Btrfs: fix race leading to incorrect item deletion when dropping extents
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
6e1d5dcc
AD
69static const struct inode_operations btrfs_dir_inode_operations;
70static const struct inode_operations btrfs_symlink_inode_operations;
71static const struct inode_operations btrfs_dir_ro_inode_operations;
72static const struct inode_operations btrfs_special_inode_operations;
73static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
74static const struct address_space_operations btrfs_aops;
75static const struct address_space_operations btrfs_symlink_aops;
828c0950 76static const struct file_operations btrfs_dir_file_operations;
d1310b2e 77static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
78
79static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 80static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
81struct kmem_cache *btrfs_trans_handle_cachep;
82struct kmem_cache *btrfs_transaction_cachep;
39279cc3 83struct kmem_cache *btrfs_path_cachep;
dc89e982 84struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
85
86#define S_SHIFT 12
87static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
95};
96
3972f260 97static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 98static int btrfs_truncate(struct inode *inode);
5fd02043 99static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
100static noinline int cow_file_range(struct inode *inode,
101 struct page *locked_page,
102 u64 start, u64 end, int *page_started,
103 unsigned long *nr_written, int unlock);
70c8a91c
JB
104static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 u64 len, u64 orig_start,
106 u64 block_start, u64 block_len,
cc95bef6
JB
107 u64 orig_block_len, u64 ram_bytes,
108 int type);
7b128766 109
48a3b636 110static int btrfs_dirty_inode(struct inode *inode);
7b128766 111
6a3891c5
JB
112#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113void btrfs_test_inode_set_ops(struct inode *inode)
114{
115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
116}
117#endif
118
f34f57a3 119static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
120 struct inode *inode, struct inode *dir,
121 const struct qstr *qstr)
0279b4cd
JO
122{
123 int err;
124
f34f57a3 125 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 126 if (!err)
2a7dba39 127 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
128 return err;
129}
130
c8b97818
CM
131/*
132 * this does all the hard work for inserting an inline extent into
133 * the btree. The caller should have done a btrfs_drop_extents so that
134 * no overlapping inline items exist in the btree
135 */
40f76580 136static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 137 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
138 struct btrfs_root *root, struct inode *inode,
139 u64 start, size_t size, size_t compressed_size,
fe3f566c 140 int compress_type,
c8b97818
CM
141 struct page **compressed_pages)
142{
c8b97818
CM
143 struct extent_buffer *leaf;
144 struct page *page = NULL;
145 char *kaddr;
146 unsigned long ptr;
147 struct btrfs_file_extent_item *ei;
148 int err = 0;
149 int ret;
150 size_t cur_size = size;
c8b97818 151 unsigned long offset;
c8b97818 152
fe3f566c 153 if (compressed_size && compressed_pages)
c8b97818 154 cur_size = compressed_size;
c8b97818 155
1acae57b 156 inode_add_bytes(inode, size);
c8b97818 157
1acae57b
FDBM
158 if (!extent_inserted) {
159 struct btrfs_key key;
160 size_t datasize;
c8b97818 161
1acae57b
FDBM
162 key.objectid = btrfs_ino(inode);
163 key.offset = start;
962a298f 164 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 165
1acae57b
FDBM
166 datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 path->leave_spinning = 1;
168 ret = btrfs_insert_empty_item(trans, root, path, &key,
169 datasize);
170 if (ret) {
171 err = ret;
172 goto fail;
173 }
c8b97818
CM
174 }
175 leaf = path->nodes[0];
176 ei = btrfs_item_ptr(leaf, path->slots[0],
177 struct btrfs_file_extent_item);
178 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 btrfs_set_file_extent_encryption(leaf, ei, 0);
181 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 ptr = btrfs_file_extent_inline_start(ei);
184
261507a0 185 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
186 struct page *cpage;
187 int i = 0;
d397712b 188 while (compressed_size > 0) {
c8b97818 189 cpage = compressed_pages[i];
5b050f04 190 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
191 PAGE_CACHE_SIZE);
192
7ac687d9 193 kaddr = kmap_atomic(cpage);
c8b97818 194 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 195 kunmap_atomic(kaddr);
c8b97818
CM
196
197 i++;
198 ptr += cur_size;
199 compressed_size -= cur_size;
200 }
201 btrfs_set_file_extent_compression(leaf, ei,
261507a0 202 compress_type);
c8b97818
CM
203 } else {
204 page = find_get_page(inode->i_mapping,
205 start >> PAGE_CACHE_SHIFT);
206 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 207 kaddr = kmap_atomic(page);
c8b97818
CM
208 offset = start & (PAGE_CACHE_SIZE - 1);
209 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 210 kunmap_atomic(kaddr);
c8b97818
CM
211 page_cache_release(page);
212 }
213 btrfs_mark_buffer_dirty(leaf);
1acae57b 214 btrfs_release_path(path);
c8b97818 215
c2167754
YZ
216 /*
217 * we're an inline extent, so nobody can
218 * extend the file past i_size without locking
219 * a page we already have locked.
220 *
221 * We must do any isize and inode updates
222 * before we unlock the pages. Otherwise we
223 * could end up racing with unlink.
224 */
c8b97818 225 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 226 ret = btrfs_update_inode(trans, root, inode);
c2167754 227
79787eaa 228 return ret;
c8b97818 229fail:
c8b97818
CM
230 return err;
231}
232
233
234/*
235 * conditionally insert an inline extent into the file. This
236 * does the checks required to make sure the data is small enough
237 * to fit as an inline extent.
238 */
00361589
JB
239static noinline int cow_file_range_inline(struct btrfs_root *root,
240 struct inode *inode, u64 start,
241 u64 end, size_t compressed_size,
242 int compress_type,
243 struct page **compressed_pages)
c8b97818 244{
00361589 245 struct btrfs_trans_handle *trans;
c8b97818
CM
246 u64 isize = i_size_read(inode);
247 u64 actual_end = min(end + 1, isize);
248 u64 inline_len = actual_end - start;
fda2832f 249 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
250 u64 data_len = inline_len;
251 int ret;
1acae57b
FDBM
252 struct btrfs_path *path;
253 int extent_inserted = 0;
254 u32 extent_item_size;
c8b97818
CM
255
256 if (compressed_size)
257 data_len = compressed_size;
258
259 if (start > 0 ||
354877be
WS
260 actual_end > PAGE_CACHE_SIZE ||
261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
262 (!compressed_size &&
263 (actual_end & (root->sectorsize - 1)) == 0) ||
264 end + 1 < isize ||
265 data_len > root->fs_info->max_inline) {
266 return 1;
267 }
268
1acae57b
FDBM
269 path = btrfs_alloc_path();
270 if (!path)
271 return -ENOMEM;
272
00361589 273 trans = btrfs_join_transaction(root);
1acae57b
FDBM
274 if (IS_ERR(trans)) {
275 btrfs_free_path(path);
00361589 276 return PTR_ERR(trans);
1acae57b 277 }
00361589
JB
278 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
279
1acae57b
FDBM
280 if (compressed_size && compressed_pages)
281 extent_item_size = btrfs_file_extent_calc_inline_size(
282 compressed_size);
283 else
284 extent_item_size = btrfs_file_extent_calc_inline_size(
285 inline_len);
286
287 ret = __btrfs_drop_extents(trans, root, inode, path,
288 start, aligned_end, NULL,
289 1, 1, extent_item_size, &extent_inserted);
00361589
JB
290 if (ret) {
291 btrfs_abort_transaction(trans, root, ret);
292 goto out;
293 }
c8b97818
CM
294
295 if (isize > actual_end)
296 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
297 ret = insert_inline_extent(trans, path, extent_inserted,
298 root, inode, start,
c8b97818 299 inline_len, compressed_size,
fe3f566c 300 compress_type, compressed_pages);
2adcac1a 301 if (ret && ret != -ENOSPC) {
79787eaa 302 btrfs_abort_transaction(trans, root, ret);
00361589 303 goto out;
2adcac1a 304 } else if (ret == -ENOSPC) {
00361589
JB
305 ret = 1;
306 goto out;
79787eaa 307 }
2adcac1a 308
bdc20e67 309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 310 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 312out:
94ed938a
QW
313 /*
314 * Don't forget to free the reserved space, as for inlined extent
315 * it won't count as data extent, free them directly here.
316 * And at reserve time, it's always aligned to page size, so
317 * just free one page here.
318 */
319 btrfs_qgroup_free_data(inode, 0, PAGE_CACHE_SIZE);
1acae57b 320 btrfs_free_path(path);
00361589
JB
321 btrfs_end_transaction(trans, root);
322 return ret;
c8b97818
CM
323}
324
771ed689
CM
325struct async_extent {
326 u64 start;
327 u64 ram_size;
328 u64 compressed_size;
329 struct page **pages;
330 unsigned long nr_pages;
261507a0 331 int compress_type;
771ed689
CM
332 struct list_head list;
333};
334
335struct async_cow {
336 struct inode *inode;
337 struct btrfs_root *root;
338 struct page *locked_page;
339 u64 start;
340 u64 end;
341 struct list_head extents;
342 struct btrfs_work work;
343};
344
345static noinline int add_async_extent(struct async_cow *cow,
346 u64 start, u64 ram_size,
347 u64 compressed_size,
348 struct page **pages,
261507a0
LZ
349 unsigned long nr_pages,
350 int compress_type)
771ed689
CM
351{
352 struct async_extent *async_extent;
353
354 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 355 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
356 async_extent->start = start;
357 async_extent->ram_size = ram_size;
358 async_extent->compressed_size = compressed_size;
359 async_extent->pages = pages;
360 async_extent->nr_pages = nr_pages;
261507a0 361 async_extent->compress_type = compress_type;
771ed689
CM
362 list_add_tail(&async_extent->list, &cow->extents);
363 return 0;
364}
365
f79707b0
WS
366static inline int inode_need_compress(struct inode *inode)
367{
368 struct btrfs_root *root = BTRFS_I(inode)->root;
369
370 /* force compress */
371 if (btrfs_test_opt(root, FORCE_COMPRESS))
372 return 1;
373 /* bad compression ratios */
374 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
375 return 0;
376 if (btrfs_test_opt(root, COMPRESS) ||
377 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
378 BTRFS_I(inode)->force_compress)
379 return 1;
380 return 0;
381}
382
d352ac68 383/*
771ed689
CM
384 * we create compressed extents in two phases. The first
385 * phase compresses a range of pages that have already been
386 * locked (both pages and state bits are locked).
c8b97818 387 *
771ed689
CM
388 * This is done inside an ordered work queue, and the compression
389 * is spread across many cpus. The actual IO submission is step
390 * two, and the ordered work queue takes care of making sure that
391 * happens in the same order things were put onto the queue by
392 * writepages and friends.
c8b97818 393 *
771ed689
CM
394 * If this code finds it can't get good compression, it puts an
395 * entry onto the work queue to write the uncompressed bytes. This
396 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
397 * are written in the same order that the flusher thread sent them
398 * down.
d352ac68 399 */
c44f649e 400static noinline void compress_file_range(struct inode *inode,
771ed689
CM
401 struct page *locked_page,
402 u64 start, u64 end,
403 struct async_cow *async_cow,
404 int *num_added)
b888db2b
CM
405{
406 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 407 u64 num_bytes;
db94535d 408 u64 blocksize = root->sectorsize;
c8b97818 409 u64 actual_end;
42dc7bab 410 u64 isize = i_size_read(inode);
e6dcd2dc 411 int ret = 0;
c8b97818
CM
412 struct page **pages = NULL;
413 unsigned long nr_pages;
414 unsigned long nr_pages_ret = 0;
415 unsigned long total_compressed = 0;
416 unsigned long total_in = 0;
417 unsigned long max_compressed = 128 * 1024;
771ed689 418 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
419 int i;
420 int will_compress;
261507a0 421 int compress_type = root->fs_info->compress_type;
4adaa611 422 int redirty = 0;
b888db2b 423
4cb13e5d
LB
424 /* if this is a small write inside eof, kick off a defrag */
425 if ((end - start + 1) < 16 * 1024 &&
426 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
427 btrfs_add_inode_defrag(NULL, inode);
428
42dc7bab 429 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
430again:
431 will_compress = 0;
432 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
433 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 434
f03d9301
CM
435 /*
436 * we don't want to send crud past the end of i_size through
437 * compression, that's just a waste of CPU time. So, if the
438 * end of the file is before the start of our current
439 * requested range of bytes, we bail out to the uncompressed
440 * cleanup code that can deal with all of this.
441 *
442 * It isn't really the fastest way to fix things, but this is a
443 * very uncommon corner.
444 */
445 if (actual_end <= start)
446 goto cleanup_and_bail_uncompressed;
447
c8b97818
CM
448 total_compressed = actual_end - start;
449
4bcbb332
SW
450 /*
451 * skip compression for a small file range(<=blocksize) that
452 * isn't an inline extent, since it dosen't save disk space at all.
453 */
454 if (total_compressed <= blocksize &&
455 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
456 goto cleanup_and_bail_uncompressed;
457
c8b97818
CM
458 /* we want to make sure that amount of ram required to uncompress
459 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
460 * of a compressed extent to 128k. This is a crucial number
461 * because it also controls how easily we can spread reads across
462 * cpus for decompression.
463 *
464 * We also want to make sure the amount of IO required to do
465 * a random read is reasonably small, so we limit the size of
466 * a compressed extent to 128k.
c8b97818
CM
467 */
468 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 469 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 470 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
471 total_in = 0;
472 ret = 0;
db94535d 473
771ed689
CM
474 /*
475 * we do compression for mount -o compress and when the
476 * inode has not been flagged as nocompress. This flag can
477 * change at any time if we discover bad compression ratios.
c8b97818 478 */
f79707b0 479 if (inode_need_compress(inode)) {
c8b97818 480 WARN_ON(pages);
31e818fe 481 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
482 if (!pages) {
483 /* just bail out to the uncompressed code */
484 goto cont;
485 }
c8b97818 486
261507a0
LZ
487 if (BTRFS_I(inode)->force_compress)
488 compress_type = BTRFS_I(inode)->force_compress;
489
4adaa611
CM
490 /*
491 * we need to call clear_page_dirty_for_io on each
492 * page in the range. Otherwise applications with the file
493 * mmap'd can wander in and change the page contents while
494 * we are compressing them.
495 *
496 * If the compression fails for any reason, we set the pages
497 * dirty again later on.
498 */
499 extent_range_clear_dirty_for_io(inode, start, end);
500 redirty = 1;
261507a0
LZ
501 ret = btrfs_compress_pages(compress_type,
502 inode->i_mapping, start,
503 total_compressed, pages,
504 nr_pages, &nr_pages_ret,
505 &total_in,
506 &total_compressed,
507 max_compressed);
c8b97818
CM
508
509 if (!ret) {
510 unsigned long offset = total_compressed &
511 (PAGE_CACHE_SIZE - 1);
512 struct page *page = pages[nr_pages_ret - 1];
513 char *kaddr;
514
515 /* zero the tail end of the last page, we might be
516 * sending it down to disk
517 */
518 if (offset) {
7ac687d9 519 kaddr = kmap_atomic(page);
c8b97818
CM
520 memset(kaddr + offset, 0,
521 PAGE_CACHE_SIZE - offset);
7ac687d9 522 kunmap_atomic(kaddr);
c8b97818
CM
523 }
524 will_compress = 1;
525 }
526 }
560f7d75 527cont:
c8b97818
CM
528 if (start == 0) {
529 /* lets try to make an inline extent */
771ed689 530 if (ret || total_in < (actual_end - start)) {
c8b97818 531 /* we didn't compress the entire range, try
771ed689 532 * to make an uncompressed inline extent.
c8b97818 533 */
00361589
JB
534 ret = cow_file_range_inline(root, inode, start, end,
535 0, 0, NULL);
c8b97818 536 } else {
771ed689 537 /* try making a compressed inline extent */
00361589 538 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
539 total_compressed,
540 compress_type, pages);
c8b97818 541 }
79787eaa 542 if (ret <= 0) {
151a41bc
JB
543 unsigned long clear_flags = EXTENT_DELALLOC |
544 EXTENT_DEFRAG;
e6eb4314
FM
545 unsigned long page_error_op;
546
151a41bc 547 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 548 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 549
771ed689 550 /*
79787eaa
JM
551 * inline extent creation worked or returned error,
552 * we don't need to create any more async work items.
553 * Unlock and free up our temp pages.
771ed689 554 */
c2790a2e 555 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 556 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
557 PAGE_CLEAR_DIRTY |
558 PAGE_SET_WRITEBACK |
e6eb4314 559 page_error_op |
c2790a2e 560 PAGE_END_WRITEBACK);
c8b97818
CM
561 goto free_pages_out;
562 }
563 }
564
565 if (will_compress) {
566 /*
567 * we aren't doing an inline extent round the compressed size
568 * up to a block size boundary so the allocator does sane
569 * things
570 */
fda2832f 571 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
572
573 /*
574 * one last check to make sure the compression is really a
575 * win, compare the page count read with the blocks on disk
576 */
fda2832f 577 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
578 if (total_compressed >= total_in) {
579 will_compress = 0;
580 } else {
c8b97818
CM
581 num_bytes = total_in;
582 }
583 }
584 if (!will_compress && pages) {
585 /*
586 * the compression code ran but failed to make things smaller,
587 * free any pages it allocated and our page pointer array
588 */
589 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 590 WARN_ON(pages[i]->mapping);
c8b97818
CM
591 page_cache_release(pages[i]);
592 }
593 kfree(pages);
594 pages = NULL;
595 total_compressed = 0;
596 nr_pages_ret = 0;
597
598 /* flag the file so we don't compress in the future */
1e701a32
CM
599 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
600 !(BTRFS_I(inode)->force_compress)) {
a555f810 601 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 602 }
c8b97818 603 }
771ed689
CM
604 if (will_compress) {
605 *num_added += 1;
c8b97818 606
771ed689
CM
607 /* the async work queues will take care of doing actual
608 * allocation on disk for these compressed pages,
609 * and will submit them to the elevator.
610 */
611 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
612 total_compressed, pages, nr_pages_ret,
613 compress_type);
179e29e4 614
24ae6365 615 if (start + num_bytes < end) {
771ed689
CM
616 start += num_bytes;
617 pages = NULL;
618 cond_resched();
619 goto again;
620 }
621 } else {
f03d9301 622cleanup_and_bail_uncompressed:
771ed689
CM
623 /*
624 * No compression, but we still need to write the pages in
625 * the file we've been given so far. redirty the locked
626 * page if it corresponds to our extent and set things up
627 * for the async work queue to run cow_file_range to do
628 * the normal delalloc dance
629 */
630 if (page_offset(locked_page) >= start &&
631 page_offset(locked_page) <= end) {
632 __set_page_dirty_nobuffers(locked_page);
633 /* unlocked later on in the async handlers */
634 }
4adaa611
CM
635 if (redirty)
636 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
637 add_async_extent(async_cow, start, end - start + 1,
638 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
639 *num_added += 1;
640 }
3b951516 641
c44f649e 642 return;
771ed689
CM
643
644free_pages_out:
645 for (i = 0; i < nr_pages_ret; i++) {
646 WARN_ON(pages[i]->mapping);
647 page_cache_release(pages[i]);
648 }
d397712b 649 kfree(pages);
771ed689 650}
771ed689 651
40ae837b
FM
652static void free_async_extent_pages(struct async_extent *async_extent)
653{
654 int i;
655
656 if (!async_extent->pages)
657 return;
658
659 for (i = 0; i < async_extent->nr_pages; i++) {
660 WARN_ON(async_extent->pages[i]->mapping);
661 page_cache_release(async_extent->pages[i]);
662 }
663 kfree(async_extent->pages);
664 async_extent->nr_pages = 0;
665 async_extent->pages = NULL;
771ed689
CM
666}
667
668/*
669 * phase two of compressed writeback. This is the ordered portion
670 * of the code, which only gets called in the order the work was
671 * queued. We walk all the async extents created by compress_file_range
672 * and send them down to the disk.
673 */
dec8f175 674static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
675 struct async_cow *async_cow)
676{
677 struct async_extent *async_extent;
678 u64 alloc_hint = 0;
771ed689
CM
679 struct btrfs_key ins;
680 struct extent_map *em;
681 struct btrfs_root *root = BTRFS_I(inode)->root;
682 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
683 struct extent_io_tree *io_tree;
f5a84ee3 684 int ret = 0;
771ed689 685
3e04e7f1 686again:
d397712b 687 while (!list_empty(&async_cow->extents)) {
771ed689
CM
688 async_extent = list_entry(async_cow->extents.next,
689 struct async_extent, list);
690 list_del(&async_extent->list);
c8b97818 691
771ed689
CM
692 io_tree = &BTRFS_I(inode)->io_tree;
693
f5a84ee3 694retry:
771ed689
CM
695 /* did the compression code fall back to uncompressed IO? */
696 if (!async_extent->pages) {
697 int page_started = 0;
698 unsigned long nr_written = 0;
699
700 lock_extent(io_tree, async_extent->start,
2ac55d41 701 async_extent->start +
d0082371 702 async_extent->ram_size - 1);
771ed689
CM
703
704 /* allocate blocks */
f5a84ee3
JB
705 ret = cow_file_range(inode, async_cow->locked_page,
706 async_extent->start,
707 async_extent->start +
708 async_extent->ram_size - 1,
709 &page_started, &nr_written, 0);
771ed689 710
79787eaa
JM
711 /* JDM XXX */
712
771ed689
CM
713 /*
714 * if page_started, cow_file_range inserted an
715 * inline extent and took care of all the unlocking
716 * and IO for us. Otherwise, we need to submit
717 * all those pages down to the drive.
718 */
f5a84ee3 719 if (!page_started && !ret)
771ed689
CM
720 extent_write_locked_range(io_tree,
721 inode, async_extent->start,
d397712b 722 async_extent->start +
771ed689
CM
723 async_extent->ram_size - 1,
724 btrfs_get_extent,
725 WB_SYNC_ALL);
3e04e7f1
JB
726 else if (ret)
727 unlock_page(async_cow->locked_page);
771ed689
CM
728 kfree(async_extent);
729 cond_resched();
730 continue;
731 }
732
733 lock_extent(io_tree, async_extent->start,
d0082371 734 async_extent->start + async_extent->ram_size - 1);
771ed689 735
00361589 736 ret = btrfs_reserve_extent(root,
771ed689
CM
737 async_extent->compressed_size,
738 async_extent->compressed_size,
e570fd27 739 0, alloc_hint, &ins, 1, 1);
f5a84ee3 740 if (ret) {
40ae837b 741 free_async_extent_pages(async_extent);
3e04e7f1 742
fdf8e2ea
JB
743 if (ret == -ENOSPC) {
744 unlock_extent(io_tree, async_extent->start,
745 async_extent->start +
746 async_extent->ram_size - 1);
ce62003f
LB
747
748 /*
749 * we need to redirty the pages if we decide to
750 * fallback to uncompressed IO, otherwise we
751 * will not submit these pages down to lower
752 * layers.
753 */
754 extent_range_redirty_for_io(inode,
755 async_extent->start,
756 async_extent->start +
757 async_extent->ram_size - 1);
758
79787eaa 759 goto retry;
fdf8e2ea 760 }
3e04e7f1 761 goto out_free;
f5a84ee3 762 }
c2167754
YZ
763 /*
764 * here we're doing allocation and writeback of the
765 * compressed pages
766 */
767 btrfs_drop_extent_cache(inode, async_extent->start,
768 async_extent->start +
769 async_extent->ram_size - 1, 0);
770
172ddd60 771 em = alloc_extent_map();
b9aa55be
LB
772 if (!em) {
773 ret = -ENOMEM;
3e04e7f1 774 goto out_free_reserve;
b9aa55be 775 }
771ed689
CM
776 em->start = async_extent->start;
777 em->len = async_extent->ram_size;
445a6944 778 em->orig_start = em->start;
2ab28f32
JB
779 em->mod_start = em->start;
780 em->mod_len = em->len;
c8b97818 781
771ed689
CM
782 em->block_start = ins.objectid;
783 em->block_len = ins.offset;
b4939680 784 em->orig_block_len = ins.offset;
cc95bef6 785 em->ram_bytes = async_extent->ram_size;
771ed689 786 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 787 em->compress_type = async_extent->compress_type;
771ed689
CM
788 set_bit(EXTENT_FLAG_PINNED, &em->flags);
789 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 790 em->generation = -1;
771ed689 791
d397712b 792 while (1) {
890871be 793 write_lock(&em_tree->lock);
09a2a8f9 794 ret = add_extent_mapping(em_tree, em, 1);
890871be 795 write_unlock(&em_tree->lock);
771ed689
CM
796 if (ret != -EEXIST) {
797 free_extent_map(em);
798 break;
799 }
800 btrfs_drop_extent_cache(inode, async_extent->start,
801 async_extent->start +
802 async_extent->ram_size - 1, 0);
803 }
804
3e04e7f1
JB
805 if (ret)
806 goto out_free_reserve;
807
261507a0
LZ
808 ret = btrfs_add_ordered_extent_compress(inode,
809 async_extent->start,
810 ins.objectid,
811 async_extent->ram_size,
812 ins.offset,
813 BTRFS_ORDERED_COMPRESSED,
814 async_extent->compress_type);
d9f85963
FM
815 if (ret) {
816 btrfs_drop_extent_cache(inode, async_extent->start,
817 async_extent->start +
818 async_extent->ram_size - 1, 0);
3e04e7f1 819 goto out_free_reserve;
d9f85963 820 }
771ed689 821
771ed689
CM
822 /*
823 * clear dirty, set writeback and unlock the pages.
824 */
c2790a2e 825 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
826 async_extent->start +
827 async_extent->ram_size - 1,
151a41bc
JB
828 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
829 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 830 PAGE_SET_WRITEBACK);
771ed689 831 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
832 async_extent->start,
833 async_extent->ram_size,
834 ins.objectid,
835 ins.offset, async_extent->pages,
836 async_extent->nr_pages);
fce2a4e6
FM
837 if (ret) {
838 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
839 struct page *p = async_extent->pages[0];
840 const u64 start = async_extent->start;
841 const u64 end = start + async_extent->ram_size - 1;
842
843 p->mapping = inode->i_mapping;
844 tree->ops->writepage_end_io_hook(p, start, end,
845 NULL, 0);
846 p->mapping = NULL;
847 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
848 PAGE_END_WRITEBACK |
849 PAGE_SET_ERROR);
40ae837b 850 free_async_extent_pages(async_extent);
fce2a4e6 851 }
771ed689
CM
852 alloc_hint = ins.objectid + ins.offset;
853 kfree(async_extent);
854 cond_resched();
855 }
dec8f175 856 return;
3e04e7f1 857out_free_reserve:
e570fd27 858 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 859out_free:
c2790a2e 860 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
861 async_extent->start +
862 async_extent->ram_size - 1,
c2790a2e 863 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
864 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
865 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
866 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
867 PAGE_SET_ERROR);
40ae837b 868 free_async_extent_pages(async_extent);
79787eaa 869 kfree(async_extent);
3e04e7f1 870 goto again;
771ed689
CM
871}
872
4b46fce2
JB
873static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
874 u64 num_bytes)
875{
876 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
877 struct extent_map *em;
878 u64 alloc_hint = 0;
879
880 read_lock(&em_tree->lock);
881 em = search_extent_mapping(em_tree, start, num_bytes);
882 if (em) {
883 /*
884 * if block start isn't an actual block number then find the
885 * first block in this inode and use that as a hint. If that
886 * block is also bogus then just don't worry about it.
887 */
888 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
889 free_extent_map(em);
890 em = search_extent_mapping(em_tree, 0, 0);
891 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
892 alloc_hint = em->block_start;
893 if (em)
894 free_extent_map(em);
895 } else {
896 alloc_hint = em->block_start;
897 free_extent_map(em);
898 }
899 }
900 read_unlock(&em_tree->lock);
901
902 return alloc_hint;
903}
904
771ed689
CM
905/*
906 * when extent_io.c finds a delayed allocation range in the file,
907 * the call backs end up in this code. The basic idea is to
908 * allocate extents on disk for the range, and create ordered data structs
909 * in ram to track those extents.
910 *
911 * locked_page is the page that writepage had locked already. We use
912 * it to make sure we don't do extra locks or unlocks.
913 *
914 * *page_started is set to one if we unlock locked_page and do everything
915 * required to start IO on it. It may be clean and already done with
916 * IO when we return.
917 */
00361589
JB
918static noinline int cow_file_range(struct inode *inode,
919 struct page *locked_page,
920 u64 start, u64 end, int *page_started,
921 unsigned long *nr_written,
922 int unlock)
771ed689 923{
00361589 924 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
925 u64 alloc_hint = 0;
926 u64 num_bytes;
927 unsigned long ram_size;
928 u64 disk_num_bytes;
929 u64 cur_alloc_size;
930 u64 blocksize = root->sectorsize;
771ed689
CM
931 struct btrfs_key ins;
932 struct extent_map *em;
933 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
934 int ret = 0;
935
02ecd2c2
JB
936 if (btrfs_is_free_space_inode(inode)) {
937 WARN_ON_ONCE(1);
29bce2f3
JB
938 ret = -EINVAL;
939 goto out_unlock;
02ecd2c2 940 }
771ed689 941
fda2832f 942 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
943 num_bytes = max(blocksize, num_bytes);
944 disk_num_bytes = num_bytes;
771ed689 945
4cb5300b 946 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
947 if (num_bytes < 64 * 1024 &&
948 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 949 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 950
771ed689
CM
951 if (start == 0) {
952 /* lets try to make an inline extent */
00361589
JB
953 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
954 NULL);
771ed689 955 if (ret == 0) {
c2790a2e
JB
956 extent_clear_unlock_delalloc(inode, start, end, NULL,
957 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 958 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
959 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
960 PAGE_END_WRITEBACK);
c2167754 961
771ed689
CM
962 *nr_written = *nr_written +
963 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
964 *page_started = 1;
771ed689 965 goto out;
79787eaa 966 } else if (ret < 0) {
79787eaa 967 goto out_unlock;
771ed689
CM
968 }
969 }
970
971 BUG_ON(disk_num_bytes >
6c41761f 972 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 973
4b46fce2 974 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
975 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
976
d397712b 977 while (disk_num_bytes > 0) {
a791e35e
CM
978 unsigned long op;
979
287a0ab9 980 cur_alloc_size = disk_num_bytes;
00361589 981 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 982 root->sectorsize, 0, alloc_hint,
e570fd27 983 &ins, 1, 1);
00361589 984 if (ret < 0)
79787eaa 985 goto out_unlock;
d397712b 986
172ddd60 987 em = alloc_extent_map();
b9aa55be
LB
988 if (!em) {
989 ret = -ENOMEM;
ace68bac 990 goto out_reserve;
b9aa55be 991 }
e6dcd2dc 992 em->start = start;
445a6944 993 em->orig_start = em->start;
771ed689
CM
994 ram_size = ins.offset;
995 em->len = ins.offset;
2ab28f32
JB
996 em->mod_start = em->start;
997 em->mod_len = em->len;
c8b97818 998
e6dcd2dc 999 em->block_start = ins.objectid;
c8b97818 1000 em->block_len = ins.offset;
b4939680 1001 em->orig_block_len = ins.offset;
cc95bef6 1002 em->ram_bytes = ram_size;
e6dcd2dc 1003 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1004 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1005 em->generation = -1;
c8b97818 1006
d397712b 1007 while (1) {
890871be 1008 write_lock(&em_tree->lock);
09a2a8f9 1009 ret = add_extent_mapping(em_tree, em, 1);
890871be 1010 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1011 if (ret != -EEXIST) {
1012 free_extent_map(em);
1013 break;
1014 }
1015 btrfs_drop_extent_cache(inode, start,
c8b97818 1016 start + ram_size - 1, 0);
e6dcd2dc 1017 }
ace68bac
LB
1018 if (ret)
1019 goto out_reserve;
e6dcd2dc 1020
98d20f67 1021 cur_alloc_size = ins.offset;
e6dcd2dc 1022 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1023 ram_size, cur_alloc_size, 0);
ace68bac 1024 if (ret)
d9f85963 1025 goto out_drop_extent_cache;
c8b97818 1026
17d217fe
YZ
1027 if (root->root_key.objectid ==
1028 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1029 ret = btrfs_reloc_clone_csums(inode, start,
1030 cur_alloc_size);
00361589 1031 if (ret)
d9f85963 1032 goto out_drop_extent_cache;
17d217fe
YZ
1033 }
1034
d397712b 1035 if (disk_num_bytes < cur_alloc_size)
3b951516 1036 break;
d397712b 1037
c8b97818
CM
1038 /* we're not doing compressed IO, don't unlock the first
1039 * page (which the caller expects to stay locked), don't
1040 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1041 *
1042 * Do set the Private2 bit so we know this page was properly
1043 * setup for writepage
c8b97818 1044 */
c2790a2e
JB
1045 op = unlock ? PAGE_UNLOCK : 0;
1046 op |= PAGE_SET_PRIVATE2;
a791e35e 1047
c2790a2e
JB
1048 extent_clear_unlock_delalloc(inode, start,
1049 start + ram_size - 1, locked_page,
1050 EXTENT_LOCKED | EXTENT_DELALLOC,
1051 op);
c8b97818 1052 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1053 num_bytes -= cur_alloc_size;
1054 alloc_hint = ins.objectid + ins.offset;
1055 start += cur_alloc_size;
b888db2b 1056 }
79787eaa 1057out:
be20aa9d 1058 return ret;
b7d5b0a8 1059
d9f85963
FM
1060out_drop_extent_cache:
1061 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1062out_reserve:
e570fd27 1063 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1064out_unlock:
c2790a2e 1065 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1066 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1067 EXTENT_DELALLOC | EXTENT_DEFRAG,
1068 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1069 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1070 goto out;
771ed689 1071}
c8b97818 1072
771ed689
CM
1073/*
1074 * work queue call back to started compression on a file and pages
1075 */
1076static noinline void async_cow_start(struct btrfs_work *work)
1077{
1078 struct async_cow *async_cow;
1079 int num_added = 0;
1080 async_cow = container_of(work, struct async_cow, work);
1081
1082 compress_file_range(async_cow->inode, async_cow->locked_page,
1083 async_cow->start, async_cow->end, async_cow,
1084 &num_added);
8180ef88 1085 if (num_added == 0) {
cb77fcd8 1086 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1087 async_cow->inode = NULL;
8180ef88 1088 }
771ed689
CM
1089}
1090
1091/*
1092 * work queue call back to submit previously compressed pages
1093 */
1094static noinline void async_cow_submit(struct btrfs_work *work)
1095{
1096 struct async_cow *async_cow;
1097 struct btrfs_root *root;
1098 unsigned long nr_pages;
1099
1100 async_cow = container_of(work, struct async_cow, work);
1101
1102 root = async_cow->root;
1103 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1104 PAGE_CACHE_SHIFT;
1105
ee863954
DS
1106 /*
1107 * atomic_sub_return implies a barrier for waitqueue_active
1108 */
66657b31 1109 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1110 5 * 1024 * 1024 &&
771ed689
CM
1111 waitqueue_active(&root->fs_info->async_submit_wait))
1112 wake_up(&root->fs_info->async_submit_wait);
1113
d397712b 1114 if (async_cow->inode)
771ed689 1115 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1116}
c8b97818 1117
771ed689
CM
1118static noinline void async_cow_free(struct btrfs_work *work)
1119{
1120 struct async_cow *async_cow;
1121 async_cow = container_of(work, struct async_cow, work);
8180ef88 1122 if (async_cow->inode)
cb77fcd8 1123 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1124 kfree(async_cow);
1125}
1126
1127static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1128 u64 start, u64 end, int *page_started,
1129 unsigned long *nr_written)
1130{
1131 struct async_cow *async_cow;
1132 struct btrfs_root *root = BTRFS_I(inode)->root;
1133 unsigned long nr_pages;
1134 u64 cur_end;
287082b0 1135 int limit = 10 * 1024 * 1024;
771ed689 1136
a3429ab7
CM
1137 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1138 1, 0, NULL, GFP_NOFS);
d397712b 1139 while (start < end) {
771ed689 1140 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1141 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1142 async_cow->inode = igrab(inode);
771ed689
CM
1143 async_cow->root = root;
1144 async_cow->locked_page = locked_page;
1145 async_cow->start = start;
1146
f79707b0
WS
1147 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1148 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1149 cur_end = end;
1150 else
1151 cur_end = min(end, start + 512 * 1024 - 1);
1152
1153 async_cow->end = cur_end;
1154 INIT_LIST_HEAD(&async_cow->extents);
1155
9e0af237
LB
1156 btrfs_init_work(&async_cow->work,
1157 btrfs_delalloc_helper,
1158 async_cow_start, async_cow_submit,
1159 async_cow_free);
771ed689 1160
771ed689
CM
1161 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1162 PAGE_CACHE_SHIFT;
1163 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1164
afe3d242
QW
1165 btrfs_queue_work(root->fs_info->delalloc_workers,
1166 &async_cow->work);
771ed689
CM
1167
1168 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1169 wait_event(root->fs_info->async_submit_wait,
1170 (atomic_read(&root->fs_info->async_delalloc_pages) <
1171 limit));
1172 }
1173
d397712b 1174 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1175 atomic_read(&root->fs_info->async_delalloc_pages)) {
1176 wait_event(root->fs_info->async_submit_wait,
1177 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1178 0));
1179 }
1180
1181 *nr_written += nr_pages;
1182 start = cur_end + 1;
1183 }
1184 *page_started = 1;
1185 return 0;
be20aa9d
CM
1186}
1187
d397712b 1188static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1189 u64 bytenr, u64 num_bytes)
1190{
1191 int ret;
1192 struct btrfs_ordered_sum *sums;
1193 LIST_HEAD(list);
1194
07d400a6 1195 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1196 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1197 if (ret == 0 && list_empty(&list))
1198 return 0;
1199
1200 while (!list_empty(&list)) {
1201 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1202 list_del(&sums->list);
1203 kfree(sums);
1204 }
1205 return 1;
1206}
1207
d352ac68
CM
1208/*
1209 * when nowcow writeback call back. This checks for snapshots or COW copies
1210 * of the extents that exist in the file, and COWs the file as required.
1211 *
1212 * If no cow copies or snapshots exist, we write directly to the existing
1213 * blocks on disk
1214 */
7f366cfe
CM
1215static noinline int run_delalloc_nocow(struct inode *inode,
1216 struct page *locked_page,
771ed689
CM
1217 u64 start, u64 end, int *page_started, int force,
1218 unsigned long *nr_written)
be20aa9d 1219{
be20aa9d 1220 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1221 struct btrfs_trans_handle *trans;
be20aa9d 1222 struct extent_buffer *leaf;
be20aa9d 1223 struct btrfs_path *path;
80ff3856 1224 struct btrfs_file_extent_item *fi;
be20aa9d 1225 struct btrfs_key found_key;
80ff3856
YZ
1226 u64 cow_start;
1227 u64 cur_offset;
1228 u64 extent_end;
5d4f98a2 1229 u64 extent_offset;
80ff3856
YZ
1230 u64 disk_bytenr;
1231 u64 num_bytes;
b4939680 1232 u64 disk_num_bytes;
cc95bef6 1233 u64 ram_bytes;
80ff3856 1234 int extent_type;
79787eaa 1235 int ret, err;
d899e052 1236 int type;
80ff3856
YZ
1237 int nocow;
1238 int check_prev = 1;
82d5902d 1239 bool nolock;
33345d01 1240 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1241
1242 path = btrfs_alloc_path();
17ca04af 1243 if (!path) {
c2790a2e
JB
1244 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1245 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1246 EXTENT_DO_ACCOUNTING |
1247 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1248 PAGE_CLEAR_DIRTY |
1249 PAGE_SET_WRITEBACK |
1250 PAGE_END_WRITEBACK);
d8926bb3 1251 return -ENOMEM;
17ca04af 1252 }
82d5902d 1253
83eea1f1 1254 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1255
1256 if (nolock)
7a7eaa40 1257 trans = btrfs_join_transaction_nolock(root);
82d5902d 1258 else
7a7eaa40 1259 trans = btrfs_join_transaction(root);
ff5714cc 1260
79787eaa 1261 if (IS_ERR(trans)) {
c2790a2e
JB
1262 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1263 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1264 EXTENT_DO_ACCOUNTING |
1265 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1266 PAGE_CLEAR_DIRTY |
1267 PAGE_SET_WRITEBACK |
1268 PAGE_END_WRITEBACK);
79787eaa
JM
1269 btrfs_free_path(path);
1270 return PTR_ERR(trans);
1271 }
1272
74b21075 1273 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1274
80ff3856
YZ
1275 cow_start = (u64)-1;
1276 cur_offset = start;
1277 while (1) {
33345d01 1278 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1279 cur_offset, 0);
d788a349 1280 if (ret < 0)
79787eaa 1281 goto error;
80ff3856
YZ
1282 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1283 leaf = path->nodes[0];
1284 btrfs_item_key_to_cpu(leaf, &found_key,
1285 path->slots[0] - 1);
33345d01 1286 if (found_key.objectid == ino &&
80ff3856
YZ
1287 found_key.type == BTRFS_EXTENT_DATA_KEY)
1288 path->slots[0]--;
1289 }
1290 check_prev = 0;
1291next_slot:
1292 leaf = path->nodes[0];
1293 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1294 ret = btrfs_next_leaf(root, path);
d788a349 1295 if (ret < 0)
79787eaa 1296 goto error;
80ff3856
YZ
1297 if (ret > 0)
1298 break;
1299 leaf = path->nodes[0];
1300 }
be20aa9d 1301
80ff3856
YZ
1302 nocow = 0;
1303 disk_bytenr = 0;
17d217fe 1304 num_bytes = 0;
80ff3856
YZ
1305 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1306
33345d01 1307 if (found_key.objectid > ino ||
80ff3856
YZ
1308 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1309 found_key.offset > end)
1310 break;
1311
1312 if (found_key.offset > cur_offset) {
1313 extent_end = found_key.offset;
e9061e21 1314 extent_type = 0;
80ff3856
YZ
1315 goto out_check;
1316 }
1317
1318 fi = btrfs_item_ptr(leaf, path->slots[0],
1319 struct btrfs_file_extent_item);
1320 extent_type = btrfs_file_extent_type(leaf, fi);
1321
cc95bef6 1322 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1323 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1324 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1325 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1326 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1327 extent_end = found_key.offset +
1328 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1329 disk_num_bytes =
1330 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1331 if (extent_end <= start) {
1332 path->slots[0]++;
1333 goto next_slot;
1334 }
17d217fe
YZ
1335 if (disk_bytenr == 0)
1336 goto out_check;
80ff3856
YZ
1337 if (btrfs_file_extent_compression(leaf, fi) ||
1338 btrfs_file_extent_encryption(leaf, fi) ||
1339 btrfs_file_extent_other_encoding(leaf, fi))
1340 goto out_check;
d899e052
YZ
1341 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1342 goto out_check;
d2fb3437 1343 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1344 goto out_check;
33345d01 1345 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1346 found_key.offset -
1347 extent_offset, disk_bytenr))
17d217fe 1348 goto out_check;
5d4f98a2 1349 disk_bytenr += extent_offset;
17d217fe
YZ
1350 disk_bytenr += cur_offset - found_key.offset;
1351 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1352 /*
1353 * if there are pending snapshots for this root,
1354 * we fall into common COW way.
