;
1357 if (cur_offset > end)
1358 break;
1359 path->slots[0]++;
1360 goto next_slot;
7ea394f1
YZ
1361 }
1362
b3b4aa74 1363 btrfs_release_path(path);
80ff3856 1364 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1365 ret = __cow_file_range(trans, inode, root, locked_page,
1366 cow_start, found_key.offset - 1,
1367 page_started, nr_written, 1);
79787eaa
JM
1368 if (ret) {
1369 btrfs_abort_transaction(trans, root, ret);
1370 goto error;
1371 }
80ff3856 1372 cow_start = (u64)-1;
7ea394f1 1373 }
80ff3856 1374
d899e052
YZ
1375 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1376 struct extent_map *em;
1377 struct extent_map_tree *em_tree;
1378 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1379 em = alloc_extent_map();
79787eaa 1380 BUG_ON(!em); /* -ENOMEM */
d899e052 1381 em->start = cur_offset;
70c8a91c 1382 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1383 em->len = num_bytes;
1384 em->block_len = num_bytes;
1385 em->block_start = disk_bytenr;
b4939680 1386 em->orig_block_len = disk_num_bytes;
cc95bef6 1387 em->ram_bytes = ram_bytes;
d899e052 1388 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1389 em->mod_start = em->start;
1390 em->mod_len = em->len;
d899e052 1391 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1392 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1393 em->generation = -1;
d899e052 1394 while (1) {
890871be 1395 write_lock(&em_tree->lock);
09a2a8f9 1396 ret = add_extent_mapping(em_tree, em, 1);
890871be 1397 write_unlock(&em_tree->lock);
d899e052
YZ
1398 if (ret != -EEXIST) {
1399 free_extent_map(em);
1400 break;
1401 }
1402 btrfs_drop_extent_cache(inode, em->start,
1403 em->start + em->len - 1, 0);
1404 }
1405 type = BTRFS_ORDERED_PREALLOC;
1406 } else {
1407 type = BTRFS_ORDERED_NOCOW;
1408 }
80ff3856
YZ
1409
1410 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1411 num_bytes, num_bytes, type);
79787eaa 1412 BUG_ON(ret); /* -ENOMEM */
771ed689 1413
efa56464
YZ
1414 if (root->root_key.objectid ==
1415 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1416 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1417 num_bytes);
79787eaa
JM
1418 if (ret) {
1419 btrfs_abort_transaction(trans, root, ret);
1420 goto error;
1421 }
efa56464
YZ
1422 }
1423
d899e052 1424 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1425 cur_offset, cur_offset + num_bytes - 1,
1426 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1427 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1428 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1429 cur_offset = extent_end;
1430 if (cur_offset > end)
1431 break;
be20aa9d 1432 }
b3b4aa74 1433 btrfs_release_path(path);
80ff3856 1434
17ca04af 1435 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1436 cow_start = cur_offset;
17ca04af
JB
1437 cur_offset = end;
1438 }
1439
80ff3856 1440 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1441 ret = __cow_file_range(trans, inode, root, locked_page,
1442 cow_start, end,
1443 page_started, nr_written, 1);
79787eaa
JM
1444 if (ret) {
1445 btrfs_abort_transaction(trans, root, ret);
1446 goto error;
1447 }
80ff3856
YZ
1448 }
1449
79787eaa 1450error:
a698d075 1451 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1452 if (!ret)
1453 ret = err;
1454
17ca04af
JB
1455 if (ret && cur_offset < end)
1456 extent_clear_unlock_delalloc(inode,
1457 &BTRFS_I(inode)->io_tree,
1458 cur_offset, end, locked_page,
1459 EXTENT_CLEAR_UNLOCK_PAGE |
1460 EXTENT_CLEAR_UNLOCK |
1461 EXTENT_CLEAR_DELALLOC |
1462 EXTENT_CLEAR_DIRTY |
1463 EXTENT_SET_WRITEBACK |
1464 EXTENT_END_WRITEBACK);
1465
7ea394f1 1466 btrfs_free_path(path);
79787eaa 1467 return ret;
be20aa9d
CM
1468}
1469
d352ac68
CM
1470/*
1471 * extent_io.c call back to do delayed allocation processing
1472 */
c8b97818 1473static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1474 u64 start, u64 end, int *page_started,
1475 unsigned long *nr_written)
be20aa9d 1476{
be20aa9d 1477 int ret;
7f366cfe 1478 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1479
7ddf5a42 1480 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1481 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1482 page_started, 1, nr_written);
7ddf5a42 1483 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1484 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1485 page_started, 0, nr_written);
7ddf5a42
JB
1486 } else if (!btrfs_test_opt(root, COMPRESS) &&
1487 !(BTRFS_I(inode)->force_compress) &&
1488 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1489 ret = cow_file_range(inode, locked_page, start, end,
1490 page_started, nr_written, 1);
7ddf5a42
JB
1491 } else {
1492 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1493 &BTRFS_I(inode)->runtime_flags);
771ed689 1494 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1495 page_started, nr_written);
7ddf5a42 1496 }
b888db2b
CM
1497 return ret;
1498}
1499
1bf85046
JM
1500static void btrfs_split_extent_hook(struct inode *inode,
1501 struct extent_state *orig, u64 split)
9ed74f2d 1502{
0ca1f7ce 1503 /* not delalloc, ignore it */
9ed74f2d 1504 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1505 return;
9ed74f2d 1506
9e0baf60
JB
1507 spin_lock(&BTRFS_I(inode)->lock);
1508 BTRFS_I(inode)->outstanding_extents++;
1509 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1510}
1511
1512/*
1513 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1514 * extents so we can keep track of new extents that are just merged onto old
1515 * extents, such as when we are doing sequential writes, so we can properly
1516 * account for the metadata space we'll need.
1517 */
1bf85046
JM
1518static void btrfs_merge_extent_hook(struct inode *inode,
1519 struct extent_state *new,
1520 struct extent_state *other)
9ed74f2d 1521{
9ed74f2d
JB
1522 /* not delalloc, ignore it */
1523 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1524 return;
9ed74f2d 1525
9e0baf60
JB
1526 spin_lock(&BTRFS_I(inode)->lock);
1527 BTRFS_I(inode)->outstanding_extents--;
1528 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1529}
1530
d352ac68
CM
1531/*
1532 * extent_io.c set_bit_hook, used to track delayed allocation
1533 * bytes in this file, and to maintain the list of inodes that
1534 * have pending delalloc work to be done.
1535 */
1bf85046 1536static void btrfs_set_bit_hook(struct inode *inode,
41074888 1537 struct extent_state *state, unsigned long *bits)
291d673e 1538{
9ed74f2d 1539
75eff68e
CM
1540 /*
1541 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1542 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1543 * bit, which is only set or cleared with irqs on
1544 */
0ca1f7ce 1545 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1546 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1547 u64 len = state->end + 1 - state->start;
83eea1f1 1548 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1549
9e0baf60 1550 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1551 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1552 } else {
1553 spin_lock(&BTRFS_I(inode)->lock);
1554 BTRFS_I(inode)->outstanding_extents++;
1555 spin_unlock(&BTRFS_I(inode)->lock);
1556 }
287a0ab9 1557
963d678b
MX
1558 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1559 root->fs_info->delalloc_batch);
df0af1a5 1560 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1561 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5
MX
1562 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1563 &BTRFS_I(inode)->runtime_flags)) {
1564 spin_lock(&root->fs_info->delalloc_lock);
1565 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1566 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1567 &root->fs_info->delalloc_inodes);
1568 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1569 &BTRFS_I(inode)->runtime_flags);
1570 }
1571 spin_unlock(&root->fs_info->delalloc_lock);
ea8c2819 1572 }
df0af1a5 1573 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1574 }
291d673e
CM
1575}
1576
d352ac68
CM
1577/*
1578 * extent_io.c clear_bit_hook, see set_bit_hook for why
1579 */
1bf85046 1580static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1581 struct extent_state *state,
1582 unsigned long *bits)
291d673e 1583{
75eff68e
CM
1584 /*
1585 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1586 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1587 * bit, which is only set or cleared with irqs on
1588 */
0ca1f7ce 1589 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1590 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1591 u64 len = state->end + 1 - state->start;
83eea1f1 1592 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1593
9e0baf60 1594 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1595 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1596 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1597 spin_lock(&BTRFS_I(inode)->lock);
1598 BTRFS_I(inode)->outstanding_extents--;
1599 spin_unlock(&BTRFS_I(inode)->lock);
1600 }
0ca1f7ce
YZ
1601
1602 if (*bits & EXTENT_DO_ACCOUNTING)
1603 btrfs_delalloc_release_metadata(inode, len);
1604
0cb59c99
JB
1605 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1606 && do_list)
0ca1f7ce 1607 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1608
963d678b
MX
1609 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1610 root->fs_info->delalloc_batch);
df0af1a5 1611 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1612 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1613 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5
MX
1614 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1615 &BTRFS_I(inode)->runtime_flags)) {
1616 spin_lock(&root->fs_info->delalloc_lock);
1617 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1618 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1619 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1620 &BTRFS_I(inode)->runtime_flags);
1621 }
1622 spin_unlock(&root->fs_info->delalloc_lock);
ea8c2819 1623 }
df0af1a5 1624 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1625 }
291d673e
CM
1626}
1627
d352ac68
CM
1628/*
1629 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1630 * we don't create bios that span stripes or chunks
1631 */
64a16701 1632int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1633 size_t size, struct bio *bio,
1634 unsigned long bio_flags)
239b14b3
CM
1635{
1636 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1637 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1638 u64 length = 0;
1639 u64 map_length;
239b14b3
CM
1640 int ret;
1641
771ed689
CM
1642 if (bio_flags & EXTENT_BIO_COMPRESSED)
1643 return 0;
1644
f2d8d74d 1645 length = bio->bi_size;
239b14b3 1646 map_length = length;
64a16701 1647 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1648 &map_length, NULL, 0);
3ec706c8 1649 /* Will always return 0 with map_multi == NULL */
3444a972 1650 BUG_ON(ret < 0);
d397712b 1651 if (map_length < length + size)
239b14b3 1652 return 1;
3444a972 1653 return 0;
239b14b3
CM
1654}
1655
d352ac68
CM
1656/*
1657 * in order to insert checksums into the metadata in large chunks,
1658 * we wait until bio submission time. All the pages in the bio are
1659 * checksummed and sums are attached onto the ordered extent record.
1660 *
1661 * At IO completion time the cums attached on the ordered extent record
1662 * are inserted into the btree
1663 */
d397712b
CM
1664static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1665 struct bio *bio, int mirror_num,
eaf25d93
CM
1666 unsigned long bio_flags,
1667 u64 bio_offset)
065631f6 1668{
065631f6 1669 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1670 int ret = 0;
e015640f 1671
d20f7043 1672 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1673 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1674 return 0;
1675}
e015640f 1676
4a69a410
CM
1677/*
1678 * in order to insert checksums into the metadata in large chunks,
1679 * we wait until bio submission time. All the pages in the bio are
1680 * checksummed and sums are attached onto the ordered extent record.
1681 *
1682 * At IO completion time the cums attached on the ordered extent record
1683 * are inserted into the btree
1684 */
b2950863 1685static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1686 int mirror_num, unsigned long bio_flags,
1687 u64 bio_offset)
4a69a410
CM
1688{
1689 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1690 int ret;
1691
1692 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1693 if (ret)
1694 bio_endio(bio, ret);
1695 return ret;
44b8bd7e
CM
1696}
1697
d352ac68 1698/*
cad321ad
CM
1699 * extent_io.c submission hook. This does the right thing for csum calculation
1700 * on write, or reading the csums from the tree before a read
d352ac68 1701 */
b2950863 1702static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1703 int mirror_num, unsigned long bio_flags,
1704 u64 bio_offset)
44b8bd7e
CM
1705{
1706 struct btrfs_root *root = BTRFS_I(inode)->root;
1707 int ret = 0;
19b9bdb0 1708 int skip_sum;
0417341e 1709 int metadata = 0;
b812ce28 1710 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1711
6cbff00f 1712 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1713
83eea1f1 1714 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1715 metadata = 2;
1716
7b6d91da 1717 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1718 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1719 if (ret)
61891923 1720 goto out;
5fd02043 1721
d20f7043 1722 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1723 ret = btrfs_submit_compressed_read(inode, bio,
1724 mirror_num,
1725 bio_flags);
1726 goto out;
c2db1073
TI
1727 } else if (!skip_sum) {
1728 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1729 if (ret)
61891923 1730 goto out;
c2db1073 1731 }
4d1b5fb4 1732 goto mapit;
b812ce28 1733 } else if (async && !skip_sum) {
17d217fe
YZ
1734 /* csum items have already been cloned */
1735 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1736 goto mapit;
19b9bdb0 1737 /* we're doing a write, do the async checksumming */
61891923 1738 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1739 inode, rw, bio, mirror_num,
eaf25d93
CM
1740 bio_flags, bio_offset,
1741 __btrfs_submit_bio_start,
4a69a410 1742 __btrfs_submit_bio_done);
61891923 1743 goto out;
b812ce28
JB
1744 } else if (!skip_sum) {
1745 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1746 if (ret)
1747 goto out;
19b9bdb0
CM
1748 }
1749
0b86a832 1750mapit:
61891923
SB
1751 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1752
1753out:
1754 if (ret < 0)
1755 bio_endio(bio, ret);
1756 return ret;
065631f6 1757}
6885f308 1758
d352ac68
CM
1759/*
1760 * given a list of ordered sums record them in the inode. This happens
1761 * at IO completion time based on sums calculated at bio submission time.
1762 */
ba1da2f4 1763static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1764 struct inode *inode, u64 file_offset,
1765 struct list_head *list)
1766{
e6dcd2dc
CM
1767 struct btrfs_ordered_sum *sum;
1768
c6e30871 1769 list_for_each_entry(sum, list, list) {
39847c4d 1770 trans->adding_csums = 1;
d20f7043
CM
1771 btrfs_csum_file_blocks(trans,
1772 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1773 trans->adding_csums = 0;
e6dcd2dc
CM
1774 }
1775 return 0;
1776}
1777
2ac55d41
JB
1778int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1779 struct extent_state **cached_state)
ea8c2819 1780{
6c1500f2 1781 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1782 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1783 cached_state, GFP_NOFS);
ea8c2819
CM
1784}
1785
d352ac68 1786/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1787struct btrfs_writepage_fixup {
1788 struct page *page;
1789 struct btrfs_work work;
1790};
1791
b2950863 1792static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1793{
1794 struct btrfs_writepage_fixup *fixup;
1795 struct btrfs_ordered_extent *ordered;
2ac55d41 1796 struct extent_state *cached_state = NULL;
247e743c
CM
1797 struct page *page;
1798 struct inode *inode;
1799 u64 page_start;
1800 u64 page_end;
87826df0 1801 int ret;
247e743c
CM
1802
1803 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1804 page = fixup->page;
4a096752 1805again:
247e743c
CM
1806 lock_page(page);
1807 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1808 ClearPageChecked(page);
1809 goto out_page;
1810 }
1811
1812 inode = page->mapping->host;
1813 page_start = page_offset(page);
1814 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1815
2ac55d41 1816 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1817 &cached_state);
4a096752
CM
1818
1819 /* already ordered? We're done */
8b62b72b 1820 if (PagePrivate2(page))
247e743c 1821 goto out;
4a096752
CM
1822
1823 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1824 if (ordered) {
2ac55d41
JB
1825 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1826 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1827 unlock_page(page);
1828 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1829 btrfs_put_ordered_extent(ordered);
4a096752
CM
1830 goto again;
1831 }
247e743c 1832
87826df0
JM
1833 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1834 if (ret) {
1835 mapping_set_error(page->mapping, ret);
1836 end_extent_writepage(page, ret, page_start, page_end);
1837 ClearPageChecked(page);
1838 goto out;
1839 }
1840
2ac55d41 1841 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1842 ClearPageChecked(page);
87826df0 1843 set_page_dirty(page);
247e743c 1844out:
2ac55d41
JB
1845 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1846 &cached_state, GFP_NOFS);
247e743c
CM
1847out_page:
1848 unlock_page(page);
1849 page_cache_release(page);
b897abec 1850 kfree(fixup);
247e743c
CM
1851}
1852
1853/*
1854 * There are a few paths in the higher layers of the kernel that directly
1855 * set the page dirty bit without asking the filesystem if it is a
1856 * good idea. This causes problems because we want to make sure COW
1857 * properly happens and the data=ordered rules are followed.
1858 *
c8b97818 1859 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1860 * hasn't been properly setup for IO. We kick off an async process
1861 * to fix it up. The async helper will wait for ordered extents, set
1862 * the delalloc bit and make it safe to write the page.
1863 */
b2950863 1864static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1865{
1866 struct inode *inode = page->mapping->host;
1867 struct btrfs_writepage_fixup *fixup;
1868 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1869
8b62b72b
CM
1870 /* this page is properly in the ordered list */
1871 if (TestClearPagePrivate2(page))
247e743c
CM
1872 return 0;
1873
1874 if (PageChecked(page))
1875 return -EAGAIN;
1876
1877 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1878 if (!fixup)
1879 return -EAGAIN;
f421950f 1880
247e743c
CM
1881 SetPageChecked(page);
1882 page_cache_get(page);
1883 fixup->work.func = btrfs_writepage_fixup_worker;
1884 fixup->page = page;
1885 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1886 return -EBUSY;
247e743c
CM
1887}
1888
d899e052
YZ
1889static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1890 struct inode *inode, u64 file_pos,
1891 u64 disk_bytenr, u64 disk_num_bytes,
1892 u64 num_bytes, u64 ram_bytes,
1893 u8 compression, u8 encryption,
1894 u16 other_encoding, int extent_type)
1895{
1896 struct btrfs_root *root = BTRFS_I(inode)->root;
1897 struct btrfs_file_extent_item *fi;
1898 struct btrfs_path *path;
1899 struct extent_buffer *leaf;
1900 struct btrfs_key ins;
d899e052
YZ
1901 int ret;
1902
1903 path = btrfs_alloc_path();
d8926bb3
MF
1904 if (!path)
1905 return -ENOMEM;
d899e052 1906
b9473439 1907 path->leave_spinning = 1;
a1ed835e
CM
1908
1909 /*
1910 * we may be replacing one extent in the tree with another.
1911 * The new extent is pinned in the extent map, and we don't want
1912 * to drop it from the cache until it is completely in the btree.
1913 *
1914 * So, tell btrfs_drop_extents to leave this extent in the cache.
1915 * the caller is expected to unpin it and allow it to be merged
1916 * with the others.
1917 */
5dc562c5 1918 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1919 file_pos + num_bytes, 0);
79787eaa
JM
1920 if (ret)
1921 goto out;
d899e052 1922
33345d01 1923 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1924 ins.offset = file_pos;
1925 ins.type = BTRFS_EXTENT_DATA_KEY;
1926 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1927 if (ret)
1928 goto out;
d899e052
YZ
1929 leaf = path->nodes[0];
1930 fi = btrfs_item_ptr(leaf, path->slots[0],
1931 struct btrfs_file_extent_item);
1932 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1933 btrfs_set_file_extent_type(leaf, fi, extent_type);
1934 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1935 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1936 btrfs_set_file_extent_offset(leaf, fi, 0);
1937 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1938 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1939 btrfs_set_file_extent_compression(leaf, fi, compression);
1940 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1941 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1942
d899e052 1943 btrfs_mark_buffer_dirty(leaf);
ce195332 1944 btrfs_release_path(path);
d899e052
YZ
1945
1946 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1947
1948 ins.objectid = disk_bytenr;
1949 ins.offset = disk_num_bytes;
1950 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1951 ret = btrfs_alloc_reserved_file_extent(trans, root,
1952 root->root_key.objectid,
33345d01 1953 btrfs_ino(inode), file_pos, &ins);
79787eaa 1954out:
d899e052 1955 btrfs_free_path(path);
b9473439 1956
79787eaa 1957 return ret;
d899e052
YZ
1958}
1959
38c227d8
LB
1960/* snapshot-aware defrag */
1961struct sa_defrag_extent_backref {
1962 struct rb_node node;
1963 struct old_sa_defrag_extent *old;
1964 u64 root_id;
1965 u64 inum;
1966 u64 file_pos;
1967 u64 extent_offset;
1968 u64 num_bytes;
1969 u64 generation;
1970};
1971
1972struct old_sa_defrag_extent {
1973 struct list_head list;
1974 struct new_sa_defrag_extent *new;
1975
1976 u64 extent_offset;
1977 u64 bytenr;
1978 u64 offset;
1979 u64 len;
1980 int count;
1981};
1982
1983struct new_sa_defrag_extent {
1984 struct rb_root root;
1985 struct list_head head;
1986 struct btrfs_path *path;
1987 struct inode *inode;
1988 u64 file_pos;
1989 u64 len;
1990 u64 bytenr;
1991 u64 disk_len;
1992 u8 compress_type;
1993};
1994
1995static int backref_comp(struct sa_defrag_extent_backref *b1,
1996 struct sa_defrag_extent_backref *b2)
1997{
1998 if (b1->root_id < b2->root_id)
1999 return -1;
2000 else if (b1->root_id > b2->root_id)
2001 return 1;
2002
2003 if (b1->inum < b2->inum)
2004 return -1;
2005 else if (b1->inum > b2->inum)
2006 return 1;
2007
2008 if (b1->file_pos < b2->file_pos)
2009 return -1;
2010 else if (b1->file_pos > b2->file_pos)
2011 return 1;
2012
2013 /*
2014 * [------------------------------] ===> (a range of space)
2015 * |<--->| |<---->| =============> (fs/file tree A)
2016 * |<---------------------------->| ===> (fs/file tree B)
2017 *
2018 * A range of space can refer to two file extents in one tree while
2019 * refer to only one file extent in another tree.
2020 *
2021 * So we may process a disk offset more than one time(two extents in A)
2022 * and locate at the same extent(one extent in B), then insert two same
2023 * backrefs(both refer to the extent in B).
2024 */
2025 return 0;
2026}
2027
2028static void backref_insert(struct rb_root *root,
2029 struct sa_defrag_extent_backref *backref)
2030{
2031 struct rb_node **p = &root->rb_node;
2032 struct rb_node *parent = NULL;
2033 struct sa_defrag_extent_backref *entry;
2034 int ret;
2035
2036 while (*p) {
2037 parent = *p;
2038 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2039
2040 ret = backref_comp(backref, entry);
2041 if (ret < 0)
2042 p = &(*p)->rb_left;
2043 else
2044 p = &(*p)->rb_right;
2045 }
2046
2047 rb_link_node(&backref->node, parent, p);
2048 rb_insert_color(&backref->node, root);
2049}
2050
2051/*
2052 * Note the backref might has changed, and in this case we just return 0.
2053 */
2054static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2055 void *ctx)
2056{
2057 struct btrfs_file_extent_item *extent;
2058 struct btrfs_fs_info *fs_info;
2059 struct old_sa_defrag_extent *old = ctx;
2060 struct new_sa_defrag_extent *new = old->new;
2061 struct btrfs_path *path = new->path;
2062 struct btrfs_key key;
2063 struct btrfs_root *root;
2064 struct sa_defrag_extent_backref *backref;
2065 struct extent_buffer *leaf;
2066 struct inode *inode = new->inode;
2067 int slot;
2068 int ret;
2069 u64 extent_offset;
2070 u64 num_bytes;
2071
2072 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2073 inum == btrfs_ino(inode))
2074 return 0;
2075
2076 key.objectid = root_id;
2077 key.type = BTRFS_ROOT_ITEM_KEY;
2078 key.offset = (u64)-1;
2079
2080 fs_info = BTRFS_I(inode)->root->fs_info;
2081 root = btrfs_read_fs_root_no_name(fs_info, &key);
2082 if (IS_ERR(root)) {
2083 if (PTR_ERR(root) == -ENOENT)
2084 return 0;
2085 WARN_ON(1);
2086 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2087 inum, offset, root_id);
2088 return PTR_ERR(root);
2089 }
2090
2091 key.objectid = inum;
2092 key.type = BTRFS_EXTENT_DATA_KEY;
2093 if (offset > (u64)-1 << 32)
2094 key.offset = 0;
2095 else
2096 key.offset = offset;
2097
2098 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2099 if (ret < 0) {
2100 WARN_ON(1);
2101 return ret;
2102 }
2103
2104 while (1) {
2105 cond_resched();
2106
2107 leaf = path->nodes[0];
2108 slot = path->slots[0];
2109
2110 if (slot >= btrfs_header_nritems(leaf)) {
2111 ret = btrfs_next_leaf(root, path);
2112 if (ret < 0) {
2113 goto out;
2114 } else if (ret > 0) {
2115 ret = 0;
2116 goto out;
2117 }
2118 continue;
2119 }
2120
2121 path->slots[0]++;
2122
2123 btrfs_item_key_to_cpu(leaf, &key, slot);
2124
2125 if (key.objectid > inum)
2126 goto out;
2127
2128 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2129 continue;
2130
2131 extent = btrfs_item_ptr(leaf, slot,
2132 struct btrfs_file_extent_item);
2133
2134 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2135 continue;
2136
2137 extent_offset = btrfs_file_extent_offset(leaf, extent);
2138 if (key.offset - extent_offset != offset)
2139 continue;
2140
2141 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2142 if (extent_offset >= old->extent_offset + old->offset +
2143 old->len || extent_offset + num_bytes <=
2144 old->extent_offset + old->offset)
2145 continue;
2146
2147 break;
2148 }
2149
2150 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2151 if (!backref) {
2152 ret = -ENOENT;
2153 goto out;
2154 }
2155
2156 backref->root_id = root_id;
2157 backref->inum = inum;
2158 backref->file_pos = offset + extent_offset;
2159 backref->num_bytes = num_bytes;
2160 backref->extent_offset = extent_offset;
2161 backref->generation = btrfs_file_extent_generation(leaf, extent);
2162 backref->old = old;
2163 backref_insert(&new->root, backref);
2164 old->count++;
2165out:
2166 btrfs_release_path(path);
2167 WARN_ON(ret);
2168 return ret;
2169}
2170
2171static noinline bool record_extent_backrefs(struct btrfs_path *path,
2172 struct new_sa_defrag_extent *new)
2173{
2174 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2175 struct old_sa_defrag_extent *old, *tmp;
2176 int ret;
2177
2178 new->path = path;
2179
2180 list_for_each_entry_safe(old, tmp, &new->head, list) {
2181 ret = iterate_inodes_from_logical(old->bytenr, fs_info,
2182 path, record_one_backref,
2183 old);
2184 BUG_ON(ret < 0 && ret != -ENOENT);
2185
2186 /* no backref to be processed for this extent */
2187 if (!old->count) {
2188 list_del(&old->list);
2189 kfree(old);
2190 }
2191 }
2192
2193 if (list_empty(&new->head))
2194 return false;
2195
2196 return true;
2197}
2198
2199static int relink_is_mergable(struct extent_buffer *leaf,
2200 struct btrfs_file_extent_item *fi,
2201 u64 disk_bytenr)
2202{
2203 if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr)
2204 return 0;
2205
2206 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2207 return 0;
2208
2209 if (btrfs_file_extent_compression(leaf, fi) ||
2210 btrfs_file_extent_encryption(leaf, fi) ||
2211 btrfs_file_extent_other_encoding(leaf, fi))
2212 return 0;
2213
2214 return 1;
2215}
2216
2217/*
2218 * Note the backref might has changed, and in this case we just return 0.