1355 */
1356 if (!nolock) {
9ea24bbe 1357 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1358 if (!err)
1359 goto out_check;
1360 }
17d217fe
YZ
1361 /*
1362 * force cow if csum exists in the range.
1363 * this ensure that csum for a given extent are
1364 * either valid or do not exist.
1365 */
1366 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1367 goto out_check;
80ff3856
YZ
1368 nocow = 1;
1369 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1370 extent_end = found_key.offset +
514ac8ad
CM
1371 btrfs_file_extent_inline_len(leaf,
1372 path->slots[0], fi);
80ff3856
YZ
1373 extent_end = ALIGN(extent_end, root->sectorsize);
1374 } else {
1375 BUG_ON(1);
1376 }
1377out_check:
1378 if (extent_end <= start) {
1379 path->slots[0]++;
e9894fd3 1380 if (!nolock && nocow)
9ea24bbe 1381 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1382 goto next_slot;
1383 }
1384 if (!nocow) {
1385 if (cow_start == (u64)-1)
1386 cow_start = cur_offset;
1387 cur_offset = extent_end;
1388 if (cur_offset > end)
1389 break;
1390 path->slots[0]++;
1391 goto next_slot;
7ea394f1
YZ
1392 }
1393
b3b4aa74 1394 btrfs_release_path(path);
80ff3856 1395 if (cow_start != (u64)-1) {
00361589
JB
1396 ret = cow_file_range(inode, locked_page,
1397 cow_start, found_key.offset - 1,
1398 page_started, nr_written, 1);
e9894fd3
WS
1399 if (ret) {
1400 if (!nolock && nocow)
9ea24bbe 1401 btrfs_end_write_no_snapshoting(root);
79787eaa 1402 goto error;
e9894fd3 1403 }
80ff3856 1404 cow_start = (u64)-1;
7ea394f1 1405 }
80ff3856 1406
d899e052
YZ
1407 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1408 struct extent_map *em;
1409 struct extent_map_tree *em_tree;
1410 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1411 em = alloc_extent_map();
79787eaa 1412 BUG_ON(!em); /* -ENOMEM */
d899e052 1413 em->start = cur_offset;
70c8a91c 1414 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1415 em->len = num_bytes;
1416 em->block_len = num_bytes;
1417 em->block_start = disk_bytenr;
b4939680 1418 em->orig_block_len = disk_num_bytes;
cc95bef6 1419 em->ram_bytes = ram_bytes;
d899e052 1420 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1421 em->mod_start = em->start;
1422 em->mod_len = em->len;
d899e052 1423 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1424 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1425 em->generation = -1;
d899e052 1426 while (1) {
890871be 1427 write_lock(&em_tree->lock);
09a2a8f9 1428 ret = add_extent_mapping(em_tree, em, 1);
890871be 1429 write_unlock(&em_tree->lock);
d899e052
YZ
1430 if (ret != -EEXIST) {
1431 free_extent_map(em);
1432 break;
1433 }
1434 btrfs_drop_extent_cache(inode, em->start,
1435 em->start + em->len - 1, 0);
1436 }
1437 type = BTRFS_ORDERED_PREALLOC;
1438 } else {
1439 type = BTRFS_ORDERED_NOCOW;
1440 }
80ff3856
YZ
1441
1442 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1443 num_bytes, num_bytes, type);
79787eaa 1444 BUG_ON(ret); /* -ENOMEM */
771ed689 1445
efa56464
YZ
1446 if (root->root_key.objectid ==
1447 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1448 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1449 num_bytes);
e9894fd3
WS
1450 if (ret) {
1451 if (!nolock && nocow)
9ea24bbe 1452 btrfs_end_write_no_snapshoting(root);
79787eaa 1453 goto error;
e9894fd3 1454 }
efa56464
YZ
1455 }
1456
c2790a2e
JB
1457 extent_clear_unlock_delalloc(inode, cur_offset,
1458 cur_offset + num_bytes - 1,
1459 locked_page, EXTENT_LOCKED |
1460 EXTENT_DELALLOC, PAGE_UNLOCK |
1461 PAGE_SET_PRIVATE2);
e9894fd3 1462 if (!nolock && nocow)
9ea24bbe 1463 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1464 cur_offset = extent_end;
1465 if (cur_offset > end)
1466 break;
be20aa9d 1467 }
b3b4aa74 1468 btrfs_release_path(path);
80ff3856 1469
17ca04af 1470 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1471 cow_start = cur_offset;
17ca04af
JB
1472 cur_offset = end;
1473 }
1474
80ff3856 1475 if (cow_start != (u64)-1) {
00361589
JB
1476 ret = cow_file_range(inode, locked_page, cow_start, end,
1477 page_started, nr_written, 1);
d788a349 1478 if (ret)
79787eaa 1479 goto error;
80ff3856
YZ
1480 }
1481
79787eaa 1482error:
a698d075 1483 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1484 if (!ret)
1485 ret = err;
1486
17ca04af 1487 if (ret && cur_offset < end)
c2790a2e
JB
1488 extent_clear_unlock_delalloc(inode, cur_offset, end,
1489 locked_page, EXTENT_LOCKED |
151a41bc
JB
1490 EXTENT_DELALLOC | EXTENT_DEFRAG |
1491 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1492 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1493 PAGE_SET_WRITEBACK |
1494 PAGE_END_WRITEBACK);
7ea394f1 1495 btrfs_free_path(path);
79787eaa 1496 return ret;
be20aa9d
CM
1497}
1498
47059d93
WS
1499static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1500{
1501
1502 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1503 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1504 return 0;
1505
1506 /*
1507 * @defrag_bytes is a hint value, no spinlock held here,
1508 * if is not zero, it means the file is defragging.
1509 * Force cow if given extent needs to be defragged.
1510 */
1511 if (BTRFS_I(inode)->defrag_bytes &&
1512 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1513 EXTENT_DEFRAG, 0, NULL))
1514 return 1;
1515
1516 return 0;
1517}
1518
d352ac68
CM
1519/*
1520 * extent_io.c call back to do delayed allocation processing
1521 */
c8b97818 1522static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1523 u64 start, u64 end, int *page_started,
1524 unsigned long *nr_written)
be20aa9d 1525{
be20aa9d 1526 int ret;
47059d93 1527 int force_cow = need_force_cow(inode, start, end);
a2135011 1528
47059d93 1529 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1530 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1531 page_started, 1, nr_written);
47059d93 1532 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1533 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1534 page_started, 0, nr_written);
7816030e 1535 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1536 ret = cow_file_range(inode, locked_page, start, end,
1537 page_started, nr_written, 1);
7ddf5a42
JB
1538 } else {
1539 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1540 &BTRFS_I(inode)->runtime_flags);
771ed689 1541 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1542 page_started, nr_written);
7ddf5a42 1543 }
b888db2b
CM
1544 return ret;
1545}
1546
1bf85046
JM
1547static void btrfs_split_extent_hook(struct inode *inode,
1548 struct extent_state *orig, u64 split)
9ed74f2d 1549{
dcab6a3b
JB
1550 u64 size;
1551
0ca1f7ce 1552 /* not delalloc, ignore it */
9ed74f2d 1553 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1554 return;
9ed74f2d 1555
dcab6a3b
JB
1556 size = orig->end - orig->start + 1;
1557 if (size > BTRFS_MAX_EXTENT_SIZE) {
1558 u64 num_extents;
1559 u64 new_size;
1560
1561 /*
ba117213
JB
1562 * See the explanation in btrfs_merge_extent_hook, the same
1563 * applies here, just in reverse.
dcab6a3b
JB
1564 */
1565 new_size = orig->end - split + 1;
ba117213 1566 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1567 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1568 new_size = split - orig->start;
1569 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1570 BTRFS_MAX_EXTENT_SIZE);
1571 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1572 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1573 return;
1574 }
1575
9e0baf60
JB
1576 spin_lock(&BTRFS_I(inode)->lock);
1577 BTRFS_I(inode)->outstanding_extents++;
1578 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1579}
1580
1581/*
1582 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1583 * extents so we can keep track of new extents that are just merged onto old
1584 * extents, such as when we are doing sequential writes, so we can properly
1585 * account for the metadata space we'll need.
1586 */
1bf85046
JM
1587static void btrfs_merge_extent_hook(struct inode *inode,
1588 struct extent_state *new,
1589 struct extent_state *other)
9ed74f2d 1590{
dcab6a3b
JB
1591 u64 new_size, old_size;
1592 u64 num_extents;
1593
9ed74f2d
JB
1594 /* not delalloc, ignore it */
1595 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1596 return;
9ed74f2d 1597
8461a3de
JB
1598 if (new->start > other->start)
1599 new_size = new->end - other->start + 1;
1600 else
1601 new_size = other->end - new->start + 1;
dcab6a3b
JB
1602
1603 /* we're not bigger than the max, unreserve the space and go */
1604 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1605 spin_lock(&BTRFS_I(inode)->lock);
1606 BTRFS_I(inode)->outstanding_extents--;
1607 spin_unlock(&BTRFS_I(inode)->lock);
1608 return;
1609 }
1610
1611 /*
ba117213
JB
1612 * We have to add up either side to figure out how many extents were
1613 * accounted for before we merged into one big extent. If the number of
1614 * extents we accounted for is <= the amount we need for the new range
1615 * then we can return, otherwise drop. Think of it like this
1616 *
1617 * [ 4k][MAX_SIZE]
1618 *
1619 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1620 * need 2 outstanding extents, on one side we have 1 and the other side
1621 * we have 1 so they are == and we can return. But in this case
1622 *
1623 * [MAX_SIZE+4k][MAX_SIZE+4k]
1624 *
1625 * Each range on their own accounts for 2 extents, but merged together
1626 * they are only 3 extents worth of accounting, so we need to drop in
1627 * this case.
dcab6a3b 1628 */
ba117213 1629 old_size = other->end - other->start + 1;
dcab6a3b
JB
1630 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1631 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1632 old_size = new->end - new->start + 1;
1633 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1634 BTRFS_MAX_EXTENT_SIZE);
1635
dcab6a3b 1636 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1637 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1638 return;
1639
9e0baf60
JB
1640 spin_lock(&BTRFS_I(inode)->lock);
1641 BTRFS_I(inode)->outstanding_extents--;
1642 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1643}
1644
eb73c1b7
MX
1645static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1646 struct inode *inode)
1647{
1648 spin_lock(&root->delalloc_lock);
1649 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1650 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1651 &root->delalloc_inodes);
1652 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1653 &BTRFS_I(inode)->runtime_flags);
1654 root->nr_delalloc_inodes++;
1655 if (root->nr_delalloc_inodes == 1) {
1656 spin_lock(&root->fs_info->delalloc_root_lock);
1657 BUG_ON(!list_empty(&root->delalloc_root));
1658 list_add_tail(&root->delalloc_root,
1659 &root->fs_info->delalloc_roots);
1660 spin_unlock(&root->fs_info->delalloc_root_lock);
1661 }
1662 }
1663 spin_unlock(&root->delalloc_lock);
1664}
1665
1666static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1667 struct inode *inode)
1668{
1669 spin_lock(&root->delalloc_lock);
1670 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1671 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1672 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1673 &BTRFS_I(inode)->runtime_flags);
1674 root->nr_delalloc_inodes--;
1675 if (!root->nr_delalloc_inodes) {
1676 spin_lock(&root->fs_info->delalloc_root_lock);
1677 BUG_ON(list_empty(&root->delalloc_root));
1678 list_del_init(&root->delalloc_root);
1679 spin_unlock(&root->fs_info->delalloc_root_lock);
1680 }
1681 }
1682 spin_unlock(&root->delalloc_lock);
1683}
1684
d352ac68
CM
1685/*
1686 * extent_io.c set_bit_hook, used to track delayed allocation
1687 * bytes in this file, and to maintain the list of inodes that
1688 * have pending delalloc work to be done.
1689 */
1bf85046 1690static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1691 struct extent_state *state, unsigned *bits)
291d673e 1692{
9ed74f2d 1693
47059d93
WS
1694 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1695 WARN_ON(1);
75eff68e
CM
1696 /*
1697 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1698 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1699 * bit, which is only set or cleared with irqs on
1700 */
0ca1f7ce 1701 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1702 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1703 u64 len = state->end + 1 - state->start;
83eea1f1 1704 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1705
9e0baf60 1706 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1707 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1708 } else {
1709 spin_lock(&BTRFS_I(inode)->lock);
1710 BTRFS_I(inode)->outstanding_extents++;
1711 spin_unlock(&BTRFS_I(inode)->lock);
1712 }
287a0ab9 1713
6a3891c5
JB
1714 /* For sanity tests */
1715 if (btrfs_test_is_dummy_root(root))
1716 return;
1717
963d678b
MX
1718 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1719 root->fs_info->delalloc_batch);
df0af1a5 1720 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1721 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1722 if (*bits & EXTENT_DEFRAG)
1723 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1724 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1725 &BTRFS_I(inode)->runtime_flags))
1726 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1727 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1728 }
291d673e
CM
1729}
1730
d352ac68
CM
1731/*
1732 * extent_io.c clear_bit_hook, see set_bit_hook for why
1733 */
1bf85046 1734static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1735 struct extent_state *state,
9ee49a04 1736 unsigned *bits)
291d673e 1737{
47059d93 1738 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1739 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1740 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1741
1742 spin_lock(&BTRFS_I(inode)->lock);
1743 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1744 BTRFS_I(inode)->defrag_bytes -= len;
1745 spin_unlock(&BTRFS_I(inode)->lock);
1746
75eff68e
CM
1747 /*
1748 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1749 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1750 * bit, which is only set or cleared with irqs on
1751 */
0ca1f7ce 1752 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1753 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1754 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1755
9e0baf60 1756 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1757 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1758 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1759 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1760 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1761 spin_unlock(&BTRFS_I(inode)->lock);
1762 }
0ca1f7ce 1763
b6d08f06
JB
1764 /*
1765 * We don't reserve metadata space for space cache inodes so we
1766 * don't need to call dellalloc_release_metadata if there is an
1767 * error.
1768 */
1769 if (*bits & EXTENT_DO_ACCOUNTING &&
1770 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1771 btrfs_delalloc_release_metadata(inode, len);
1772
6a3891c5
JB
1773 /* For sanity tests. */
1774 if (btrfs_test_is_dummy_root(root))
1775 return;
1776
0cb59c99 1777 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1778 && do_list && !(state->state & EXTENT_NORESERVE))
51773bec
QW
1779 btrfs_free_reserved_data_space_noquota(inode,
1780 state->start, len);
9ed74f2d 1781
963d678b
MX
1782 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1783 root->fs_info->delalloc_batch);
df0af1a5 1784 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1785 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1786 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1787 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1788 &BTRFS_I(inode)->runtime_flags))
1789 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1790 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1791 }
291d673e
CM
1792}
1793
d352ac68
CM
1794/*
1795 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1796 * we don't create bios that span stripes or chunks
1797 */
64a16701 1798int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1799 size_t size, struct bio *bio,
1800 unsigned long bio_flags)
239b14b3
CM
1801{
1802 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1803 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1804 u64 length = 0;
1805 u64 map_length;
239b14b3
CM
1806 int ret;
1807
771ed689
CM
1808 if (bio_flags & EXTENT_BIO_COMPRESSED)
1809 return 0;
1810
4f024f37 1811 length = bio->bi_iter.bi_size;
239b14b3 1812 map_length = length;
64a16701 1813 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1814 &map_length, NULL, 0);
3ec706c8 1815 /* Will always return 0 with map_multi == NULL */
3444a972 1816 BUG_ON(ret < 0);
d397712b 1817 if (map_length < length + size)
239b14b3 1818 return 1;
3444a972 1819 return 0;
239b14b3
CM
1820}
1821
d352ac68
CM
1822/*
1823 * in order to insert checksums into the metadata in large chunks,
1824 * we wait until bio submission time. All the pages in the bio are
1825 * checksummed and sums are attached onto the ordered extent record.
1826 *
1827 * At IO completion time the cums attached on the ordered extent record
1828 * are inserted into the btree
1829 */
d397712b
CM
1830static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1831 struct bio *bio, int mirror_num,
eaf25d93
CM
1832 unsigned long bio_flags,
1833 u64 bio_offset)
065631f6 1834{
065631f6 1835 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1836 int ret = 0;
e015640f 1837
d20f7043 1838 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1839 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1840 return 0;
1841}
e015640f 1842
4a69a410
CM
1843/*
1844 * in order to insert checksums into the metadata in large chunks,
1845 * we wait until bio submission time. All the pages in the bio are
1846 * checksummed and sums are attached onto the ordered extent record.
1847 *
1848 * At IO completion time the cums attached on the ordered extent record
1849 * are inserted into the btree
1850 */
b2950863 1851static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1852 int mirror_num, unsigned long bio_flags,
1853 u64 bio_offset)
4a69a410
CM
1854{
1855 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1856 int ret;
1857
1858 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
4246a0b6
CH
1859 if (ret) {
1860 bio->bi_error = ret;
1861 bio_endio(bio);
1862 }
61891923 1863 return ret;
44b8bd7e
CM
1864}
1865
d352ac68 1866/*
cad321ad
CM
1867 * extent_io.c submission hook. This does the right thing for csum calculation
1868 * on write, or reading the csums from the tree before a read
d352ac68 1869 */
b2950863 1870static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1871 int mirror_num, unsigned long bio_flags,
1872 u64 bio_offset)
44b8bd7e
CM
1873{
1874 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1875 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1876 int ret = 0;
19b9bdb0 1877 int skip_sum;
b812ce28 1878 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1879
6cbff00f 1880 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1881
83eea1f1 1882 if (btrfs_is_free_space_inode(inode))
0d51e28a 1883 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1884
7b6d91da 1885 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1886 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1887 if (ret)
61891923 1888 goto out;
5fd02043 1889
d20f7043 1890 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1891 ret = btrfs_submit_compressed_read(inode, bio,
1892 mirror_num,
1893 bio_flags);
1894 goto out;
c2db1073
TI
1895 } else if (!skip_sum) {
1896 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1897 if (ret)
61891923 1898 goto out;
c2db1073 1899 }
4d1b5fb4 1900 goto mapit;
b812ce28 1901 } else if (async && !skip_sum) {
17d217fe
YZ
1902 /* csum items have already been cloned */
1903 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1904 goto mapit;
19b9bdb0 1905 /* we're doing a write, do the async checksumming */
61891923 1906 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1907 inode, rw, bio, mirror_num,
eaf25d93
CM
1908 bio_flags, bio_offset,
1909 __btrfs_submit_bio_start,
4a69a410 1910 __btrfs_submit_bio_done);
61891923 1911 goto out;
b812ce28
JB
1912 } else if (!skip_sum) {
1913 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1914 if (ret)
1915 goto out;
19b9bdb0
CM
1916 }
1917
0b86a832 1918mapit:
61891923
SB
1919 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1920
1921out:
4246a0b6
CH
1922 if (ret < 0) {
1923 bio->bi_error = ret;
1924 bio_endio(bio);
1925 }
61891923 1926 return ret;
065631f6 1927}
6885f308 1928
d352ac68
CM
1929/*
1930 * given a list of ordered sums record them in the inode. This happens
1931 * at IO completion time based on sums calculated at bio submission time.
1932 */
ba1da2f4 1933static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1934 struct inode *inode, u64 file_offset,
1935 struct list_head *list)
1936{
e6dcd2dc
CM
1937 struct btrfs_ordered_sum *sum;
1938
c6e30871 1939 list_for_each_entry(sum, list, list) {
39847c4d 1940 trans->adding_csums = 1;
d20f7043
CM
1941 btrfs_csum_file_blocks(trans,
1942 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1943 trans->adding_csums = 0;
e6dcd2dc
CM
1944 }
1945 return 0;
1946}
1947
2ac55d41
JB
1948int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1949 struct extent_state **cached_state)
ea8c2819 1950{
6c1500f2 1951 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1952 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1953 cached_state, GFP_NOFS);
ea8c2819
CM
1954}
1955
d352ac68 1956/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1957struct btrfs_writepage_fixup {
1958 struct page *page;
1959 struct btrfs_work work;
1960};
1961
b2950863 1962static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1963{
1964 struct btrfs_writepage_fixup *fixup;
1965 struct btrfs_ordered_extent *ordered;
2ac55d41 1966 struct extent_state *cached_state = NULL;
247e743c
CM
1967 struct page *page;
1968 struct inode *inode;
1969 u64 page_start;
1970 u64 page_end;
87826df0 1971 int ret;
247e743c
CM
1972
1973 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1974 page = fixup->page;
4a096752 1975again:
247e743c
CM
1976 lock_page(page);
1977 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1978 ClearPageChecked(page);
1979 goto out_page;
1980 }
1981
1982 inode = page->mapping->host;
1983 page_start = page_offset(page);
1984 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1985
2ac55d41 1986 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1987 &cached_state);
4a096752
CM
1988
1989 /* already ordered? We're done */
8b62b72b 1990 if (PagePrivate2(page))
247e743c 1991 goto out;
4a096752
CM
1992
1993 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1994 if (ordered) {
2ac55d41
JB
1995 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1996 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1997 unlock_page(page);
1998 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1999 btrfs_put_ordered_extent(ordered);
4a096752
CM
2000 goto again;
2001 }
247e743c 2002
7cf5b976
QW
2003 ret = btrfs_delalloc_reserve_space(inode, page_start,
2004 PAGE_CACHE_SIZE);
87826df0
JM
2005 if (ret) {
2006 mapping_set_error(page->mapping, ret);
2007 end_extent_writepage(page, ret, page_start, page_end);
2008 ClearPageChecked(page);
2009 goto out;
2010 }
2011
2ac55d41 2012 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 2013 ClearPageChecked(page);
87826df0 2014 set_page_dirty(page);
247e743c 2015out:
2ac55d41
JB
2016 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2017 &cached_state, GFP_NOFS);
247e743c
CM
2018out_page:
2019 unlock_page(page);
2020 page_cache_release(page);
b897abec 2021 kfree(fixup);
247e743c
CM
2022}
2023
2024/*
2025 * There are a few paths in the higher layers of the kernel that directly
2026 * set the page dirty bit without asking the filesystem if it is a
2027 * good idea. This causes problems because we want to make sure COW
2028 * properly happens and the data=ordered rules are followed.
2029 *
c8b97818 2030 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2031 * hasn't been properly setup for IO. We kick off an async process
2032 * to fix it up. The async helper will wait for ordered extents, set
2033 * the delalloc bit and make it safe to write the page.
2034 */
b2950863 2035static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2036{
2037 struct inode *inode = page->mapping->host;
2038 struct btrfs_writepage_fixup *fixup;
2039 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2040
8b62b72b
CM
2041 /* this page is properly in the ordered list */
2042 if (TestClearPagePrivate2(page))
247e743c
CM
2043 return 0;
2044
2045 if (PageChecked(page))
2046 return -EAGAIN;
2047
2048 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2049 if (!fixup)
2050 return -EAGAIN;
f421950f 2051
247e743c
CM
2052 SetPageChecked(page);
2053 page_cache_get(page);
9e0af237
LB
2054 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2055 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2056 fixup->page = page;
dc6e3209 2057 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2058 return -EBUSY;
247e743c
CM
2059}
2060
d899e052
YZ
2061static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2062 struct inode *inode, u64 file_pos,
2063 u64 disk_bytenr, u64 disk_num_bytes,
2064 u64 num_bytes, u64 ram_bytes,
2065 u8 compression, u8 encryption,
2066 u16 other_encoding, int extent_type)
2067{
2068 struct btrfs_root *root = BTRFS_I(inode)->root;
2069 struct btrfs_file_extent_item *fi;
2070 struct btrfs_path *path;
2071 struct extent_buffer *leaf;
2072 struct btrfs_key ins;
1acae57b 2073 int extent_inserted = 0;
d899e052
YZ
2074 int ret;
2075
2076 path = btrfs_alloc_path();
d8926bb3
MF
2077 if (!path)
2078 return -ENOMEM;
d899e052 2079
a1ed835e
CM
2080 /*
2081 * we may be replacing one extent in the tree with another.
2082 * The new extent is pinned in the extent map, and we don't want
2083 * to drop it from the cache until it is completely in the btree.
2084 *
2085 * So, tell btrfs_drop_extents to leave this extent in the cache.
2086 * the caller is expected to unpin it and allow it to be merged
2087 * with the others.
2088 */
1acae57b
FDBM
2089 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2090 file_pos + num_bytes, NULL, 0,
2091 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2092 if (ret)
2093 goto out;
d899e052 2094
1acae57b
FDBM
2095 if (!extent_inserted) {
2096 ins.objectid = btrfs_ino(inode);
2097 ins.offset = file_pos;
2098 ins.type = BTRFS_EXTENT_DATA_KEY;
2099
2100 path->leave_spinning = 1;
2101 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2102 sizeof(*fi));
2103 if (ret)
2104 goto out;
2105 }
d899e052
YZ
2106 leaf = path->nodes[0];
2107 fi = btrfs_item_ptr(leaf, path->slots[0],
2108 struct btrfs_file_extent_item);
2109 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2110 btrfs_set_file_extent_type(leaf, fi, extent_type);
2111 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2112 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2113 btrfs_set_file_extent_offset(leaf, fi, 0);
2114 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2115 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2116 btrfs_set_file_extent_compression(leaf, fi, compression);
2117 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2118 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2119
d899e052 2120 btrfs_mark_buffer_dirty(leaf);
ce195332 2121 btrfs_release_path(path);
d899e052
YZ
2122
2123 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2124
2125 ins.objectid = disk_bytenr;
2126 ins.offset = disk_num_bytes;
2127 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2128 ret = btrfs_alloc_reserved_file_extent(trans, root,
2129 root->root_key.objectid,
5846a3c2
QW
2130 btrfs_ino(inode), file_pos,
2131 ram_bytes, &ins);
297d750b 2132 /*
5846a3c2
QW
2133 * Release the reserved range from inode dirty range map, as it is
2134 * already moved into delayed_ref_head
297d750b
QW
2135 */
2136 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2137out:
d899e052 2138 btrfs_free_path(path);
b9473439 2139
79787eaa 2140 return ret;
d899e052
YZ
2141}
2142
38c227d8
LB
2143/* snapshot-aware defrag */
2144struct sa_defrag_extent_backref {
2145 struct rb_node node;
2146 struct old_sa_defrag_extent *old;
2147 u64 root_id;
2148 u64 inum;
2149 u64 file_pos;
2150 u64 extent_offset;
2151 u64 num_bytes;
2152 u64 generation;
2153};
2154
2155struct old_sa_defrag_extent {
2156 struct list_head list;
2157 struct new_sa_defrag_extent *new;
2158
2159 u64 extent_offset;
2160 u64 bytenr;
2161 u64 offset;
2162 u64 len;
2163 int count;
2164};
2165
2166struct new_sa_defrag_extent {
2167 struct rb_root root;
2168 struct list_head head;
2169 struct btrfs_path *path;
2170 struct inode *inode;
2171 u64 file_pos;
2172 u64 len;
2173 u64 bytenr;
2174 u64 disk_len;
2175 u8 compress_type;
2176};
2177
2178static int backref_comp(struct sa_defrag_extent_backref *b1,
2179 struct sa_defrag_extent_backref *b2)
2180{
2181 if (b1->root_id < b2->root_id)
2182 return -1;
2183 else if (b1->root_id > b2->root_id)
2184 return 1;
2185
2186 if (b1->inum < b2->inum)
2187 return -1;
2188 else if (b1->inum > b2->inum)
2189 return 1;
2190
2191 if (b1->file_pos < b2->file_pos)
2192 return -1;
2193 else if (b1->file_pos > b2->file_pos)
2194 return 1;
2195
2196 /*
2197 * [------------------------------] ===> (a range of space)
2198 * |<--->| |<---->| =============> (fs/file tree A)
2199 * |<---------------------------->| ===> (fs/file tree B)
2200 *
2201 * A range of space can refer to two file extents in one tree while
2202 * refer to only one file extent in another tree.
2203 *
2204 * So we may process a disk offset more than one time(two extents in A)
2205 * and locate at the same extent(one extent in B), then insert two same
2206 * backrefs(both refer to the extent in B).
2207 */
2208 return 0;
2209}
2210
2211static void backref_insert(struct rb_root *root,
2212 struct sa_defrag_extent_backref *backref)
2213{
2214 struct rb_node **p = &root->rb_node;
2215 struct rb_node *parent = NULL;
2216 struct sa_defrag_extent_backref *entry;
2217 int ret;
2218
2219 while (*p) {
2220 parent = *p;
2221 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2222
2223 ret = backref_comp(backref, entry);
2224 if (ret < 0)
2225 p = &(*p)->rb_left;
2226 else
2227 p = &(*p)->rb_right;
2228 }
2229
2230 rb_link_node(&backref->node, parent, p);
2231 rb_insert_color(&backref->node, root);
2232}
2233
2234/*
2235 * Note the backref might has changed, and in this case we just return 0.
2236 */
2237static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2238 void *ctx)
2239{
2240 struct btrfs_file_extent_item *extent;
2241 struct btrfs_fs_info *fs_info;
2242 struct old_sa_defrag_extent *old = ctx;
2243 struct new_sa_defrag_extent *new = old->new;
2244 struct btrfs_path *path = new->path;
2245 struct btrfs_key key;
2246 struct btrfs_root *root;
2247 struct sa_defrag_extent_backref *backref;
2248 struct extent_buffer *leaf;
2249 struct inode *inode = new->inode;
2250 int slot;
2251 int ret;
2252 u64 extent_offset;
2253 u64 num_bytes;
2254
2255 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2256 inum == btrfs_ino(inode))
2257 return 0;
2258
2259 key.objectid = root_id;
2260 key.type = BTRFS_ROOT_ITEM_KEY;
2261 key.offset = (u64)-1;
2262
2263 fs_info = BTRFS_I(inode)->root->fs_info;
2264 root = btrfs_read_fs_root_no_name(fs_info, &key);
2265 if (IS_ERR(root)) {
2266 if (PTR_ERR(root) == -ENOENT)
2267 return 0;
2268 WARN_ON(1);
2269 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2270 inum, offset, root_id);
2271 return PTR_ERR(root);
2272 }
2273
2274 key.objectid = inum;
2275 key.type = BTRFS_EXTENT_DATA_KEY;
2276 if (offset > (u64)-1 << 32)
2277 key.offset = 0;
2278 else
2279 key.offset = offset;
2280
2281 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2282 if (WARN_ON(ret < 0))
38c227d8 2283 return ret;
50f1319c 2284 ret = 0;
38c227d8
LB
2285
2286 while (1) {
2287 cond_resched();
2288
2289 leaf = path->nodes[0];
2290 slot = path->slots[0];
2291
2292 if (slot >= btrfs_header_nritems(leaf)) {
2293 ret = btrfs_next_leaf(root, path);
2294 if (ret < 0) {
2295 goto out;
2296 } else if (ret > 0) {
2297 ret = 0;
2298 goto out;
2299 }
2300 continue;
2301 }
2302
2303 path->slots[0]++;
2304
2305 btrfs_item_key_to_cpu(leaf, &key, slot);
2306
2307 if (key.objectid > inum)
2308 goto out;
2309
2310 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2311 continue;
2312
2313 extent = btrfs_item_ptr(leaf, slot,
2314 struct btrfs_file_extent_item);
2315
2316 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2317 continue;
2318
e68afa49
LB
2319 /*
2320 * 'offset' refers to the exact key.offset,
2321 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2322 * (key.offset - extent_offset).
2323 */
2324 if (key.offset != offset)
38c227d8
LB
2325 continue;
2326
e68afa49 2327 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2328 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2329
38c227d8
LB
2330 if (extent_offset >= old->extent_offset + old->offset +
2331 old->len || extent_offset + num_bytes <=
2332 old->extent_offset + old->offset)
2333 continue;
38c227d8
LB
2334 break;
2335 }
2336
2337 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2338 if (!backref) {
2339 ret = -ENOENT;
2340 goto out;
2341 }
2342
2343 backref->root_id = root_id;
2344 backref->inum = inum;
e68afa49 2345 backref->file_pos = offset;
38c227d8
LB
2346 backref->num_bytes = num_bytes;
2347 backref->extent_offset = extent_offset;
2348 backref->generation = btrfs_file_extent_generation(leaf, extent);
2349 backref->old = old;
2350 backref_insert(&new->root, backref);
2351 old->count++;
2352out:
2353 btrfs_release_path(path);
2354 WARN_ON(ret);
2355 return ret;
2356}
2357
2358static noinline bool record_extent_backrefs(struct btrfs_path *path,
2359 struct new_sa_defrag_extent *new)
2360{
2361 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2362 struct old_sa_defrag_extent *old, *tmp;
2363 int ret;
2364
2365 new->path = path;
2366
2367 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2368 ret = iterate_inodes_from_logical(old->bytenr +
2369 old->extent_offset, fs_info,
38c227d8
LB
2370 path, record_one_backref,
2371 old);
4724b106
JB
2372 if (ret < 0 && ret != -ENOENT)
2373 return false;
38c227d8
LB
2374
2375 /* no backref to be processed for this extent */
2376 if (!old->count) {
2377 list_del(&old->list);
2378 kfree(old);
2379 }
2380 }
2381
2382 if (list_empty(&new->head))
2383 return false;
2384
2385 return true;
2386}
2387
2388static int relink_is_mergable(struct extent_buffer *leaf,
2389 struct btrfs_file_extent_item *fi,
116e0024 2390 struct new_sa_defrag_extent *new)
38c227d8 2391{
116e0024 2392 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2393 return 0;
2394
2395 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2396 return 0;
2397
116e0024
LB
2398 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2399 return 0;
2400
2401 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2402 btrfs_file_extent_other_encoding(leaf, fi))
2403 return 0;
2404
2405 return 1;
2406}
2407
2408/*
2409 * Note the backref might has changed, and in this case we just return 0.