2219 */
2220static noinline int relink_extent_backref(struct btrfs_path *path,
2221 struct sa_defrag_extent_backref *prev,
2222 struct sa_defrag_extent_backref *backref)
2223{
2224 struct btrfs_file_extent_item *extent;
2225 struct btrfs_file_extent_item *item;
2226 struct btrfs_ordered_extent *ordered;
2227 struct btrfs_trans_handle *trans;
2228 struct btrfs_fs_info *fs_info;
2229 struct btrfs_root *root;
2230 struct btrfs_key key;
2231 struct extent_buffer *leaf;
2232 struct old_sa_defrag_extent *old = backref->old;
2233 struct new_sa_defrag_extent *new = old->new;
2234 struct inode *src_inode = new->inode;
2235 struct inode *inode;
2236 struct extent_state *cached = NULL;
2237 int ret = 0;
2238 u64 start;
2239 u64 len;
2240 u64 lock_start;
2241 u64 lock_end;
2242 bool merge = false;
2243 int index;
2244
2245 if (prev && prev->root_id == backref->root_id &&
2246 prev->inum == backref->inum &&
2247 prev->file_pos + prev->num_bytes == backref->file_pos)
2248 merge = true;
2249
2250 /* step 1: get root */
2251 key.objectid = backref->root_id;
2252 key.type = BTRFS_ROOT_ITEM_KEY;
2253 key.offset = (u64)-1;
2254
2255 fs_info = BTRFS_I(src_inode)->root->fs_info;
2256 index = srcu_read_lock(&fs_info->subvol_srcu);
2257
2258 root = btrfs_read_fs_root_no_name(fs_info, &key);
2259 if (IS_ERR(root)) {
2260 srcu_read_unlock(&fs_info->subvol_srcu, index);
2261 if (PTR_ERR(root) == -ENOENT)
2262 return 0;
2263 return PTR_ERR(root);
2264 }
38c227d8
LB
2265
2266 /* step 2: get inode */
2267 key.objectid = backref->inum;
2268 key.type = BTRFS_INODE_ITEM_KEY;
2269 key.offset = 0;
2270
2271 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2272 if (IS_ERR(inode)) {
2273 srcu_read_unlock(&fs_info->subvol_srcu, index);
2274 return 0;
2275 }
2276
2277 srcu_read_unlock(&fs_info->subvol_srcu, index);
2278
2279 /* step 3: relink backref */
2280 lock_start = backref->file_pos;
2281 lock_end = backref->file_pos + backref->num_bytes - 1;
2282 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2283 0, &cached);
2284
2285 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2286 if (ordered) {
2287 btrfs_put_ordered_extent(ordered);
2288 goto out_unlock;
2289 }
2290
2291 trans = btrfs_join_transaction(root);
2292 if (IS_ERR(trans)) {
2293 ret = PTR_ERR(trans);
2294 goto out_unlock;
2295 }
2296
2297 key.objectid = backref->inum;
2298 key.type = BTRFS_EXTENT_DATA_KEY;
2299 key.offset = backref->file_pos;
2300
2301 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2302 if (ret < 0) {
2303 goto out_free_path;
2304 } else if (ret > 0) {
2305 ret = 0;
2306 goto out_free_path;
2307 }
2308
2309 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2310 struct btrfs_file_extent_item);
2311
2312 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2313 backref->generation)
2314 goto out_free_path;
2315
2316 btrfs_release_path(path);
2317
2318 start = backref->file_pos;
2319 if (backref->extent_offset < old->extent_offset + old->offset)
2320 start += old->extent_offset + old->offset -
2321 backref->extent_offset;
2322
2323 len = min(backref->extent_offset + backref->num_bytes,
2324 old->extent_offset + old->offset + old->len);
2325 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2326
2327 ret = btrfs_drop_extents(trans, root, inode, start,
2328 start + len, 1);
2329 if (ret)
2330 goto out_free_path;
2331again:
2332 key.objectid = btrfs_ino(inode);
2333 key.type = BTRFS_EXTENT_DATA_KEY;
2334 key.offset = start;
2335
a09a0a70 2336 path->leave_spinning = 1;
38c227d8
LB
2337 if (merge) {
2338 struct btrfs_file_extent_item *fi;
2339 u64 extent_len;
2340 struct btrfs_key found_key;
2341
2342 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2343 if (ret < 0)
2344 goto out_free_path;
2345
2346 path->slots[0]--;
2347 leaf = path->nodes[0];
2348 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2349
2350 fi = btrfs_item_ptr(leaf, path->slots[0],
2351 struct btrfs_file_extent_item);
2352 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2353
2354 if (relink_is_mergable(leaf, fi, new->bytenr) &&
2355 extent_len + found_key.offset == start) {
2356 btrfs_set_file_extent_num_bytes(leaf, fi,
2357 extent_len + len);
2358 btrfs_mark_buffer_dirty(leaf);
2359 inode_add_bytes(inode, len);
2360
2361 ret = 1;
2362 goto out_free_path;
2363 } else {
2364 merge = false;
2365 btrfs_release_path(path);
2366 goto again;
2367 }
2368 }
2369
2370 ret = btrfs_insert_empty_item(trans, root, path, &key,
2371 sizeof(*extent));
2372 if (ret) {
2373 btrfs_abort_transaction(trans, root, ret);
2374 goto out_free_path;
2375 }
2376
2377 leaf = path->nodes[0];
2378 item = btrfs_item_ptr(leaf, path->slots[0],
2379 struct btrfs_file_extent_item);
2380 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2381 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2382 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2383 btrfs_set_file_extent_num_bytes(leaf, item, len);
2384 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2385 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2386 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2387 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2388 btrfs_set_file_extent_encryption(leaf, item, 0);
2389 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2390
2391 btrfs_mark_buffer_dirty(leaf);
2392 inode_add_bytes(inode, len);
a09a0a70 2393 btrfs_release_path(path);
38c227d8
LB
2394
2395 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2396 new->disk_len, 0,
2397 backref->root_id, backref->inum,
2398 new->file_pos, 0); /* start - extent_offset */
2399 if (ret) {
2400 btrfs_abort_transaction(trans, root, ret);
2401 goto out_free_path;
2402 }
2403
2404 ret = 1;
2405out_free_path:
2406 btrfs_release_path(path);
a09a0a70 2407 path->leave_spinning = 0;
38c227d8
LB
2408 btrfs_end_transaction(trans, root);
2409out_unlock:
2410 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2411 &cached, GFP_NOFS);
2412 iput(inode);
2413 return ret;
2414}
2415
2416static void relink_file_extents(struct new_sa_defrag_extent *new)
2417{
2418 struct btrfs_path *path;
2419 struct old_sa_defrag_extent *old, *tmp;
2420 struct sa_defrag_extent_backref *backref;
2421 struct sa_defrag_extent_backref *prev = NULL;
2422 struct inode *inode;
2423 struct btrfs_root *root;
2424 struct rb_node *node;
2425 int ret;
2426
2427 inode = new->inode;
2428 root = BTRFS_I(inode)->root;
2429
2430 path = btrfs_alloc_path();
2431 if (!path)
2432 return;
2433
2434 if (!record_extent_backrefs(path, new)) {
2435 btrfs_free_path(path);
2436 goto out;
2437 }
2438 btrfs_release_path(path);
2439
2440 while (1) {
2441 node = rb_first(&new->root);
2442 if (!node)
2443 break;
2444 rb_erase(node, &new->root);
2445
2446 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2447
2448 ret = relink_extent_backref(path, prev, backref);
2449 WARN_ON(ret < 0);
2450
2451 kfree(prev);
2452
2453 if (ret == 1)
2454 prev = backref;
2455 else
2456 prev = NULL;
2457 cond_resched();
2458 }
2459 kfree(prev);
2460
2461 btrfs_free_path(path);
2462
2463 list_for_each_entry_safe(old, tmp, &new->head, list) {
2464 list_del(&old->list);
2465 kfree(old);
2466 }
2467out:
2468 atomic_dec(&root->fs_info->defrag_running);
2469 wake_up(&root->fs_info->transaction_wait);
2470
2471 kfree(new);
2472}
2473
2474static struct new_sa_defrag_extent *
2475record_old_file_extents(struct inode *inode,
2476 struct btrfs_ordered_extent *ordered)
2477{
2478 struct btrfs_root *root = BTRFS_I(inode)->root;
2479 struct btrfs_path *path;
2480 struct btrfs_key key;
2481 struct old_sa_defrag_extent *old, *tmp;
2482 struct new_sa_defrag_extent *new;
2483 int ret;
2484
2485 new = kmalloc(sizeof(*new), GFP_NOFS);
2486 if (!new)
2487 return NULL;
2488
2489 new->inode = inode;
2490 new->file_pos = ordered->file_offset;
2491 new->len = ordered->len;
2492 new->bytenr = ordered->start;
2493 new->disk_len = ordered->disk_len;
2494 new->compress_type = ordered->compress_type;
2495 new->root = RB_ROOT;
2496 INIT_LIST_HEAD(&new->head);
2497
2498 path = btrfs_alloc_path();
2499 if (!path)
2500 goto out_kfree;
2501
2502 key.objectid = btrfs_ino(inode);
2503 key.type = BTRFS_EXTENT_DATA_KEY;
2504 key.offset = new->file_pos;
2505
2506 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2507 if (ret < 0)
2508 goto out_free_path;
2509 if (ret > 0 && path->slots[0] > 0)
2510 path->slots[0]--;
2511
2512 /* find out all the old extents for the file range */
2513 while (1) {
2514 struct btrfs_file_extent_item *extent;
2515 struct extent_buffer *l;
2516 int slot;
2517 u64 num_bytes;
2518 u64 offset;
2519 u64 end;
2520 u64 disk_bytenr;
2521 u64 extent_offset;
2522
2523 l = path->nodes[0];
2524 slot = path->slots[0];
2525
2526 if (slot >= btrfs_header_nritems(l)) {
2527 ret = btrfs_next_leaf(root, path);
2528 if (ret < 0)
2529 goto out_free_list;
2530 else if (ret > 0)
2531 break;
2532 continue;
2533 }
2534
2535 btrfs_item_key_to_cpu(l, &key, slot);
2536
2537 if (key.objectid != btrfs_ino(inode))
2538 break;
2539 if (key.type != BTRFS_EXTENT_DATA_KEY)
2540 break;
2541 if (key.offset >= new->file_pos + new->len)
2542 break;
2543
2544 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2545
2546 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2547 if (key.offset + num_bytes < new->file_pos)
2548 goto next;
2549
2550 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2551 if (!disk_bytenr)
2552 goto next;
2553
2554 extent_offset = btrfs_file_extent_offset(l, extent);
2555
2556 old = kmalloc(sizeof(*old), GFP_NOFS);
2557 if (!old)
2558 goto out_free_list;
2559
2560 offset = max(new->file_pos, key.offset);
2561 end = min(new->file_pos + new->len, key.offset + num_bytes);
2562
2563 old->bytenr = disk_bytenr;
2564 old->extent_offset = extent_offset;
2565 old->offset = offset - key.offset;
2566 old->len = end - offset;
2567 old->new = new;
2568 old->count = 0;
2569 list_add_tail(&old->list, &new->head);
2570next:
2571 path->slots[0]++;
2572 cond_resched();
2573 }
2574
2575 btrfs_free_path(path);
2576 atomic_inc(&root->fs_info->defrag_running);
2577
2578 return new;
2579
2580out_free_list:
2581 list_for_each_entry_safe(old, tmp, &new->head, list) {
2582 list_del(&old->list);
2583 kfree(old);
2584 }
2585out_free_path:
2586 btrfs_free_path(path);
2587out_kfree:
2588 kfree(new);
2589 return NULL;
2590}
2591
5d13a98f
CM
2592/*
2593 * helper function for btrfs_finish_ordered_io, this
2594 * just reads in some of the csum leaves to prime them into ram
2595 * before we start the transaction. It limits the amount of btree
2596 * reads required while inside the transaction.
2597 */
d352ac68
CM
2598/* as ordered data IO finishes, this gets called so we can finish
2599 * an ordered extent if the range of bytes in the file it covers are
2600 * fully written.
2601 */
5fd02043 2602static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2603{
5fd02043 2604 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2605 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2606 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2607 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2608 struct extent_state *cached_state = NULL;
38c227d8 2609 struct new_sa_defrag_extent *new = NULL;
261507a0 2610 int compress_type = 0;
e6dcd2dc 2611 int ret;
82d5902d 2612 bool nolock;
e6dcd2dc 2613
83eea1f1 2614 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2615
5fd02043
JB
2616 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2617 ret = -EIO;
2618 goto out;
2619 }
2620
c2167754 2621 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2622 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2623 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2624 if (nolock)
2625 trans = btrfs_join_transaction_nolock(root);
2626 else
2627 trans = btrfs_join_transaction(root);
2628 if (IS_ERR(trans)) {
2629 ret = PTR_ERR(trans);
2630 trans = NULL;
2631 goto out;
c2167754 2632 }
6c760c07
JB
2633 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2634 ret = btrfs_update_inode_fallback(trans, root, inode);
2635 if (ret) /* -ENOMEM or corruption */
2636 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2637 goto out;
2638 }
e6dcd2dc 2639
2ac55d41
JB
2640 lock_extent_bits(io_tree, ordered_extent->file_offset,
2641 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2642 0, &cached_state);
e6dcd2dc 2643
38c227d8
LB
2644 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2645 ordered_extent->file_offset + ordered_extent->len - 1,
2646 EXTENT_DEFRAG, 1, cached_state);
2647 if (ret) {
2648 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2649 if (last_snapshot >= BTRFS_I(inode)->generation)
2650 /* the inode is shared */
2651 new = record_old_file_extents(inode, ordered_extent);
2652
2653 clear_extent_bit(io_tree, ordered_extent->file_offset,
2654 ordered_extent->file_offset + ordered_extent->len - 1,
2655 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2656 }
2657
0cb59c99 2658 if (nolock)
7a7eaa40 2659 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2660 else
7a7eaa40 2661 trans = btrfs_join_transaction(root);
79787eaa
JM
2662 if (IS_ERR(trans)) {
2663 ret = PTR_ERR(trans);
2664 trans = NULL;
2665 goto out_unlock;
2666 }
0ca1f7ce 2667 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2668
c8b97818 2669 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2670 compress_type = ordered_extent->compress_type;
d899e052 2671 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2672 BUG_ON(compress_type);
920bbbfb 2673 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2674 ordered_extent->file_offset,
2675 ordered_extent->file_offset +
2676 ordered_extent->len);
d899e052 2677 } else {
0af3d00b 2678 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2679 ret = insert_reserved_file_extent(trans, inode,
2680 ordered_extent->file_offset,
2681 ordered_extent->start,
2682 ordered_extent->disk_len,
2683 ordered_extent->len,
2684 ordered_extent->len,
261507a0 2685 compress_type, 0, 0,
d899e052 2686 BTRFS_FILE_EXTENT_REG);
d899e052 2687 }
5dc562c5
JB
2688 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2689 ordered_extent->file_offset, ordered_extent->len,
2690 trans->transid);
79787eaa
JM
2691 if (ret < 0) {
2692 btrfs_abort_transaction(trans, root, ret);
5fd02043 2693 goto out_unlock;
79787eaa 2694 }
2ac55d41 2695
e6dcd2dc
CM
2696 add_pending_csums(trans, inode, ordered_extent->file_offset,
2697 &ordered_extent->list);
2698
6c760c07
JB
2699 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2700 ret = btrfs_update_inode_fallback(trans, root, inode);
2701 if (ret) { /* -ENOMEM or corruption */
2702 btrfs_abort_transaction(trans, root, ret);
2703 goto out_unlock;
1ef30be1
JB
2704 }
2705 ret = 0;
5fd02043
JB
2706out_unlock:
2707 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2708 ordered_extent->file_offset +
2709 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2710out:
5b0e95bf 2711 if (root != root->fs_info->tree_root)
0cb59c99 2712 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2713 if (trans)
2714 btrfs_end_transaction(trans, root);
0cb59c99 2715
0bec9ef5 2716 if (ret) {
5fd02043
JB
2717 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2718 ordered_extent->file_offset +
2719 ordered_extent->len - 1, NULL, GFP_NOFS);
2720
0bec9ef5
JB
2721 /*
2722 * If the ordered extent had an IOERR or something else went
2723 * wrong we need to return the space for this ordered extent
2724 * back to the allocator.
2725 */
2726 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2727 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2728 btrfs_free_reserved_extent(root, ordered_extent->start,
2729 ordered_extent->disk_len);
2730 }
2731
2732
5fd02043 2733 /*
8bad3c02
LB
2734 * This needs to be done to make sure anybody waiting knows we are done
2735 * updating everything for this ordered extent.
5fd02043
JB
2736 */
2737 btrfs_remove_ordered_extent(inode, ordered_extent);
2738
38c227d8
LB
2739 /* for snapshot-aware defrag */
2740 if (new)
2741 relink_file_extents(new);
2742
e6dcd2dc
CM
2743 /* once for us */
2744 btrfs_put_ordered_extent(ordered_extent);
2745 /* once for the tree */
2746 btrfs_put_ordered_extent(ordered_extent);
2747
5fd02043
JB
2748 return ret;
2749}
2750
2751static void finish_ordered_fn(struct btrfs_work *work)
2752{
2753 struct btrfs_ordered_extent *ordered_extent;
2754 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2755 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2756}
2757
b2950863 2758static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2759 struct extent_state *state, int uptodate)
2760{
5fd02043
JB
2761 struct inode *inode = page->mapping->host;
2762 struct btrfs_root *root = BTRFS_I(inode)->root;
2763 struct btrfs_ordered_extent *ordered_extent = NULL;
2764 struct btrfs_workers *workers;
2765
1abe9b8a 2766 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2767
8b62b72b 2768 ClearPagePrivate2(page);
5fd02043
JB
2769 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2770 end - start + 1, uptodate))
2771 return 0;
2772
2773 ordered_extent->work.func = finish_ordered_fn;
2774 ordered_extent->work.flags = 0;
2775
83eea1f1 2776 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2777 workers = &root->fs_info->endio_freespace_worker;
2778 else
2779 workers = &root->fs_info->endio_write_workers;
2780 btrfs_queue_worker(workers, &ordered_extent->work);
2781
2782 return 0;
211f90e6
CM
2783}
2784
d352ac68
CM
2785/*
2786 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2787 * if there's a match, we allow the bio to finish. If not, the code in
2788 * extent_io.c will try to find good copies for us.
d352ac68 2789 */
b2950863 2790static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 2791 struct extent_state *state, int mirror)
07157aac 2792{
4eee4fa4 2793 size_t offset = start - page_offset(page);
07157aac 2794 struct inode *inode = page->mapping->host;
d1310b2e 2795 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2796 char *kaddr;
aadfeb6e 2797 u64 private = ~(u32)0;
07157aac 2798 int ret;
ff79f819
CM
2799 struct btrfs_root *root = BTRFS_I(inode)->root;
2800 u32 csum = ~(u32)0;
c2cf52eb
SK
2801 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2802 DEFAULT_RATELIMIT_BURST);
d1310b2e 2803
d20f7043
CM
2804 if (PageChecked(page)) {
2805 ClearPageChecked(page);
2806 goto good;
2807 }
6cbff00f
CH
2808
2809 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2810 goto good;
17d217fe
YZ
2811
2812 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2813 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2814 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2815 GFP_NOFS);
b6cda9bc 2816 return 0;
17d217fe 2817 }
d20f7043 2818
c2e639f0 2819 if (state && state->start == start) {
70dec807
CM
2820 private = state->private;
2821 ret = 0;
2822 } else {
2823 ret = get_state_private(io_tree, start, &private);
2824 }
7ac687d9 2825 kaddr = kmap_atomic(page);
d397712b 2826 if (ret)
07157aac 2827 goto zeroit;
d397712b 2828
b0496686 2829 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2830 btrfs_csum_final(csum, (char *)&csum);
d397712b 2831 if (csum != private)
07157aac 2832 goto zeroit;
d397712b 2833
7ac687d9 2834 kunmap_atomic(kaddr);
d20f7043 2835good:
07157aac
CM
2836 return 0;
2837
2838zeroit:
c2cf52eb
SK
2839 if (__ratelimit(&_rs))
2840 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u private %llu",
2841 (unsigned long long)btrfs_ino(page->mapping->host),
2842 (unsigned long long)start, csum,
2843 (unsigned long long)private);
db94535d
CM
2844 memset(kaddr + offset, 1, end - start + 1);
2845 flush_dcache_page(page);
7ac687d9 2846 kunmap_atomic(kaddr);
3b951516
CM
2847 if (private == 0)
2848 return 0;
7e38326f 2849 return -EIO;
07157aac 2850}
b888db2b 2851
24bbcf04
YZ
2852struct delayed_iput {
2853 struct list_head list;
2854 struct inode *inode;
2855};
2856
79787eaa
JM
2857/* JDM: If this is fs-wide, why can't we add a pointer to
2858 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2859void btrfs_add_delayed_iput(struct inode *inode)
2860{
2861 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2862 struct delayed_iput *delayed;
2863
2864 if (atomic_add_unless(&inode->i_count, -1, 1))
2865 return;
2866
2867 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2868 delayed->inode = inode;
2869
2870 spin_lock(&fs_info->delayed_iput_lock);
2871 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2872 spin_unlock(&fs_info->delayed_iput_lock);
2873}
2874
2875void btrfs_run_delayed_iputs(struct btrfs_root *root)
2876{
2877 LIST_HEAD(list);
2878 struct btrfs_fs_info *fs_info = root->fs_info;
2879 struct delayed_iput *delayed;
2880 int empty;
2881
2882 spin_lock(&fs_info->delayed_iput_lock);
2883 empty = list_empty(&fs_info->delayed_iputs);
2884 spin_unlock(&fs_info->delayed_iput_lock);
2885 if (empty)
2886 return;
2887
24bbcf04
YZ
2888 spin_lock(&fs_info->delayed_iput_lock);
2889 list_splice_init(&fs_info->delayed_iputs, &list);
2890 spin_unlock(&fs_info->delayed_iput_lock);
2891
2892 while (!list_empty(&list)) {
2893 delayed = list_entry(list.next, struct delayed_iput, list);
2894 list_del(&delayed->list);
2895 iput(delayed->inode);
2896 kfree(delayed);
2897 }
24bbcf04
YZ
2898}
2899
d68fc57b 2900/*
42b2aa86 2901 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2902 * files in the subvolume, it removes orphan item and frees block_rsv
2903 * structure.
2904 */
2905void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2906 struct btrfs_root *root)
2907{
90290e19 2908 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2909 int ret;
2910
8a35d95f 2911 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2912 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2913 return;
2914
90290e19 2915 spin_lock(&root->orphan_lock);
8a35d95f 2916 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2917 spin_unlock(&root->orphan_lock);
2918 return;
2919 }
2920
2921 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2922 spin_unlock(&root->orphan_lock);
2923 return;
2924 }
2925
2926 block_rsv = root->orphan_block_rsv;
2927 root->orphan_block_rsv = NULL;
2928 spin_unlock(&root->orphan_lock);
2929
d68fc57b
YZ
2930 if (root->orphan_item_inserted &&
2931 btrfs_root_refs(&root->root_item) > 0) {
2932 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2933 root->root_key.objectid);
2934 BUG_ON(ret);
2935 root->orphan_item_inserted = 0;
2936 }
2937
90290e19
JB
2938 if (block_rsv) {
2939 WARN_ON(block_rsv->size > 0);
2940 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2941 }
2942}
2943
7b128766
JB
2944/*
2945 * This creates an orphan entry for the given inode in case something goes
2946 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2947 *
2948 * NOTE: caller of this function should reserve 5 units of metadata for
2949 * this function.
7b128766
JB
2950 */
2951int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2952{
2953 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2954 struct btrfs_block_rsv *block_rsv = NULL;
2955 int reserve = 0;
2956 int insert = 0;
2957 int ret;
7b128766 2958
d68fc57b 2959 if (!root->orphan_block_rsv) {
66d8f3dd 2960 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2961 if (!block_rsv)
2962 return -ENOMEM;
d68fc57b 2963 }
7b128766 2964
d68fc57b
YZ
2965 spin_lock(&root->orphan_lock);
2966 if (!root->orphan_block_rsv) {
2967 root->orphan_block_rsv = block_rsv;
2968 } else if (block_rsv) {
2969 btrfs_free_block_rsv(root, block_rsv);
2970 block_rsv = NULL;
7b128766 2971 }
7b128766 2972
8a35d95f
JB
2973 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2974 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2975#if 0
2976 /*
2977 * For proper ENOSPC handling, we should do orphan
2978 * cleanup when mounting. But this introduces backward
2979 * compatibility issue.
2980 */
2981 if (!xchg(&root->orphan_item_inserted, 1))
2982 insert = 2;
2983 else
2984 insert = 1;
2985#endif
2986 insert = 1;
321f0e70 2987 atomic_inc(&root->orphan_inodes);
7b128766
JB
2988 }
2989
72ac3c0d
JB
2990 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2991 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2992 reserve = 1;
d68fc57b 2993 spin_unlock(&root->orphan_lock);
7b128766 2994
d68fc57b
YZ
2995 /* grab metadata reservation from transaction handle */
2996 if (reserve) {
2997 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2998 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2999 }
7b128766 3000
d68fc57b
YZ
3001 /* insert an orphan item to track this unlinked/truncated file */
3002 if (insert >= 1) {
33345d01 3003 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 3004 if (ret && ret != -EEXIST) {
8a35d95f
JB
3005 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3006 &BTRFS_I(inode)->runtime_flags);
79787eaa
JM
3007 btrfs_abort_transaction(trans, root, ret);
3008 return ret;
3009 }
3010 ret = 0;
d68fc57b
YZ
3011 }
3012
3013 /* insert an orphan item to track subvolume contains orphan files */
3014 if (insert >= 2) {
3015 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3016 root->root_key.objectid);
79787eaa
JM
3017 if (ret && ret != -EEXIST) {
3018 btrfs_abort_transaction(trans, root, ret);
3019 return ret;
3020 }
d68fc57b
YZ
3021 }
3022 return 0;
7b128766
JB
3023}
3024
3025/*
3026 * We have done the truncate/delete so we can go ahead and remove the orphan
3027 * item for this particular inode.
3028 */
48a3b636
ES
3029static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3030 struct inode *inode)
7b128766
JB
3031{
3032 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3033 int delete_item = 0;
3034 int release_rsv = 0;
7b128766
JB
3035 int ret = 0;
3036
d68fc57b 3037 spin_lock(&root->orphan_lock);
8a35d95f
JB
3038 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3039 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3040 delete_item = 1;
7b128766 3041
72ac3c0d
JB
3042 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3043 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3044 release_rsv = 1;
d68fc57b 3045 spin_unlock(&root->orphan_lock);
7b128766 3046
d68fc57b 3047 if (trans && delete_item) {
33345d01 3048 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 3049 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 3050 }
7b128766 3051
8a35d95f 3052 if (release_rsv) {
d68fc57b 3053 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
3054 atomic_dec(&root->orphan_inodes);
3055 }
7b128766 3056
d68fc57b 3057 return 0;
7b128766
JB
3058}
3059
3060/*
3061 * this cleans up any orphans that may be left on the list from the last use
3062 * of this root.
3063 */
66b4ffd1 3064int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3065{
3066 struct btrfs_path *path;
3067 struct extent_buffer *leaf;
7b128766
JB
3068 struct btrfs_key key, found_key;
3069 struct btrfs_trans_handle *trans;
3070 struct inode *inode;
8f6d7f4f 3071 u64 last_objectid = 0;
7b128766
JB
3072 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3073
d68fc57b 3074 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3075 return 0;
c71bf099
YZ
3076
3077 path = btrfs_alloc_path();
66b4ffd1
JB
3078 if (!path) {
3079 ret = -ENOMEM;
3080 goto out;
3081 }
7b128766
JB
3082 path->reada = -1;
3083
3084 key.objectid = BTRFS_ORPHAN_OBJECTID;
3085 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3086 key.offset = (u64)-1;
3087
7b128766
JB
3088 while (1) {
3089 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3090 if (ret < 0)
3091 goto out;
7b128766
JB
3092
3093 /*
3094 * if ret == 0 means we found what we were searching for, which
25985edc 3095 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3096 * find the key and see if we have stuff that matches
3097 */
3098 if (ret > 0) {
66b4ffd1 3099 ret = 0;
7b128766
JB
3100 if (path->slots[0] == 0)
3101 break;
3102 path->slots[0]--;
3103 }
3104
3105 /* pull out the item */
3106 leaf = path->nodes[0];
7b128766
JB
3107 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3108
3109 /* make sure the item matches what we want */
3110 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3111 break;
3112 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3113 break;
3114
3115 /* release the path since we're done with it */
b3b4aa74 3116 btrfs_release_path(path);
7b128766
JB
3117
3118 /*
3119 * this is where we are basically btrfs_lookup, without the
3120 * crossing root thing. we store the inode number in the
3121 * offset of the orphan item.
3122 */
8f6d7f4f
JB
3123
3124 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3125 btrfs_err(root->fs_info,
3126 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3127 ret = -EINVAL;
3128 goto out;
3129 }
3130
3131 last_objectid = found_key.offset;
3132
5d4f98a2
YZ
3133 found_key.objectid = found_key.offset;
3134 found_key.type = BTRFS_INODE_ITEM_KEY;
3135 found_key.offset = 0;
73f73415 3136 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
3137 ret = PTR_RET(inode);
3138 if (ret && ret != -ESTALE)
66b4ffd1 3139 goto out;
7b128766 3140
f8e9e0b0
AJ
3141 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3142 struct btrfs_root *dead_root;
3143 struct btrfs_fs_info *fs_info = root->fs_info;
3144 int is_dead_root = 0;
3145
3146 /*
3147 * this is an orphan in the tree root. Currently these
3148 * could come from 2 sources:
3149 * a) a snapshot deletion in progress
3150 * b) a free space cache inode
3151 * We need to distinguish those two, as the snapshot
3152 * orphan must not get deleted.
3153 * find_dead_roots already ran before us, so if this
3154 * is a snapshot deletion, we should find the root
3155 * in the dead_roots list
3156 */
3157 spin_lock(&fs_info->trans_lock);
3158 list_for_each_entry(dead_root, &fs_info->dead_roots,
3159 root_list) {
3160 if (dead_root->root_key.objectid ==
3161 found_key.objectid) {
3162 is_dead_root = 1;
3163 break;
3164 }
3165 }
3166 spin_unlock(&fs_info->trans_lock);
3167 if (is_dead_root) {
3168 /* prevent this orphan from being found again */
3169 key.offset = found_key.objectid - 1;
3170 continue;
3171 }
3172 }
7b128766 3173 /*
a8c9e576
JB
3174 * Inode is already gone but the orphan item is still there,
3175 * kill the orphan item.
7b128766 3176 */
a8c9e576
JB
3177 if (ret == -ESTALE) {
3178 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3179 if (IS_ERR(trans)) {
3180 ret = PTR_ERR(trans);
3181 goto out;
3182 }
c2cf52eb
SK
3183 btrfs_debug(root->fs_info, "auto deleting %Lu",
3184 found_key.objectid);
a8c9e576
JB
3185 ret = btrfs_del_orphan_item(trans, root,
3186 found_key.objectid);
79787eaa 3187 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 3188 btrfs_end_transaction(trans, root);
7b128766
JB
3189 continue;
3190 }
3191
a8c9e576
JB
3192 /*
3193 * add this inode to the orphan list so btrfs_orphan_del does
3194 * the proper thing when we hit it
3195 */
8a35d95f
JB
3196 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3197 &BTRFS_I(inode)->runtime_flags);
925396ec 3198 atomic_inc(&root->orphan_inodes);
a8c9e576 3199
7b128766
JB
3200 /* if we have links, this was a truncate, lets do that */
3201 if (inode->i_nlink) {
a41ad394
JB
3202 if (!S_ISREG(inode->i_mode)) {
3203 WARN_ON(1);
3204 iput(inode);
3205 continue;
3206 }
7b128766 3207 nr_truncate++;
f3fe820c
JB
3208
3209 /* 1 for the orphan item deletion. */
3210 trans = btrfs_start_transaction(root, 1);
3211 if (IS_ERR(trans)) {
3212 ret = PTR_ERR(trans);
3213 goto out;
3214 }
3215 ret = btrfs_orphan_add(trans, inode);
3216 btrfs_end_transaction(trans, root);
3217 if (ret)
3218 goto out;
3219
66b4ffd1 3220 ret = btrfs_truncate(inode);
4a7d0f68
JB
3221 if (ret)
3222 btrfs_orphan_del(NULL, inode);
7b128766
JB
3223 } else {
3224 nr_unlink++;
3225 }
3226
3227 /* this will do delete_inode and everything for us */
3228 iput(inode);
66b4ffd1
JB
3229 if (ret)
3230 goto out;
7b128766 3231 }
3254c876
MX
3232 /* release the path since we're done with it */
3233 btrfs_release_path(path);
3234
d68fc57b
YZ
3235 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3236
3237 if (root->orphan_block_rsv)
3238 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3239 (u64)-1);
3240
3241 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 3242 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3243 if (!IS_ERR(trans))
3244 btrfs_end_transaction(trans, root);
d68fc57b 3245 }
7b128766
JB
3246
3247 if (nr_unlink)
4884b476 3248 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3249 if (nr_truncate)
4884b476 3250 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3251
3252out:
3253 if (ret)
c2cf52eb
SK
3254 btrfs_crit(root->fs_info,
3255 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3256 btrfs_free_path(path);
3257 return ret;
7b128766
JB
3258}
3259
46a53cca
CM
3260/*
3261 * very simple check to peek ahead in the leaf looking for xattrs. If we
3262 * don't find any xattrs, we know there can't be any acls.