2410 */
2411static noinline int relink_extent_backref(struct btrfs_path *path,
2412 struct sa_defrag_extent_backref *prev,
2413 struct sa_defrag_extent_backref *backref)
2414{
2415 struct btrfs_file_extent_item *extent;
2416 struct btrfs_file_extent_item *item;
2417 struct btrfs_ordered_extent *ordered;
2418 struct btrfs_trans_handle *trans;
2419 struct btrfs_fs_info *fs_info;
2420 struct btrfs_root *root;
2421 struct btrfs_key key;
2422 struct extent_buffer *leaf;
2423 struct old_sa_defrag_extent *old = backref->old;
2424 struct new_sa_defrag_extent *new = old->new;
2425 struct inode *src_inode = new->inode;
2426 struct inode *inode;
2427 struct extent_state *cached = NULL;
2428 int ret = 0;
2429 u64 start;
2430 u64 len;
2431 u64 lock_start;
2432 u64 lock_end;
2433 bool merge = false;
2434 int index;
2435
2436 if (prev && prev->root_id == backref->root_id &&
2437 prev->inum == backref->inum &&
2438 prev->file_pos + prev->num_bytes == backref->file_pos)
2439 merge = true;
2440
2441 /* step 1: get root */
2442 key.objectid = backref->root_id;
2443 key.type = BTRFS_ROOT_ITEM_KEY;
2444 key.offset = (u64)-1;
2445
2446 fs_info = BTRFS_I(src_inode)->root->fs_info;
2447 index = srcu_read_lock(&fs_info->subvol_srcu);
2448
2449 root = btrfs_read_fs_root_no_name(fs_info, &key);
2450 if (IS_ERR(root)) {
2451 srcu_read_unlock(&fs_info->subvol_srcu, index);
2452 if (PTR_ERR(root) == -ENOENT)
2453 return 0;
2454 return PTR_ERR(root);
2455 }
38c227d8 2456
bcbba5e6
WS
2457 if (btrfs_root_readonly(root)) {
2458 srcu_read_unlock(&fs_info->subvol_srcu, index);
2459 return 0;
2460 }
2461
38c227d8
LB
2462 /* step 2: get inode */
2463 key.objectid = backref->inum;
2464 key.type = BTRFS_INODE_ITEM_KEY;
2465 key.offset = 0;
2466
2467 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2468 if (IS_ERR(inode)) {
2469 srcu_read_unlock(&fs_info->subvol_srcu, index);
2470 return 0;
2471 }
2472
2473 srcu_read_unlock(&fs_info->subvol_srcu, index);
2474
2475 /* step 3: relink backref */
2476 lock_start = backref->file_pos;
2477 lock_end = backref->file_pos + backref->num_bytes - 1;
2478 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2479 0, &cached);
2480
2481 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2482 if (ordered) {
2483 btrfs_put_ordered_extent(ordered);
2484 goto out_unlock;
2485 }
2486
2487 trans = btrfs_join_transaction(root);
2488 if (IS_ERR(trans)) {
2489 ret = PTR_ERR(trans);
2490 goto out_unlock;
2491 }
2492
2493 key.objectid = backref->inum;
2494 key.type = BTRFS_EXTENT_DATA_KEY;
2495 key.offset = backref->file_pos;
2496
2497 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2498 if (ret < 0) {
2499 goto out_free_path;
2500 } else if (ret > 0) {
2501 ret = 0;
2502 goto out_free_path;
2503 }
2504
2505 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2506 struct btrfs_file_extent_item);
2507
2508 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2509 backref->generation)
2510 goto out_free_path;
2511
2512 btrfs_release_path(path);
2513
2514 start = backref->file_pos;
2515 if (backref->extent_offset < old->extent_offset + old->offset)
2516 start += old->extent_offset + old->offset -
2517 backref->extent_offset;
2518
2519 len = min(backref->extent_offset + backref->num_bytes,
2520 old->extent_offset + old->offset + old->len);
2521 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2522
2523 ret = btrfs_drop_extents(trans, root, inode, start,
2524 start + len, 1);
2525 if (ret)
2526 goto out_free_path;
2527again:
2528 key.objectid = btrfs_ino(inode);
2529 key.type = BTRFS_EXTENT_DATA_KEY;
2530 key.offset = start;
2531
a09a0a70 2532 path->leave_spinning = 1;
38c227d8
LB
2533 if (merge) {
2534 struct btrfs_file_extent_item *fi;
2535 u64 extent_len;
2536 struct btrfs_key found_key;
2537
3c9665df 2538 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2539 if (ret < 0)
2540 goto out_free_path;
2541
2542 path->slots[0]--;
2543 leaf = path->nodes[0];
2544 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2545
2546 fi = btrfs_item_ptr(leaf, path->slots[0],
2547 struct btrfs_file_extent_item);
2548 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2549
116e0024
LB
2550 if (extent_len + found_key.offset == start &&
2551 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2552 btrfs_set_file_extent_num_bytes(leaf, fi,
2553 extent_len + len);
2554 btrfs_mark_buffer_dirty(leaf);
2555 inode_add_bytes(inode, len);
2556
2557 ret = 1;
2558 goto out_free_path;
2559 } else {
2560 merge = false;
2561 btrfs_release_path(path);
2562 goto again;
2563 }
2564 }
2565
2566 ret = btrfs_insert_empty_item(trans, root, path, &key,
2567 sizeof(*extent));
2568 if (ret) {
2569 btrfs_abort_transaction(trans, root, ret);
2570 goto out_free_path;
2571 }
2572
2573 leaf = path->nodes[0];
2574 item = btrfs_item_ptr(leaf, path->slots[0],
2575 struct btrfs_file_extent_item);
2576 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2577 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2578 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2579 btrfs_set_file_extent_num_bytes(leaf, item, len);
2580 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2581 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2582 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2583 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2584 btrfs_set_file_extent_encryption(leaf, item, 0);
2585 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2586
2587 btrfs_mark_buffer_dirty(leaf);
2588 inode_add_bytes(inode, len);
a09a0a70 2589 btrfs_release_path(path);
38c227d8
LB
2590
2591 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2592 new->disk_len, 0,
2593 backref->root_id, backref->inum,
b06c4bf5 2594 new->file_pos); /* start - extent_offset */
38c227d8
LB
2595 if (ret) {
2596 btrfs_abort_transaction(trans, root, ret);
2597 goto out_free_path;
2598 }
2599
2600 ret = 1;
2601out_free_path:
2602 btrfs_release_path(path);
a09a0a70 2603 path->leave_spinning = 0;
38c227d8
LB
2604 btrfs_end_transaction(trans, root);
2605out_unlock:
2606 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2607 &cached, GFP_NOFS);
2608 iput(inode);
2609 return ret;
2610}
2611
6f519564
LB
2612static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2613{
2614 struct old_sa_defrag_extent *old, *tmp;
2615
2616 if (!new)
2617 return;
2618
2619 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2620 kfree(old);
2621 }
2622 kfree(new);
2623}
2624
38c227d8
LB
2625static void relink_file_extents(struct new_sa_defrag_extent *new)
2626{
2627 struct btrfs_path *path;
38c227d8
LB
2628 struct sa_defrag_extent_backref *backref;
2629 struct sa_defrag_extent_backref *prev = NULL;
2630 struct inode *inode;
2631 struct btrfs_root *root;
2632 struct rb_node *node;
2633 int ret;
2634
2635 inode = new->inode;
2636 root = BTRFS_I(inode)->root;
2637
2638 path = btrfs_alloc_path();
2639 if (!path)
2640 return;
2641
2642 if (!record_extent_backrefs(path, new)) {
2643 btrfs_free_path(path);
2644 goto out;
2645 }
2646 btrfs_release_path(path);
2647
2648 while (1) {
2649 node = rb_first(&new->root);
2650 if (!node)
2651 break;
2652 rb_erase(node, &new->root);
2653
2654 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2655
2656 ret = relink_extent_backref(path, prev, backref);
2657 WARN_ON(ret < 0);
2658
2659 kfree(prev);
2660
2661 if (ret == 1)
2662 prev = backref;
2663 else
2664 prev = NULL;
2665 cond_resched();
2666 }
2667 kfree(prev);
2668
2669 btrfs_free_path(path);
38c227d8 2670out:
6f519564
LB
2671 free_sa_defrag_extent(new);
2672
38c227d8
LB
2673 atomic_dec(&root->fs_info->defrag_running);
2674 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2675}
2676
2677static struct new_sa_defrag_extent *
2678record_old_file_extents(struct inode *inode,
2679 struct btrfs_ordered_extent *ordered)
2680{
2681 struct btrfs_root *root = BTRFS_I(inode)->root;
2682 struct btrfs_path *path;
2683 struct btrfs_key key;
6f519564 2684 struct old_sa_defrag_extent *old;
38c227d8
LB
2685 struct new_sa_defrag_extent *new;
2686 int ret;
2687
2688 new = kmalloc(sizeof(*new), GFP_NOFS);
2689 if (!new)
2690 return NULL;
2691
2692 new->inode = inode;
2693 new->file_pos = ordered->file_offset;
2694 new->len = ordered->len;
2695 new->bytenr = ordered->start;
2696 new->disk_len = ordered->disk_len;
2697 new->compress_type = ordered->compress_type;
2698 new->root = RB_ROOT;
2699 INIT_LIST_HEAD(&new->head);
2700
2701 path = btrfs_alloc_path();
2702 if (!path)
2703 goto out_kfree;
2704
2705 key.objectid = btrfs_ino(inode);
2706 key.type = BTRFS_EXTENT_DATA_KEY;
2707 key.offset = new->file_pos;
2708
2709 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2710 if (ret < 0)
2711 goto out_free_path;
2712 if (ret > 0 && path->slots[0] > 0)
2713 path->slots[0]--;
2714
2715 /* find out all the old extents for the file range */
2716 while (1) {
2717 struct btrfs_file_extent_item *extent;
2718 struct extent_buffer *l;
2719 int slot;
2720 u64 num_bytes;
2721 u64 offset;
2722 u64 end;
2723 u64 disk_bytenr;
2724 u64 extent_offset;
2725
2726 l = path->nodes[0];
2727 slot = path->slots[0];
2728
2729 if (slot >= btrfs_header_nritems(l)) {
2730 ret = btrfs_next_leaf(root, path);
2731 if (ret < 0)
6f519564 2732 goto out_free_path;
38c227d8
LB
2733 else if (ret > 0)
2734 break;
2735 continue;
2736 }
2737
2738 btrfs_item_key_to_cpu(l, &key, slot);
2739
2740 if (key.objectid != btrfs_ino(inode))
2741 break;
2742 if (key.type != BTRFS_EXTENT_DATA_KEY)
2743 break;
2744 if (key.offset >= new->file_pos + new->len)
2745 break;
2746
2747 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2748
2749 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2750 if (key.offset + num_bytes < new->file_pos)
2751 goto next;
2752
2753 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2754 if (!disk_bytenr)
2755 goto next;
2756
2757 extent_offset = btrfs_file_extent_offset(l, extent);
2758
2759 old = kmalloc(sizeof(*old), GFP_NOFS);
2760 if (!old)
6f519564 2761 goto out_free_path;
38c227d8
LB
2762
2763 offset = max(new->file_pos, key.offset);
2764 end = min(new->file_pos + new->len, key.offset + num_bytes);
2765
2766 old->bytenr = disk_bytenr;
2767 old->extent_offset = extent_offset;
2768 old->offset = offset - key.offset;
2769 old->len = end - offset;
2770 old->new = new;
2771 old->count = 0;
2772 list_add_tail(&old->list, &new->head);
2773next:
2774 path->slots[0]++;
2775 cond_resched();
2776 }
2777
2778 btrfs_free_path(path);
2779 atomic_inc(&root->fs_info->defrag_running);
2780
2781 return new;
2782
38c227d8
LB
2783out_free_path:
2784 btrfs_free_path(path);
2785out_kfree:
6f519564 2786 free_sa_defrag_extent(new);
38c227d8
LB
2787 return NULL;
2788}
2789
e570fd27
MX
2790static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2791 u64 start, u64 len)
2792{
2793 struct btrfs_block_group_cache *cache;
2794
2795 cache = btrfs_lookup_block_group(root->fs_info, start);
2796 ASSERT(cache);
2797
2798 spin_lock(&cache->lock);
2799 cache->delalloc_bytes -= len;
2800 spin_unlock(&cache->lock);
2801
2802 btrfs_put_block_group(cache);
2803}
2804
d352ac68
CM
2805/* as ordered data IO finishes, this gets called so we can finish
2806 * an ordered extent if the range of bytes in the file it covers are
2807 * fully written.
2808 */
5fd02043 2809static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2810{
5fd02043 2811 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2812 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2813 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2814 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2815 struct extent_state *cached_state = NULL;
38c227d8 2816 struct new_sa_defrag_extent *new = NULL;
261507a0 2817 int compress_type = 0;
77cef2ec
JB
2818 int ret = 0;
2819 u64 logical_len = ordered_extent->len;
82d5902d 2820 bool nolock;
77cef2ec 2821 bool truncated = false;
e6dcd2dc 2822
83eea1f1 2823 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2824
5fd02043
JB
2825 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2826 ret = -EIO;
2827 goto out;
2828 }
2829
f612496b
MX
2830 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2831 ordered_extent->file_offset +
2832 ordered_extent->len - 1);
2833
77cef2ec
JB
2834 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2835 truncated = true;
2836 logical_len = ordered_extent->truncated_len;
2837 /* Truncated the entire extent, don't bother adding */
2838 if (!logical_len)
2839 goto out;
2840 }
2841
c2167754 2842 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2843 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2844
2845 /*
2846 * For mwrite(mmap + memset to write) case, we still reserve
2847 * space for NOCOW range.
2848 * As NOCOW won't cause a new delayed ref, just free the space
2849 */
2850 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2851 ordered_extent->len);
6c760c07
JB
2852 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2853 if (nolock)
2854 trans = btrfs_join_transaction_nolock(root);
2855 else
2856 trans = btrfs_join_transaction(root);
2857 if (IS_ERR(trans)) {
2858 ret = PTR_ERR(trans);
2859 trans = NULL;
2860 goto out;
c2167754 2861 }
6c760c07
JB
2862 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2863 ret = btrfs_update_inode_fallback(trans, root, inode);
2864 if (ret) /* -ENOMEM or corruption */
2865 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2866 goto out;
2867 }
e6dcd2dc 2868
2ac55d41
JB
2869 lock_extent_bits(io_tree, ordered_extent->file_offset,
2870 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2871 0, &cached_state);
e6dcd2dc 2872
38c227d8
LB
2873 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2874 ordered_extent->file_offset + ordered_extent->len - 1,
2875 EXTENT_DEFRAG, 1, cached_state);
2876 if (ret) {
2877 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2878 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2879 /* the inode is shared */
2880 new = record_old_file_extents(inode, ordered_extent);
2881
2882 clear_extent_bit(io_tree, ordered_extent->file_offset,
2883 ordered_extent->file_offset + ordered_extent->len - 1,
2884 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2885 }
2886
0cb59c99 2887 if (nolock)
7a7eaa40 2888 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2889 else
7a7eaa40 2890 trans = btrfs_join_transaction(root);
79787eaa
JM
2891 if (IS_ERR(trans)) {
2892 ret = PTR_ERR(trans);
2893 trans = NULL;
2894 goto out_unlock;
2895 }
a79b7d4b 2896
0ca1f7ce 2897 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2898
c8b97818 2899 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2900 compress_type = ordered_extent->compress_type;
d899e052 2901 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2902 BUG_ON(compress_type);
920bbbfb 2903 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2904 ordered_extent->file_offset,
2905 ordered_extent->file_offset +
77cef2ec 2906 logical_len);
d899e052 2907 } else {
0af3d00b 2908 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2909 ret = insert_reserved_file_extent(trans, inode,
2910 ordered_extent->file_offset,
2911 ordered_extent->start,
2912 ordered_extent->disk_len,
77cef2ec 2913 logical_len, logical_len,
261507a0 2914 compress_type, 0, 0,
d899e052 2915 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2916 if (!ret)
2917 btrfs_release_delalloc_bytes(root,
2918 ordered_extent->start,
2919 ordered_extent->disk_len);
d899e052 2920 }
5dc562c5
JB
2921 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2922 ordered_extent->file_offset, ordered_extent->len,
2923 trans->transid);
79787eaa
JM
2924 if (ret < 0) {
2925 btrfs_abort_transaction(trans, root, ret);
5fd02043 2926 goto out_unlock;
79787eaa 2927 }
2ac55d41 2928
e6dcd2dc
CM
2929 add_pending_csums(trans, inode, ordered_extent->file_offset,
2930 &ordered_extent->list);
2931
6c760c07
JB
2932 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2933 ret = btrfs_update_inode_fallback(trans, root, inode);
2934 if (ret) { /* -ENOMEM or corruption */
2935 btrfs_abort_transaction(trans, root, ret);
2936 goto out_unlock;
1ef30be1
JB
2937 }
2938 ret = 0;
5fd02043
JB
2939out_unlock:
2940 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2941 ordered_extent->file_offset +
2942 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2943out:
5b0e95bf 2944 if (root != root->fs_info->tree_root)
0cb59c99 2945 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2946 if (trans)
2947 btrfs_end_transaction(trans, root);
0cb59c99 2948
77cef2ec
JB
2949 if (ret || truncated) {
2950 u64 start, end;
2951
2952 if (truncated)
2953 start = ordered_extent->file_offset + logical_len;
2954 else
2955 start = ordered_extent->file_offset;
2956 end = ordered_extent->file_offset + ordered_extent->len - 1;
2957 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2958
2959 /* Drop the cache for the part of the extent we didn't write. */
2960 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2961
0bec9ef5
JB
2962 /*
2963 * If the ordered extent had an IOERR or something else went
2964 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2965 * back to the allocator. We only free the extent in the
2966 * truncated case if we didn't write out the extent at all.
0bec9ef5 2967 */
77cef2ec
JB
2968 if ((ret || !logical_len) &&
2969 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2970 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2971 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 2972 ordered_extent->disk_len, 1);
0bec9ef5
JB
2973 }
2974
2975
5fd02043 2976 /*
8bad3c02
LB
2977 * This needs to be done to make sure anybody waiting knows we are done
2978 * updating everything for this ordered extent.
5fd02043
JB
2979 */
2980 btrfs_remove_ordered_extent(inode, ordered_extent);
2981
38c227d8 2982 /* for snapshot-aware defrag */
6f519564
LB
2983 if (new) {
2984 if (ret) {
2985 free_sa_defrag_extent(new);
2986 atomic_dec(&root->fs_info->defrag_running);
2987 } else {
2988 relink_file_extents(new);
2989 }
2990 }
38c227d8 2991
e6dcd2dc
CM
2992 /* once for us */
2993 btrfs_put_ordered_extent(ordered_extent);
2994 /* once for the tree */
2995 btrfs_put_ordered_extent(ordered_extent);
2996
5fd02043
JB
2997 return ret;
2998}
2999
3000static void finish_ordered_fn(struct btrfs_work *work)
3001{
3002 struct btrfs_ordered_extent *ordered_extent;
3003 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3004 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3005}
3006
b2950863 3007static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3008 struct extent_state *state, int uptodate)
3009{
5fd02043
JB
3010 struct inode *inode = page->mapping->host;
3011 struct btrfs_root *root = BTRFS_I(inode)->root;
3012 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3013 struct btrfs_workqueue *wq;
3014 btrfs_work_func_t func;
5fd02043 3015
1abe9b8a 3016 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3017
8b62b72b 3018 ClearPagePrivate2(page);
5fd02043
JB
3019 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3020 end - start + 1, uptodate))
3021 return 0;
3022
9e0af237
LB
3023 if (btrfs_is_free_space_inode(inode)) {
3024 wq = root->fs_info->endio_freespace_worker;
3025 func = btrfs_freespace_write_helper;
3026 } else {
3027 wq = root->fs_info->endio_write_workers;
3028 func = btrfs_endio_write_helper;
3029 }
5fd02043 3030
9e0af237
LB
3031 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3032 NULL);
3033 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3034
3035 return 0;
211f90e6
CM
3036}
3037
dc380aea
MX
3038static int __readpage_endio_check(struct inode *inode,
3039 struct btrfs_io_bio *io_bio,
3040 int icsum, struct page *page,
3041 int pgoff, u64 start, size_t len)
3042{
3043 char *kaddr;
3044 u32 csum_expected;
3045 u32 csum = ~(u32)0;
dc380aea
MX
3046
3047 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3048
3049 kaddr = kmap_atomic(page);
3050 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3051 btrfs_csum_final(csum, (char *)&csum);
3052 if (csum != csum_expected)
3053 goto zeroit;
3054
3055 kunmap_atomic(kaddr);
3056 return 0;
3057zeroit:
94647322
DS
3058 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3059 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3060 btrfs_ino(inode), start, csum, csum_expected);
3061 memset(kaddr + pgoff, 1, len);
3062 flush_dcache_page(page);
3063 kunmap_atomic(kaddr);
3064 if (csum_expected == 0)
3065 return 0;
3066 return -EIO;
3067}
3068
d352ac68
CM
3069/*
3070 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3071 * if there's a match, we allow the bio to finish. If not, the code in
3072 * extent_io.c will try to find good copies for us.
d352ac68 3073 */
facc8a22
MX
3074static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3075 u64 phy_offset, struct page *page,
3076 u64 start, u64 end, int mirror)
07157aac 3077{
4eee4fa4 3078 size_t offset = start - page_offset(page);
07157aac 3079 struct inode *inode = page->mapping->host;
d1310b2e 3080 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3081 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3082
d20f7043
CM
3083 if (PageChecked(page)) {
3084 ClearPageChecked(page);
dc380aea 3085 return 0;
d20f7043 3086 }
6cbff00f
CH
3087
3088 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3089 return 0;
17d217fe
YZ
3090
3091 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3092 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
3093 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3094 GFP_NOFS);
b6cda9bc 3095 return 0;
17d217fe 3096 }
d20f7043 3097
facc8a22 3098 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3099 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3100 start, (size_t)(end - start + 1));
07157aac 3101}
b888db2b 3102
24bbcf04
YZ
3103struct delayed_iput {
3104 struct list_head list;
3105 struct inode *inode;
3106};
3107
79787eaa
JM
3108/* JDM: If this is fs-wide, why can't we add a pointer to
3109 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
3110void btrfs_add_delayed_iput(struct inode *inode)
3111{
3112 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3113 struct delayed_iput *delayed;
3114
3115 if (atomic_add_unless(&inode->i_count, -1, 1))
3116 return;
3117
3118 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3119 delayed->inode = inode;
3120
3121 spin_lock(&fs_info->delayed_iput_lock);
3122 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3123 spin_unlock(&fs_info->delayed_iput_lock);
3124}
3125
3126void btrfs_run_delayed_iputs(struct btrfs_root *root)
3127{
3128 LIST_HEAD(list);
3129 struct btrfs_fs_info *fs_info = root->fs_info;
3130 struct delayed_iput *delayed;
3131 int empty;
3132
3133 spin_lock(&fs_info->delayed_iput_lock);
3134 empty = list_empty(&fs_info->delayed_iputs);
3135 spin_unlock(&fs_info->delayed_iput_lock);
3136 if (empty)
3137 return;
3138
d7c15171
ZL
3139 down_read(&fs_info->delayed_iput_sem);
3140
24bbcf04
YZ
3141 spin_lock(&fs_info->delayed_iput_lock);
3142 list_splice_init(&fs_info->delayed_iputs, &list);
3143 spin_unlock(&fs_info->delayed_iput_lock);
3144
3145 while (!list_empty(&list)) {
3146 delayed = list_entry(list.next, struct delayed_iput, list);
3147 list_del(&delayed->list);
3148 iput(delayed->inode);
3149 kfree(delayed);
3150 }
d7c15171
ZL
3151
3152 up_read(&root->fs_info->delayed_iput_sem);
24bbcf04
YZ
3153}
3154
d68fc57b 3155/*
42b2aa86 3156 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3157 * files in the subvolume, it removes orphan item and frees block_rsv
3158 * structure.
3159 */
3160void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3161 struct btrfs_root *root)
3162{
90290e19 3163 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3164 int ret;
3165
8a35d95f 3166 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3167 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3168 return;
3169
90290e19 3170 spin_lock(&root->orphan_lock);
8a35d95f 3171 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3172 spin_unlock(&root->orphan_lock);
3173 return;
3174 }
3175
3176 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3177 spin_unlock(&root->orphan_lock);
3178 return;
3179 }
3180
3181 block_rsv = root->orphan_block_rsv;
3182 root->orphan_block_rsv = NULL;
3183 spin_unlock(&root->orphan_lock);
3184
27cdeb70 3185 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3186 btrfs_root_refs(&root->root_item) > 0) {
3187 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3188 root->root_key.objectid);
4ef31a45
JB
3189 if (ret)
3190 btrfs_abort_transaction(trans, root, ret);
3191 else
27cdeb70
MX
3192 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3193 &root->state);
d68fc57b
YZ
3194 }
3195
90290e19
JB
3196 if (block_rsv) {
3197 WARN_ON(block_rsv->size > 0);
3198 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3199 }
3200}
3201
7b128766
JB
3202/*
3203 * This creates an orphan entry for the given inode in case something goes
3204 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3205 *
3206 * NOTE: caller of this function should reserve 5 units of metadata for
3207 * this function.
7b128766
JB
3208 */
3209int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3210{
3211 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3212 struct btrfs_block_rsv *block_rsv = NULL;
3213 int reserve = 0;
3214 int insert = 0;
3215 int ret;
7b128766 3216
d68fc57b 3217 if (!root->orphan_block_rsv) {
66d8f3dd 3218 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3219 if (!block_rsv)
3220 return -ENOMEM;
d68fc57b 3221 }
7b128766 3222
d68fc57b
YZ
3223 spin_lock(&root->orphan_lock);
3224 if (!root->orphan_block_rsv) {
3225 root->orphan_block_rsv = block_rsv;
3226 } else if (block_rsv) {
3227 btrfs_free_block_rsv(root, block_rsv);
3228 block_rsv = NULL;
7b128766 3229 }
7b128766 3230
8a35d95f
JB
3231 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3232 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3233#if 0
3234 /*
3235 * For proper ENOSPC handling, we should do orphan
3236 * cleanup when mounting. But this introduces backward
3237 * compatibility issue.
3238 */
3239 if (!xchg(&root->orphan_item_inserted, 1))
3240 insert = 2;
3241 else
3242 insert = 1;
3243#endif
3244 insert = 1;
321f0e70 3245 atomic_inc(&root->orphan_inodes);
7b128766
JB
3246 }
3247
72ac3c0d
JB
3248 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3249 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3250 reserve = 1;
d68fc57b 3251 spin_unlock(&root->orphan_lock);
7b128766 3252
d68fc57b
YZ
3253 /* grab metadata reservation from transaction handle */
3254 if (reserve) {
3255 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3256 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3257 }
7b128766 3258
d68fc57b
YZ
3259 /* insert an orphan item to track this unlinked/truncated file */
3260 if (insert >= 1) {
33345d01 3261 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3262 if (ret) {
703c88e0 3263 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3264 if (reserve) {
3265 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3266 &BTRFS_I(inode)->runtime_flags);
3267 btrfs_orphan_release_metadata(inode);
3268 }
3269 if (ret != -EEXIST) {
e8e7cff6
JB
3270 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3271 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3272 btrfs_abort_transaction(trans, root, ret);
3273 return ret;
3274 }
79787eaa
JM
3275 }
3276 ret = 0;
d68fc57b
YZ
3277 }
3278
3279 /* insert an orphan item to track subvolume contains orphan files */
3280 if (insert >= 2) {
3281 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3282 root->root_key.objectid);
79787eaa
JM
3283 if (ret && ret != -EEXIST) {
3284 btrfs_abort_transaction(trans, root, ret);
3285 return ret;
3286 }
d68fc57b
YZ
3287 }
3288 return 0;
7b128766
JB
3289}
3290
3291/*
3292 * We have done the truncate/delete so we can go ahead and remove the orphan
3293 * item for this particular inode.
3294 */
48a3b636
ES
3295static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3296 struct inode *inode)
7b128766
JB
3297{
3298 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3299 int delete_item = 0;
3300 int release_rsv = 0;
7b128766
JB
3301 int ret = 0;
3302
d68fc57b 3303 spin_lock(&root->orphan_lock);
8a35d95f
JB
3304 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3305 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3306 delete_item = 1;
7b128766 3307
72ac3c0d
JB
3308 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3309 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3310 release_rsv = 1;
d68fc57b 3311 spin_unlock(&root->orphan_lock);
7b128766 3312
703c88e0 3313 if (delete_item) {
8a35d95f 3314 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3315 if (trans)
3316 ret = btrfs_del_orphan_item(trans, root,
3317 btrfs_ino(inode));
8a35d95f 3318 }
7b128766 3319
703c88e0
FDBM
3320 if (release_rsv)
3321 btrfs_orphan_release_metadata(inode);
3322
4ef31a45 3323 return ret;
7b128766
JB
3324}
3325
3326/*
3327 * this cleans up any orphans that may be left on the list from the last use
3328 * of this root.
3329 */
66b4ffd1 3330int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3331{
3332 struct btrfs_path *path;
3333 struct extent_buffer *leaf;
7b128766
JB
3334 struct btrfs_key key, found_key;
3335 struct btrfs_trans_handle *trans;
3336 struct inode *inode;
8f6d7f4f 3337 u64 last_objectid = 0;
7b128766
JB
3338 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3339
d68fc57b 3340 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3341 return 0;
c71bf099
YZ
3342
3343 path = btrfs_alloc_path();
66b4ffd1
JB
3344 if (!path) {
3345 ret = -ENOMEM;
3346 goto out;
3347 }
7b128766
JB
3348 path->reada = -1;
3349
3350 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3351 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3352 key.offset = (u64)-1;
3353
7b128766
JB
3354 while (1) {
3355 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3356 if (ret < 0)
3357 goto out;
7b128766
JB
3358
3359 /*
3360 * if ret == 0 means we found what we were searching for, which
25985edc 3361 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3362 * find the key and see if we have stuff that matches
3363 */
3364 if (ret > 0) {
66b4ffd1 3365 ret = 0;
7b128766
JB
3366 if (path->slots[0] == 0)
3367 break;
3368 path->slots[0]--;
3369 }
3370
3371 /* pull out the item */
3372 leaf = path->nodes[0];
7b128766
JB
3373 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3374
3375 /* make sure the item matches what we want */
3376 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3377 break;
962a298f 3378 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3379 break;
3380
3381 /* release the path since we're done with it */
b3b4aa74 3382 btrfs_release_path(path);
7b128766
JB
3383
3384 /*
3385 * this is where we are basically btrfs_lookup, without the
3386 * crossing root thing. we store the inode number in the
3387 * offset of the orphan item.
3388 */
8f6d7f4f
JB
3389
3390 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3391 btrfs_err(root->fs_info,
3392 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3393 ret = -EINVAL;
3394 goto out;
3395 }
3396
3397 last_objectid = found_key.offset;
3398
5d4f98a2
YZ
3399 found_key.objectid = found_key.offset;
3400 found_key.type = BTRFS_INODE_ITEM_KEY;
3401 found_key.offset = 0;
73f73415 3402 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3403 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3404 if (ret && ret != -ESTALE)
66b4ffd1 3405 goto out;
7b128766 3406
f8e9e0b0
AJ
3407 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3408 struct btrfs_root *dead_root;
3409 struct btrfs_fs_info *fs_info = root->fs_info;
3410 int is_dead_root = 0;
3411
3412 /*
3413 * this is an orphan in the tree root. Currently these
3414 * could come from 2 sources:
3415 * a) a snapshot deletion in progress
3416 * b) a free space cache inode
3417 * We need to distinguish those two, as the snapshot
3418 * orphan must not get deleted.
3419 * find_dead_roots already ran before us, so if this
3420 * is a snapshot deletion, we should find the root
3421 * in the dead_roots list
3422 */
3423 spin_lock(&fs_info->trans_lock);
3424 list_for_each_entry(dead_root, &fs_info->dead_roots,
3425 root_list) {
3426 if (dead_root->root_key.objectid ==
3427 found_key.objectid) {
3428 is_dead_root = 1;
3429 break;
3430 }
3431 }
3432 spin_unlock(&fs_info->trans_lock);
3433 if (is_dead_root) {
3434 /* prevent this orphan from being found again */
3435 key.offset = found_key.objectid - 1;
3436 continue;
3437 }
3438 }
7b128766 3439 /*
a8c9e576
JB
3440 * Inode is already gone but the orphan item is still there,
3441 * kill the orphan item.
7b128766 3442 */
a8c9e576
JB
3443 if (ret == -ESTALE) {
3444 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3445 if (IS_ERR(trans)) {
3446 ret = PTR_ERR(trans);
3447 goto out;
3448 }
c2cf52eb
SK
3449 btrfs_debug(root->fs_info, "auto deleting %Lu",
3450 found_key.objectid);
a8c9e576
JB
3451 ret = btrfs_del_orphan_item(trans, root,
3452 found_key.objectid);
5b21f2ed 3453 btrfs_end_transaction(trans, root);
4ef31a45
JB
3454 if (ret)
3455 goto out;
7b128766
JB
3456 continue;
3457 }
3458
a8c9e576
JB
3459 /*
3460 * add this inode to the orphan list so btrfs_orphan_del does
3461 * the proper thing when we hit it
3462 */
8a35d95f
JB
3463 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3464 &BTRFS_I(inode)->runtime_flags);
925396ec 3465 atomic_inc(&root->orphan_inodes);
a8c9e576 3466
7b128766
JB
3467 /* if we have links, this was a truncate, lets do that */
3468 if (inode->i_nlink) {
fae7f21c 3469 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3470 iput(inode);
3471 continue;
3472 }
7b128766 3473 nr_truncate++;
f3fe820c
JB
3474
3475 /* 1 for the orphan item deletion. */
3476 trans = btrfs_start_transaction(root, 1);
3477 if (IS_ERR(trans)) {
c69b26b0 3478 iput(inode);
f3fe820c
JB
3479 ret = PTR_ERR(trans);
3480 goto out;
3481 }
3482 ret = btrfs_orphan_add(trans, inode);
3483 btrfs_end_transaction(trans, root);
c69b26b0
JB
3484 if (ret) {
3485 iput(inode);
f3fe820c 3486 goto out;
c69b26b0 3487 }
f3fe820c 3488
66b4ffd1 3489 ret = btrfs_truncate(inode);
4a7d0f68
JB
3490 if (ret)
3491 btrfs_orphan_del(NULL, inode);
7b128766
JB
3492 } else {
3493 nr_unlink++;
3494 }
3495
3496 /* this will do delete_inode and everything for us */
3497 iput(inode);
66b4ffd1
JB
3498 if (ret)
3499 goto out;
7b128766 3500 }
3254c876
MX
3501 /* release the path since we're done with it */
3502 btrfs_release_path(path);
3503
d68fc57b
YZ
3504 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3505
3506 if (root->orphan_block_rsv)
3507 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3508 (u64)-1);
3509
27cdeb70
MX
3510 if (root->orphan_block_rsv ||
3511 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3512 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3513 if (!IS_ERR(trans))
3514 btrfs_end_transaction(trans, root);
d68fc57b 3515 }
7b128766
JB
3516
3517 if (nr_unlink)
4884b476 3518 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3519 if (nr_truncate)
4884b476 3520 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3521
3522out:
3523 if (ret)
68b663d1 3524 btrfs_err(root->fs_info,
c2cf52eb 3525 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3526 btrfs_free_path(path);
3527 return ret;
7b128766
JB
3528}
3529
46a53cca
CM
3530/*
3531 * very simple check to peek ahead in the leaf looking for xattrs. If we
3532 * don't find any xattrs, we know there can't be any acls.
3533 *
3534 * slot is the slot the inode is in, objectid is the objectid of the inode
3535 */
3536static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3537 int slot, u64 objectid,
3538 int *first_xattr_slot)
46a53cca
CM
3539{
3540 u32 nritems = btrfs_header_nritems(leaf);
3541 struct btrfs_key found_key;
f23b5a59
JB
3542 static u64 xattr_access = 0;
3543 static u64 xattr_default = 0;
46a53cca
CM
3544 int scanned = 0;
3545
f23b5a59
JB
3546 if (!xattr_access) {
3547 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3548 strlen(POSIX_ACL_XATTR_ACCESS));
3549 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3550 strlen(POSIX_ACL_XATTR_DEFAULT));
3551 }
3552
46a53cca 3553 slot++;
63541927 3554 *first_xattr_slot = -1;
46a53cca
CM
3555 while (slot < nritems) {
3556 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3557
3558 /* we found a different objectid, there must not be acls */
3559 if (found_key.objectid != objectid)
3560 return 0;
3561
3562 /* we found an xattr, assume we've got an acl */
f23b5a59 3563 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3564 if (*first_xattr_slot == -1)
3565 *first_xattr_slot = slot;
f23b5a59
JB
3566 if (found_key.offset == xattr_access ||
3567 found_key.offset == xattr_default)
3568 return 1;
3569 }
46a53cca
CM
3570
3571 /*
3572 * we found a key greater than an xattr key, there can't
3573 * be any acls later on
3574 */
3575 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3576 return 0;
3577
3578 slot++;
3579 scanned++;
3580
3581 /*
3582 * it goes inode, inode backrefs, xattrs, extents,
3583 * so if there are a ton of hard links to an inode there can
3584 * be a lot of backrefs. Don't waste time searching too hard,
3585 * this is just an optimization
3586 */
3587 if (scanned >= 8)
3588 break;
3589 }
3590 /* we hit the end of the leaf before we found an xattr or
3591 * something larger than an xattr. We have to assume the inode
3592 * has acls
3593 */
63541927
FDBM
3594 if (*first_xattr_slot == -1)
3595 *first_xattr_slot = slot;
46a53cca
CM
3596 return 1;
3597}
3598
d352ac68
CM
3599/*
3600 * read an inode from the btree into the in-memory inode
3601 */
5d4f98a2 3602static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3603{
3604 struct btrfs_path *path;
5f39d397 3605 struct extent_buffer *leaf;
39279cc3
CM
3606 struct btrfs_inode_item *inode_item;
3607 struct btrfs_root *root = BTRFS_I(inode)->root;
3608 struct btrfs_key location;
67de1176 3609 unsigned long ptr;
46a53cca 3610 int maybe_acls;
618e21d5 3611 u32 rdev;
39279cc3 3612 int ret;
2f7e33d4 3613 bool filled = false;
63541927 3614 int first_xattr_slot;
2f7e33d4
MX
3615
3616 ret = btrfs_fill_inode(inode, &rdev);
3617 if (!ret)
3618 filled = true;
39279cc3
CM
3619
3620 path = btrfs_alloc_path();
1748f843
MF
3621 if (!path)
3622 goto make_bad;
3623
39279cc3 3624 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3625
39279cc3 3626 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3627 if (ret)
39279cc3 3628 goto make_bad;
39279cc3 3629
5f39d397 3630 leaf = path->nodes[0];
2f7e33d4
MX
3631
3632 if (filled)
67de1176 3633 goto cache_index;
2f7e33d4 3634
5f39d397
CM
3635 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3636 struct btrfs_inode_item);
5f39d397 3637 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3638 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3639 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3640 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3641 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3642
a937b979
DS
3643 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3644 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3645
a937b979
DS
3646 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3647 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3648
a937b979
DS
3649 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3650 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3651
9cc97d64 3652 BTRFS_I(inode)->i_otime.tv_sec =
3653 btrfs_timespec_sec(leaf, &inode_item->otime);
3654 BTRFS_I(inode)->i_otime.tv_nsec =
3655 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3656
a76a3cd4 3657 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3658 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3659 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3660
6e17d30b
YD
3661 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3662 inode->i_generation = BTRFS_I(inode)->generation;
3663 inode->i_rdev = 0;
3664 rdev = btrfs_inode_rdev(leaf, inode_item);
3665
3666 BTRFS_I(inode)->index_cnt = (u64)-1;
3667 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3668
3669cache_index:
5dc562c5
JB
3670 /*
3671 * If we were modified in the current generation and evicted from memory
3672 * and then re-read we need to do a full sync since we don't have any
3673 * idea about which extents were modified before we were evicted from
3674 * cache.
6e17d30b
YD
3675 *
3676 * This is required for both inode re-read from disk and delayed inode
3677 * in delayed_nodes_tree.
5dc562c5
JB
3678 */
3679 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3680 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3681 &BTRFS_I(inode)->runtime_flags);
3682
bde6c242
FM
3683 /*
3684 * We don't persist the id of the transaction where an unlink operation
3685 * against the inode was last made. So here we assume the inode might
3686 * have been evicted, and therefore the exact value of last_unlink_trans
3687 * lost, and set it to last_trans to avoid metadata inconsistencies
3688 * between the inode and its parent if the inode is fsync'ed and the log
3689 * replayed. For example, in the scenario:
3690 *
3691 * touch mydir/foo
3692 * ln mydir/foo mydir/bar
3693 * sync
3694 * unlink mydir/bar
3695 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3696 * xfs_io -c fsync mydir/foo
3697 * <power failure>
3698 * mount fs, triggers fsync log replay
3699 *
3700 * We must make sure that when we fsync our inode foo we also log its
3701 * parent inode, otherwise after log replay the parent still has the
3702 * dentry with the "bar" name but our inode foo has a link count of 1
3703 * and doesn't have an inode ref with the name "bar" anymore.
3704 *
3705 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3706 * but it guarantees correctness at the expense of ocassional full
3707 * transaction commits on fsync if our inode is a directory, or if our
3708 * inode is not a directory, logging its parent unnecessarily.
3709 */
3710 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3711
67de1176
MX
3712 path->slots[0]++;
3713 if (inode->i_nlink != 1 ||
3714 path->slots[0] >= btrfs_header_nritems(leaf))
3715 goto cache_acl;
3716
3717 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3718 if (location.objectid != btrfs_ino(inode))
3719 goto cache_acl;
3720
3721 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3722 if (location.type == BTRFS_INODE_REF_KEY) {
3723 struct btrfs_inode_ref *ref;
3724
3725 ref = (struct btrfs_inode_ref *)ptr;
3726 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3727 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3728 struct btrfs_inode_extref *extref;
3729
3730 extref = (struct btrfs_inode_extref *)ptr;
3731 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3732 extref);
3733 }
2f7e33d4 3734cache_acl:
46a53cca
CM
3735 /*
3736 * try to precache a NULL acl entry for files that don't have
3737 * any xattrs or acls
3738 */
33345d01 3739 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3740 btrfs_ino(inode), &first_xattr_slot);
3741 if (first_xattr_slot != -1) {
3742 path->slots[0] = first_xattr_slot;
3743 ret = btrfs_load_inode_props(inode, path);
3744 if (ret)
3745 btrfs_err(root->fs_info,
351fd353 3746 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3747 btrfs_ino(inode),
3748 root->root_key.objectid, ret);
3749 }
3750 btrfs_free_path(path);
3751
72c04902
AV
3752 if (!maybe_acls)
3753 cache_no_acl(inode);
46a53cca 3754
39279cc3 3755 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3756 case S_IFREG:
3757 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3758 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3759 inode->i_fop = &btrfs_file_operations;
3760 inode->i_op = &btrfs_file_inode_operations;
3761 break;
3762 case S_IFDIR:
3763 inode->i_fop = &btrfs_dir_file_operations;
3764 if (root == root->fs_info->tree_root)
3765 inode->i_op = &btrfs_dir_ro_inode_operations;
3766 else
3767 inode->i_op = &btrfs_dir_inode_operations;
3768 break;
3769 case S_IFLNK:
3770 inode->i_op = &btrfs_symlink_inode_operations;
3771 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3772 break;
618e21d5 3773 default:
0279b4cd 3774 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3775 init_special_inode(inode, inode->i_mode, rdev);
3776 break;
39279cc3 3777 }
6cbff00f
CH
3778
3779 btrfs_update_iflags(inode);
39279cc3
CM
3780 return;
3781
3782make_bad:
39279cc3 3783 btrfs_free_path(path);
39279cc3
CM
3784 make_bad_inode(inode);
3785}
3786
d352ac68
CM
3787/*
3788 * given a leaf and an inode, copy the inode fields into the leaf
3789 */
e02119d5
CM
3790static void fill_inode_item(struct btrfs_trans_handle *trans,
3791 struct extent_buffer *leaf,
5f39d397 3792 struct btrfs_inode_item *item,
39279cc3
CM
3793 struct inode *inode)
3794{
51fab693
LB
3795 struct btrfs_map_token token;
3796
3797 btrfs_init_map_token(&token);
5f39d397 3798
51fab693
LB
3799 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3800 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3801 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3802 &token);
3803 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3804 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3805
a937b979 3806 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3807 inode->i_atime.tv_sec, &token);
a937b979 3808 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3809 inode->i_atime.tv_nsec, &token);
5f39d397 3810
a937b979 3811 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3812 inode->i_mtime.tv_sec, &token);
a937b979 3813 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3814 inode->i_mtime.tv_nsec, &token);
5f39d397 3815
a937b979 3816 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3817 inode->i_ctime.tv_sec, &token);
a937b979 3818 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3819 inode->i_ctime.tv_nsec, &token);
5f39d397 3820
9cc97d64 3821 btrfs_set_token_timespec_sec(leaf, &item->otime,
3822 BTRFS_I(inode)->i_otime.tv_sec, &token);
3823 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3824 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3825
51fab693
LB
3826 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3827 &token);
3828 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3829 &token);
3830 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3831 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3832 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3833 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3834 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3835}
3836
d352ac68
CM
3837/*
3838 * copy everything in the in-memory inode into the btree.
3839 */
2115133f 3840static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3841 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3842{
3843 struct btrfs_inode_item *inode_item;
3844 struct btrfs_path *path;
5f39d397 3845 struct extent_buffer *leaf;
39279cc3
CM
3846 int ret;
3847
3848 path = btrfs_alloc_path();
16cdcec7
MX
3849 if (!path)
3850 return -ENOMEM;
3851
b9473439 3852 path->leave_spinning = 1;
16cdcec7
MX
3853 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3854 1);
39279cc3
CM
3855 if (ret) {
3856 if (ret > 0)
3857 ret = -ENOENT;
3858 goto failed;
3859 }
3860
5f39d397
CM
3861 leaf = path->nodes[0];
3862 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3863 struct btrfs_inode_item);
39279cc3 3864
e02119d5 3865 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3866 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3867 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3868 ret = 0;
3869failed:
39279cc3
CM
3870 btrfs_free_path(path);
3871 return ret;
3872}
3873
2115133f
CM
3874/*
3875 * copy everything in the in-memory inode into the btree.
3876 */
3877noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3878 struct btrfs_root *root, struct inode *inode)
3879{
3880 int ret;
3881
3882 /*
3883 * If the inode is a free space inode, we can deadlock during commit
3884 * if we put it into the delayed code.
3885 *
3886 * The data relocation inode should also be directly updated
3887 * without delay
3888 */
83eea1f1 3889 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3890 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3891 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3892 btrfs_update_root_times(trans, root);
3893
2115133f
CM
3894 ret = btrfs_delayed_update_inode(trans, root, inode);
3895 if (!ret)
3896 btrfs_set_inode_last_trans(trans, inode);
3897 return ret;
3898 }
3899
3900 return btrfs_update_inode_item(trans, root, inode);
3901}
3902
be6aef60
JB
3903noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3904 struct btrfs_root *root,
3905 struct inode *inode)
2115133f
CM
3906{
3907 int ret;
3908
3909 ret = btrfs_update_inode(trans, root, inode);
3910 if (ret == -ENOSPC)
3911 return btrfs_update_inode_item(trans, root, inode);
3912 return ret;
3913}
3914
d352ac68
CM
3915/*
3916 * unlink helper that gets used here in inode.c and in the tree logging
3917 * recovery code. It remove a link in a directory with a given name, and
3918 * also drops the back refs in the inode to the directory
3919 */
92986796
AV
3920static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3921 struct btrfs_root *root,
3922 struct inode *dir, struct inode *inode,
3923 const char *name, int name_len)
39279cc3
CM
3924{
3925 struct btrfs_path *path;
39279cc3 3926 int ret = 0;
5f39d397 3927 struct extent_buffer *leaf;
39279cc3 3928 struct btrfs_dir_item *di;
5f39d397 3929 struct btrfs_key key;
aec7477b 3930 u64 index;
33345d01
LZ
3931 u64 ino = btrfs_ino(inode);
3932 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3933
3934 path = btrfs_alloc_path();
54aa1f4d
CM
3935 if (!path) {
3936 ret = -ENOMEM;
554233a6 3937 goto out;
54aa1f4d
CM
3938 }
3939
b9473439 3940 path->leave_spinning = 1;
33345d01 3941 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3942 name, name_len, -1);
3943 if (IS_ERR(di)) {
3944 ret = PTR_ERR(di);
3945 goto err;
3946 }
3947 if (!di) {
3948 ret = -ENOENT;
3949 goto err;
3950 }
5f39d397
CM
3951 leaf = path->nodes[0];
3952 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3953 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3954 if (ret)
3955 goto err;
b3b4aa74 3956 btrfs_release_path(path);
39279cc3 3957
67de1176
MX
3958 /*
3959 * If we don't have dir index, we have to get it by looking up
3960 * the inode ref, since we get the inode ref, remove it directly,
3961 * it is unnecessary to do delayed deletion.
3962 *
3963 * But if we have dir index, needn't search inode ref to get it.
3964 * Since the inode ref is close to the inode item, it is better
3965 * that we delay to delete it, and just do this deletion when
3966 * we update the inode item.
3967 */
3968 if (BTRFS_I(inode)->dir_index) {
3969 ret = btrfs_delayed_delete_inode_ref(inode);
3970 if (!ret) {
3971 index = BTRFS_I(inode)->dir_index;
3972 goto skip_backref;
3973 }
3974 }
3975
33345d01
LZ
3976 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3977 dir_ino, &index);
aec7477b 3978 if (ret) {
c2cf52eb
SK
3979 btrfs_info(root->fs_info,
3980 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3981 name_len, name, ino, dir_ino);
79787eaa 3982 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3983 goto err;
3984 }
67de1176 3985skip_backref:
16cdcec7 3986 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3987 if (ret) {
3988 btrfs_abort_transaction(trans, root, ret);
39279cc3 3989 goto err;
79787eaa 3990 }
39279cc3 3991
e02119d5 3992 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3993 inode, dir_ino);
79787eaa
JM
3994 if (ret != 0 && ret != -ENOENT) {
3995 btrfs_abort_transaction(trans, root, ret);
3996 goto err;
3997 }
e02119d5
CM
3998
3999 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4000 dir, index);
6418c961
CM
4001 if (ret == -ENOENT)
4002 ret = 0;
d4e3991b
ZB
4003 else if (ret)
4004 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
4005err:
4006 btrfs_free_path(path);
e02119d5
CM
4007 if (ret)
4008 goto out;
4009
4010 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4011 inode_inc_iversion(inode);
4012 inode_inc_iversion(dir);
e02119d5 4013 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 4014 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4015out:
39279cc3
CM
4016 return ret;
4017}
4018
92986796
AV
4019int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4020 struct btrfs_root *root,
4021 struct inode *dir, struct inode *inode,
4022 const char *name, int name_len)
4023{
4024 int ret;
4025 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4026 if (!ret) {
8b558c5f 4027 drop_nlink(inode);
92986796
AV
4028 ret = btrfs_update_inode(trans, root, inode);
4029 }
4030 return ret;
4031}
39279cc3 4032
a22285a6
YZ
4033/*
4034 * helper to start transaction for unlink and rmdir.
4035 *
d52be818
JB
4036 * unlink and rmdir are special in btrfs, they do not always free space, so
4037 * if we cannot make our reservations the normal way try and see if there is
4038 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4039 * allow the unlink to occur.
a22285a6 4040 */
d52be818 4041static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4042{
39279cc3 4043 struct btrfs_trans_handle *trans;
a22285a6 4044 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
4045 int ret;
4046
e70bea5f
JB
4047 /*
4048 * 1 for the possible orphan item
4049 * 1 for the dir item
4050 * 1 for the dir index
4051 * 1 for the inode ref
e70bea5f
JB
4052 * 1 for the inode
4053 */
6e137ed3 4054 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4055 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
4056 return trans;
4df27c4d 4057
d52be818
JB
4058 if (PTR_ERR(trans) == -ENOSPC) {
4059 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 4060
d52be818
JB
4061 trans = btrfs_start_transaction(root, 0);
4062 if (IS_ERR(trans))
4063 return trans;
4064 ret = btrfs_cond_migrate_bytes(root->fs_info,
4065 &root->fs_info->trans_block_rsv,
4066 num_bytes, 5);
4067 if (ret) {
4068 btrfs_end_transaction(trans, root);
4069 return ERR_PTR(ret);
a22285a6 4070 }
5a77d76c 4071 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 4072 trans->bytes_reserved = num_bytes;
a22285a6 4073 }
d52be818 4074 return trans;
a22285a6
YZ
4075}
4076
4077static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4078{
4079 struct btrfs_root *root = BTRFS_I(dir)->root;
4080 struct btrfs_trans_handle *trans;
2b0143b5 4081 struct inode *inode = d_inode(dentry);
a22285a6 4082 int ret;
a22285a6 4083
d52be818 4084 trans = __unlink_start_trans(dir);
a22285a6
YZ
4085 if (IS_ERR(trans))
4086 return PTR_ERR(trans);
5f39d397 4087
2b0143b5 4088 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4089
2b0143b5 4090 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4091 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4092 if (ret)
4093 goto out;
7b128766 4094
a22285a6 4095 if (inode->i_nlink == 0) {
7b128766 4096 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4097 if (ret)
4098 goto out;
a22285a6 4099 }
7b128766 4100
b532402e 4101out:
d52be818 4102 btrfs_end_transaction(trans, root);
b53d3f5d 4103 btrfs_btree_balance_dirty(root);
39279cc3
CM
4104 return ret;
4105}
4106
4df27c4d
YZ
4107int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4108 struct btrfs_root *root,
4109 struct inode *dir, u64 objectid,
4110 const char *name, int name_len)
4111{
4112 struct btrfs_path *path;
4113 struct extent_buffer *leaf;
4114 struct btrfs_dir_item *di;
4115 struct btrfs_key key;
4116 u64 index;
4117 int ret;
33345d01 4118 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4119
4120 path = btrfs_alloc_path();
4121 if (!path)
4122 return -ENOMEM;
4123
33345d01 4124 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4125 name, name_len, -1);
79787eaa
JM
4126 if (IS_ERR_OR_NULL(di)) {
4127 if (!di)
4128 ret = -ENOENT;
4129 else
4130 ret = PTR_ERR(di);
4131 goto out;
4132 }
4df27c4d
YZ
4133
4134 leaf = path->nodes[0];
4135 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4136 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4137 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
4138 if (ret) {
4139 btrfs_abort_transaction(trans, root, ret);
4140 goto out;
4141 }
b3b4aa74 4142 btrfs_release_path(path);
4df27c4d
YZ
4143
4144 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4145 objectid, root->root_key.objectid,
33345d01 4146 dir_ino, &index, name, name_len);
4df27c4d 4147 if (ret < 0) {
79787eaa
JM
4148 if (ret != -ENOENT) {
4149 btrfs_abort_transaction(trans, root, ret);
4150 goto out;
4151 }
33345d01 4152 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4153 name, name_len);
79787eaa
JM
4154 if (IS_ERR_OR_NULL(di)) {
4155 if (!di)
4156 ret = -ENOENT;
4157 else
4158 ret = PTR_ERR(di);
4159 btrfs_abort_transaction(trans, root, ret);
4160 goto out;
4161 }
4df27c4d
YZ
4162
4163 leaf = path->nodes[0];
4164 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4165 btrfs_release_path(path);
4df27c4d
YZ
4166 index = key.offset;
4167 }
945d8962 4168 btrfs_release_path(path);
4df27c4d 4169
16cdcec7 4170 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4171 if (ret) {
4172 btrfs_abort_transaction(trans, root, ret);
4173 goto out;
4174 }
4df27c4d
YZ
4175
4176 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4177 inode_inc_iversion(dir);
4df27c4d 4178 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 4179 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4180 if (ret)
4181 btrfs_abort_transaction(trans, root, ret);
4182out:
71d7aed0 4183 btrfs_free_path(path);
79787eaa 4184 return ret;
4df27c4d
YZ
4185}
4186
39279cc3
CM
4187static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4188{
2b0143b5 4189 struct inode *inode = d_inode(dentry);
1832a6d5 4190 int err = 0;
39279cc3 4191 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4192 struct btrfs_trans_handle *trans;
39279cc3 4193
b3ae244e 4194 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4195 return -ENOTEMPTY;
b3ae244e
DS
4196 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4197 return -EPERM;
134d4512 4198
d52be818 4199 trans = __unlink_start_trans(dir);
a22285a6 4200 if (IS_ERR(trans))
5df6a9f6 4201 return PTR_ERR(trans);
5df6a9f6 4202
33345d01 4203 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4204 err = btrfs_unlink_subvol(trans, root, dir,
4205 BTRFS_I(inode)->location.objectid,
4206 dentry->d_name.name,
4207 dentry->d_name.len);
4208 goto out;
4209 }
4210
7b128766
JB
4211 err = btrfs_orphan_add(trans, inode);
4212 if (err)
4df27c4d 4213 goto out;
7b128766 4214
39279cc3 4215 /* now the directory is empty */
2b0143b5 4216 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4217 dentry->d_name.name, dentry->d_name.len);
d397712b 4218 if (!err)
dbe674a9 4219 btrfs_i_size_write(inode, 0);
4df27c4d 4220out:
d52be818 4221 btrfs_end_transaction(trans, root);
b53d3f5d 4222 btrfs_btree_balance_dirty(root);
3954401f 4223
39279cc3
CM
4224 return err;
4225}
4226
28f75a0e
CM
4227static int truncate_space_check(struct btrfs_trans_handle *trans,
4228 struct btrfs_root *root,
4229 u64 bytes_deleted)
4230{
4231 int ret;
4232
4233 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4234 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4235 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4236 if (!ret)
4237 trans->bytes_reserved += bytes_deleted;
4238 return ret;
4239
4240}
4241
0305cd5f
FM
4242static int truncate_inline_extent(struct inode *inode,
4243 struct btrfs_path *path,
4244 struct btrfs_key *found_key,
4245 const u64 item_end,
4246 const u64 new_size)
4247{
4248 struct extent_buffer *leaf = path->nodes[0];
4249 int slot = path->slots[0];
4250 struct btrfs_file_extent_item *fi;
4251 u32 size = (u32)(new_size - found_key->offset);
4252 struct btrfs_root *root = BTRFS_I(inode)->root;
4253
4254 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4255
4256 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4257 loff_t offset = new_size;
4258 loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4259
4260 /*
4261 * Zero out the remaining of the last page of our inline extent,
4262 * instead of directly truncating our inline extent here - that
4263 * would be much more complex (decompressing all the data, then
4264 * compressing the truncated data, which might be bigger than
4265 * the size of the inline extent, resize the extent, etc).
4266 * We release the path because to get the page we might need to
4267 * read the extent item from disk (data not in the page cache).
4268 */
4269 btrfs_release_path(path);
4270 return btrfs_truncate_page(inode, offset, page_end - offset, 0);
4271 }
4272
4273 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4274 size = btrfs_file_extent_calc_inline_size(size);
4275 btrfs_truncate_item(root, path, size, 1);
4276
4277 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4278 inode_sub_bytes(inode, item_end + 1 - new_size);
4279
4280 return 0;
4281}
4282
39279cc3
CM
4283/*
4284 * this can truncate away extent items, csum items and directory items.
4285 * It starts at a high offset and removes keys until it can't find
d352ac68 4286 * any higher than new_size
39279cc3
CM
4287 *
4288 * csum items that cross the new i_size are truncated to the new size
4289 * as well.
7b128766
JB
4290 *
4291 * min_type is the minimum key type to truncate down to. If set to 0, this
4292 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4293 */
8082510e
YZ
4294int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4295 struct btrfs_root *root,
4296 struct inode *inode,
4297 u64 new_size, u32 min_type)
39279cc3 4298{
39279cc3 4299 struct btrfs_path *path;
5f39d397 4300 struct extent_buffer *leaf;
39279cc3 4301 struct btrfs_file_extent_item *fi;
8082510e
YZ
4302 struct btrfs_key key;
4303 struct btrfs_key found_key;
39279cc3 4304 u64 extent_start = 0;
db94535d 4305 u64 extent_num_bytes = 0;
5d4f98a2 4306 u64 extent_offset = 0;
39279cc3 4307 u64 item_end = 0;
c1aa4575 4308 u64 last_size = new_size;
8082510e 4309 u32 found_type = (u8)-1;
39279cc3
CM
4310 int found_extent;
4311 int del_item;
85e21bac
CM
4312 int pending_del_nr = 0;
4313 int pending_del_slot = 0;
179e29e4 4314 int extent_type = -1;
8082510e
YZ
4315 int ret;
4316 int err = 0;
33345d01 4317 u64 ino = btrfs_ino(inode);
28ed1345 4318 u64 bytes_deleted = 0;
1262133b
JB
4319 bool be_nice = 0;
4320 bool should_throttle = 0;
28f75a0e 4321 bool should_end = 0;
8082510e
YZ
4322
4323 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4324
28ed1345
CM
4325 /*
4326 * for non-free space inodes and ref cows, we want to back off from
4327 * time to time
4328 */
4329 if (!btrfs_is_free_space_inode(inode) &&
4330 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4331 be_nice = 1;
4332
0eb0e19c
MF
4333 path = btrfs_alloc_path();
4334 if (!path)
4335 return -ENOMEM;
4336 path->reada = -1;
4337
5dc562c5
JB
4338 /*
4339 * We want to drop from the next block forward in case this new size is
4340 * not block aligned since we will be keeping the last block of the
4341 * extent just the way it is.
4342 */
27cdeb70
MX
4343 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4344 root == root->fs_info->tree_root)
fda2832f
QW
4345 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4346 root->sectorsize), (u64)-1, 0);
8082510e 4347
16cdcec7
MX
4348 /*
4349 * This function is also used to drop the items in the log tree before
4350 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4351 * it is used to drop the loged items. So we shouldn't kill the delayed
4352 * items.
4353 */
4354 if (min_type == 0 && root == BTRFS_I(inode)->root)
4355 btrfs_kill_delayed_inode_items(inode);
4356
33345d01 4357 key.objectid = ino;
39279cc3 4358 key.offset = (u64)-1;
5f39d397
CM
4359 key.type = (u8)-1;
4360
85e21bac 4361search_again:
28ed1345
CM
4362 /*
4363 * with a 16K leaf size and 128MB extents, you can actually queue
4364 * up a huge file in a single leaf. Most of the time that
4365 * bytes_deleted is > 0, it will be huge by the time we get here
4366 */
4367 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4368 if (btrfs_should_end_transaction(trans, root)) {
4369 err = -EAGAIN;
4370 goto error;
4371 }
4372 }
4373
4374
b9473439 4375 path->leave_spinning = 1;
85e21bac 4376 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4377 if (ret < 0) {
4378 err = ret;
4379 goto out;
4380 }
d397712b 4381
85e21bac 4382 if (ret > 0) {
e02119d5
CM
4383 /* there are no items in the tree for us to truncate, we're
4384 * done
4385 */
8082510e
YZ
4386 if (path->slots[0] == 0)
4387 goto out;
85e21bac
CM
4388 path->slots[0]--;
4389 }
4390
d397712b 4391 while (1) {
39279cc3 4392 fi = NULL;
5f39d397
CM
4393 leaf = path->nodes[0];
4394 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4395 found_type = found_key.type;
39279cc3 4396
33345d01 4397 if (found_key.objectid != ino)
39279cc3 4398 break;
5f39d397 4399
85e21bac 4400 if (found_type < min_type)
39279cc3
CM
4401 break;
4402
5f39d397 4403 item_end = found_key.offset;
39279cc3 4404 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4405 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4406 struct btrfs_file_extent_item);
179e29e4
CM
4407 extent_type = btrfs_file_extent_type(leaf, fi);
4408 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4409 item_end +=
db94535d 4410 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4411 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4412 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4413 path->slots[0], fi);
39279cc3 4414 }
008630c1 4415 item_end--;
39279cc3 4416 }
8082510e
YZ
4417 if (found_type > min_type) {
4418 del_item = 1;
4419 } else {
4420 if (item_end < new_size)
b888db2b 4421 break;
8082510e
YZ
4422 if (found_key.offset >= new_size)
4423 del_item = 1;
4424 else
4425 del_item = 0;
39279cc3 4426 }
39279cc3 4427 found_extent = 0;
39279cc3 4428 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4429 if (found_type != BTRFS_EXTENT_DATA_KEY)
4430 goto delete;
4431
7f4f6e0a
JB
4432 if (del_item)
4433 last_size = found_key.offset;
4434 else
4435 last_size = new_size;
4436
179e29e4 4437 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4438 u64 num_dec;
db94535d 4439 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4440 if (!del_item) {
db94535d
CM
4441 u64 orig_num_bytes =
4442 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4443 extent_num_bytes = ALIGN(new_size -
4444 found_key.offset,
4445 root->sectorsize);
db94535d
CM
4446 btrfs_set_file_extent_num_bytes(leaf, fi,
4447 extent_num_bytes);
4448 num_dec = (orig_num_bytes -
9069218d 4449 extent_num_bytes);
27cdeb70
MX
4450 if (test_bit(BTRFS_ROOT_REF_COWS,
4451 &root->state) &&
4452 extent_start != 0)
a76a3cd4 4453 inode_sub_bytes(inode, num_dec);
5f39d397 4454 btrfs_mark_buffer_dirty(leaf);
39279cc3 4455 } else {
db94535d
CM
4456 extent_num_bytes =
4457 btrfs_file_extent_disk_num_bytes(leaf,
4458 fi);
5d4f98a2
YZ
4459 extent_offset = found_key.offset -
4460 btrfs_file_extent_offset(leaf, fi);
4461
39279cc3 4462 /* FIXME blocksize != 4096 */
9069218d 4463 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4464 if (extent_start != 0) {
4465 found_extent = 1;
27cdeb70
MX
4466 if (test_bit(BTRFS_ROOT_REF_COWS,
4467 &root->state))
a76a3cd4 4468 inode_sub_bytes(inode, num_dec);
e02119d5 4469 }
39279cc3 4470 }
9069218d 4471 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4472 /*
4473 * we can't truncate inline items that have had
4474 * special encodings
4475 */
4476 if (!del_item &&
c8b97818
CM
4477 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4478 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4479
4480 /*
0305cd5f
FM
4481 * Need to release path in order to truncate a
4482 * compressed extent. So delete any accumulated
4483 * extent items so far.
514ac8ad 4484 */
0305cd5f
FM
4485 if (btrfs_file_extent_compression(leaf, fi) !=
4486 BTRFS_COMPRESS_NONE && pending_del_nr) {
4487 err = btrfs_del_items(trans, root, path,
4488 pending_del_slot,
4489 pending_del_nr);
4490 if (err) {
4491 btrfs_abort_transaction(trans,
4492 root,
4493 err);
4494 goto error;
4495 }
4496 pending_del_nr = 0;
4497 }
4498
4499 err = truncate_inline_extent(inode, path,
4500 &found_key,
4501 item_end,
4502 new_size);
4503 if (err) {
4504 btrfs_abort_transaction(trans,
4505 root, err);
4506 goto error;
4507 }
27cdeb70
MX
4508 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4509 &root->state)) {
0305cd5f 4510 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4511 }
39279cc3 4512 }
179e29e4 4513delete:
39279cc3 4514 if (del_item) {
85e21bac
CM
4515 if (!pending_del_nr) {
4516 /* no pending yet, add ourselves */
4517 pending_del_slot = path->slots[0];
4518 pending_del_nr = 1;
4519 } else if (pending_del_nr &&
4520 path->slots[0] + 1 == pending_del_slot) {
4521 /* hop on the pending chunk */
4522 pending_del_nr++;
4523 pending_del_slot = path->slots[0];
4524 } else {
d397712b 4525 BUG();
85e21bac 4526 }
39279cc3
CM
4527 } else {
4528 break;
4529 }
28f75a0e
CM
4530 should_throttle = 0;
4531
27cdeb70
MX
4532 if (found_extent &&
4533 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4534 root == root->fs_info->tree_root)) {
b9473439 4535 btrfs_set_path_blocking(path);
28ed1345 4536 bytes_deleted += extent_num_bytes;
39279cc3 4537 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4538 extent_num_bytes, 0,
4539 btrfs_header_owner(leaf),
b06c4bf5 4540 ino, extent_offset);
39279cc3 4541 BUG_ON(ret);
1262133b 4542 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345
CM
4543 btrfs_async_run_delayed_refs(root,
4544 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4545 if (be_nice) {
4546 if (truncate_space_check(trans, root,
4547 extent_num_bytes)) {
4548 should_end = 1;
4549 }
4550 if (btrfs_should_throttle_delayed_refs(trans,
4551 root)) {
4552 should_throttle = 1;
4553 }
4554 }
39279cc3 4555 }
85e21bac 4556
8082510e
YZ
4557 if (found_type == BTRFS_INODE_ITEM_KEY)
4558 break;
4559
4560 if (path->slots[0] == 0 ||
1262133b 4561 path->slots[0] != pending_del_slot ||
28f75a0e 4562 should_throttle || should_end) {
8082510e
YZ
4563 if (pending_del_nr) {
4564 ret = btrfs_del_items(trans, root, path,
4565 pending_del_slot,
4566 pending_del_nr);
79787eaa
JM
4567 if (ret) {
4568 btrfs_abort_transaction(trans,
4569 root, ret);
4570 goto error;
4571 }
8082510e
YZ
4572 pending_del_nr = 0;
4573 }
b3b4aa74 4574 btrfs_release_path(path);
28f75a0e 4575 if (should_throttle) {
1262133b
JB
4576 unsigned long updates = trans->delayed_ref_updates;
4577 if (updates) {
4578 trans->delayed_ref_updates = 0;
4579 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4580 if (ret && !err)
4581 err = ret;
4582 }
4583 }
28f75a0e
CM
4584 /*
4585 * if we failed to refill our space rsv, bail out
4586 * and let the transaction restart
4587 */
4588 if (should_end) {
4589 err = -EAGAIN;
4590 goto error;
4591 }
85e21bac 4592 goto search_again;
8082510e
YZ
4593 } else {
4594 path->slots[0]--;
85e21bac 4595 }
39279cc3 4596 }
8082510e 4597out:
85e21bac
CM
4598 if (pending_del_nr) {
4599 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4600 pending_del_nr);
79787eaa
JM
4601 if (ret)
4602 btrfs_abort_transaction(trans, root, ret);
85e21bac 4603 }
79787eaa 4604error:
c1aa4575 4605 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4606 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4607
39279cc3 4608 btrfs_free_path(path);
28ed1345 4609
28f75a0e 4610 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
28ed1345
CM
4611 unsigned long updates = trans->delayed_ref_updates;
4612 if (updates) {
4613 trans->delayed_ref_updates = 0;
4614 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4615 if (ret && !err)
4616 err = ret;
4617 }
4618 }
8082510e 4619 return err;
39279cc3
CM
4620}
4621
4622/*
2aaa6655
JB
4623 * btrfs_truncate_page - read, zero a chunk and write a page
4624 * @inode - inode that we're zeroing
4625 * @from - the offset to start zeroing
4626 * @len - the length to zero, 0 to zero the entire range respective to the
4627 * offset
4628 * @front - zero up to the offset instead of from the offset on
4629 *
4630 * This will find the page for the "from" offset and cow the page and zero the
4631 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4632 */
2aaa6655
JB
4633int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4634 int front)
39279cc3 4635{
2aaa6655 4636 struct address_space *mapping = inode->i_mapping;
db94535d 4637 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4638 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4639 struct btrfs_ordered_extent *ordered;
2ac55d41 4640 struct extent_state *cached_state = NULL;
e6dcd2dc 4641 char *kaddr;
db94535d 4642 u32 blocksize = root->sectorsize;
39279cc3
CM
4643 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4644 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4645 struct page *page;
3b16a4e3 4646 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4647 int ret = 0;
a52d9a80 4648 u64 page_start;
e6dcd2dc 4649 u64 page_end;
39279cc3 4650
2aaa6655
JB
4651 if ((offset & (blocksize - 1)) == 0 &&
4652 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4653 goto out;
7cf5b976 4654 ret = btrfs_delalloc_reserve_space(inode,
df480633 4655 round_down(from, PAGE_CACHE_SIZE), PAGE_CACHE_SIZE);
5d5e103a
JB
4656 if (ret)
4657 goto out;
39279cc3 4658
211c17f5 4659again:
3b16a4e3 4660 page = find_or_create_page(mapping, index, mask);
5d5e103a 4661 if (!page) {
7cf5b976 4662 btrfs_delalloc_release_space(inode,
df480633
QW
4663 round_down(from, PAGE_CACHE_SIZE),
4664 PAGE_CACHE_SIZE);
ac6a2b36 4665 ret = -ENOMEM;
39279cc3 4666 goto out;
5d5e103a 4667 }
e6dcd2dc
CM
4668
4669 page_start = page_offset(page);
4670 page_end = page_start + PAGE_CACHE_SIZE - 1;
4671
39279cc3 4672 if (!PageUptodate(page)) {
9ebefb18 4673 ret = btrfs_readpage(NULL, page);
39279cc3 4674 lock_page(page);
211c17f5
CM
4675 if (page->mapping != mapping) {
4676 unlock_page(page);
4677 page_cache_release(page);
4678 goto again;
4679 }
39279cc3
CM
4680 if (!PageUptodate(page)) {
4681 ret = -EIO;
89642229 4682 goto out_unlock;
39279cc3
CM
4683 }
4684 }
211c17f5 4685 wait_on_page_writeback(page);
e6dcd2dc 4686
d0082371 4687 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4688 set_page_extent_mapped(page);
4689
4690 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4691 if (ordered) {
2ac55d41
JB
4692 unlock_extent_cached(io_tree, page_start, page_end,
4693 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4694 unlock_page(page);
4695 page_cache_release(page);
eb84ae03 4696 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4697 btrfs_put_ordered_extent(ordered);
4698 goto again;
4699 }
4700
2ac55d41 4701 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4702 EXTENT_DIRTY | EXTENT_DELALLOC |
4703 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4704 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4705
2ac55d41
JB
4706 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4707 &cached_state);
9ed74f2d 4708 if (ret) {
2ac55d41
JB
4709 unlock_extent_cached(io_tree, page_start, page_end,
4710 &cached_state, GFP_NOFS);
9ed74f2d
JB
4711 goto out_unlock;
4712 }
4713
e6dcd2dc 4714 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4715 if (!len)
4716 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4717 kaddr = kmap(page);
2aaa6655
JB
4718 if (front)
4719 memset(kaddr, 0, offset);
4720 else
4721 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4722 flush_dcache_page(page);
4723 kunmap(page);
4724 }
247e743c 4725 ClearPageChecked(page);
e6dcd2dc 4726 set_page_dirty(page);
2ac55d41
JB
4727 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4728 GFP_NOFS);
39279cc3 4729
89642229 4730out_unlock:
5d5e103a 4731 if (ret)
7cf5b976
QW
4732 btrfs_delalloc_release_space(inode, page_start,
4733 PAGE_CACHE_SIZE);
39279cc3
CM
4734 unlock_page(page);
4735 page_cache_release(page);
4736out:
4737 return ret;
4738}
4739
16e7549f
JB
4740static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4741 u64 offset, u64 len)
4742{
4743 struct btrfs_trans_handle *trans;
4744 int ret;
4745
4746 /*
4747 * Still need to make sure the inode looks like it's been updated so
4748 * that any holes get logged if we fsync.
4749 */
4750 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4751 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4752 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4753 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4754 return 0;
4755 }
4756
4757 /*
4758 * 1 - for the one we're dropping
4759 * 1 - for the one we're adding
4760 * 1 - for updating the inode.
4761 */
4762 trans = btrfs_start_transaction(root, 3);
4763 if (IS_ERR(trans))
4764 return PTR_ERR(trans);
4765
4766 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4767 if (ret) {
4768 btrfs_abort_transaction(trans, root, ret);
4769 btrfs_end_transaction(trans, root);
4770 return ret;
4771 }
4772
4773 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4774 0, 0, len, 0, len, 0, 0, 0);
4775 if (ret)
4776 btrfs_abort_transaction(trans, root, ret);
4777 else
4778 btrfs_update_inode(trans, root, inode);
4779 btrfs_end_transaction(trans, root);
4780 return ret;
4781}
4782
695a0d0d
JB
4783/*
4784 * This function puts in dummy file extents for the area we're creating a hole
4785 * for. So if we are truncating this file to a larger size we need to insert
4786 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4787 * the range between oldsize and size
4788 */
a41ad394 4789int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4790{
9036c102
YZ
4791 struct btrfs_root *root = BTRFS_I(inode)->root;
4792 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4793 struct extent_map *em = NULL;
2ac55d41 4794 struct extent_state *cached_state = NULL;
5dc562c5 4795 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4796 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4797 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4798 u64 last_byte;
4799 u64 cur_offset;
4800 u64 hole_size;
9ed74f2d 4801 int err = 0;
39279cc3 4802
a71754fc
JB
4803 /*
4804 * If our size started in the middle of a page we need to zero out the
4805 * rest of the page before we expand the i_size, otherwise we could
4806 * expose stale data.
4807 */
4808 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4809 if (err)
4810 return err;
4811
9036c102
YZ
4812 if (size <= hole_start)
4813 return 0;
4814
9036c102
YZ
4815 while (1) {
4816 struct btrfs_ordered_extent *ordered;
fa7c1494 4817
2ac55d41 4818 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4819 &cached_state);
fa7c1494
MX
4820 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4821 block_end - hole_start);
9036c102
YZ
4822 if (!ordered)
4823 break;
2ac55d41
JB
4824 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4825 &cached_state, GFP_NOFS);
fa7c1494 4826 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4827 btrfs_put_ordered_extent(ordered);
4828 }
39279cc3 4829
9036c102
YZ
4830 cur_offset = hole_start;
4831 while (1) {
4832 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4833 block_end - cur_offset, 0);
79787eaa
JM
4834 if (IS_ERR(em)) {
4835 err = PTR_ERR(em);
f2767956 4836 em = NULL;
79787eaa
JM
4837 break;
4838 }
9036c102 4839 last_byte = min(extent_map_end(em), block_end);
fda2832f 4840 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4841 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4842 struct extent_map *hole_em;
9036c102 4843 hole_size = last_byte - cur_offset;
9ed74f2d 4844
16e7549f
JB
4845 err = maybe_insert_hole(root, inode, cur_offset,
4846 hole_size);
4847 if (err)
3893e33b 4848 break;
5dc562c5
JB
4849 btrfs_drop_extent_cache(inode, cur_offset,
4850 cur_offset + hole_size - 1, 0);
4851 hole_em = alloc_extent_map();
4852 if (!hole_em) {
4853 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4854 &BTRFS_I(inode)->runtime_flags);
4855 goto next;
4856 }
4857 hole_em->start = cur_offset;
4858 hole_em->len = hole_size;
4859 hole_em->orig_start = cur_offset;
8082510e 4860
5dc562c5
JB
4861 hole_em->block_start = EXTENT_MAP_HOLE;
4862 hole_em->block_len = 0;
b4939680 4863 hole_em->orig_block_len = 0;
cc95bef6 4864 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4865 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4866 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4867 hole_em->generation = root->fs_info->generation;
8082510e 4868
5dc562c5
JB
4869 while (1) {
4870 write_lock(&em_tree->lock);
09a2a8f9 4871 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4872 write_unlock(&em_tree->lock);
4873 if (err != -EEXIST)
4874 break;
4875 btrfs_drop_extent_cache(inode, cur_offset,
4876 cur_offset +
4877 hole_size - 1, 0);
4878 }
4879 free_extent_map(hole_em);
9036c102 4880 }
16e7549f 4881next:
9036c102 4882 free_extent_map(em);
a22285a6 4883 em = NULL;
9036c102 4884 cur_offset = last_byte;
8082510e 4885 if (cur_offset >= block_end)
9036c102
YZ
4886 break;
4887 }
a22285a6 4888 free_extent_map(em);
2ac55d41
JB
4889 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4890 GFP_NOFS);
9036c102
YZ
4891 return err;
4892}
39279cc3 4893
9ea24bbe
FM
4894static int wait_snapshoting_atomic_t(atomic_t *a)
4895{
4896 schedule();
4897 return 0;
4898}
4899
4900static void wait_for_snapshot_creation(struct btrfs_root *root)
4901{
4902 while (true) {
4903 int ret;
4904
4905 ret = btrfs_start_write_no_snapshoting(root);
4906 if (ret)
4907 break;
4908 wait_on_atomic_t(&root->will_be_snapshoted,
4909 wait_snapshoting_atomic_t,
4910 TASK_UNINTERRUPTIBLE);
4911 }
4912}
4913
3972f260 4914static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4915{
f4a2f4c5
MX
4916 struct btrfs_root *root = BTRFS_I(inode)->root;
4917 struct btrfs_trans_handle *trans;
a41ad394 4918 loff_t oldsize = i_size_read(inode);
3972f260
ES
4919 loff_t newsize = attr->ia_size;
4920 int mask = attr->ia_valid;
8082510e
YZ
4921 int ret;
4922
3972f260
ES
4923 /*
4924 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4925 * special case where we need to update the times despite not having
4926 * these flags set. For all other operations the VFS set these flags
4927 * explicitly if it wants a timestamp update.
4928 */
dff6efc3
CH
4929 if (newsize != oldsize) {
4930 inode_inc_iversion(inode);
4931 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4932 inode->i_ctime = inode->i_mtime =
4933 current_fs_time(inode->i_sb);
4934 }
3972f260 4935
a41ad394 4936 if (newsize > oldsize) {
7caef267 4937 truncate_pagecache(inode, newsize);
9ea24bbe
FM
4938 /*
4939 * Don't do an expanding truncate while snapshoting is ongoing.
4940 * This is to ensure the snapshot captures a fully consistent
4941 * state of this file - if the snapshot captures this expanding
4942 * truncation, it must capture all writes that happened before
4943 * this truncation.
4944 */
4945 wait_for_snapshot_creation(root);
a41ad394 4946 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4947 if (ret) {
4948 btrfs_end_write_no_snapshoting(root);
8082510e 4949 return ret;
9ea24bbe 4950 }
8082510e 4951
f4a2f4c5 4952 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4953 if (IS_ERR(trans)) {
4954 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4955 return PTR_ERR(trans);
9ea24bbe 4956 }
f4a2f4c5
MX
4957
4958 i_size_write(inode, newsize);
4959 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4960 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4961 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4962 btrfs_end_transaction(trans, root);
a41ad394 4963 } else {
8082510e 4964
a41ad394
JB
4965 /*
4966 * We're truncating a file that used to have good data down to
4967 * zero. Make sure it gets into the ordered flush list so that
4968 * any new writes get down to disk quickly.
4969 */
4970 if (newsize == 0)
72ac3c0d
JB
4971 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4972 &BTRFS_I(inode)->runtime_flags);
8082510e 4973
f3fe820c
JB
4974 /*
4975 * 1 for the orphan item we're going to add
4976 * 1 for the orphan item deletion.
4977 */
4978 trans = btrfs_start_transaction(root, 2);
4979 if (IS_ERR(trans))
4980 return PTR_ERR(trans);
4981
4982 /*
4983 * We need to do this in case we fail at _any_ point during the
4984 * actual truncate. Once we do the truncate_setsize we could
4985 * invalidate pages which forces any outstanding ordered io to
4986 * be instantly completed which will give us extents that need
4987 * to be truncated. If we fail to get an orphan inode down we
4988 * could have left over extents that were never meant to live,
4989 * so we need to garuntee from this point on that everything
4990 * will be consistent.
4991 */
4992 ret = btrfs_orphan_add(trans, inode);
4993 btrfs_end_transaction(trans, root);
4994 if (ret)
4995 return ret;
4996
a41ad394
JB
4997 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4998 truncate_setsize(inode, newsize);
2e60a51e
MX
4999
5000 /* Disable nonlocked read DIO to avoid the end less truncate */
5001 btrfs_inode_block_unlocked_dio(inode);
5002 inode_dio_wait(inode);
5003 btrfs_inode_resume_unlocked_dio(inode);
5004
a41ad394 5005 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5006 if (ret && inode->i_nlink) {
5007 int err;
5008
5009 /*
5010 * failed to truncate, disk_i_size is only adjusted down
5011 * as we remove extents, so it should represent the true
5012 * size of the inode, so reset the in memory size and
5013 * delete our orphan entry.
5014 */
5015 trans = btrfs_join_transaction(root);
5016 if (IS_ERR(trans)) {
5017 btrfs_orphan_del(NULL, inode);
5018 return ret;
5019 }
5020 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5021 err = btrfs_orphan_del(trans, inode);
5022 if (err)
5023 btrfs_abort_transaction(trans, root, err);
5024 btrfs_end_transaction(trans, root);
5025 }
8082510e
YZ
5026 }
5027
a41ad394 5028 return ret;
8082510e
YZ
5029}
5030
9036c102
YZ
5031static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5032{
2b0143b5 5033 struct inode *inode = d_inode(dentry);
b83cc969 5034 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5035 int err;
39279cc3 5036
b83cc969
LZ
5037 if (btrfs_root_readonly(root))
5038 return -EROFS;
5039
9036c102
YZ
5040 err = inode_change_ok(inode, attr);
5041 if (err)
5042 return err;
2bf5a725 5043
5a3f23d5 5044 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5045 err = btrfs_setsize(inode, attr);
8082510e
YZ
5046 if (err)
5047 return err;
39279cc3 5048 }
9036c102 5049
1025774c
CH
5050 if (attr->ia_valid) {
5051 setattr_copy(inode, attr);
0c4d2d95 5052 inode_inc_iversion(inode);
22c44fe6 5053 err = btrfs_dirty_inode(inode);
1025774c 5054
22c44fe6 5055 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5056 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5057 }
33268eaf 5058
39279cc3
CM
5059 return err;
5060}
61295eb8 5061
131e404a
FDBM
5062/*
5063 * While truncating the inode pages during eviction, we get the VFS calling
5064 * btrfs_invalidatepage() against each page of the inode. This is slow because
5065 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5066 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5067 * extent_state structures over and over, wasting lots of time.
5068 *
5069 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5070 * those expensive operations on a per page basis and do only the ordered io
5071 * finishing, while we release here the extent_map and extent_state structures,
5072 * without the excessive merging and splitting.
5073 */
5074static void evict_inode_truncate_pages(struct inode *inode)
5075{
5076 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5077 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5078 struct rb_node *node;
5079
5080 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5081 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5082
5083 write_lock(&map_tree->lock);
5084 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5085 struct extent_map *em;
5086
5087 node = rb_first(&map_tree->map);
5088 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5089 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5090 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5091 remove_extent_mapping(map_tree, em);
5092 free_extent_map(em);
7064dd5c
FM
5093 if (need_resched()) {
5094 write_unlock(&map_tree->lock);
5095 cond_resched();
5096 write_lock(&map_tree->lock);
5097 }
131e404a
FDBM
5098 }
5099 write_unlock(&map_tree->lock);
5100
6ca07097
FM
5101 /*
5102 * Keep looping until we have no more ranges in the io tree.
5103 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5104 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5105 * still in progress (unlocked the pages in the bio but did not yet
5106 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5107 * ranges can still be locked and eviction started because before
5108 * submitting those bios, which are executed by a separate task (work
5109 * queue kthread), inode references (inode->i_count) were not taken
5110 * (which would be dropped in the end io callback of each bio).
5111 * Therefore here we effectively end up waiting for those bios and
5112 * anyone else holding locked ranges without having bumped the inode's
5113 * reference count - if we don't do it, when they access the inode's
5114 * io_tree to unlock a range it may be too late, leading to an
5115 * use-after-free issue.