3263 *
3264 * slot is the slot the inode is in, objectid is the objectid of the inode
3265 */
3266static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3267 int slot, u64 objectid)
3268{
3269 u32 nritems = btrfs_header_nritems(leaf);
3270 struct btrfs_key found_key;
3271 int scanned = 0;
3272
3273 slot++;
3274 while (slot < nritems) {
3275 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3276
3277 /* we found a different objectid, there must not be acls */
3278 if (found_key.objectid != objectid)
3279 return 0;
3280
3281 /* we found an xattr, assume we've got an acl */
3282 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
3283 return 1;
3284
3285 /*
3286 * we found a key greater than an xattr key, there can't
3287 * be any acls later on
3288 */
3289 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3290 return 0;
3291
3292 slot++;
3293 scanned++;
3294
3295 /*
3296 * it goes inode, inode backrefs, xattrs, extents,
3297 * so if there are a ton of hard links to an inode there can
3298 * be a lot of backrefs. Don't waste time searching too hard,
3299 * this is just an optimization
3300 */
3301 if (scanned >= 8)
3302 break;
3303 }
3304 /* we hit the end of the leaf before we found an xattr or
3305 * something larger than an xattr. We have to assume the inode
3306 * has acls
3307 */
3308 return 1;
3309}
3310
d352ac68
CM
3311/*
3312 * read an inode from the btree into the in-memory inode
3313 */
5d4f98a2 3314static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3315{
3316 struct btrfs_path *path;
5f39d397 3317 struct extent_buffer *leaf;
39279cc3 3318 struct btrfs_inode_item *inode_item;
0b86a832 3319 struct btrfs_timespec *tspec;
39279cc3
CM
3320 struct btrfs_root *root = BTRFS_I(inode)->root;
3321 struct btrfs_key location;
46a53cca 3322 int maybe_acls;
618e21d5 3323 u32 rdev;
39279cc3 3324 int ret;
2f7e33d4
MX
3325 bool filled = false;
3326
3327 ret = btrfs_fill_inode(inode, &rdev);
3328 if (!ret)
3329 filled = true;
39279cc3
CM
3330
3331 path = btrfs_alloc_path();
1748f843
MF
3332 if (!path)
3333 goto make_bad;
3334
d90c7321 3335 path->leave_spinning = 1;
39279cc3 3336 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3337
39279cc3 3338 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3339 if (ret)
39279cc3 3340 goto make_bad;
39279cc3 3341
5f39d397 3342 leaf = path->nodes[0];
2f7e33d4
MX
3343
3344 if (filled)
3345 goto cache_acl;
3346
5f39d397
CM
3347 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3348 struct btrfs_inode_item);
5f39d397 3349 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3350 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3351 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3352 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3353 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3354
3355 tspec = btrfs_inode_atime(inode_item);
3356 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3357 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3358
3359 tspec = btrfs_inode_mtime(inode_item);
3360 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3361 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3362
3363 tspec = btrfs_inode_ctime(inode_item);
3364 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3365 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3366
a76a3cd4 3367 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3368 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3369 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3370
3371 /*
3372 * If we were modified in the current generation and evicted from memory
3373 * and then re-read we need to do a full sync since we don't have any
3374 * idea about which extents were modified before we were evicted from
3375 * cache.
3376 */
3377 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3378 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3379 &BTRFS_I(inode)->runtime_flags);
3380
0c4d2d95 3381 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3382 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3383 inode->i_rdev = 0;
5f39d397
CM
3384 rdev = btrfs_inode_rdev(leaf, inode_item);
3385
aec7477b 3386 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3387 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 3388cache_acl:
46a53cca
CM
3389 /*
3390 * try to precache a NULL acl entry for files that don't have
3391 * any xattrs or acls
3392 */
33345d01
LZ
3393 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3394 btrfs_ino(inode));
72c04902
AV
3395 if (!maybe_acls)
3396 cache_no_acl(inode);
46a53cca 3397
39279cc3 3398 btrfs_free_path(path);
39279cc3 3399
39279cc3 3400 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3401 case S_IFREG:
3402 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3403 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3404 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3405 inode->i_fop = &btrfs_file_operations;
3406 inode->i_op = &btrfs_file_inode_operations;
3407 break;
3408 case S_IFDIR:
3409 inode->i_fop = &btrfs_dir_file_operations;
3410 if (root == root->fs_info->tree_root)
3411 inode->i_op = &btrfs_dir_ro_inode_operations;
3412 else
3413 inode->i_op = &btrfs_dir_inode_operations;
3414 break;
3415 case S_IFLNK:
3416 inode->i_op = &btrfs_symlink_inode_operations;
3417 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3418 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3419 break;
618e21d5 3420 default:
0279b4cd 3421 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3422 init_special_inode(inode, inode->i_mode, rdev);
3423 break;
39279cc3 3424 }
6cbff00f
CH
3425
3426 btrfs_update_iflags(inode);
39279cc3
CM
3427 return;
3428
3429make_bad:
39279cc3 3430 btrfs_free_path(path);
39279cc3
CM
3431 make_bad_inode(inode);
3432}
3433
d352ac68
CM
3434/*
3435 * given a leaf and an inode, copy the inode fields into the leaf
3436 */
e02119d5
CM
3437static void fill_inode_item(struct btrfs_trans_handle *trans,
3438 struct extent_buffer *leaf,
5f39d397 3439 struct btrfs_inode_item *item,
39279cc3
CM
3440 struct inode *inode)
3441{
51fab693
LB
3442 struct btrfs_map_token token;
3443
3444 btrfs_init_map_token(&token);
5f39d397 3445
51fab693
LB
3446 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3447 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3448 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3449 &token);
3450 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3451 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3452
51fab693
LB
3453 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3454 inode->i_atime.tv_sec, &token);
3455 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3456 inode->i_atime.tv_nsec, &token);
5f39d397 3457
51fab693
LB
3458 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3459 inode->i_mtime.tv_sec, &token);
3460 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3461 inode->i_mtime.tv_nsec, &token);
5f39d397 3462
51fab693
LB
3463 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3464 inode->i_ctime.tv_sec, &token);
3465 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3466 inode->i_ctime.tv_nsec, &token);
5f39d397 3467
51fab693
LB
3468 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3469 &token);
3470 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3471 &token);
3472 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3473 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3474 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3475 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3476 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3477}
3478
d352ac68
CM
3479/*
3480 * copy everything in the in-memory inode into the btree.
3481 */
2115133f 3482static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3483 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3484{
3485 struct btrfs_inode_item *inode_item;
3486 struct btrfs_path *path;
5f39d397 3487 struct extent_buffer *leaf;
39279cc3
CM
3488 int ret;
3489
3490 path = btrfs_alloc_path();
16cdcec7
MX
3491 if (!path)
3492 return -ENOMEM;
3493
b9473439 3494 path->leave_spinning = 1;
16cdcec7
MX
3495 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3496 1);
39279cc3
CM
3497 if (ret) {
3498 if (ret > 0)
3499 ret = -ENOENT;
3500 goto failed;
3501 }
3502
b4ce94de 3503 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
3504 leaf = path->nodes[0];
3505 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3506 struct btrfs_inode_item);
39279cc3 3507
e02119d5 3508 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3509 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3510 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3511 ret = 0;
3512failed:
39279cc3
CM
3513 btrfs_free_path(path);
3514 return ret;
3515}
3516
2115133f
CM
3517/*
3518 * copy everything in the in-memory inode into the btree.
3519 */
3520noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3521 struct btrfs_root *root, struct inode *inode)
3522{
3523 int ret;
3524
3525 /*
3526 * If the inode is a free space inode, we can deadlock during commit
3527 * if we put it into the delayed code.
3528 *
3529 * The data relocation inode should also be directly updated
3530 * without delay
3531 */
83eea1f1 3532 if (!btrfs_is_free_space_inode(inode)
2115133f 3533 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3534 btrfs_update_root_times(trans, root);
3535
2115133f
CM
3536 ret = btrfs_delayed_update_inode(trans, root, inode);
3537 if (!ret)
3538 btrfs_set_inode_last_trans(trans, inode);
3539 return ret;
3540 }
3541
3542 return btrfs_update_inode_item(trans, root, inode);
3543}
3544
be6aef60
JB
3545noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3546 struct btrfs_root *root,
3547 struct inode *inode)
2115133f
CM
3548{
3549 int ret;
3550
3551 ret = btrfs_update_inode(trans, root, inode);
3552 if (ret == -ENOSPC)
3553 return btrfs_update_inode_item(trans, root, inode);
3554 return ret;
3555}
3556
d352ac68
CM
3557/*
3558 * unlink helper that gets used here in inode.c and in the tree logging
3559 * recovery code. It remove a link in a directory with a given name, and
3560 * also drops the back refs in the inode to the directory
3561 */
92986796
AV
3562static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3563 struct btrfs_root *root,
3564 struct inode *dir, struct inode *inode,
3565 const char *name, int name_len)
39279cc3
CM
3566{
3567 struct btrfs_path *path;
39279cc3 3568 int ret = 0;
5f39d397 3569 struct extent_buffer *leaf;
39279cc3 3570 struct btrfs_dir_item *di;
5f39d397 3571 struct btrfs_key key;
aec7477b 3572 u64 index;
33345d01
LZ
3573 u64 ino = btrfs_ino(inode);
3574 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3575
3576 path = btrfs_alloc_path();
54aa1f4d
CM
3577 if (!path) {
3578 ret = -ENOMEM;
554233a6 3579 goto out;
54aa1f4d
CM
3580 }
3581
b9473439 3582 path->leave_spinning = 1;
33345d01 3583 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3584 name, name_len, -1);
3585 if (IS_ERR(di)) {
3586 ret = PTR_ERR(di);
3587 goto err;
3588 }
3589 if (!di) {
3590 ret = -ENOENT;
3591 goto err;
3592 }
5f39d397
CM
3593 leaf = path->nodes[0];
3594 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3595 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3596 if (ret)
3597 goto err;
b3b4aa74 3598 btrfs_release_path(path);
39279cc3 3599
33345d01
LZ
3600 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3601 dir_ino, &index);
aec7477b 3602 if (ret) {
c2cf52eb
SK
3603 btrfs_info(root->fs_info,
3604 "failed to delete reference to %.*s, inode %llu parent %llu",
3605 name_len, name,
3606 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 3607 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3608 goto err;
3609 }
3610
16cdcec7 3611 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3612 if (ret) {
3613 btrfs_abort_transaction(trans, root, ret);
39279cc3 3614 goto err;
79787eaa 3615 }
39279cc3 3616
e02119d5 3617 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3618 inode, dir_ino);
79787eaa
JM
3619 if (ret != 0 && ret != -ENOENT) {
3620 btrfs_abort_transaction(trans, root, ret);
3621 goto err;
3622 }
e02119d5
CM
3623
3624 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3625 dir, index);
6418c961
CM
3626 if (ret == -ENOENT)
3627 ret = 0;
d4e3991b
ZB
3628 else if (ret)
3629 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3630err:
3631 btrfs_free_path(path);
e02119d5
CM
3632 if (ret)
3633 goto out;
3634
3635 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3636 inode_inc_iversion(inode);
3637 inode_inc_iversion(dir);
e02119d5 3638 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3639 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3640out:
39279cc3
CM
3641 return ret;
3642}
3643
92986796
AV
3644int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3645 struct btrfs_root *root,
3646 struct inode *dir, struct inode *inode,
3647 const char *name, int name_len)
3648{
3649 int ret;
3650 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3651 if (!ret) {
3652 btrfs_drop_nlink(inode);
3653 ret = btrfs_update_inode(trans, root, inode);
3654 }
3655 return ret;
3656}
3657
3658
a22285a6
YZ
3659/* helper to check if there is any shared block in the path */
3660static int check_path_shared(struct btrfs_root *root,
3661 struct btrfs_path *path)
39279cc3 3662{
a22285a6
YZ
3663 struct extent_buffer *eb;
3664 int level;
0e4dcbef 3665 u64 refs = 1;
5df6a9f6 3666
a22285a6 3667 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
3668 int ret;
3669
a22285a6
YZ
3670 if (!path->nodes[level])
3671 break;
3672 eb = path->nodes[level];
3673 if (!btrfs_block_can_be_shared(root, eb))
3674 continue;
3173a18f 3675 ret = btrfs_lookup_extent_info(NULL, root, eb->start, level, 1,
a22285a6
YZ
3676 &refs, NULL);
3677 if (refs > 1)
3678 return 1;
5df6a9f6 3679 }
dedefd72 3680 return 0;
39279cc3
CM
3681}
3682
a22285a6
YZ
3683/*
3684 * helper to start transaction for unlink and rmdir.
3685 *
3686 * unlink and rmdir are special in btrfs, they do not always free space.
3687 * so in enospc case, we should make sure they will free space before
3688 * allowing them to use the global metadata reservation.
3689 */
3690static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
3691 struct dentry *dentry)
4df27c4d 3692{
39279cc3 3693 struct btrfs_trans_handle *trans;
a22285a6 3694 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 3695 struct btrfs_path *path;
4df27c4d 3696 struct btrfs_dir_item *di;
7b128766 3697 struct inode *inode = dentry->d_inode;
4df27c4d 3698 u64 index;
a22285a6
YZ
3699 int check_link = 1;
3700 int err = -ENOSPC;
4df27c4d 3701 int ret;
33345d01
LZ
3702 u64 ino = btrfs_ino(inode);
3703 u64 dir_ino = btrfs_ino(dir);
4df27c4d 3704
e70bea5f
JB
3705 /*
3706 * 1 for the possible orphan item
3707 * 1 for the dir item
3708 * 1 for the dir index
3709 * 1 for the inode ref
e70bea5f
JB
3710 * 1 for the inode
3711 */
6e137ed3 3712 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3713 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3714 return trans;
4df27c4d 3715
33345d01 3716 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 3717 return ERR_PTR(-ENOSPC);
4df27c4d 3718
a22285a6
YZ
3719 /* check if there is someone else holds reference */
3720 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
3721 return ERR_PTR(-ENOSPC);
4df27c4d 3722
a22285a6
YZ
3723 if (atomic_read(&inode->i_count) > 2)
3724 return ERR_PTR(-ENOSPC);
4df27c4d 3725
a22285a6
YZ
3726 if (xchg(&root->fs_info->enospc_unlink, 1))
3727 return ERR_PTR(-ENOSPC);
3728
3729 path = btrfs_alloc_path();
3730 if (!path) {
3731 root->fs_info->enospc_unlink = 0;
3732 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
3733 }
3734
3880a1b4
JB
3735 /* 1 for the orphan item */
3736 trans = btrfs_start_transaction(root, 1);
5df6a9f6 3737 if (IS_ERR(trans)) {
a22285a6
YZ
3738 btrfs_free_path(path);
3739 root->fs_info->enospc_unlink = 0;
3740 return trans;
3741 }
4df27c4d 3742
a22285a6
YZ
3743 path->skip_locking = 1;
3744 path->search_commit_root = 1;
4df27c4d 3745
a22285a6
YZ
3746 ret = btrfs_lookup_inode(trans, root, path,
3747 &BTRFS_I(dir)->location, 0);
3748 if (ret < 0) {
3749 err = ret;
3750 goto out;
3751 }
3752 if (ret == 0) {
3753 if (check_path_shared(root, path))
3754 goto out;
3755 } else {
3756 check_link = 0;
5df6a9f6 3757 }
b3b4aa74 3758 btrfs_release_path(path);
a22285a6
YZ
3759
3760 ret = btrfs_lookup_inode(trans, root, path,
3761 &BTRFS_I(inode)->location, 0);
3762 if (ret < 0) {
3763 err = ret;
3764 goto out;
3765 }
3766 if (ret == 0) {
3767 if (check_path_shared(root, path))
3768 goto out;
3769 } else {
3770 check_link = 0;
3771 }
b3b4aa74 3772 btrfs_release_path(path);
a22285a6
YZ
3773
3774 if (ret == 0 && S_ISREG(inode->i_mode)) {
3775 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 3776 ino, (u64)-1, 0);
a22285a6
YZ
3777 if (ret < 0) {
3778 err = ret;
3779 goto out;
3780 }
79787eaa 3781 BUG_ON(ret == 0); /* Corruption */
a22285a6
YZ
3782 if (check_path_shared(root, path))
3783 goto out;
b3b4aa74 3784 btrfs_release_path(path);
a22285a6
YZ
3785 }
3786
3787 if (!check_link) {
3788 err = 0;
3789 goto out;
3790 }
3791
33345d01 3792 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
3793 dentry->d_name.name, dentry->d_name.len, 0);
3794 if (IS_ERR(di)) {
3795 err = PTR_ERR(di);
3796 goto out;
3797 }
3798 if (di) {
3799 if (check_path_shared(root, path))
3800 goto out;
3801 } else {
3802 err = 0;
3803 goto out;
3804 }
b3b4aa74 3805 btrfs_release_path(path);
a22285a6 3806
f186373f
MF
3807 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3808 dentry->d_name.len, ino, dir_ino, 0,
3809 &index);
3810 if (ret) {
3811 err = ret;
a22285a6
YZ
3812 goto out;
3813 }
f186373f 3814
a22285a6
YZ
3815 if (check_path_shared(root, path))
3816 goto out;
f186373f 3817
b3b4aa74 3818 btrfs_release_path(path);
a22285a6 3819
16cdcec7
MX
3820 /*
3821 * This is a commit root search, if we can lookup inode item and other
3822 * relative items in the commit root, it means the transaction of
3823 * dir/file creation has been committed, and the dir index item that we
3824 * delay to insert has also been inserted into the commit root. So
3825 * we needn't worry about the delayed insertion of the dir index item
3826 * here.
3827 */
33345d01 3828 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
3829 dentry->d_name.name, dentry->d_name.len, 0);
3830 if (IS_ERR(di)) {
3831 err = PTR_ERR(di);
3832 goto out;
3833 }
3834 BUG_ON(ret == -ENOENT);
3835 if (check_path_shared(root, path))
3836 goto out;
3837
3838 err = 0;
3839out:
3840 btrfs_free_path(path);
3880a1b4
JB
3841 /* Migrate the orphan reservation over */
3842 if (!err)
3843 err = btrfs_block_rsv_migrate(trans->block_rsv,
3844 &root->fs_info->global_block_rsv,
5a77d76c 3845 trans->bytes_reserved);
3880a1b4 3846
a22285a6
YZ
3847 if (err) {
3848 btrfs_end_transaction(trans, root);
3849 root->fs_info->enospc_unlink = 0;
3850 return ERR_PTR(err);
3851 }
3852
3853 trans->block_rsv = &root->fs_info->global_block_rsv;
3854 return trans;
3855}
3856
3857static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3858 struct btrfs_root *root)
3859{
66d8f3dd 3860 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
5a77d76c
JB
3861 btrfs_block_rsv_release(root, trans->block_rsv,
3862 trans->bytes_reserved);
3863 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
3864 BUG_ON(!root->fs_info->enospc_unlink);
3865 root->fs_info->enospc_unlink = 0;
3866 }
7ad85bb7 3867 btrfs_end_transaction(trans, root);
a22285a6
YZ
3868}
3869
3870static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3871{
3872 struct btrfs_root *root = BTRFS_I(dir)->root;
3873 struct btrfs_trans_handle *trans;
3874 struct inode *inode = dentry->d_inode;
3875 int ret;
a22285a6
YZ
3876
3877 trans = __unlink_start_trans(dir, dentry);
3878 if (IS_ERR(trans))
3879 return PTR_ERR(trans);
5f39d397 3880
12fcfd22
CM
3881 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3882
e02119d5
CM
3883 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3884 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3885 if (ret)
3886 goto out;
7b128766 3887
a22285a6 3888 if (inode->i_nlink == 0) {
7b128766 3889 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3890 if (ret)
3891 goto out;
a22285a6 3892 }
7b128766 3893
b532402e 3894out:
a22285a6 3895 __unlink_end_trans(trans, root);
b53d3f5d 3896 btrfs_btree_balance_dirty(root);
39279cc3
CM
3897 return ret;
3898}
3899
4df27c4d
YZ
3900int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3901 struct btrfs_root *root,
3902 struct inode *dir, u64 objectid,
3903 const char *name, int name_len)
3904{
3905 struct btrfs_path *path;
3906 struct extent_buffer *leaf;
3907 struct btrfs_dir_item *di;
3908 struct btrfs_key key;
3909 u64 index;
3910 int ret;
33345d01 3911 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3912
3913 path = btrfs_alloc_path();
3914 if (!path)
3915 return -ENOMEM;
3916
33345d01 3917 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3918 name, name_len, -1);
79787eaa
JM
3919 if (IS_ERR_OR_NULL(di)) {
3920 if (!di)
3921 ret = -ENOENT;
3922 else
3923 ret = PTR_ERR(di);
3924 goto out;
3925 }
4df27c4d
YZ
3926
3927 leaf = path->nodes[0];
3928 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3929 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3930 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3931 if (ret) {
3932 btrfs_abort_transaction(trans, root, ret);
3933 goto out;
3934 }
b3b4aa74 3935 btrfs_release_path(path);
4df27c4d
YZ
3936
3937 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3938 objectid, root->root_key.objectid,
33345d01 3939 dir_ino, &index, name, name_len);
4df27c4d 3940 if (ret < 0) {
79787eaa
JM
3941 if (ret != -ENOENT) {
3942 btrfs_abort_transaction(trans, root, ret);
3943 goto out;
3944 }
33345d01 3945 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3946 name, name_len);
79787eaa
JM
3947 if (IS_ERR_OR_NULL(di)) {
3948 if (!di)
3949 ret = -ENOENT;
3950 else
3951 ret = PTR_ERR(di);
3952 btrfs_abort_transaction(trans, root, ret);
3953 goto out;
3954 }
4df27c4d
YZ
3955
3956 leaf = path->nodes[0];
3957 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3958 btrfs_release_path(path);
4df27c4d
YZ
3959 index = key.offset;
3960 }
945d8962 3961 btrfs_release_path(path);
4df27c4d 3962
16cdcec7 3963 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3964 if (ret) {
3965 btrfs_abort_transaction(trans, root, ret);
3966 goto out;
3967 }
4df27c4d
YZ
3968
3969 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3970 inode_inc_iversion(dir);
4df27c4d 3971 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3972 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3973 if (ret)
3974 btrfs_abort_transaction(trans, root, ret);
3975out:
71d7aed0 3976 btrfs_free_path(path);
79787eaa 3977 return ret;
4df27c4d
YZ
3978}
3979
39279cc3
CM
3980static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3981{
3982 struct inode *inode = dentry->d_inode;
1832a6d5 3983 int err = 0;
39279cc3 3984 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3985 struct btrfs_trans_handle *trans;
39279cc3 3986
b3ae244e 3987 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3988 return -ENOTEMPTY;
b3ae244e
DS
3989 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3990 return -EPERM;
134d4512 3991
a22285a6
YZ
3992 trans = __unlink_start_trans(dir, dentry);
3993 if (IS_ERR(trans))
5df6a9f6 3994 return PTR_ERR(trans);
5df6a9f6 3995
33345d01 3996 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3997 err = btrfs_unlink_subvol(trans, root, dir,
3998 BTRFS_I(inode)->location.objectid,
3999 dentry->d_name.name,
4000 dentry->d_name.len);
4001 goto out;
4002 }
4003
7b128766
JB
4004 err = btrfs_orphan_add(trans, inode);
4005 if (err)
4df27c4d 4006 goto out;
7b128766 4007
39279cc3 4008 /* now the directory is empty */
e02119d5
CM
4009 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4010 dentry->d_name.name, dentry->d_name.len);
d397712b 4011 if (!err)
dbe674a9 4012 btrfs_i_size_write(inode, 0);
4df27c4d 4013out:
a22285a6 4014 __unlink_end_trans(trans, root);
b53d3f5d 4015 btrfs_btree_balance_dirty(root);
3954401f 4016
39279cc3
CM
4017 return err;
4018}
4019
39279cc3
CM
4020/*
4021 * this can truncate away extent items, csum items and directory items.
4022 * It starts at a high offset and removes keys until it can't find
d352ac68 4023 * any higher than new_size
39279cc3
CM
4024 *
4025 * csum items that cross the new i_size are truncated to the new size
4026 * as well.
7b128766
JB
4027 *
4028 * min_type is the minimum key type to truncate down to. If set to 0, this
4029 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4030 */
8082510e
YZ
4031int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4032 struct btrfs_root *root,
4033 struct inode *inode,
4034 u64 new_size, u32 min_type)
39279cc3 4035{
39279cc3 4036 struct btrfs_path *path;
5f39d397 4037 struct extent_buffer *leaf;
39279cc3 4038 struct btrfs_file_extent_item *fi;
8082510e
YZ
4039 struct btrfs_key key;
4040 struct btrfs_key found_key;
39279cc3 4041 u64 extent_start = 0;
db94535d 4042 u64 extent_num_bytes = 0;
5d4f98a2 4043 u64 extent_offset = 0;
39279cc3 4044 u64 item_end = 0;
8082510e 4045 u32 found_type = (u8)-1;
39279cc3
CM
4046 int found_extent;
4047 int del_item;
85e21bac
CM
4048 int pending_del_nr = 0;
4049 int pending_del_slot = 0;
179e29e4 4050 int extent_type = -1;
8082510e
YZ
4051 int ret;
4052 int err = 0;
33345d01 4053 u64 ino = btrfs_ino(inode);
8082510e
YZ
4054
4055 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4056
0eb0e19c
MF
4057 path = btrfs_alloc_path();
4058 if (!path)
4059 return -ENOMEM;
4060 path->reada = -1;
4061
5dc562c5
JB
4062 /*
4063 * We want to drop from the next block forward in case this new size is
4064 * not block aligned since we will be keeping the last block of the
4065 * extent just the way it is.
4066 */
0af3d00b 4067 if (root->ref_cows || root == root->fs_info->tree_root)
fda2832f
QW
4068 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4069 root->sectorsize), (u64)-1, 0);
8082510e 4070
16cdcec7
MX
4071 /*
4072 * This function is also used to drop the items in the log tree before
4073 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4074 * it is used to drop the loged items. So we shouldn't kill the delayed
4075 * items.