5116 */
131e404a
FDBM
5117 spin_lock(&io_tree->lock);
5118 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5119 struct extent_state *state;
5120 struct extent_state *cached_state = NULL;
6ca07097
FM
5121 u64 start;
5122 u64 end;
131e404a
FDBM
5123
5124 node = rb_first(&io_tree->state);
5125 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5126 start = state->start;
5127 end = state->end;
131e404a
FDBM
5128 spin_unlock(&io_tree->lock);
5129
6ca07097 5130 lock_extent_bits(io_tree, start, end, 0, &cached_state);
b9d0b389
QW
5131
5132 /*
5133 * If still has DELALLOC flag, the extent didn't reach disk,
5134 * and its reserved space won't be freed by delayed_ref.
5135 * So we need to free its reserved space here.
5136 * (Refer to comment in btrfs_invalidatepage, case 2)
5137 *
5138 * Note, end is the bytenr of last byte, so we need + 1 here.
5139 */
5140 if (state->state & EXTENT_DELALLOC)
5141 btrfs_qgroup_free_data(inode, start, end - start + 1);
5142
6ca07097 5143 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5144 EXTENT_LOCKED | EXTENT_DIRTY |
5145 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5146 EXTENT_DEFRAG, 1, 1,
5147 &cached_state, GFP_NOFS);
131e404a 5148
7064dd5c 5149 cond_resched();
131e404a
FDBM
5150 spin_lock(&io_tree->lock);
5151 }
5152 spin_unlock(&io_tree->lock);
5153}
5154
bd555975 5155void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5156{
5157 struct btrfs_trans_handle *trans;
5158 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5159 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5160 int steal_from_global = 0;
07127184 5161 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
5162 int ret;
5163
1abe9b8a 5164 trace_btrfs_inode_evict(inode);
5165
131e404a
FDBM
5166 evict_inode_truncate_pages(inode);
5167
69e9c6c6
SB
5168 if (inode->i_nlink &&
5169 ((btrfs_root_refs(&root->root_item) != 0 &&
5170 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5171 btrfs_is_free_space_inode(inode)))
bd555975
AV
5172 goto no_delete;
5173
39279cc3 5174 if (is_bad_inode(inode)) {
7b128766 5175 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5176 goto no_delete;
5177 }
bd555975 5178 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5179 if (!special_file(inode->i_mode))
5180 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5181
f612496b
MX
5182 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5183
c71bf099 5184 if (root->fs_info->log_root_recovering) {
6bf02314 5185 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5186 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5187 goto no_delete;
5188 }
5189
76dda93c 5190 if (inode->i_nlink > 0) {
69e9c6c6
SB
5191 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5192 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5193 goto no_delete;
5194 }
5195
0e8c36a9
MX
5196 ret = btrfs_commit_inode_delayed_inode(inode);
5197 if (ret) {
5198 btrfs_orphan_del(NULL, inode);
5199 goto no_delete;
5200 }
5201
66d8f3dd 5202 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5203 if (!rsv) {
5204 btrfs_orphan_del(NULL, inode);
5205 goto no_delete;
5206 }
4a338542 5207 rsv->size = min_size;
ca7e70f5 5208 rsv->failfast = 1;
726c35fa 5209 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5210
dbe674a9 5211 btrfs_i_size_write(inode, 0);
5f39d397 5212
4289a667 5213 /*
8407aa46
MX
5214 * This is a bit simpler than btrfs_truncate since we've already
5215 * reserved our space for our orphan item in the unlink, so we just
5216 * need to reserve some slack space in case we add bytes and update
5217 * inode item when doing the truncate.
4289a667 5218 */
8082510e 5219 while (1) {
08e007d2
MX
5220 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5221 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5222
5223 /*
5224 * Try and steal from the global reserve since we will
5225 * likely not use this space anyway, we want to try as
5226 * hard as possible to get this to work.
5227 */
5228 if (ret)
3bce876f
JB
5229 steal_from_global++;
5230 else
5231 steal_from_global = 0;
5232 ret = 0;
d68fc57b 5233
3bce876f
JB
5234 /*
5235 * steal_from_global == 0: we reserved stuff, hooray!
5236 * steal_from_global == 1: we didn't reserve stuff, boo!
5237 * steal_from_global == 2: we've committed, still not a lot of
5238 * room but maybe we'll have room in the global reserve this
5239 * time.
5240 * steal_from_global == 3: abandon all hope!
5241 */
5242 if (steal_from_global > 2) {
c2cf52eb
SK
5243 btrfs_warn(root->fs_info,
5244 "Could not get space for a delete, will truncate on mount %d",
5245 ret);
4289a667
JB
5246 btrfs_orphan_del(NULL, inode);
5247 btrfs_free_block_rsv(root, rsv);
5248 goto no_delete;
d68fc57b 5249 }
7b128766 5250
0e8c36a9 5251 trans = btrfs_join_transaction(root);
4289a667
JB
5252 if (IS_ERR(trans)) {
5253 btrfs_orphan_del(NULL, inode);
5254 btrfs_free_block_rsv(root, rsv);
5255 goto no_delete;
d68fc57b 5256 }
7b128766 5257
3bce876f
JB
5258 /*
5259 * We can't just steal from the global reserve, we need tomake
5260 * sure there is room to do it, if not we need to commit and try
5261 * again.
5262 */
5263 if (steal_from_global) {
5264 if (!btrfs_check_space_for_delayed_refs(trans, root))
5265 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5266 min_size);
5267 else
5268 ret = -ENOSPC;
5269 }
5270
5271 /*
5272 * Couldn't steal from the global reserve, we have too much
5273 * pending stuff built up, commit the transaction and try it
5274 * again.
5275 */
5276 if (ret) {
5277 ret = btrfs_commit_transaction(trans, root);
5278 if (ret) {
5279 btrfs_orphan_del(NULL, inode);
5280 btrfs_free_block_rsv(root, rsv);
5281 goto no_delete;
5282 }
5283 continue;
5284 } else {
5285 steal_from_global = 0;
5286 }
5287
4289a667
JB
5288 trans->block_rsv = rsv;
5289
d68fc57b 5290 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5291 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5292 break;
85e21bac 5293
8407aa46 5294 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5295 btrfs_end_transaction(trans, root);
5296 trans = NULL;
b53d3f5d 5297 btrfs_btree_balance_dirty(root);
8082510e 5298 }
5f39d397 5299
4289a667
JB
5300 btrfs_free_block_rsv(root, rsv);
5301
4ef31a45
JB
5302 /*
5303 * Errors here aren't a big deal, it just means we leave orphan items
5304 * in the tree. They will be cleaned up on the next mount.
5305 */
8082510e 5306 if (ret == 0) {
4289a667 5307 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5308 btrfs_orphan_del(trans, inode);
5309 } else {
5310 btrfs_orphan_del(NULL, inode);
8082510e 5311 }
54aa1f4d 5312
4289a667 5313 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5314 if (!(root == root->fs_info->tree_root ||
5315 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5316 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5317
54aa1f4d 5318 btrfs_end_transaction(trans, root);
b53d3f5d 5319 btrfs_btree_balance_dirty(root);
39279cc3 5320no_delete:
89042e5a 5321 btrfs_remove_delayed_node(inode);
dbd5768f 5322 clear_inode(inode);
8082510e 5323 return;
39279cc3
CM
5324}
5325
5326/*
5327 * this returns the key found in the dir entry in the location pointer.
5328 * If no dir entries were found, location->objectid is 0.
5329 */
5330static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5331 struct btrfs_key *location)
5332{
5333 const char *name = dentry->d_name.name;
5334 int namelen = dentry->d_name.len;
5335 struct btrfs_dir_item *di;
5336 struct btrfs_path *path;
5337 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5338 int ret = 0;
39279cc3
CM
5339
5340 path = btrfs_alloc_path();
d8926bb3
MF
5341 if (!path)
5342 return -ENOMEM;
3954401f 5343
33345d01 5344 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5345 namelen, 0);
0d9f7f3e
Y
5346 if (IS_ERR(di))
5347 ret = PTR_ERR(di);
d397712b 5348
c704005d 5349 if (IS_ERR_OR_NULL(di))
3954401f 5350 goto out_err;
d397712b 5351
5f39d397 5352 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5353out:
39279cc3
CM
5354 btrfs_free_path(path);
5355 return ret;
3954401f
CM
5356out_err:
5357 location->objectid = 0;
5358 goto out;
39279cc3
CM
5359}
5360
5361/*
5362 * when we hit a tree root in a directory, the btrfs part of the inode
5363 * needs to be changed to reflect the root directory of the tree root. This
5364 * is kind of like crossing a mount point.
5365 */
5366static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5367 struct inode *dir,
5368 struct dentry *dentry,
5369 struct btrfs_key *location,
5370 struct btrfs_root **sub_root)
39279cc3 5371{
4df27c4d
YZ
5372 struct btrfs_path *path;
5373 struct btrfs_root *new_root;
5374 struct btrfs_root_ref *ref;
5375 struct extent_buffer *leaf;
1d4c08e0 5376 struct btrfs_key key;
4df27c4d
YZ
5377 int ret;
5378 int err = 0;
39279cc3 5379
4df27c4d
YZ
5380 path = btrfs_alloc_path();
5381 if (!path) {
5382 err = -ENOMEM;
5383 goto out;
5384 }
39279cc3 5385
4df27c4d 5386 err = -ENOENT;
1d4c08e0
DS
5387 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5388 key.type = BTRFS_ROOT_REF_KEY;
5389 key.offset = location->objectid;
5390
5391 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5392 0, 0);
4df27c4d
YZ
5393 if (ret) {
5394 if (ret < 0)
5395 err = ret;
5396 goto out;
5397 }
39279cc3 5398
4df27c4d
YZ
5399 leaf = path->nodes[0];
5400 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5401 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5402 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5403 goto out;
39279cc3 5404
4df27c4d
YZ
5405 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5406 (unsigned long)(ref + 1),
5407 dentry->d_name.len);
5408 if (ret)
5409 goto out;
5410
b3b4aa74 5411 btrfs_release_path(path);
4df27c4d
YZ
5412
5413 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5414 if (IS_ERR(new_root)) {
5415 err = PTR_ERR(new_root);
5416 goto out;
5417 }
5418
4df27c4d
YZ
5419 *sub_root = new_root;
5420 location->objectid = btrfs_root_dirid(&new_root->root_item);
5421 location->type = BTRFS_INODE_ITEM_KEY;
5422 location->offset = 0;
5423 err = 0;
5424out:
5425 btrfs_free_path(path);
5426 return err;
39279cc3
CM
5427}
5428
5d4f98a2
YZ
5429static void inode_tree_add(struct inode *inode)
5430{
5431 struct btrfs_root *root = BTRFS_I(inode)->root;
5432 struct btrfs_inode *entry;
03e860bd
FNP
5433 struct rb_node **p;
5434 struct rb_node *parent;
cef21937 5435 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5436 u64 ino = btrfs_ino(inode);
5d4f98a2 5437
1d3382cb 5438 if (inode_unhashed(inode))
76dda93c 5439 return;
e1409cef 5440 parent = NULL;
5d4f98a2 5441 spin_lock(&root->inode_lock);
e1409cef 5442 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5443 while (*p) {
5444 parent = *p;
5445 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5446
33345d01 5447 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5448 p = &parent->rb_left;
33345d01 5449 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5450 p = &parent->rb_right;
5d4f98a2
YZ
5451 else {
5452 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5453 (I_WILL_FREE | I_FREEING)));
cef21937 5454 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5455 RB_CLEAR_NODE(parent);
5456 spin_unlock(&root->inode_lock);
cef21937 5457 return;
5d4f98a2
YZ
5458 }
5459 }
cef21937
FDBM
5460 rb_link_node(new, parent, p);
5461 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5462 spin_unlock(&root->inode_lock);
5463}
5464
5465static void inode_tree_del(struct inode *inode)
5466{
5467 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5468 int empty = 0;
5d4f98a2 5469
03e860bd 5470 spin_lock(&root->inode_lock);
5d4f98a2 5471 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5472 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5473 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5474 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5475 }
03e860bd 5476 spin_unlock(&root->inode_lock);
76dda93c 5477
69e9c6c6 5478 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5479 synchronize_srcu(&root->fs_info->subvol_srcu);
5480 spin_lock(&root->inode_lock);
5481 empty = RB_EMPTY_ROOT(&root->inode_tree);
5482 spin_unlock(&root->inode_lock);
5483 if (empty)
5484 btrfs_add_dead_root(root);
5485 }
5486}
5487
143bede5 5488void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5489{
5490 struct rb_node *node;
5491 struct rb_node *prev;
5492 struct btrfs_inode *entry;
5493 struct inode *inode;
5494 u64 objectid = 0;
5495
7813b3db
LB
5496 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5497 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5498
5499 spin_lock(&root->inode_lock);
5500again:
5501 node = root->inode_tree.rb_node;
5502 prev = NULL;
5503 while (node) {
5504 prev = node;
5505 entry = rb_entry(node, struct btrfs_inode, rb_node);
5506
33345d01 5507 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5508 node = node->rb_left;
33345d01 5509 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5510 node = node->rb_right;
5511 else
5512 break;
5513 }
5514 if (!node) {
5515 while (prev) {
5516 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5517 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5518 node = prev;
5519 break;
5520 }
5521 prev = rb_next(prev);
5522 }
5523 }
5524 while (node) {
5525 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5526 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5527 inode = igrab(&entry->vfs_inode);
5528 if (inode) {
5529 spin_unlock(&root->inode_lock);
5530 if (atomic_read(&inode->i_count) > 1)
5531 d_prune_aliases(inode);
5532 /*
45321ac5 5533 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5534 * the inode cache when its usage count
5535 * hits zero.
5536 */
5537 iput(inode);
5538 cond_resched();
5539 spin_lock(&root->inode_lock);
5540 goto again;
5541 }
5542
5543 if (cond_resched_lock(&root->inode_lock))
5544 goto again;
5545
5546 node = rb_next(node);
5547 }
5548 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5549}
5550
e02119d5
CM
5551static int btrfs_init_locked_inode(struct inode *inode, void *p)
5552{
5553 struct btrfs_iget_args *args = p;
90d3e592
CM
5554 inode->i_ino = args->location->objectid;
5555 memcpy(&BTRFS_I(inode)->location, args->location,
5556 sizeof(*args->location));
e02119d5 5557 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5558 return 0;
5559}
5560
5561static int btrfs_find_actor(struct inode *inode, void *opaque)
5562{
5563 struct btrfs_iget_args *args = opaque;
90d3e592 5564 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5565 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5566}
5567
5d4f98a2 5568static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5569 struct btrfs_key *location,
5d4f98a2 5570 struct btrfs_root *root)
39279cc3
CM
5571{
5572 struct inode *inode;
5573 struct btrfs_iget_args args;
90d3e592 5574 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5575
90d3e592 5576 args.location = location;
39279cc3
CM
5577 args.root = root;
5578
778ba82b 5579 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5580 btrfs_init_locked_inode,
5581 (void *)&args);
5582 return inode;
5583}
5584
1a54ef8c
BR
5585/* Get an inode object given its location and corresponding root.
5586 * Returns in *is_new if the inode was read from disk
5587 */
5588struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5589 struct btrfs_root *root, int *new)
1a54ef8c
BR
5590{
5591 struct inode *inode;
5592
90d3e592 5593 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5594 if (!inode)
5d4f98a2 5595 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5596
5597 if (inode->i_state & I_NEW) {
1a54ef8c 5598 btrfs_read_locked_inode(inode);
1748f843
MF
5599 if (!is_bad_inode(inode)) {
5600 inode_tree_add(inode);
5601 unlock_new_inode(inode);
5602 if (new)
5603 *new = 1;
5604 } else {
e0b6d65b
ST
5605 unlock_new_inode(inode);
5606 iput(inode);
5607 inode = ERR_PTR(-ESTALE);
1748f843
MF
5608 }
5609 }
5610
1a54ef8c
BR
5611 return inode;
5612}
5613
4df27c4d
YZ
5614static struct inode *new_simple_dir(struct super_block *s,
5615 struct btrfs_key *key,
5616 struct btrfs_root *root)
5617{
5618 struct inode *inode = new_inode(s);
5619
5620 if (!inode)
5621 return ERR_PTR(-ENOMEM);
5622
4df27c4d
YZ
5623 BTRFS_I(inode)->root = root;
5624 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5625 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5626
5627 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5628 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5629 inode->i_fop = &simple_dir_operations;
5630 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
9cc97d64 5631 inode->i_mtime = CURRENT_TIME;
5632 inode->i_atime = inode->i_mtime;
5633 inode->i_ctime = inode->i_mtime;
5634 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5635
5636 return inode;
5637}
5638
3de4586c 5639struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5640{
d397712b 5641 struct inode *inode;
4df27c4d 5642 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5643 struct btrfs_root *sub_root = root;
5644 struct btrfs_key location;
76dda93c 5645 int index;
b4aff1f8 5646 int ret = 0;
39279cc3
CM
5647
5648 if (dentry->d_name.len > BTRFS_NAME_LEN)
5649 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5650
39e3c955 5651 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5652 if (ret < 0)
5653 return ERR_PTR(ret);
5f39d397 5654
4df27c4d 5655 if (location.objectid == 0)
5662344b 5656 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5657
5658 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5659 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5660 return inode;
5661 }
5662
5663 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5664
76dda93c 5665 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5666 ret = fixup_tree_root_location(root, dir, dentry,
5667 &location, &sub_root);
5668 if (ret < 0) {
5669 if (ret != -ENOENT)
5670 inode = ERR_PTR(ret);
5671 else
5672 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5673 } else {
73f73415 5674 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5675 }
76dda93c
YZ
5676 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5677
34d19bad 5678 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5679 down_read(&root->fs_info->cleanup_work_sem);
5680 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5681 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5682 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5683 if (ret) {
5684 iput(inode);
66b4ffd1 5685 inode = ERR_PTR(ret);
01cd3367 5686 }
c71bf099
YZ
5687 }
5688
3de4586c
CM
5689 return inode;
5690}
5691
fe15ce44 5692static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5693{
5694 struct btrfs_root *root;
2b0143b5 5695 struct inode *inode = d_inode(dentry);
76dda93c 5696
848cce0d 5697 if (!inode && !IS_ROOT(dentry))
2b0143b5 5698 inode = d_inode(dentry->d_parent);
76dda93c 5699
848cce0d
LZ
5700 if (inode) {
5701 root = BTRFS_I(inode)->root;
efefb143
YZ
5702 if (btrfs_root_refs(&root->root_item) == 0)
5703 return 1;
848cce0d
LZ
5704
5705 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5706 return 1;
efefb143 5707 }
76dda93c
YZ
5708 return 0;
5709}
5710
b4aff1f8
JB
5711static void btrfs_dentry_release(struct dentry *dentry)
5712{
944a4515 5713 kfree(dentry->d_fsdata);
b4aff1f8
JB
5714}
5715
3de4586c 5716static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5717 unsigned int flags)
3de4586c 5718{
5662344b 5719 struct inode *inode;
a66e7cc6 5720
5662344b
TI
5721 inode = btrfs_lookup_dentry(dir, dentry);
5722 if (IS_ERR(inode)) {
5723 if (PTR_ERR(inode) == -ENOENT)
5724 inode = NULL;
5725 else
5726 return ERR_CAST(inode);
5727 }
5728
41d28bca 5729 return d_splice_alias(inode, dentry);
39279cc3
CM
5730}
5731
16cdcec7 5732unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5733 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5734};
5735
9cdda8d3 5736static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5737{
9cdda8d3 5738 struct inode *inode = file_inode(file);
39279cc3
CM
5739 struct btrfs_root *root = BTRFS_I(inode)->root;
5740 struct btrfs_item *item;
5741 struct btrfs_dir_item *di;
5742 struct btrfs_key key;
5f39d397 5743 struct btrfs_key found_key;
39279cc3 5744 struct btrfs_path *path;
16cdcec7
MX
5745 struct list_head ins_list;
5746 struct list_head del_list;
39279cc3 5747 int ret;
5f39d397 5748 struct extent_buffer *leaf;
39279cc3 5749 int slot;
39279cc3
CM
5750 unsigned char d_type;
5751 int over = 0;
5752 u32 di_cur;
5753 u32 di_total;
5754 u32 di_len;
5755 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5756 char tmp_name[32];
5757 char *name_ptr;
5758 int name_len;
9cdda8d3 5759 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5760
5761 /* FIXME, use a real flag for deciding about the key type */
5762 if (root->fs_info->tree_root == root)
5763 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5764
9cdda8d3
AV
5765 if (!dir_emit_dots(file, ctx))
5766 return 0;
5767
49593bfa 5768 path = btrfs_alloc_path();
16cdcec7
MX
5769 if (!path)
5770 return -ENOMEM;
ff5714cc 5771
026fd317 5772 path->reada = 1;
49593bfa 5773
16cdcec7
MX
5774 if (key_type == BTRFS_DIR_INDEX_KEY) {
5775 INIT_LIST_HEAD(&ins_list);
5776 INIT_LIST_HEAD(&del_list);
5777 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5778 }
5779
962a298f 5780 key.type = key_type;
9cdda8d3 5781 key.offset = ctx->pos;
33345d01 5782 key.objectid = btrfs_ino(inode);
5f39d397 5783
39279cc3
CM
5784 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5785 if (ret < 0)
5786 goto err;
49593bfa
DW
5787
5788 while (1) {
5f39d397 5789 leaf = path->nodes[0];
39279cc3 5790 slot = path->slots[0];
b9e03af0
LZ
5791 if (slot >= btrfs_header_nritems(leaf)) {
5792 ret = btrfs_next_leaf(root, path);
5793 if (ret < 0)
5794 goto err;
5795 else if (ret > 0)
5796 break;
5797 continue;
39279cc3 5798 }
3de4586c 5799
dd3cc16b 5800 item = btrfs_item_nr(slot);
5f39d397
CM
5801 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5802
5803 if (found_key.objectid != key.objectid)
39279cc3 5804 break;
962a298f 5805 if (found_key.type != key_type)
39279cc3 5806 break;
9cdda8d3 5807 if (found_key.offset < ctx->pos)
b9e03af0 5808 goto next;
16cdcec7
MX
5809 if (key_type == BTRFS_DIR_INDEX_KEY &&
5810 btrfs_should_delete_dir_index(&del_list,
5811 found_key.offset))
5812 goto next;
5f39d397 5813
9cdda8d3 5814 ctx->pos = found_key.offset;
16cdcec7 5815 is_curr = 1;
49593bfa 5816
39279cc3
CM
5817 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5818 di_cur = 0;
5f39d397 5819 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5820
5821 while (di_cur < di_total) {
5f39d397
CM
5822 struct btrfs_key location;
5823
22a94d44
JB
5824 if (verify_dir_item(root, leaf, di))
5825 break;
5826
5f39d397 5827 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5828 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5829 name_ptr = tmp_name;
5830 } else {
5831 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5832 if (!name_ptr) {
5833 ret = -ENOMEM;
5834 goto err;
5835 }
5f39d397
CM
5836 }
5837 read_extent_buffer(leaf, name_ptr,
5838 (unsigned long)(di + 1), name_len);
5839
5840 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5841 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5842
fede766f 5843
3de4586c 5844 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5845 * skip it.
5846 *
5847 * In contrast to old kernels, we insert the snapshot's
5848 * dir item and dir index after it has been created, so
5849 * we won't find a reference to our own snapshot. We
5850 * still keep the following code for backward
5851 * compatibility.
3de4586c
CM
5852 */
5853 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5854 location.objectid == root->root_key.objectid) {
5855 over = 0;
5856 goto skip;
5857 }
9cdda8d3
AV
5858 over = !dir_emit(ctx, name_ptr, name_len,
5859 location.objectid, d_type);
5f39d397 5860
3de4586c 5861skip:
5f39d397
CM
5862 if (name_ptr != tmp_name)
5863 kfree(name_ptr);
5864
39279cc3
CM
5865 if (over)
5866 goto nopos;
5103e947 5867 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5868 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5869 di_cur += di_len;
5870 di = (struct btrfs_dir_item *)((char *)di + di_len);
5871 }
b9e03af0
LZ
5872next:
5873 path->slots[0]++;
39279cc3 5874 }
49593bfa 5875
16cdcec7
MX
5876 if (key_type == BTRFS_DIR_INDEX_KEY) {
5877 if (is_curr)
9cdda8d3
AV
5878 ctx->pos++;
5879 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5880 if (ret)
5881 goto nopos;
5882 }
5883
49593bfa 5884 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5885 ctx->pos++;
5886
5887 /*
5888 * Stop new entries from being returned after we return the last
5889 * entry.
5890 *
5891 * New directory entries are assigned a strictly increasing
5892 * offset. This means that new entries created during readdir
5893 * are *guaranteed* to be seen in the future by that readdir.
5894 * This has broken buggy programs which operate on names as
5895 * they're returned by readdir. Until we re-use freed offsets
5896 * we have this hack to stop new entries from being returned
5897 * under the assumption that they'll never reach this huge
5898 * offset.
5899 *
5900 * This is being careful not to overflow 32bit loff_t unless the
5901 * last entry requires it because doing so has broken 32bit apps
5902 * in the past.
5903 */
5904 if (key_type == BTRFS_DIR_INDEX_KEY) {
5905 if (ctx->pos >= INT_MAX)
5906 ctx->pos = LLONG_MAX;
5907 else
5908 ctx->pos = INT_MAX;
5909 }
39279cc3
CM
5910nopos:
5911 ret = 0;
5912err:
16cdcec7
MX
5913 if (key_type == BTRFS_DIR_INDEX_KEY)
5914 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5915 btrfs_free_path(path);
39279cc3
CM
5916 return ret;
5917}
5918
a9185b41 5919int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5920{
5921 struct btrfs_root *root = BTRFS_I(inode)->root;
5922 struct btrfs_trans_handle *trans;
5923 int ret = 0;
0af3d00b 5924 bool nolock = false;
39279cc3 5925
72ac3c0d 5926 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5927 return 0;
5928
83eea1f1 5929 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5930 nolock = true;
0af3d00b 5931
a9185b41 5932 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5933 if (nolock)
7a7eaa40 5934 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5935 else
7a7eaa40 5936 trans = btrfs_join_transaction(root);
3612b495
TI
5937 if (IS_ERR(trans))
5938 return PTR_ERR(trans);
a698d075 5939 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5940 }
5941 return ret;
5942}
5943
5944/*
54aa1f4d 5945 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5946 * inode changes. But, it is most likely to find the inode in cache.
5947 * FIXME, needs more benchmarking...there are no reasons other than performance
5948 * to keep or drop this code.
5949 */
48a3b636 5950static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5951{
5952 struct btrfs_root *root = BTRFS_I(inode)->root;
5953 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5954 int ret;
5955
72ac3c0d 5956 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5957 return 0;
39279cc3 5958
7a7eaa40 5959 trans = btrfs_join_transaction(root);
22c44fe6
JB
5960 if (IS_ERR(trans))
5961 return PTR_ERR(trans);
8929ecfa
YZ
5962
5963 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5964 if (ret && ret == -ENOSPC) {
5965 /* whoops, lets try again with the full transaction */
5966 btrfs_end_transaction(trans, root);
5967 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5968 if (IS_ERR(trans))
5969 return PTR_ERR(trans);
8929ecfa 5970
94b60442 5971 ret = btrfs_update_inode(trans, root, inode);
94b60442 5972 }
39279cc3 5973 btrfs_end_transaction(trans, root);
16cdcec7
MX
5974 if (BTRFS_I(inode)->delayed_node)
5975 btrfs_balance_delayed_items(root);
22c44fe6
JB
5976
5977 return ret;
5978}
5979
5980/*
5981 * This is a copy of file_update_time. We need this so we can return error on
5982 * ENOSPC for updating the inode in the case of file write and mmap writes.
5983 */
e41f941a
JB
5984static int btrfs_update_time(struct inode *inode, struct timespec *now,
5985 int flags)
22c44fe6 5986{
2bc55652
AB
5987 struct btrfs_root *root = BTRFS_I(inode)->root;
5988
5989 if (btrfs_root_readonly(root))
5990 return -EROFS;
5991
e41f941a 5992 if (flags & S_VERSION)
22c44fe6 5993 inode_inc_iversion(inode);
e41f941a
JB
5994 if (flags & S_CTIME)
5995 inode->i_ctime = *now;
5996 if (flags & S_MTIME)
5997 inode->i_mtime = *now;
5998 if (flags & S_ATIME)
5999 inode->i_atime = *now;
6000 return btrfs_dirty_inode(inode);
39279cc3
CM
6001}
6002
d352ac68
CM
6003/*
6004 * find the highest existing sequence number in a directory
6005 * and then set the in-memory index_cnt variable to reflect
6006 * free sequence numbers
6007 */
aec7477b
JB
6008static int btrfs_set_inode_index_count(struct inode *inode)
6009{
6010 struct btrfs_root *root = BTRFS_I(inode)->root;
6011 struct btrfs_key key, found_key;
6012 struct btrfs_path *path;
6013 struct extent_buffer *leaf;
6014 int ret;
6015
33345d01 6016 key.objectid = btrfs_ino(inode);
962a298f 6017 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6018 key.offset = (u64)-1;
6019
6020 path = btrfs_alloc_path();
6021 if (!path)
6022 return -ENOMEM;
6023
6024 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6025 if (ret < 0)
6026 goto out;
6027 /* FIXME: we should be able to handle this */
6028 if (ret == 0)
6029 goto out;
6030 ret = 0;
6031
6032 /*
6033 * MAGIC NUMBER EXPLANATION:
6034 * since we search a directory based on f_pos we have to start at 2
6035 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6036 * else has to start at 2
6037 */
6038 if (path->slots[0] == 0) {
6039 BTRFS_I(inode)->index_cnt = 2;
6040 goto out;
6041 }
6042
6043 path->slots[0]--;
6044
6045 leaf = path->nodes[0];
6046 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6047
33345d01 6048 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6049 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6050 BTRFS_I(inode)->index_cnt = 2;
6051 goto out;
6052 }
6053
6054 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6055out:
6056 btrfs_free_path(path);
6057 return ret;
6058}
6059
d352ac68
CM
6060/*
6061 * helper to find a free sequence number in a given directory. This current
6062 * code is very simple, later versions will do smarter things in the btree
6063 */
3de4586c 6064int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6065{
6066 int ret = 0;
6067
6068 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6069 ret = btrfs_inode_delayed_dir_index_count(dir);
6070 if (ret) {
6071 ret = btrfs_set_inode_index_count(dir);
6072 if (ret)
6073 return ret;
6074 }
aec7477b
JB
6075 }
6076
00e4e6b3 6077 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6078 BTRFS_I(dir)->index_cnt++;
6079
6080 return ret;
6081}
6082
b0d5d10f
CM
6083static int btrfs_insert_inode_locked(struct inode *inode)
6084{
6085 struct btrfs_iget_args args;
6086 args.location = &BTRFS_I(inode)->location;
6087 args.root = BTRFS_I(inode)->root;
6088
6089 return insert_inode_locked4(inode,
6090 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6091 btrfs_find_actor, &args);
6092}
6093
39279cc3
CM
6094static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6095 struct btrfs_root *root,
aec7477b 6096 struct inode *dir,
9c58309d 6097 const char *name, int name_len,
175a4eb7
AV
6098 u64 ref_objectid, u64 objectid,
6099 umode_t mode, u64 *index)
39279cc3
CM
6100{
6101 struct inode *inode;
5f39d397 6102 struct btrfs_inode_item *inode_item;
39279cc3 6103 struct btrfs_key *location;
5f39d397 6104 struct btrfs_path *path;
9c58309d
CM
6105 struct btrfs_inode_ref *ref;
6106 struct btrfs_key key[2];
6107 u32 sizes[2];
ef3b9af5 6108 int nitems = name ? 2 : 1;
9c58309d 6109 unsigned long ptr;
39279cc3 6110 int ret;
39279cc3 6111
5f39d397 6112 path = btrfs_alloc_path();
d8926bb3
MF
6113 if (!path)
6114 return ERR_PTR(-ENOMEM);
5f39d397 6115
39279cc3 6116 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6117 if (!inode) {
6118 btrfs_free_path(path);
39279cc3 6119 return ERR_PTR(-ENOMEM);
8fb27640 6120 }
39279cc3 6121
5762b5c9
FM
6122 /*
6123 * O_TMPFILE, set link count to 0, so that after this point,
6124 * we fill in an inode item with the correct link count.
6125 */
6126 if (!name)
6127 set_nlink(inode, 0);
6128
581bb050
LZ
6129 /*
6130 * we have to initialize this early, so we can reclaim the inode
6131 * number if we fail afterwards in this function.
6132 */
6133 inode->i_ino = objectid;
6134
ef3b9af5 6135 if (dir && name) {
1abe9b8a 6136 trace_btrfs_inode_request(dir);
6137
3de4586c 6138 ret = btrfs_set_inode_index(dir, index);
09771430 6139 if (ret) {
8fb27640 6140 btrfs_free_path(path);
09771430 6141 iput(inode);
aec7477b 6142 return ERR_PTR(ret);
09771430 6143 }
ef3b9af5
FM
6144 } else if (dir) {
6145 *index = 0;
aec7477b
JB
6146 }
6147 /*
6148 * index_cnt is ignored for everything but a dir,
6149 * btrfs_get_inode_index_count has an explanation for the magic
6150 * number
6151 */
6152 BTRFS_I(inode)->index_cnt = 2;
67de1176 6153 BTRFS_I(inode)->dir_index = *index;
39279cc3 6154 BTRFS_I(inode)->root = root;
e02119d5 6155 BTRFS_I(inode)->generation = trans->transid;
76195853 6156 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6157
5dc562c5
JB
6158 /*
6159 * We could have gotten an inode number from somebody who was fsynced
6160 * and then removed in this same transaction, so let's just set full
6161 * sync since it will be a full sync anyway and this will blow away the
6162 * old info in the log.
6163 */
6164 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6165
9c58309d 6166 key[0].objectid = objectid;
962a298f 6167 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6168 key[0].offset = 0;
6169
9c58309d 6170 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6171
6172 if (name) {
6173 /*
6174 * Start new inodes with an inode_ref. This is slightly more
6175 * efficient for small numbers of hard links since they will
6176 * be packed into one item. Extended refs will kick in if we
6177 * add more hard links than can fit in the ref item.
6178 */
6179 key[1].objectid = objectid;
962a298f 6180 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6181 key[1].offset = ref_objectid;
6182
6183 sizes[1] = name_len + sizeof(*ref);
6184 }
9c58309d 6185
b0d5d10f
CM
6186 location = &BTRFS_I(inode)->location;
6187 location->objectid = objectid;
6188 location->offset = 0;
962a298f 6189 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6190
6191 ret = btrfs_insert_inode_locked(inode);
6192 if (ret < 0)
6193 goto fail;
6194
b9473439 6195 path->leave_spinning = 1;
ef3b9af5 6196 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6197 if (ret != 0)
b0d5d10f 6198 goto fail_unlock;
5f39d397 6199
ecc11fab 6200 inode_init_owner(inode, dir, mode);
a76a3cd4 6201 inode_set_bytes(inode, 0);
9cc97d64 6202
6203 inode->i_mtime = CURRENT_TIME;
6204 inode->i_atime = inode->i_mtime;
6205 inode->i_ctime = inode->i_mtime;
6206 BTRFS_I(inode)->i_otime = inode->i_mtime;
6207
5f39d397
CM
6208 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6209 struct btrfs_inode_item);
293f7e07
LZ
6210 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6211 sizeof(*inode_item));
e02119d5 6212 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6213
ef3b9af5
FM
6214 if (name) {
6215 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6216 struct btrfs_inode_ref);
6217 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6218 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6219 ptr = (unsigned long)(ref + 1);
6220 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6221 }
9c58309d 6222
5f39d397
CM
6223 btrfs_mark_buffer_dirty(path->nodes[0]);
6224 btrfs_free_path(path);
6225
6cbff00f
CH
6226 btrfs_inherit_iflags(inode, dir);
6227
569254b0 6228 if (S_ISREG(mode)) {
94272164
CM
6229 if (btrfs_test_opt(root, NODATASUM))
6230 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 6231 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
6232 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6233 BTRFS_INODE_NODATASUM;
94272164
CM
6234 }
6235
5d4f98a2 6236 inode_tree_add(inode);
1abe9b8a 6237
6238 trace_btrfs_inode_new(inode);
1973f0fa 6239 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6240
8ea05e3a
AB
6241 btrfs_update_root_times(trans, root);
6242
63541927
FDBM
6243 ret = btrfs_inode_inherit_props(trans, inode, dir);
6244 if (ret)
6245 btrfs_err(root->fs_info,
6246 "error inheriting props for ino %llu (root %llu): %d",
6247 btrfs_ino(inode), root->root_key.objectid, ret);
6248
39279cc3 6249 return inode;
b0d5d10f
CM
6250
6251fail_unlock:
6252 unlock_new_inode(inode);
5f39d397 6253fail:
ef3b9af5 6254 if (dir && name)
aec7477b 6255 BTRFS_I(dir)->index_cnt--;
5f39d397 6256 btrfs_free_path(path);
09771430 6257 iput(inode);
5f39d397 6258 return ERR_PTR(ret);
39279cc3
CM
6259}
6260
6261static inline u8 btrfs_inode_type(struct inode *inode)
6262{
6263 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6264}
6265
d352ac68
CM
6266/*
6267 * utility function to add 'inode' into 'parent_inode' with
6268 * a give name and a given sequence number.
6269 * if 'add_backref' is true, also insert a backref from the
6270 * inode to the parent directory.
6271 */
e02119d5
CM
6272int btrfs_add_link(struct btrfs_trans_handle *trans,
6273 struct inode *parent_inode, struct inode *inode,
6274 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6275{
4df27c4d 6276 int ret = 0;
39279cc3 6277 struct btrfs_key key;
e02119d5 6278 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6279 u64 ino = btrfs_ino(inode);
6280 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6281
33345d01 6282 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6283 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6284 } else {
33345d01 6285 key.objectid = ino;
962a298f 6286 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6287 key.offset = 0;
6288 }
6289
33345d01 6290 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6291 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6292 key.objectid, root->root_key.objectid,
33345d01 6293 parent_ino, index, name, name_len);
4df27c4d 6294 } else if (add_backref) {
33345d01
LZ
6295 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6296 parent_ino, index);
4df27c4d 6297 }
39279cc3 6298
79787eaa
JM
6299 /* Nothing to clean up yet */
6300 if (ret)
6301 return ret;
4df27c4d 6302
79787eaa
JM
6303 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6304 parent_inode, &key,
6305 btrfs_inode_type(inode), index);
9c52057c 6306 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6307 goto fail_dir_item;
6308 else if (ret) {
6309 btrfs_abort_transaction(trans, root, ret);
6310 return ret;
39279cc3 6311 }
79787eaa
JM
6312
6313 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6314 name_len * 2);
0c4d2d95 6315 inode_inc_iversion(parent_inode);
79787eaa
JM
6316 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6317 ret = btrfs_update_inode(trans, root, parent_inode);
6318 if (ret)
6319 btrfs_abort_transaction(trans, root, ret);
39279cc3 6320 return ret;
fe66a05a
CM
6321
6322fail_dir_item:
6323 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6324 u64 local_index;
6325 int err;
6326 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6327 key.objectid, root->root_key.objectid,
6328 parent_ino, &local_index, name, name_len);
6329
6330 } else if (add_backref) {
6331 u64 local_index;
6332 int err;
6333
6334 err = btrfs_del_inode_ref(trans, root, name, name_len,
6335 ino, parent_ino, &local_index);
6336 }
6337 return ret;
39279cc3
CM
6338}
6339
6340static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6341 struct inode *dir, struct dentry *dentry,
6342 struct inode *inode, int backref, u64 index)
39279cc3 6343{
a1b075d2
JB
6344 int err = btrfs_add_link(trans, dir, inode,
6345 dentry->d_name.name, dentry->d_name.len,
6346 backref, index);
39279cc3
CM
6347 if (err > 0)
6348 err = -EEXIST;
6349 return err;
6350}
6351
618e21d5 6352static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6353 umode_t mode, dev_t rdev)
618e21d5
JB
6354{
6355 struct btrfs_trans_handle *trans;
6356 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6357 struct inode *inode = NULL;
618e21d5
JB
6358 int err;
6359 int drop_inode = 0;
6360 u64 objectid;
00e4e6b3 6361 u64 index = 0;
618e21d5
JB
6362
6363 if (!new_valid_dev(rdev))
6364 return -EINVAL;
6365
9ed74f2d
JB
6366 /*
6367 * 2 for inode item and ref
6368 * 2 for dir items
6369 * 1 for xattr if selinux is on
6370 */
a22285a6
YZ
6371 trans = btrfs_start_transaction(root, 5);
6372 if (IS_ERR(trans))
6373 return PTR_ERR(trans);
1832a6d5 6374
581bb050
LZ
6375 err = btrfs_find_free_ino(root, &objectid);
6376 if (err)
6377 goto out_unlock;
6378
aec7477b 6379 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6380 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6381 mode, &index);
7cf96da3
TI
6382 if (IS_ERR(inode)) {
6383 err = PTR_ERR(inode);
618e21d5 6384 goto out_unlock;
7cf96da3 6385 }
618e21d5 6386
ad19db71
CS
6387 /*
6388 * If the active LSM wants to access the inode during
6389 * d_instantiate it needs these. Smack checks to see
6390 * if the filesystem supports xattrs by looking at the
6391 * ops vector.