4076 */
4077 if (min_type == 0 && root == BTRFS_I(inode)->root)
4078 btrfs_kill_delayed_inode_items(inode);
4079
33345d01 4080 key.objectid = ino;
39279cc3 4081 key.offset = (u64)-1;
5f39d397
CM
4082 key.type = (u8)-1;
4083
85e21bac 4084search_again:
b9473439 4085 path->leave_spinning = 1;
85e21bac 4086 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4087 if (ret < 0) {
4088 err = ret;
4089 goto out;
4090 }
d397712b 4091
85e21bac 4092 if (ret > 0) {
e02119d5
CM
4093 /* there are no items in the tree for us to truncate, we're
4094 * done
4095 */
8082510e
YZ
4096 if (path->slots[0] == 0)
4097 goto out;
85e21bac
CM
4098 path->slots[0]--;
4099 }
4100
d397712b 4101 while (1) {
39279cc3 4102 fi = NULL;
5f39d397
CM
4103 leaf = path->nodes[0];
4104 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4105 found_type = btrfs_key_type(&found_key);
39279cc3 4106
33345d01 4107 if (found_key.objectid != ino)
39279cc3 4108 break;
5f39d397 4109
85e21bac 4110 if (found_type < min_type)
39279cc3
CM
4111 break;
4112
5f39d397 4113 item_end = found_key.offset;
39279cc3 4114 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4115 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4116 struct btrfs_file_extent_item);
179e29e4
CM
4117 extent_type = btrfs_file_extent_type(leaf, fi);
4118 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4119 item_end +=
db94535d 4120 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4121 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4122 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 4123 fi);
39279cc3 4124 }
008630c1 4125 item_end--;
39279cc3 4126 }
8082510e
YZ
4127 if (found_type > min_type) {
4128 del_item = 1;
4129 } else {
4130 if (item_end < new_size)
b888db2b 4131 break;
8082510e
YZ
4132 if (found_key.offset >= new_size)
4133 del_item = 1;
4134 else
4135 del_item = 0;
39279cc3 4136 }
39279cc3 4137 found_extent = 0;
39279cc3 4138 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4139 if (found_type != BTRFS_EXTENT_DATA_KEY)
4140 goto delete;
4141
4142 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4143 u64 num_dec;
db94535d 4144 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4145 if (!del_item) {
db94535d
CM
4146 u64 orig_num_bytes =
4147 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4148 extent_num_bytes = ALIGN(new_size -
4149 found_key.offset,
4150 root->sectorsize);
db94535d
CM
4151 btrfs_set_file_extent_num_bytes(leaf, fi,
4152 extent_num_bytes);
4153 num_dec = (orig_num_bytes -
9069218d 4154 extent_num_bytes);
e02119d5 4155 if (root->ref_cows && extent_start != 0)
a76a3cd4 4156 inode_sub_bytes(inode, num_dec);
5f39d397 4157 btrfs_mark_buffer_dirty(leaf);
39279cc3 4158 } else {
db94535d
CM
4159 extent_num_bytes =
4160 btrfs_file_extent_disk_num_bytes(leaf,
4161 fi);
5d4f98a2
YZ
4162 extent_offset = found_key.offset -
4163 btrfs_file_extent_offset(leaf, fi);
4164
39279cc3 4165 /* FIXME blocksize != 4096 */
9069218d 4166 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4167 if (extent_start != 0) {
4168 found_extent = 1;
e02119d5 4169 if (root->ref_cows)
a76a3cd4 4170 inode_sub_bytes(inode, num_dec);
e02119d5 4171 }
39279cc3 4172 }
9069218d 4173 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4174 /*
4175 * we can't truncate inline items that have had
4176 * special encodings
4177 */
4178 if (!del_item &&
4179 btrfs_file_extent_compression(leaf, fi) == 0 &&
4180 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4181 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4182 u32 size = new_size - found_key.offset;
4183
4184 if (root->ref_cows) {
a76a3cd4
YZ
4185 inode_sub_bytes(inode, item_end + 1 -
4186 new_size);
e02119d5
CM
4187 }
4188 size =
4189 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4190 btrfs_truncate_item(root, path, size, 1);
e02119d5 4191 } else if (root->ref_cows) {
a76a3cd4
YZ
4192 inode_sub_bytes(inode, item_end + 1 -
4193 found_key.offset);
9069218d 4194 }
39279cc3 4195 }
179e29e4 4196delete:
39279cc3 4197 if (del_item) {
85e21bac
CM
4198 if (!pending_del_nr) {
4199 /* no pending yet, add ourselves */
4200 pending_del_slot = path->slots[0];
4201 pending_del_nr = 1;
4202 } else if (pending_del_nr &&
4203 path->slots[0] + 1 == pending_del_slot) {
4204 /* hop on the pending chunk */
4205 pending_del_nr++;
4206 pending_del_slot = path->slots[0];
4207 } else {
d397712b 4208 BUG();
85e21bac 4209 }
39279cc3
CM
4210 } else {
4211 break;
4212 }
0af3d00b
JB
4213 if (found_extent && (root->ref_cows ||
4214 root == root->fs_info->tree_root)) {
b9473439 4215 btrfs_set_path_blocking(path);
39279cc3 4216 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4217 extent_num_bytes, 0,
4218 btrfs_header_owner(leaf),
66d7e7f0 4219 ino, extent_offset, 0);
39279cc3
CM
4220 BUG_ON(ret);
4221 }
85e21bac 4222
8082510e
YZ
4223 if (found_type == BTRFS_INODE_ITEM_KEY)
4224 break;
4225
4226 if (path->slots[0] == 0 ||
4227 path->slots[0] != pending_del_slot) {
8082510e
YZ
4228 if (pending_del_nr) {
4229 ret = btrfs_del_items(trans, root, path,
4230 pending_del_slot,
4231 pending_del_nr);
79787eaa
JM
4232 if (ret) {
4233 btrfs_abort_transaction(trans,
4234 root, ret);
4235 goto error;
4236 }
8082510e
YZ
4237 pending_del_nr = 0;
4238 }
b3b4aa74 4239 btrfs_release_path(path);
85e21bac 4240 goto search_again;
8082510e
YZ
4241 } else {
4242 path->slots[0]--;
85e21bac 4243 }
39279cc3 4244 }
8082510e 4245out:
85e21bac
CM
4246 if (pending_del_nr) {
4247 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4248 pending_del_nr);
79787eaa
JM
4249 if (ret)
4250 btrfs_abort_transaction(trans, root, ret);
85e21bac 4251 }
79787eaa 4252error:
39279cc3 4253 btrfs_free_path(path);
8082510e 4254 return err;
39279cc3
CM
4255}
4256
4257/*
2aaa6655
JB
4258 * btrfs_truncate_page - read, zero a chunk and write a page
4259 * @inode - inode that we're zeroing
4260 * @from - the offset to start zeroing
4261 * @len - the length to zero, 0 to zero the entire range respective to the
4262 * offset
4263 * @front - zero up to the offset instead of from the offset on
4264 *
4265 * This will find the page for the "from" offset and cow the page and zero the
4266 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4267 */
2aaa6655
JB
4268int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4269 int front)
39279cc3 4270{
2aaa6655 4271 struct address_space *mapping = inode->i_mapping;
db94535d 4272 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4273 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4274 struct btrfs_ordered_extent *ordered;
2ac55d41 4275 struct extent_state *cached_state = NULL;
e6dcd2dc 4276 char *kaddr;
db94535d 4277 u32 blocksize = root->sectorsize;
39279cc3
CM
4278 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4279 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4280 struct page *page;
3b16a4e3 4281 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4282 int ret = 0;
a52d9a80 4283 u64 page_start;
e6dcd2dc 4284 u64 page_end;
39279cc3 4285
2aaa6655
JB
4286 if ((offset & (blocksize - 1)) == 0 &&
4287 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4288 goto out;
0ca1f7ce 4289 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4290 if (ret)
4291 goto out;
39279cc3 4292
211c17f5 4293again:
3b16a4e3 4294 page = find_or_create_page(mapping, index, mask);
5d5e103a 4295 if (!page) {
0ca1f7ce 4296 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4297 ret = -ENOMEM;
39279cc3 4298 goto out;
5d5e103a 4299 }
e6dcd2dc
CM
4300
4301 page_start = page_offset(page);
4302 page_end = page_start + PAGE_CACHE_SIZE - 1;
4303
39279cc3 4304 if (!PageUptodate(page)) {
9ebefb18 4305 ret = btrfs_readpage(NULL, page);
39279cc3 4306 lock_page(page);
211c17f5
CM
4307 if (page->mapping != mapping) {
4308 unlock_page(page);
4309 page_cache_release(page);
4310 goto again;
4311 }
39279cc3
CM
4312 if (!PageUptodate(page)) {
4313 ret = -EIO;
89642229 4314 goto out_unlock;
39279cc3
CM
4315 }
4316 }
211c17f5 4317 wait_on_page_writeback(page);
e6dcd2dc 4318
d0082371 4319 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4320 set_page_extent_mapped(page);
4321
4322 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4323 if (ordered) {
2ac55d41
JB
4324 unlock_extent_cached(io_tree, page_start, page_end,
4325 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4326 unlock_page(page);
4327 page_cache_release(page);
eb84ae03 4328 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4329 btrfs_put_ordered_extent(ordered);
4330 goto again;
4331 }
4332
2ac55d41 4333 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4334 EXTENT_DIRTY | EXTENT_DELALLOC |
4335 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4336 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4337
2ac55d41
JB
4338 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4339 &cached_state);
9ed74f2d 4340 if (ret) {
2ac55d41
JB
4341 unlock_extent_cached(io_tree, page_start, page_end,
4342 &cached_state, GFP_NOFS);
9ed74f2d
JB
4343 goto out_unlock;
4344 }
4345
e6dcd2dc 4346 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4347 if (!len)
4348 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4349 kaddr = kmap(page);
2aaa6655
JB
4350 if (front)
4351 memset(kaddr, 0, offset);
4352 else
4353 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4354 flush_dcache_page(page);
4355 kunmap(page);
4356 }
247e743c 4357 ClearPageChecked(page);
e6dcd2dc 4358 set_page_dirty(page);
2ac55d41
JB
4359 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4360 GFP_NOFS);
39279cc3 4361
89642229 4362out_unlock:
5d5e103a 4363 if (ret)
0ca1f7ce 4364 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4365 unlock_page(page);
4366 page_cache_release(page);
4367out:
4368 return ret;
4369}
4370
695a0d0d
JB
4371/*
4372 * This function puts in dummy file extents for the area we're creating a hole
4373 * for. So if we are truncating this file to a larger size we need to insert
4374 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4375 * the range between oldsize and size
4376 */
a41ad394 4377int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4378{
9036c102
YZ
4379 struct btrfs_trans_handle *trans;
4380 struct btrfs_root *root = BTRFS_I(inode)->root;
4381 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4382 struct extent_map *em = NULL;
2ac55d41 4383 struct extent_state *cached_state = NULL;
5dc562c5 4384 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4385 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4386 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4387 u64 last_byte;
4388 u64 cur_offset;
4389 u64 hole_size;
9ed74f2d 4390 int err = 0;
39279cc3 4391
9036c102
YZ
4392 if (size <= hole_start)
4393 return 0;
4394
9036c102
YZ
4395 while (1) {
4396 struct btrfs_ordered_extent *ordered;
4397 btrfs_wait_ordered_range(inode, hole_start,
4398 block_end - hole_start);
2ac55d41 4399 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4400 &cached_state);
9036c102
YZ
4401 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4402 if (!ordered)
4403 break;
2ac55d41
JB
4404 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4405 &cached_state, GFP_NOFS);
9036c102
YZ
4406 btrfs_put_ordered_extent(ordered);
4407 }
39279cc3 4408
9036c102
YZ
4409 cur_offset = hole_start;
4410 while (1) {
4411 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4412 block_end - cur_offset, 0);
79787eaa
JM
4413 if (IS_ERR(em)) {
4414 err = PTR_ERR(em);
f2767956 4415 em = NULL;
79787eaa
JM
4416 break;
4417 }
9036c102 4418 last_byte = min(extent_map_end(em), block_end);
fda2832f 4419 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4420 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4421 struct extent_map *hole_em;
9036c102 4422 hole_size = last_byte - cur_offset;
9ed74f2d 4423
3642320e 4424 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
4425 if (IS_ERR(trans)) {
4426 err = PTR_ERR(trans);
9ed74f2d 4427 break;
a22285a6 4428 }
8082510e 4429
5dc562c5
JB
4430 err = btrfs_drop_extents(trans, root, inode,
4431 cur_offset,
2671485d 4432 cur_offset + hole_size, 1);
5b397377 4433 if (err) {
79787eaa 4434 btrfs_abort_transaction(trans, root, err);
5b397377 4435 btrfs_end_transaction(trans, root);
3893e33b 4436 break;
5b397377 4437 }
8082510e 4438
9036c102 4439 err = btrfs_insert_file_extent(trans, root,
33345d01 4440 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
4441 0, hole_size, 0, hole_size,
4442 0, 0, 0);
5b397377 4443 if (err) {
79787eaa 4444 btrfs_abort_transaction(trans, root, err);
5b397377 4445 btrfs_end_transaction(trans, root);
3893e33b 4446 break;
5b397377 4447 }
8082510e 4448
5dc562c5
JB
4449 btrfs_drop_extent_cache(inode, cur_offset,
4450 cur_offset + hole_size - 1, 0);
4451 hole_em = alloc_extent_map();
4452 if (!hole_em) {
4453 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4454 &BTRFS_I(inode)->runtime_flags);
4455 goto next;
4456 }
4457 hole_em->start = cur_offset;
4458 hole_em->len = hole_size;
4459 hole_em->orig_start = cur_offset;
8082510e 4460
5dc562c5
JB
4461 hole_em->block_start = EXTENT_MAP_HOLE;
4462 hole_em->block_len = 0;
b4939680 4463 hole_em->orig_block_len = 0;
cc95bef6 4464 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4465 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4466 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4467 hole_em->generation = trans->transid;
8082510e 4468
5dc562c5
JB
4469 while (1) {
4470 write_lock(&em_tree->lock);
09a2a8f9 4471 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4472 write_unlock(&em_tree->lock);
4473 if (err != -EEXIST)
4474 break;
4475 btrfs_drop_extent_cache(inode, cur_offset,
4476 cur_offset +
4477 hole_size - 1, 0);
4478 }
4479 free_extent_map(hole_em);
4480next:
3642320e 4481 btrfs_update_inode(trans, root, inode);
8082510e 4482 btrfs_end_transaction(trans, root);
9036c102
YZ
4483 }
4484 free_extent_map(em);
a22285a6 4485 em = NULL;
9036c102 4486 cur_offset = last_byte;
8082510e 4487 if (cur_offset >= block_end)
9036c102
YZ
4488 break;
4489 }
1832a6d5 4490
a22285a6 4491 free_extent_map(em);
2ac55d41
JB
4492 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4493 GFP_NOFS);
9036c102
YZ
4494 return err;
4495}
39279cc3 4496
3972f260 4497static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4498{
f4a2f4c5
MX
4499 struct btrfs_root *root = BTRFS_I(inode)->root;
4500 struct btrfs_trans_handle *trans;
a41ad394 4501 loff_t oldsize = i_size_read(inode);
3972f260
ES
4502 loff_t newsize = attr->ia_size;
4503 int mask = attr->ia_valid;
8082510e
YZ
4504 int ret;
4505
a41ad394 4506 if (newsize == oldsize)
8082510e
YZ
4507 return 0;
4508
3972f260
ES
4509 /*
4510 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4511 * special case where we need to update the times despite not having
4512 * these flags set. For all other operations the VFS set these flags
4513 * explicitly if it wants a timestamp update.
4514 */
4515 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4516 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4517
a41ad394 4518 if (newsize > oldsize) {
a41ad394
JB
4519 truncate_pagecache(inode, oldsize, newsize);
4520 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4521 if (ret)
8082510e 4522 return ret;
8082510e 4523
f4a2f4c5
MX
4524 trans = btrfs_start_transaction(root, 1);
4525 if (IS_ERR(trans))
4526 return PTR_ERR(trans);
4527
4528 i_size_write(inode, newsize);
4529 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4530 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4531 btrfs_end_transaction(trans, root);
a41ad394 4532 } else {
8082510e 4533
a41ad394
JB
4534 /*
4535 * We're truncating a file that used to have good data down to
4536 * zero. Make sure it gets into the ordered flush list so that
4537 * any new writes get down to disk quickly.
4538 */
4539 if (newsize == 0)
72ac3c0d
JB
4540 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4541 &BTRFS_I(inode)->runtime_flags);
8082510e 4542
f3fe820c
JB
4543 /*
4544 * 1 for the orphan item we're going to add
4545 * 1 for the orphan item deletion.
4546 */
4547 trans = btrfs_start_transaction(root, 2);
4548 if (IS_ERR(trans))
4549 return PTR_ERR(trans);
4550
4551 /*
4552 * We need to do this in case we fail at _any_ point during the
4553 * actual truncate. Once we do the truncate_setsize we could
4554 * invalidate pages which forces any outstanding ordered io to
4555 * be instantly completed which will give us extents that need
4556 * to be truncated. If we fail to get an orphan inode down we
4557 * could have left over extents that were never meant to live,
4558 * so we need to garuntee from this point on that everything
4559 * will be consistent.
4560 */
4561 ret = btrfs_orphan_add(trans, inode);
4562 btrfs_end_transaction(trans, root);
4563 if (ret)
4564 return ret;
4565
a41ad394
JB
4566 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4567 truncate_setsize(inode, newsize);
2e60a51e
MX
4568
4569 /* Disable nonlocked read DIO to avoid the end less truncate */
4570 btrfs_inode_block_unlocked_dio(inode);
4571 inode_dio_wait(inode);
4572 btrfs_inode_resume_unlocked_dio(inode);
4573
a41ad394 4574 ret = btrfs_truncate(inode);
f3fe820c
JB
4575 if (ret && inode->i_nlink)
4576 btrfs_orphan_del(NULL, inode);
8082510e
YZ
4577 }
4578
a41ad394 4579 return ret;
8082510e
YZ
4580}
4581
9036c102
YZ
4582static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4583{
4584 struct inode *inode = dentry->d_inode;
b83cc969 4585 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4586 int err;
39279cc3 4587
b83cc969
LZ
4588 if (btrfs_root_readonly(root))
4589 return -EROFS;
4590
9036c102
YZ
4591 err = inode_change_ok(inode, attr);
4592 if (err)
4593 return err;
2bf5a725 4594
5a3f23d5 4595 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4596 err = btrfs_setsize(inode, attr);
8082510e
YZ
4597 if (err)
4598 return err;
39279cc3 4599 }
9036c102 4600
1025774c
CH
4601 if (attr->ia_valid) {
4602 setattr_copy(inode, attr);
0c4d2d95 4603 inode_inc_iversion(inode);
22c44fe6 4604 err = btrfs_dirty_inode(inode);
1025774c 4605
22c44fe6 4606 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
4607 err = btrfs_acl_chmod(inode);
4608 }
33268eaf 4609
39279cc3
CM
4610 return err;
4611}
61295eb8 4612
bd555975 4613void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4614{
4615 struct btrfs_trans_handle *trans;
4616 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4617 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4618 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4619 int ret;
4620
1abe9b8a 4621 trace_btrfs_inode_evict(inode);
4622
39279cc3 4623 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 4624 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 4625 btrfs_is_free_space_inode(inode)))
bd555975
AV
4626 goto no_delete;
4627
39279cc3 4628 if (is_bad_inode(inode)) {
7b128766 4629 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4630 goto no_delete;
4631 }
bd555975 4632 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4633 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4634
c71bf099 4635 if (root->fs_info->log_root_recovering) {
6bf02314 4636 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4637 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4638 goto no_delete;
4639 }
4640
76dda93c
YZ
4641 if (inode->i_nlink > 0) {
4642 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
4643 goto no_delete;
4644 }
4645
0e8c36a9
MX
4646 ret = btrfs_commit_inode_delayed_inode(inode);
4647 if (ret) {
4648 btrfs_orphan_del(NULL, inode);
4649 goto no_delete;
4650 }
4651
66d8f3dd 4652 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4653 if (!rsv) {
4654 btrfs_orphan_del(NULL, inode);
4655 goto no_delete;
4656 }
4a338542 4657 rsv->size = min_size;
ca7e70f5 4658 rsv->failfast = 1;
726c35fa 4659 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4660
dbe674a9 4661 btrfs_i_size_write(inode, 0);
5f39d397 4662
4289a667 4663 /*
8407aa46
MX
4664 * This is a bit simpler than btrfs_truncate since we've already
4665 * reserved our space for our orphan item in the unlink, so we just
4666 * need to reserve some slack space in case we add bytes and update
4667 * inode item when doing the truncate.
4289a667 4668 */
8082510e 4669 while (1) {
08e007d2
MX
4670 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4671 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4672
4673 /*
4674 * Try and steal from the global reserve since we will
4675 * likely not use this space anyway, we want to try as
4676 * hard as possible to get this to work.
4677 */
4678 if (ret)
4679 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4680
d68fc57b 4681 if (ret) {
c2cf52eb
SK
4682 btrfs_warn(root->fs_info,
4683 "Could not get space for a delete, will truncate on mount %d",
4684 ret);
4289a667
JB
4685 btrfs_orphan_del(NULL, inode);
4686 btrfs_free_block_rsv(root, rsv);
4687 goto no_delete;
d68fc57b 4688 }
7b128766 4689
0e8c36a9 4690 trans = btrfs_join_transaction(root);
4289a667
JB
4691 if (IS_ERR(trans)) {
4692 btrfs_orphan_del(NULL, inode);
4693 btrfs_free_block_rsv(root, rsv);
4694 goto no_delete;
d68fc57b 4695 }
7b128766 4696
4289a667
JB
4697 trans->block_rsv = rsv;
4698
d68fc57b 4699 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4700 if (ret != -ENOSPC)
8082510e 4701 break;
85e21bac 4702
8407aa46 4703 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4704 btrfs_end_transaction(trans, root);
4705 trans = NULL;
b53d3f5d 4706 btrfs_btree_balance_dirty(root);
8082510e 4707 }
5f39d397 4708
4289a667
JB
4709 btrfs_free_block_rsv(root, rsv);
4710
8082510e 4711 if (ret == 0) {
4289a667 4712 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
4713 ret = btrfs_orphan_del(trans, inode);
4714 BUG_ON(ret);
4715 }
54aa1f4d 4716
4289a667 4717 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4718 if (!(root == root->fs_info->tree_root ||
4719 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4720 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4721
54aa1f4d 4722 btrfs_end_transaction(trans, root);
b53d3f5d 4723 btrfs_btree_balance_dirty(root);
39279cc3 4724no_delete:
89042e5a 4725 btrfs_remove_delayed_node(inode);
dbd5768f 4726 clear_inode(inode);
8082510e 4727 return;
39279cc3
CM
4728}
4729
4730/*
4731 * this returns the key found in the dir entry in the location pointer.
4732 * If no dir entries were found, location->objectid is 0.
4733 */
4734static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4735 struct btrfs_key *location)
4736{
4737 const char *name = dentry->d_name.name;
4738 int namelen = dentry->d_name.len;
4739 struct btrfs_dir_item *di;
4740 struct btrfs_path *path;
4741 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4742 int ret = 0;
39279cc3
CM
4743
4744 path = btrfs_alloc_path();
d8926bb3
MF
4745 if (!path)
4746 return -ENOMEM;
3954401f 4747
33345d01 4748 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4749 namelen, 0);
0d9f7f3e
Y
4750 if (IS_ERR(di))
4751 ret = PTR_ERR(di);
d397712b 4752
c704005d 4753 if (IS_ERR_OR_NULL(di))
3954401f 4754 goto out_err;
d397712b 4755
5f39d397 4756 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4757out:
39279cc3
CM
4758 btrfs_free_path(path);
4759 return ret;
3954401f
CM
4760out_err:
4761 location->objectid = 0;
4762 goto out;
39279cc3
CM
4763}
4764
4765/*
4766 * when we hit a tree root in a directory, the btrfs part of the inode
4767 * needs to be changed to reflect the root directory of the tree root. This
4768 * is kind of like crossing a mount point.
4769 */
4770static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4771 struct inode *dir,
4772 struct dentry *dentry,
4773 struct btrfs_key *location,
4774 struct btrfs_root **sub_root)
39279cc3 4775{
4df27c4d
YZ
4776 struct btrfs_path *path;
4777 struct btrfs_root *new_root;
4778 struct btrfs_root_ref *ref;
4779 struct extent_buffer *leaf;
4780 int ret;
4781 int err = 0;
39279cc3 4782
4df27c4d
YZ
4783 path = btrfs_alloc_path();
4784 if (!path) {
4785 err = -ENOMEM;
4786 goto out;
4787 }
39279cc3 4788
4df27c4d
YZ
4789 err = -ENOENT;
4790 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4791 BTRFS_I(dir)->root->root_key.objectid,
4792 location->objectid);
4793 if (ret) {
4794 if (ret < 0)
4795 err = ret;
4796 goto out;
4797 }
39279cc3 4798
4df27c4d
YZ
4799 leaf = path->nodes[0];
4800 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4801 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4802 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4803 goto out;
39279cc3 4804
4df27c4d
YZ
4805 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4806 (unsigned long)(ref + 1),
4807 dentry->d_name.len);
4808 if (ret)
4809 goto out;
4810
b3b4aa74 4811 btrfs_release_path(path);
4df27c4d
YZ
4812
4813 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4814 if (IS_ERR(new_root)) {
4815 err = PTR_ERR(new_root);
4816 goto out;
4817 }
4818
4df27c4d
YZ
4819 *sub_root = new_root;
4820 location->objectid = btrfs_root_dirid(&new_root->root_item);
4821 location->type = BTRFS_INODE_ITEM_KEY;
4822 location->offset = 0;
4823 err = 0;
4824out:
4825 btrfs_free_path(path);
4826 return err;
39279cc3
CM
4827}
4828
5d4f98a2
YZ
4829static void inode_tree_add(struct inode *inode)
4830{
4831 struct btrfs_root *root = BTRFS_I(inode)->root;
4832 struct btrfs_inode *entry;
03e860bd
FNP
4833 struct rb_node **p;
4834 struct rb_node *parent;
33345d01 4835 u64 ino = btrfs_ino(inode);
5d4f98a2 4836
1d3382cb 4837 if (inode_unhashed(inode))
76dda93c 4838 return;
e1409cef
MX
4839again:
4840 parent = NULL;
5d4f98a2 4841 spin_lock(&root->inode_lock);
e1409cef 4842 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4843 while (*p) {
4844 parent = *p;
4845 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4846
33345d01 4847 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4848 p = &parent->rb_left;
33345d01 4849 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4850 p = &parent->rb_right;
5d4f98a2
YZ
4851 else {
4852 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4853 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
4854 rb_erase(parent, &root->inode_tree);
4855 RB_CLEAR_NODE(parent);
4856 spin_unlock(&root->inode_lock);
4857 goto again;
5d4f98a2
YZ
4858 }
4859 }
4860 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4861 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4862 spin_unlock(&root->inode_lock);
4863}
4864
4865static void inode_tree_del(struct inode *inode)
4866{
4867 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4868 int empty = 0;
5d4f98a2 4869
03e860bd 4870 spin_lock(&root->inode_lock);
5d4f98a2 4871 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4872 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4873 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4874 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4875 }
03e860bd 4876 spin_unlock(&root->inode_lock);
76dda93c 4877
0af3d00b
JB
4878 /*
4879 * Free space cache has inodes in the tree root, but the tree root has a
4880 * root_refs of 0, so this could end up dropping the tree root as a
4881 * snapshot, so we need the extra !root->fs_info->tree_root check to
4882 * make sure we don't drop it.
4883 */
4884 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4885 root != root->fs_info->tree_root) {
76dda93c
YZ
4886 synchronize_srcu(&root->fs_info->subvol_srcu);
4887 spin_lock(&root->inode_lock);
4888 empty = RB_EMPTY_ROOT(&root->inode_tree);
4889 spin_unlock(&root->inode_lock);
4890 if (empty)
4891 btrfs_add_dead_root(root);
4892 }
4893}
4894
143bede5 4895void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4896{
4897 struct rb_node *node;
4898 struct rb_node *prev;
4899 struct btrfs_inode *entry;
4900 struct inode *inode;
4901 u64 objectid = 0;
4902
4903 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4904
4905 spin_lock(&root->inode_lock);
4906again:
4907 node = root->inode_tree.rb_node;
4908 prev = NULL;
4909 while (node) {
4910 prev = node;
4911 entry = rb_entry(node, struct btrfs_inode, rb_node);
4912
33345d01 4913 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4914 node = node->rb_left;
33345d01 4915 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4916 node = node->rb_right;
4917 else
4918 break;
4919 }
4920 if (!node) {
4921 while (prev) {
4922 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4923 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4924 node = prev;
4925 break;
4926 }
4927 prev = rb_next(prev);
4928 }
4929 }
4930 while (node) {
4931 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4932 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4933 inode = igrab(&entry->vfs_inode);
4934 if (inode) {
4935 spin_unlock(&root->inode_lock);
4936 if (atomic_read(&inode->i_count) > 1)
4937 d_prune_aliases(inode);
4938 /*
45321ac5 4939 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4940 * the inode cache when its usage count
4941 * hits zero.
4942 */
4943 iput(inode);
4944 cond_resched();
4945 spin_lock(&root->inode_lock);
4946 goto again;
4947 }
4948
4949 if (cond_resched_lock(&root->inode_lock))
4950 goto again;
4951
4952 node = rb_next(node);
4953 }
4954 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4955}
4956
e02119d5
CM
4957static int btrfs_init_locked_inode(struct inode *inode, void *p)
4958{
4959 struct btrfs_iget_args *args = p;
4960 inode->i_ino = args->ino;
e02119d5 4961 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4962 return 0;
4963}
4964
4965static int btrfs_find_actor(struct inode *inode, void *opaque)
4966{
4967 struct btrfs_iget_args *args = opaque;
33345d01 4968 return args->ino == btrfs_ino(inode) &&
d397712b 4969 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4970}
4971
5d4f98a2
YZ
4972static struct inode *btrfs_iget_locked(struct super_block *s,
4973 u64 objectid,
4974 struct btrfs_root *root)
39279cc3
CM
4975{
4976 struct inode *inode;
4977 struct btrfs_iget_args args;
4978 args.ino = objectid;
4979 args.root = root;
4980
4981 inode = iget5_locked(s, objectid, btrfs_find_actor,
4982 btrfs_init_locked_inode,
4983 (void *)&args);
4984 return inode;
4985}
4986
1a54ef8c
BR
4987/* Get an inode object given its location and corresponding root.
4988 * Returns in *is_new if the inode was read from disk
4989 */
4990struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4991 struct btrfs_root *root, int *new)
1a54ef8c
BR
4992{
4993 struct inode *inode;
4994
4995 inode = btrfs_iget_locked(s, location->objectid, root);
4996 if (!inode)
5d4f98a2 4997 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4998
4999 if (inode->i_state & I_NEW) {
5000 BTRFS_I(inode)->root = root;
5001 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
5002 btrfs_read_locked_inode(inode);
1748f843
MF
5003 if (!is_bad_inode(inode)) {
5004 inode_tree_add(inode);
5005 unlock_new_inode(inode);
5006 if (new)
5007 *new = 1;
5008 } else {
e0b6d65b
ST
5009 unlock_new_inode(inode);
5010 iput(inode);
5011 inode = ERR_PTR(-ESTALE);
1748f843
MF
5012 }
5013 }
5014
1a54ef8c
BR
5015 return inode;
5016}
5017
4df27c4d
YZ
5018static struct inode *new_simple_dir(struct super_block *s,
5019 struct btrfs_key *key,
5020 struct btrfs_root *root)
5021{
5022 struct inode *inode = new_inode(s);
5023
5024 if (!inode)
5025 return ERR_PTR(-ENOMEM);
5026
4df27c4d
YZ
5027 BTRFS_I(inode)->root = root;
5028 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5029 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5030
5031 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5032 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5033 inode->i_fop = &simple_dir_operations;
5034 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5035 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5036
5037 return inode;
5038}
5039
3de4586c 5040struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5041{
d397712b 5042 struct inode *inode;
4df27c4d 5043 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5044 struct btrfs_root *sub_root = root;
5045 struct btrfs_key location;
76dda93c 5046 int index;
b4aff1f8 5047 int ret = 0;
39279cc3
CM
5048
5049 if (dentry->d_name.len > BTRFS_NAME_LEN)
5050 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5051
39e3c955 5052 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5053 if (ret < 0)
5054 return ERR_PTR(ret);
5f39d397 5055
4df27c4d
YZ
5056 if (location.objectid == 0)
5057 return NULL;
5058
5059 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5060 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5061 return inode;
5062 }
5063
5064 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5065
76dda93c 5066 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5067 ret = fixup_tree_root_location(root, dir, dentry,
5068 &location, &sub_root);
5069 if (ret < 0) {
5070 if (ret != -ENOENT)
5071 inode = ERR_PTR(ret);
5072 else
5073 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5074 } else {
73f73415 5075 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5076 }
76dda93c
YZ
5077 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5078
34d19bad 5079 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5080 down_read(&root->fs_info->cleanup_work_sem);
5081 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5082 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5083 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
5084 if (ret)
5085 inode = ERR_PTR(ret);
c71bf099
YZ
5086 }
5087
3de4586c
CM
5088 return inode;
5089}
5090
fe15ce44 5091static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5092{
5093 struct btrfs_root *root;
848cce0d 5094 struct inode *inode = dentry->d_inode;
76dda93c 5095
848cce0d
LZ
5096 if (!inode && !IS_ROOT(dentry))
5097 inode = dentry->d_parent->d_inode;
76dda93c 5098
848cce0d
LZ
5099 if (inode) {
5100 root = BTRFS_I(inode)->root;
efefb143
YZ
5101 if (btrfs_root_refs(&root->root_item) == 0)
5102 return 1;
848cce0d
LZ
5103
5104 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5105 return 1;
efefb143 5106 }
76dda93c
YZ
5107 return 0;
5108}
5109
b4aff1f8
JB
5110static void btrfs_dentry_release(struct dentry *dentry)
5111{
5112 if (dentry->d_fsdata)
5113 kfree(dentry->d_fsdata);
5114}
5115
3de4586c 5116static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5117 unsigned int flags)
3de4586c 5118{
a66e7cc6
JB
5119 struct dentry *ret;
5120
5121 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
a66e7cc6 5122 return ret;
39279cc3
CM
5123}
5124
16cdcec7 5125unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5126 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5127};
5128
cbdf5a24
DW
5129static int btrfs_real_readdir(struct file *filp, void *dirent,
5130 filldir_t filldir)
39279cc3 5131{
496ad9aa 5132 struct inode *inode = file_inode(filp);
39279cc3
CM
5133 struct btrfs_root *root = BTRFS_I(inode)->root;
5134 struct btrfs_item *item;
5135 struct btrfs_dir_item *di;
5136 struct btrfs_key key;
5f39d397 5137 struct btrfs_key found_key;
39279cc3 5138 struct btrfs_path *path;
16cdcec7
MX
5139 struct list_head ins_list;
5140 struct list_head del_list;
39279cc3 5141 int ret;
5f39d397 5142 struct extent_buffer *leaf;
39279cc3 5143 int slot;
39279cc3
CM
5144 unsigned char d_type;
5145 int over = 0;
5146 u32 di_cur;
5147 u32 di_total;
5148 u32 di_len;
5149 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5150 char tmp_name[32];
5151 char *name_ptr;
5152 int name_len;
16cdcec7 5153 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
5154
5155 /* FIXME, use a real flag for deciding about the key type */
5156 if (root->fs_info->tree_root == root)
5157 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5158
3954401f
CM
5159 /* special case for "." */
5160 if (filp->f_pos == 0) {
3765fefa
HS
5161 over = filldir(dirent, ".", 1,
5162 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
5163 if (over)
5164 return 0;
5165 filp->f_pos = 1;
5166 }
3954401f
CM
5167 /* special case for .., just use the back ref */
5168 if (filp->f_pos == 1) {
5ecc7e5d 5169 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 5170 over = filldir(dirent, "..", 2,
3765fefa 5171 filp->f_pos, pino, DT_DIR);
3954401f 5172 if (over)
49593bfa 5173 return 0;
3954401f
CM
5174 filp->f_pos = 2;
5175 }
49593bfa 5176 path = btrfs_alloc_path();
16cdcec7
MX
5177 if (!path)
5178 return -ENOMEM;
ff5714cc 5179
026fd317 5180 path->reada = 1;
49593bfa 5181
16cdcec7
MX
5182 if (key_type == BTRFS_DIR_INDEX_KEY) {
5183 INIT_LIST_HEAD(&ins_list);
5184 INIT_LIST_HEAD(&del_list);
5185 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5186 }
5187
39279cc3
CM
5188 btrfs_set_key_type(&key, key_type);
5189 key.offset = filp->f_pos;
33345d01 5190 key.objectid = btrfs_ino(inode);
5f39d397 5191
39279cc3
CM
5192 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5193 if (ret < 0)
5194 goto err;
49593bfa
DW
5195
5196 while (1) {
5f39d397 5197 leaf = path->nodes[0];
39279cc3 5198 slot = path->slots[0];
b9e03af0
LZ
5199 if (slot >= btrfs_header_nritems(leaf)) {
5200 ret = btrfs_next_leaf(root, path);
5201 if (ret < 0)
5202 goto err;
5203 else if (ret > 0)
5204 break;
5205 continue;
39279cc3 5206 }
3de4586c 5207
5f39d397
CM
5208 item = btrfs_item_nr(leaf, slot);
5209 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5210
5211 if (found_key.objectid != key.objectid)
39279cc3 5212 break;
5f39d397 5213 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5214 break;
5f39d397 5215 if (found_key.offset < filp->f_pos)
b9e03af0 5216 goto next;
16cdcec7
MX
5217 if (key_type == BTRFS_DIR_INDEX_KEY &&
5218 btrfs_should_delete_dir_index(&del_list,
5219 found_key.offset))
5220 goto next;
5f39d397
CM
5221
5222 filp->f_pos = found_key.offset;
16cdcec7 5223 is_curr = 1;
49593bfa 5224
39279cc3
CM
5225 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5226 di_cur = 0;
5f39d397 5227 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5228
5229 while (di_cur < di_total) {
5f39d397
CM
5230 struct btrfs_key location;
5231
22a94d44
JB
5232 if (verify_dir_item(root, leaf, di))
5233 break;
5234
5f39d397 5235 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5236 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5237 name_ptr = tmp_name;
5238 } else {
5239 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5240 if (!name_ptr) {
5241 ret = -ENOMEM;
5242 goto err;
5243 }
5f39d397
CM
5244 }
5245 read_extent_buffer(leaf, name_ptr,
5246 (unsigned long)(di + 1), name_len);
5247
5248 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5249 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5250
fede766f 5251
3de4586c 5252 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5253 * skip it.