6392 */
ad19db71 6393 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6394 init_special_inode(inode, inode->i_mode, rdev);
6395
6396 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6397 if (err)
b0d5d10f
CM
6398 goto out_unlock_inode;
6399
6400 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6401 if (err) {
6402 goto out_unlock_inode;
6403 } else {
1b4ab1bb 6404 btrfs_update_inode(trans, root, inode);
b0d5d10f 6405 unlock_new_inode(inode);
08c422c2 6406 d_instantiate(dentry, inode);
618e21d5 6407 }
b0d5d10f 6408
618e21d5 6409out_unlock:
7ad85bb7 6410 btrfs_end_transaction(trans, root);
c581afc8 6411 btrfs_balance_delayed_items(root);
b53d3f5d 6412 btrfs_btree_balance_dirty(root);
618e21d5
JB
6413 if (drop_inode) {
6414 inode_dec_link_count(inode);
6415 iput(inode);
6416 }
618e21d5 6417 return err;
b0d5d10f
CM
6418
6419out_unlock_inode:
6420 drop_inode = 1;
6421 unlock_new_inode(inode);
6422 goto out_unlock;
6423
618e21d5
JB
6424}
6425
39279cc3 6426static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6427 umode_t mode, bool excl)
39279cc3
CM
6428{
6429 struct btrfs_trans_handle *trans;
6430 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6431 struct inode *inode = NULL;
43baa579 6432 int drop_inode_on_err = 0;
a22285a6 6433 int err;
39279cc3 6434 u64 objectid;
00e4e6b3 6435 u64 index = 0;
39279cc3 6436
9ed74f2d
JB
6437 /*
6438 * 2 for inode item and ref
6439 * 2 for dir items
6440 * 1 for xattr if selinux is on
6441 */
a22285a6
YZ
6442 trans = btrfs_start_transaction(root, 5);
6443 if (IS_ERR(trans))
6444 return PTR_ERR(trans);
9ed74f2d 6445
581bb050
LZ
6446 err = btrfs_find_free_ino(root, &objectid);
6447 if (err)
6448 goto out_unlock;
6449
aec7477b 6450 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6451 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6452 mode, &index);
7cf96da3
TI
6453 if (IS_ERR(inode)) {
6454 err = PTR_ERR(inode);
39279cc3 6455 goto out_unlock;
7cf96da3 6456 }
43baa579 6457 drop_inode_on_err = 1;
ad19db71
CS
6458 /*
6459 * If the active LSM wants to access the inode during
6460 * d_instantiate it needs these. Smack checks to see
6461 * if the filesystem supports xattrs by looking at the
6462 * ops vector.
6463 */
6464 inode->i_fop = &btrfs_file_operations;
6465 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6466 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6467
6468 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6469 if (err)
6470 goto out_unlock_inode;
6471
6472 err = btrfs_update_inode(trans, root, inode);
6473 if (err)
6474 goto out_unlock_inode;
ad19db71 6475
a1b075d2 6476 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6477 if (err)
b0d5d10f 6478 goto out_unlock_inode;
43baa579 6479
43baa579 6480 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6481 unlock_new_inode(inode);
43baa579
FB
6482 d_instantiate(dentry, inode);
6483
39279cc3 6484out_unlock:
7ad85bb7 6485 btrfs_end_transaction(trans, root);
43baa579 6486 if (err && drop_inode_on_err) {
39279cc3
CM
6487 inode_dec_link_count(inode);
6488 iput(inode);
6489 }
c581afc8 6490 btrfs_balance_delayed_items(root);
b53d3f5d 6491 btrfs_btree_balance_dirty(root);
39279cc3 6492 return err;
b0d5d10f
CM
6493
6494out_unlock_inode:
6495 unlock_new_inode(inode);
6496 goto out_unlock;
6497
39279cc3
CM
6498}
6499
6500static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6501 struct dentry *dentry)
6502{
6503 struct btrfs_trans_handle *trans;
6504 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6505 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6506 u64 index;
39279cc3
CM
6507 int err;
6508 int drop_inode = 0;
6509
4a8be425
TH
6510 /* do not allow sys_link's with other subvols of the same device */
6511 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6512 return -EXDEV;
4a8be425 6513
f186373f 6514 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6515 return -EMLINK;
4a8be425 6516
3de4586c 6517 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6518 if (err)
6519 goto fail;
6520
a22285a6 6521 /*
7e6b6465 6522 * 2 items for inode and inode ref
a22285a6 6523 * 2 items for dir items
7e6b6465 6524 * 1 item for parent inode
a22285a6 6525 */
7e6b6465 6526 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6527 if (IS_ERR(trans)) {
6528 err = PTR_ERR(trans);
6529 goto fail;
6530 }
5f39d397 6531
67de1176
MX
6532 /* There are several dir indexes for this inode, clear the cache. */
6533 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6534 inc_nlink(inode);
0c4d2d95 6535 inode_inc_iversion(inode);
3153495d 6536 inode->i_ctime = CURRENT_TIME;
7de9c6ee 6537 ihold(inode);
e9976151 6538 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6539
a1b075d2 6540 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6541
a5719521 6542 if (err) {
54aa1f4d 6543 drop_inode = 1;
a5719521 6544 } else {
10d9f309 6545 struct dentry *parent = dentry->d_parent;
a5719521 6546 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6547 if (err)
6548 goto fail;
ef3b9af5
FM
6549 if (inode->i_nlink == 1) {
6550 /*
6551 * If new hard link count is 1, it's a file created
6552 * with open(2) O_TMPFILE flag.
6553 */
6554 err = btrfs_orphan_del(trans, inode);
6555 if (err)
6556 goto fail;
6557 }
08c422c2 6558 d_instantiate(dentry, inode);
6a912213 6559 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6560 }
39279cc3 6561
7ad85bb7 6562 btrfs_end_transaction(trans, root);
c581afc8 6563 btrfs_balance_delayed_items(root);
1832a6d5 6564fail:
39279cc3
CM
6565 if (drop_inode) {
6566 inode_dec_link_count(inode);
6567 iput(inode);
6568 }
b53d3f5d 6569 btrfs_btree_balance_dirty(root);
39279cc3
CM
6570 return err;
6571}
6572
18bb1db3 6573static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6574{
b9d86667 6575 struct inode *inode = NULL;
39279cc3
CM
6576 struct btrfs_trans_handle *trans;
6577 struct btrfs_root *root = BTRFS_I(dir)->root;
6578 int err = 0;
6579 int drop_on_err = 0;
b9d86667 6580 u64 objectid = 0;
00e4e6b3 6581 u64 index = 0;
39279cc3 6582
9ed74f2d
JB
6583 /*
6584 * 2 items for inode and ref
6585 * 2 items for dir items
6586 * 1 for xattr if selinux is on
6587 */
a22285a6
YZ
6588 trans = btrfs_start_transaction(root, 5);
6589 if (IS_ERR(trans))
6590 return PTR_ERR(trans);
39279cc3 6591
581bb050
LZ
6592 err = btrfs_find_free_ino(root, &objectid);
6593 if (err)
6594 goto out_fail;
6595
aec7477b 6596 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6597 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6598 S_IFDIR | mode, &index);
39279cc3
CM
6599 if (IS_ERR(inode)) {
6600 err = PTR_ERR(inode);
6601 goto out_fail;
6602 }
5f39d397 6603
39279cc3 6604 drop_on_err = 1;
b0d5d10f
CM
6605 /* these must be set before we unlock the inode */
6606 inode->i_op = &btrfs_dir_inode_operations;
6607 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6608
2a7dba39 6609 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6610 if (err)
b0d5d10f 6611 goto out_fail_inode;
39279cc3 6612
dbe674a9 6613 btrfs_i_size_write(inode, 0);
39279cc3
CM
6614 err = btrfs_update_inode(trans, root, inode);
6615 if (err)
b0d5d10f 6616 goto out_fail_inode;
5f39d397 6617
a1b075d2
JB
6618 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6619 dentry->d_name.len, 0, index);
39279cc3 6620 if (err)
b0d5d10f 6621 goto out_fail_inode;
5f39d397 6622
39279cc3 6623 d_instantiate(dentry, inode);
b0d5d10f
CM
6624 /*
6625 * mkdir is special. We're unlocking after we call d_instantiate
6626 * to avoid a race with nfsd calling d_instantiate.
6627 */
6628 unlock_new_inode(inode);
39279cc3 6629 drop_on_err = 0;
39279cc3
CM
6630
6631out_fail:
7ad85bb7 6632 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6633 if (drop_on_err) {
6634 inode_dec_link_count(inode);
39279cc3 6635 iput(inode);
c7cfb8a5 6636 }
c581afc8 6637 btrfs_balance_delayed_items(root);
b53d3f5d 6638 btrfs_btree_balance_dirty(root);
39279cc3 6639 return err;
b0d5d10f
CM
6640
6641out_fail_inode:
6642 unlock_new_inode(inode);
6643 goto out_fail;
39279cc3
CM
6644}
6645
e6c4efd8
QW
6646/* Find next extent map of a given extent map, caller needs to ensure locks */
6647static struct extent_map *next_extent_map(struct extent_map *em)
6648{
6649 struct rb_node *next;
6650
6651 next = rb_next(&em->rb_node);
6652 if (!next)
6653 return NULL;
6654 return container_of(next, struct extent_map, rb_node);
6655}
6656
6657static struct extent_map *prev_extent_map(struct extent_map *em)
6658{
6659 struct rb_node *prev;
6660
6661 prev = rb_prev(&em->rb_node);
6662 if (!prev)
6663 return NULL;
6664 return container_of(prev, struct extent_map, rb_node);
6665}
6666
d352ac68 6667/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6668 * the existing extent is the nearest extent to map_start,
d352ac68 6669 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6670 * the best fitted new extent into the tree.
d352ac68 6671 */
3b951516
CM
6672static int merge_extent_mapping(struct extent_map_tree *em_tree,
6673 struct extent_map *existing,
e6dcd2dc 6674 struct extent_map *em,
51f395ad 6675 u64 map_start)
3b951516 6676{
e6c4efd8
QW
6677 struct extent_map *prev;
6678 struct extent_map *next;
6679 u64 start;
6680 u64 end;
3b951516 6681 u64 start_diff;
3b951516 6682
e6dcd2dc 6683 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6684
6685 if (existing->start > map_start) {
6686 next = existing;
6687 prev = prev_extent_map(next);
6688 } else {
6689 prev = existing;
6690 next = next_extent_map(prev);
6691 }
6692
6693 start = prev ? extent_map_end(prev) : em->start;
6694 start = max_t(u64, start, em->start);
6695 end = next ? next->start : extent_map_end(em);
6696 end = min_t(u64, end, extent_map_end(em));
6697 start_diff = start - em->start;
6698 em->start = start;
6699 em->len = end - start;
c8b97818
CM
6700 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6701 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6702 em->block_start += start_diff;
c8b97818
CM
6703 em->block_len -= start_diff;
6704 }
09a2a8f9 6705 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6706}
6707
c8b97818
CM
6708static noinline int uncompress_inline(struct btrfs_path *path,
6709 struct inode *inode, struct page *page,
6710 size_t pg_offset, u64 extent_offset,
6711 struct btrfs_file_extent_item *item)
6712{
6713 int ret;
6714 struct extent_buffer *leaf = path->nodes[0];
6715 char *tmp;
6716 size_t max_size;
6717 unsigned long inline_size;
6718 unsigned long ptr;
261507a0 6719 int compress_type;
c8b97818
CM
6720
6721 WARN_ON(pg_offset != 0);
261507a0 6722 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6723 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6724 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6725 btrfs_item_nr(path->slots[0]));
c8b97818 6726 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6727 if (!tmp)
6728 return -ENOMEM;
c8b97818
CM
6729 ptr = btrfs_file_extent_inline_start(item);
6730
6731 read_extent_buffer(leaf, tmp, ptr, inline_size);
6732
5b050f04 6733 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6734 ret = btrfs_decompress(compress_type, tmp, page,
6735 extent_offset, inline_size, max_size);
c8b97818 6736 kfree(tmp);
166ae5a4 6737 return ret;
c8b97818
CM
6738}
6739
d352ac68
CM
6740/*
6741 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6742 * the ugly parts come from merging extents from the disk with the in-ram
6743 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6744 * where the in-ram extents might be locked pending data=ordered completion.
6745 *
6746 * This also copies inline extents directly into the page.
6747 */
d397712b 6748
a52d9a80 6749struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6750 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6751 int create)
6752{
6753 int ret;
6754 int err = 0;
a52d9a80
CM
6755 u64 extent_start = 0;
6756 u64 extent_end = 0;
33345d01 6757 u64 objectid = btrfs_ino(inode);
a52d9a80 6758 u32 found_type;
f421950f 6759 struct btrfs_path *path = NULL;
a52d9a80
CM
6760 struct btrfs_root *root = BTRFS_I(inode)->root;
6761 struct btrfs_file_extent_item *item;
5f39d397
CM
6762 struct extent_buffer *leaf;
6763 struct btrfs_key found_key;
a52d9a80
CM
6764 struct extent_map *em = NULL;
6765 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6766 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6767 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6768 const bool new_inline = !page || create;
a52d9a80 6769
a52d9a80 6770again:
890871be 6771 read_lock(&em_tree->lock);
d1310b2e 6772 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6773 if (em)
6774 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6775 read_unlock(&em_tree->lock);
d1310b2e 6776
a52d9a80 6777 if (em) {
e1c4b745
CM
6778 if (em->start > start || em->start + em->len <= start)
6779 free_extent_map(em);
6780 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6781 free_extent_map(em);
6782 else
6783 goto out;
a52d9a80 6784 }
172ddd60 6785 em = alloc_extent_map();
a52d9a80 6786 if (!em) {
d1310b2e
CM
6787 err = -ENOMEM;
6788 goto out;
a52d9a80 6789 }
e6dcd2dc 6790 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6791 em->start = EXTENT_MAP_HOLE;
445a6944 6792 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6793 em->len = (u64)-1;
c8b97818 6794 em->block_len = (u64)-1;
f421950f
CM
6795
6796 if (!path) {
6797 path = btrfs_alloc_path();
026fd317
JB
6798 if (!path) {
6799 err = -ENOMEM;
6800 goto out;
6801 }
6802 /*
6803 * Chances are we'll be called again, so go ahead and do
6804 * readahead
6805 */
6806 path->reada = 1;
f421950f
CM
6807 }
6808
179e29e4
CM
6809 ret = btrfs_lookup_file_extent(trans, root, path,
6810 objectid, start, trans != NULL);
a52d9a80
CM
6811 if (ret < 0) {
6812 err = ret;
6813 goto out;
6814 }
6815
6816 if (ret != 0) {
6817 if (path->slots[0] == 0)
6818 goto not_found;
6819 path->slots[0]--;
6820 }
6821
5f39d397
CM
6822 leaf = path->nodes[0];
6823 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6824 struct btrfs_file_extent_item);
a52d9a80 6825 /* are we inside the extent that was found? */
5f39d397 6826 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6827 found_type = found_key.type;
5f39d397 6828 if (found_key.objectid != objectid ||
a52d9a80 6829 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6830 /*
6831 * If we backup past the first extent we want to move forward
6832 * and see if there is an extent in front of us, otherwise we'll
6833 * say there is a hole for our whole search range which can
6834 * cause problems.
6835 */
6836 extent_end = start;
6837 goto next;
a52d9a80
CM
6838 }
6839
5f39d397
CM
6840 found_type = btrfs_file_extent_type(leaf, item);
6841 extent_start = found_key.offset;
d899e052
YZ
6842 if (found_type == BTRFS_FILE_EXTENT_REG ||
6843 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6844 extent_end = extent_start +
db94535d 6845 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6846 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6847 size_t size;
514ac8ad 6848 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6849 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6850 }
25a50341 6851next:
9036c102
YZ
6852 if (start >= extent_end) {
6853 path->slots[0]++;
6854 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6855 ret = btrfs_next_leaf(root, path);
6856 if (ret < 0) {
6857 err = ret;
6858 goto out;
a52d9a80 6859 }
9036c102
YZ
6860 if (ret > 0)
6861 goto not_found;
6862 leaf = path->nodes[0];
a52d9a80 6863 }
9036c102
YZ
6864 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6865 if (found_key.objectid != objectid ||
6866 found_key.type != BTRFS_EXTENT_DATA_KEY)
6867 goto not_found;
6868 if (start + len <= found_key.offset)
6869 goto not_found;
e2eca69d
WS
6870 if (start > found_key.offset)
6871 goto next;
9036c102 6872 em->start = start;
70c8a91c 6873 em->orig_start = start;
9036c102
YZ
6874 em->len = found_key.offset - start;
6875 goto not_found_em;
6876 }
6877
7ffbb598
FM
6878 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6879
d899e052
YZ
6880 if (found_type == BTRFS_FILE_EXTENT_REG ||
6881 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6882 goto insert;
6883 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6884 unsigned long ptr;
a52d9a80 6885 char *map;
3326d1b0
CM
6886 size_t size;
6887 size_t extent_offset;
6888 size_t copy_size;
a52d9a80 6889
7ffbb598 6890 if (new_inline)
689f9346 6891 goto out;
5f39d397 6892
514ac8ad 6893 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6894 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6895 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6896 size - extent_offset);
3326d1b0 6897 em->start = extent_start + extent_offset;
fda2832f 6898 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6899 em->orig_block_len = em->len;
70c8a91c 6900 em->orig_start = em->start;
689f9346 6901 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6902 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6903 if (btrfs_file_extent_compression(leaf, item) !=
6904 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6905 ret = uncompress_inline(path, inode, page,
6906 pg_offset,
6907 extent_offset, item);
166ae5a4
ZB
6908 if (ret) {
6909 err = ret;
6910 goto out;
6911 }
c8b97818
CM
6912 } else {
6913 map = kmap(page);
6914 read_extent_buffer(leaf, map + pg_offset, ptr,
6915 copy_size);
93c82d57
CM
6916 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6917 memset(map + pg_offset + copy_size, 0,
6918 PAGE_CACHE_SIZE - pg_offset -
6919 copy_size);
6920 }
c8b97818
CM
6921 kunmap(page);
6922 }
179e29e4
CM
6923 flush_dcache_page(page);
6924 } else if (create && PageUptodate(page)) {
6bf7e080 6925 BUG();
179e29e4
CM
6926 if (!trans) {
6927 kunmap(page);
6928 free_extent_map(em);
6929 em = NULL;
ff5714cc 6930
b3b4aa74 6931 btrfs_release_path(path);
7a7eaa40 6932 trans = btrfs_join_transaction(root);
ff5714cc 6933
3612b495
TI
6934 if (IS_ERR(trans))
6935 return ERR_CAST(trans);
179e29e4
CM
6936 goto again;
6937 }
c8b97818 6938 map = kmap(page);
70dec807 6939 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6940 copy_size);
c8b97818 6941 kunmap(page);
179e29e4 6942 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6943 }
d1310b2e 6944 set_extent_uptodate(io_tree, em->start,
507903b8 6945 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6946 goto insert;
a52d9a80
CM
6947 }
6948not_found:
6949 em->start = start;
70c8a91c 6950 em->orig_start = start;
d1310b2e 6951 em->len = len;
a52d9a80 6952not_found_em:
5f39d397 6953 em->block_start = EXTENT_MAP_HOLE;
9036c102 6954 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6955insert:
b3b4aa74 6956 btrfs_release_path(path);
d1310b2e 6957 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6958 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6959 em->start, em->len, start, len);
a52d9a80
CM
6960 err = -EIO;
6961 goto out;
6962 }
d1310b2e
CM
6963
6964 err = 0;
890871be 6965 write_lock(&em_tree->lock);
09a2a8f9 6966 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6967 /* it is possible that someone inserted the extent into the tree
6968 * while we had the lock dropped. It is also possible that
6969 * an overlapping map exists in the tree
6970 */
a52d9a80 6971 if (ret == -EEXIST) {
3b951516 6972 struct extent_map *existing;
e6dcd2dc
CM
6973
6974 ret = 0;
6975
e6c4efd8
QW
6976 existing = search_extent_mapping(em_tree, start, len);
6977 /*
6978 * existing will always be non-NULL, since there must be
6979 * extent causing the -EEXIST.
6980 */
6981 if (start >= extent_map_end(existing) ||
32be3a1a 6982 start <= existing->start) {
e6c4efd8
QW
6983 /*
6984 * The existing extent map is the one nearest to
6985 * the [start, start + len) range which overlaps
6986 */
6987 err = merge_extent_mapping(em_tree, existing,
6988 em, start);
e1c4b745 6989 free_extent_map(existing);
e6c4efd8 6990 if (err) {
3b951516
CM
6991 free_extent_map(em);
6992 em = NULL;
6993 }
6994 } else {
6995 free_extent_map(em);
6996 em = existing;
e6dcd2dc 6997 err = 0;
a52d9a80 6998 }
a52d9a80 6999 }
890871be 7000 write_unlock(&em_tree->lock);
a52d9a80 7001out:
1abe9b8a 7002
4cd8587c 7003 trace_btrfs_get_extent(root, em);
1abe9b8a 7004
527afb44 7005 btrfs_free_path(path);
a52d9a80
CM
7006 if (trans) {
7007 ret = btrfs_end_transaction(trans, root);
d397712b 7008 if (!err)
a52d9a80
CM
7009 err = ret;
7010 }
a52d9a80
CM
7011 if (err) {
7012 free_extent_map(em);
a52d9a80
CM
7013 return ERR_PTR(err);
7014 }
79787eaa 7015 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7016 return em;
7017}
7018
ec29ed5b
CM
7019struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7020 size_t pg_offset, u64 start, u64 len,
7021 int create)
7022{
7023 struct extent_map *em;
7024 struct extent_map *hole_em = NULL;
7025 u64 range_start = start;
7026 u64 end;
7027 u64 found;
7028 u64 found_end;
7029 int err = 0;
7030
7031 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7032 if (IS_ERR(em))
7033 return em;
7034 if (em) {
7035 /*
f9e4fb53
LB
7036 * if our em maps to
7037 * - a hole or
7038 * - a pre-alloc extent,
7039 * there might actually be delalloc bytes behind it.
ec29ed5b 7040 */
f9e4fb53
LB
7041 if (em->block_start != EXTENT_MAP_HOLE &&
7042 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7043 return em;
7044 else
7045 hole_em = em;
7046 }
7047
7048 /* check to see if we've wrapped (len == -1 or similar) */
7049 end = start + len;
7050 if (end < start)
7051 end = (u64)-1;
7052 else
7053 end -= 1;
7054
7055 em = NULL;
7056
7057 /* ok, we didn't find anything, lets look for delalloc */
7058 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7059 end, len, EXTENT_DELALLOC, 1);
7060 found_end = range_start + found;
7061 if (found_end < range_start)
7062 found_end = (u64)-1;
7063
7064 /*
7065 * we didn't find anything useful, return
7066 * the original results from get_extent()
7067 */
7068 if (range_start > end || found_end <= start) {
7069 em = hole_em;
7070 hole_em = NULL;
7071 goto out;
7072 }
7073
7074 /* adjust the range_start to make sure it doesn't
7075 * go backwards from the start they passed in
7076 */
67871254 7077 range_start = max(start, range_start);
ec29ed5b
CM
7078 found = found_end - range_start;
7079
7080 if (found > 0) {
7081 u64 hole_start = start;
7082 u64 hole_len = len;
7083
172ddd60 7084 em = alloc_extent_map();
ec29ed5b
CM
7085 if (!em) {
7086 err = -ENOMEM;
7087 goto out;
7088 }
7089 /*
7090 * when btrfs_get_extent can't find anything it
7091 * returns one huge hole
7092 *
7093 * make sure what it found really fits our range, and
7094 * adjust to make sure it is based on the start from
7095 * the caller
7096 */
7097 if (hole_em) {
7098 u64 calc_end = extent_map_end(hole_em);
7099
7100 if (calc_end <= start || (hole_em->start > end)) {
7101 free_extent_map(hole_em);
7102 hole_em = NULL;
7103 } else {
7104 hole_start = max(hole_em->start, start);
7105 hole_len = calc_end - hole_start;
7106 }
7107 }
7108 em->bdev = NULL;
7109 if (hole_em && range_start > hole_start) {
7110 /* our hole starts before our delalloc, so we
7111 * have to return just the parts of the hole
7112 * that go until the delalloc starts
7113 */
7114 em->len = min(hole_len,
7115 range_start - hole_start);
7116 em->start = hole_start;
7117 em->orig_start = hole_start;
7118 /*
7119 * don't adjust block start at all,
7120 * it is fixed at EXTENT_MAP_HOLE
7121 */
7122 em->block_start = hole_em->block_start;
7123 em->block_len = hole_len;
f9e4fb53
LB
7124 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7125 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7126 } else {
7127 em->start = range_start;
7128 em->len = found;
7129 em->orig_start = range_start;
7130 em->block_start = EXTENT_MAP_DELALLOC;
7131 em->block_len = found;
7132 }
7133 } else if (hole_em) {
7134 return hole_em;
7135 }
7136out:
7137
7138 free_extent_map(hole_em);
7139 if (err) {
7140 free_extent_map(em);
7141 return ERR_PTR(err);
7142 }
7143 return em;
7144}
7145
4b46fce2
JB
7146static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7147 u64 start, u64 len)
7148{
7149 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7150 struct extent_map *em;
4b46fce2
JB
7151 struct btrfs_key ins;
7152 u64 alloc_hint;
7153 int ret;
4b46fce2 7154
4b46fce2 7155 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 7156 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 7157 alloc_hint, &ins, 1, 1);
00361589
JB
7158 if (ret)
7159 return ERR_PTR(ret);
4b46fce2 7160
70c8a91c 7161 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 7162 ins.offset, ins.offset, ins.offset, 0);
00361589 7163 if (IS_ERR(em)) {
e570fd27 7164 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
7165 return em;
7166 }
4b46fce2
JB
7167
7168 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7169 ins.offset, ins.offset, 0);
7170 if (ret) {
e570fd27 7171 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
7172 free_extent_map(em);
7173 return ERR_PTR(ret);
4b46fce2 7174 }
00361589 7175
4b46fce2
JB
7176 return em;
7177}
7178
46bfbb5c
CM
7179/*
7180 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7181 * block must be cow'd
7182 */
00361589 7183noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7184 u64 *orig_start, u64 *orig_block_len,
7185 u64 *ram_bytes)
46bfbb5c 7186{
00361589 7187 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7188 struct btrfs_path *path;
7189 int ret;
7190 struct extent_buffer *leaf;
7191 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7192 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7193 struct btrfs_file_extent_item *fi;
7194 struct btrfs_key key;
7195 u64 disk_bytenr;
7196 u64 backref_offset;
7197 u64 extent_end;
7198 u64 num_bytes;
7199 int slot;
7200 int found_type;
7ee9e440 7201 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7202
46bfbb5c
CM
7203 path = btrfs_alloc_path();
7204 if (!path)
7205 return -ENOMEM;
7206
00361589 7207 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7208 offset, 0);
7209 if (ret < 0)
7210 goto out;
7211
7212 slot = path->slots[0];
7213 if (ret == 1) {
7214 if (slot == 0) {
7215 /* can't find the item, must cow */
7216 ret = 0;
7217 goto out;
7218 }
7219 slot--;
7220 }
7221 ret = 0;
7222 leaf = path->nodes[0];
7223 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7224 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7225 key.type != BTRFS_EXTENT_DATA_KEY) {
7226 /* not our file or wrong item type, must cow */
7227 goto out;
7228 }
7229
7230 if (key.offset > offset) {
7231 /* Wrong offset, must cow */
7232 goto out;
7233 }
7234
7235 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7236 found_type = btrfs_file_extent_type(leaf, fi);
7237 if (found_type != BTRFS_FILE_EXTENT_REG &&
7238 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7239 /* not a regular extent, must cow */
7240 goto out;
7241 }
7ee9e440
JB
7242
7243 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7244 goto out;
7245
e77751aa
MX
7246 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7247 if (extent_end <= offset)
7248 goto out;
7249
46bfbb5c 7250 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7251 if (disk_bytenr == 0)
7252 goto out;
7253
7254 if (btrfs_file_extent_compression(leaf, fi) ||
7255 btrfs_file_extent_encryption(leaf, fi) ||
7256 btrfs_file_extent_other_encoding(leaf, fi))
7257 goto out;
7258
46bfbb5c
CM
7259 backref_offset = btrfs_file_extent_offset(leaf, fi);
7260
7ee9e440
JB
7261 if (orig_start) {
7262 *orig_start = key.offset - backref_offset;
7263 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7264 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7265 }
eb384b55 7266
46bfbb5c
CM
7267 if (btrfs_extent_readonly(root, disk_bytenr))
7268 goto out;
7b2b7085
MX
7269
7270 num_bytes = min(offset + *len, extent_end) - offset;
7271 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7272 u64 range_end;
7273
7274 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7275 ret = test_range_bit(io_tree, offset, range_end,
7276 EXTENT_DELALLOC, 0, NULL);
7277 if (ret) {
7278 ret = -EAGAIN;
7279 goto out;
7280 }
7281 }
7282
1bda19eb 7283 btrfs_release_path(path);
46bfbb5c
CM
7284
7285 /*
7286 * look for other files referencing this extent, if we
7287 * find any we must cow
7288 */
00361589
JB
7289 trans = btrfs_join_transaction(root);
7290 if (IS_ERR(trans)) {
7291 ret = 0;
46bfbb5c 7292 goto out;
00361589
JB
7293 }
7294
7295 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7296 key.offset - backref_offset, disk_bytenr);
7297 btrfs_end_transaction(trans, root);
7298 if (ret) {
7299 ret = 0;
7300 goto out;
7301 }
46bfbb5c
CM
7302
7303 /*
7304 * adjust disk_bytenr and num_bytes to cover just the bytes
7305 * in this extent we are about to write. If there
7306 * are any csums in that range we have to cow in order
7307 * to keep the csums correct
7308 */
7309 disk_bytenr += backref_offset;
7310 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7311 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7312 goto out;
7313 /*
7314 * all of the above have passed, it is safe to overwrite this extent
7315 * without cow
7316 */
eb384b55 7317 *len = num_bytes;
46bfbb5c
CM
7318 ret = 1;
7319out:
7320 btrfs_free_path(path);
7321 return ret;
7322}
7323
fc4adbff
AG
7324bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7325{
7326 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7327 int found = false;
7328 void **pagep = NULL;
7329 struct page *page = NULL;
7330 int start_idx;
7331 int end_idx;
7332
7333 start_idx = start >> PAGE_CACHE_SHIFT;
7334
7335 /*
7336 * end is the last byte in the last page. end == start is legal
7337 */
7338 end_idx = end >> PAGE_CACHE_SHIFT;
7339
7340 rcu_read_lock();
7341
7342 /* Most of the code in this while loop is lifted from
7343 * find_get_page. It's been modified to begin searching from a
7344 * page and return just the first page found in that range. If the
7345 * found idx is less than or equal to the end idx then we know that
7346 * a page exists. If no pages are found or if those pages are
7347 * outside of the range then we're fine (yay!) */
7348 while (page == NULL &&
7349 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7350 page = radix_tree_deref_slot(pagep);
7351 if (unlikely(!page))
7352 break;
7353
7354 if (radix_tree_exception(page)) {
809f9016
FM
7355 if (radix_tree_deref_retry(page)) {
7356 page = NULL;
fc4adbff 7357 continue;
809f9016 7358 }
fc4adbff
AG
7359 /*
7360 * Otherwise, shmem/tmpfs must be storing a swap entry
7361 * here as an exceptional entry: so return it without
7362 * attempting to raise page count.
7363 */
6fdef6d4 7364 page = NULL;
fc4adbff
AG
7365 break; /* TODO: Is this relevant for this use case? */
7366 }
7367
91405151
FM
7368 if (!page_cache_get_speculative(page)) {
7369 page = NULL;
fc4adbff 7370 continue;
91405151 7371 }
fc4adbff
AG
7372
7373 /*
7374 * Has the page moved?
7375 * This is part of the lockless pagecache protocol. See
7376 * include/linux/pagemap.h for details.
7377 */
7378 if (unlikely(page != *pagep)) {
7379 page_cache_release(page);
7380 page = NULL;
7381 }
7382 }
7383
7384 if (page) {
7385 if (page->index <= end_idx)
7386 found = true;
7387 page_cache_release(page);
7388 }
7389
7390 rcu_read_unlock();
7391 return found;
7392}
7393
eb838e73
JB
7394static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7395 struct extent_state **cached_state, int writing)
7396{
7397 struct btrfs_ordered_extent *ordered;
7398 int ret = 0;
7399
7400 while (1) {
7401 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7402 0, cached_state);
7403 /*
7404 * We're concerned with the entire range that we're going to be
7405 * doing DIO to, so we need to make sure theres no ordered
7406 * extents in this range.
7407 */
7408 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7409 lockend - lockstart + 1);
7410
7411 /*
7412 * We need to make sure there are no buffered pages in this
7413 * range either, we could have raced between the invalidate in
7414 * generic_file_direct_write and locking the extent. The
7415 * invalidate needs to happen so that reads after a write do not
7416 * get stale data.
7417 */
fc4adbff
AG
7418 if (!ordered &&
7419 (!writing ||
7420 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7421 break;
7422
7423 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7424 cached_state, GFP_NOFS);
7425
7426 if (ordered) {
7427 btrfs_start_ordered_extent(inode, ordered, 1);
7428 btrfs_put_ordered_extent(ordered);
7429 } else {
7430 /* Screw you mmap */
728404da 7431 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
075bdbdb
FM
7432 if (ret)
7433 break;
7434 ret = filemap_fdatawait_range(inode->i_mapping,
7435 lockstart,
7436 lockend);
eb838e73
JB
7437 if (ret)
7438 break;
7439
7440 /*
7441 * If we found a page that couldn't be invalidated just
7442 * fall back to buffered.
7443 */
7444 ret = invalidate_inode_pages2_range(inode->i_mapping,
7445 lockstart >> PAGE_CACHE_SHIFT,
7446 lockend >> PAGE_CACHE_SHIFT);
7447 if (ret)
7448 break;
7449 }
7450
7451 cond_resched();
7452 }
7453
7454 return ret;
7455}
7456
69ffb543
JB
7457static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7458 u64 len, u64 orig_start,
7459 u64 block_start, u64 block_len,
cc95bef6
JB
7460 u64 orig_block_len, u64 ram_bytes,
7461 int type)
69ffb543
JB
7462{
7463 struct extent_map_tree *em_tree;
7464 struct extent_map *em;
7465 struct btrfs_root *root = BTRFS_I(inode)->root;
7466 int ret;
7467
7468 em_tree = &BTRFS_I(inode)->extent_tree;
7469 em = alloc_extent_map();
7470 if (!em)
7471 return ERR_PTR(-ENOMEM);
7472
7473 em->start = start;
7474 em->orig_start = orig_start;
2ab28f32
JB
7475 em->mod_start = start;
7476 em->mod_len = len;
69ffb543
JB
7477 em->len = len;
7478 em->block_len = block_len;
7479 em->block_start = block_start;
7480 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7481 em->orig_block_len = orig_block_len;
cc95bef6 7482 em->ram_bytes = ram_bytes;
70c8a91c 7483 em->generation = -1;
69ffb543
JB
7484 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7485 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7486 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7487
7488 do {
7489 btrfs_drop_extent_cache(inode, em->start,
7490 em->start + em->len - 1, 0);
7491 write_lock(&em_tree->lock);
09a2a8f9 7492 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7493 write_unlock(&em_tree->lock);
7494 } while (ret == -EEXIST);
7495
7496 if (ret) {
7497 free_extent_map(em);
7498 return ERR_PTR(ret);
7499 }
7500
7501 return em;
7502}
7503
50745b0a 7504struct btrfs_dio_data {
7505 u64 outstanding_extents;
7506 u64 reserve;
7507};
69ffb543 7508
9c9464cc
FM
7509static void adjust_dio_outstanding_extents(struct inode *inode,
7510 struct btrfs_dio_data *dio_data,
7511 const u64 len)
7512{
7513 unsigned num_extents;
7514
7515 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7516 BTRFS_MAX_EXTENT_SIZE);
7517 /*
7518 * If we have an outstanding_extents count still set then we're
7519 * within our reservation, otherwise we need to adjust our inode
7520 * counter appropriately.
7521 */
7522 if (dio_data->outstanding_extents) {
7523 dio_data->outstanding_extents -= num_extents;
7524 } else {
7525 spin_lock(&BTRFS_I(inode)->lock);
7526 BTRFS_I(inode)->outstanding_extents += num_extents;
7527 spin_unlock(&BTRFS_I(inode)->lock);
7528 }
7529}
7530
4b46fce2
JB
7531static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7532 struct buffer_head *bh_result, int create)
7533{
7534 struct extent_map *em;
7535 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7536 struct extent_state *cached_state = NULL;
50745b0a 7537 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7538 u64 start = iblock << inode->i_blkbits;
eb838e73 7539 u64 lockstart, lockend;
4b46fce2 7540 u64 len = bh_result->b_size;
eb838e73 7541 int unlock_bits = EXTENT_LOCKED;
0934856d 7542 int ret = 0;
eb838e73 7543
172a5049 7544 if (create)
3266789f 7545 unlock_bits |= EXTENT_DIRTY;
172a5049 7546 else
c329861d 7547 len = min_t(u64, len, root->sectorsize);
eb838e73 7548
c329861d
JB
7549 lockstart = start;
7550 lockend = start + len - 1;
7551
e1cbbfa5
JB
7552 if (current->journal_info) {
7553 /*
7554 * Need to pull our outstanding extents and set journal_info to NULL so
7555 * that anything that needs to check if there's a transction doesn't get
7556 * confused.
7557 */
50745b0a 7558 dio_data = current->journal_info;
e1cbbfa5
JB
7559 current->journal_info = NULL;
7560 }
7561
eb838e73
JB
7562 /*
7563 * If this errors out it's because we couldn't invalidate pagecache for
7564 * this range and we need to fallback to buffered.
7565 */
9c9464cc
FM
7566 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7567 create)) {
7568 ret = -ENOTBLK;
7569 goto err;
7570 }
eb838e73 7571
4b46fce2 7572 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7573 if (IS_ERR(em)) {
7574 ret = PTR_ERR(em);
7575 goto unlock_err;
7576 }
4b46fce2
JB
7577
7578 /*
7579 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7580 * io. INLINE is special, and we could probably kludge it in here, but
7581 * it's still buffered so for safety lets just fall back to the generic
7582 * buffered path.
7583 *
7584 * For COMPRESSED we _have_ to read the entire extent in so we can
7585 * decompress it, so there will be buffering required no matter what we
7586 * do, so go ahead and fallback to buffered.
7587 *
7588 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7589 * to buffered IO. Don't blame me, this is the price we pay for using
7590 * the generic code.
7591 */
7592 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7593 em->block_start == EXTENT_MAP_INLINE) {
7594 free_extent_map(em);
eb838e73
JB
7595 ret = -ENOTBLK;
7596 goto unlock_err;
4b46fce2
JB
7597 }
7598
7599 /* Just a good old fashioned hole, return */
7600 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7601 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7602 free_extent_map(em);
eb838e73 7603 goto unlock_err;
4b46fce2
JB
7604 }
7605
7606 /*
7607 * We don't allocate a new extent in the following cases
7608 *
7609 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7610 * existing extent.
7611 * 2) The extent is marked as PREALLOC. We're good to go here and can
7612 * just use the extent.
7613 *
7614 */
46bfbb5c 7615 if (!create) {
eb838e73
JB
7616 len = min(len, em->len - (start - em->start));
7617 lockstart = start + len;
7618 goto unlock;
46bfbb5c 7619 }
4b46fce2
JB
7620
7621 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7622 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7623 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7624 int type;
eb384b55 7625 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7626
7627 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7628 type = BTRFS_ORDERED_PREALLOC;
7629 else
7630 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7631 len = min(len, em->len - (start - em->start));
4b46fce2 7632 block_start = em->block_start + (start - em->start);
46bfbb5c 7633
00361589 7634 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 7635 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
7636 if (type == BTRFS_ORDERED_PREALLOC) {
7637 free_extent_map(em);
7638 em = create_pinned_em(inode, start, len,
7639 orig_start,
b4939680 7640 block_start, len,
cc95bef6
JB
7641 orig_block_len,
7642 ram_bytes, type);
555e1286
FM
7643 if (IS_ERR(em)) {
7644 ret = PTR_ERR(em);
69ffb543 7645 goto unlock_err;
555e1286 7646 }
69ffb543
JB
7647 }
7648
46bfbb5c
CM
7649 ret = btrfs_add_ordered_extent_dio(inode, start,
7650 block_start, len, len, type);
46bfbb5c
CM
7651 if (ret) {
7652 free_extent_map(em);
eb838e73 7653 goto unlock_err;
46bfbb5c
CM
7654 }
7655 goto unlock;
4b46fce2 7656 }
4b46fce2 7657 }
00361589 7658
46bfbb5c
CM
7659 /*
7660 * this will cow the extent, reset the len in case we changed
7661 * it above
7662 */
7663 len = bh_result->b_size;
70c8a91c
JB
7664 free_extent_map(em);
7665 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7666 if (IS_ERR(em)) {
7667 ret = PTR_ERR(em);
7668 goto unlock_err;
7669 }
46bfbb5c
CM
7670 len = min(len, em->len - (start - em->start));
7671unlock:
4b46fce2
JB
7672 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7673 inode->i_blkbits;
46bfbb5c 7674 bh_result->b_size = len;
4b46fce2
JB
7675 bh_result->b_bdev = em->bdev;
7676 set_buffer_mapped(bh_result);
c3473e83
JB
7677 if (create) {
7678 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7679 set_buffer_new(bh_result);
7680
7681 /*
7682 * Need to update the i_size under the extent lock so buffered
7683 * readers will get the updated i_size when we unlock.