5254 *
5255 * In contrast to old kernels, we insert the snapshot's
5256 * dir item and dir index after it has been created, so
5257 * we won't find a reference to our own snapshot. We
5258 * still keep the following code for backward
5259 * compatibility.
3de4586c
CM
5260 */
5261 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5262 location.objectid == root->root_key.objectid) {
5263 over = 0;
5264 goto skip;
5265 }
5f39d397 5266 over = filldir(dirent, name_ptr, name_len,
49593bfa 5267 found_key.offset, location.objectid,
39279cc3 5268 d_type);
5f39d397 5269
3de4586c 5270skip:
5f39d397
CM
5271 if (name_ptr != tmp_name)
5272 kfree(name_ptr);
5273
39279cc3
CM
5274 if (over)
5275 goto nopos;
5103e947 5276 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5277 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5278 di_cur += di_len;
5279 di = (struct btrfs_dir_item *)((char *)di + di_len);
5280 }
b9e03af0
LZ
5281next:
5282 path->slots[0]++;
39279cc3 5283 }
49593bfa 5284
16cdcec7
MX
5285 if (key_type == BTRFS_DIR_INDEX_KEY) {
5286 if (is_curr)
5287 filp->f_pos++;
5288 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
5289 &ins_list);
5290 if (ret)
5291 goto nopos;
5292 }
5293
49593bfa 5294 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 5295 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
5296 /*
5297 * 32-bit glibc will use getdents64, but then strtol -
5298 * so the last number we can serve is this.
5299 */
5300 filp->f_pos = 0x7fffffff;
5e591a07
YZ
5301 else
5302 filp->f_pos++;
39279cc3
CM
5303nopos:
5304 ret = 0;
5305err:
16cdcec7
MX
5306 if (key_type == BTRFS_DIR_INDEX_KEY)
5307 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5308 btrfs_free_path(path);
39279cc3
CM
5309 return ret;
5310}
5311
a9185b41 5312int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5313{
5314 struct btrfs_root *root = BTRFS_I(inode)->root;
5315 struct btrfs_trans_handle *trans;
5316 int ret = 0;
0af3d00b 5317 bool nolock = false;
39279cc3 5318
72ac3c0d 5319 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5320 return 0;
5321
83eea1f1 5322 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5323 nolock = true;
0af3d00b 5324
a9185b41 5325 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5326 if (nolock)
7a7eaa40 5327 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5328 else
7a7eaa40 5329 trans = btrfs_join_transaction(root);
3612b495
TI
5330 if (IS_ERR(trans))
5331 return PTR_ERR(trans);
a698d075 5332 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5333 }
5334 return ret;
5335}
5336
5337/*
54aa1f4d 5338 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5339 * inode changes. But, it is most likely to find the inode in cache.
5340 * FIXME, needs more benchmarking...there are no reasons other than performance
5341 * to keep or drop this code.
5342 */
48a3b636 5343static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5344{
5345 struct btrfs_root *root = BTRFS_I(inode)->root;
5346 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5347 int ret;
5348
72ac3c0d 5349 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5350 return 0;
39279cc3 5351
7a7eaa40 5352 trans = btrfs_join_transaction(root);
22c44fe6
JB
5353 if (IS_ERR(trans))
5354 return PTR_ERR(trans);
8929ecfa
YZ
5355
5356 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5357 if (ret && ret == -ENOSPC) {
5358 /* whoops, lets try again with the full transaction */
5359 btrfs_end_transaction(trans, root);
5360 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5361 if (IS_ERR(trans))
5362 return PTR_ERR(trans);
8929ecfa 5363
94b60442 5364 ret = btrfs_update_inode(trans, root, inode);
94b60442 5365 }
39279cc3 5366 btrfs_end_transaction(trans, root);
16cdcec7
MX
5367 if (BTRFS_I(inode)->delayed_node)
5368 btrfs_balance_delayed_items(root);
22c44fe6
JB
5369
5370 return ret;
5371}
5372
5373/*
5374 * This is a copy of file_update_time. We need this so we can return error on
5375 * ENOSPC for updating the inode in the case of file write and mmap writes.
5376 */
e41f941a
JB
5377static int btrfs_update_time(struct inode *inode, struct timespec *now,
5378 int flags)
22c44fe6 5379{
2bc55652
AB
5380 struct btrfs_root *root = BTRFS_I(inode)->root;
5381
5382 if (btrfs_root_readonly(root))
5383 return -EROFS;
5384
e41f941a 5385 if (flags & S_VERSION)
22c44fe6 5386 inode_inc_iversion(inode);
e41f941a
JB
5387 if (flags & S_CTIME)
5388 inode->i_ctime = *now;
5389 if (flags & S_MTIME)
5390 inode->i_mtime = *now;
5391 if (flags & S_ATIME)
5392 inode->i_atime = *now;
5393 return btrfs_dirty_inode(inode);
39279cc3
CM
5394}
5395
d352ac68
CM
5396/*
5397 * find the highest existing sequence number in a directory
5398 * and then set the in-memory index_cnt variable to reflect
5399 * free sequence numbers
5400 */
aec7477b
JB
5401static int btrfs_set_inode_index_count(struct inode *inode)
5402{
5403 struct btrfs_root *root = BTRFS_I(inode)->root;
5404 struct btrfs_key key, found_key;
5405 struct btrfs_path *path;
5406 struct extent_buffer *leaf;
5407 int ret;
5408
33345d01 5409 key.objectid = btrfs_ino(inode);
aec7477b
JB
5410 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5411 key.offset = (u64)-1;
5412
5413 path = btrfs_alloc_path();
5414 if (!path)
5415 return -ENOMEM;
5416
5417 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5418 if (ret < 0)
5419 goto out;
5420 /* FIXME: we should be able to handle this */
5421 if (ret == 0)
5422 goto out;
5423 ret = 0;
5424
5425 /*
5426 * MAGIC NUMBER EXPLANATION:
5427 * since we search a directory based on f_pos we have to start at 2
5428 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5429 * else has to start at 2
5430 */
5431 if (path->slots[0] == 0) {
5432 BTRFS_I(inode)->index_cnt = 2;
5433 goto out;
5434 }
5435
5436 path->slots[0]--;
5437
5438 leaf = path->nodes[0];
5439 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5440
33345d01 5441 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5442 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5443 BTRFS_I(inode)->index_cnt = 2;
5444 goto out;
5445 }
5446
5447 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5448out:
5449 btrfs_free_path(path);
5450 return ret;
5451}
5452
d352ac68
CM
5453/*
5454 * helper to find a free sequence number in a given directory. This current
5455 * code is very simple, later versions will do smarter things in the btree
5456 */
3de4586c 5457int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5458{
5459 int ret = 0;
5460
5461 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5462 ret = btrfs_inode_delayed_dir_index_count(dir);
5463 if (ret) {
5464 ret = btrfs_set_inode_index_count(dir);
5465 if (ret)
5466 return ret;
5467 }
aec7477b
JB
5468 }
5469
00e4e6b3 5470 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5471 BTRFS_I(dir)->index_cnt++;
5472
5473 return ret;
5474}
5475
39279cc3
CM
5476static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5477 struct btrfs_root *root,
aec7477b 5478 struct inode *dir,
9c58309d 5479 const char *name, int name_len,
175a4eb7
AV
5480 u64 ref_objectid, u64 objectid,
5481 umode_t mode, u64 *index)
39279cc3
CM
5482{
5483 struct inode *inode;
5f39d397 5484 struct btrfs_inode_item *inode_item;
39279cc3 5485 struct btrfs_key *location;
5f39d397 5486 struct btrfs_path *path;
9c58309d
CM
5487 struct btrfs_inode_ref *ref;
5488 struct btrfs_key key[2];
5489 u32 sizes[2];
5490 unsigned long ptr;
39279cc3
CM
5491 int ret;
5492 int owner;
5493
5f39d397 5494 path = btrfs_alloc_path();
d8926bb3
MF
5495 if (!path)
5496 return ERR_PTR(-ENOMEM);
5f39d397 5497
39279cc3 5498 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5499 if (!inode) {
5500 btrfs_free_path(path);
39279cc3 5501 return ERR_PTR(-ENOMEM);
8fb27640 5502 }
39279cc3 5503
581bb050
LZ
5504 /*
5505 * we have to initialize this early, so we can reclaim the inode
5506 * number if we fail afterwards in this function.
5507 */
5508 inode->i_ino = objectid;
5509
aec7477b 5510 if (dir) {
1abe9b8a 5511 trace_btrfs_inode_request(dir);
5512
3de4586c 5513 ret = btrfs_set_inode_index(dir, index);
09771430 5514 if (ret) {
8fb27640 5515 btrfs_free_path(path);
09771430 5516 iput(inode);
aec7477b 5517 return ERR_PTR(ret);
09771430 5518 }
aec7477b
JB
5519 }
5520 /*
5521 * index_cnt is ignored for everything but a dir,
5522 * btrfs_get_inode_index_count has an explanation for the magic
5523 * number
5524 */
5525 BTRFS_I(inode)->index_cnt = 2;
39279cc3 5526 BTRFS_I(inode)->root = root;
e02119d5 5527 BTRFS_I(inode)->generation = trans->transid;
76195853 5528 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5529
5dc562c5
JB
5530 /*
5531 * We could have gotten an inode number from somebody who was fsynced
5532 * and then removed in this same transaction, so let's just set full
5533 * sync since it will be a full sync anyway and this will blow away the
5534 * old info in the log.
5535 */
5536 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5537
569254b0 5538 if (S_ISDIR(mode))
39279cc3
CM
5539 owner = 0;
5540 else
5541 owner = 1;
9c58309d
CM
5542
5543 key[0].objectid = objectid;
5544 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5545 key[0].offset = 0;
5546
f186373f
MF
5547 /*
5548 * Start new inodes with an inode_ref. This is slightly more
5549 * efficient for small numbers of hard links since they will
5550 * be packed into one item. Extended refs will kick in if we
5551 * add more hard links than can fit in the ref item.
5552 */
9c58309d
CM
5553 key[1].objectid = objectid;
5554 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5555 key[1].offset = ref_objectid;
5556
5557 sizes[0] = sizeof(struct btrfs_inode_item);
5558 sizes[1] = name_len + sizeof(*ref);
5559
b9473439 5560 path->leave_spinning = 1;
9c58309d
CM
5561 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5562 if (ret != 0)
5f39d397
CM
5563 goto fail;
5564
ecc11fab 5565 inode_init_owner(inode, dir, mode);
a76a3cd4 5566 inode_set_bytes(inode, 0);
39279cc3 5567 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5568 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5569 struct btrfs_inode_item);
293f7e07
LZ
5570 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5571 sizeof(*inode_item));
e02119d5 5572 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
5573
5574 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5575 struct btrfs_inode_ref);
5576 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 5577 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
5578 ptr = (unsigned long)(ref + 1);
5579 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5580
5f39d397
CM
5581 btrfs_mark_buffer_dirty(path->nodes[0]);
5582 btrfs_free_path(path);
5583
39279cc3
CM
5584 location = &BTRFS_I(inode)->location;
5585 location->objectid = objectid;
39279cc3
CM
5586 location->offset = 0;
5587 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5588
6cbff00f
CH
5589 btrfs_inherit_iflags(inode, dir);
5590
569254b0 5591 if (S_ISREG(mode)) {
94272164
CM
5592 if (btrfs_test_opt(root, NODATASUM))
5593 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5594 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5595 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5596 BTRFS_INODE_NODATASUM;
94272164
CM
5597 }
5598
39279cc3 5599 insert_inode_hash(inode);
5d4f98a2 5600 inode_tree_add(inode);
1abe9b8a 5601
5602 trace_btrfs_inode_new(inode);
1973f0fa 5603 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5604
8ea05e3a
AB
5605 btrfs_update_root_times(trans, root);
5606
39279cc3 5607 return inode;
5f39d397 5608fail:
aec7477b
JB
5609 if (dir)
5610 BTRFS_I(dir)->index_cnt--;
5f39d397 5611 btrfs_free_path(path);
09771430 5612 iput(inode);
5f39d397 5613 return ERR_PTR(ret);
39279cc3
CM
5614}
5615
5616static inline u8 btrfs_inode_type(struct inode *inode)
5617{
5618 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5619}
5620
d352ac68
CM
5621/*
5622 * utility function to add 'inode' into 'parent_inode' with
5623 * a give name and a given sequence number.
5624 * if 'add_backref' is true, also insert a backref from the
5625 * inode to the parent directory.
5626 */
e02119d5
CM
5627int btrfs_add_link(struct btrfs_trans_handle *trans,
5628 struct inode *parent_inode, struct inode *inode,
5629 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5630{
4df27c4d 5631 int ret = 0;
39279cc3 5632 struct btrfs_key key;
e02119d5 5633 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5634 u64 ino = btrfs_ino(inode);
5635 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5636
33345d01 5637 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5638 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5639 } else {
33345d01 5640 key.objectid = ino;
4df27c4d
YZ
5641 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5642 key.offset = 0;
5643 }
5644
33345d01 5645 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5646 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5647 key.objectid, root->root_key.objectid,
33345d01 5648 parent_ino, index, name, name_len);
4df27c4d 5649 } else if (add_backref) {
33345d01
LZ
5650 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5651 parent_ino, index);
4df27c4d 5652 }
39279cc3 5653
79787eaa
JM
5654 /* Nothing to clean up yet */
5655 if (ret)
5656 return ret;
4df27c4d 5657
79787eaa
JM
5658 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5659 parent_inode, &key,
5660 btrfs_inode_type(inode), index);
9c52057c 5661 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5662 goto fail_dir_item;
5663 else if (ret) {
5664 btrfs_abort_transaction(trans, root, ret);
5665 return ret;
39279cc3 5666 }
79787eaa
JM
5667
5668 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5669 name_len * 2);
0c4d2d95 5670 inode_inc_iversion(parent_inode);
79787eaa
JM
5671 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5672 ret = btrfs_update_inode(trans, root, parent_inode);
5673 if (ret)
5674 btrfs_abort_transaction(trans, root, ret);
39279cc3 5675 return ret;
fe66a05a
CM
5676
5677fail_dir_item:
5678 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5679 u64 local_index;
5680 int err;
5681 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5682 key.objectid, root->root_key.objectid,
5683 parent_ino, &local_index, name, name_len);
5684
5685 } else if (add_backref) {
5686 u64 local_index;
5687 int err;
5688
5689 err = btrfs_del_inode_ref(trans, root, name, name_len,
5690 ino, parent_ino, &local_index);
5691 }
5692 return ret;
39279cc3
CM
5693}
5694
5695static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5696 struct inode *dir, struct dentry *dentry,
5697 struct inode *inode, int backref, u64 index)
39279cc3 5698{
a1b075d2
JB
5699 int err = btrfs_add_link(trans, dir, inode,
5700 dentry->d_name.name, dentry->d_name.len,
5701 backref, index);
39279cc3
CM
5702 if (err > 0)
5703 err = -EEXIST;
5704 return err;
5705}
5706
618e21d5 5707static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5708 umode_t mode, dev_t rdev)
618e21d5
JB
5709{
5710 struct btrfs_trans_handle *trans;
5711 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5712 struct inode *inode = NULL;
618e21d5
JB
5713 int err;
5714 int drop_inode = 0;
5715 u64 objectid;
00e4e6b3 5716 u64 index = 0;
618e21d5
JB
5717
5718 if (!new_valid_dev(rdev))
5719 return -EINVAL;
5720
9ed74f2d
JB
5721 /*
5722 * 2 for inode item and ref
5723 * 2 for dir items
5724 * 1 for xattr if selinux is on
5725 */
a22285a6
YZ
5726 trans = btrfs_start_transaction(root, 5);
5727 if (IS_ERR(trans))
5728 return PTR_ERR(trans);
1832a6d5 5729
581bb050
LZ
5730 err = btrfs_find_free_ino(root, &objectid);
5731 if (err)
5732 goto out_unlock;
5733
aec7477b 5734 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5735 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5736 mode, &index);
7cf96da3
TI
5737 if (IS_ERR(inode)) {
5738 err = PTR_ERR(inode);
618e21d5 5739 goto out_unlock;
7cf96da3 5740 }
618e21d5 5741
2a7dba39 5742 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5743 if (err) {
5744 drop_inode = 1;
5745 goto out_unlock;
5746 }
5747
ad19db71
CS
5748 /*
5749 * If the active LSM wants to access the inode during
5750 * d_instantiate it needs these. Smack checks to see
5751 * if the filesystem supports xattrs by looking at the
5752 * ops vector.
5753 */
5754
5755 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5756 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5757 if (err)
5758 drop_inode = 1;
5759 else {
618e21d5 5760 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5761 btrfs_update_inode(trans, root, inode);
08c422c2 5762 d_instantiate(dentry, inode);
618e21d5 5763 }
618e21d5 5764out_unlock:
7ad85bb7 5765 btrfs_end_transaction(trans, root);
b53d3f5d 5766 btrfs_btree_balance_dirty(root);
618e21d5
JB
5767 if (drop_inode) {
5768 inode_dec_link_count(inode);
5769 iput(inode);
5770 }
618e21d5
JB
5771 return err;
5772}
5773
39279cc3 5774static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5775 umode_t mode, bool excl)
39279cc3
CM
5776{
5777 struct btrfs_trans_handle *trans;
5778 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5779 struct inode *inode = NULL;
43baa579 5780 int drop_inode_on_err = 0;
a22285a6 5781 int err;
39279cc3 5782 u64 objectid;
00e4e6b3 5783 u64 index = 0;
39279cc3 5784
9ed74f2d
JB
5785 /*
5786 * 2 for inode item and ref
5787 * 2 for dir items
5788 * 1 for xattr if selinux is on
5789 */
a22285a6
YZ
5790 trans = btrfs_start_transaction(root, 5);
5791 if (IS_ERR(trans))
5792 return PTR_ERR(trans);
9ed74f2d 5793
581bb050
LZ
5794 err = btrfs_find_free_ino(root, &objectid);
5795 if (err)
5796 goto out_unlock;
5797
aec7477b 5798 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5799 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5800 mode, &index);
7cf96da3
TI
5801 if (IS_ERR(inode)) {
5802 err = PTR_ERR(inode);
39279cc3 5803 goto out_unlock;
7cf96da3 5804 }
43baa579 5805 drop_inode_on_err = 1;
39279cc3 5806
2a7dba39 5807 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5808 if (err)
33268eaf 5809 goto out_unlock;
33268eaf 5810
9185aa58
FB
5811 err = btrfs_update_inode(trans, root, inode);
5812 if (err)
5813 goto out_unlock;
5814
ad19db71
CS
5815 /*
5816 * If the active LSM wants to access the inode during
5817 * d_instantiate it needs these. Smack checks to see
5818 * if the filesystem supports xattrs by looking at the
5819 * ops vector.
5820 */
5821 inode->i_fop = &btrfs_file_operations;
5822 inode->i_op = &btrfs_file_inode_operations;
5823
a1b075d2 5824 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5825 if (err)
43baa579
FB
5826 goto out_unlock;
5827
5828 inode->i_mapping->a_ops = &btrfs_aops;
5829 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5830 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5831 d_instantiate(dentry, inode);
5832
39279cc3 5833out_unlock:
7ad85bb7 5834 btrfs_end_transaction(trans, root);
43baa579 5835 if (err && drop_inode_on_err) {
39279cc3
CM
5836 inode_dec_link_count(inode);
5837 iput(inode);
5838 }
b53d3f5d 5839 btrfs_btree_balance_dirty(root);
39279cc3
CM
5840 return err;
5841}
5842
5843static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5844 struct dentry *dentry)
5845{
5846 struct btrfs_trans_handle *trans;
5847 struct btrfs_root *root = BTRFS_I(dir)->root;
5848 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5849 u64 index;
39279cc3
CM
5850 int err;
5851 int drop_inode = 0;
5852
4a8be425
TH
5853 /* do not allow sys_link's with other subvols of the same device */
5854 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5855 return -EXDEV;
4a8be425 5856
f186373f 5857 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5858 return -EMLINK;
4a8be425 5859
3de4586c 5860 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5861 if (err)
5862 goto fail;
5863
a22285a6 5864 /*
7e6b6465 5865 * 2 items for inode and inode ref
a22285a6 5866 * 2 items for dir items
7e6b6465 5867 * 1 item for parent inode
a22285a6 5868 */
7e6b6465 5869 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5870 if (IS_ERR(trans)) {
5871 err = PTR_ERR(trans);
5872 goto fail;
5873 }
5f39d397 5874
3153495d 5875 btrfs_inc_nlink(inode);
0c4d2d95 5876 inode_inc_iversion(inode);
3153495d 5877 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5878 ihold(inode);
e9976151 5879 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5880
a1b075d2 5881 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5882
a5719521 5883 if (err) {
54aa1f4d 5884 drop_inode = 1;
a5719521 5885 } else {
10d9f309 5886 struct dentry *parent = dentry->d_parent;
a5719521 5887 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5888 if (err)
5889 goto fail;
08c422c2 5890 d_instantiate(dentry, inode);
6a912213 5891 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5892 }
39279cc3 5893
7ad85bb7 5894 btrfs_end_transaction(trans, root);
1832a6d5 5895fail:
39279cc3
CM
5896 if (drop_inode) {
5897 inode_dec_link_count(inode);
5898 iput(inode);
5899 }
b53d3f5d 5900 btrfs_btree_balance_dirty(root);
39279cc3
CM
5901 return err;
5902}
5903
18bb1db3 5904static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5905{
b9d86667 5906 struct inode *inode = NULL;
39279cc3
CM
5907 struct btrfs_trans_handle *trans;
5908 struct btrfs_root *root = BTRFS_I(dir)->root;
5909 int err = 0;
5910 int drop_on_err = 0;
b9d86667 5911 u64 objectid = 0;
00e4e6b3 5912 u64 index = 0;
39279cc3 5913
9ed74f2d
JB
5914 /*
5915 * 2 items for inode and ref
5916 * 2 items for dir items
5917 * 1 for xattr if selinux is on
5918 */
a22285a6
YZ
5919 trans = btrfs_start_transaction(root, 5);
5920 if (IS_ERR(trans))
5921 return PTR_ERR(trans);
39279cc3 5922
581bb050
LZ
5923 err = btrfs_find_free_ino(root, &objectid);
5924 if (err)
5925 goto out_fail;
5926
aec7477b 5927 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5928 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5929 S_IFDIR | mode, &index);
39279cc3
CM
5930 if (IS_ERR(inode)) {
5931 err = PTR_ERR(inode);
5932 goto out_fail;
5933 }
5f39d397 5934
39279cc3 5935 drop_on_err = 1;
33268eaf 5936
2a7dba39 5937 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5938 if (err)
5939 goto out_fail;
5940
39279cc3
CM
5941 inode->i_op = &btrfs_dir_inode_operations;
5942 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5943
dbe674a9 5944 btrfs_i_size_write(inode, 0);
39279cc3
CM
5945 err = btrfs_update_inode(trans, root, inode);
5946 if (err)
5947 goto out_fail;
5f39d397 5948
a1b075d2
JB
5949 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5950 dentry->d_name.len, 0, index);
39279cc3
CM
5951 if (err)
5952 goto out_fail;
5f39d397 5953
39279cc3
CM
5954 d_instantiate(dentry, inode);
5955 drop_on_err = 0;
39279cc3
CM
5956
5957out_fail:
7ad85bb7 5958 btrfs_end_transaction(trans, root);
39279cc3
CM
5959 if (drop_on_err)
5960 iput(inode);
b53d3f5d 5961 btrfs_btree_balance_dirty(root);
39279cc3
CM
5962 return err;
5963}
5964
d352ac68
CM
5965/* helper for btfs_get_extent. Given an existing extent in the tree,
5966 * and an extent that you want to insert, deal with overlap and insert
5967 * the new extent into the tree.
5968 */
3b951516
CM
5969static int merge_extent_mapping(struct extent_map_tree *em_tree,
5970 struct extent_map *existing,
e6dcd2dc
CM
5971 struct extent_map *em,
5972 u64 map_start, u64 map_len)
3b951516
CM
5973{
5974 u64 start_diff;
3b951516 5975
e6dcd2dc
CM
5976 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5977 start_diff = map_start - em->start;
5978 em->start = map_start;
5979 em->len = map_len;
c8b97818
CM
5980 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5981 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5982 em->block_start += start_diff;
c8b97818
CM
5983 em->block_len -= start_diff;
5984 }
09a2a8f9 5985 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
5986}
5987
c8b97818
CM
5988static noinline int uncompress_inline(struct btrfs_path *path,
5989 struct inode *inode, struct page *page,
5990 size_t pg_offset, u64 extent_offset,
5991 struct btrfs_file_extent_item *item)
5992{
5993 int ret;
5994 struct extent_buffer *leaf = path->nodes[0];
5995 char *tmp;
5996 size_t max_size;
5997 unsigned long inline_size;
5998 unsigned long ptr;
261507a0 5999 int compress_type;
c8b97818
CM
6000
6001 WARN_ON(pg_offset != 0);
261507a0 6002 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6003 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6004 inline_size = btrfs_file_extent_inline_item_len(leaf,
6005 btrfs_item_nr(leaf, path->slots[0]));
6006 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6007 if (!tmp)
6008 return -ENOMEM;
c8b97818
CM
6009 ptr = btrfs_file_extent_inline_start(item);
6010
6011 read_extent_buffer(leaf, tmp, ptr, inline_size);
6012
5b050f04 6013 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6014 ret = btrfs_decompress(compress_type, tmp, page,
6015 extent_offset, inline_size, max_size);
c8b97818 6016 if (ret) {
7ac687d9 6017 char *kaddr = kmap_atomic(page);
c8b97818
CM
6018 unsigned long copy_size = min_t(u64,
6019 PAGE_CACHE_SIZE - pg_offset,
6020 max_size - extent_offset);
6021 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 6022 kunmap_atomic(kaddr);
c8b97818
CM
6023 }
6024 kfree(tmp);
6025 return 0;
6026}
6027
d352ac68
CM
6028/*
6029 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6030 * the ugly parts come from merging extents from the disk with the in-ram
6031 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6032 * where the in-ram extents might be locked pending data=ordered completion.
6033 *
6034 * This also copies inline extents directly into the page.