7684 */
7685 if (start + len > i_size_read(inode))
7686 i_size_write(inode, start + len);
0934856d 7687
9c9464cc 7688 adjust_dio_outstanding_extents(inode, dio_data, len);
7cf5b976 7689 btrfs_free_reserved_data_space(inode, start, len);
50745b0a 7690 WARN_ON(dio_data->reserve < len);
7691 dio_data->reserve -= len;
7692 current->journal_info = dio_data;
c3473e83 7693 }
4b46fce2 7694
eb838e73
JB
7695 /*
7696 * In the case of write we need to clear and unlock the entire range,
7697 * in the case of read we need to unlock only the end area that we
7698 * aren't using if there is any left over space.
7699 */
24c03fa5 7700 if (lockstart < lockend) {
0934856d
MX
7701 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7702 lockend, unlock_bits, 1, 0,
7703 &cached_state, GFP_NOFS);
24c03fa5 7704 } else {
eb838e73 7705 free_extent_state(cached_state);
24c03fa5 7706 }
eb838e73 7707
4b46fce2
JB
7708 free_extent_map(em);
7709
7710 return 0;
eb838e73
JB
7711
7712unlock_err:
eb838e73
JB
7713 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7714 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7715err:
50745b0a 7716 if (dio_data)
7717 current->journal_info = dio_data;
9c9464cc
FM
7718 /*
7719 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7720 * write less data then expected, so that we don't underflow our inode's
7721 * outstanding extents counter.
7722 */
7723 if (create && dio_data)
7724 adjust_dio_outstanding_extents(inode, dio_data, len);
7725
eb838e73 7726 return ret;
4b46fce2
JB
7727}
7728
8b110e39
MX
7729static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7730 int rw, int mirror_num)
7731{
7732 struct btrfs_root *root = BTRFS_I(inode)->root;
7733 int ret;
7734
7735 BUG_ON(rw & REQ_WRITE);
7736
7737 bio_get(bio);
7738
7739 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7740 BTRFS_WQ_ENDIO_DIO_REPAIR);
7741 if (ret)
7742 goto err;
7743
7744 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7745err:
7746 bio_put(bio);
7747 return ret;
7748}
7749
7750static int btrfs_check_dio_repairable(struct inode *inode,
7751 struct bio *failed_bio,
7752 struct io_failure_record *failrec,
7753 int failed_mirror)
7754{
7755 int num_copies;
7756
7757 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7758 failrec->logical, failrec->len);
7759 if (num_copies == 1) {
7760 /*
7761 * we only have a single copy of the data, so don't bother with
7762 * all the retry and error correction code that follows. no
7763 * matter what the error is, it is very likely to persist.
7764 */
7765 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7766 num_copies, failrec->this_mirror, failed_mirror);
7767 return 0;
7768 }
7769
7770 failrec->failed_mirror = failed_mirror;
7771 failrec->this_mirror++;
7772 if (failrec->this_mirror == failed_mirror)
7773 failrec->this_mirror++;
7774
7775 if (failrec->this_mirror > num_copies) {
7776 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7777 num_copies, failrec->this_mirror, failed_mirror);
7778 return 0;
7779 }
7780
7781 return 1;
7782}
7783
7784static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7785 struct page *page, u64 start, u64 end,
7786 int failed_mirror, bio_end_io_t *repair_endio,
7787 void *repair_arg)
7788{
7789 struct io_failure_record *failrec;
7790 struct bio *bio;
7791 int isector;
7792 int read_mode;
7793 int ret;
7794
7795 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7796
7797 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7798 if (ret)
7799 return ret;
7800
7801 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7802 failed_mirror);
7803 if (!ret) {
7804 free_io_failure(inode, failrec);
7805 return -EIO;
7806 }
7807
7808 if (failed_bio->bi_vcnt > 1)
7809 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7810 else
7811 read_mode = READ_SYNC;
7812
7813 isector = start - btrfs_io_bio(failed_bio)->logical;
7814 isector >>= inode->i_sb->s_blocksize_bits;
7815 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7816 0, isector, repair_endio, repair_arg);
7817 if (!bio) {
7818 free_io_failure(inode, failrec);
7819 return -EIO;
7820 }
7821
7822 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7823 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7824 read_mode, failrec->this_mirror, failrec->in_validation);
7825
7826 ret = submit_dio_repair_bio(inode, bio, read_mode,
7827 failrec->this_mirror);
7828 if (ret) {
7829 free_io_failure(inode, failrec);
7830 bio_put(bio);
7831 }
7832
7833 return ret;
7834}
7835
7836struct btrfs_retry_complete {
7837 struct completion done;
7838 struct inode *inode;
7839 u64 start;
7840 int uptodate;
7841};
7842
4246a0b6 7843static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7844{
7845 struct btrfs_retry_complete *done = bio->bi_private;
7846 struct bio_vec *bvec;
7847 int i;
7848
4246a0b6 7849 if (bio->bi_error)
8b110e39
MX
7850 goto end;
7851
7852 done->uptodate = 1;
7853 bio_for_each_segment_all(bvec, bio, i)
7854 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7855end:
7856 complete(&done->done);
7857 bio_put(bio);
7858}
7859
7860static int __btrfs_correct_data_nocsum(struct inode *inode,
7861 struct btrfs_io_bio *io_bio)
4b46fce2 7862{
2c30c71b 7863 struct bio_vec *bvec;
8b110e39 7864 struct btrfs_retry_complete done;
4b46fce2 7865 u64 start;
2c30c71b 7866 int i;
c1dc0896 7867 int ret;
4b46fce2 7868
8b110e39
MX
7869 start = io_bio->logical;
7870 done.inode = inode;
7871
7872 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7873try_again:
7874 done.uptodate = 0;
7875 done.start = start;
7876 init_completion(&done.done);
7877
7878 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7879 start + bvec->bv_len - 1,
7880 io_bio->mirror_num,
7881 btrfs_retry_endio_nocsum, &done);
7882 if (ret)
7883 return ret;
7884
7885 wait_for_completion(&done.done);
7886
7887 if (!done.uptodate) {
7888 /* We might have another mirror, so try again */
7889 goto try_again;
7890 }
7891
7892 start += bvec->bv_len;
7893 }
7894
7895 return 0;
7896}
7897
4246a0b6 7898static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7899{
7900 struct btrfs_retry_complete *done = bio->bi_private;
7901 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7902 struct bio_vec *bvec;
7903 int uptodate;
7904 int ret;
7905 int i;
7906
4246a0b6 7907 if (bio->bi_error)
8b110e39
MX
7908 goto end;
7909
7910 uptodate = 1;
7911 bio_for_each_segment_all(bvec, bio, i) {
7912 ret = __readpage_endio_check(done->inode, io_bio, i,
7913 bvec->bv_page, 0,
7914 done->start, bvec->bv_len);
7915 if (!ret)
7916 clean_io_failure(done->inode, done->start,
7917 bvec->bv_page, 0);
7918 else
7919 uptodate = 0;
7920 }
7921
7922 done->uptodate = uptodate;
7923end:
7924 complete(&done->done);
7925 bio_put(bio);
7926}
7927
7928static int __btrfs_subio_endio_read(struct inode *inode,
7929 struct btrfs_io_bio *io_bio, int err)
7930{
7931 struct bio_vec *bvec;
7932 struct btrfs_retry_complete done;
7933 u64 start;
7934 u64 offset = 0;
7935 int i;
7936 int ret;
dc380aea 7937
8b110e39 7938 err = 0;
c1dc0896 7939 start = io_bio->logical;
8b110e39
MX
7940 done.inode = inode;
7941
c1dc0896 7942 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
dc380aea
MX
7943 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7944 0, start, bvec->bv_len);
8b110e39
MX
7945 if (likely(!ret))
7946 goto next;
7947try_again:
7948 done.uptodate = 0;
7949 done.start = start;
7950 init_completion(&done.done);
7951
7952 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7953 start + bvec->bv_len - 1,
7954 io_bio->mirror_num,
7955 btrfs_retry_endio, &done);
7956 if (ret) {
7957 err = ret;
7958 goto next;
7959 }
7960
7961 wait_for_completion(&done.done);
7962
7963 if (!done.uptodate) {
7964 /* We might have another mirror, so try again */
7965 goto try_again;
7966 }
7967next:
7968 offset += bvec->bv_len;
4b46fce2 7969 start += bvec->bv_len;
2c30c71b 7970 }
c1dc0896
MX
7971
7972 return err;
7973}
7974
8b110e39
MX
7975static int btrfs_subio_endio_read(struct inode *inode,
7976 struct btrfs_io_bio *io_bio, int err)
7977{
7978 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7979
7980 if (skip_csum) {
7981 if (unlikely(err))
7982 return __btrfs_correct_data_nocsum(inode, io_bio);
7983 else
7984 return 0;
7985 } else {
7986 return __btrfs_subio_endio_read(inode, io_bio, err);
7987 }
7988}
7989
4246a0b6 7990static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
7991{
7992 struct btrfs_dio_private *dip = bio->bi_private;
7993 struct inode *inode = dip->inode;
7994 struct bio *dio_bio;
7995 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 7996 int err = bio->bi_error;
c1dc0896 7997
8b110e39
MX
7998 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7999 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8000
4b46fce2 8001 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8002 dip->logical_offset + dip->bytes - 1);
9be3395b 8003 dio_bio = dip->dio_bio;
4b46fce2 8004
4b46fce2 8005 kfree(dip);
c0da7aa1 8006
4246a0b6 8007 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8008
8009 if (io_bio->end_io)
8010 io_bio->end_io(io_bio, err);
9be3395b 8011 bio_put(bio);
4b46fce2
JB
8012}
8013
4246a0b6 8014static void btrfs_endio_direct_write(struct bio *bio)
4b46fce2
JB
8015{
8016 struct btrfs_dio_private *dip = bio->bi_private;
8017 struct inode *inode = dip->inode;
8018 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 8019 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
8020 u64 ordered_offset = dip->logical_offset;
8021 u64 ordered_bytes = dip->bytes;
9be3395b 8022 struct bio *dio_bio;
4b46fce2
JB
8023 int ret;
8024
163cf09c
CM
8025again:
8026 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8027 &ordered_offset,
4246a0b6
CH
8028 ordered_bytes,
8029 !bio->bi_error);
4b46fce2 8030 if (!ret)
163cf09c 8031 goto out_test;
4b46fce2 8032
9e0af237
LB
8033 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8034 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8035 btrfs_queue_work(root->fs_info->endio_write_workers,
8036 &ordered->work);
163cf09c
CM
8037out_test:
8038 /*
8039 * our bio might span multiple ordered extents. If we haven't
8040 * completed the accounting for the whole dio, go back and try again
8041 */
8042 if (ordered_offset < dip->logical_offset + dip->bytes) {
8043 ordered_bytes = dip->logical_offset + dip->bytes -
8044 ordered_offset;
5fd02043 8045 ordered = NULL;
163cf09c
CM
8046 goto again;
8047 }
9be3395b 8048 dio_bio = dip->dio_bio;
4b46fce2 8049
4b46fce2 8050 kfree(dip);
c0da7aa1 8051
4246a0b6 8052 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8053 bio_put(bio);
4b46fce2
JB
8054}
8055
eaf25d93
CM
8056static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8057 struct bio *bio, int mirror_num,
8058 unsigned long bio_flags, u64 offset)
8059{
8060 int ret;
8061 struct btrfs_root *root = BTRFS_I(inode)->root;
8062 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8063 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8064 return 0;
8065}
8066
4246a0b6 8067static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8068{
8069 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8070 int err = bio->bi_error;
e65e1535 8071
8b110e39
MX
8072 if (err)
8073 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8074 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8075 btrfs_ino(dip->inode), bio->bi_rw,
8076 (unsigned long long)bio->bi_iter.bi_sector,
8077 bio->bi_iter.bi_size, err);
8078
8079 if (dip->subio_endio)
8080 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8081
8082 if (err) {
e65e1535
MX
8083 dip->errors = 1;
8084
8085 /*
8086 * before atomic variable goto zero, we must make sure
8087 * dip->errors is perceived to be set.
8088 */
4e857c58 8089 smp_mb__before_atomic();
e65e1535
MX
8090 }
8091
8092 /* if there are more bios still pending for this dio, just exit */
8093 if (!atomic_dec_and_test(&dip->pending_bios))
8094 goto out;
8095
9be3395b 8096 if (dip->errors) {
e65e1535 8097 bio_io_error(dip->orig_bio);
9be3395b 8098 } else {
4246a0b6
CH
8099 dip->dio_bio->bi_error = 0;
8100 bio_endio(dip->orig_bio);
e65e1535
MX
8101 }
8102out:
8103 bio_put(bio);
8104}
8105
8106static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8107 u64 first_sector, gfp_t gfp_flags)
8108{
da2f0f74 8109 struct bio *bio;
22365979 8110 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8111 if (bio)
8112 bio_associate_current(bio);
8113 return bio;
e65e1535
MX
8114}
8115
c1dc0896
MX
8116static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8117 struct inode *inode,
8118 struct btrfs_dio_private *dip,
8119 struct bio *bio,
8120 u64 file_offset)
8121{
8122 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8123 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8124 int ret;
8125
8126 /*
8127 * We load all the csum data we need when we submit
8128 * the first bio to reduce the csum tree search and
8129 * contention.
8130 */
8131 if (dip->logical_offset == file_offset) {
8132 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8133 file_offset);
8134 if (ret)
8135 return ret;
8136 }
8137
8138 if (bio == dip->orig_bio)
8139 return 0;
8140
8141 file_offset -= dip->logical_offset;
8142 file_offset >>= inode->i_sb->s_blocksize_bits;
8143 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8144
8145 return 0;
8146}
8147
e65e1535
MX
8148static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8149 int rw, u64 file_offset, int skip_sum,
c329861d 8150 int async_submit)
e65e1535 8151{
facc8a22 8152 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
8153 int write = rw & REQ_WRITE;
8154 struct btrfs_root *root = BTRFS_I(inode)->root;
8155 int ret;
8156
b812ce28
JB
8157 if (async_submit)
8158 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8159
e65e1535 8160 bio_get(bio);
5fd02043
JB
8161
8162 if (!write) {
bfebd8b5
DS
8163 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8164 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8165 if (ret)
8166 goto err;
8167 }
e65e1535 8168
1ae39938
JB
8169 if (skip_sum)
8170 goto map;
8171
8172 if (write && async_submit) {
e65e1535
MX
8173 ret = btrfs_wq_submit_bio(root->fs_info,
8174 inode, rw, bio, 0, 0,
8175 file_offset,
8176 __btrfs_submit_bio_start_direct_io,
8177 __btrfs_submit_bio_done);
8178 goto err;
1ae39938
JB
8179 } else if (write) {
8180 /*
8181 * If we aren't doing async submit, calculate the csum of the
8182 * bio now.
8183 */
8184 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8185 if (ret)
8186 goto err;
23ea8e5a 8187 } else {
c1dc0896
MX
8188 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8189 file_offset);
c2db1073
TI
8190 if (ret)
8191 goto err;
8192 }
1ae39938
JB
8193map:
8194 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
8195err:
8196 bio_put(bio);
8197 return ret;
8198}
8199
8200static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8201 int skip_sum)
8202{
8203 struct inode *inode = dip->inode;
8204 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8205 struct bio *bio;
8206 struct bio *orig_bio = dip->orig_bio;
8207 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8208 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8209 u64 file_offset = dip->logical_offset;
8210 u64 submit_len = 0;
8211 u64 map_length;
8212 int nr_pages = 0;
23ea8e5a 8213 int ret;
1ae39938 8214 int async_submit = 0;
e65e1535 8215
4f024f37 8216 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8217 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 8218 &map_length, NULL, 0);
7a5c3c9b 8219 if (ret)
e65e1535 8220 return -EIO;
facc8a22 8221
4f024f37 8222 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8223 bio = orig_bio;
c1dc0896 8224 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8225 goto submit;
8226 }
8227
53b381b3 8228 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8229 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8230 async_submit = 0;
8231 else
8232 async_submit = 1;
8233
02f57c7a
JB
8234 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8235 if (!bio)
8236 return -ENOMEM;
7a5c3c9b 8237
02f57c7a
JB
8238 bio->bi_private = dip;
8239 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8240 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8241 atomic_inc(&dip->pending_bios);
8242
e65e1535 8243 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
ee39b432 8244 if (map_length < submit_len + bvec->bv_len ||
e65e1535 8245 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
ee39b432 8246 bvec->bv_offset) < bvec->bv_len) {
e65e1535
MX
8247 /*
8248 * inc the count before we submit the bio so
8249 * we know the end IO handler won't happen before
8250 * we inc the count. Otherwise, the dip might get freed
8251 * before we're done setting it up
8252 */
8253 atomic_inc(&dip->pending_bios);
8254 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8255 file_offset, skip_sum,
c329861d 8256 async_submit);
e65e1535
MX
8257 if (ret) {
8258 bio_put(bio);
8259 atomic_dec(&dip->pending_bios);
8260 goto out_err;
8261 }
8262
e65e1535
MX
8263 start_sector += submit_len >> 9;
8264 file_offset += submit_len;
8265
8266 submit_len = 0;
8267 nr_pages = 0;
8268
8269 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8270 start_sector, GFP_NOFS);
8271 if (!bio)
8272 goto out_err;
8273 bio->bi_private = dip;
8274 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8275 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8276
4f024f37 8277 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8278 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 8279 start_sector << 9,
e65e1535
MX
8280 &map_length, NULL, 0);
8281 if (ret) {
8282 bio_put(bio);
8283 goto out_err;
8284 }
8285 } else {
8286 submit_len += bvec->bv_len;
67871254 8287 nr_pages++;
e65e1535
MX
8288 bvec++;
8289 }
8290 }
8291
02f57c7a 8292submit:
e65e1535 8293 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 8294 async_submit);
e65e1535
MX
8295 if (!ret)
8296 return 0;
8297
8298 bio_put(bio);
8299out_err:
8300 dip->errors = 1;
8301 /*
8302 * before atomic variable goto zero, we must
8303 * make sure dip->errors is perceived to be set.
8304 */
4e857c58 8305 smp_mb__before_atomic();
e65e1535
MX
8306 if (atomic_dec_and_test(&dip->pending_bios))
8307 bio_io_error(dip->orig_bio);
8308
8309 /* bio_end_io() will handle error, so we needn't return it */
8310 return 0;
8311}
8312
9be3395b
CM
8313static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8314 struct inode *inode, loff_t file_offset)
4b46fce2 8315{
61de718f
FM
8316 struct btrfs_dio_private *dip = NULL;
8317 struct bio *io_bio = NULL;
23ea8e5a 8318 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8319 int skip_sum;
7b6d91da 8320 int write = rw & REQ_WRITE;
4b46fce2
JB
8321 int ret = 0;
8322
8323 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8324
9be3395b 8325 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8326 if (!io_bio) {
8327 ret = -ENOMEM;
8328 goto free_ordered;
8329 }
8330
c1dc0896 8331 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8332 if (!dip) {
8333 ret = -ENOMEM;
61de718f 8334 goto free_ordered;
4b46fce2 8335 }
4b46fce2 8336
9be3395b 8337 dip->private = dio_bio->bi_private;
4b46fce2
JB
8338 dip->inode = inode;
8339 dip->logical_offset = file_offset;
4f024f37
KO
8340 dip->bytes = dio_bio->bi_iter.bi_size;
8341 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8342 io_bio->bi_private = dip;
9be3395b
CM
8343 dip->orig_bio = io_bio;
8344 dip->dio_bio = dio_bio;
e65e1535 8345 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8346 btrfs_bio = btrfs_io_bio(io_bio);
8347 btrfs_bio->logical = file_offset;
4b46fce2 8348
c1dc0896 8349 if (write) {
9be3395b 8350 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8351 } else {
9be3395b 8352 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8353 dip->subio_endio = btrfs_subio_endio_read;
8354 }
4b46fce2 8355
e65e1535
MX
8356 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8357 if (!ret)
eaf25d93 8358 return;
9be3395b 8359
23ea8e5a
MX
8360 if (btrfs_bio->end_io)
8361 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8362
4b46fce2
JB
8363free_ordered:
8364 /*
61de718f
FM
8365 * If we arrived here it means either we failed to submit the dip
8366 * or we either failed to clone the dio_bio or failed to allocate the
8367 * dip. If we cloned the dio_bio and allocated the dip, we can just
8368 * call bio_endio against our io_bio so that we get proper resource
8369 * cleanup if we fail to submit the dip, otherwise, we must do the
8370 * same as btrfs_endio_direct_[write|read] because we can't call these
8371 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8372 */
61de718f 8373 if (io_bio && dip) {
4246a0b6
CH
8374 io_bio->bi_error = -EIO;
8375 bio_endio(io_bio);
61de718f
FM
8376 /*
8377 * The end io callbacks free our dip, do the final put on io_bio
8378 * and all the cleanup and final put for dio_bio (through
8379 * dio_end_io()).
8380 */
8381 dip = NULL;
8382 io_bio = NULL;
8383 } else {
8384 if (write) {
8385 struct btrfs_ordered_extent *ordered;
8386
8387 ordered = btrfs_lookup_ordered_extent(inode,
8388 file_offset);
8389 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
8390 /*
8391 * Decrements our ref on the ordered extent and removes
8392 * the ordered extent from the inode's ordered tree,
8393 * doing all the proper resource cleanup such as for the
8394 * reserved space and waking up any waiters for this
8395 * ordered extent (through btrfs_remove_ordered_extent).
8396 */
8397 btrfs_finish_ordered_io(ordered);
8398 } else {
8399 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8400 file_offset + dio_bio->bi_iter.bi_size - 1);
8401 }
4246a0b6 8402 dio_bio->bi_error = -EIO;
61de718f
FM
8403 /*
8404 * Releases and cleans up our dio_bio, no need to bio_put()
8405 * nor bio_endio()/bio_io_error() against dio_bio.
8406 */
8407 dio_end_io(dio_bio, ret);
4b46fce2 8408 }
61de718f
FM
8409 if (io_bio)
8410 bio_put(io_bio);
8411 kfree(dip);
4b46fce2
JB
8412}
8413
6f673763 8414static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8415 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8416{
8417 int seg;
a1b75f7d 8418 int i;
5a5f79b5
CM
8419 unsigned blocksize_mask = root->sectorsize - 1;
8420 ssize_t retval = -EINVAL;
5a5f79b5
CM
8421
8422 if (offset & blocksize_mask)
8423 goto out;
8424
28060d5d
AV
8425 if (iov_iter_alignment(iter) & blocksize_mask)
8426 goto out;
a1b75f7d 8427
28060d5d 8428 /* If this is a write we don't need to check anymore */
6f673763 8429 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8430 return 0;
8431 /*
8432 * Check to make sure we don't have duplicate iov_base's in this
8433 * iovec, if so return EINVAL, otherwise we'll get csum errors
8434 * when reading back.
8435 */
8436 for (seg = 0; seg < iter->nr_segs; seg++) {
8437 for (i = seg + 1; i < iter->nr_segs; i++) {
8438 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8439 goto out;
8440 }
5a5f79b5
CM
8441 }
8442 retval = 0;
8443out:
8444 return retval;
8445}
eb838e73 8446
22c6186e
OS
8447static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8448 loff_t offset)
16432985 8449{
4b46fce2
JB
8450 struct file *file = iocb->ki_filp;
8451 struct inode *inode = file->f_mapping->host;
50745b0a 8452 struct btrfs_root *root = BTRFS_I(inode)->root;
8453 struct btrfs_dio_data dio_data = { 0 };
0934856d 8454 size_t count = 0;
2e60a51e 8455 int flags = 0;
38851cc1
MX
8456 bool wakeup = true;
8457 bool relock = false;
0934856d 8458 ssize_t ret;
4b46fce2 8459
6f673763 8460 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8461 return 0;
3f7c579c 8462
fe0f07d0 8463 inode_dio_begin(inode);
4e857c58 8464 smp_mb__after_atomic();
38851cc1 8465
0e267c44 8466 /*
41bd9ca4
MX
8467 * The generic stuff only does filemap_write_and_wait_range, which
8468 * isn't enough if we've written compressed pages to this area, so
8469 * we need to flush the dirty pages again to make absolutely sure
8470 * that any outstanding dirty pages are on disk.
0e267c44 8471 */
a6cbcd4a 8472 count = iov_iter_count(iter);
41bd9ca4
MX
8473 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8474 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8475 filemap_fdatawrite_range(inode->i_mapping, offset,
8476 offset + count - 1);
0e267c44 8477
6f673763 8478 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8479 /*
8480 * If the write DIO is beyond the EOF, we need update
8481 * the isize, but it is protected by i_mutex. So we can
8482 * not unlock the i_mutex at this case.
8483 */
8484 if (offset + count <= inode->i_size) {
8485 mutex_unlock(&inode->i_mutex);
8486 relock = true;
8487 }
7cf5b976 8488 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8489 if (ret)
38851cc1 8490 goto out;
50745b0a 8491 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8492 BTRFS_MAX_EXTENT_SIZE - 1,
8493 BTRFS_MAX_EXTENT_SIZE);
8494
8495 /*
8496 * We need to know how many extents we reserved so that we can
8497 * do the accounting properly if we go over the number we
8498 * originally calculated. Abuse current->journal_info for this.
8499 */
50745b0a 8500 dio_data.reserve = round_up(count, root->sectorsize);
8501 current->journal_info = &dio_data;
ee39b432
DS
8502 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8503 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8504 inode_dio_end(inode);
38851cc1
MX
8505 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8506 wakeup = false;
0934856d
MX
8507 }
8508
17f8c842
OS
8509 ret = __blockdev_direct_IO(iocb, inode,
8510 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8511 iter, offset, btrfs_get_blocks_direct, NULL,
8512 btrfs_submit_direct, flags);
6f673763 8513 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8514 current->journal_info = NULL;
ddba1bfc 8515 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8516 if (dio_data.reserve)
7cf5b976
QW
8517 btrfs_delalloc_release_space(inode, offset,
8518 dio_data.reserve);
ddba1bfc 8519 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8520 btrfs_delalloc_release_space(inode, offset,
8521 count - (size_t)ret);
0934856d 8522 }
38851cc1 8523out:
2e60a51e 8524 if (wakeup)
fe0f07d0 8525 inode_dio_end(inode);
38851cc1
MX
8526 if (relock)
8527 mutex_lock(&inode->i_mutex);
0934856d
MX
8528
8529 return ret;
16432985
CM
8530}
8531
05dadc09
TI
8532#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8533
1506fcc8
YS
8534static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8535 __u64 start, __u64 len)
8536{
05dadc09
TI
8537 int ret;
8538
8539 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8540 if (ret)
8541 return ret;
8542
ec29ed5b 8543 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8544}
8545
a52d9a80 8546int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8547{
d1310b2e
CM
8548 struct extent_io_tree *tree;
8549 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8550 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8551}
1832a6d5 8552
a52d9a80 8553static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8554{
d1310b2e 8555 struct extent_io_tree *tree;
b888db2b
CM
8556
8557
8558 if (current->flags & PF_MEMALLOC) {
8559 redirty_page_for_writepage(wbc, page);
8560 unlock_page(page);
8561 return 0;
8562 }
d1310b2e 8563 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 8564 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
8565}
8566
48a3b636
ES
8567static int btrfs_writepages(struct address_space *mapping,
8568 struct writeback_control *wbc)
b293f02e 8569{
d1310b2e 8570 struct extent_io_tree *tree;
771ed689 8571
d1310b2e 8572 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8573 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8574}
8575
3ab2fb5a
CM
8576static int
8577btrfs_readpages(struct file *file, struct address_space *mapping,
8578 struct list_head *pages, unsigned nr_pages)
8579{
d1310b2e
CM
8580 struct extent_io_tree *tree;
8581 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8582 return extent_readpages(tree, mapping, pages, nr_pages,
8583 btrfs_get_extent);
8584}
e6dcd2dc 8585static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8586{
d1310b2e
CM
8587 struct extent_io_tree *tree;
8588 struct extent_map_tree *map;
a52d9a80 8589 int ret;
8c2383c3 8590
d1310b2e
CM
8591 tree = &BTRFS_I(page->mapping->host)->io_tree;
8592 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8593 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8594 if (ret == 1) {
8595 ClearPagePrivate(page);
8596 set_page_private(page, 0);
8597 page_cache_release(page);
39279cc3 8598 }
a52d9a80 8599 return ret;
39279cc3
CM
8600}
8601
e6dcd2dc
CM
8602static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8603{
98509cfc
CM
8604 if (PageWriteback(page) || PageDirty(page))
8605 return 0;
b335b003 8606 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8607}
8608
d47992f8
LC
8609static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8610 unsigned int length)
39279cc3 8611{
5fd02043 8612 struct inode *inode = page->mapping->host;
d1310b2e 8613 struct extent_io_tree *tree;
e6dcd2dc 8614 struct btrfs_ordered_extent *ordered;
2ac55d41 8615 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8616 u64 page_start = page_offset(page);
8617 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 8618 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8619
8b62b72b
CM
8620 /*
8621 * we have the page locked, so new writeback can't start,
8622 * and the dirty bit won't be cleared while we are here.
8623 *
8624 * Wait for IO on this page so that we can safely clear
8625 * the PagePrivate2 bit and do ordered accounting
8626 */
e6dcd2dc 8627 wait_on_page_writeback(page);
8b62b72b 8628
5fd02043 8629 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8630 if (offset) {
8631 btrfs_releasepage(page, GFP_NOFS);
8632 return;
8633 }
131e404a
FDBM
8634
8635 if (!inode_evicting)
8636 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8637 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 8638 if (ordered) {
eb84ae03
CM
8639 /*
8640 * IO on this page will never be started, so we need
8641 * to account for any ordered extents now
8642 */
131e404a
FDBM
8643 if (!inode_evicting)
8644 clear_extent_bit(tree, page_start, page_end,
8645 EXTENT_DIRTY | EXTENT_DELALLOC |
8646 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8647 EXTENT_DEFRAG, 1, 0, &cached_state,
8648 GFP_NOFS);
8b62b72b
CM
8649 /*
8650 * whoever cleared the private bit is responsible
8651 * for the finish_ordered_io
8652 */
77cef2ec
JB
8653 if (TestClearPagePrivate2(page)) {
8654 struct btrfs_ordered_inode_tree *tree;
8655 u64 new_len;
8656
8657 tree = &BTRFS_I(inode)->ordered_tree;
8658
8659 spin_lock_irq(&tree->lock);
8660 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8661 new_len = page_start - ordered->file_offset;
8662 if (new_len < ordered->truncated_len)
8663 ordered->truncated_len = new_len;
8664 spin_unlock_irq(&tree->lock);
8665
8666 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8667 page_start,
8668 PAGE_CACHE_SIZE, 1))
8669 btrfs_finish_ordered_io(ordered);
8b62b72b 8670 }
e6dcd2dc 8671 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8672 if (!inode_evicting) {
8673 cached_state = NULL;
8674 lock_extent_bits(tree, page_start, page_end, 0,
8675 &cached_state);
8676 }
8677 }
8678
b9d0b389
QW
8679 /*
8680 * Qgroup reserved space handler
8681 * Page here will be either
8682 * 1) Already written to disk
8683 * In this case, its reserved space is released from data rsv map
8684 * and will be freed by delayed_ref handler finally.
8685 * So even we call qgroup_free_data(), it won't decrease reserved
8686 * space.
8687 * 2) Not written to disk
8688 * This means the reserved space should be freed here.
8689 */
8690 btrfs_qgroup_free_data(inode, page_start, PAGE_CACHE_SIZE);
131e404a
FDBM
8691 if (!inode_evicting) {
8692 clear_extent_bit(tree, page_start, page_end,
8693 EXTENT_LOCKED | EXTENT_DIRTY |
8694 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8695 EXTENT_DEFRAG, 1, 1,
8696 &cached_state, GFP_NOFS);
8697
8698 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8699 }
e6dcd2dc 8700
4a096752 8701 ClearPageChecked(page);
9ad6b7bc 8702 if (PagePrivate(page)) {
9ad6b7bc
CM
8703 ClearPagePrivate(page);
8704 set_page_private(page, 0);
8705 page_cache_release(page);
8706 }
39279cc3
CM
8707}
8708
9ebefb18
CM
8709/*
8710 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8711 * called from a page fault handler when a page is first dirtied. Hence we must
8712 * be careful to check for EOF conditions here. We set the page up correctly
8713 * for a written page which means we get ENOSPC checking when writing into
8714 * holes and correct delalloc and unwritten extent mapping on filesystems that
8715 * support these features.
8716 *
8717 * We are not allowed to take the i_mutex here so we have to play games to
8718 * protect against truncate races as the page could now be beyond EOF. Because
8719 * vmtruncate() writes the inode size before removing pages, once we have the
8720 * page lock we can determine safely if the page is beyond EOF. If it is not
8721 * beyond EOF, then the page is guaranteed safe against truncation until we
8722 * unlock the page.
8723 */
c2ec175c 8724int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8725{
c2ec175c 8726 struct page *page = vmf->page;
496ad9aa 8727 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8728 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8729 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8730 struct btrfs_ordered_extent *ordered;
2ac55d41 8731 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8732 char *kaddr;
8733 unsigned long zero_start;
9ebefb18 8734 loff_t size;
1832a6d5 8735 int ret;
9998eb70 8736 int reserved = 0;
a52d9a80 8737 u64 page_start;
e6dcd2dc 8738 u64 page_end;
9ebefb18 8739
b2b5ef5c 8740 sb_start_pagefault(inode->i_sb);
df480633
QW
8741 page_start = page_offset(page);
8742 page_end = page_start + PAGE_CACHE_SIZE - 1;
8743
7cf5b976
QW
8744 ret = btrfs_delalloc_reserve_space(inode, page_start,
8745 PAGE_CACHE_SIZE);
9998eb70 8746 if (!ret) {
e41f941a 8747 ret = file_update_time(vma->vm_file);
9998eb70
CM
8748 reserved = 1;
8749 }
56a76f82
NP
8750 if (ret) {
8751 if (ret == -ENOMEM)
8752 ret = VM_FAULT_OOM;
8753 else /* -ENOSPC, -EIO, etc */
8754 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8755 if (reserved)
8756 goto out;
8757 goto out_noreserve;
56a76f82 8758 }
1832a6d5 8759
56a76f82 8760 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8761again:
9ebefb18 8762 lock_page(page);
9ebefb18 8763 size = i_size_read(inode);
a52d9a80 8764
9ebefb18 8765 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8766 (page_start >= size)) {
9ebefb18
CM
8767 /* page got truncated out from underneath us */
8768 goto out_unlock;
8769 }
e6dcd2dc
CM
8770 wait_on_page_writeback(page);
8771
d0082371 8772 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
8773 set_page_extent_mapped(page);
8774
eb84ae03
CM
8775 /*
8776 * we can't set the delalloc bits if there are pending ordered
8777 * extents. Drop our locks and wait for them to finish
8778 */
e6dcd2dc
CM
8779 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8780 if (ordered) {
2ac55d41
JB
8781 unlock_extent_cached(io_tree, page_start, page_end,
8782 &cached_state, GFP_NOFS);
e6dcd2dc 8783 unlock_page(page);
eb84ae03 8784 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8785 btrfs_put_ordered_extent(ordered);
8786 goto again;
8787 }
8788
fbf19087
JB
8789 /*
8790 * XXX - page_mkwrite gets called every time the page is dirtied, even
8791 * if it was already dirty, so for space accounting reasons we need to
8792 * clear any delalloc bits for the range we are fixing to save. There
8793 * is probably a better way to do this, but for now keep consistent with
8794 * prepare_pages in the normal write path.
8795 */
2ac55d41 8796 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
8797 EXTENT_DIRTY | EXTENT_DELALLOC |
8798 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 8799 0, 0, &cached_state, GFP_NOFS);
fbf19087 8800
2ac55d41
JB
8801 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8802 &cached_state);
9ed74f2d 8803 if (ret) {
2ac55d41
JB
8804 unlock_extent_cached(io_tree, page_start, page_end,
8805 &cached_state, GFP_NOFS);
9ed74f2d
JB
8806 ret = VM_FAULT_SIGBUS;
8807 goto out_unlock;
8808 }
e6dcd2dc 8809 ret = 0;
9ebefb18
CM
8810
8811 /* page is wholly or partially inside EOF */
a52d9a80 8812 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 8813 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 8814 else
e6dcd2dc 8815 zero_start = PAGE_CACHE_SIZE;
9ebefb18 8816
e6dcd2dc
CM
8817 if (zero_start != PAGE_CACHE_SIZE) {
8818 kaddr = kmap(page);
8819 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8820 flush_dcache_page(page);
8821 kunmap(page);
8822 }
247e743c 8823 ClearPageChecked(page);
e6dcd2dc 8824 set_page_dirty(page);
50a9b214 8825 SetPageUptodate(page);
5a3f23d5 8826
257c62e1
CM
8827 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8828 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8829 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8830
2ac55d41 8831 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
8832
8833out_unlock:
b2b5ef5c
JK
8834 if (!ret) {
8835 sb_end_pagefault(inode->i_sb);
50a9b214 8836 return VM_FAULT_LOCKED;
b2b5ef5c 8837 }
9ebefb18 8838 unlock_page(page);
1832a6d5 8839out:
7cf5b976 8840 btrfs_delalloc_release_space(inode, page_start, PAGE_CACHE_SIZE);
9998eb70 8841out_noreserve:
b2b5ef5c 8842 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
8843 return ret;
8844}
8845
a41ad394 8846static int btrfs_truncate(struct inode *inode)
39279cc3
CM
8847{
8848 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8849 struct btrfs_block_rsv *rsv;
a71754fc 8850 int ret = 0;
3893e33b 8851 int err = 0;
39279cc3 8852 struct btrfs_trans_handle *trans;
dbe674a9 8853 u64 mask = root->sectorsize - 1;
07127184 8854 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 8855
0ef8b726
JB
8856 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8857 (u64)-1);
8858 if (ret)
8859 return ret;
39279cc3 8860
fcb80c2a
JB
8861 /*
8862 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8863 * 3 things going on here
8864 *
8865 * 1) We need to reserve space for our orphan item and the space to
8866 * delete our orphan item. Lord knows we don't want to have a dangling
8867 * orphan item because we didn't reserve space to remove it.
8868 *
8869 * 2) We need to reserve space to update our inode.
8870 *
8871 * 3) We need to have something to cache all the space that is going to
8872 * be free'd up by the truncate operation, but also have some slack
8873 * space reserved in case it uses space during the truncate (thank you
8874 * very much snapshotting).
8875 *
8876 * And we need these to all be seperate. The fact is we can use alot of
8877 * space doing the truncate, and we have no earthly idea how much space
8878 * we will use, so we need the truncate reservation to be seperate so it
8879 * doesn't end up using space reserved for updating the inode or
8880 * removing the orphan item. We also need to be able to stop the
8881 * transaction and start a new one, which means we need to be able to
8882 * update the inode several times, and we have no idea of knowing how
8883 * many times that will be, so we can't just reserve 1 item for the
8884 * entirety of the opration, so that has to be done seperately as well.
8885 * Then there is the orphan item, which does indeed need to be held on
8886 * to for the whole operation, and we need nobody to touch this reserved
8887 * space except the orphan code.
8888 *
8889 * So that leaves us with
8890 *
8891 * 1) root->orphan_block_rsv - for the orphan deletion.
8892 * 2) rsv - for the truncate reservation, which we will steal from the
8893 * transaction reservation.
8894 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8895 * updating the inode.
8896 */
66d8f3dd 8897 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8898 if (!rsv)
8899 return -ENOMEM;
4a338542 8900 rsv->size = min_size;
ca7e70f5 8901 rsv->failfast = 1;
f0cd846e 8902
907cbceb 8903 /*
07127184 8904 * 1 for the truncate slack space
907cbceb
JB
8905 * 1 for updating the inode.
8906 */
f3fe820c 8907 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
8908 if (IS_ERR(trans)) {
8909 err = PTR_ERR(trans);
8910 goto out;
8911 }
f0cd846e 8912
907cbceb
JB
8913 /* Migrate the slack space for the truncate to our reserve */
8914 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8915 min_size);
fcb80c2a 8916 BUG_ON(ret);
f0cd846e 8917
5dc562c5
JB
8918 /*
8919 * So if we truncate and then write and fsync we normally would just
8920 * write the extents that changed, which is a problem if we need to
8921 * first truncate that entire inode. So set this flag so we write out
8922 * all of the extents in the inode to the sync log so we're completely
8923 * safe.