6035 */
d397712b 6036
a52d9a80 6037struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6038 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6039 int create)
6040{
6041 int ret;
6042 int err = 0;
db94535d 6043 u64 bytenr;
a52d9a80
CM
6044 u64 extent_start = 0;
6045 u64 extent_end = 0;
33345d01 6046 u64 objectid = btrfs_ino(inode);
a52d9a80 6047 u32 found_type;
f421950f 6048 struct btrfs_path *path = NULL;
a52d9a80
CM
6049 struct btrfs_root *root = BTRFS_I(inode)->root;
6050 struct btrfs_file_extent_item *item;
5f39d397
CM
6051 struct extent_buffer *leaf;
6052 struct btrfs_key found_key;
a52d9a80
CM
6053 struct extent_map *em = NULL;
6054 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6055 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6056 struct btrfs_trans_handle *trans = NULL;
261507a0 6057 int compress_type;
a52d9a80 6058
a52d9a80 6059again:
890871be 6060 read_lock(&em_tree->lock);
d1310b2e 6061 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6062 if (em)
6063 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6064 read_unlock(&em_tree->lock);
d1310b2e 6065
a52d9a80 6066 if (em) {
e1c4b745
CM
6067 if (em->start > start || em->start + em->len <= start)
6068 free_extent_map(em);
6069 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6070 free_extent_map(em);
6071 else
6072 goto out;
a52d9a80 6073 }
172ddd60 6074 em = alloc_extent_map();
a52d9a80 6075 if (!em) {
d1310b2e
CM
6076 err = -ENOMEM;
6077 goto out;
a52d9a80 6078 }
e6dcd2dc 6079 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6080 em->start = EXTENT_MAP_HOLE;
445a6944 6081 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6082 em->len = (u64)-1;
c8b97818 6083 em->block_len = (u64)-1;
f421950f
CM
6084
6085 if (!path) {
6086 path = btrfs_alloc_path();
026fd317
JB
6087 if (!path) {
6088 err = -ENOMEM;
6089 goto out;
6090 }
6091 /*
6092 * Chances are we'll be called again, so go ahead and do
6093 * readahead
6094 */
6095 path->reada = 1;
f421950f
CM
6096 }
6097
179e29e4
CM
6098 ret = btrfs_lookup_file_extent(trans, root, path,
6099 objectid, start, trans != NULL);
a52d9a80
CM
6100 if (ret < 0) {
6101 err = ret;
6102 goto out;
6103 }
6104
6105 if (ret != 0) {
6106 if (path->slots[0] == 0)
6107 goto not_found;
6108 path->slots[0]--;
6109 }
6110
5f39d397
CM
6111 leaf = path->nodes[0];
6112 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6113 struct btrfs_file_extent_item);
a52d9a80 6114 /* are we inside the extent that was found? */
5f39d397
CM
6115 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6116 found_type = btrfs_key_type(&found_key);
6117 if (found_key.objectid != objectid ||
a52d9a80
CM
6118 found_type != BTRFS_EXTENT_DATA_KEY) {
6119 goto not_found;
6120 }
6121
5f39d397
CM
6122 found_type = btrfs_file_extent_type(leaf, item);
6123 extent_start = found_key.offset;
261507a0 6124 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
6125 if (found_type == BTRFS_FILE_EXTENT_REG ||
6126 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6127 extent_end = extent_start +
db94535d 6128 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6129 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6130 size_t size;
6131 size = btrfs_file_extent_inline_len(leaf, item);
fda2832f 6132 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102
YZ
6133 }
6134
6135 if (start >= extent_end) {
6136 path->slots[0]++;
6137 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6138 ret = btrfs_next_leaf(root, path);
6139 if (ret < 0) {
6140 err = ret;
6141 goto out;
a52d9a80 6142 }
9036c102
YZ
6143 if (ret > 0)
6144 goto not_found;
6145 leaf = path->nodes[0];
a52d9a80 6146 }
9036c102
YZ
6147 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6148 if (found_key.objectid != objectid ||
6149 found_key.type != BTRFS_EXTENT_DATA_KEY)
6150 goto not_found;
6151 if (start + len <= found_key.offset)
6152 goto not_found;
6153 em->start = start;
70c8a91c 6154 em->orig_start = start;
9036c102
YZ
6155 em->len = found_key.offset - start;
6156 goto not_found_em;
6157 }
6158
cc95bef6 6159 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
d899e052
YZ
6160 if (found_type == BTRFS_FILE_EXTENT_REG ||
6161 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
6162 em->start = extent_start;
6163 em->len = extent_end - extent_start;
ff5b7ee3
YZ
6164 em->orig_start = extent_start -
6165 btrfs_file_extent_offset(leaf, item);
b4939680
JB
6166 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6167 item);
db94535d
CM
6168 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6169 if (bytenr == 0) {
5f39d397 6170 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
6171 goto insert;
6172 }
261507a0 6173 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 6174 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 6175 em->compress_type = compress_type;
c8b97818 6176 em->block_start = bytenr;
b4939680 6177 em->block_len = em->orig_block_len;
c8b97818
CM
6178 } else {
6179 bytenr += btrfs_file_extent_offset(leaf, item);
6180 em->block_start = bytenr;
6181 em->block_len = em->len;
d899e052
YZ
6182 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6183 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 6184 }
a52d9a80
CM
6185 goto insert;
6186 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6187 unsigned long ptr;
a52d9a80 6188 char *map;
3326d1b0
CM
6189 size_t size;
6190 size_t extent_offset;
6191 size_t copy_size;
a52d9a80 6192
689f9346 6193 em->block_start = EXTENT_MAP_INLINE;
c8b97818 6194 if (!page || create) {
689f9346 6195 em->start = extent_start;
9036c102 6196 em->len = extent_end - extent_start;
689f9346
Y
6197 goto out;
6198 }
5f39d397 6199
9036c102
YZ
6200 size = btrfs_file_extent_inline_len(leaf, item);
6201 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6202 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6203 size - extent_offset);
3326d1b0 6204 em->start = extent_start + extent_offset;
fda2832f 6205 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6206 em->orig_block_len = em->len;
70c8a91c 6207 em->orig_start = em->start;
261507a0 6208 if (compress_type) {
c8b97818 6209 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
6210 em->compress_type = compress_type;
6211 }
689f9346 6212 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6213 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6214 if (btrfs_file_extent_compression(leaf, item) !=
6215 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6216 ret = uncompress_inline(path, inode, page,
6217 pg_offset,
6218 extent_offset, item);
79787eaa 6219 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
6220 } else {
6221 map = kmap(page);
6222 read_extent_buffer(leaf, map + pg_offset, ptr,
6223 copy_size);
93c82d57
CM
6224 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6225 memset(map + pg_offset + copy_size, 0,
6226 PAGE_CACHE_SIZE - pg_offset -
6227 copy_size);
6228 }
c8b97818
CM
6229 kunmap(page);
6230 }
179e29e4
CM
6231 flush_dcache_page(page);
6232 } else if (create && PageUptodate(page)) {
6bf7e080 6233 BUG();
179e29e4
CM
6234 if (!trans) {
6235 kunmap(page);
6236 free_extent_map(em);
6237 em = NULL;
ff5714cc 6238
b3b4aa74 6239 btrfs_release_path(path);
7a7eaa40 6240 trans = btrfs_join_transaction(root);
ff5714cc 6241
3612b495
TI
6242 if (IS_ERR(trans))
6243 return ERR_CAST(trans);
179e29e4
CM
6244 goto again;
6245 }
c8b97818 6246 map = kmap(page);
70dec807 6247 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6248 copy_size);
c8b97818 6249 kunmap(page);
179e29e4 6250 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6251 }
d1310b2e 6252 set_extent_uptodate(io_tree, em->start,
507903b8 6253 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
6254 goto insert;
6255 } else {
31b1a2bd 6256 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
6257 }
6258not_found:
6259 em->start = start;
70c8a91c 6260 em->orig_start = start;
d1310b2e 6261 em->len = len;
a52d9a80 6262not_found_em:
5f39d397 6263 em->block_start = EXTENT_MAP_HOLE;
9036c102 6264 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6265insert:
b3b4aa74 6266 btrfs_release_path(path);
d1310b2e 6267 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb
SK
6268 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6269 (unsigned long long)em->start,
6270 (unsigned long long)em->len,
6271 (unsigned long long)start,
6272 (unsigned long long)len);
a52d9a80
CM
6273 err = -EIO;
6274 goto out;
6275 }
d1310b2e
CM
6276
6277 err = 0;
890871be 6278 write_lock(&em_tree->lock);
09a2a8f9 6279 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6280 /* it is possible that someone inserted the extent into the tree
6281 * while we had the lock dropped. It is also possible that
6282 * an overlapping map exists in the tree
6283 */
a52d9a80 6284 if (ret == -EEXIST) {
3b951516 6285 struct extent_map *existing;
e6dcd2dc
CM
6286
6287 ret = 0;
6288
3b951516 6289 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6290 if (existing && (existing->start > start ||
6291 existing->start + existing->len <= start)) {
6292 free_extent_map(existing);
6293 existing = NULL;
6294 }
3b951516
CM
6295 if (!existing) {
6296 existing = lookup_extent_mapping(em_tree, em->start,
6297 em->len);
6298 if (existing) {
6299 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6300 em, start,
6301 root->sectorsize);
3b951516
CM
6302 free_extent_map(existing);
6303 if (err) {
6304 free_extent_map(em);
6305 em = NULL;
6306 }
6307 } else {
6308 err = -EIO;
3b951516
CM
6309 free_extent_map(em);
6310 em = NULL;
6311 }
6312 } else {
6313 free_extent_map(em);
6314 em = existing;
e6dcd2dc 6315 err = 0;
a52d9a80 6316 }
a52d9a80 6317 }
890871be 6318 write_unlock(&em_tree->lock);
a52d9a80 6319out:
1abe9b8a 6320
f0bd95ea
TI
6321 if (em)
6322 trace_btrfs_get_extent(root, em);
1abe9b8a 6323
f421950f
CM
6324 if (path)
6325 btrfs_free_path(path);
a52d9a80
CM
6326 if (trans) {
6327 ret = btrfs_end_transaction(trans, root);
d397712b 6328 if (!err)
a52d9a80
CM
6329 err = ret;
6330 }
a52d9a80
CM
6331 if (err) {
6332 free_extent_map(em);
a52d9a80
CM
6333 return ERR_PTR(err);
6334 }
79787eaa 6335 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6336 return em;
6337}
6338
ec29ed5b
CM
6339struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6340 size_t pg_offset, u64 start, u64 len,
6341 int create)
6342{
6343 struct extent_map *em;
6344 struct extent_map *hole_em = NULL;
6345 u64 range_start = start;
6346 u64 end;
6347 u64 found;
6348 u64 found_end;
6349 int err = 0;
6350
6351 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6352 if (IS_ERR(em))
6353 return em;
6354 if (em) {
6355 /*
f9e4fb53
LB
6356 * if our em maps to
6357 * - a hole or
6358 * - a pre-alloc extent,
6359 * there might actually be delalloc bytes behind it.
ec29ed5b 6360 */
f9e4fb53
LB
6361 if (em->block_start != EXTENT_MAP_HOLE &&
6362 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6363 return em;
6364 else
6365 hole_em = em;
6366 }
6367
6368 /* check to see if we've wrapped (len == -1 or similar) */
6369 end = start + len;
6370 if (end < start)
6371 end = (u64)-1;
6372 else
6373 end -= 1;
6374
6375 em = NULL;
6376
6377 /* ok, we didn't find anything, lets look for delalloc */
6378 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6379 end, len, EXTENT_DELALLOC, 1);
6380 found_end = range_start + found;
6381 if (found_end < range_start)
6382 found_end = (u64)-1;
6383
6384 /*
6385 * we didn't find anything useful, return
6386 * the original results from get_extent()
6387 */
6388 if (range_start > end || found_end <= start) {
6389 em = hole_em;
6390 hole_em = NULL;
6391 goto out;
6392 }
6393
6394 /* adjust the range_start to make sure it doesn't
6395 * go backwards from the start they passed in
6396 */
6397 range_start = max(start,range_start);
6398 found = found_end - range_start;
6399
6400 if (found > 0) {
6401 u64 hole_start = start;
6402 u64 hole_len = len;
6403
172ddd60 6404 em = alloc_extent_map();
ec29ed5b
CM
6405 if (!em) {
6406 err = -ENOMEM;
6407 goto out;
6408 }
6409 /*
6410 * when btrfs_get_extent can't find anything it
6411 * returns one huge hole
6412 *
6413 * make sure what it found really fits our range, and
6414 * adjust to make sure it is based on the start from
6415 * the caller
6416 */
6417 if (hole_em) {
6418 u64 calc_end = extent_map_end(hole_em);
6419
6420 if (calc_end <= start || (hole_em->start > end)) {
6421 free_extent_map(hole_em);
6422 hole_em = NULL;
6423 } else {
6424 hole_start = max(hole_em->start, start);
6425 hole_len = calc_end - hole_start;
6426 }
6427 }
6428 em->bdev = NULL;
6429 if (hole_em && range_start > hole_start) {
6430 /* our hole starts before our delalloc, so we
6431 * have to return just the parts of the hole
6432 * that go until the delalloc starts
6433 */
6434 em->len = min(hole_len,
6435 range_start - hole_start);
6436 em->start = hole_start;
6437 em->orig_start = hole_start;
6438 /*
6439 * don't adjust block start at all,
6440 * it is fixed at EXTENT_MAP_HOLE
6441 */
6442 em->block_start = hole_em->block_start;
6443 em->block_len = hole_len;
f9e4fb53
LB
6444 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6445 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6446 } else {
6447 em->start = range_start;
6448 em->len = found;
6449 em->orig_start = range_start;
6450 em->block_start = EXTENT_MAP_DELALLOC;
6451 em->block_len = found;
6452 }
6453 } else if (hole_em) {
6454 return hole_em;
6455 }
6456out:
6457
6458 free_extent_map(hole_em);
6459 if (err) {
6460 free_extent_map(em);
6461 return ERR_PTR(err);
6462 }
6463 return em;
6464}
6465
4b46fce2
JB
6466static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6467 u64 start, u64 len)
6468{
6469 struct btrfs_root *root = BTRFS_I(inode)->root;
6470 struct btrfs_trans_handle *trans;
70c8a91c 6471 struct extent_map *em;
4b46fce2
JB
6472 struct btrfs_key ins;
6473 u64 alloc_hint;
6474 int ret;
4b46fce2 6475
7a7eaa40 6476 trans = btrfs_join_transaction(root);
3612b495
TI
6477 if (IS_ERR(trans))
6478 return ERR_CAST(trans);
4b46fce2
JB
6479
6480 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
6481
6482 alloc_hint = get_extent_allocation_hint(inode, start, len);
6483 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 6484 alloc_hint, &ins, 1);
4b46fce2
JB
6485 if (ret) {
6486 em = ERR_PTR(ret);
6487 goto out;
6488 }
6489
70c8a91c 6490 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6491 ins.offset, ins.offset, ins.offset, 0);
70c8a91c
JB
6492 if (IS_ERR(em))
6493 goto out;
4b46fce2
JB
6494
6495 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6496 ins.offset, ins.offset, 0);
6497 if (ret) {
6498 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6499 em = ERR_PTR(ret);
6500 }
6501out:
6502 btrfs_end_transaction(trans, root);
6503 return em;
6504}
6505
46bfbb5c
CM
6506/*
6507 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6508 * block must be cow'd
6509 */
6510static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
eb384b55
JB
6511 struct inode *inode, u64 offset, u64 *len,
6512 u64 *orig_start, u64 *orig_block_len,
6513 u64 *ram_bytes)
46bfbb5c
CM
6514{
6515 struct btrfs_path *path;
6516 int ret;
6517 struct extent_buffer *leaf;
6518 struct btrfs_root *root = BTRFS_I(inode)->root;
6519 struct btrfs_file_extent_item *fi;
6520 struct btrfs_key key;
6521 u64 disk_bytenr;
6522 u64 backref_offset;
6523 u64 extent_end;
6524 u64 num_bytes;
6525 int slot;
6526 int found_type;
6527
6528 path = btrfs_alloc_path();
6529 if (!path)
6530 return -ENOMEM;
6531
33345d01 6532 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
6533 offset, 0);
6534 if (ret < 0)
6535 goto out;
6536
6537 slot = path->slots[0];
6538 if (ret == 1) {
6539 if (slot == 0) {
6540 /* can't find the item, must cow */
6541 ret = 0;
6542 goto out;
6543 }
6544 slot--;
6545 }
6546 ret = 0;
6547 leaf = path->nodes[0];
6548 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6549 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6550 key.type != BTRFS_EXTENT_DATA_KEY) {
6551 /* not our file or wrong item type, must cow */
6552 goto out;
6553 }
6554
6555 if (key.offset > offset) {
6556 /* Wrong offset, must cow */
6557 goto out;
6558 }
6559
6560 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6561 found_type = btrfs_file_extent_type(leaf, fi);
6562 if (found_type != BTRFS_FILE_EXTENT_REG &&
6563 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6564 /* not a regular extent, must cow */
6565 goto out;
6566 }
6567 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6568 backref_offset = btrfs_file_extent_offset(leaf, fi);
6569
eb384b55
JB
6570 *orig_start = key.offset - backref_offset;
6571 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6572 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6573
46bfbb5c 6574 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
eb384b55 6575 if (extent_end < offset + *len) {
46bfbb5c
CM
6576 /* extent doesn't include our full range, must cow */
6577 goto out;
6578 }
6579
6580 if (btrfs_extent_readonly(root, disk_bytenr))
6581 goto out;
6582
6583 /*
6584 * look for other files referencing this extent, if we
6585 * find any we must cow
6586 */
33345d01 6587 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
6588 key.offset - backref_offset, disk_bytenr))
6589 goto out;
6590
6591 /*
6592 * adjust disk_bytenr and num_bytes to cover just the bytes
6593 * in this extent we are about to write. If there
6594 * are any csums in that range we have to cow in order
6595 * to keep the csums correct
6596 */
6597 disk_bytenr += backref_offset;
6598 disk_bytenr += offset - key.offset;
eb384b55 6599 num_bytes = min(offset + *len, extent_end) - offset;
46bfbb5c
CM
6600 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6601 goto out;
6602 /*
6603 * all of the above have passed, it is safe to overwrite this extent
6604 * without cow
6605 */
eb384b55 6606 *len = num_bytes;
46bfbb5c
CM
6607 ret = 1;
6608out:
6609 btrfs_free_path(path);
6610 return ret;
6611}
6612
eb838e73
JB
6613static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6614 struct extent_state **cached_state, int writing)
6615{
6616 struct btrfs_ordered_extent *ordered;
6617 int ret = 0;
6618
6619 while (1) {
6620 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6621 0, cached_state);
6622 /*
6623 * We're concerned with the entire range that we're going to be
6624 * doing DIO to, so we need to make sure theres no ordered
6625 * extents in this range.
6626 */
6627 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6628 lockend - lockstart + 1);
6629
6630 /*
6631 * We need to make sure there are no buffered pages in this
6632 * range either, we could have raced between the invalidate in
6633 * generic_file_direct_write and locking the extent. The
6634 * invalidate needs to happen so that reads after a write do not
6635 * get stale data.
6636 */
6637 if (!ordered && (!writing ||
6638 !test_range_bit(&BTRFS_I(inode)->io_tree,
6639 lockstart, lockend, EXTENT_UPTODATE, 0,
6640 *cached_state)))
6641 break;
6642
6643 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6644 cached_state, GFP_NOFS);
6645
6646 if (ordered) {
6647 btrfs_start_ordered_extent(inode, ordered, 1);
6648 btrfs_put_ordered_extent(ordered);
6649 } else {
6650 /* Screw you mmap */
6651 ret = filemap_write_and_wait_range(inode->i_mapping,
6652 lockstart,
6653 lockend);
6654 if (ret)
6655 break;
6656
6657 /*
6658 * If we found a page that couldn't be invalidated just
6659 * fall back to buffered.
6660 */
6661 ret = invalidate_inode_pages2_range(inode->i_mapping,
6662 lockstart >> PAGE_CACHE_SHIFT,
6663 lockend >> PAGE_CACHE_SHIFT);
6664 if (ret)
6665 break;
6666 }
6667
6668 cond_resched();
6669 }
6670
6671 return ret;
6672}
6673
69ffb543
JB
6674static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6675 u64 len, u64 orig_start,
6676 u64 block_start, u64 block_len,
cc95bef6
JB
6677 u64 orig_block_len, u64 ram_bytes,
6678 int type)
69ffb543
JB
6679{
6680 struct extent_map_tree *em_tree;
6681 struct extent_map *em;
6682 struct btrfs_root *root = BTRFS_I(inode)->root;
6683 int ret;
6684
6685 em_tree = &BTRFS_I(inode)->extent_tree;
6686 em = alloc_extent_map();
6687 if (!em)
6688 return ERR_PTR(-ENOMEM);
6689
6690 em->start = start;
6691 em->orig_start = orig_start;
2ab28f32
JB
6692 em->mod_start = start;
6693 em->mod_len = len;
69ffb543
JB
6694 em->len = len;
6695 em->block_len = block_len;
6696 em->block_start = block_start;
6697 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6698 em->orig_block_len = orig_block_len;
cc95bef6 6699 em->ram_bytes = ram_bytes;
70c8a91c 6700 em->generation = -1;
69ffb543
JB
6701 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6702 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6703 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6704
6705 do {
6706 btrfs_drop_extent_cache(inode, em->start,
6707 em->start + em->len - 1, 0);
6708 write_lock(&em_tree->lock);
09a2a8f9 6709 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6710 write_unlock(&em_tree->lock);
6711 } while (ret == -EEXIST);
6712
6713 if (ret) {
6714 free_extent_map(em);
6715 return ERR_PTR(ret);
6716 }
6717
6718 return em;
6719}
6720
6721
4b46fce2
JB
6722static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6723 struct buffer_head *bh_result, int create)
6724{
6725 struct extent_map *em;
6726 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6727 struct extent_state *cached_state = NULL;
4b46fce2 6728 u64 start = iblock << inode->i_blkbits;
eb838e73 6729 u64 lockstart, lockend;
4b46fce2 6730 u64 len = bh_result->b_size;
46bfbb5c 6731 struct btrfs_trans_handle *trans;
eb838e73 6732 int unlock_bits = EXTENT_LOCKED;
0934856d 6733 int ret = 0;
eb838e73 6734
172a5049 6735 if (create)
eb838e73 6736 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6737 else
c329861d 6738 len = min_t(u64, len, root->sectorsize);
eb838e73 6739
c329861d
JB
6740 lockstart = start;
6741 lockend = start + len - 1;
6742
eb838e73
JB
6743 /*
6744 * If this errors out it's because we couldn't invalidate pagecache for
6745 * this range and we need to fallback to buffered.
6746 */
6747 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6748 return -ENOTBLK;
6749
4b46fce2 6750 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6751 if (IS_ERR(em)) {
6752 ret = PTR_ERR(em);
6753 goto unlock_err;
6754 }
4b46fce2
JB
6755
6756 /*
6757 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6758 * io. INLINE is special, and we could probably kludge it in here, but
6759 * it's still buffered so for safety lets just fall back to the generic
6760 * buffered path.
6761 *
6762 * For COMPRESSED we _have_ to read the entire extent in so we can
6763 * decompress it, so there will be buffering required no matter what we
6764 * do, so go ahead and fallback to buffered.
6765 *
6766 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6767 * to buffered IO. Don't blame me, this is the price we pay for using
6768 * the generic code.
6769 */
6770 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6771 em->block_start == EXTENT_MAP_INLINE) {
6772 free_extent_map(em);
eb838e73
JB
6773 ret = -ENOTBLK;
6774 goto unlock_err;
4b46fce2
JB
6775 }
6776
6777 /* Just a good old fashioned hole, return */
6778 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6779 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6780 free_extent_map(em);
eb838e73 6781 goto unlock_err;
4b46fce2
JB
6782 }
6783
6784 /*
6785 * We don't allocate a new extent in the following cases
6786 *
6787 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6788 * existing extent.
6789 * 2) The extent is marked as PREALLOC. We're good to go here and can
6790 * just use the extent.
6791 *
6792 */
46bfbb5c 6793 if (!create) {
eb838e73
JB
6794 len = min(len, em->len - (start - em->start));
6795 lockstart = start + len;
6796 goto unlock;
46bfbb5c 6797 }
4b46fce2
JB
6798
6799 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6800 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6801 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6802 int type;
6803 int ret;
eb384b55 6804 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
6805
6806 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6807 type = BTRFS_ORDERED_PREALLOC;
6808 else
6809 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6810 len = min(len, em->len - (start - em->start));
4b46fce2 6811 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
6812
6813 /*
6814 * we're not going to log anything, but we do need
6815 * to make sure the current transaction stays open
6816 * while we look for nocow cross refs
6817 */
7a7eaa40 6818 trans = btrfs_join_transaction(root);
3612b495 6819 if (IS_ERR(trans))
46bfbb5c
CM
6820 goto must_cow;
6821
eb384b55
JB
6822 if (can_nocow_odirect(trans, inode, start, &len, &orig_start,
6823 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
6824 if (type == BTRFS_ORDERED_PREALLOC) {
6825 free_extent_map(em);
6826 em = create_pinned_em(inode, start, len,
6827 orig_start,
b4939680 6828 block_start, len,
cc95bef6
JB
6829 orig_block_len,
6830 ram_bytes, type);
69ffb543
JB
6831 if (IS_ERR(em)) {
6832 btrfs_end_transaction(trans, root);
6833 goto unlock_err;
6834 }
6835 }
6836
46bfbb5c
CM
6837 ret = btrfs_add_ordered_extent_dio(inode, start,
6838 block_start, len, len, type);
6839 btrfs_end_transaction(trans, root);
6840 if (ret) {
6841 free_extent_map(em);
eb838e73 6842 goto unlock_err;
46bfbb5c
CM
6843 }
6844 goto unlock;
4b46fce2 6845 }
46bfbb5c 6846 btrfs_end_transaction(trans, root);
4b46fce2 6847 }
46bfbb5c
CM
6848must_cow:
6849 /*
6850 * this will cow the extent, reset the len in case we changed
6851 * it above
6852 */
6853 len = bh_result->b_size;
70c8a91c
JB
6854 free_extent_map(em);
6855 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6856 if (IS_ERR(em)) {
6857 ret = PTR_ERR(em);
6858 goto unlock_err;
6859 }
46bfbb5c
CM
6860 len = min(len, em->len - (start - em->start));
6861unlock:
4b46fce2
JB
6862 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6863 inode->i_blkbits;
46bfbb5c 6864 bh_result->b_size = len;
4b46fce2
JB
6865 bh_result->b_bdev = em->bdev;
6866 set_buffer_mapped(bh_result);
c3473e83
JB
6867 if (create) {
6868 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6869 set_buffer_new(bh_result);
6870
6871 /*
6872 * Need to update the i_size under the extent lock so buffered
6873 * readers will get the updated i_size when we unlock.
6874 */
6875 if (start + len > i_size_read(inode))
6876 i_size_write(inode, start + len);
0934856d 6877
172a5049
MX
6878 spin_lock(&BTRFS_I(inode)->lock);
6879 BTRFS_I(inode)->outstanding_extents++;
6880 spin_unlock(&BTRFS_I(inode)->lock);
6881
0934856d
MX
6882 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6883 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6884 &cached_state, GFP_NOFS);
6885 BUG_ON(ret);
c3473e83 6886 }
4b46fce2 6887
eb838e73
JB
6888 /*
6889 * In the case of write we need to clear and unlock the entire range,
6890 * in the case of read we need to unlock only the end area that we
6891 * aren't using if there is any left over space.
6892 */
24c03fa5 6893 if (lockstart < lockend) {
0934856d
MX
6894 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6895 lockend, unlock_bits, 1, 0,
6896 &cached_state, GFP_NOFS);
24c03fa5 6897 } else {
eb838e73 6898 free_extent_state(cached_state);
24c03fa5 6899 }
eb838e73 6900
4b46fce2
JB
6901 free_extent_map(em);
6902
6903 return 0;
eb838e73
JB
6904
6905unlock_err:
eb838e73
JB
6906 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6907 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6908 return ret;
4b46fce2
JB
6909}
6910
6911struct btrfs_dio_private {
6912 struct inode *inode;
6913 u64 logical_offset;
6914 u64 disk_bytenr;
6915 u64 bytes;
4b46fce2 6916 void *private;
e65e1535
MX
6917
6918 /* number of bios pending for this dio */
6919 atomic_t pending_bios;
6920
6921 /* IO errors */
6922 int errors;
6923
9be3395b 6924 /* orig_bio is our btrfs_io_bio */
e65e1535 6925 struct bio *orig_bio;
9be3395b
CM
6926
6927 /* dio_bio came from fs/direct-io.c */
6928 struct bio *dio_bio;
4b46fce2
JB
6929};
6930
6931static void btrfs_endio_direct_read(struct bio *bio, int err)
6932{
e65e1535 6933 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6934 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6935 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6936 struct inode *inode = dip->inode;
c2cf52eb 6937 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 6938 struct bio *dio_bio;
4b46fce2 6939 u64 start;
4b46fce2
JB
6940
6941 start = dip->logical_offset;
6942 do {
6943 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6944 struct page *page = bvec->bv_page;
6945 char *kaddr;
6946 u32 csum = ~(u32)0;
c329861d 6947 u64 private = ~(u32)0;
4b46fce2
JB
6948 unsigned long flags;
6949
c329861d
JB
6950 if (get_state_private(&BTRFS_I(inode)->io_tree,
6951 start, &private))
6952 goto failed;
4b46fce2 6953 local_irq_save(flags);
7ac687d9 6954 kaddr = kmap_atomic(page);
b0496686 6955 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
6956 csum, bvec->bv_len);
6957 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6958 kunmap_atomic(kaddr);
4b46fce2
JB
6959 local_irq_restore(flags);
6960
6961 flush_dcache_page(bvec->bv_page);
c329861d
JB
6962 if (csum != private) {
6963failed:
c2cf52eb
SK
6964 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u private %u",
6965 (unsigned long long)btrfs_ino(inode),
6966 (unsigned long long)start,
6967 csum, (unsigned)private);
4b46fce2
JB
6968 err = -EIO;
6969 }
6970 }
6971
6972 start += bvec->bv_len;
4b46fce2
JB
6973 bvec++;
6974 } while (bvec <= bvec_end);
6975
6976 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6977 dip->logical_offset + dip->bytes - 1);
9be3395b 6978 dio_bio = dip->dio_bio;
4b46fce2 6979
4b46fce2 6980 kfree(dip);
c0da7aa1
JB
6981
6982 /* If we had a csum failure make sure to clear the uptodate flag */
6983 if (err)
9be3395b
CM
6984 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6985 dio_end_io(dio_bio, err);
6986 bio_put(bio);
4b46fce2
JB
6987}
6988
6989static void btrfs_endio_direct_write(struct bio *bio, int err)
6990{
6991 struct btrfs_dio_private *dip = bio->bi_private;
6992 struct inode *inode = dip->inode;
6993 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6994 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6995 u64 ordered_offset = dip->logical_offset;
6996 u64 ordered_bytes = dip->bytes;
9be3395b 6997 struct bio *dio_bio;
4b46fce2
JB
6998 int ret;
6999
7000 if (err)
7001 goto out_done;
163cf09c
CM
7002again:
7003 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7004 &ordered_offset,
5fd02043 7005 ordered_bytes, !err);
4b46fce2 7006 if (!ret)
163cf09c 7007 goto out_test;
4b46fce2 7008
5fd02043
JB
7009 ordered->work.func = finish_ordered_fn;
7010 ordered->work.flags = 0;
7011 btrfs_queue_worker(&root->fs_info->endio_write_workers,
7012 &ordered->work);
163cf09c
CM
7013out_test:
7014 /*
7015 * our bio might span multiple ordered extents. If we haven't
7016 * completed the accounting for the whole dio, go back and try again
7017 */
7018 if (ordered_offset < dip->logical_offset + dip->bytes) {
7019 ordered_bytes = dip->logical_offset + dip->bytes -
7020 ordered_offset;
5fd02043 7021 ordered = NULL;
163cf09c
CM
7022 goto again;
7023 }
4b46fce2 7024out_done:
9be3395b 7025 dio_bio = dip->dio_bio;
4b46fce2 7026
4b46fce2 7027 kfree(dip);
c0da7aa1
JB
7028
7029 /* If we had an error make sure to clear the uptodate flag */
7030 if (err)
9be3395b
CM
7031 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7032 dio_end_io(dio_bio, err);
7033 bio_put(bio);
4b46fce2
JB
7034}
7035
eaf25d93
CM
7036static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7037 struct bio *bio, int mirror_num,
7038 unsigned long bio_flags, u64 offset)
7039{
7040 int ret;
7041 struct btrfs_root *root = BTRFS_I(inode)->root;
7042 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 7043 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7044 return 0;
7045}
7046
e65e1535
MX
7047static void btrfs_end_dio_bio(struct bio *bio, int err)
7048{
7049 struct btrfs_dio_private *dip = bio->bi_private;
7050
7051 if (err) {
33345d01 7052 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 7053 "sector %#Lx len %u err no %d\n",
33345d01 7054 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 7055 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
7056 dip->errors = 1;
7057
7058 /*
7059 * before atomic variable goto zero, we must make sure
7060 * dip->errors is perceived to be set.
7061 */
7062 smp_mb__before_atomic_dec();
7063 }
7064
7065 /* if there are more bios still pending for this dio, just exit */
7066 if (!atomic_dec_and_test(&dip->pending_bios))
7067 goto out;
7068
9be3395b 7069 if (dip->errors) {
e65e1535 7070 bio_io_error(dip->orig_bio);
9be3395b
CM
7071 } else {
7072 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
7073 bio_endio(dip->orig_bio, 0);
7074 }
7075out:
7076 bio_put(bio);
7077}
7078
7079static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7080 u64 first_sector, gfp_t gfp_flags)
7081{
7082 int nr_vecs = bio_get_nr_vecs(bdev);
7083 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7084}
7085
7086static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7087 int rw, u64 file_offset, int skip_sum,
c329861d 7088 int async_submit)
e65e1535
MX
7089{
7090 int write = rw & REQ_WRITE;
7091 struct btrfs_root *root = BTRFS_I(inode)->root;
7092 int ret;
7093
b812ce28
JB
7094 if (async_submit)
7095 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7096
e65e1535 7097 bio_get(bio);
5fd02043
JB
7098
7099 if (!write) {
7100 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7101 if (ret)
7102 goto err;
7103 }
e65e1535 7104
1ae39938
JB
7105 if (skip_sum)
7106 goto map;
7107
7108 if (write && async_submit) {
e65e1535
MX
7109 ret = btrfs_wq_submit_bio(root->fs_info,
7110 inode, rw, bio, 0, 0,
7111 file_offset,
7112 __btrfs_submit_bio_start_direct_io,
7113 __btrfs_submit_bio_done);
7114 goto err;
1ae39938
JB
7115 } else if (write) {
7116 /*
7117 * If we aren't doing async submit, calculate the csum of the
7118 * bio now.
7119 */
7120 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7121 if (ret)
7122 goto err;
c2db1073 7123 } else if (!skip_sum) {
c329861d 7124 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
c2db1073
TI
7125 if (ret)
7126 goto err;
7127 }
e65e1535 7128
1ae39938
JB
7129map:
7130 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
7131err:
7132 bio_put(bio);
7133 return ret;
7134}
7135
7136static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7137 int skip_sum)
7138{
7139 struct inode *inode = dip->inode;
7140 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
7141 struct bio *bio;
7142 struct bio *orig_bio = dip->orig_bio;
7143 struct bio_vec *bvec = orig_bio->bi_io_vec;
7144 u64 start_sector = orig_bio->bi_sector;
7145 u64 file_offset = dip->logical_offset;
7146 u64 submit_len = 0;
7147 u64 map_length;
7148 int nr_pages = 0;
e65e1535 7149 int ret = 0;
1ae39938 7150 int async_submit = 0;
e65e1535 7151
e65e1535 7152 map_length = orig_bio->bi_size;
53b381b3 7153 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535
MX
7154 &map_length, NULL, 0);
7155 if (ret) {
64728bbb 7156 bio_put(orig_bio);
e65e1535
MX
7157 return -EIO;
7158 }
02f57c7a
JB
7159 if (map_length >= orig_bio->bi_size) {
7160 bio = orig_bio;
7161 goto submit;
7162 }
7163
53b381b3
DW
7164 /* async crcs make it difficult to collect full stripe writes. */
7165 if (btrfs_get_alloc_profile(root, 1) &
7166 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7167 async_submit = 0;
7168 else
7169 async_submit = 1;
7170
02f57c7a
JB
7171 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7172 if (!bio)
7173 return -ENOMEM;
7174 bio->bi_private = dip;
7175 bio->bi_end_io = btrfs_end_dio_bio;
7176 atomic_inc(&dip->pending_bios);
7177
e65e1535
MX
7178 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7179 if (unlikely(map_length < submit_len + bvec->bv_len ||
7180 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7181 bvec->bv_offset) < bvec->bv_len)) {
7182 /*
7183 * inc the count before we submit the bio so
7184 * we know the end IO handler won't happen before
7185 * we inc the count. Otherwise, the dip might get freed
7186 * before we're done setting it up
7187 */
7188 atomic_inc(&dip->pending_bios);
7189 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7190 file_offset, skip_sum,
c329861d 7191 async_submit);
e65e1535
MX
7192 if (ret) {
7193 bio_put(bio);
7194 atomic_dec(&dip->pending_bios);
7195 goto out_err;
7196 }
7197
e65e1535
MX
7198 start_sector += submit_len >> 9;
7199 file_offset += submit_len;
7200
7201 submit_len = 0;
7202 nr_pages = 0;
7203
7204 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7205 start_sector, GFP_NOFS);
7206 if (!bio)
7207 goto out_err;
7208 bio->bi_private = dip;
7209 bio->bi_end_io = btrfs_end_dio_bio;
7210
7211 map_length = orig_bio->bi_size;
53b381b3 7212 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7213 start_sector << 9,
e65e1535
MX
7214 &map_length, NULL, 0);
7215 if (ret) {
7216 bio_put(bio);
7217 goto out_err;
7218 }
7219 } else {
7220 submit_len += bvec->bv_len;
7221 nr_pages ++;
7222 bvec++;
7223 }
7224 }
7225
02f57c7a 7226submit:
e65e1535 7227 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7228 async_submit);
e65e1535
MX
7229 if (!ret)
7230 return 0;
7231
7232 bio_put(bio);
7233out_err:
7234 dip->errors = 1;
7235 /*
7236 * before atomic variable goto zero, we must
7237 * make sure dip->errors is perceived to be set.
7238 */
7239 smp_mb__before_atomic_dec();
7240 if (atomic_dec_and_test(&dip->pending_bios))
7241 bio_io_error(dip->orig_bio);
7242
7243 /* bio_end_io() will handle error, so we needn't return it */
7244 return 0;
7245}
7246
9be3395b
CM
7247static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7248 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7249{
7250 struct btrfs_root *root = BTRFS_I(inode)->root;
7251 struct btrfs_dio_private *dip;
9be3395b
CM
7252 struct bio_vec *bvec = dio_bio->bi_io_vec;
7253 struct bio *io_bio;
4b46fce2 7254 int skip_sum;
7b6d91da 7255 int write = rw & REQ_WRITE;
4b46fce2
JB
7256 int ret = 0;
7257
7258 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7259
9be3395b
CM
7260 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7261
7262 if (!io_bio) {
7263 ret = -ENOMEM;
7264 goto free_ordered;
7265 }
7266
4b46fce2
JB
7267 dip = kmalloc(sizeof(*dip), GFP_NOFS);
7268 if (!dip) {
7269 ret = -ENOMEM;
9be3395b 7270 goto free_io_bio;
4b46fce2 7271 }
4b46fce2 7272
9be3395b
CM
7273 dip->private = dio_bio->bi_private;
7274 io_bio->bi_private = dio_bio->bi_private;
4b46fce2
JB
7275 dip->inode = inode;
7276 dip->logical_offset = file_offset;
7277
4b46fce2
JB
7278 dip->bytes = 0;
7279 do {
7280 dip->bytes += bvec->bv_len;
7281 bvec++;
9be3395b 7282 } while (bvec <= (dio_bio->bi_io_vec + dio_bio->bi_vcnt - 1));
4b46fce2 7283
9be3395b
CM
7284 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7285 io_bio->bi_private = dip;
e65e1535 7286 dip->errors = 0;
9be3395b
CM
7287 dip->orig_bio = io_bio;
7288 dip->dio_bio = dio_bio;
e65e1535 7289 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7290
7291 if (write)
9be3395b 7292 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7293 else
9be3395b 7294 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7295
e65e1535
MX
7296 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7297 if (!ret)
eaf25d93 7298 return;
9be3395b
CM
7299
7300free_io_bio:
7301 bio_put(io_bio);
7302
4b46fce2
JB
7303free_ordered:
7304 /*
7305 * If this is a write, we need to clean up the reserved space and kill
7306 * the ordered extent.
7307 */
7308 if (write) {
7309 struct btrfs_ordered_extent *ordered;
955256f2 7310 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7311 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7312 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7313 btrfs_free_reserved_extent(root, ordered->start,
7314 ordered->disk_len);
7315 btrfs_put_ordered_extent(ordered);
7316 btrfs_put_ordered_extent(ordered);
7317 }
9be3395b 7318 bio_endio(dio_bio, ret);
4b46fce2
JB
7319}
7320
5a5f79b5
CM
7321static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7322 const struct iovec *iov, loff_t offset,
7323 unsigned long nr_segs)
7324{
7325 int seg;
a1b75f7d 7326 int i;
5a5f79b5
CM
7327 size_t size;
7328 unsigned long addr;
7329 unsigned blocksize_mask = root->sectorsize - 1;
7330 ssize_t retval = -EINVAL;
7331 loff_t end = offset;
7332
7333 if (offset & blocksize_mask)
7334 goto out;
7335
7336 /* Check the memory alignment. Blocks cannot straddle pages */
7337 for (seg = 0; seg < nr_segs; seg++) {
7338 addr = (unsigned long)iov[seg].iov_base;
7339 size = iov[seg].iov_len;
7340 end += size;
a1b75f7d 7341 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 7342 goto out;
a1b75f7d
JB
7343
7344 /* If this is a write we don't need to check anymore */
7345 if (rw & WRITE)
7346 continue;
7347
7348 /*
7349 * Check to make sure we don't have duplicate iov_base's in this
7350 * iovec, if so return EINVAL, otherwise we'll get csum errors
7351 * when reading back.
7352 */
7353 for (i = seg + 1; i < nr_segs; i++) {
7354 if (iov[seg].iov_base == iov[i].iov_base)
7355 goto out;
7356 }
5a5f79b5
CM
7357 }
7358 retval = 0;
7359out:
7360 return retval;
7361}
eb838e73 7362
16432985
CM
7363static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7364 const struct iovec *iov, loff_t offset,
7365 unsigned long nr_segs)
7366{
4b46fce2
JB
7367 struct file *file = iocb->ki_filp;
7368 struct inode *inode = file->f_mapping->host;
0934856d 7369 size_t count = 0;
2e60a51e 7370 int flags = 0;
38851cc1
MX
7371 bool wakeup = true;
7372 bool relock = false;
0934856d 7373 ssize_t ret;
4b46fce2 7374
5a5f79b5 7375 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 7376 offset, nr_segs))
5a5f79b5 7377 return 0;
3f7c579c 7378
38851cc1
MX
7379 atomic_inc(&inode->i_dio_count);
7380 smp_mb__after_atomic_inc();
7381
0934856d
MX
7382 if (rw & WRITE) {
7383 count = iov_length(iov, nr_segs);
38851cc1
MX
7384 /*
7385 * If the write DIO is beyond the EOF, we need update
7386 * the isize, but it is protected by i_mutex. So we can
7387 * not unlock the i_mutex at this case.
7388 */
7389 if (offset + count <= inode->i_size) {
7390 mutex_unlock(&inode->i_mutex);
7391 relock = true;
7392 }
0934856d
MX
7393 ret = btrfs_delalloc_reserve_space(inode, count);
7394 if (ret)
38851cc1
MX
7395 goto out;
7396 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7397 &BTRFS_I(inode)->runtime_flags))) {
7398 inode_dio_done(inode);
7399 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7400 wakeup = false;
0934856d
MX
7401 }
7402
7403 ret = __blockdev_direct_IO(rw, iocb, inode,
7404 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7405 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
2e60a51e 7406 btrfs_submit_direct, flags);
0934856d
MX
7407 if (rw & WRITE) {
7408 if (ret < 0 && ret != -EIOCBQUEUED)
7409 btrfs_delalloc_release_space(inode, count);
172a5049 7410 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7411 btrfs_delalloc_release_space(inode,
7412 count - (size_t)ret);
172a5049
MX
7413 else
7414 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7415 }
38851cc1 7416out:
2e60a51e
MX
7417 if (wakeup)
7418 inode_dio_done(inode);
38851cc1
MX
7419 if (relock)
7420 mutex_lock(&inode->i_mutex);
0934856d
MX
7421
7422 return ret;
16432985
CM
7423}
7424
05dadc09
TI
7425#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7426
1506fcc8
YS
7427static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7428 __u64 start, __u64 len)
7429{
05dadc09
TI
7430 int ret;
7431
7432 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7433 if (ret)
7434 return ret;
7435
ec29ed5b 7436 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7437}
7438
a52d9a80 7439int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7440{
d1310b2e
CM
7441 struct extent_io_tree *tree;
7442 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7443 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7444}
1832a6d5 7445
a52d9a80 7446static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7447{
d1310b2e 7448 struct extent_io_tree *tree;
b888db2b
CM
7449
7450
7451 if (current->flags & PF_MEMALLOC) {
7452 redirty_page_for_writepage(wbc, page);
7453 unlock_page(page);
7454 return 0;
7455 }
d1310b2e 7456 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7457 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7458}
7459
48a3b636
ES
7460static int btrfs_writepages(struct address_space *mapping,
7461 struct writeback_control *wbc)
b293f02e 7462{
d1310b2e 7463 struct extent_io_tree *tree;
771ed689 7464
d1310b2e 7465 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7466 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7467}
7468
3ab2fb5a
CM
7469static int
7470btrfs_readpages(struct file *file, struct address_space *mapping,
7471 struct list_head *pages, unsigned nr_pages)
7472{
d1310b2e
CM
7473 struct extent_io_tree *tree;
7474 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7475 return extent_readpages(tree, mapping, pages, nr_pages,
7476 btrfs_get_extent);
7477}
e6dcd2dc 7478static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7479{
d1310b2e
CM
7480 struct extent_io_tree *tree;
7481 struct extent_map_tree *map;
a52d9a80 7482 int ret;
8c2383c3 7483
d1310b2e
CM
7484 tree = &BTRFS_I(page->mapping->host)->io_tree;
7485 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7486 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7487 if (ret == 1) {
7488 ClearPagePrivate(page);
7489 set_page_private(page, 0);
7490 page_cache_release(page);
39279cc3 7491 }
a52d9a80 7492 return ret;
39279cc3
CM
7493}
7494
e6dcd2dc
CM
7495static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7496{
98509cfc
CM
7497 if (PageWriteback(page) || PageDirty(page))
7498 return 0;
b335b003 7499 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7500}
7501
a52d9a80 7502static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 7503{
5fd02043 7504 struct inode *inode = page->mapping->host;
d1310b2e 7505 struct extent_io_tree *tree;
e6dcd2dc 7506 struct btrfs_ordered_extent *ordered;
2ac55d41 7507 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7508 u64 page_start = page_offset(page);
7509 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 7510
8b62b72b
CM
7511 /*
7512 * we have the page locked, so new writeback can't start,
7513 * and the dirty bit won't be cleared while we are here.
7514 *
7515 * Wait for IO on this page so that we can safely clear
7516 * the PagePrivate2 bit and do ordered accounting
7517 */
e6dcd2dc 7518 wait_on_page_writeback(page);
8b62b72b 7519
5fd02043 7520 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7521 if (offset) {
7522 btrfs_releasepage(page, GFP_NOFS);
7523 return;
7524 }
d0082371 7525 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
4eee4fa4 7526 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
e6dcd2dc 7527 if (ordered) {
eb84ae03
CM
7528 /*
7529 * IO on this page will never be started, so we need
7530 * to account for any ordered extents now
7531 */
e6dcd2dc
CM
7532 clear_extent_bit(tree, page_start, page_end,
7533 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7534 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7535 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
7536 /*
7537 * whoever cleared the private bit is responsible
7538 * for the finish_ordered_io
7539 */
5fd02043
JB
7540 if (TestClearPagePrivate2(page) &&
7541 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
7542 PAGE_CACHE_SIZE, 1)) {
7543 btrfs_finish_ordered_io(ordered);
8b62b72b 7544 }
e6dcd2dc 7545 btrfs_put_ordered_extent(ordered);
2ac55d41 7546 cached_state = NULL;
d0082371 7547 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7548 }
7549 clear_extent_bit(tree, page_start, page_end,
32c00aff 7550 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7551 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7552 &cached_state, GFP_NOFS);
e6dcd2dc
CM
7553 __btrfs_releasepage(page, GFP_NOFS);
7554
4a096752 7555 ClearPageChecked(page);
9ad6b7bc 7556 if (PagePrivate(page)) {
9ad6b7bc
CM
7557 ClearPagePrivate(page);
7558 set_page_private(page, 0);
7559 page_cache_release(page);
7560 }
39279cc3
CM
7561}
7562
9ebefb18
CM
7563/*
7564 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7565 * called from a page fault handler when a page is first dirtied. Hence we must
7566 * be careful to check for EOF conditions here. We set the page up correctly
7567 * for a written page which means we get ENOSPC checking when writing into
7568 * holes and correct delalloc and unwritten extent mapping on filesystems that
7569 * support these features.
7570 *
7571 * We are not allowed to take the i_mutex here so we have to play games to
7572 * protect against truncate races as the page could now be beyond EOF. Because
7573 * vmtruncate() writes the inode size before removing pages, once we have the
7574 * page lock we can determine safely if the page is beyond EOF. If it is not
7575 * beyond EOF, then the page is guaranteed safe against truncation until we
7576 * unlock the page.
7577 */
c2ec175c 7578int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7579{
c2ec175c 7580 struct page *page = vmf->page;
496ad9aa 7581 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7582 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7583 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7584 struct btrfs_ordered_extent *ordered;
2ac55d41 7585 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7586 char *kaddr;
7587 unsigned long zero_start;
9ebefb18 7588 loff_t size;
1832a6d5 7589 int ret;
9998eb70 7590 int reserved = 0;
a52d9a80 7591 u64 page_start;
e6dcd2dc 7592 u64 page_end;
9ebefb18 7593
b2b5ef5c 7594 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7595 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7596 if (!ret) {
e41f941a 7597 ret = file_update_time(vma->vm_file);
9998eb70
CM
7598 reserved = 1;
7599 }
56a76f82
NP
7600 if (ret) {
7601 if (ret == -ENOMEM)
7602 ret = VM_FAULT_OOM;
7603 else /* -ENOSPC, -EIO, etc */
7604 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7605 if (reserved)
7606 goto out;
7607 goto out_noreserve;
56a76f82 7608 }
1832a6d5 7609
56a76f82 7610 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7611again:
9ebefb18 7612 lock_page(page);
9ebefb18 7613 size = i_size_read(inode);
e6dcd2dc
CM
7614 page_start = page_offset(page);
7615 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7616
9ebefb18 7617 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7618 (page_start >= size)) {
9ebefb18
CM
7619 /* page got truncated out from underneath us */
7620 goto out_unlock;
7621 }
e6dcd2dc
CM
7622 wait_on_page_writeback(page);
7623
d0082371 7624 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7625 set_page_extent_mapped(page);
7626
eb84ae03
CM
7627 /*
7628 * we can't set the delalloc bits if there are pending ordered
7629 * extents. Drop our locks and wait for them to finish
7630 */
e6dcd2dc
CM
7631 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7632 if (ordered) {
2ac55d41
JB
7633 unlock_extent_cached(io_tree, page_start, page_end,
7634 &cached_state, GFP_NOFS);
e6dcd2dc 7635 unlock_page(page);
eb84ae03 7636 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7637 btrfs_put_ordered_extent(ordered);
7638 goto again;
7639 }
7640
fbf19087
JB
7641 /*
7642 * XXX - page_mkwrite gets called every time the page is dirtied, even
7643 * if it was already dirty, so for space accounting reasons we need to
7644 * clear any delalloc bits for the range we are fixing to save. There
7645 * is probably a better way to do this, but for now keep consistent with
7646 * prepare_pages in the normal write path.
7647 */
2ac55d41 7648 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7649 EXTENT_DIRTY | EXTENT_DELALLOC |
7650 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7651 0, 0, &cached_state, GFP_NOFS);
fbf19087 7652
2ac55d41
JB
7653 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7654 &cached_state);
9ed74f2d 7655 if (ret) {
2ac55d41
JB
7656 unlock_extent_cached(io_tree, page_start, page_end,
7657 &cached_state, GFP_NOFS);
9ed74f2d
JB
7658 ret = VM_FAULT_SIGBUS;
7659 goto out_unlock;
7660 }
e6dcd2dc 7661 ret = 0;
9ebefb18
CM
7662
7663 /* page is wholly or partially inside EOF */
a52d9a80 7664 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7665 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7666 else
e6dcd2dc 7667 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7668
e6dcd2dc
CM
7669 if (zero_start != PAGE_CACHE_SIZE) {
7670 kaddr = kmap(page);
7671 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7672 flush_dcache_page(page);
7673 kunmap(page);
7674 }
247e743c 7675 ClearPageChecked(page);
e6dcd2dc 7676 set_page_dirty(page);
50a9b214 7677 SetPageUptodate(page);
5a3f23d5 7678
257c62e1
CM
7679 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7680 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7681 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7682
2ac55d41 7683 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7684
7685out_unlock:
b2b5ef5c
JK
7686 if (!ret) {
7687 sb_end_pagefault(inode->i_sb);
50a9b214 7688 return VM_FAULT_LOCKED;
b2b5ef5c 7689 }
9ebefb18 7690 unlock_page(page);
1832a6d5 7691out:
ec39e180 7692 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7693out_noreserve:
b2b5ef5c 7694 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7695 return ret;
7696}
7697
a41ad394 7698static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7699{
7700 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7701 struct btrfs_block_rsv *rsv;
39279cc3 7702 int ret;
3893e33b 7703 int err = 0;
39279cc3 7704 struct btrfs_trans_handle *trans;
dbe674a9 7705 u64 mask = root->sectorsize - 1;
07127184 7706 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7707
2aaa6655 7708 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
5d5e103a 7709 if (ret)
a41ad394 7710 return ret;
8082510e 7711
4a096752 7712 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 7713 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 7714
fcb80c2a
JB
7715 /*
7716 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7717 * 3 things going on here
7718 *
7719 * 1) We need to reserve space for our orphan item and the space to
7720 * delete our orphan item. Lord knows we don't want to have a dangling
7721 * orphan item because we didn't reserve space to remove it.
7722 *
7723 * 2) We need to reserve space to update our inode.
7724 *
7725 * 3) We need to have something to cache all the space that is going to
7726 * be free'd up by the truncate operation, but also have some slack
7727 * space reserved in case it uses space during the truncate (thank you
7728 * very much snapshotting).
7729 *
7730 * And we need these to all be seperate. The fact is we can use alot of
7731 * space doing the truncate, and we have no earthly idea how much space
7732 * we will use, so we need the truncate reservation to be seperate so it
7733 * doesn't end up using space reserved for updating the inode or
7734 * removing the orphan item. We also need to be able to stop the
7735 * transaction and start a new one, which means we need to be able to
7736 * update the inode several times, and we have no idea of knowing how
7737 * many times that will be, so we can't just reserve 1 item for the
7738 * entirety of the opration, so that has to be done seperately as well.
7739 * Then there is the orphan item, which does indeed need to be held on
7740 * to for the whole operation, and we need nobody to touch this reserved
7741 * space except the orphan code.
7742 *
7743 * So that leaves us with
7744 *
7745 * 1) root->orphan_block_rsv - for the orphan deletion.
7746 * 2) rsv - for the truncate reservation, which we will steal from the
7747 * transaction reservation.
7748 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7749 * updating the inode.
7750 */
66d8f3dd 7751 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7752 if (!rsv)
7753 return -ENOMEM;
4a338542 7754 rsv->size = min_size;
ca7e70f5 7755 rsv->failfast = 1;
f0cd846e 7756
907cbceb 7757 /*
07127184 7758 * 1 for the truncate slack space
907cbceb
JB
7759 * 1 for updating the inode.
7760 */
f3fe820c 7761 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7762 if (IS_ERR(trans)) {
7763 err = PTR_ERR(trans);
7764 goto out;
7765 }
f0cd846e 7766
907cbceb
JB
7767 /* Migrate the slack space for the truncate to our reserve */
7768 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7769 min_size);
fcb80c2a 7770 BUG_ON(ret);
f0cd846e 7771
5a3f23d5
CM
7772 /*
7773 * setattr is responsible for setting the ordered_data_close flag,
7774 * but that is only tested during the last file release. That
7775 * could happen well after the next commit, leaving a great big
7776 * window where new writes may get lost if someone chooses to write
7777 * to this file after truncating to zero
7778 *
7779 * The inode doesn't have any dirty data here, and so if we commit
7780 * this is a noop. If someone immediately starts writing to the inode
7781 * it is very likely we'll catch some of their writes in this
7782 * transaction, and the commit will find this file on the ordered
7783 * data list with good things to send down.
7784 *
7785 * This is a best effort solution, there is still a window where
7786 * using truncate to replace the contents of the file will
7787 * end up with a zero length file after a crash.
7788 */
72ac3c0d
JB
7789 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7790 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7791 btrfs_add_ordered_operation(trans, root, inode);
7792
5dc562c5
JB
7793 /*
7794 * So if we truncate and then write and fsync we normally would just
7795 * write the extents that changed, which is a problem if we need to
7796 * first truncate that entire inode. So set this flag so we write out
7797 * all of the extents in the inode to the sync log so we're completely
7798 * safe.
7799 */
7800 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7801 trans->block_rsv = rsv;
907cbceb 7802
8082510e
YZ
7803 while (1) {
7804 ret = btrfs_truncate_inode_items(trans, root, inode,
7805 inode->i_size,
7806 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7807 if (ret != -ENOSPC) {
3893e33b 7808 err = ret;
8082510e 7809 break;
3893e33b 7810 }
39279cc3 7811
fcb80c2a 7812 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7813 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7814 if (ret) {
7815 err = ret;
7816 break;
7817 }
ca7e70f5 7818
8082510e 7819 btrfs_end_transaction(trans, root);
b53d3f5d 7820 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7821
7822 trans = btrfs_start_transaction(root, 2);
7823 if (IS_ERR(trans)) {
7824 ret = err = PTR_ERR(trans);
7825 trans = NULL;
7826 break;
7827 }
7828
7829 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7830 rsv, min_size);
7831 BUG_ON(ret); /* shouldn't happen */
7832 trans->block_rsv = rsv;
8082510e
YZ
7833 }
7834
7835 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7836 trans->block_rsv = root->orphan_block_rsv;
8082510e 7837 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7838 if (ret)
7839 err = ret;
8082510e
YZ
7840 }
7841
917c16b2
CM
7842 if (trans) {
7843 trans->block_rsv = &root->fs_info->trans_block_rsv;
7844 ret = btrfs_update_inode(trans, root, inode);
7845 if (ret && !err)
7846 err = ret;
7b128766 7847
7ad85bb7 7848 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7849 btrfs_btree_balance_dirty(root);
917c16b2 7850 }
fcb80c2a
JB
7851
7852out:
7853 btrfs_free_block_rsv(root, rsv);
7854
3893e33b
JB
7855 if (ret && !err)
7856 err = ret;
a41ad394 7857
3893e33b 7858 return err;
39279cc3
CM
7859}
7860
d352ac68
CM
7861/*
7862 * create a new subvolume directory/inode (helper for the ioctl).
7863 */
d2fb3437 7864int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7865 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7866{
39279cc3 7867 struct inode *inode;
76dda93c 7868 int err;
00e4e6b3 7869 u64 index = 0;
39279cc3 7870
12fc9d09
FA
7871 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7872 new_dirid, new_dirid,
7873 S_IFDIR | (~current_umask() & S_IRWXUGO),
7874 &index);
54aa1f4d 7875 if (IS_ERR(inode))
f46b5a66 7876 return PTR_ERR(inode);
39279cc3
CM
7877 inode->i_op = &btrfs_dir_inode_operations;
7878 inode->i_fop = &btrfs_dir_file_operations;
7879
bfe86848 7880 set_nlink(inode, 1);
dbe674a9 7881 btrfs_i_size_write(inode, 0);
3b96362c 7882
76dda93c 7883 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7884
76dda93c 7885 iput(inode);
ce598979 7886 return err;
39279cc3
CM
7887}
7888
39279cc3
CM
7889struct inode *btrfs_alloc_inode(struct super_block *sb)
7890{
7891 struct btrfs_inode *ei;
2ead6ae7 7892 struct inode *inode;
39279cc3
CM
7893
7894 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7895 if (!ei)
7896 return NULL;
2ead6ae7
YZ
7897
7898 ei->root = NULL;
2ead6ae7 7899 ei->generation = 0;
15ee9bc7 7900 ei->last_trans = 0;
257c62e1 7901 ei->last_sub_trans = 0;
e02119d5 7902 ei->logged_trans = 0;
2ead6ae7 7903 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7904 ei->disk_i_size = 0;
7905 ei->flags = 0;
7709cde3 7906 ei->csum_bytes = 0;
2ead6ae7
YZ
7907 ei->index_cnt = (u64)-1;
7908 ei->last_unlink_trans = 0;
46d8bc34 7909 ei->last_log_commit = 0;
2ead6ae7 7910
9e0baf60
JB
7911 spin_lock_init(&ei->lock);
7912 ei->outstanding_extents = 0;
7913 ei->reserved_extents = 0;
2ead6ae7 7914
72ac3c0d 7915 ei->runtime_flags = 0;
261507a0 7916 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7917
16cdcec7
MX
7918 ei->delayed_node = NULL;
7919
2ead6ae7 7920 inode = &ei->vfs_inode;
a8067e02 7921 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7922 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7923 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7924 ei->io_tree.track_uptodate = 1;
7925 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7926 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7927 mutex_init(&ei->log_mutex);
f248679e 7928 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7929 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7930 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7931 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7932 RB_CLEAR_NODE(&ei->rb_node);
7933
7934 return inode;
39279cc3
CM
7935}
7936
fa0d7e3d
NP
7937static void btrfs_i_callback(struct rcu_head *head)
7938{
7939 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7940 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7941}
7942
39279cc3
CM
7943void btrfs_destroy_inode(struct inode *inode)
7944{
e6dcd2dc 7945 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7946 struct btrfs_root *root = BTRFS_I(inode)->root;
7947
b3d9b7a3 7948 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7949 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7950 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7951 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7952 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7953 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7954
a6dbd429
JB
7955 /*
7956 * This can happen where we create an inode, but somebody else also
7957 * created the same inode and we need to destroy the one we already
7958 * created.