8924 */
8925 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8926 trans->block_rsv = rsv;
907cbceb 8927
8082510e
YZ
8928 while (1) {
8929 ret = btrfs_truncate_inode_items(trans, root, inode,
8930 inode->i_size,
8931 BTRFS_EXTENT_DATA_KEY);
28ed1345 8932 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 8933 err = ret;
8082510e 8934 break;
3893e33b 8935 }
39279cc3 8936
fcb80c2a 8937 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 8938 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
8939 if (ret) {
8940 err = ret;
8941 break;
8942 }
ca7e70f5 8943
8082510e 8944 btrfs_end_transaction(trans, root);
b53d3f5d 8945 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
8946
8947 trans = btrfs_start_transaction(root, 2);
8948 if (IS_ERR(trans)) {
8949 ret = err = PTR_ERR(trans);
8950 trans = NULL;
8951 break;
8952 }
8953
8954 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8955 rsv, min_size);
8956 BUG_ON(ret); /* shouldn't happen */
8957 trans->block_rsv = rsv;
8082510e
YZ
8958 }
8959
8960 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 8961 trans->block_rsv = root->orphan_block_rsv;
8082510e 8962 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
8963 if (ret)
8964 err = ret;
8082510e
YZ
8965 }
8966
917c16b2
CM
8967 if (trans) {
8968 trans->block_rsv = &root->fs_info->trans_block_rsv;
8969 ret = btrfs_update_inode(trans, root, inode);
8970 if (ret && !err)
8971 err = ret;
7b128766 8972
7ad85bb7 8973 ret = btrfs_end_transaction(trans, root);
b53d3f5d 8974 btrfs_btree_balance_dirty(root);
917c16b2 8975 }
fcb80c2a
JB
8976
8977out:
8978 btrfs_free_block_rsv(root, rsv);
8979
3893e33b
JB
8980 if (ret && !err)
8981 err = ret;
a41ad394 8982
3893e33b 8983 return err;
39279cc3
CM
8984}
8985
d352ac68
CM
8986/*
8987 * create a new subvolume directory/inode (helper for the ioctl).
8988 */
d2fb3437 8989int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8990 struct btrfs_root *new_root,
8991 struct btrfs_root *parent_root,
8992 u64 new_dirid)
39279cc3 8993{
39279cc3 8994 struct inode *inode;
76dda93c 8995 int err;
00e4e6b3 8996 u64 index = 0;
39279cc3 8997
12fc9d09
FA
8998 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8999 new_dirid, new_dirid,
9000 S_IFDIR | (~current_umask() & S_IRWXUGO),
9001 &index);
54aa1f4d 9002 if (IS_ERR(inode))
f46b5a66 9003 return PTR_ERR(inode);
39279cc3
CM
9004 inode->i_op = &btrfs_dir_inode_operations;
9005 inode->i_fop = &btrfs_dir_file_operations;
9006
bfe86848 9007 set_nlink(inode, 1);
dbe674a9 9008 btrfs_i_size_write(inode, 0);
b0d5d10f 9009 unlock_new_inode(inode);
3b96362c 9010
63541927
FDBM
9011 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9012 if (err)
9013 btrfs_err(new_root->fs_info,
351fd353 9014 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9015 new_root->root_key.objectid, err);
9016
76dda93c 9017 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9018
76dda93c 9019 iput(inode);
ce598979 9020 return err;
39279cc3
CM
9021}
9022
39279cc3
CM
9023struct inode *btrfs_alloc_inode(struct super_block *sb)
9024{
9025 struct btrfs_inode *ei;
2ead6ae7 9026 struct inode *inode;
39279cc3
CM
9027
9028 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9029 if (!ei)
9030 return NULL;
2ead6ae7
YZ
9031
9032 ei->root = NULL;
2ead6ae7 9033 ei->generation = 0;
15ee9bc7 9034 ei->last_trans = 0;
257c62e1 9035 ei->last_sub_trans = 0;
e02119d5 9036 ei->logged_trans = 0;
2ead6ae7 9037 ei->delalloc_bytes = 0;
47059d93 9038 ei->defrag_bytes = 0;
2ead6ae7
YZ
9039 ei->disk_i_size = 0;
9040 ei->flags = 0;
7709cde3 9041 ei->csum_bytes = 0;
2ead6ae7 9042 ei->index_cnt = (u64)-1;
67de1176 9043 ei->dir_index = 0;
2ead6ae7 9044 ei->last_unlink_trans = 0;
46d8bc34 9045 ei->last_log_commit = 0;
2ead6ae7 9046
9e0baf60
JB
9047 spin_lock_init(&ei->lock);
9048 ei->outstanding_extents = 0;
9049 ei->reserved_extents = 0;
2ead6ae7 9050
72ac3c0d 9051 ei->runtime_flags = 0;
261507a0 9052 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9053
16cdcec7
MX
9054 ei->delayed_node = NULL;
9055
9cc97d64 9056 ei->i_otime.tv_sec = 0;
9057 ei->i_otime.tv_nsec = 0;
9058
2ead6ae7 9059 inode = &ei->vfs_inode;
a8067e02 9060 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9061 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9062 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9063 ei->io_tree.track_uptodate = 1;
9064 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9065 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9066 mutex_init(&ei->log_mutex);
f248679e 9067 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9068 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9069 INIT_LIST_HEAD(&ei->delalloc_inodes);
2ead6ae7
YZ
9070 RB_CLEAR_NODE(&ei->rb_node);
9071
9072 return inode;
39279cc3
CM
9073}
9074
aaedb55b
JB
9075#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9076void btrfs_test_destroy_inode(struct inode *inode)
9077{
9078 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9079 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9080}
9081#endif
9082
fa0d7e3d
NP
9083static void btrfs_i_callback(struct rcu_head *head)
9084{
9085 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9086 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9087}
9088
39279cc3
CM
9089void btrfs_destroy_inode(struct inode *inode)
9090{
e6dcd2dc 9091 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9092 struct btrfs_root *root = BTRFS_I(inode)->root;
9093
b3d9b7a3 9094 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9095 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9096 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9097 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9098 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9099 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9100 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9101
a6dbd429
JB
9102 /*
9103 * This can happen where we create an inode, but somebody else also
9104 * created the same inode and we need to destroy the one we already
9105 * created.
9106 */
9107 if (!root)
9108 goto free;
9109
8a35d95f
JB
9110 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9111 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9112 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9113 btrfs_ino(inode));
8a35d95f 9114 atomic_dec(&root->orphan_inodes);
7b128766 9115 }
7b128766 9116
d397712b 9117 while (1) {
e6dcd2dc
CM
9118 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9119 if (!ordered)
9120 break;
9121 else {
c2cf52eb 9122 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 9123 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9124 btrfs_remove_ordered_extent(inode, ordered);
9125 btrfs_put_ordered_extent(ordered);
9126 btrfs_put_ordered_extent(ordered);
9127 }
9128 }
56fa9d07 9129 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9130 inode_tree_del(inode);
5b21f2ed 9131 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9132free:
fa0d7e3d 9133 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9134}
9135
45321ac5 9136int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9137{
9138 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9139
6379ef9f
NA
9140 if (root == NULL)
9141 return 1;
9142
fa6ac876 9143 /* the snap/subvol tree is on deleting */
69e9c6c6 9144 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9145 return 1;
76dda93c 9146 else
45321ac5 9147 return generic_drop_inode(inode);
76dda93c
YZ
9148}
9149
0ee0fda0 9150static void init_once(void *foo)
39279cc3
CM
9151{
9152 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9153
9154 inode_init_once(&ei->vfs_inode);
9155}
9156
9157void btrfs_destroy_cachep(void)
9158{
8c0a8537
KS
9159 /*
9160 * Make sure all delayed rcu free inodes are flushed before we
9161 * destroy cache.
9162 */
9163 rcu_barrier();
39279cc3
CM
9164 if (btrfs_inode_cachep)
9165 kmem_cache_destroy(btrfs_inode_cachep);
9166 if (btrfs_trans_handle_cachep)
9167 kmem_cache_destroy(btrfs_trans_handle_cachep);
9168 if (btrfs_transaction_cachep)
9169 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
9170 if (btrfs_path_cachep)
9171 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
9172 if (btrfs_free_space_cachep)
9173 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
9174 if (btrfs_delalloc_work_cachep)
9175 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
9176}
9177
9178int btrfs_init_cachep(void)
9179{
837e1972 9180 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
9181 sizeof(struct btrfs_inode), 0,
9182 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
9183 if (!btrfs_inode_cachep)
9184 goto fail;
9601e3f6 9185
837e1972 9186 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
9187 sizeof(struct btrfs_trans_handle), 0,
9188 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9189 if (!btrfs_trans_handle_cachep)
9190 goto fail;
9601e3f6 9191
837e1972 9192 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
9193 sizeof(struct btrfs_transaction), 0,
9194 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9195 if (!btrfs_transaction_cachep)
9196 goto fail;
9601e3f6 9197
837e1972 9198 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
9199 sizeof(struct btrfs_path), 0,
9200 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9201 if (!btrfs_path_cachep)
9202 goto fail;
9601e3f6 9203
837e1972 9204 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
9205 sizeof(struct btrfs_free_space), 0,
9206 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9207 if (!btrfs_free_space_cachep)
9208 goto fail;
9209
8ccf6f19
MX
9210 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9211 sizeof(struct btrfs_delalloc_work), 0,
9212 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9213 NULL);
9214 if (!btrfs_delalloc_work_cachep)
9215 goto fail;
9216
39279cc3
CM
9217 return 0;
9218fail:
9219 btrfs_destroy_cachep();
9220 return -ENOMEM;
9221}
9222
9223static int btrfs_getattr(struct vfsmount *mnt,
9224 struct dentry *dentry, struct kstat *stat)
9225{
df0af1a5 9226 u64 delalloc_bytes;
2b0143b5 9227 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9228 u32 blocksize = inode->i_sb->s_blocksize;
9229
39279cc3 9230 generic_fillattr(inode, stat);
0ee5dc67 9231 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 9232 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
9233
9234 spin_lock(&BTRFS_I(inode)->lock);
9235 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9236 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9237 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9238 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9239 return 0;
9240}
9241
d397712b
CM
9242static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9243 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
9244{
9245 struct btrfs_trans_handle *trans;
9246 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9247 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9248 struct inode *new_inode = d_inode(new_dentry);
9249 struct inode *old_inode = d_inode(old_dentry);
39279cc3 9250 struct timespec ctime = CURRENT_TIME;
00e4e6b3 9251 u64 index = 0;
4df27c4d 9252 u64 root_objectid;
39279cc3 9253 int ret;
33345d01 9254 u64 old_ino = btrfs_ino(old_inode);
39279cc3 9255
33345d01 9256 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9257 return -EPERM;
9258
4df27c4d 9259 /* we only allow rename subvolume link between subvolumes */
33345d01 9260 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9261 return -EXDEV;
9262
33345d01
LZ
9263 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9264 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9265 return -ENOTEMPTY;
5f39d397 9266
4df27c4d
YZ
9267 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9268 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9269 return -ENOTEMPTY;
9c52057c
CM
9270
9271
9272 /* check for collisions, even if the name isn't there */
4871c158 9273 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9274 new_dentry->d_name.name,
9275 new_dentry->d_name.len);
9276
9277 if (ret) {
9278 if (ret == -EEXIST) {
9279 /* we shouldn't get
9280 * eexist without a new_inode */
fae7f21c 9281 if (WARN_ON(!new_inode)) {
9c52057c
CM
9282 return ret;
9283 }
9284 } else {
9285 /* maybe -EOVERFLOW */
9286 return ret;
9287 }
9288 }
9289 ret = 0;
9290
5a3f23d5 9291 /*
8d875f95
CM
9292 * we're using rename to replace one file with another. Start IO on it
9293 * now so we don't add too much work to the end of the transaction
5a3f23d5 9294 */
8d875f95 9295 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9296 filemap_flush(old_inode->i_mapping);
9297
76dda93c 9298 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9299 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9300 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9301 /*
9302 * We want to reserve the absolute worst case amount of items. So if
9303 * both inodes are subvols and we need to unlink them then that would
9304 * require 4 item modifications, but if they are both normal inodes it
9305 * would require 5 item modifications, so we'll assume their normal
9306 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9307 * should cover the worst case number of items we'll modify.
9308 */
6e137ed3 9309 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
9310 if (IS_ERR(trans)) {
9311 ret = PTR_ERR(trans);
9312 goto out_notrans;
9313 }
76dda93c 9314
4df27c4d
YZ
9315 if (dest != root)
9316 btrfs_record_root_in_trans(trans, dest);
5f39d397 9317
a5719521
YZ
9318 ret = btrfs_set_inode_index(new_dir, &index);
9319 if (ret)
9320 goto out_fail;
5a3f23d5 9321
67de1176 9322 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9323 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9324 /* force full log commit if subvolume involved. */
995946dd 9325 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9326 } else {
a5719521
YZ
9327 ret = btrfs_insert_inode_ref(trans, dest,
9328 new_dentry->d_name.name,
9329 new_dentry->d_name.len,
33345d01
LZ
9330 old_ino,
9331 btrfs_ino(new_dir), index);
a5719521
YZ
9332 if (ret)
9333 goto out_fail;
4df27c4d
YZ
9334 /*
9335 * this is an ugly little race, but the rename is required
9336 * to make sure that if we crash, the inode is either at the
9337 * old name or the new one. pinning the log transaction lets
9338 * us make sure we don't allow a log commit to come in after
9339 * we unlink the name but before we add the new name back in.
9340 */
9341 btrfs_pin_log_trans(root);
9342 }
5a3f23d5 9343
0c4d2d95
JB
9344 inode_inc_iversion(old_dir);
9345 inode_inc_iversion(new_dir);
9346 inode_inc_iversion(old_inode);
39279cc3
CM
9347 old_dir->i_ctime = old_dir->i_mtime = ctime;
9348 new_dir->i_ctime = new_dir->i_mtime = ctime;
9349 old_inode->i_ctime = ctime;
5f39d397 9350
12fcfd22
CM
9351 if (old_dentry->d_parent != new_dentry->d_parent)
9352 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9353
33345d01 9354 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9355 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9356 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9357 old_dentry->d_name.name,
9358 old_dentry->d_name.len);
9359 } else {
92986796 9360 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9361 d_inode(old_dentry),
92986796
AV
9362 old_dentry->d_name.name,
9363 old_dentry->d_name.len);
9364 if (!ret)
9365 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9366 }
79787eaa
JM
9367 if (ret) {
9368 btrfs_abort_transaction(trans, root, ret);
9369 goto out_fail;
9370 }
39279cc3
CM
9371
9372 if (new_inode) {
0c4d2d95 9373 inode_inc_iversion(new_inode);
39279cc3 9374 new_inode->i_ctime = CURRENT_TIME;
33345d01 9375 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9376 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9377 root_objectid = BTRFS_I(new_inode)->location.objectid;
9378 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9379 root_objectid,
9380 new_dentry->d_name.name,
9381 new_dentry->d_name.len);
9382 BUG_ON(new_inode->i_nlink == 0);
9383 } else {
9384 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9385 d_inode(new_dentry),
4df27c4d
YZ
9386 new_dentry->d_name.name,
9387 new_dentry->d_name.len);
9388 }
4ef31a45 9389 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9390 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa
JM
9391 if (ret) {
9392 btrfs_abort_transaction(trans, root, ret);
9393 goto out_fail;
9394 }
39279cc3 9395 }
aec7477b 9396
4df27c4d
YZ
9397 ret = btrfs_add_link(trans, new_dir, old_inode,
9398 new_dentry->d_name.name,
a5719521 9399 new_dentry->d_name.len, 0, index);
79787eaa
JM
9400 if (ret) {
9401 btrfs_abort_transaction(trans, root, ret);
9402 goto out_fail;
9403 }
39279cc3 9404
67de1176
MX
9405 if (old_inode->i_nlink == 1)
9406 BTRFS_I(old_inode)->dir_index = index;
9407
33345d01 9408 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 9409 struct dentry *parent = new_dentry->d_parent;
6a912213 9410 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
9411 btrfs_end_log_trans(root);
9412 }
39279cc3 9413out_fail:
7ad85bb7 9414 btrfs_end_transaction(trans, root);
b44c59a8 9415out_notrans:
33345d01 9416 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9417 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9418
39279cc3
CM
9419 return ret;
9420}
9421
80ace85c
MS
9422static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9423 struct inode *new_dir, struct dentry *new_dentry,
9424 unsigned int flags)
9425{
9426 if (flags & ~RENAME_NOREPLACE)
9427 return -EINVAL;
9428
9429 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9430}
9431
8ccf6f19
MX
9432static void btrfs_run_delalloc_work(struct btrfs_work *work)
9433{
9434 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9435 struct inode *inode;
8ccf6f19
MX
9436
9437 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9438 work);
9f23e289
JB
9439 inode = delalloc_work->inode;
9440 if (delalloc_work->wait) {
9441 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9442 } else {
9443 filemap_flush(inode->i_mapping);
9444 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9445 &BTRFS_I(inode)->runtime_flags))
9446 filemap_flush(inode->i_mapping);
9447 }
8ccf6f19
MX
9448
9449 if (delalloc_work->delay_iput)
9f23e289 9450 btrfs_add_delayed_iput(inode);
8ccf6f19 9451 else
9f23e289 9452 iput(inode);
8ccf6f19
MX
9453 complete(&delalloc_work->completion);
9454}
9455
9456struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9457 int wait, int delay_iput)
9458{
9459 struct btrfs_delalloc_work *work;
9460
9461 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9462 if (!work)
9463 return NULL;
9464
9465 init_completion(&work->completion);
9466 INIT_LIST_HEAD(&work->list);
9467 work->inode = inode;
9468 work->wait = wait;
9469 work->delay_iput = delay_iput;
9e0af237
LB
9470 WARN_ON_ONCE(!inode);
9471 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9472 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9473
9474 return work;
9475}
9476
9477void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9478{
9479 wait_for_completion(&work->completion);
9480 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9481}
9482
d352ac68
CM
9483/*
9484 * some fairly slow code that needs optimization. This walks the list
9485 * of all the inodes with pending delalloc and forces them to disk.
9486 */
6c255e67
MX
9487static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9488 int nr)
ea8c2819 9489{
ea8c2819 9490 struct btrfs_inode *binode;
5b21f2ed 9491 struct inode *inode;
8ccf6f19
MX
9492 struct btrfs_delalloc_work *work, *next;
9493 struct list_head works;
1eafa6c7 9494 struct list_head splice;
8ccf6f19 9495 int ret = 0;
ea8c2819 9496
8ccf6f19 9497 INIT_LIST_HEAD(&works);
1eafa6c7 9498 INIT_LIST_HEAD(&splice);
63607cc8 9499
573bfb72 9500 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9501 spin_lock(&root->delalloc_lock);
9502 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9503 while (!list_empty(&splice)) {
9504 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9505 delalloc_inodes);
1eafa6c7 9506
eb73c1b7
MX
9507 list_move_tail(&binode->delalloc_inodes,
9508 &root->delalloc_inodes);
5b21f2ed 9509 inode = igrab(&binode->vfs_inode);
df0af1a5 9510 if (!inode) {
eb73c1b7 9511 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9512 continue;
df0af1a5 9513 }
eb73c1b7 9514 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
9515
9516 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
5d99a998 9517 if (!work) {
f4ab9ea7
JB
9518 if (delay_iput)
9519 btrfs_add_delayed_iput(inode);
9520 else
9521 iput(inode);
1eafa6c7 9522 ret = -ENOMEM;
a1ecaabb 9523 goto out;
5b21f2ed 9524 }
1eafa6c7 9525 list_add_tail(&work->list, &works);
a44903ab
QW
9526 btrfs_queue_work(root->fs_info->flush_workers,
9527 &work->work);
6c255e67
MX
9528 ret++;
9529 if (nr != -1 && ret >= nr)
a1ecaabb 9530 goto out;
5b21f2ed 9531 cond_resched();
eb73c1b7 9532 spin_lock(&root->delalloc_lock);
ea8c2819 9533 }
eb73c1b7 9534 spin_unlock(&root->delalloc_lock);
8c8bee1d 9535
a1ecaabb 9536out:
eb73c1b7
MX
9537 list_for_each_entry_safe(work, next, &works, list) {
9538 list_del_init(&work->list);
9539 btrfs_wait_and_free_delalloc_work(work);
9540 }
9541
9542 if (!list_empty_careful(&splice)) {
9543 spin_lock(&root->delalloc_lock);
9544 list_splice_tail(&splice, &root->delalloc_inodes);
9545 spin_unlock(&root->delalloc_lock);
9546 }
573bfb72 9547 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9548 return ret;
9549}
1eafa6c7 9550
eb73c1b7
MX
9551int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9552{
9553 int ret;
1eafa6c7 9554
2c21b4d7 9555 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
9556 return -EROFS;
9557
6c255e67
MX
9558 ret = __start_delalloc_inodes(root, delay_iput, -1);
9559 if (ret > 0)
9560 ret = 0;
eb73c1b7
MX
9561 /*
9562 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
9563 * we have to make sure the IO is actually started and that
9564 * ordered extents get created before we return
9565 */
9566 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 9567 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 9568 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 9569 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
9570 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9571 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
9572 }
9573 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
9574 return ret;
9575}
9576
6c255e67
MX
9577int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9578 int nr)
eb73c1b7
MX
9579{
9580 struct btrfs_root *root;
9581 struct list_head splice;
9582 int ret;
9583
2c21b4d7 9584 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9585 return -EROFS;
9586
9587 INIT_LIST_HEAD(&splice);
9588
573bfb72 9589 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9590 spin_lock(&fs_info->delalloc_root_lock);
9591 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9592 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9593 root = list_first_entry(&splice, struct btrfs_root,
9594 delalloc_root);
9595 root = btrfs_grab_fs_root(root);
9596 BUG_ON(!root);
9597 list_move_tail(&root->delalloc_root,
9598 &fs_info->delalloc_roots);
9599 spin_unlock(&fs_info->delalloc_root_lock);
9600
6c255e67 9601 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 9602 btrfs_put_fs_root(root);
6c255e67 9603 if (ret < 0)
eb73c1b7
MX
9604 goto out;
9605
6c255e67
MX
9606 if (nr != -1) {
9607 nr -= ret;
9608 WARN_ON(nr < 0);
9609 }
eb73c1b7 9610 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9611 }
eb73c1b7 9612 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9613
6c255e67 9614 ret = 0;
eb73c1b7
MX
9615 atomic_inc(&fs_info->async_submit_draining);
9616 while (atomic_read(&fs_info->nr_async_submits) ||
9617 atomic_read(&fs_info->async_delalloc_pages)) {
9618 wait_event(fs_info->async_submit_wait,
9619 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9620 atomic_read(&fs_info->async_delalloc_pages) == 0));
9621 }
9622 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 9623out:
1eafa6c7 9624 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
9625 spin_lock(&fs_info->delalloc_root_lock);
9626 list_splice_tail(&splice, &fs_info->delalloc_roots);
9627 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9628 }
573bfb72 9629 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9630 return ret;
ea8c2819
CM
9631}
9632
39279cc3
CM
9633static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9634 const char *symname)
9635{
9636 struct btrfs_trans_handle *trans;
9637 struct btrfs_root *root = BTRFS_I(dir)->root;
9638 struct btrfs_path *path;
9639 struct btrfs_key key;
1832a6d5 9640 struct inode *inode = NULL;
39279cc3
CM
9641 int err;
9642 int drop_inode = 0;
9643 u64 objectid;
67871254 9644 u64 index = 0;
39279cc3
CM
9645 int name_len;
9646 int datasize;
5f39d397 9647 unsigned long ptr;
39279cc3 9648 struct btrfs_file_extent_item *ei;
5f39d397 9649 struct extent_buffer *leaf;
39279cc3 9650
f06becc4 9651 name_len = strlen(symname);
39279cc3
CM
9652 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9653 return -ENAMETOOLONG;
1832a6d5 9654
9ed74f2d
JB
9655 /*
9656 * 2 items for inode item and ref
9657 * 2 items for dir items
9658 * 1 item for xattr if selinux is on
9659 */
a22285a6
YZ
9660 trans = btrfs_start_transaction(root, 5);
9661 if (IS_ERR(trans))
9662 return PTR_ERR(trans);
1832a6d5 9663
581bb050
LZ
9664 err = btrfs_find_free_ino(root, &objectid);
9665 if (err)
9666 goto out_unlock;
9667
aec7477b 9668 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 9669 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 9670 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9671 if (IS_ERR(inode)) {
9672 err = PTR_ERR(inode);
39279cc3 9673 goto out_unlock;
7cf96da3 9674 }
39279cc3 9675
ad19db71
CS
9676 /*
9677 * If the active LSM wants to access the inode during
9678 * d_instantiate it needs these. Smack checks to see
9679 * if the filesystem supports xattrs by looking at the
9680 * ops vector.
9681 */
9682 inode->i_fop = &btrfs_file_operations;
9683 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9684 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9685 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9686
9687 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9688 if (err)
9689 goto out_unlock_inode;
ad19db71 9690
a1b075d2 9691 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 9692 if (err)
b0d5d10f 9693 goto out_unlock_inode;
39279cc3
CM
9694
9695 path = btrfs_alloc_path();
d8926bb3
MF
9696 if (!path) {
9697 err = -ENOMEM;
b0d5d10f 9698 goto out_unlock_inode;
d8926bb3 9699 }
33345d01 9700 key.objectid = btrfs_ino(inode);
39279cc3 9701 key.offset = 0;
962a298f 9702 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9703 datasize = btrfs_file_extent_calc_inline_size(name_len);
9704 err = btrfs_insert_empty_item(trans, root, path, &key,
9705 datasize);
54aa1f4d 9706 if (err) {
b0839166 9707 btrfs_free_path(path);
b0d5d10f 9708 goto out_unlock_inode;
54aa1f4d 9709 }
5f39d397
CM
9710 leaf = path->nodes[0];
9711 ei = btrfs_item_ptr(leaf, path->slots[0],
9712 struct btrfs_file_extent_item);
9713 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9714 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9715 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9716 btrfs_set_file_extent_encryption(leaf, ei, 0);
9717 btrfs_set_file_extent_compression(leaf, ei, 0);
9718 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9719 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9720
39279cc3 9721 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9722 write_extent_buffer(leaf, symname, ptr, name_len);
9723 btrfs_mark_buffer_dirty(leaf);
39279cc3 9724 btrfs_free_path(path);
5f39d397 9725
39279cc3
CM
9726 inode->i_op = &btrfs_symlink_inode_operations;
9727 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 9728 inode_set_bytes(inode, name_len);
f06becc4 9729 btrfs_i_size_write(inode, name_len);
54aa1f4d 9730 err = btrfs_update_inode(trans, root, inode);
b0d5d10f 9731 if (err) {
54aa1f4d 9732 drop_inode = 1;
b0d5d10f
CM
9733 goto out_unlock_inode;
9734 }
9735
9736 unlock_new_inode(inode);
9737 d_instantiate(dentry, inode);
39279cc3
CM
9738
9739out_unlock:
7ad85bb7 9740 btrfs_end_transaction(trans, root);
39279cc3
CM
9741 if (drop_inode) {
9742 inode_dec_link_count(inode);
9743 iput(inode);
9744 }
b53d3f5d 9745 btrfs_btree_balance_dirty(root);
39279cc3 9746 return err;
b0d5d10f
CM
9747
9748out_unlock_inode:
9749 drop_inode = 1;
9750 unlock_new_inode(inode);
9751 goto out_unlock;
39279cc3 9752}
16432985 9753
0af3d00b
JB
9754static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9755 u64 start, u64 num_bytes, u64 min_size,
9756 loff_t actual_len, u64 *alloc_hint,
9757 struct btrfs_trans_handle *trans)
d899e052 9758{
5dc562c5
JB
9759 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9760 struct extent_map *em;
d899e052
YZ
9761 struct btrfs_root *root = BTRFS_I(inode)->root;
9762 struct btrfs_key ins;
d899e052 9763 u64 cur_offset = start;
55a61d1d 9764 u64 i_size;
154ea289 9765 u64 cur_bytes;
0b670dc4 9766 u64 last_alloc = (u64)-1;
d899e052 9767 int ret = 0;
0af3d00b 9768 bool own_trans = true;
d899e052 9769
0af3d00b
JB
9770 if (trans)
9771 own_trans = false;
d899e052 9772 while (num_bytes > 0) {
0af3d00b
JB
9773 if (own_trans) {
9774 trans = btrfs_start_transaction(root, 3);
9775 if (IS_ERR(trans)) {
9776 ret = PTR_ERR(trans);
9777 break;
9778 }
5a303d5d
YZ
9779 }
9780
154ea289
CM
9781 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9782 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9783 /*
9784 * If we are severely fragmented we could end up with really
9785 * small allocations, so if the allocator is returning small
9786 * chunks lets make its job easier by only searching for those
9787 * sized chunks.
9788 */
9789 cur_bytes = min(cur_bytes, last_alloc);
00361589 9790 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 9791 *alloc_hint, &ins, 1, 0);
5a303d5d 9792 if (ret) {
0af3d00b
JB
9793 if (own_trans)
9794 btrfs_end_transaction(trans, root);
a22285a6 9795 break;
d899e052 9796 }
5a303d5d 9797
0b670dc4 9798 last_alloc = ins.offset;
d899e052
YZ
9799 ret = insert_reserved_file_extent(trans, inode,
9800 cur_offset, ins.objectid,
9801 ins.offset, ins.offset,
920bbbfb 9802 ins.offset, 0, 0, 0,
d899e052 9803 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 9804 if (ret) {
857cc2fc 9805 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 9806 ins.offset, 0);
79787eaa
JM
9807 btrfs_abort_transaction(trans, root, ret);
9808 if (own_trans)
9809 btrfs_end_transaction(trans, root);
9810 break;
9811 }
31193213 9812
a1ed835e
CM
9813 btrfs_drop_extent_cache(inode, cur_offset,
9814 cur_offset + ins.offset -1, 0);
5a303d5d 9815
5dc562c5
JB
9816 em = alloc_extent_map();
9817 if (!em) {
9818 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9819 &BTRFS_I(inode)->runtime_flags);
9820 goto next;
9821 }
9822
9823 em->start = cur_offset;
9824 em->orig_start = cur_offset;
9825 em->len = ins.offset;
9826 em->block_start = ins.objectid;
9827 em->block_len = ins.offset;
b4939680 9828 em->orig_block_len = ins.offset;
cc95bef6 9829 em->ram_bytes = ins.offset;
5dc562c5
JB
9830 em->bdev = root->fs_info->fs_devices->latest_bdev;
9831 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9832 em->generation = trans->transid;
9833
9834 while (1) {
9835 write_lock(&em_tree->lock);
09a2a8f9 9836 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9837 write_unlock(&em_tree->lock);
9838 if (ret != -EEXIST)
9839 break;
9840 btrfs_drop_extent_cache(inode, cur_offset,
9841 cur_offset + ins.offset - 1,
9842 0);
9843 }
9844 free_extent_map(em);
9845next:
d899e052
YZ
9846 num_bytes -= ins.offset;
9847 cur_offset += ins.offset;
efa56464 9848 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9849
0c4d2d95 9850 inode_inc_iversion(inode);
d899e052 9851 inode->i_ctime = CURRENT_TIME;
6cbff00f 9852 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9853 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9854 (actual_len > inode->i_size) &&
9855 (cur_offset > inode->i_size)) {
d1ea6a61 9856 if (cur_offset > actual_len)
55a61d1d 9857 i_size = actual_len;
d1ea6a61 9858 else
55a61d1d
JB
9859 i_size = cur_offset;
9860 i_size_write(inode, i_size);
9861 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
9862 }
9863
d899e052 9864 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9865
9866 if (ret) {
9867 btrfs_abort_transaction(trans, root, ret);
9868 if (own_trans)
9869 btrfs_end_transaction(trans, root);
9870 break;
9871 }
d899e052 9872
0af3d00b
JB
9873 if (own_trans)
9874 btrfs_end_transaction(trans, root);
5a303d5d 9875 }
d899e052
YZ
9876 return ret;
9877}
9878
0af3d00b
JB
9879int btrfs_prealloc_file_range(struct inode *inode, int mode,
9880 u64 start, u64 num_bytes, u64 min_size,
9881 loff_t actual_len, u64 *alloc_hint)
9882{
9883 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9884 min_size, actual_len, alloc_hint,
9885 NULL);
9886}
9887
9888int btrfs_prealloc_file_range_trans(struct inode *inode,
9889 struct btrfs_trans_handle *trans, int mode,
9890 u64 start, u64 num_bytes, u64 min_size,
9891 loff_t actual_len, u64 *alloc_hint)
9892{
9893 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9894 min_size, actual_len, alloc_hint, trans);
9895}
9896
e6dcd2dc
CM
9897static int btrfs_set_page_dirty(struct page *page)
9898{
e6dcd2dc
CM
9899 return __set_page_dirty_nobuffers(page);
9900}
9901
10556cb2 9902static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9903{
b83cc969 9904 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9905 umode_t mode = inode->i_mode;
b83cc969 9906
cb6db4e5
JM
9907 if (mask & MAY_WRITE &&
9908 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9909 if (btrfs_root_readonly(root))
9910 return -EROFS;
9911 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9912 return -EACCES;
9913 }
2830ba7f 9914 return generic_permission(inode, mask);
fdebe2bd 9915}
39279cc3 9916
ef3b9af5
FM
9917static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9918{
9919 struct btrfs_trans_handle *trans;
9920 struct btrfs_root *root = BTRFS_I(dir)->root;
9921 struct inode *inode = NULL;
9922 u64 objectid;
9923 u64 index;
9924 int ret = 0;
9925
9926 /*
9927 * 5 units required for adding orphan entry
9928 */
9929 trans = btrfs_start_transaction(root, 5);
9930 if (IS_ERR(trans))
9931 return PTR_ERR(trans);
9932
9933 ret = btrfs_find_free_ino(root, &objectid);
9934 if (ret)
9935 goto out;
9936
9937 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9938 btrfs_ino(dir), objectid, mode, &index);
9939 if (IS_ERR(inode)) {
9940 ret = PTR_ERR(inode);
9941 inode = NULL;
9942 goto out;
9943 }
9944
ef3b9af5
FM
9945 inode->i_fop = &btrfs_file_operations;
9946 inode->i_op = &btrfs_file_inode_operations;
9947
9948 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
9949 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9950
b0d5d10f
CM
9951 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9952 if (ret)
9953 goto out_inode;
9954
9955 ret = btrfs_update_inode(trans, root, inode);
9956 if (ret)
9957 goto out_inode;
ef3b9af5
FM
9958 ret = btrfs_orphan_add(trans, inode);
9959 if (ret)
b0d5d10f 9960 goto out_inode;
ef3b9af5 9961
5762b5c9
FM
9962 /*
9963 * We set number of links to 0 in btrfs_new_inode(), and here we set
9964 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9965 * through:
9966 *
9967 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9968 */
9969 set_nlink(inode, 1);
b0d5d10f 9970 unlock_new_inode(inode);
ef3b9af5
FM
9971 d_tmpfile(dentry, inode);
9972 mark_inode_dirty(inode);
9973
9974out:
9975 btrfs_end_transaction(trans, root);
9976 if (ret)
9977 iput(inode);
9978 btrfs_balance_delayed_items(root);
9979 btrfs_btree_balance_dirty(root);
ef3b9af5 9980 return ret;
b0d5d10f
CM
9981
9982out_inode:
9983 unlock_new_inode(inode);
9984 goto out;
9985
ef3b9af5
FM
9986}
9987
b38ef71c
FM
9988/* Inspired by filemap_check_errors() */
9989int btrfs_inode_check_errors(struct inode *inode)
9990{
9991 int ret = 0;
9992
9993 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9994 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9995 ret = -ENOSPC;
9996 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9997 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9998 ret = -EIO;
9999
10000 return ret;
10001}
10002
6e1d5dcc 10003static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10004 .getattr = btrfs_getattr,
39279cc3
CM
10005 .lookup = btrfs_lookup,
10006 .create = btrfs_create,
10007 .unlink = btrfs_unlink,
10008 .link = btrfs_link,
10009 .mkdir = btrfs_mkdir,
10010 .rmdir = btrfs_rmdir,
80ace85c 10011 .rename2 = btrfs_rename2,
39279cc3
CM
10012 .symlink = btrfs_symlink,
10013 .setattr = btrfs_setattr,
618e21d5 10014 .mknod = btrfs_mknod,
95819c05
CH
10015 .setxattr = btrfs_setxattr,
10016 .getxattr = btrfs_getxattr,
5103e947 10017 .listxattr = btrfs_listxattr,
95819c05 10018 .removexattr = btrfs_removexattr,
fdebe2bd 10019 .permission = btrfs_permission,
4e34e719 10020 .get_acl = btrfs_get_acl,
996a710d 10021 .set_acl = btrfs_set_acl,
93fd63c2 10022 .update_time = btrfs_update_time,
ef3b9af5 10023 .tmpfile = btrfs_tmpfile,
39279cc3 10024};
6e1d5dcc 10025static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10026 .lookup = btrfs_lookup,
fdebe2bd 10027 .permission = btrfs_permission,
4e34e719 10028 .get_acl = btrfs_get_acl,
996a710d 10029 .set_acl = btrfs_set_acl,
93fd63c2 10030 .update_time = btrfs_update_time,
39279cc3 10031};
76dda93c 10032
828c0950 10033static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10034 .llseek = generic_file_llseek,
10035 .read = generic_read_dir,
9cdda8d3 10036 .iterate = btrfs_real_readdir,
34287aa3 10037 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10038#ifdef CONFIG_COMPAT
34287aa3 10039 .compat_ioctl = btrfs_ioctl,
39279cc3 10040#endif
6bf13c0c 10041 .release = btrfs_release_file,
e02119d5 10042 .fsync = btrfs_sync_file,
39279cc3
CM
10043};
10044
d1310b2e 10045static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10046 .fill_delalloc = run_delalloc_range,
065631f6 10047 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10048 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10049 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10050 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10051 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10052 .set_bit_hook = btrfs_set_bit_hook,
10053 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10054 .merge_extent_hook = btrfs_merge_extent_hook,
10055 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10056};
10057
35054394
CM
10058/*
10059 * btrfs doesn't support the bmap operation because swapfiles
10060 * use bmap to make a mapping of extents in the file. They assume
10061 * these extents won't change over the life of the file and they
10062 * use the bmap result to do IO directly to the drive.
10063 *
10064 * the btrfs bmap call would return logical addresses that aren't
10065 * suitable for IO and they also will change frequently as COW
10066 * operations happen. So, swapfile + btrfs == corruption.
10067 *
10068 * For now we're avoiding this by dropping bmap.
10069 */
7f09410b 10070static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10071 .readpage = btrfs_readpage,
10072 .writepage = btrfs_writepage,
b293f02e 10073 .writepages = btrfs_writepages,
3ab2fb5a 10074 .readpages = btrfs_readpages,
16432985 10075 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10076 .invalidatepage = btrfs_invalidatepage,
10077 .releasepage = btrfs_releasepage,
e6dcd2dc 10078 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10079 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10080};
10081
7f09410b 10082static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10083 .readpage = btrfs_readpage,
10084 .writepage = btrfs_writepage,
2bf5a725
CM
10085 .invalidatepage = btrfs_invalidatepage,
10086 .releasepage = btrfs_releasepage,
39279cc3
CM
10087};
10088
6e1d5dcc 10089static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10090 .getattr = btrfs_getattr,
10091 .setattr = btrfs_setattr,
95819c05
CH
10092 .setxattr = btrfs_setxattr,
10093 .getxattr = btrfs_getxattr,
5103e947 10094 .listxattr = btrfs_listxattr,
95819c05 10095 .removexattr = btrfs_removexattr,
fdebe2bd 10096 .permission = btrfs_permission,
1506fcc8 10097 .fiemap = btrfs_fiemap,
4e34e719 10098 .get_acl = btrfs_get_acl,
996a710d 10099 .set_acl = btrfs_set_acl,
e41f941a 10100 .update_time = btrfs_update_time,
39279cc3 10101};
6e1d5dcc 10102static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10103 .getattr = btrfs_getattr,
10104 .setattr = btrfs_setattr,
fdebe2bd 10105 .permission = btrfs_permission,
95819c05
CH
10106 .setxattr = btrfs_setxattr,
10107 .getxattr = btrfs_getxattr,
33268eaf 10108 .listxattr = btrfs_listxattr,
95819c05 10109 .removexattr = btrfs_removexattr,
4e34e719 10110 .get_acl = btrfs_get_acl,
996a710d 10111 .set_acl = btrfs_set_acl,
e41f941a 10112 .update_time = btrfs_update_time,
618e21d5 10113};
6e1d5dcc 10114static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
10115 .readlink = generic_readlink,
10116 .follow_link = page_follow_link_light,
10117 .put_link = page_put_link,
f209561a 10118 .getattr = btrfs_getattr,
22c44fe6 10119 .setattr = btrfs_setattr,
fdebe2bd 10120 .permission = btrfs_permission,
0279b4cd
JO
10121 .setxattr = btrfs_setxattr,
10122 .getxattr = btrfs_getxattr,
10123 .listxattr = btrfs_listxattr,
10124 .removexattr = btrfs_removexattr,
e41f941a 10125 .update_time = btrfs_update_time,
39279cc3 10126};
76dda93c 10127
82d339d9 10128const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10129 .d_delete = btrfs_dentry_delete,
b4aff1f8 10130 .d_release = btrfs_dentry_release,
76dda93c 10131};