7959 */
7960 if (!root)
7961 goto free;
7962
5a3f23d5
CM
7963 /*
7964 * Make sure we're properly removed from the ordered operation
7965 * lists.
7966 */
7967 smp_mb();
7968 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7969 spin_lock(&root->fs_info->ordered_extent_lock);
7970 list_del_init(&BTRFS_I(inode)->ordered_operations);
7971 spin_unlock(&root->fs_info->ordered_extent_lock);
7972 }
7973
8a35d95f
JB
7974 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7975 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb
SK
7976 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7977 (unsigned long long)btrfs_ino(inode));
8a35d95f 7978 atomic_dec(&root->orphan_inodes);
7b128766 7979 }
7b128766 7980
d397712b 7981 while (1) {
e6dcd2dc
CM
7982 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7983 if (!ordered)
7984 break;
7985 else {
c2cf52eb
SK
7986 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
7987 (unsigned long long)ordered->file_offset,
7988 (unsigned long long)ordered->len);
e6dcd2dc
CM
7989 btrfs_remove_ordered_extent(inode, ordered);
7990 btrfs_put_ordered_extent(ordered);
7991 btrfs_put_ordered_extent(ordered);
7992 }
7993 }
5d4f98a2 7994 inode_tree_del(inode);
5b21f2ed 7995 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7996free:
fa0d7e3d 7997 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7998}
7999
45321ac5 8000int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8001{
8002 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8003
6379ef9f
NA
8004 if (root == NULL)
8005 return 1;
8006
fa6ac876 8007 /* the snap/subvol tree is on deleting */
0af3d00b 8008 if (btrfs_root_refs(&root->root_item) == 0 &&
fa6ac876 8009 root != root->fs_info->tree_root)
45321ac5 8010 return 1;
76dda93c 8011 else
45321ac5 8012 return generic_drop_inode(inode);
76dda93c
YZ
8013}
8014
0ee0fda0 8015static void init_once(void *foo)
39279cc3
CM
8016{
8017 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8018
8019 inode_init_once(&ei->vfs_inode);
8020}
8021
8022void btrfs_destroy_cachep(void)
8023{
8c0a8537
KS
8024 /*
8025 * Make sure all delayed rcu free inodes are flushed before we
8026 * destroy cache.
8027 */
8028 rcu_barrier();
39279cc3
CM
8029 if (btrfs_inode_cachep)
8030 kmem_cache_destroy(btrfs_inode_cachep);
8031 if (btrfs_trans_handle_cachep)
8032 kmem_cache_destroy(btrfs_trans_handle_cachep);
8033 if (btrfs_transaction_cachep)
8034 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
8035 if (btrfs_path_cachep)
8036 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
8037 if (btrfs_free_space_cachep)
8038 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
8039 if (btrfs_delalloc_work_cachep)
8040 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
8041}
8042
8043int btrfs_init_cachep(void)
8044{
837e1972 8045 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
8046 sizeof(struct btrfs_inode), 0,
8047 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
8048 if (!btrfs_inode_cachep)
8049 goto fail;
9601e3f6 8050
837e1972 8051 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
8052 sizeof(struct btrfs_trans_handle), 0,
8053 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8054 if (!btrfs_trans_handle_cachep)
8055 goto fail;
9601e3f6 8056
837e1972 8057 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
8058 sizeof(struct btrfs_transaction), 0,
8059 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8060 if (!btrfs_transaction_cachep)
8061 goto fail;
9601e3f6 8062
837e1972 8063 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
8064 sizeof(struct btrfs_path), 0,
8065 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8066 if (!btrfs_path_cachep)
8067 goto fail;
9601e3f6 8068
837e1972 8069 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
8070 sizeof(struct btrfs_free_space), 0,
8071 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8072 if (!btrfs_free_space_cachep)
8073 goto fail;
8074
8ccf6f19
MX
8075 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8076 sizeof(struct btrfs_delalloc_work), 0,
8077 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8078 NULL);
8079 if (!btrfs_delalloc_work_cachep)
8080 goto fail;
8081
39279cc3
CM
8082 return 0;
8083fail:
8084 btrfs_destroy_cachep();
8085 return -ENOMEM;
8086}
8087
8088static int btrfs_getattr(struct vfsmount *mnt,
8089 struct dentry *dentry, struct kstat *stat)
8090{
df0af1a5 8091 u64 delalloc_bytes;
39279cc3 8092 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
8093 u32 blocksize = inode->i_sb->s_blocksize;
8094
39279cc3 8095 generic_fillattr(inode, stat);
0ee5dc67 8096 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 8097 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
8098
8099 spin_lock(&BTRFS_I(inode)->lock);
8100 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8101 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8102 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8103 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8104 return 0;
8105}
8106
d397712b
CM
8107static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8108 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
8109{
8110 struct btrfs_trans_handle *trans;
8111 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 8112 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
8113 struct inode *new_inode = new_dentry->d_inode;
8114 struct inode *old_inode = old_dentry->d_inode;
8115 struct timespec ctime = CURRENT_TIME;
00e4e6b3 8116 u64 index = 0;
4df27c4d 8117 u64 root_objectid;
39279cc3 8118 int ret;
33345d01 8119 u64 old_ino = btrfs_ino(old_inode);
39279cc3 8120
33345d01 8121 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8122 return -EPERM;
8123
4df27c4d 8124 /* we only allow rename subvolume link between subvolumes */
33345d01 8125 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8126 return -EXDEV;
8127
33345d01
LZ
8128 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8129 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8130 return -ENOTEMPTY;
5f39d397 8131
4df27c4d
YZ
8132 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8133 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8134 return -ENOTEMPTY;
9c52057c
CM
8135
8136
8137 /* check for collisions, even if the name isn't there */
8138 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
8139 new_dentry->d_name.name,
8140 new_dentry->d_name.len);
8141
8142 if (ret) {
8143 if (ret == -EEXIST) {
8144 /* we shouldn't get
8145 * eexist without a new_inode */
8146 if (!new_inode) {
8147 WARN_ON(1);
8148 return ret;
8149 }
8150 } else {
8151 /* maybe -EOVERFLOW */
8152 return ret;
8153 }
8154 }
8155 ret = 0;
8156
5a3f23d5
CM
8157 /*
8158 * we're using rename to replace one file with another.
8159 * and the replacement file is large. Start IO on it now so
8160 * we don't add too much work to the end of the transaction
8161 */
4baf8c92 8162 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
8163 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8164 filemap_flush(old_inode->i_mapping);
8165
76dda93c 8166 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8167 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8168 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8169 /*
8170 * We want to reserve the absolute worst case amount of items. So if
8171 * both inodes are subvols and we need to unlink them then that would
8172 * require 4 item modifications, but if they are both normal inodes it
8173 * would require 5 item modifications, so we'll assume their normal
8174 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8175 * should cover the worst case number of items we'll modify.
8176 */
6e137ed3 8177 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8178 if (IS_ERR(trans)) {
8179 ret = PTR_ERR(trans);
8180 goto out_notrans;
8181 }
76dda93c 8182
4df27c4d
YZ
8183 if (dest != root)
8184 btrfs_record_root_in_trans(trans, dest);
5f39d397 8185
a5719521
YZ
8186 ret = btrfs_set_inode_index(new_dir, &index);
8187 if (ret)
8188 goto out_fail;
5a3f23d5 8189
33345d01 8190 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8191 /* force full log commit if subvolume involved. */
8192 root->fs_info->last_trans_log_full_commit = trans->transid;
8193 } else {
a5719521
YZ
8194 ret = btrfs_insert_inode_ref(trans, dest,
8195 new_dentry->d_name.name,
8196 new_dentry->d_name.len,
33345d01
LZ
8197 old_ino,
8198 btrfs_ino(new_dir), index);
a5719521
YZ
8199 if (ret)
8200 goto out_fail;
4df27c4d
YZ
8201 /*
8202 * this is an ugly little race, but the rename is required
8203 * to make sure that if we crash, the inode is either at the
8204 * old name or the new one. pinning the log transaction lets
8205 * us make sure we don't allow a log commit to come in after
8206 * we unlink the name but before we add the new name back in.
8207 */
8208 btrfs_pin_log_trans(root);
8209 }
5a3f23d5
CM
8210 /*
8211 * make sure the inode gets flushed if it is replacing
8212 * something.
8213 */
33345d01 8214 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 8215 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 8216
0c4d2d95
JB
8217 inode_inc_iversion(old_dir);
8218 inode_inc_iversion(new_dir);
8219 inode_inc_iversion(old_inode);
39279cc3
CM
8220 old_dir->i_ctime = old_dir->i_mtime = ctime;
8221 new_dir->i_ctime = new_dir->i_mtime = ctime;
8222 old_inode->i_ctime = ctime;
5f39d397 8223
12fcfd22
CM
8224 if (old_dentry->d_parent != new_dentry->d_parent)
8225 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8226
33345d01 8227 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8228 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8229 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8230 old_dentry->d_name.name,
8231 old_dentry->d_name.len);
8232 } else {
92986796
AV
8233 ret = __btrfs_unlink_inode(trans, root, old_dir,
8234 old_dentry->d_inode,
8235 old_dentry->d_name.name,
8236 old_dentry->d_name.len);
8237 if (!ret)
8238 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8239 }
79787eaa
JM
8240 if (ret) {
8241 btrfs_abort_transaction(trans, root, ret);
8242 goto out_fail;
8243 }
39279cc3
CM
8244
8245 if (new_inode) {
0c4d2d95 8246 inode_inc_iversion(new_inode);
39279cc3 8247 new_inode->i_ctime = CURRENT_TIME;
33345d01 8248 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8249 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8250 root_objectid = BTRFS_I(new_inode)->location.objectid;
8251 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8252 root_objectid,
8253 new_dentry->d_name.name,
8254 new_dentry->d_name.len);
8255 BUG_ON(new_inode->i_nlink == 0);
8256 } else {
8257 ret = btrfs_unlink_inode(trans, dest, new_dir,
8258 new_dentry->d_inode,
8259 new_dentry->d_name.name,
8260 new_dentry->d_name.len);
8261 }
79787eaa 8262 if (!ret && new_inode->i_nlink == 0) {
e02119d5 8263 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 8264 BUG_ON(ret);
7b128766 8265 }
79787eaa
JM
8266 if (ret) {
8267 btrfs_abort_transaction(trans, root, ret);
8268 goto out_fail;
8269 }
39279cc3 8270 }
aec7477b 8271
4df27c4d
YZ
8272 ret = btrfs_add_link(trans, new_dir, old_inode,
8273 new_dentry->d_name.name,
a5719521 8274 new_dentry->d_name.len, 0, index);
79787eaa
JM
8275 if (ret) {
8276 btrfs_abort_transaction(trans, root, ret);
8277 goto out_fail;
8278 }
39279cc3 8279
33345d01 8280 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8281 struct dentry *parent = new_dentry->d_parent;
6a912213 8282 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8283 btrfs_end_log_trans(root);
8284 }
39279cc3 8285out_fail:
7ad85bb7 8286 btrfs_end_transaction(trans, root);
b44c59a8 8287out_notrans:
33345d01 8288 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8289 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8290
39279cc3
CM
8291 return ret;
8292}
8293
8ccf6f19
MX
8294static void btrfs_run_delalloc_work(struct btrfs_work *work)
8295{
8296 struct btrfs_delalloc_work *delalloc_work;
8297
8298 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8299 work);
8300 if (delalloc_work->wait)
8301 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8302 else
8303 filemap_flush(delalloc_work->inode->i_mapping);
8304
8305 if (delalloc_work->delay_iput)
8306 btrfs_add_delayed_iput(delalloc_work->inode);
8307 else
8308 iput(delalloc_work->inode);
8309 complete(&delalloc_work->completion);
8310}
8311
8312struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8313 int wait, int delay_iput)
8314{
8315 struct btrfs_delalloc_work *work;
8316
8317 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8318 if (!work)
8319 return NULL;
8320
8321 init_completion(&work->completion);
8322 INIT_LIST_HEAD(&work->list);
8323 work->inode = inode;
8324 work->wait = wait;
8325 work->delay_iput = delay_iput;
8326 work->work.func = btrfs_run_delalloc_work;
8327
8328 return work;
8329}
8330
8331void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8332{
8333 wait_for_completion(&work->completion);
8334 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8335}
8336
d352ac68
CM
8337/*
8338 * some fairly slow code that needs optimization. This walks the list
8339 * of all the inodes with pending delalloc and forces them to disk.
8340 */
24bbcf04 8341int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 8342{
ea8c2819 8343 struct btrfs_inode *binode;
5b21f2ed 8344 struct inode *inode;
8ccf6f19
MX
8345 struct btrfs_delalloc_work *work, *next;
8346 struct list_head works;
1eafa6c7 8347 struct list_head splice;
8ccf6f19 8348 int ret = 0;
ea8c2819 8349
c146afad
YZ
8350 if (root->fs_info->sb->s_flags & MS_RDONLY)
8351 return -EROFS;
8352
8ccf6f19 8353 INIT_LIST_HEAD(&works);
1eafa6c7 8354 INIT_LIST_HEAD(&splice);
63607cc8 8355
75eff68e 8356 spin_lock(&root->fs_info->delalloc_lock);
1eafa6c7
MX
8357 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
8358 while (!list_empty(&splice)) {
8359 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8360 delalloc_inodes);
1eafa6c7
MX
8361
8362 list_del_init(&binode->delalloc_inodes);
8363
5b21f2ed 8364 inode = igrab(&binode->vfs_inode);
df0af1a5
MX
8365 if (!inode) {
8366 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
8367 &binode->runtime_flags);
1eafa6c7 8368 continue;
df0af1a5 8369 }
1eafa6c7
MX
8370
8371 list_add_tail(&binode->delalloc_inodes,
8372 &root->fs_info->delalloc_inodes);
75eff68e 8373 spin_unlock(&root->fs_info->delalloc_lock);
1eafa6c7
MX
8374
8375 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8376 if (unlikely(!work)) {
8377 ret = -ENOMEM;
8378 goto out;
5b21f2ed 8379 }
1eafa6c7
MX
8380 list_add_tail(&work->list, &works);
8381 btrfs_queue_worker(&root->fs_info->flush_workers,
8382 &work->work);
8383
5b21f2ed 8384 cond_resched();
75eff68e 8385 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 8386 }
75eff68e 8387 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d 8388
1eafa6c7
MX
8389 list_for_each_entry_safe(work, next, &works, list) {
8390 list_del_init(&work->list);
8391 btrfs_wait_and_free_delalloc_work(work);
8392 }
8393
8c8bee1d
CM
8394 /* the filemap_flush will queue IO into the worker threads, but
8395 * we have to make sure the IO is actually started and that
8396 * ordered extents get created before we return
8397 */
8398 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8399 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8400 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8401 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8402 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8403 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8404 }
8405 atomic_dec(&root->fs_info->async_submit_draining);
1eafa6c7 8406 return 0;
8ccf6f19
MX
8407out:
8408 list_for_each_entry_safe(work, next, &works, list) {
8409 list_del_init(&work->list);
8410 btrfs_wait_and_free_delalloc_work(work);
8411 }
1eafa6c7
MX
8412
8413 if (!list_empty_careful(&splice)) {
8414 spin_lock(&root->fs_info->delalloc_lock);
8415 list_splice_tail(&splice, &root->fs_info->delalloc_inodes);
8416 spin_unlock(&root->fs_info->delalloc_lock);
8417 }
8ccf6f19 8418 return ret;
ea8c2819
CM
8419}
8420
39279cc3
CM
8421static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8422 const char *symname)
8423{
8424 struct btrfs_trans_handle *trans;
8425 struct btrfs_root *root = BTRFS_I(dir)->root;
8426 struct btrfs_path *path;
8427 struct btrfs_key key;
1832a6d5 8428 struct inode *inode = NULL;
39279cc3
CM
8429 int err;
8430 int drop_inode = 0;
8431 u64 objectid;
00e4e6b3 8432 u64 index = 0 ;
39279cc3
CM
8433 int name_len;
8434 int datasize;
5f39d397 8435 unsigned long ptr;
39279cc3 8436 struct btrfs_file_extent_item *ei;
5f39d397 8437 struct extent_buffer *leaf;
39279cc3
CM
8438
8439 name_len = strlen(symname) + 1;
8440 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8441 return -ENAMETOOLONG;
1832a6d5 8442
9ed74f2d
JB
8443 /*
8444 * 2 items for inode item and ref
8445 * 2 items for dir items
8446 * 1 item for xattr if selinux is on
8447 */
a22285a6
YZ
8448 trans = btrfs_start_transaction(root, 5);
8449 if (IS_ERR(trans))
8450 return PTR_ERR(trans);
1832a6d5 8451
581bb050
LZ
8452 err = btrfs_find_free_ino(root, &objectid);
8453 if (err)
8454 goto out_unlock;
8455
aec7477b 8456 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8457 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8458 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8459 if (IS_ERR(inode)) {
8460 err = PTR_ERR(inode);
39279cc3 8461 goto out_unlock;
7cf96da3 8462 }
39279cc3 8463
2a7dba39 8464 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8465 if (err) {
8466 drop_inode = 1;
8467 goto out_unlock;
8468 }
8469
ad19db71
CS
8470 /*
8471 * If the active LSM wants to access the inode during
8472 * d_instantiate it needs these. Smack checks to see
8473 * if the filesystem supports xattrs by looking at the
8474 * ops vector.
8475 */
8476 inode->i_fop = &btrfs_file_operations;
8477 inode->i_op = &btrfs_file_inode_operations;
8478
a1b075d2 8479 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8480 if (err)
8481 drop_inode = 1;
8482 else {
8483 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8484 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8485 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8486 }
39279cc3
CM
8487 if (drop_inode)
8488 goto out_unlock;
8489
8490 path = btrfs_alloc_path();
d8926bb3
MF
8491 if (!path) {
8492 err = -ENOMEM;
8493 drop_inode = 1;
8494 goto out_unlock;
8495 }
33345d01 8496 key.objectid = btrfs_ino(inode);
39279cc3 8497 key.offset = 0;
39279cc3
CM
8498 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8499 datasize = btrfs_file_extent_calc_inline_size(name_len);
8500 err = btrfs_insert_empty_item(trans, root, path, &key,
8501 datasize);
54aa1f4d
CM
8502 if (err) {
8503 drop_inode = 1;
b0839166 8504 btrfs_free_path(path);
54aa1f4d
CM
8505 goto out_unlock;
8506 }
5f39d397
CM
8507 leaf = path->nodes[0];
8508 ei = btrfs_item_ptr(leaf, path->slots[0],
8509 struct btrfs_file_extent_item);
8510 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8511 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8512 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8513 btrfs_set_file_extent_encryption(leaf, ei, 0);
8514 btrfs_set_file_extent_compression(leaf, ei, 0);
8515 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8516 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8517
39279cc3 8518 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8519 write_extent_buffer(leaf, symname, ptr, name_len);
8520 btrfs_mark_buffer_dirty(leaf);
39279cc3 8521 btrfs_free_path(path);
5f39d397 8522
39279cc3
CM
8523 inode->i_op = &btrfs_symlink_inode_operations;
8524 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8525 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8526 inode_set_bytes(inode, name_len);
dbe674a9 8527 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
8528 err = btrfs_update_inode(trans, root, inode);
8529 if (err)
8530 drop_inode = 1;
39279cc3
CM
8531
8532out_unlock:
08c422c2
AV
8533 if (!err)
8534 d_instantiate(dentry, inode);
7ad85bb7 8535 btrfs_end_transaction(trans, root);
39279cc3
CM
8536 if (drop_inode) {
8537 inode_dec_link_count(inode);
8538 iput(inode);
8539 }
b53d3f5d 8540 btrfs_btree_balance_dirty(root);
39279cc3
CM
8541 return err;
8542}
16432985 8543
0af3d00b
JB
8544static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8545 u64 start, u64 num_bytes, u64 min_size,
8546 loff_t actual_len, u64 *alloc_hint,
8547 struct btrfs_trans_handle *trans)
d899e052 8548{
5dc562c5
JB
8549 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8550 struct extent_map *em;
d899e052
YZ
8551 struct btrfs_root *root = BTRFS_I(inode)->root;
8552 struct btrfs_key ins;
d899e052 8553 u64 cur_offset = start;
55a61d1d 8554 u64 i_size;
154ea289 8555 u64 cur_bytes;
d899e052 8556 int ret = 0;
0af3d00b 8557 bool own_trans = true;
d899e052 8558
0af3d00b
JB
8559 if (trans)
8560 own_trans = false;
d899e052 8561 while (num_bytes > 0) {
0af3d00b
JB
8562 if (own_trans) {
8563 trans = btrfs_start_transaction(root, 3);
8564 if (IS_ERR(trans)) {
8565 ret = PTR_ERR(trans);
8566 break;
8567 }
5a303d5d
YZ
8568 }
8569
154ea289
CM
8570 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8571 cur_bytes = max(cur_bytes, min_size);
8572 ret = btrfs_reserve_extent(trans, root, cur_bytes,
24542bf7 8573 min_size, 0, *alloc_hint, &ins, 1);
5a303d5d 8574 if (ret) {
0af3d00b
JB
8575 if (own_trans)
8576 btrfs_end_transaction(trans, root);
a22285a6 8577 break;
d899e052 8578 }
5a303d5d 8579
d899e052
YZ
8580 ret = insert_reserved_file_extent(trans, inode,
8581 cur_offset, ins.objectid,
8582 ins.offset, ins.offset,
920bbbfb 8583 ins.offset, 0, 0, 0,
d899e052 8584 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
8585 if (ret) {
8586 btrfs_abort_transaction(trans, root, ret);
8587 if (own_trans)
8588 btrfs_end_transaction(trans, root);
8589 break;
8590 }
a1ed835e
CM
8591 btrfs_drop_extent_cache(inode, cur_offset,
8592 cur_offset + ins.offset -1, 0);
5a303d5d 8593
5dc562c5
JB
8594 em = alloc_extent_map();
8595 if (!em) {
8596 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8597 &BTRFS_I(inode)->runtime_flags);
8598 goto next;
8599 }
8600
8601 em->start = cur_offset;
8602 em->orig_start = cur_offset;
8603 em->len = ins.offset;
8604 em->block_start = ins.objectid;
8605 em->block_len = ins.offset;
b4939680 8606 em->orig_block_len = ins.offset;
cc95bef6 8607 em->ram_bytes = ins.offset;
5dc562c5
JB
8608 em->bdev = root->fs_info->fs_devices->latest_bdev;
8609 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8610 em->generation = trans->transid;
8611
8612 while (1) {
8613 write_lock(&em_tree->lock);
09a2a8f9 8614 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8615 write_unlock(&em_tree->lock);
8616 if (ret != -EEXIST)
8617 break;
8618 btrfs_drop_extent_cache(inode, cur_offset,
8619 cur_offset + ins.offset - 1,
8620 0);
8621 }
8622 free_extent_map(em);
8623next:
d899e052
YZ
8624 num_bytes -= ins.offset;
8625 cur_offset += ins.offset;
efa56464 8626 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8627
0c4d2d95 8628 inode_inc_iversion(inode);
d899e052 8629 inode->i_ctime = CURRENT_TIME;
6cbff00f 8630 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8631 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8632 (actual_len > inode->i_size) &&
8633 (cur_offset > inode->i_size)) {
d1ea6a61 8634 if (cur_offset > actual_len)
55a61d1d 8635 i_size = actual_len;
d1ea6a61 8636 else
55a61d1d
JB
8637 i_size = cur_offset;
8638 i_size_write(inode, i_size);
8639 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8640 }
8641
d899e052 8642 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8643
8644 if (ret) {
8645 btrfs_abort_transaction(trans, root, ret);
8646 if (own_trans)
8647 btrfs_end_transaction(trans, root);
8648 break;
8649 }
d899e052 8650
0af3d00b
JB
8651 if (own_trans)
8652 btrfs_end_transaction(trans, root);
5a303d5d 8653 }
d899e052
YZ
8654 return ret;
8655}
8656
0af3d00b
JB
8657int btrfs_prealloc_file_range(struct inode *inode, int mode,
8658 u64 start, u64 num_bytes, u64 min_size,
8659 loff_t actual_len, u64 *alloc_hint)
8660{
8661 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8662 min_size, actual_len, alloc_hint,
8663 NULL);
8664}
8665
8666int btrfs_prealloc_file_range_trans(struct inode *inode,
8667 struct btrfs_trans_handle *trans, int mode,
8668 u64 start, u64 num_bytes, u64 min_size,
8669 loff_t actual_len, u64 *alloc_hint)
8670{
8671 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8672 min_size, actual_len, alloc_hint, trans);
8673}
8674
e6dcd2dc
CM
8675static int btrfs_set_page_dirty(struct page *page)
8676{
e6dcd2dc
CM
8677 return __set_page_dirty_nobuffers(page);
8678}
8679
10556cb2 8680static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8681{
b83cc969 8682 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8683 umode_t mode = inode->i_mode;
b83cc969 8684
cb6db4e5
JM
8685 if (mask & MAY_WRITE &&
8686 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8687 if (btrfs_root_readonly(root))
8688 return -EROFS;
8689 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8690 return -EACCES;
8691 }
2830ba7f 8692 return generic_permission(inode, mask);
fdebe2bd 8693}
39279cc3 8694
6e1d5dcc 8695static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 8696 .getattr = btrfs_getattr,
39279cc3
CM
8697 .lookup = btrfs_lookup,
8698 .create = btrfs_create,
8699 .unlink = btrfs_unlink,
8700 .link = btrfs_link,
8701 .mkdir = btrfs_mkdir,
8702 .rmdir = btrfs_rmdir,
8703 .rename = btrfs_rename,
8704 .symlink = btrfs_symlink,
8705 .setattr = btrfs_setattr,
618e21d5 8706 .mknod = btrfs_mknod,
95819c05
CH
8707 .setxattr = btrfs_setxattr,
8708 .getxattr = btrfs_getxattr,
5103e947 8709 .listxattr = btrfs_listxattr,
95819c05 8710 .removexattr = btrfs_removexattr,
fdebe2bd 8711 .permission = btrfs_permission,
4e34e719 8712 .get_acl = btrfs_get_acl,
39279cc3 8713};
6e1d5dcc 8714static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 8715 .lookup = btrfs_lookup,
fdebe2bd 8716 .permission = btrfs_permission,
4e34e719 8717 .get_acl = btrfs_get_acl,
39279cc3 8718};
76dda93c 8719
828c0950 8720static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
8721 .llseek = generic_file_llseek,
8722 .read = generic_read_dir,
cbdf5a24 8723 .readdir = btrfs_real_readdir,
34287aa3 8724 .unlocked_ioctl = btrfs_ioctl,
39279cc3 8725#ifdef CONFIG_COMPAT
34287aa3 8726 .compat_ioctl = btrfs_ioctl,
39279cc3 8727#endif
6bf13c0c 8728 .release = btrfs_release_file,
e02119d5 8729 .fsync = btrfs_sync_file,
39279cc3
CM
8730};
8731
d1310b2e 8732static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 8733 .fill_delalloc = run_delalloc_range,
065631f6 8734 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8735 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8736 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8737 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8738 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8739 .set_bit_hook = btrfs_set_bit_hook,
8740 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8741 .merge_extent_hook = btrfs_merge_extent_hook,
8742 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8743};
8744
35054394
CM
8745/*
8746 * btrfs doesn't support the bmap operation because swapfiles
8747 * use bmap to make a mapping of extents in the file. They assume
8748 * these extents won't change over the life of the file and they
8749 * use the bmap result to do IO directly to the drive.
8750 *
8751 * the btrfs bmap call would return logical addresses that aren't
8752 * suitable for IO and they also will change frequently as COW
8753 * operations happen. So, swapfile + btrfs == corruption.
8754 *
8755 * For now we're avoiding this by dropping bmap.
8756 */
7f09410b 8757static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8758 .readpage = btrfs_readpage,
8759 .writepage = btrfs_writepage,
b293f02e 8760 .writepages = btrfs_writepages,
3ab2fb5a 8761 .readpages = btrfs_readpages,
16432985 8762 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8763 .invalidatepage = btrfs_invalidatepage,
8764 .releasepage = btrfs_releasepage,
e6dcd2dc 8765 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8766 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8767};
8768
7f09410b 8769static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8770 .readpage = btrfs_readpage,
8771 .writepage = btrfs_writepage,
2bf5a725
CM
8772 .invalidatepage = btrfs_invalidatepage,
8773 .releasepage = btrfs_releasepage,
39279cc3
CM
8774};
8775
6e1d5dcc 8776static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8777 .getattr = btrfs_getattr,
8778 .setattr = btrfs_setattr,
95819c05
CH
8779 .setxattr = btrfs_setxattr,
8780 .getxattr = btrfs_getxattr,
5103e947 8781 .listxattr = btrfs_listxattr,
95819c05 8782 .removexattr = btrfs_removexattr,
fdebe2bd 8783 .permission = btrfs_permission,
1506fcc8 8784 .fiemap = btrfs_fiemap,
4e34e719 8785 .get_acl = btrfs_get_acl,
e41f941a 8786 .update_time = btrfs_update_time,
39279cc3 8787};
6e1d5dcc 8788static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8789 .getattr = btrfs_getattr,
8790 .setattr = btrfs_setattr,
fdebe2bd 8791 .permission = btrfs_permission,
95819c05
CH
8792 .setxattr = btrfs_setxattr,
8793 .getxattr = btrfs_getxattr,
33268eaf 8794 .listxattr = btrfs_listxattr,
95819c05 8795 .removexattr = btrfs_removexattr,
4e34e719 8796 .get_acl = btrfs_get_acl,
e41f941a 8797 .update_time = btrfs_update_time,
618e21d5 8798};
6e1d5dcc 8799static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8800 .readlink = generic_readlink,
8801 .follow_link = page_follow_link_light,
8802 .put_link = page_put_link,
f209561a 8803 .getattr = btrfs_getattr,
22c44fe6 8804 .setattr = btrfs_setattr,
fdebe2bd 8805 .permission = btrfs_permission,
0279b4cd
JO
8806 .setxattr = btrfs_setxattr,
8807 .getxattr = btrfs_getxattr,
8808 .listxattr = btrfs_listxattr,
8809 .removexattr = btrfs_removexattr,
4e34e719 8810 .get_acl = btrfs_get_acl,
e41f941a 8811 .update_time = btrfs_update_time,
39279cc3 8812};
76dda93c 8813
82d339d9 8814const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8815 .d_delete = btrfs_dentry_delete,
b4aff1f8 8816 .d_release = btrfs_dentry_release,
76dda93c 8817};